
Shelve in
Software Engineering/Software Development

User level:
Intermediate–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Optimizing HPC Applications
with Intel® Cluster Tools
Optimizing HPC Applications with Intel® Cluster Tools takes the reader on a tour
of the fast-growing area of high performance computing and the optimization of
hybrid programs. These programs typically combine distributed memory and shared
memory programming models and use the Message Passing Interface (MPI) and
OpenMP for multi-threading to achieve the ultimate goal of high performance at low
power consumption on enterprise-class workstations and compute clusters.

The book focuses on optimization for clusters consisting of the Intel® Xeon
processor, but the optimization methodologies also apply to the Intel® Xeon Phi™
coprocessor and heterogeneous clusters mixing both architectures. Besides the
tutorial and reference content, the authors address and refute many myths and
misconceptions surrounding the topic. The text is augmented and enriched by
descriptions of real-life situations.

What You’ll Learn:

• Practical, hands-on examples show how to make clusters and workstations
based on Intel® Xeon processors and Intel® Xeon Phi™ coprocessors
“sing” in Linux environments

• How to master the synergy of Intel® Parallel Studio XE 2015 Cluster Edition,
which includes Intel® Composer XE, Intel® MPI Library, Intel® Trace Analyzer
and Collector, Intel® VTune™ Amplifier XE, and many other useful tools

• How to achieve immediate and tangible optimization results while refining
your understanding of software design principles

Supalov
Semin
Klemm

Dahnken

9 781430 264965

53999
ISBN 978-1-4302-6496-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors ��� xiii

About the Technical Reviewers ��� xv

Acknowledgments ��� xvii

Foreword �� xix

Introduction �� xxi

Chapter 1: No Time to Read This Book? ■ ��� 1

Chapter 2: Overview of Platform Architectures ■ ���������������������������� 11

Chapter 3: Top-Down Software Optimization ■ ������������������������������� 39

Chapter 4: Addressing System Bottlenecks ■ ��������������������������������� 55

 Chapter 5: Addressing Application Bottlenecks: ■
Distributed Memory �� 87

 Chapter 6: Addressing Application Bottlenecks: ■
Shared Memory �� 173

 Chapter 7: Addressing Application Bottlenecks: ■
Microarchitecture ��� 201

Chapter 8: Application Design Considerations ■ ��������������������������� 247

Index �� 265

xxi

Introduction

Let’s optimize some programs. We have been doing this for years, and we still love doing it.
One day we thought, Why not share this fun with the world? And just a year later, here we are.

Oh, you just need your program to run faster NOW? We understand. Go to Chapter 1
and get quick tuning advice. You can return later to see how the magic works.

Are you a student? Perfect. This book may help you pass that “Software Optimization
101” exam. Talking seriously about programming is a cool party trick, too. Try it.

Are you a professional? Good. You have hit the one-stop-shopping point for Intel’s
proven top-down optimization methodology and Intel Cluster Studio that includes
Message Passing Interface* (MPI), OpenMP, math libraries, compilers, and more.

Or are you just curious? Read on. You will learn how high-performance computing
makes your life safer, your car faster, and your day brighter.

And, by the way: You will find all you need to carry on, including free trial
software, code snippets, checklists, expert advice, fellow readers, and more at
www.apress.com/source-code.

HPC: The Ever-Moving Frontier
High-performance computing, or simply HPC, is mostly concerned with
floating-point operations per second, or FLOPS. The more FLOPS you get, the better.
For convenience, FLOPS on large HPC systems are typically counted by the quadrillions
(tera, or 10 to the power of 12) and by the quintillions (peta, or 10 to the power of 15)—hence,
TeraFLOPS and PetaFLOPS. Performance of stand-alone computers is currently hovering
at around 1 to 2 TeraFLOPS, which is three orders of magnitude below PetaFLOPS. In
other words, you need around a thousand modern computers to get to the PetaFLOPS
level for the whole system. This will not stay this way forever, for HPC is an ever-moving
frontier: ExaFLOPS are three orders of magnitude above PetaFLOPS, and whole countries
are setting their sights on reaching this level of performance now.

We have come a long way since the days when computing started in earnest. Back
then [sigh!], just before WWII, computing speed was indicated by the two hours necessary
to crack the daily key settings of the Enigma encryption machine. It is indicative that
already then the computations were being done in parallel: each of the several “bombs”1
united six reconstructed Enigma machines and reportedly relieved a hundred human
operators from boring and repetitive tasks.

*Here and elsewhere, certain product names may be the property of their respective third parties.

http://www.apress.com/source-code

xxii

■ IntroduCtIon

Computing has progressed a lot since those heady days. There is hardly a better
illustration of this than the famous TOP500 list.2 Twice a year, the teams running the
most powerful non-classified computers on earth report their performance. This
data is then collated and published in time for two major annual trade shows: the
International Supercomputing Conference (ISC), typically held in Europe in June; and the
Supercomputing (SC), traditionally held in the United States in November.

Figure 1 shows how certain aspects of this list have changed over time.

Figure 1. Observed and projected performance of the Top 500 systems
(Source: top500.org; used with permission)

xxiii

■ IntroduCtIon

There are several observations we can make looking at this graph:3

1� Performance available in every represented category
is growing exponentially (hence, linear graphs in this
logarithmic representation).

2� Only part of this growth comes from the incessant
improvement of processor technology, as represented, for
example, by Moore’s Law.4 The other part is coming from
putting many machines together to form still larger machines.

3� An extrapolation made on the data obtained so far predicts
that an ExaFLOPS machine is likely to appear by 2018. Very
soon (around 2016) there may be PetaFLOPS machines at
personal disposal.

So, it’s time to learn how to optimize programs for these systems.

Why Optimize?
Optimization is probably the most profitable time investment an engineer can make, as
far as programming is concerned. Indeed, a day spent optimizing a program that takes an
hour to complete may decrease the program turn-around time by half. This means that
after 48 runs, you will recover the time invested in optimization, and then move into
the black.

Optimization is also a measure of software maturity. Donald Knuth famously said,
“Premature optimization is the root of all evil,”5 and he was right in some sense. We will
deal with how far this goes when we get closer to the end of this book. In any case, no one
should start optimizing what has not been proven to work correctly in the first place. And
a correct program is still a very rare and very satisfying piece of art.

Yes, this is not a typo: art. Despite zillions of thick volumes that have been written
and the conferences held on a daily basis, programming is still more art than science.
Likewise, for the process of program optimization. It is somewhat akin to architecture: it
must include flight of fantasy, forensic attention to detail, deep knowledge of underlying
materials, and wide expertise in the prior art. Only this combination—and something
else, something intangible and exciting, something we call “talent”—makes a good
programmer in general and a good optimizer in particular.

Finally, optimization is fun. Some 25 years later, one of us still cherishes the
memories of a day when he made a certain graphical program run 300 times faster than
it used to. A screen update that had been taking half a minute in the morning became
almost instantaneous by midnight. It felt almost like love.

The Top-down Optimization Method
Of course, the optimization process we mention is of the most common type—namely,
performance optimization. We will be dealing with this kind of optimization almost
exclusively in this book. There are other optimization targets, going beyond performance
and sometimes hurting it a lot, like code size, data size, and energy.

xxiv

■ IntroduCtIon

The good news are, once you know what you want to achieve, the methodology is
roughly the same. We will look into those details in Chapter 3. Briefly, you proceed in
the top-down fashion from the higher levels of the problem under analysis (platform,
distributed memory, shared memory, microarchitecture), iterate in a closed-loop manner
until you exhaust optimization opportunities at each of these levels. Keep in mind that
a problem fixed at one level may expose a problem somewhere else, so you may need to
revisit those higher levels once more.

This approach crystallized quite a while ago. Its previous reincarnation was
formulated by Intel application engineers working in Intel’s application solution centers
in the 1990’s.6 Our book builds on that solid foundation, certainly taking some things a tad
further to account for the time passed.

Now, what happens when top-down optimization meets the closed-loop approach?
Well, this is a happy marriage. Every single level of the top-down method can be handled
by the closed-loop approach. Moreover, the top-down method itself can be enclosed
in another, bigger closed loop where every iteration addresses the biggest remaining
problem at any level where it has been detected. This way, you keep your priorities
straight and helps you stay focused.

Intel Parallel Studio XE Cluster Edition
Let there be no mistake: the bulk of HPC is still made up by C and Fortran, MPI, OpenMP,
Linux OS, and Intel Xeon processors. This is what we will focus on, with occasional
excursions into several adjacent areas.

There are many good parallel programming packages around, some of them
available for free, some sold commercially. However, to the best of our absolutely
unbiased professional knowledge, for completeness none of them comes in anywhere
close to Intel Parallel Studio XE Cluster Edition.7

Indeed, just look at what it has to offer—and for a very modest price that does not
depend on the size of the machines you are going to use, or indeed on their number.

Intel Parallel Studio XE Cluster Edition•	 8 compilers and libraries,
including:

Intel Fortran Compiler•	 9

Intel C++ Compiler•	 10

Intel Cilk Plus•	 11

Intel Math Kernel Library (MKL)•	 12

Intel Integrated Performance Primitives (IPP)•	 13

Intel Threading Building Blocks (TBB)•	 14

Intel MPI Benchmarks (IMB)•	 15

Intel MPI Library•	 16

Intel Trace Analyzer and Collector•	 17

xxv

■ IntroduCtIon

Intel VTune Amplifier XE•	 18

Intel Inspector XE•	 19

Intel Advisor XE•	 20

All these riches and beauty work on the Linux and Microsoft Windows OS,
sometimes more; support all modern Intel platforms, including, of course, Intel Xeon
processors and Intel Xeon Phi coprocessors; and come at a cumulative discount akin
to the miracles of the Arabian 1001 Nights. Best of all, Intel runtime libraries come
traditionally free of charge.

Certainly, there are good tools beyond Intel Parallel Studio XE Cluster Edition, both
offered by Intel and available in the world at large. Whenever possible and sensible, we
employ those tools in this book, highlighting their relative advantages and drawbacks
compared to those described above. Some of these tools come as open source, some
come with the operating system involved; some can be evaluated for free, while others
may have to be purchased. While considering the alternative tools, we focus mostly on
the open-source, free alternatives that are easy to get and simple to use.

The Chapters of this Book
This is what awaits you, chapter by chapter:

1� No Time to Read This Book? helps you out on the burning
optimization assignment by providing several proven recipes
out of an Intel application engineer’s magic toolbox.

2� Overview of Platform Architectures introduces common
terminology, outlines performance features in modern
processors and platforms, and shows you how to estimate
peak performance for a particular target platform.

3� Top-down Software Optimization introduces the generic
top-down software optimization process flow and the
closed-loop approach that will help you keep the challenge of
multilevel optimization under secure control.

4� Addressing System Bottlenecks demonstrates how you can
utilize Intel Cluster Studio XE and other tools to discover
and remove system bottlenecks as limiting factors to the
maximum achievable application performance.

5� Addressing Application Bottlenecks: Distributed Memory
shows how you can identify and remove distributed memory
bottlenecks using Intel MPI Library, Intel Trace Analyzer and
Collector, and other tools.

6� Addressing Application Bottlenecks: Shared Memory explains
how you can identify and remove threading bottlenecks using
Intel VTune Amplifier XE and other tools.

xxvi

■ IntroduCtIon

7� Addressing Application Bottlenecks: Microarchitecture
demonstrates how you can identify and remove microarchitecture
bottlenecks using Intel VTune Amplifier XE and Intel
Composer XE, as well as other tools.

8� Application Design Considerations deals with the key tradeoffs
guiding the design and optimization of applications. You will
learn how to make your next program be fast from the start.

Most chapters are sufficiently self-contained to permit individual reading in
any order. However, if you are interested in one particular optimization aspect, you
may decide to go through those chapters that naturally cover that topic. Here is a
recommended reading guide for several selected topics:

System optimization•	 : Chapters 2, 3, and 4.

Distributed memory optimization•	 : Chapters 2, 3, and 5.

Shared memory optimization•	 : Chapters 2, 3, and 6.

Microarchitecture optimization•	 : Chapters 2, 3, and 7.

Use your judgment and common sense to find your way around. Good luck!

References
1. “Bomba_(cryptography),” [Online]. Available:

http://en.wikipedia.org/wiki/Bomba_(cryptography).

2. Top500.Org, “TOP500 Supercomputer Sites,” [Online]. Available:
http://www.top500.org/.

3. Top500.Org, “Performance Development TOP500 Supercomputer
Sites,” [Online]. Available: http://www.top500.org/statistics/
perfdevel/.

4. G. E. Moore, “Cramming More Components onto Integrated
Circuits,” Electronics, p. 114–117, 19 April 1965.

5. “Knuth,” [Online]. Available: http://en.wikiquote.org/wiki/
Donald_Knuth.

6. Intel Corporation, “ASC Performance Methodology - Top-Down/
Closed Loop Approach,” 1999. [Online]. Available:
http://smartdata.usbid.com/datasheets/usbid/2001/2001-q1/
asc_methodology.pdf.

7. Intel Corporation, “Intel Cluster Studio XE,” [Online]. Available:
http://software.intel.com/en-us/intel-cluster-studio-xe.

http://en.wikipedia.org/wiki/Bomba_(cryptography
http://en.wikipedia.org/wiki/Bomba_(cryptography
http://www.top500.org/
http://www.top500.org/statistics/perfdevel/
http://www.top500.org/statistics/perfdevel/
http://en.wikiquote.org/wiki/Donald_Knuth
http://en.wikiquote.org/wiki/Donald_Knuth
http://smartdata.usbid.com/datasheets/usbid/2001/2001-q1/asc_methodology.pdf
http://smartdata.usbid.com/datasheets/usbid/2001/2001-q1/asc_methodology.pdf
http://software.intel.com/en-us/intel-cluster-studio-xe

xxvii

■ IntroduCtIon

8. Intel Corporation, “Intel Composer XE,” [Online]. Available:
http://software.intel.com/en-us/intel-composer-xe/.

9. Intel Corporation, “Intel Fortran Compiler,” [Online]. Available:
http://software.intel.com/en-us/fortran-compilers.

10. Intel Corporation, “Intel C++ Compiler,” [Online]. Available:
http://software.intel.com/en-us/c-compilers.

11. Intel Corporation, “Intel Cilk Plus,” [Online]. Available:
http://software.intel.com/en-us/intel-cilk-plus.

12. Intel Corporation, “Intel Math Kernel Library,” [Online]. Available:
http://software.intel.com/en-us/intel-mkl.

13. Intel Corporation, “Intel Performance Primitives,” [Online].
Available: http://software.intel.com/en-us/intel-ipp.

14. Intel Corporation, “Intel Threading Building Blocks,” [Online].
Available: http://software.intel.com/en-us/intel-tbb.

15. Intel Corporation, “Intel MPI Benchmarks,” [Online]. Available:
http://software.intel.com/en-us/articles/intel-mpi-
benchmarks/.

16. Intel Corporation, “Intel MPI Library,” [Online]. Available:
http://software.intel.com/en-us/intel-mpi-library/.

17. Intel Corporation, “Intel Trace Analyzer and Collector,” [Online].
Available: http://software.intel.com/en-us/intel-trace-
analyzer/.

18. Intel Corporation, “Intel VTune Amplifier XE,” [Online]. Available:
http://software.intel.com/en-us/intel-vtune-amplifier-xe.

19. Intel Corporation, “Intel Inspector XE,” [Online]. Available:
http://software.intel.com/en-us/intel-inspector-xe/.

20. Intel Corporation, “Intel Advisor XE,” [Online]. Available:
http://software.intel.com/en-us/intel-advisor-xe/.

http://software.intel.com/en-us/intel-composer-xe/
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/intel-cilk-plus
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-ipp
http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-trace-analyzer/
http://software.intel.com/en-us/intel-trace-analyzer/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-inspector-xe/
http://software.intel.com/en-us/intel-inspector-xe/
http://software.intel.com/en-us/intel-advisor-xe/
http://software.intel.com/en-us/intel-advisor-xe/

1

Chapter 1

No Time to Read This Book?

We know what it feels like to be under pressure. Try out a few quick and proven optimization
stunts described below. They may provide a good enough performance gain right away.

There are several parameters that can be adjusted with relative ease. Here are the
steps we follow when hard pressed:

Use Intel MPI Library•	 1 and Intel Composer XE2

Got more time? Tune Intel MPI:•	

Collect built-in statistics data•	

Tune Intel MPI process placement and pinning•	

Tune OpenMP thread pinning•	

Got still more time? Tune Intel Composer XE:•	

Analyze optimization and vectorization reports•	

Use interprocedural optimization•	

Using Intel MPI Library
The Intel MPI Library delivers good out-of-the-box performance for bandwidth-bound
applications. If your application belongs to this popular class, you should feel the
difference immediately when switching over.

If your application has been built for Intel MPI compatible distributions like
MPICH,3 MVAPICH2,4 or IBM POE,5 and some others, there is no need to recompile the
application. You can switch by dynamically linking the Intel MPI 5.0 libraries at runtime:

$ source /opt/intel/impi_latest/bin64/mpivars.sh
$ mpirun -np 16 -ppn 2 xhpl

If you use another MPI and have access to the application source code, you can
rebuild your application using Intel MPI compiler scripts:

Use •	 mpicc (for C), mpicxx (for C++), and mpifc/mpif77/mpif90
(for Fortran) if you target GNU compilers.

Use •	 mpiicc, mpiicpc, and mpiifort if you target Intel Composer XE.

Chapter 1 ■ No time to read this Book?

2

Using Intel Composer XE
The invocation of the Intel Composer XE is largely compatible with the widely used GNU
Compiler Collection (GCC). This includes both the most commonly used command line
options and the language support for C/C++ and Fortran. For many applications you can
simply replace gcc with icc, g++ with icpc, and gfortran with ifort. However, be aware
that although the binary code generated by Intel C/C++ Composer XE is compatible with the
GCC-built executable code, the binary code generated by the Intel Fortran Composer is not.

For example:

$ source /opt/intel/composerxe/bin/compilervars.sh intel64
$ icc -O3 -xHost -qopenmp -c example.o example.c

Revisit the compiler flags you used before the switch; you may have to remove some
of them. Make sure that Intel Composer XE is invoked with the flags that give the best
performance for your application (see Table 1-1). More information can be found in the
Intel Composer XE documentation.6

Table 1-1. Selected Intel Composer XE Optimization Flags

GCC ICC Effect

-O0 -O0 Disable (almost all) optimization. Not
something you want to use for performance!

-O1 -O1 Optimize for speed (no code size increase
for ICC)

-O2 -O2 Optimize for speed and enable vectorization

-O3 -O3 Turn on high-level optimizations

-ftlo -ipo Enable interprocedural optimization

-ftree-vectorize -vec Enable auto-vectorization (auto-enabled
with -O2 and -O3)

-fprofile-generate -prof-gen Generate runtime profile for optimization

-fprofile-use -prof-use Use runtime profile for optimization

-parallel Enable auto-parallelization

-fopenmp -qopenmp Enable OpenMP

-g -g Emit debugging symbols

-qopt-report Generate the optimization report

-vec-report Generate the vectorization report

-ansi-alias Enable ANSI aliasing rules for C/C++

(continued)

Chapter 1 ■ No time to read this Book?

3

For most applications, the default optimization level of -O2 will suffice. It runs fast
and gives reasonable performance. If you feel adventurous, try -O3. It is more aggressive
but it also increases the compilation time.

Tuning Intel MPI Library
If you have more time, you can try to tune Intel MPI parameters without changing the
application source code.

Gather Built-in Statistics
Intel MPI comes with a built-in statistics-gathering mechanism. It creates a negligible
runtime overhead and reports key performance metrics (for example, MPI to
computation ratio, message sizes, counts, and collective operations used) in the popular
IPM format.7

To switch the IPM statistics gathering mode on and do the measurements, enter the
following commands:

$ export I_MPI_STATS=ipm
$ mpirun -np 16 xhpl

By default, this will generate a file called stats.ipm. Listing 1-1 shows an example
of the MPI statistics gathered for the well-known High Performance Linpack (HPL)
benchmark.8 (We will return to this benchmark throughout this book, by the way.)

GCC ICC Effect

-msse4.1 -xSSE4.1 Generate code for Intel processors with SSE
4.1 instructions

-mavx -xAVX Generate code for Intel processors with
AVX instructions

-mavx2 -xCORE-AVX2 Generate code for Intel processors with
AVX2 instructions

-mcpu=native -xHost Generate code for the current machine used
for compilation

Table 1-1. (continued)

Chapter 1 ■ No time to read this Book?

4

Listing 1-1. MPI Statistics for the HPL Benchmark with the Most Interesting Fields
Highlighted

Intel(R) MPI Library Version 5.0

Summary MPI Statistics
Stats format: region
Stats scope : full

##
#
command : /home/book/hpl/./xhpl_hybrid_intel64_dynamic (completed)
host : esg066/x86_64_Linux mpi_tasks : 16 on 8 nodes
start : 02/14/14/12:43:33 wallclock : 2502.401419 sec
stop : 02/14/14/13:25:16 %comm : 8.43
gbytes : 0.00000e+00 total gflop/sec : NA
#
##
region : * [ntasks] = 16
#
[total] <avg> min max
entries 16 1 1 1
wallclock 40034.7 2502.17 2502.13 2502.4
user 446800 27925 27768.4 28192.7
system 1971.27 123.205 102.103 145.241
mpi 3375.05 210.941 132.327 282.462
%comm 8.43032 5.28855 11.2888
gflop/sec NA NA NA NA
gbytes 0 0 0 0
#
#
[time] [calls] <%mpi> <%wall>
MPI_Send 2737.24 1.93777e+06 81.10 6.84
MPI_Recv 394.827 16919 11.70 0.99
MPI_Wait 236.568 1.92085e+06 7.01 0.59
MPI_Iprobe 3.2257 6.57506e+06 0.10 0.01
MPI_Init_thread 1.55628 16 0.05 0.00
MPI_Irecv 1.31957 1.92085e+06 0.04 0.00
MPI_Type_commit 0.212124 14720 0.01 0.00
MPI_Type_free 0.0963376 14720 0.00 0.00
MPI_Comm_split 0.0065608 48 0.00 0.00
MPI_Comm_free 0.000276804 48 0.00 0.00
MPI_Wtime 9.67979e-05 48 0.00 0.00
MPI_Comm_size 9.13143e-05 452 0.00 0.00
MPI_Comm_rank 7.77245e-05 452 0.00 0.00
MPI_Finalize 6.91414e-06 16 0.00 0.00
MPI_TOTAL 3375.05 1.2402e+07 100.00 8.43
##

Chapter 1 ■ No time to read this Book?

5

From Listing 1-1 you can deduce that MPI communication occupies between 5.3
and 11.3 percent of the total runtime, and that the MPI_Send, MPI_Recv, and MPI_Wait
operations take about 81, 12, and 7 percent, respectively, of the total MPI time. With
this data at hand, you can see that there are potential load imbalances between the job
processes, and that you should focus on making the MPI_Send operation as fast as it can
go to achieve a noticeable performance hike.

Note that if you use the full IPM package instead of the built-in statistics, you will also
get data on the total communication volume and floating point performance that are not
measured by the Intel MPI Library.

Optimize Process Placement
The Intel MPI Library puts adjacent MPI ranks on one cluster node as long as there are cores
to occupy. Use the Intel MPI command line argument -ppn to control the process placement
across the cluster nodes. For example, this command will start two processes per node:

$ mpirun -np 16 -ppn 2 xhpl

Intel MPI supports process pinning to restrict the MPI ranks to parts of the system
so as to optimize process layout (for example, to avoid NUMA effects or to reduce latency
to the InfiniBand adapter). Many relevant settings are described in the Intel MPI Library
Reference Manual.9

Briefly, if you want to run a pure MPI program only on the physical processor cores,
enter the following commands:

$ export I_MPI_PIN_PROCESSOR_LIST=allcores
$ mpirun -np 2 your_MPI_app

If you want to run a hybrid MPI/OpenMP program, don’t change the default Intel
MPI settings, and see the next section for the OpenMP ones.

If you want to analyze Intel MPI process layout and pinning, set the following
environment variable:

$ export I_MPI_DEBUG=4

Optimize Thread Placement
If the application uses OpenMP for multithreading, you may want to control thread
placement in addition to the process placement. Two possible strategies are:

$ export KMP_AFFINITY=granularity=thread,compact
$ export KMP_AFFINITY=granularity=thread,scatter

The first setting keeps threads close together to improve inter-thread
communication, while the second setting distributes the threads across the system to
maximize memory bandwidth.

Chapter 1 ■ No time to read this Book?

6

Programs that use the OpenMP API version 4.0 can use the equivalent OpenMP
affinity settings instead of the KMP_AFFINITY environment variable:

$ export OMP_PROC_BIND=close
$ export OMP_PROC_BIND=spread

If you use I_MPI_PIN_DOMAIN, MPI will confine the OpenMP threads of an MPI
process on a single socket. Then you can use the following setting to avoid thread
movement between the logical cores of the socket:

$ export KMP_AFFINITY=granularity=thread

Tuning Intel Composer XE
If you have access to the source code of the application, you can perform optimizations
by selecting appropriate compiler switches and recompiling the source code.

Analyze Optimization and Vectorization Reports
Add compiler flags -qopt-report and/or -vec-report to see what the compiler did to
your source code. This will report all the transformations applied to your code. It will also
highlight those code patterns that prevented successful optimization. Address them if you
have time left.

Here is a small example. Because the optimization report may be very long, Listing 1-2
only shows an excerpt from it. The example code contains several loop nests of seven loops.
The compiler found an OpenMP directive to parallelize the loop nest. It also recognized
that the overall loop nest was not optimal, and it automatically permuted some loops
to improve the situation for vectorization. Then it vectorized all inner-most loops while
leaving the outer-most loops as they are.

Listing 1-2. Example Optimization Report with the Most Interesting Fields Highlighted

$ ifort -O3 -qopenmp -qopt-report -qopt-report-file=stdout -c example.F90

 Report from: Interprocedural optimizations [ipo]

[...]

OpenMP Construct at example.F90(8,7)
remark #15059: OpenMP DEFINED LOOP WAS PARALLELIZED
OpenMP Construct at example.F90(25,7)
remark #15059: OpenMP DEFINED LOOP WAS PARALLELIZED

[...]

Chapter 1 ■ No time to read this Book?

7

LOOP BEGIN at example.F90(9,2)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #25448: Loopnest Interchanged : (1 2 3 4) --> (1 4 2 3)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

[...]

 LOOP BEGIN at example.F90(15,8)
 remark #25446: blocked by 125 (pre-vector)
 remark #25444: unrolled and jammed by 4 (pre-vector)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(13,6)
 remark #25446: blocked by 125 (pre-vector)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(14,7)
 remark #25446: blocked by 128 (pre-vector)
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

 LOOP BEGIN at example.F90(14,7)
 Remainder
 remark #25460: Loop was not optimized
 LOOP END
 LOOP END
 LOOP END

[...]

 LOOP END
 LOOP END
 LOOP END
 LOOP END
LOOP END

LOOP BEGIN at example.F90(26,2)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #25448: Loopnest Interchanged : (1 2 3 4) --> (1 3 2 4)
 remark #15018: loop was not vectorized: not inner loop

Chapter 1 ■ No time to read this Book?

8

 LOOP BEGIN at example.F90(29,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(29,5)
 remark #25446: blocked by 125 (pre-vector)
 remark #25444: unrolled and jammed by 4 (pre-vector)
 remark #15018: loop was not vectorized: not inner loop

[...]
 LOOP END
 LOOP END
 LOOP END
 LOOP END
 LOOP END
LOOP END

Listing 1-3 shows the vectorization report for the example in Listing 1-2. As you can
see, the vectorization report contains the same information about vectorization as the
optimization report.

Listing 1-3. Example Vectorization Report with the Most Interesting Fields Highlighted

$ ifort -O3 -qopenmp -vec-report=2 -qopt-report-file=stdout -c example.F90

[...]

LOOP BEGIN at example.F90(9,2)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

Chapter 1 ■ No time to read this Book?

9

 LOOP BEGIN at example.F90(12,5)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(15,8)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(13,6)
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(14,7)
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

[...]

 LOOP END
 LOOP END

 LOOP BEGIN at example.F90(15,8)
 Remainder
 remark #15018: loop was not vectorized: not inner loop

 LOOP BEGIN at example.F90(13,6)
 remark #15018: loop was not vectorized: not inner loop

[...]

 LOOP BEGIN at example.F90(14,7)
 remark #15003: PERMUTED LOOP WAS VECTORIZED
 LOOP END

[...]

 LOOP END
 LOOP END
 LOOP END

[...]

 LOOP END
 LOOP END
 LOOP END
 LOOP END
LOOP END

[...]

Chapter 1 ■ No time to read this Book?

10

Use Interprocedural Optimization
Add the compiler flag -ipo to switch on interprocedural optimization. This will give the
compiler a holistic view of the program and open more optimization opportunities for the
program as a whole. Note that this will also increase the overall compilation time.

Runtime profiling can also increase the chances for the compiler to generate better
code. Profile-guided optimization requires a three-stage process. First, compile the
application with the compiler flag -prof-gen to instrument the application with profiling
code. Second, run the instrumented application with a typical dataset to produce a
meaningful profile. Third, feed the compiler with the profile (-prof-use) and let it
optimize the code.

Summary
Switching to Intel MPI and Intel Composer XE can help improve performance because
the two strive to optimally support Intel platforms and deliver good out-of-the-box (OOB)
performance. Tuning measures can further improve the situation. The next chapters will
reiterate the quick and dirty examples of this chapter and show you how to push the limits.

References
1. Intel Corporation, “Intel(R) MPI Library,” http://software.intel.com/en-us/

intel-mpi-library.

2. Intel Corporation, “Intel(R) Composer XE Suites,”
http://software.intel.com/en-us/intel-composer-xe.

3. Argonne National Laboratory, “MPICH: High-Performance Portable MPI,” www.mpich.
org.

4. Ohio State University, “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE,”
http://mvapich.cse.ohio-state.edu/overview/mvapich2/.

5. International Business Machines Corporation, “IBM Parallel
Environment,” www-03.ibm.com/systems/software/parallel/.

6. Intel Corporation, “Intel Fortran Composer XE 2013 - Documentation,”
http://software.intel.com/articles/intel-fortran-composer-xe-
documentation/.

7. The IPM Developers, “Integrated Performance Monitoring - IPM,” http://ipm-hpc.
sourceforge.net/.

8. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL : A Portable
Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers,” 10 September 2008, www.netlib.org/benchmark/hpl/.

9. Intel Corporation, “Intel MPI Library Reference Manual,” http://software.intel.
com/en-us/node/500285.

http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-composer-xe
http://www.mpich.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://www-03.ibm.com/systems/software/parallel/
http://software.intel.com/articles/intel-fortran-composer-xe-documentation/
http://software.intel.com/articles/intel-fortran-composer-xe-documentation/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://www.netlib.org/benchmark/hpl/
http://software.intel.com/en-us/node/500285
http://software.intel.com/en-us/node/500285

11

Chapter 2

Overview of Platform
Architectures

In order to optimize software you need to understand hardware. In this chapter we give
you a brief overview of the typical system architectures found in the high-performance
computing (HPC) today. We also introduce terminology that will be used throughout
the book.

Performance Metrics and Targets
The definition of optimization found in Merriam-Webster’s Collegiate Dictionary reads
as follows: “an act, process, or methodology of making something (as a design, system,
or decision) as fully perfect, functional, or effective as possible.”1 To become practically
applicable, this definition requires establishment of clear success criteria. These objective
criteria need to be based on quantifiable metrics and on well-defined standards of
measurement. We deal with the metrics in this chapter.

Latency, Throughput, Energy, and Power
Let us start with the most common class of metrics: those that are based on the total time
required to complete an action–for example, the time it takes for a car to drive from the
start to the finish on a race track, as shown in Figure 2-1. Execution (or wall-clock) time
is one of the most common ways to measure application performance: to measure its
runtime on a specific system and report it in seconds (or hours, or sometimes days).
In this context, the time required to complete an action is a typical latency metric.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

12

The runtime, or the period of time from the start to the completion of an application,
is important because it tells you how long you need to wait for the results. In networking,
latency is the amount of time it takes a data packet to travel from the source to the
destination; it also can be referred to as the response time. For measurements inside the
processor, we often use the term instruction latency as the time it takes for a machine
instruction entering the execution unit until results of that instruction are available—that
is, written to the register file and ready to be used by subsequent instructions. In more
general terms, latency can be defined as the observed time interval between the start of a
process and its completion.

We can generalize this class of metrics to represent more of a general class of
consumable resources. Time is one kind of a consumable resource, such as the time
allocated for your job on a supercomputer. Another important example of a consumable
resource is the amount of electrical energy required to complete your job, called energy to
solution. The official unit in which energy is measured is the joule, while in everyday life
we more often use watt-hours. One watt-hour is equal to 3600 joules.

The amount of energy consumption defines your electricity bill and is a very visible
item among operating expenses of major, high-performance computing facilities. It drives
demand for optimization of the energy to solution, in addition to the traditional efforts
to reduce the runtime, improve parallel efficiency, and so on. Energy optimization work
has different scales; going from giga-joules (GJ, or 109 joules) consumed at the application
level, to pico-joules (pJ, or 10–12 joules) per instruction.

One of the specific properties of the latency metrics is that they are additive, so that
they can be viewed as a cumulative sum of several latencies of subtasks. This means that
if the application has three subtasks following one after another, and these subtasks take
times T

1
, T

2
 and T

3
, respectively, then the total application runtime is T

app
 = T

1
 + T

2
 + T

3
.

Other types of metrics describe the amount of work that can be completed by the
system per unit of time, or per unit of another consumable resource. One example of car
performance would be its speed defined as the distance covered per unit of time; or of its
fuel efficiency, defined as the distance covered per unit of fuel—, such as miles per gallon.
We call these metrics throughput metrics. For example, the number of instructions per
second (IPS) executed by the processor, or the number of floating point operations per
second (FLOPS) are both throughput metrics. Other widely used metrics of this class are
memory bandwidth (reaching tens and hundreds of gigabytes per second these days),
and network interconnection throughput (in either bits per second or bytes per second).
The unit of power (watt) is also a throughput metric that is defined as energy flow per unit
of time, and is equal exactly to 1 joule per second.

Figure 2-1. Runtime: observed time interval between the start and the finish of a car on a
race track

Chapter 2 ■ Overview Of platfOrm arChiteCtures

13

You may encounter situations where throughput is described as the inverse of
latency. This is correct only when both metrics describe the same process applied to the
same amount of work. In particular, for an application or kernel that takes one second to
complete 109 arithmetic operations on floating point numbers, it is correct to state that its
throughput is 1 GFLOPS (gigaFLOPS, or 109 FLOPS).

However, very often, especially in computer networks, latency is understood
as the time from the beginning of the packet shipment until the first data arrives at
the destination. In this context, latency will not be equal to the inverse value of the
throughput. To grasp why this happens, compare sending a very large amount of data
(say, 1 terabyte (TB), which is 1012 bytes) using two different methods2:

1. Shipping with overnight express mail

2. Uploading via broadband Internet access

The overnight (24-hour) shipment of the 1TB hard drive has good throughput but
lousy latency. The throughput is (1 × 1012 × 8) bits / (24 × 60 × 60) seconds = about 92
million bits per second (bps), which is comparable to modern broadband networks. The
difference is that the overnight shipment bits are delayed for a day and then arrive all
at once, but the bits we send over the Internet start appearing almost immediately. We
would say that the network has much better latency, even though both methods have
approximately the same throughput when considered over the interval of one day.

Although high throughput systems may have low latency, there is no causal link.
Comparing a GDDR5 (Graphics Double Data Rate, version 5) vs. DDR3 (Double Data
Rate, type 3) memory bandwidth and latency, one notices that systems with GDDR5
(such as Intel Xeon Phi coprocessors) deliver three to five times more bandwidth, while
the latency to access data (measured in an idle environment) is five to six times lower
than in systems with DDR3 memory.

Finally, a graph of latency versus load looks very different from a graph of throughput
versus load. As we will see later in this chapter, memory access latency goes up
exponentially as the load increases. Throughput will go up almost linearly at first, then
levels out to become nearly flat when the physical capacity of the transport medium is
saturated. Simply by looking at a graph of test results and keeping those features in mind,
you can guess whether it is a latency graph or a throughput graph.

Another important concept and property of a system or process is its degree of
concurrency or parallelism. Concurrency (or degree of concurrency) is defined as the
number of work items that can potentially be performed simultaneously. In the example
illustrated by Figure 2-2, where three cars can race simultaneously, each on its own
track, we would say this system has concurrency of 3. In computation, an example of
concurrency would be the simultaneous execution of multiple, structurally different
application “threads” by a multicore processor. Presence of concurrency is an intrinsic
property of any modern high-performance system. Processes running on different
machines of a cluster form a common system that executes application code on multiple
machines at the same time. This, too, is an example of concurrency in action.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

14

Cantrill and Bonwick describe three fundamental ways of using concurrency to
improve application performance.3 At the same time, these three ways represent the
typical optimization targets for either latency or throughout metrics:

•	 Increase throughput: By executing multiple tasks concurrently,
the general system throughput can be increased.

•	 Reduce latency: A given amount of work is completed in shorter
time by dividing it into parts that can be completed concurrently.

•	 Hide latency: Multiple long-running tasks are executed in
parallel by the underlying system. This is particularly effective
when some tasks are blocked (for example, if they must wait
upon disk or network I/O operations), while others can proceed
independently.

Peak Performance as the Ultimate Limit
Every time we talk about performance of an application running on a machine, we try to
compare it to the maximum attainable performance on that specific machine, or peak
performance of that machine. The ratio between the achieved (or measured) performance
and the peak performance gives the efficiency metric. This metric is often used to drive
the performance optimization, for an increase in efficiency will also lead to an increase in
performance according to the underlying metric. For example, efficiency for the wall-clock
time is the fraction of time that is spent doing useful work, while efficiency for throughout is
a measure of useful capacity utilization.

Consider the example of how to quantify efficiency for a network protocol. Network
protocols normally require each packet to contain a header and a footer. The actual data
transmitted in the packet is then the size of the packet minus the protocol overhead.
Therefore, efficiency of using the network, from the application point of view, is reduced
from the total utilization according to the size of the header and the footer. For Ethernet,
the frame payload size equals 1536 bytes. The TCP/IP header and footer take 40 bytes
extra. Hence, efficiency here is equal to 1536 / 1576 × 100, or 97.5 percent.

Understanding the limitations of maximum achievable performance is an important
step in guiding the optimization process: the limits are always there! These limits are
driven by physical properties of the available materials, maturity of the technology, or
(trivially) the cost. Particularly, the propagation of signals along the wires is limited by
the speed of light in the respective material. Thus, the latency for completing any work
using electronic equipment will always be greater than zero. In the same way, it is not
possible to build an infinitely wide highway, for its throughput will always be limited by
the number of lanes and their individual throughputs.

Figure 2-2. A system with the degree of concurrency equal to 3

Chapter 2 ■ Overview Of platfOrm arChiteCtures

15

Scalability and Maximum Parallel Speedup
The ability to increase performance by using more resources in parallel (for example,
more processors) is called scalability. The basic approach in high-performance
computing is to use many computational resources in parallel to solve one problem, and
to add still more resources if higher performance is required. Scalability analysis indicates
how efficient an application is using the increasing numbers of parallel computing
elements, such as cores, vector units, memory, or network connections.

Increase in performance before and after addition of the resources is called speedup.
When talking about throughput-related metrics, speedup is expressed as the ratio of the
throughput after addition of the resources versus the original throughput. For latency
metrics, speedup is the ratio between the original latency and the latency after addition of
the resources. This way speedup is always greater than 1.0 if performance improves. If the
ratio goes below 1.0, we call this negative speedup, or simply slowdown.

Amdahl’s Law, also known as Amdahl’s argument,4 is used to find the maximum
expected improvement for an entire application when only a part of the application is
improved. This law is often used in parallel computing to predict the theoretical maximum
speedup that can be achieved by adding multiple processors. In essence, Amdahl’s Law
says that speedup of a program using p processors in parallel is limited by the time needed
for the nonparallel fraction of the program (f), according to the following formula:

Speedup
p

f p
£

+ × -1 1()

where f takes values between 0 and 1.
As an example, think about an application that needs 10 hours when running on

a single processor core, where a particular portion of the program takes two hours to
execute and cannot be made parallel (for instance, since it performs sequential I/O
operations). If the remaining 8 hours of the runtime can be efficiently parallelized, then
regardless of how many processors are devoted to the parallelized execution of this
program, the minimum execution time cannot be less than those critical 2 hours. Hence,
speedup is limited by at most five times (usually denoted as 5x). In reality, even this 5x
speedup goal is not attainable, since infinite parallelization of code is not possible for the
parallel part of the application. Figure 2-3 illustrates Amdahl’s law in action. If the parallel
component is made 50 times faster, then the maximum speedup with 20 percent of time
taken by the serial part will be equal to 4.63x.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

16

It may be depressing to realize that the maximum possible speedup will be limited
by something you can’t improve by adding more resources. Even so, consider the same
speedup problem from another angle: what happens if the amount of work in the
parallelizable part of the execution can be increased?

If the relative share of time taken by the serial portion of the application remains
unchanged with the increase of the workload size, there is no inherent speedup factor
available, and as illustrated in Figure 2-4 (left), Amdahl’s Law still works. However, John
Gustafson observed that there was significant speedup opportunity available if the serial
component shrank in size relative to the parallel part as the amount of data processed by
the application (and consequently the amount of computation) expanded.5

Figure 2-4. Illustration of Gustafson’s observation

Figure 2-3. Illustration of Amdahl’s Law

Chapter 2 ■ Overview Of platfOrm arChiteCtures

17

This observation leads to two kinds of scalability metrics:

•	 Strong scaling: How performance varies with the number of
computing elements for a fixed total problem size. In strong
scaling, perfect scaling (i.e., when performance improves linearly)
is achieved when speedup is equal to the number of computing
elements involved.

•	 Weak scaling: How performance varies with the number of
computing elements for a fixed problem size per processor, and
additional computing elements are used to solve a larger total
problem. In the case of weak scaling, perfect scaling is achieved
if the runtime remains constant while the workload is increased
proportionally to the number of computing elements involved.

Bottlenecks and a Bit of Queuing Theory
Performance analysis is a process of identifying bottlenecks and removing them, with the
objective of increasing overall application performance. Certain parts of the application
that limit performance of the entire application are called performance bottlenecks. The
significance of the term bottleneck can be illustrated with the same car metaphor that we
have used before (see Figure 2-5). When there is a toll gate on the road that can process
only one car at a time, the rate at which cars will pass along the highway (that is, highway
throughput) is limited by the width of the toll gate, irrespective of how many more lanes are
on the road before and after it. In other words, the toll gate is a bottleneck. By increasing the
width of the toll gate, it is possible to increase the rate of cars on the highway.

Figure 2-5. Bottlenecks on the road are commonly known as traffic jams

As shown in Figure 2-5, bottlenecks can create traffic jams on the highway. Using
the terminology of queuing theory,6 we are talking about the toll gate as a single service
center. Customers (here, cars) arrive at this service center at a certain rate, called arrival
rate or workload intensity. There is also certain duration of time required to collect money
from each car, which is referred to as service demand. For specific parameter values of
the workload intensity and the service demand, it is possible to analytically evaluate this
model and produce performance metrics, such as utilization (proportion of time when
the server point is busy), residence time (average time spent at the service center by a
customer), length of the queue (average number of customers waiting at the service center),
and throughput (rate at which customers depart from the service center).

Chapter 2 ■ Overview Of platfOrm arChiteCtures

18

This approach is widely used by queuing network modeling, where a computer
system is represented as a network of queues—that is, a collection of service centers that
represent system resources and customers who represent users or transactions. This
model provides a framework for gathering, organizing, evaluating, and understanding
information about the computer system, as well as for identifying possible bottlenecks
and testing ideas for system improvement. Such models are widely used for quantitative
analysis during computer system design and the application development process.

Roofline Model
Amdahl’s law and the queuing network models both offer “bound and bottleneck
analysis,” and they work quite well in many cases. However, both complexity and the
level of concurrency of modern high-performance systems keep increasing. Indeed, even
smartphones today have complex multicore chips with pipelines, caches, superscalar
instruction issue, and out-of-order execution, while the applications increasingly use
tasks and threads with asynchronous communication between them. Quantitative
queuing network models that simulate behavior of very complex applications on modern
multicore and heterogeneous systems have become very complex. At the same time, the
speed of microprocessor development has outpaced the speed of the memory evolution;
and in most cases, specifically in high-performance computing, the bandwidth of the
memory subsystem is often the main bottleneck.

In search of a simplified model that would relate processor performance to the
off-chip memory traffic, Williams, Waterman, and Patterson observed that that “the
Roofline [model] sets an upper bound on performance of a kernel depending on the
kernel’s operational intensity.”7 The Roofline model subsumes two platform specific
ceilings in one single graph: floating-point performance and memory bandwidth. The
model, despite its apparent simplicity, provides an insightful visualization of the system
bottlenecks. Peak floating point and memory throughput performances can usually be
found from the architecture specifications. Alternatively, it is possible to find sustained
memory performance by running the STREAM benchmark.8

Figure 2-6 shows a roofline plot for a platform with peak performance P = 518.4
GFLOPS (such as a dual-socket server with Intel Xeon E5-2697 v2 processors) and
bandwidth B = 101 GB/s (gigabytes per second) attainable with the STREAM TRIAD
benchmark on this system.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

19

The horizontal line shows peak performance of the computer. This is a hardware
limit for this server. The X-axis represents amount of work (in number of floating point
operations, or Flops) done for every byte of data coming from memory: Flops/byte (here,
“Flops” stands for the plural of “Flop”–the number of floating point operations, rather
than FLOPS, which is Flops per second). And the Y-axis represents gigaFLOPS (109
FLOPS), which is a throughput metric showing the number of floating point operations
executed every second (Flops/second, or FLOPS). With that, taking into account that

bytes second
Flops second

Flops byte
/

/

/
= , the memory throughput metric gigabytes/second is

represented by a line of unit slope in Figure 2-6. Thus, the slanted line shows the
maximum floating point performance that the memory subsystem can support for the
given operational intensity. The following formula drives the two performance limits in
the graph shown in Figure 2-6:

Attainable performance GLOPS

Peak floating po performan

[]

min=
int cce

Peak memory bandwidth Operational ensity

,

´
ì
í
î

ü
ý
þint

The horizontal and diagonal lines form a kind of roofline, and this gives the
model its name. The roofline sets an upper bound on performance of a computational
kernel depending on its operational intensity. Improving performance of a kernel with
operational intensity of 6 Flops/byte (shown as the dotted line marked by “O” in the
plot) will hit the flat part of the roof, meaning that the kernel performance is ultimately

Figure 2-6. Roofline model for dual Intel Xeon E5-2697 v2 server with DDR3-1866 memory

Chapter 2 ■ Overview Of platfOrm arChiteCtures

20

compute-bound. For another kernel (the one marked by “X”), any improvement will
eventually hit the slanted part of the roof, meaning its performance is ultimately memory
bound. The roofline found for a specific system can be reused repeatedly for classifying
different kernels.

Performance Features of Computer Architectures
We have discussed the major types of performance characteristics and approaches
to estimate maximum attainable performance. Let’s turn to a discussion of where the
potential performance increases can come from.

Increasing Single-Threaded Performance: Where You
Can and Cannot Help
We will refer to the basic execution context as a thread—a sequence of machine instructions
executed by a processor core. Typically, a thread is the smallest context of execution that is
independently managed by the operating system (OS). A thread can be granted a processor
core to execute instructions on, or it can be put to sleep to free execution resources for other
threads in a queue. Under Linux OS, the most widely used operating system in HPC these
days,9 kernel threads and processes are the same entity: simply a runable task. Later, when
we talk about hybrid programing, we will want to distinguish processes and threads. But for
now let us leave them as a software thread or task, understanding that at any given moment
each processor core executes instructions from a single task. Making these instructions run
faster is the essence of application optimization.

Performance of a single thread can be defined by number of instructions executed
per second (IPS) and calculated as a product of two values (IPS = CPS × IPC):

1. Number of processor clock cycles per second (CPS). It is more
often called processor clock frequency, or simply frequency,
and is measured in Hertz (Hz), or for most processors in
gigaHertz (GHz), which is 109 Hertz.

2. Number of instructions executed per processor clock tick,
instructions per cycle (IPC).

An application usually cannot do anything about the processor frequency: it is
something defined at the manufacturing time and considered fixed or at least not directly
changeable when an application is running. In contrast, the IPC is a function of both the
processor microarchitecture and your application. The microarchitecture is an internal
implementation of the processor. Very simple microarchitectures can execute a maximum
of only one instruction per cycle; they are called scalar. More sophisticated ones can
execute concurrently several instructions at every clock cycle and are known as superscalar.

The ability of a processor to produce results for several instructions in parallel is
a very important first step toward achieving greater application performance. Since
processors have reached the limit of the affordable heat dissipation (that happens
around 2.5 to 3.5 GHz, depending on complexity of the chip), the frequency of modern
processors does not grow as fast as required to deliver new levels of performance to

Chapter 2 ■ Overview Of platfOrm arChiteCtures

21

demanding customers. Superscalar microarchitectures that are predominant among
high-performance focused processors these days provide a much needed solution to
the frequency problem. Modern x86 superscalar processors (such as the Intel Core
family) can complete up to four instructions per cycle, so it would be as if the frequency
was effectively increased four times in a scalar processor. This book was written using a
computer with 2.5 GHz Intel Core i5 processor. If it were written on a scalar processor,
such as the older Intel 486, the processor would need to run at approximately 10 GHz to
be equal in peak performance.

Superscalar execution provides a great way to improve application performance.
However, it is to a large extent simply a capability of the processor that needs to
be exploited to yield real benefit in application performance. When we talk about
microarchitecture optimization in Chapter 7, we review cases when a superscalar
processor does not execute as many instructions as it could, and how to fix that. But
before we go any further, it is important to note that very often during the optimization
process we use a multiplicative inverse of IPC called CPI, or clocks per instruction . With
some simplification we can use the relationship CPI = 1 / IPC without losing many details.
Many performance profiling tools (such as Intel VTune Amplifier XE,10 discussed in
greater details in Chapters 6 and 7) use CPI instead of IPC to make it easier to correlate
observed CPI metrics with table data on latencies that are traditionally provided for each
instruction in processor cycles.

It is important to familiarize yourself with both metrics and be able to assess their
values. For example, when a profiler tells you that the average CPI is equal to 2 (meaning
it takes two cycles on average to complete every instruction), that means IPC is equal to
0.5 (or one instruction completed every two processor cycles). This level of performance
would be rather bad for a modern processor that can (theoretically) reach 4 IPC
(delivering results for four instructions every cycle) and the best achievable average CPI
of 0.25. Luckily, such an application or piece of code under consideration provides great
opportunity for optimization.

Process More Data with SIMD Parallelism
Another way to increase performance of each thread is to look at the data being
processed. So far we have only discussed the limit of each processor core with respect to
the instructions, but not with respect to the data each instruction works with. The next
natural way to optimize an application execution is to let each instruction deal with more
than one element of data at a time. Michael J. Flynn gave this approach the name SIMD,
standing for Single Instruction Multiple Data single instruction, multiple data.11 As it
obviously follows from its name, in this approach a compute instruction produces results
for multiple elements of data using the same instruction on those multiple elements. As
illustrated in Figure 2-7, the addition symbol + simultaneously produces results for four
elements of the arrays a and b. To execute this way, elements of the arrays are packed into
vectors of length 4 with the operation applied to each separate element pair concurrently.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

22

Following this principle, the SIMD vector instruction sets implement not only basic
arithmetic operations (such as additions, multiplications, absolute values, shifts, and
divisions) but also many other useful instructions present in nonvectorized instruction
sets. They also implement special operations to deal with the contents of the vector
registers—for example, any-to-any permutations—and gather instructions that are useful
for vectorized code that accesses nonadjacent data elements.

SIMD extensions for the x86 instruction set were first brought into the Intel
architecture under the Intel MMX brand in 1996 and were used in Pentium processors.
MMX had a SIMD width of 64 bits and focused on integer arithmetic. Thus, two 32-bit
integers, or four 16-bit integers (as type short in C), or eight 8-bit integer numbers (C
type char), could be processed simultaneously. Note also that the MMX instruction set
extensions for x86 supported both signed and unsigned integers.

New SIMD instruction sets for x86 processors added support for new operations on
the vectors, increased the SIMD data width, and added vector instructions to process
floating point numbers much demanded in HPC. In 1999, SIMD data width was increased
to 128 bits with SSE (Streaming SIMD Extensions), and each SSE register (called xmm) was
able to hold two double precision floating point numbers or two 64-bit integers, four single
precision floats or four 32-bit integers, eight 16-bit integers or 16 single-byte elements.

In 2008, Intel announced doubling of the vector width to 256 bits in Intel AVX
(Advanced Vector eXtensions) instruction set. The extended register was called ymm. The
ymm registers can hold twice as much data as the SSE’s xmm registers. They support packed
data types for modern x86 processor cores (for instance, in the fourth-generation Intel
Core processors with microarchitecture, codenamed Haswell), as shown in Figure 2-8.

Figure 2-7. SIMD approach: single instruction produces results for several data elements
simultaneously

Chapter 2 ■ Overview Of platfOrm arChiteCtures

23

The latest addition to Intel AVX, announced in 2013, includes definition of Intel
Advanced Vector Extensions 512 (or AVX-512) instructions. These instructions represent a
leap ahead to the 512-bit SIMD support (And guess what? The registers are now called zmm).
Consequently, up to eight double precision or 16 single precision floating point numbers,
or eight 64-bit integers, or 16 32-bit integers can be packed within the 512-bit vectors.
Figure 2-9 shows the relative sizes of SSE, AVX, and AXV-512 SIMD registers with highlighted
packed 64-bit data types (for instance, double precision floats).

Figure 2-8. AVX registers and supported packed data types

Figure 2-9. SSE, AVX, and AVX-512 vector registers with packed 64-bit numbers

Chapter 2 ■ Overview Of platfOrm arChiteCtures

24

Now that you’re familiar with the important concepts of SIMD processing and
superscalar microarchitectures, the time has come to discuss in greater detail the FLOPS
(floating point operations per second) metric, one of the most cited HPC performance
metrics. This measure of performance is widely used as a performance metric in the field
of scientific computing where heavy use of calculations with the floating point numbers
is very common. The last “S” designates not the plural form for FLOP but a ratio “per
second” and is historically written without a slash (/) and avoiding double “S” (i.e., FLOPS
instead of Flops/S). In our book we will stick to the common practice. In some situations,
we will need to refer to floating point operations, so abbreviate it as Flops and produce
required ratios as needed. For example, we will write Flops/cycle when there is a need to
count number of floating point operations per processor cycle of the processor core.

One of the most often quoted metrics for individual processors or complete
HPC systems is their peak performance. This is the theoretically maximum possible
performance that could be delivered by the system. It is defined as follows:

Peak performance of a system is a sum of peak performances of •	
all computing elements (namely, cores) in the system.

Peak performance for a vectorized superscalar core is calculated •	
as the number of independent floating point arithmetic operations
that the core can execute in parallel, multiplied by the number of
vector elements that are processed in parallel by these operations.

As an example, if you have a cluster of 16 nodes, each with a single Intel Xeon E3-
1285 v3 processor that has four cores with Haswell microarchitecture running at 3.6 GHz,
it will have peak performance of 3686.4 gigaFLOPS (or 109 FLOPS). Using the FMA
(fused multiply add, which is b = a × b + c) instruction, a Haswell core can generate
four Flops/cycle (via execution of two FMAs per cycle) with a SIMD vector putting out
four results per cycle, thus delivering peak performance of 57.6 gigaFLOPS at

the frequency of 3.6 GHz: 4 4 3 6 57 6
Flops

cycle
SIMD GHz GFLOPS´ ´ =. . . Multiplying this by

total number of cores in the cluster ()64 16 1 4= ´ ´nodes
processor

node

cores

processor
 gives

3686.4 gigaFLOPS, or 3.68 teraFLOPS.
Peak performance usually cannot be reached, but it serves as a guideline for

the optimization work. Actual application performance (often referred as sustained
performance) can be obtained by counting the total number of floating point operations
executed by the application (either by analyzing the algorithm or using special processor
counters), and then dividing this number by the application runtime in seconds. The ratio
between measured application performance (in FLOPS) and the peak performance of
the system it was run on, multiplied by 100 percent, is often referred to as computational
efficiency, which demonstrates what share of theoretically possible performance of the
system was actually used by the application. The best efficiencies close to 95 percent
are usually obtained by highly tuned computational kernels, such as BLAS (Basic Linear
Algebra Subprograms), while mainstream HPC applications often achieve efficiencies of
10 percent and lower.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

25

Distributed and Shared Memory Systems
So far we have discussed how application performance can be improved by increasing
the amount of work done in parallel inside a processor core: by allowing more
instructions to execute in parallel in superscalar microarchitectures, and by making each
instruction process more data using the SIMD paradigm. As the next step we discuss two
types of parallelism that can be employed to further enhance application performance.
The main difference visible to you as a software developer is how the memory is shared
and accessed by the processors. In the shared memory approach, multiple application
threads can access all the memory simultaneously in a transparent. In the distributed
memory approach, there is local and remote memory, and in order to work on any piece
of data, that data has to be first copied into the local memory of the thread or process.

Use More Independent Threads on the Same Node
The first approach we will discuss harnesses several threads belonging to one program
that can simultaneously access the same memory locations. Application threads can
communicate through this shared memory with each other and avoid redundant copies of
data. Shared memory is an efficient means of passing data between program threads. To
connect multiple processors (each with multiple cores), the underlying system needs to
have robust hardware to support arbitration and ordering of the memory requests.

In a shared memory system, the memory is presented to the application as a
uniform, contiguous address range, while in fact the cost of accessing different parts
of the memory by different processors may not be the same. Since most modern high-
performance processors contain integrated memory controllers, there is some memory
attached to each processor that is called local memory of that processor. Memory
attached to other processors in the same system then needs to be accessed through an
internal interconnect, such as Intel QuickPath Interconnect (QPI), that provides
hardware mechanisms for all memory in the system to appear as one contiguous address
space. There may be additional latency associated with accessing this remote memory
over the latency for accessing the local memory. Shared memory systems that have this
extra latency are called Non-Uniform Memory Access (NUMA) systems.

Impact from NUMA can be characterized by the ratio between the latencies for
remote and local memory access. This ratio is called the NUMA factor. For example, in
a dual-processor server with Intel Xeon E5-2697 v2 processors, local memory access
latency (measured in the idle case) is around 50-70 ns (nanoseconds, or 10-9 second),
while for remote memory access latency is equal to 90-110 ns, which leads to the NUMA
factor for this system of approximately 1.5. The larger the shared memory system is,
the larger the NUMA factor normally becomes. In fact, you may even find several
different NUMA factors within larger systems. As a result, it is more difficult to optimize
applications for these systems.

A generic diagram of a shared memory system in Figure 2-10 shows four processors,
P0...P3, accessing shared memory divided into two NUMA regions, where memory local
to P0 and P1 will be remote for P2 and P3, and vice versa.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

26

To get details on the NUMA topology of your system, use the numactl tool that is
available for all major Linux distributions. On our workstation, the execution of numactl
tool with the --hardware argument displays the following information (see Listing 2-1):

Listing 2-1. Output of the numactl --hardware Command

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35
node 0 size: 65457 MB
node 0 free: 57337 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44

45 46 47
node 1 size: 65536 MB
node 1 free: 59594 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

The output of the numactl tool shows two NUMA nodes, each with 24 processors
(and just a hint-these are twelve physically independent cores with two threads each),
and 64 GB of RAM per NUMA node, or 128 GB in the server in total.

In a similar manner to physical memory, the Input/Output subsystem and the I/O
controllers are shared inside the multiprocessor systems, so that any processor can access
any I/O device. Similarly to memory controllers, the I/O controllers are often integrated
into the processors, and latency to access local and remote devices may differ. However,
since latency associated with getting data from or to external I/O devices is significantly
higher than the latency added by crossing the inter-processor network (such as QPI), this
additional inter-processor network latency can be ignored in most cases. We will discuss
specific I/O related issues in greater detail in Chapter 4.

Don’t Limit Yourself to a Single Server
Unfortunately, there are practical limits to the size of a single system with shared
memory, mostly driven by cost of building the hardware, as well as by overheads
associated with the memory arbitration logic.

Figure 2-10. Shared memory system diagram

Chapter 2 ■ Overview Of platfOrm arChiteCtures

27

To achieve higher performance than a single shared memory system could offer, it is
more beneficial to put together several smaller shared memory systems, and interconnect
those with a fast network. Such interconnection does not make the memory from
different boxes look like a single address space. This leads to the need for software to take
care of copying data from one server to another implicitly or explicitly. Figure 2-11 shows
an example system.

Figure 2-11. Diagram of a distributed memory system

Figure 2-11 shows a computer with four nodes, N0–N3, interconnected by a network,
also called interconnect or fabric. Processors in each node have their own dedicated
private memory and their own private I/O. In fact, these nodes are likely to be shared
memory systems like those we have reviewed earlier. Before any processor can access
data residing in another node’s private memory, that data should be copied to the private
memory of the node that is requesting the data. This hardware approach to building a
parallel machine is called distributed memory. The additional data copy step, of course,
has additional penalty associated with it, and the performance impact greatly depends on
characteristics of the interconnect between the nodes and on the way it is programmed.

HPC Hardware Architecture Overview
Modern HPC hardware is quite complex, following several levels of integration, as
presented in Figure 2-12. Each processor core contains several execution units, driven
by out-of-order execution pipelines. Several cores in each processor may run at different
frequencies to optimize the total system power consumption and keep it in balance with
the application throughput. Complexity is further increased by the hierarchical cache
subsystems and nonuniform memory access at the system level. One level up, several
shared memory servers are assembled into a distributed memory cluster, using one or
more dedicated interconnection networks.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

28

A Multicore Workstation or a Server Compute Node
Let us start with an overview of a simple workstation or a desktop computer. It has at least
one processor and that processor very likely has multiple cores.

A core is an independent piece of hardware that does not share any hardware
resources with other cores inside the processor. The core executes instructions of a
computer program by performing requested arithmetical, logical, input/output, and
other operations. Supported instructions are usually hardwired into the cores. They are
called the instruction set. This is the language that the processor speaks, and it won’t
understand a different one. All instructions for mainstream Intel processors are based on
the x86 instruction set, with multiple extensions, known as MMX, SSE, AES-NI, AVX, etc.
The supported instruction set and the architecture state (including all the registers visible
to the instructions, flags, etc.) define a core architecture.

The internal implementation that defines how exactly the instructions are handled
to produce expected results may, and in fact does, vary from one processor to another.
As an example, an Intel Atom processor and an Intel Xeon processor share the same
instruction set architecture, meaning that you can run exactly the same operating system

Figure 2-12. The complexity of a modern cluster with multi-processor, multicore systems

Chapter 2 ■ Overview Of platfOrm arChiteCtures

29

and application software on these two. However, internal implementations of these two
processor cores are very different.

We refer to the internal implementations as microarchitecture. Thus, the Haswell
microarchitecture that is the basis for Intel Xeon E3-1200 v3 processors is very different
from the Silvermont microarchitecture used to build cores for Intel Atom C2000
processors. Detailed microarchitecture differences and specific optimization techniques
are described in the Intel 64 and IA-32 Architectures Optimization Reference Manual.12
This 600-page document describes a large number of Intel x86 cores and explains how to
optimize software for IA-32 and Intel 64 architecture processors.

The addendum to the aforementioned Intel 64 and IA-32 Architectures Optimization
Reference Manual contains data useful for quantitative analysis of the typical latencies
and throughputs of the individual processor instructions. The primary objective of this
information is to help the programmer with the selection of the instruction sequences
(to minimize chain latency) and in the arrangement of the instructions (to assist in
hardware processing).

However, this information also provides an understanding of the scale of
performance impact from various instruction choices. For instance, typical arithmetic
instruction latencies (reported in the number of clock cycles that are required for the
execution core to complete the execution of the instruction) are one to five cycles
(or 0.4-2 ns when running at 2.5 GHz) for simple instructions such as addition,
multiplication, taking maximum or minimum value. Latency can reach up to 45 cycles
(or 18 ns at 2.5 GHz) for division of double precision floating point numbers.

Instruction throughput is reported as the number of clock cycles that need to pass
before the issue ports can accept the same instruction again. This helps to estimate
the time it would take, for example, for a loop iteration to complete in presence of a
cross-loop dependency. For many instructions, throughput of an instruction can be
significantly smaller than its latency. Sometimes latency is given as just one half of
the clock cycle. This occurs only for the double-speed execution units found in some
microprocessors.

The same manual provides estimates for the best-case latencies and throughput
of the dedicated caches: the first (L1) and the second (L2) level caches, as well as the
translation lookaside buffers (TLBs). Particularly, on the latest Haswell cores, the load
latency from L1 data cache may vary from four to seven cycles (or 1.6-2.8 ns at 2.5 GHz),
and the peak bandwidth for data is equal to 64 (Load) + 32 (Store) bytes per cycle, or up to
240 GB/s aggregate bandwidth (160 GB/s to load data and 80 GB/s to store the data).

The architecture of modern Intel processors supports flexible integration of multiple
processor cores with a shared uncore subsystem. Uncores usually contain integrated
DRAM (Dynamic Random Access Memory) controllers, PCI Express I/O, Quick Path
Interconnect (QPI) links, and the integrated graphics processing units (GPUs) in some
models, as well as a shared cache (L2 or L3, depending on the processor, which is often
called the Last Level Cache, or LLC). An example of the system integration view of four
cores with uncore components is shown in Figure 2-13.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

30

Uncore resources typically reside farther away from the cores on the processor die,
so that typical latencies to access uncore resources (such as LLC) are normally higher
than that for a core’s own resources (such as L1 and L2 caches). Also, since the uncore
resources are shared, the cores compete for uncore bandwidth. The latency of accessing
uncore resources is not as deterministic as the latency inside the core. For example, the
latency of loading data from LLC may vary from 26 to 60 cycles (or from 10.4 to 24 ns for a
2.5 GHz processor), comparing to the typical best case of 12 cycles (or 4.8 ns) load latency
for the L2 cache.

Cache bandwidth improvements in the Haswell microarchitecture over the older
Sandy Bridge/Ivy Bridge microarchitectures doubled the number of bytes loaded
and stored per clock cycle from 32 and 16 to 64 and 32, respectively. Last Level Cache
bandwidth also jumped from 32 bytes per cycle to 64 bytes. At the same time, typical
access latencies stayed unchanged between the microarchitecture generations. This
confirms the earlier observation related to the bandwidth vs. latency development.

As for the next level in the memory hierarchy, the computer main memory, its
latency further increases and its bandwidth drops. Figure 2-14 shows schematically the
relative latency and bandwidth capabilities in the memory hierarchy of a quad-core
Haswell-based Intel Xeon Processor E3-1265L v3 processor.

Figure 2-13. Four-core processor integration of Intel microarchitecture, codenamed
Haswell

Chapter 2 ■ Overview Of platfOrm arChiteCtures

31

Another important aspect of the memory latency is that the effective time to load or
store data goes up with higher utilization of the memory busses. Figure 2-15 shows the
results of the latency measurement performed as a function of intensity of the memory
traffic for a dual-socket server. Here, two generations of server processors are compared,
with cores based on the Sandy Bridge and Ivy Bridge. The newer Ivy Bridge-based
processors (specifically Intel Xeon E5-2697 v2) support faster memory running at 1866 MHz
and contain improvements in the efficiency of the memory controller implementation over
the previous generation, Intel Xeon E5-2690 processor built with eight Sandy Bridge cores
and memory running at 1600 MHz. Despite the increase of the core count and faster DRAM
speed, latency is about the same in both cases when the concurrency of memory requests is
low (and thus the consumed memory bandwidth is far below the physical limits).

Figure 2-14. Bandwidth and latency characteristics of a quad-core Haswell-based
processor

Chapter 2 ■ Overview Of platfOrm arChiteCtures

32

In this case, latency is determined by the internal organization of the memory
hierarchy rather than by the DRAM speed and technology. Only when concurrency
increases, generating more load/store requests, and the consumed memory bandwidth
reaches the wire speed limit, the latency difference becomes noticeable. Another outcome
from this measurement is that memory latency does vary significantly, depending on the
load of the memory bus: from 60 to 70 ns in idle case (that will be 160-170 processor core
cycles at 2.5 GHz), up to around 250 ns for the loaded case (over 600 cycles).

Coprocessor for Highly Parallel Applications
Recent years have seen the rise of accelerators and coprocessor targeting highly parallel
applications. One example would be Intel’s Xeon Phi family of coprocessors that feature
a highly parallel microprocessor with up to 61 cores running at up to 1.2 GHz, with 16
GB of GDDR5 memory clocked at up to 5.5 GHz, and an integrated system management
controller. The coprocessor runs Linux OS. It can even be seen as a standalone
computational node, although the presence of a host processor is still required to boot
and initialize the coprocessor.

The coprocessors found in HPC these days focus on delivering higher throughput.
They can achieve over 1 TFLOPS of peak floating point performance with peak memory

Figure 2-15. Memory latency dependency from memory bus load*

*Based on measurements done using a latency/bandwidth tool internal to Intel Corporation.
Memory traffic mix: 66% Reads and 33% writes (Request for ownership). OS: Windows 2008
R2 SP1, System configurations: Intel Xeon E5 2697 v2 (Ivy Bridge-EP): 12C, nominal 2.7 GHz
[July 2013], Xeon E5 2690 (Sandy Bridge-EP): 8C, nominal 2.9 GHz [Sept 2011], 1 dual-ranked
RDIMM per channel, 4 channels, varied DDR frequencies, pre-production BIOS

Chapter 2 ■ Overview Of platfOrm arChiteCtures

33

bandwidth reaching 350 GB/s. However, great throughput comes at the expense of
latency: the coprocessors usually run at frequencies around 1 GHz (2.5-3x slower than
standalone processors), and GDDR5 access latency is at least a factor of two times higher
versus DDR3 in a standard server. However, for a subset of applications, where higher
latency can be hidden by much higher concurrency, noticeable performance benefit
comes from the significantly higher throughput in hardware.

One important performance and programmability aspect of coprocessor is that they
are attached to the main processor(s) over the PCI Express (PCIe) bus. Often they have to
involve the host processor to execute I/O operations or perform other tasks. The second-
generation PCIe bus that is used in Intel Xeon Phi coprocessors can deliver up to 80 Gbps
(gigabits per second) of peak wire bandwidth in every direction via a x16 connector. This
translates into approximately 7 GB/s of sustained bandwidth, for the overhead includes
8/10 encoding scheme used to increase reliability of data transfers over the bus. This also
adds latency between the host processor and the coprocessor, on the order of 200-300 ns,
or more if the bus is heavily loaded. In heterogeneous applications that use both the
central processors and the coprocessors in a system, it is important to hide this added
latency of communications over the PCIe bus.

Group of Similar Nodes Form an HPC Cluster
When a single server is not enough to solve a scientific or technology problem in a
sufficiently short time, people put together several nodes and wire them with a dedicated
communication network to form a distributed memory system, called a cluster. For this
approach to work, every node adds a special adapter for a fast network, such as 10 gigabit
Ethernet or InfiniBand. The software stack needs to support message passing between the
nodes, so that it becomes more sophisticated. Two dual-processor servers with two Intel
Xeon Phi coprocessors each clustered together with InfiniBand interconnect are shown in
Figure 2-16.

Figure 2-16. Cluster of two nodes

All of the most popular interconnects use the PCIe bus to connect to the processors
in the system, and thus they inherit all the latency and bandwidth limitations specific to
PCIe. On top of this, since both Ethernet and InfiniBand are designed to scale to a much
larger number of communicating agents in the network (at least tens of thousands)
than PCIe, their protocol overheads and cost of packet routing are significantly higher
compared to the PCIe bus used inside the server.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

34

Typical latencies of modern, widely used interconnects are around 1.5 to 15
microseconds (which is 1,500-15,000 ns, or thousands and tens of thousands of processor
cycles) for point-to-point communication between two application processes, including
the overheads associated with the utilized message passing protocol and its software
implementation. However, bandwidth of these fast interconnects is closer to what can
be found inside the server. For instance, the fastest InfiniBand peak data rate is 56 Gbps.
This results in approximately 6.5 GB/s attainable bandwidth between two nodes in one
direction. Latency is often a higher limiting factor, unless it is hidden by the applications
via overlapping communications and computations, and using optimized algorithms for
collective communication between large numbers of nodes.

Another important factor that influences performance of a parallel application in
a cluster environment, especially with a very large number of nodes, is the interconnect
topology. The PCIe bus used inside each node usually provides a very simple point-to-point
or star topology. More complex, though scalable, topologies are used in the HPC cluster
interconnects. The Fat Tree topology is probably the most popular one, despite a cost that
grows with the size of the cluster. The InfiniBand network supports several multiple topology
choices, including All-to-All, Fat Tree, Torus, and Hypercube topologies, as shown in
Figure 2-17. There is no single, best topology; its choice and suitability are determined by
the needs of the application and by the target metrics and cost implications. Here is a brief
outline of the advantages and drawbacks of several interconnect topologies:

•	 All-to-All topologies are ideal for applications that are highly
sensitive to communication latency, since the All-to-All
topology requires the minimum number of hops between the
communicating agents. Even though an asynchronous fabric
with high bisection bandwidth can be built using the All-to-All
topology, it is restricted to relatively small clusters due to the
limited switch port counts.

•	 Fat Tree topologies are well suited for the majority of clusters
and applications. Fat Tree topologies can provide asynchronous
fabrics and predictable latency between the nodes. However,
cabling and switching become increasingly difficult and
expensive as the cluster size grows, with very large switches
required for larger clusters. Anyway, there are clusters comprising
several thousands of nodes and reaching PetaFLOPS of
performance that are organized in the nonblocking Fat Tree
topology.

•	 Hypercube, Torus, and other topologies are best suited for very
large node counts. They provide rich bandwidth capabilities, and
they scale easily from small to extremely large clusters. These
topologies are usually much harder to design and implement.
They can present additional scalability challenges and introduce
variable hop count and latency with the increasing cluster size.
Inconsistent hop counts can result in unpredictable application
behavior owing to unequal latency between the nodes.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

35

Other Important Components of HPC Systems
In reality, to get the most out of an HPC system, it is not enough to just rely on the best
components in servers, packed together in a balanced way for your applications. Several other
elements are important from the point of view of overall cluster performance and efficiency.

Specifically, HPC systems are used for applications that require a lot of memory,
so that multiple nodes are used simultaneously in a scale-out fashion to provide the
required amount of memory. Quite often, such applications either get a lot of data
as their input (so-called Big Data applications) or produce huge amounts of output
(typical scientific simulations). Handling huge amounts of data requires good storage
arrangements. Development of scalable parallel storage and file systems to meet specific
demands of HPC or Big Data applications can be viewed as a special art.

A single storage server along with a large compute cluster is likely not the best
possible setup. Although it will work, a single network link, a single RAID adapter, or, in
the worst case, a single disk will likely become a bottleneck, serializing all your cluster
nodes around the single storage node. A better approach widely used in HPC today is
to parallelize the storage or cluster it. Following the approach similar to the computing
capacity, you can use several storage nodes to provide throughput and increase the level
of concurrency of disk operations to sustain the high number of I/O requests issued by
the computing cluster nodes. On top of clustered hardware, use of parallel I/O operations
is usually implemented in the application or system software.

However, latency of single I/O operations is usually quite high. Here we see the
milliseconds of time (as visible by the user application) that small I/O transactions can
take. If your application does a lot of small-size reads/writes at random locations or
from/to many different files, solid state drives attached to PCIe bus on the storage nodes
promise significant increase in performance for small I/O operations. With an optimized
file system and network stack, latencies of single I/O operations with small payloads drop
down to a few hundred or even tens of microseconds.

Another really important component of an HPC system is a job scheduler. This is a
software component, but it influences hardware utilization and overall cluster utilization
efficiency. Its main purposes are planning the execution of user batch jobs, scheduling
them for execution, deploying the user run script and executable file(s) to the allocated
cluster nodes, organizing input and gathering output, terminating the application, and
collecting accounting information. There are multiple open-source and commercial
schedulers available to choose from.

Figure 2-17. Typical interconnection topologies found in HPC

Chapter 2 ■ Overview Of platfOrm arChiteCtures

36

It is worth noting that job schedulers take their portion of time for every job
execution, and this time can reach seconds per job submission. The good news is that
scheduling takes place only before the application starts and may add some time after the
job ends (for the clean-up). So, if your job takes several days to run on a cluster, these few
seconds have a small relative impact.

However, sometimes people need to run a large number of smaller jobs. For
example, if each job takes a couple of minutes to run, but there are many jobs (up to tens
of thousands have been observed in real life), the relative time taken by the job scheduler
becomes very visible. Most job schedules offer special support for large number of
smaller jobs with identical parameters via so-called job arrays. If your application is
of that kind, please take some time to study how to make effective use of your cluster’s
scheduling software.

Summary
This chapter briefly overviewed the main terms and concepts pertaining to the
performance analysis and gave an overview of the modern high-performance computing
platforms. Certainly, this is the minimum information needed to help you get started on
the subject or to refresh your existing knowledge.

If you are interested in computer architecture, you may enjoy the book Computer
Architecture: A Quantitative Approach.13 In the fourth edition of this book, the authors
increase their coverage of multiprocessors and explore the most effective ways of
achieving parallelism as the key to unlocking the power of modern architectures.

We also found an easy-to-read guide in the book Introduction to High Performance
Computing for Scientists and Engineers, written by Georg Hager and Gerhard Wellein.14
It contains a great overview of platforms architectures, as well as recommendations for
application optimization specific to the serial, multi-threaded, and clustered execution.

In his article Latency Lags Bandwidth, David Patterson presents an interesting study
that illustrates a chronic imbalance between bandwidth and latency.15 He lists half a
dozen performance milestones to document this observation, highlights many reasons
why this happens, and proposes a few ways to cope with the problem, as well as gives
a rule of thumb to quantify it, plus an example of how to design systems based on this
observation.

For readers interested in the queuing network modeling, we recommend the book
Quantitative System Performance: Computer System Analysis Using Queuing Network
Models.16 It contains an in-depth description of the methodology and a practical guide
to and case studies of system performance analysis. It also provides great insight into the
major factors affecting the performance of computer systems and quantifies the influence
of the system bottlenecks.

The fundamentals and practical methods of the queuing theory are described in the
book Queueing Systems: Theory.17 Step-by-step derivations with detailed explanation and
lists of the most important results make this treatise useful as a handbook.

Chapter 2 ■ Overview Of platfOrm arChiteCtures

37

References
1. Merriam-Webster Collegiate Dictionary, 11th ed. (Springfield, MA:

Merriam-Webster, 2003).
2. A. S. Tanenbaum, Computer Networks (Englewood Cliffs, NJ: Prentice-Hall, 2003).
3. B. Cantrill and J. Bonwick, “Real-World Concurrency,” ACM Queue 6, no. 5

(September 2008): 16–25.
4. G. M. Amdahl, “Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities,” AFIPS ’67 (Spring) Proceedings of the 18–20
April 1967, spring joint computer conference, 483–85.

5. J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM 31, no. 5
(May 1988): 532–33.

6. “Queueing theory,” Wikipedia, http://en.wikipedia.org/wiki/Queueing_theory.
7. S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful Visual

Performance Model for Multicore Architectures,” Communications of the ACM -
A Direct Path to Dependable Software 52, no. 4 (April 2009): 65–76.

8. J. McCalpin, “Memory Bandwidth and Machine Balance in Current High
Performance Computers,” IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, December 1995.

9. IDC (International Data Corporation), “HPC Market Update: 2012,” September 2012,
www.hpcuserforum.com/presentations/dearborn2012/IDCmarketslidesChirag-
Steve.pdf.

10. Intel Corporation, “Intel VTune Amplifier XE 2013,” http://software.intel.com/
en-us/intel-vtune-amplifier-xe.

11. M. J. Flynn, “Very High-speed Computing Systems,” Proceedings of IEEE
54 (1966): 1901–909.

12. Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual,
www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-optimization-manual.html.

13. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
4th ed. (Burlington, MA: Morgan Kaufmann, 2006).

14. G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists
and Engineers (Boca Raton, FL: CRC Press, 2010).

15. D. A. Patterson, “Latency Lags Bandwith,” Communications of the
ACM - Voting Systems, January 2004, pp. 71–75.

16. E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System
Performance: Computer System Analysis Using Queueing Network Models (Upper
Saddle River, NJ: Prentice-Hall, 1984).

17. L. Kleinrock, Queueing Systems: Theory, vol. 1 (Hoboken, NJ: John Wiley, 1976).

http://en.wikipedia.org/wiki/Queueing_theory
http://www.hpcuserforum.com/presentations/dearborn2012/IDCmarketslidesChirag-Steve.pdf
http://www.hpcuserforum.com/presentations/dearborn2012/IDCmarketslidesChirag-Steve.pdf
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

39

Chapter 3

Top-Down Software
Optimization

The tuning of a previously unoptimized hardware/software combination is a difficult task,
one that even experts struggle with. Anything can go wrong here, from the proper setup
to the compilation and execution of individual machine instructions. It is, therefore,
of paramount importance to follow a logical and systematic approach to improve
performance incrementally, continuously exposing the next bottleneck to be fixed.

This chapter provides such a framework. We will talk very little here about what
and how to tune but, rather, leave that to subsequent chapters to consider in detail.
We will instead specify the necessary requirements for the workload, application, and
benchmarking; and we will provide a systematic staged tuning process, the so-called
top-down approach. In this process, the performance tuning is considered at three
different levels: system, application, and microarchitecture. Each level will be tuned
iteratively to convergence, possibly exposing further bottlenecks at other levels.

The Three Levels and Their Impact on
Performance
Most people think about performance tuning of HPC applications as the process of
tuning the actual source code, but as we shall see, this is only part of the story.

We discussed latency and throughput in Chapter 2. Let us have a look at the typical
access latency and throughput for different components in an HPC system that was
discussed there. This information is summarized in Table 3-1, with a few numbers
deliberately rounded to the nearest order of magnitude.

Table 3-1 shows a trend of diminishing latency and increasing throughput as we
move closer and closer to the execution of instructions. Indeed, the whole process might
be thought of as a pipeline provisioning data to the processor core, delivering it through
the cache hierarchy from the operating system memory, or even farther away from the
external node’s memory or a hard disk.

Chapter 3 ■ top-Down Software optimization

40

Performance follows the weakest-link paradigm: if one stage of the pipeline does
not work according to expectations, the rest of the pipeline will starve. While optimizing
this pipeline, we should start with the biggest potential bottlenecks first—at the top of
this list, working our way down, as shown in Figure 3-1. Indeed, it makes little sense to
start working on the branch misprediction impact while the application spends most of
its time in the network communication or cache misses. Once we have made sure data is
available in the cache, a continuously occurring branch misprediction does have a huge
relative impact.

Table 3-1. Memory Technologies and Their Latency and Throughput (to the Order of
Magnitude)

Component Typical Latency Typical Throughput

Local SATA HDD ~1 ms 100 MB/s

Local SATA SSD ~1 ms 500 MB/s

1GB Ethernet ~15 us 100 MB/s

10GB Ethernet ~4 us 1 GB/s

Infiniband FDR 1.5 us ~6.5 GB/s

Local memory (loaded) ~250 ns ~100 GB/s

Local memory (idle) ~60 ns 0 GB/s

Remote memory (idle) ~100 ns 0 GB/s

QPI (intersocket) ~100 ns* ~64 GB/s

L3 cache access 10-25 ns ~160 GB/s

L2 cache access ~5 ns ~160 GB/s

L1 cache access 2-3 ns ~240 GB/s

XOR instruction ~6 ns ~2.5 Ginstruction/s

Branch misprediction ~7 ns -

SIMD Division instruction ~16 ns ~1 Ginstruction/s

*QPI remote connection latency is hardly observable on the backdrop of the remote
memory latency mentioned above.

Chapter 3 ■ top-Down Software optimization

41

Considering Table 3-1, the tuning of a system/software combination may be
intuitively broken down into three stages, which are roughly ordered according to the
data flow and their impact time—that is, the time impact that an inefficiently working part
could make on the execution:

•	 System: This is the computer hardware and system software as such
and all that brings it to life: the hard disk, the network interfaces,
the memory, the BIOS, the operating system, the job manager, the
cooling system, and the processor. All of these components require
proper setup and configuration for the considered application
workload to deliver the expected performance.

•	 Application: This is the part that the user is most exposed to, since
this is what he writes or modifies as source code. The application
level comprises the algorithmic implementation, the use of
external application programming interfaces (APIs), locks, heap,
stack, and so on. One central point of the application level is the
proper management of data and the access thereto. In particular,
this includes the parallelization in two flavors: the shared and
distributed memory programming.

•	 Microarchitecture: For most people this is the most obscure level.
It is concerned with the efficient use of the processor-internal
resources by the application. For example, how efficient is the
processor interpreting the strange hex numbers in your binary?
How many instructions does the processor complete per cycle?
Does an instruction wait most of the time for another one to
complete? Is the processor able to predict the conditional branches
in your code? Generally, one does not want to know about all of
this, but this is where the battle is decided at the last stage of the
optimization process.

It is important to understand that bottlenecks in the higher levels may hide bottlenecks
in the lower ones. On the other hand, improvements in the lower levels can create
bottlenecks at the higher levels. Figure 3-1 shows an overview of the individual levels.

Figure 3-1. Bottleneck levels and their impact on performance of applications

Chapter 3 ■ top-Down Software optimization

42

System Level
Before worrying about the code of your application, the most important and impactful
tuning can be achieved looking at the system components of the compute node,
interconnect, and storage. No matter how advanced and skillfully implemented an
algorithm is, a wrongly configured network, a forgotten file I/O, or a misplaced memory
module in a NUMA system can undo all the effort you put into careful programming.

In many cases, you will be using a system that is in good shape. Particularly if you
are a user of an HPC compute center, your system administrators will have taken care in
choosing the components and their sound setup. Still, not even the most adept system
administrator is immune to a hard disk failure, the cooling deficits of an open rack door,
or a bug in a freshly installed network driver. No matter how well your system seems to be
maintained, you want to make sure it really does perform to its specification.

You’ll find a detailed description of the system tuning in Chapter 4, but here we give
an overview of the components and tools. For an HPC system, the hardware components
affecting performance at a system level are mostly as follows:

•	 Storage and file systems: As the most of HPC problems deal with
large amounts of data, an effective scaling storage hierarchy
is critical for application performance and scaling. If storage
is inadequate in terms of bandwidth or access latency, it may
introduce serialization into the entire application. Taking into
account Amdahl’s Law (discussed in Chapter 2), this should be
considered as the first optimization opportunity.

•	 Cluster interconnection hardware and software: HPC applications
do not only demand high bandwidth and low latency for
point-to-point exchanges. They also demand advanced
capabilities to support collective communications between very
large numbers of nodes. A single parameter set wrongly here may
completely change the relevant performance characteristics of
the network.

•	 Random access memory (RAM): The RAM attached to the
integrated memory controller of a CPU comes in packages called
dual-lnline memory modules (DIMMs). The memory controller
supports a number of channels that can be populated with several
DIMMs. At the same time, different specifications of DIMMs may
be supported by the memory controller, such as DIMMs of different
sizes in the same channel. Asymmetry in either size or placement
of the DIMMs may result in substantial performance degradation.

•	 Platform compute/memory balance: As discussed in Chapter 2,
each system has its compute/memory performance balance that
can be visualized by the Roofline model. Depending on the specific
platform configuration (including the number of cores, their speed
and capabilities, and the memory type and speed), the application
may end up being memory or compute bound, and these specific
platform characteristics will define the application performance.

Chapter 3 ■ top-Down Software optimization

43

•	 Basic input-output system (BIOS): The BIOS is used to bootstrap
the system (that is, starting the OS without having full knowledge
of the components used), but more importantly, it is also used
to configure certain hardware features that can only be set at the
boot time. Examples for such features are:

•	 NUMA mode: Does the BIOS present the system memory as
local to a socket or as one homogeneous memory region?
Inefficient memory initialization may introduce significant
system-level bottlenecks for particular applications.

•	 Processor and RAM frequencies: The central processor unit
(CPU) and RAM can operate under different frequency
policies. The CPU, for instance, will try to assume a
low-frequency state if no activity is detected, so as to save
energy. Latest CPU and RAM specifications need to be
supported by the BIOS in order to give the best performance.
At the same time, CPU frequency variations driven by desire of
saving power may lead to unpleasant load-imbalance issues.

•	 Operating system (OS): The OS seems somewhat misplaced in
the hardware category, since it is indeed software. But once you
access the memory, you are actually interacting with the OS,
since it will abstract the true memory away from you. So, to some
degree, the OS is a proxy to hardware and should be treated in
the same category. The OS should be kept up to date, and the
version installed should support the features of the CPU and the
rest of the system that are essential for performance. For instance,
the use of the advanced vector extensions (AVX) and NUMA
must be supported by the OS. Apart from this, the most critical
point from the OS perspective is the drivers that allow hardware
components to be operated from the user space. Examples of this
are InfiniBand network cards, hard disk interfaces, and so forth.

All of these components need to be tested and benchmarked. A detailed guide
on how to identify, find root causes for, and fix system level bottlenecks is provided in
Chapter 4.

Note ■ System-level performance impact 2x–10x.

Application Level
After the bottlenecks at the system level are successfully cleared, the next category
we enter is the application level: we are actually getting our hands on the code here!
Application-level tuning is more complicated than system level because it requires a
certain degree of understanding of algorithmic details. At the system level, we dealt
with standard components—CPUs, OS, network cards, and so on. We rarely can change
anything about them, but they need to be carefully chosen and correctly set up. At the

Chapter 3 ■ top-Down Software optimization

44

application level, things change. Software is seldom made from standard components:
most of its functionality is different from all other software. The essential part causing this
differentiation is the algorithm(s) used and the implementation thereof.

Note that optimization should not mean a major rewrite. You don’t want to change
the general algorithm as such. A finite difference program should remain that way, even
if finite elements might be more suitable. We are, rather, talking about optimizing the
algorithm at hand and the plethora of smaller algorithms that it is built from.

Working Against the Memory Wall
As explained in Chapter 2, performance of modern HPC systems comes from two
main sources: SIMD vectorization and parallelization. Both need to be considered
at the application level. One central problem still needs to be addressed, however:
the divergence of processor and memory performance. Moore’s Law promises
doubling of the number of transistors on a fixed silicon area roughly every two years.1
This implies to some degree a doubling of performance as well, because when you
talk about doubling the number of processing cores on a chip, you have twice the
available space. Even if the number of cores doesn’t double, there might be other uses
for these additional transistors, such as the AVX1 and AVX2 instruction sets, each
of which doubles the floating point operations that can be processed per cycle. Note
also that the ever-faster, ever-bigger, and increasingly more efficient caches are part
of this development.

When you leave the boundaries of the processor, though, there is no such rapid
development. Dynamic RAM (DRAM) performance grows at 1.2x in the same time as the
CPU performance grows 2x. The observation that this would lead to a starving CPU was
first put forward by W. A. Wulf and S. A. McKee in 1994.2 It did not come out quite as bad
as predicted—more cache levels, larger cache sizes, integrated memory controllers, and
more memory channels in combination with the CPU hardware prefetchers mitigated
this predicted trend to some degree. Still, there is increasing pressure on the memory
subsystem, and so application tuning should focus there. Chapter 8 deals with the
respective optimization techniques in detail.

The impact of proper data management may be estimated to be in the order of the
cache latency at different levels compared to the latency of RAM access:

S =
L

L
RAM

cachen

S =
L

L
RAM

cachen

This ratio ranges between 2x and 5x.

Note ■ Data layout and access performance impact: 2–5x.

Chapter 3 ■ top-Down Software optimization

45

The Magic of Vectors
Once data is readily available in the cache, computation itself might become the
bottleneck. Now, SIMD vectors come into play. As described in Chapter 2, a SIMD
instruction can execute the same arithmetic operation on different elements of a SIMD
vector at the same time, as shown in Figure 3-2. Usually, the compiler does a decent job
vectorizing code even in a very complex environment, but there are reasons it might not
be able to vectorize your code. The Intel Compiler has some very useful reporting that
will tell you exactly why the compiler cannot vectorize a particular loop. In the figure,
vmulpd two SIMD AVX vectors containing four double elements each or one SIMD
vector and a memory reference. The assembly code shows that the compiler already
unrolls the loop by 4.

Figure 3-2. Example for an automatic vectorization by the compiler in C source code, and
the resulting assembly instructions

The impact of vectorization on performance may be estimated by the number of
vector elements of a given type that can be processed in parallel. For double precision/
AVX, the possible speedup is four times; for single precision, it’s eight times.

Note ■ Vectorization performance impact (double precision): 4x.

Distributed Memory Parallelization
The most important parallelization technique in HPC is distributed memory
parallelization that enables communication between processes that may not share a
common address space (although they can, of course). The benefit of this is immediately
clear: you can communicate across physically different computers and gain access to
the full power of the massively parallel HPC clusters.

Chapter 3 ■ top-Down Software optimization

46

As in the shared-memory approach (discussed in the next section), there is need for
a robust library that would abstract all the low-level details and hide from the user the
differences between various interconnects available on the market. So, back in the early
1990s, a group of researchers designed and standardized the Message Passing Interface
(MPI).3 The MPI standard defines a language-independent communications protocol
as well as syntax and semantics of the routines required for writing portable message-
passing programs in Fortran or C/C++; nonstandard bindings are available for many
other languages, including C++, Perl, Python, R, and Ruby. The MPI standard is managed
by the MPI Forum4 and is implemented by many commercial and open-source libraries.

The MPI standard was widely used as a programming model for distributed memory
systems that were becoming increasingly popular in the early 1990s. As the shared
memory architecture of individual systems became more popular, the MPI library
evolved as well. The latest MPI-3 standard was issued in September 2012. It added fast
remote memory access routines, nonblocking and sparse collective operations, and some
other performance-relevant extensions, especially in the shared memory and threading
area. However, the programming model clearly remains the distributed memory one with
explicit parallelism: the developer is responsible for correctly identifying parallelism and
implementing parallel algorithms using MPI primitives.

The performance improvement that can be gained from distributed memory
parallelization is roughly proportional to the number of compute nodes available, which
ranges between 10x and 1000x for the usual compute clusters.

Note ■ Distributed memory parallelization performance impact: 10–1000x.

Shared Memory Parallelization
The next level to look at is the shared memory parallelization. In contrast to the distributed
memory programming, where the parallelization unit is normally a process with its
own, unique address, space, shared memory programming deals with parallel execution
flow in a common address space. Generally, the execution needs to take place on the
same physical system. Although processes can also participate in shared memory
communication, we generally think about threads here.

How do you make a program utilize all processors in a shared memory system?
There are multiple libraries providing application program interfaces, or APIs,
such as POSIX Threads,5 that help create and manage multiple application threads.
Unfortunately, a lot of threading APIs are either operating system specific (and thus not
portable to other OS), or use unique features of the underlying hardware, or are simply
too low-level. This is why the HPC community has been building open, portable, and
hardware-agnostic programming interfaces to implement threading support in the most
popular programming languages: C, C++, and Fortran. The demand from developers for a
cross-platform, easy-to-use, threading API helped OpenMP 6 to become the most popular
threading API by far. OpenMP consists of a set of compiler directives, as well as library
routines and environment variables, that influence the program runtime behavior.

Chapter 3 ■ top-Down Software optimization

47

The most recent development of the OpenMP moved the OpenMP API beyond
traditional management of pools of threads. In the OpenMP specification version 4.0,
released in July 2013, you find support for SIMD optimizations, as well as support for
accelerators and coprocessors that architecturally better fit into the distributed memory
system type discussed earlier in this chapter. Chapter 5 discusses OpenMP and other
threading-related optimization topics, including how to deal with the application-level
bottlenecks specific to the shared memory systems programming.

The performance improvement for shared memory parallelization is roughly
proportional to the number of cores available per compute node, which is from 10x to 20x
in modern server architectures.

Note ■ Shared memory parallelization performance impact: 10x–20x.

Other Existing Approaches and Methods
So far we have discussed the most popular and widely used parallel programming models
for the shared and distributed memory architectures—namely, MPI and OpenMP.
However, there are a couple of other methods worth mentioning.

Partitioned Global Address Space (PGAS) is a model that assumes a global memory
address space that is logically partitioned, with each portion being local to each
process or thread. The PGAS approach attempts to combine the advantages of the MPI
programming style for distributed memory systems with the data referencing semantics
used in programming shared-memory systems. The PGAS model is the basis for Unified
Parallel C,7 Coarray Fortran8 (now a part of the Fortran standard), as well as more
experimental interfaces and languages.

The SHMEM (Shared Memory) library provides a set of functions similar to MPI.9 It
is available for C and Fortran programming languages. SHMEM routines support remote
data transfer, work-shared broadcast and reduction, barrier synchronization, and atomic
memory operations.

Intel Thread Building Blocks (TBB)10 and Intel Cilk Plus11 aim at making threading
and SIMD kind of parallelism easier to use. They represent a new wave of the programming
interfaces being developed to address the increased need for parallelization that has
reached the mainstream.

Another emerging programming model, applicable for processing large data sets in
the so-called Big Data applications, using a parallel, distributed algorithm on a cluster,
is MapReduce.12 A MapReduce program consists of a Map() procedure that usually
performs filtering and sorting of large arrays of data, and a Reduce() procedure that
performs a summary or other reduction operation on the results of the Map() operation.
The MapReduce system middleware—for example, open-source Apache Hadoop13—
orchestrates the distributed memory servers, runs various tasks in parallel, manages
all communication and data transfers between the parts of the system, and provides
transparent redundancy and fault tolerance.

Chapter 3 ■ top-Down Software optimization

48

One thing to keep in mind when working at the algorithm level is that you do not
need to reinvent the wheel. If there is a library available that supports the features of
the system under consideration, you should use it. A good example is the standard
linear algebra operations. Nobody should program a matrix-matrix multiplication or an
eigenvalue solver if it is not absolutely necessary and known to deliver a great benefit.
The vector-vector, matrix-vector, and matrix-matrix operations are standardized in the
so-called Basic Linear Algebra System (BLAS),14 while the solvers can be addressed via
the Linear Algebra Package (LAPACK)15 interfaces, for which many implementations are
available. One of them is Intel Math Kernel Library (Intel MKL), which is, of course, fully
vectorized for all available Intel architectures and additionally offers shared memory
parallelization.16

Microarchitecture Level
Having optimized the system and the algorithmic levels, let’s turn now to the problem
of how the actual machine instructions are executed by the CPU. According to
Table 3-1, microarchitectural changes have the least individual impact in absolute
numbers, but when they are accumulated, their impact on performance may be large.
Microarchitectural tuning requires a certain understanding of the operation of the
individual components of a CPU (discussed in detail in Chapter 7). Here, we restrict
ourselves to a very limited overview.

Addressing Pipelines and Execution
The most important features of a modern CPU that need to be addressed at the
microarchitectural level are as follows:

•	 Pipelining: The concept of pipelines is addressed at various
points in this book, but they play a special role in the design of a
CPU. Pipelines are probably the most impactful design pattern in
modern computer architecture. The idea is based on the principle
of an assembly line: one stage of the pipeline provides input to
the following stages. Each stage is specialized in a particular task,
which reduces complexity and increases performance. However,
a stall at a particular stage may easily spread across the pipeline,
both up (for lack of resources) and down (for lack of tasks to
address).

•	 Out-of-order (OOO) execution: This is the ability of the CPU to
reorder the instructions of a program according to the readiness
of the required resources. If instruction1 depends on the input
parameters that are not yet available, the CPU scheduler might
schedule execution of the following instruction2 that meets all
dependency requirements.

•	 Superscalarity: Superscalarity describes the implementation of
instruction-level parallelism within the CPU. A superscalar CPU
features multiple independent pipelines of the same or different

Chapter 3 ■ top-Down Software optimization

49

capabilities. The scheduler routes instructions to these pipelines
depending on what type the instructions are, and tries to execute
them in parallel. In the current Intel architecture codenamed
Haswell, for example, the CPU can execute two FMA operations at
the same time, reaching throughput of 0.5 cycles/FMA. The total
number of instructions that can be executed in parallel is 4/cycle.

•	 Branch prediction: A real problem in pipelined processors is
conditional branches, which are jumps to a different part of the
instruction flow based on the decision computed at runtime.
In this case, the pipeline has to stop issuing instructions until
the decision criterion is available. In order to circumvent this
problem, a special unit in the CPU predicts the criterion based
on the earlier decisions. A special cache is available to store these
decisions. In this way, the CPU pipeline can continue operating
speculatively, assuming continuation of the instruction flow at the
predicted position. If the prediction was wrong, all instructions
following the wrongly predicted branch are invalid and the
complete pipeline has to be flushed for the execution flow to
continue with the correct instruction.

Microarchitectural performance tuning is made more difficult because the actual
implementation of the technologies just described can and will change with every
processor generation, and might differ considerably across different vendors. Intel’s CPUs
offer particular hardware functionality to access the information necessary to perform
microarchitectural tuning, the so-called performance monitoring unit (PMU). The PMU
offers measures that keep track of what exactly happens in the chip—for instance, how
many branch predictions have been done and how many have failed. Although you
can access the PMU explicitly, it is much more convenient to use a tool that does the
PMU programming for you, such as Intel VTune Amplifier XE,17 Likwid,18 or the Perf 19
command accessing the PMU via the Linux kernel.

The impact of the microarchitectural optimization can be estimated by the product
of the depth of the pipelines and the number of pipelines in the modern processor,
ranging in the 10x to 20x area.

Note ■ the performance impact of microarchitectural tuning can be up to 10x–20x.

Closed-Loop Methodology
One of the most critical factors in the tuning process is the way you load the system. There
is some ambivalence in the use of the terms workload and application. Very often, they
are used interchangeably. In general, application means the actual code that is executed,
whereas workload is the task and data that you give to the application. For instance, the
application might be sort.exe, and the workload might be some data file that contains
the names of persons.

Chapter 3 ■ top-Down Software optimization

50

Workload, Application, and Baseline
In the current context, we would like to take a simpler view, considering both
application and workload in combination simply as the workload. This combination
needs to fulfill a number of criteria to be suitable for our purposes:

1. The workload should be measurable—that is, there should
be quantifiable metric that represents performance of the
application. Such a metric can be obvious ones, like execution
time or GFLOPS, or more specialized, like simulated
nanoseconds/day or transactions/s.

2. Measurement of the performance metric must be
reproducible. Upon repetitive runs of the application, the
resulting numbers need to be consistent. Also, the stress
exerted by the application on the system needs to be
reproducible.

3. The workload should be static—that is, it must not vary
over time, and it needs to result in the same performance,
regardless of when the workload is executed. In practical
terms, performance observed should not vary beyond 1 to 2
percent.

4. The workload must be representative of the load imposed
upon the system under normal operating conditions. In
other words, it should stress those parts of the system that are
loaded under normal operation.

In most cases, a real application (or part thereof) and a real compute task will be
used for benchmarking. This need not be the case, however, as generating representative
stress might be too time-consuming and the application itself might not be designed for
benchmarking. Instead, you can consider an artificial benchmark that represents the
real situation but gives more detailed information about the performance of individual
fractions of the code and executes much faster. A good example is CERN’s HEP-SPEC
benchmark,20 a subset of SPEC that mimics the system stress exerted on the CERN
computing center.

One thing that must not be forgotten is to establish a baseline performance of the
workload before you start tuning. Without the baseline, there is no objective starting
point against which to compare any consequent potential improvement.

Iterating the Optimization Process
The top-down approach provides structured prioritization of the tuning tasks at hand.
We now come to the second important part of this methodology: the closed-loop concept.
While working at one level, we execute the following scheme:

1. Gather performance data: Collect performance data in the
metric(s) agreed.

Chapter 3 ■ top-Down Software optimization

51

2. Analyze the data and identify issues: Focus on the most time-
consuming part(s). Begin by looking for unexpected results or
numbers that are out of tolerance. Try to fully understand the
issue by using appropriate tools. Make sure the analysis does
not affect the results.

3. Generate alternatives to resolve the issue: Remove the
identified bottlenecks. Try to keep focused on one step at
a time. Rate the solutions on how difficult they are to be
implemented and on their potential payback.

4. Implement the enhancement: Change only one thing at a
time in order to estimate the magnitude of the individual
improvement. Make sure none of the changes causes a
slowdown and negated other improvements. Keep track of the
changes so you can roll them back, if necessary.

5. Test the results: Check whether performance improvements
are up to your expectations and that they remove the
identified bottleneck.

After the last step, you restart the cycle to identify the next bottleneck (see Figure 3-3).
Clearly, this loop is normally infinite, for the time to stop is determined by the amount of
time left to do the job.

Figure 3-3. Left: The closed-loop iterative performance optimization cycle. Right: Example
performance gains by tuning through various levels

Chapter 3 ■ top-Down Software optimization

52

The right graph in Figure 3-3 shows an artificial performance optimization across
different levels. Note that at each level the performance saturates to some degree and that
we switch levels when other bottlenecks become dominant. This can also mean going up
a level again, since successful tuning of the application level might expose a bottleneck
at the system level.

For example, consider an improvement in the OpenMP threading that suddenly
causes the memory bandwidth to be boosted. This might very well expose a previously
undiscovered bottleneck in the systems memory setup, such as DIMMs in the channels
of the memory controllers having different sizes, with the resulting decreased memory
bandwidth.

Summary
The methodology presented in this chapter provides a solid process to tune a system
consistently with the top-down/closed-loop approach. The main things to remember are
to investigate and tune your system through the following different levels:

1. System level (see Chapter 4)

2. Application level, including distributed and shared memory
parallelization (see Chapters 5 and 6)

3. Microarchitecture level (see Chapter 7)

Keep iterating at each level until convergence, and proceed to the next level with the
biggest impact as long as there is time left.

References
1. G. E. Moore, “Cramming More Components onto Integrated Circuits” Electronics 38,

no. 8 (19 April 1965): 114–17.

2. W. A. Wulf, and S. A. McKee, “Hitting the Memory Wall: Implications of the Obvious,”
1994, www.eecs.ucf.edu/~lboloni/Teaching/EEL5708_2006/slides/wulf94.pdf.

3. MPI Forum, “MPI Documents,” www.mpi-forum.org/docs/docs.html.

4. “Message Passing Interface Forum,” www.mpi-forum.org.

5. The Open Group, “Single UNIX Specification, Version 4, 2013 Edition,” 2013,
www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.
jsp?publicationid=12310.

6. OpenMP.Org, “OpenMP,” http://openmp.org/wp.

7. UPC-Lang.Org., “Unified Parallel C,” http://upc-lang.org.

8. Co-Array.Org, “Co-Array Fortran,” www.co-array.org.

9. “SHMEM,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/SHMEM.

http://www.eecs.ucf.edu/~lboloni/Teaching/EEL5708_2006/slides/wulf94.pdf
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12310
http://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12310
http://openmp.org/wp
http://upc-lang.org/
http://www.co-array.org/
http://en.wikipedia.org/wiki/SHMEM

Chapter 3 ■ top-Down Software optimization

53

10. Intel Corporation, “Intel Threading Building Blocks (Intel TBB),”
http://software.intel.com/en-us/intel-tbb.

11. Intel Corporation, “Intel Cilk Plus,”
http://software.intel.com/en-us/intel-cilk-plus.

12. G. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” OSDI’04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, December 2004.

13. “Welcome to Apache Hadoop!,” http://hadoop.apache.org.

14. NetLib.Org, “BLAS (Basic Linear Algebra Subprograms),” www.netlib.org/blas/.

15. NetLib.Org, “LAPACK — Linear Algebra PACKage,” www.netlib.org/lapack/.

16. Intel Corporation, “Intel Math Kernel Library,”
http://software.intel.com/en-us/intel-mkl.

17. Intel Corporation, “Intel VTune Amplifier XE 2013,”
http://software.intel.com/en-us/intel-vtune-amplifier-xe.

18. “Likwid - Lightweight performance tools,” http://code.google.com/p/likwid/.

19. “perf (Linux)” Wikipedia, the free encyclopedia,
 http://en.wikipedia.org/wiki/Perf_(Linux).

20. HEPiX Benchmarking Working Group, “HEP-SPEC06 Benchmark,”
https://w3.hepix.org/benchmarks/doku.php.

http://software.intel.com/en-us/intel-tbb
http://software.intel.com/en-us/intel-cilk-plus
http://hadoop.apache.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://code.google.com/p/likwid/
http://en.wikipedia.org/wiki/Perf_(Linux)
https://w3.hepix.org/benchmarks/doku.php

55

Chapter 4

Addressing System
Bottlenecks

We start with a bold statement: every application has a bottleneck. By that, we mean that
there is always something that limits performance of a given application in a system. Even
if the application is well optimized and it may seem that no additional improvements are
possible by tuning it on the other levels, it still has a bottleneck, and that bottleneck is in
the system the program runs on. The tuning starts and ends at the system level.

When you improve your application performance to take advantage of all
the features provided in the hardware, you use all available concurrency, and the
application’s execution approaches peak performance, but that peak performance will
limit how fast the program can run. A trivial solution to improve performance in such
cases is to buy a new and better piece of hardware. But to make an informed selection of
new hardware, you would need to find a specific system-level bottleneck that restricts the
application performance.

This chapter starts with discussion of the typical system-level tweaks and checks
that one can implement before considering purchasing new hardware. These need to
be seen as sanity checks of the available hardware before you invest in tuning of your
applications on the other levels. The following chapters describe the tools and techniques
for application optimization, yet the optimization work in the application must rely on a
clean and sane system. This chapter covers what can be wrong with the system and how
to find out if that specific system limitation is impacting your application performance.

Classifying System-Level Bottlenecks
System-level bottlenecks, or issues that do not allow reaching hardware peak
performance, arise from limitations in either hardware or software components that are
generally outside user and application control. The reality is that any computer system
has hardware performance limitations. In most cases, the difference between a “good”
and a “bad” system is only one thing: whether its limitations cause your application
to be slow. The application developer can avoid some performance impact brought
about by system bottlenecks, but generally it requires a system administrator to debug
and reconfigure the system. But before an application developer or a user can produce
claims to the system administrator, the bottleneck has to be identified and its impact
characterized and quantified.

Chapter 4 ■ addressing system BottleneCks

56

The root causes of system bottlenecks can be split into two major categories,
depending on their origin:

1. Condition and the run-time environment

2. Configuration of hardware, firmware, or software

The first may be present temporarily, appear from time to time, and may go away
and come back unless the issues are identified and fixed. The second includes issues
that are really static in time unless the system is reconfigured, and they are caused
by limitations in how the system was built (for instance, component selection, their
assembly, and their configuration).

Identifying Issues Related to System Condition
Performance problems caused by the system condition or the environment where it
operates are probably the hardest to diagnose, so let’s start with them. The main cause
of these system bottlenecks are the conditions under which the application executes or
makes the transient changes to its runtime environment. Some specific examples include
the following:

•	 Shared resource conflicts: A program running on a shared cluster
may get fewer resources, depending on other applications
executed on other nodes of the cluster at the same time. Two
major shared resources in an HPC cluster are the shared parallel
file system and the interconnect between the cluster nodes.
Sometimes there can be memory-related bottlenecks when
some cluster nodes are shared by different jobs, which may
cause conflicts between these jobs depending on the specific
scheduling.

•	 Throttling: Processors and memory modules in the cluster nodes
may experience performance throttling caused by overheating
or power delivery limitations. This is usually a data center–level
issue, and there is really nothing an application developer can do:
the system administrators and the vendor of the cluster have to
revise their cooling or power delivery subsystem configurations.

•	 Faults: It may be a rather rare case, but if something in the
hardware or software starts failing, it may temporally impact
performance. A fault does not necessarily lead to system or
application crash. Modern hardware has very sophisticated
resiliency and error-correction mechanisms, and it is often able
to recover from many types of errors, such as a single-bit data
corruption in the memory or loss of a packet in transit. While
these recovery mechanisms enable programs to continue running
despite the faults occurring, they do take time for their work
and may produce significant performance overhead for the user
application running on the system.

Chapter 4 ■ addressing system BottleneCks

57

Usually, detection and repair of the system-level issues is a responsibility of
system administrators and the system provider. We do recommend that administrators
ask vendors about Intel Cluster Ready certification for their systems. The certified
cluster comes with a software tool from Intel, called the Intel Cluster Checker, and it’s
a key element of the Intel Cluster Ready validation process. The tool helps verify that
cluster components are working when the cluster is being deployed and also that the
components continue working together as expected throughout the cluster lifecycle.
However, sometimes users need to raise awareness of observed performance problems
before the issue is investigated.

There are several things you can do during development of an application or while
setting up a job scripts that can help debug condition-related problems:

1. Check shared resource conflicts by timing your code: Insert a
collection of timings into your application to gather execution
time for the known long-lasting activities that depend on
shared resources.

a. For instance, if your application reads from or writes
to a shared parallel file system, it may be beneficial to
determine the time spent on the input/output (I/O)
operations and report this time in the program output.

b. For MPI applications, you may measure the time when
there are known large message-passing operations, or
routinely gather MPI time statistics produced by Intel
MPI library (as discussed in Chapter 5). If in certain
application runs the I/O or MPI take more time than
usual, it may indicate a conflict over these shared
resources or a fault in the file system (for instance,
a failing disk, which may cause RAID rebuild with
subsequent slowdown of I/O operations) or in the
network fabric (for example, a broken cable, which may
cause sporadic packet loss resulting in multiple attempts
to deliver the respective messages).

2. Count thermal and power throttling events. Unfortunately,
quite often an observed class of system-level issues is caused
by throttling problems. But it is very easy to check if any
thermal or power throttling occurred on any server, even
if you do not have the administrative privileges. The Linux
operating system kernel provides relevant counters for events
such as the processor overheating or excessive power use. The
script presented in Listing 4-1, here named check_throttle.sh
(works for Bash compatible shells on Linux), will let you
know how many throttling events have occurred since the last
booting of the operating system.

Chapter 4 ■ addressing system BottleneCks

58

Listing 4-1. Contents of check_throttle.sh Script to Count
Throttling Events

#!/bin/sh
let CPU_power_limit_count=0
let CPU_throttle_count=0
for cpu in $(ls -d /sys/devices/system/cpu/cpu[0-9]*); do
 if [-f $cpu/thermal_throttle/package_power_limit_count]; then
 let CPU_power_limit_count+=$(cat $cpu/thermal_throttle/

package_power_limit_count)
 fi
 if [-f $cpu/thermal_throttle/package_throttle_count]; then
 l et CPU_throttle_count+=$(cat $cpu/thermal_throttle/package_

throttle_count)
 fi
done
echo CPU power limit events: $CPU_power_limit_count
echo CPU thermal throlling events: $CPU_throttle_count

The expected good values for both printed lines should be zero, as
shown in Listing 4-2.

Listing 4-2. Example of check_throttle.sh Script Run and Output

$./check_throttle.sh
CPU power limit events: 0
CPU thermal throlling events: 0

Anything other than zero indicates the presence of throttling
events, which usually impacts performance significantly. During
the throttling events, the clock frequency of the processors is
reduced to save power, relying on the fact that the active power
has a cubic dependency upon the voltage/frequency. Another
technology to mitigate overheating of the chip is to insert duty
cycles (when the processor clock is not running). This helps in
reducing the processor temperature if a critical temperature is
reached, but it significantly hurts performance of the applications.

3. Check for failure events. Some of the more advanced
techniques for detecting system-level issues may require
root privileges, and thus can only be used by the system
administrators. Programs such as mcelog1 for Linux decode
machine check events on modern Intel Architecture machines
running a Linux OS with 64-bit kernel. Machine checks can
indicate failing hardware, system overheats, bad memory
modules, or other problems. If the tool is run regularly, it is
useful for predicting server hardware failures before an actual
server crash or there’s appearance of visible performance
impact on user applications.

Chapter 4 ■ addressing system BottleneCks

59

4. Ensure interconnect fabrics and storage are clean. Additional
areas of responsibility for the system administrators and
vendors are to ensure the interconnect fabric is clean and
the storage is built properly. This means that there are no
bad cables, no bad ports, and no bad connectivity in the
interconnection network, and that the storage arrays are
complete, and are built and operated correctly.

Characterizing Problems Caused by System
Configuration
The other class of issues listed above can be caused by the configuration of hardware or
software that the application is run on. This is also generally outside system user control,
and administrative privileges are required to alter the system settings. However, the user
can check some of these settings, and may alert system administrators if any important
misconfigurations are observed. For instance:

1. Check that the system software and the operating system (OS)
versions are the latest. The OS has to be relatively new to
support all important hardware features, specifically in the
platforms and in the processors. As a rule of thumb (applied
largely to Linux distributions), if the OS was released more
than a year before the processor of the server, it likely should
be updated or at least a newer kernel and major system
libraries should be installed. The new processor and platform
generations bring new features that almost always need
proper support by the OS. Some of these features are the
instruction set extensions brought out by Intel almost every
year, and the changes in the mainstream server platform
technologies instituted about every two years. Lack of support
for the new features will not make the old OS dysfunctional;
backwards compatibility normally allows old operating
systems to boot and work, although inefficiencies will likely be
observed.

2. Review OS configuration. A good OS for HPC systems has
to be nondisturbing to the applications. In the HPC world
(unlike some enterprise computing areas), a single user
application usually exclusively owns the execution resources
of several computational nodes, so the presence of any other
activity on these nodes is undesirable, for this generates
random interruptions of computations that may negatively
impact a parallel application’s performance. And it is here
that most of the OS configuration issues are observed
nowadays. Unfortunately, no universal checklists exist for
all possible disturbing factors because there is a wide variety

Chapter 4 ■ addressing system BottleneCks

60

of Linux distributions and site-specific packages that are
still necessary on cluster compute nodes. However, there
is one tool we recommend to the system administrators for
analysis of the OS disturbance: PowerTOP.2 It was originally
developed by the Intel Open Source Technology Center to
help identify power-hungry applications causing OS wakeups
in mobile and embedded platforms. At the same time it is a
great tool for reducing OS wakeups and to experiment with
the various power management settings for cases where the
Linux distribution has not enabled these settings by default.
The interactive mode of PowerTOP helps to quickly reveal
disturbing activities without expending great effort. We can
run PowerTOP on our development workstation with
CentOS 6.5, like this:

$ sudo powertop

Note ■ here, prior to running the powertop command, we used another command: sudo.
this addition instructs the operating system to use administrator or superuser privileges to
execute the following command, while not asking for the super user password. in order to
be able to use sudo, the system administrator has to delegate the appropriate permission
to you—usually by means of including you in a specific group (such as wheel or adm) and
editing system configuration file /etc/sudoers. depending on the configuration, you may
be asked to enter your password.

The output of running PowerTOP presented in Figure 4-1 shows
that the OS wakeups disturbing other applications happen over
50 times per second and that the two most disturbing residents in
the OS are the kipmi0 kernel process and the alsa device driver
for the sound system. Impact from kipmi0 is rather large: the
processing time takes 998 milliseconds every second—less than
2 milliseconds short of an entire second—thus taking away one
complete core from the user applications.

Chapter 4 ■ addressing system BottleneCks

61

Figure 4-1. PowerTOP run in interactive mode

The alsa driver is the one for the sound system, which is not
usually used in HPC systems and can safely be removed. In
general, it is good practice to remove all unused software that by
default may be installed with your favorite OS distribution (for
instance, the mail servers, such as sendmail, or the Bluetooth
subsystem that are not generally needed in HPC cluster compute
nodes), and thus should either be uninstalled from the OS or be
disabled from the startup process.

The kipmi0 is part of the OS kernel that is responsible for the
work of the intelligent platform management interface (IPMI)
subsystem,3 which is often used to monitor various platform
sensors, such as those for the CPU temperature and voltage.
This may be required by the in-band monitoring agents of the
monitoring tools like lm_sensors,4 Ganglia,5 or Nagios.6 Although
kipmid is supposed to use only the idle cycles, it does wake up the
system and can affect application performance. The good news is
that it is possible to limit the time taken by this kernel module by

Chapter 4 ■ addressing system BottleneCks

62

either adding the line options ipmi_si kipmid_max_busy_us=1
to the ipmi.conf file under /etc/modprobe.d/, or by executing the
following command:

$ sudo bash -c \
'echo 1 > /sys/module/ipmi_si/parameters/kipmid_max_busy_us'

This will limit the kipmid CPU time and the number of times it
wakes up the OS.

After these two changes to the OS configuration, the number of
wakeups per second on our test system was reduced and, more
important, CPU usage went down. The CPU usage in the OS’s
idle state is around 1.5 percent (where at least 1 percent is taken
by the PowerTOP itself), and the processor usage by the kipmi0
is reduced to around 1 ms per second. The next biggest cause
of OS wakeups is the timer process that takes only a third of a
millisecond every second.

Other configurations or versions of operating systems may have a
very different set of hardware and software components, but using
tools like Linux top and the PowerTOP will help you identify the
time-consumers and serve as a guide to improving system
idle-state overhead.

3. Check BIOS settings: As the next step after OS improvement,
it is worth checking important parameters of the basic
input/output system (BIOS). Unlike BIOS setups in client
platforms, BIOS in a server provides a lot more options to
tune the system characteristics for different application
workloads. While the available choice of settings is a very
good way to support multiple different usages of the server
platforms, it may also lead to inefficient settings for your
specific applications. And although the OEMs delivering
high-performance computing solutions try to configure their
servers in a proper way, it may still be good to follow some
basic recommendations for several important BIOS settings.

The BIOS provides a summary of detected hardware: processor
type and speed, memory capacity, and frequency. For instance,
if there is a memory module failure, it will not be detected and
presented by the BIOS to the operating system, and the server will
boot. And if the memory module failure is not noticed, the system
will continue working, but the memory capacity and performance
will be lower than expected.

Chapter 4 ■ addressing system BottleneCks

63

a. As the HPC applications performance is very often
dependent on the memory subsystem performance, the
settings affecting the main memory are among the most
important to study. One of these settings is the “NUMA
mode” selection. In multi-socket platforms with the
memory controllers integrated into the processor running
a modern OS, enabling the NUMA support presents the
physical memory of the system as a split between the
local and remote to each socket (as shown in Listing 2-1
in Chapter 2). Efficient use of NUMA requires software
optimizations that we discuss in greater detail in Chapter 6.

b. The status of power management technologies and
power/performance settings (such as Intel Enhanced
SpeedStep Technology, EIST, and Intel Turbo Mode) are
available in the BIOS setup to shift the balance between
energy draw and performance: reducing the power draw
may negatively affect the application’s speed.

c. Another source of configuration issues may lay in
excessive use of the resiliency technologies built into the
memory subsystem. In order to increase server uptime
and prevent crashes from memory failures, it is possible
to configure so-called memory mirroring, sparing, or
lockstep operations. These technologies help increase
server availability, but they come at a cost to memory
capacity and performance, sometimes impacting
memory bandwidth by a factor of 2.

Note ■ For the best possible performance, check that the memory is configured in the
channel interleave or the independent mode the Bios.

Understanding System-Level Performance Limits
Practically, the best way to identify system-level issues is to check the major system
parameters with simple yet powerful kernel tests. These tests usually do not take a lot of
time to set up and run, and they are an essential part of the acceptance process when a
supercomputer is handed over from the vendor to the customer. Moreover, periodic runs
of these tests may reveal system health issues during its day-to-day operation. As the HPC
software paradigm to a large extent relies on a high-performing cluster of uniform
(in configuration and performance) computational nodes, running these tests on every
node of the cluster will help to ensure performance uniformity across all similarly
configured components in the HPC system.

Chapter 4 ■ addressing system BottleneCks

64

We distinguish several important subsystems that the kernel benchmarks should
focus on:

1. Compute subsystem: The main processors and coprocessors
that can be installed in every cluster node.

2. Main memory subsystem: Test the main memory performance
characteristics. When Intel Xeon Phi coprocessors are
installed, the GDDR5 memory of the coprocessor card needs
to be tested in similar way as the main memory.

3. Cluster interconnect network: Used to wire the computational
nodes together and to access the high-performance storage
subsystem.

Each subsystem can be tested separately, and the performance results can be
compared to expected good values from the vendor datasheets, as well as between
different cluster nodes. There are large numbers of application kernels that can be
designed to check the efficiency of different subsystems. Here we review those that have
proved to be useful in practice.

Checking General Compute Subsystem Performance
One of the widely used stress tests in HPC is the High Performance Linpack (HPL)
benchmark. It is the benchmark used to rank supercomputers in the TOP500 list
published at www.top500.org twice a year. Despite this, the relevance of the HPL to real
HPC applications is debated. However, it can certainly be used to validate the system
performance and stability. There are many reference results for different architectures
found on the TOP500 list, which gives a baseline for comparison with your results. (In the
following chapters we will also use HPL a couple of times for demonstration purposes.)

The main disadvantage of the HPL benchmark is that it may be hard to set up and
find optimal parameters, so bad performance may be not an indication of a slow node
or cluster but, rather, be the result of poor benchmark configuration. Also with HPL,
it would be hard to identify a slow node in a cluster—in case one exists. This is why
Intel engineers not only ship an optimized version of the HPL benchmark along with
the Intel Math Kernel Library (MKL) but also provide a small program to test compute
nodes performance called nodeperf.c. This is a simple MPI program that runs a
highly optimized version of a double precision general matrix multiply (DGEMM) library
routine from the MKL. This routine is also the core of the HPL test. As the MKL provides
optimized versions of DGEMM and many other widely used routines, you can be sure that
the test will be optimized for the latest Intel microprocessors.

Let’s see how to check the uniformity and performance of an eight-node cluster
using the nodeperf tool. First, you may need to load the environment variables for the
Intel software tools to be used shortly. The first line will load the compiler environment
settings into the Bash shell, and the second will set up variables for the Intel MPI library:

$ source /opt/intel/composerxe/bin/compilervars.sh intel64
$ source /opt/intel/impi_latest/intel64/bin/mpivars.sh

http://www.top500.org/

Chapter 4 ■ addressing system BottleneCks

65

You will find the scripts for the C-shell under the same folder as the scripts for
the Bash-compatible shells. The source code of the nodeperf application can be
found in the source folder of the HPL benchmark that comes with the Intel MKL. If
Intel Parallel Studio XE 2015 Cluster Edition is installed into its default folder, you can
copy the nodeperf.c source file to your current directory, where the benchmark will
be compiled and later executed (it is expected that this directory is shared among all
cluster nodes):

$ cp $MKLROOT/benchmarks/mp_linpack/nodeperf.c ./

Compile the nodeperf program using the Intel MPI compile wrapper script for Intel
compiler with the optimizations enabled to at least -O2 level, tuning for the instruction set
supported on the build machine (either by using the -xHost or by directly specifying another
instruction set target as described in Table 1-1), enabling OpenMP support (-qopenmp), and
linking with the MKL library for the optimized version of the DGEMM routine (-mkl):

$ mpiicc -O2 -xHost -qopenmp -mkl nodeperf.c -o nodeperf

Successful completion of the command should produce an executable binary
nodeperf in the current working directory. It is ready to run. Just before the run, however,
you need to set a few important environment variables that control the number of
OpenMP threads and their placement on the system:

$ export OMP_NUM_THREADS=24
$ export OMP_PLACES=cores

The first command requests 24 OpenMP threads. This is equal to the number of
physical processor cores in every node of our cluster: each of two CPUs has 12 cores, so
we ask exactly one thread per physical core. In case OMP_NUM_THREADS is not explicitly set
up, the Open MP runtime library will use all processors visible to the OS, which, in the
case of enabled Hyper Threading, will lead to assignment of two Open MP threads to each
physical core. The OMP_PLACES environment variable instructs Intel OpenMP runtime to
distribute threads between the cores in the system, so that two different threads will not
run on one physical core. Now we’re ready to start the test using the mpirun command
that requests eight ranks (using the -np 8 option), with only one rank per node (-ppn 1):

$ mpirun -np 8 -ppn 1 -hosts esg003,esg004,esg005,esg006,esg007,esg008,esg00
9,esg010 ./nodeperf

Note ■ the -hosts option for the mpirun command explicitly lists the names of hosts
allocated for our job by the scheduler, and we provide it here for illustration purposes. more
convenient is to provide the list of hosts the program will run on in a separate file; or in a
majority of cases, intel mpi can pick it up automatically from the resource manager of the
job scheduling system. please consult your cluster documentation to see how the mpi jobs
are to be run on your cluster.

Chapter 4 ■ addressing system BottleneCks

66

The output of nodeperf run is shown in Listing 4-3.

Listing 4-3. Example Output of nodeperf (Cluster, 8 Nodes)

Multi-threaded MPI detected

The time/date of the run... at Mon May 12 06:11:29 2014

This driver was compiled with:
 -DITER=4 -DLINUX -DNOACCUR -DPREC=double
Malloc done. Used 827090096 bytes
(0 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 519260.972 esg003
(1 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 506726.008 esg004
(2 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 517275.263 esg005
(3 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 519160.998 esg006
(4 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 512007.115 esg007
(5 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 513921.217 esg008
(6 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 530959.117 esg009
(7 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 515852.598 esg010

The last two columns present the achieved performance of the DGEMM routine in
MFLOPS and the respective host name where the nodeperf was run. We immediately
find that node esg004 is the slowest one and esg009 is the fastest, and the performance
difference between the fastest and the slowest nodes is about 4.8 percent.

EXERCISE 4-1

taking into account that our computational nodes are built using two intel Xeon
e5-2697 v2 processors (each with 12 cores and 2700 mhz nominal clock frequency),
with support of the intel aVX instruction set (so each core is capable of delivering up
to 8 Flops/cycle in double precision), compare the performance achieved on every
node as a ratio between the achieved performance and the peak performance.

After completing Exercise 4-1, you should have found that three nodes demonstrate
performance higher than the theoretical peak. How is this possible? This happens
because the peak performance was calculated using the nominal rated frequency of the
processor (2.7 GHz). But by default, Intel Turbo Boost technology is enabled. This allows
for processors running at a higher frequency than the nominal one when the CPU power
consumption stays within the specification and the cooling system can cool the processor
package below its critical temperature. An Intel Xeon E5-2697 v2 processor can run at a
up to 300 MHz higher clock speed in the Turbo Boost, thus reaching up to 3 GHz. When
Turbo Boost is disabled in BIOS settings, though, the processor clock frequency cannot
exceed the nominal 2.7 GHz, and consequently the performance reported by nodeperf is
lower, while still above 90 percent from the peak performance, as shown in Listing 4-4.

Chapter 4 ■ addressing system BottleneCks

67

Listing 4-4. Output of nodeperf with Turbo Boost Disabled (Cluster, 8 Nodes)

Multi-threaded MPI detected

The time/date of the run... at Mon May 12 06:25:39 2014

This driver was compiled with:
 -DITER=4 -DLINUX -DNOACCUR -DPREC=double
Malloc done. Used 827090096 bytes
(0 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 482853.191 esg003
(1 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 469475.454 esg004
(2 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 469658.038 esg005
(3 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 480475.968 esg006
(4 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 469907.603 esg007
(5 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 479765.330 esg008
(6 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 480635.807 esg009
(7 of 8): NN lda=10000 ldb= 168 ldc=10000 0 0 0 469960.729 esg010

One final observation: this result also shows that the performance difference
between the fastest and the slowest nodes in the cluster is only 2.8 percent and is lower
than the case when the Turbo Boost is enabled. Turbo Boost can help achieve better
performance results; however, the observed performance variations between the nodes
will be higher, depending on each node,s conditions.

Testing Memory Subsystem Performance
Memory subsystem performance can be quickly characterized by measuring the main
memory bandwidth and the latency, and comparing results to the good expected values
and the values for different cluster nodes.

1. Characterizing memory bandwidth: The most famous test to
check the memory bandwidth is the STREAM benchmark:7
it is quick, easy to set up, and easy to run. It consists of just
one source file that can be downloaded from the official
benchmark site. After downloading the source code, you can
compile it using the Intel compiler as follows:

$ icc -O3 -xHost -mcmodel=medium -qopenmp stream.c -o stream

Also, before compilation, you may consider increasing the
STREAM_ARRAY_SIZE parameter to increase the size of the memory
used during the benchmark from the default 0.2 GiB,8 which may
be too small to get reproducible results. For instance, setting
the STREAM_ARRAY_SIZE to 800000000 elements will cause the
benchmark to use 18 GiB of memory. In this case the compiler
option -mcmodel=medium is required to remove the restriction of 2
GiB on the size of the arrays.

Chapter 4 ■ addressing system BottleneCks

68

Out of the entire output of the STREAM benchmark you may pick
just the values of the TRIAD component that executes the following
computational kernel a(i) = b(i) + q*c(i). For convenience, we
have put the stream command and necessary parsing of the results
into a shell script with the file name 2run.sh, shown in Listing 4-5.
In that script we assume the script with environment variables
settings and compiled stream binary reside in the same folder as
the 2run.sh script file. To keep the scripts portable, we have also
used a dynamic way to calculate the number of physical cores in
the server and set OMP_NUM_THREADS variable to that value.

Listing 4-5. Contents of 2run.sh Script to Run STREAM Benchmark and
Output TRIAD Result

#/bin/sh
. `dirname $0`/0env.sh
export OMP_NUM_THREADS=$(cat /proc/cpuinfo| awk 'BEGIN{cpus=0}
/processor/{cpus++}
/cpu cores/{cpu_cores=$4}
/siblings/{siblings=$3}
END{print cpus*cpu_cores/siblings}')
export OMP_PLACES=cores
`dirname $0`/stream | awk -v host=$(hostname) '/Triad:/{printf
"%s: %s\n",host,$2}'

You can run this script using the following command, assuming
the current working directory where the script resides is accessible
from all nodes.

$ mpirun -np 8 -ppn 1 ./2run.sh

Note ■ in this command, we omitted listing hostnames to run the test on, and depending
on your cluster setup, you may or may not have to do it explicitly in the mpirun command.

This will produce the output presented in Listing 4-6.

Listing 4-6. Example Output of the STREAM Benchmark (Cluster, 8 Nodes)

esg145: 84845.0
esg215: 85768.2
esg281: 85984.2
esg078: 85965.3
esg150: 85990.6
esg084: 86068.5
esg187: 86006.9
esg171: 85789.7

Chapter 4 ■ addressing system BottleneCks

69

The measured memory bandwidth around 85 GB/s represents
approximately 83 percent of the peak memory bandwidth
achieved by a dual-socket platform with quad channel DDR3
memory running at 1600 MHz. The above scores represent very
good efficiency. The STREAM TRIAD benchmark should achieve
values of 80 to 85 percent from the peak memory bandwidth on
Xeon E5 platforms.

2. Measuring memory latency: The second component of the
memory performance is the memory access latency. Unlike
bandwidth, latency is much harder to measure correctly and
to get results that make sense.

First, you need to decide on the conditions of the environment in
which to measure latency, such as whether idle latency (when no
other significant workload is running) or loaded latency is to be
measured (when multiple workloads run at the same time). The
former is a lot easier to implement, but you may need to make sure
that processor cores do not go into a sleep state while measuring
the idle latency. The latter will require additional applications
executing to stress the memory bus and quantify the intensity of
that workload.

a. While measuring memory latency you need to ensure
the results are really not including the caching effects. The
processor caches become larger and more sophisticated
with each generation, and the tools must be updated to
keep up with the improvements in the cache logic.

b. Finally, the more advanced characterization of the
system will require a tool measuring not only memory
latency but also cache access latency. And considering
multi-socket systems, this tool should measure latency
for accessing local and remote memory when systems
with non-uniform memory architecture (NUMA) are
benchmarked.

Several Intel engineers came together to write a memory latency
checker tool that is designed to help quantify latency for accessing
main memory and caches. Intel Memory Latency Checker9 prints
out a matrix of the latencies and bandwidths (for various read:write
ratios) when accessing the local and remote memory nodes from
all the sockets in a multi-socket system, as shown in Listing 4-7 for a
dual-socket system. The advanced usages include options to measure
specific configurations, such as cache latencies, loaded latency (to
produce charts similar to Figure 2-15), bandwidth matrices, and so
on. In order to precisely measure latency and bandwidth, the tool
requires access to the processor’s internal performance counters.
To gain access to these counters, the tool must be run with root
privileges. We achieved that via the sudo command.

Chapter 4 ■ addressing system BottleneCks

70

Listing 4-7. Example Output of Intel Memory Latency Checker for a
Dual-Processor Server

$ sudo ./mlc --latency_matrix

Intel(R) Memory Latency Checker - v2.1
Command line parameters: --latency_matrix

Using buffer size of 200.000MB
Measuring idle latencies (in ns)...
 Memory node
Socket 0 1
 0 69.7 123.7
 1 124.5 70.3

The results of the local and remote memory latencies allow
measuring the NUMA factor between the NUMA nodes in the
system; for our specific system, this yields a value around 1.77
between sockets 0 and 1 (calculated as the ratio between 123.7
and 69.7, taken from the output in Listing 4-7). This quantifies
the impact of the wrong memory pinning on the memory access
latency, which is specifically important for the OpenMP programs
that we will discuss in Chapter 6.

EXERCISE 4-2

run the stream benchmark and intel memory latency Checker on your system to
determine maximum achievable memory bandwidth and access latency. What share
of the peak memory throughout is achieved on the stream test? if your system has
nUma architecture, what nUma factor does it have?

Testing I/O Subsystem Performance
The input and output (I/O) subsystem deals with everything the computational node
has to send to or receive from other computational or storage nodes in the HPC cluster.
In many clusters, computational nodes use at least two interconnects: Gigabit Ethernet
for general TCP/IP traffic supporting management and monitoring services (for
instance, secure shell and Ganglia) and high-speed fabrics, such as InfiniBand, for
low-latency and high-bandwidth remote direct memory access (RDMA) traffic of the user
applications. Since an InfiniBand link is usually dedicated to the performance-critical
data transfers, such as Message Passing Interface (MPI) or access to the parallel file
systems, its performance is of main concern. (In Chapter 5 we will cover performance
benchmarks using Intel MPI library, and the special suite of tests to validate MPI functions
performance: Intel MPI Benchmarks (IMB).) For a basic platform I/O validation, and
specifically for understanding if the system delivers expected RDMA performance between
two nodes, there are a couple of simple tests available with any InfiniBand installation.

Chapter 4 ■ addressing system BottleneCks

71

For instance, the software stack coming along with the InfiniBand network drivers
usually contains a package called perftest with a set of low-level performance tests.
These tests allow for measuring bandwidth and latency for typical RDMA commands,
such as

The read and write operations between two nodes: •	 ib_read_bw,
ib_write_bw, ib_read_lat, ib_write_lat,

The send command and atomic transactions: •	 ib_send_bw, ib_
atomic_bw, ib_send_lat, ib_atomic_lat.

The tests require a server to be started on one of the nodes and the client on another.
Let’s take two nodes in our cluster (say, esg012 and esg013), and start a server on the
node named esg012 as follows:

[esg012]$ ib_read_lat -d mlx4_0

Here, the option -d will request a specific InfiniBand device to be used (alternatively,
the tool will select the first device found). The list of available RDMA devices can be
obtained using the ibv_devices command, and for our cluster this list looks like this:

$ ibv_devices
 device node GUID
 ------ ----------------
 scif0 001b68fffe3d7f7a
 mlx4_0 0002c903002f18b0

By providing the mlx4_0 argument in the command, we select that InfiniBand
adapter. The same has to be done on client node, esg013, where in addition the hostname
of the server should be given. The RDMA read latency test command executed on the
client node esg013 and its output are presented in Listing 4-8.

Listing 4-8. Example Output of the RDMA Read Latency Test (Cluster)

[esg013]$ ib_read_lat -d mlx4_0 esg012
--
 RDMA_Read Latency Test
 Dual-port : OFF Device : mlx4_0
 Number of qps : 1
 Connection type : RC
 TX depth : 1
 Mtu : 4096B
 Link type : IB
 Outstand reads : 16
 rdma_cm QPs : OFF
 Data ex. method : Ethernet
--

Chapter 4 ■ addressing system BottleneCks

72

 local address: LID 0x130 QPN 0x0733 PSN 0xe892fa OUT 0x10 RKey 0x3010939
VAddr 0x00000000f60000
 remote address: LID 0x179 QPN 0x06fe PSN 0x5afd2 OUT 0x10 RKey 0x010933
VAddr 0x000000015c8000
--
 #bytes #iterations t_min[usec] t_max[usec] t_typical[usec]
 2 1000 1.85 20.96 1.91
--

Here, the measured latency for the 2-bytes messages is equal to 1.91 microseconds.
Note that remote direct memory access to a different node takes approximately 15 times
longer than access to the memory of the remote socket, and it takes 27 times longer than
access to the local memory.

The bandwidth tests are run in a similar way. It may be interesting to see bandwidth
for different message sizes, which can be measured by adding the -a command
option. Listing 4-9 contains a typical output produced on a client compute nodes for a
unidirectional write bandwidth test to the server on the node esg012.

Listing 4-9. Output of the Unidirectional RDMA Read Bandwidth Test (Cluster)

[esg013]$ ib_read_bw -a -d mlx4_0 esg012

 RDMA_Read BW Test
 Dual-port : OFF Device : mlx4_0
 Number of qps : 1
 Connection type : RC
 TX depth : 128
 CQ Moderation : 100
 Mtu : 4096B
 Link type : IB
 Outstand reads : 16
 rdma_cm QPs : OFF
 Data ex. method : Ethernet
--
 local address: LID 0x130 QPN 0x0730 PSN 0x7540e6 OUT 0x10 RKey 0x18010939
VAddr 0x02b15b6bcf000
 remote address: LID 0x179 QPN 0x06fc PSN 0x56dc8e OUT 0x10 RKey 0xf0010932
VAddr 0x02b826895800

Chapter 4 ■ addressing system BottleneCks

73

--
 #bytes #iterations BW peak[MB/sec] BW average[MB/sec] MsgRate[Mpps]
 2 1000 8.11 7.82 4.098211
 4 1000 16.56 16.55 4.337238
 8 1000 33.12 33.07 4.334843
 16 1000 66.13 66.07 4.329837
 32 1000 132.47 132.43 4.339469
 64 1000 264.09 254.07 4.162761
 128 1000 517.41 509.61 4.174733
 256 1000 1059.77 1059.05 4.337851
 512 1000 2119.55 2116.35 4.334286
 1024 1000 4205.29 4203.23 4.304106
 2048 1000 5414.21 5410.27 2.770060
 4096 1000 4939.99 4939.20 1.264436
 8192 1000 5251.12 5250.99 0.672127
 16384 1000 5267.51 5267.00 0.337088
 32768 1000 5256.68 5256.65 0.168213
 65536 1000 5263.24 5262.24 0.084196
 131072 1000 5264.72 5262.55 0.042100
 262144 1000 5271.87 5271.63 0.021087
 524288 1000 5272.98 5270.55 0.010541
 1048576 1000 5274.57 5273.48 0.005273
 2097152 1000 5272.47 5271.77 0.002636
 4194304 1000 5271.72 5270.81 0.001318
 8388608 1000 5272.14 5270.38 0.000659
--

Using the default settings for the benchmark, we see that the maximum bandwidth
achieved on this test is equal to 5.4 GB/s, which represents approximately 80 percent
from the peak bandwidth of the InfiniBand link speed of around 6.8 GB/s.

EXERCISE 4-3

run the perftest benchmarks on your favorite system to determine the maximum
achievable interconnect bandwidth and the latency for rdma network traffic. What
share of the peak network speed is achieved on the bandwidth tests?

Characterizing Application System-Level Issues
System-level bottlenecks determine the performance of well-written and optimized
applications. Improving the system characteristics, then, that are in direct relation to the
application’s slowest path, such as increasing CPU frequency for a compute bound code,
will result in improved performance. But how does one find out what system feature is

Chapter 4 ■ addressing system BottleneCks

74

limiting the application performance? And what is the knowledge this investigation will
give us?

The second question is rather easy to answer: finding out that an application
is memory bandwidth or I/O bandwidth bound (that is, it spends most of the time
transferring data to and from memory or over interconnect) will lead to decisions on
how to improve performance. Taking into account Amdahl’s Law and the roofline model
discussed in Chapter 2, an understanding of the share of I/O or memory dependent
execution time may guide you to a quantitative assessment of potential improvements
and provide ideas for improving the algorithms.

Selecting Performance Characterization Tools
Historically, performance issues were qualified as system-level bottlenecks when a
specific device—for instance, a disk or a network card—took a significant amount of time
to process data requested by the application. When this happened, the system time (as
opposite to the user time) consumed by the application was rather high. Thus, it was
enough to look at the utilization and notice high system time, sometimes accompanied
by low overall processor utilization, to conclude that an application had a system-level
bottleneck. And this observation still holds: high system time reported by the standard
UNIX/Linux time command still means that the respective application has bottlenecks
at the system level. However, the opposite is not always true: an application may have no
visible system time reported but still be limited in performance by system characteristics.
To characterize system-level bottlenecks and identify what components of the system
limit application performance, then, some additional tools are needed besides the simple
observations done using the top or time commands.

Operating systems, such as Linux, have a rich set of tools developed to analyze
system behavior under stress. Most of them may be found useful for system-level
analysis and beyond. In general, the tools differ by how they gather information about
system behavior: software-based counters or special performance counters built into
the hardware. For example, in Linux, the perf utility embedded in the Linux kernel
has great support and monitoring capabilities based on the software counters from the
Linux kernel and the hardware counters in the processor. Many other monitoring tools
generally shipped with the operating system—for instance, vmstat, iostat, and top—rely
on the software counters from the operating system kernel.

Intel processors have many performance counters integrated in hardware that can
report resource utilization and occurrence of specific run-time events. Since modern
Intel processors for server applications contain integrated memory and I/O controllers,
measuring the memory subsystem and I/O bus utilization has become a lot easier.
However, the presence of counters themselves will not ensure the measurements are
done. Special tools are required to access these counters and present their values in a
meaningful way.

One of the easiest tools to use to characterize processor utilization is the Intel
Performance Counter Monitor (Intel PCM).10 In fact, today PCM is a “Swiss army knife”
for system-level performance analysis and for quantifying the utilization of various
system resources. In addition to the pcm command’s characterizing compute core
utilization, you will find tools for memory and PCI Express (PCIe) bus utilization, and
even a power analyzer. Most of the PCM tools provide both interactive, top-like output

Chapter 4 ■ addressing system BottleneCks

75

and output to the comma-separated list (CSV) files for subsequent analysis using Excel
or other tools. PCM is written in C++ and is also available as a library that can be used
to instrument third-party applications to generate a detailed summary that covers all
important parts of the application code. The use of the Open Source Initiative (OSI) BSD
license makes them usable even inside commercial closed-source products. The tool is
available on Linux, Microsoft Windows, FreeBSD, and Apple MacOS operating systems
running on Intel Xeon, Core, and Atom processors.

Let’s review a typical example of the I/O and memory utilization analysis done using
Intel PCM tools. After downloading the source code of the tool from the Intel’s website,
you need to unpack the archive using the unzip command and then compile it. A simple
make command will do all that is needed, based on the supplied Makefile, to produce
several PCM tools:

•	 pcm.x: A command line PCM utility for monitoring core
utilization, including counting the number of executed
instructions, cache misses, and core temperature and per-core
energy consumption.

•	 pcm-memory.x: A tool for reading memory throughout utilization.

•	 pcm-numa.x: A performance counter monitoring utility for NUMA,
providing results for remote and local memory accesses.

•	 pcm-pcie.x: A command-line utility for monitoring PCIe bus
utilization (for processors with an integrated PCIe I/O controller).

•	 pcm-power.x: A power-monitoring utility, reporting the power
drawn by the cores and the memory, frequency residencies and
transition statistics, and the number of cycles the processor was
throttled, as well as many other power-related events.

•	 pcm-tsx.x: A performance- monitoring utility for Intel
Transactional Synchronization Extensions, available in processors
with Haswell microarchitecture.

In addition to the command-line monitoring tools, you will find a utility to view and
change the values of the processor model specific registers (MSRs) called pcm-msr.x,
and the pcm-sensor.x to produce visual plots using the KSysGuard utility from KDE. All
PCM tools require direct access to the processor’s MSRs, and thus call for administrative
privileges; for that purpose, the PCM tools should be started using the sudo command.

Intel VTune Amplifier XE11 (we refer to it as “VTune” throughout this chapter)
provides access to the processor performance counters and has a rich user interface
for data visualization and analysis. We will talk more about VTune for multithreaded
application analysis in Chapter 6 and microarchitecture-level tuning in Chapter 7, but
it is also useful for some system-level bottleneck characterization that we outline in this
chapter. (In the following chapters of this book we will provide examples of how VTune
could help you to extract knowledge about your application behavior and to pinpoint
potential areas for performance improvement.)

Chapter 4 ■ addressing system BottleneCks

76

Monitoring the I/O Utilization
One of the major innovations in the Intel processor microarchitecture, codenamed
“Sandy Bridge,” was integration of the PCI Express (PCIe) bus into the CPU. Together with
the integrated PCIe logic on the processor die, respective performance counters were
made available in the same way as were the ones for the core and the memory controller
in previous generations of Intel microprocessors. Intel PCM added reading PCIe bus
utilization counters in a tool called pcm-pcie.x, which is available for Intel Sandy Bridge
and following microarchitectures. Since all the input/output devices are connected to the
PCIe bus, by reading the PCIe bus utilization you can now gauge specific I/O utilization
rates. These measurements may be complementary to the well-known ones in Linux
utilities like iostat or iotop, or other vendor-specific tools designed for the network and
storage controllers.

Let’s look at how a basic I/O characterization can be made using the IOR
benchmark.12 We chose this benchmark because it provides a simple and straightforward
way to test local and parallel file systems, accessing them via popular HPC interfaces
such as MPI I/O and HDF5,13 and via portable operating system interface (POSIX).14 After
downloading and unpacking the latest version, you may need to edit the file
src/C/Makefile.config to specify the Intel MPI wrapper for the C-compiler by setting
the variable CC.Linux to mpiicc. In the course of our demonstrations, we will use only
MPI I/O interface, so a command make mpiio should produce a binary named IOR in the
src/C folder. Then, you need to set up a sample test script with the contents shown in Listing 4-10:

Listing 4-10. Contents of the test_script File for the IOR Benchmark

IOR START
MPIIO shared file test
 reordertasksconstant=1 # defeat buffer cache for read after write by
reordering tasks
 fsync=1 # call fsync for POSIX I/O before close
 intraTestBarriers=1 # use barriers between open/read/write/close
 repetitions=2
 verbose=2
 keepFile=0
 segmentCount=10000
 blockSize=1000000

 fsync=0
 filePerProc=0
 api=MPIIO # Compare MPIIO to POSIX shared
 collective=1 # enables data shipping optimization
 testFile = IOR_MPIIO_Test # File name
 transferSize=100000 # I/O call size
 RUN
IOR STOP

Chapter 4 ■ addressing system BottleneCks

77

You should adjust the segmentCount parameter to ensure that the IOR benchmark
files are not cached in the memory. The value of the segmentCount should be chosen
so that the total amount of data written is greater than 1.5 times the available physical
memory in the compute clients involved in the test, so as to avoid OS caching effects. The
total size of the produced file, filesize, is given by the following formula:

filesize = segmentCount × blocksize × number of clients

Now you are ready to run the IOR benchmark. Let’s start it on workstation with two
local disks set up in a mirror. Launch the following command:

$ mpirun -np 24 ./IOR -f test_script

It will execute the IOR benchmark using 24 client processes with the input
configuration file called test_script. IOR will execute both read and write tests for each
run, doing two repetitions of each and calculating the maximum values. The bandwidth
numbers of interest are the results listed as the Max Write and Max Read measured in MB/s.

While the benchmark is running, let’s see a couple of tools to measure bandwidth
stress on the I/O subsystem that is being created by the IOR benchmark. A very rough
idea can be obtained by running the following command:

$ vmstat 1

It will print every second (or whatever interval you provide in the command line)
statistics, as shown in Listing 4-11.

Listing 4-11. Output of vmstat Utility for 3 Seconds

procs -----------memory------------ --swap-- ---io--- --system-- -----cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
12 4 4584 25969780 330260 94560032 0 0 0 88474 13029 3982 24 1 70 5 0
22 4 4584 24923576 330260 95468896 0 0 0 91750 12395 3892 22 1 70 7 0
8 4 4584 23479916 330264 96865168 0 0 0 91750 10919 3599 20 1 73 6 0

The most interesting columns are labeled bi (“bytes in,” or read from the I/O
devices) and bo (“bytes out,” or written to the I/O devices), showing I/O load in KiB
(that is, multiples of 1024 bytes). The above example shows that around 90 megabytes
were written in the last second. Another key system statistic is the number of interrupts
(labeled in) processed every second, which in this example is over 10,000, and that
accounts for the 6 percent wait time reported in the column wa.

Chapter 4 ■ addressing system BottleneCks

78

Note ■ For a successful system-level performance characterization, it is essential to
have an in-depth understanding of other capabilities of the vmstat and other standard tools
provided by the operating system. an introduction to all these tools goes beyond the scope
for this book; we strongly recommend you become familiar with the following standard
linux tools:

top - displays linux tasks

ps - produces snapshot of the current processes

iostat - shows CpU, disk i/o, and nFs statistics

vmstat - displays virtual memory usage

mpstat - reports processors related information

sysctl - configures linux kernel parameters at runtime

A very nice tool to capture I/O utilization statistics and see them per process in a
top-like output is the iotop.15 It has to be run as root as follows:

$ sudo iotop

The output of the iotop is presented in Figure 4-2. This output shows both the total
disk bandwidth (around 60 MB/s) and the sustained I/O bandwidth per application
process, such as 2.3 MB/s for the IOR instances.

Chapter 4 ■ addressing system BottleneCks

79

The IOR disk test takes almost an hour on our workstation and completes with the
performance summary showing an average sustained write and read bandwidth of
82.93 MiB/s and 60.76 MiB/s, respectively:

access bw(MiB/s) block(KiB) xfer(KiB) open(s) wr/rd(s) close(s) total(s) iter
------ --------- ---------- --------- -------- -------- -------- -------- ----
write 82.93 976.56 97.66 0.001178 2760.02 0.000192 2760.02 0
read 50.76 976.56 97.66 0.000257 4509 0.000111 4509 1

Let us now see a more complex example, when vmstat and other tools reading the
operating system state will not help. Specifically, when a parallel file system is connected
using a high-speed fabric such as InfiniBand, the file system also often provides its own
set of drivers and tools to manage the mount points. Such an example would be a high-
performance IBM General Parallel File System (GPFS).16 In our next example, we run the
same IOR benchmark and measure performance during its read test.

The parameter testFile in the test_script file is changed to a new location residing
in the GPFS storage. The vmstat command executed on one of the compute nodes

Figure 4-2. Output of the iotop utility obtained while running the IOR write performance test

Chapter 4 ■ addressing system BottleneCks

80

participating in the IOR test showed no I/O activity at all. However, the presence of large I/O
happening on the node is indicated by around 20,000 interrupts processed every second:

$ vmstat 1
procs ----------memory----------- --swap-- --io-- ---system-- ------cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
17 0 0 62642488 4692 118004 0 0 0 0 20701 73598 69 7 25 0 0
15 0 0 62642244 4692 118004 0 0 0 0 19221 66678 70 7 23 0 0
14 0 0 62642932 4692 118004 0 0 0 0 21165 77092 69 6 25 0 0

To quantify the rate of data transfer, better tools are needed. We know that on this
cluster, the compute nodes use the InfiniBand network to access the storage servers, and
that the InfiniBand adapter is connected to the Intel Xeon processor via the PCI Express
bus. By analyzing the amount of traffic going via the PCIe bus, we could estimate the
bandwidth achieved by each node. Using the pcm-pcie.x tool from the Intel PCM toolset
will help us quantify the I/O load on the client nodes. The tool uses performance counters
to report the number of cache lines read and written by the I/O controller integrated into
the processors. So, to see the PCIe bus load, execute the following command:

$ sudo ./pcm-pcie.x -B 1

In this command, the option -B instructs the tool not only to report the number of
written cache lines but also to estimate the bandwidth, while the number provided as the
command-line option indicates the required refresh interval. The tool produced output
every second, as shown in Figure 4-3:

Figure 4-3. Output of the pcm-pcie.x tool

In Figure 4-3, we clearly see the estimated read bandwidth of 820 MB/s, via over
12 million of 64 byte cache-line transfers done every second through the integrated I/O
controller of one of the sockets (specifically, the processor socket 0). This observation
gives us a clear indication of the system I/O utilization by the IOR benchmark. Previously
we had found that the InfiniBand network can transfer data at rates exceeding 5.4 GB/s,
so the IOR benchmark consumes approximately 15 percent of the available bandwidth;
the bottleneck in this particular case is not in the network but, rather, likely in the storage
servers or the disk shelves. As another observation, the bandwidth to read data from a
shared parallel file system is over 16 times higher than for a standard SATA spinning disk.

Chapter 4 ■ addressing system BottleneCks

81

EXERCISE 4-4

Characterize your favorite application to measure the consumed i/o bandwidth using
the different tools described above. how much bandwidth is used from the peak
throughput? note: you may need to additionally consult the datasheets for your local
disks if the local file i/o is used.

Analyzing Memory Bandwidth
The memory traffic intensity can be observed using the pcm-memory.x tool from the
Intel Performance Counter toolset. As an example, let’s look at how to monitor the
STREAM benchmark. STREAM is a small kernel benchmark that is good for reference, as
it prints its own performance, so the monitoring tool can be calibrated this way. Launch
STREAM benchmark as we described in the earlier section “Testing Memory Subsystem
Performance” and in a separate terminal window start the pcm-memory.x using the
following command:

$ sudo ./pcm-memory.x

The output produced with the default refresh of 1 second is shown in Listing 4-12.
The tool measures memory bandwidth observed for every channel (four, in case of Intel
Xeon E5-2600 series), reporting separately throughput for reads from the memory and
writes to the memory. We see that each memory channel is utilized to approximately
11 GB/s and that the total memory utilization is around 87832.62 MB/s, which is close
to the benchmark’s own report of around 86,000 MB/s (as presented in Listing 4-3). The
PCM tool tends to report values slightly higher than the application’s own measurement
because the PCM measures all memory traffic, not only that specific to the application or
specific to the arrays being monitored inside the benchmark.

Chapter 4 ■ addressing system BottleneCks

82

Listing 4-12. Output of PCM Memory Monitoring Tool while Characterizing the STREAM
Benchmark

---------------------------------------||---------------------------------------
-- Socket 0 --||-- Socket 1 --
---------------------------------------||---------------------------------------
---------------------------------------||---------------------------------------
---------------------------------------||---------------------------------------
-- Memory Performance Monitoring --||-- Memory Performance Monitoring --
---------------------------------------||---------------------------------------
-- Mem Ch 0: Reads (MB/s): 6847.91 --||-- Mem Ch 0: Reads (MB/s): 6829.25 --
-- Writes(MB/s): 4137.15 --||-- Writes(MB/s): 4133.35 --
-- Mem Ch 1: Reads (MB/s): 6855.36 --||-- Mem Ch 1: Reads (MB/s): 6834.53 --
-- Writes(MB/s): 4136.61 --||-- Writes(MB/s): 4128.56 --
-- Mem Ch 4: Reads (MB/s): 6847.00 --||-- Mem Ch 4: Reads (MB/s): 6828.56 --
-- Writes(MB/s): 4138.83 --||-- Writes(MB/s): 4134.27 --
-- Mem Ch 5: Reads (MB/s): 6864.27 --||-- Mem Ch 5: Reads (MB/s): 6844.44 --
-- Writes(MB/s): 4139.95 --||-- Writes(MB/s): 4132.56 --
-- NODE0 Mem Read (MB/s): 27414.54 --||-- NODE1 Mem Read (MB/s): 27336.79 --
-- NODE0 Mem Write (MB/s): 16552.54 --||-- NODE1 Mem Write (MB/s): 16528.75 --
-- NODE0 P. Write (T/s): 49936444 --||-- NODE1 P. Write (T/s): 49307477 --
-- NODE0 Memory (MB/s): 43967.07 --||-- NODE1 Memory (MB/s): 43865.54 --
---------------------------------------||---------------------------------------
-- System Read Throughput(MB/s): 54751.32 --
-- System Write Throughput(MB/s): 33081.29 --
-- System Memory Throughput(MB/s): 87832.62 --
---------------------------------------||---------------------------------------

Another way to observe sustained memory utilization is to use Intel VTune Amplifier
XE. VTune provides a graphical interface and, among many other things, reports memory
bandwidth utilization of the application. Let’s consider a quick example of the memory
bandwidth analysis using the graphical interface of VTune.

First, in a terminal window under the X-window system, source the environment
settings for Bash compatible shells as:

$ source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh

and for C-shell variants as:

$ source /opt/intel/vtune_amplifier_xe/amplxe-vars.csh

These scripts will update all the necessary environment variables. For convenience,
you can change your working directory to the folder where the STREAM benchmark
is located. Now, start the VTune graphical user interface (GUI) using the amplxe-gui
command, create a project, and specify the path to the STREAM benchmark script that
was presented earlier. Go to the New Analysis, select Bandwidth analysis, and click the
Start button. VTune will start the benchmark and will wait until the application finishes.
You can always press the Stop button to interrupt the benchmark and proceed to analysis;
VTune will terminate the application then. After VTune finishes parsing the performance

Chapter 4 ■ addressing system BottleneCks

83

profile, you will be able to find the consumed bandwidth timeline per processor package
in the Bottom-up tab, as shown in Figure 4-4.

Figure 4-4. Memory bandwidth analysis for the STREAM benchmark with Intel VTune
Amplifier XE 2015

The values of the sustained memory bandwidth observed in VTune are similar to
those presented by PCM: around 44 GB/s for each processor socket, where approximately
30 GB/s are taken by the memory read traffic. The graphical representation of the
timeline in VTune provides additional information, such as a clearly defined memory
allocation phase, followed by 10 iterations of four benchmark kernels (called COPY,
SCALE, ADD, and TRIAD), and finally the verification stage. The visual representation
of the memory bandwidth over time helps you to see immediately what part of the
application is memory bandwidth bound.

Of course, VTune provides a great set of additional features beyond counting certain
event occurrences, such as finding that the average number of the processor clocks per
instruction (CPI) for the STREAM is over 9.5. Based on the statistical event sampling,
VTune allows you to drill down to the specific parts of your code and correlate the
performance of many simultaneously collected events with the time taken by the specific
code path.

In the following chapters you will find many more examples of using VTune to
analyze applications performance, with a detailed introduction to VTune in Chapter 6.

Chapter 4 ■ addressing system BottleneCks

84

EXERCISE 4-5

analyze the memory bandwidth consumption of your favorite program using the
different tools described above. how much bandwidth is used from the peak
throughput? What part of the application consumes over 80 percent of the peak
memory bandwidth available in your specific system, found as the result of doing
exercise 4-2?

Summary
In this chapter we have looked at the main types of bottlenecks and have classified
potential issues at the system level that are related to environment conditions or
the configuration of the system operations. Prior to fine-tuning any application
performance, you want the system to achieve a known good condition and deliver
expected performance on basic kernel benchmarks. These microkernels should cover at
least computational performance, memory bandwidth and latency, as well as external
interconnect bandwidth and latency. Good candidates for such tests are:

DGEMM, with the •	 nodeperf program coming with Intel Math
Kernel Library, to test computational performance.

STREAM benchmark to measure memory bandwidth, and Intel •	
Memory Latency Checker to assess memory latency.

For RDMA-capable high-performance interconnects such as •	
InfiniBand, the perftest to find maximum achievable bandwidth
and minimum latency.

The application performance dependency on the system-level characteristics can
be understood by monitoring the resource utilization using tools that rely on the software
performance counters (top, vmstat, iostat) and the utilities that collect data from the
built-in hardware performance counters (Intel VTune, Intel PCM, perf).

Chapter 4 ■ addressing system BottleneCks

85

References
1. “MCElog project,” http://freecode.com/projects/mcelog.

2. Intel Open Source Technology Center, “PowerTOP Home,” http://01.org/powertop.

3. Intel Corporation, “Intelligent Platform Management Interface,” http://www.intel.com/
content/www/us/en/servers/ipmi/ipmi-home.html.

4. “lm_sensors - Linux hardware monitoring,” http://lm-sensors.org.

5. “Ganglia Monitoring System,” http://ganglia.sourceforge.net.

6. “The Industry Standard In IT Infrastructure Monitoring,” http://www.nagios.org.

7. John D. McCalpin, “Memory Bandwidth and Machine Balance in Current High
Performance Computers”, IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, p. 19-25, December 1995.

8. “Orders of Magnitude (data),” http://en.wikipedia.org/wiki/Orders_of_
magnitude_(data).

9. Intel Corporation, “Intel Memory Latency Checker,” https://software.intel.com/
en-us/articles/intelr-memory-latency-checker.

10. Intel Corporation, “Intel Performance Counter Monitor: A better way to measure
CPU utilization,” https://software.intel.com/en-us/articles/intel-
performance-counter-monitor-a-better-way-to-measure-cpu-utilization.

11. Intel Corporation, “Intel VTune Amplifier XE,” https://software.intel.com/en-us/
intel-vtune-amplifier-xe.

12. “IOR HPC benchmark,” http://sourceforge.net/projects/ior-sio/.

13. HDF Group, “HDF5 Home Page,” http://www.hdfgroup.org/HDF5/.

14. “POSIX,” http://en.wikipedia.org/wiki/POSIX.

15. G. Chazarain, “Iotop,” http://guichaz.free.fr/iotop/.

16. IBM, “IBM Platform Computing Elastic Storage,” www-03.ibm.com/systems/
platformcomputing/products/gpfs/.

http://freecode.com/projects/mcelog
http://01.org/powertop
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://lm-sensors.org/
http://ganglia.sourceforge.net/
http://www.nagios.org/
http://en.wikipedia.org/wiki/Orders_of_magnitude_(data
http://en.wikipedia.org/wiki/Orders_of_magnitude_(data
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://sourceforge.net/projects/ior-sio/
http://www.hdfgroup.org/HDF5/
http://en.wikipedia.org/wiki/POSIX
http://guichaz.free.fr/iotop/
https://www-03.ibm.com/systems/platformcomputing/products/gpfs/
https://www-03.ibm.com/systems/platformcomputing/products/gpfs/

87

Chapter 5

Addressing Application
Bottlenecks: Distributed
Memory

The first application optimization level accessible to the ever-busy performance analyst
is the distributed memory one, normally expressed in terms of the Message Passing
Interface (MPI).1 By its very nature, the distributed memory paradigm is concerned
with communication. Some people consider all communication as overhead—that
is, something intrinsically harmful that needs to be eliminated. We tend to call it
“investment.” Indeed, by moving data around in the right manner, you hope to get more
computational power in return. The main point, then, is to optimize this investment so
that your returns are maximized.

The time spent on the problem analysis and solution is an integral part of the
overall investment. Hence, it is important to detect quickly what direction may be
successful and what is going to be a waste of time, and to focus on the most promising
leads. Following this pragmatic approach, in this chapter we will show how to detect
and exploit optimization opportunities in the realm of communication patterns. Further
chapters will step deeper into the increasingly local optimization levels. “And where
are the algorithms?” you may ask. Well, we will deal with them as we go along, because
algorithms will cross our path at every possible level. If you have ever tried to optimize
bubble sort and then compared the result with the quick sort, you will easily appreciate
the importance of algorithmic optimization.

Algorithm for Optimizing MPI Performance
Here is the algorithm we will use to optimize MPI performance, inspired in part by the
work done by our friends and colleagues:2

1. Comprehend the underlying MPI performance.

2. Do an initial performance investigation of the application.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

88

3. If the initial investigation indicates that performance may
be improved, do an in-depth MPI analysis and optimization
using the closed-loop approach, as follows:

a. Get an overview of the application scalability and
performance.

b. If a load imbalance exceeds the cost of communication,
address the load imbalance first or else perform MPI
optimization.

c. Repeat while performance improves and you still have
time left.

4. Proceed to the node-level MPI optimization.

Let’s go through these steps in detail.

Comprehending the Underlying MPI Performance
About the only sure way to grasp what is happening with application performance is to
do benchmarking. Occasionally, you can deduce a performance estimate by plugging
numbers into an analytical model that links, say, the estimated execution time to certain
factors like the number of processes and their layout. However, this is more often the
exception than the rule.

Recalling Some Benchmarking Basics
The first rule in benchmarking is to have a clean system setup. You have learned how to
achieve that in Chapter 4. It may not always be possible to get to the ideal, no-interference
situation, especially if you are doing your measurements on a system that is being utilized
by many users at the same time, as they normally are. In this case, you will have to do
several runs per parameter combination, possibly at different times of the day and week,
and then apply statistical methods—or at least common sense—to estimate how reliable
your data is.

To estimate the system variability, as well as to learn more about the underlying
MPI performance, you may want to run Intel MPI Benchmarks (IMB).3 Once started on
a number of processes, this handy MPI benchmark will output timings, bandwidths,
and other relevant information for several popular point-to-point and collective
exchange patterns. You can also use any other benchmark you trust, but for now we will
concentrate on the IMB, which was developed with the specific goal of representing
typical application-level MPI use cases.

Gauging Default Intranode Communication Performance
Let us look first into the intranode communication—that is, data transfers done within
one node. It is fairly easy to get started on IMB. The binary executable file IMB-MPI1
is provided as part of the Intel MPI library distribution. Having set up the Intel MPI

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

89

environment as described in Chapter 4, you can run this MPI program now in the way
you probably know better than we do. On a typical system with the Intel MPI library
installed, this would look as follows:

$ mpirun -np 2 ./IMB-MPI1 PingPong

By default, the Intel MPI library will try to select the fastest possible communication
path for any particular runtime configuration. Here, the most likely candidate is
the shared memory channel. On our workstation, this leads to the output (skipping
unessential parts) shown in Listing 5-1:

Listing 5-1. Example IMB-MPI1 Output (Workstation, Intranode)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 1.16 0.00
 1 1000 0.78 1.22
 2 1000 0.75 2.53
 4 1000 0.78 4.89
 8 1000 0.78 9.77
 16 1000 0.78 19.55
 32 1000 0.88 34.50
 64 1000 0.89 68.65
 128 1000 0.99 123.30
 256 1000 1.04 234.54
 512 1000 1.16 420.02
 1024 1000 1.38 706.15
 2048 1000 1.63 1199.68
 4096 1000 2.48 1574.10
 8192 1000 3.74 2090.00
 16384 1000 7.05 2214.91
 32768 1000 12.95 2412.56
 65536 640 14.93 4184.94
 131072 320 25.40 4921.88
 262144 160 44.55 5611.30
 524288 80 91.16 5485.08
 1048576 40 208.15 4804.20
 2097152 20 444.45 4499.96
 4194304 10 916.46 4364.63

The PingPong test is an elementary point-to-point exchange pattern, in which one
MPI process sends a message to another and expects a matching response in return. Half
of the turnaround time measured is dubbed “latency” in this case, and the message size
divided by latency is called “bandwidth.” These two numbers constitute the two most
important characteristics of a message-passing communication path for a particular

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

90

message size. If you want to reduce this to just two numbers for the whole message
range, take the zero-byte message latency and the peak bandwidth at whatever message
size it is achieved. Note, however, that IMB performance may differ from what you see in
a real application.

From the output shown here we can deduce that zero-byte message latency is
equal to 1.16 microseconds, while the maximum bandwidth of 5.6 GB/s is achieved
on messages of 256 KiB. This is what the shared memory communication channel,
possibly with some extra help from the networking card and other MPI implementor
tricks, is capable of achieving in the default Intel MPI configuration. Note that the
default intranode MPI latency in particular is 7 to 20 times the memory access latency,
depending on the exact communication path taken (compare Listing 5-4). This is the
price you pay for the MPI flexibility, and this is why people call all communication
“overhead.” This overhead is what may make threading a viable option in some cases.

Note ■ the intel Mpi library is tuned by default for better bandwidth rather than for
lower latency, so that the latency can easily be improved by playing a bit with the process
pinning. We will look into this in due time.

The general picture of the bandwidth values (the last column in Listing 5-1) is almost
normal: they start small, grow to the L2 cache peak, and then go down stepwise, basically
reaching the main memory bandwidth on very long messages (most likely, well beyond
the 4 MiB cutoff selected by default).

However, looking a little closer at the latency numbers (third column), we notice
an interesting anomaly: zero-byte latency is substantially larger than that for 1-byte
messages. Something is fishy here. After a couple of extra runs we can be sure of this
(anomalous values are highlighted in italic; see Table 5-1):

Table 5-1. Small Message Latency Anomaly (Microseconds, Workstation)

#bytes Run 1 Run 2 Run 3 Min

0 1.16 1.31 1.28 1.16

1 0.78 1.03 1.27 0.78

2 0.75 0.77 1.04 0.75

4 0.78 0.79 0.71 0.71

This may be a measurement artifact, but it may as well be something worth keeping
in mind if your application is strongly latency bound. Note that doing at least three runs is
a good idea, even though your Statistics 101 course told you that this is not enough to get
anywhere close to certainty. Practically speaking, if you indeed have to deal with outliers,
you will be extremely unlucky to get two or all three of them in a row. And if just one
outlier is there, you will easily detect its presence and eliminate it by comparison to other
two results. If you still feel unsafe after this rather unscientific passage, do the necessary
calculations and increase the number of trials accordingly.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

91

Let us try to eliminate the artifact as a factor by increasing tenfold the number of
iterations done per message size from its default value of 1000:

$ mpirun -np 2 ./IMB-MPI1 -iter 10000 PingPong

The option -iter 10000 requests 10,000 iterations to be done for each message size.
This is what we get this time (again, skipping unessential output); see Listing 5-2.

Listing 5-2. Modified IMB-MPI1 Output (Workstation, Intranode, with 10,000 Iterations)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 10000 0.97 0.00
 1 10000 0.80 1.20
 2 10000 0.80 2.39
 4 10000 0.78 4.87
 8 10000 0.79 9.69
 16 10000 0.79 19.33
 32 10000 0.93 32.99
 64 10000 0.95 64.06
 128 10000 1.06 115.61
 256 10000 1.05 232.74
 512 10000 1.19 412.04
 1024 10000 1.40 697.15
 2048 10000 1.55 1261.09
 4096 10000 1.98 1967.93
 8192 5120 3.21 2437.08
 16384 2560 6.27 2493.14
 32768 1280 11.38 2747.05
 65536 640 13.35 4680.56
 131072 320 24.89 5021.92
 262144 160 44.77 5584.68
 524288 80 91.44 5467.92
 1048576 40 208.23 4802.48
 2097152 20 445.75 4486.85
 4194304 10 917.90 4357.78

From this, it does look like we get a measurement artifact at the lower message sizes,
just because the machine is lightning fast. We can increase the iteration count even more
and check that out.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

92

EXERCISE 5-1

Verify the existence of the iMB short message anomaly on your favorite platform. if it
is observable, file an issue report via intel premier support.4

As before, the peak intranode bandwidth of 5.6 GiB/s at 256 KiB is confirmed, and we
can deduce that the intranode bandwidth stabilizes at about 4.4 GB/s for large messages.
These are quite reasonable numbers, and now we can proceed to investigate other
aspects of the baseline MPI performance.

Before we do this, just to be sure, we will do two extra runs (oh, how important it is to
be diligent during benchmarking!) and drive the new data into a new table (anomalous
values are highlighted in italic again); see Table 5-2:

Table 5-2. Small Message Latency Anomaly Almost Disappears (Microseconds,
Workstation, with 10,000 Iterations)

#bytes Run 1 Run 2 Run 3 Min

0 0.90 0.86 0.85 0.85

1 0.69 0.72 0.72 0.69

2 0.70 0.71 0.73 0.70

4 0.70 0.71 0.72 0.70

Alternatively, if the observed anomaly can be attributed to the warm-up effects
(say, connection establishment on the fly, buffer allocation, and so on), running
another benchmark before the PingPong in the same invocation may eliminate this. The
command would look as follows:

$ mpirun -np 2 ./IMB-MPI1 -iter 10000 PingPing PingPong

Listing 5-3 shows the effect we see on our workstation:

Listing 5-3. Modified IMB-MPI1 Output: PingPong after PingPing (Workstation,
Intranode, with 10,000 Iterations)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 10000 0.56 0.00
 1 10000 0.56 1.69
 2 10000 0.57 3.37
 4 10000 0.57 6.73

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

93

 8 10000 0.58 13.27
 16 10000 0.58 26.49
 32 10000 0.69 44.49
 64 10000 0.69 88.48
 128 10000 0.78 155.68
 256 10000 0.81 300.65
 512 10000 0.93 527.47
 1024 10000 1.13 861.66
 2048 10000 1.50 1305.38
 4096 10000 2.14 1824.66
 8192 5120 3.73 2094.46
 16384 2560 6.48 2412.18
 32768 1280 11.83 2642.52
 65536 640 11.72 5334.40
 131072 320 22.33 5598.75
 262144 160 39.44 6338.08
 524288 80 76.32 6551.55
 1048576 40 183.25 5456.98
 2097152 20 402.50 4968.89
 4194304 10 783.05 5108.23
 8388608 5 1588.30 5036.84
 16777216 2 3417.25 4682.12

You can see not only that now the anomaly is gone but also that the numbers have
changed quite substantially. This is in part why an application may behave differently
from the most carefully designed benchmark. It is arguable whether doing special
preconditioning of the benchmark like the one described earlier is valid all the time,
so we will refrain from this approach further on.

Of course, we will keep all the log files, clearly named, safe and sound for future
reference. The names like IMB-MPI1-n1p2-PingPong.logN, where N stands for the run
number, will do just fine in this case. The notation n1p2 tells us that the results have been
obtained on one node using two MPI processes.

Gauging Default Internode Communication Performance
If you are addressing a cluster rather than a single node or a workstation, you will want
to perform a comparable investigation of the internode performance. The principle is
similar to the one explained in the previous section. Let’s start again with the two-process
IMB PingPong benchmark.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

94

Since in this case we are going to use more than one node, MPI startup will of
necessity be a bit more complicated, because the MPI library should be made aware of
the identity of the nodes we intend to run on. By far the easiest way that also leaves a
clear log trace of what exactly was done is to specify those nodes explicitly in the IMB
invocation command. For instance, on our example system:

$ mpirun -host esg054 -np 1 ./IMB-MPI1 PingPong : -host esg055 -np
1 ./IMB-MPI1 PingPong

Here, esg054 and esg055 stand for the respective node hostnames. They are very
likely to be rather different in your installation. If you’re in doubt, ask your friendly
systems administrator.

Note ■ there are certainly more elegant and powerful ways of selecting the target nodes
for an intel Mpi run. do not worry; we will learn them one by one in due time. this precise
inline method is just what we need right now.

Of course, your cluster may be controlled by a job-management system like PBS Pro,
LSF, Torque, or one of half a dozen other alternative products. The chances are that
mpirun will recognize any of them and allow a job to be started anyway, but this is a topic
we would need to devote a whole chapter to. Just ask one of the local experts you know,
and he or she will tell you what is needed to submit multiple node jobs.

Another conceptual complication that we will deal with is the way in which both
nodes will communicate with each other. Normally, as in the intranode case, Intel MPI
library will automatically try to select the fastest available communication path. Most
likely, this will be InfiniBand on a dedicated HPC cluster and some Gigabit Ethernet on a
general purpose cluster. In the case of InfiniBand, we get the following output on our test
cluster introduced in Chapter 4; see Listings 5-4 and 5-5:

Listing 5-4. IMB-MPI1 Output (Cluster, Intranode)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 0.67 0.00
 1 1000 0.67 1.42
 2 1000 0.68 2.82
 4 1000 0.68 5.62
 8 1000 0.70 10.85
 16 1000 0.71 21.54
 32 1000 0.86 35.63
 64 1000 0.88 69.40
 128 1000 0.98 124.95

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

95

 256 1000 0.99 246.72
 512 1000 1.15 426.27
 1024 1000 1.42 685.35
 2048 1000 1.78 1095.41
 4096 1000 2.79 1400.88
 8192 1000 4.64 1685.16
 16384 1000 8.20 1904.89
 32768 1000 15.10 2069.54
 65536 640 16.79 3721.45
 131072 320 31.61 3954.93
 262144 160 57.92 4316.18
 524288 80 107.18 4665.26
 1048576 40 238.57 4191.58
 2097152 20 503.15 3974.94
 4194304 10 1036.91 3857.63

Listing 5-5. IMB-MPI1 Output (Cluster, Internode)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 1.09 0.00
 1 1000 1.09 0.88
 2 1000 1.09 1.75
 4 1000 1.10 3.47
 8 1000 1.10 6.91
 16 1000 1.11 13.74
 32 1000 1.15 26.44
 64 1000 1.16 52.71
 128 1000 1.23 98.97
 256 1000 1.87 130.55
 512 1000 1.98 246.30
 1024 1000 2.30 425.25
 2048 1000 2.85 685.90
 4096 1000 3.42 1140.67
 8192 1000 4.77 1639.06
 16384 1000 7.28 2145.56
 32768 1000 10.34 3021.38
 65536 1000 16.76 3728.35
 131072 1000 28.36 4407.30
 262144 800 45.51 5493.00
 524288 400 89.05 5614.98
 1048576 200 171.75 5822.49
 2097152 100 338.53 5907.97
 4194304 50 671.06 5960.72

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

96

Several interesting differences between the shared memory and the InfiniBand paths
are worth contemplating. Let’s compare these results graphically; see Figures 5-1 and 5-2.

Figure 5-2. IMB-MPI1 PingPong bandwidth comparison: cluster, intranode vs internode
(higher is better)

Figure 5-1. IMB-MPI1 PingPong latency comparison: cluster, intranode vs internode
(lower is better)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

97

Now, let’s enumerate the differences that may be important when we later start
optimizing our application on the target cluster:

1. Intranode latency is substantially better than internode
latency on smaller message sizes, with the crossover occurring
at around 8 KiB. Hence, we should try to put onto the same
node as many processes that send smaller messages to each
other as possible.

2. Internode bandwidth is considerably higher than intranode
bandwidth on larger messages above 8 KiB, with the
exception of roughly 64 KiB, where the curves touch again.
Hence, we may want to put onto different nodes those MPI
ranks that send messages larger than 8 KiB, and surely larger
than 64 KiB, to each other.

3. It is just possible that InfiniBand might be beating the shared
memory path on the intranode bandwidth, as well. Since Intel
MPI is capable of exploiting this after a minor adjustment,
another small investigation is warranted to ascertain whether
there is any potential for performance improvement in using
InfiniBand for larger message intranode transfers.

Discovering Default Process Layout and Pinning Details
Is there an opportunity to further improve the underlying MPI performance? Certainly
there are quite a few, starting with improving process pinning. Let’s look at the output of
the cpuinfo utility that is provided with the Intel MPI library; see Listing 5-6:

Listing 5-6. Cpuinfo Utility Output (Workstation)

Intel(R) processor family information utility, Version 5.0 Update 1 Build
20140709
Copyright (C) 2005-2014 Intel Corporation. All rights reserved.

===== Processor composition =====
Processor name : Genuine Intel(R) E2697V
Packages(sockets) : 2
Cores : 24
Processors(CPUs) : 48
Cores per package : 12
Threads per core : 2

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

98

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 0 5 0
6 0 8 0
7 0 9 0
8 0 10 0
9 0 11 0
10 0 12 0
11 0 13 0
12 0 0 1
13 0 1 1
14 0 2 1
15 0 3 1
16 0 4 1
17 0 5 1
18 0 8 1
19 0 9 1
20 0 10 1
21 0 11 1
22 0 12 1
23 0 13 1
24 1 0 0
25 1 1 0
26 1 2 0
27 1 3 0
28 1 4 0
29 1 5 0
30 1 8 0
31 1 9 0
32 1 10 0
33 1 11 0
34 1 12 0
35 1 13 0
36 1 0 1
37 1 1 1
38 1 2 1
39 1 3 1
40 1 4 1
41 1 5 1
42 1 8 1
43 1 9 1
44 1 10 1

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

99

45 1 11 1
46 1 12 1
47 1 13 1
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3,4,5,8,9,10,11,12,13
 (0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)

(7,31)(8,32)(9,33)(10,34)(11,35)
1 0,1,2,3,4,5,8,9,10,11,12,13
 (12,36)(13,37)(14,38)(15,39)(16,40)(17,41)

(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)

===== Cache sharing =====
Cache Size Processors
L1 32 KB (0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)

(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)
(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)
(22,46)(23,47)

L2 256 KB (0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)
(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)
(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)
(22,46)(23,47)

L3 30 MB (0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,
32,33,34,35)(12,13,14,15,16,17,18,19,20,21,22,23,
36,37,38,39,40,41,42,43,44,45,46,47)

This utility outputs detailed information about the Intel processors involved. On

our example workstation we have two processor packages (sockets) of 12 physical cores
apiece, each of them in turn running two hardware threads, for the total of 48 hardware
threads for the whole machine. Disregarding gaps in the core numbering, they look well
organized. It is important to notice that both sockets share the 30 MB L3 cache, while
the much smaller L1 and L2 caches are shared only by the virtual cores (OS processors)
that are closest to each other in the processor hierarchy. This may have interesting
performance implications.

Now, let’s see how Intel MPI puts processes onto the cores by default. Recalling
Chapter 1, for this we can use any MPI program, setting the environment variable
I_MPI_DEBUG to 4 in order to get the process mapping output. If you use a simple
start/stop program containing only calls to the MPI_Init and MPI_Finalize, you will get
output comparable to Listing 5-7, once unnecessary data is culled from it:

Listing 5-7. Default Process Pinning (Workstation, 16 MPI Processes)

[0] MPI startup(): Rank Pid Node name Pin cpu
[0] MPI startup(): 0 210515 book {0,1,24}
[0] MPI startup(): 1 210516 book {2,25,26}
[0] MPI startup(): 2 210517 book {3,4,27}
[0] MPI startup(): 3 210518 book {5,28,29}
[0] MPI startup(): 4 210519 book {6,7,30}

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

100

[0] MPI startup(): 5 210520 book {8,31,32}
[0] MPI startup(): 6 210521 book {9,10,33}
[0] MPI startup(): 7 210522 book {11,34,35}
[0] MPI startup(): 8 210523 book {12,13,36}
[0] MPI startup(): 9 210524 book {14,37,38}
[0] MPI startup(): 10 210525 book {15,16,39}
[0] MPI startup(): 11 210526 book {17,40,41}
[0] MPI startup(): 12 210527 book {18,19,42}
[0] MPI startup(): 13 210528 book {20,43,44}
[0] MPI startup(): 14 210529 book {21,22,45}
[0] MPI startup(): 15 210530 book {23,46,47}

Comparing Listings 5-6 and 5-7, we can see that the first eight MPI processes
occupy the first processor package, while the remaining eight MPI processes occupy
the other package. This is good if we require as much bandwidth as we can get, for
two parts of the job will be using separate memory paths. This may be bad, however,
if the relatively slower intersocket link is crossed by very short messages that clamor
for the lowest possibly latency. That situation would normally favor co-location of the
intensively interacting processes on the cores that share the highest possible cache level,
up to and including L1.

Gauging Physical Core Performance
What remains to be investigated is how much the virtual cores we have been using so far
influence pure MPI performance. To look into this, we have to make Intel MPI use only
the physical cores. The easiest way to do this is as follows:

$ export I_MPI_PIN_PROCESSOR_LIST=allcores

If you wonder what effect this will have upon performance, compare Listing 5-1 with
Listing 5-8:

Listing 5-8. Example IMB-MPI1 Output (Workstation, Intranode, Physical Cores Only)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 0.58 0.00
 1 1000 0.61 1.56
 2 1000 0.62 3.08
 4 1000 0.27 14.21
 8 1000 0.28 27.65
 16 1000 0.32 48.05
 32 1000 0.37 81.48
 64 1000 0.38 161.67

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

101

 128 1000 0.42 293.83
 256 1000 0.44 556.07
 512 1000 0.50 975.70
 1024 1000 0.59 1659.31
 2048 1000 0.79 2470.82
 4096 1000 1.21 3229.65
 8192 1000 2.06 3799.85
 16384 1000 3.77 4145.09
 32768 1000 6.79 4605.72
 65536 640 10.30 6066.17
 131072 320 18.66 6699.50
 262144 160 35.94 6956.02
 524288 80 65.84 7593.73
 1048576 40 125.46 7970.55
 2097152 20 245.08 8160.72
 4194304 10 482.80 8285.04

Note that we can still observe the small message latency anomaly in some form.
This becomes outright intriguing. For the rest of it, latency is down by up to three times
and bandwidth is up by 40 to 50 percent, with bandwidth in particular still going up,
whereas it would sharply drop in prior tests. This is natural: in the absence of necessity
to share both the core internals and the off-core resources typical of the virtual cores,
MPI performance will normally go up. This is why pure MPI programs may experience a
substantial performance hike when run on the physical cores.

Note also that the performance hike observed here has to do as well with the
change in the process layout with respect to the processor sockets. If you investigate the
process layout and pinning in both cases (not shown), you will see that in the default
configuration, MPI ranks 0 and 1 occupy different processor sockets, while in the
configuration illustrated by Listing 5-8, these ranks sit on adjacent physical cores of the
same processor socket. That is, the observed difference is also the difference between the
intersocket and intrasocket performance, respectively.

At this point we have discovered about 90 percent of what needs to be known about
the underlying MPI performance. You might want to run more complicated IMB sessions
and see how particular collective operations behave on more than two processes and
so on. Resist this temptation. Before we go there, we need to learn a bit more about the
target application.

EXERCISE 5-2

Compare the virtual and physical core performance of your favorite platform using
the procedure described here. try the -cache_off option of the iMB to assess the
influence of the cache vs. memory performance at the Mpi level. Consider how
relevant these results may be to your favorite application.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

102

Doing Initial Performance Analysis
Let us proceed to the next step of the performance investigation algorithm. When you
optimize an application at the MPI level, it is not so interesting at first what is happening
inside any particular process. What is more pertinent is how these processes interact,
how much time is spent doing this, and whether this interaction can be improved to a
noticeable degree. Thus, performance investigation of an MPI application starts with the
initial benchmarking and a couple of estimates.

Is It Worth the Trouble?
This is the first question to answer, and this is not a trivial matter. One measurement is
not likely to give the final answer here, since application behavior may depend on the run
configuration (number of nodes, kind of the fabrics selected, MPI settings), as well as on
the workload used and other, sometimes outright mysterious, factors.

Following the typical engineering practice of estimating upfront the problem by the
order of magnitude, we recommend you do the following first:

1. Select one or two representative workloads.

2. Use the default Intel MPI settings and activate the built-in
statistics gathering to collect vital profile information (export
I_MPI_STATS=ipm).

3. Do several benchmarking runs at a low, medium, and high
(but still practicable) number of processes, for any curve can
connect two points, as they say.5

4. Analyze the statistics output files to find out whether it is
worth bothering about the application’s distributed memory
performance, in particular.

By following this routine, you will not only understand whether there is a noticeable
optimization potential at the distributed memory level but also learn how your
application scales with the number of nodes and what MPI operations it uses most
extensively. Moreover, you will establish a performance baseline that you will compare
your results against every time you introduce a purported improvement into the
application or the platform. All this information will flow directly into the further
optimization process, and none of your time will be wasted.

Example 1: Initial HPL Performance Investigation
Let us revisit the High Performance Linpack Benchmark that we mentioned in Chapter 1,
and practice a little on it.6 To save time in configuring and building an executable with all
the necessary optimizations and libraries inside, we will fetch Intel’s pre-cooked HPL that
we quietly used in Chapter 4.7

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

103

We do not have to select the workload because HPL generates it automatically during
startup. What we need to change are a few workload parameters; see Listing 5-9:

Listing 5-9. HPL Input File (HPL.dat) with the Most Important Parameters Highlighted

HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
235520 Ns
1 # of NBs
256 NBs
1 PMAP process mapping (0=Row-,1=Column-major)
1 # of process grids (P x Q)
4 Ps
4 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
4 NBMINs (>=1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast
0 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
0 SWAP (0=bin-exch,1=long,2=mix)
1 swapping threshold
1 L1 in (0=transposed,1=no-transposed) form
1 U in (0=transposed,1=no-transposed) form
0 Equilibration (0=no,1=yes)
8 memory alignment in double (>0)

Some of the points to note from the script in Listing 5-8 are:

•	 Problem size (N) is normally chosen to take about 80 percent of
the available physical memory by the formula memory = 8N 2 for
double precision calculations.

•	 Number of blocks (NB) usually ranges between 32 and 256, with
the higher numbers promoting higher computational efficiency
while creating more communication.

•	 Process grid dimensions (P and Q), where both P and Q are
typically greater than 1, P is equal to or slightly smaller than
Q, and the product of P and Q is the total number of processes
involved in the computation.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

104

This and further details are well explained in the HPL FAQ.8 As can be seen,
Listing 5-9 was generated when the matrix size was set to 235,520, yielding total occupied
memory of about 413 GiB. We used 256 blocks and the process grid dimensions 4 x 4.
A quick look into the built-in statistics output given in Listing 1-1 that was obtained for
this input data shows that MPI communication occupied between 5.3 and 11.3 percent of
the total run time, and that the MPI_Send, MPI_Recv, and MPI_Wait operations took about
81, 12, and 7 percent of the total MPI time, respectively. The truncated HPL output file
(see Listing 5-10) reveals that the run completed correctly, took about 40 minutes, and
achieved about 3.7 TFLOPS.

Listing 5-10. HPL Report with the Most Important Data Highlighted (Cluster, 16 MPI
Processes)

==
HPLinpack 2.1 -- High-Performance Linpack benchmark -- October 26, 2012
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
==

An explanation of the input/output parameters follows:

T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:

N : 235520
NB : 256
PMAP : Column-major process mapping
P : 4
Q : 4
PFACT : Right
NBMIN : 4
NDIV : 2
RFACT : Crout
BCAST : 1ring
DEPTH : 1
SWAP : Binary-exchange
L1 : no-transposed form
U : no-transposed form
EQUIL : no
ALIGN : 8 double precision words

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

105

--
 - The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
 ||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0
Column=001280 Fraction=0.005 Mflops=4809238.67
Column=002560 Fraction=0.010 Mflops=4314045.98
...
Column=210944 Fraction=0.895 Mflops=3710381.21
Column=234496 Fraction=0.995 Mflops=3706630.12
==
T/V N NB P Q Time Gflops
--
WC10C2R4 235520 256 4 4 2350.76 3.70500e+03
HPL_pdgesv() start time Fri Feb 14 05:44:48 2014

HPL_pdgesv() end time Fri Feb 14 06:23:59 2014

||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0028696 PASSED
==
 Finished 1 tests with the following results:
 1 tests completed and passed residual checks,
 0 tests completed and failed residual checks,
 0 tests skipped because of illegal input values.
--
 End of Tests.
==

Now, let’s document what we have found. The input and output files form the basis
of this dataset that needs to be securely stored. In addition to this, we should note that
this run was done on eight nodes with two Ivy Bridge processors, with 12 physical cores in
turbo mode per processor and 64 GiB of memory per node.

The following tools were used for this run:

Intel MPI 5.0.1•	

Intel MKL 11.2.0 (including MP_LINPACK binary precompiled by •	
Intel Corporation)

Intel Composer XE 2015•	

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

106

The environment variables for this test were as follows:

export I_MPI_DAPL_PROVIDER=ofa-v2-mlx4_0-1
export I_MPI_PIN=enable
export I_MPI_PIN_DOMAIN=socket
export OMP_NUM_THREADS=12
export KMP_AFFINITY=verbose,granularity=fine,physical
export I_MPI_STATS=ipm

Some of these variables are set by default. However, setting them explicitly increases
the chances that we truly know what is being done by the library. The first line indicates
a particular communication fabric to be used by Intel MPI. The next four lines control
the Intel MPI and OpenMP process and thread pinning. (We will look into why and how
here, and in Chapter 6.) The last line requests the built-in, IPM-style statistics output to be
produced by the Intel MPI Library.

This dataset complements the lower-level data about the platform involved that we
collected and documented in Chapter 4. Taken together, they allow us to reproduce this
result if necessary, or to root-cause any deviation that may be observed in the future
(or in the past).

Since this program has not been designed to run on small problem sizes or small
numbers of processes, it does not make much sense to continue the runs before we come
to the preliminary conclusion. One data point will be sufficient, and we can decide what
to do next. If we compute the efficiency achieved during this run, we see it comes to about
90 percent. This is not far from the expected top efficiency of about 95 percent. From this
observation, as well as the MPI communication percentages shown here and Amdahl’s
Law explained earlier, we can deduce that there is possibly 2—at most 3—percent overall
performance upside in tuning MPI. In other words, it makes sense to spend more time
tuning MPI for this particular application only if you are after those last few extra drops of
efficiency. This may very well be the case if you want to break a record, by the way.

Just for comparison, we took the stock HPL off the netlib.org and compared it to
the optimized version presented here. The only tool in common was the Intel MPI library.
We used the GNU compiler, BLAS library off the netlib.org, and whatever default
settings were included in the provided Makefile.9 First, we were not able to run the
full-size problem owing to a segmentation fault. Second, the matrix size of 100,000 was
taking so much time it was impractical to wait for its completion. Third, on the very
modest matrix size of 10,000, with the rest of the aforementioned HPL.dat file unchanged
(see Listing 5-9), we got 35.66 GFLOPS for the stock HPL vs. 152.07 GFLOPS for the
optimized HPL, or a factor of more than 4.5 times in favor of the optimized HPL. As we
know from the estimates given, and a comparison of the communication statistics (not
shown), most of this improvement does not seem to be coming from the MPI side of the
equation. We will revisit this example in the coming chapters dedicated to other levels of
optimization to find out how to get this fabulous acceleration.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

107

All this may look to you like a very costly exercise in finding out the painfully obvious.
Of course, we know that Intel teams involved in the development of the respective tools
have done a good job optimizing them for one of the most influential HPC benchmarks.
We also know what parameters to set and how, both for the application and for the Intel
MPI Library. However, all this misses the point. Even if you had a different application at
hand, you would be well advised to follow this simple and efficient routine before going
any further. By the way, if you miss beautiful graphs here, you will do well to get used to
this right away. Normally you will have no time to produce any pictures, unless you want
to unduly impress your clients or managers. Well-organized textual information will
often be required if you take part in the formal benchmarking efforts. If you would rather
analyze data visually, you will have to find something better than the plain text tables and
Excel graphing capabilities we have gotten used to.

EXERCISE 5-3

do an initial performance investigation of the hpCg benchmark,10 and determine
whether it is desirable and indeed feasible to improve its distributed memory
performance. repeat this exercise with your favorite application.

Getting an Overview of Scalability and
Performance
If an initial investigation suggests that there may be some improvement potential in the
area of distributed memory performance, and if a couple of the simple tricks described in
Chapter 1 do not yield a quick relief, it is time to start an orderly siege. The primary goal
at this point is to understand whether the application is memory-bound or compute-bound,
whether it scales as expected (if scaling is indeed a goal), and how the observed
performance relates to the expected peak performance of the underlying platform.

Learning Application Behavior
Now, you are in for a lot of benchmarking. Proper selection of the representative
workloads, application parameters, MPI process and OpenMP thread counts, and other
relevant settings are paramount. Also desirable are scripting skills or a special tool that
will help you run benchmarks and organize the pile of resulting data.

There is also a distinct temptation at this stage to follow the white rabbit down the
hole. Try hard to resist this temptation because the first performance issue you observe
may or may not be the primary one, both in its causal importance and in its relative
magnitude. Only when you have a complete overview of the application behavior and its
quirks will you be able to chart the most effective way of addressing the real performance
issues, if indeed there are any. Let us look at a very good example of this view that we will
keep revisiting as we go.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

108

Example 2: MiniFE Performance Investigation
The miniFE application from the Mantevo suite represents a typical finite element method
of solving implicit unstructured partial differential equations.11 It includes all important
solution stages, like the sparse matrix assembly and the solution of the resulting system of
linear equations. Thus, whatever we learn here may be directly transferrable to the more
involved packages that provide general finite element capabilities.

It is relatively easy to set up and run this application. Upon downloading the
application archive and unpacking it recursively, you will end up with a number of
directories, one of which is named miniFE-2.0_mkl. Note that we quite intentionally go
for the Intel MPI and Intel MKL-based executable here, for we have learned earlier in the
example of HPL that this gives us a head start on performance. In other words, by now we
are almost past the recommendations of Chapter 1 and into the realm of the unknown.

First, you need to fetch and build the program. Upon unpacking, go to the directory
miniFE-2.0-mkl/src, copy the Makefile.intel.mpi into the Makefile, change the
-fopenmp flag there to -qopenmp so that the multithreaded Intel MPI Library is picked up
by default, then type make and enjoy.

Next you need to find a proper workload. After a couple of attempts, with the system
sizes of 10 and 100 being apparently too small, and the system size of 1000 leading to
the operating system killing the job (results not shown), the following launch string
looks adequate:

$ mpirun -np 16 ./miniFE.x nx=500

This command produces the output seen in Listing 5-11:

Listing 5-11. MiniFE Output (Workstation, Size 500, 16 MPI Processes)

 creating/filling mesh...0.377832s, total time: 0.377833
generating matrix structure...17.6959s, total time: 18.0737
 assembling FE data...13.5461s, total time: 31.6199
 imposing Dirichlet BC...11.9997s, total time: 43.6195
 imposing Dirichlet BC...0.47753s, total time: 44.0971
making matrix indices local...14.6372s, total time: 58.7342
Starting CG solver ...
Initial Residual = 501.001
Iteration = 20 Residual = 0.0599256
Iteration = 40 Residual = 0.0287661
Iteration = 60 Residual = 0.0185888
Iteration = 80 Residual = 0.121056
Iteration = 100 Residual = 0.0440518
Iteration = 120 Residual = 0.00938303
Iteration = 140 Residual = 0.00666799
Iteration = 160 Residual = 0.00556699
Iteration = 180 Residual = 0.00472206
Iteration = 200 Residual = 0.00404725
Final Resid Norm: 0.00404725

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

109

There is also a corresponding report file with the file extension .yaml, shown in
Listing 5-12:

Listing 5-12. MiniFE Report (Workstation, Size 500, 16 MPI Processes)

Mini-Application Name: miniFE
Mini-Application Version: 2.0
Global Run Parameters:
 dimensions:
 nx: 500
 ny: 500
 nz: 500
 load_imbalance: 0
 mv_overlap_comm_comp: 0 (no)
 number of processors: 16
 ScalarType: double
 GlobalOrdinalType: int
 LocalOrdinalType: int
Platform:
 hostname: book
 kernel name: 'Linux'
 kernel release: '2.6.32-431.17.1.el6.x86_64'
 processor: 'x86_64'
Build:
 CXX: '/opt/intel/impi_latest/intel64/bin/mpiicpc'
 compiler version: 'icpc (ICC) 15.0.0 20140723'
 CXXFLAGS: '-O3 -mkl -DMINIFE_MKL_DOUBLE -qopenmp -DUSE_MKL_DAXPBY -mavx'
 using MPI: yes
Run Date/Time: 2014-05-27, 19-21-30
Rows-per-proc Load Imbalance:
 Largest (from avg, %): 0
 Std Dev (%): 0
Matrix structure generation:
 Mat-struc-gen Time: 17.6959
FE assembly:
 FE assembly Time: 13.5461
Matrix attributes:
 Global Nrows: 125751501
 Global NNZ: 3381754501
 Global Memory (GB): 38.731
 Pll Memory Overhead (MB): 28.8872
 Rows per proc MIN: 7812500
 Rows per proc MAX: 7938126
 Rows per proc AVG: 7.85947e+06
 NNZ per proc MIN: 209814374
 NNZ per proc MAX: 213195008
 NNZ per proc AVG: 2.1136e+08

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

110

CG solve:
 Iterations: 200
 Final Resid Norm: 0.00404725
 WAXPY Time: 21.2859
 WAXPY Flops: 2.2575e+11
 WAXPY Mflops: 10605.6
 DOT Time: 6.72744
 DOT Flops: 1e+11
 DOT Mflops: 14864.5
 MATVEC Time: 98.8167
 MATVEC Flops: 1.35947e+12
 MATVEC Mflops: 13757.4
 Total:
 Total CG Time: 126.929
 Total CG Flops: 1.68522e+12
 Total CG Mflops: 13276.9
 Time per iteration: 0.634643
Total Program Time: 185.796

From the last few lines of Listing 5-12, you can see that we achieve about
13.3 GFLOPS during the conjugate gradient (CG) solution stage, taking 185.8 seconds for
the whole job. Now we will look into whether this is the optimum we are after with respect
to the problem size, the number of the MPI processes, and the number of OpenMP
threads that are used implicitly by the Intel MKL. For comparison, we achieved only
10.72 MFLOPS for the problem size of 10 and 12.72 GFLOPS for the problem size of 100,
so that there is some dependency here.

For now, let’s do a quick investigation of the MPI usage along the lines mentioned.
If we collect the Intel MPI built-in statistics, we get the output seen in Listing 5-13:

Listing 5-13. MiniFE Statistics (Workstation, Size 500, 16 MPI Processes)

##
#
command : ./miniFE.x (completed)
host : book/x86_64_Linux mpi_tasks : 16 on 1 nodes
start : 05/27/14/17:21:30 wallclock : 185.912397 sec
stop : 05/27/14/17:24:35 %comm : 7.34
gbytes : 0.00000e+00 total gflop/sec : NA
#

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

111

##
region : * [ntasks] = 16
#
[total] <avg> min max
entries 16 1 1 1
wallclock 2974.58 185.911 185.91 185.912
user 3402.7 212.668 211.283 213.969
system 20.6389 1.28993 0.977852 1.56376
mpi 218.361 13.6475 4.97802 20.179
%comm 7.3409 2.67765 10.8541
gflop/sec NA NA NA NA
gbytes 0 0 0 0
#
#
[time] [calls] <%mpi>
<%wall>
MPI_Allreduce 212.649 6512 97.38 7.15
MPI_Send 2.89075 29376 1.32 0.10
MPI_Init 1.81538 16 0.83 0.06
MPI_Wait 0.686448 29376 0.31 0.02
MPI_Allgather 0.269436 48 0.12 0.01
MPI_Irecv 0.0444376 29376 0.02 0.00
MPI_Comm_size 0.00278258 3360 0.00 0.00
MPI_Bcast 0.00242162 32 0.00 0.00
MPI_Comm_rank 1.62125e-05 176 0.00 0.00
MPI_Finalize 5.24521e-06 16 0.00 0.00
MPI_TOTAL 218.361 98288 100.00 7.34
##

This is positively interesting. One MPI operation—MPI_Allreduce—is taking almost
97.5 percent of the total MPI time that in turn accounts for from 2.67 to 10.85 percent of
the overall application time. Do you feel the almost irresistible temptation to start playing
with the MPI_Allreduce tuning settings right away? Be cool. We will show soon enough
how wrong it would be to succumb to the tempation (to be continued).

Choosing Representative Workload(s)
Workload size—or more generally, the computational and memory load created by the
workload—may dramatically affect application characteristics. To understand this, you
have only to recall the memory hierarchy and the attending latencies mentioned at the
beginning of Chapter 3.

You can imagine that at the very beginning, at a very low memory load, the
application will be basically starving for data; the computations will consume all the
data in the highest level of cache where it fits, and they will stop before it can achieve full
computational performance. Moreover, interprocess and interthread synchronization

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

112

will probably play a more noticeable role here than at higher memory loads. Finally, the
program may even break if each of its computational units, be they processes or threads,
receives less than the minimum amount of data that it can sensibly handle.

As the memory load continues to grow, the workload will start occupying the
LLC pretty regularly. This is where you are likely to observe the maximum possible
computational performance of a particular computational node. This point in the
performance curve is very important because it may show to what degree the overall
problem needs to be split into smaller parts, so that those parts can be computed with
maximum efficiency by separate cluster nodes.

Further growth of the memory load will lead to part of the data spilling over into the
main system memory. At this point the application may become memory bound, unless
clever techniques or the built-in facilities of the platform, like prefetching, are able to
alleviate the detrimental effects of the spilling.

Eventually, when the size of the workload exceeds the size of the physical memory
available to the current process’s working set, the virtual memory mechanism of the
operating system will kick in and, depending on its quality and the speed of the offline
storage (like hard disk drives [HDD] or solid state disks [SSD]), this may depress
performance further.

Finally, the growing memory load will cause a job to exceed the limits of the virtual
memory subsystem, and the job will start extensively swapping data in and out of the
main memory. This effect is called thrashing. The program will effectively become
strongly I/O bound. At this point, unless the program was designed to handle offload data
gracefully (like so many off-core solvers of yore), all bets are off.

Another, no less important aspect of the workload selection is the choice of the
typical target problem class that the benchmarking will address. For example, if the target
application is intended for computing—as in car-to-car collisions—it may not make
much sense to benchmark it on a test case that leads to no contact and deformation of the
objects involved.

Benchmarking and a bit of back-of-the-envelope calculations can help in choosing
the right workload size. Only your experience and knowledge of the standards, traditions,
and expectations of the target area are going to help you to choose the right workload
class. Fortunately, both selections are more often than not resolved by the clients, who tell
you upfront what they are interested in.

Example 2 (cont.): MiniFE Performance Investigation
We ruffled through the selection of the workload in this example earlier and settled on the
workload size of 500 after very few simple runs. Let’s revisit this choice now that we know
the program may have noticeable MPI optimization potential.

We know from the earlier attempts that the size of 10 is so low as to lead to some
10 MFLOPS. This is a clear indication of the problem size leading to the data starvation
mentioned earlier. The size of 100 achieves some 12 GFLOPS, which is not so far from
the 13 GFLOPS we can observe on the size of 500. Unfortunately, the size of 1000 is
apparently too high, and the system protects itself by killing off the offending job.

What we should try to gauge now is how low we can go before we see data starvation,
and how high we can go before we exhaust the system memory to the point of activating
its self-protection instincts. Given the points of 100 and 500, as well as the desire to do as

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

113

few experiments as possible, we find that four extra data points appear warranted, namely
50, 250, 375, and 750. If we do these extra measurements in the 16 MPI processes, three
thread configurations used so far, we can add the new data to the data already obtained,
and thus save a bit of time.

Table 5-3 shows what we get once we drive all the data together:

Table 5-3. MiniFE Dependency on Problem Size (Workstation, 16 MPI Processes)

Size CG (GLOPFS) Total Time (seconds) Memory (GB)

10 36.052 0.145 0.00034

50 6578.06 0.35 0.039

100 12738.8 1.5 0.31

250 13213.7 22.9 4.9

375 13225.6 78.1 16.4

500 13335.9 187.6 38.7

Figure 5-3. MiniFE stage cummulative timing dependency on the problem size
(16 MPI processes)

Recalling the characteristics of the workstation at hand, we can deduce that the
problem size of 250 is probably the last one to fit into the physical memory, although the
virtual memory mechanism will kick in anyway long before that. It does not look as if the
size of 500 was overloading the system unduly, so we can safely keep using it.

Being a proper benchmark, this program outputs a lot of useful data that can be
analyzed graphically with relative ease. For example, Figure 5-3 illustrates the absolute
contribution of various stages of the computation to the total execution time.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

114

Table 5-4. MiniFE CG Performance Dependency on the Process to Thread Ratio (GFLOPS,
Size 500, Workstation)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

12 4 13.24 13.24 13.21 13.23 0.13

16 3 13.27 13.26 13.26 13.26 0.02

24 2 13.26 13.25 13.26 13.26 0.04

These curves look like some power dependency to the trained eye, and this is what
they should look like, given that the total number of mesh nodes grows as a cube of the
problem size, while the number of the nonzero matrix elements grows as a quadrat of the
problem size owing to the two-dimensional nature of the finite element interaction. This,
however, is only a speculation until you can prove it (to be continued).

Balancing Process and Thread Parallelism
We started with the process/thread combination that looked reasonable for the earlier
benchmarks, namely 16 MPI processes, each of them running three OpenMP threads if
the application so desires. It is not clear, however, whether this is the optimum we are
after. Threads have a lower context switch overhead and can use shared memory and
synchronization primitives over it directly. It is not impossible that they may enjoy a slight
performance advantage over the MPI processes owing to these features, at least as long
as the number of threads per process is relatively low. On the other hand, the complexity
of a hybrid program may actually lead to the threading adding extra overhead that
detrimentally affects the overall program performance. About the only way to find out
what is happening to a particular application is—you have guessed it—benchmarking.

Example 2 (cont.): MiniFE Performance Investigation
Let’s do a couple of experiments to make sure that we strike the right balance between the
processes and the threads. Given the total of 48 virtual cores per node, we can reasonably
start not only 16 MPI processes of three OpenMP threads each but also 24 MPI processes
with two OpenMP threads, and 12 MPI processes with four OpenMP threads each, and
so on, up to the extreme combinations of 48 MPI processes or 48 threads that will still
occupy all available computational units. Here is the required run string that needs to be
changed according to the derivation for other process/thread ratios:

$ mpirun -genv OMP_NUM_THREADS 3 -np 16 ./miniFE.x nx=500

This method of inline definition of the environment variables is normally preferable
because you cannot accidentally leave any of them behind, which, if that happened,
could inadvertently spoil the future measurement series.

Doing our usual three attempts each time, we get the results shown in
Tables 5-4 and 5-5:

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

115

Although computational performance of the main CG block is equal for 16 and
24 processes, the overall time for 24 processes is lower. This is significant because the
benchmark tries to approximate the behavior of a complete finite element application,
and the total execution time is a more pertinent metrics here. We will focus on this
wall-clock metric while keeping in mind that we do want to use the processor as
efficiently as possible during the main computational step (to be continued).

Doing a Scalability Review
If you recall the treatise in Chapter 2, there are two major types of scalability: weak
and strong. Weak scalability series increases the load proportionally to the number of
processes involved. In other words, it keeps the per-node load constant and seeks to
investigate the effect of the growing number of connections between the nodes. Strong
scalability keeps the problem size constant while increasing the number of processes
involved. This is what we are interested in primarily now. Just as in the case of intranode
communication, here we want to see where the problem starts loading the machine so
much as to make further increase in the computational resources allocated pointless or
even counterproductive.

Example 2 (cont.): MiniFE Performance Investigation
First, let’s look into strong scalability of the miniFE. We will put up to 48 MPI processes
on one node and let the runtime decide how many threads to start. Further, we will try to
load the nodes so that we get into the memory-bound state from the very beginning, and
gradually move toward the compute-bound situation, looking for the knee of the graph.
We will also incidentally check whether explicit setting of the OpenMP thread number is
indeed helping instead of hurting performance. After a series of respective runs without
the OMP_NUM_THREADS variable set, we get the data shown in Tables 5-6 and 5-7:

Table 5-5. MiniFE Total Time Dependency on the Process to Thread Ratio (Seconds, Size 500,
Workstation)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

12 4 210.39 210.93 210.58 210.64 0.13

16 3 187.77 186.39 185.94 186.70 0.51

24 2 174.82 175.19 174.55 174.85 0.18

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

116

Table 5-6. MiniFE CG Performance Dependency on the Process Number (GFLOPS,
Size 500, Workstation, No OpenMP Threads)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

8 undefined 11.95 11.83 12.04 11.94 0.90

12 undefined 13.02 13.00 13.00 13.00 0.11

16 undefined 13.32 13.32 13.32 13.32 0.01

24 undefined 13.36 13.36 13.36 13.36 0.03

48 undefined 13.19 13.20 13.20 13.19 0.04

Table 5-7. MiniFE CG Total Time Dependency on the Process Number (Seconds, Size 500,
Workstation, No OpenMP Threads)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

8 undefined 257.41 254.92 257.63 256.65 0.59

12 undefined 212.77 212.80 212.28 212.61 0.14

16 undefined 185.80 185.72 185.43 185.76 0.03

24 undefined 173.37 173.71 173.65 173.58 0.11

48 undefined 160.92 160.91 160.69 160.84 0.08

By setting the environment variable KMF_AFFINITY to verbose, you can verify that
more than one OpenMP thread is started even if its number is not specified.
It is interesting that we get about 100 MFLOPS extra by not setting the OpenMP thread
number explicitly, and that the total time drops still further if all 48 cores are each
running MPI process Moreover, it drops between the process counts by as much as
16 and 24. This indicates that the application has substantial scaling potential in this
strong scaling scenario.

The tendency toward performance growth with the number of MPI processes
suggests that it might be interesting to see what happens if we use only the physical cores.
Employing the recipe described earlier, we get 13.38 GFLOPS on 24 MPI processes put
on the physical cores, taking 176.47 seconds for the whole job versus 173.58 for 24 MPI
processes placed by default. So, there is no big and apparent benefit in using the physical
cores explicitly.

Thus, we are faced with the question of what configuration is most appropriate for
the following investigation. From Tables 5-4 through 5-7, it looks like 16 MPI processes
running three threads each combine reasonable overall runtime, high CG block
performance, and potential for further tweaks at the OpenMP level. One possible issue
in the 16 MPI process, three OpenMP thread configuration is that every second core will
contain parts of two different MPI processes, which may detrimentally affect the caching.
Keeping this in mind, we will focus on this configuration from now on, and count on the
24 process, two thread configuration as plan B.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

117

We could continue the scalability review by proceeding from the workstation to
the cluster. In particular, the speedup S(p) and efficiency E(p) graphs can be used to
track the expected and observed performance at different MPI process and OpenMP
thread counts. For an ideal scaling program, S(p) = p and E(p) = 1, so it will be easy to
detect any deviation visually. This investigation can be done for the overall program
execution time, which can be measured directly. It can also be done for the time used up
by its components, be that computation versus communication, or particular function
calls, or even code fragments. This more detailed information can be discovered by
directly embedding the timing calls, like MPI_Wtime, into the program code; looking
into the statistics output we have seen before; or using one of the advanced analysis
tools described later in this book. However, the limited scope of this example does not
make this investigation necessary. In any case, we have settled both the representative
workload and the most promising run configurations, and this is good enough for now.

Note that there may be a certain interaction between the process: thread ratio,
on one hand, and the workload size, on the other hand. So far, we have been basically
ignoring this effect, hoping that we can change the respective coordinates independently
or that at least this effect will be of the second order. This may or may not be true in the
general case: it is conceivable that smaller workloads will lend themselves better to the
higher thread counts. However, to gauge this effect, we would have to perform a full
series of the measurements over all the MPI process and thread counts, as well as the
problem sizes. That is, instead of probing this three-dimensional Cartesian space along
two lines (the process:thread ratio at problem size of 500, and then the problem size at
the process:thread ratio of 16:3), we would have to do a full search. The time required for
this, as well as the amount of data produced, would probably be prohibitive for the scope
of this book (to be continued).

EXERCISE 5-4

perform a focused sampling around the point that we consider as the optimum for
miniFe, to verify it is indeed at least the local maximum of performance we are after.
replace miniFe by your favorite application and repeat the investigation. if intranode
scalability results warrant this, go beyond one node.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

118

Analyzing the Details of the Application Behavior
There are many ways to analyze the behavior of parallel applications. That is, they differ
in the way in which the data is collected. Three of them are most frequently used:

•	 Printing uses timestamp collection and output statements built
into the program during its development or added specifically for
debugging. Surprisingly enough, this is probably still the best way
to understand the overall program behavior unless you are after
an issue that disappears when observed (so-called Heisenbug).

•	 Sampling takes snapshots of the system, either at fixed time
intervals or at certain points of the program or system lifecycle.
Information collected this way comes in the form of hardware
and software counters, register values, and so on, and it normally
requires a tool to make sense of it.

•	 Tracing follows program execution and tracks all important
events as they occur by creating a so-called application trace.
Again, tools are nearly unavoidable if a nontrivial program is to be
analyzed.

People will also just go through the application in an interactive debugger, but this
mode is more suitable for debugging than for performance analysis per se. In any case,
there are arguments in favor of each of these methods, as well as interesting cases when
they may usefully complement each other. We will see some of them later.

The Intel Trace Analyzer and Collector (ITAC) we are going to use for the distributed
memory performance analysis in this book is a tracing tool, one of many that can produce
and visualize application trace files in various forms. Instead of trying to describe this very
powerful program in general terms, we propose to simply use it for the example at hand.

Example 2 (cont.): MiniFE Performance Investigation
You can use ITAC to generate an application trace file and to inspect it visually. You enter
the following commands to get the trace file miniFE.x.stf:

$ source /opt/intel/itac_latest/bin/itacvars.sh
$ mpirun -trace -np 16 ./miniFE.x -nx=500

The first command establishes the necessary environment. As usual, we added this
command to the script 0env.sh included in the respective example archive, so if you
have sourced that file already, you do not need to source the specific ITAC environment
script. The -trace option in the mpirun invocation instructs the Intel MPI library link
the executable at runtime against the ITAC dynamic library, which in turn creates the
requested trace file. Application rebuilding is not required.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

119

If you work on a cluster or another remote computer, you will have to ship all the
files associated with the main trace file miniFE.x.stf (most of them are covered by the
file mask miniFE.x.stf*) to a computer where you have the ITAC installed. To make
this process a little easier, you can ask ITAC to produce a single trace file if you use the
following command instead of the earlier mpirun invocation:

$ mpirun -trace -np 16 ./miniFE.x -nx=500 --itc-args --logfile-format
SINGLESTF --itc-args-end

You can learn more about the ways to control ITAC runtime configuration in the
product online documentation.12

Now you can run the ITAC:

$ traceanalyzer miniFE.x.stf

This way or another, after a few splash screens, the ITAC summary chart shows up
(see Figure 5-4; note that we maximized the respective view inside the ITAC window).

Figure 5-4. MiniFE trace file in ITAC summary chart (Workstation, 16 MPI processes)

This view basically confirms what we already know from the built-in statistics output.
Press the Continue button at the upper right corner, and you will see the default ITAC
screen that includes the function profile (left) and the performance assistant (right), with
the rest of the screen occupied by the main program and view menus (very top), as well as
the handy icons and the schematic timeline (below the top); see Figure 5-5, and note that
we maximized the respective window once again.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

120

The function profile is basically a reiteration of the statistics output at the moment,
while the performance assistant is pointing out an issue we may want to deal with when
we have performed the initial trace file review. To that end, let us restore the historical
ITAC trace file view. Go to the Charts item in the main chart menu and select the Event
Timeline item there. This chart will occupy the top of the screen. Again in the main view
menu, deselect the Performance Assistant item, then select the Message Profile item. Also,
hide the schematic timeline by right-clicking it and selecting the Hide item in the popup
menu. This will display the historical ITAC analysis view; see Figure 5-6.

Figure 5-5. MiniFE trace file in ITAC default view (Workstation, 16 MPI processes)

Figure 5-6. MiniFE trace file in ITAC historical view (Workstation, 16 MPI processes)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

121

Nothing can beat this view in the eyes of an experienced analyst. The event timeline
shows pretty clearly that the program is busy computing and communicating most of the
time after setup. However, during setup there are substantial issues concerning one of the
MPI_Allreduce calls that may need to be addressed. The message profile illustrates the
neighbor exchanges between the adjacent processes that possess the respective adjacent
slabs of the overall computation domain. These relatively short exchanges still differ in
duration by approximately four times. To make sure this is indeed the case, you can scroll
this view up and down using the scrollbar on the right. If you right-click on the Group MPI
in the function profile, and select Ungroup MPI in the popup menu, this will show how
MPI time is split between the calls. Again, this information is known to you from the
built-in statistics. Some scrolling may be required here as well, depending on the size of
your display. Alternatively, click on any column header (like TSelf) to sort the list.

Now, zoom in on a piece of the event timeline around the offending MPI_Allreduce;
move the mouse cursor where you see fit, hold and drag to highlight the selected
rectangle, and release to see the result. All charts will automatically adjust themselves to
the selected time range (see Figure 5-7).

Figure 5-7. MiniFE trace file in ITAC zoomed in upon the offending MPI_Allreduce operation
(Workstation, 16 MPI processes)

Well, this is exactly what we need to see if we want to understand the ostensibly main
MPI-related performance issue in this program. The updated Functional Profile chart
confirms that it is indeed this MPI_Allreduce operation that takes the lion’s share of MPI
communication time. On the other hand, the time spent for the actual data exchange is
very low, as can be seen in the Message Profile chart, so the volume of communication
cannot be the reason for the huge overhead observed. Therefore, we must assume this is
load imbalance. Let us take this as a working hypothesis (to be continued).

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

122

EXERCISE 5-5

analyze the behavior of your favorite application using the process described here.
What operations consume most of the Mpi communication time? is this really
communication time or load imbalance?

Choosing the Optimization Objective
If you recall, at the very beginning of this chapter we faced the decision as to what to
address: load imbalance or MPI performance. The criteria for selecting one over the
other are relatively soft, for the situation in real-life programs is rarely black and white.
Normally there is some degree of load imbalance and some degree of MPI sloppiness.
If one of them clearly dominates the other, the choice may seem obvious. However, you
need to keep in mind that even a relatively small load imbalance may jog some collective
operations off tune; alternatively, suboptimal performance of an MPI operation may lead
to something that looks like load imbalance. How does one lighten this gray area?

Detecting Load Imbalance
Fortunately, there is a sure way to detect load imbalance in a distributed memory program.
Imagine that you take out all the communication costs, essentially presuming that you run
over an ideal communication fabric that has zero latency and infinite bandwidth. It is clear
that, in this case, you cannot blame the network for any undue delays left in the program.
Whatever is left behind is, then, the program’s own fault rather than the network’s or MPI’s.
This is why an advanced analysis tool like ITAC offers both an Ideal Interconnect Simulator
(IIS) and a Load Imbalance Diagram that are broadly based on this idea and therefore help
to pinpoint the load imbalance and its main victims.

Example 2 (cont.): MiniFE Performance Investigation
Let us get back to the miniFE application example, in which we came to the preliminary
suspicion that load imbalance might be to blame for the extraordinarily bad observed
behavior of one particular MPI_Allreduce operation.

There is a very good way to check out our working hypothesis. Go to the Advanced
tab in the main menu, select the Idealize command and click OK in the respective popup
to generate the ideal trace file. Now, open the ideal trace file using the File control in the
main ITAC window, click on the Advanced tab, and select the Imbalance Diagram item.
Then click OK in the resulting popup. Upon some meditation reflected by a progress bar,
the program will visually confirm the initial suspicion: all of the MPI communication
seems to be covered by load imbalance. Figure 5-8 shows that (note that we changed the
default colors to make the difference more visible).

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

123

Of course, this may be an artifact of the model used to compute the load imbalance.
However, this certainly indicates we should look into the load imbalance first, and only
then look into further MPI communication details. Depending on this, we will decide
where to go.

Referring back to the Performance Assistant chart (see Figure 5-5), we can conclude
that the MPI_Wait issue most likely related to the internal workings of the MPI_Allreduce
operation that might issue a call to the MPI_Wait behind the curtain. However, taken at
face value, this indication itself is somewhat misleading until we understand what stands
behind the reported issue. Indeed, if you switch to the Breakdown Mode in the view of
Figure 5-8 (not shown), you will see that small message performance of the MPI_Wait call
is the sole major contributor of the load imbalance observed (to be continued).

EXERCISE 5-6

Choose the primary optimization objective for your favorite application using the
method described in this section. is this load imbalance or Mpi tuning? how can you
justify your choice?

Dealing with Load Imbalance
Once the decision is made to address the load imbalance, it is necessary to understand
what causes it and then devise an appropriate cure.

Figure 5-8. MiniFE trace file in ITAC imbalance diagram (C version, Workstation, 16 MPI
processes, 3 OpenMP threads)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

124

Classifying Load Imbalance
Load imbalance can come from different quarters. The first is from the application itself:
its data layout, algorithms, and implementation quality. If the application developer did
not think hard about dividing the data among the job components—be they processes
or threads or tasks—fairly and according to their capabilities, there will be no other
way to attack load imbalance than to fix the respective data layout, algorithmic, and
implementation issues of the application.

This is where the second major source of load imbalance pops up: platform
heterogeneity, especially heterogeneity that was not taken into account when the
application was conceived. A typical example is the use of different processors across
the machine, be they different CPUs or various accelerators. Another example of
heterogeneity is the difference in communication characteristics of the underlying
platform. Even the difference between shared memory, on the one hand, and fast
network, on the other hand, unless properly accounted for, may lead to part of the job’s
lagging behind, waiting for the necessary data to come over the slower link.

These dependencies may or may not be explicit. It is relatively clear what is
happening when two MPI processes send data to each other in the point-to-point fashion.
As soon as any collective operation is involved, the choice of communication pattern is
delegated to the MPI library, and ultimately, to the MPI implementor who created this
library. In that case, it may be necessary to understand exactly what algorithm is being
used, especially if there are more than two processes involved.

However, the situation may be substantially less transparent. Many libraries
and language extensions (like offload) try to hide the actual data movement from the
application programmer. In that case, it may be necessary to understand what exactly
is happening beneath the hood, up to and including monitoring the activities of the
underlying software and hardware components, or at least talking to someone in the know.

Addressing Load Imbalance
The treatment for load imbalances is basically determined by their source of the issue
and the amount of time available.

Data partitioning and algorithmic issues may be the hardest to address, unless the
program already possesses mechanisms that provide relatively easy control over these
parameters. In some cases, the amount of data apportioned to each computational unit
can be defined by the program input file. In other cases, the amount of work (rather than
only data) apportioned to a program component may depend on its role. For example,
if boundary conditions are involved, corner segments will have only two neighbors in
the two-dimensional case, while internal segments will have four, and so on. If data or
work partitioning is implicated in the load imbalance, a deep dive into the program may
be required, up to and including reformulation of the data layout or work-partitioning
strategy; replacement of the data-partitioning algorithm or component; selection of a
more advanced, easier to parallelize algorithm; and so on. There is little by the way of
general advice that can be given here.

Platform heterogeneity may pop up everywhere. In a modern heterogeneous
cluster that uses Intel Xeon CPUs and Intel Xeon Phi coprocessors connected to the
main processors by the PCI Express bus, with a fast network like InfiniBand connecting

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

125

the nodes, there are so many way to get things wrong that, most likely, only proper
application design upfront can “guarantee” success of the undertaking. Indeed, in such a
cluster, you will have several effects uniting their forces to cause trouble:

1. Differences in the clock rate and functionality of the
processors involved. These differences may go up to several
times, especially as far as the clock rate is concerned. You
will have to allocate proportionally less data to the weaker
components.

2. Differences between the intranode communication over the
shared memory and over the PCI Express bus. Again, the
latency and bandwidth will vary greatly, and sometimes
the relationship will not be linear. For example, PCI Express
will normally lose to the shared memory on latency but may
overtake it on bandwidth on certain message sizes, depending
on the way in which the bus is programmed.

3. Differences between the intranode communication of any
kind, on one hand, and internode communication over
the fast network, on the other. In addition to this normal
situation typical of any cluster, in a heterogeneous cluster with
accelerated nodes, there may be the need to tunnel data from
accelerator to accelerator via the PCI Express bus, over the
network, and then over the PCI Express bus on the other side.

Of course, a properly implemented MPI library will handle all of this transfer
transparently to your benefit, but you may still see big differences in the performance of
the various communication links involved, and you will have to take this into account
when partitioning the data.

On top of this, there is an interesting interaction between the component’s
computing capacity and its ability to push data to other components. Because of this
interaction, in an ideal situation, it is possible that a relatively slower component sitting
on a relatively slower interface may be loaded 100 percent of the time and cause no
trouble across the job, provided the relatively faster components get larger pieces of data
to deal with and direct the bulk data exchanges to the fastest available communication
paths. However, it may be difficult to arrive at this ideal situation. This consideration
applies, of course, to both explicit and implicit data-movement mechanisms.

Example 2 (cont.): MiniFE Performance Investigation
To complete the miniFE investigation at the MPI level, we need to understand what is
causing the load imbalance detected earlier. Once again, ITAC is going to be of great help
in finding that out.

First, rebuild your application so that the compiler adds debugging information
to the files it produces. Adding the -g flag to the CFLAGS variable in the miniFE src/
Makefile, doing make clean there, and then make does the trick.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

126

Now, set the environment variable VT_PCTRACE to 5 and rerun the miniFE, asking
for the trace file to be produced. (You know how to do this.) Note, however, that call
stack tracing requested this time is a relatively expensive procedure that will slow the
execution, so it may make sense to take a rather low problem size, hoping that the
program execution path does not depend on it. We used the size of 50.

Open the resulting file miniFE.x.stf in the ITAC, go to the offending MPI_Allreduce
operation in the event timeline, right-click on it, and ask for details. When you click on the
View Source Code item in the resulting popup window, you will see where the offending
MPI_Allreduce was called from (see Figure 5-9).

Figure 5-9. Finding MPI_Allreduce source code location in miniFE (Workstation)

If you browse the source code in this window, you will see that immediately prior to
this MPI_Allreduce call, the program imposes Dirichlet boundary conditions. Very likely,
the imbalance is coming from that piece of code. This is only a guess for now, so you will
have to do more work before you can be sure of having found the culprit. However, if this
guess is correct, and given that the program itself reports very low data imbalance as far
as the distribution of nonzero matrix elements across the processes is concerned, it looks
like an algorithmic issue. If you want to address it now, you know where to start. Later on,
we will cover advanced techniques that will allow you to pinpoint the exact problematic
code location in any situation, not only in presence of the conveniently placed and easily
identifiable MPI operational brackets (to be continued in Chapter 6).

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

127

EXERCISE 5-7

narrow down the search area by recalling from Figure 5-6 that, prior to the
problematic MPI_Allreduce operation, there was another MPI_Allreduce operation
that also synchronized the processes that were almost perfectly aligned at that
moment. What remains to be done is to repeat this procedure and find out the other
code location. did you find the culprit?

Example 3: MiniMD Performance Investigation
Having looked into an algorithmically induced load imbalance in the case of miniFE,
we can now take time to investigate another application from the same Mantevo suite,
namely miniMD. This application is reported as representing, in a very lightweight form,
the core of the typical molecular dynamics application LAMMPS.13 Another useful feature
is that this application (at least in its miniMD-Intel reincarnation) has been ported to the
Intel Xeon Phi coprocessor, which may allow us to investigate heterogeneity-induced load
imbalance issues without investing any time in the porting effort.

If you repeat all the steps mentioned here with the miniMD application, you will
learn that this application shows admirable scalability intranode (see Table 5-8).

Table 5-8. MiniMD Execution Time Dependency on the Process Number
(Seconds, Workstation)

MPI proc. Run 1 Run 2 Run 3 Mean Std. dev, %

1 6.402392 6.412376 6.401814 6.405527 0.075692

2 4.146758 3.884414 3.623191 3.884788 5.502115

4 1.739194 1.839692 1.683867 1.754251 3.676788

8 0.944237 0.951552 0.91314 0.93631 1.778618

16 0.518546 0.523697 0.504854 0.515699 1.541922

24 0.367219 0.365578 0.365644 0.366147 0.207156

32 0.409625 0.407031 0.397341 0.404666 1.306382

48 0.287009 0.28772 0.277317 0.284015 1.670798

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

128

The only hitch happens around 32 processes. It is probably caused by half of the
MPI processes running on eight physical cores, with the other half occupying the other
16 cores for themselves. This is effectively a heterogeneous situation. Indeed, Listing 5-14
shows what the process pinning looks like:

Listing 5-14. Default Pinning for 32 MPI Processes (Workstation)

[0] MPI startup(): Rank Pid Node name Pin cpu
[0] MPI startup(): 0 225142 book 0
[0] MPI startup(): 1 225143 book 24
[0] MPI startup(): 2 225144 book 1
[0] MPI startup(): 3 225145 book 25
[0] MPI startup(): 4 225146 book 2
[0] MPI startup(): 5 225147 book 26
[0] MPI startup(): 6 225148 book 3
[0] MPI startup(): 7 225149 book 27
[0] MPI startup(): 8 225150 book 4
[0] MPI startup(): 9 225151 book 5
[0] MPI startup(): 10 225152 book 6
[0] MPI startup(): 11 225153 book 7
[0] MPI startup(): 12 225154 book 8
[0] MPI startup(): 13 225155 book 9
[0] MPI startup(): 14 225156 book 10
[0] MPI startup(): 15 225157 book 11
[0] MPI startup(): 16 225158 book 12
[0] MPI startup(): 17 225159 book 36
[0] MPI startup(): 18 225160 book 13
[0] MPI startup(): 19 225161 book 37
[0] MPI startup(): 20 225162 book 14
[0] MPI startup(): 21 225163 book 38
[0] MPI startup(): 22 225164 book 15
[0] MPI startup(): 23 225165 book 39
[0] MPI startup(): 24 225166 book 16
[0] MPI startup(): 25 225167 book 17
[0] MPI startup(): 26 225168 book 18
[0] MPI startup(): 27 225169 book 19
[0] MPI startup(): 28 225170 book 20
[0] MPI startup(): 29 225171 book 21
[0] MPI startup(): 30 225172 book 22
[0] MPI startup(): 31 225173 book 23

Comparing this to Listing 5-5, we get the distribution of the MPI processes among
the virtual processors, as shown in Figure 5-10.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

129

Figure 5-10. Default process pinning (workstation, 32 MPI processes): MPI ranks
(gray upper numbers) mapped upon processor identifiers (black lower numbers)

You could argue that this may not be the fairest mapping of all, but whatever you do,
you will end up with some MPI processes out of 32 running two apiece on some physical
cores. This probably explains the hitch we observed in Table 5-9.

Table 5-9. Intel MPI Library Communication Fabric Selection

I_MPI_DEVICE I_MPI_FABRICS Description

sock tcp TCP/IP-capable network fabrics, such as Ethernet
and InfiniBand (the latter through IP over IB).
Normally the slowest available fabric.

shm shm Shared memory only. Normally the fastest available
fabric, but for very large messages where fast
interconnects may win intranode.

ssm shm:tcp Shared memory + TCP/IP. Good for multicore
clusters built on Ethernet.

rdma dapl Direct Access Programming Library (DAPL).
Good for DAPL-capable network fabrics, such as
InfiniBand or iWarp.

rdssm shm:dapl Shared-memory + DAPL. The default and fastest
choice in most cases. See above for details.

N/A ofa Open Fabric Association (OFA)-capable network
fabric including InfiniBand.* Comparable to DAPL
but with some advantages, like multirail and
checkpoint/restart support.

(continued)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

130

I_MPI_DEVICE I_MPI_FABRICS Description

N/A shm:ofa Shared memory + OFA-capable network fabric. See
above for details.

N/A tmi Tag Matching Interface (TMI)-capable network
fabric including Intel True Scalue Fabric. Includes
shared memory support internally, so there is no
point in using the shm:tmi combination.

Table 5-9. (continued)

Next, you will observe that this application suffers from noticeable load imbalance
and MPI overhead (called “interconnect” in the imbalance diagram; see Figure 5-11).

Figure 5-11. MiniMD trace file in ITAC imbalance diagram (Workstation, 16 MPI processes)

There is something to haul on the MPI side of the equation, at least on the default
workload in.lj.miniMD. We can find out what exactly is contributing to this by
comparing the real and ideal traces, ungrouping the Group MPI and sorting the list by
TSelf (see Figure 5-12).

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

131

Compare the ideal trace in the upper left corner with the real trace in the lower right
corner. The biggest part of the improvement comes from halving the time spent in the
MPI_Wait. Most of the remaining improvement can be attributed to the reduction of
the MPI_Send and MPI_Irecv durations to zero in the ideal trace, not to mention the
MPI_Finalize. Contrary to this, the time spent in the MPI_Allreduce changes only slightly.

By the looks of it, MPI issues might be induced by the load imbalance rather than
intrinsic communication overhead, but we cannot see this right now, for sure. Hence, we
should look into the communication pattern first. This is even more the case because the
relative portion of the MPI time is noticeable on this workload, and the increase of the
time step parameter in the input file to the more representative value of 1000 drives this
portion from 7 percent down to only 5.5 percent, on average (to be continued).

EXERCISE 5-8

analyze and address the load imbalance in miniMd. What causes it? replace
miniMd with your favorite application and address the load imbalance there,
provided this is necessary. What causes the imbalance?

Optimizing MPI Performance
If MPI overhead clearly dominates the overhead caused by the load imbalance, or if you
simply do not see a practical way of addressing the load imbalance within the constraints
of the target application and available time, you can still do well by addressing MPI
performance issues.

Figure 5-12. MiniMD ideal and real traces compared (Workstation, 16 MPI processes)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

132

Classifying the MPI Performance Issues
Several causes may lead to the MPI performance being lower than expected. They can be
attributed roughly to the interaction of the main components of the system that include
the platform, the MPI library, and the application involved.

The MPI library itself may not be optimally tuned for the platform at hand. Even
though great care is taken to tune, for example, the Intel MPI library out of the box for the
most modern Intel architectures, your system may be a bit different or a bit older than
that covered by the default tuning process. In this case, the Intel MPI library can and
should be tuned for the platform as a whole.

Also, the MPI library may not be optimally tuned for the application involved. The
easiest example to show this is an application that is more latency than bandwidth
bound, and thus not the one for which the Intel MPI library was tuned by default.
Another example is an application that uses a specific number of MPI processes and
several collective operations or point-to-point communication patterns that are not well
represented by the Intel MPI Benchmarks used predominantly to tune Intel MPI. These
would include the OSU benchmarks that focus on the network saturation exchanges.14
If your application behaves like this, you may need to re-tune Intel MPI for it.

This relationship can be reversed, as well. Indeed, just as the Intel MPI library may
be considered suboptimally tuned for a particular application, the application itself
may be doing things that are bad for Intel MPI in particular and any MPI in general.
Sometimes this involves interaction with the platform, sometimes it does not. For
example, the MPI library usage of the cache may be competing with the application usage
of it. Your methods will change depending on what you have to address.

If a MPI/platform interaction is involved, an application may be using intrinsically
higher latency (e.g., internode) links for short messages. A high-quality MPI
implementation like Intel MPI may sometimes be able to work around this by, say,
rearranging collective operations so that the local part of the communication is done first.
However, sometimes you will have to help it out.

If, however, the application is doing something intrinsically bad for any MPI, the
main goal is to change the application to do the right thing. One fairly common example
is a well-intentioned desire of some application developers to replace the collective
operations that may not have been optimally tuned in the past by manual, point-to-point
implementations thereof included into the application itself, sometimes in a pretty
implicit form. This may indeed bring some performance improvement, but more often
than not it does quite the opposite. Another example is the much beloved packing
of noncontiguous data types into dense arrays and sending of them across and then
unpacking them at the other end. Again, sometimes this makes sense, but more often it
does not.

Addressing MPI Performance Issues
There is a bit of a chicken-and-egg problem once you turn toward optimizing MPI
communication: what comes under scrutiny first—the platform, the MPI, or the
application? The number of components and complexity of their direct and implicit

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

133

interactions make it relatively difficult to give fast and ready advice for all possible
situations. As a rule of thumb, keep in mind the following priorities:

1. Map the application upon the target platform. This includes,
in particular, selection of the fastest communication fabrics,
proper process layout and pinning, and other settings that affect
the way application and platform interact via MPI mediation.

2. Tune the Intel MPI library for the platform and/or the
application involved. If your application is bandwidth bound,
you are likely to do well with the platform-specific tuning. If your
application differs, you may need to cater to its particular needs.

3. Optimize the application for Intel MPI library. This includes
typical MPI optimizations valid for any MPI implementation
and specific Intel MPI tricks for varying levels of complexity
and expected return on investment.

As usual, you will have to iterate until convergence or timeout. We will go through
these steps one by one in the following sections. However, if in a particular case you
perceive the need for bypassing some steps in favor of others, feel free to do so, but
beware of spending a lot of time addressing the wrong problem first.

You will notice that we differentiate between optimization and tuning. Optimization
is a wider term that may include tuning. Tuning normally concerns changing certain
environment settings that affect performance of the target application. In other words,
optimization may be more intrusive than tuning because deep optimization may
necessitate source code modifications.

Mapping Application onto the Platform
Before you start the process of MPI optimization in earnest, you have to make sure that you
are actually trying to optimize the application configuration that is suitable for the platform
involved. The biggest potential problem here is improper process layout and pinning that
may exercise slow communication paths where fast paths are needed and indeed possible.

Understanding Communication Paths
Intranode communication paths are typically the fastest the closer to the processor
you get, with the shared memory ruling the realm, intranode busses like PCI Express
coming next, and networking equipment bringing up the rear. However, in some cases
the situation may be different, and the seemingly slower paths, like InfiniBand, may
offer better bandwidth (see Figures 5-1 and 5-2), even intranode. You should definitely
make yourself familiar with the quirks of the platform involved via extensive low-level
benchmarking described earlier in this chapter.

A very important aspect of tuning is the selection of a proper communication fabrics
combination for a particular job. Even though Intel MPI will try to choose the fastest
possible fabrics automatically, in certain situations you will have to help it out. This is
particularly true of the heterogeneous installations with the Intel Xeon Phi coprocessor
involved, where there are so many paths to explore.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

134

Beyond that, you have already seen several examples of one simple pinning setting’s
dramatically changing the behavior of certain benchmarks and applications. Generally
speaking, if your application is latency bound, you will want its processes to share as
much of the memory and I/O subsystem paths as possible. This means, in part, that
you will try to put your processes onto adjacent cores, possibly even virtual ones. If
your application is bandwidth bound, you will do better sharing as little of the memory
subsystem paths as possible. This means, in part, putting your MPI processes on different
processor sockets, and possibly even different nodes, if you use a cluster.

Selecting Proper Communication Fabrics
The Intel MPI Library selects reasonable communication fabric(s) by default. You can
always find out what has been selected by setting the environment variable I_MPI_DEBUG
to 2. If the default selection does not look right, you can change this by using one of
the two environment variables, the older I_MPI_DEVICE and the newer I_MPI_FABRICS
environment variables, and their respective relations. Table 5-9 gives a brief overview of
what you can do.

Using Scalable Datagrams

Note that when you use a DAPL-capable fabric, with or without shared memory
involvement, you can select a scalable connectionless DAPL UD transport by setting the
environment variable I_MPI_DAPL_UD to enable. This may make sense if your job runs on
thousands of processes. Pure connection-oriented DAPL will normally be faster below
this threshold.

Specifying a Network Provider

In certain situations, you will have to specify further details of the lower-level networking
configuration. This is most often the case when you have more than one version of the
DAPL stack installed on the system. You will probably have to ask around to determine
whether or not you need to set the I_MPI_DAPL_PROVIDER and I_MPI_DAPL_UD_PROVIDER
variables, and if so, what values to use when.

Using IP over IB

Another trick is to switch over to IP over IB (IPoIB) when using the TCP transport over
InfiniBand. Here is how you can do this:

$ export I_MPI_TCP_NETMASK=ib0 # for IP over IB or
$ export I_MPI_TCP_NETMASK=192.169.0.0 # for a particular subnet

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

135

Controlling the Fabric Fallback Mechanism

A word of caution for benchmarking: Intel MPI library will normally fall back upon the
TCP communication if the primary fabric refuses to work, for some reason. This is a
useful feature out in the field, where running a program reliably may be more important
than running it fast. If you want to control the fallback path, enter this:

$ mpirun –genv I_MPI_FABRICS_LIST dapl,tcp -np <number of processes> ./your_app

However, this feature may be outright misleading during benchmarking. To make
sure you are indeed using the fabric you selected, you may want to disable the Intel MPI
built-in fallback mechanism by setting the environment variable I_MPI_FALLBACK to
disable.

Using Multirail Capabilities

If your installation supports multirail capability, which modern InfiniBand hardware
normally does by providing more than one port and possibly even InfiniBand adapter
per node, you can exploit this over the OFA fabric. Just enter these magic commands
depending on the number of adapters and ports you have:

$ export I_MPI_FABRICS=shm:ofa
$ export I_MPI_OFA_NUM_ADAPTERS=<n> # e.g. 2 (1 by default)
$ export I_MPI_OFA_NUM_PORTS=<n> # e.g. 2 (1 by default)

Detecting and Classifying Improper Process Layout and
Pinning Issues
It is relatively easy to detect signs of improper process layout. Once you fire up ITAC on
a trace file, you may either see exchange volumes spread very unevenly between the
processes in the Message Profile chart (which by itself might be a sign of load imbalance
that we have addressed), or you may notice overly long message lines crisscrossing
substantial portions of the application event timeline. Normally, these latter messages
will also lead to exorbitant wait times that may be picked up by the Performance Assistant
and shown in the respective chart. This kind of problem can be observed both intra- and
internode, as well as in the mixed configurations.

Now, any of these nice pictures will not tell you what is actually causing the observed
issues. You will have to find that out yourself. In general, there are several ways of
attacking this problem once you understand the root cause:

1. Rearrange the MPI processes and/or change their pinning at
job startup to make offending messages go along the fastest
possible communication path. This is the least intrusive
method, which we will concentrate on below.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

136

2. Use virtual process topologies to make MPI rearrange the
process ranks according to the expected intensity of the
interprocess communication. This implies that the MPI
implementation does rearrange processes when asked to
do so. Intel MPI does not do this at the moment, so we will
basically gloss over this approach.

3. Rewrite the application to use a different communication
pattern, or choose an alternative algorithm for the offending
MPI collective operation. This is a more intrusive approach
that we will consider when dealing with the MPI tuning and
application modification later in this chapter.

Process pinning acts one level below the process layout. When you choose the
process layout, you basically tell Intel MPI what node to put any particular MPI process
on. Where exactly it lands on this node is decided by the process pinning. The ways to
detect issues arising from improper process pinning are basically comparable to those
recommended for the process layout investigation.

In the presence of NUMA, you will also have to mind the relationship between
the processes and their memory. If the memory is located “close” to the process (in the
NUMA sense), performance may be substantially better compared to when the process
memory sits a few processor interconnect hops away. In the latter case, you will notice
the platform latency and bandwidth limitations biting in much sooner than expected
from the theoretical estimates and the low-level MPI benchmarking.

Finally, and less obviously, NUMA considerations may apply not only to the memory
but also to the peripherals, like networking cards or interconnect busses. Again, if a card
used for communication by a given process sits next to it in the node hierarchy, respective
communication will most likely be noticeably faster compared to when the card sits
several hops away. Add to this the unavoidable relationship between the memory and the
networking cards, and you will get a pretty mess to clean up.

The overall picture gets even more complicated once you add dynamic processes
to the mix. This includes process spawning and process attachment, especially in the
heterogeneous environments. As it’s still a relatively rarely used set of features, we will
only touch upon them in this book.

Controlling Process Layout
The default process layout induced by the Intel MPI library is the so-called group round
robin. This means that, by default, consecutive MPI ranks are placed on one node until
all the available virtual cores are occupied. Once one node is fully loaded, the next node
is dealt with in the same manner if it is available. Otherwise, the processes wraps around
back to the very first node used, and so on.

There are several ways to control the process layout. The first of them acts a priori,
at the job startup. The other method kicks in when the processes have been started.
It uses the so-called virtual topologies defined by the MPI standard—the communicators
created by using the MPI_Cart_create, MPI_Graph_create, and friends. This latter
method presumes that the underlying MPI implementation indeed rearranges the MPI
process ranks when asked to do so by the application programmer.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

137

Controlling the Global Process Layout

Several methods exist to specify the process layout at startup, with varying degrees of
brevity and precision. The easiest of them is use of the -ppn option and friends, including
the environment variable I_MPI_PERHOST. You set the I_MPI_PERHOST environment
variable to control process layout in the following manner:

$ export I_MPI_PERHOST=1 # makes round-robin distribution
$ export I_MPI_PERHOST=all # maps processes to all virtualCPUs

on a node (default)
$ export I_MPI_PERHOST=allcores # maps processes to all physicalCPUs

on a node

Alternatively, you can use one of the following mpirun options:

-perhost <number> # group round-robin distribution with number of

processes per node
-ppn <number> # "group round-robin", same as '-perhost <number>'
-grr <number> # "group round-robin", same as '-perhost <number>'
-rr # round-robin distribution, same as '-perhost 1'

For example, this will put only two processes on each node:

$ mpirun –ppn 2 -np <number of processes> ./your_app

You will normally want to use the default process layout for pure MPI applications.
For hybrid programs, you may want to decrease the number of processes per node
accordingly, so as to leave enough cores for the OpenMP or another threading library
to use. Finally, and especially in benchmarking the internode rather than the intranode
communication, you will need to go down to one process per node.

Controlling the Detailed Process Layout

More detailed process layout control methods include the so-called long mpirun notation
and the -hostfile, -machinefile, and, in the case of the scalable Hydra process manager
only, the hosts options. Each of them essentially prescribes what processes to put where.
The long notation is probably the most illustrative of all, so we will briefly review it here.
You can look up the rest of the control possibilities in the Intel MPI Library Reference
Manual.15 Note that use of specific process placement is very common in benchmarking
when you really want to make sure rank 0 sits here, rank 1 sits there, and so on. This may
contribute substantially to the reproducibility of the results.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

138

In normal operational mode, you will probably use the long notation more often
when dealing with Intel Xeon Phi co-processor than otherwise, so let’s demonstrate it
in that case (here and elsewhere we split the overly long run strings into several lines by
using the shell backslash/new line notation):

$ mpirun -genv I_MPI_MIC enable \
 -host `hostname` -np 2 ./your_app : \
 -host `hostname`-mic0 -np 16 ./your_app.mic

You can see that the run string is separated into two parts by the colon (:). The first
half prescribes two MPI processes to be started on the host CPU. The second half puts
16 MPI processes upon the Intel Xeon Phi coprocessor connected to this CPU. This
coprocessor conventionally bears the name of the host node plus the extension -mic0.

Setting the Environment Variables at All Levels

Note that you can set environment variables, such as those controlling the process
pinning, either generally for all parts using the -genv option before the first -host option
or individually in each part using the -env option, preferably after the respective -host
option. Here is a good mixed example:

$ mpirun -genv I_MPI_MIC enable \
 -host `hostname` -env I_MPI_PIN_DOMAIN 4 -np 2 ./your_app : \
 -host `hostname`-mic0 -env I_MPI_PIN_DOMAIN 16 -np 4 ./your_app.mic

This particular command will turn on the Intel Xeon Phi coprocessor support, and then
create OpenMP domains of four cores on the host processes and 16 cores on the Intel Xeon
Phi coprocessor.

Controlling the Process Pinning
The Intel MPI library ships in several variants. The main ones are the sequential
optimized library and the multithreaded optimized library. In the former library,
the maximum supported thread level is MPI_THREAD_SINGLE. In the latter library, the
maximum supported thread level is MPI_THREAD_MULTIPLE, with the default being
MPI_THREAD_FUNNELED. More than one library is shipped so as to achieve maximum
possible performance in each use case. Owing to Intel MPI development’s constant work
on optimization, it is not impossible that only the multithreaded library will be included
in the delivery in the future, so we will concentrate on that right away.

The default process pinning imposed by the Intel MPI library is geared toward hybrid
applications. It is roughly described by the following settings:

I_MPI_PIN=on
I_MPI_PIN_MODE=pm
I_MPI_PIN_DOMAIN=auto,compact
I_MPI_PIN_RESPECT_CPUSET=on
I_MPI_PIN_RESPECT_HCA=on
I_MPI_PIN_CELL=unit
I_MPI_PIN_ORDER=compact

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

139

There are several important aspects to keep in mind:

1. Process pinning is turned on by default. You may want to
control this by setting the environment variable I_MPI_PIN
to the values of disable or enable (likewise, off and on, or
false and true, or just 0 and 1, respectively).

2. The default process pinning is imposed by the process
management infrastructure rather than the library itself.
This has some far-reaching ramifications with respect to the
memory and peripherals affinity we are going to consider in
the next section. You probably do not want to interfere with
this unless your job manager starts making trouble here.

3. There are two major methods of controlling the pinning, one
of which focuses on hybrid ones (via the I_MPI_PIN_DOMAIN
and friends) while the other is better suited for pure MPI
programs (via the I_MPI_PIN_PROCESSOR_LIST and friends).
If the former method is used, it normally overrides the latter
if that is used as well.

4. The default I_MPI_PIN_DOMAIN value auto means that the
domain size is defined by the formula size=#cpu/#proc,
where #cpu is the number of virtual processors on the node
and #proc is the number of the MPI processes started on the
node. It is this domain into which all the threads belonging to
the respective MPI process are placed. The qualifier compact
above leads to the domains’ being put as close to each other
as possible in the sense of sharing the processor resources like
caches. If you do not want this, you can try values of scatter
and platform to go for the least possible resource sharing and
the platform-specific thread ordering, respectively.

5. The default pinning takes into account the platform affinity
setting (cf. cpuset command) and the locality of the InfiniBand
networking cards (called host channel adapter, or HCA). It
also prescribes targeting the virtual cores (unit) and compact
domain ordering (compact) in the absence of respective
qualifiers in the values of the I_MPI_PIN_PROCESSOR_LIST and
I_MPI_PIN_DOMAIN environment variables.

There may be small deviations between the description given and the realities of the
default pinning, so you should look into the aforementioned Intel MPI Library Reference
Manual to learn all the details.

If you want to use OpenMP in your program, you better change the value auto to omp,
in which case the size of the domain will be defined by the OpenMP specific means, like
the value of the environment variable OMP_NUM_THREADS or KMP_NUM_THREADS. Likewise,
the pinning inside the domain will be determined according to the OpenMP specific
settings like KMP_AFFINITY, which we will consider in detail in Chapter 6.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

140

Like the I_MPI_PIN_DOMAIN, the I_MPI_PIN_PROCESSOR_LIST has many possible
values. The most practical values are as follows:

$ export I_MPI_PIN_PROCESSOR_LIST=all # all virtual cores
$ export I_MPI_PIN_PROCESSOR_LIST=allcores # all physical cores
$ export I_MPI_PIN_PROCESSOR_LIST=allsocks # all processor sockets

When you start playing with exact process placement upon specific cores, both
I_MPI_PIN_DOMAIN and I_MPI_PIN_PROCESSOR_LIST will help you by providing the
list-oriented, bit mask–based, and symbolic capabilities to cut the cake exactly the way
you want, and if you wish, by using more than one method. You will find them all fully
described in the Intel MPI Library Reference Manual.

Controlling Memory and Network Affinity
There are no special means of controlling memory affinity in the Intel MPI library per
se. However, as mentioned in the previous section, the library facilitates the operating
system doing the right thing by setting the process pinning before the process launch.
Under normal conditions, this means that the processor running a particular process will
be located closely to the memory this process uses. At the same time, it is possible to use
the system and third-party tools to affect the memory affinity (cf. numactl command),
which will be reviewed in Chapter 6.

Contrary to this, networking affinity enjoys some level of support in Intel MPI
Library, as represented by the I_MPI_PIN_RESPECT_HCA setting mentioned here. There
are other settings available, but they are considered experimental at the moment and are
reserved for the MPI implementors until better times.

Example 4: MiniMD Performance Investigation on Xeon Phi
Let’s see what happens to the miniMD application and its mapping on the platform
if we add Intel Xeon Phi coprocessors to the mix. First, you will need to get access to
a machine that has them. In our case, we used the same cluster that happens to have
several Intel Xeon Phi equipped nodes. Running the application on Intel Xeon Phi is
only a bit more complicated than on the normal Xeon. You need to build the executable
program separately for Intel Xeon and for Intel Xeon Phi. In the case of the miniMD, this
is accomplished by the following commands (see also 1build.sh):

$ make intel # for Intel Xeon
$ mv ./miniMD_intel ./miniMD_intel.host
$ make clean
$ make intel KNC=yes # for Intel Xeon Phi
$ mv ./miniMD_intel ./miniMD_intel.mic

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

141

Here, we renamed both executables to keep them separate and distinguishable from
each other and from the plain Xeon executable we may need to rebuild later on. This way
we cannot spoil our executable programs by accident.

Running the program is similar to the workstation:

$ export I_MPI_MIC=enable
$ mpiexec.hydra \
 -env LD_LIBRARY_PATH /opt/intel/impi_latest/mic/lib:$MIC_LD_LIBRARY_PATH \
 -host `hostname`-mic0 -np 16 ./miniMD_intel.mic

These environment settings make sure that the Intel Xeon Phi coprocessor is found
and that the path settings there are correct. If we compare performance of the programs
on Intel Xeon and Intel Xeon Phi at different process counts, we get the results shown
in Table 5-10:

Table 5-10. MiniMD Execution Time on Intel Xeon or Intel Xeon Phi (Seconds, Cluster)

MPI proc. Xeon Xeon Phi Ratio, times

1 8.13 52.72 6.48

2 4.08 26.90 6.60

4 2.08 14.22 6.85

8 1.06 7.02 6.62

16 0.56 3.85 6.92

24 0.38 2.65 6.90

32 0.43 2.04 4.77

48 0.30 1.47 4.82

64 1.38

96 1.12

128 1.18

As usual, we performed three runs at each process count and analyzed the results
for variability, which was all below 1 percent in this case. You have certainly gotten used
to this procedure by now, so that we can skip the details. From this table we can derive
that a Xeon is roughly 6.5 to 6.9 times faster than Xeon Phi for the same number of MPI
processes, as long as Xeon cores are not saturated. Note that this relationship holds for
the core-to-core comparison (one MPI process results) and for MPI-to-MPI comparison
(two through 24 MPI processes). So, you will need between 6.5 and 12 times more Xeon
Phi processes to beat Xeon. Note that although Xeon Phi saturates later, at around
64 to 96 MPI processes, it never reaches Xeon execution times on 48 MPI processes.
The difference is again around six times.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

142

It may be interesting to see how speedup and efficiency compare to each other in the
case of Xeon and Xeon Phi platforms; see Figure 5-13.

Figure 5-13. MimiMD speedup and efficiency on Xeon and Xeon Phi platforms (cluster)

Here, speedup is measured by the left-hand vertical axis, while efficiency goes by the
right-hand one. Looking at this graph, we can draw a number of conclusions:

1. We can see that Xeon efficiency surpasses Xeon Phi’s and goes
very much along the ideal speedup curve until Xeon efficiency
drops dramatically when we go beyond 24 MPI processes and
start using virtual rather than physical cores. It then recovers
somewhat by sheer weight of the resources applied.

2. Since this Xeon Phi unit has 61 physical cores, we observe a
comparable effect at around 61 MPI processes as well.

3. Xeon surpasses Xeon Phi on efficiency until the
aforementioned drop, when Xeon Phi takes over.

4. Xeon Phi becomes really inefficient and stops delivering
speedup growth on a large number of MPI processes. It is
possible that OpenMP threads might alleviate this somewhat.

5. There is an interesting dip in the Xeon Phi efficiency curve at
around 16 MPI processes. What it is attributed to may require
extra investigation.

If you try to use both Xeon and Xeon Phi at once, you will have to not only balance
their respective numbers but also keep in mind that the data traversing the PCI Express
bus may move slower than inside Xeon and Xeon Phi, and most likely will move slower
most of the time, apart from large messages inside Xeon Phi. So, if you start with the
aforementioned proportion, you will have to play around a bit before you get to the nearly

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

143

ideal distribution, not to mention doing the process pinning and other tricks we have
explored. A good spot to start from would probably be 16 to 24 MPI processes on Xeon
and 64 to 96 MPI processes on Xeon Phi.

The required command will look as follows:

$ export I_MPI_MIC=1
$ export I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1u,ofa-v2-scif0
$ mpiexec.hydra -host `hostname` -np 16 ./miniMD_intel.host : \
 -env LD_LIBRARY_PATH /opt/intel/impi_latest/mic/lib:$MIC_LD_LIBRARY_PATH \
 -host `hostname`-mic0 -np 96 ./miniMD_intel.mic

Table 5-11 shows a result of our quick testing on the same platform:

Table 5-11. MiniMD Execution Time on Intel Xeon and Intel Xeon Phi with Local Minima
Highlighted (Seconds, Cluster)

Xeon/Phi 48 64 96 128

8 1.396 1.349 1.140 1.233

16 1.281 1.324 1.133 1.134

24 1.190 1.256 1.137 1.222

48 0.959 1.219 1.157 1.093

We placed Xeon process counts along the vertical axis and Xeon Phi process counts
along the horizontal axis. This way we could obtain a sort of two-dimensional data-
distribution picture represented by numbers. Also, note that we prudently under- and
overshot the guesstimated optimal process count ranges, just in case our intuition was
wrong. And as it happens, it was wrong! We can observe two local minima: one for
the expected 16:96 Xeon to Xeon Phi process count ratio. However, the better global
minimum is located in the 48:48 corner of the table. And if we compare it to the best we
can get on 48 Xeon–based MPI processes alone, we see that Xeon Phi’s presence draws
the result down by more than three times.

One can use ITAC to see what exactly is happening: is this imbalance induced by
the aforementioned Xeon to Xeon Phi core-to-core performance ratio that has not been
taken into account during the data distribution? Or is it by the communication overhead
basically caused by the PCI Express bus? It may be that both effects are pronounced to
the point of needing a fix. In particular, if the load imbalance is a factor, which it most
likely is because the data is likely split between the MPI processes proportional to their
total number, without accounting for the relative processor speed, one way to fight back

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

144

would be to create a bigger number of OpenMP threads on the Xeon Phi part of the
system. Quite unusually, you can control the number of threads using the program’s
own -t option. For example, the following command uses one of the better miniMD
configurations while generating a valid ITAC trace file:

$ mpiexec.hydra -trace -host `hostname` -np 2 ./miniMD_intel.host -t 12 :\
 -env LD_LIBRARY_PATH \ /opt/intel/impi_latest/mic/lib:/opt/intel/itac_
latest/mic/lib:$MIC_LD_LIBRARY_PATH \
 -host `hostname`-mic0 -np 6 ./miniMD_intel.mic -t 32

Even a quick look at the resulting trace file shows that load imbalance caused by the
platform heterogeneity is indeed the root cause of all the evil here, as shown in Figure 5-14.

Figure 5-14. MiniMD trace file in ITAC (cluster, 2 Xeon processes, 6 Xeon Phi processes)

Here, processes P0 and P1 sit on the Xeon, while the rest of them sit on the Xeon Phi.
The difference in their relative speed is very clear from the direct visual comparison of the
corresponding (blue) computing sections. We can discount the MPI_Finalize duration
because it is most likely caused by the ITAC data post-processing. However, the MPI_Send
and MPI_Wait times are out of all proportion.

Further analysis of the data-exchange pattern reveals that two closely knit groups take
four processes each, with somewhat lower exchange volumes between the groups (not
shown). Moreover, a comparison of the transfer rates that can be done by clicking on the
Message Profile and selecting Attribute to show/Maximum Transfer Rate shows that the
PCI Express links achieve at most 0.2 bytes per tick while up to 2 bytes per tick are possible
inside Xeon and up to 1.1 bytes per tick inside Xeon Phi (not shown). This translates to
about 0.23 GiB/s, 2.3 GiB/s, and 1.1 GiB/s, respectively, with some odd outliers.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

145

Hence, we can hope for performance improvement if we do the following:

1. Split the Xeon and Xeon Phi portions into equal-size process
groups (say, 4 vs. 4). This should match the data split
performed by the program because currently the first two
processes of the first group sit on Xeon and the other two are
on Xeon Phi.

2. Use up to 12 times fewer threads on Xeon than on Xeon
Phi (say, 4 vs. 48). This should compensate for the relative
difference in processor speed.

3. Pray that the lower exchange volume in the fringes will not
overload the PCI Express links. The difference in volumes
(25 MiB vs. 17 MiB) is, however, rather small and may not suffice.

Indeed, if we follow these recommendations and change the run string accordingly,
we get a substantial reduction in the program execution time (from 1.58 seconds to
1.26 seconds) despite the fact that we used fewer cores on Xeon and the same number of
cores on Xeon Phi. This is, however, only the beginning of the journey, because we are
still far away from the best Xeon-only result obtained so far (0.3 seconds; see Table 5-10).
Given the prior treatise in this book, and knowing how to deal with the load imbalance
in general, you can read other sources dedicated to Intel Xeon Phi programming if you
want to pursue this path.16 If, after that, the heterogeneity still shows through the less than
optimal data-exchange paths, especially across the PCI Express lane, you can address this
in other ways that we will discuss further along in this chapter.

EXERCISE 5-9

Find out the optimal Mpi process to the openMp thread ratio for miniMd using a
heterogeneous platform. Quantify this ratio in comparison to the relative component
speeds. how much of the effect can be attributed to the computation and
communication parts of the heterogeneity?

Example 5: MiniGhost Performance Investigation
Let’s take on a beefier example this time. Instead of going for the realistic but relatively small
workloads we used in the case of miniFE and miniMD earlier, we’ll deal with the miniGhost
from the NERSC-8 Trinity benchmark set.17 This finite difference calculation will nicely
complement the finite element and molecular dynamics programs we have considered
so far. However, for Trinity, being a record-setting procurement, even the smallest
configuration of its miniGhost benchmark will certainly overwhelm our workstation, so we
will first have to reduce the size of the workload in order to make sense of it.

Using the benchmarking methods described earlier, you will find that setting
the domain size to 200 cubed will do the trick. Moreover, you will learn that the best
performance is achieved by taking 12 processes per node and running four OpenMP
threads per process, and by splitting the task into 1:3:4 slabs in the X, Y, and Z directions,

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

146

respectively. By the way, for the program to build, you will have to change the Makefile
to reference Intel compilers, and also add the -qopenmp flag to the OPT_F and add the
-lifcore library to the LIBS variables there. It is quite usual that some minor adjustments
are necessary.

Long story made short, here is the run string we used for the workstation launch:

$ export OMP_NUM_THREADS=4
$ mpirun -np 12 ./miniGhost.x --scaling 1 --nx 200 --ny 200 --nz 200
--num_vars 40 \

 --num_spikes 1 --debug_grid 1 --report_diffusion 21 --percent_sum 100 \
 -- num_tsteps 20 --stencil 24 --comm_method 10 --report_perf 1 --npx 1

--npy 3 --npz 4 \
 --error_tol 8

Built-in statistics output shows the role distribution among the top three MPI calls,
as illustrated in Listing 5-15:

Listing 5-15. MiniGhost Statistics (Workstations, 12 MPI Processes, 4 OpenMP Threads
per Process)

[time] [calls] <%mpi> <%wall>
MPI_Allreduce 3.17148 9600 54.74 3.47
MPI_Waitany 2.23135 1360 38.51 2.44
MPI_Init 0.371742 12 6.42 0.41

High relative cost of the MPI_Allreduce makes it a very attractive tuning target.
However, let us try the full-size workload first. Once we proceed to run this benchmark
in its “small” configuration on eight cluster nodes and 96 MPI processes, we will use the
following run string inspired in part by the one we used on the workstation (here, we
highlighted deviations from the original script run_small.sh):

$ export OMP_NUM_THREADS=4
$ export I_MPI_PERHOST=12
$ mpirun -np 96 ./miniGhost.x --scaling 1 --nx 672 --ny 672 --nz 672
--num_vars 40 \

 --num_spikes 1 --debug_grid 1 --report_diffusion 21 --percent_sum 100 \
 -- num_tsteps 20 --stencil 24 --comm_method 10 --report_perf 1 --npx 4

--npy 4 --npz 6 \
 --error_tol8

The irony of benchmarking in the context of a request for proposals (RFP) like
NERSC-8 Trinity is that we cannot change the parameters of the benchmarks and may
not be allowed to change the run string, either. This means that we will probably have to
go along with the possibly suboptimal data split between the MPI processes this time;
although looking at the workstation results, we would prefer to leave as few layers along
the X axis as possible. However, setting a couple of environment variables upfront to ask
for four instead of one OpenMP threads, and placing 12 MPI processes per node, might

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

147

be allowed. Thus, our initial investigation did influence the mapping of the application
to the platform, and we know that we may be shooting below the optimum in the data-
distribution sense.

Further, it is interesting to see what is taking most of the MPI time now. The built-in
statistics show a slightly different distribution; see Listing 5-16:

Listing 5-16. MiniGhost Statistics (Cluster, 8 Nodes, 12 MPI Processes per Node,
4 OpenMP Threads per Process)

[time] [calls] <%mpi> <%wall>
MPI_Init 149.771 96 44.95 4.17
MPI_Allreduce 96.3654 76800 28.92 2.68
MPI_Waitany 79.7788 17920 23.94 2.22

The sharp hike in relative MPI_Init cost is probably explained by the presence of the
relatively slower network. It may also be explained by all the threads being busy when the
network stack itself needs some of them to process the connection requests. Whatever the
reason, this overhead looks abnormally high and certainly deserves further investigation.

This way or another, the MPI_Init, MPI_Allreduce, and MPI_Waitany take about 99
percent of all MPI time, between them. At least the first two calls may be amenable to the
MPI-level tuning, while the last one may indicate some load imbalance (to be continued).

EXERCISE 5-10

Find the best possible mapping of your favorite application on your favorite platform.
do you do better with the virtual or the physical cores? Why?

Tuning the Intel MPI Library
Once you are certain that the application is properly mapped onto the platform, it makes
sense to turn to the way the MPI Library is exploiting this situation. This is where MPI
tuning for the platform comes into play. As mentioned above, you are likely to go this way
if your application falls into the wide class of bandwidth-bound programs. In the case of
latency-bound applications, you will probably want to use the application-specific tuning
described later in this section.

Tuning Intel MPI for the Platform
There are two ways to tune Intel MPI for the platform: automatically by using the mpitune
utility or manually.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

148

If you elect to use the mpitune utility, run it once after installation and each time after
changes in cluster configuration. The best configuration of the automatically selected
Intel MPI tuning parameters is recorded for each combination of the communication
device, the number of nodes, the number of MPI ranks, and the process layout. The
invocation string is simple in this case:

$ mpitune

Be aware that this can take a lot of time, so it may make sense to run this job
overnight. Note also that for this mode to work, you should have the writing permission
for the etc subfolder of the Intel MPI Library installation directory, or use the -od option
to select a different output directory.

Once the mpitune finishes, you can reuse the recorded values in any run by adding
the -tune option to the normal mpirun invocation string; for example:

$ mpirun –tune –np 32 ./your_app

You can learn more about the mpitune utility in the Tutorial: MPI Tuner for Intel MPI
Library for Linux* OS.18 If you elect to do the tuning manually, you will have to dig into the
MPI internals quite a bit. There are several groups of tuning parameters that you will need
to deal with for every target fabric, number of processes, their layout, and the pinning.
They can be split into point-to-point, collective, and other magical settings.

Tuning Point-to-Point Settings

Point-to-point operations form the basis of most MPI implementations. In particular,
Intel MPI uses point-to-point communication extensively for the collective and (however
counterintuitive this may seem) one-sided communications. Thus, the tuning should
start with the point-to-point settings.

Note ■ you can output some variable settings using the I_MPI_DEBUG value of 5.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

149

Adjusting the Eager and Rendezvous Protocol Thresholds
MPI implementations normally support two communication protocols:

•	 Eager protocol sends data immediately regardless of the
availability of the matching receive request on the other side.
This protocol is used normally for short messages, essentially
trading better latency on the sending side for the danger of having
to allocate intermediate buffers on the receiving side when the
respective receive operation has not yet been posted.

•	 Rendezvous protocol notifies the receiving side on the data
pending, and transfers it only once the matching receive request
has been posted. This protocol tries to avoid the cost of the
extra buffer allocation on the receiving side at the sacrifice of,
typically, two extra short messages used for the notification and
acknowledgment.

The protocol switchover point is controlled by the environment variable
I_MPI_EAGER_THRESHOLD. Below and at this integral value that currently defaults to
256 KiB, the eager protocol is used. Above it, the rendezvous protocol kicks in. As a rule
of thumb, the longer the messages you want to send immediately, the higher will be your
optimal eager threshold.

Changing DAPL and DAPL UD Eager Protocol Threshold
Specifics of the Intel MPI Library add another, lower-level eager/rendezvous protocol
threshold to the DAPL and DAPL UD communication paths. This has to do with how
messages are sent between the processes using Remote Direct Memory Access (RDMA)
methods. Basically, the lower-level eager protocol tries to avoid the cost of extra memory
registration, while the rendezvous protocol goes for this registration to speed up the
resulting data transfer by bypassing any intermediate buffers.

As in the case of the high-level eager threshold, each of the fabrics has its own threshold,
called I_MPI_DAPL_DIRECT_COPY_THRESHOLD and I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD,
respectively. When setting these environment variables, you will have to balance the
desire to send messages off immediately with the increase in memory consumption
associated with the raised value of the respective threshold.

Bypassing Shared Memory for Intranode Communication
It may happen on certain platforms that fabric performance overtakes the shared memory
performance intranode. If it happens at all, it normally occurs at around 350 KiB message
size. If your preliminary benchmarking reveals this situation, set the environment
variable I_MPI_SHM_BYPASS to enable. This will make Intel MPI use the DAPL or TCP
fabrics, if selected, for message sizes larger than the value of the environment variable
I_MPI_INTRANODE_EAGER_THRESHOLD that currently defaults to 256 KiB for all fabrics
but shm.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

150

Bypassing the Cache for Intranode Communication
As a final note on point-to-point thresholds, there is a way to control what variant of
the memory copying is used by the shared memory communication path. If you set the
environment variable I_MPI_SHM_CACHE_BYPASS to enable, Intel MPI Library will use
the normal, cache-mediated memory for messages below the values of the I_MPI_SHM_
CACHE_BYPASS_THRESHOLDS and special non-temporal memory copy for larger messages.
If activated, this feature may prevent the so-called cache pollution by data that
will be pushed out of cache by additional incoming message segments anyway.

This last is a fairly advanced control, so you should approach it with care and read
the respective part of the Intel MPI Library Reference Manual. The default values set to
half of the size of L2 cache are normally adequate, but you may want to set them to the
size of the L1 cache if you feel adventurous; for example:

$ export I_MPI_SHM_CACHE_BYPASS_THRESHOLDS=16384,16384,-1,16384,-1,16384
$ mpirun –np 2 –genv I_MPI_FABRICS shm IMB-MPI1 PingPong

Choosing the Best Collective Algorithms

Now that you are sure of your fabric selection and the most important point-to-point
thresholds, it is the right time to proceed to tuning the collective operations. Certainly,
you should make a list of operations that are relevant to your task. Looking into the built-
in statistics output by the Intel MPI Library is a good first step here.

As it happens, Intel MPI Library provides different algorithms for each of the many
MPI collective operations. Each of these algorithms has its strengths and weaknesses,
as well as its possible limitations on the number of processes and message sizes it can
sensibly handle.

Note ■ you can output default collective settings using the I_MPI_DEBUG value of 6.

You can use the environment variables named after the pattern I_MPI_
ADJUST_<opname>, where the <opname> is the name of the respective collective operation.
This way you come to the variable names like I_MPI_ADJUST_ALLREDUCE.

If we consider the case of the MPI_Allreduce a little further, we will see that there are
no less than eight different algorithms available for this operation alone. Once again, the
Intel MPI Library Reference Manual is your friend. Here, we will only be able to give some
rules of thumb as to the algorithm selection by their class. To see how this general advice
fits your practical situation, you will have to run a lot of benchmarking jobs to determine
where to change the algorithm, if at all. A typical invocation string looks as follows:

$ mpirun -genv I_MPI_ADJUST_ALLREDUCE 4 -np 16 IMB-MPI1 Allreduce

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

151

You can certainly use any other benchmark, or even application, you want for this
tuning. We will stick to the IMB here, out of sheer weight of experience. This way or
another, you will end up with pretty fancy settings of the following kind that will have to
be put somewhere (most likely, a configuration file):

$ export I_MPI_ADJUST_ALLGATHER= \
 '1:4-11;4:11-15;1:15-27;4:27-31;1:31-32;2:32-51;3:51-5988;4:5988-13320'

Well, it’s your choice. Now, going through the most important collective operations
in alphabetical order, in Table 5-12, we issue general recommendations based on
extensive research done by Intel engineers.19 You should take these recommendations
with a grain of salt, for nothing can beat your own benchmarking.

Table 5-12. Intel MPI Collective Algorithm Recommendations

Operation Algorithm Small
msgs

Large
msgs

Rec.
PPN

MPI_Allgather (1) Recursive Doubling + + 1*

(2) Bruck’s + + 1*

(3) Ring + any

(4) Topological Gatherv/Bcast + >1

MPI_Allreduce (1) Recursive Doubling +

(2) Rabenseifner’s + +

(3) Reduce/Bcast +** 1

(4) Topological Reduce/Bcast +** >1

(5) Binomial Tree + 1

(6) Topological Binomial Tree + >1

(7) Shumilin’s Ring +**

(8) Ring +

MPI_Alltoall (1) Bruck’s +

(2) Isend/Irecv +

(3) Pairwise Exchange +

(4) Plum’s + +

(continued)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

152

Operation Algorithm Small
msgs

Large
msgs

Rec.
PPN

MPI_Barrier (1) Dissemination N/A N/A 1

(2) Recursive Doubling N/A N/A 1

(3) Topology Dissemination N/A N/A >1

(4) Topology Recursive Doubling N/A N/A >1

(5) Binominal Gather/Scatter N/A N/A 1

(6) Topology Binominal
Gather/Scatter

N/A N/A >1

MPI_Bcast (1) Binomial Tree + 1

(2) Recursive Doubling + + 1

(3) Ring + 1

(4) Topological Binomial Tree + >1

(5) Topological Recursive Doubling + + >1

(6) Topological Ring + >1

(7) Shumilin’s +**

MPI_Gather & (1) Binomial Tree + + 1

MPI_Scatter (2) Topological Binomial Tree + + >1

(3) Shumilin’s +

MPI_Reduce (1) Shumilin’s +** 1

(2) Binomial Tree + 1

(3) Topological Shumilin’s +** >1

(4) Topological Binomial Tree + >1

(5) Rabenseifner’s + + 1

(6) Topological Rabenseifner’s + + >1

*Only for large messages, otherwise any PPN.

**For buffers larger than the number of processes times the algorithm specific segment size.

Table 5-12. (continued)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

153

Tuning Intel MPI Library for the Application
Again, you can tune Intel MPI for a particular application either automatically using the
mpitune utility or manually. The mpitune invocation string is a little more complicated in
this case (the use of backslashes and quotes is mandatory):

$ mpitune --application \"mpiexec -np 32 ./my_app\" --of ./my_app.conf

This way you can tune Intel MPI for any kind of MPI application by specifying its
command line. By default, performance is measured as the inverse of the program
execution time. To reduce the overall tuning time, use the shortest representative
application workload (if applicable). Again, this process may take quite a while to
complete.

Once you get the configuration file, you can reuse it any time in the
following manner:

$ mpirun -tune ./my_app.conf -np 32 ./my_app

Note that here you not only mention the file name but also use the same number of
processes and generally the same run configuration as in the tuning session. (You can
learn more about this tuning mode in the aforementioned tuning tutorial.)

If you elect to tune Intel MPI manually, you will basically have to repeat all that you
did for the platform-specific tuning described in the previous section, with the exception
of using your application or a set of representative kernels instead of the IMB for the
procedure. Certainly, you will do better instead by addressing only those point-to-point
patterns and collective operations at the number of processes, their layout and pinning,
and message sizes that are actually used by the target application. The built-in statistics
and ITAC output will help you in finding out what to go for first.

Using Magical Tips and Tricks
Sometimes you will have to foray beyond the normal tuning of the point-to-point and
collective operations. Use the following expert advice sparingly: the deeper you get into
this section, the closer you are moving toward Intel MPI open heart surgery.

Disabling the Dynamic Connection Mode

Intel MPI establishes connections on demand if the number of processes is higher than
64. This saves some time at startup and may diminish the total number of connections
established, so it is an important scalability feature. However, it may also lead to certain
delays during the first exchange that require a new connection to be set up. Set the
environment variable I_MPI_DYNAMIC_CONNECTION to disable in order to establish all
connections upfront.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

154

Applying the Wait Mode to Oversubscribed Jobs

Sometimes applications do a lot of I/O and may profit from running in the so-called
oversubscribed mode—that is, in the mode with the number of processes that exceeds
the number of the available cores. In these rare cases, try to set the environment variable
I_MPI_WAIT_MODE to enable so as to make MPI processes wait for an interrupt to be
delivered to them instead of polling the fabrics for the new messages. Even though Intel
MPI possesses a rather elaborate back-off strategy in the default polling mode, going for
the outright wait mode (also called event-driven mode) may bring a quantum leap in
performance under some circumstances.

Fine-Tuning the Message-Passing Progress Engine

Deep inside any MPI implementation there sits a vital component called the progress
engine. It is this component that actually pushes bytes into the fabric layers and makes
sure they proceed to their respective destinations, reach them, and are put into the user
buffers on the other side.

Typically, this component is called (or, in implementor speak, “kicked”) every
time there is a substantial call into the MPI Library that can be implicated in moving
data across the wires. Examples of this class include the MPI_Send, MPI_Recv, MPI_Wait,
MPI_Test, MPI_Probe, all collective operations, their multiple friends and relations, and
some other calls. This approach is called synchronous invocation of the progress engine.
On a level with this, an MPI implementation can offer asynchronous capabilities by, say,
running part of the progress engine in a background thread.

This way or another, this component is faced with a difficult existential dilemma.
On one hand, it needs to be reactive to new messages coming and going, in order to
achieve acceptable latency. On the other hand, it should try to avoid using up too much
of the processor’s time, for this would make the overall system performance go down.
To address this dilemma, various MPI implementations offer so-called back-off strategies
that try to find the right balance between reactivity and resource consumption. Of course,
there are multiple settings that control this strategy, and the default tuning tries to select
them so that a typical application will do alright.

Intel MPI has elaborate and finely tuned back-off mechanisms. Should you become
dissatisfied with the default settings, however, try to increase the I_MPI_SPIN_COUNT
value from the default of 1 for one process per node and 250 for more than one process
per node. This will change the number of times the progress engine spins, waiting for a
message or connection request, before the back-off strategy kicks in. Higher values will
favor better latency, to a degree. If you raise this value too much, you will start burning
too many CPU cycles, polling the memory needlessly.

If you run more than one process per node that use the shared memory channel for
data exchange, try to increase the I_MPI_SHM_SPIN_COUNT value above its default of 100.
This may benefit multicore platforms when the application uses topological algorithms
for collective operations.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

155

Reducing the Pre-reserved DAPL Memory Size

Large-scale applications may experience memory resource pressures due to a big number
of pre-allocated buffers pinned to the physical memory pages. If you do not want to go for
the DAPL UD mode, use the environment variable I_MPI_DAPL_BUFFER_NUM to decrease
the number of buffers for each pair in a process group. The default value is 16.

If you increase this value, you may notice better latency on short messages (see the
low-level eager protocol threshold mentioned earlier). In addition, if your application
mostly sends short messages, you can try to reduce the DAPL buffer size by changing the
environment variable I_MPI_DAPL_BUFFER_SIZE. The default value is 23808.

Finally, you can try to set the environment variable I_MPI_DAPL_SCALABLE_PROGRESS
to enable for high process count. This is done automatically for more than 128
processes, though.

What Else?

Here is an assorted mix of tips and tricks you may try in your spare time:

•	 I_MPI_SSHM=1 Turns on the scalable shared memory path, which
might be useful on the latest multicore Intel Xeon processors and
especially on the many-core Intel Xeon Phi coprocessor.

•	 I_MPI_OFA_USE_XRC=1 Turns on the extensible reliable
connection (XRC) capability that may improve scalability for
several thousand nodes.

•	 I_MPI_DAPL_UD_RDMA_MIXED=1 Makes DAPL UD use
connectionless datagrams for short messages and connection-
oriented RDMA for long messages.

•	 I_MPI_DAPL_TRANSLATION_CACHE_AVL_TREE=1 May be useful for
applications sending a lot of long messages over DAPL.

•	 I_MPI_DAPL_UD_TRANSLATION_CACHE_AVL_TREE=1 Same for DAPL UD.

Of course, even this does not exhaust the versatile toolkit of tuning methods
available. Read the Intel MPI documentation, talk to experts, and be creative. This is what
this work is all about, right?

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

156

Example 5 (cont.): MiniGhost Performance Investigation
Figure 5-15 shows the split of the MPI and load imbalance issues in the breakdown mode.

So, the total MPI overhead is evenly split between the MPI_Allreduce and the
MPI_Waitany. Most of the MPI_Allreduce overhead is induced by load imbalance on small
messages, while most of the MPI_Waitany overhead is caused by actual communication
that we will analyze later on. We can assume that the picture will be qualitatively the same
on the cluster. So, if you decide to address the MPI_Allreduce performance right away,
which is not recommended, you can do some benchmarking at the target node counts for
all MPI_Allreduce algorithms to see whether there is anything to haul there. Given several
MPI processes per node and short messages dominating the MPI_Allreduce overhead,
topology-aware algorithm number 6 is going to be your first preference (see Table 5-12).
Such a trial is very easy to perform. Just enter the following command before the launch:

$ export I_MPI_ADJUST_ALLREDUCE=6

A quick trial we performed confirmed that algorithm number 6 was among the best
for this workload. However, algorithms 1 and 2 fared just as well and were only 0.2 seconds
below the default one. Hence, most likely, optimization of the program source code
aimed at reduction of the irregularity of the exchange pattern will bring more value if
done upfront here. That may include both load imbalance correction and tuning of the
communication per se, because they may be interacting detrimentally with each other
(to be continued).

Figure 5-15. MiniGhost trace file in ITAC imbalance diagram breakdown mode
(Workstation, 12 MPI processes, 4 OpenMP threads)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

157

EXERCISE 5-11

try your hand at both platform- and application-specific intel Mpi tuning, using your
favorite platform and application. gauge the overall performance improvement.
identify the cases where platform-specific tuning goes against the application-
specific one.

Optimizing Application for Intel MPI
At last, it is time to turn to the application itself. That is, unless you noticed much earlier
a grave and apparent problem that went against all good MPI programming practices. In
that case, you may want to try and fix that problem first, provided you make double sure it
is that problem that is causing trouble—as usual.

You can sensibly apply the advice contained in this section only if you have access to
the application source code. It may be way out of reach in most industrial situations in the
field. This situation is, however, different if you are using open-source software or have
been graciously granted a source code license to a piece of closed-source code. Thus, we
are talking about real optimization rather than tuning here, and real optimization takes
time—a luxury that you most likely will not have under real conditions.

There are quite a few things that can go wrong. This book is not a guide to MPI
programming per se, so we will be brief and will focus on the most important potential issues.

Avoiding MPI_ANY_SOURCE
Try to make your exchanges deterministic. If you have to use the MPI_ANY_SOURCE, be
aware that you may be paying quite a bit on top for every message you get. Indeed,
instead of waiting on a particular communication channel, as prescribed by a specific
receive operation, in the case of MPI_ANY_SOURCE the MPI Library has to poll all existing
connections to see whether there is anything matching on input. This means extensive
looping and polling, unless you went for the wait mode described earlier. Note that use of
different message tags is not going to help here, because the said polling will be done still.

Generally, all kinds of nondeterminism are detrimental and should be avoided,
if possible. One way this cannot be done is when a server process distributes some
work among the slave processes and waits to them to report back. However the work is
apportioned, some will come back earlier than others, and enforcing a particular order
in this situation might slow down the overall job. In all other cases, though, try to see
whether you can induce order and can benefit from doing that.

Avoiding Superfluous Synchronization
Probably the worst thing application programmers do, over and over again, is superfluous
synchronization. It is not uncommon to see, for example, iterations of a computational
loop separated by an MPI_Barrier. If you program carefully and remember that MPI
guarantees reliable and ordered data delivery between any pair of processes, you can

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

158

skip this synchronization most of the time. If you are still afraid of missing things or
mixing them up, start using the MPI message tags to instill the desired order, or create a
communicator that will ensure all messages sent within it will stay there.

Another aspect to keep in mind is that, although collective operations are not
required to synchronize processes by the MPI standard (with the exception of the
aforementioned MPI_Barrier, of course), some of them may do this, depending on the
algorithm they use. This may be a boon in some cases, because you can exploit this
side effect to your ends. You should avoid doing so, however, because if the algorithm
selection is changed for some reason, you may end up with no synchronization point
where you implied one, or vice versa.

About the only time when you may want to introduce extra synchronization points is
in the search for the load imbalance and its sources. In that case, having every iteration or
program stage start at approximately the same time across all the nodes involved may be
beneficial. However, this may also tilt the scale so that you will fail to see the real effect of
the load imbalance.

Using Derived Datatypes
There are a few more controversial topics besides the one related to the derived datatypes
(one word, as it appears in the MPI standard). As you may remember, these are opaque
MPI objects that basically describe the data layout in memory. They can be used almost
without limitation in any imaginable data-transfer operation in MPI.

Unfortunately, they suffer from a bad reputation. In the early days of MPI, the
implementors could not always make data transfer efficient in the presence of the
derived datatypes. This may still be the case now in some implementations, especially
if the datatype involved is, well, too involved. Owing to this mostly ungrounded fear,
application programmers try to use contiguous data buffers; and if they have to work with
noncontiguous data structures, they do the packing in and out themselves by hand or by
using the MPI_Pack/MPI_Unpack calls.

For most of the time, though, this is a thing of the past. You can actually win quite
a bit by using the derived datatypes, especially if the underlying MPI implementation
provides native support for them. Modern networks and memory controllers can do
scatter, gather, and some other manipulations with the data processed on the fly, without
any penalty you would need to take care of at this level. Moreover, buffer management
done inside the MPI library, as well as packing and unpacking if that ever becomes
necessary, is implemented using techniques that application programmers may simply
have no everyday access to. Of course, if you try hard enough, you will write your own
specific memory copy utility or a datatype unrolling loop that will do better than the
generic procedure used by your MPI implementation. Before you go to this trouble,
however, make sure you prove it’s worth doing.

Using Collective Operations
Another rudimentary fear widespread among application programmers is that of
suboptimal collective operations. Especially, older codes will go to great pains
tore-implement all collective operations they need on the basis of the earlier status of
MPI implementations.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

159

Again, this is mostly a thing of the past. Unless you know a brilliant new algorithm
that beats, hands down, all that can be extracted by the MPI tuning described earlier, you
should try to avoid going for the point-to-point substitute. Moreover, you may actually
win big by replacing the existing homegrown implementations with an equivalent MPI
collective operation. There may be exceptions to this recommendation, but you will have
to justify any efforts very carefully in this case.

Betting on the Computation/Communication Overlap
Well, don’t. Most likely you will lose out. That is, there is some overlap in certain cases,
but you have to measure its presence and real effect before you can be sure. Let’s look
into a couple of representative cases where you can hope to get something in return for
the effort of converting mostly deterministic blocking communication into the controlled
chaos of nonblocking transfers (again, this is the way the MPI standard decided to refer to
these operations).

This method may be effective if you notice that blocking calls make the program
stall and you have eliminated all other possible reasons for this happening. That is, your
program is soundly mapped onto the platform, is well load balanced, and runs on top of
a tuned MPI implementation. If in this case you still see that some processes stall in vastly
premature receive operations; or, on the contrary, you can detect an inordinately high
amount of unexpected receives (that is, messages arrive before the respective receive
operation is posted); or if your sending processes are waiting for the data to be pumped
out, you may need to act. A particular case of unnecessary serialization that happens
when processes wait for each other in turn is well described in the Tutorial: Detecting and
Removing Unnecessary Serialization.20

The replacement per se is rather trivial, at least at first. Every blocking send operation
is replaced by its nonblocking variant, like MPI_Send by MPI_Isend or MPI_Recv by
MPI_Irecv, with the closing call like MPI_Wait or MPI_Test issued later in the program.
You can also group several operations by using the MPI_Waitall, MPI_Waitsome, and
MPI_Waitany, and their MPI_Test equivalents. Here, you will do well by ordering the requests
passed to these calls so that those most likely to be completed first come first. Normally,
you want to post a receive operation just in time for the respective send operation to
match it on the other side. You may even go for special variations on the send operations,
like buffered, synchronous, or ready sends, in case this is warranted by your application
and it brings a noticeable performance benefit. This can be done with or without making
them nonblocking, by the way. Moreover, you can even generate so-called generic
requests or use persistent operations to represent these patterns, provided doing so
brings the desired performance benefit.

What is important to understand before you dive in is that the standard MPI_Send can
be mapped onto any blocking send operation depending on the message size, internal
buffer status in the MPI library, and some other factors. Most often, small messages
will be sent out eagerly in order to return control back to the application as soon as
possible. To this end, even a copy of the user buffer may be made, as in the buffered
send, if the message passing machinery appears overloaded at the moment. In any case,
this is almost equivalent to a nonblocking send operation, with the very next MPI call
implicated in the data transfer in any way actually kicking the progress engine and doing
what an MPI_Isend and/or MPI_Test would have done at that moment. Changing this
blocking operation to a nonblocking one would probably be futile, in many cases.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

160

Likewise, large messages will probably be sent using the rendezvous protocol
mentioned above. In other words, the standard send operation will effectively become
a synchronous one. Depending on the MPI implementation details, this may or may
not be equivalent to just calling the MPI_Ssend. Once again, in absence of a noticeable
computation/communication overlap, you will not see any improvement if you replace
this operation with a nonblocking equivalent.

More often than not, what does make sense is trying to do bilateral exchanges
by replacing a pair of sends and receives that cross each other by the MPI_Sendrecv
operation. It may happen to be implemented so that it exploits the underlying hardware
in a way that you will not be able to reach out for unless you let MPI handle this transfer
explicitly. Note, however, that a careless switch to nonblocking communication may
actually introduce extra serialization into the program, which is well explained in the
aforementioned tutorial.

Another aspect to keep in mind is that for the data to move across, something or
someone—in the latter case, you—will need to give the MPI library a chance to help you.
If you rely on asynchronous progress, you may feel that this matter has been dealt with.
Actually, it may or it may not have been, and even if it has been addressed, doing some
relevant MPI call in between, be aware that even something apparently pointless, like
an MPI_Iprobe for a message that never comes, may speed up things considerably. This
happens because synchronous progress is normally less expensive than asynchronous.

Once again, here the MPI implementation faces a dilemma, trading latency for
guarantee. Synchronous progress is better for latency, but it cannot guarantee progress
unless the program issues MPI calls relatively often. Asynchronous progress can provide
the necessary guarantee, especially if there are extra cores or cards in the system doing
just this. However, the context switch involved may kill the latency. It is possible that in
the future, Intel MPI will provide more controls to influence this kind of behavior. Stay
tuned; until then, be careful about your assumptions and measure everything before you
dive into chaos.

Finally, believe it or not, blocking transfers may actually help application processes
self-organize during the runtime, provided you took into account their natural desires.
If your interprocess exchanges are highly regular, it may make sense to do them in a certain
order (like north-south, then east-west, and so on). After initial shaking in, the processes
will fall into lockstep with each other, and they will proceed in a beautifully synchronized
fashion across the computation, like an army column marching to battle.

Replacing Blocking Collective Operations by MPI-3
Nonblocking Ones
Intel MPI Library 5.0 provides MPI-3 functionality while maintaining substantial binary
compatibility with the Intel MPI 4.x product line that implements the MPI-2.x standards.21
Thus, you can start experimenting with the most interesting features of the MPI-3
standard right away. We will review only the nonblocking collective operations here, and
bypass many other features.22 In particular, we will not deal with the one-sided operations
and neighborhood collectives, for their optimization is likely to take some time yet on the
implementor side. Of course, if you want to experiment with these new features, nobody
is going to stop you. Just keep in mind that they may be experimenting with you in return.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

161

Contrary to this, nonblocking collective operations are relatively mature, even
if their tuning may still need to be improved. You can replace any blocking collective
operation (including, surprisingly, the MPI_Barrier) by a nonblocking version of it, add a
corresponding closing call later in the program, and enjoy—what?

Let’s see in more detail what you may hope to enjoy. First, your program will
become more complicated, and you will not be able to tell what is happening with the
precision afforded by the blocking collectives. This is a clear downside. Even in the case
of the MPI_Ibarrier, you will not be able to ascertain when exactly the synchronization
happens, whether in the MPI_Ibarrier call itself (which is possible) or in the matching
closing call (which is probably desired). All depends on the algorithm selected by the
implementation, and this you can control only externally, if at all.

Next, tuning of the settings for the blocking collectives may not influence the
nonblocking ones and vice versa. Indeed, tuning of the nonblocking operations may not
be controllable by you at this moment, at all. In addition, the MPI standard specifically
clarifies that the blocking and nonblocking settings may be independent of each other, for
the sake of making proper choices on the actual performance benefits observed. This is
another clear downside.

On the bright side, you can use more than one nonblocking collective at a time over
any communicator, and hope to exploit the computation/communication overlap in as
much as is supported by the MPI library involved. In the Intel MPI Library, you may profit
from setting the environment variable MPICH_ASYNC_PROGRESS to enable.

EXERCISE 5-12

if your application fares better with the Mpi-3 nonblocking collectives inside, let us
know; we are looking for good application examples to justify further tuning of this
advanced Mpi-3 standard feature.

Using Accelerated MPI File I/O
If your program relies on MPI file I/O, you can speed it up by telling Intel MPI what
parallel file system you are using. If this is PanFS,23 PVFS2,24 or Lustre,25 you may obtain
noticeable performance gain because Intel MPI will go through a special code path
designed for the respective file system. To achieve this, enter the following commands:

$ export I_MPI_EXTRA_FILE_SYSTEM=on
$ export I_MPI_EXTRA_FILE_SYSTEM_LIST=panfs,pvfs2,lustre

You can mention only those file systems that interest you in the second line, of course.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

162

Example 5 (cont.): MiniGhost Performance Investigation
Analysis of the full miniGhost trace file done on the “small” problem size on the cluster
basically confirms all findings observed on the workstation (not shown). Surprisingly,
ITAC traces do not show MPI_Init anomaly in either case. Possibly, we have to do with a
so-called Heisenbug that disappears due to observation.

That phenomenon aside, if we can fix the substantially smaller workstation variant,
we should see gains in the bigger cluster case. This can be further helped by adjusting
the workstation run configuration so that it fully resembles the situation within one node
of the “small” cluster run by 12 MPI processes, four OpenMP threads, and respective
process layout and grid size. Thus, the problems to be addressed, in order of decreasing
importance, are as follows:

1. MPI_Init overhead visible only in the built-in statistics
output.

2. Load imbalance that hinders proper MPI_Allreduce
performance. This is the biggest issue at hand.

3. Communication related to the MPI_Waitany that may be
interacting with the load imbalance and detrimentally
affecting the MPI_Allreduce as well.

The MPI_Init overhead may need to be confirmed by repeated execution and
independent timing of the MPI_Init invocation using the MPI_Wtime to be embedded
into the main program code for this purpose (see file main.c). If this confirms that the
effect manifested by the statistics output is consistently observable in other ways, we
can probably discount the ITAC anomaly as a Heisenbug. At the moment of this writing,
however, our bets were on the involuntary change of the job manager queue that may
have contributed to this effect.

The earlier statistics measurements were done in a queue set up for larger jobs,
while the later ITAC measurements used another queue set up for shorter jobs, because
the larger queue became overloaded and nothing was moving there, as it usually does
under time pressure. This resulted in the later jobs being put onto another part of the
cluster, with comparable processors but with a possibly better connectivity. This once
again highlights the necessary of keeping your environment unchanged throughout the
measurement series, and of doing the runs well ahead of the deadlines.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

163

Load imbalance aside, we may have to deal with the less than optimal process layout
(4x4x6) prescribed by the benchmark formulation. Indeed, when we tried other process
layouts within the same job manager session, we observed that the communication along
the X axis was stumbling—and more so as more MPI processes were placed along it;
see Table 5-13:

Table 5-13. MiniGhost Performance Dependency on the Process Layout (Cluster, 8 Nodes,
96 MPI Processes, 4 OpenMP Threads per Process)

Layout,
XxYxZ

Performance,
GFLOPS

Time,
Sec

4x4x6 3.69E+03 3.55E+01

1x8x12 3.72E+03 3.52E+01

8x1x12 3.55E+03 3.69E+01

8x12x1 3.41E+03 3.85E+01

1x1x96 3.10E+03 4.23E+01

1x96x1 3.11E+03 4.21E+01

96x1x1 1.72E+03 7.62E+01

Figure 5-16. Typical MiniGhost exchange pattern (Workstation, 12 MPI processes,
4 OpenMP threads)

Let’s try to understand what exactly is happening here. If you view a typical
problematic patch of the miniGhost trace file in ITAC, you will notice the following
picture replicated many times across the whole event timeline, at various moments and at
different time scales, as shown in Figure 5-16.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

164

This patch corresponds to the very first and most expensive exchange during the
program execution. Rather small per se, it becomes a burden due to endless replication;
all smaller MPI communication segments after this one follow the same pattern or at
least have a pretty imbalanced MPI_Allreduce inside (not shown). It is clear that the
first order of the day is to understand why the MPI_Waitany has to work in such irregular
circumstances, and then try to correct this. It is also possible that the MPI_Allreduce will
recover its dignity when acting in a better environment.

By the looks of it, the pattern in Figure 5-16 resembles a typical neighbor exchange
implemented by nonblocking MPI calls. Since the very first MPI_Allreduce is a
representative one, we have no problem identifying where the prior nonblocking
exchange comes from: a bit of source code and log file browsing lead us to the file called
MG_UNPACK_BSPMA.F, where the waiting is done using the MPI_Waitany on all
MPI_Request items filled by the prior calls to MPI_Isend and MPI_Irecv that indeed
represent a neighbor data exchange. In addition to this, as the name of the file suggests
and the code review confirms, the data is packed and unpacked using the respective MPI
calls. From this, at least three optimization ideas of different complexity emerge:

1. Relatively easy: Use the MPI_Waitall or MPI_Waitsome instead
of the fussy MPI_Waitany. The former might be able to
complete all or at least more than one request per invocation,
and do this in the most appropriate order defined by the MPI
implementation. However, there is some internal application
statistics collection that is geared toward the use of
MPI_Waitany, so more than just a replacement of one call may
be necessary technically.

2. Relatively hard: Try to replace the nonblocking exchange with
the properly ordered blocking MPI_Sendrecv pairs. A code
review shows that the exchanges are aligned along the three
spatial dimensions, so that a more regular messaging order
might actually help smoothe the data flow and reduce the
observed level of irregularity. If this sounds too hard, even
making sure that all MPI_Irecv are posted shortly before the
respective MPI_Isend might be a good first step.

3. Probably impossible: Use the MPI derived datatypes instead
of the packing/unpacking. Before this deep modification
is attempted, it should be verified that packing/unpacking
indeed matters.

This coding exercise is only sensible once the MPI_Allreduce issue has been dealt
with. For that we need to look into the node-level details in the later chapters of this book,
and then return to this issue. This is a good example of the back-and-forth transition
between optimization levels. Remember that once you introduce any change, you will
have to redo the measurements and verify that the change was indeed beneficial. After
that is done, you can repeat this cycle or proceed to the node optimization level we
will consider in the following chapters, once we’ve covered more about advanced MPI
analysis techniques (to be continued in Chapter 6).

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

165

EXERCISE 5-13

investigate the minighost MPI_Init overhead and clarify whether this is a
heisenbug or not. if it is, contact intel premier and report the matter.

EXERCISE 5-14

return here once the MPI_Allreduce load imbalance has been dealt with, and
implement one of the proposed source code optimizations. gauge its effect on the
minighost benchmark, especially at scale. Was it worth the trouble?

Using Advanced Analysis Techniques
We have barely scratched the surface of capabilities offered by the Intel MPI and Intel
Trace Analyzer and Collector. This section introduces more advanced features that you
may need in your work, but you will have to read more about them before you can start to
use them.

Automatically Checking MPI Program Correctness
We started with the premise of a correctly written parallel application. Here’s the truth,
though: there are none. That is, there are some applications that manifest no apparent
errors at the moment. Even as we were writing this book, we detected several errors in
candidate programs of various levels of maturity, from our own naïve code snippets to
the venerable, internationally recognized, and widely used benchmarks. Some programs
would not build, some would not run, some would break on ostensibly valid input data,
and so on. This is all a fact of life.

Fortunately, if you use Intel MPI and ITAC, you can mitigate at least some of the risk in
trying to optimize an erroneous program. Just add option -check_mpi to your application
build string or the mpirun, run string, and the ITAC correctness checking library will
start watching all MPI transfers and checking them for many issues, including incorrect
parameters, potential or real deadlocks, race conditions, data corruption, and more.

This may cost quite some a bit at runtime, especially if you ask for the buffer check
sums to be computed and verified, or you used the valgrind in addition to check the
memory access patterns. However, in return you will get at least some of that warm
and fuzzy feeling that is otherwise unknown to programmers in general and to parallel
programmers in particular; that feeling, though, is the almost certain yet dangerously
wrong belief that your program is MPI bug free.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

166

Comparing Application Traces
You have seen how we compared real and ideal traces (see Figure 5-12). Actually, this is
a generic feature you can apply to any two traces. While comparing two unrelated traces
might be a bit off topic, comparing two closely related traces may reveal interesting
things. For example, you can compare two different runs of the same application, done on
different process counts or just having substantially different performance characteristics
on the same process count. Looking into the traces side by side will help you spot where
they differ. This is how to go about it:

1. Easiest of all, open two trace files you want to compare in one
ITAC session when starting up. This is how you can do this:

$ traceanalyzer trace1.stf trace2.stf

2. If you are already in an ITAC session where you have been
analyzing a certain trace file, open another file via the global
File/Open menu, and then use the File/Compare item.

3. If you want to do this by hand, open the files in any way
described above, configure to your liking the charts you want
to compare, and then use the global View/Arrange menu item
to put them side by side or on top of each other.

For example, if you do any of this for the real and ideal files illustrated in Figure 5-12,
you will get the results shown in Figure 5-17.

Figure 5-17. MiniMD real and ideal traces compared side by side (Workstation, 16 MPI
processes)

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

167

This view confirms the earlier observation that, although there may be up to
2.5 times improvement to haul in the MPI area, the overall effect on the total program’s
execution time will be marginal. Another interesting view to observe is the Breakdown
Mode in the imbalance diagram shown in Figure 5-18 (here we again changed the default
colors to roughly match those in the event timeline).

Figure 5-18. MiniMD trace file in ITAC imbalance diagra breakdown mode (Workstation,
16 MPI processes)

From this view you can conclude that MPI_Wait is probably the call to investigate
as far as pure MPI performance is concerned. The rest of the overhead comes from the
load imbalance. If you want to learn more about comparing trace files, follow up with the
aforementioned serialization tutorial.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

168

Instrumenting Application Code
Once in a while you may want to know exactly what is happening in the user part of
the application, rather than just observe the blue Group Application mentioned in the
respective ITAC charts. In this case you can use several features provided by Intel tools to
get this information:

1. Probably the easiest is to ask Intel compiler do the job for
you. Add the compiler option -tcollect to get all source
code functions instrumented to leave a trace in the ITAC trace
file. This option needs to be used both at the compilation
and at the linkage steps. If the number of the resulting call
tracing events is too high, use the -tcollect-filter variety
to limit their scope. You may—and probably should—apply
these features selectively to those files that interest you most;
otherwise, the trace file size may explode. You can find more
details in the ITC documentation.26

2. If you want complete control and are willing to invest some
time, use the ITAC instrumenting interface described in the
documentation mentioned above. An instrumentation source
code example that comes with the ITAC distribution will be a
good starting point here.

You can learn more about these advanced topics and also control the size of the trace
file, the latter which is very important if you want to analyze a long running or a highly
scalable application, in the Tutorial: Reducing Trace File Size.27

Correlating MPI and Hardware Events
As a final point before we close the MPI optimization, we give a recommendation on how
to correlate the ITAC trace events with the hardware events, including those registered by
the Intel VTune Amplifier XE data collection infrastructure.28 As usual, there is more than
one way to do this.

Collecting and Analyzing Hardware Counter Information in ITAC
Believe it or not, you can collect and display a lot of hardware counter information right in
the ITAC. Its facilities are not as extensive and automated as those of VTune Amplifier XE;
however, they can give you a good first hack at the problem. You can read about this topic
in the ITAC documentation. Note that quite a bit of hacking will be required upfront.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

169

Collecting and Analyzing Hardware Counter Information in VTune
If you have no time for hacking, you can choose the normal way. First, you need to launch
VTune Amplifier XE. There are, again, several methods to do so:

1. Launch amplxe-cl with mpirun. For example: Collect 1 result/
rank/node from M nodes – M result directories in total:

$ mpirun <machine file> -np <N> ... amplxe-cl -collect <analysis
type> ./your_app

Assumptions: N>M and at least 1 rank/node.

2. Collect 2 hotspots on the host ‘hostname’:

$ mpirun -host 'hostname' -np 14 ./a.out : \
 - host 'hostname' -np 2 amplxe-cl –r foo -c hotspots

./your_app

3. Launch mpirun with amplxe-cl. For example: Collect N ranks
in one result file on a node (e.g., ‘hostname’):

$ amplxe-cl -collect <analysis type> ... -- mpirun -host
‘hostname’ -np <N> ./your_app

Limitation: Currently collects only on the localhost.
We will cover the rest of this topic in Chapter 6, but you may want to read the

Tutorial: Analyzing MPI Application with Intel Trace Analyzer and Intel VTune Amplifier
XE as well.29

Summary
We presented MPI optimization methodology in this chapter in its application to the Intel
MPI Library and Intel Trace Analyzer. However, you can easily reuse this procedure with
other tools of your choice.

It is (not so) surprising that the literature on MPI optimization in particular is rather
scarce. This was one of our primary reasons for writing this book. To get the most out of
it, you need to know quite a bit about the MPI programming. There is probably no better
way to get started than by reading the classic Using MPI by Bill Gropp, Ewing Lusk, and
Anthony Skjellum30 and Using MPI-2 by William Gropp, Ewing Lusk, and Rajeev Thakur.31
If you want to learn more about the Intel Xeon Phi platform, you may want to read Intel
Xeon Phi Coprocessor High-Performance Programming by Jim Jeffers and James Reinders
that we mentioned earlier. Ultimately, nothing will replace reading the MPI standard,
asking questions in the respective mailing lists, and getting your hands dirty.

We cannot recommend any specific book on the parallel algorithms because they are
quite dependent on the domain area you are going to explore. Most likely, you know all
the most important publications and periodicals in that area anyway. Just keep an eye on
them; algorithms rule this realm.

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

170

References
1. MPI Forum, “MPI Documents,” www.mpi-forum.org/docs/docs.html.

2. H. Bockhorst and M. Lubin, “Performance Analysis of a Poisson Solver Using Intel
VTune Amplifier XE and Intel Trace Analyzer and Collector,” to be published in TBD.

3. Intel Corporation, “Intel MPI Benchmarks,”
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/.

4. Intel Corporation, “Intel(R) Premier Support,”
www.intel.com/software/products/support.

5. D. Akin, “Akin’s Laws of Spacecraft Design,”
http://spacecraft.ssl.umd.edu/old_site/academics/akins_laws.html.

6. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL - A Portable
Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers,” www.netlib.org/benchmark/hpl/.

7. Intel Corporation, “Intel Math Kernel Library – LINPACK Download,”
http://software.intel.com/en-us/articles/intel-math-kernel-library-
linpack-download.

8. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL FAQs,”
www.netlib.org/benchmark/hpl/faqs.html.

9. “BLAS (Basic Linear Algebra Subprograms),” www.netlib.org/blas/.

10. Sandia National Laboratory, “HPCG - Home,”
https://software.sandia.gov/hpcg/.

11. “Home of the Mantevo project,” http://mantevo.org/.

12. Intel Corporation, “Configuring Intel Trace Collector,”
https://software.intel.com/de-de/node/508066.

13. Sandia National Laboratory, “LAMMPS Molecular Dynamics Simulator,”
 http://lammps.sandia.gov/.

14. Ohio State University, “OSU Micro-Benchmarks,”
http://mvapich.cse.ohio-state.edu/benchmarks/.

15. Intel Corporation, “Intel MPI Library - Documentation,”
https://software.intel.com/en-us/articles/intel-mpi-library-documentation.

16. J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-Performance Programming
(Waltham, MA: Morgan Kaufman Publ. Inc., 2013).

17. “MiniGhost,” www.nersc.gov/users/computational-systems/nersc-8-
system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-
benchmarks/minighost/.

18. Intel Corporation, “Tutorial: MPI Tuner for Intel MPI Library for Linux OS,”
https://software.intel.com/en-us/mpi-tuner-tutorial-lin-5.0-pdf.

http://www.mpi-forum.org/docs/docs.html
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://www.intel.com/software/products/support
http://spacecraft.ssl.umd.edu/old_site/academics/akins_laws.html
http://www.netlib.org/benchmark/hpl/
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://www.netlib.org/benchmark/hpl/faqs.html
http://www.netlib.org/blas/
https://software.sandia.gov/hpcg/
http://mantevo.org/
https://software.intel.com/de-de/node/508066
http://lammps.sandia.gov/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://software.intel.com/en-us/articles/intel-mpi-library-documentation
http://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
https://software.intel.com/en-us/mpi-tuner-tutorial-lin-5.0-pdf

Chapter 5 ■ addressing appliCation BottleneCks: distriButed MeMory

171

19. M. Chuvelev, “Collective Algorithm Models,” Intel Corporation, Internal technical
report, 2013.

20. Intel Corporation, “Tutorial: Detecting and Removing Unnecessary Serialization,”
https://software.intel.com/en-us/itac_9.0_serialization_pdf.

21. A. Supalov and A. Yalozo, “20 Years of the MPI Standard: Now With a Common
Application Binary Interface,” The Parallel Universe 18, no. 1 (2014): 28–32.

22. M. Brinskiy, A. Supalov, M. Chuvelev, and E. Leksikov, “Mastering Performance
Challenges with the New MPI-3 Standard,” The Parallel Universe 18, no. 1 (2014): 33–40.

23. “PanFS Storage Operating System,” www.panasas.com/products/panfs.

24. “Parallel Virtual File System, Version 2,” www.pvfs.org/.

25. “Lustre - OpenSFS,” http://lustre.opensfs.org/.

26. Intel Corporation, “Intel Trace Analyzer and Collector - Documentation,”
 https://software.intel.com/en-us/articles/intel-trace-analyzer-and-
collector-documentation.

27. Intel Corporation, “Tutorial: Reducing Trace File Size,”
https://software.intel.com/en-us/itac_9.0_reducing_trace_pdf.

28. Intel Corporation, “Intel VTune Amplifier XE 2013,”
https://software.intel.com/en-us/intel-vtune-amplifier-xe.

29. Intel Corporation, “Tutorial: Analyzing MPI Application with Intel Trace Analyzer
and Intel VTune Amplifier XE,”
https://software.intel.com/en-us/itac_9.0_analyzing_app_pdf.

30. W. Gropp, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message Passing Interface, 2nd. ed. (Cambridge, MA: MIT Press, 1999).

31. W. Gropp, E. L. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message
Passing Interface (Cambridge, MA: MIT Press, 1999).

https://software.intel.com/en-us/itac_9.0_serialization_pdf
http://www.panasas.com/products/panfs
http://www.pvfs.org/
http://lustre.opensfs.org/
https://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation
https://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation
https://software.intel.com/en-us/itac_9.0_reducing_trace_pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/itac_9.0_analyzing_app_pdf

173

Chapter 6

Addressing Application
Bottlenecks: Shared Memory

The previous chapters talked about the potential bottlenecks in your application and the
system it runs on. In this chapter, we will have a close look at how the application code
performs on the level of an individual cluster node. It is a fair assumption that there will also
be bottlenecks on this level. Removing these bottlenecks will usually translate directly to
increased performance, in addition to the optimizations discussed in the previous chapters.

In line with our top-down strategy, we will investigate how to improve your
application code on the threading level. On this level, you will find several potential
bottlenecks that can dramatically affect the performance of your application code;
some of them are hardware related, some of them are related to your algorithm. The
bottlenecks we discuss all come down to how the threads of your code interact with the
underlying hardware. From the past chapters you already have an understanding of how
this hardware works and what the important metrics and optimization goals are.

We will start with an introduction that covers how to apply Intel VTune Amplifier
XE and a loop profiler to your application to gain a better understanding of the code’s
execution profile. The next topic is that of detecting sequential execution and load
imbalances. Then, we will investigate how thread synchronization may affect the
performance of the application code.

Profiling Your Application
Profiling the code is the first step toward gaining an understanding of what parts of your
application are critical. As usual there are several options for performing this profiling
and each option provides different insights into your application and the code it executes.
Information of particular interest here is how much time the application spends in each
part of the code. This analysis is useful because of the two insights it provides:

1. You get a detailed breakdown of the application runtime.

2. It tells you exactly what the points of interest are for code
optimizations.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

174

During the optimization work you will focus on the so-called hotspots that
contribute most to the application runtime, because improving their performance will be
most beneficial to overall runtime.

You have already seen a tool called PowerTOP in Chapter 4 that gives insight into
what is currently running on the system. However, it does not show what exactly the
running applications are executing. That is what the Linux tool suite perf is for.1 It
contains several tools to record and show performance data. One useful command is
perf top, which continuously presents the currently active processes and the function
they are currently executing. Figure 6-1 shows how the output of the interactive tool might
look for a run of the HPCG benchmark.2 The first column indicates what percentage of
CPU time the function (listed in column 4 of a line) has consumed since the last update
of the output. The second column shows in which process or shared library image the
function is located. The perf tool also supports the recording of performance data and
analyzing it offline with a command-line interface. Have a look at its documentation for a
more detailed explanation.

Figure 6-1. Output of the perf top commmand with functions active in the HPCG
application

Although perf is a good start to monitor an application while it is running, most
of the performance analysis needs to be done postmortem (i.e., after the application
executed and performance data was collected). In this way it is possible to inspect the
performance data and focus on a particular performance aspect or code region, without
having to run the application all the time. This sets the stage for more visual and more
powerful tools like Intel VTune Amplifier XE.

Using VTune Amplifier XE for Hotspots Profiling
Intel VTune Amplifier XE provides a unified graphical user interface (GUI) that supports
the collection and analysis of performance data. It helps you configure the data collector
and set up the application for a collection run. After the collection, you can then work with

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

175

the data. VTune Amplifier XE supports both event-based sampling using the processor’s
built-in performance monitoring units (PMUs) and sampling based on instrumentation
of the binary code. In contrast to the Intel Trace Analyzer and Collector (see Chapter 5),
the focus of VTune Amplifier XE is on shared-memory and intra-node analysis. The
performance data is associated with the source code at all times, so you can easily
determine which source line of the application contributed to the performance data.

The most important place to start is with the hotspots analysis to dissect the compute
time of the application and relate that information to the application code. This gives a
good overview of where the application spends the most compute time. The individual
hotspots will be the focus areas of the optimization work to get the biggest bang for the
buck. As a side benefit, the hotspots analysis also provides a first insight into how well the
code executes on the machine. (We revisit this topic in Chapter 7.)

Hotspots for the HPCG Benchmark
As a first example, let’s have a look at the HPCG benchmark. For educational purposes,
we pretend that HPCG is an MPI-only code by compiling HPCG without OpenMP.
We then try to identify OpenMP candidate loops to add multithreading to the code
to make our assumed MPI-only a hybrid MPI/OpenMP code. Of course, in reality the
OpenMP directives are already in the code, so we can double-check if we came to same
parallelization strategy as the authors of HPCG.

It is a fair assumption that HPC codes are loopy codes that process bulk data in
several key loops that will consume most of the compute time. Hence, we need to get a
better understanding of the application code by looking at where the code spends time
and how this time is spent in the hotspots. We also need to check if the time is spent in
loop structures. To do that, we configure an analysis project in the VTune Amplifier XE
GUI and run the following command in VTune Amplifier XE using the Advanced Hotspot
method:

$ mpirun -np 48 ./hpcg.x

Note ■ on most clusters it may not be possible to run the gUi. Vtune amplifier Xe also
supports data collection and analysis on remote systems and from the command line.
if Remote (SSH) collection is selected in the project configuration, you can add the hostname
and credentials for a remote system. you can also use the Get Command Line button in
the gUi to get a command line that is ready for cut-and-paste to the cluster console or
job script. after the collection has finished, you can copy the resulting data to your local
machine for analysis within the gUi. For a command-line analysis, you do not need to create
a project. you will see examples of how to use this feature later on in this section. you can
find out more about collecting performance data and analyzing it with the command-line
interface in the Vtune amplifier Xe user’s guide.3

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

176

Running this on our example machine gives us the result shown in Figure 6-2. The
code executed for 383 seconds and consumed about 18,330 seconds of CPU time, out
of which 10,991 seconds (almost 60 percent) is attributed to execution of a function
called ComputeSYMGS_ref. Function ComputeSPMV_ref contributes another 5,538
seconds (30 percent) to the compute time. That makes up about 90 percent of the total
CPU compute time. Thus, these two functions will be of interest when we’re looking for
optimization opportunities.

Figure 6-2. Hotspot and parallelism summary of the HPCG benchmark

So, the next step is to dig deeper into these functions to find out more about what
they do and how they do it. We click on one of the hotspots or the Bottom-up button and
VTune will show a screen similar to the one in Figure 6-3. Here all relevant functions
are shown in more detail, together with their relevant execution time, their containing
module (i.e., executable file, shared object, etc.), and the call stack that leads to the
invocation of a hotspot. Of course, we will find our two suspect functions listed first and
second, as in the Summary screen. As we are interested in finding out more about the
hotspot, we change the filter to the Loops and Functions mode to let the tool also show
hot loops. You can enable this mode by changing the Loop Mode filter to Loops and
Functions in the filter area at the bottom of the GUI.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

177

You might be surprised to see that the order of the hotspots now seems to have
changed. The functions ComputeSYMGS_ref and ComputeSPMV_ref are now at the tail of
the ranking, which can be seen by scrolling down to the bottom of the upper pane of the
screen shot in Figure 6-3. The new top hotspots are loops at several locations in these
functions. The hottest loop is at line 67 in the function ComputeSPMV_ref and consumes
13 percent of the total compute time. This is a good candidate for parallelization, isn’t it?
We cannot tell without reading the source code, so we open the source code of the loop
by double-clicking the line noting this loop within the VTune Amplifier XE GUI.
Listing 6-1 shows the pertinent code of this hotspot.

Listing 6-1. Top Hotspot of the HPCG Benchmark

61 for (local_int_t i=0; i< nrow; i++) {
62 double sum = 0.0;
63 const double * const cur_vals = A.matrixValues[i];
64 const local_int_t * const cur_inds = A.mtxIndL[i];
65 const int cur_nnz = A.nonzerosInRow[i];
66
67 for (int j=0; j< cur_nnz; j++)
68 sum += cur_vals[j]*xv[cur_inds[j]];
69 yv[i] = sum;
70 }

As you can see, the code consists of two nested loops. VTune Amplifier XE identified
the inner loop as the hotspot. Which loop should we select as the target for OpenMP
parallelization? In this case, as in many others, the solution will be to parallelize the outer
loop. But how do we know how many iterations these loops are executing?

Figure 6-3. Hotspots (loops and functions) for the HPCG benchmark

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

178

Compiler-Assisted Loop/Function Profiling
Unfortunately, the hotspot analysis does not provide all the data that might be important
to make sound decisions for our optimization work. Knowing about the CPU time for a
particular hotspot only indicates how much time the code has spent there. It does not tell
us how many times a hotspot or parts of it have been executed. For a loop hotspot that we
consider for optimization, it will be important to know how many times the loop structure
has been encountered from the surrounding code. In addition, we will be interested
in the trip count of the loop—that is, how many iterations it executes. The minimum,
maximum, and average number of trips through the loop suggest whether a loop
might be amenable for certain optimizations, such as parallelization through OpenMP
constructs. Hence, we need to complement the hotspots analysis with additional profiling
to make sure we have all these bits of information ready to make an informed decision for
optimizing the code.

Intel Composer XE ships with a compiler-assisted function and loop profiler that
supplies the information we are interested in. To make use of these features requires a
recompilation of the code with special command-line flags to augment the compiled
code with code to monitor function calls and loop execution at runtime. The profiling
can be enabled through the command-line arguments -profile-functions, -profile-
loops, and -profile-loops-report. For example, the new command line to compile the
HPCG benchmark might start with:

$ icc -profile-functions -profile-loops=all -profile-loops-report=2 ...

With these settings, the application will record runtime information for functions
and loops, including trip counts for all loops. There are several caveats to keep in mind
when using this feature, though. First, it only works with single-threaded, single-process
applications. Second, it may add considerable overhead to the runtime of the application.
The penalty depends on the code structure; many fine-grained functions and loops in
the code will add more overhead than fewer large functions and loops. To reduce the
overhead, you may try one or more of the command options listed in Table 6-1.

Table 6-1. Additional Command-Line Options for the Compiler-Assisted Profiler

Flag Effect

-profile-loops=inner Only profile inner loops

-profile-loops=outer Only profile outer loops

-profile-loops-report=1 Report execution of loops, but no trip count

The loop profile for the HPCG example is given in Figure 6-4. When we compare
Figure 6-4 with the hotspot profile shown in Figure 6-3, we can see that the hotspots and
the loop profile do not match. This is no surprise; the loop profile was collected in
single-rank mode—that is, with only one MPI process executing. In addition, a loop with
a small trip count can exceed loops with large numbers of iterations if the loop body
is large and demands a lot of compute time. Nevertheless, the loop profile contains an
accurate itemization of the loops and their trip counts.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

179

With the loop hotspots and the loop profile, we can now make an informed decision
about which of the two loops in ComputeSPMV_ref to parallelize. The hotspot analysis
told us that the inner loop is the hot loop. However, the loop profile tells us that the loop
in line 67 has been encountered 429 million times with a minimum and maximum trip
count of 1. It is easy to see that any parallelization would have done a very poor job on
this loop. But there is also the highlighted outer loop showing up in the loop profile. It has
been encountered 687 times with minimum and maximum trip count of 17,576 and 1.1
million, respectively. Also, the average trip count of about 625,572 iterations tells us that
this loop will be an interesting candidate for parallelization. Of course, one still needs to
check that there are no loop dependencies that would prevent parallelization. Inspecting
the loop body, we can see that this loop can be executed in parallel. Although it is a good
idea to check for loop-carried dependencies and data dependencies (Chapter 7) instead
of blindly adding OpenMP parallelization pragmas to loops, tools such as Intel Inspector
XE4 or Valgrind5 can be a great help in detecting and resolving issues introduced by
multithreading.

EXERCISE 6-1

run a hotspot analysis for your application(s) and determine the minimum,
maximum, and average trip counts of its loops. Can you find candidates for
parallelization?

Figure 6-4. Function and loop profile for the HPCG benchmark

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

180

Sequential Code and Detecting Load Imbalances
In a parallel program, the slowest thread determines the speed of the whole team working
in parallel. All the faster threads will have to wait until the slowest straggler thread
catches up and finishes its tasks. As a matter of fact, one of the challenges of parallel
programming is that of ensuring all threads receive an equal share of the computational
load. Please note that by “computational load” we are referring to the total number
of cycles spent per thread for the parallel work. For instance, if the loop body takes a
different amount of time to execute different iterations, the threads should not receive
equal shares of the loop’s iterations (for example, through static scheduling). Sequential
portions of your application can be seen as a special form of load imbalance, as other
threads and cores will be idle while the sequential code is executing in the master thread
of the application.

The hotspots analysis for a particular parallel region of code in your application
is a useful tool for detecting such load imbalances. VTune Amplifier XE indicates such
problems through various elements in the analysis GUI. First, the tabular view (or grid)
at the top contains, in column “User Time by Utilization,” a color code to visualize the
quality of parallel execution relative to the number of cores in the system. Red indicates
that the hotspot was not using the machine properly and exposes too low an average
degree of parallelism. Yellow stands for medium, whereas green suggests an ideal parallel
execution. These color codes should not be taken as the only source of information,
though; red or yellow hotspots always need closer investigation. Although load
imbalances typically show up as a lower degree of parallelism, the red and yellow color
codes can also be indicating too low a number of threads executing in parallel, owing to
locks, lower number of threads requested, or sequential regions in the hotspots. In case
you deliberately execute the application with a lower target thread count (for example,
only the physical cores of a system with Intel Hyper-Threading Technology enabled), you
can manually adjust the intervals for green, yellow, and red in the Summary tab of the
VTune Amplifier XE GUI.

The second GUI element that uses color coding as a visual guide to performance
data is the timeline view in the bottom part of the GUI. VTune Amplifier XE shows a
horizontal bar for each of the threads in the application and provides insights into their
behavior over time. A non-active thread is marked as light green, but once it consumes
cycles its color turns to brown. The red color signals overhead, such as time spent
waiting for a lock to be released or threads waiting to join a barrier. A load imbalance can
easily be detected by looking at when the threads start and stop executing instructions
compared to other threads of an OpenMP region, which are indicated by brackets at the
top of the thread timeline.

Figure 6-5 shows the performance data and timeline that we collected for a run of the
MiniFE application. We used the following command line to produce the performance
data on a single node (eight MPI ranks with six OpenMP threads each):

$ export OMP_NUM_THREADS=6
$ mpirun -np 8 amplxe-cl -collect hotspots --result-dir miniFE-8x6 -- \
 miniFE.x -nx=500

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

181

Using this command line to collect performance data, VTune Amplifier XE produced
eight different results databases (miniFE-8x6.0 to miniFE-8x6.7), each of which
contains the performance data for one of the eight MPI ranks. Figure 6-5 only shows the
performance data for the first MPI rank. The other seven MPI ranks expose the same
performance characteristics, and thus we can restrict ourselves to the one MPI rank
in this case. For other applications, it will be required to check all MPI ranks and their
performance data individually to make sure there are no outliers in the runtime profile.

Let us have a look at the timeline view at the bottom of Figure 6-5. The timeline
shows several threads active over time. There are some particular areas of interest.
First, we can observe that only one thread is executing for about 40 seconds before
multithreading kicks in. We can also spot a second sequential part ranging for about
56 seconds in total, from 54 seconds to 110 seconds in the timeline. Zooming in and
filtering the timeline, we can find out that the code is doing a matrix initialization in the
first 40 seconds of its execution. About one-third of the compute time in this part is also
attributed to an MPI_Allreduce operation. A similar issue leads to the sequential part that
begins at 54 seconds of the execution. While this is not a true load imbalance in the code,
because OpenMP is not active in these parts of the application, its exposure is similar to
a load imbalance. From a timeline perspective, a load imbalance will look similar to what
we see in Figure 6-5. In our example, finding a parallelization scheme to also parallelize
the sequential fractions may boost application performance, owing to the amount of time
spend in these parts of the application.

The general approach to solving a load imbalance is to first try to modify the loop
scheduling of the code in question. Typically, OpenMP implementations prefer static
scheduling that assigns equally large numbers of loop iterations to individual worker
threads. While it is a good solution for loops with equal compute time per iteration, any
unbalanced loop will cause problems. OpenMP defines several loop scheduling types
that you can use to resolve the load imbalance. Although switching to fully dynamic
schedules such as dynamic or guided appears to be a good idea, these scheduling

Figure 6-5. Hotspot profile of the miniFE application to determine potential load
imbalances

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

182

schemes tend to increase contention between many OpenMP threads, because a shared
variable that maintains the work distribution. Static scheduling can still be used despite
the load imbalance it introduces if the chunk size is adjusted down so that round-robin
scheduling kicks in. Because each of the threads then receives a sequence of smaller
blocks, there is a good chance that, on average, all the threads will receive compute-
intensive and less compute-intensive loop chunks. At the same time, it ensures that each
thread can compute all iterations it has to process, without synchronizing with the other
threads through a shared variable.

Thread Synchronization and Locking
Thread synchronization is a double-edged sword. It keeps your data structures safe in
that it allows you to control concurrent access and avoid race conditions on shared data;
but if synchronization is introduced into the code, then parallelism may naturally suffer
because synchronization constructs are meant to avoid concurrent execution of code
regions. As a matter of fact, there will always be a tradeoff between limiting the degree of
parallelism by introducing synchronization and choosing data structures and algorithms
that need less synchronization for better parallelization.

In Table 5-8, you saw the performance of the MiniMD application on a workstation
equipped with two Xeon processors. The data was for an execution that used Intel MPI
on a single system to create several processes for execution. The version of MiniMD that
we used to produce Table 5-8 also supported OpenMP-parallel execution instead of only
MPI. So, a valid question is: Why did we use a message-passing library if there is shared
memory available and if we could use multithreading instead? Let’s hold that thought for
a minute and just repeat the same benchmark, but now with OpenMP multithreading.

Figure 6-6 shows a speedup chart that compares the multiprocess MPI run with the
multithread execution on the same machine. While the single-process and single-thread
configuration exhibits the same performance behavior, there is a large gap between the
MPI and the OpenMP versions. The OpenMP code is almost two times slower in all cases
in comparison with the MPI version. In principle, an n-body algorithm should nicely
scale with the number of cores, as shown by the MPI version. There is undoubtedly
something going on in the OpenMP version of the code. Let’s use VTune Amplifier XE to
find out.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

183

We have executed the application with the following sequence of commands:

$ source /opt/intel/vtune_amplifier_xe/amplxe-vars.sh
$ amplxe-cl -collect advanced-hotspots -r omp -- \
 ./miniMD_intel --num_threads 24
$ amplxe-cl -collect advanced-hotspots -r mpi -- \
 mpirun -np 24 ./miniMD_intel

These commands instruct VTune Amplifier XE to collect two profiles:

1. One process with 24 OpenMP threads

2. Twenty-four MPI ranks with one thread each

The collected profiles are named omp and mpi, respectively, through the --result-
dir command line option of the collector.

The profiles are fundamentally different in what they represent from a data collection
perspective. For the omp profile, VTune Amplifier XE monitored the performance events
while MiniMD executed and created a performance database for just a single process
with 24 threads. In the case of the mpi profile, the collector recognized that multiple
MPI processes were spawned by the mpirun command. The performance database thus
contains performance data from all 24 MPI ranks in a single profile.

Figure 6-7 shows the hotspots profiles of both executions. MPI is shown at the top,
OpenMP at the bottom. As you can see from the hotspots profile, for MPI the hotspot is
the ForceLJ::compute_halfneigh function, whereas for OpenMP it is a function called
__kmp_test_then_add_real64. Functions that have a prefix __kmp in their name are
compiler-internal functions used to implement OpenMP in Intel Composer XE.

Figure 6-6. Speedup graph (lines) and absolute runtime (bars) for the MiniMD
benchmark

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

184

In typical applications these functions show up in the hotspots profile from time to time
and sometimes, as in this case, they are the culprit. To find out, we need to take a closer
look at what the __kmp_test_then_add_real64 function does.

Figure 6-7. Hotspots profiles for the MPI version (top) and OpenMP version (bottom) of
MiniMD

Let’s have a closer look at it by double-clicking its line in the tabular view. This
takes us to the assembly code of the function, because runtime libraries shipped with
Intel Composer XE usually do not ship with full debugging symbols and source code, for
obvious reasons. If you inspect the machine code, you will find that its main operation
consuming a lot of time is a machine instruction lock cmpxchg. This instruction is an
atomic compare-and-exchange operation, which is frequently used to implement an
atomic add operation.

Functions like __kmp_test_then_add_real64 and similar ones that implement
OpenMP locks are hints that the code issues too many fine-grained atomic instructions.
In case of MiniMD, the culprit is an atomic directive that protects the force update
and that causes slowdown compared to the MPI version. It is also responsible for the
limited scalability of the OpenMP version because it quickly becomes a bottleneck for an
increased number of threads.

EXERCISE 6-2

Browse through the MiniMd code and try to find the openMp atomic constructs that
cause the overhead in the openMp version. Can you find similar synchronization
constructs in your application?

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

185

How such a synchronization issue can be resolved depends on the type of
application, its data structures, and the algorithms used. For the MiniMD application, the
synchronization is required because the effect of force on one atom also has an effect on
the source of the force. According to Newton’s third law, this effect is exactly the reverse
force: if atom A is affected by a positive amount, then atom B, the source of the force, will
be affected by a negative amount. The MPI version exploits this physical law to compute
the force on atom A and then simply updates atom B without recomputing the force
from scratch. This roughly cuts the computation required by 50 percent. Because of this
optimization, multithreading becomes a bit more complex. For OpenMP, the atoms are
distributed across the OpenMP threads. But as the computation for one atom requires an
update of the forces for a second atom, synchronization must be added to avoid a race
between the threads owning the atom. MiniMD already offers such a mode that can be
enabled by setting the command-line option --half_neigh 0. Figure 6-8 compares the
two modes of MiniMD. As you can see, performance and scalability are greatly improved
by avoiding the excess synchronization.

Figure 6-8. Comparision of MiniMD with and without OpenMP atomic construct

Another source of overhead are traditional locks, such as omp_lock_t or critical
regions (#pragma omp critical in C/C++ or !$omp critical in Fortran). Whereas they
share the property of mutual exclusion with their atomic instruction counterpart, they
are typically more expensive and are widely used to protect code fragments and data
structures that are more complex than simple updates of memory locations. VTune
Amplifier XE offers a specialized analysis for problems that stem from these locks and
helps to more easily pinpoint them in the code and their behavior at runtime. The
analysis is called Locks and Waits and it specifically monitors the most commonly used

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

186

APIs to implement user-space locks. For each lock operation in the code, the analyzer
helps browse through the participating threads (lock owner and waiting threads), the lock
object involved, and the respective source code locations where the lock was acquired
and released.

Dealing with Memory Locality and NUMA Effects
With the algorithmic improvements to obtain higher degrees of parallelism, we can now
investigate how best to execute the parallel code on today’s hardware. If you recall the
features of the platform architecture that were described in Chapter 2, you will remember
that a compute node typically contains several sockets with locally attached memory
(NUMA), last level cache, and the compute cores with their private L1 and L2 caches.
Because of the different bandwidth characteristics of local memory and remote memory,
the placement of data and computation (i.e., threads and processes) becomes an important
optimization target. It is key to keep data and computation on the same NUMA region to
ensure lowest latency and highest memory bandwidth for the data accesses performed.

You may recall that each virtual page of the virtual memory associated with a process
is backed up by a physical page that resides on one of the memory modules in one NUMA
region. The Linux kernel uses a default strategy called first touch to allocate the physical
pages. When an application allocates memory (for example, by calling malloc in
C/C++), it receives a pointer to the allocated memory. However, the Linux kernel does
not yet create any new physical pages unless the memory is accessed, or “touched.” When
a thread first touches the data by reading from it or writing into it, the physical page is
allocated in the NUMA region that belongs to the core running that thread.

Note ■ the numactl command introduced in Chapter 2 can also change the default
allocation strategy of the linux kernel. the argument --localalloc enables the standard
linux allocation strategy. With --preferred you can ask to place physical pages on a
specific nUMa region, whereas --membind enforces placement on nUMa regions. Finally,
the --interleave option interleaves the physical pages on several nUMa regions in a
round-robin fashion. you can find additional details about this in the man page of the
numactl command.

In a real application, this may severely penalize performance. If data is frequently
accessed from a thread that runs on a different socket than the one that it ran on during
allocation, the application will suffer from the lower bandwidth and higher latency of
the remote data access. Figure 6-9 shows the achieved bandwidth of the STREAM Triad
benchmark on our example machine. For the black line (“local memory”) in the chart, we
have executed the benchmark on socket 0 and used numactl to force memory allocation
to the local memory:

$ (for i in `seq 1 12`; do OMP_NUM_THREADS=$i numactl --cpunodebind

0 --membind 0 ./stream;
done) | grep "Triad:" | awk '{print $2}'

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

187

The gray line shows the bandwidth we have obtained by forcing memory allocation
to the second NUMA region, while keeping the threads on the first socket:

$ (for i in `seq 1 12`; do OMP_NUM_THREADS=$i numactl --cpunodebind

0 --membind 1 ./stream;
done) | grep "Triad:" | awk '{print $2}'

It is easy to see how much available memory bandwidth we lost by choosing a wrong
placement for data and computation. It is key to tie data and computation together
on the same NUMA region whenever possible. This will greatly improve application
performance. If the application is too complex to improve its NUMA awareness, you can
still investigate if interleaved page allocation or switching off the NUMA mode in the
BIOS improves overall performance. With these settings, the memory allocations are then
distributed across the whole machine and thus all accesses are going equally to local and
remote memory, on average.

If you wish to optimize the application and improve its NUMA awareness, then there
are several ways to accomplish this mission. First, there are ways to bind threads and
processes to individual NUMA regions so that they stay close to their data. We used the
numactl command earlier to do this, but Linux offers several other APIs (for instance,
sched_setaffinity) or tools (for example, taskset) to control process and threads in a
machine-dependent manner. You may also recall the I_MPI_PIN environment variable
and its friends (see Chapter 5) that enable a more convenient way of controlling process
placement for MPI applications. Of course, typical OpenMP implementations also
provide similar environment variables. (We will revisit this topic later in this chapter,
when we look at hybrid MPI/OpenMP applications.)

Figure 6-9. Bandwidth as measured by the STREAM Triad benchmark

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

188

Second, you can exploit the first-touch policy of the operating system in a threaded
application. The key idea here is to use the same parallelization scheme to initialize data
and to make sure that the same parallelization scheme is also used for computation.
Listing 6-2 shows an example of a (very) naïve matrix-vector multiplication code that
uses OpenMP for multithreading. Apart from the compute function, which computes the
result of the matrix-matrix multiplication, the code contains two initialization functions
(init and init_numa_aware). In the init function, the master thread allocates all data
structures and then initializes the data sequentially. With the first-touch policy of the
Linux kernel, all physical pages will therefore reside on the NUMA region that executed
the master thread. The init_numa_aware function still uses the master thread to allocate
the data through malloc. However, the code then runs the initialization in an OpenMP
parallel for loop with the same loop schedule as the accesses in the compute function
happen for the A and c arrays. Because each OpenMP thread now touches the same data
for A and c it is supposed to work on, the physical pages are distributed across the NUMA
regions of the machine and locality is improved.

Listing 6-2. Simplistic Matrix-vector Multiplication with NUMA-aware Memory
Allocation

void init() {
 A = (double*) malloc(sizeof(*A) * n * n);
 b = (double*) malloc(sizeof(*b) * n);
 c = (double*) malloc(sizeof(*c) * n);
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i*n+j] = ((double) rand())/((double) RAND_MAX);

 for (int i = 0; i < n; i++) {
 b[i] = ((double) rand())/((double) RAND_MAX);
 c[i] = 0.0;
 }
}

void init_numa_aware() {
 A = (double*) malloc(sizeof(*A) * n * n);
 b = (double*) malloc(sizeof(*b) * n);
 c = (double*) malloc(sizeof(*c) * n);
#pragma omp parallel
 {
#pragma omp for
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i*n+j] = ((double) rand())/((double) RAND_MAX);

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

189

#pragma omp for
 for (int i = 0; i < n; i++) {
 b[i] = ((double) rand())/((double) RAND_MAX);
 c[i] = 0.0;
 }
 }
}

void compute() {
#pragma omp parallel for
 for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 c[i] += A[i*n+j] * b[j];
}

The array b is a special case in this example. If you consider the compute function,
you will see that b is read equally from all threads. So at first glance it does not seem to
make a real difference if we used a NUMA-aware allocation or just allocate it in a single
NUMA region. Unless the matrix size becomes unreasonably large, it will likely be that
b will fit in the last-level cache of the individual sockets, so that no NUMA effects can
be measured.

Of course, all this only happens if the working size of the application requires
allocation of several physical pages so that they can be distributed across the different
NUMA regions. The data also needs to be large enough so that the caches are not effective
and that out-of-cache data accesses happen. For a perfectly cache-optimized code, the
effect of this optimization may be low or even negligible. If threads frequently access a
large, shared, but read-only data structure (like b) that does not fit the LLC of the sockets,
then distributing it across several NUMA regions will still likely benefit performance.
In this case, distributing the data helps avoid overloading a single NUMA region with
memory accesses from other NUMA regions.

The effect of parallel data allocation in Listing 6-2 can be visualized nicely with the
STREAM Triad benchmark. Figure 6-10 summarizes different thread placements and the
effect of NUMA-aware allocation on memory bandwidth. The compact (gray solid and
dashed line) in the chart indicates that the OpenMP runtime was instructed to first fill a
socket with threads before placing threads on the second socket. “Scatter” (black solid
and dashed line) distributes the threads in round-robin fashion. (We will have a closer
look at these distribution schemes in the next section).

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

190

What you can observe from Figure 6-10 is that NUMA awareness always provides best
results, as it fully exploits the capabilities of the memory subsystem. If threads are kept
close to each other (compact), adding the second NUMA region contributes additional
memory bandwidth, which is expected. For the scatter distribution, the memory
bandwidth of the two NUMA regions of the system contributes to the aggregate memory
bandwidth when at least two threads are executing. However, memory bandwidth will be
up to a factor of two less if memory is allocated in only one NUMA region.

Unfortunately, NUMA-aware data allocation is not possible in all cases. One
peculiar example is MPI applications that employ OpenMP threads. In many cases, these
applications use the MPI_THREAD_FUNNELED or MPI_THREAD_SERIALIZED modes in which
only one thread performs the MPI operations. If messages are received into a newly
allocated buffer, then the first-touch policy automatically allocates the backing store of
the buffer on a single NUMA region in which the communicating thread was executing.
If you wish to run OpenMP threads across multiple NUMA regions and still maintain
NUMA awareness, things tend to become complex and require a lot of thought and fine-
tuning. Depending on how long the data will be live in the buffer and how many accesses
the threads will make, it might be beneficial to either make a multithreaded copy of the
buffer so that the accessing threads also perform the first touch, or use the Linux kernel’s
interface for page migration to move the physical pages into the right NUMA domain.
However, these will be costly operations that need to be amortized by enough data
accesses. Plus, implementing the migration strategies adds a lot of boilerplate code to the

Figure 6-10. STREAM Triad bandwidth with NUMA-aware allocation across multiple
NUMA regions

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

191

application. The easiest way of solve this is to use one MPI rank per NUMA region and
restrict OpenMP threading to that region only. In this case, there are no changes required
to the application code, but you will need to properly bind threads and processes to the
NUMA regions and their corresponding cores.

Thread and Process Pinning
Besides the aforementioned need to properly place processes and threads to get a better
data locality in NUMA systems, thread and process pinning also offer other benefits that
may lead to performance improvements.

As shown in Figure 6-10, putting threads or processes far apart in the system
(scatter)—that is, on different sockets of the machine—can improve the aggregated
memory bandwidth. As each socket has its own memory subsystem, the threads on
different sockets do not compete for the same memory channels and thus receive more
memory bandwidth in total. The same applies to the total amount of last-level cache
(LLC) available to the application.

On the other hand, scattered distribution has some disadvantages. If threads
communicate a lot by reading and writing to variables and data structures shared
between them, then communication across the QPI link can easily become a bottleneck.
The same applies to synchronization constructs such as barriers, locks, and atomic
operations. Synchronization constructs are much more efficient if the participating
threads are on the same socket. This is because the memory operations involved in
implementing the synchronization are much faster when running from the same shared
(last-level) cache instead of involving communication over the QPI links of the system.
While synchronization is a good reason to keep threads as close as possible, it conflicts
with the above benefits of spreading the threads across the system. In general, one can
only hope to find a good tradeoff between the conflicting benefits and to approximate the
ideal placement configuration.

Controlling OpenMP Thread Placement
Intel Composer XE, and its implementation of OpenMP, offers two ways to control thread
placement in an application:

1. KMP_AFFINITY environment variable

2. OMP_PROC_BIND interface of the OpenMP 4.0 API

For a long time, before the OpenMP API version 4.0 was released, KMP_AFFINITY
was the standard way of controlling thread placement for the Intel implementation of
OpenMP. Through this environment variable, you can control thread placement on
several levels ranging from abstract placement policies to a fine-grained mapping of
OpenMP threads to sockets, cores, and hyper-threads. The settings of KMP_AFFINITY are
effective for the whole application process—that is, if the process spawns multiple parallel
regions, the same settings pertain for all parallel regions. KMP_AFFINITY also supports
only one level of parallelism, but no nested OpenMP parallel regions.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

192

Listing 6-3 shows the effect of different values for the KMP_AFFINITY variable on the
thread placement. It shows how 18 threads are mapped to the cores of our two-socket
example machine. For the compact placement, all 18 threads will be assigned to the
first socket. The scatter strategy assigns the threads to the sockets of the machine in a
round-robin fashion; even thread IDs are assigned to the first socket, threads with odd
ID execute on the second socket. We can check this allocation by adding the verbose
modifier to the KMP_AFFINITY environment variable, which requests to print information
about the machine structure and how the threads are assigned to the (logical) cores of
the system (Listing 6-3). To make sense of the different IDs and the underlying machine
structure, you may use the cpuinfo tool introduced in Chapter 5.

Listing 6-3. OpenMP Thread Pinning with Additional Information Printed for Each
OpenMP Thread

$ OMP_NUM_THREADS=18 KMP_AFFINITY=granularity=thread,compact,verbose \
 ./my_app
OMP: Info #204: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #202: KMP_AFFINITY: Affinity capable, using global cpuid leaf 11
info
OMP: Info #154: KMP_AFFINITY: Initial OS proc set respected: {0,1,2,3,4,5,6,
7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,3
3,34,35,36,37,38,39,40,41,42,43,44,45,46,47}
OMP: Info #156: KMP_AFFINITY: 48 available OS procs
OMP: Info #157: KMP_AFFINITY: Uniform topology
OMP: Info #179: KMP_AFFINITY: 2 packages x 12 cores/pkg x 2 threads/core (24
total cores)
OMP: Info #206: KMP_AFFINITY: OS proc to physical thread map:
OMP: Info #171: KMP_AFFINITY: OS proc 0 maps to package 0 core 0 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 24 maps to package 0 core 0 thread 1
[...]
OMP: Info #144: KMP_AFFINITY: Threads may migrate across 1 innermost levels
of machine
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 0 bound to OS proc set {0}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 1 bound to OS proc set {24}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 2 bound to OS proc set {1}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 3 bound to OS proc set {25}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 4 bound to OS proc set {2}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 5 bound to OS proc set {26}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 6 bound to OS proc set {3}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 7 bound to OS proc set {27}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 8 bound to OS proc set {4}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 9 bound to OS proc set {28}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 10 bound to OS proc set {5}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 11 bound to OS proc set {29}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 12 bound to OS proc set {6}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 13 bound to OS proc set {30}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 14 bound to OS proc set {7}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 16 bound to OS proc set {8}

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

193

OMP: Info #242: KMP_AFFINITY: pid 85939 thread 15 bound to OS proc set {31}
OMP: Info #242: KMP_AFFINITY: pid 85939 thread 17 bound to OS proc set {32}
[...]

$ OMP_NUM_THREADS=18 KMP_AFFINITY=granularity=thread,scatter,verbose \
 ./my_app
OMP: Info #204: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #202: KMP_AFFINITY: Affinity capable, using global cpuid leaf 11
info
OMP: Info #154: KMP_AFFINITY: Initial OS proc set respected: {0,1,2,3,4,5,6,
7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,3
3,34,35,36,37,38,39,40,41,42,43,44,45,46,47}
OMP: Info #156: KMP_AFFINITY: 48 available OS procs
OMP: Info #157: KMP_AFFINITY: Uniform topology
OMP: Info #179: KMP_AFFINITY: 2 packages x 12 cores/pkg x 2 threads/core (24
total cores)
OMP: Info #206: KMP_AFFINITY: OS proc to physical thread map:
OMP: Info #171: KMP_AFFINITY: OS proc 0 maps to package 0 core 0 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 24 maps to package 0 core 0 thread 1
OMP: Info #171: KMP_AFFINITY: OS proc 1 maps to package 0 core 1 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 25 maps to package 0 core 1 thread 1
OMP: Info #171: KMP_AFFINITY: OS proc 2 maps to package 0 core 2 thread 0
OMP: Info #171: KMP_AFFINITY: OS proc 26 maps to package 0 core 2 thread 1
OMP: Info #171: KMP_AFFINITY: OS proc 3 maps to package 0 core 3 thread 0
[...]
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 0 bound to OS proc set {0}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 1 bound to OS proc set {12}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 2 bound to OS proc set {1}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 3 bound to OS proc set {13}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 4 bound to OS proc set {2}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 5 bound to OS proc set {14}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 6 bound to OS proc set {3}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 7 bound to OS proc set {15}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 8 bound to OS proc set {4}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 9 bound to OS proc set {16}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 10 bound to OS proc set {5}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 11 bound to OS proc set {17}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 12 bound to OS proc set {6}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 13 bound to OS proc set {18}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 14 bound to OS proc set {7}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 16 bound to OS proc set {8}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 15 bound to OS proc set {19}
OMP: Info #242: KMP_AFFINITY: pid 85979 thread 17 bound to OS proc set {20}
[...]

If you carefully inspect the printout of Listing 6-3, it appears that the OpenMP
runtime system has assigned the threads in a way that we did not expect in the first place.
The compact policy assigned multiple OpenMP threads to the same physical core

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

194

(e.g., thread 0 and 1 to cores 0 and 24, respectively), whereas for scatter, it assigned
different physical cores. Due to SMT, each physical core appears as two logical cores that
may execute threads. With compact, we have requested from the OpenMP runtime to fill
one socket first, before utilizing the second socket. The most compact thread placement
is to put thread 0 to logical core 0 and use logical core 24 for thread 1, and so on. Thinking
of a compact placement, this might not be what we have intended to do; you might have
expected something along the line of placing 12 threads on the first socket and deploy the
remaining six threads on the other socket.

The syntax for KMP_AFFINITY provides modifiers to further control its behavior. We
already silently used granularity in Listing 6-3. You can use it to tell the Intel OpenMP
implementation whether an OpenMP thread is to be assigned to a single logical core
(granularity=thread) or to the hardware threads of a physical core (granularity=core).
Once you have played a bit with these two settings, you will see that neither will deploy
the 18 threads of our example to two sockets. The solution is to use compact,1 as the
policy. The effect is shown in Listing 6-4, in which 12 threads have been deployed to the
first socket, and the remaining six threads have been assigned to the second socket. The
documentation of Intel Composer XE6 can give you more information on what compact,1
means and what other affinity settings you can use.

Listing 6-4. Compact KMP_AFFINITY Policy Across Two Sockets of the Example
Machine

$ OMP_NUM_THREADS=18 KMP_AFFINITY=granularity=thread,compact,1,verbose ./
my_app
[...]
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 0 bound to OS proc set {0}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 1 bound to OS proc set {1}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 3 bound to OS proc set {3}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 2 bound to OS proc set {2}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 4 bound to OS proc set {4}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 5 bound to OS proc set {5}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 6 bound to OS proc set {6}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 7 bound to OS proc set {7}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 8 bound to OS proc set {8}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 9 bound to OS proc set {9}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 10 bound to OS proc set {10}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 11 bound to OS proc set {11}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 12 bound to OS proc set {12}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 13 bound to OS proc set {13}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 14 bound to OS proc set {14}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 16 bound to OS proc set {16}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 15 bound to OS proc set {15}
OMP: Info #242: KMP_AFFINITY: pid 86271 thread 17 bound to OS proc set {17}

With version 4.0 of the OpenMP API specification, OpenMP now defines a common
way to deal with thread placement in OpenMP applications. In OpenMP terms, a place
denotes an entity that is capable of executing an OpenMP thread and is described as an
unordered list of numerical IDs that match the processing elements of the underlying

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

195

hardware. For Intel processors, these IDs are the core IDs as they appear in the operating
system (e.g., as reported in /proc/cpuinfo or by KMP_AFFINITY=verbose). A place list
contains an ordered list of places and is defined through the OMP_PLACES environment
variable. The place list can also contain abstract names for places, such as threads
(logical cores), cores (physical cores), or sockets (the sockets in the machine).

OpenMP also defines three placement policies with respect to an existing place list:

•	 master: Assign all threads of a team to the same place as the
master thread of the team.

•	 close: Assign OpenMP threads to places such that they are close
to their parent thread.

•	 spread: Sparsely distribute the OpenMP threads in the place list,
dividing the place list into sublists.

In contrast to KMP_AFFINITY, the OpenMP placement policies can be used on a per-
region basis by using the proc_bind clause at a parallel construct in the OpenMP code.
It also supports nested parallelism through a list of policies separated by commas for the
OMP_PROC_BIND variable. For each nesting level, one can specify a particular policy that
becomes active, once a parallel region on that level starts executing. This is especially
useful for applications that either use nested parallelism or that need to modify the thread
placement on a per-region basis.

Listing 6-5 contains a few examples of different thread placements using OMP_PLACES
and OMP_PROC_BIND. The first example has the same effect as the compact placement in
Listing 6-4, whereas the second example assigns the threads in a similar fashion as the
scatter policy of KMP_AFFINITY.

Listing 6-5. Examples for Using OMP_PLACES and OMP_PROC_BIND

$ OMP_NUM_THREADS=18 OMP_PROC_BIND=close OMP_PLACES=threads \
 KMP_AFFINITY=verbose ./my_app
[...]
OMP: Info #242: KMP_AFFINITY: pid 86565 thread 0 bound to OS proc set {0}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 3 bound to OS proc set {25}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 14 bound to OS proc set {7}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 16 bound to OS proc set {8}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 8 bound to OS proc set {4}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 12 bound to OS proc set {6}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 11 bound to OS proc set {29}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 7 bound to OS proc set {27}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 4 bound to OS proc set {2}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 10 bound to OS proc set {5}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 5 bound to OS proc set {26}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 6 bound to OS proc set {3}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 13 bound to OS proc set {30}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 9 bound to OS proc set {28}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 1 bound to OS proc set {24}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 17 bound to OS proc set {32}

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

196

OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 15 bound to OS proc set {31}
OMP: Info #242: OMP_PROC_BIND: pid 86565 thread 2 bound to OS proc set {1}
[...]

$ OMP_NUM_THREADS=18 OMP_PROC_BIND=spread OMP_PLACES=cores \
 KMP_AFFINITY=verbose ./my_app
[...]
OMP: Info #242: KMP_AFFINITY: pid 86690 thread 0 bound to OS proc set {0,24}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 1 bound to OS proc set {2,26}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 2 bound to OS proc set {3,27}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 3 bound to OS proc set {4,28}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 4 bound to OS proc set {6,30}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 5 bound to OS proc set {7,31}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 6 bound to OS proc set {8,32}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 7 bound to OS proc set {10,34}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 8 bound to OS proc set {11,35}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 9 bound to OS proc set {12,36}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 10 bound to OS proc set {14,38}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 11 bound to OS proc set {15,39}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 12 bound to OS proc set {16,40}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 13 bound to OS proc set {18,42}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 14 bound to OS proc set {19,43}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 15 bound to OS proc set {20,44}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 16 bound to OS proc set {22,46}
OMP: Info #242: OMP_PROC_BIND: pid 86668 thread 17 bound to OS proc set {23,47}
[...]

For more information on how to use KMP_AFFINITY and the OpenMP interface
for threaded applications, see the user’s guide of Intel Composer XE. For more
advanced usage scenarios, the documentation also contains useful information on how
programmers can use special runtime functions that allow for specific control of all
aspects of thread pinning.

EXERCISE 6-3

Use different settings for KMP_AFFINITY and OMP_PROC_BIND, and conduct
performance runs with these settings. What are the best settings for your
application?

Thread Placement in Hybrid Applications
Process and thread placement may also lead to performance improvements for
MPI/OpenMP hybrid applications. Depending on how many MPI ranks you are running
per node, you may need to consider thread placement and find the ideal placement,
similarly to what we have discussed for purely threaded applications.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

197

If you configure the application to run only a single MPI rank per node, so that the
remaining cores of the node are used to execute OpenMP threads, you’ll need to place the
threads appropriately to avoid NUMA issues and to make sure that the operating system
keeps the threads where their data has been allocated.

If the application runs with one or more MPI ranks per socket, thread placement will
be less of an issue. If the MPI rank is bound to a certain socket (the default for Intel MPI),
the threads of each MPI process are automatically confined to execute on the same set
of cores (or socket) that are available for their parent process (see Listing 6-6). Since now
the MPI ranks’ threads cannot move away from their executing socket, the NUMA issue is
automatically solved. Data allocation and computation will always be performed on the
same NUMA region. Pinning threads to specific cores might still lead to improvements,
since it effectively avoids cache invalidations of the L1 and L2 caches that may happen
owing to the threads’ wandering around on different cores of the same socket.

In Listing 6-6, we instruct both the Intel MPI Library and the Intel OpenMP runtime
to print their respective process and thread placements for MiniMD on a single node with
two MPI ranks. As you can see, the Intel MPI Library automatically deploys one MPI rank
per socket and restricts execution of the OpenMP threads to the cores of each socket. We
can use this as a starting point and apply what we saw earlier in this section. Adding the
appropriate KMP_AFFINITY settings, we can now make sure that each OpenMP thread is
pinned to the same core during execution (shown in Listing 6-7).

Listing 6-6. Default Process and Thread Placement for an MPI/OpenMP Hybrid
Application

$ I_MPI_DEBUG=4 KMP_AFFINITY=verbose mpirun "-prepend-rank -np 2 \
 ./miniMD_intel --num_threads 12
[0] [0] MPI startup(): Single-threaded optimized library
[0] [0] MPI startup(): shm data transfer mode
[1] [1] MPI startup(): shm data transfer mode
[0] [0] MPI startup(): Rank Pid Node name Pin cpu
[0] [0] MPI startup(): 0 87096 book {0,1,2,3,4,5,6,7,8,9,
10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] [0] MPI startup(): 1 87097 book {12,13,14,15,16,17,18,19,
20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[...]
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 0 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 1 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 3 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 2 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 4 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 5 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

198

[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 6 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 8 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 7 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 9 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 10 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] OMP: Info #242: KMP_AFFINITY: pid 87135 thread 11 bound to OS proc set
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 0 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 1 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 2 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 3 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 4 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 5 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 6 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 7 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 8 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 9 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 10 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[1] OMP: Info #242: KMP_AFFINITY: pid 87136 thread 11 bound to OS proc set
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[...]

Listing 6-7. Hybrid MPI/OpenMP Application with Thread-to-Core Pinning

$ I_MPI_DEBUG=4 KMP_AFFINITY=granularity=thread,compact,1,verbose \
 mpirun -prepend-rank -np 2
 ./miniMD_intel --num_threads 12
[0] [0] MPI startup(): Single-threaded optimized library
[0] [0] MPI startup(): shm data transfer mode
[1] [1] MPI startup(): shm data transfer mode
[0] [0] MPI startup(): Rank Pid Node name Pin cpu

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

199

[0] [0] MPI startup(): 0 87377 book
{0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,32,33,34,35}
[0] [0] MPI startup(): 1 87378 book
{12,13,14,15,16,17,18,19,20,21,22,23,36,37,38,39,40,41,42,43,44,45,46,47}
[...]
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 0 bound to OS proc set {0}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 1 bound to OS proc set {1}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 2 bound to OS proc set {2}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 3 bound to OS proc set {3}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 4 bound to OS proc set {4}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 5 bound to OS proc set {5}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 6 bound to OS proc set {6}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 7 bound to OS proc set {7}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 8 bound to OS proc set {8}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 9 bound to OS proc set {9}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 10 bound to OS proc set {10}
[0] OMP: Info #242: KMP_AFFINITY: pid 87377 thread 11 bound to OS proc set {11}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 0 bound to OS proc set {12}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 1 bound to OS proc set {13}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 2 bound to OS proc set {14}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 3 bound to OS proc set {15}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 4 bound to OS proc set {16}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 5 bound to OS proc set {17}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 6 bound to OS proc set {18}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 7 bound to OS proc set {19}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 8 bound to OS proc set {20}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 9 bound to OS proc set {21}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 10 bound to OS proc set {22}
[1] OMP: Info #242: KMP_AFFINITY: pid 87378 thread 11 bound to OS proc set {23}
[...]

Summary
This chapter was all about optimizations on the threading level of the application to
achieve better performance on a single node.

If your application is using only MPI to exchange messages on the process level
and you are thinking about multithreading, this chapter showed how you can create a
hotspot and loop profile to get a better understanding of the application behavior. This is
your foundation for making informed decisions about where to apply OpenMP (or other
threading models) to your code to move it to a hybrid MPI/OpenMP solution.

The hotspot profile is the tool for getting to know about optimization and
parallelization candidates. The hotspots are always the optimization candidates that you
will investigate closely and in depth so that you can find bottlenecks in these parts of
your code. We have presented some of the most common application bottlenecks, such
as sequential and load imbalanced parts of code, excessive thread synchronization, and
issues introduced by the NUMA.

Chapter 6 ■ addressing appliCation BottleneCks: shared MeMory

200

References
1. “Perf: Linux profiling with performance counters,”

 https://perf.wiki.kernel.org/index.php/Main_Page.

2. J. Dongarra and M. A. Heroux, Toward a New Metric for Ranking
High Performance Computing Systems (Albuquerque, NM: Sandia
National Laboratories, 2013).

3. Intel VTune Amplifier XE User’s Guide (Santa Clara, CA: Intel
Corporation, 2014).

4. “Intel® Inspector XE 2015,”
https://software.intel.com/intel-inspector-xe.

5. Valgrind Developers, “Valgrind,” http://valgrind.org/.

6. User and Reference Guide for the Intel C++ Compiler 15.0
(Santa Clara, CA: Intel Corporation, 2014).

https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/intel-inspector-xe
http://valgrind.org/

201

Chapter 7

Addressing Application
Bottlenecks:
Microarchitecture

Microarchitectural performance tuning is one of the most difficult parts of the
performance tuning process. In contrast to other tuning activities, it is not immediately
clear what the bottlenecks are. Usually, discovering them requires studying processor
manuals, which provide the details of the execution flow. Furthermore, a certain
understanding of assembly language is needed to reflect the findings back onto the
original source code. Each processor model will also have its own microarchitectural
characteristics that have to be considered when writing efficient software.

In this chapter, we outline some of the general design principles of modern
processors that will allow you to understand the do’s and don’ts of diagnosing bottlenecks
and to exploit tools to extract the required information that will allow you to tune software
on the microarchitectural level.

Overview of a Modern Processor Pipeline
Let’s discuss the most important features of a current CPU core in these beginning few
pages. Features that you will find in most cores are pipelining, out-of-order and superscalar
execution, data-parallel (SIMD) execution, and branch prediction. We will associate these
features with the Intel Xeon E5-2600 series processor (code name Sandy Bridge).

To begin, let’s briefly define some important terms that we will use extensively in
this chapter:

•	 Register: A small, but very fast storage directly connected to the
processor core. Since registers must be able to hold memory
addresses, they need to be as big as the address space. A 64-bit
architecture has 64-bit registers. And there might be additional,
larger registers that we will deal with later.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

202

•	 Assembly language: The one-to-one translation of the machine
instructions that the CPU is able to understand. On a Linux
system, you can see the assembly language for an object file with
the objdump tool. For example,

$ objdump -M intel intel-mnemonic -d <object file or executable>

The output will look like

48 89 c1 mov rcx,rax

where the numbers on the left are the actual numerical
codes of the machine language and the right hand side is the
translation into an assembly language instruction, consisting
of human-readable mnemonics and its arguments. In this
example, the translation into English would be “move the
contents of register rax to the register rcx.” Machine language
and assembly language can be thought of as bijective. A
compiler is not required; instead, a “translator” is used,
called an assembler. The system-supplied assembler on
a Linux system is called “as.” (If you are interested in the
details of assembly language programming, there are good
books available, such as Sivara P. Dandamudi’s.1 We also
recommend the Intel processor manuals.2)

•	 Instruction: A machine language command having none,
one, or more arguments. One line of assembly language as
described above corresponds to a single machine command.
The instructions valid for a given processor are defined in
the instruction set architecture (ISA). The ISA that 64-bit Intel
processors understand is often dubbed x86_64 with various
downward-compatible extensions; that is, a processor being able
to execute Advanced Vector Extensions (AVX) can also execute
Streaming SIMD extensions (SSE), but not vice versa.

•	 Micro-operation (uop): Instructions translated into
micro-operations in the decoder. This is done in order to formally
keep the ISA as is and still be able to change the underlying
functionality of a processor. It allows programs written for
one ISA to execute on two fundamentally different processor
architectures. In the case of Intel processors, this is the Intel64
ISA. The micro-operations are not disclosed, nor are they directly
programmable.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

203

Pipelined Execution
Pipelines are the computer-science version of an industrial assembly line, and they are
the overarching design principle of a modern CPU core. Thus, all techniques introduced
here need to be seen in light of this concept. In a pipeline, throughput performance is
gained by exploiting parallelism in the execution of a stream of instructions. Pipeline
stages are each executing specialized tasks.

A classic pipeline model used by Tanenbaum3 looks like this:

•	 Instruction fetch (IF): Loads the instruction indicated by the
instruction pointer. The instruction pointer is a CPU register
containing the memory address of the next instruction to be
executed.

•	 Instruction decode (ID): The processor parses the instruction and
associates it with the functionality to be executed.

•	 Load operands (LO): Data from the argument(s) are loaded. In
general this is data thought to be contained in a CPU register, but
it might also be a memory address.

•	 Execution (EX): The instruction is executed. In the case of an
arithmetic instruction, the actual computation will be done.

•	 Write-back results (WB): The computed result is committed to the
specified destination, usually a register.

In a non-pipelined approach, each of these steps needs to be completed before
another instruction can be fetched. While one of these stages is active, the other ones is
idle, which renders most of the processor’s capacity unutilized. In a pipeline approach,
however, each pipeline stage is active at the same time, leading to a throughput of one
instruction per clock cycle (assuming that completion of a stage requires one clock cycle).
If you assume that there is no dependence between individual instructions, you can fetch
the third instruction while the second one is being decoded; you can load the operands
for the first one at the same time, and so on. In this way, no pipeline stage is ever idle, as
shown in Figure 7-1.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

204

In a pipeline, although the latency of the individual instruction (the time during
which the instruction is individually executed) does not change, the overall throughput
increases dramatically.

Let’s estimate the time it takes to execute a number of instructions N
instructions

 in N
stages

stages, where we assume each stage takes the same time T

stages
 to complete:

T
no-pipeline

 = N
instructions

 N
stages

 T
stage

T
pipeline

 = N
stages

 T
stage

 + (N
instructions

 –1) T
stage

.

The ideal speedup is

S = T
no-pipeline

 /T
pipeline

 = N
stages

,

assuming an infinite number of instructions. This estimation is highly idealized. If, for
some reason, one stage of the pipeline fails to complete in time, the whole pipeline will
come to a halt—that,s what we call a pipeline stall. Without claiming completeness, some
common reasons for pipeline stalls are as follows.

Data Conflicts
Data conflicts arise from the parallel execution of instructions within a pipeline when the
results of one instruction are an input argument to another instruction. Data conflicts
play an important role when we speak about vectorization, and we will come back to
them when we deal with this topic later in the chapter.

Figure 7-1. Comparison of pipelined vs. non-pipelined execution of instructions

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

205

We can distinguish three important types of data conflict:

1. Read after write (RAW) or flow dependence: A variable must
be read after it was written previously. The use of the updated
value cannot be started until the update is completed.
Example in C:

var1=5;
var2=var1+2;

 Clearly, the first line needs to complete before the second can
be executed, since otherwise the variable var1 might contain
an arbitrary value.

2. Write after read (WAR) or anti-dependence: This is just the
opposite of RAW: a variable must be written after it has been
read previously. Example in C:

var2=var1+2;
var1=5;

 The second line must be prohibited from committing the
value 5 to var1 before the first completes.

3. Write after write (WAW): This is a situation where the same
variable is written by two different values in very close
proximity. Example in C:

var1=1;
<other instructions>
var1=2;

The WAW case is not a problem in a simple in-order pipeline. However, in the
context of out-of-order and superscalar execution discussed later, this conflict is possible
when the order of instructions can be changed and instructions might even be executed
concurrently.

Control Conflicts
The instruction flow often reaches a point where a decision needs to be made about
which further instructions will be executed. Such points are unmistakably indicated by
explicit conditional constructs (e.g., if-statements) in the source code. Other language
constructs require decisions to be made, as well. A common example is loops where a
counter variable is compared with the upper limit of the loop. If the upper limit is not
reached, the instruction pointer will be set to the beginning of the loop body and the next
iteration is executed. If the upper limit is reached, the execution will continue with the
next instruction after the loop body.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

206

Consider a loop summing up all numbers below 100:

for(i=0;i<100;i++)
 s=s+i;

In assembly language, this is translated into a comparison and a conditional jump:

mov eax, 0x0 # set the counter variable to zero
loop1: # a marker, translated into a position by the assembler
 add ebx, eax # this is the loop body
 inc eax # increment the loop counter
 cmp eax, 0x64 # compare if we have reached the upper limit
 jle <loop1> # if the comparison yields less or equal, jump to loop1
...

With the result of the comparison not yet being available, the pipeline cannot reliably
execute the jump and the pipeline will stall until the comparison has written-back its
results. A control conflict can partly be resolved by branch prediction, as discussed later.

Structural Conflicts
A structural conflict appears when more hardware functionality is required than is
available in a section of the instruction flow. If you have only, say, four registers and two
instructions, each uses two registers to copy data; if these two instructions are executing
in the pipeline, an instruction that requires one of the registers will have to wait until the
resources are freed up.

Out-of-order vs. In-order Execution
In the previous section we considered pipelines and how they improve performance
when issued instructions are independent and do not show any conflicts. One problem a
pipeline does not solve is the following. Consider an instruction, inst1, which shows a true
dependence and will have to wait until some result of a number of previous calculations
becomes available. The next instruction, inst2, might have all its dependences satisfied
but cannot execute because the order of instructions needs to be guaranteed for the
instruction flow to deliver consistent results. We call this in-order execution. However, if
we could keep track of the order of instructions and reorder them again before the results
become apparent when we commit them to the register in the WB (write-back) stage, we
could allow inst2 to bypass inst1 and be executed while inst1 is waiting.

This idea is implemented in out-of-order execution pipelines. We do not go into detail
on how this is exactly implemented, as those details are of no importance here, but there
is a considerable amount of literature covering this subject.4,5 What is important, though,
are the additional two stages this strategy introduces to the pipeline. First, we need one
stage to check the instruction flow for data dependences, record the order, and issue
the instruction into execution. We call this stage the dispatch or reservation station.
Then, we need a pipeline stage that reorders the instructions after execution and commits
the results to registers in the original execution order. We call this stage retirement. On Intel
architectures, the out-of-order engine is the part that works on micro-operations (uops).

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

207

Superscalar Pipelines
With out-of-order execution in place, there is a straightforward way to increase
performance: instead of executing out-of-order in a single pipeline, you could execute
the micro-instructions in parallel, in two or more independent pipelines, because their
execution is independent from the beginning (see Figure 7-2). The retirement buffer will
then take care of the proper ordering across all pipelines after the execution. The level
of parallelism that can be achieved in this approach is, of course, limited by the inherent
parallelism in the flow of instructions.

SIMD Execution
In practice, we often apply the same instructions to each element of a large dataset.
This gives rise to an additional level of parallelism to be exploited. The potential speedup
is proportional to the number of data elements we can process in parallel. In hardware,
this is implemented by making registers available that are as wide as the number of
elements that we want to treat in parallel, which is a significant hardware investment
limiting the vector length.

Current Intel CPUs support three types of vector extensions: multimedia extensions
(MMX, 64 bit), various versions of Stream SIMD extensions (SSE, 128 bit), and advanced
vector extensions (AVX, 256 bit). Chapter 2 discussed the benefits of SIMD execution in
detail; see especially Figures 2-2 through 2-8 for AVX.

Speculative Execution: Branch Prediction
A limiting factor for the performance of a pipeline is the presence of branches. Branches
appear when the execution can continue at another position in the instruction flow.
There are two types of branches: conditional and unconditional. Conditional branches
implement decisions taken at runtime, such as “if” and “while.” Unconditional branches
are created for subroutines, functions, and function pointer calls.

Figure 7-2. Parallel execution in a superscalar out-of-order pipeline

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

208

When a conditional branch appears in the instruction flow, the pipeline stalls at this
position until the condition has been calculated and the next instruction can be fetched,
which can mean a big hit to performance. To alleviate this problem, the processor could
predict the target of the branch and continue feeding the pipeline with instructions from
this point in the code. For this purpose, the processor has a branch target buffer that
stores the last branch target taken from this point in the code, along with information
about the success of the last predictions.

A very simple implementation of a branch prediction would be to predict the last
observed behavior; that is, we predict “branch taken” if we took it the last time and “not
taken” if we didn’t take it. This is easy to store in a single bit associated with the position
of the branch in the code. Figure 7-3 shows a more advanced branch predictor using
two bits. If a branch is taken, the predictor will enter the state 11 “predict taken.” While
the prediction is true, it will stay in this state. If the prediction is once false, it will not
immediately predict “not taken” but, rather, go to state 10, but still “predict taken.” Only if
the prediction is wrong a second time will the state change to “00” and “predict not taken.”

Figure 7-3. A 2-bit branch predictor (see description in text)

These branch prediction schemes are called dynamic predictions. The branch
predictor compares the current position in the code with information it already has
stored for this particular branch. At the first encounter of a particular branch, this
solution will not work because there is no information available in the branch target
buffer. For this instance, the branch predictor has a default behavior, called the static
prediction. The rules for static branch prediction are as follows:

A forward conditional branch (an if-statement) is predicted •	 not to
be taken

A backward conditional branch (a loop) is predicted •	 to be taken

An unconditional branch (a call to or return from a subroutine) is •	
predicted to be taken

Branch predictors can have a very high hit rate, but at one point a prediction will fail.
If you consider a loop, the prediction will be wrong when the loop counter has reached
the limit. In this case, the processor speculatively executes the wrong code path and

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

209

the pipeline will be cleared (called a pipeline flush). The computation is then restarted
at the point before the prediction, using the now-known correct branch target. A pipeline
flush can have a serious performance impact. The minimum impact is the time it takes to
refill the pipeline—which is, at best, the number of pipeline stages.

Memory Subsystem
A problem in the last decade of CPU design was the growing divergence in performance
of memory and CPU. While the CPU follows the principle of Moore’s Law and doubles the
number of components (translating directly into performance) each 18 months, memory
performance (that is, the number of bytes delivered per second) grows much slower. To
have the data readily available when needed by the execution units, fast but small and
expensive storage is directly built into the CPU, called a cache. The idea of a cache was
inspired by the temporal principle of locality: data that you have used once you will likely
use again in the near future. The cache memory, then, stores intermediate copies of data
that actually reside in the main memory. Often, more than one cache is present, which is
then called a cache hierarchy.

Three different cache implementations are used:

•	 Direct-mapped cache: Each memory address can be stored
only in a specific cache line. If a memory address is loaded in a
cache line that is already occupied, the previous content of this
line is evicted. This approach allows for a much leaner logic to
determine a hit and has relatively low access latency. The hit
ratios are lower than with the fully associative cache, but this
technique is cheaper.

•	 Fully associative cache: The memory address of the data within
the cache is stored alongside. To find where a memory location
has been stored in the cache requires a compare operation across
the memory addresses stored for each line. Fully associative
caches have high hit rates but relatively long access latencies.
Also, they require a larger chip space to incorporate the extensive
hit logic and are therefore more expensive.

•	 Set associative cache: This is a compromise between the two
aforementioned alternatives. The set associative cache divides the
cache into a number of sets (say eight). A cache line is placed into
a given set, based on its memory address. Searching within a set,
then, is internally fully associative. While cost and chip space stay
reasonable, this technique offers a high hit ratio.

Current product lines of Intel processor cores feature 32 Kbyte instruction and data
Level 1 (L1) caches and a 256 Kbyte unified Level 2 cache (L2), both eight-way set
associative. (Cache latencies and bandwidth have been discussed in Chapter 2.)

Even if we cache data entries for fast access by the execution units, many programs
stream data through the processor, which exceeds the cache capacity. The cache then
becomes useless because you will not find the entry you loaded in the past, as it was
already evicted. The cache also adds latency to the loading of such streaming data into

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

210

the processor. In modern CPU design, this problem is attacked by preloading data in
the caches that is likely to be used next, so that it is readily available. This technique is
called prefetching and is extensively used in the Sandy Bridge architecture, which has four
different hardware prefetchers.6

Putting It All Together: A Final Look at the Sandy
Bridge Pipeline
Let’s now relate the architecture design principles discussed to the block diagram of
the Sandy Bridge microarchitecture, as shown in Figure 7-4, and follow an instruction
from fetching to retirement. Instructions stored in main memory come in through the
32 KB L1 instruction cache (ICache) at a rate of 16 bytes per cycle and are decoded (there
is actually a pre-decode stage) into microinstructions. Up to four instructions can be
decoded in one cycle. Instructions that have already been decoded are stored into a uop
cache that can hold up to 1536 uops. Then, resources (for example registers) are allocated
whereby unnecessary structural conflicts are resolved through register renaming. The
scheduler can queue up to 56 uops and distribute up to six uops to the execution ports,
depending on the requested functionality by the instruction. Instructions are dispatched
out-of-order and a reorder buffer is used to keep track of the original sequence. Upon
completion of an instruction, execution results are committed in the right sequence and
the instructions retire, up to four per cycle.

Figure 7-4. Block diagram of the Sandy Bridge core

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

211

A Top-down Method for Categorizing the Pipeline
Performance
The Sandy Bridge pipeline is designed to deliver maximum performance. The target of
all software microarchitectural optimization is to keep the pipeline running and avoid
pipeline stalls. But how do you actually know what good performance is and what is not?
How can you determine where in the pipeline the problems appear? In this section, we
introduce an easy scheme to categorize optimization opportunities and determine where
the pipeline stalls.

The Sandy Bridge core pipeline, as shown in Figure 7-4, is certainly very complicated
with a lot of interacting units. We could look at each unit individually, which gets
confusing and is hard to remember; instead, we will consider the broader picture.

Let us start with the most basic performance metric first. The CPI rate (cycles
per instruction) is a measure of how well the code has been executing in the pipeline.
Because of the super-scalar properties of the core architecture, multiple instructions can
be executed at the same time. For a current Intel Core or Intel Xeon processor, the limit is
four instructions, which corresponds to a CPI rate of 0.25; on average, only a quarter of a
cycle is spent on an instruction if four of them are executed and retired. Applications with
a CPI rate of 0.25 to 0.7 are considered to be efficient. A CPI rate above the threshold of 1.0
usually indicates that a performance problem might exist and that further analysis should
be performed. The CPI rate specifies how many instructions are executed per cycle (it is
not a good metric to discuss the usefulness of these instructions!). If you don’t reach a
good CPI value, the pipeline is not retiring as many instructions as possible and is stalling
at some point; see the diagram shown in Figure 7-4.

It is useful to subdivide the Sandy Bridge pipeline into two parts: front end and back
end. We define these two parts as follows:

•	 Front end: fetching of the instruction, the decoding, the branch
prediction, and the uops queue

•	 Back end: renaming, scheduling, and execution (the out-of-order
engine)

The front end is responsible for decoding instructions and delivering micro-operations;
the back end has to execute and retire them. If the front end can’t deliver, the back end will
starve. If the back end can’t take more uops, the front end will stall. In either of these two
cases, no uops will be issued from front to back end.

If no uops can be issued, we again have two cases: either we can allocate resources in
the back end (registers, ports) or we cannot. If resources are free but no uops are issued, we
call such a code front-end bound. If no resources are free (the execution units are busy), we
call it back-end bound. This might happen because the code is either core bound (waiting for
computation to complete) or memory bound (waiting for memory operations to complete).

If uops can be issued into the pipeline, the next question we need to ask is: Do
the uops actually retire? If the uops do retire, we have the desired outcome. If they do
not, they must have vanished from the pipeline although they were issued; they must
have been cleared due to bad speculation. Figure 7-5 outlines the decision tree for this
categorization.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

212

Ideally we would like to see all compute cycles spent in the retired category, although
this doesn’t mean there is no room for improvement. As for the other categories, let’s
discuss some common reasons they will appear:

•	 Front-end bound: This is caused by misses in the instruction
cache (ICache) or the instruction translation lookaside buffer
(ITLB), owing to a large code, excessive inlining or loop unrolling.
Also, inefficiencies in the decoder, such as length-changing
prefixes,7 can be the reason. (See inlining in later sections
“Dealing with Branching” and “Basic Usage and Optimization.”)

•	 Back-end memory bound: The cache misses at all levels—irregular
data access, streaming data access, large datasets, cache conflicts,
and unaligned data. (See the later section “Optimizing for
Vectorization.”)

•	 Back-end core bound: There are long latency instructions (divide),
chains of dependent instructions, and code that is not vectorizing.
(See the later section “Optimizing for Vectorization.”)

•	 Bad speculation: There is wrong prediction of branches and
resulting pipeline flushes and short loops. (See the later section
“Dealing with Branching.”)

Intel Composer XE Usage for Microarchitecture
Optimizations
Before we go into details about particular optimization problems, let’s review some basic
usage of the compiler.

Figure 7-5. Hierarchical top-down analysis method (Source: Intel 64 and IA-32 Architectures
Optimization Reference Manual)

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

213

Basic Compiler Usage and Optimization
The first important choice to make is to specify the architecture and ISA extension you
want to compile for. If you do not specify anything, the default will be SSE3, which is the
one available on all 64-bit platforms. In most cases, you will have a more feature-rich
and higher performance set of instructions available on more recent CPUs. The compiler
switch -x<arch> will compile only for the architecture specified in <arch> and downward
compatible, succeeding Intel platforms. We use -xAVX in this chapter because we want
to address this instruction set. Please refer to the compiler manual for all options. If you
compile on the platform you will be running on, it is easiest to use -xHOST, which will
detect and apply the correct architecture automatically.

If you need to have a binary for an alternative architecture, by all means there is
a workaround. By specifying -ax instead of -x, you tell the compiler to create a binary
for multiple architectures that is auto-dispatching—that is, using the code path that
is best for the architecture that the software is currently running on. For example, the
compiler command

$ icc -axAVX,SSE4.1 <source file>

will create a binary that can execute on all Intel CPUs supporting SSE4.1, but it will still
run the highest performing code path on the Sandy Bridge and Ivy Bridge processors.

The next basic choice is the optimization level. There are four optimization levels,
which can be controlled with the -On switch, where n is between 0 and 3. The -O0 switch
turns off optimization completely. The -O1 optimizes for speed, but doesn’t increase the
code size. The default optimization level is -O2, which optimizes for speed, but increases
code size through unrolling and inlining. The -O3 performs similar optimizations as -O2,
but is more aggressive. When using -O3, you’ll find that increased inlining and loop
unrolling can sometimes lead to slower code because of front-end stalls. It is worth playing
with this switch and measuring performance before deciding on the final level to use.

Using Optimization and Vectorization Reports to Read
the Compiler’s Mind
Compiler reports are an essential tool for understanding whether a particular optimization
has been done by the compiler. This information is difficult to obtain otherwise, and
even advanced performance-monitoring tools like VTune Amplifier XE will not provide
it, hence it is worth spending some time on it here. Note that the reporting features of the
compiler changed with Intel Composer XE 2015—some of the functionality described here
might not be valid for older versions.

Intel Composer XE 2015 can provide extensive optimization reports in six levels,
from 0 (no optimization report) to 5 (maximum). Although the level 5 report provides the
most insight, it generates a lot of information for large codes.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

214

The reports contain information for a total of nine phases, if applicable:

•	 LOOP: High-level loop optimization

•	 PAR: Auto-parallelization

•	 VEC: Vectorization

•	 OPENMP: OpenMP thread parallelization

•	 OFFLOAD: Offloading to the Intel Xeon Phi co-processor

•	 IPO: Inter-procedural optimization

•	 PGO: Profile-guided optimization

•	 CG: Code generation

•	 TCOLLECT: Trace collection in MPI parallelized programs

For the scope of this chapter, three of these phases are the most interesting:
LOOP, VEC, and IPO. For this first example, consider a program implementing a square
matrix-matrix multiplication and inspect the optimization report produced by the
compiler. The function for doing the computation is shown in Listing 7-1.

Listing 7-1. Square Matrix Multiplication in C/C++

void squaregemm(int size, double* a, double* b, double* c){
 for(int i=0;i<size;i++){
 for(int j=0;j<size;j++){
 for(int k=0;k<size;k++){
 c[i*size+j]+=a[i*size+k]*b[k*size+j];
 }
 }
 }
}

Let’s look at the optimization report of the compiler generated with -opt-report5.
First, there is a report header summarizing the setting for IPO, inlining, and the inlined
functions. After this header information, the optimization report for the code starts,
usually with the main routine:

Begin optimization report for: main

Report from: Interprocedural optimizations [ipo]

INLINE REPORT: (main) [1/2=50.0%]
 -> printf(EXTERN)
 -> rand(EXTERN)
 -> INLINE: squaregemm(int, double*, double*, double*)() (isz = 57)

(sz = 68 (33+35))

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

215

 -> operator new[](unsigned long)(EXTERN)
 -> operator new[](unsigned long)(EXTERN)
 -> operator new[](unsigned long)(EXTERN)

The function squaregemm that we have defined is inlined; all other functions (not shown
in Listing 7-1) for which no code could be found are marked extern, such as rand() or
printf(). The numbers behind the inlined function summarize the increase of the code size.
In this case, the size of the calling function plus the called function is 68 = 33 + 35, whereas the
size of the inlined function is only 57, owing to further optimizations.

The next interesting point is the optimization report for the squaregemm function:

...
Begin optimization report for: squaregemm(int, double*, double*, double*)

Report from: Interprocedural optimizations [ipo]

INLINE REPORT: (squaregemm(int, double*, double*, double*)) [2/2=100.0%]
...

The function squaregemm was inlined.

...
Report from: Loop nest, Vector & Auto-parallelization optimizations
[loop, vec, par]

LOOP BEGIN at main1.cpp(5,3)
 remark #25448: Loopnest Interchanged : (1 2 3) --> (1 3 2)
...

The compiler has changed the order of the loops form i,j,k to i,k,j to provide
better conditions for vectorization.

...
remark #15145: vectorization support: unroll factor set to 4
...

The last line indicates the compiler has unrolled the loop by four iterations.
Checking the assembly output of objdump -d, we indeed find a vectorized version of the
loop that is fourfold unrolled (four AVX vector multiplies and four AVX vector adds):

 401070: c5 fd 59 da vmulpd %ymm2,%ymm0,%ymm3
 401074: c5 fd 59 fe vmulpd %ymm6,%ymm0,%ymm7
 401078: c4 41 7d 59 da vmulpd %ymm10,%ymm0,%ymm11
 40107d: c4 41 7d 59 fe vmulpd %ymm14,%ymm0,%ymm15
 401082: c4 c1 65 58 24 d4 vaddpd (%r12,%rdx,8),%ymm3,%ymm4
 401088: c4 41 45 58 44 d4 20 vaddpd 0x20(%r12,%rdx,8),%ymm7,%ymm8
 40108f: c4 41 25 58 64 d4 40 vaddpd 0x40(%r12,%rdx,8),%ymm11,%ymm12
 401096: c4 c1 05 58 4c d4 60 vaddpd 0x60(%r12,%rdx,8),%ymm15,%ymm1

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

216

So you should now have an idea of what type of information the report creates. We
have deliberately left out quite a number of lines so as to keep this readable. The original
report for this very short program with a single function call is about 200 lines at report
level 5. Very often this is too much detail, as you might be interested in only one function
in a file or in a particular phase of the report. In this case, you can specify a filter—for
instance, for a function:

-opt-report-filter="squaredgemm"

Or you can indicate a phase—for instance, vectorization:

-opt-report-phase=vec

The phase must be one of CG, IPO, LOOP, OFFLOAD, OPENMP, PAR, PGO,
TCOLLECT, VEC, or all, as described earlier.

Optimizing for Vectorization
SIMD vectorization is one of the main sources of performance for Intel CPUs. There are
many ways to support vectorization:

•	 Automatic vectorization: Expressing code in a way the compiler
can easily recognize vectorizable code

•	 User-assisted vectorization: Indicating vectorization opportunities
to the compiler, or even forcing the compiler into vectorization via
annotation by compiler pragmas

•	 Language extensions: Expressing vectorization explicitly in a
high-level language

We will put a strong focus on loop vectorization, since this is the most common,
but it’s not the only source of vectorization.

Note ■ this section addresses the front-end/back-end categories of the top-down
method for the pipeline performance.

The AVX Instruction Set
The Sandy Bridge architecture introduced a set of new instructions operating on
256-bit vector registers (see also the section “Process More Data with SIMD Parallelism”
in Chapter 2), called Advanced Vector Extensions (AVX). AVX supersedes the 128-bit
SSE instruction set extension introduced in the Pentium processor line and doubles the
floating-point performance of the CPU.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

217

AVX instructions can operate on sixteen 256-bit vector registers ymm0-ymm15. In
contrast to its predecessor SSE, which only allowed two arguments for each instruction,
AVX introduces a three-argument instruction format:

<instruction> <destination>, <source1>, <source2>

This allows for non-destructive operations (none of the sources are altered) and avoids
frequent save operations necessary to preserve the contents of a vector register, as well as
reduces register pressure (the shortage of registers). Examples of AVX functionality for 256-bit
vectors include the following (see illustrations of some vector functions in Figure 7-6):

Loading and storing of aligned and unaligned data. The •	
operations may be masked, so that a load ranging into an
unallocated memory range does not cause a fault.

Broadcasting of a memory element in all elements of a vector.•	

Elementary arithmetic operations of addition, subtraction, •	
multiplication, and division, as well as addsub (alternating
addition/subtraction), (inverse) square root, and reciprocal.

Comparison, minimum, maximum, and rounding.•	

Permutation of elements within a lane and permutation of lanes.•	

Figure 7-6. Examples of AVX functionality: simple vector addition (top left), in-lane
permutation (top right), broadcasting (bottom left), and mask loading (bottom right)

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

218

We will consider the direct programming of AVX later, in the section “Understanding
AVX: Intrinsic Programming.”

Why Doesn’t My Code Vectorize in the First Place?
Before going into actual optimizations for vectorization, let’s briefly look at reasons
why the compiler can’t vectorize your code. The root cause are actual or assumed data
dependences that are not resolvable at compile time.

Data Dependences

In regard to pipeline conflicts, we covered data dependences that prevent instructions
from being executed in parallel in a pipelined, out-of-order, or superscalar fashion.
As this pertains to the pipeline, where arbitrary instructions might act on the same data
at different times, it applies even more so to vectors. Here, only a single instruction is
executed on multiple, possibly dependent data elements at exactly the same time. In this
sense, vector dependences are more controllable and more easily solved.

Recall the data conflicts discussed earlier: flow dependence (read after write, or RAW),
anti-dependence (write after read, or WAR), and output dependence (write after write,
or WAW). It is important to realize how dependences affect vectorization. Let’s look at a
simple example. When a variable is written in one iteration and read in a subsequent one,
we have a RAW dependence, as we can see within the loop code:

for(int i=0;i<length-1;i++){
 a[i+1]=a[i];
}

If you unroll this loop, you get:

a[1]=a[0]; a[2]=a[1]; a[3]=a[2]; ...

After correct execution of the loop, all the elements should be set to the value in a[0]
(see Figure 7-7, left panel). Now, consider a two-element vectorized version of the loop.
At one time, two successive values will be loaded from the array (the parentheses indicate
the vector):

(a[1],a[2])=(a[0],a[1]);

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

219

The second value is already wrong, according to the original algorithm. In the next
iteration, you get:

(a[3],a[4])=(a[2],a[3])

a[2] has already been changed to a[1] in the previous iteration and the corresponding
values are loaded. Carrying this on, you get, as the final result:

a[0],a[1],a[1],a[3],a[3],a[5] ...

This is obviously wrong according to the original algorithm (see Figure 7-7, right
panel). Clearly, the compiler must prevent this loop from being vectorized. Very often,
however, the compiler assumes an unproven vector dependence, although you will know
better that this will never occur; we will treat this case extensively later.

Figure 7-7. Flow (RAW) data dependence-analysis of a shift-copy loop executed sequentially
and with a two-element vector

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

220

EXERCISE 7-1

try the example discussed in the preceding text:

for(int i=0;i<length-1;i++){
 a[i+1]=a[i];
}

You can enforce vectorization by placing a pragma simd (to be explained below)
before the loop.

#pragma simd
for(int i=0;i<length-1;i++){
 a[i+1]=a[i];
}

Can you confirm the results? For which shifts i+1, i+2,... do you get correct
results? For which do you get wrong results?

Data Aliasing

Another, related reason why code does not vectorize is aliasing. Under aliasing, we
understand the fact that two variables (pointers or references) are associated with the
same memory region. Consider a simple copy function:

void mycopy(double* a, double* b, int length){
 for(int i=0;i<length-1;i++){
 a[i]=b[i];
 }
}

In principle, the compiler should be able to vectorize this easily. But wait—can the
compiler be sure that the arrays a and b do not overlap? It cannot. And C/C++ explicitly
allows for this situation! Call the above function from the main function like this:

int main(void){
 int length=100;
 int copylength=50;
 double* a;
 double* b;
 double* data = (double*) malloc(sizeof(double)*length);
 a=&data[1];
 b=&data[0];
 mycopy(a,b,copylength);
}

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

221

You will get the same situation as with the earlier code showing an explicit vector
dependence. Consequently, the compiler must assume that there is a dependence.

Array Notations
The array notation (AN) introduced with Intel Cilk Plus is an Intel-specific language
extension of C/C++ that allows for direct expression of data-level parallelism (in contrast
to loops, which have the abovementioned problems). AN relieves the compiler of the
dependence and aliasing analysis to a degree and provides an easy way to a correct,
performing code.

AN introduces an array section notation that allows the specification of particular
elements, compact or regularly strided:

<array base>[<lower bound>:<length>[:<stride>]]

The syntax resembles the Fortran syntax, but Fortran programmers beware: the
semantic requires start:length and not start:end!

Examples for the array section notation are:

a[:] // the whole array
a[0:10] // elements 0 through 9
a[0:5:2] // elements 0,2,4,6,8

Based on this notation, operators will now act element-wise:

c[0:10]=a[0:10]*b[0:10]; // element-wise multiplication of 10 elements
a[0:10]++; // increments all elements
m[0:10]=a[0:10]<b[0:10]; // m[i] will contain 1 if a[i]<b[i], 0 otherwise

It is also possible to use AN with fields of higher dimension:

a[0:10][0:10]=b[10:10][10:10];

Or even with totally different ranks:

a[0:10][0:10]=b[10:10][2][10:10];

The only requirement is that the number of ranks and rank sizes must match. AN
provides reducer intrinsics to exercise all-element reductions. The following expression,

_sec_reduce_add(a[:]);

will return the sum of all elements. Of course, this can also be used with more complex
expression as arguments, so that,

_sec_reduce_add(a[:]*b[:]);

will return the inner vector product.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

222

Let’s look at an example using AN. A problem often encountered in scientific codes is
partial differential equations. Consider a 1D acoustic wave equation,

¶
¶

=
¶
¶

2

2
2

2

2t
x t c

x
x tj j() (),, ,

where x and t are continuous variables. This translates into a second-order finite
difference equation as,

j j j j j jx
t

x
t

x
t

x
t

x
t

x
t

t
c

x

+ -
+ -+ -

=
+ -1 1

2
2 1 1

2

2 2

() ()
,

D D

where x and t are now discrete space and time indices with distances Dx and Dt . We want
to know the strength of the field at the time t+1 at position x. Solving the above equation
for the field element jx

t
+1 yields:

j j j j j jx
t

x
t

x
t

x
t

x
t

x
tc

t

x
+

+ -
-= + - - -1 2

2

2 1 1
12 2

()

()
() .

D
D

In C/C++, this maybe expressed as:

for(int i=0;i<iterations;i++){ // number of time steps
 for(int n=1;n<size-1;n++){ // iterate over the space dimension
 f_next[n]= prefac*(f_curr[n-1]+f_curr[n+1]
 -2.0*f_curr[n])-f_prev[n]+2.0*f_curr[n];
 }
 tmp=f_prev;
 f_prev=f_curr; // in the iteration, the next field becomes the current
 f_curr=f_next; // ... and the current become the previous
 f_next=tmp; // The old previous we will be used to store the new next
}

The same example in AN would look like this:

for(int i=0;i<iterations;i++){
 f_next[1:size-2]=prefac*(f_curr[0:size-2]+f_curr[2:size-2]
 -2.0*f_curr[1:size-2])-f_prev[1:size-2]+2.0*f_curr[1:size-2];
 tmp=f_prev;
 f_prev=f_curr;
 f_curr=f_next;
 f_next=tmp;
}

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

223

Although the compiler might vectorize this simple example even in straight C/C++,
more complex problems—for example, a three-dimensional wave equation of a finite
difference equation solved to a higher order—might not or not fully vectorize. With AN,
the vector code becomes explicit.

Vectorization Directives
Pragmas are an annotation technique you already learned about in the context of
OpenMP. They allow you to hint information to the compiler, for which other means of
expressing it in C/C++ or Fortran are not available.

A pragma is treated by the compiler like a comment or an unknown preprocessor
directive if it doesn’t know it; in the end, it does ignore it. Consequently, the resulting
code maintains its portability for compilers that don’t support a certain feature, but it has
the desired effect if the compiler does understand the meaning of the pragma.

ivdep

The #pragma ivdep tells the compiler that assumed vector dependences in the following
loop body are to be ignored. Note that proven vector dependences are not affected. The
pragma has no further arguments. The #pragma ivdep is available in most compilers,
though its implementation might differ.

vector

The #pragma vector is similar in its effect as #pragma ivdep in the sense that it will ignore
assumed dependences but not proven ones, but it has additional optional clauses:

always: This overrides the heuristics on efficiency, alignment,
and stride.

aligned/unaligned: This tells the compiler to use aligned or
unaligned data movement for memory references.

temporal/nontemporal: This tells the compiler to use streaming
stores in case of nontemporal, or to avoid those in case of
temporal. Streaming stores write directly into memory bypassing
the cache, which saves an ubiquitous read for ownership (RFO)
that is required to modify the data in the cache. The nontemporal
clause can take a comma-separated list of variables that should
be stored nontemporal.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

224

simd

The #pragma simd is the most powerful of the three vectorization pragmas. So, #pragma
simd tells the compiler to ignore any heuristics and dependence, proven or not; you will
be fully responsible for making sure the result is correct. #pragma simd is a powerful
construct that can be extended by more arguments/subclauses, some similar in spirit to
the OpenMP parallel for pragma discussed earlier. We discuss them briefly here:

•	 vectorlength(arg1): Tells the compiler to use the specified vector
length. arg<n> must be a power of 2. Ideally, the vector length
is the maximum vector length supported by the underlying
hardware, such as 2 for SSE2 double vectors or 4 for AVX double
vectors. For example:

#pragma simd vectorlength(2)
for(int i=0;i<L;i++)
 a[i]=b[i]*c[i];

•	 vectorlengthfor(datatype): Tells the compiler to choose the
appropriate vector length for the architecture and data type
compiled for—for example, vectorlengthfor(double) will
result in a vector length of 2 for SSE2 and 4 for AVX. The benefit
is that you will get the optimal vector length independent of the
architecture chosen by the -x compiler switch. For example:

#pragma simd vectorlengthfor(double)
for(int i=0;i<L;i++)
 a[i]=b[i]*c[i];

The following clauses of pragma simd resemble the interface used in the OpenMP
data-sharing clauses and maybe thought of in the same manner—just that a vector lane
would correspond to a thread:

•	 private(var1[,var2,...]): With this clause the compiler will assume
that the scalar variable var1 can take different values in each loop
iteration (see also the OpenMP private clause). The initial (at
start of the loop) and final (after the loop) values are undefined,
so make sure you set the value in the loop and after the loop
completion. For example:

#pragma simd private(c)
for(int i=0;i<L;i++){
 c=i;
 a[i]=c*b[i];
}

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

225

•	 firstprivate(var1[,var2...]): The variable is considered to be
private, and on entry the compiler will set the value of the private
variable var1 to its value outside the loop.

•	 lastprivate(var1[,var2...]): The variable is considered to be private,
and on exit the compiler will maintain the value of the variable
var1 achieved in the last iteration of the loop.

•	 reduction(op:var): This performs a reduction operation of
the variable var with the operator op. The value of this clause
becomes immediately obvious by looking at an example:

#pragma simd reduction(+:c)
for(int i=0;i<L;i++){
 c+=a[i];
}

Here, each SIMD element performs a + reduction
(accumulates all the values) in the variable c, but in the end
all values of all SIMD elements are summed up to give the
correct result of the sum of all elements of the array a.

•	 (no)assert: This causes the compiler to generate an error if the
vectorization fails. The default is noassert and will generate
a warning.

You will notice the close similarity between #pragma simd and the OpenMP
construct #pragma omp for, which was discussed in Chapter 6.

Understanding AVX: Intrinsic Programming
We have touched on the AVX instructions a couple of times in this chapter. AVX is the
most important performance improvement in the Sandy Bridge architecture, but we have
described it only briefly up to this point. Here, we want to go into somewhat more detail
by programming with AVX explicitly by using intrinsics. This is more for educational
purposes than for practical use. Intrinsics are supposed to be the last resort when
vectorization cannot be facilitated otherwise.

What Are Intrinsics?

Intrinsics are functions that the compiler recognizes and treats in special way. In our case,
they are functions and types that can directly deal with vectors of a given length, hence
they also directly address a particular architecture independent of what is used with
the -x<architecture> switch. In most cases, intrinsics directly translate into machine
instructions. In some cases, they are more complex and involve a couple of instructions.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

226

Intrinsics mostly operate on and return vector types. For AVX, those are 256-bit
vectors and the types are as follows:

Eight 32-bit integer elements or four 64-bit integer
elements: __m256i

Eight single precision elements: __m256

Four double precision elements: __m256d

We will focus here on the double-precision types for the sake of brevity; everything
we present applies to single-precision types in a similar fashion. A listing of all intrinsics
can be found in the “Intel Intrinsics Guide.”8

The 256-bit floating-point intrinsic function for AVX starts with a _mm256_, then a
meaningful description of the functionality—say, add—and then two letters, encoding
packed (p) or scalar (s), as well as single (s) or double (d) precision. Packed and scalar in
this context means to execute the operation on all elements of the vector, or only on the
first element (see Figure 7-8).

Figure 7-8. AVX intrinsics encoding scheme

An example of an intrinsic function is:

c=_mm256_add_pd(a,b);

This will add the elements of the vectors a and b and write the results into the
elements of c. The a, b, and c are of type __m256d. See also Figure 7-6.

Intrinsics are only available for C/C++ and can be used in the source code freely.
All AVX intrinsics are listed in the file immintrin.h that you will find in the include
directory of Intel Composer XE 2015. There are hundreds of intrinsics; we will restrict
discussion to the most important ones.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

227

First Steps: Loading and Storing

The first thing we want to do is get data into a vector and back into main memory. There
two ways of loading, aligned and unaligned:

•	 __m256d a = _mm256_load_pd(double* memptr): Loads the
four packed double precision numbers contained in the 256 bit
starting at memptr. And memptr must be 32 byte aligned.

•	 __m256d a = _mm256_loadu_pd(double* memptr): Loads the
four packed double precision numbers contained in the 256
bit starting at memptr. And memptr does not need to be 32 byte
aligned.

Notice that we now have the information in a vector register exclusively; there
is no association with the memory anymore. We may now freely modify the data
without having to deal with memory transactions other than use more register than the
architecture can supply; the information will spill over to the cache. When we are done
with the data modification in the registers, we want to write them back into memory.
That’s as easy as loading:

•	 void _mm256_store_pd(double* memptr,__m256 a): Stores the
four packed double precision numbers contained in the register
a into the 256 bit starting at memptr. And memptr must be 32 byte
aligned.

•	 void _mm256_storeu_pd(double* memptr,__m256 a): Stores
the four packed double precision numbers contained in the
register a into the 256 bit starting at memptr. And memptr doesn’t
need to be 32 byte aligned.

A simple example program summarizing this would be:

void foo(double* d){
 __mm256d a;
 a=_mm256_loadu_pd(d);
 ...
 // do something meaningful
 ...
 _mm256_storeu_pd(d,a);
}

Sometimes you want to have one value in all of the vector elements. This is called
broadcasting:

•	 __m256 a _mm256_broadcast_sd(double* memptr): Copies the
double precision value contained in the 64 bit following memptr
into all the four elements of a vector register. No alignment is
required.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

228

Arithmetic

Now that we can load data into registers, we can start computing something. The four
basic arithmetic instructions are as follows:

•	 __m256 c = _mm256_add_pd(__m256 a,__m256 b): Adds the
four elements in the registers a and b element wise and puts
the result into c.

•	 __m256 c = _mm256_sub_pd(__m256 a,__m256 b): Subtracts the
four elements in the register b from a element wise and puts
the result into c.

•	 __m256 c = _mm256_mul_pd(__m256 a,__m256 b): Multiplies the
four elements in the registers a and b element wise and puts
the result into c.

•	 __m256 c = _mm256_div_pd(__m256 a,__m256 b): Divides the
four elements in the registers a by b element wise and puts
the result into c.

These four are already sufficient to do some important computation. Very often
multiplication of very small matrices is required—for instance, of 4x4 matrices in a
scenario covering three-dimensional space and time. (We will revisit this example in this
chapter.) There are highly optimized libraries providing the BLAS9 (basic linear algebra
subroutines) functionality, such as matrix-matrix multiplication. Those libraries, such
as Intel MKL, are powerful and feature rich. We might require less functionality. Say,
we don’t need the multiplicative factors in the DGEMM (double general matrix-matrix
subroutine), just straight multiplication of the matrices. In this case, a special matrix-matrix
multiplication like the following would do the trick:

#include <immintrin.h>
void dmm_4_4_4(double* a, double* b, double* c){
 int i;
 __m256d xa0;
 __m256d xa1;
 __m256d xa2;
 __m256d xa3;
 __m256d xb0;
 __m256d xb1;
 __m256d xb2;
 __m256d xb3;
 __m256d xc0;
 xb0 = _mm256_loadu_pd(&b[0]);
 xb1 = _mm256_loadu_pd(&b[4]);
 xb2 = _mm256_loadu_pd(&b[8]);
 xb3 = _mm256_loadu_pd(&b[12]);

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

229

 for(i=0;i<4;i+=1){
 xc0 = _mm256_loadu_pd(&c[i*4]);
 xa0=_mm256_broadcast_sd(&a[i*4]);
 xa1=_mm256_broadcast_sd(&a[i*4+1]);
 xa2=_mm256_broadcast_sd(&a[i*4+2]);
 xa3=_mm256_broadcast_sd(&a[i*4+3]);
 xc0=_mm256_add_pd(_mm256_mul_pd(xa0,xb0),xc0);
 xc0=_mm256_add_pd(_mm256_mul_pd(xa1,xb1),xc0);
 xc0=_mm256_add_pd(_mm256_mul_pd(xa2,xb2),xc0);
 xc0=_mm256_add_pd(_mm256_mul_pd(xa3,xb3),xc0);
 _mm256_storeu_pd(&c[i*4],xc0);
 }
}

EXERCISE 7-2

Measure the performance of the preceding routine versus Mkl’s dgeMM or a
manual C implementation, such as:

void dmm_4_4_4_c(double* a, double* b, double* c){
 for(int i=0;i<4;i++){
 for(int j=0;j<4;j++){
 for(int l=0;l<4;l++){
 c[i*4+j]+=a[i*4+l]*b[l*4+j];
 }
 }
 }
}

the number of floating-point operations in a matrix-matrix multiplication are
2×M×N×K = 2×4×4×4=128, in this case. You will have to measure many million
matrix multiplications are necessary to get some reasonable runtime. how does the
performance compare? how far can you tune the performance of the C version by
using pragmas and loop unrolling?

Data Rearrangement

Of course, those few intrinsics are not all there are; in few cases do we get data presented
so readily usable, as with a matrix multiplication. More frequently, data needs to be
rearranged in one vector or between different vectors. The intrinsics functions specialized
in data rearrangement often are difficult to configure, as you will see. Still, these intrinsics
have high importance because this is exactly what the compiler has the biggest problems

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

230

with. We provide some examples for configurations that are useful, but we don’t claim
completeness:

•	 __m256 b = _mm256_permute_pd(__m256d a, int m): Permutes
the elements within each lane according to the bits in m from left
to right. If the bit is 0, take the first element; if the bit is 1, take the
second.

Let’s look at the functionality with an example: Consider a vector containing the
values a0-a3: (a3,a2,a1,a0). Then, _mm256_permute_pd allows you to move the elements
of the vector within each lane (remember—a lane is half the vector); see Table 7-1 for
examples.

Table 7-1. Control Integer m and Result Vector for _mm256_permute_pd

int m Result vector b Description

1010b=10 (a3,a2,a1,a0) Identity

0000b=0 (a2,a2,a0,a0) Copy the first element of each lane into both
elements of a lane

1111b=15 (a3,a3,a1,a1) Copy the second element of each lane into
both elements of a lane

0101b=5 (a2,a3,a0,a1) Swap the elements of each lane

You can form all 16 variations, of course.
Next, we want to exchange data between whole lanes:

•	 __m256d c = _mm256_permute2f128_pd(__m256d a,
__m256d b, int m): The integer value controlling this
operation is somewhat more complicated, and we refer to the
documentation for exact functionality. In Table 7-2 we show some
functionality for different control integers.

Table 7-2. Control Integer m and Result Vector for _mm256_permute2f128_pd

int m Result vector c Description

00010000b=48 (a3,a2,a1,a0) Identity c=a

00110010b=50 (b3,b2,b1,b0) Identity c=b

00000001b=1 (a1,a0,a3,a2) Swap the two lanes of the first source a

00100011b=35 (b1,b0,b3,b2) Swap the two lanes of the second source b

00000011b=3 (a1,a0,b3,b2) The first lane of a and the second lane of b

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

231

Last, we want to look at blending:

•	 __m256d c = _mm256_blend_pd(__m256d a, __m256d b, const
int m): Copies the elements of a and b into c according to the
bits in m. If the bit position n is 0, take the element from the first
source (a); if it is 1, take it from the second source (b). Examples
for blending can be found in Table 7-3.

Table 7-3. Control Integer m and Results Vector for _mm256_blend_pd

int m Result vector c Description

0101b=5 (a3,b2,a1,b0) Copy the first and third from the second source, the
second and fourth element from the first source

1010b=10 (b3,a2,b1,a0) Copy the first and third from the first source, the
second and fourth element from the second source

0000b=0 (a3,a2,a1,a0) Copy all elements from the first source

1111b=15 (b3,b2,b1,b0) Copy all elements from the second source

Figure 7-9. Right panel: The lane concept of AVX. Left panel: The construction of a cycle
rotate of a double vector with in-lane and cross-lane permutes

Let’s see what we can do with all this. Consider a cyclic rotation of a vector by one
element (see also Figure 7-9):

(a3,a2,a1,a0) (a0,a3,a2,a1)

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

232

Here is the recipe:

1. Swap the elements of each lane of a into a new vector:

b=_mm256_permute_pd(a,5);

2. Swap the two lanes of the vector b:

c=_mm256_permute2f128_pd(b,b,1);

3. Blend the vectors b and c, taking the first and third elements
of the second source and the second third elements of the
first source:

d=_mm256_blend_pd(c,b,5);

4. The vector d now contains the cyclically rotated elements of a.

This concludes our short introduction to intrinsic programming. You are encouraged
to have a look at the “Intel Intrinsics Guide,”10 which contains a description of all
intrinsics and they can be filtered by architecture and scope.

EXERCISE 7-3

Create a version of the cyclic rotate that shifts by two and three elements.

Dealing with Disambiguation
Aliasing in computer sciences refers to the existence of more than one reference to a
single memory address. This is easy to see when it comes to scalars; for example:

double value = 5;
double* ref1 = &value;
double* ref2 = &value;

For arrays, it becomes more complex:

double* array = new double[200];
double* ref1 = & array[0];
double* ref2 = & array[50];

Of course, ref1[50] and ref2[0] are referring to the same memory address:

for(int i=0;i<50;i++){
 ref1[i+m]=2*ref2[i];
}

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

233

If we assume m to be known at compile time, we can easily observe what the compiler
is doing. For 0<=m<=50, the above code is vectorizable. For m=51, we obviously have a RAW
dependence and the vectorization fails. If m is not known at compile time, the compiler
will assume both a RAW and WAR dependence.

In practice, you will often encounter exactly these situations, in which the compiler
has to make conservative assumptions to guarantee the correct execution of the program.
In most cases, this is related to a function signature, like:

void foo(double* a, double* b){ ... }

The compiler has to assume that a and b reference the same memory location. It will
therefore suspect that there might be a dependence. In most cases, we will know that the
assumed vector dependence can never happen and so we must have ways to hint to the
compiler that it should not interfere. The following are various methods that can be used
to allow the compiler to vectorize our code.

•	 Compiler switches: The switch -no-ansi-alias disables the
use of ANSI aliasing rules and allows the compiler to optimize
more aggressively. Notice that this is the default. The opposite is
-ansi-alias, which will enforce the ANSI aliasing rules. A more
aggressive version is -fno-alias, where no aliasing is assumed
altogether. Both compiler switches are effective for the whole file
that is currently compiled; you want to be careful applying those
switches when more than the function under consideration is
contained in the file.

•	 The restrict keyword: A more comfortable and precise way to
instruct the compiler to ignore assumed dependences is to use
the restrict keyword defined in the C99 standard. Placed right in
front of the variable, it indicates that this pointer is not referencing
data referenced by other pointers. For example:

foo(double* restrict a, double* restrict b, int length){
 for(int i=0;i<length;i++){
 a[i]=b[i]+1;
 }
}

The restrict keyword is preferred over use of the compiler
switches because it only affects the pointers explicitly
declared this way.

•	 Directives: If you want to be even more specific, you can indicate
where a particular dependence should be ignored. As shown
above, you can force the compiler into ignoring assumed
dependences by #pragma ivdep, and even stronger by #pragma
simd, as discussed earlier.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

234

Dealing with Branches
Branches are points in the instruction flow that set the instruction pointer to other than the
next instruction, either static or dynamic, based on previously done comparison. Branches
are a necessary evil in structured programming; function calls lead to branches if not
inlined, loops will check their limits, and we have true conditional branches from “if-else”
statements in the code. As outlined earlier in the discussion of the pipeline, branches pose
a considerable problem for the CPU because the condition on which a branch is taken first
needs to be evaluated before the instruction flow can continue at another point. CPUs deal
with this by predicting the target of the branch based on previous encounters with this
address in the code. Frequent wrong predictions can have a severe impact on performance.

Note ■ this section addresses the bad speculation category in the of the top-down
method for pipeline performance.

__builtin_expect
If you observe bad speculation at a particular conditional branch, and you have a good
estimation of what the expected value should be, it is quite easy to let the compiler know
about it explicitly by using the build-in function, __builtin_expect. The syntax is quite
straightforward: instead of writing the condition in the argument of the if-statement, you
write if(__builtin_expect(condition,expectation)), where expectation is either 0 for
false or 1 for true. For example:

if(__builtin_expect(x<0,1)){
 somefunction(x);
} else {
 someotherfunction(x);
}

Profile-Guided Optimization
If you don’t have a good clue as to which conditions to put first into if-statements, then
profile-guided optimization (PGO) might help. The virtue of this technique is that it gives
you a way to exactly check for such cases such as wrongly predicted conditions and to
correct them without impacting the source code. PGO is a three-step process:

1. Create an instrumented binary with the compiler option
-prof-gen.

2. Run this binary with one or more representative workloads.
This will create profile files containing the desired
information.

3. Compile once more with the compiler option -prof-use.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

235

Profile-guided optimization can produce considerable performance improvements
for code not matching the default assumption of the compiler regarding, for example,
branch behavior or loop iteration count.

Pragmas for Unrolling Loops and Inlining
Loops and calls to subroutines and functions can be another source of frequent
branching. One way to reduce the number of branches caused by loops and calls is to use
pragmas to unroll the loops and inline function and the subroutine calls.

unroll/nounroll

The #pragma unroll allows you to control the unroll factor of loops. Unrolling a loop can
speed up the loop execution considerably, because the loop condition doesn’t need to
be checked as often and additional optimizations might become possible in the unrolled
code. Loop unrolling does increase the code size, the pressure on the instruction cache,
the decode unit, and the registers.

The #pragma unroll can take an additional argument indicating the unroll factor.
For example:

#pragma unroll(2)
for(int i=0;i<size;i++){
 a[i]=b[i]*c[i]
}

This will give you a loop transformation similar to this:

// unrolled loop
for(int i=0;i<size-(size%2);i+=2){
 a[i]=b[i]*c[i];
 a[i+1]=b[i+1]*c[i+1];
}
// remainder loop - deals with remaining iteration
// for sizes not divisible by 2
for(int i=size-(size%2);size;i++){
 a[i]=b[i]*c[i];
}

The #pragma nounroll will prohibit the unrolling of a particular loop.

EXERCISE 7-4

Write a program with a simple loop, such as the above one, for a different loop
length. Compile it with -xAVX -opt-report5. do you get unrolling? try placing a
#pragma unroll in front of the loop; can you change the unrolling behavior of the
compiler for this loop? have a look at the earlier discussion on optimization reports.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

236

unroll_and_jam/nounroll_and_jam

The #pragma unroll_and_jam does perform a nested loop transformation, where
the outer loop is unrolled and the resulting inner loops are then united. Consider our
squaregemm function used in the earlier optimization reports example. If you put a
#pragma unroll_and_jam in front of the middle loop,

void squaregemm(int size, double* a, double* b, double* c){
 for(int i=0;i<size;i++){
#pragma unroll_and_jam(2)
 for(int j=0;j<size;j++){
 for(int k=0;k<size;k++){
 c[i*size+j]+=a[i*size+k]*b[k*size+j];
 }
 }
 }

the resulting code will be equivalent to:

void squaregemm(int size, double* a, double* b, double* c){
 for(int i=0;i<size;i++){
#pragma unroll_and_jam(2)
 for(int j=0;j<size;j+=2){
 for(int k=0;k<size;k++){
 c[i*size+j]+=a[i*size+k]*b[k*size+j];
 c[i*size+j+1]+=a[i*size+k+1]*b[k*size+j+1];
 }
 }
 }

Plus, you have additional remainder loops from the unrolling.

inline, noinline, forceinline

The Intel compiler has a large set of settings to influence inline behavior. If there are
particular functions you want to see inlined, you can, of course, change the general
settings for the compilation of a source file, but this a shotgun approach that will try to
inline all the functions in the file. A more surgical approach is to specify exactly where you
want the inlining and where to avoid it when unnecessary.

The #pragma inline will instruct the compiler to inline the function after the
pragma if possible within the heuristic. You can override the heuristics by using #pragma
forceinline, which will definitely inline when possible. If you want to inline functions
recursively, that is, inlining functions in the inline functions and so on, you augment
the behavior by adding the recursive clause—for instance, #pragma forceinline
recursive.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

237

Specialized Routines: How to Exploit the Branch Prediction for
Maximal Performance
Many programs are capable of dealing with a lot of different circumstances and
boundary conditions. For instance, your program might be able to deal with polynomial
interpolation to a degree of the nth order. If you program such versatile software, you
generally leave the parameter controlling the order of the polynomial free, but in one
single run or over a longer time in the execution, you use only a single case—say eighth
order. In such a circumstance, the branch prediction might do magic for you! If a
branch fails, it might fail once or maybe twice, but not more often. If the condition stays
constant, no further misprediction will occur until the program finishes or until another
polynomial order is valid over a longer period of time.

Consider a case where you have a highly specialized routine for, say, a 4th-, 8th-,
and 16th-order polynomial, since this is what you are mostly using. The general case can
be treated, but it is much less well performing. In this case, a simple switch will do the
trick for you:

void myswitchedpolynomial(n,...){
 switch(order){
 case 4:
 polynomial_4(...);
 case 8:
 polynomial_8(...);
 case:16
 polynomial_16(...);
 default:
 polynomial_n(n, ...);
 }
}

Although this seems like a brute-force method, it can be a powerful technique,
especially if you have a limited set of choices. The number of specialized routines can still
be high, and can go into the thousands. In each individual routine, you can now program
a particular case explicitly, which will help the compiler produce better code.

When Optimization Leads to Wrong Results
Aggressive optimization is a necessity if you want to achieve the highest level of
performance. Under special circumstances, aggressive optimization can lead to
problematic or even erratic behavior. In this case, you need to decrease the optimization
level with the command-line switch, which will affect the methods of the whole file
that’s compiled. Again, pragmas allow you to control the behavior of the compiler more
specifically.

The #pragma optimize off disables the optimization for code after the pragma until
its counterpart, #pragma optimize on, is found. This is a huge step, as optimization is
totally switched 7off. More often, it will suffice to change the optimization level—say, to
the basic -O1—to guarantee the correct behavior.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

238

The #pragma intel optimization_level 1 applies -O1 to the following function.
Notice the intel clause; this is to distinguish the use from GNU compiler’s use of the
same pragma, which switches the optimization level for all code after the pragma.

Analyzing Pipeline Performance with Intel VTune
Amplifier XE
We have discussed the Sandy Bridge pipeline and have given potential reasons why it can
stall in the front end or back end, or owing to bad speculation. We also have discussed
potential remedies for each of these problems by means of the compiler. In this section,
we analyze the pipeline using VTune to obtain information about pipeline performance,
and we apply the solutions learned to overcome stalls in particular sections of the pipeline.
We covered VTune Amlifier XE earlier in this book when we discussed share memory
parallelization problems. Here, we look at one analysis type in detail: general exploration.
General exploration gives us exactly the front-end/back-end analysis discussed earlier.

To have a simple example demonstrating a VTune Amplifier XE analysis, we use the
4×4 matrix multiplication introduced earlier in this chapter. But here, for all N matrices C

i

we want to perform M matrix-matrix multiplications,

C C A Bi i i,m i,m
m

M

= +
=
å

1

,

where the indices indicate full matrices, not elements.
The example is loosely based on the problem of small matrix-matrix multiplication

in the DBCSR method of CP2K.11 We will only consider square matrices:

int main(void){
 int msize=4; // the matrix side length
 int msize2=msize*msize; // the number of elements in each matrix
 int nmatrices=100000; // how many c-matrices are there
 int nab=100; // how many a and b matrix multiplication
 // per c-matrix
 double** b = (double**) _mm_malloc(sizeof(double*)*nmatrices,32);
 double** a = (double**) _mm_malloc(sizeof(double*)*nmatrices,32);
 double* c = (double*) _mm_malloc(sizeof(double)*nmatrices*msize2,32);

 // allocate matrices
 for(int i=0;i<nmatrices*msize2;i++){
 c[i]=((double) rand())/((double) RAND_MAX);
 }
 for(int i=0;i<nmatrices;i++){
 b[i] = (double*) _mm_malloc(sizeof(double)*msize2*nab,32);
 a[i] = (double*) _mm_malloc(sizeof(double)*msize2*nab,32);
 }

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

239

 // init matrices
 for(int i=0;i<nmatrices;i++){
 for(int n=0;n<nab*msize2;n++){
 b[i][n]=((double) rand())/((double) RAND_MAX);
 a[i][n]=((double) rand())/((double) RAND_MAX);
 }
 }

 // do a couple of iterations in order to have a reasonable runtime
 for(int l=0;l<10;l++){
 // for all matrices C perform ...
 for(int i=0;i<nmatrices;i++){
 int cpos=msize*i;
 // ... a number of A-B matrix multiplications
 for (int n=0;n<nab;n++)
 {
 #pragma inline // inline the method
 mymatrixmethod(4,&a[i][n], &b[i][n], &c[cpos]);
 }
 }
 }
}

Using a Standard Library Method
The basic linear algebra system (BLAS)12 is a standard library specializing in linear
algebra operations, such as matrix multiplications. The subroutine applicable here is the
double precision general matrix-matrix multiplication DGEMM, which computes:

C C AB.= +b a

We will first use Intel MKL’s DGEMM method to perform the matrix-matrix
multiplication:

void mymatrixmethod(int m, double* a, double* b, double* c){
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, m, m,1.0, a,m, b,m, 1.0,c,m);
}

DGEMM is too powerful a method, since we are asking for a lot fewer features than
it has to offer (it can also transpose the matrices and multiply with scalar factors, all of
which we don’t need here).

Figure 7-10 shows the output of a basic hotspot analysis done with VTune Amplifier XE.
As expected, we have the majority of time in the DGEMM method, with some fraction coming
from the initialization (functions main and rand).

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

240

If we do the math on the number of floating-point operations (Flops) performed,
we get 100 A-B-matrix multiplications for 1,000,000 C matrices with 2×4×4×4 Flops each and
a total of 12.80 GFlops. We need 11.32s for this, hence we get 12.80/11.32=1.13 GFlops.
This is not too impressive because a Sandy Bridge core at 2.7 GHz can deliver 21.6 GFlops!

Let’s look at the next level of details for the same run. Figure 7-11 shows the
summary page of a general exploration analysis performed with VTune Amplifier XE
for the same binary. Actually, the results seem not that bad; the pipeline execution is
quite good with a CPI of 0.503 (about 2 instructions retired per cycle). Bad speculation
is at a low ratio. There is some divider activity, which VTune points out. A division is a
very expensive operation. This is caused by the initialization of the matrices, where we
normalize our random numbers to be between 0.0 and1.0; we can easily get rid of this
by setting:

double randnorm = 1.0/((double) RAND_MAX);

and replacing division by multiplication; for instance:

 for(int i=0;i<nmatrices*msize2;i++){
 c[i]=((double) rand())*randnorm;
 }

Figure 7-10. Summary output of basic hotspot analysis

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

241

Similarly, for the initialization of a and b. More severe seems to be the low
floating-point utilization of 0.034. This goes hand in hand with our observation of low
GFLOP rates. In the next section, we will make a first attempt to tackle this.

Figure 7-11. Summary output of a general exploration analysis in VTune

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

242

Using a Manual Implementation in C
Our real problem here seems to be that the DGEMM routine is a total overkill for a 4×4
matrix multiplication. We could make it more lightweight and spell out the mathematical
operations explicitly:

void mymatrixmethod(int m, double* a, double* b, double* c){
 if(m==4){
 for(int i=0;i<4;i++){
 for(int j=0;j<4;j++){
 for(int l=0;l<4;l++){
 c[i*4+j]+=a[i*4+l]*b[l*4+j];
 }
 }
 }
 } else {
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, m, m,1.0, a,m, b,m, 1.0,c,m);
 }
}

Since we are exclusively using 4x4 matrix multiplications, the branch predictor will
not cause pipeline flushes, owing to the additional if statement; still, the method is valid
for all square matrix sizes.

Let’s now create a new binary with the code changes lined out and rerun the general
exploration analysis of VTune. Figure 7-12 shows the output of VTune. What a big leap.
We improved from 17.474s to 6.166s in execution time. We dropped in the CPI, though,
but this reinforces the point that it is important which instructions we retire, not how
many. The FP arithmetic ratio took a big step from 0.034 to 0.213 (see output). This result
is going in the right direction. Now let’s estimate the floating-point performance. A basic
hotspot analysis shows that we spend 4.04s in main; we’ll assume that this is all compute,
for the time being. Following the above considerations, we do 12.80 GFLOP/4.04s = 3.17
GFLOP/s. That’s a lot better, but is it still not enough! If you look at Figure 7-12 again,
you will see that all the FP arithmetic is spend in “FP scalar.” The code doesn’t vectorize
properly. Now, let’s use the compiler directives to help the compiler vectorize the code.

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

243

Vectorization with Directives
We found that we increased our performance significantly with a highly specialized
method, but there was no vectorization present and hence the pressure was increasing on
the back end. Let’s now try to ease the pressure by mandating vectorization:

void mymatrixmethod(int m, double* a, double* b, double* c){
 if(m==4){
 for(int i=0;i<4;i++){
 #pragma simd
 for(int j=0;j<4;j++){
 #pragma unroll(4)
 for(int l=0;l<4;l++){
 c[i*4+j]+=a[i*4+l]*b[l*4+j];
 }
 }
 }

Figure 7-12. Summary page of general exploration analysis after changing to an explicit c
expression

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

244

 } else {
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, m, m, 1.0, a, m, b, m, 1.0, c, m);
 }
}

Here, we unrolled the inner loop four times and vectorized the outer loop.
Figure 7-13 shows the result of a general exploration analysis. We got even better

results, but—no surprise—the “FP arithmetic” literally vanished because now everything
is executed in vectors. Compared to memory operations, there is comparatively little time
spent in computing. The pressure is now almost fully on the memory subsystem, so our
execution functions perfectly.

Figure 7-13. General exploration summary after enforcing vectorization

EXERCISE 7-5

try to insert the intrinsics method for a 4x4 matrix multiplication developed earlier
in this chapter into our sample problem. Can you get better than the result achieved
with the compiler only?

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

245

Summary
We presented a brief account of the microarchitecture of modern Intel processors, plus
discussed how to detect microarchitectural issues and how to solve them, ranging from
hinting the compiler via directives to programming brute-force solutions using intrinsics.

As for microarchitectural design, the scope of this chapter is certainly too tight to
look much deeper. Many good textbooks are available, such as the standards by Hennessy
and Patterson13 or Tanenbaum.14 Hager and Wellein15 focus particularly on tuning and
performance aspects. Intel’s software developer manual16 and its optimization reference
manual17 are always good, if extensive, reads.

Innovative usage employing the techniques presented here can be found in the
open-source space, particularly in software that has confined hotspots, such as quantum
chromodynamics, molecular dynamics, or quantum chemistry applications, such as
CP2K18 or Gromacs.19

References
1. S. P. Dandamudi, Introduction to Assembly Language Programming

(Springer, 2005).

2. Intel, “Intel 64 and IA-32 Architectures Software Developer Manuals,”
2014, www.intel.com/products/processor/manuals.

3. A. S. Tanenbaum, Structured Computer Organization, 5th ed.
(Pearson, 2006).

4. Ibid.

5. J. L. Hennessy and D. A. Patterson, Computer Architecture
(Morgan Kaufmann, 2007).

6. “Intel 64 and IA-32 Architectures Software Developer Manual.”

7. Intel, “Intel 64 and IA-32 Architectures Optimization Reference
Manual,” 2014, www.intel.com/products/processor/manuals.

8. “Intel Intrisics Guide,” https://software.intel.com/sites/
landingpage/IntrinsicsGuide.

9. “BLAS (Basic Linear Algebra Subprograms),”
http://www.netlib.org/blas.

10. “Intel Intrinsics Guide”

11. J. Hutter, M. Krack, T. Laino, and J. VandeVondele, “CP2K Open
Source Molecular Dynamics,” www.cp2k.org.

12. “BLAS (Basic Linear Algebra Subprograms)”

13. Hennessy and Patterson, Computer Architecture.

http://www.intel.com/products/processor/manuals
http://www.intel.com/products/processor/manuals
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://www.netlib.org/blas
http://www.cp2k.org/

Chapter 7 ■ addressing appliCation BottleneCks: MiCroarChiteCture

246

14. Tanenbaum, Structured Computer Organization.

15. G. Hager and G. Wellein, Introduction to High Performance
Computing for Scientists and Engineers (CRC Press, 2011).

16. “Intel 64 and IA-32 Architectures Software Developer Manual.”

17. “Intel 64 and IA-32 Archtectures Optimization Reference Manual.”

18. Hutter et al., “CP2K Open Source Molecular Dynamics.”

19. E. Lindahl, D. van der Spoel, and B. Hess, “Gromacs,”
www. Gromacs.org.

http://www.Gromacs.org

247

Chapter 8

Application Design
Considerations

In Chapters 5 to 7 we reviewed the methods, tools, and techniques for application tuning,
explained by using examples of HPC applications and benchmarks. The whole process
followed the top-down software optimization framework explained in Chapter 3. The
general approach to the tuning process is based on a quantitative analysis of execution
resources required by an application and how these match the capabilities of the platform
the application is run on. The blueprint analysis of platform capabilities and system-level
tuning considerations were provided in Chapter 4, based on several system architecture
metrics discussed in Chapter 2.

In this final chapter we would like to generalize the approach to application
performance analysis, and offer a different and higher level view of application and
system bottlenecks. The higher level view is needed to see potentially new, undiscovered
performance limitations caused by invisible details inside the internal implementations
of software, firmware, and hardware components.

Abstraction and Generalization of the Platform
Architecture
Middleware and software architectures play a big role in HPC and in other application
areas. Today, almost nobody interacts with the hardware directly. Instead, the interaction
of the programmer and the hardware is facilitated via an application programming
interface (API). If you think that programming in assembly language today is direct
interaction with hardware, we have to disappoint you; it is not. The instruction stream
is decoded into sequences of special microcode operations that in the end serve as the
commands to the execution units.

Software abstractions are an unavoidable part of modern applications design,
and in this part of the book we will look at the software architecture from the point of
view of abstraction and the consequences of using one set of abstractions over others.
Selection of some abstractions may result in performance penalties because of the
added translation steps; for others, the impact may be hidden by efficient pipelining
(such as happens with microcode translation inside processors) and causes almost no
visible overhead.

Chapter 8 ■ appliCation Design ConsiDerations

248

Types of Abstractions
An abstraction is a technique used to separate conceptualized ideas from specific
instances and implementations of those at hand. These conceptualizations are used to
hide the internal complexity of the hardware, allow portability of software, and increase
the productivity of development via better reuse of components. Abstractions that are
implemented in software, middleware, or firmware also allow for fixing hardware bugs
with software that results in a reduced time to market for very complex systems, such
as supercomputers. We believe it is generally good to have the right level of abstraction.
Abstractions today are generally an unavoidable thing: we have to use different kinds
of APIs because an interaction with the raw hardware is (almost) impossible. During
performance optimization work, any performance overhead must be quantified to
judge whether there is need to consider a lower level of abstraction that could gain more
performance and increase efficiency.

Abstractions apply to both control flow and data structures. Control abstraction hides
the order in which the individual statements, instructions, or function calls of a program
are executed. The data abstraction allows us to use high-level types, classes, and complex
structures without the need to know the details about how they are stored in a computer
memory or disk, or are transferred over the network. One can regard the notion of an
object in object-oriented programming as an attempt to combine abstractions of data and
code, and to deal with instances of objects through their specific properties and methods.
Object-oriented programming is sometimes a convenient approach that improves code
modularity, reuses software components, and increases productivity of development and
support of the application.

Some examples of control flow abstractions that a typical developer in
high-performance computing will face include the following:

•	 Decoding of processor instruction set into microcode. These are
specific for a microarchitecture implementation of different
processors. The details of the mapping between processor
instructions and microcode operations are discussed in Chapter 7.
The mapping is not a simple one-to-one or one-to-many
relation. With technologies like macro fusion,1 the number of
internal micro-operations may end up smaller than the number
of incoming instructions. This abstraction allows processor
designers to preserve a common instruction set architecture (ISA)
across different implementations and to extend the ISA while
preserving backwards compatibility. The decoding of processor
instructions into micro-operations is a pipeline process, and it
usually does not cause performance penalties in HPC codes.

•	 Virtual machine, involving just-in-time compilation (JIT, widely
used, for example, in Java or in the Microsoft Common Language
Runtime [CLR] virtual machines) or dynamic translation (such
as in scripting or interpreted languages, such as Python or Perl).
Here, compilation is done during execution of a program, rather
than prior to execution. With JIT, the program can be stored in
a higher level compressed byte-code that is usually a portable
representation, and a virtual machine translates it into processor

Chapter 8 ■ appliCation Design ConsiDerations

249

instructions on the fly. JIT implementations can be sufficiently
fast for use even in HPC applications, and we have seen large
HPC apps written in Java and Python. And, by the way, the
number of such applications grows.

•	 Programming languages. These control abstraction. They offer
notions such as functions, looping, conditional execution, and
so on, to make it easier and more productive to write programs.
Higher level languages, such as Fortran or C, often require
compilation of programs to translate code into a stream of
processor-specific instructions to achieve high performance.
Unlike instruction decoding or just-in-time compilation, this
happens ahead of time before the program executes. The
approach ensures that overheads related to compilation of
the program code to machine instructions are not impacting
application execution.

•	 Library of routines and modules. Most programming languages
support extensions of programs with subprograms, modules,
or libraries of routines. This enables modular architecture of
final programs for faster development, better test coverage, and
greater portability. Several well-known libraries provide de-facto
standard sets of routines for many HPC programs, such as basic
linear algebra subprograms (BLAS),2 linear algebra package
(LAPACK),3 and the FFTW4 software library for computing
discrete Fourier transforms (DFTs). These libraries not only hide
the complexity of underlying algorithms but also enable vendors
of hardware to provide highly tuned implementations for best
performance on their computer architectures. For example, Intel
Math Kernel Library (MKL), included in Intel Parallel Studio XE,
provides optimized linear algebra (BLAS, LAPACK, sparse solvers,
and ScaLAPACK for clusters), multidimensional (up to 7D)
fast Fourier transformations and FFTW interfaces, vector math
(including trigonometric, hyperbolic, exponential, logarithmic,
power, root, and rounding) routines, random number generators
(such as congruent, recursive, Wichman-Hill, Mersenne twister,
Sobol sequences, etc.), statistics (quantiles, min/max,
variance-covariance, etc.), and data fitting (spline, interpolation,
cell search) routines for the latest Intel microprocessors.

•	 API calls. Any kind of API calls provided by the operating system
(OS) hide the complexity of an interaction between operating
system tasks and the hardware-supported context of execution
exposed by the processors. Examples of these include calls from
OS to the basic input/output subsystem (BIOS) abstracting
the implementation of the underlying hardware platform or a
threading API that creates, controls, and coordinates the threads
of execution within the application.

Chapter 8 ■ appliCation Design ConsiDerations

250

•	 Operating system. This, and specifically its scheduler, makes every
program believe that it runs continuously on the system without
any interruptions. In fact, the OS scheduler does interrupt
execution, and even puts execution of a program on hold to give
other programs access to the processor resources.

•	 Full system virtualization. This includes using virtual machine
monitors (VMM), such as Xen, KVM, VMWare, or others. VMMs
usually abstract the entire platform so that every operating system
believes it is the only one running on a system, while, in fact,
VMMs are doing both control and data abstraction among all the
different OS versions currently executing on a platform.

Data abstraction allows handling of data bits in meaningful ways. For example,
data abstraction can be found behind:

Datatypes•	

Virtual memory•	

The notion of a datatype enforces a clear separation between the abstract properties
of a data type and the concrete details of its implementation in hardware. The abstract
properties of datatype are visible to client code and can be as simple as an integer
datatype or as complex as a hash-table or a class. While the specific implementation
(i.e., the way the bytes are stored in computer memory) is kept entirely private, the internal
implementation of storing data in memory can differ from machine to machine (e.g.,
little-endian vs. big-endian storage), and can change over time to incorporate efficiency
improvements. A specific example, relevant for high-performance computing, is the
representation of real numbers using floating-point datatypes, which are limited in length.

As the length of processor registers is limited, it is not possible to equally represent
all possible floating-point numbers in digital hardware. The number of possible
representations is very large, and different encodings of the floating-point numbers
in the fixed-length register will have significantly different numerical qualities of the
computations, causing problems for application developers and users comparing results.
IEEE 754-1985 was an industry standard for representing (and processing) floating-point
numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008.
IEEE 754 characterizes numbers in binary, providing definitions of precision, as well as
defining representations for positive and negative infinity, a “negative zero,” exceptions
to handle invalid results like division by zero, special values called NaNs (Not-a-Number)
for representing those exceptions, denormalized numbers, and rounding modes.

Virtual memory abstraction is made by OS’s virtual memory manager with help
of hardware. This abstraction makes every 64-bit program believe it has 264 bytes (or
16 exabytes) of byte-addressable memory to use, while in fact the amount of physical
memory available to be shared by multiple programs on a system is much lower: tens
or, at best, hundreds of gigabytes. Virtual memory offers a significant reduction of
complexity in writing software, and makes it run on a wide range of machines. However,
the mechanisms implementing virtual memory involve translation from virtual address
to physical address may require a high-cost process called page walk to happen and
use of a lot of memory-management hardware inside the processor (e.g., translation
lookaside buffers, or TLBs). This page walk process and the entire virtual to physical

Chapter 8 ■ appliCation Design ConsiDerations

251

memory translation are invisible to the application. However, it has its hidden cost, which
may be seen as a performance cost associated with the loading of page tables. Some
measurements (such as one reported by Linus Torvalds)5 provide an estimate of over
1000 processor cycles required for handling a page fault in the Linux operating system on
modern processors.

Levels of Abstraction and Complexities
As we said previously, abstraction is an important notion in computer science, and it
is used throughout many instances in computer and software engineering. In practice,
software development abstractions are used to reduce duplication of information in a
program. The basic mechanism of control abstraction is a function or subroutine; and
the ones for data abstraction include various forms of type polymorphism. The more
advanced mechanisms that combine data and control abstractions include abstract data
types, such as classes, polytypism, and so on. These are the abstractions the software
developer usually deals with.

In essence, the approach of abstraction is to deal with the problem at a higher level
by focusing on the essential details, ignoring specifics and implementation at the lower
level, and to reuse lower level implementations following the “DRY principle” (“Don’t
repeat yourself”). This approach leads to layered architectures across the entire computer
engineering discipline. The examples of layered architectures include Intel QuickPath
Interconnect (QPI) protocol,6 OSI model for computer network protocols,7 the OpenGL
library,8 and the byte stream input/output (I/O) model used in most modern operating
systems. Historically, in computer architecture the computer platform is represented as
constituting five abstraction levels: hardware, firmware, assembler, operating system, and
processes.9 Recent developments in virtualization support add more layers to the stack.
While those additional layers of abstraction are necessary to achieve higher productivity,
the increase in stack depth may impact application performance.

Raw Hardware vs. Virtualized Hardware in the Cloud
One specific abstraction method that became widely used in enterprise and cloud
computing, and is being greatly debated in relation to HPC applications, is full hardware
virtualization. Hardware virtualization, or platform virtualization, is a method in which
a virtual machine acts like a real computer for an operating system. Software executed
on these virtual machines is separated from the underlying hardware resources and
hides specific implementation details. Different levels of hardware virtualization use
techniques like emulation, binary translation, and dynamic code generation. The virtual
machines are created and managed by hypervisor or virtual machine monitor (VMM),
which can be (and most often are) implemented in software, but may also be a firmware
or even a hardware implementation.

The virtualization techniques have their roots in mainframe computers, and have
been available in mainframes and RISC servers for a long time. Hardware assistance
and support for hypervisor, introduced in x86 servers in 2005, has started a growth
of interest and usage of virtualization in the x86 world. Hardware assistance helped
reduce performance overhead considerably and removed a need for binary patching

Chapter 8 ■ appliCation Design ConsiDerations

252

of the operating system kernel. The active development of several commercial (like
ones by VMWare, Parallels, etc.) and open-source (Xen, KVM, etc.) hypervisors helped
establish hardware virtualization as a base technology for enterprise data center and
cloud computing applications. It promoted the development of such popular directions
these days as software-defined storage (SDS) and software-defined networks (SDN),
and finally brought the concept of the software-defined data center (SDDC) that extends
virtualization concepts such as abstraction, pooling, and automation to all of the data
center’s resources and services to achieve IT as a service.

A complete system virtualization brings certain operational advantages, such as
simplified provisioning (through a higher level of integration of application software with
the operating system environment) to provide a stable software image to applications
(and handling of emulation of newer or obsolete hardware at VMM level) that would
be beneficial in making legacy software work on modern hardware without software
modifications. For enterprise and cloud applications, virtualization offers additional
value, as a hypervisor allows for the implementation of several reliability techniques
(virtual machine migration from one machine to another, system-level memory
snapshotting, etc.) and utilization improvements via consolidation—i.e., putting several
underutilized virtual machines on one physical server).

However, hardware virtualization has not progressed at the same pace within the
HPC user community. Though the main quoted reason for not adopting hardware
virtualization is performance overhead caused by hypervisor, it is probably the most
debatable one. There are studies showing that the overhead is rather small for certain
workloads, and running jobs using a pay-per-use model can be more cost-effective versus
buying and managing your own cluster.10 We tend to believe there are other reasons; for
example, that the values of virtualization recognized by enterprise and cloud application
customers are not compelling for HPC users. Consolidation is almost of no use (though it
is possible to implement it using popular HPC batch job schedulers), and live migration
and snapshotting are not more scalable than checkpointing techniques used in HPC.
However, the cost reduction of virtualized hardware, predominantly hosted by large cloud
providers, in some sense already generates demand exploration of high-performance
computing applications in the hosted cloud services.

This trend will drive a need for optimization of HPC applications (which are tightly
coupled, distributed memory applications) for execution in the hosted virtualized
environments, and we see a great need for the tools and techniques to evolve to efficiently
carry out this job.

Questions about Application Design
Abstractions are unavoidable. There are some abstractions we can choose (such as your
own application architecture, programming language, and so on, or whether to run it
under a virtualized or “bare-metal” operating system), while most others we have to
live with (such as instruction decoding inside modern processors, or operating system
virtual memory management). In any case, each abstraction layer will add a stage to
a pipeline of queues for data flow and will complicate the control path, which may, or
may not, become a bottleneck for the application performance. As the complexity of
application increases, a necessity grows as well to characterize the bottlenecks imposed
by abstractions involved and quantify their impact on your application.

Chapter 8 ■ appliCation Design ConsiDerations

253

As it is not feasible to write a cookbook or produce a fully comprehensive set of
recommendations to avoid any potential performance problem with an application, we
would rather offer a different approach. While developing a new application or analyzing
existing code, you will need to understand the available options, or the unavoidable
limitations. Practically, there are tradeoffs between application performance and
productivity and between maintainability and quality of the resulting program. It is
important to consider several questions during your application or system design and
optimization work so as to drive proper decision making in regard to programming and
execution environments, and related middleware. These questions, when answered or
addressed, will improve your knowledge about the application. At the same time, this
approach allows development of structured understanding of the tradeoffs necessary to
achieve those desired characteristics.

Designing for Performance and Scaling
HPC is about scalability of applications and the ability to solve large problems by using
parallel computers. So, achieving high performance by enabling scalability is a key
differentiation of an HPC approach. We dedicate a lot of material in Chapters 6 and 7 to
methods for achieving great single-node and single-threaded performance, but we also
spent significant time in Chapter 5 discussing how to achieve great parallel efficiency of
MPI applications.

The main tools for high performance and scalable design are Amdahl’s Law and
Gustafson’s observation that we both discussed in Chapter 2. They have to be kept in
mind when asking questions related to application scaling. For instance:

What is the minimum share of time the application is running •	
serially (non-parallel)? We assigned f to that share of time in the
Amdahl’s Law formula.

How does the share of time taken by the serial part change when •	
more computing nodes or threads are added? In other words,
consider whether f is a constant or it depends on the number of
processors p used.

Practical answers to these two questions are a sufficient start toward understanding
the scaling limits for applications. Let us consider an example of running an application
on 64 processors. If, in the specific implementation, approximately 10 percent of the time
is serial execution (i.e., f = 0.1), then the maximum theoretical performance improvement
(speedup) over a single processor will be limited to 8.76. Usually, some amount of serial
execution is unavoidable, but the cumulative contribution to the application runtime
should not exceed some fraction of a percent to allow efficient use of large parallel
machines.

Chapter 8 ■ appliCation Design ConsiDerations

254

Some of the most prominent sources of serialization in high-performance computing
applications, which can be somehow addressed by the application developer, are:

•	 Disk and network input/output: Though there may be parallel
storage hardware, people tend to forget that widely used APIs
are serial and synchronous. The local disk I/O takes significant
amounts of time, and you could consider using the POSIX
asynchronous I/O API (see, for example, an article by M. Tim
Jones)11 instead of traditional synchronous blocking system calls.

•	 Explicit barriers and serial sections: In the parallel patterns,
such as MPI_Barrier, these are called inside MPI programs,
or OpenMP barrier or single directives. There are certainly
necessary cases to have synchronizations between parallel
sections of code, but the manual serialization has to be used
with care.

•	 Serial (not vectorized, not threaded, or not parallelized in any
other way) parts of the program: In many applications, specifically
in HPC ones, the actual share of codebase that runs serial may
be the greatest. It does not make sense parallelizing parsing of
the configuration files (which may result in a lot of extra code),
validating provided input, or writing a logfile with execution
progress and diagnostic information. It is fine for that entire code
to remain serial as long as it does not take a significant share of
the application’s runtime!

At the same time, there are other sources of serialization, coming from the specific
control abstractions or APIs. Some examples would be:

•	 Implicit barriers, such as the ones “hidden” at the end of OpenMP
for/do or sections work-sharing constructs (if nowait clause is
omitted) or many MPI library calls. Follow the recommendations
in Chapter 5 to avoid superfluous synchronization and replace
blocking collective operations by MPI-3 non-blocking ones.
For the multithreaded applications using OpenMP, review the
“Thread Synchronization and Locking” part in Chapter 6.

•	 Internal synchronization APIs, such as many kernel routines
or library calls. If any of the external library calls are identified
as big-time consumers in your application, study the library
documentation or contact its developer to find a better
alternative.

Designing for Flexibility and Performance Portability
The coding to the lowest level of abstraction aiming at the best performance is not
possible in large-scale applications. The use of assembly language or low-level intrinsics
is not recommended by Intel engineers, and though it is available in the Intel compilers,
such low-level programming should be seen as the last resort. Code reuse is the

Chapter 8 ■ appliCation Design ConsiDerations

255

best working approach for achieving maintainability and successful evolution of the
applications. Again, the levels of abstractions in nonperformance-critical parts of the
program are of no importance; choose whatever abstraction you find suitable and keep it
as flexible as possible to ensure smooth code evolution.

However, ask yourself a couple of questions about parts of the programs contributing
most to overall runtime:

What are the predominant data layouts and the data access •	
patterns inside the critical execution path?

How is the parallelism exposed in the critical execution path?•	

Sometimes the use of specialized, highly optimized libraries to implement
time-consuming algorithms in the program will help achieve flexibility and portability,
and will define the answers to these questions. As discussed earlier, software libraries,
such as Intel MKL, will offer you a useful abstraction and will hide the complexity of the
implementation. But let us discuss these questions in greater details, in case you are
working on an algorithm yourself.

Data Layout
The first question above is about data abstractions. Most, if not all, computer
architectures benefit from sequential streaming of data accesses, and the ideal situation
happens when the amount of repeatedly accessed data fits into the processor caches that
are roughly 2.5MiB per core in modern Intel Core-based processors. Such behavior is a
consequence of the double-data rate (DDR) dynamic random access memory (DRAM)
module architecture used by modern computers. If the data access is wrapped into
special containers (as often observed in C++ programs), frequent access to that data can
add overhead from the “envelope” around data bits that may be higher than the actual
time of computing with the values.

The data layout is very important to consider when ensuring efficient use of SIMD
processing, as discussed in Chapter 7. Let’s consider an example where an assemblage
of three values is defined within a single structure and corresponding values from each
set are to be processed simultaneously, where the pointers to that enclosing structure
are passed around as function arguments. This can be, for instance, a collection of three
coordinates of points in space, x, y, and z; and our application has to deal with N of such
points. To store the coordinates in memory we could consider two possible definitions for
structures (using C language notation) presented in Listings 8-1 and 8-2.

Chapter 8 ■ appliCation Design ConsiDerations

256

•	 Structure of arrays (SoA): Where each of the coordinates is stored
in a dedicated array and three of these arrays are combined into
one structure.

Listing 8-1. Definition of SoA (Structure of Arrays) in C

 #define N 1024
 typedef struct _SoA {
 double x[N];
 double y[N];
 double z[N];
 } SoA_coordinates;
 SoA_coordinates foo;
// access i'th element of array as foo.x[i], foo.y[i], and foo.z[i]

•	 Array of structures (AoS): Where three coordinates constitute one
structure and then an array of these structures is defined.

Listing 8-2. Example Definition of AoS (Array of Structures) in C

 #define N 1024
 typedef struct _AoS {
 double x;
 double y;
 double z;
 } AoS_coordinates;
 AoS_coordinates bar[N];
// access i'th element of array as bar[i].x, bar[i].y, and bar[i].z

The layouts in memory for each of the options are shown in Figure 8-1.

For an application developer, the latter case—the array of structures—will likely
make more sense: the location of each point is represented by three coordinates (x, y, and z),
so each point coordinate is described by one object (an instance of the structure
AoS coordinates), and then many points are put together into an array named foo.

Figure 8-1. Layout in memory for SoA and AoS options

Chapter 8 ■ appliCation Design ConsiDerations

257

However, for the performance on SIMD—capable processors, the former case—the
structure of arrays–is proved to be usually better. In “A Case Study Comparing AoS (Arrays
of Structures) and SoA (Structures of Arrays) Data Layouts for a Compute-intensive Loop
Run on Intel Xeon Processors and Intel Xeon Phi Product Family Coprocessors,”12 the
advantages of the SoA over the AoS layout for vectorization were clearly demonstrated.
The compiler is almost always able to produce better and faster running code by
vectorizing the SoA data layout than the AoS data layout. So, when in doubt or unless you
can prove otherwise, use SoA instead of AoS, especially on the Intel Xeon Phi coprocessor.
However, the SoA data layout comes with the cost of reduced locality between accesses
to multiple fields of the original structure instance, and may result in increased TLB
pressure and visible costs of page-fault handling.

A data organization in memory that is beneficial for one computer architecture
may end up not being the best for another. What can be done to achieve performance
portability of the code, as the different data layouts may result in different observed
efficiencies of the application on various computer systems? To achieve performance
portability, the developer could abstract data storage and implement different access
mechanisms for different machines. As an example, in the widely used Berlin Quantum
ChromoDynamics application, or BQCD,13 authors Hinnerk Stüben and Yoshifumi
Nakamura allowed several data layout options in memory for the key data structures,
such as the arrays representing two dimensional matrices of complex numbers.

Some of the supported layouts of arrays of complex numbers are shown in Figure 8-2.

•	 Standard layout, where each complex number is represented
as a structure of two elements: the real (re) and imaginary (im)
parts of the complex number, and the array is stored in a typical
AoS layout.

•	 Vector layout, in which SoA is used to store the real and imaginary
parts in separate arrays packed into one structure. This layout is
usually more beneficial for use with vectoring instructions.

•	 SIMD layout, which is specifically optimized for the SIMD
instruction sets, such as Intel SSE or Intel AVX. It is sometimes
referred as “Array of Structure of Arrays” (AoSoA) and is indeed
a combination of the other two approaches: several elements
of real part are stored sequentially in memory to fit one SIMD
register (for instance, four double-precision floating-point values in
one 256-bit AVX register), followed by same number of elements
storing the imaginary parts occupying another SIMD register,
and so on. This layout allows a more efficient instruction stream
generation for the latest Intel processors.

Chapter 8 ■ appliCation Design ConsiDerations

258

The BQCD build system provides simple selection of storage layouts and also permit
choosing a different code path for performance-critical sections of the application
dealing with that data. The developers of BQCD invested a great effort in developing
highly optimized instruction code for the several computer architectures on which BQCD
is typically run.

The results obtained by the BQDC developers14 on a server with two Intel Xeon
E5-2695 v2 processors are summarized in Table 8-1 and conclude that the SIMD, or
AoSoA, layout with optimized code path delivers the best performance for hot loops over
vector or standard layouts.

Table 8-1. Performance in MFLOPS/Core of BQCD Matrix-Vector Multiply Routines with
Different Layouts

Data Layout Data in L2 Cache Data in Memory

Standard layout 5670 880

Vector layout 1820 930

SIMD layout 9930 990

Figure 8-2. Data layouts in memory for the arrays of complex numbers available in BQCD

Note ■ often, for memory bandwidth-bound kernels, when the dataset fits into level 2
cache, the performance of compute kernels can be 10 times higher than when data resides
in main memory.

Chapter 8 ■ appliCation Design ConsiDerations

259

Structured Approach to Express Parallelism
The second question asked above is how the parallelism is exposed in the application.
This question embraces a better understanding of the control abstractions used.
Selecting the right control abstraction for parallel processing, along with the data
distribution method between processors, is key to achieving great performance and
scalability of your code.

There are many ways to express parallelism. Depending on a specific algorithm,
the optimal parallel implementation may employ different control and data distribution
patterns, such as the ones presented in Figure 8-3.5 These patterns can be used to express
computations in a wide variety of domains, and they usually take two things into account:
tasks and data decomposition. To achieve scalable parallel performance, algorithms need
to be designed to respect data locality and isolation, which are important for distributed
memory and NUMA system architectures.

Figure 8-3. Overview of parallel control and data management patterns (Source: Structured
Parallel Programming: Patterns for Efficient Computation)

Often found among HPC application patterns is the partition pattern. It provides a
simple way to ensure both data locality and isolation: the data is broken down into a set
of nonoverlapping regions, and then multiple instances of the same compute task are
assigned to operate on the partitions. As the partitions do not overlap, the computational
tasks can operate in parallel on their own working set without interfering with each other.
While selecting control flow and the data layouts, the one specific issue to watch for is a
load imbalance. The best application performance will be achieved when all computing
elements are loaded to the maximum, and that computational load is evenly distributed
among the computing elements.

Chapter 8 ■ appliCation Design ConsiDerations

260

Structured approaches to parallel programming and careful selection of parallel
patterns are probably the best ways to achieve high performance and scalability of
various parallel algorithms. For the interested reader, we recommend two great books
on this topic: Structured Parallel Programming: Patterns for Efficient Computation15 and
Patterns for Parallel Programming.16

Understanding Bounds and Projecting Bottlenecks
Whether you are writing a new application from scratch or working on an updated,
more efficient implementation of an existing program, it is a critical step to analyze the
influences that hardware will bring. The detailed analysis should be done for the pieces
of code consuming most of the time in the program. Some of specific questions to be
addressed are:

Will the new implementation be memory, storage, or compute •	
bandwidth bound on the considered computer systems?

Is there an opportunity for a different implementation of the same •	
algorithm that will not be impacted by the bounds of current
implementation and may result in greater performance and
scaling? This question is related to the previous one, but focuses
on research for better algorithms and implementations. As soon
as a better implementation is suggested, it has to be studied and
the bottlenecks identified and their impact quantified.

How will the performance behavior of the application change •	
with increased levels of concurrency?

For instance, if a partition pattern is used, the more MPI ranks •	
that are added, the less data (and work) per MPI rank there will be
(in so-called strong scaling scenarios). Even if you may not have
access to such a machine today, the development of manycore
processors follows Moore’s Law and, as a result, your application
may be executed on such a machine sooner than you think.
For example, in 2004 the mainstream computational nodes in a
cluster had two to four processors and 4 to 8 GiB of memory. Just
some eight years later, Intel Xeon Phi coprocessor chips had over
60 cores, each capable of executing four threads with wider
512-bit SIMD execution units and 8 to 16 GiB of fast local memory
on the co-processor cards. So, to clarify this question:

At which scale will the dataset per thread fit into the cache •	
inside the processors? This point in a scaling graph may
lead to observed superlinear performance improvement
for memory bandwidth bound kernels when since the
cache bandwidth is dramatically higher than the memory
bandwidth, as we saw in Chapter 2. (We have discussed this
effect in the BQCD example earlier in this chapter).

Chapter 8 ■ appliCation Design ConsiDerations

261

When can a further increase of concurrency impact •	
vectorization and relative share of time for synchronization
between the processes? If the concurrency level continues
increasing, will it lead, at some point, to diminishing benefits
of vectorization? For instance, the SIMD processing efficiency
will drop when the loop trip count begins to approach values
that are too small for vectorization to yield a positive impact.

The research and analysis in this part may end up requiring most of the time and
dedication. Simulations and quantitative analysis done here should be later used to
validate performance observations of running application. If the process is followed
rigorously it will certainly bring a great insight into how the code performs and will give
ideas for additional improvements.

Data Storage or Transfer vs. Recalculation
A more in-depth analysis of a specific parallel implementation of a selected algorithm
may consider issues not often researched during single-node optimization projects. One
of the areas to look at is a decision on recalculation versus storing or sending data over
the network.

Imagine that you have a parallel program using many MPI ranks, and there is a single
value or a small array that all MPI ranks must use at some point. One approach would
be to compute required value by one of the ranks and then send it to all others ranks
(i.e., broadcast the value). Another approach would be to let every rank recompute the
required values independently and avoid potential wait times caused by the broadcast.

Which approach would be better? There is no universal answer to this question; it
will depend on the definition of “better,” as well as which inputs are required to compute
the needed data and how long the calculation would take versus how much data there is
to send over the network.

If by “better” we mean a lower application runtime, then in general computing the
required values independently by every rank might be faster. However, the requirements
of input data need to be questioned, so that the input data for the calculation must be
available to all ranks. This can add time to transfer input data over the network to the time
required to compute the value if all the ranks do not have access to the inputs. Also, if the
code runs on a heterogeneous cluster (such as with Intel Xeon hosts and Intel Xeon Phi
coprocessors), the recalculation may result in slightly different values on different ranks,
because of the different processor architectures.

On the other hand, if the important value metric is power or the energy-to-solution,
the best answer may end up differently. When one MPI rank is computing, all other
processors are usually paused or sleeping, waiting for the result, and this enables power
savings on a potentially very large number of cluster nodes. Of course, there will be some
additional power needed to complete a broadcast send. But assuming the calculation
takes longer than the network operation, this approach may end up resulting into a lower
average power and energy-to-solution.

Chapter 8 ■ appliCation Design ConsiDerations

262

Total Productivity Assessment
Sometimes, optimization of an existing application requires rewriting some of its parts
using a new computing paradigm or a different programming language. What will it take
to implement the changes and how will the new implementation impact abstraction
layers? The main question here is not how fast the application will run but, rather, what
it will take to develop and optimize the application, as well as to support the code on
future computational platforms. These are the final questions asked in our description,
but they have to be thought through from the start. The angle to consider should be from
the productivity of development, ongoing maintenance, and potentially user support.
Applications are rarely written and then forgotten. Users often require extensions of
functionality, increases in performance, and support of new hardware features. Thus,
in a majority of cases it is not only the application’s performance that matters but also
the development team’s efficiency and the time it takes to extend functionality or port
the code to new hardware. A detailed study targeted to selecting the most suitable
programming model and languages for implementation of the program may save a lot of
effort in future support of the code.

Will you have all necessary resources to implement desired changes in the code? The
resources will certainly include the complete suite of development tools for producing
your application, debugging it, and profiling the final program and its components. Based
on our own experience, if you have an established performance target, then working with
the help of powerful high-productivity tools like Intel Parallel Studio XE 2015 Cluster
Edition will certainly reduce your time and effort in reaching the target. We schematically
summarize this observation in Figure 8-4.

Figure 8-4. Achieved performance vs. effort, depending on tools usage

However, in addition to having the right tools, a successful optimization or
development project will require knowledge and access to new areas of expertise and the
time to learn new things. The tools, programming environments, and models based on
open specifications or standards, such as OpenMP or Message Passing Interface (MPI), as
we have extensively covered in this book, allow easier access to knowledge and expertise,
as well as ensure portability of the code among different platforms whose vendors

Chapter 8 ■ appliCation Design ConsiDerations

263

support the standard or specification. And since the standards and open specifications
are supported by multiple vendors of hardware and middleware software, it is much
easier to ensure protection of the investments made in your program development.

Summary
We discussed data and control abstractions used on computer systems today and
across all hardware and software layers. Layered implementations are used to enable
component-level design, increase code portability, and achieve investment protection.
However, increased levels of abstractions add complexity and may impact performance.
Very often the abstractions are unavoidable, as they are hidden inside implementation
of components that are outside of your control. At the same time, the developers can
often choose the coding abstractions used while implementing a program or improving
performance of an existing application.

There is no universal way to write the best and fastest performing application.
Usually the performance is a compromise that involves many points of view. To find
the best balance we suggest analyzing the abstractions involved and then judging
whether the tradeoffs are reasonable and acceptable. We suggested several questions
to be asked in addressing scaling versus performance, flexibility versus specialty,
re-computing versus storing the data in memory or transferring over the network, as
well as understanding the bounds and bottlenecks, and obtaining a total productivity
assessment. Answering these questions will increase your understanding of the program
internals and the ecosystem around it, and may result in new ideas about how to achieve
even higher performance for your application.

References
1. Intel Corporation, “Intel 64 and IA-32 Architectures Optimization Reference

Manual,” www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html.

2. C. L. Lawson, J. R. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic Linear Algebra
Subprograms for Fortran Usage,” ACM Transactions on Mathematical Software
(TOMS) 5, no. 3 (1979): 308–23.

3. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, et al., LAPACK Users’ Guide,
3rd ed. (Philadelphia: Society for Industrial and Applied Mathematics, 1999).

4. M. Frigo and S. Johnson, “FFTW: an adaptive software architecture for the FFT,”
in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 3 (Seattle: IEEE, 1998).

5. L. Torvalds, “Linus Torvalds Blog,” https://plus.google.com/+LinusTorvalds/
posts/YDKRFDwHwr6.

6. Intel Corporation, “An Introduction to the Intel QuickPath Interconnect, Document
Number: 320412,” January 2009, www.intel.com/content/dam/doc/white-paper/
quick-path-interconnect-introduction-paper.pdf.

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6
https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6
http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf

Chapter 8 ■ appliCation Design ConsiDerations

264

7. ISO/IEC, “ISO/IEC International Standard 7498-1:1994 (E),” http://standards.
iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip.

8. Khronos Group, “OpenGL: The Industry’s Foundation for High Performance
Graphics,” www.opengl.org/.

9. A. S. Tanenbaum, Structured Computer Organization (Englewood Cliffs,
NJ: Prentice-Hall, 1979).

10. A. Gupta, L. V. Kale, F. M. V. Gioachin, C. H. Suen, and Bu-Sung, “The Who, What,
Why and How of High Performance Computing Applications,” HP Laboratories,
www.hpl.hp.com/techreports/2013/HPL-2013-49.pdf.

11. M. T. Jones, “Boost Application Performance Using Asynchronous I/O,”
www.ibm.com/developerworks/library/l-async/.

12. P. J. Besl, “A Case Study Comparing AoS (Arrays of Structures) and SoA (Structures
of Arrays) Data Layouts for a Compute-intensive Loop Run on Intel Xeon Processors
and Intel Xeon Phi Product Family Coprocessors,” https://software.intel.com/
en-us/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-
structures-of-arrays-data-layouts.

13. H. Stüben and N. Yoshifumi, “BQCD,” www.rrz.uni-hamburg.de/bqcd.

14. H. Stüben, “Lattice QCD Simulations on SuperMUC,” www.lrz.de/services/
compute/supermuc/magazinesbooks/supermuc_results_2014/Hinnerk_
Stueben_2014.pdf.

15. M. McCool, J. Reinders, and A. Robison, Structured Parallel Programming: Patterns
for Efficient Computation (San Francisco: Morgan Kaufmann, 2012).

16. T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel Programming
(Boston: Addison-Wesley Professional, 2006).

http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://www.opengl.org/
http://www.hpl.hp.com/techreports/2013/HPL-2013-49.pdf
http://www.hpl.hp.com/techreports/2013/HPL-2013-49.pdf
http://www.ibm.com/developerworks/library/l-async/
https://software.intel.com/en-us/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts
https://software.intel.com/en-us/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts
https://software.intel.com/en-us/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts
http://www.rrz.uni-hamburg.de/bqcd
http://www.lrz.de/services/compute/supermuc/magazinesbooks/supermuc_results_2014/Hinnerk_Stueben_2014.pdf
http://www.lrz.de/services/compute/supermuc/magazinesbooks/supermuc_results_2014/Hinnerk_Stueben_2014.pdf
http://www.lrz.de/services/compute/supermuc/magazinesbooks/supermuc_results_2014/Hinnerk_Stueben_2014.pdf

A, B��
Abstraction, 247

API calls, 249
bounds and bottlenecks, 260
and complexities, 251
data abstraction, 248, 250
data storage, 261
definition, 248
flexibility and portability

data layout (see Data layout)
express parallelism, 259

full system virtualization, 250
instructions and microcode, 248
operating system, 250
performance and scalable design, 253
programming languages, 249
raw hardware vs. virtualized

hardware, 251
routines and modules, 249
total productivity assessment, 262
transfer vs. recalculation, 261
virtual machine, just-in-time

compilation, 248
Advanced Hotspot method, 175
Amdahl’s Law, 16
Application bottlenecks

compiler-assisted loop/function
profiling, 178

HPCG benchmark, hotspot of, 175
Intel VTune Amplifier XE, 174
load imbalance detection, 180
NUMA effects (see NUMA effects)
perf top command, 174
profiling, 173
sequential code, 180
thread pinning (see Thread pinning)

thread synchronization and locking
definition, 182
hotspots profiles, 183–184
MiniMD benchmark, 183
MiniMD vs. OpenMP atomic

construct, 185
VTune Amplifier XE, 183

Array of structures (AoS), 256

C��
Compact policy, 193
ComputeSYMGS_ref function, 176
Control abstraction, 248, 251

D, E��
Data abstraction, 248

datatype, 250
virtual memory, 250

Data layout
AoS definition, 256
BQCD makefiles, 258
definition, 255
SIMD, 257
SoA definition, 256
standard, 257
vector, 257

Data organization, 257

F��
Floating point operations per second

(FLOPS), 12

G��
Graphics Double Data Rate, version

5(GDDR5), 13

Index

265

H��
Hardware virtualization, 252
High performance linpack (HPL)

benchmark, 102
environment variables, 106
grid dimensions, 103
highlight data, 104
number of blocks, 103
parameters, 103
problem size, 103
tools, 105

I, J, K, L��
Implicit barriers, 254
Instruction set architecture (ISA), 248
Intel Cluster Checker, 57
Intel Composer XE

optimization flags, 2
optimization report, 6
vectorization report, 8

Intelligent platform management
interface (IPMI) subsystem, 61

Intel MPI Library, 1
optimize process placement, 5
optimize thread placement, 5
statistics-gathering mechanism, 3

Intel Xeon Phi, 140
environment settings, 141
performance improvement, 145
pinning process, 143
speedup and efficiency, 142

Interprocedural optimization, 10
Intrinsic programming

arithmetic, 228
data rearrangement, 230
loading and storing, 227

M��
Mapping

communication fabric
fallback mechanism, 135
IP over IB (IPoIB), 134
multirail capability, 135
network provider, 134
scalable datagrams, 134

communication paths, 133
improper process layout, 135

memory affinity
miniGhost benchmark, 145
miniMD application, 140

network affinity, 140
miniGhost benchmark, 146
miniMd application, 141

pinning issues, 136
pinning process, 138
process layout, 136

detailed process, 137
environment variables, 138
global process, 137

Message passing interface (MPI)
analysis techniques

compare application traces, 166
hardware events, 168
ITAC charts, 168
program correctness, 165

benchmarking, 88
cpuinfo utility, 97
internode communication, 93
intranode communication, 88
load imbalance, 123

addressing, 124
classification, 124
detection, 122

optimization, 87
performance investigation

HPL benchmark, 103
order of magnitude, 102

performance issues, 131
addressing, 133
classification, 132
mapping (see Mapping)
optimization (see Optimization)

tuning (see Tuning)
physical cores, 100
Pinning process, default, 99
scalability

application behavior, 107
balancing process, 114
behavior analysis, 118
strong scalability, 115
thread parallelism, 114
weak scalability, 115
workload selection, 111

Microarchitecture
basic linear algebra system

(BLAS), 239
branch predictors, 207

■ index

266

in-order execution, 206
memory subsystem

direct mapped cache, 209
full associative cache, 209
set associative cache, 209

optimization problems (see
Optimization)

out-of-order execution, 206
pipelined execution, 203

control conflicts, 205
data conflicts, 204
structural conflicts, 206

Sandy Bridge pipeline
assembly language, 202
back-end core bound, 212
back-end memory bound, 212
bad speculation, 212
block diagram, 210
front end bound, 211
instruction, 202
microinstruction, 202
register, 201
top-down analysis methods, 212

SIMD execution, 207
superscalar pipelines, 207
VTune analysis, 238

DGEMM routine, 242
vectorization directives, 243

N��
NUMA effects

first touch, 186
init_numa_aware function, 188
matrix-vector multiplication

with, 188–190
MPI_THREAD_FUNNELED/

MPI_THREAD_SERIALIZED
modes, 190

numactl command, 186–187
STREAM triad benchmark, 187

O��
Optimization

acceleration, 161
aggressive optimization, 237
blocking collectives, 161
branches

builtin_except, 234
inline pragma, 236

profile-guided optimization
(PGO), 234

unroll_and_jam/nounroll_and_jam
pragma, 236

unroll/nounroll pragma, 235
branch prediction, 237
collective operations, 158
compiler reports, 213
computationLcommunication

overlap, 159
derived data types, 158
disambiguation, 232

compiler switches, 233
directives, 233
restrict keyword, 233

miniGhost trace file, 162
MPI_ANY_SOURCE, 157
nonblocking collectives, 160
superfluous synchronization, 158
vectorization

array notations, 221
AVX instruction set, 216
data aliasing, 220
data dependences, 218
Intrinsics (see Intrinsic

programming)
ivdep pragmas, 223
simd pragmas, 224
SIMD vectorization, 216
vector pragmas, 223

P, Q��
Performance analysis, 11

bottlenecks
arrival rate/workload, 17
service demand, 17

concurrency, 13
DDR3 memory, 13
distributed memory system, 27
efficiency metric, 14
energy to solution, 12
HPC hardware, 27

architecture diagram, 28
cluster, 33
components, 35
co-processors, 32
core architecture, 28
core cache bandwidth, 30
core instruction throughput, 29
core microarchitecture, 29

■ index

267

core reference manual, 29
core uncore subsystem, 29
Hasewell-based processor, 31
infiniband, 33
memory hierarchy, 32
topologies, 34–35

latency metric, 11–12
optimization, 11
queuing network modeling, 18
response time, 12
roofline model, 18
scalability, 15

strong scaling, 17
weak scaling, 17

shared memory system, 26
SIMD approach, 21
slowdown, 15
speedup

Amdahl’s Law, 15
Gustafson’s observation, 16

thread
cycles per second (CPS), 20–21
instructions per second (CPS), 20
scalar, 20

throughput metrics, 12, 14
Performance tuning

application level
Basic Linear Algebra System

(BLAS), 48
distributed memory

parallelization, 45
magic vectors, 45
MapReduce program, 47
memory wall, 44
Partitioned Global Address Space

(PGAS), 47
shared memory parallelization, 46
shared memory (SHMEM), 47
thread building blocks (TBB), 47

microarchitecture level
branch prediction, 49
out-of-order (OOO) execution, 48
performance monitoring unit

(PMU), 49
pipelining, 48
superscalarity, 48

system level
Basic input-output system

(BIOS), 43
HPC applications, 42

operating system (OS), 43
platform compute/memory

balance, 42
random access memory (RAM), 42
storage and file systems, 42

proc_bind clause, 195

R��
Random access memory (RAM), 42
Remote direct memory access (RDMA), 149
Roofline model, 18

S��
SIMD approach, 22
SIMD layout, 257
Standard layout, 257
Structure of arrays (SoA), 256
System bottlenecks, 55

characterizing issues
I/O utilization, 76
memory bandwidth, 81
tools performance, 74

condition issues
application development, 57
faults, 56
Intel Cluster Checker, 57
shared resource conflicts, 56
throttling events, 56, 58

configuration
alsa driver, 61
BIOS settings, 62
IPMI subsystem, 62
PowerTOP output, 60
system software and OS, 59

performance reports, 63
compute subsystem, 64
I/O subsytem, 70
memory subsystem, 67

T, U��
Thread pinning

in hybrid applications, 196
OpenMP

cpuinfo tool, 192–193
definition, 195
KMP_AFFINITY variable, 191, 194
OMP_PLACES and OMP_PROC_

BIND variable, 195–196

■ index

268

Performance analysis (cont.)

Thread synchronization and locking
definition, 182
hotspots profiles, 183–184
MiniMD benchmark, 183
MiniMD vs. OpenMP atomic

construct, 185
VTune Amplifier XE, 183

Top-down approach
closed-loop methodology, 49

optimization process, 50
workload process, 50

performance tuning
application level, 41, 43
bottleneck levels, 41
impact time, 41
microarchitecture level, 41, 48
order of magnitude, 39
system level, 41–42

Tuning
collective algorithms, 150
miniGhost trace file, 156

mpitune utility, 147, 153
point-to-point operations, 148

DAPL and DAPL UD
communication paths, 149

eager protocol, 149
intranode communication, 150
RDMA, 149
rendezvous protocol, 149
shared memory, 149

tips and tricks
DAPL memory size, 155
dynamic connection

mode, 153
oversubscribed mode, 154
progress engine, 154

V, W, X, Y, Z��
Vector layout, 257
Virtual machine monitors

(VMM), 250

■ index

269

Optimizing HPC
Applications with

Intel® Cluster Tools

Alexander Supalov
Andrey Semin
Michael Klemm
Christopher Dahnken

Optimizing HPC Applications with Intel® Cluster Tools

Alexander Supalov, Andrey Semin, Michael Klemm, and Christopher Dahnken

Copyright © 2014 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use
or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than
5 lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the
text of the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights reserved.
Use of this Work other than as provided for in this license is prohibited. By exercising any of the rights herein,
you are accepting the terms of this license. You have the non-exclusive right to copy, use and distribute this
English language Work in its entirety, electronically without modification except for those modifications
necessary for formatting on specific devices, for all non-commercial purposes, in all media and formats
known now or hereafter. While the advice and information in this Work are believed to be true and accurate
at the date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses
(2) and (3) must accompany the source code. If your use is an adaptation of the source code provided by
Apress in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, from Optimizing HPC
Applications with Intel® Cluster Tools, ISBN 978-1-4302-6496-5 is copyrighted by Apress Media, LLC,
all rights reserved. Any direct reproduction of this Apress source code is permitted but must contain this
license. The following license must be provided for any use of the source code from this product of greater
than 5 lines wherein the code is adapted or altered from its original Apress form. This Apress code is
presented AS IS and Apress makes no claims to, representations or warrantees as to the function, usability,
accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code
provided are used or adapted from Optimizing HPC Applications with Intel® Cluster Tools,
ISBN 978-1-4302-6496-5 copyright Apress Media LLC. Any use or reuse of this Apress source code must
contain this License. This Apress code is made available at Apress.com/9781430264965 as is and Apress makes
no claims to, representations or warrantees as to the function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4302-6496-5

ISBN-13 (electronic): 978-1-4302-6497-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Publisher: Heinz Weinheimer
Associate Publisher: Jeffrey Pepper
Lead Editors: Steve Weiss (Apress); Stuart Douglas (Intel)
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://Apress.com/9781430264965
http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user-friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

To Irina, Vladislav, and Anton, with all my love.
—Alexander Supalov

For my beautiful wife, Nadine, and for my daughters—Eva, Viktoria, and Alice.
I’m so proud of you!

—Andrey Semin

To my family.
—Michael Klemm

To Judith, Silas, and Noah.
—Christopher Dahnken

SI ENIM PLACET OPUS NOSTRUM, GAUDEBIMUS.
SI AUTEM NULLI PLACET: NOSMET IPSOS TAMEN IUVAT QUOD FECIMUS.

vii

Contents

About the Authors ��� xiii

About the Technical Reviewers ��� xv

Acknowledgments ��� xvii

Foreword �� xix

Introduction �� xxi

Chapter 1: No Time to Read This Book? ■ ��� 1

Using Intel MPI Library �� 1

Using Intel Composer XE ��� 2

Tuning Intel MPI Library ��� 3

Gather Built-in Statistics��� 3

Optimize Process Placement �� 5

Optimize Thread Placement �� 5

Tuning Intel Composer XE�� 6

Analyze Optimization and Vectorization Reports �� 6

Use Interprocedural Optimization ��� 10

Summary ��� 10

References �� 10

Chapter 2: Overview of Platform Architectures ■ ���������������������������� 11

Performance Metrics and Targets ��� 11

Latency, Throughput, Energy, and Power �� 11

Peak Performance as the Ultimate Limit �� 14

Scalability and Maximum Parallel Speedup ��� 15

■ Contents

viii

Bottlenecks and a Bit of Queuing Theory ��� 17

Roofline Model �� 18

Performance Features of Computer Architectures �������������������������������� 20

Increasing Single-Threaded Performance: Where You Can and Cannot Help ��������� 20

Process More Data with SIMD Parallelism ��� 21

Distributed and Shared Memory Systems ��� 25

HPC Hardware Architecture Overview ��� 27

A Multicore Workstation or a Server Compute Node �� 28

Coprocessor for Highly Parallel Applications �� 32

Group of Similar Nodes Form an HPC Cluster ��� 33

Other Important Components of HPC Systems ��� 35

Summary ��� 36

References �� 37

Chapter 3: Top-Down Software Optimization ■ ������������������������������� 39

The Three Levels and Their Impact on Performance ����������������������������� 39

System Level �� 42

Application Level �� 43

Microarchitecture Level �� 48

Closed-Loop Methodology ��� 49

Workload, Application, and Baseline ��� 50

Iterating the Optimization Process ��� 50

Summary ��� 52

References �� 52

Chapter 4: Addressing System Bottlenecks ■ ��������������������������������� 55

Classifying System-Level Bottlenecks �� 55

Identifying Issues Related to System Condition ��� 56

Characterizing Problems Caused by System Configuration ������������������������������������ 59

■ Contents

ix

Understanding System-Level Performance Limits �������������������������������� 63

Checking General Compute Subsystem Performance �� 64

Testing Memory Subsystem Performance �� 67

Testing I/O Subsystem Performance �� 70

Characterizing Application System-Level Issues����������������������������������� 73

Selecting Performance Characterization Tools ��� 74

Monitoring the I/O Utilization �� 76

Analyzing Memory Bandwidth �� 81

Summary ��� 84

References �� 85

 Chapter 5: Addressing Application Bottlenecks: ■
Distributed Memory �� 87

Algorithm for Optimizing MPI Performance ��� 87

Comprehending the Underlying MPI Performance �������������������������������� 88

Recalling Some Benchmarking Basics ��� 88

Gauging Default Intranode Communication Performance �������������������������������������� 88

Gauging Default Internode Communication Performance �������������������������������������� 93

Discovering Default Process Layout and Pinning Details ��������������������������������������� 97

Gauging Physical Core Performance �� 100

Doing Initial Performance Analysis �� 102

Is It Worth the Trouble? ��� 102

Getting an Overview of Scalability and Performance �������������������������� 107

Learning Application Behavior �� 107

Choosing Representative Workload(s) �� 111

Balancing Process and Thread Parallelism �� 114

Doing a Scalability Review ��� 115

Analyzing the Details of the Application Behavior �� 118

■ Contents

x

Choosing the Optimization Objective ��� 122

Detecting Load Imbalance �� 122

Dealing with Load Imbalance �� 123

Classifying Load Imbalance �� 124

Addressing Load Imbalance ��� 124

Optimizing MPI Performance ��� 131

Classifying the MPI Performance Issues �� 132

Addressing MPI Performance Issues �� 132

Mapping Application onto the Platform �� 133

Tuning the Intel MPI Library �� 147

Optimizing Application for Intel MPI ��� 157

Using Advanced Analysis Techniques �� 165

Automatically Checking MPI Program Correctness �� 165

Comparing Application Traces �� 166

Instrumenting Application Code �� 168

Correlating MPI and Hardware Events �� 168

Summary ��� 169

References �� 170

 Chapter 6: Addressing Application Bottlenecks: ■
Shared Memory �� 173

Profiling Your Application �� 173

Using VTune Amplifier XE for Hotspots Profiling ��� 174

Hotspots for the HPCG Benchmark ��� 175

Compiler-Assisted Loop/Function Profiling��� 178

Sequential Code and Detecting Load Imbalances ������������������������������� 180

Thread Synchronization and Locking �� 182

Dealing with Memory Locality and NUMA Effects ������������������������������� 186

Thread and Process Pinning �� 191

■ Contents

xi

Controlling OpenMP Thread Placement �� 191

Thread Placement in Hybrid Applications ��� 196

Summary ��� 199

References �� 200

 Chapter 7: Addressing Application Bottlenecks: ■
Microarchitecture ��� 201

Overview of a Modern Processor Pipeline �� 201

Pipelined Execution �� 203

Out-of-order vs� In-order Execution �� 206

Superscalar Pipelines ��� 207

SIMD Execution ��� 207

Speculative Execution: Branch Prediction �� 207

Memory Subsystem �� 209

Putting It All Together: A Final Look at the Sandy Bridge Pipeline ������������������������ 210

A Top-down Method for Categorizing the Pipeline Performance �������������������������� 211

Intel Composer XE Usage for Microarchitecture Optimizations ����������� 212

Basic Compiler Usage and Optimization ��� 213

Using Optimization and Vectorization Reports to Read the Compiler’s Mind �������� 213

Optimizing for Vectorization �� 216

Dealing with Disambiguation �� 232

Dealing with Branches �� 234

When Optimization Leads to Wrong Results ��� 237

Analyzing Pipeline Performance with Intel VTune Amplifier XE ���������� 238

Using a Standard Library Method ��� 239

Summary ��� 245

References �� 245

■ Contents

xii

Chapter 8: Application Design Considerations ■ ��������������������������� 247

Abstraction and Generalization of the Platform Architecture �������������� 247

Types of Abstractions �� 248

Levels of Abstraction and Complexities �� 251

Raw Hardware vs� Virtualized Hardware in the Cloud �� 251

Questions about Application Design �� 252

Designing for Performance and Scaling ��� 253

Designing for Flexibility and Performance Portability �� 254

Understanding Bounds and Projecting Bottlenecks ��� 260

Data Storage or Transfer vs� Recalculation ��� 261

Total Productivity Assessment �� 262

Summary ��� 263

References �� 263

Index �� 265

xiii

About the Authors

Dr. Alexander Supalov created the Intel Cluster Tools
product line, especially the Intel MPI Library that he
designed and led between 2003 and 2014. Before that,
he invented new finite-element mesh-generation
methods, contributed to the PARMACS and PARASOL
interfaces, and developed the first full MPI-2 and IMPI
implementations. Alexander guided Intel efforts in
the MPI Forum during development of the MPI-2.1,
MPI-2.2, and MPI-3 standards. He graduated from the
Moscow Institute of Physics and Technology in 1990,
and in 1995 earned his Ph.D. in applied mathematics at
the Institute of Numerical Mathematics of the Russian
Academy of Sciences. Alexander holds 15 patents.

Andrey Semin is a Senior Engineer and HPC
technology manager for Intel in Europe, the Middle
East, and Africa regions. He supports the leading
European high-performance computing users, helping
them to deploy new and innovative HPC solutions
to grand-challenge problems. Andrey’s background
includes extensive experience working with leading
HPC software and hardware vendors. He has been
instrumental in developing HPC industry innovations
delivering improvements in the energy efficiency
from data center to applications; his current research
is focused on fine-grained HPC systems power and
performance modeling and optimization. Andrey
graduated from Moscow State University in Russia
in 2000, specializing in possibility theory and its
applications for physical experiment analysis. He is the
author of over a dozen papers and patents in the area of

application tuning and energy efficiency analysis, and is also a frequent speaker on topics
impacting the HPC industry.

■ About the Authors

xiv

Dr.-Ing. Michael Klemm is part of Intel’s Software
and Services Group, Developer Relations Division.
His focus is on high-performance and throughput
computing. Michael received a Doctor of Engineering
degree (Dr.-Ing.) in computer science from the
Friedrich-Alexander-University Erlangen-Nuremberg,
Germany, in 2008. His research focus was on
compilers and runtime optimizations for distributed
systems. Michael’s areas of interest include compiler
construction, design of programming languages,
parallel programming, and performance analysis and
tuning. Michael is Intel representative in the OpenMP
Language Committee and leads the efforts to develop
error-handling features.

Dr. Christopher Dahnken manages the HPC software
enabling activities of Intel’s Developer Relations
Division in the EMEA region. He focuses on the
enabling of major scientific open-source codes for new
Intel technologies and the development of scalable
algorithms. Chris holds a diploma and a doctoral
degree in theoretical physics from the University of
Würzburg, Germany.

xv

About the Technical
Reviewers

Heinz Bast has more than 20 years experience in the areas of application tuning,
benchmarking, and developer support. Since joining Intel’s Supercomputer Systems
Division in 1993, Heinz has worked with multiple Intel software enabling teams to
support software developers throughout Europe. Heinz Bast has a broad array of
applications experience, including computer games, enterprise applications, and
high-performance computing environments. Currently Heinz Bast is part of the Intel
Developer Products Division, where he focuses on training and supporting customers
with development tools and benchmarks.

Dr. Heinrich Bockhorst is a Senior HPC Technical Consulting Engineer for high-performance
computing in Europe. He is member of the developer products division (DPD) within
the Software & Services Group. Currently his work is focused on manycore enabling and
high-scaling hybrid programming targeting Top30 accounts. He conducts four to five
customer trainings on cluster tools per year and is in charge of developing new training
materials for Europe. Heinrich Bockhorst received his doctoral degree in theoretical solid
state physics from Göttingen University, Germany.

Dr. Clay Breshears is currently a Life Science Software Architect for Intel’s Health
Strategy and Solutions group. During the 30 years he has been involved with parallel
computation and programming he has worked in academia (teaching multiprocessing,
multi-core, and multithreaded programming), as a contractor for the U.S. Department of
Defense (programming HPC platforms), and at several jobs at Intel Corporation involved
with parallel computation, training, and programming tools.

Dr. Alejandro Duran has been an Application Engineer for Intel Corporation for the past
two years, with a focus on HPC enabling. Previously, Alex was a senior researcher at the
Barcelona Supercomputing Center in the Programming Models Group. He holds a Ph.D.
from the Polytechnic University of Catalonia, Spain, in computer architecture. He has
been part of the OpenMP Language committee for the past nine years.

Klaus-Dieter Oertel is a Senior HPC Technical Consulting Engineer in the Developer
Products Division within Intel’s Software & Services Group. He belongs to the first
generation of parallelization experts in Germany, educated during the SUPRENUM
project that developed a parallel computer in the second half of the 1980s. In his 25 years
of experience in HPC computing, he has worked on all kinds of supercomputers, like
large vector machines, shared memory systems, and clusters. In recent years he has
focused on the enabling of applications for the latest HPC architecture, the Intel Xeon Phi
coprocessor, and has provided related tools trainings and customer support.

xvii

Acknowledgments

Many people contributed to this book over a long period of time, so even though we
will try to mention all of them, we may miss someone owing to no other reason than the
fallibility of human memory. In what we hope are only rare cases, we want to apologize
upfront to any who may have been inadvertently missed.

We would like to thank first and foremost our Intel lead editor Stuart Douglas,
whose sharp eye selected our book proposal among so many others, and thus gave birth
to this project.

The wonderfully helpful and professional staff at Apress made this publication
possible. Our special thanks are due to the lead editor Steve Weiss, coordinating editor
Melissa Maldonado, development editor Corbin Collins, copyeditor Carole Berglie, and
their colleagues: Nyomi Anderson, Patrick Hauke, Anna Ishchenko, Dhaneesh Kumar,
Jeffrey Pepper, and many others.

We would like to thank most heartily Dr. Bronis de Supinski, CTO, Lawrence
Computing, LLNL, who graciously agreed to write the foreword for our book, and took
his part in the effort of pressing it through the many clearance steps required by our
respective employers.

Our deepest gratitude goes to our indomitable reviewers: Heinz Bast,
Heinrich Bockhorst, Clay Breshears, Alejandro Duran, and Klaus-Dieter Oertel (all of Intel
Corporation). They spent uncounted hours in a sea of electronic ink pondering multiple
early chapter drafts and helping us stay on track.

Many examples in the book were discussed with leading HPC application experts
and users. We especially are grateful to Dr. Georg Hager (Regional Computing Center
Erlangen), Hinnerk Stüben (University of Hamburg), and Prof. Dr. Gerhard Wellein
(University of Erlangen) for their availability and willingness to explain the complexity of
their applications and research.

Finally, and by no means lastly, we would like to thank so many colleagues at Intel
and elsewhere whose advice and opinions have been helpful to us, both in direct relation
to this project and as a general guidance in our professional lives. Here are those whom
we can recall, with the names sorted alphabetically in a vain attempt to be fair to all:
Alexey Alexandrov, Pavan Balaji, Michael Brinskiy, Michael Chuvelev, Jim Cownie,
Jim Dinan, Dmitry Dontsov, Dmitry Durnov, Craig Garland, Rich Graham, Bill Gropp,
Evgeny Gvozdev, Thorsten Hoefler, Jay Hoeflinger, Hans-Christian Hoppe, Sergey Krylov,
Oleg Loginov, Mark Lubin, Bill Magro, Larry Meadows, Susan Milbrandt, Scott McMillan,
Wolfgang Petersen, Dave Poulsen, Sergey Sapronov, Gergana Slavova, Sanjiv Shah,
Michael Steyer, Sayantan Sur, Andrew Tananakin, Rajeev Thakur, Joe Throop, Xinmin Tian,
Vladmir Truschin, German Voronov, Thomas Willhalm, Dmitry Yulov, and Marina Zaytseva.

xix

Foreword

Large-scale computing—also known as supercomputing—is inherently about
performance. We build supercomputers in order to solve the largest possible problems in
a time that allows the answers to be relevant. However, application scientists spend the
bulk of their time adding functionality to their simulations and are necessarily experts in
the domains covered by those simulations. They are not experts in computer science in
general and code optimization in particular. Thus, a book such as this one is essential—a
comprehensive but succinct guide to achieving performance across the range of
architectural space covered by large-scale systems using two widely available standard
programming models (OpenMP and MPI) that complement each other.

Today’s large-scale systems consist of many nodes federated by a high-speed
interconnect. Thus, multiprocess parallelism, as facilitated by MPI, is essential to use
them well. However, individual nodes have become complex parallel systems in their
own right. Each node typically consists of multiple processors, each of which has multiple
cores. While applications have long treated these cores as virtual nodes, the decreasing
memory capacity per core is best handled with multithreading, which is facilitated
most by OpenMP. Those cores now almost universally offer some sort of parallel (Single
Instruction, Multiple Data, or SIMD) floating-point unit that provides yet another level
of parallelism that the application scientist must exploit in order to use the system as
effectively as possible. Since performance is the ultimate purpose of large-scale systems,
multi-level parallelism is essential to them. This book will help application scientists
tackle that complex computer science problem.

In general, performance optimization is most easily accomplished with the right
tools for the task. Intel Parallel Studio XE Cluster Edition is a collection of tools that
support efficient application development and performance optimization. While many
other compilers are available for Intel architectures, including one from PGI, as well as
the open source GNU Compiler Collection, the Intel compilers that are included in the
Parallel Studio tool suite generate particularly efficient code for them.

To optimize interprocess communication, the application scientist needs to
understand which message operations are most efficient. Many tools, including
Intel Trace Analyzer and Collector, use the MPI Profiling Interface to measure MPI
performance and to help the application scientist identify bottlenecks between nodes.
Several others are available, including Scalasca, TAU, Paraver, and Vampir, by which the
Intel Trace Analyzer was inspired. The application scientist’s toolbox should include
several of them.

Similarly, the application scientist needs to understand how well the capabilities
of the node are utilized within each MPI process in order to achieve the best overall
performance. Again, a wide range of tools is available for this purpose. Many build on
hardware performance monitors to measure low-level details of on-node performance.
VTune Amplifier XE provides these and other detailed measurements of single-node

■ Foreword

xx

performance and helps the application scientist identify bottlenecks between and within
threads. Several other tools, again including TAU and Paraver, provide similar capabilities.
A particularly useful tool in addition to those already mentioned is HPCToolkit from Rice
University, which offers many useful synthesized measurements that indicate how well
the node’s capabilities are being used and where performance is being lost.

This book is organized in the way the successful application scientist approaches the
problem of performance optimization. It starts with a brief overview of the performance
optimization process. It then provides immediate assistance in addressing the most
pressing optimization problems at the MPI and OpenMP levels. The following chapters
take the reader on a detailed tour of performance optimization on large-scale systems,
starting with an overview of the best approach for today’s architectures. Next, it surveys
the top-down optimization approach, which starts with identifying and addressing the
most performance-limiting aspects of the application and repeats the process until
sufficient performance is achieved. Then, the book discusses how to handle high-
level bottlenecks, including file I/O, that are common in large-scale applications. The
concluding chapters provide similar coverage of MPI, OpenMP, and SIMD bottlenecks.
At the end, the authors provide general guidelines for application design that are derived
from the top-down approach.

Overall, this text will prove a useful addition to the toolbox of any application
scientist who understands that the goal of significant scientific achievements can be
reached only with highly optimized code.

—Dr. Bronis R. de Supinski, CTO, Livermore Computing, LLNL

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: No Time to Read This Book?
	Using Intel MPI Library
	Using Intel Composer XE
	Tuning Intel MPI Library
	Gather Built-in Statistics
	Optimize Process Placement
	Optimize Thread Placement

	Tuning Intel Composer XE
	Analyze Optimization and Vectorization Reports
	Use Interprocedural Optimization

	Summary
	References

	Chapter 2: Overview of Platform Architectures
	Performance Metrics and Targets
	Latency, Throughput, Energy, and Power
	Peak Performance as the Ultimate Limit
	Scalability and Maximum Parallel Speedup
	Bottlenecks and a Bit of Queuing Theory
	Roofline Model

	Performance Features of Computer Architectures
	Increasing Single-Threaded Performance: Where You Can and Cannot Help
	Process More Data with SIMD Parallelism
	Distributed and Shared Memory Systems
	Use More Independent Threads on the Same Node
	Don’t Limit Yourself to a Single Server

	HPC Hardware Architecture Overview
	A Multicore Workstation or a Server Compute Node
	Coprocessor for Highly Parallel Applications
	Group of Similar Nodes Form an HPC Cluster
	Other Important Components of HPC Systems

	Summary
	References

	Chapter 3: Top-Down Software Optimization
	The Three Levels and Their Impact on Performance
	System Level
	Application Level
	Working Against the Memory Wall
	The Magic of Vectors
	Distributed Memory Parallelization
	Shared Memory Parallelization
	Other Existing Approaches and Methods

	Microarchitecture Level
	Addressing Pipelines and Execution

	Closed-Loop Methodology
	Workload, Application, and Baseline
	Iterating the Optimization Process

	Summary
	References

	Chapter 4: Addressing System Bottlenecks
	Classifying System-Level Bottlenecks
	Identifying Issues Related to System Condition
	Characterizing Problems Caused by System Configuration

	Understanding System-Level Performance Limits
	Checking General Compute Subsystem Performance
	Testing Memory Subsystem Performance
	Testing I/O Subsystem Performance

	Characterizing Application System-Level Issues
	Selecting Performance Characterization Tools
	Monitoring the I/O Utilization
	Analyzing Memory Bandwidth

	Summary
	References

	Chapter 5: Addressing Application Bottlenecks: Distributed Memory
	Algorithm for Optimizing MPI Performance
	Comprehending the Underlying MPI Performance
	Recalling Some Benchmarking Basics
	Gauging Default Intranode Communication Performance
	Gauging Default Internode Communication Performance
	Discovering Default Process Layout and Pinning Details
	Gauging Physical Core Performance

	Doing Initial Performance Analysis
	Is It Worth the Trouble?
	Example 1: Initial HPL Performance Investigation

	Getting an Overview of Scalability and Performance
	Learning Application Behavior
	Example 2: MiniFE Performance Investigation

	Choosing Representative Workload(s)
	Example 2 (cont.): MiniFE Performance Investigation

	Balancing Process and Thread Parallelism
	Example 2 (cont.): MiniFE Performance Investigation

	Doing a Scalability Review
	Example 2 (cont.): MiniFE Performance Investigation

	Analyzing the Details of the Application Behavior
	Example 2 (cont.): MiniFE Performance Investigation

	Choosing the Optimization Objective
	Detecting Load Imbalance
	Example 2 (cont.): MiniFE Performance Investigation

	Dealing with Load Imbalance
	Classifying Load Imbalance
	Addressing Load Imbalance
	Example 2 (cont.): MiniFE Performance Investigation
	Example 3: MiniMD Performance Investigation

	Optimizing MPI Performance
	Classifying the MPI Performance Issues
	Addressing MPI Performance Issues
	Mapping Application onto the Platform
	Understanding Communication Paths
	Selecting Proper Communication Fabrics
	Using Scalable Datagrams
	Specifying a Network Provider
	Using IP over IB
	Controlling the Fabric Fallback Mechanism
	Using Multirail Capabilities

	Detecting and Classifying Improper Process Layout and Pinning Issues
	Controlling Process Layout
	Controlling the Global Process Layout
	Controlling the Detailed Process Layout
	Setting the Environment Variables at All Levels

	Controlling the Process Pinning
	Controlling Memory and Network Affinity
	Example 4: MiniMD Performance Investigation on Xeon Phi
	Example 5: MiniGhost Performance Investigation

	Tuning the Intel MPI Library
	Tuning Intel MPI for the Platform
	Tuning Point-to-Point Settings
	Adjusting the Eager and Rendezvous Protocol Thresholds
	Changing DAPL and DAPL UD Eager Protocol Threshold
	Bypassing Shared Memory for Intranode Communication
	Bypassing the Cache for Intranode Communication

	Choosing the Best Collective Algorithms

	Tuning Intel MPI Library for the Application
	Using Magical Tips and Tricks
	Disabling the Dynamic Connection Mode
	Applying the Wait Mode to Oversubscribed Jobs
	Fine-Tuning the Message-Passing Progress Engine
	Reducing the Pre-reserved DAPL Memory Size
	What Else?

	Example 5 (cont.): MiniGhost Performance Investigation

	Optimizing Application for Intel MPI
	Avoiding MPI_ANY_SOURCE
	Avoiding Superfluous Synchronization
	Using Derived Datatypes
	Using Collective Operations
	Betting on the Computation/Communication Overlap
	Replacing Blocking Collective Operations by MPI-3 Nonblocking Ones
	Using Accelerated MPI File I/O
	Example 5 (cont.): MiniGhost Performance Investigation

	Using Advanced Analysis Techniques
	Automatically Checking MPI Program Correctness
	Comparing Application Traces
	Instrumenting Application Code
	Correlating MPI and Hardware Events
	Collecting and Analyzing Hardware Counter Information in ITAC
	Collecting and Analyzing Hardware Counter Information in VTune

	Summary
	References

	Chapter 6: Addressing Application Bottlenecks: Shared Memory
	Profiling Your Application
	Using VTune Amplifier XE for Hotspots Profiling
	Hotspots for the HPCG Benchmark
	Compiler-Assisted Loop/Function Profiling

	Sequential Code and Detecting Load Imbalances
	Thread Synchronization and Locking
	Dealing with Memory Locality and NUMA Effects
	Thread and Process Pinning
	Controlling OpenMP Thread Placement
	Thread Placement in Hybrid Applications

	Summary
	References

	Chapter 7: Addressing Application Bottlenecks: Microarchitecture
	Overview of a Modern Processor Pipeline
	Pipelined Execution
	Data Conflicts
	Control Conflicts
	Structural Conflicts

	Out-of-order vs. In-order Execution
	Superscalar Pipelines
	SIMD Execution
	Speculative Execution: Branch Prediction
	Memory Subsystem
	Putting It All Together: A Final Look at the Sandy Bridge Pipeline
	A Top-down Method for Categorizing the Pipeline Performance

	Intel Composer XE Usage for Microarchitecture Optimizations
	Basic Compiler Usage and Optimization
	Using Optimization and Vectorization Reports to Read the Compiler’s Mind
	Optimizing for Vectorization
	The AVX Instruction Set
	Why Doesn’t My Code Vectorize in the First Place?
	Data Dependences
	Data Aliasing

	Array Notations
	Vectorization Directives
	ivdep
	vector
	simd

	Understanding AVX: Intrinsic Programming
	What Are Intrinsics?
	First Steps: Loading and Storing
	Arithmetic
	Data Rearrangement

	Dealing with Disambiguation
	Dealing with Branches
	__builtin_expect
	Profile-Guided Optimization
	Pragmas for Unrolling Loops and Inlining
	unroll/nounroll
	unroll_and_jam/nounroll_and_jam
	inline, noinline, forceinline

	Specialized Routines: How to Exploit the Branch Prediction for Maximal Performance

	When Optimization Leads to Wrong Results
	Using a Standard Library Method
	Using a Manual Implementation in C
	Vectorization with Directives

	Analyzing Pipeline Performance with Intel VTune Amplifier XE
	Summary
	References

	Chapter 8: Application Design Considerations
	Abstraction and Generalization of the Platform Architecture
	Types of Abstractions
	Levels of Abstraction and Complexities
	Raw Hardware vs. Virtualized Hardware in the Cloud

	Questions about Application Design
	Designing for Performance and Scaling
	Designing for Flexibility and Performance Portability
	Data Layout
	Structured Approach to Express Parallelism

	Understanding Bounds and Projecting Bottlenecks
	Data Storage or Transfer vs. Recalculation
	Total Productivity Assessment

	Summary
	References

	Index

