

UCLPRESS

ACHIM MENGES / BOB SHEIL / RUAIRI GLYNN / MARILENA SKAVARA

FABRICATE

RETHINKING DESIGN AND CONSTRUCTION

University of Stuttgart

Institute for Computational Design and Construction
-UCL

3 s.igitu

CONTENTS
INTRODUCTION

8 FOREWORD
10 ACKnowLedgements
12 INTRODUCTION
16 THE TRUMPH OF THE TURNIP Anthony Hack.
Shil Berstein

RETHINKING PRODUCTION FUTURES COOPERATIVE FABRICATIO
OFSATIALMETAL OFSPATALMETAL
STRUCTURES
Stefan Stefana Parascono, Augusto Gandia,
Ammar Mirina, Fabio Gramazio Ammar Mirian, Fabio Gramazio
30 Infinite variations, RADICALSTRATEGIE
Martin Sef and
Emmanuel Vercruysse
36 AUTOMATED DESIGN-
TO-FABRICATION FOR
 James Warton, Heath May and
Roodovan Kovacevic
$44 \begin{aligned} & \text { ROBOTIC WOOD TECTONICS } \\ & \text { PhilipF. Yuan and Hua Chai }\end{aligned}$
$50 \begin{gathered}\text { RAPID ASSEMBLY WITT } \\ \text { BENDING-STABLLLSED }\end{gathered}$ STRUCTURES Joseph M. Gattas, Kim Baber,
Yousef Al-Qaryouti and Yousef Al-Qar
Ting-Uei Lee
58 A Prefabricated dining APREFABRICATED DINING
PAVLION: USING STRUCTUR
SKELETONS SAEELETONS DEEVELOPABLE
OFFSETMESHES, KERF-CUT OFFSET MESHES, KERR-CUT
AND BENTSHETTMTERIALS
Henry Louth, Bavid Reeves, Henry Louth, David Reeves,
Benjamin Koren, Shajay Bhoosha senjaminkoren, Shajay
and Patrik Schumacher
68 OPEN CAGE-SHELL DESIGN PAVIILION)
Beniamin Bal and Gaston Nogue
MAGIETS AT THE ROBERT
PAREETTBUILDING PAREETT BUILDIN
MANCHESTR Richard Maddock . Xvier de Richara Maddock, Xavier de
Kesteleer. Rogecer Riddsdill Smith and
Daron Haylock

2 RETHINKING RETHINKING
MATERIALISATION

84 Infundibuliforms: KINETIC SYSTEAMS. ADDITIVE
MANUFACTURING FOR CABLE NETS AND TENSILESURFACE
CONTROL Wes Mcgee, Kathy Velikov,
Geoffrey Thün and Dan Tish
92 ROBOTIC INTEGRAL ATTACHMENT
Chistoher Rebeler, Volker
Helsm, Andreas Thom, Fabio Helm, Andreas Thhor, a, Fabio
Gramazio, Mathios Kobler and

98 LACE WALL:EXTENDING DESIGNINTUTIINDTHG
MACHINELEARNNGOUGH MACHINE LEARNING
Martin Tamke, Mateusz Martin Tame, Matesuz
Zwier rycki, nd ders Holde
Deleuran Yuly is inke Deleuran, Yuliva Sinke
Baranovskaya, Ida Friis Tinning
and Mette Ramsgaard Thomsen
106 ROBOTIC FABRICATION OF
STONE ASSEMBLY DETAILS STONE ASSEMBLY DETALLS
Ines Ariza, Brandon Clifford, James
B. Durham, WWes MGGee, Caitin T. B. Durham, Wes McGee, Caitin T.
$114 \begin{aligned} & \text { ADAPTIVE ROBOTIC } \\ & \text { FABRICATION FOR }\end{aligned}$
 INCONSISTENCYY:INCREALING
THE GEOMETRYC THE GEOMETRIC ACCURACY
OFINCREMENTALY FORMED OFINCREMENTA
METALPANELS
PI Paul Nicholas., Mateusz Zwierryck
Esben Clausen Norgaard, David Esten Clausen Norgaard, David
Stasiuk Christonher Hutchinson
and Mette Thomsen

122 DIIGITAL FABRICATION OF
NON-STANDARD SOUND-NON-STANDARDLOU
DIIFFUSING PANELSIN THELARGE HALLOF
THE ELBPHILHARMONIE THEELBPRILHARMONII
Beniamins. Koren and
Tobias

130 QUALIFING FRP COMPOSITES
FORHGH-RISE BUIDING FRACADES
William Kreysler
138 THE 2016 SERPENTINE PAVILION A CASE STUD $\operatorname{INLARGE-}$ SCALEGFRP STRUCTURAL
DESIGN AND ASSEMBLY James Kingman Jeg Dud
and Ricardo
Baptista

148 Q\&A:BIOGRAPHIES
50 Q\&A
JENNY SABINAND
MARIO CARPO
158 Q\&A2 MONICA PONCE DELEON,
VIRGINIA SAN FRATELO AND

66 Q\&AL
CARLBASS, BOB SHEILAND
ACHMENGS Q\&A4
174 QRAA
ANTOINE PICON AND
BOBSHEII

3 RETHINKING
178 DISCRETE COMPUTATION FOR Gilles Retsin Manuel Jiménez

184 CILLLLA:METHOD OF 3 D PRINTING MICRO-PILLAR
STRUCTURES ON SURFACES Uifie Ou, Gershon Dublon, Chin-
Cheng, Kar Willis and Hiroshi shii
190 FUSED FILAMENT KINEMATIC-STATECLIMATERESPONSIVE APERTURE
David Correa and Achim Menges
196 3D METAL PRINTING AASTRUCTUREFR
ARCHITECTURAL AND
SCUPTURALPROUECTS SCULPTURAL PROJECTS
Paul Kasasian, Gramam Cranston,
Juhun Lee, Ral hh Helmick, Sarah Rodrigo
202 MOBILE ROBOTLC FILAMENT STRUCTURES Maria Yablonina, Marshall Prado,
Ehsan Baharlou, Tobias Schwinn Ehsan Baharlou, Tobiar
and Achim Menges
210 THE SMART TAKES FROM THE STRONG:3D PRINTING STAY-IN-PLACEFORMW
FORCONCRETESLAB
 Mania Aghaei Miilodi, Mathia
Bernhard, nndrei lipa and
Benimi, Benjamin iillenburger
218 PRocess chain forthe ROBOTICCONTROLLED
RODUCTIONOFNONPRODUCTIONOF NON-
STANDARD, DOUBLE-CURVED FIBRE-RELINFORCED
CONCRETPANLS WITH CONCRETEPANELSWITH
AN ADAPTIVEMOULD Hendrik Lindemann Jobrg Petr
Sefan Neudecker and Stefan Neude
Haral Kloft
224 elytrafllament pavilion: ROBOTIC FILAMENT WINDING
FORSTRUCTUUALCOMPOSITE FOR STRUCTURAL
BULIIN SYSTEM BUILDING SYSTEMS
Marshal Irado, MMritz
Dörstlon Dörstelmann, Joments Solly,
Achim Menges and Jon Knippers

4 RETHINKING CONSTRU
LOGICS
234 SENSORIALPLAYSCAPE: ADVANCED STRUCACTRAL,
MATERIAL AND RESPONS, CAPACITIESORTEXTLLE HYRRID ARCHITECTURES AS
THERAPEUTII ENVIRONMENTS THERAPEUTICEN
FORSOCILPLAY
Sean Ahlquist
242 Bending-Active CONSTRUCTINN AND
Simon Schleicher Simon Schleicher, Riccardo
Magna and Jan Knippers
250 PRECASTCONCRETE SHELLS PRECAST CONCRETE SHELLS
ATRUCTURLCHALENGE
Stefan Peters. ALdras TEMG Stefan Peters, Andreas Tumme
Gernot Parman and Felix Gentot Parl
Amtsberg
258 FROMLAMINATIONTO
ASSEMBLY:MODELING ASSEMBLYMODELLING
TESEINMUSICLIE
THOLS THE SEINE MUSICALE
Hanno Stehing Fabian
Jean Reure
Joulier, Helobria Geglo and

264 SCALING ARCHITECTURAL
ROBOTICS:CONSTRUCTION ROBOTICS:CONSTRUR
OFTHEKIRK KAPTTAL OF THE ERIKK KAPTITL
HEADQUARTERS Asbign Sondergaard and Jelle
Feringa

$$
\begin{aligned}
& \text { Asbjigm Søndergaard and Jelle } \\
& \text { Feringa } \\
& 272 \text { MPALIION } 2015 \\
& \text { AL_A }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AL_A } \\
& 280 \text { MULT-PERFORMATIVE SKIns }
\end{aligned}
$$

280 MULTI-PERFORMATIVE SKINS
Edoardo- Tibuzuzi and Deyan
Marzev

$$
\begin{aligned}
& \text { Edoardo Tibuzzi and Deyan } \\
& \text { Marrev }
\end{aligned}
$$

286 THE ARMADILLO VAULT: BALANCING COMPUTATION
AND TRADTIONALCRAFT AND TRADITIONAL CRAFT
Philippe Block, Tom Van Mele,
Matthis iopmann and David
Escobesedi $\underset{\text { Escobedo }}{\text { Matthias Rip }}$

FOREWORD

MARK BURRY \& JANE BURRY

So, here we are with the third iteration of the built environments thinking and making triennial celebration: FABRICATE 2017. What began as a polar comparison between the 2011 and 201 events has developed into a series through which to take stock
of the fast-changing fabrication design landscape. Rather than simply revealing greater sophistication and quicker processes six years after the inaugural event, we believe that the contents
of this volume attest of this volume attest to a seismic shift in both professional outreach and construction application, and to a striking practices, industries and design education institutions have even more to draw upon that will boost their confidence as regards the required time commitment and budget to pus
research and education in fabrication further. Shifts in esearch and education in fabrication further. Shifts in rewarded by the cultural and practical benefits of adventurous, high quality, responsive architecture produced with correspondingly reduced costs and minimised environmental mpact. Looritis the

In their introduction to FABRICATE 2014, the editors rued that the preponderance of experimentation at that time was largely
constrained to a relatively small number of progressive schools, nsulated from mainstream reality and relatively ostive sthoo with the reality of wider r ractice and industry tauk-up. Whit pavilions have been popping up around the globe - London's startling annual contribution at the Serpentine being one of the better examples - many adventurous structures have be constrained to inhabiting the forecourts of the educational
facilities in which they are spawned, perhaps speaking mor flacitlies to the converted than to the desired new audience.
loure

Traditionally, as we all know, there is a reticence to take
ground, even when presented with the exciting possibilities manifestly demonstrated by an eye-catching and palpably
successful built example Eyen the successful built example. Even the great innovator Gaudí, while admitting that design by its very nature is experimental
and innovative, asked his closest confidants why one would risk employing novel materials and construction techniques instead of expertly applying traditional craft and practice.
Yet we are in the twenty-first century now, with a broader set of urgent and inescapable imperatives: greater awareness set of urgent and inescapabie inperatives. grearg ysarand its
of environmenta responsibility, not least energy use and impact on global warming, the need to take ethical account of where materials come from; which resources to eschew for their risk of being depleted; where building waste ultimatel with and demolished

While pavilions have been crucial prototypical conversation starters, the editors are reassured to find that this year's tak has moved to more built examples, some even at a heroic of generic and high impact (as opposed to project-specific transformations to the way we design and make.
FABRICATE surely wants to pull us towards a post-digital design-making maturity where design intention computational abstraction and automated fabrication
and assembly are positioned more as the norm than as the exception within a shifting set of design priorities. Thus we look for exception not just through stand-out, game-changing examples but through a palpable shift
in criteria towards enhanced building performance, in addition to the usual preoccupations about appearance. Work addressing this expanded field of challenges can be

Whereas we might have been collectively drawn to more seems to be greater emphasis on process in FABRICATE 2017's published projects, not necessarily pointing solely to a oncrete outcome but to fress approaches to transforming deas into fabricated, tangible outcomes. We can see this by boking at the acknowledgements in many of the exhibited projects - most notably the growing range of discipline contributing to this fast-evolving dialogue. These
transdisciplinary teams include not ust the desig computation and robotics experts and builders, but also - and increasingly - materials scientists and engineers, industrial designers, process and systems specialists, and informed end-user participants. o name just a few.

The projects here have been selected from an almost overwhelmingly large pool of candidates, and together are the conspicuous vector for the questions we might
embrace over the coming years. What is the role of schools of architecture and design in all this? Realistically, how can schools participate fully in the face of burgeoning student numbers (in many countries) that make the necessary access to hands-on experimentation with expensive machinery difficult to achieve? And what radical changes in syllabus re appropriately acclimatised so that they can participate meaningfully in the increasingly diverse design and build eams, beyond mere speculative engagement?
These questions are not necessarily in the purview of FABRICATE 2017 in terms of providing answers, but the event and this published record will help fuel the argument for further change in the design and construction industries'
priorities. They will especially stimulate greater confidence
to make the most of transdiscipininary opportunities. These are opportunities that learning and research institutions such as universities are uniquely equipped to provide, yet so rarely imminent present, the thinking/making community have John Ruskin as their friend, for it was he who so eloquently called on thinkers and makers to make themselves consciously aware of each other's contributions:

And yet more, in each several profession, no master should be too proud to do its hardest work. The painter should grind his own colours, the architect work in the mason's yard with his men; the master-manufacturer be himselfa more skilfy operative than any man in his mills; and the distinction
between one man and another be only in experience and between one man and another be only in experience and
skill, and the authority and wealth which these must naturally and justly obtain.
Any sceptic who wonders why design schools invest in robots and 5 -axis routers over a century and a half later should expertise of others or about dabbling dilettantism. Rather, these contemporary tools are the vital horizon expanders for disciplines otherwise cauterised by their own sense of 2017 is the latest in a unique series of conferenceses that not only demonstrate the rapidly shifting ground of the endgame but also, more crucially, illuminate fascinating alternative pathways to boosting ongoing professional relevance.

[^0]In Stuttgart, Achim would like to express his gratitude to the entire FABRICATE team at the Institute for Computational Design and Construction. First and foremost, thank you to
Nicola Burggraf for her extraordinary effort in heading the administration team and for her tireless engagement in preparing FABRICATE in Stuttgart since January 2016. Britta Kurka and Scottie MCDaniel have also contributed extensively to various organisational matters. Without this
team, the conference would not have been possible. Thank team, the conference would not have been possible. Thank students who helped with the wide range of aspects that needed to be taken care of for such a major event. We are lacking the space here to mention all contributions in detail
but, again, FABRICATE would not have been possible without but, again, FABRICATE would not have been possible wi the tremendous effort and passion of this fantastic group
of people - very well done! Thanks, too, to the University of Stuttgart for providing an excellent context for our research activities, which included making it possible for us to host such a remarkable event. Finally, I would like to
acknowledge the significant support of the DFG Deutsche acknowledge the significant support of the DFG Deuts
Forschungsgemeinschaft in recognising the scientific importance of the conference and for granting the additional means to make it happen.
In London, Ruairi and Bob wish to start by thanking Marilena Skavara, who has been involved in every event and production Skavara, who has been involved in every event and production
since 2011 as an utterly pivotal figure in the entire enterprise. Now co-editor, Marilena's key role is fully recognised, as is the impact of her strategic contribution and judgment. So now, as an editorial team of three, we each wish to thank the following people, who have helped us to assemble this wonderful unlimited reserves of patience and good humour, and her assistant, Aleema Gray, transcribed the interviews between
incere thanks to Dan Lockwood and Patrick Morrissey, our meticullous proofreader and designer respectively, both of whom have executed their tasks with elegance, patience and
beauty. Thank you to Lara Speicher. Publishing Manager at UCL beauty. Thank you to Lara Speicher, Publishing ManagegeratuCL
Press, and her team, including Chris Penfold, Jaimee Biggins and Alison Major - we have hugely enjoyed working on our second project with you within six months. It's also deeply atisfying and enioyable to be back in partnership with and his seneral manager Salvador Miranda. Thank you to James Curwen, Luis Rego and Thomas Abbs for their generous assistance. Finally, we wish to thank those responsible for the tactile experience that you, as reader, are enjoying now, salute your passion for craft and detail and deeply appreciate saute your passion for craft and detail, and deeply appreciater making of well-made things.
Finally, from Stuttgart and London, we extend our sincere Fanks to all our sponsors, as it is their support that enab Diamond sponsor Autodesk, our Platinum sponsors Arup UUKA, Ostseestaal and BigRep and our Gold sponsors FARO esign-to-Production and Trimble.

Achim Menges, Bob Sheil, Ruairi Glynn and Marilena Skavara

 September 2017.
Inage: Paun Smorhy
traken January 2017).
 Destion Manufacture

Design for Performance and interaction

FABRICATE 2017 recognises how much has changed since 2011. Once the final selection of papers was made, it was clea that the chosen projects were of a significantly larger scale
in terms of both size and reach. The categories ' Production", Materialisation'; 'Addititive Strategies' and 'Construction' made immediate sense, as did the conference title, 'Rethinking Design and Construction:
One key point that has emerged is that we can no longer talk in general terms about 'digital architecture'. Such a generalisation ho longer seems to do justice to the multificaceted cultures of computational design and digital fabrication, their finely differentiated approaches and their diverse physical manifestations - which are explored both in the book and at the conference. Equally, we are witnessing a rapidly
blurring boundary between computational design and digital fabrication. The clear line that once existed between hese two domains has become increasingly questioned by cyber-physical productions systems and challenged by new forms of man-machine colaboration (designer and of a significant number of submissions.
In Germany, this leap forward in the way we design, engineer and produce is often referred to as 'Industry 4.0 , a term government and indicates the significance of these developments as catalysts in a fourth industrial revolution. FABRICATE 2017 suggests that Industry 4.0 will have - indeed. is already having- a profound impact on the way the future
buil envirovment is conceived designed and materialsed Stuttgart is situated in the heartland of advanced manufacturing. and the south of Germany is home to a large number of micro-leaders and hidden champions, small-to-medium cro-leaders' and hiddenchampions', small-to-me
tect notogica fields. The University of Stuttgart is renowned for creatively engaging with these advanced industries and bringing to such engagements the rigour and insight of its
skilled and specialist faculty and students. The most recent manifestation of this spirit is the ICD's new Computational Construction Laboratory (Fig. 1). It is no coincidence that the opening of this lab coincides with this year's conference, as it is this very spirt that we consider the CDEs modest
'Rethinking Design and Construction' therefore constitutes both a critical assessment and a provocation. On the one hand it reflects the work of a range of extraordinary thinkers who are challenging old approaches to design and making through thinking. On the other, it serves as a rallying cry to use computational technologies as vehicles for creative exploration and for making ground-breaking and bold colaboration tat

THE TRIUMPH OF THE TURNIP

Autodesk

Surrounded by dusty workmen, a man stands in a Florence piazza holding a turnip (Fig. 1). He raises his voice over the sounds of construction echoing down the
nearby streets and alleys and carves a shape from the vegetable with a small knife. He glances up after every few words to confirm that he's understood. When his carving is done, he lectures further, pointing out various
details of his sculpture, explaining answering guestions details of his sculpture, explaining, answering questions, when the workmen nod, the master builder eats the turnip. There's no need to preserve it. One detail of Brunelleschi's Dome of Santa Maria del Fiore will be he only record of this conversation (Fig. 2).

In Rome, a man labours over a drawing, recording his accurate realisation by the workmen of his day. As far as he is concerned, the building he draws is the real building, he realisation of his imagined edifice. Whatever occupied space might be built from these instructions is a co
of the perfect original, rooted in refined geometric mathematics, defined on the several sheets and models that summarise its creator's thoughts (Fig. 3).
Brunelleschi and Alberti stand on either side of a istorical shift between the Renaissance master builder and the modern architectural profession. In his treatise of 1452, De Re Aedificatoria, Leon Battista Alberti broke with the tradition of the master builder, as exemplified b

Brunelleschi, in suggesting that originating ideas about
buildings was a separate and privileged predecessor to the act of actual construction. He declared:
"...certainly it is enough if you give honest Advice, and correct Draughts such as to apply themselves to you. If afterwards you undertake to supervise and
compleat the Work, you will find it very difficult to compleat the Work, you will find it very difficult to avoid being made answerable for all the Faults and
Mistakes committed either by the Ignorance or Negligence of other Men: Upon which Account you must take care to have the Assistance of honest, diligent and severe Overseers to look after the

1. Rutabaga or swede
(swedish turnip) or turmip
oryellow turnip (Brassica
rapobrassicial vintage

Dictionary y f Woras
and hings. Laive
and Fliury, 1895 .

2. Bunnelleschis Dome 2.Burneleschis Some
santa Maria del fiore,
and Filorence. Italy.
Image: Marcus obal.
3.A Architectural drawing for
an lonic capital byy traian an lonic capital by tula ian
Renaissance architect, Lea

 Shutterstock.

This is tantamount to inventing the modern architectural profession with its notion of design drawings and of a representational strategy in construction, while simultaneously dividing intention from realisation - design from construction - in a separation of
responsibilities that has persisted for more than hal responsibilities that has persisted for more than half a
millennium into the building industry of today, resulting in a process of delivery and modification of contemporary buildings that is widely regarded by both owners and building professionals as being inefficient, risky, expensi nd often an incomplete or inadequate realisation of the proroct, are misunderstood or otherwise imperfectly conve design intent by filtering design representations through drawing conventions that date back centuries.
The first additions of computation to the architectural profession did little to advance building quality or delivery, focused as they were on raising the effficiency of producing conventional drawing sets. The rapid and
4. Office layout, Autoon
AutocAD 218,1985 .
firms was a testament to a fee-for-service business model attended by a commensurate need to minimise labour costs as a means of maximising profits. Few questions instruments of service dictated by contractual olion of and regulatory environments, and the initial penetration of computation into practice was limited to recording decisions arrived at by other methods. In many cases effciencies gained in more quickly producing and
revising drawing sets were applied to design revis. revising drawing sets were applied to design revision
extending a project's exploratory dimensions more extending a project's exploratory dimensions more
deeply, with decisions formerly confined to conceptua, schematic and design development stages allowed to spill into the construction document phase. This gain in flexibility was largely unforeseen by a professio adopting technology in the hope of production cost
reductions, but the additional time afforded to design decisions was a quiet hint that computation might have more to offer than the mere transposition of previously physical activities to the digital realm.
In one sense, building engineers were quicker to transition to the emerging paradigm of design and
drawing production that was finally termed Buildin Information Modelling (BIM). Accustomed to specifying manufactured components in the form of standard steel shapes, structural engineers were quick to adopt
computational capabilities to model forces and select appropriate steel within the analytical environment. The rapid and sometimes instantaneous feedback of these computational structural design environments prefigured further advances of this type emerging today, conveying the promise of improved decisions about
buildings when the professional can easily access relevant information and encoded expertise to inform building choices. Taking advantage of manufacturing standardisation and digital artefacts as proxies for
fabricated objects, engineers in the early days of BIM were able to more closely unite design decisions to characteristics of materials and manufacturing conventions through the medium of computation (Fig.4).

 specification group either within a large architectural firm or as an outsourced service to smaller firms, with
most architects concentrating on the new possibilities most architects concentrating on the new possibiities
for design understanding afforded by three-dimensional BIM and increasingly advanced computational rendering For the first time, architects with less than decades of experience could easily understand the experiential they were instantiated by construction. While the they were instantiated by construction. While the
relatively rapid adoption of BIM by the architectura profession can once again be attributed to a quest for higher production efficiency, some architects quickly
understood the possibilities in increasingly detailed understood the possibilities in increasingly detailed
digital representations of buildings as the medium of digita representations of buildings as the mediuu
improved understanding and decisions (Fig. 5).
Like CAD before it, BIM arose from a fundamentally
piecemeal digital representation of finished objects. piecemeal digital representation of finished objects.
CAD software conceives of drawing sets a s comple arrangements of lines, arcs and circles. Building information models are digital assemblies of generic or specific manufactured objects, owing much more to their roots in software designed to support fabrication and construction metaphors than to the design proce
As in physical construction, buildings in BIM are emergent phenomena resulting from the positioning
of components in precise relationships. As the BIM assembly becomes more elaborate, it begins to exhibit emergent behaviours that cannot be predicted by an aneclotal understanding of the indivicual of
employed in its composition. Enhanced BIM environments reveal and predict such behaviours through increasingly sophisticated analytical tool.
calculating building properties such as energy calculating building properties such as energy consumption, quantity and spatial distribution of
daylight and the modelled movement of inhabitants through space. The increasing use of virtual reality systems by architects simulates inhabitation of the project from its earliest stages of design, a technology
that affords even the most unsophisticated of clients a that affords even the most unsophisticated of clients a
visceral understanding of basic architectural choices while they remain open to discussion and adjustment (Fig. 6).
The ready availability of such predictive information has implicitly expanded the scope of architectural practice following Alberti's exhortation to offer "honest
advice and correct Draughts" to include counsel that cannot be complete without an understanding of materials, fabrication techniques and the interplay
of building systems. It is in this expansion of architectural
knowledge facilitated by computational and data delivery technologies that we see the possibility of uniting
the philosophies implicitly and explicitly shared by he philosophies implicitly and explicitly shared by Brunelleschi and Alberti. Where the former's regard
of his verbal instructions and vegetable instruments of service as perishable media to convey intent has given way to the indefinite preservation of digital artefacts of design and construction planning, his sense
of differentiation in understanding construction means and methods $h a s$ regained relevance to the architectur profession today. It was Brunelleschi's accurate assertion that he could complete the Santa Maria del Fiore Dome without the need for supporting scaffolding that won him he commission. However, Alberti's "correct Draughts" remains the standard of care of architects to their clients
even today, but the scope of architectural "Draught"" has become nearly as extensive as virtual construction of the intended building.
The facilitation of building representation by digital environments has served to further blur Alberti's fundamental division between design intent and attack by the modern economic pressures that compel faster speed of project delivery. The former stately progression of conceptual design, schematic design,
design development, construction documentation, fabrication, construction, operation and renovation has given way to an increasingly optimised process of overlapping phases dependent on the delivery of complete trade packages that, in effect, become existing for the same project. In a building market intolerant of sites fallow of anticipated revenue, design differentiation has begun to arise in the most advanced firms not only from a clear experiential vision of inhabited space, but also from a growing knowledge of the possibilities of building systems production.

Advances in the available insular, optical and structura properties of glass alone over the preceding centur
have afforded options in architectural design that have afrorded options in architectural design that facades and interiors that not only fulfil design intent but also meet stringent performance goals rooted in environmental and human behavioural sciences. A lack methodologies not only limits architectural business ophortunities, but also limits the architect to building choices available only through advanced fabrication and construction methods.

As BIM environments and their analytical elaboration and generative design successors gain computational available through cloud connectivity, the architectural profession has an opportunity to assert a role explicitly ceded by Alberti and implicitly occupied by Brunellesch that of the master builder. At first glance impractical
in an age of proliferating, specialised and necessarily complicated building trades, the enhanced capabilities of digital environments, with their rapid evaluation of modelled building performance characteristics and
delivery of highly relevant information critical to delivery of highly relevant information critical to
improved building decisions, offer architects a mean improved building decisions, offer architects a means
to confidently reassert primacy in the process of conceiving and realising buildings.
With the explosive growth of computational powe in the second decade of the twenty-first century, th BIM, of potentially transformative digital capabilities in design and construction. Highly responsive computer processes of physical representation and simulation coupled with digital processes of fabrication, including and robotic construction, are poised to change the essential landscape in which buildings are designed built and operated (Fig. 7).

Projecting this evolution forward, the third era design computation takes advantage of the best design computation takes advantage of the best
qualities of both Brunelleschi and Alberti's position regarding the instrument of representation. Robust

$\begin{gathered} \text { HE } \\ \text { R } \end{gathered}$	E	＋	$\begin{aligned} & = \\ & \text { 总 } \end{aligned}$			点	$\begin{gathered} \text { 采 } \\ \text { 㽞 } \end{gathered}$	部	等
	$\frac{1}{5} \frac{1}{4}$	$\begin{gathered} 1 \\ 1 \\ \text { 营 } \end{gathered}$			昆	$\frac{N}{25}$	湖觜	Dety $\sqrt{4}$	
			H		$\begin{aligned} & \text { 践 } \\ & \text { 竞步 } \end{aligned}$	$\begin{aligned} & \text { Er } \\ & \text { 㗐 } \end{aligned}$	1	0	

combine with machine intelligence and generative design to deliver a further unification of intent and realisation． Reality capture，digital fabrication and immersive design
environments will provide a functionally identical model of digital and physical space．As design tools evolve，
Brunelleschi＇s turnip and its associated conversation Brunelleschi＇s turnip and its associated conversation will become forever persistent in structured databases． The connectivity of this data will provide opportunities for machine learning，pattern recognition and design
synthesis．Generative design systems will support the explicit modelling of knowledge from a variety of domain experts such that when the design requirements change new instructions in the form of drawings or models that generated（Fig．8）．
This new class of design systems will allow all stakeholders in a building project to represent their intent
at the level of detail that best corresponds with functional at the level of detail that best corresponds with functional properties in models used for design，construction and
building management．In the event of a budget change at a late stage of the project，future design environments will provide consulting professionals with recommended alterations to support the new requirement．Effects of
selected updates or ative interventions will propagate selected updates or native interventions will propagate to
the redesign of multiple elements in the project．Instead of manual redesign and drawing changes（CAD）or diting parametric models（BIM），design synthesis
project constraints．The intent of the design team will be generating solutions employed by the design system．As the accuracy and speed of simulations increase，a wealth of building performance data will become available and be intuitively revealed．Compensation for design and construction services，as well as the standard of care for professional building services，will become associated with the ability to offer the guaranteed level of building performance ensured by these tools．

To realise a vision，the master builder must synthesise many competing objectives relative to changing external conditions．The archetypal master builder understands how design decisions reinforce intent through a constructability，cost and schedule objectives．In the next era of design practice，any stakeholder will be able to understand the propagating effects of a change and offer
feedback that directly influences design decisions．Ease feedback that directly influences design decisions．Ease
of design changes will ensure that any compromise of of design changes will ensure that any compromise of
intent is comprehensively evaluated before construction takes place．The ability to quickly and effectively balance the needs of participants in the design and construction process will embolden the master builder to deliver on their vision（Fig．9）
Digital artefacts of design and construction are increasingly employed as operational avatars for the functioning building，joined to a wide spectrum of
physical sensors to convey gross and subtl operationa physical sensors to convey gross and subtle operational behaviours into digital representations where options
for elaboration and modification can be readily explored at minimal cost．In the coming era of widely available statistical performance information as furnished by a
highly connected built environment，the knowledge and highly connected built environment，the knowledge and experience once sequestered in fragmented form acr facilities managers will be consolidated and available to inform all design，fabrication and construction decisions． Reality capture technology will provide a＇mirrored＇
representation between the digital artefact and the representation between the digital artefact and the
developing physical manifestation during the construction developing physical manifestation during the construction
process and throughout the lifecycle of the building． Design and construction firms that embrace and extend the possibilities of digital enrichment will lead future building projects．Firms that fail to grasp the gains offered by the coming era of connectivity will find
themselves becoming irrelevant in an approaching time of exacting stand irrels applied to desired building performance with the ready means to confirm predicted
project behaviours（Fig．10）．

The vast increase in computational and informational capacities afforded to building professionals will also
affect material and product supply chains，with fabricator differentiated during procurement not merely on bidding price，but also on the flexibility of deliverables and their
ingenuity in engineering．In an era where a sophisticated computational and informational infrastructure will widely afford capabilities once confined to a few specialists，creativity in meeting and guaranteeing
building performance outcomes will become a key building performance outcomes will become a key
distinction for both building professionals and material distinction for bouth buil perf professionals and material
suppliers．As building performane becomes measurable suppliers．As building performance becomes measurable
and understandable through physical connectivity and digital representation，the standard of care for all building
professionals and manufacturing entities will beome professionals and manufacturing entities will become
higher and commonly verifable，leading to a reintegration higher and commonly verifable，leading to a reintegration
of design and making with attendant dramatic improvements in both the systems of project delivery and the practice of architecture and the built environment．

1755 London pininting（paf）p．. ．933．available at htpp：／／http：／／archimedes．

COOPERATIVE FABRICATION

OF SPATIAL METAL STRUCTURES
STEFANA PARASCHO/AUGUSTO GANDIA/AMMAR MIRJAN/FABIO GRAMAZIO/MATTHIAS KOHLER Gramazio Kohler Research, ETH Zurich

Machines have the ability to manipulate material cooperatively, enabling them to materialise structures that could not otherwise be realised individually.
Operating with more than one (mechanical) arm allows for the exploitation of assembly processes by performing material manipulations on a shared fabrication task. The work presented here is an
investigation of such cooperative robotic construction investigation of such cooperative robotic construction,
wherein two industrial robots assemble a spatial metal structure consisting of discrete steel tubes. The developed construction method relies on the alternate positioning of building members into triangulated configurations, where one robot temporarily stabilises the assembly while the other places a tube and vice versa system, as well as the fact that the machines limit each other's operational range, led to the exploration of robotic simulation and path planning strategies as an integral
part of the design process. The experimental results of part of the design process. The experimental results of scale (Fig. 2) validate this approach.

Space frame structures have been traditionally constrained to regular systems using standardised
elements and joints, or have required the development elements and joints, or have required the development
of complex prefabricated joints for the construction of differentiated structures (Chilton, 2000). The implementation of an industrial robot into the building process offers a new approach for the construction of
non-regular spatial structures since a 6 -axis robotic non-regular spatial structures, since a 6 -axis robotic
arm can precisely move position orient and hold a building element in space, something a human canno accomplish without a reference system and support structure (Gramazio et al., 2014).
In the work presented here, the digital fabrication of spac frame structures is further explored with a cooperativ robotic construction approach. Whereas multi-robotic
material manipulation is well-establisel material manipulation is well-established for repetitive pre-programmed tasks in assembly lines, its application
in non-standard digital fabrication, derived from the in non-standard inherent complexity of performing movements in an altering building space, is still widely unexplored. Cooperating robots have been used in
architectural research for filament winding (Parascho

et al., 2015), hot wire cutting (Rust et al., 2016, Søndergaard While these applications hint towards the potential of using cooperating robots in architectural fabrication, they are usually manoeuvred at a safe distance from each
other where the spatial configuration of the robotic arm is less of a concern than when operating at close proximit within the same fabrication space. Rather than merely focusing on the final pose of the robotic end effector whe assembling an element, the research presented here to guide building elements around material obstacles.

An investigation into possible assembly sequences or the realisation of space frame structures with multiple robots has shown that in principal only two cooperating
manipulators are required to assemble stable, triangulated structures (Gramazio et al., 2014). This is based on the assumption that one robot can temporarily stabilise the structure while the other is picking and placing a new structural element. While one robot assembles a steel tube, the other briefly changes its
function and acts as a structural support to balance
the unsta assembly untilit is triangulated and can be and robatic fabricating digital design, robotic simulation and robotic fabrication in a negotiating manner, highly
differentiated space frame structures can be erected without the need for additional support structures.

Computational design and fabrication simulation
Like other space frame structures, the system developed here is primarily characterised by the node. In order to
allow for geometric flexibility in arranging the tubes at allow for geometric flexibility in arranging the tubes at
various angles, and to be able to loter robotically fabricate them, the node is distinguished by the shifting of the tubes alongside each other around a shared centre point. As a result, two tubes connect at one point. While this shifted node offers a high degree of freedom in respect
of possible spatial arrangement and robotic fabrication, it also presents structural challenges. In contrast to it also presents structura challenges. In contrast to
traditional space frame systems that join multiple structural members at a singular spherical point, the
reciprocity of this expanded node induces flexural reciprocity of this expanded node induces flexural
rigidity in the system, leading to a structure with rigidity in the syste
greater stiffness.

Each newly added tube connects at each side to two eighbourn the reciprocally closed nodes. These configurations are
able to take bending forces, although every constructive joint between two tubes is hinged in a static sense. As a result, each tube, once assembled into a tetrahedral configuration, is comprised of at least four connection making two reciprocal nodes with its neighbours, individual tube increases over time, subsequent to the adding of neighbouring tubes requiring structural support points. This means that, in a final assembly, tube can have up to eigeall ofion potion at each end, depending on the overall configuration. This novel
construction system leads to geometric dependencies that require the use of computational design to explore possible spatial arrangements and to identify a fabrication sequence that considers the build-up of

The overall spatial organisation of the construction system is based on tetrahedra. A tetrahedron creates he minimum stable space frame structure. Combining multitude of tetrahedra into larger, interconnected assemblies while assuring the structural integrity of the individual tetrahedron and, as such, the controlled assembly of tubular elements into spatial aggregations When designing such an arrangement, the order of placing tubular elements has to be defined. This
directly related to the later construction of the structures. The fabrication space changes over time. Therefore it is crucial to define where and when to

It can comnect, so that he compurational designtool tubular tubular arrangements.

An important aspect of the design process, aside from the definition of the spatial arrangement, is the creation of he robotic movements that allow the integral verification the fabrication feasibility. As described above, two in a highly constrained three-dimensional space. A series of tests has shown that defining collision-free robotic movements is a challenging task that needs to be addressed for into openings and gaps of already built parts to create the interlocking reciprocal joints, while avoiding collisions between the robot and the structure. On the other hand, the construction environment changes over time, as a result of the sequential and spatial build-up of the
structure and of the continuously altering configurations of the robots, which limit each other's operational range.

Rather than only calculating the final pose of the tool centre point (TCP), the approach required designing the robotic conifgurations, translated into axis rotations, over time. For this reason, path planning strategies and robotic simulation tools that linked to the computational design were investigated. The proposed solution makes
use of a robotic simulation platform (Coppelia Robotics, 2012) that uses the power of sampling-based path planning algorithms (Kavraki Lab, 2012) to generate collision-free trajectories. A software tool was created in
to integrate robotic simulation capabilities directly into
the computational design process The robotic trajectories can be generated by defining a start configuration of the robot and a desired end pose of the TCP, by outlining the
robot's joint metrics (to set the joint constraints) and by robot's joint metrics (to set the joint constraints) and by algorithm-specific values, such as the sampling resolution. Following this method, a spatial configuration can be evaluated when designing it, which can be adapted if en bested or the geometry of the structure cang pose can be
Building a 4m-tall structure
To test the fabrication approach, a physical prototype The structure is comprised of 72 steel tubes, creating 23 non-regular tetrahedra, concatenated into a spiral configuration growing from the ground to a height of
4.2m. The prototype is the first structure built in the 4.2m. The prototype is the first structure built in the Robotic Fabrication Laboratory (RFL), a test bed for
large-scale robotic fabrication research at ETH Zurich. It consists of four 6 -axis industrial robots mounted on a 3 -axis gantry system that can cooperate on architectural
fabrication tasks within a maximum building volume of fabrication ta
$43 \times 16 \times 6 \mathrm{~m}$.

The structure was built from the ground up, pushing the vertical building envelope of the fabrication system (Fig. 4.). Whereas from afar the construction process
appeared as a surface-based assembly, the steel tubes appeared as a surface-based assembly, the steel tubes
were actually guided into the interlocking reciprocal node were actually guided into the interlocking reciprocal node
configurations in a truly spatial manner (Figs. 5 and 6).
The non-intuitive robotic trajectories generated in the The non-intuitive robotic trajectories generated in the
design environment were sent via a custom CAD-to-

robotic-controller interface. In order to be able to create
collision free robotic movements, the model of the simulation had to match the actual physical set-up. While performing the first tests, collisions occurre
for example, because the kinematic for example, because the kinematic model was not
paired with the simulation or because the physical envelope of the IO box, mounted on the back of the robot, was ignored.
The 16 mm diameter steel tubes were pre-cut at the required length and picked up by the robot from a
pneumatically actuated pick-up station. The building
elements were then guided elements were then guided through the building space avoiding contact with physical obstacles, to their
designated location within the structure. Once the designated location within the structure. Once the
element was in place, the robot changed its function from element was in place, the robot changed its function from
a tube manipulator to a tube holder. The element could then be joined to its neighbours by the manual welding of four spots around the connection (Fig. 1).
initial adjustments and the large-scale metrology system
of the RFL is not yet in operation; in addition, some of the tubes were slightly bent. However, since the welded joint can accommodate a few millimetres of tolerance and because each new structural element was placed according to the digital blueprint rather than based on what had already been built, the tolerances did not
accumulate over time, which enabled a successful accumulate over time, which enal
welding of the entire structure.

Successful cooperative fabrication

The work presented here successfully demonstrates the ability of cooperating robots to hold building elements
in space, allowing for the building of non-regular spatial metal structures by integrating computational design, beveral simpeets of the prial fabrication. Ho several aspects of the project require further
development. Firstly, the settings of the simulat parameters still require several manual steps and knowledge from the designer about the functionality of the algorithm. Simplifying and further automating the integration of this process with the computational
design environment would allow the user to interact more intuitively with the tool when designing robotic movements. Secondly, as described, the welding was manually performed, and further testing to transfer
this joining to a robotic method is required. Finally, his joining to a robotic method is required. Finally, sensing the spatial arrangement of the structure while
building on it would allow compensation for tolerances (for example, from bent tubes or errors that occur during the construction).
The realisation of the architectural scale physical protype displays some of the potential of cooperatively building space frame structures with two robotic arms. Cooperative construction expands the capacity of digitally designed and robotically fabricated architecture. Here, multi-robotic cooperation is not merely used to distribute the workload
between individual machines, but to perform building between individual machines, but to perform building
tasks a single robot (or a human) could not accomplish. The integration of path planning and robotic simulation capabilities within the computational design allowed for the generation and later physical realisation of intricate reciprocal space frame configurations. The project design that take into account the full spatial movement of robots when materialising architecture and, as such,
fosters a shift from layer- and surface-based assembly
approaches towards truly spatial aggregations. As such, the construction system presented here is not limited to with this increased. three-dimensional autonomy of cooperative robotic construction potentially leads to novel architectural construction systems in general.

Acknowledgements

 References
Chitton, J. .2000, Space Grid Stucturues, Oxtord, Achhitectural Press
Coppelia Robotics, 2012, V-r-ep, avialable
com/(accessed 25 September 2016).
Gramazio. F. Fohler, M. Mnd Willmann, J,.201, Robotic
in The Robotic Touch, Zurich, Park Books, p. $430-439$.

Kavak. Lab, 2001, Open Motion Planning Librara,
kavakiliab.org/ (accessed 30 September 2016).
 Fabrication of Differentiated Fibre Composite Builiding Components in Block.

MCNeel, 2013, GGasshopper, av (accessed 30 September 2016.

MCNEel, 2015, Rhinoce
30 September 2016).
Rust, R., Jenny D.D.Gramazio, F. and Kohler, M. 2016 , Spatial Wire Cutting:
Cooperative rob

 Research in Asiac AADRRA 201, 000-OOO, Hong Kong The Association
Computer-Aided A Architectural Design Research in Asial C CADRIA) $\xrightarrow{\text { Computer-A }}{ }_{\text {p. } 29-538 .}$

INFINITE VARIATIONS,
 RADICAL STRATEGIES

MARTINSELF/EMMANUEL VERCRUYSSE

Architectural Association, London

The AA's satellite campus out in Hooke Park, Dorse and Design+Make programme and operates as a laboratory for architectural research
through 1:1 fabrication. In an environment that combines orest, studio, workshop and building site, the large-scale fabrication facilities act as a testing ground where tudents devote time to adva.

Designing and building architecture in the woods: with an idyllic forest ecosystem that is both material library and site, the programme explores how natural material craft knowledge and new technologies elicit exciting unpredictable architectures while implying a deep
connection between site, construction and tree species. It provokes a critical approach to designing and manufacturing - one which encourages a symbiotic relationship with the variability found in nature.
Design+Make's position, embedded within the forest, nurtures the students' attitude towards design, imbuing with an expanded sense of material implications. They are
required for timber growth and the forestry processes required to manage it. This living material is formed by its spatial and environmental conditions, and the
management of a forest is in many ways an act of desis where it is possible to guide the structure of the trees it contains. In this way, design thinking begins under the canopy of the forest itself. The forest's delicate experientia qualities are forest itself, with its material and structural diversity, becomes the inspiration for a way of working,
Digital design and fabrication tools are often used to develop non-standard series of compenents from standardised materials. Timber is usually considered as a rectilinear material, often reduced to sheets, planks or beams before having a complexity returned to it by milling procedures. And yet trees already present a
naturally formed non-standard series - each is wholly unique. The Design+Make programme provokes an alternative conception of material form in which inherent irregular geometries are actively exploited

In a standing tree, the naturaly occurring branching forks exhibit remarkable strength and material efficiency, being able to carry significant cantilevers
with minimal material. Deriving non-standard timber components from wood's inherent forms, the truss of the Woodchip Barn is presented as a unique timber structure that makes full use of the capabilities of new technologies such as 3D scanning and evolutionary optimisation of the placement of each discrete along with customised robotic fabrication. The rationale for this approach is that the diverse characteristics of onsite material can be exploited directly without wasteful industrial processing, while simultaneously
providing fertile territory for an unconventional design attitude. The Woodchip Barn employs twenty beech forks within an arching Vierendeel-style truss. The building provides $400 \mathrm{~m}^{3}$ of storage for biofuels and te to use its own timber or renewable heat production.

While timber has seen a resurgence as an advanced architectural material, the complex and organic forms pursued are generally not attributable to the geometric
and anisotropic structural properties of wood. Instead, abrication processes generate complex components from standardised wood products to ensure consistency An ambition for the project was to exploit the momentresisting capacity of tree forks. In a standing tree, the naturally occurring forks exhibit remarkable strength and material efficiency, and before processing aready
present what digital tools are commonly employed in pursuit of: a non-standard series,
The Hooke Park woodland was first surveyed for trees with appropriately forked trunks, resurrecting th woods equipped with a set of templates that described the specific forms they required to construct various components². An initial photographic survey of 20 tanding beech trees provided approximate twodimensional fork representations with enough detail to From an analysis of this database, a shortlist of 40 forks were selected for felling, from which 25 were successfully harvested. A detailed photogrammetric 3 D scan was orms. From the resulting surface mesh geometry medial curves were extracted for each fork using a polygon-based method in which transverse sections

4

the outer profile of their geometry. Following this, local best-fit diameters and centroids were calculated for each

The structural form of the arching truss was determined, in discussion with the Arup team, to have the appropriate inverted-catenary form for a compression structure and a cross-sectional geometry which could accommodate the dimensions and angles of the sourced tree fork
The choice of an equilateral triangular section of typically 90 cm side dimensions was found to work well by both providing stability to the arch and being a size on which the forks could be fitted. The structure
is composed of two planar inclined arches in a distorted is composed of two planar inclined arches in a distorted Vierendeel configuration that exploits the moment
capacity of the forked junction. The structure lands at four points, the front slightly wider than the rear, with four inverted tripod legs supporting the robotically fabricated mid-section.

The positioning of each forked component within the truss was determined iteratively using an organisation script that sought an optimal arrangement of the components to best satisfy structural and fabrication criteria. This was achieved through evolutionary and simulated-annealing procedures carried out in the
Galapagos solver within the Rhino-Grasshopper environment. Within the optimisation, there were two levels of position adjustment: the global swapping of components between possible locations in the structure,
and the local shuffling of components in which each and the local shuffing of components in which each
element was slid along the target arch curves to best find its location. The key criterion was to minimise deviation of the forks' medial curves from the target curves of the idealised arch centrelines. Further criteria were applied

1.Timber is sually considered as as eect sections. The work underaten poropeses an atterative concentof atererative conceptof material ofmin in inherenty h

oplace the larger diameter trees where axial forces were greatest and to deal with specific geometric constrain
(for example, at the points where the truss bifurcated
d to form its legs). The optimisation was improved by indexing the component set according to the geometric strategy and by sequencing the placement so that most critical positions were populated first ${ }^{3}$
The outcome of the optimisation process was a threedimensional arrangement of the tree fork geometries in
which the key setting-out nodes were coincident with the underlying target tree curves. The combination of this nodal data with the element medial curves and diameter data was used to derive the digital fabrication information for the machining of connecting features into the raw tree forks using a router spindle on Hooke Park's Kuka KR-15
6 -axis robot arm. The connections were configured to achieve transfer for compression forces through timberachieve transer for compression forces through timber-
totimber bearing and to reinforce these with stel bolts when additional tension or shear strength was required The connection surface geometries varied in differen
parts of the structure and consisted of either planar parts of the structure and consisted of either planar
face-to-face surfaces between elements along the chords or mortice-and-tenon joints in which a distorted elliptical cone geometry was found to best satisfy the structural and assembly constraints.

The robotic milling procedure consisted of first defining 3D volumes for router subtraction of connection shapes from the wood, then determining an appropriate robot
toolpath to achieve that geometry. The key requirement was to produce precise relative positions of the machined surfaces such that dimensional accuracy during assembly
could be achieved. Two strategies were developed to enable this. Firstly, a consistent referencing system was established which ensured that a tree fork component could always be correctly located in space in the virtua

Following the fabrication of the fork components, the truss was pre-assembled in two halves in Hooke Park's assembly workshop. Again, drilled reference points were used to correctly locate the fork components within an erection jig whose support geometry had been extracted
from the digital model. The precision of the robotic fabrication proved successful and only occasional manual woodworking was needed to achieve a well-fitting fully bolted assembly. This was further demonstrated when the two truss halves were crane-erected onsite and the full completed with the addition of push-walls to contain the woodchip and a conventional timber-framed roof supported by the arching truss.
The building is presented as a demonstrator and validation of an approach proposed in various forms validation of an approach proposed ompuration tools are
over recen yearsts
applied which new the comfiguration of material elements so that the inherent geometry of those elements is exploited. In this case, the underlying arch geometry was largely predetermined (i.e. anticipating typical geometries of
the forks but not directly determined by them) and the optimisation was limited to locating components within that geometry. Thus a development of the method will be to enable the underlying structural form itself to
self-organise hrough the earied components acting self-organise through the varied components acting
as agents towards a set of spatial and structural goals. Advanced and bespoke system operations
Other strategies are now in place to enhance this approach, enabling more complex structural experiments. approach, enabling more complex structural experi
For instance, establishing the horizontal rotational seventh axis to operate in synchronisation with the 6 -axis robot arm has been instrumental to advancing the manipulation of non-standardised timber. This configuration, capable of carrying large tree segments
between two modified lathe end-stocks, means that the robot's end effector can access any point along the length of the tree log. The ability to carve a tree much more freely opens up new formal, structural and aesthetic potentials. The machining operations can be applied locally and the sculpted profile could be structurally
optimised - analogous to the geometry of bone or open-grown trees - and gives timber as a material a new 'plasticity' (in the art history sense of the word)

The application of a variety of end effectors provides yet more possibilities for the manipulation of the material. The chainsaw - a tool not known for its exactitude - gains
an augmented level of precision and control when wielded

by the large Kuka KR150 robot. LiDAR scanning echnologies form an essential component within these advanced system operations, not only providing a fully on naturally formed geometries with surgical precision.

3D scanning allows us to treat something incredibly unique and complex in form in the same way that w might treat a standard plank of timber. The ability to robot with the actual position of a non-linear object like a tree trunk allows for more flexible machining strategies, as the calibration becomes more organic. The digital an enve with previously unimagined phis scal

The innovative and radical nature of the approach employed at Hooke Park lies in the strategic precision with which Design + Make teams can augment the natura geometry grown there. The variability and complexity is
natural - our machine strategies play to the beauty and strength of this complexity and follow its lead. In this way, we are employing the tacit knowledge of a material on which craft relies, while exploring the possibilities fforded by the pinpoint precision of the technological eye and hand of scanner and robot.

The aim is to use robotic technology not forcefully, for power, repeatability or wilful formalism, but delicately, for the strategic augmentation of a natural and complex the campus as a 'continuous laboratory', where Design + Make operates as an agency of architectural innovation and presents a unique and alternative vision

Acknowledgements
The Woodchip Barn was designed and built by Design n Make students
 and Toby Burgess.t twas fabicicted and donstructed with the support of
Summerbuid volunters, site project manager Jack D raper and the Hook
 and devard coo.).Pradeep Devadass oversaw the robotics development and engineering support was p
Minami and Coco van Egerat)
Notes

Matthew, P., 1831, On Noval Timber and Arboriculture, Cambridge,
 Kohler, M. Menges, A. and Paul, M. .eds.). Advances in Architectura ,

Schinder, C. Tamke, M. Tabataba, A. Bereuter, M. . and Y oshida, H. 2014

6. "Idont want to change the material. I want to follow its lead." Giuseppe

AUTOMATED
DESIGN-TO-
FABRICATION FOR ARCHITECTURAL ENVELOPES A STADIUM SKIN CASE STUDY

JAMES WARTON / HEATH MAY
HKS LINE
JKKS LINE
Southern Methodist University

Working with stadium architecture

The stadium roof structure surveyed in this paper is comprised of approximately 70,000 unique panels with
over 500,000 square feet of surface area. These panels over 500,000 square feet of surface area. . hese panels
are uniquely articulated and cut to specification using 3 -axis CNC-coined die-punch machine and fabricate from titanium anodised aluminium. The panels are hop--abricated and pre-assembled into mega-panels
ccording to Zahnerers proprietary ZEPPS process. Two ey building components were isolated for development of a complete file-to-factory workflow. The panelised geometry and perforation patterns are fully automated and implemented within the examined project. The printed fixation detail proposed as an alternative to the ZEPPS solution.
Both the exterior envelope's aluminium panels and the hypothetical node connections are discussed in terms of the challenges and constraints unique to their respective The desig , fabrication process and performance criteria. The design-to-fabrication workflow is described
 In addition, an alternate node design is developed to accommodate the constraints of additively manufactured
alloys and compared against the accepted propuetery alloys and compared against the accepted proprietay
solution. The resulting analysis demonstrates the advantages of the 3D printed alternatives, the potential of 3 D printing as a fabrication method at this scale of execution and key developments that must be realised
in order to achieve feasibility.

The workflow adopted leverages a customised C++ framework and implements open source libraries such as OpenGL for visualisation and Array Fire v3.2.2. for GPU-based image processing and matrix operations. The framework presented is not conceived as an
autonomous design tool, but rather as a vehicle for the exploration and interpretation of computationally intensive
procedures. This case study demonstrates the effectiveness procedures. This case study demonstrates the effectiven
and performance improvements of this workflow over
isul programing approches such as Grasshopper

Project scope and mounting challenges

Advancement in computational design tools has led to n observable proliferation of architecture exhibiting greater degrees of geometric complexity, variability
and differentiation. Although these tools increasingly enable the automation of design, coordination and documentation, the workflow connectivity between design and fabrication is typically severed, disrupting the linkages required to automate the manufacturing
of these highly differentiated building systems. As the of these highly differentiated building systems. As the
scale of a project and the scope of differentiated elements increase, computational overhead and connectivity challenges become increasingly evident.
One of the key obstacles examined within this paper elates to communication and connectivity betwee designer and fabricator. Common practice typically documents for all unique building components within system. In cases where fabricators rely heavily on the translation of diagrammatic or representational documents and even the processing of CAD drawings can be prone to errors and may lead to significant delays in production. This processing time often leads to a The case study presented demonstrates an alternative approach for documentation in order to minimise time required for the shop-drawing review process, document

Another area of implementation directly affected by scope relates less to logistics within professional
practice and can be exccusively attributed to increas computational overhead. The case study presented computational overhead. The case study presented
highlights deficiencies within widely adopted visual programming methodologies and offers an alternative workflow, targeting improved processing performance. The third area of investigation applies the experiment workflow to a speculative fixation detail based on objective for this area of research is to assess the viability of the proposed methodology within a more complex geometric scenario, while establishing the foundation
for further case sudy develo for further case study development, targeting additive
manufactured building components and assemblies. manufactured building components and assemblies.
Within this examination, limitations to the status quo ar Within this examination, imimatations to the status quo are
discussed, with emphasis placed on trajectories for future research in additive manufacturing and its potential as a direct design-to-fabrication process.

Addressing design complexities and increasin

 demand for computational performanceThese objectives are examined through the lens of a single architectural project. Firstly, through a tessellated double-curved cladding system, and secondly through a
speculative structural node which addresses additional design complexities and an increased demand for computational performance.
Because large stadiums commonly exhibit a relatively high degree of geometric complexity and scope, this typology represents an ideal candidate for the case study's development and implementation of direct
of these large-scale sports and entertainment venues ften challenge traditional means of documentation and necessitate alternative approaches to design development
and project deliverables. Computational overhead places an excessive demand on commonly used open source and responses during the design process and limiting opportunities to pursue a broader range of iterations, Furthermore, labour-intensive document processing and set-up times attributed to the reformatting of CAD
data into machine instruction often lead to operational bottlenecks and prolonged production time. Even in case where the shop-drawing documentation process is fully automated, as described by Front Inc. (Levelle et al., 2017), he production bottleneck is pushed further downstrean, placing an excessive burden on fabricators.

The case study presented is based on the current stage of design and development for an NFL football stadium and future home to the Los Angeles Rams, designed by HKS Architects (Fig. 1). The project will be located in Construction Company, with construction completion Construction Company, with construction completion
scheduled for November 2019. There are a broad number situations and systems within this project that demonstrate he variability and geometric complexity applicable to this research objective, however, for the purposes of this paper,
portions of the stadium's envelope have been isolated for examination. The outer layer of stadium skin surveyed is comprised of approximately 35,000 unique panels covering nearly 275,000 square feet of surface area
(Fig. 2). Zahner was retained for pre-design and design (ig. 2). Zahner was retaid her pre-design and desig assist services and worked directly with the authors
during the development of the project's cladding system.

The panels comprising the tessellated surface geometry have been isolated as the primary design element for investigation and development of a complete file-tofat triangles and, based on the currently adopted fixation strategy, require four fasteners along each edge. According to this method, the examined areas would require over 37,000 fixation points. Each panel is uniquely articulate and cut to specification using a 3 -axis CNC -coined
die-punch machine and fabricated from 0.125in-thick titanium anodised aluminium sheets (Fig. 3). The skin is perforated with up to eight circular hole sizes, ranging from 0.375 in to 1.25 in at 0.125 in increments.
The perforation sizes correspond to a global grayscale The perforation sizes correspond to a global grayscale image mapped to the domain of the stadium skin's parent
design surface. Once the perforated panels are fabricated, they will be shop-assembled into unitised mega-panels
according to Zahner's proprietary ZEPPS process.

According to the current scheme, panels will be attached to curved aluminium ribs and straight linear crossmembers (Fig. 4). The second component to be examined is based on an alternative fixation strategy proposed in
lieu of the continuous edge frames previously described. lieu of the continuous edge frames previously described.
The alternative strategy relies on a $3 D$ printed node The atternative strategy relies on a 3D printed node using powder-bed-supported additite manufacturing
technology, and leverages a a o.375in-thick stress-skinned concept proposed during the early stages of design
development. This concept requires only three fasten development. This concept requires only three fasteners per panel ((ig. 5) and would employ a quad-mesh-based
structural system. The torsion free purlins would follow only two of the three triangular edge grids defined by the panelisation geometry. Although the two systems have not been fully engineered for comparison, it has been documented that triangular framing systems require
more members than quadrilateral systems' and are often heavier (Pottman et al., 2014).

This concept and the corresponding six-point fixation method were abandoned due to the complexity requir to fabricate an effective node connector that could
accommodate the variability and deviation present within the panels? ${ }^{2}$. The schemes considered were based on commonly accepted manufacturing processes such as plate assembly, casting or milling and were not suitable for non-standardised conditions at the scale of production degree of assembly and local adjustment. It was concluded that an operable or flexible node connector comprised of numerous elements would require too

${ }_{\text {many }}$ degrees of freedom and site adjustment, whereas a mass-differentiated element comprised of primarily solution. Provided additive manufacturing was feasible in terms of construction cost and schedule, this method would satisfy the level of geometric variability needed
while enabling the initial purlin strategy comprised of while enabling the initial purlin strategy comprised of
fewer structural members. In addition, this manufacturing method is more aligned with the development of direct design-to-fabrication processes, due to the ability to ully automate each part's production as a single process. On this basis, the authors propose the development
of a node definition that satisfies the complexities of of a node definition that satistes the complexities of
the valence 6 vertices typical of all triangular freeform meshes, while leveraging the advantages of a quadrilateral substructure.
In order to minimise file conversion and processing time associated with design documentation and CNC -based fabrication processes, physical drawings and CAD files have been bypassed as a form of communication. During early coordination discussions between the design team, facade consultants and structural engineers, the m
panel fabricators asserted that one of the primary panel fabricators asserted that one of the primary
bottlenecks for fabrication and coordination is associa with the set-up and translation of CAD files, such as .dxf or.dwg, into machine instruction. Rather than rely on over 75,000 individual 2D drawings to dimensionally
describe each panel, a text-based file format containing describe each panel, a text-based file format containing
all dimensional criteria was adopted. Through adequate file nomenclature, tokenisation and formatting, the fabricator could automate the translation of these files directly into machine instruction.

To ensure proper coordination, file formatting conventions were established. Each panel was
described in both world/project and local/machin space coordinate systems. Node centrepoint positions, corner positions and panel orientation vectors were provided in project space for coordination. For fabrication local node positions, trimmed corner positions, fastener
positions and perforation centrepoint positions with their specified diameter were provided within local machine coordinates. Local machine coordinates were established based on an origin point and x-axis coincident with the frst node position frel ferpertively

Since the constraints for individual panels were driven by Zahner's proprietary assembly process, rationalisation
of the design surface was perform of the design surface was performed by Studio NYL, a façade design and engineering consultant contracted by Zahner. Ultimately, the proposed proprietary system
would yield an increase of 12.8% more panels over the in-house panelisation routine, totalling 3,571 additiona panels within the surveyed region alone. The governing criteria for these panels was to minimise deviation from an ideal equilateral triangle cut from a 48 in-wide sheet uniform material grain.

The host or parent design surface modelled in Rhinocero and shared among consultants serves as the primary is tessellated into panels, the node centrepoints are extracted using Grasshopper and formatted into text file corresponding to eight regions or zones delineated by the
cladding fabricator. These node positions are then loaded

Islated stuctural bay orwing substructura an Hiramingststatageguture and continuous olled extusuion along pimpory sid line and segmented straightraming embers betwe 5. Panel layut showing fastener locations forb both point for ZEPPS vs. additively manuracure

into a custom application developed by the authors in or. The initial data extracted from the model is limited computational performance, the $\mathrm{C}++$ framework leverages multi-threaded functions and implements open source
libraries, such as Armadillo v5.6oo.2 (Sanderson et al 2016) and ArrayFire v3.2.2 (Yalamanchili et al., 2015), or GPU-based matrix operations and image processing OpenGL is also implemented for visualisation purpose
As the panel identification and its node positions are read from a source file for each of the regions, this data is stored and a new panel object is defined. The application calculates the transformation from 3D world coordinates into 2D machine space and stores instances of each becoming part of the panel object's properties. After
being described according to a local coordinate system being described according to a local coordinate sys
the panel corner positions and edges are defined according to a predetermined edge offset parameter, Then the panel is subblivided with a perforation grid
unique to each panel's goometry, and the fastener unique to each panel's geometry, and the fastener
positions are located so that they coordinate with this grid. A separate routine is then performed to map pixel grid. A separate routine is then performed to map pixe.
values from the global design image into the panel's perforation grid (Fig. 6). Grayscale values from the design mage, ranging between $0-255$, are then remapped to correlate with hole sizes corresponding to one of eight
die-punch tools available during the fabrication process. Once a panel's fabrication data are fully defined, a text hle is generated containing a comprehensive geometric description of the panel. A graphic interface provides
a searchable visual display of all the panels within the seartly currently processed batch, alongside a global view of the
stadium indicating the active panel's location. Various display states are also available that describe overall system mappings of area deviation, angle deviation and panel opacity. The average file size is 47 KB and file sizes ange between 4 and 145 KB , dependent upon the quantity

A similar design methodology is applied to the additively manufactured node definition and utilises the same cod libraries developed in $\mathrm{C}++$. An additional layer of data management is incorporated to ensure that neighbouring Vector trees for each node are calculated based on their espective vertex normal, with branching elements onnecting adjacent panel fixation points to the intersecting sub-framing below (Fig. .7). Once the he node object is instantiated and a bounding volume for each vector is constructed. Ultimatel, volume for each vector is constructed. Ultimately
these branching volumes will be sized iteratively

using FEA of the linear elements of the vector tree and procedurally defined load cases. The FEA solvers not been fully integrated. Subsequent operations have performed to provide the required mesh density and smoothing necessary for fabrication. Ultimately, the constructed volume can be utilised as an initial design space for topology optimisation. To test this approach, a generic node wis gith

Since the implementation of this building component is speculative and requires assumptions based on an

6.Panel layout showing
.ibdivision $\begin{array}{l}\text { rid and image }\end{array}$

mapped periorations.
Fixation points for
隹ps

traming vs.AM node with
six branches are delineated

7.Panelised surface
geometry with nod

constructed spoecific
to eeach iuncture.

have focused on internal workflow development and
prototyping constraints. Cost and production feasibity assessment is underway with the assistance of Concept Laser. It should be noted here that Concept Laser produces additive manufacturing systems and is not
a for-service parts fabricator. Fabrication constraints for the proposed nodes are based on the use of their X line zoooR. Concept Laser claims that this is the largest build volume currently on the market for a powder-bed-
supported additive manfacturing supported additive manufacturing system which utilises
a laser heat source for production of metal components. a aser heat source for procuction of metal components.
They are currently promoting this machine as one of the key components within their model operation for lean additive manufacturing, which they refer to as the 'AM Factory of Tomorrow'. The build volume available for the X line 2000 R is $800 \times 400 \times 500 \mathrm{~mm}$, allowing an average
of two nodes per build and an approximate production time of 18 hours. Due to the required build time, a more compact arrangement would be ideal, but to achieve this, the node must be subdivided into its constituent parts, similar to the example shown in Fig. 8. Further subdivision
may prove advantageous for production hut this decision may prove advantageous for production, but this decision
would have inevitable impacts on production time and coordination due to the additional assembly required. It is assumed, however, that the assembly could be

Looking at performance gains

While it is generally accepted that lower leve programming languages such as $\mathrm{C}+\mathrm{p}$ provide superio performance over higher level programming languages,
a benchmarking trial was established to test the authors' a benchmarking trial was established to test the authors'
assumptions? ${ }^{3}$ Since Grasshopper offers limited proflier stats, a precise measure of computational performance is not immediately available. Due to this limitation, a trial was conducted recording overall calculation times
rather than conducting a piece-wise process comparison. Only the two most computationally intensive functions - calculation of the subdivision-based perforation grid and image-mapped perforation size - were implemented
within Grasshopper. Transformations from world to local within Grasshopper. Transformations from world to local coordinate systems and evaluating fastener positions
were omitted. These outcomes were then compared to were omitted. These outcomes were then compared to
implementation written in $\mathrm{C}+\mathrm{u}$ using both single-threaded and multi-threaded programmes, executing the entire procedure required to define and document the perforated panel system. To further simplify the comparison, the input data describing each panel's world coordinates was internalised within the .gh definition,
rather than read from an external source file. Each trial Was conducted five times, with the resulting averages
recorded as graphs (Figs. 9 and 10). The performance
gains achieved using the proposed methodology are evident, although it was noted that the overall computation ime does not increase at a inear rate. This may indicate an area for future work, and further study is re
optimise the programme for increased scope.

Once all the relevant data for each panel are calculated, the panel object can then be documented in several ways, depending on the file format needed. The primary means of fabricator communication is managed though discrete
data fles containing all the relevant information needed data files containing all the relevant information need
for coordination and fabrication. These files are then compiled into a database and prepared for translation into CNC instruction or G-Code, which will be automated by the fabricator using their in-house post-processor.
This communication process has been coordinated This communication process has been coordinated
directly between the authors and the fabricators expe o complete this project. Preliminary mock-ups have o complete this project. Pre himinary mock-ups have
been produced to test the hypothesis and work will begin in 2017 to test viability of implementation at scale.
As the project moves into construction, and the building As the project moves into construction, and the buildin
envelope is finalised, a comparison between the asbuit nvelope is finalised, a comparison between the as-built
structural framing and a system which incorporates the proposed 3D printed node can be evaluated.

The future experimental workflow development

Conventional methods of communication between the designer and fabricator present logistical challenges to a complete direct-to-fabrication workflow. Despite the advantages present with increased scope and scale of economy, conventional means of exchange impede or
diminish the ability to fully realise these advantages diminish the ability to fully realise these advantages,
The authors propose an experimental workflow that mitigates some of the concerns regarding design development, documentation, fabricator and constructio coordination and production feasibility. The alternative means of documentation rely on a workflow where
graphical diagrams and representational drawings either physical or digital, are omitted as the primary way to convey information. Computational performance gains are demonstrated using this proposed workllow, building component

Furthermore, integration of this workflow to design
for additively manufactured components increases for additively manufactured components increases opportunities for design optimisation. The integration
of additively manufactured structural components shows great promise beyond local ised structural optimisation and simplified assembly. The proposed approach to node design would enable further system-wide structural optimisation within freform architectural envelopes
which could yield an overall reduction of parts and
framing members. Continued research and development as this project nears completion will demonstrate the viability and quantifiable measure of this hypothesis.
There is, however, a great deal of advancement requir to realise these potentials in practice. The availability to realise these potentials in practice. The availability
of for-service fabricators with the resources to produce the parts described is very limited and presently not sufficient for production at the scope required for the envelope presented.
Notes

 trianle meshes ereuu
(Pootman etal. 2004).
2. For structural elementst ilien ondes, beams and frames. howevert the often more complex than that of the outer ski. Therefore optinising
freeform structures for repeetitive elements
in ighly challenging and sometimes impossible. This complicates log istics sand increases
production cost, and is atypicieal feature of freeform shapes in procuuction cost, and is a typicial fé
architecture $($ Pottman et

System specifications:

Performance comparison
s.performance comp
showinimpored
computation speeds.
10. Comparison showing
single threaded vs.
single threaded vs
nutitithreaded multithreaded

ROBOTIC WOOD TECTONICS
PHILIP F. YUAN / HUA CHA
Tongi University

As the only naturally reproducible green building ddressing environmetal cencrns With the rapid development of laminated wood technologies and other production techniques, modern wood has become a high performance material with a large scale and low weight-t--strength ratio which demonstrates great potential in the future development of the construction industry (Menges, 2011). Digital design has marvellously
expanded the scope of wood structure application. While the growing trend for research in robotic fabrication ha accelerated the development of mass customisatio concepts in architecture, the mass customisation of geometrically complex wooden elements has become one
of the major concerns in terms of robotic wood fabrication research and wood-producing industry (Buri \& Weinand, 2011). The capacity of current CNC-milling-based non-linear wood component fabrication methods, which not only consume a lot of time but also produce a lot of development of digital design technology (Brell-Cokcan et al., 2009). The 'Robotic Wood Tectonics' project of 2016
DigitalFUTURE Shanghai explored the combination of

robot wire-cutting technology and traditional woodcraft o produce geometrically complex wooden elements -
without the immense material consumption of a CNC milling production process - in a full-scale wood pavilio Furthermore, this project explored the extent to whic his approach has the capacity to mass customise be critical to the robust processes demanded by the manufacturing industry. This project aims to demonstrate innovative robotic wood tectonics - an integrated

Research context

In the wood manufacturing field, milling currently seems to be the only way to deal with geometrically complex wood components. Built projects such as Club by Shigeru Ban were constructed using a milling approach with indispensable technical support from Designtoproduction. In addition to defects, waste and processing time, data transformation between the design
and manufacture stages in CNC milling remains a major constraint, and in fact these issues constituted a large part of Designtoproduction's work (Scheurer, 2010), Indeed, these defects are more obvious when they elate to factors like design changes.

With the rising trend of research in robotic fabrication, some research institutions are trying to explore new possibilities of wood manufacture by employing
industrial robots in the fabrication process, which has
proved to have a great impact on the design thinking. With robots, the design information can be transformed into a fabrication toolpath directly in real time without
the complex data transformation of CNC. The combination of a conventiontanal mechanical bandsaw and rombtic of a conventional mechanical bandsaw and robotic
wire-cutting technology, where the bandsaw plays th wire-cutting technology, where the bandsaw plays the
role of wire, is one of the feasible solutions that has to role of wire, is one of the feasible solutions that has to
some extent been researched and demonstrated. In the paper 'Bandsawn Bands: Feature-Based Design and Fabrication of Nested Freeform Surfaces in Wood',
researchers from Greyshed and Princeton University researchers from Greyshed and Princeton Univer
(Johns \& Foley, 2014) for the first time utilised a (Johns \& Foley, 2014) for the first time utilised a
robotically operated bandsaw to cut a series of curved strips, which, rotated and laminated, can approximate
doubly-curved and digitally defined geometry Using doubly-curved and digitally defined geometry. Using a robotic bandsaw was demonstrated as a materially
efficient technique for designing and fabricating freeforn surfaces within the constraints of irregular wood fitches. surfaces within the constraints of irregular wood f
On the other hand, RMIT University (Williams \& Cherrey, 2016) has further studied the robustness of this
new craft with regard to speed, accuracy and material new craft with regard to speed, accuracy and mate finish in the mass customisation of ruled surface
production, shown in the paper 'Crafting Robustn production, shown in the paper 'Crafting Robustness:
Rapidly Fabricating Ruled Surface Acoustic Panels'. This has demonstrated the feasibility of this approach in robotic fabrication of double-curved non-standardised wood elements in furniture and decoration.

Research questions

As demonstrated above, what is not considered in previous studies is the 'crisis of scale' of digital mass customisation, which has been proven to work effectively
at the small scale of industrial design and fabrication but has not performed well at the full scale of construction. When it comes to full-scale architectural wood components, the speed, accuracy and effectiveness of
this robotic bandsaw cutting method remin unclear This project is trying to figure out whether this new This project is trying to figure out whether this new
robotic craft is capable of and appropriate for the mass customisation of full-scale architectural wood components. The research question is studied in detai through some sub-questions:

1. How to negotiate between technical issues like speed, accuracy and stability to ensure the optimum fabrication results;
2. How traditional mechanical tools and the knowledge of materials can be used in guiding robot fabrication; and
3. How the full application of existing wood manufacturing technology might improve the practica significance of the state-of-the-art robot technique.

Taking glued laminated wood as the structural material, lued technology under the guidance of a CNC template (Fig. 3).
The bandsaw end effector is a modified 14 in bandsaw reinforced with a welded steel frame and installed on a hanging KR120 KUKA robot to conduct the ruled surfaces fabrication (Fig. 4). In contrast to the wires in wire-cutting, the bandsaw blades have a certain width which gives more complicated constraints to both the
desired surface curvature in the design stage and the desired surface curvature in the design stage and the
blade's forward speed and direction in the fabrication process. The saw blade must always be strictly perpendicular to the forward direction. Small surface curvature and high speed may block the saw, and even
broke saw blades. During the fabrication test, a traditional carpenter was employed to provide guidance on the carpenter was employed to provide guidance on the part of the transmitted knowledge of traditional craft
and material performance being added to the robotic and material performance being added to the robotic
fabrication process. After several tests, the 13 mm -wide fabrication process. After several tests, the 13 mm -wide
blades were employed to meet the requirement of desired surface curvature and ensure fabrication efficiency.
Following the fabrication tests, the robot movements were simulated within Rhino. Then generated toolpath Grasshopper plug-in KUKA PRC (Braumann \& BrellCokcan, 2011) (Fig. 5). During the fabrication process,
the raw beams are fixed to two adaptable tables, which

Research evaluation

an easily meet the need for beams with different curvatures. The desired beams are cut out by the hanging subot using four cuts (respectively, the top and bottom $5-8 \mathrm{~m}$ per hour, the time taken for each beam can be restricted to within three hours, i.e. significantly shorter than the milling method. By equipping the same robot with a $24,000 \mathrm{rpm}$ spindle, the slots on the beams were
milled after the bandsaw cutting process. The fabrication process of all 16 beams was completed in three weeks with great accuracy and efficiency
Site assembly
Due to the employing of a mortise-tenon joint system, he site assembly process was simplified to putting wood 6). The entire assembly process was completed by five workers within two days.
The wood pavilion appears as a mushroom structure with height of 7 m and a maximum cantilevered span of 4.5 m . The combination of mechanical bandsaw technology and robotic wire-cutting technology effectively guarant
fabrication accuracy and form smoothness (Fig. 1).

This project explores the entire process chain, from form-finding and optimisation to fabrication, which results in a technologically and aesthetically successful
prototype. The resulting pavilion is efficient in terms of structural performance and rich in aesthetics, indicating the novel design possibilities of technology.
As this project demonstrates, the robotic bandsaw performs with a high material eficiency in both the
design and fabrication stages. This is because the bandsaw has the smallest possible kerf of any mechanical wood-cutting method, which also ensures that the process is swifter than the CNC milling process. The 6 -axis industrial robot allows the fabrication not
only of two-dimensional curved surfaces, but also of high quality thre--dimensional ruled geometries through have a higher resolion of the blades, which apparent geometries created from CNC. The robotic bandsa applied in the project has demonstrated its capacity for the mass customisation of full-scale geometrically complex wooden components, and the ability to further adapt to the requirements of industrial mass production.
Although this technique has great advan Although this technique has great advantages in material
efficiency, there are still some deficiencies to be improved. effciency, there are still some deficiencies to be improve
It is undeniable that there is still a waste of material due to the volume difference between two-dimensiona raw beams and the desired three-dimensional beams. The waste may be minimised through the optimisation of gluing technology or by employing a more precise minimise the volume difference between the raw and desired beams. In addition, there is also room for optimisation in terms of speed control. Due to the continuous change in beam thickness during the (to adjust the speed according to the resistance that the blade is facing in real time) will contribute to both the fabrication results and the life of the blade itself.

Conclusions

This project presents robust robotic wood tectonics capable of full-scale wood component fabrication. capable of full-scale wood component fabrication.
This technology - with its high efficiency in material and time, as well as the capability for the mass
customisation of geometrically complex wood has thrown the traditional 'subtractive' mode of CNC milling into question. Oriented by the fabrication technology, this project demonstrates an entire integrated
process for digital wood architecture, from form-finding

[^1]
and form optimisation to digital fabrication. The design therefore is not only determined by the physica mechanism of form-tinding, but is also defned by the
fabrication constraints. Meanwhile, the fabrication process is not merely state-of the-art research, but also ries to make full integration with the existing wood production method much more valuable in practice.
The final outcome is the result of constant negotiatio The final outcome is the result of constant negotiation
etween design expression and fabrication constraints. between design expression and fabrication constraints,
In addition, while the project is an attempt to provide nnovative technical support for modern wooden architecture, it also aims to make this fabrication method the driving factor in the design process.
Given the great differences from traditional wood Given the great differences from traditional wood as representative of the new robotic wood tectonics.
In future research, this novel technology is going to be mproved in terms of efficiency, stability and integratio with existing design methods and industrial production
approaches. On the other hand, as the tectonics applied in this project are only applicable to specific geometry, hew tools will be required for the continuous expansio of the capacity and scope of robotic wood tectonics.

References
Braumann, J. and Brell. Cok cana, S. 2 2011, Parametric Robot Control: Integrated
CAD/CAM Tor Architectual CAD/CAM for Architectural Design in
Conference of the ACADIA, p.242-251.

Brell-Cokean.S. Reis, Design to Digital Prod

 AAD C Conference P Proceedings, p.323-329.

Johns, R.L. and Folev, N. .2014, Bandsawn Bands: Fe
 ,
Menges, A. A201, Integrative Design Computation: Integrating Material
Benaviour and Roobotic Mantacturn for Performative Wood Constructions' in Proceedings of the 31st Annual

Michalatos, P. Pand Kaijmm, S., 2007, Stuctural Intormation as Material fo

Rippmann, M. and Block. P., 2013
Conference oft the Acadia, 2013
Rippmann, M. LLachauer, L. and Block, P. 2012 . Interactive Vaut Design'
Scheurer, F. 2010, Materialising Complexty in Architectural Design, 80, p.86-9.

RAPID ASSEMBLY WITH BENDING-STABILISED STRUCTURES
Joseph m. gattas/YOUSEFAL-qARYOUTI/TING-UELLEE School of Civil Engineering, University of Queensland, Australia KIM BABER
School of Architecture, University of Queensland, Australia

This project seeks to enhance press-fit fabricait echniques through the use of hybrid material construction technology and bending-stabilised forms.
It overcomes certain press-fit limitations and undertakes a systematic improvement to connection design, which in combination with material and form enhancements allows for an increase in spanning capacities and obustness of press-fit structures, an increase in the retention of the critical press-fit benefits of lightweight
high-speed and uncomplicated construction.
Press-fit connection techniques streamline digital construction methods through elimination of mechanical fixing components and thus enable rapid construction of complex three-dimensional geometries. However the reliance on dimensional tolerance and oversizing, in lieu of mechanical fixing, causes an inherent instabilit in press-fit connections in the direction of component tightness between parts and/or a 3D interlock, but such measures can also offset the ease of assembly and structural performance.

52/53 The project aims to address existing press-fit limitation via three key advancements in fabrication: (a) the introduction of material hybridity with the combination
of glass fibre-reinforced plastic (GFRP) skin and plywood sandwich segments; (b) the introduction of configuration; and (c) the utilisation of rotational pres joints between structural components. The project is of particular significance due to the combined benefits of these advancements working to create a solution in which
any curved profile can be manufactured without the need any curved profile can be
for moulding or propping.

While the technology may be applied to a range of geometric configurations, the project investigates two specific applications: a tied arch and a cantilever
structure shown in Figs. 2 and 3 . Both applications are used to demonstrate the benefits of the three key fabrication advancements, but additional post-fabricatio analysis was undertaken for each specific structural
type. The arch was tested to failure to demonstrate he. suppression of press-fit po-off instability and the suppression of press-fit pop-off instability and
the corresponding strength and robustness of the assembly method; and the cantilever was 3 D -scanned to demonstrate the extreme versatility, speed and accuracy of the assembly method.

Press-fit construction

Sophisticated digital design processes can reduce a complex structure to a complete set of individual elements suitable for fabrication with the use of
automated workshop machines (Gramazio \& Kohle automated workshop machines (Gramazio \& Kohler,
2008). A key capability in digitising the complexity of traditional construction is the introduction of integral mechanical attachments in place of conventional mechanical fastening systems such as screws and nails
Such integral attachments are particularly suited to Such integral attachments are particularly suited to
timber construction, as their design can draw on a rich history of traditional wood-working joints (Robeller et al., 2015). A correspondingly wide range of integral attachment types is thus seen across recent timber works (Menges, Schwinn \& Krieg, 2016). Beyond the inclusion of integral mechanical attachments can produce structures that possess extreme fabrication and assembly speeds. For example, the 'Instant House' clad frame structure was assembled in four days from 984 plywood components (Sass \& Botha, 2006) and
the 'Plate House' modular sandwich structure was manufactured in five hours and assembled in seven hours from 150 cardboard components (Gattas \& You, 2016).
fress-fit (or frictioe of integral timber connection is the female slot and enables precise alignment and assembly of components, but contains an inherent instability in the direction of component insertion. This can be partially a friction-only fit (Robeller, 2015), or through interlocking geometry which prevents the movement of two parts in all but one direction (Robeller \& Weinand, 2016), but such measures can also offset the ease of assembly. In terms of structural capacity, press-fit structures can possess
compressive capacity approaching that of the glued sections, but can also be subject to a catastrophic 'pop-off failure mechanism where sudden loss of friction cohesion causes an explosive bifurcation and complete disassembly
(Al-Qaryouti etal 2016). (Al-Qaryouti et al, 2016).

Hybrid construction

Fibre-reinforced polymer (FRP) composites have obtained wide acceptance in civil engineering and
digital fabrication communities in recent years digital fabrication communities in recent years, due
to their high strength-to-weight ratio (Teng, Yu \& Fernando, 2012) and versatile construction options (Parascho et al, 2015). Timber materials, and more particularly engineering wood products (EWPs), have similarly seen increased recent uptake for broadly simila
reasons to FRP; their high machinability and lightness reasons to FRP ; their high machinability and lightn
make EWPs well-suited for modern prefabricated structures and robotic construction methods.
The use of hybrid FRP-timber structures has been rather The use of hybrid FRP-timber structures has been rather
limited compared to hybrid $F R P$-concrete and $F R P$-steel
structures, due to a range of factors including economics durability and fire performance. However, recent work has hinted at the potential benefits of such material hybridisation. FRP can reinforce weak sections of EWP
beams (Raftery \& Hart, 2011) and is thus able to upgrade beams (Raftery \& Hart, 2011) and is thus able to upgrade
low-quality timber resources for high-performance structural use, minimising the overall system cost (Fernando et al., 2015).
The project seeks to explore the combined value of press-fit and hybrid FRP-timber construction technologies. It will
be seen that, with such a combination, a novel fabrication system can be developed that possesses a number of advantageous geometric, structural and constructability innovations that are not available in existing systems
which utili se these construction techniques in isolation

Rationalisation
A principal aim of the project is to increase structural strength, stability and robustness of press-fit fabricatio methods, so it is useful to consider their inherent
limitations. Consider the press-fit plywood beam limitations. Consider the press-fit plywood beam
constructed from three segments which are themsel constructed from core and face plates. The need for discrete segments and plates arises from the use of a 2D sheet material with finite size.

If the beam is loaded with end moments as shown, a range of structural behaviours manifest, both favourable and unfavourable. When internal stress acts in a direction
that is perpendicular to hat is perpendicular to or along the press-fit direction of
insertion, the joint acts favourably for example shear stress through joints 1,2 and 4). Notionally, compressive stress through joint 5 should also act favourably. However, the lack of joint rotational resistance could cause the entire compressive face to act in a manner support. This is a highly unstable configuration that can lead to panel fragmentation or pop-off failures. Furthermore, when stress acts opposite to the direction of insertion (for instance, tensile stress through joint 3),
there is no structural capacity at all.

Consider now its modified press-fit beam. Three key innovations have bee in

Material hybridity: a GFRP is introduced as a continuous tensile skin, providing a stress transfer mechanism at joint 3 and negating stress concentrations in joint 1, thus enabling the use of Chinner, lighter and more economical plywood grades, Bending-stabilised geometry: a positive curvature is
introduced into the beam, which acts to reduce the effective buckling length of the compressive face and
introduces an inclined compressive stress comenent introduces an inclined compressive stress component. failures respectively.
Rotational press-fit connection: the GFRP skin creates a hinge mechanism which can be used for a novel
stress transfer capability but with a rotational
direction of insertion that matches displacements
from the applied moment loading, i.e. segments can
be rotationally 'folded' together, rather than axially 'pushed' together. The beam can therefore selfassemble if subjected to a bending load.
As will be demonstrated, these key innovations serve As resolve many of the structural weaknesses, while
to
retaining the speed and construction. There is also one further benefit that arises from the above three innovations acting in concert: any curved profile can be manufactured without the need for
moulding or propping as the structure can fold from a moulding or propping, as the structure can fold from a flat
state. The fabrication process in each of the structural applications that were investigated demonstrates this final capability.

Fabrication
A key fabrication aim for the project is the ability for the egments to self-assemble from flat state, which wil now be described in detail. A target beam profile is discretised into segments by subdivision of the control spline. Segments in regions of positive curvature (α 180°) can unfold without issue onto a flat surface when inverted, but segments in regions of negative curvature
$\left(\alpha>180^{\circ}\right)$ would be unable to readily unfold, necessitating the introduction of additional 'wedge' segments. Each segment profile is then translated into a complete plywood sandwich structure encoded with all necessary
press-fit joints. For example, its dark grey segment is press-fit joints. For example, its dark grey segment is
hown in isometric view in Fig 4. It is composed of core hown in isometric view in Fig. 4. It is composed of core described previously, and with additional joints 6 and 7 or cross plates and facing plates respectively.
The rotational press-fit connection determines the overall surface curvature by controlling the relative inclination between adjacent segments. The connection is composed of joints 3,4 and 5 , with design considerations required for each. Joint 3 shifts the rotation point from plate centrelines to the outer skin and is composed of an inclined press-fit joint with slight front and back offsets
suitable for a 2.5 axis cutter. The staggered tab locations suitable er a 2.5 -axis cutter. The staggered tablocations
allow the joint to fold without collision. Similarly, joint 4 is an inclined press-fit and acts to enforce the transverse alignment of inside face skins, and by extension precis centreine alignment of core plates. This alignment is
important for thin core plates to avoid eccentric loading Finally, joint 5 has press-fit tabs formed along arcs entred about the rotation point, and so can travel

Tied arch and structural performance

A $3 m$-wide symmetrical arch structure was constructed using the above fabrication process. It consisted of seven segments, each of which was assembled from 9 mm -thick
plywood plates cut on a CNC router (Fig. 5) Assembled arch segments were placed end-to-end on a flat surface (in the arch's inverted orientation) and bonded to a continuous GFRP skin. The need for chemical adhesion
in the fabrication process does slow down the overall in the fabrication process does slow down the overall
construction time due to placement and curing although construction time due to placement and curing, alth
this is offset by the GFRP providing a simple threethis is offset by the GfRP providing a simple three-
dimensional coordination of the segments, virtually
eliminating the need for further consideration of set-out
or construction sequencing: the only required alignment or construction sequencing; the only required alignment
is readily achieved on a fat surface through the transverse is readily achieved on a flat sur
alignment of segment edges.

Once cured, the structure can be folded into its final shape with extreme rapidity, as all six segment joints are actuated with a single bending load. This was induced with a single post-tensioned tie, providing a line of force
between end segments. The arch was then tested to failure, with an actuator again applying a force between end segments. The arch was designed so that maximum moment occurred at the arch peak and GFRP material tensile failure occurred prior to the onset of the suppressed
compression face instabilities. Fibre rupture occurred first, as predicted in the theoretical analysis.
Cantilever structure and construction performance
A cantilevering branch structure was designed to explore the versatility, speed and accuracy of the assembly method. The design of the curvilinear branches was via a digital model with multi-scale parametric control ove the geometry of the individual 'branches' as well as the generation of all component parts with integral
mechanical attachments. Eight counter-balancing cantilevers were constructed from 7109 mm -thick plywood plates, which were assembled, bonded to GFRP, folded into branches (Fig. 7) and attached to a central suspended spine (Fig. 1). The final and longest branch was 5 m long (10.5m tip-to-tip across the branch pair),
tapered from a depth of 370 mm to 30 mm and weighed 70 kg . The fabrication phase was just two weeks, with the structure exhibited at the official opening of the University of Queensland Centre for Future mber Structures.

The structure was measured using a 3 D laser scanner, and collected point cloud data were processed using a surface error minimisation routine with the Galapago

plug-in for Rhino/Grasshopper. Surface error was measured as absolute distance between the bottom scanned surface and the underformed design geometry
(Fig. 6), with deformations due to self-weight neglected due to the extremely light weight of the structure. Six ou of eight branches had an average absolute surface error errors, but in both cases this could be traced to a single rotational press-fit connection that failed to completely interlock due to a slight misalignment of the hinge point. As 70 out of 72 rotational press-fits engaged without issue,
and as the majority of branches were constructed almost exactly as designed, it can be concluded that the new fabrication method has achieved a significant level of reliability with regard to the geometric precision between the digital model and the built artefact. It is hypothesised that such precision is the result of the self-assembling
capacity of the structure, i.e. the cantilever self-weight capacity of the structure, .e. the cantilever self-weight
induces a bending load that acts in conjunction with the FRP hinge mechanism to compress the press-fit joints to he maximum tolerance tightness and thus minimise insertion errors.

Capacity and construction benefits

The project has demonstrated a hybrid material and press-fit fabrication technique that can produce ke.
benefits in both structural capacity and ease of onstruction. The increase in tensile stress transfer from the hybrid material and the improved compressive stability of the modified global geometry act together to
significantly enhance the spanning capacity of members
subjected to bending loads, while maintaining a very lightweight structure. The additional use of FRP as a
flexible hinge and planar alignment mechanism, combine with the use of rotational press-fit connections for precise curvature control between adjacent segments, was seen Two sample applications of the tied arch and an array
of cantilevers were explored. Both were fabricated in a condensed timeframe and served to demonstrate the structural and construction benefits respectively of the new fabrication technique. Testing of the tied
arch structure confirmed that the bending-stabilised geometry resisted the press-fit 'pop-off' failure mechanism, thus preventing catastrophic failure o large-scale press-fit structures. Surface measurement of the cantilever structure showed that the FRP hinge
successfully acted as a precise guide for the rotational assembly of adjacent segments to produce a stable and highly accurate overall form.
While the two applications illustrated at this time may be considered 'components' of larger structures, it is envisaged that, through the successful demonstration of the combined innovations, the technologies developed in this project can enable a significant range of possible formal configurations. As the developed improvements to
spanning capacity and robustness of press-fit fabrication spanning capacity and robustness of press-fit fabrication
systems occur alongside the new method for rapid assembly of long-span bending structures, more ambitious applications for larger press-fit structures used in
permanent building applications could become a reality.
6. Comparison of design
and manutactur esemetry.

point loud data and
sectional planes. botom
sufface section
surface sectional profiles;
comparison of ddesign

rotational press-fits that
failed to completely engege
7. Proposesed cantilever and

Totationall press-fititasemb
sequence shown statiting
 self-weight ofthe stucture
and the
RRP hinge to enable
 Wang and shuwei Zhang. This work was supported by the University of

 References

 Structures, Siena, Italy
 Intewaled members made oftrpe and imber prosententad the 12th
 onfine
China.

Gatasas.J.M. 2014, Digita fabrication toolbox, available online a thttp://
joeatas

Gramazio.F:.and Koher, M. 2008, Digital Materioility in Acchitecture,
Menges. A. Sthwinn. T. Tand Kiries. OD.D.(eds.)., 2016, Advancing Wood
Architecture:A Compoutationol Apporococh, Routtedge.

Parascho, S., Knippers, J. Dobistelman, M. Prado, M. and Menges, A. . 2015
 Advances.
p.29-4.

 Production with Digitial Fabication
Computing, Volume 4 , p.109-12.
 fiber-reinforced olymer
Research $, 78, p, 131-143$.

A PREFABRICATED DINING PAVILION

 USING STRUCTURAL SKELETONS, DEVELOPABLE OFFSET MESHES AND KERF-CUT BENT SHEET MATERIALHENRY LOUTH/DAVID REEVES / SHAJAY BHOOSHAN/PATRIK SCHUMACHER Zaha Hadid Architects
BENJAMIN

$$
\begin{array}{r}
92 \text { Nodes } \\
\text { 5mm Steel Plate } \\
169 \text { Beams } \\
\text { Ituminum and Steel } 140 \times 40 \times 5 \\
\text { 184 Node Cover Plates } \\
\text { CNC Stainless Steel 2mm } \\
\text { 80 Loops } \\
\text { Thermo Ash Planks } 130 \times 26 \\
\text { Lasercut Steel Sheet 1.9mm } \\
\text { Lasercut Tricoya Sheet } 12 \mathrm{~mm}
\end{array}
$$

3943 Individual Elements

This project focuses on the role of computational
geometry within computer-aided architectural design geometry within computer-aided architectural design
and construction workflows, ie. computational geomet and construction workflows, i.e. computational geometry
as a mediating device between architectural, engineering and construction logics. While the scale of a dining pavilion is relatively modest, the intention is to utilise this research for wider application in larger constructionscale projects. In this regard, the project operates within a
ight time-bound, multiple-stakeholder, collaborative and bespoke production pipeline, as typically necessitated by architectural projects.
Digital workflows
Workflows in architectural design can be characterised by two paradigms - one drawing-based, the other model-based. The drawing paradigm is popularly known as Computer Aided Design (CAD) and the (BIM). While both drawings and models encode 2D and 3D geometry, a model also contains meta-information about the encoded geometry - its material specification role in and processes of assembly, etc. Also, the drawing

Design (CAGD), can support the creation Design (CAGD), can support the creation of a wide range of (arbitrariy) complex geometries and their
processing for Computer Aided Manfacturing (CAM). An essential aspect of CAGD, as used in disciplines such as automotive or product design, is the abstraction of the complex physical phenomena and machine parameters associated with manufacturing methods into geometri the automobile, aircraft and shipbuilding industries motivating the development and use of Bézier curves and surfaces, physical splines and developable survaces (Bézier, 1971, Sabin, 1971, De Casteljau, 1986, Pére This project aims to apply these operative principles
from the automated fabrication industry in architectural
design and assembly Thus the design and assembly. Thus the project primarily focuses
on developing structural and construction-related on at-information for conder words, augmenting complex CAGD objects with construction-specific information, thus enabling the

31 Floor Fill Panels
 Lasercut Tricoya Sheet 12mm

projects. Recent developments in the application of
discrete differential geometry to architectural desig -so-called architectural geometry (Pottmann, 2007) - share some of these aims. These developments have
contributed to the popularisation of the CAGD paradigm, contributed to the popularisation of the CAGD paradig
at least in architectural projects with high geometric complexity, such as the Heydar Aliyev Centre by Zaha Hadid Architects (Veltkamp, 2010, Janssen, 2011).
A review of applicable methods of architectural geometry esearch is described below. The development of bespoke implementations thereof and assimilation of the various state-of-the-art methods into a cohesive and flexible design workflow is described subsequently.

The design brief of the project proposes manufacturing an economical, prefabricated pavilion using off-the-sh parts and/or laser-cut components. The structural
skeleton is to be realised using standard hollow section Furthermore, the skeleton is to be adequately covered long the top and bottom, and the walls of the cell of such a brief, the dominant design concerns relate to the development of geometries that are lightweight and
can be made from flat-sheet materials.

ightweight construction

The earliest practice of a deliberate focus on the conomical use of material via a geometric nderstanding of structure and effective channelling of period (Tessmann, 2008, Heyman, 1966). The earliest mathematical treatment of economic (timberframed) structures is widely credited to engineer A.G. Michell (Michell, 1904). Michell used geometric principles (Maxwell, 1870, Rankine, 1864) to establish his solution or the layout of materially economic timber trusses. Recently, William Baker and his colleagues at SOM Architects (Beghini et al., 2014, Baker et al, 2013) have shown the compatibility of these geometric methods of material reduction - so-called topology optimisation (Rozvany, 2001, Bendsoe \& Sigmund, 2013).
Torsion-free beam network and developable surfaces
In view of the brief above, the critical fabrication constraints (expressed geometrically) are to ensure that the joint geometries are torsion-free, or extrudable,
and the surfaces - top and bottom covers, and walls of

the cells - are developable Extrudability of the vertices ensures that the edges of the mesh can be uniformly
offset, and thus the derived beam network can be of uniform thickness. This makes the edge-layout amenable for realisation using standard hollow sections of
aluminium. Developable surfaces retain a variety aluminium. Developable surfaces retain a variety
of applications in sheet- and plate-based industries of appling architecture because they can be isometrically
including mapped onto a plane (Lawrence, 2011). The chosen method of forming sheet material is kerf-cutting and bending for the node covers and cell walls.

Interactive design

 The early design method adopted for the project aims tobuild upon interactive benefits of the subdivision mesh modelling approach (Shepherd \& Richens, 2010, Bhoosh combine this user-friendly representation of geometry with numerical modelling techniques to physically realis them with fabric (Bhooshan \& El Sayed, 2012), curvedcrease folded metal (Bhooshan, 2016b, Louth et al., 2015) and 3D printing (Bhooshan, 2016a). This is in line with our intention to augment easy-to-use CAGD objects with construction-related information. Thus the extension of this approach to address skeletal geometries forms the
last significant context of the research.

2 . Volu overvien. Overal 2ounding dimen. Sions.
mage: Courtesy

Coarse mesh developement.
Top: Topology optimisations
 Midale: Coarse mesh,
Coresponding subbivision

Material economy

In view of the explicit desire for lightweight construction, he so-called equilibrium modeling methods (Lachaue, 2015) are of particular relevance. These methods attem thus are well-aligned with the fundamental tenets of ightweight structures (Schlaich \& Schlaich, 2000, Bletzinger \& Ramm, 2001). The spatial constraints and the client-related history of the project do not allow for he application of these principles to shape the initial can be considered predominantly invariant or given.
Operating within these constraints, the development of he layout of the structural skeleton is informed by densities associated with a TO solution are interpreted as discrete beam/node elements that serve as a genera arrangement suitable for further optimisation under

Data-structures for design productio

The other significant research question is the developmen f an appropriate data structure that assimilates the various design, fabrication and downstream production to drive production geometries and information to the
fullest extent possible, as opposed to the common practice of handing over design geometry to production specialists for shop drawings and post-rationalisation
(Romero \& Ramos, 2013, Sanchez-Alvarez, 2010, Peña de Leon, 2012).

Thus the development of the torsion-free beam network developable surfaces and cell walls is a dominant research question. The geometric properties of the
so-called edge-offset mesh (EO mesh) (Pottmann \& so-called edge-offset mesh (EO mesh) (Pottmann \&
Wallner, 2008, Liu \& Wang, 2008) and the requisite properties of the control net of Bezzier surfaces that make the surfaces themselves developable (Lang \& Röschel, 1992) are the most relevant prior works in this regard. The work of Bouaziz et al. (2012) and Attar et al. (2010) are e also relevant with
multiple constraints.

Design pipeline

The design pipeline builds upon the subdivision mesh modelling approach (Shepherd \& Richens, 2010,
Bhooshan \& El Sayed, 2011), capturing shape features (Leyton, 1988) of the TO encoded using a set of primitives into a coarse mesh representation for downstream processing (Fig. 1). This manual reinterpretation extracts nede location, node connectivity and relative node offset isolation of probable singularities and constructing a
coced

mesh comprised of predominantly quadrilateral faces
(Fig. 3). While this intuitively retains an economy of homogeneous material from the TO, the topology is further evaluated and design options developed with respect to a range of potential composited
construction methods of fabrication. Structural build-ups considering material properties and assembly techniques are correlated to topological features to embed fabrication assumptions into a construction-relevant expression of
the TO arriving at a segmental linear beam type that tetains developability (Fig. 4).

Network extraction

The density distribution given by TO serves as a guide for the reconstruction of the implied structural network as a coarse polygon mesh, M (Fig. 3). This representatio
is well-suited to subsequent design development, as its discretisation corresponds directly with components of the physical assembly (edges to beams and vertices
to nodes). Furthermore, it allows for the application of o nodes). Furthermore, it allows for the application of
established numerical methods to solve for geometric constraints related to fabrication.

Offset mesh

To define the depth of the structure, an offset mesh M^{\prime} is numerically derived from M such that corresponding edge pairs are co-planar. Together, M and M^{\prime} implicitly
represent the 'beam mesh' M_{B}-a non-manifold planar quad mesh (PQ mesh) whose faces define the symmetry planes of beams in the resulting structure. By asserting derived components is guaranteed (as per Killian et al. 2008, Lang \& Roschel, 1992). This also implies torsion-
free nodes, since each non-manifold edge in $M_{\text {p }}$ is the
common axis at which all of its adjacent planar faces intersect (Wallner \& Pottmann, 2008). From an M via M and M^{\prime} is favourable as it it avoids the inateon of complexity of topological navigation introduced by these complexity of topolog.
non-manifold edges.

Perturbation

Offsetting the vertices of M along their normals provides an initial approximation of M. For most cases of M, howeve this produces non-planar faces in M_{p}, requiring that the
PQ criteria be solved for numerically. A projection-based PQ criteria be solved for numerically. A projection-based
approach (Bouaziz et al.) is used to minimally perturb the
vertices of M 'such that the foes of M ar vertices of M^{\prime} such that the faces of M_{B} are planar. The
vertices of M are excluded from perturbation as they vertices of M are excluced from perturbation, as they
define the inner surface of the pavilion and are constraine by additional design considerations such as furniture placement and walkability
For a given quadrilateral face in M_{B}, the constraint boundary for planarity is defined by the nearest point of intersection between the two diagonals. The projection vector can therefore be calculated as half of the shortest vector between them. This formulation is analogous to the plan

While projecting to the nearest constraint boundary ensures that vertices of M^{\prime} are minimally perturbed, the solver does not necessarily converge for all cases in local curvature, non-manifold edges of $M_{\text {s }}$ tend towards zero length, which is unsuitable for the intended application as they represent the axes of structural nodes.
To mitigate the collapse of node axes in $\mathrm{M}_{\text {p }}$ an additional
constraint is introduced which tries to maintain a constant
distance between each vertex in M^{\prime} and all edges incide to the corresponding vertex in M. For most cases of M, th vertex-offset constraint partially opposes planarity and (roughly one order of of the PQ criteria within acceptable tolerance while preventing degeneracy of node axes in M_{p}.
In cases where the majority of vertices in M exceed valence 4 , vertices in M' often become over-constrained and planarity cannot be achieved for all faces in M,
This motivates the iterative revision of input mesh M to find an acceptable balance between preservin tructural features generated via TO and satisfying tabrication constraints reated to
the use of standardised elements.

Fabrication and assembly context

Given that the project delivery period from concept to prototype is approximately four months, time was a key prototype is approximately four months, time was a key
consideration regarding approach, design logic and assembly. The concurrent timeline for design and fabrication suggests the development of a method o facilitate team interoperability, whereby data are preserved during exchange, enabling parallel design associations. The distinct advantage of this is the extraction of relevant machinable parts during the early design process, which promotes a more

The design logic of the structure, comprising uniform cross-sections of segmented lengths, is indicative of expediting engineering load calculations and member sizing for a 'worst case' scenario rather than of individual beam performance. Additionally, use of off-the-shelf
sheet and hollow sections compatible with ubiquitous 2 -axis cutting technologies eliminated time-intensive milling techniques from design consideration (Scheurer, 2013), constraining the domain of geometric possibility oo developable surfaces (Lawrence, 2011). Subsequently, methods, predominantly by laser.
Similarly, the assembly methods are consistent with an accelerated manufacture via prefabricated, mechanically mporary travelling structure constrained by a limited temporary traveliing structure constrained by a lin
installation period and the potential for numerous installation and de-installation cycles.

Structuring fabrication information
The half-edge data structure was used to represent
M and M^{\prime} 'throughout design development M and M^{\prime} throughout design development. While the advantages of this data structure are well-documente
within the context of discrete differential geometry (Botsch et al., 2002), this project extends its use as means of structuring fabrication information.
In developing detailed production geometry from M_{B}, components of the assembly were bound to the elements
of the input mesh M. Beams were associated with edges, of the input mesh M. Beams were associated with edges,
nodes and cover plates with vertices and loop panels with half-edges. The individual components of each node (steel plates and fasteners) were further distributed to In this sense, fabrication information (be it geometric
or otherwise) is treated as a collection of mesh attributes - analogous to colours, normals or texture coordinates
typically found in mesh representations used within typically found in mesh representations used within computer graphics. Lhis greatly aids the procedur
development of detailed production geometry, as fabrication information can be efficiently queried and cross-referenced locally. It also maintains a direct link between design geometry and production informatio enabling a higher frequency feedback loop between

Relevant assembly details

The pavilion consists of linear segments of hollow section beams mechanically fastened to built-up steel plate node cantilevered shading canopy. Loops of kerf-cut sheet bent and suspended from beam face centres. Flooring panels comprised of wood planks scribed to profile are
suspended from beam centres in the platform. Node overs are patternd ad face fastened to the structure obscuring the structural beams (Fig. 1).

Details address issues of prefabrication including installation sequence, material workability, geometric tolerance and
lifetime performance For example exposed face-fastening lifetime performance. For example, exposed face-fastening
loops and node covers in lieu of concealed hangar elements enable the localised changeability of parts and minimise the composite area of the cladded structure cross-section, tending toward the perception of a lighter, more slender
pavilion. Similarly, mechanical fastener ioining, in lieu of friction-fitting via slocting, tabbing or or clipping, facilitates ease of workability, increases allowable in situ adjustment and promotes the independence of parts from neighbouring
$64 / 65$ The 92 self-similar, individually unique nodes further categorise and are parametrically modelled in response
to neighbouring geometric conditions. The typical node to neighbouring geometric conditions. The typical node
is a pre-assembled, welded composite of plate steel is a pre-assembled, welded composite of plate steel
corresponding to the mesh intersection planes of corresponding to the mesh intersection planes of
incoming half-edges. Each of the floor nodes and foundation nodes introduces a planar top and botto plate respectively. The boundary nodes are clad with a continuous boundary edge band, inheriting the same
fastening procedure as typical nodes.

Auxetic material

Material flexibility and hand-bending in the pavilion s accomplished primarily through kerfing patterns corresponding to the scale of the bend radius in each
loop (Fenner, 2012). During prototyping, torsional deformation and subsequent 'oil canning' (Kalpakjian, 2008) developed in 'worst-case' node covers with extreme angles located at the top and bottom of the trunk. An ppleeds to introduce local discontinuity and bi directional flexibility in the 2 mm plate (Fig.5).

Assembly process

The design of the pavilion assemblies anticipates a
a limited four-day install period, the use of traditional a confined exhibitor space and an install in conjunctio with local labourers unfamiliar with the design logic. The initial prototyping and test fittings undergo a contrasting the use of specialised tools and hoists, a sequence of assembly that corresponds to parts manufacture, a project-dedicated workshop and an assembly tean
knowledgeable in each aspect of the design.
,
Exacerbating the disparity of assembly processes,
elements were fabricated in order of increasing complexity to allow for extended design and prototyping considerations. Effectively, the pavilion platform and canopy nodes and beams were produced while details
of the trunk transitions were resolved, designed and manufactured. The workshop was able to undertake continuous manufacture and compress the delivery timeline by constructing the pavilion discontinuously not from the ground up as is done onsit

The factory sequence assumes that a partially assembled canopy is positioned to minimise the total number of connection points subject to live-loading at any given time during assembly. The onsite sequence proceeds without hoists, from node to next neighbouring node,
from the ground up. Consequently, each canopy node

connection withstands live-loading and rotation due, deflection effect in aggregate upon the canopy (Fig. 6).

Compatibility of method

The prototype beam configuration presented here suggests the potential incompatibility of a discretised node-beam type structure proceeding from a conceptual O analysis. Specifically, beam elements are not aligned oprincipal curvature directions of the surface using 1 analyses in the same way that stress accumulation and
fall-off are not gradated in beam element assemblies. Such a geometric constraint is not represented within the TO process, as its benefits are not directly structural,
but rather are constrained to a chosen fabrication meth or a prescribed loading condition. Converging upon of material reduction techniques.

Workarounds

While the use of auxetic material in the node covers provided a workaround for delivering doubly-curve
surfaces in partially torsioned materials using 2 -axis cutting, it neither supports the geometric principles of developability nor is particularly suited to exterio environments.

Design assumptions
The relative newness of working with the data structure and the speed of delivery assumed to execute the project result in a loss of expression in some design elemen
such as the uniformity of structural cross-sections, such as the uniformity of structural cross-sections
resulting in undifferentiated expression of load, the inherited typical detail at the boundaries resulting in perceived boundary edge thickness, as well as the
bounding box approach to preliminary costing resultin bounding box approach to preliminary costing resulting
in the perceived flatness of the platform and rear of trunk. While the benefits of design geometry processed as mesh attributes is apparent in a self-referential setting, it underscores the schism between design and fabrication design as incompatible workflows with regard to anticipated
input geometry at each stage. The structuring of data in this regard seeks to reorder delivery workflow to assume fabrication-relevant information at the outset of design rather than part-way through, and highlights a requirement to merge early-stage design with fabrication intelligence.
This paper presents a scalable pipeline for the design and production of freeform multi-layer support structure that exhibit a high degree of material economy. While this is demonstrated at the scale of a dining pavilion, the process is governed by the consideration of material
and fabrication constraints which are even more critical when designing large-scale support structures. As such, long-term objectives will focus on extending the proposed methods so that they can be leveraged within full-scale architectural applications. To this end, the pavilion serves as a relevant example, as it
operated within a tight time-bound, multiple stakeholder, collaborative and bespoke production pipeline, as is typically necessitated by architectural projects.
The most critical limiting factor when scaling up is the translation of the TO density distribution to an appropriate discrete representation of M. Currently, this remains a manual step in an otherwise procedural design proces, late-stage design- - the severity between early- and late-stage design- the severity of whic will only increase being made to automate this step by leveraging technique from machine learning, image processing and character animation to procedurally extract relevant features from the TO in a format suitable for subsequent processing and

More immediate future work will focus on the delivery of a second iteration of the pavilion intended for exterior
use. This calls for the revision of materials and assembly

methods/details with respect to durability, which presents a new set of fabrication constraints to be geometrically cross-sections among edge members will be of primary importance, allowing for further expression of structura
performance via material economy. While this would performance via material economy. While this would and production, it is anticipated that the impact will be significantly mitigated through the use of the half-edge representation. By defining dimensional can be resolved with respect to one another through efficient topological queries - an operation supported by the chosen data structure.
Overall dimensional constraints imposed by the context of the original prototype are significantly relaxed fort the seconsitited as well.
Specifically, curvature in the transitions from the trunk o the floor and ceiling can be more evenly distributed, reducing probems related to numerical convergence
during subsequent rationalisation. Further effort will be made to better understand and formalise this relationship
as a means of informing design exploration.

References

 Baker, W.F., Beghini, L.L., Mazurere, A. Carrion, J. \& Beghinin A. 2013 , Maxwells

 Bendsoe, M.P.\& Sigmund, O., 2013, Topology Optimiza
and A Applications, Springer Science e Business Media

Bhooshan. $5.2016 a$, CClabo
Bhooshan
of Bath.
Bhooshan. $5 . \&$ E I Sayed, M. 2012, 'Sub-division Surfaces in Architectural
Form-ind

Shooshan, S. \&EIS Syyed, M. 2011 . Use of Sub-division Surfaces in
 er Simulation Intermational p. $\cdot 60-67$
 Blum, H. \& Nagel. R, .1978, R .R.Shape Descriptors S sing Weighted Symmetric
Axis Featurus in
 Shaping Discrete Geometr
Vol. 31, No. 5, $1.1657-1667$.
 Generic and Efficient Boly

Heyman.J., 1966 . TThe Stone Skeleton in Interational Jourral of Solids and
Janssen, B,, 2011 , Double-C
Masters Thesis, TU Deft.

kilan, M. FForr, S. Chen, Z. Mitra, N.J. Sheffer A. Kllan, M
Curved
p.75.
Konakovi, M. Crane, K., Deng. B., Bouaziz.S., Piker, D.\&.\& Pauly, M. 2016, Materials in $A C M$ TTansactions on Graphics (TOG), $35(4)$, $p .89$.
Lachauer, L., 2015, Interactive Equilibrium Modelling - a New Approach to the Computer-cided Explorortion of

Liu. Y. \& Wang. W. 2008, On Vertex Offsets of Polyhedral Surfaces:
in Proceedings of Advances in Acchitectural Geometry, p.i-64.

 availabe a a htpp///simud
Proceedings_HiRes.pof.

Pería de Leon, A, 2012, Rationalisation of freeform Facades: a Technique Uniform Hexagonal Panelling in in Poceedings of the 1 Tth htermational Conference on Com
Chennoi, .243 -252.
 Pottmann, H. 2007, Architectural Geometr, Bentey I Istitute Press.

 Graphics (ToG), 26 (3), p.65.

 The London. Edinuurgh
Science, 77 (180) p.92.

Roovany, G.IN, 2001. Aims, Scope, Methods, History and Unified Terminolog of Computer-aided Topologyy Optimization in Structural Mechanics
Structural and Multidisciolifinary Optimization, $212(2)$.o90-108
Sabi, M.A., 1977, AA Existing Sysstem in the Aircratt Industry, The British

Scheure,. F., 2014, 'Ditital Craftsmanship: From Thinking to Moded ling to
Building: availabe at

 Architecture in Proceeedings oftht Internationol A Association for Shell and
Spotial Structures (Ass) Symposium 2009. valencia
 Engineers, University of kassel.

OPEN CAGE-SHELL DESIGN AND FABRICATION (HEALING PAVILION)

benjamin ball/ gaston nogues

Ball-Nogues Design Studio

Breaking boundaries in CNC steel tube rolling

Healing Pavilion, completed in December 2016, explores he boundaries and possibilities of CNC steel tube
olling. Inspired by the prowess of thin structural roling. Inspired by the prowess of thin structural
shells, this project translates the robust double curvature inherent in such forms into a dynamic cage-like array.
By delving into the nuances and challenges of bending and rolling tube steel the design adopts the surface for of a shell while introducing a level of transparency and controlled irregularity only possible through working with a network of individual components. Each tube has unique three-dimensional curvature and is located at

The pavilion balances structural load paths and assembly considerations with a rigorous exploration of patterning and layering. In addition to creating a space for shade and respite, the porous, shifting grid of steel tubing allows the
reading of the complex form to fluidly adjust in relation to its background. The double curvature of the form demonstrates the physical limits of the CNC steel
bending and rolling technology. That double curvature
allows for structural shape efficiency, which creates five construction details for the entire project this five construction details for the entire project, this
final incarnation isolates and streamlines the design and construction process to tackle structure and the interstices between structural components simultaneousl. The five structural details consist of

at the base;

Where the tubes are mitred;
3. Where the tubes are spliced;
4. Where the tubes are capped; and

The successful translation of the digital design into a physical fabrication workflow without substantial variation from a digital ideal stands as the key driver
defining the success of the project. Healing Pavilion defining the success of the project. Healing Pavilion with a deeply experimental fabrication goal.

the form were kept within the size specifications needed to qualify as an oversize load for transport. The piece was driven as a singular object via a flatbed truck over city
streets to the site and then craned into place ((igs. 2 and 9). The size of the foundation system and the intricacy of The size ef it itself had to be optimised according to the
the pavilion budget. These budgetary factors and the nature of the material itself serve as another contextual factor informing the design. Choosing to work with stainless or
corten steel would have made the proiect too expensive. corten stee would have made the project too expensive
The decision to explore the process of computerised bending techniques also revealed that malleable mild steel would be easier to weld and bend than corten, stainless or aluminium. Additionally, the context
introduced a weight limitation to the pavilion. Placed introduced a weight limitation to the pavilion. Placed
upon an extant concrete structure, the project distributes upon an extant concrete structure, the 'Thes steel table,
its $2,722 \mathrm{~kg}$ weight over a 'steel table. designed as a customised platform, receives concentrated seismic and gravity loads and transfers them to specific locations on the existing concrete facility structure. More
atmospheric aspects of the context guide several defining atmospheric aspects of the context guide several defi
formal moments in the project. Several openings, formal moments in the project. Several openings,
including an oculus framing the open sky, follow the path of the sun and orientation of the semi-enclosed space
towards the street. towards the street.

The Healing Pavilion design process
Research context
Several questions guided the research and design process of Healing Pavilion. The frrst concept question - how to make a shell using the logic of a cage - drove the number concretised, this line of formal inquiry raised the next issues: what kind of machine could bend and roll steel tubing? How to identify its limitations and keep these limitations within a smooth flow of seismic and gravityinduced stresses? This period of investigation led to more targeted research into the minimum diameter of tubing,
its wall thickness and its maximum length, whether or not square or round spacers were preferable and the tolerances introduced by the machine

After developing a better understanding of the CNC rolling machine, research shifted into the successful interfacing of the digital and physical realms. How to choreograph the optimal workflow became a crucial phase of the research agenda. This working process encompassed the translation of the pavilion out of the
design softwares Rhino and Grasshopper and into the structural engineering program SAP for finite element analysis (Fig. 3) and finally into Solid Works for analysis (ing. 3) and hinaly into Solid Works for
production. From there, discerning whether or not the

work of precision steel tube rolling, where each tube is unique, could be distilled into a repeatable fabrication process that yiielded predictabie results within acceptable
tolerances structured the next set of inquiries. With the fabrication phase regularised and the results at last project focused on whether the production process outlined above matched the final workflow used to execute it.

Working through design iterations

Healing Pavilion relied on numerous digital iterations and physical mock-ups to reach its final form. Scripted in Grasshopper, the parametric model facilitated rapid revisions between Ball-Nogues Studio and Buro Happold
Engineering. For the sake of expediting the structural Engineering. For the sake of expediting the structural during this phase. The engineers would identify initia undesired stress concentrations by running preliminary
analysis models and respond with sketches and three analysis models and respond with sketches and three dimensional model iterations. This feedback identified
where additional structural members might be needed and where certain areas would require reorientation of tubing and modifications of curvatures. Ball-Nogues Studio then adapted the digital model accordingly and
the structural analysis began again. The feasibility of the structural analysis began again. The feasibility of
fabrication played a principal role in the design process. In each design iteration, digital adjustments to the curvature of the tubes factored in the rolling machine's minimum radius
After digital analysis, the project's research methodology shifted into physical mock-ups to test the plausibility and difficulty of producing such expressive geometries. Working closely with the fabricator Plas-Tal Manufacturing (based in Santa Fe Springs, California) and their CNC tube-bending subcontractor, Caroll Racing Development
(Orange County, California), the Studio began testing one-to-one sections of the pavilion. This fluid interfacing and feedback loop between the physical and digital was not unique to the philosophy or working practice of the Studio, but still proved unusual in the number of
iterations needed to test different aspects of the design iterations needed to test different aspects of the de fabrication process, from curvature and assembly to finishes and beyond.
The fabricator chose the first area of the computer model for mock-up. This full-scale swatch proved successful for the least complex section of the form (Fig. 5), but what about the most complex? This frst mock-up provoked
more questions than it answered. Ball-Nogues Studio
$72 / 73$ picked an area (Fig. 3) with complex mitre joints and tight three-dimensional curvature to explore next. The result
this mock-up highlighted the CNC bending machine's capabilities and shortcomings, especially at tightradiused areas. Traces of the machine's handling pinches appeared every 10cm, exposing the incremental bending process and breaking the fluid reading of each curve, but it was especially evident on tight curves.
Before the process of bending tube steel was modernised Into a computerised system, each hollow section was
traditionally filled with sand to achieve maximum precision during hand-shaping. The sand acted to resist compressive forces and to keep the tube steel from collapsing. This same logic had to be introduced into the
contemporary version of the bending process. The Studio worked with the fabricator to develop a custom mandrel hat could fit inside the tubing and behave as a buffer during the bending, thereby softening the kinks. Accounting for this custom rod called for a special type of tube with a reduced interior weld. The typical way
of forming tubing involves rolling a sheet of steel into shape and then welding the seams from the outside. This welding technique results in a considerable mount of internal slag, which acts as a barrier for fitting anything inside and makes the process of working with
tube steel imprecise. By developing a more precise tub with minimal welding imperfections, a custom 3m-long od with the mandrel attached could then be inserted into he 3 steel tube to mimic the analogue process of

For the welding team to access their work from the ground during fabrication, the pavilion was made as distinct panels (Figs. 4 and 5) that could be positioned within reach of welders in the shop (Fig. 6) and connect seamlessly into one cohesive object. Certain panels
proved more problematic than others. These areas of concern included places of tight three-dimensional curvature and where tubing needed to be massaged into place by hand to weld.

Because raw tube is made in standard dimensions that are shorter than the length of most of the curves in the project, most tubes required splicing. The splices were -
Whether or not the physical results of the pavilion matched the digital model served as the main criterion for evaluating the outcome of the research. Healing
Pavilion was fabricated from 851 linear metres of Pavilion was fabricated from 851 linear metres of
5 cm -diameter mild steel tube with 3 mm wall thickness.

While the form and curvature of the pavilion oscillates and shifts, each tube and the space between each tube are always the same. In order to maintain a high level
of precision across the shell the tubes were assembled over large metal fixtures to ensure proper alignment and consistent spacing during welding. The fixtures were wateriet-cut from plate steel and welded to a single
base plate (Fig. 7). These fixtures controlled tolesal base plate (Fig.7). These fixtures c. by correcting the unavoidable discrepancies between the
ideal curvatures in the digital model and the rolled tubes. The question of how to control for deviation in the steel also influenced the decision to finish the pavilion with a coating of ceramic alumina applied by thermal flame spraying (fig.8). ins fishing technique was apppied by melting the constituent materials and then atomising
them with air. Developed for the non-skid tarmac surface of aircraft carriers, the finish has little precedent in architecture. Galvanising was ruled out because the size of the pavilion made it impossible to fit it in a typical bath; furthermore, the heat of gavvanising could have
distorted the tubes and therefore the shape of the shel. The granularity of the coating also masks minor welding imperfections and kinks that result from the bending process, further obscuring the footprints of fabrication.
In addition to finish considerations, the fixtures In addition to finish considerations, the fixtures
minimised the deformations in the tubes that typic minimised the deformations in the thues that typically
occur from the heat of welding. Mild steel has a level of springback when rolled, as it tries to revert to its original condition. To compensate for this movement, each tube had to be clamped and adjusted by hand to fit within the rigid fixture. Once the tubes were tack-welded into place,
2,544 square spacers were inserted to keep the cage in a state of tension (and sometimes compression) to avoid
deflection over time. With more than $3,000360^{\circ}$

a. Weldings spacers onto panell 13 3 while restingo
 7.Roled tubes being assembled on onc and assembled oncNC waterjet-cut ixture.
 8. Ceramic alumina finish oplication being applied by appication beinga, hermal spraying.
 .Phootgraph of the pavilion truck, easdy to bo be craned
 nages: Ball-Nogues Studio,

tructural fillet welds in total, each spacer standardise the distance from one tube to another and standardises he process points in the form and introduces a compelling patterning to the final design. The commercial project kept within its budget. This issue of budgeting limited the rounds and iterations possible during the engineering
phase. In spite of this back and forth between digital and hase. In spite of this back and forth between digital a model within less than 1 cm of deviation.
Hands-on problem solving and optimising digital design Healing Pavilion reconciles the output tolerance of digit machines with the allowable tolerances of the physical world. The project celebrates the concept of fidelity and hands-on problem solving. To translate ideal geometry
from a software environment into the tolerances inherent from a software environment into the tolerances inherent in the output of a numerically controlled tube bender
and then into a high fidelity final product meant that the machine's capabilities could not be taken for granted. Reading the available product literature would not answe he questions the project needed addressed. Instead, a specific machine had to be engaged with directly.
By building an intimate relationship with the tool. one could identify its capabilities. These understandings helped to craft and optimise translations between one software system and another, as well as to predict the physical ramifications of such digitally based desig
decisions. Some insights throughout he resarch decisions. Some insights throughout the research
nfluenced the digital aspects of the project, while others directly impacted its physical construction. In a few instances, the machine was pushed too far and certain and the computer, and offers a contribution to the field
of design and fabrication that use CNC tube rolling位 design created a calibrated interface for accurately automating the process of bending steel tubing. Designe as a surface and then adapted to the logic of a cage, the
final shape retains no superfluous elements. The pavilion final shape retains no superfluous elements. The pavilion defends its structural integrity without conforming to a
structural hierarchy. Each steel spacer and tube reflects structural hierarchy. Each stee spacer and tube reffects
an element through which loads and stresses flow, so the cage, once again, adapts to the performance of a shell.
A sinuous bench of solid Ine wood nestles info the A sinuous bench of solid Ipe wood nestles into the organic shading structure. The ambitious structural
endeavour never lost sight of the project's greater goal as a transporting space far removed from the stresses as a transporting space far removed from the stress
and stigmas associated with sickness. A space for sharing a moment with a loved one or simply sitting
in contemplation, Healing Pavilion combines rigorous in contemplation, Healing Pavilion combines rigorous client and context (Fig. 1).

MAGGIE'S AT THE ROBERT PARFETT BUILDING, MANCHESTER

home away from home

Located across Britain and abroad, Maggie's Centres were conceived as a place of refuge where people affected by cancer could find emotional and practical support. Inspired by the blueprint set out by Maggie Keswick Jencks, they place great value upon the power of
architecture to lift the spirits and help in the proces architecture to lift the spirits and help in the process
of therapy. The design of the Manchester centre aims to establish a domestic atmosphere in a garden setting.
The building is arranged over a single storey, the roof rising in the centre to create a mezzanine level, naturally
illuminated by triangular roof lights and suported by lightweight timber lattice beams. The beams act as natura partitions between different internal areas, visually dissolving the architecture into the surrounding gardens.
It was vital to create an atmosphere that would make visitors feel at ease, as if they were at home. The use of
exposed timber for the structural elements enabled the creation of a homely, domestic ambience throughout the centre, exploiting the warmth and softness of the material.

Using the practice's expertise in digital modelling and analysis, the structure is the protagonist - a cantilevered
timber wing 'tiptoeing' lightly over the site To that end timber wing 'tiptoeing' lightly over the site. To that end
much work was undertaken to assess how the design intent could be realised with contemporary materials an digital fabrication methods. Investigations were carried out to explore the structural optimisation potential in minimising the material used. For the construction,
an Airfix an Airfixm (Airrix, 2016) analogy was deemed desirable facilitating quick erection.
The result is an innovative use of a traditional material, taking advantage of complete fle-to-factory process to provide the driver of the building aesthetic.

Making design match functio

Functionally, the building is laid out to provide accessible open spaces along either side of a central zone: publich spaces to the west, with the more private cellular spaces on the east. The centralised horizontal core houses the

mezzanine deck. The southern end of the building extends to embrace a greenhouse - a celebration of light and nature - which provides a garden retreat, a space for
people to gather, to work with their hands and enjoy the therapeutic qualities of nature and the outdoors. It is a space to grow flowers and other produce that can be used at the centre, giving he patients a sense of purpose

Throughout the centre there is a focus on natural light greenery and garden views, with a warm material palette This spatial arrangement naturally led to a structural ystem where the primary support, a series of 17 identical spine, with a propped cantilevered roof on either side Slender steel columns just beyond the facade make the entire structural system more effcient. These elements significantly reduce the bending moment in the overhead of the glass in the roof lights (Fig. 5).

Timber is the natural choice for this type of structure not
mparison with steel. A propped cantilever benefi from exactly these properties - high strength for the
large central bending moment, with low relative stiffness accounted for by the prop.

A more conventional approach might have used a
glulam beam, although high self-weight is a drawback of this type of construction, resulting in large and heav sections. In contrast, digital fabrication has allowed the
timber to be provided exactly where required - at the to and bottom flanges for tension and compression - and the minimum material in the web to provide adequate shear transfer. Any portion that is superfluous to structural rquirements has been removed

Challenges and question

Wood-based I-beams have many advantages, displaying high stiffness and strength for their low weight (Hermelin 2006), and sustainably sourced timber has the added benefit of being more environmentally friendy than
steel. The design intent and structural analysis inferred that the beam webbing could have a number of openings such that the structural behaviour is reflected in its form and materials. It is relatively easy to cut holes in timber webbing, further reducing the weight of the beam.
However, the effect of this is to reduce the shear capacity of the member. A central issue was the study
ff the webbing shear capacity and how this was factored of the webbing shear capacity and how this was factors.
into the manufacturing of the Maggie's timber beams. The choice between CN C -machined timber beams or The choice betwe While handcrafted beams would permit individual web members to have their grain aligned to the forces they would experience, thus providing a clearer load path, the longer manufacturing time and the need for multiple
connections between each diagonal proved prohibitive. Although digitally fabricating beams from an engineered timber such as laminated veneer lumber (LVL) meant that the grain orientation was fixed for each web membe requiring a denser web configuration, the faste manufacturing time, increased timber grade and ability
to easily and accurately produce complex geometry was to easily and accurately produce complex geometry w
deemed far more beneficial to the project. This also helped to achieve the objective of an offsite fabrication onsite assembly project
The greenhouse 'cockpit' at the southern end of the building presented another structural challenge. In strong winds, the building would rack up to 15 mm

of the cockpit unintentionally acted to prevent this deflection, placing more load on the greenhouse timber hus shattering the glass. Thicker members would rende the cockpit structure visually distinct and heavier in comparison to the rest of the building, and the option of making it an entirely separate structure was also
deemed incompatible with aesthetic aims. Resolving this deemed incompatible with aesthetic aims. Resolving this
structural conundrum satisfactorily was critical to the success of the project and is outlined later in this paper.

Physical prototyping and seeking solutions

An integral aspect of the practice's working methods since its inception, physical prototyping was a key part
of the design process. Full-scale elevations of the 8 m of the design process. Full-scale elevations of the 8 m
imber beams were printed on paper and hung in the studio. The in-house 3D printing facilities produced many options of node, truss and beam details at multip scales. Model makers created versions of the entire
structure as well as focusing on details, again operatin at many scales. Three $1: 1$ prototypes of the key triangular node were produced for evaluation purposes: one by he Foster + Partners' Model shop team, and two by AG and Merk Timber. Upon appointment of Blumer Lehmann $A G$, an entire full-size mock-up of the final truss was produced. Testing even extended to 3 D printing
foot of each column. These prototyping methods were invaluable, as the process fred the fing full-sca

The main timber structure is formed by a series of portal frames pinned at the base, with Y -shaped branches forming the apex. The frames carry both gravity and
lateral loading in the transverse direction Connection between members are achieved drection. Connection between members are achieved by means of hidden
pre-embedded steel flitch plates (Fig. 3) with bolts and screws as fasteners (Bangash, 2009). Linear elastic static analysis in Oasys GSA (Oasys, 2012) was carried out for the basic load cases and superposition used to assess the load combinations.

An analysis of the stresses caused by wind load (sideways) and snow and dead loads (vertically) indicated where the timber could be optimised. The beams thus have a top and bottom flange, and diagonals through the web, which vary in density as the shear force varies along the sec
(Munch-Andersen, J. \& Larsen, H. (eds.), 2011 . The
trusses taper in elevation as the bending forces reduce towards the cantilever tip, through the column to the pin connection at the ground and at the central node above
the spine. This taper provides the slope of the roof. The bottom flange of the beam varies in width, reflecting the structural demands upon it. This can be seen in the contouring of the LVL layers on the bottom flange. of minimum bending moment, the web also incorporates
openings such that where shear demand is low, a higher openings such that where shear demand is low, a higher percentage of material is removed, and vice versa
(Williams, 2008). For a given web thickness, the she demand was transformed into a net area required at each demand wa transformed ingo a net area required at eac material's capacity (American Foster \& Paper Association, 2000). The analysis undertaken demonstrated that a trellis-like geometric arrangement would be suitable,
and a script was created in Rhinoceros and Grasshopp that generated the webbing geometry. In the final design, the webbing is solid as the beam crosses the building envelope. This also provides greater support for the hogging moment above the steel prop

There was much experimentation with the form of the webbing in the trusses. One option was explored that aligned curved timber members to follow the tension and compression stress lines within the beam. This would allow the members to work mostly axially.
Despite producing an intriguing outcome, the fabrication constraints were judged too great, although this work has informed a separate research project currently being undertaken by Foster + Partners' Specialist Modelling Group.

A simpler solution was settled on whereby the truss webbing is made from a pattern of straight elements whose frequency varies to match the material required to resist shear forces. As the shear force increases, the area of materiar required to counter it increases. The
angle of the roof means that the available cross-sectional area of the web decreases along its length, which creates a varying percentage of webbing that must be solid. Integrating this curve gives another curve whose slope is the required density. Distributing points evenly along
this second curve and projecting them straight down defines the nodes of the struts. As the spacing varies, the angles change accordingly, ensuring the requisite amount of cross-sectional material is provided.
The node that links the beam and column trusses is a key connection in the entire structural system. It is at this node that the vertical loads from the roof - its self-weight and the snow loads - are transferred to the columns and subsequently down to the ground.
Simultaneously the node acts as a fixed portal frame Simultaneously, the node acts as a fixed portal frame
haunch to provide the rigidity required to resist the horizontal wind forces acting across the structure and bring these forces down to the ground as well. The forces
at this critical connection resolve themselves into a set of
pure axial stresses around the triangle, which provides the required
of i is form.
Each timber lattice truss is comprised of four CNC Each timber lattice truss is comprised of four CNC
machine-cut pieces that are glued together offsite
to form one of the elements assembed to form one of the elements assembled onsite as the
complete of the 5 portal frame. Understanding the abilities of the 5 -axis milling machine at Blumer-Lehmann's size, cutting speed and cutting angle all informed size, cutting speed and
final design decisions.

Offsite construction was essential to produce structural
elements that were highly finished, precisely fabricated elements that were highly finished, precisely fabricat
and could be assembled without need for tolerance and could be assembled without need for tolerance
adjustment onsite (Fig. 4). The process was also costadjustment onsite (Fig. 4). The process was also cost-
efficient and enabled rapid and predictable construction to fit within the tight programme.
The greenhouse cockpit problem was resolved using The greenhouse cockpit problem was resolved using
Oasys GSA, Rhinoceros and Grasshopper. A viable solution was devised whereby the two cockpit supports cater fored on springs, allowing vertical movement to utilises a cantiling of the building. The final solution utilises a cantilevered sprung RHS beam to support the cockpit. When the building racks in strong wind, the
cockpit is free to move vertically so as not to absorb load from the building.
Benefits of 3D modelling and CNC manufacturing
The project required close collaboration between multiple teams at Foster + Partners and the contractors involved. The firm's Specialist Modelling Group produced geometry with Rhinoceros and Grasshopper, which was analysed by the in-house structural engineering team
using Oasys GSA, all the while liaising with Blumerusing Oasys GSA, all the while liaising with BlumerAluminium to ensure that architectural aims were met and manufacturing constraints were incorporated. The interaction and dialogue between designers and contractors was key - learning and understanding the
limitations of the cutting equipment so that the design limitations of the cutting equipment so that the design
intent responded creatively to the manufacturing proces. The back-and-forth of $3 D$ information helped the design The back-and-forth of 3D information helped the design
and construction process, with CAD models shared from architects to contractors and vice versa for review.

The diagonal arrangement of the trusses in plan across the central spine enables the primary timber structur to provide stability to the roof without the need for any
additional bracing elements or stiffeners. The roof can
4.The final trus of the
first o orata frame is
4. The finaltruss of
instoratal
instaled od onse is.
5. The laticice trusses and
skylights allow plenty of
skriegts allow plenty
kght int othe building.
Images. Nigel Young/
Foster + Partrers.

80/81 act as a single diaphragm, transferring the wind loads into the trusses, which provide rigidity as a portal frame across the building. Along the length of the building, he diagonal trusses deliver load into the spine. In this way, the building's structure directly reflects the forces

The timber structure is sustainable and tactile, and o a tight budget. The CNC-crafted VL lattice beams are constructed from Kerto, a Metsadood product.It is made from 3 mm-thick
rotary-peeled softwood veneers that are glued together The spruce is sustainably sourced, using whole logs in the manufacturing process, with consequently minima waste. The waste material generated by the milling of the trusses is used as fuel to heat Blumer-Lehmann's factory
space (Fig. 1).

Removing material from the beam's webbing resulted in a truss that was a third the weight of a similar solid glulam beam. The behaviour of the web as affected by the removal of material was further investigated by a
number of finite element analysis models in Oasys GSA in order to assess the maximum and minimum principal stress and the shear stresses at various locations in the web. These stresses conse strengths (ETA, 2010).

The use of 3 D modelling and CNC manufacturing has unlocked new methods of working a traditional materia Crafting timber with these modern tools has resulted in
an expressive structure that celebrates connections an expressive structure that celebrates connections and garden trellis (Gould, 2001).
A successful exploration of material qualitie The product of the twin desires of design intent nd structural requirements, the Maggie's Centre in Manchester continues the long history of actively
integrating the two within Foster + Partners' work.
With a focus on the process of design evaluation through full-size mock-ups and prototyping, using
the full range of capabilities at the firm's disposal, the nature and fabrication of the final structure was evaluated at every step of the journey. Timber was chosen as the primary building material for its warmth
and sculptural qualities, giving the building unique and sculptural qualities, giving the building unique
scale, depth and texture. There is no attempt at cladding or concealing the distinctive structure; the building is an open, honest exhibition of the material and its
biophilic qualities. biophilic qualities.

The use of advanced manufacturing technologies allowe new ways of exploring the expressiveness of the material to be investigated. The exchange of 3 D CAD models between teams within the office and external contractors for architectural, structural and fabrication review was
also vital to the proiect's success and contributes to a so vitaltorne project sucture that is entirely digitally fabricated using a file-to-factory process.
The project combines fundamental design philosophies dry construction and the benefits of speed and quality that this process offers - with modern digital simulation and manufacturing technologies. The result is an innovative lightweight structure and therapeutic space that is a celebration of light and nature (Fig. 6). Project Credits
Architects: Foster + Patters: Norman Foster, David Nelson, Spencerde
 Elisa Honkanen
Client Maggies
Structural engineering: Foster + Partners; Roger Ridsdill Smith, Andrea Soligon Structura engineering: Foster +P Patners: Roger Ridsadil Smith, Andrea Soligo Environmental engineering: Piers Heath, EVargelos Giouvanos, Nathan Millar
Fire engineering: Thourial stephan, Michael Woodrow Landscape: Dan Pearse Timber fabrication: Blumer-Lehmann AG

Site ara: 1.1922 na
Builtarea: 50 m

Airifi. 2016, Aififixavailable a thtrop///www.arfix.com (accessed 1 October 2016 Ameician Forest\& Papaer Association, 2000, Notitional Desigin Specitication: Bangash. M.Y.., 2009, Stucuctural Detaliing in Timber, Dunbeath, Whittles
publishing

1 -shoped C
Forestia As

 ..(eds), 2011, Timber Stuctures - a Rev Munch-Andersen, J. .and Las
of Meeting $1-43$, CIB Wi8

Oasys Sofwtare, 2012, ©SA Version 8.0 Computer program, avaiable frio
Williams, PA., Kim, H.A., Butter, R, 2008, 'Bimodal Bucking of Optimised

6. The Manchester
Maggies Centre at usk

INFUNDIBULIFORMS KINETIC SYSTEMS
ADDITIVE MANUFACTURING FOR CABLE NETS AND TENSILE SURFACE CONTROL

wes mcgee

University of Michigan, Taubman College of Architecture and Urban Planning I Matter Design
KATHY VELKOV / IEOFREY THON/ University of Michigan, Taubman College of Architecture and Urban Planning IRVTR

The work of the Infundibuliforms project aims to advance
research in lightweight kinetic surfaces as systems that research in lightweight kinetic surfaces as systems that
have the ability to create spatial enclosures with minimal have the ability to create spatial enclosures with minim
amounts of material and that are capable of dynamic reconfiguration. This paper describes the iterative research and full-scale prototype evaluation of a cable-robot-actuated, geometrically deformable elastic net that
has been developed through close coupling between has been developed through close coupling betwee geometric explorations in computational spring-based
physics solvers and experimental additive manufacturing techniques for net- or mesh-based structures. The title of he project refers to the catenoid forms that define the geometry of a surface, the term 'infundibula' is most biotic systems and plant morphology.

The work advances three parallel trajectories in
omputational, fabrication and geometric research:
The development of dynamic models to both simulate
and control the operation of a physical tensile system in real time.

Advancement in tools and methods for robotic of thermoplastic elastomers for tensile surfaces.

A geometric methodology for developing cable nets using spring-based simulation methods.
Central to the work of this project is the development of integrated 1:1 prototyping to assess the interaction among elative to the simulations (Fig. 1).

The Infundibuliforms project spans three distinct esearch contexts that have been brought together
within the scope of the work. within the scope of the work: kinetic systems, elastic
cable net surface development and control and additive manufacturing. Each has a specific history and body of research literature, and part of the innovation within this project has been to combine these areas in the integrated develophent of eprocel. Each also advan

Kinetic systems

Traditionally, architecture has been primarily concerned with static structures that aim to attain stability and equilibrium states. Since the middle of the last century,
however, there has been increased interest in adaptable structures that would involve motion systems, or what Frei Otto and his researchers at the Stuttgart Institute for Lightweight Structures preferred to call 'convertible'
structures (Otto, 1972). Lightweight systems such as structures (Otto, 1972). Lightweight systems such as
tensile structures and inflatables are appropriate for convertible or kinetic structures, since they can be readily deformed at a low energetic cost. More recently, there has been an increased interest in kinetic architectures. However, the majority of this research and development
has been at the scale of individual kinetic components, has been at the scale of individual kinetic components,
such as actuated surface elements or tessellations as components of responsive envelope systems (Lienhart et al., 2011, Khoo et al., 2011, Thün et al., 2012, Adriannsens \& Rhode-Barbarigos, 2013). At the larger spatial scale, while he industry has advanced technologies and techniques
for convertible textile and membrane roofs there still remains relatively little exploration into actively deformable dynamic surfaces. Kinetic, deployable and reconfigurable architectures are areas of research still very much in their infancy, and the advancement of these areas requires simultaneous experimentation with
materials, formal exploration, design tools and methods of manufacture, especially in cases where these systems are automated with mechatronics, robotics, communication protocols and control systems.

Additive manufacturing
Additive manuacturing, commonly referred to as 3 D printing, has been rapidly advancing the capability of manufacture materials and surfaces with complex geometries and materially programmed performances and is quickly opening up novel formal, structural and performative possibilities for architecture (McGee \& Pigram, 2011, Keating \& Oxman, 2013 , Helm et al., 2015).
In the case of tensile and membrane structures, additive In the case of tensile and membrane structures, addi
manufacturing offers the possibility manufacturing offers the possibiilty of developing
composite surfaces with programmable material composite surfaces with programmable material
behaviours while also exploring novel performative geometries for net structures (Coulter \& Ianakiev, 2015)

Tensile cable net surface design and control

and control

 structures and are comprised of flexible and non-rigid materials. As their final shape is not known a priori but depends on factors such as boundary conditions, stressdistribution distribution, material stiffness and grid topology, ther has been extensive research into methods for form-
finding, or the process of generating the optimal structural and visual configuration (Bletzinger et al, 2005, Wagner, 2005, Veenendal \& Block, 2012). While there are several analysis tools for refining
form-active structures, there are few tools availabl form-active structures, there are few tools available
to designers for the creation and rapid assessment of novel structural forms. In this area, particle spring-based systems, which simulate live physical forces, have been explored by a number of designers (Killian \& Oschendor 2005, Ahlquist \& Menges, 2010).

Live-interaction 3D modelling tools, such as the Kangaroo plug-in for the Grasshopper extension of Rhinoceros, use particle spring systems to simulate physical forces and constraints. These tools allow
designers to experiment with far more agility in form generation for the development of non-linear structura systems. Additionally, open source tools, such as the ShapeOp library, enable the extension of these formfinding techniques into larger, more complicated and more robust computational models (Deuss et al., 2015) This ability for the model to update at a relatively
rate is essential for work in kinetic systems, and especially so when sensing and interactive behaviou are implemented into the control framework.

Research questions

The primary research question of this project was how
to advance the integrated design and control of kinetic oadvance the integrated design and control of kinetic lightweight architectures actuated through 3 D cable
robotics. Within this larger framework, several subquestions have been advanced.

Digital design environment: what new hardware an software interfaces can be developed that would control of a kinetic tensile system directly from the physics engine-based simulation model?
Robotic 3D printed cable nets: is it possible to reliably 3D print lightweight and deformable cable net elastomers? How would these surfaces perform under load and what are their formal potentials?
Flat-to-form geometric method: given the 3D printing Flat-to-form geometric method: given the 3 D printi
manufacturing technique chosen, the geometric
challenge of this project was to create an elastic net geometry that could be extruded onto flat surfaces and that could then be stretched into anticlastic forms. Another research question was whether the
surface topology could be manipulated to achieve surface topology could be manipulated to achieve
variable elastic behaviour in order to attain more specifically tailored forms which diverge from purely (mathematically) minimal surfaces.

Research methods

 One of the goals of this research has been to develop physics-based simulation model that could control the operation of the dynamic system in real time. Typica machine control systems only consider kinematics,loosely defined as 'motion parameters'. In contrast, dynamic simulations consider the time-varying phenomena and interactions between motions, forces and material properties. Dynamic simulations are
increasingly being applied in robotic control applications increasingly being applied in robotic control applications,
and they have the potential to more accurately predict the

${ }^{3}$ true state of the system, creating a 1:1 relationship between the physical system and the simulation.
The work developed a custom code written for the Grasshopper extension of Rhinoceros which utilises the Kangaroo physics engine to actively visualise possible forms of the tensile surface. Additionally, a Grasshopper code was developed to allow Ethernet-based environment and the TwinCAT motion control software which governed the operation of the motors.
Using the TwinCAT industrial platform has a number of advantages over more commonly used microcontrollerwhich is standardised across all industrial control systems, as well as the PLCOpen standard, which supplies hundreds of typical motion blocks. This makes
the system inherently scalable and portable to other platforms that adhere to the standard (virtually all industrial control manufacturers do so). Additionally, tt provides a high performance, allowing cycle times for the system to be in the sub-millisecond range, giving twinCAT also supplies an API (application programming interface), which allows for the easy development of a Grasshopper plug-in to allow Ethernet-based communication between the physics simulation/design environment and the controller, enabling the possibility
of fluidly exploring virtual and physical prototyping of fluidly exploring virtual and physical prototyping
and operation of deformable structures (Fig. 2). These advancements in the computational simulation and control environment greatly expand the options available
for designers. control envir
for designers

Robotic 3D printed cable nets

order to produce the tensile surface, the team pursued

 the fabrication of a monolithic elastic net fabricated (TPE). To enable the manufacture of the surface, an existing polyolefin extruder was modified to be servo-driven and mounted to a 7 -axis robot (Fig. 3).The design included a specialised hopper for pelletised thermoplastics to feed the pellets into a screw-driven extruder. The SuperMatterTools robotic control software, co-developed by author Wes McGee (Mcgee \& Pigram, 2011), was used to direct the toolpath of the robot. The liquid TPE is deposited onto a heated $1,200 \times 2,400 \mathrm{~mm}$
aluminium bed to facilitate joint fusion and then allow for controlled cooling into a monolithic textile surface (Fig. 4)
For the purposes of this project, research had to be undertaken into materials that had high elongation and are a physical mix of thermoplastic and rubber. Like mos thermoplastics, they have the potential to be recycled and reused. They are available in a broad range of durometers
and melt flows. The melt flow index is a measure of the visce melting region. TPEs were tested across a range of melt flows in an attempt to balance the characteristics of the extruded bead with the ability to produce a void-free crossing joint in the mesh. A material with low melt its consistency in processing while maximising the deformation potential of the surface. The use of extruded TPE as the surface material allowed for unique discoveries and a novel geometric approach

$$
\begin{aligned}
& \text { 3.Custom robotic } \\
& \text { themoplastic exturu }
\end{aligned}
$$ thermoplastic extr

end effector.
P. Pobotic extus ion
of TPPon on x ftit themally controlle
surface.
5. Geomentic methodology
to defive a fitat printed toderve a alatpritited
tailored cable net mesh labovel and 30 Diritinga
specificsection of the mest specticicsection of
nTPE (below).
Images: ${ }^{\text {RVTR/ }}$ Mater Design 2016

Flat-to-form geometric method

 This project sought to create an elastic cable net geometry that could be extruded onto flat surfaces and forms. Working with the elastic stiffness articameters for the mesh springs, and based on the actual behaviour of the extruded TPE strands, iterative dynamic relaxation in Kangaroo was used to simulate how the final mesh would deform when loaded. As has been noted previously, meshtopology has a profound influence on the behaviour of topology has a profound influence on the behaviour of
the loaded form (Hernandez et al., 2013). Physics-based simulations between a base quadrilateral mesh versus a diagrid mesh indicated that the diagrid mesh would achieve the more acute funnel-shaped forms that were desired for the project. The difference in performance
between the quad and diagrid meshes is due to the fact between the quad and diagrid meshes is due to the fact that, in the case of the diagrid, the mesh edges carry
loads from ring to frame in both directions. The load paths spiral around the ring, producing more paths spiral around the ring, producing more
dramatically curved catenoid forms upon stretching,
as compared to the conical forms created with the quad as compared to the conical forms created

The question of how to achieve further tailoring of the stretched forms was approached through the basic principle of introducing a curve instead of a line between two nodal points, so that a greater working length und
loading could be achieved. By setting a target length derived from the loaded mesh form, it would therefore be possible to control the resultant length of every individual mesh edge, making it possible to programme range form into the flat pattern. Using Kangaroo's spring-based
physics, the desired edge length of each vertex of the mesh is 'grown' (the edge difference was slowly stepped up from the $2 D$ length to the $3 D$ length by iteratively increasing a multiplier value from 0 to 1 by o.or each time
while dynamically solving the physics simulation) while dynamically solving the physics simulation) into
he geometry of the line. The scripted equation used the geometry of the ine. The scripted equation used
was: edge length $=\left(\mathrm{i}^{*} \Delta \mathrm{~L}\right)+2 \mathrm{D}$, where i^{\prime} is the iterative multiplier from 0 to 1. Limitations were programmed into the model to more reliably approximate the physical
behaviour of the welded connections produced by the behaviour of the welded connections produced by the robotic extrusion process, and a colinision avoidance
component was integrated to maintain the mesh topolo and account for the physical properties and dimensions of the extruded TPE bead (Fig. 5).

As test prototypes showed, the process works in concert with the material's inherent flexibility, so that when loaded the programmed curves straighten into lines and then relax
back into curves when the load is removed, helping the back into curves when the load is removed, helping the
mesh to maintain tension across a number of different states.
d.

Research evaluation
The work of this project identifies the prototype as the primary mode of evaluation within the 'knowledge-based design' (Coyne, 1990) methodology of this project. The only alle installation of the Infundibuliforms project not only allowed the team to test the complex interactions
between mesh geometry, its fabrication the cable between mesh geometry, its fabrication, the cable robot operation and the design and control environment, but
also introduced additional design and implementation frameworks that became productive feedback for the iterative development of the research
The prototype installation consists of a $28 \mathrm{~m}^{2} 3 \mathrm{D}$ printed TPE cable net surface spanning between an outer ovoid ring and three weighted inner rings. Due to the scale of
the installation and the manufacturing constraints of the extrusion bed, the surface was subdivided into panels
that could be individually fabricated and would then that could be individually fabricated and would then
mated at the seams. To increase the tension at the mated at the seams. To increase the tension at the
perimeter, as well as between the individual catenoid the mesh was subdivided into smaller cells with less curvature between nodes, decreasing the amount of deformation in these areas and increasing the curvature
angle of the catenoid. Conversely cell size and internod angle of the catenoid. Conversely, cell size and internoda
length were increased closer to the inner rings, enabling greater elongation of that portion of the catenoid. This method allows for formal refinement of the surface
aspects of the mesh geometry, fabrication method, motor design and control were refined and reworked, making most significant changes between the first and second prototypes was the redevelopment of the mesh geometry
to produce more dramatic funnel-shaped forms, as well as the introduction of a reinforced saddle zone between the the introduction of a reinforced saddale zone between the
control ring zones. This zone is extruded with a harder, control ring zones. This zone is extruded with a harder,
stiffer TPE material (Shore A hardness of 68 , compared to 35 for the rest of the piece) and is intended to maintain
tension through the middle of the piece to limit selfload tension through t.
deflections (Fig.7).

Future directions

The increasing capacity for designers to use robotic manufacturing techniques in order to programme manufacturing techniques in order to programme
performative capabilities into materials has the potential to expand new possibilities for architectural geometries and physical forms. This paper has presented a novel
fabrication and geometric cevelopment coupled with fabrication and geometric development coupled with
a form-control method for elastic net surfaces that is a form-control method for elastic net surfaces that is
informed by material feedback and the advancement of additive manufacturing techniques for such surfaces. In addition, this work has begun to advance the capabilities of real-time simulation models that can communicate with industrial control systems for dynamic architectures Within this specific project, it is also possible to identify a number of areas, both immediate and more distant,
that may be pursued with further work. These include:

Empirically verifying the fidelity of the physical Empirically verifying the fidelity of the physical
prototype to the computational model by 3 D scanning the prototype (such as through LiDAR technology). Since the dynamic computational model is also used
to directly control the positions on to directly control the positions of the individual motors, there is confidence that the spatial location
of the inner and outer boundary rings is true. What is less apparent is the geometric accuracy of the surface, relative to the simulation.
The inclusion of sensors to enable closed loop interactivity with the system. The industrial PLC discrete sensors, but higher-level systems (such as depth map cameras like the Kinect) which integrate with the computational model though an API are also a possibility for future exploration.

With this framework, this research has attempted to move toward the integrated development of large-scale kinetic material systems for architecture.

Project Video: htps://vimeo.com/173666499 Acknowledgements

Fabrication assistants: Asa Pelere, Dustin Buugman, Andrew Kremers,

 technical partners: Buckeye Polymers, Industrial fabicicating SystemsFunding: Taubman College of A Achitecture and U Uban Planning: 2016 Research
Through Making Programme, Uniesity of Michigan Office of Research: Small hrough Making Program
fojects Grant. References

 Aending-Active Systems Using DI | Commosite |
| :---: |
| p.51-6s. |
| . |

Coulter, F.B. and lanakiev, A, .2015, 4D. Printing ghflatable Silic

 Publishing Company.

Keating, S. Sand Oxman, N., 2013, Compound Fabication: A Multi- Function

McGee, W. Wand Pifram, D. D . 2011 , Formation Embedded Design: A Method for

Otto. F.edd), $1972,1 / 5$ - Wandellore Dacher/Convertible Roofs. Miteilunge
des institut
Veenendaal. D. and Block.P., 2021:An OUerview and Comparison of Stuctur

Velikov, K. and Thin, G G. 2014 , Towards an Architecture of CYber-Physical
 Makeques, evolololActarD, p,330-341.
 Note

A previous version of this introductory text was published in Velikov, K,.
Manninger, S. del Campo. Frontiers: Projects Catalog of the 3 3th Annual Conference of the Associatio Frontiess Pripiects Catalog of the 36th Annu
for Computer Aided Design in Architecture

ROBOTIC INTEGRAL ATTACHMENT

CHRISTOPHER ROBELLER/YVES WEINAND
Laboratory for Timber Construction IBOIS - EPFL
VOLKER HELM / ANDREAS THOMA / FABIO GRAMAZIO / MATTHIAS KOHLER
Gramazio Kohler Research, ETH Zurich

Integral joints provide a rapid, simple and mechanically strong connection between parts. Our investigation focuses on the assembly of cross-laminated wood ve strength of through-tenons is equivalent or superior to state-of-the-art fasteners such as screws or nails. This mechanical behaviour is highly dependent on a precise

However, the manual assembly of such tight-fitting joints can be complicated. Thanks to its rectangular cross-section profile, a single through-tenon joint is a sufficient assembly guide for an entire plate, but multiple strong connection. This results in a kinematically over-constrained assembly motion (Mantripragada et 1996). Additionally, due to fabrication- or material-related tolerances, the joints can be too tight-fiting and manu
assembly motions deviat from the precise insertion assembly motions deviate from the precise insertion of tight-fitting joints, especially with larger parts at a building scale (Fig. 1). This requires high forces to be overcome.

Rather than leaving gaps between the parts, which presents one solution for the manual assembly of such systems, we investigate the idea of assembly using an
industrial robot. The robot allows for a more precise assembly motion and the application of higher forces in the direction of assembly. The aim of this research is to use these benefits along with the compressibility of wood for the assembly of oversized tenons. While in
regular through-tenon joints the width of the tenon is regular through-tenon joints the width of the tenon is
equal to the width of the slot, the oversized tenons in this paper are slightly wider than their slot parts. This assembly will require a certain insertion force, squeezing the tenons int the holes, but the resulting connection will be tight-fitting without any gaps.

Robotic assembly
Robotic integral attachment demonstrates the advantages of combining robotic assembly (Helm advantages of combining robotic assembly (Helm et through-tenon joints. Both methods are used to facilitate the assembly of complex architectural designs, such as
freeform shells and space frames. While integral freeform shells and space frames. While integral

attachment embeds the instructions for manual assembly into the form of prefabricated components (Fig. 2) (Robeller, 2015), robotic assembly integrates the assembly logic into the robotic positioning procedure (Gramazio et al., 2014). the combination

The two main benefits of integral joints for the desig of timber plate shell and spatial structures are their o-calied locator and connector features. Locator features, in the form of the joints, reduce their mechanical degres,
of freedom and therefore also the relative motions
between the connected parts. This allows for the
indication of the correct alignment and position of parts
to one another. While some joint shapes, such as finger to one another. While some joint shapes, such as finger
joints, will reduce the mobility of parts to three degrees of freedom and perform as partial assembly guides, othe oints, such as through-tenons, will reduce the mobility of parts to only one insertion direction and perform as fuly
integral assembly guides.

Integral mechanical attachment allows for a simple, fast and precise onsite joining process. It transfers the complex and of of thous aspect of assembies into the
prefabrication of this is made possible through computational design and automatic prefabrication technology. As a consequence of such improved joining strategies, more complex shapes can be efficiently produced and assembled. Robeller and Weinand (2015)
provided an example in which a singly-curved folded surface structure using equally shaped parts and regular joints was compard
structure with individually shaped plates and integral joints. In a simulation, deflections were 39 percent lower on the double-curved structure, due to the integral joints.
At the same time, integral joints improve structures of connectors. Roche et al. (2015a) showed that the shear strength of finger- and dovetail-jointed plywood plates is similar to the shear strength of screwed connection Li et al. showed that the connectors can be combined al. (2015b) compared the rotational stiffness of joints at ridges, demonstrating the particular strength of through-tenon joints.
Aiming at the automated assembly of timber plates and the elimination of any gaps that would reduce the
stiffess of the joints, the main question was to ascertain stiffness of the joints, the main question was to ascertain
what forces would occur during the insertion of throughtenon joints, both with and without oversized tenons.
Further questions arose due to the fact that, during the assembly of timber plate shell or folded plate structures, multiple joints must often be inserted simultaneously. These were: how the insertion forces on individual joints could be reduced through modifications in their form how the forces would add up during such multi-joint
assemblies: and how insertion forces and possible wedging could be reduced through custom-built vibration-inducing robot end effectors.

What force is required for the insertion of a through-tenon joint?
through-tenon joint?
What force is required for the insertion of a through-tenon joint with oversized tenon? Can the effect of wedging be reduced through optimisations in the form of the joints? automated robotic assembly?

Experimental set-up

The robotic assembly of elastic and plastic throughenon joints for cross-laminated wood veneer plates was examined through physical assembly experiments.
Using 40 mm -thick beech laminated veneer lumber (LVL) plates and a tenon width of 120 mm for all specimens, different joint shapes and parameters were tested.
Elastic joining techniques like cantilever snap-joints an consumer electronics or the automotive industry (Messler, 2016). They can be generally applied to elastic materials. The application to cross-laminated wood et al., 2014).

Plastic joining techniques are also commonly used in various industrial applications, especially in the form of press-fit or friction-fit joints. A well-known example using netal materials is staking, where nundersized boss in regular-sized hole is expanded through a staking punch
The resulting radial expansion will cause a physical interference fit between the two pieces. Metal screws Work in a similar way: the thread of the screw creates a large friction surface, while pressure is applied through its inclination and rotation. In addition to the friction
interference, the elasticity of the material plays an important role in plastic interlocks, too. Through the press-fit, the parts of the joint are squeezed. The elastic ecovery force will apply pressure on the contact surfaces,

The primary purpose of the plastic and elastic timber plate joints in this investigation is to eliminate gaps, which may be required for the assembly of joints. The regular rigid joints were added as a reference for through a press-fit assembly of tenons that are slightly wider than their slots. Multiple series of specimens we tested, where the tenon oversize was increased in small steps: $0.05 \mathrm{~mm}, 0.10 \mathrm{~mm}, 0.15 \mathrm{~mm}, 0.20 \mathrm{~mm}$ and 0.25 mm . During the insertion of the joints, the oversized tenons
should be able to ft into the slots primarily due to the material compressibility on the rigid-type throughtenons, and predominantly due to the material elasticity on the elastic-type through -tenons. Here, cuts along the entre line of the tenon allow for lateral deffections during the joint assembly

Due to the centre line cut on the elastic through-tenons, heir shear strength will be greatly reduced in comparison
or rigid versions. However, the elasticity was also
expected to greatly reduce the required insertion force. such elastic joints may be particularly interesting in , features while requiring reduced insertion focces

The primary challenge in the assembly of the oversized joints is the so-called effect of wedging, where a friction interlock is established between the two parts during the insertion before the final position is reached. This occurs due to tolerances in the size of the parts, resulting fro
fabrication imprecision or dimensional changes due to changing environmental conditions, as well as imprecisions in the assembly motion, which must follow one precise path in the case joints, such as the through-tenons.

It was expected that the wedging could be reduced through a small inclination of 1° on the small contact faces across the edge on the through-tenons and on the
slots. We can achieve an inclination on these faces usi ats. We can achieve an inclination on these faces using cutting of the slot part. However the other two contact faces along the edge of the joint cannot be inclined, as those lie on the top and bottom of the cross-aminated wood plate and canno be easily cut without turning and re-clamping the work pieces.

or

For all assembly tests, a-axis industrial robot with a maximum payload of 150 kg and an additional seventh inear axis was used to insert the through-tenons (Fig. 3)
In the first series of single-joint assembly tests, the slot plates were fixed to a concrete block. The insertion motion was then carried out parallel to the robot's
additional linear axis for the single-joint assembly tests.
A custom end effector was built with an integrated force ceasurement device, from which the pressure values were recorded during the assembly motion.

Following the first series of single-joint assembly tests, the assembly of multiple joints was tested on six full-scale with the computational tools presented by Robeller and Weinand (2016).
The multi-plate robotic assembly experiment investigates the offsite robotic assembly of prefabricated segments,
which would fit on standard-size trucks for transport to which would ition standard-size trucks for transport to
the construction site. With such a prefabricated assembly 85 percent of the total edge joints in the case study roof would be assembled automatically with robots, while the remaining 15 percent of the edges must be joined onsite

The main challenge in this multi-plate assembly experiment was the cumulative force required for the
insertion of entire plates, as well as an increased effect
of wedging due to the simultaneous assembly of six through-tenons per plate. A custom end effector was measurement of forces (Fig 5. 5) This effector was also equipped with an integrated 'vibration-assisted assembly' device for the introduction of vibrations into the plates, in order to reduce the effect of wedging.
The first series of single-joint assembly tests showed the expected increase of insertion forces, along with an increasing oversize of the plastic through-tenon joints. The smallest oversize of 0.05 mm would result in a required insertion force of 0.7 kN . At an oversize
of 0.15 mm , we recorded o .8 kN , while the two largest oversizes of 0.20 mm and 0.25 mm required much larger forces of 1.08 kN and 1.57 kN . Additionally, the effect of wedging increased along with the oversize value. The inclination of the joint faces across the edge at an The multi-plate assembly test showed that the simultaneous assembly of six through-tenon joints requires the vibratio device to be activated in order to avoid a premature friction-based interlock. Furthermore, the test showed
that an additional 'ouls' direction is benefficial in combination with the vibration device. During the tests, this force was applied manually with a mallet. The plates used featured two centre elastic
4. Assembly seauence of
the large-scale prototype
5. A custom-builtend
effectore equiuped
with
lacac cell for force measurement and
vibration device.

Boosting the benefits

With their locator and connector features, integral timber plate joints offer considerable benefits for the design of imber plate structures, such as segmented plate shells or
folded plates. While the mechanical strength of the joints equires them to be tightly fitted, this can be problematic he assembly of such kinematically overconstrained joints
The elastic and plastic interlocks presented in this paper demonstrate how the material properties of assembly technique that fully eliminates any gaps, hrough the insertion of oversized tenons. While this basic concept of plastic interlocks is commonly used in mechanical fastening techniques, such as screws and
bolts, this paper first applies this concept to the integral attachment of through-tenon-jointed timber plates. This is made possible through the precise assembly motion of an ndustrial robot, as well as the possibility of it applying an nsertion
since the assembly of structures such as timber plate shells requires the simultaneous assembly of multiple edges and therefore also multiple joints, it is crucial to estimate the total required insertion force per plate. The
multi-plate assembly tests have shown that the assembly of building-scale plates from our case study project is possible with an additional vibration-inducing device. Further research is required into the addition of a pulse the plate's direction of assembly

Acknowledgements
This research was supported by the NCCR Digital Fabiciction, funded by the swiss ationa scien
\#55NiN4-40-14853).

Reference

 Mantipipagada, R, Cunningham, T.W. and Whitrey, D.E., 1996, Assembly orientea Design: A New Approach to Designing Assemblies. Proceedings.
lip WG5.2 Workshop on Geometic Modeling in CAD 19 - 13 May 1996 .
 Messier R., 2000,
 ACADIA 0 OO4: 3:34t Annual Conference of the Association for Compute Robeler, C., 20.5s., integral Mechanical AAtachment for Timber Folded Pate
Stuctures, EPFL PhD Thesis, Lausanne.
 Space Structures, Vol. 30, No. 2, p.111-122.
Robeller, C.and Weinand, , , 2016, Fabtication-Aware Design of Timber
Folded Plate Shells with Double Through-Tenon Joints, Roobotic Fobricatio in Architecture, Art and Design 20066, p.166-177.

 Notes

 surface was segmented witha Miura-OI fold poater nof 16 plates in the
direction of span, 40 plates along the supports and a static height of

LACE WALL
EXTENDING DESIGN INTUITION THROUGH MACHINE LEARNING
MARTIN TAMKE/MATEUSZZWIERZYCKI/ANDERS HOLDEN DELEURAN/YULIYA SINKE BARANOVSKAYA/ IDA FRIIS TINNING / METTE RAMSGAARD THOMSEN
CITA I Centre for Information Technology and Architecture, The Royal Danish Academy of Fine Arts, Copenhagen

Lace Wall explores how design-integrated simulations of learning allow the design and manufacture of large-scal learning allow the design and manufacture of large-scale
resilient material systems from a minimal inventory of elements: 8 mm glass fibre-reinforced plastic rods, textile cables and custom-designed HDPE elements to join cables and rods together. The rods are bent and joined into discrete units stabilised by an internal three-dimension 7 m -high wall (Fig. 2). While the geometry of the rods is
identical, it is the differentiation of cable networks which
allows the single units to stand the divergent local strains
allows the single units to stand the divergent local strains in the structure and to constrain each individual unit into shape. The high interdependence of elements and scales in the structure permits the use of established design optimisation strategies to find the specification for the cable networks. In order to explore this, we developed methods that combined lightweight simulation, physical
models and machine learning in order to evaluate multiple interdependent design parameters and finally establish a machine-enhanced intuition which is good enough to specify structures that behave as expected.

Building complex geometrie

Lace Wall belongs to the family of form-active hybrid structures (FAHS), which allow for the building of complex geometries with hardly any machining effort
or waste material (Tamke, 2013, Lienhard, 2014, Holden 2016). The integration of restraining tensile elements, such as membranes or cables, increases their structural performance (Alpermann 2012). In the case of the unt
of Lace Wall this active-only structures) the possible design space in a dramatic way, as it introduces an added dimension to stabilise, constrain and join elements.

Approaches towards supporting form-active hybrid structure design
The recent efforts of the research community towards approaches that support design, formmunding and structural analysis of form-active structures had a
predominant tocus on systems of either tensile or compressive members (Menges, 2012, Tamke, 2013),
Hybrid systems of interdepgen

 - 空 me mel moli mail

and restraining (cables) elements present challenges on ill levels from conception to fabrication:

Existing design approaches are based on explorations with small-scale physical models (Lienhard, 2014, Holden, 2016), which build up an intuition and design
repertoire on the part of the designer. However, even repertoire on the part of the designer. However, even cables or the position of restraining elements immediately affect the resulting shapes. The sheer number of combinations and interrelations soon creates fatigue on the part of the designer, and the bending-active units becomes a problem.

Methods of designing bending-active structures In digital design environments have been a focus of research for several years (Lienhard, 2014). recently emerged that are fast and stable enough to calculate the interaction of many bending-active and estraining tension elements (Ramsgaard Thomsen, 2015). These advances are based on a shift in the underyying computational approach rom (Day, 1965) to projection-based methods (Bender, 2014), which can include physical dynamics and elastic materials as well (Bouaziz, 2014). The
methods and has a solver that is stable for arbitrarily high stiffness values, unlike the explicit integratio methods used in the earlier versions of Kangaroo
It can be extended through the definition of new goals in a straightforward way, allowing the use of any function which returns a target position even during simulation with a sufficient prediction of stress and strain in the form-found structure into the design environment (Quinn, 2016) and most importantly to change the topology of the structure constantly
(Deleuran, 2016). The ability to work with open topologies, to continuously add and remove bendingactive and tension elements and to find physically correct solutions allows a systematic exploration of options through the designer. Similar to the work
with physical models, the designer can build up an intuition about promising design directions and explore them quickly. These explorations can also take place through the automated generation of design options and a subsequent evaluation and
reiteration of the form-found solutions according reiteration of the form-found solutions according
to given aims, such as maximum amount of cables, lengths and relations between elements.
However, while the methods developed here for design-integrated simulation and the work with with physical models, they do not remove the underlying challenge of form-active hybrid structures a combinatorial explosion of parameters. The sheer number of ways to combine quite simple ingredients (e.g. the units in Lace Wall) prohibit established or other design-related optimisation strategies) of automatically exploring the emerging design spaces here and of finding locally - or even globally - optimal solutions (Rutten, 2014). In the case of only a single unit described by eight parameters. The optimisation of 80 units with 640 parameters in total and a fitness evaluation seems unviable.
An underlying problem can be identified in the fact An underlying problem can be identified in the fact that these approaches rely on a simplified model
and optimisation towards identified key parameters. These appraaches require a good understanding of the system - based either on knowledge, a state which
might in fact render the whole iterative search the system - based either on knowledge, a state superfluous, or more probably on intuition regarding
what to search for and where to do so. The question is, what to search for and where to do so. The question is,
however, how to establish this intuition with highly interdependent, complex systems, such as the hybrid interdependent, complex sys,
one underlying Lace Wall.

Machine learning as a means for design search

Machine learning has been introduced in engineering to accelerate complex simulations, as in the case of CFD, and to predilct plausible complex wind interference patterns 2014. This prediction provides a quick, reliable and precise approximation of the wind interference to inform the designer and optimisation loops 200 to 500 times more quickly about the CD Characteristic

Queries for structures in large and patchy design space have recently used methods of unsupervised machine learning. In Thomsen and Stasiuk (2014), the authors use k-means clustering to analyse the outcomes of the desig have been sorted into clusters of high similarity based on 18 parameters. Solution space exploration is also the focus of Harding (2016), who demonstrates how Kohonen's self-organising maps (SOMs) can be used for dimensionality reduction. A use of k-means for geometry
rationalisation is presented by Peña (2012), where the algorithm was used to limit the variation of 15,000 facade panels to conform in 49 families.
While the use of k-means clustering in the case of Lace Wall might seem a viable option, it can lead to the wron classification of unit load cases. This is caused by the distance metric used to decide on similarity between two data points, which doesn't take into account the relationships and characteristics of their values. This
makes artificial neural networks (ANNs) more suitable makes artificial neural networks (ANNs) more suitable
for the task, as these are able to account for both the variance and, more importantly in this case, the elationships between the values.
The simple plots that resulted from calculating this elationship demonstrate how a wrong classificatio vill ultimately result in the wrong association of
optimised solutions with a load case. Intuitively, the k-means clustering would categorise them as the same two units with a similar force applied in two different directions, while the neural network can distinguish both
direction and amplitude of the load. This problem can be ound in every construction system (including Lace Wall) where a change in load amplitude is not as crucial as the change in load distribution/direction.

The complexity of the units in Lace Wall and their hardly predictable structural behaviour (their reaction
to the particular load scenario) was the main problem in to the particular load scenario) was the main problem in

for the rod topology used. It was this which made the definition of an edge case difficult. The linkage
of machine learning with a database enables the of machine earning with a database enables the
memorisation of solutions, in order to build up a kind of experience over time. This is used in Lace Wall to identify the cases which are most different to known ones (edge cases), develop solutions for these and reuse/

Development of Lace Wall

The development of Lace Wall started with an exploration of the ways we could create stable spatial units of rods active and tension elements. A further aim was to maintain a minimal and light inventory of parts - for example, in the evasion of complex mechanical joints. The collected experiences of Tower (Thomsen, 2015) structures are best achieved when they close on themselves, as the ' 9 '-shaped ones which were finally chosen show. In Lace Wall, rods are furthermore only

The exploration used, in parallel, both physical models and the above-described custom-made design-integr
simulation environment The limitations of each of these needed to be reflected in the other; for example, the digital representation of joints informed the way elements were connected in the physical assembly.
The development process included several instances hyysical models was an alignment of the digital and a coherence between both. These processes showed hat the simulation environment was able to predict the emerging shape of our hybrid units to a degree sufficient
for design decision-making and fabrication. A lack of final precision in quantitative terms can be removed through the material tolerances in the system.
The development resulted in a single unit made from a set of mirrored rods fixed into a 'double 9 ' configuration.
This is constrained into shape by a three-dimensional cable network (Fig. 1). Single units are arrayed into a cable network ((Fig. 1). Single units are arrayed into a
diamond-shaped pattern (Fig. 3). Each unit has eight
defined points at its perimeter rods that allow it to tile with equivalent points on neighbouring units (Fig. 4).
The development of the single unit and the array of many of them into a larger assembly was guide
by the overall aim to create a wall- ike structure by the overall aim to create a wall-ike structure.
Performance goals on a local level were, however, far more fluid, emerging throughout the design process. The interaction with the digital and physical prototypes gave an intuition, rather than a certainty, about the design direction that it might be worthwhile to explore.
Crucial parameters and underlying rules for the set-up of the units and the steering of their behaviour were found over many design iterations. However, the knowledge gathered therein is patchy and cannot be considered to apply across the board, as it is based on
observed relationships between an introduced means and a unit's overall behaviour - for instance, the idea that a direct connection of the bend rods on each side with tension cables is beneficial for its overall behaviour (Figg. 5). A reflection on the structural set-up of the units links these observations to overarahing structura rules, but
the complexity of the structural elements impedes a direct linking of the single unit's behaviour to structural first principles.

The development process, supported by constant built up an intuition on the part of the designers and helped to direct the design search. However, this intuitio was weak when it came to more fine-tuned decisions.
One of these was the distribution of different cable networks across the array of identical units in order to obtain the desired macro shape. A computational global optimisation, where the parameters of every element in every unit are tested and subsequently optimised, was not possible due to the aforementioned combinatorial
explosion. Other means of specifying the cable networ in the 80 units according to local force conditions had to be found instead.
Our approach to fabrication using machine learning
The project followed an approach of using machine learning to identify units in the macro shape which prevent the emergence of the desired overall macro
shape that we consider structurally shape that we consider structurally sound. The overall
stability is hence dependent on the preservation of the stability is hence dependent on the preservation of the
macro shape through preventing single units deforming too strongly from the initial shape or even collapsing under the incoming loads. A generation and analysis of new cable nets is hence possible on the level of the single unit. It was expected that the repeated picking
and improvement of the structural behaviour of singular cells would, over relatively few iterations, generate an overall increase in structural performance For this approach, a set of techniques had to be linked:

1) A method to analyse the overall structural behaviou Kangaroo 2 and the development of Kangaroo 2E).
2) A technique to generate the cable networks: an algorithm was developed, based on the findings from Physical prototyping, that showed that a maximum
of three cables meeting in a junction and a spatial of three cables meeting in a junction
distribution of cables was preferable.
3) A model to represent the wide range of topologies and performances that the cable networks and linked rods can take on. The encoding capitalises on the fact that the
bove algorith of distribution points on the rods. An effective and easy way to compare data models emerged where only the order and position of points (genome) and the related performance of the unit (e.g. the deviation from the ideal and, where necessary, reproduce units
4) Modes to evaluate whether and how well a generated unit fulfis the requirements of design, structural behaviour and fabrication. These emerged during the design and prototyping phases and were verified throug observations. Two sets des qualifers were applied th
(a) Binary ones, which any unit has to meet (durability: rod/cable angle above 50°; fabricability: no overlap of cables; structural performance: all cables tensione itabiity: units which need more than
iterations to solve tend to be unstable).
(b) Numeric ones, which allow the evaluation of the fitness of a unit (tiling fitness and middle joint position, expressed in total distance of all points to target box in range $0-1$, , with
necessary to pass this filter).

A second stage evaluates the geometry of the units in order to ensure a healthy breadth of solutions: only those nes are saved
5) A system that can perform the task of picking the units which need to be optimised (the edge conditions): an
(a) The assembly onits is generated form found (Kangaroo 2) and structurally analysed (Kangaroo 2 E) (b) Form-finding and analysis reveal the force distribution and behaviour of the units under load. h with the two naively picked cases (naive pick
initialisation: picked by the lowest and highest sum of load values) then being optimised and saved
(optimisation of a single unit with Galapagos and K2E),
$378 \times 1 \times 888 \times 8 \times \pi \times 8 \times 8$ R8B Z

 $\frac{8888}{8} \frac{8}{8} 8 \mathbb{8} 88888888 \pi x 8$
(c) The neural network indicates the cells which it cannot match (smallest output value case) to any of
nown solutions (structural analysis data known solutions (structural analysis data
classification). It performs the classification based on the deviation from the 'ideal shape', discretised with (d) An evolutionary solver.
(d) An evolutionary solver (optimisation) is used to find is then added to the database (database solutions) and the cycle repeats.
The general feasibility of the approach was tested on simplified model, which has the same underlying structural problem and is simple enough to optimise in an exhaustive way using a global optimisation approach which encompasses all variable parameters in the mod
A comparison of the results shows that our appreach toduces results of a similar quality to the apraditional', methods, but faster and with the advantage that the generated knowledge about the unit's behaviour under load can be applied in other areas.
In order to test the application of the ANN approach on larger structures, it was deployed on several design
of Lace Wall (Fig. 7). While the size of these parameter spaces prohibits an application and hence comparison with classical optimisation approaches, we found that the
proposed solutions are structurally sound and match the proposed solutions are structurally sound and match the
distribution of units which the experienced design and construction team of Lace Wall would intuitively use.

What we can learn from the Lace Wa

Lace Wall (Fig. 8) demonstrates how the generation f intuition is crucial for solving complex design problems. We found that the high degree of internal interdependence between these problems and the non-continuous fitness landscapes that result from elements whose performance depends on behaviour pproaches. Lace Wall suggests that the intuition that designer builds upon to make design decisions for both complex structural performance choices and behaviour can be effectively supported by machine learning. It is supervised machine learning with artificial neural means to select) alongside a linked database of previously evaluated solutions, which provides the experience on which the selection is based.

Artificial neural networks, in particular, with their origins in pattern recognition, seem to be well-suited problems. The machine learning-based approach presented here demonstrates how neural networks ca categorise the shape of complex geometries based on
high-dimensional discretisations with high-dimensional discretisations with up to a hundred
input parameters. The neural network is able to learn input parameters. The neural network is able to learn
based on an atypical number of parameters compared with other classification methods, which, in our case, ensured that it was able to precisely describe the load distribution. This approach offered flexibility and unseen data. This opened up the possibility of reusing the optimised solutions database and the trained network in multiple iterations of the design

7. Force distribution
ina Lacce Walldesig

ha Lace Wall des
8. Detailed view of

References
Apermann, H. and Gengnagel, C. C. 2012 SThaping Actively-bent Elements by Stuctures to spacee structures, seoul

Day, A. . 1965.
p.218-21.

Harding. J., 2016, 'Dimensionality Yeduction for Parametric Design Exporation in Adriaens.sens. S.etal. (eds). Advances in Architectural
 Procedia Enginineering, 0, p.-1-10.
Lienhard. J., 2014, Bending-ACtive Stuctures Form-finding Strategies Using

Nicholas. P. Pand Tamke, M. 2013, 'Computational Strategies for the

 Rutten, D. 2 2014, Navigating Mult-Dimensional Landscapes in fogery Weathe
as an Analog tor as an Analogy for Generic Problem Solving in Proceedings of the 16
Intemational Conference on Geometry
Ond Grophics, Innsbuck.

Tamke, M. . and Nicholas, P. 2013, 'Computational Strategies for the

 Proceedings of the I Itternational Association for sh
(ASSS) Symposium RO25, Amsterdam, future Visions.
 Comouting.June 2014. Vol. 12 No. 2. p.155-177.

ROBOTIC FABRICATION OF

 STONE ASSEMBLY DETAILS 'Massachusetts Institute of Technology
2University of Michigan
Quara a Stone
"Matter Design

This research follows an important body of work from he past decade, which focuses on the design of global surface geometries for compression-only structural
behaviour. For example, studies in thrust network analysis have made possible the design and computation of complex unreinforced freeform shell structures that work purely under compressive forces once they are completely assembled (Block, 2009). Recent built projects structures with standard CNC fabrication tools and for
sta them to demonstrate efficient structural behaviour with minimal bending as expected, a major challenge of building these structures is the development of effective assembly strategies during construction to handle
olerance (Rippmann et al., 2016). A second key chall is the management of falsework, which is structurally necessary to hold individual voussoirs, or compressio bocks, in place until the structure is stable, which is locks, in place until the structure is stable, W
sometimes not until the final stone is placed.

These challenges are important to address in order or efficient, geometrically expressive masonry shel structures to play a larger role in the contemporary
architectural fabrication landscape alongside conventional steel, concrete and timber structures. In response, the research presented here offers a new
approach for the fabrication and assembly of freeform masonry shell structures that can be built with less error and less falsework. Made possible through a computational workflow that simulates structural behaviour during assembly instead of only after a structure is completed, the approach employs cast-metal
joining details that bring ancient stonework techniques into the digital age with customised, mechanically responsive geometries.

New agendas for stone carving

 Correlating forces (physics and form (geometry) in3D, thrust network analysis and accessible physics simulation environments based on dynamic relaxation
have extended historical structural form-finding method have extended historical structural form-finding methods
into new versatile digital design workflows (Block, 2009, Rippmann et al., 2011, Piker, 2013). One of the results of the availability of these new geometrical exploration approaches has been a renewed interest from designers

108 / 109 in historical techniques such as stone carving (Lachauer et al., 2011, Rippmann et al., 2016, Clifford et al., 2015, Kaczynski et al., 2011).

Construction of discrete element structure

Most of the current research efforts in discrete element structures have focused on the production of geometrically challenging thin structures that perform effciently once they are finally assembled. These efforts or have solved this problem through external means such as scaffolding, chains or ropes (as in Deuss et al., 2014). In contrast, this research approaches the problem of stabiity

Stone detail precedents and methods

Two types of detail precedent inform this research. The frst is the historic process of carving a detail geometry into stone and direct casting metal into that geometry.
This detail is often embedded inside the thickness of stone and is not visible. The motivation of this detail is to resist a possible future force, such as settling or an earthquake. These details are not constrained by he mass of stone, but rather by the properties of metal shaping or casting and the carving tools used (Leroy et
al., 2015). The second detail precedent is a procedural one. For instance, Inca stonework carries vestigial details that hint at the sequence in which a wall was constructed. Each detail refers to a particular moment of assembly nd its relation to previously placed stones. This conce can be seen not only in the way the stones notch into
each other, but also in the nubs used to place the stones (Protzen, 1993). This research seeks to conflate these two detail concepts in order to incorporate procedural and sequential structural analysis to inform detail locations. These locations are responsive not only to the global
conditions, but also to the discrete conditions of the n-progress assembly (Fig. 2).

This project examines the problem of assembling masonry structures through the integration of design phases. The motivation of the research is to develop a streamlined workflow which encompasses design, fabrication and assembly of discrete element structures by leveraging the possibilities of digital
fabrication methods. Through a focus on historically nspired details, this paper seeks a new approach that can expand the possibilities for designing and building expressive, efficient structural forms.

The assembly method in this research comprises discretisation, physics analysis, detail design, fabrication and assembly. The method is exemplified by an eight piece masonry structure case study shown in Fig. 5 ,
manufactured at Quarra Stone in Madison, Wisconsin.

Base geometry

This research employs a method which serves to liberate geometry from the exclusive dedication to structural align with programmatic, ergonomic, thermal or formal concerns. In order to accommodate a confluence of differing concerns, the potentials of depth and volume are employed, resulting in an anti-1somorphic condition, as described previously (Clifford et al., 2015). This deep Meisenheimer describes as the 'work body' (Meisenheimer, 1985) - a space between the visible architectural surfaces which is dedicated to the mean and methods of making. This method begins with a concerns. This singular surface approaches a structural logic, but does not satisfy it. Through variable depth and detailing strategies, this non-idealised form transforms into a proposal which satisfies a thrust network within the middle third of the material depth (Fig 3).

Discretisation

Next is the discretisation of the base geometry into voussoirs. Many different discretisation methods are created using a particle-spring system, which creates a random gradient distribution of 3 D voussoirs that are larger toward the base of the structure (Fig. 4).

Physics analysis

This method proposes an alternative assembly strategy for freeform stone shells that relies on a local understanding of forces at each step of the
assembly sequence (Ariza, 2016). The structural analysis includes two steps: a global analysis that evaluates the equilibrium of the structure in its final state and a local analysis that evaluates all intermediate equilibrium states during assembly. The analyses are plug-in for Grasshopper (Preisinger, 2013), and directly contribute to the design and distribution of cast tension details. Specifically, the analyses consider reactions generated at boundary conditions between elements and at the interface with the ground to determine the ypes and locations of necessary details.

Global equilibrium analysis

Because the base geometry is not generated to fulfil one single constraint (i.e. structural performance), overall calculation of reaction forces at the base of the eight-piece section of the structure are shown in Fig. 5.

Local equilibrium analysis

The discrete analysis step comprises assigning an assembly sequence of voussoirs, determining the support location and condition of each voussoir
according to the sequence and visualising the accordion the sequence and

Assembly sequence

The sequence of assembling voussoirs does not affect he globar stabiity of the final assembled structure.
However, assembly process. While this research does not rigorously address this question, the topic has been studied in Deuss (2014). This research establishes a reasonable assembly
sequence using rings of voussoirs, and the moststable sequence using rings of voussoirs, and the most stable
unit of each ring is assembled first. As each new voussoir is added, it is not possible to assume that the previous state of equilibrium is still valid. Ultimately, every previous interface between voussoirs needs to e checked, since each is affected by every new addition. As a proxy, in this case study the stability of the global
intermediate, or the sum of all previously assembled voussoirs, is checked at the base (Fig. 5).

Details can be inspired by different motivations. In this project, the role of the details is to coordinate different ype of constraints: structural (type, direction and
magnitude of reaction forces), fabrication (properties of the carving and casting tools and machines) and assembly (direction and fixing steps of units). This approach takes advantage of the ability of robots
to perform custom non-repetitive stone carving and to perform custom non-repetitive stone carving and
match it with cast metal's ability to be formed with geometric flexibility.

Structural constraints

The reaction forces of the discrete analysis are interpreted one by one, matching type, direction and magnitude with specific geometric detail strategies. Conpression forces require surface area, so the planar edges of the voussoirs are left unmodified. Tension forces the direction of the tension vector to avoid units pulling apart. Out-of-plane tension forces and bending moments are counteracted with couples on opposing faces. In-plane shear forces require a locking geometry perpendicular to

Fabrication constraints
The type of stone, the geometric properties and the erformance of tools define the carving constraints, This paper's case study uses Vermont Marble and a
bunt electroplated tool. The tool diameter defines the blunt electroplated tool. The tool diameter defines the
minimum radius of possible carved curvature, and the ool shaft height defines the maximum carving depth. This last parameter is key to specifying possible location
of tension details.

Casting constraints are dictated by the way in which the metal flows through and freezes in the mould when poured. Sharp external corners result in more rapid cooling, leading to increased grain size and brittleness. Sharp internal corners often result in cracking during volume result in uneven cooling and grain structure. Since traditional clips and butterfly joints in wood or wrought metal do not suffer from such constraints, cross-sectional areas can be varied as much as needed.
The translation of this geometry to cast metal requires The translation of this geometry to cast metal requires
modification to maintain a constant cross-sectional area throughout the joint.

Assembly constraints
The assembly strategy is composed of two steps registration and fixing. In order to register the pieces that are in place, a precast metal drift-pin is inserted, two-step assembly strategy determines the unit. This geometry and the material selection of the drift-pins.

Robot control and constraints

Industrial robots are designed to be highly flexible manipulators, but this flexibility results in compromises for minimising positioning error is to utilise an external synchronous positioning axis (rotary table). By allowing
the robot pose to be restricted to a smaller range of

edug savinopotations (i) f(a) fec edge saw side - unt miling. ming
 7.(a) Casting of fpecimens, (b) casting ofj jints in-situ

motion and a reduced range of joint configurations, accuracy can be improved; in addition, the overall work
volume of the robot increases significantly. Both of thes techniques are employed in the fabrication of the case study. In order to maximise part accuracy, individual part using a single fixturing set-up on a flat back face.

Cutting operations

The production of individual voussoirs benefits from an automatic tool changer set-up and comprises four robotic carving operations (Fig. 6). The majority of the stock is removed with a thick diamond composite blade. The first peration, a saw slab-cutting strategy, is used for cutting the flat-bearing surfaces of the voussoir. This proved to
be the most effcient operation, with a higher material removal rate (material removed per minute). Then the internal face is accomplished with a parallel kerfroughing and a side-cutting finishing, the latter in a motion perpendicular to the previous direction of the pocketing milling operation that produces the joint voids.

Automation of geometry for toolpathing

While the implemented algorithmic design approach generates highly unique geometries with relative ease, it was important to identify production bottlenecks early oode strategies have been implemented in certain projects, it was determined that a hybrid approach would integrate better with the fabrication wotkfow at Q urra Stone. This involved the automated generation and organisation of 3D part files with the needed 'helper' geometry to work smoothly with the production CAM package used by the fabrication team.

Assembly
Several challenges arise in the placement of the individual voussoirs. First, the stones are never set upon a level surface and the centre of mass of the
piece is often not directly over the bearing surface, piece is often not directly over the bearing surface,
resulting in temporary instability during assembly. Second, while the meeting faces of the voussoirs are drafted in all directions, which facilitates positioning, here are still several degrees of freedom in the ovement of the stones as they are individually place assembly method is implemented.

Fitting and registration
Using minimal, adjustable tension and compression
falsework, each voussoir is fited in place by hand and falsework, each voussoir is fitted in place by hand and drift-pin applying tension normal to the adiacent faces of the two stones. This registering operation facilitates the minute adjustment of the voussoirs after placement and temporarily holds them in place during the completion of the ring. The malle it in the capacity

Casting and fixing

After the placement of an entire ring of voussoirs, the pre-machined dratted voids of the shear details located
between the most vertical faces of the stones are filled with metal in-situ, permanently fixing the ring togethe. Finally, the precast adjustable pins holding the course in place are cast over in-situ, permanently locking the rft-pin in place. A onally, any gaps between voussoirs resulting from the tolerances in fabrication are of operations is then repeated for each consecutive ring.

Research evaluation

The validity of the structural analysis and assemb method was assessed through a series of structural tests of specific cast details and prototypes. The former evaluated the material strength and efficiency of the join geometry throughout a series of controlled specimen Different mock-ups explored the possibilities and
performance of the various available machining methods, the casting and assembly processes and the materials to be used in the precast and in-situ details. The final eight-piece case study served as a final

(

Material tests
Structural tests were performed on details with two different casting alloys: pewter (AC or Brittania), an alloy of tin, copper and antimony; and zamak 3 , an industrial die-casting ailoy of mostly zinc, copper and magnesium. Despite having a much lower ultimate tensile strength (51.7 MPa) than
zamak (284.8 MPa), pewter was selected due to its lower melting point shrinkage and brittleness its rosistance to melting point, shrinkage and brittleness, its resista
work hardening and its higher flow rate (Fig. 7).

Ten geometric variations of tension joint were tested. Controlling variables included the length, depth and wickness of the joint. Three specimens of each geometry specimens transferred between 9 and 12.5 kN under tension (Fig. 8).
Eight-piece case study
The eight-piece case study made from Vermont Marble served to evaluate the various aspects of the research. In terms of fabrication, inaccuracies (up to 3 mm) related io the location of joints were handled with the specific inaccuracy location was found to be the intrados of the voussoir, for which further fabrication and assembly strategies need to be studied. In terms of assembly,
ratchet straps attached to the fixtures of the flat back
face were found to be a useful temporary falsework method to support pieces in place until the final fixing of the ring was achieved. Regarding structural performance
units with larger instability were successfully supported by drift-pins in cases of no larger than 3 mm inaccuracies. This last test proved the importance of the geometry of the drift-pin as a tolerance-handling method.

Conclusion

This research successfully demonstrates a new method to design, analyse and construct complex geometry shell structures which satisfy a confluence of architectura
concerns, without the need for extensive falsew formwork or templating Through computation digita fabrication and the adaptation of ancient detailing strategies, this method points to a possible application of design in synchronous feedback with the constraints of assembly. While the potentials of such a metho accommodate an endless number of possible geomet
the analysis points to a series of constraints. These constraints exist primarily in the structural and material properties of stone and metal, the geometric constraints of fabrication and the problematics of compounding errors during assembly.

Future research seeks to further evaluate the capabilities of assembly simulation and sequential fixing in the
construction of a full-scale marble caldarium.
8. Geomentic variations of

10. Six-piece mock-up.

Acknowledgements
This research was conducted as part of the 2016 Quaramanatter F Fllowship.
an in industry/academy parthesship between Quarra stone e wwwwquarastone.

 Seyedahmadian. The authors would ike tothank Alaxander Marshall
References
Ariza, , 20016 , Decooding Details: Integrating Physics of Assembly in Discretete
 availab
2017 .

Clifford, B. a and MCGee, W. 2015 , Digital Inca: an Assembly Method for ee-Form Geometrie
 fobricate Negootititing Design and Moking, Verrag.
 hics (TOG), $33(6)$. p. 214 .
Kaczunski, M.P. McGee W. and Pigram D. A. 2011 Pobet call Fabicated Thin-shell Vauting: Methodology fort the integration of Malti-axis
Fabication Processess with Algorithmic Form-finding Techicuess CADA 201T:
Leroy, 5 , Hendrickson. M. Delqué-Kolic. E. Vegas E and Dillmann. 2015 'First Diect Dating for the Construction and Modification of the Baphuon
Temple Mountain in Angkor, Camboodia in P Plos one, 10 (1), peovilio52.

 Avery Index to A Acchitecectural Periodicicals ppositect1
Piker. D. 2 2013:' Kangaroo: Form Finding with Computational Physics'
Architectral
Preisinger. C . 20
Architecturál Design, 83 (2) p. pilu--113.
 Rippmann, M, and Block.P., 2011, Digital Stereotomy: Voussoir Geometry
for freeforn Mas

 Vautt: Computational Design and Digital Fabiciction of a reeform Artone

ADAPTIVE ROBOTIC FABRICATION

 FOR CONDITIONS OF MATERIAL INCONSISTENCY INCREASING THE GEOMETRIC ACCURACY OF INCREMENTALLY FORMED METAL PANELSpaulnicholas/Mateuszzwierzycki/esben clausen nørgaird /DAvid stasiuk /mette thomsen CITA I Centre for Information Technology and Architecture, The Royal Danish Academy of Fine Arts, Copenhagen CHRISTOPHER HUTCHINSON Monash University

This paper describes research that addresses the variab behaviour of industrial quality metals and the extension
of computational techniques into the fabrication proces. of computational techniques into the fabrication proces
It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin metal sheet. The paper focuses on the ssue of geometric inaccuracies associated with material springback that are experienced in the making of a conditions of material inconsistency, and how might adaptive models negotiate between the design model and he fabrication process? Here, two adaptive methods are presented that aim to increase forming accuracy with only a minimum increase in fabrication time, and that
maintain ongoing input from the results of the fabrication maintain ongoing input from the results of the tabrica
process. The first method is an online sensor-based strategs and the second method is an offline predictive
strategy based on machine learning.
Rigidisation of thin metal skins
Thin panelised metallic skins play an important role in ontemporary architecture, often as a non-structural
cladding system. Strategically increasing the structural
capacity - particularly the rigidity - of this cladding layer
offers a way to integrate enclosure, articulation and offers a way to integrate enclosure, articulation and
structure, but requires a consideration of scale and fabrication that lies outside a typical architectural workflow. Thin sheets can be stiffened via isotropic or anisotropic rigidisation techniques that selectively move
local areas of the sheet out of plane, with the effect of local areas of the sheet out of plane, with the effect of increasing structural depth. The use of these techniques
marked the early development of metallic aircraft, were pioneered by Junkers and LeRicolais within architecture pioneered by ankers and LeRicolais within architecture
This research takes inspiration from Junker's proposition, This research takes inspiration from Junker's prope building, of thin-skinned metallic architectures. A Bridge Too Far (Fig. 2) presents as an asymmetric bridge. The structure consists of 51 unique planar, hexagonal panels,
arranged into an inner and outer skin. The thickness of arranged into an inner and outer skin. The thickness of
each panel varies locally, though it is at maximum 1 mm thick. Excluding buttresses, the bridge spans 3 m and weighs 40 kg . Geometric features for resisting local
footfall buklin within footfall, buckling within each panel and structural

116/117 connections - for managing shear forces across inner and outer skins - are produced through the custom robotic forming of individual panels.
Robotic incremental sheet forming
The incremental sheet forming (ISF) method imparts 3D
form onto a 2 sheet, directly informed by a 3 D CAD form onto a 2 D sheet, directly informed by a 3D CAD model. A simple tool, applied from either one or two sides, facilitates mouldless forming by moving over the surface
of a sheet to cause localised plastic deformation (Bramley et al., 2005). A double-sided robotic approach provides further flexibility for forming out of plane in opposing directions (Fig. 3). Moving from SPIF (single point ncremental forming) to DPIF (double point incremental forming) removes the need for any supporting jig. This
allows for more freedom and complexity in the formed geometry, including features that it would be difficult or mpossible to create supports for. A second advantage is he creation of a hydrostatic pressure between the two necking for any strain path

182. A Bridge Too Far.
atthe Roval Danish

Athe Royal Danish

3. Double point
incremental forming.

Incremental forming
Inage:
altita.
4. The pre-calculation of

 prevent teaing du
orming porocess.

Transferred into architecture, ISF moves from a Wrottypying technology to a production technology. an alternate technology through which to incorporate, exploit and vary material capacities within the elements applications have been identified in folded plate thin metal sheet structures (Trautz \& Herkrath, 2009) and customised load-adapted architectural designs Brüninghaus et al., 2012). Recent research has (Bailly et al, 2014) and has explored the tutilisation of forming cone geometries as a means to reach from one skin to another (Kalo \& Newsum, 2014)
The DPIF set-up used to fabricate panels for A Bridge Too Far incorporates two ABB industrial robots working on each side of a moment frame that allows for a working area of approximately $1,000 \times 1,000 \mathrm{~mm}$. Working with DPIF requires a precise positioning of two tools, one that upporting supporting tool can be positioned in two different ways,
following the top perimeter of the feature or following the forming tool down the geometry (Paniti, 2014). Early investigation of both methods showed that, for our set-up, moving the supporting tool only along the feature perimeter quickly led to tearing of the
the repeated tooling of the same area.

Material considerations

The DPIF process has effects that are both geometrically and materially transformative. Geometric features locally stretch the planar sheet to increase structural depth or to provide architectural opportunities for connection surface expression. Depending on the geometric
transformation, the effects of the material transformation ransformation, the effects of the material transform are locally introduced into the material to different
degrees according to the depth and angle attained. Calculation in advance to inform generative modelling and fabrication is important, as local thinning of the stretched metal can lead to buckling or tearing when approaching zero thickness (Fig. 4). Work hardening trengths, and even strain softening, depending on the base materials.
The choice of material for A Bridge Too Far was a negotiation between formability and yield strength to ensure a stable structure but not exceed the force apability of our robotics set-up. Aluminium 5005 H 14 was chosen, as it provided a good balance between
formability, forming speed, initial thickness and

initial hardness. In comparison to previous researc demonstrators (Nicholas et al., 2016), a higher fixed
speed could be used in order to ensure faster produ without risking a significantly higher amount of material where the average wall material also impacted the design and other geometries was increased from previous prototypes. Because AL 5005 H 14 is pre-hardened, forming at low wall angles softens the metal, while higher wall angles harden it again.

Robotic fabrication
Toolpaths for 51 panels were generated automatically from a 3 D mesh using HAL and a custom toolpathing algorithm based on the creation of spirals. The main parameters of this algorithm were the grouping and
positioning of features. Because the pattern of rigidising points at which the upper and lower skins connected (Fig. 5) had not yet been designed or located, these geometric features were not included in the initial their frames provided a means to exactly relocate them in the moment frame for continued forming at a later point. Panel fabrication times for 51 panels varied between 4 hours and 8.5 hours. After fabrication, the panels were measured for accuracy, where tolerances of up to 16 m

The problem of accuracy
Incremental forming is a formative fabrication process, in form it into a desired shape. A characteristic of formative fabrication processes, particularly mouldless, freeform approaches, is that their positional accuracy is more
highly dependent upon a combination of material

behaviour and forming parameters than subtractive or additive approaches. Research into resultant incrementally
ormed geometries has shown significant deviations fro the planned geometries (Bambach et al., 2009), and that parameters including the forming velocity, the toolpath the size of material and distance to supports and
particularly the material springback of the sheet du forming all affect the geometric accuracy of the resulting shape. These geometric deviations are a key deterrent from the widespread take-up of the process (Jeswiet et

There are several approaches to improving geometric accuracy, the most direct of which is reforming. This approach simply re-runs the whole, or significant parts, of the original toolpath. It has been shown to achieve considerable improvement, but can potentially double
the amount of fabrication time. A second approach is to use a sensor-based measuring strategy, where the deviations are detected and accounted for on the formed shape. After forming, new adjustment lengths for the next forming cycle can be calculated from accurate again lead to considerably longer fabrication times and also requires sophisticated machine vision and path offsetting approaches. A third approach is to use a model-based technique, in which a finite element model of the material and a model of the compliant robot
structure are coupled together (Meier et al, 2009). T forces in the tool tip are computed by the FEA, while the path deviations due to these forces can be obtained using
the MBS model. Coupling both models gives the true
path driven by the robots. While predictive, and therefore minimising the time used to increase fabrication accuracy his approach is entirely dependent on simulation, which ay In contrast that aim to increase forming accuracy with only
methods methods that aim to increase forming accuracy with only
a minimum increase in fabrication time and that maintain ongoing input from the results of the fabrication process: an online sensor-based strategy and an offline strategy based on machine learning.

Sensor-based strategy to increase accurac

The first method for increasing forming accuracy during forming was implemented on the rigidising cones that connect the upper and lower skins. A single point laser
distance measure was mounted to the robot arm and use distance measure was mounted to the robot arm and use
to measure, at each cone centrepoint, the local deviation between actual formed depth and ideal geometry. This
deviation was then automatically added to the target deviation was then automatically added to the target depth for a given cone, and from this combined target
depth an appropriate cone was chosen from a series of depth an appropriate cone was chosen from a series
tooolpaths pre-programmed into the controller, with depths of $20 \mathrm{~mm}, 23 \mathrm{~mm}, 26 \mathrm{~mm}$ and 30 mm .
But because of springback during the forming process, a cone that has the same forming depth as the combined
target depth is not the correct choice - the forming depth needs to be larger than the target depth. To determine the correct amount, curve fitting was used to model the
relationship between target depth and forming depth. relationship between farget ep After forming deph After each cone was formed, the resultant depth was
scanned and this data was used to refine the curve-fitting model, allowing a continued improvement in accuracy across the course of fabrication (Fig. 6). After forming and scanning, two further automated correction methods
could be triggered. If the formed cone geometry was could be triggered. If the formed cone geometry was
greater than 5 mm off the target geometry, the cone was reformed. If it was between 5 and 2 mm off the target geometry, the tip of the cone was extended by 2 mm .

Force feedback

While tolerances could be adequately corrected for using the sensor-based strategy outlined above, this method did not provide any deeper understanding of the forming
process and the resulting imprecisions. To establish meaningful input parameters for the machine learning algorithm, a load transducer was attached to the forming tool to register changing forces on the tool tip during the fabrication process. A live stream of read-outs

(approximately one per 50ms, or every 2 cm along the
ool path) was established and the data was stored directly in a binary file This data was used to idenstify the right type and amount of data for the training of a neural network as a material behaviour model. Visualising this
information revealed relationships between the fabricated shape and forces acting on the sheet, and showed the

Local feature.
Listance to fixed panel edge.
Current depth of the shape.
A 'local feature' is understood to be a small fragment of the shape being currently formed. It informs the model about edges, ridges and other small-scale geometry of the panel.
Distance to the edge of the panel is the parameter describing the distance to the closest point onter the edge
of the formed geometry. It is a result of the physical set-up and how the panel was placed in the forming frame (pinned to the underlying MDF board with a panelspecific cut-out). Current depth of the shape is the
distance from the initial sheet plane to the current position of the tool tip. It is directly dependent on the material properties and their change over deformation depth. Other parameters - such as the slope angle - are not provided directly to the model. Instead, the local feature is unde
information.

Network architecture and learning process
The information gained from the force gauge read-outs This coupling of input and output parameters (local feature, distance to the edge, depth vs. formed shape) constitutes the input and output set for the supervised
learning process. Given that the output of the network is
the depth of the analysed point after for
The local feature and current depth are encoded as a heightmap, with a real-world size of $5 \times 5 \mathrm{~cm}$. With the proces of pixel per millimetre, without preprocessing the input vector would have to have 2,500
dimensions, making the training process unnecessavix detailed and slow. To reduce its dimensionality a max pooling technique was applied, resulting in a 9×9 pixel. -81 dimensional - heightmap.
The network consists of an input layer with 82 neurons ($81+1$ additional for edge-proximity parameter), a hidden
layer with 30 neurons and an output layer with 1 neuron indicating the depth of the resulting point. Back-propagation-based learning was performed on a set of ~1600 samples and took approximately an hour on a regular desktop computer.

Results

The network is able to predict, to some extent and resolution, the resulting geometry based on an input
heightmap of the target piece. The authors find the network unexpectedly accurate, given that the training nas based only on data gathered from a small number of panels. Additionally, the exploration of the network predictions gave more information on the trained model - therefore it would be reasonably more challenging to find appropriate functions and ways to encode shape information with a curve-fitting approach (although the neural network is function-fitting as well).
With this neural network-based model, it is possible to predict the forming process result upfront, and with multiple queries the resulting panel surface can resemble the target much more precisely.

120/121 The training set is a set of randomly distributed fragments on the surface of the panel. The training set output is a heightmap based on a 3D scan of the formed panel (the ground truth), and is used as the training set output.
As the training process might end up with function veritting, a comparison is made on another panel to assure the network's versatility.
The values obtained from prediction were used to adjust he fabrication geometry. The method for adjusting the geometry is straightforward: the input mesh heightmap
values are increased by the difference between the target and prediction heightmaps. While this method yields a substantial increase in precision, more advanced method will be a subject of future research.

Conclusion

This paper has addressed the issue of material springback and geometric inaccuracy in the incremental forming
process. It has demonstrated the use of sensing and process. It has demonstrated the use of sensing and
feedback to manage springback and to reduce geomet inaccuracies within the forming process. Two different methods have been presented, the first based on online adaptation and the second based on offline prediction. Both models negotiate between the design model and the
fabrication process. The first method changes the design parametrically during the fabrication process, diverging from the desired design, while the second method changes the fabrication geometry prior to fabrication chieve the desired design. These models are necessary because, for the incremental forming process, the
information contained within the design model is n itself enough to achieve accurate forming. On this basis, the authors believe that machine learning processes could provide new bridges between designing and is a combination of multiple functions.

This project was undertaken as part of the Sapere Aude Advanced Grant
research project Complex Modelling, upported by The Danish Counci for

References
 Bambach, M.,Taleb Araghi, B. and Hirt, G,, 2009 , Strategies to I Improve the

 Kalo, A. and Newsum, M.J. 2014, An Investigation of Robotic Incremental
Sheet Metal Forming as as Method for Prorototyping Parametric Achitectural

 sciencelarticle/pilis 5007850609000845 .
 Attucture in intomsen, R.M. etal. (eds)., Modediling Behaviour: Design

 Paniti. I. and Somló, J. 2014, 'Novel I Iocremental Sheet Forming System wit

DIGITAL FABRICATION OF NON-STANDARD SOUND-DIFFUSING PANELS IN THE LARGE HALL OF THE ELBPHILHARMONIE
benjamins. koren
ne to One Frankfurt New York
TOBIAS MÜLLER
Peuckert, Mehring

Classical music and performances have long been considered an exclusive pastime. In the past decade, classical performances have faced a declining number
of concert-goers, whose median age is simultaneously on the rise. Despite this negative trend, new concert halls and opera houses are being built around the world by some of the most prestigious architectural offices, resulting in some of the most exciting contemporary
architectural projects. This is evidenced by the fact that, architectural projects. This is evidenced by the fact that
for example, three of the last four Mies van der Rohe Award winners were concert or opera hall projects: the Norwegian National Opera \& Ballet by Snohetta in 2009, the Reykjavik Concert Hall by Henning Larsen Architects with Batteriid and Eliasson in 2013 and mos Veiga in 2015 . One may argue that this current interest in new concert hall projects does not contradict the forementioned alt interpreted as an effort to rectify it.

In this effort to revive interest in classical concerts, contemporary architects play a vital role. They can help
to renew interest by making concert hall buildings more
open and accessible to wider, younger audiences as well
as augmenting the concert experience as a whole $A t$ the as augmenting the concert experience as a whole. At the
centre of the experience, however, is the performance centre of the experience, however, is the performance
itself, which may be enhanced on an aural, visual or even tactile level. It is therefore not surprising that in current concert hall projects there is a concerted effort to achieve excellent acols,

New design and fabrication methodologies open up new possibilities, which are a result in part of design software developments over the past decade, an improved understanding of concert hall acoustics
towards the end of the last century and a surge in and towards the ent of the last century and a surge in and
access to digital fabrication technologies. In order to make these enhancements, it is critical that a close collaboration between the architect, the acoustician and the fabricator exists.

This paper aims to document one such close collaboration: the development and execution of non-standard sound-diffusing acoustic panels in the
large concert hall of the Elbphilharmonie in Hamburg

Sound diffusion
Designed by Herzog and de Meuron, the
Elbphilharmonie is located in the Hafencity area of Hamburg, Germany. It comprises approximately apartments, restaurants, a parking garage and a public observation platform. The large concert hall lies at the heart of the project, seating 2,150 people. Yasuhisa
Toyota, of Nagata Acoustics, was responsible for Toyota, of Nagata Acoustics, was responsible for
acoustical engineering He collaborated with the architects from the early stages of design through to completion. They approached the project from two perspectives: first, in terms of the overall shape of the design - by optimising the orientation of the soundreflective surfaces - and second, by developing the individual acoustic panels.
In broad terms, sound diffusion is the even scattering of sound energy in a room. Non-diffusive, reflectiy
surfaces in concert halls can lead to a number of surfaces in concert halls can lead to a number of
unwanted acoustic properties, which can be rectified, in part, by adding diffusers. A perfectly diffusive space is one where acoustic properties, such as reverberation, are the same, regardless of the location of the listener. Diffusion in some of the best concert halls in the world
such as the Great Hall of the Musikverein, built in 1870 in Vienna, is now understood to be a byproduct of the uneven surfaces of the rich neoclassical ornamentation of its interior. The antipathy to elaborate ornamentation by twentieth-century architects may have come at the expense of good concert hall acoustics. In the past, bad
acoustics could be treated at a later stage, by selectively retrofitting absorbers or diffusers, which resulted in a disjunction between the original architectural intent and its modifications.

Commercial diffusers began to appear towards the end of the twentieth century, as engineers studied the science and physics of sound diffusion. This process was started with the seminal work of Manfred R. Schroeder in the 1970s, which led to the development of his 'Schroeder
diffusers'. It has been noted that Schroeder's utilitaria approach to diffuser design corresponded well with the architectural styles of his time and were successfully applied to concert hall designs. However, contemporary engineers recognise that the shape of such diffusers is
not necessarily in line with contemporary architectural not necessarily in line with contemporary architectural
design. Cox (2004) for example, laments: "When Schroeder invented his diffusers, they fitted in with some of the artistic trends of the day. With abstraction at the fore, the
fins and wells formed elements in keeping with the style

1. Concert hall
under construction inder construction
inagear:Michatal Commentz 2. Single Nurbs cell
generation narameters

3.raed thapanesbemeng

men

of the day. But in the intervening decades, tastes have by advances in engineering to allow previously y advances in engineering to allow prediously buildings are becoming sculpted with complex geometries and curved forms. To many, Schroeder
diffusers no longer match the style required. diffusers no longer match the style required. Fortunately [..] it is possible to design arbitrarily
shaped diffusers, echoing the ability of architects seemingly work with any shaped building. Diffusers can usually be created which have harmony with the architectural style of the building."

Faced with the curvilinear, intricately intertwining wall, balustrade and ceiling surfaces in the Elbphilharmonie's design (Fig. 1), the acousticians had no choice but to develop a bespoke sound-diffusing panel system that

Parameters

While an in-depth discussion of the science and physics of sound diffusion is beyond the scope of this paper, one an, however, summarise a few key concepts to providersing of how acousticians derive the specifications for a diffusing pattern, which, in this project, were ultimately trans.ated into code and architectural form.

Sound travels through air in longitudinal waves, meaning each other. Repeated periodic pressure differences are perceived as musical notes. The wavelengths of notes at lower frequencies are longer, whereas notes at higher frequencies are shorter. Because of this property of
sound, there is a direct relationship betweent sound, there is a direct relationship between the spati dimensions of the diffusing pattern and the musical
notes this pattern will have an effect on, based on the wavelengths of the notes. A sound-diffusing pattern will affect a specific frequency range based on its physical dimensions. It is generally understood that the lower cut-off frequency of his range is influenced by the depth is influenced by its width.
The acousticians therefore defined the specifications of the sound-diffusing pattern, which would ultimately
consist of randomly placed, individually shaped cells for specific regions in the concert hall. The shape of these cells ranged from 5 mm to 90 mm in depth and 40 mm to 160 mm in width, depending on the region identified by acoustician
Parametrically defined surface
In order to interpret the specifications of the acousticians,
i.e. the width, depth and randomness of the pattern,
bespoke software plug-in was developed for Rhino 3D o generate approximately one million parametrically of the authoue shaped NURBS cells. A paper by one Modelling Symposium in Berlin in in aoog outlined this Modelling Symposium in Berlin in 2009 outlined this
development in detail. The pattern itself was initially based on the distortion of a two-dimensional, orthogonal grid on the distortion of a two-dimensional, orthogonal grid
of Voronoi seeds. The program allowed for random seed displacements, deletion and insertion in order to control oth the degree of randomness and the scale, i.e. the cell width of the pattern. In a subsequent step, each cused 2. 3D formation of a parametrically defined NURBS cell (Fig. 2), which exhibited a peak-and-trough shape, a motif haracteristic to the project as a whole and found in areas uch as the roof of the building or the overall shape of th driven by a total of six parameters, which allowed for the precise definition of the depth of each cell and also its overall shape, which included a range of harder and soft
edges. All the parameters were driven using grayscale edges. All the parameters were driven using grayscale bitmap images, which mapped $X Y$ coordinates from the
bitmap space to each of the concert hall's wall and ceiling surfaces' UV coordinates. In a last step, every control point of every NURBS cell was mapped topologically onto either flat, single- or double-curved surfaces in 3D, with special the seams between each connecting surface.

Digital fabrication and assembly
As each panel was unique, further software programmes production of approximately $10,000 \mathrm{CNC}$-milled gypsum
fibreboard panels, as well as to optimise the acoustic sult per unit area of the panels, up to $150 \mathrm{~kg} / \mathrm{m}$, was fail
large, and had to be achieved by giving the panel thickness a range of between 35 and 200 mm . Therefore the highest available density fibreboard panel, with a
volumetric density of $1,50 \mathrm{~kg} / \mathrm{m}^{3}$, was chosen Since material is only produced up to 40 mm thickness, most of the panels had to be built up in several layers, glued and mechanically fixed together, in order to achieve the intricate network of gap lines, which, not unlike the sound-diffusing pattern itself, was meant to be seamless across the hall's surfaces. Therefore the edges of the panels were made to always align with the edges of the neighbouring panels, resulting in planar, curved and
twisted edges, including rabbets in some cases. Becau of the varying degrees of complexity in edge conditions, a 5 -axis milling machine was used to manufacture the panels (Fig. 3). The curvature of the front surface was achieved by keeping the back of each panel planar, while the front was milled to shape. For each panel, the edges and a groove along the entire perimeter, for the placement of a sealing band, had to be positioned exactly 5 mm below the lowest point of the sound-diffusing pattern In addition, mechanical fixings were placed to secure
the glued layers and, most importantly, the previously generated diffusing pattern was assigned to each panel. After this, the panels were ready for manufacturing.
Each raw panel was prepared to size. The panels were CNC-milled in two stages. First, each panel was mille

Close up view of four
sisembled panels with
s.ammess spatem act
smm
mass.
mage: OMN TO ONE.
6.TTransition zone between
solid and transparent panels
age: PEUCKERT.
7. Concert hall under
construction in constuction in
february 2016
Image: PECCKKRT.

the edges and the placement of the holes for fixing the substructure and for mechanically securing the glued layers. Then each panel was flipped, repositioned on the
machine and milled from the front, which included a stage for 3 -axis milling of the sound-diffusing pattern using a ball-end cutter, milling in parallel tracks spaced at fairly large distances. This resulted in a rough, final
surface texture that also exhibited the peak-and-trough motif down at the scale of the trails left by the milling head (Fig. 5). Once the panels were milled, they were lacquered on both sides with a clear lacquer. Part of the substructure - profiles standardised in length at
1oomm intervals - were prefixed to the back of each panel using a combination of four standard screw lengths. The depth of penetration of the screws was determined computationally beforehand and was controlled by pairing each screw with one of ten washer types, at range of precise screw penetrations. Finally, the panels were quality checked and packed for shipping. Once they arrived onsite, each panel was manually installed. Very simple details of the substructure allowed for pane
adjustments with three degrees of freedom, allowing adjustments with three degrees of freedom, allowing
them to be fitted with a 5 mm gap between panels, and at the required precision

rialling new technolog

Apart from the architectural achievement, the final project can be evaluated from both a fabrication and acoustical standpoint. The seamless design and the computational design and digital fabrication highly precise computational design and digital fabrication methods.
While 3 -axis and 5 -axis $C N C$-milling techniques have become the norm in architecture today one needs to point out that development of the panels for this project started in the mid-2000s, when 5 -axis milling machines
chine and train their staff in order to deal with this new technology, which necessitated a close collaboration between all the parties involved. In addition, no one had previously attempted to mill very dense gypsum
fibreboard panels in such a way and in such large quantities. In order to swiftly and precisely produce large quantitites. In order to swiftly and precisely produce larg
quantities of panels without wearing out the machines and tools, several rounds of meticulous tests and trial were conducted, with several mock-ups built. Once
parameters had been determined, panels were produc parameters had been determined, panels were produced
efficiently and to an incredibly high degree of precision, efficiently and to an incredibly high degree of precision,
which was necessary in order to assemble the final panels at the desired tolerances. In the end, all the panels fitted
together perfectly keeping the number of faulty panels together perfectly, keeping the number of faulty panels at a minimum despite each one being non-standard and
assembled in a complex manner. Only 20 out of a total of about 10,000 panels had to be replaced due to dulled tools - an error rate of only 0.2%. This extremely small error rate is an achievement in itself given the scale and complexity of this project.
evaluation, at the time of publication of this paper final measurements have not yet been published. Tests are generally conducted on concert halls before the opening concert, which took place on 11 January 2017.

Pioneering collaboration

The development and execution of the non-standard sound-diffusing panels in the large concert hall of the
Elbphilharmonie is a noteworthy collaborative effort Elbphilharmonie is a noteworthy collaborative efforn
between architectural design, acoustic engineering and digital fabrication, which resulted in the intentional application of a sound-diffusing surface treatment in harmony with a contemporary, complex architectural design. Software and manufacturing methodologies, since this project began 10 years ago. Improvements in software and computing power for precise acoustic simulations, as well as readily available access to new fabrication technologies, such as 3D printers and robots, alongside the computational methods outlined in this
paper, offer great potential for similar projects in the paper, offer great potential for similar projects in the
future. Fromm (2014), for example, investigated the potential use of 3D printed cement-bound elements as an alternative, comparing and contrasting them specifically with the CNC-milled gypsum fibreboard panels of the
Elbphilharmonie. This points to one of many exciting new possibilities for the design and application of sound diffusers in future concert hall projects.
8. Concert hall

Concert hall,

Audience Insijht LLC. 2002. Classical M.
John S. and James. L Knight Foundation.
Blasi. 1.2015 , European Prize for Contemporary Acchitecture
Rohe Award 2015, Barcelona, Fundacio Mies van der Poohe.
Cox, T. 2004, Acoustid diffuses: the good, the bad, the
Cox. T. T. and D 'Antoni, P, 2005 , Thity years since "Diffuse Sound Reflection
by maximum-Length Sequences:" Where Are We Now?? Forum Acusticum
Fromm, A. 2014, 3 SD Printing zementgebundener Formeieil, Kassel, Kassel
Gray, D. Cuspinera, M. and Bes, A, .2009, Euro
Contemporary Architecture,

QUALIFYING FRP COMPOSITES

 FOR HIGH-RISE BUILDING FACADESWILLIAM KREYSLER
Kreysler \& Associates

Using fibre-reinforced polym Using fibre-reinforced poly
on the SFMMMA addition
Fibre-reinforced polymer (FRP), in this case glass fibre-reinforced polyester resin composite with a polymer concrete face coat, was used in the US for the first time as exterior cladding on a Type 1 multi-storey building on the San Francisco Museum of Modern Art (SFMoMA) makes SFMOMA the largest museum of modern art in the US, with the largest architectural FRP facade application in the US to date.
FRP was chosen to mimic the rippling water of the nearby San Francisco Bay on the east and west elevations Although recognised by the IBC (International Building Code) in 2009 as an accepted building material (International Code Council, 2009), any FRP material used must pass the same code requirements as oth requirements is the NFPA 285 test. Until this and
other requirements are met, no combustible materia
including FRP , is allowed.

The design for the SFMoMA project called for over 70 unique, individual, constantly curving panels (Fig. 1). Although it is possible to construct such panels with metal, the only practical option was to mould the 710 unique panels, thus suggesting precast concrete of the lighter UHPC or GFRC. The less familiar FRP was listed as an alernative by he façade cons European construction.
Although used sparingly on US buildings for decades FRP has dominated other industries such as corrosionresistant ducting and chemical storage tanks, wind it has seen no extensive use on Type 1 buildings. This has been partly because of codes and partly because its primary advantages over other materials are its
high strength-to-weight ratio and its ability to be formed high strength-to-weight ratio and its ability to be formed
into complex shapes. Neither of these characteristics into complex shapes. Neither of these characterist rectly
has been very important in construction until reeentl

After successfully passing a rigorous evaluation process, FRP was chosen because it offered solutions to several problems presented by the use of other systems. Its primary advantages were its light weight and formability,
the very features exploited by other industries in the past and now increasingly relevant in contemporary design and construction.
New means, models and materials
Aside from curiosity about something new, several factors are pushing building designers towards sometimes adical departures from traditional means and methods. This shaverse industry is leading to the stortlingly rep deployment of fundamentally new building systems, including to a large degree the building envelope itself Environmental concern for building materials as well as building operations, health and safety issues relating to regulations and code modifications are driving these new approaches. Additionally, jobsite labour costs, time to delivery and an evolving design ethic brought about by 3D computer modelling are leading designers to consid n array of new ideas, methods and materials. FRP, composites represent one of these new materials construction. Although still some way off, there is technically no reason why FRP cannot be used to create entire building structures as well as complete envelopes (Lambrych, 2008). Indeed, such composite structure transportation and marine where monocoque structures are routine.

Meanwhile, FRP composites will find increasing use in non-load-bearing architectural applications in AEC
due to their formability high strength-to-weight ratio

Designers, engineers, builders, owners and even fabricators of FRP products need reliable information about the proper use of FRP in construction. This paper
is an attempt to improve the understanding of one of is an attempt to improve the understanding of one of
these materials and to address questions, concerns and misconceptions relating to the proper use of FRP on misconceptions
building façades

Using FRP: context and background

FRP has found limited acceptance in construction despite its proven success in other industries. Its principle advantages are its high strength-to-weight ratio compared to other materials and the ability to consolidate what
would otherwise be assemblies of ther would otherwise be assemblies of other materials such as
wood or metal into a single moulded part. For example the Boeing 787 , a primary benefit of composites was to significantly reduce the part count.
Recent changes in building codes and design are opening the door to more widespread use of composites in architectural and even structural applications. The American Concrete Institute has adapted a design standard for the use of FRP in concrete structures (American Concrete Institute, 2008, composite rebar in structural concrete (ACI Committee 440, 2015). AASHTO has published a standard for pedestrian bridge designs using composite structures
(American Association of State Highway and

Transportation Offcicials, 2008). DOT initiatives
hroughout the US and experimental bridges and other structures in place for decades and are beginning to publish results indicating Transportation Offcials 2009) Highway

Research questions
What are the engineering and building code obstacles to overcome to use FRP as an exterior cladding on
Type 1 multi-storey buildings in the US? How can these obstacles be overcome within the schedule and budget constraints of a project? What advantages would an FRP rain screen provid ompared to more traditional material alternatives?

The use of FRP cladding on the SFMoMA provides a case
study for the use of FRP as cladding on any multi-storey study for the use of FRP as cladding on any multi-storey commercial building. Initial prototypes, cost estimation,
design assist procedures, code compliance strategies and engineering and installation methods were developed to meet the design intent, budget, project schedule, code requirements and environmental constraints.

Prototype fabrication

The architectural façade design was modelled originally by the architect in Rhino 3 D (McNeel Associates) using
Grasshopper script to alter the wavelength, amplitude a Grasshopper script to a ater the wave ength, ampitude
and frequency of the facade 'ripples over the curved and tilting east and west elevations of the building. Rhino models can be reliably imported into software used to
guide CNC cutting tools (in this case PowerMILL by Delcam) which can be used to cut the shape of the part or its mirror image out of a block of material, thus creating a female mould directly from the architect's model (Fig. 2). Cance made, this rapidly and inexpensively created mould the façade.
Easily fabricated mock-ups serve as a rapid verification of material durability, process fidelity and panel weight. By early fabrication of a full-scale mock-up, such things as
material cost per square foot, overall weight, repairability and strength are verified. This step improves the quality of the production cost estimate as well as the architect's and client's confidence in the material option.

Cost estimation
Although no two of the 710 façade panels were the same
fabrication made cost estimating reliable. Rhino provided an accurate surface area and such key characteristics as panel centre of gravity. Knowing the materials required on a per square foot basis allowed for accurate material cost predillin. Po mil

Thus, despite the highly complex and variable shapes, accurate cost estimation and scheduling was possible for the tooling phase. Through the use of digital
fabrication tools and conventional material labour manufacturing overhead allocation methods, a reliable cost could be predicted.

Design assist

An element of contemporary construction is the

design team and specialty contractors. Although the
raditional design, bid, build' method is still dominant, it frequently leads to wasted time on the part of design professionals who attempt to produce a plausible construction document' based often on insufficie Expecting an architect, or even a façade consultant, to b an expert in composite fabrication can lead to erroneous assumptions, insufficient and inaccurate documentation and faulty conclusions. At best, he or she might propose a
solution that does not optimise current technology, which in turn leads to costlier and lower quality solutions.

Expensive hours are spent attempting to develop plausible construction systems in hopes of achieving a 'low' cost proposal. Too often such approaches fail to
leverage the current fabrication best practices and can leverage the current fabrication best practices and can the case with a negotiated contract with pre-qualified vendors based on pre-agreed budget targets. More
enlightened approaches utilise design assist (Hart, enlightened approaches utilise design assist (Hart, 2007) services, but this method continues to suffer when the
selection process is based on responses to 'conceptual' fabrication strategies, typically delivered to the vendors as 2 D drawings for contract compliance purposes. When such documents attempt to describe complex shapes, this
regularly leads to impossible construction details being regularly leads to impossible construction details being
applied to the actual 3D environment. Too often these irregularities do not reveal themselves until after the vendor selection process, leading to change orders and wasted time. Solutions to this rapidly growing problem are beyond the scope of this paper, but they must be addressed as soon as possible. These solutions must,
among other things, allow a shift to the use of 3 D models as construction documents. They must also insist that vendors who participate in complex architectural projects be vetted and fully conversant with mutually compatible
software (Miller 2012) -they must be fuent in the use of software (Miller, 2012) - they must be fluent in the use of
the latest digital tools.

Code compliance

Since 2009, the International Building Code (IBC) has recognised FRP as fibre-reinforced plastics This section of Chapter 26 recocognises FRP as a combustible material, allowing its use when the product can demonstrate the ability to meet the code
requirements applied to similar architectural products. requirements applied to similar architectura products.
Since FRP can be formulated with a wide variety of mechanical and physical properties, formulations are available that meet most requirements. For building
feet provided it can pass spread and also meet the appropriate structural requirements. This is a relatively easy standard for FRP materials. Above 40 feet, the code becomes more
rigorous. Although passing ASTM E-84 continues to be a requirement, any coverage over 20% of the total surface area means the material must meet the Class requirements of ASTM E-84 for flame spread and smoke density and also pass, among other tests, the rigorou major hurdle which had to be cleared before FRP could be seriously considered for the façade material. The specific formulation for the test panel is confidential and is in fact now patented by the panel fabricator. However, the fabricated panel did pass the test and, as a result,
composite material was selected for use based on the projection of significant cost and time savings.

Code requirements for engineering of the panels to meet
wind, seismic and dead load requirements, including wind, seismic and dead load requirements, includi the fixing designs, were met by following standard
engineering principles and test standards for the des of similar façade products, with shop drawings stamped by engineers duly licensed to practice in the jurisdiction.

Engineering

FRP has long been the focus of reliable engineering techniques. Indeed, the development of modern FEA (finite element analysis) engineering was driven to a large degree by the need to engineer complex aircraft
forms made possible by composites Aerospace forms made possible by composites. Aerospace and
military uses of composites started in the 1940s, followed by the large compound curved shapes found in marine applications. These applications generated a vast array of ASTM and other standard test procedures, many o
which can be used for architectural composite design The American Composites Manufacturers Association (ACMA) recently published Guidelines and Recommended Practice for Architectural FRP, which contains examples of relevant material properties, engineering examples and test procedures for the

Fabrication phase
As we have mentioned, one of the unique characteristics of FRP is its very high strength-to-weight ratio.

This feature led to panels whose weight was approximately three pounds per square foot (1 ILkg $/ \mathrm{m}$), making them
nitised panels used to form the waterproof barrier of the building (Fig. 3). This was convenient for several reasons. It eliminated the need for any penetrations
of the waterproofing. It allowed the FRP to be fastend of the waterproofing. It allowed the FRP to be fastened o the unitised panels offsite, which meant that the
ERP rain screen was installed simultaneously with unitised wall. This simultaneous installation eliminated the need for a back-up support system and reduced the construction time by replacing an original design that
required three trips around the buid equired three trips around the building by three different trades with a design that required one trip around by one
contractor. Additional benefits involved less tower crane time, fewer crane moves, easier cleaning, higher quality damage tolerance, superior repairability and lower overall cost (Fig. 4). Comparative lifecycle studies done by Stanford University graduate students in a non-peer-
reviewed LCA comparison (Stanford University, 2009) also suggested that the FRP had significantly less impact on the environment compared to the alternative system using GFRC or UHPC.
Another unique characteristic of FRP is that the shape nd configuration can be economically customised. Conventional unitised panel systems are most economical and reliable when creating flat walls. The SFMoMA facade was anything but flat. Resolving the problem created by these two seemingly incompatible
features presented a unique challenge. How do you make fatures presented a unique challenge. How do you make
a llat back on an ever-varying front surface? Not only was he front wavy, but it also tilted forward and back as it rose higher and curved in plan through a wide variety of irregular radii. The solution lay in the use of digital tools on virtually every panel.

As the façade diverged from a conventional fat wall, the edges of the panels were moulded with edges that design flexibility before running up to one of these edge dimension limits. When the curve diverged beyond these imits, a custom unitised panel was fabricated to 'twist' the flat wall into a new face

Again assisted by digital tools and relying on skilful craftsmanship and valuable collaboration between the FRP façade fabricator and the aluminium unitised wall manufacturer, calculation of the balance between the additional cost of these special twisted unitised panels
and the cost of fabricating asymmetrical FRP panels and the cost of fabricating asymmetrical FRP panels
determined the 4 to 34 in edge tolerance. The contractor determined the 4 to 34 nedge toerance. The contractor architect's shape within a tolerance of less than 1.5 in
throughout the entire 11-storey elevation.

5. View of SFMOMA east
facale trom the stht loo
sculture

SEMPTUre garden.

6.SFMOMA eastragad
terace overlooking
scculd

erace overlo oking
sulpturue garden.
nages: © Tom Paiv

The data show that FRP can meet the IBC acceptance criteria for architectural products. Standard test methods
for fire and durability can be applied. ASTM tests exist fo composite materials; these tests have been in existence or many years and have proven to be reliable in assisting engineers in designing structures as well as architectural products. In addition, FRP products, in large part because of their high material efficiency, often compare favourably to conventional materials in environmental a
such as LCA (lifecycle assessment) studies.

The future of FR

Although somewhat new to the construction industry, FRP is a proven material with decades of successful, aerospace and transportation industries. To date, FRP composites have been used only infrequently in construction, mainly in remote and extreme nvironments where the need for prefabrication, light
weight and easy assembly have warranted their use.

However, since the engineering of FRP is based on internationally recognised standards, engineers have tests. Building code obstacles to the use of FRP have been significantly reduced since the adaptation of Section 2612 of the International Building Code in 2009 .
Provided the fabricator can meet the requirements of the

IBC for a given application, most authorities having FRP products.

The process of qualifying FRP while maintaining the schedule and budget constraints depends on many variables. On the project discussed here, fire testing cam
first to verify code compliance. Passing all requisite tests took approx code compliance. Passing all requisite tests took approximately five months; however, once passed,
these test are valid for three years and can be used for other sufficiently similar projects. Budget constraints are more subjective, but the SFMoMA project was able to demonstrate that successfuu completion of testing and engineering would more than offset testing costs and
would have no negative impact on the project's schedule.

Advantages to using FRP included eliminating two subcontractors and an entire steel support frame weighngovement of the watertight integrity of the the mproverding. Additional benefits were one pass around the building instead of three, which would have been required with the other system, and two fewer moves of lifting equipment such as the tower crane.

While offering many advantages, care must be taken to use industry standard design principles. As with any new material, the specifier of composite materials will
be greeted with a wide variety of options and prices.

8.Street view of
S.MMOA east facade

Since quality is a function of fabrication, not unlike oncrete, it is incumbent on the designer to exercise caution in selecting a fabricator. Conflicting informatio ecognise that this is a highly specialised discipline Being an anisotropic material, there are virtually limitless options in terms of fibre orientation, fibre volume, number of layers, type of resin, resin filler options, sandwich and ingle-skin construction techniques and cure options. Engineers have control over a dizzying array of mate roperties, including even thermal expansion and
ontraction (CTE), which will vary from carbon fib its negative CTE to some resins with higher CTEs than aluminium.
Use of FRP on the SFMoMA and other façade projects in Europe and Asia demonstrates that properly executed work can result in successful outcomes. However, there
are ample examples of less successul outcomes. Althoug are ample examples of less successful outcomes. Althous as demanding as building façades and often in those that are much more demanding, making decisions based solely on cost is risky and almost certain to yield poor results. With care, appropriate formulation and proper quality control, FRP can not only provide the structural properties fre and other code requirements.

Similar to concrete, the mechanical and other critical properties are largely determined during the fabrication process. Stringent quality assurance is essential and able and properly certi fabricator is critical. The IBC code requires that any
FRP part delivered to a jobsite must have affixed to it an ICC-recognised independent test agency label certifying that it is manufactured in compliance with he code and subject to third-party inspection. Such a labe is the first ine of defence in
uture study will need to explore structural opportunities for composites in construction. Engineering examples and ideally an LRFD model for FRP tailored to the construction industry should be developed. Durability
case studies need to be assembled from the wide variety of existing examples to improve documentation. Such studies should rely on properly documented empirical vidence and science, of hich there are numerous examples (Pauer, 2016).
 Design Ouidelines for repP Pedestrion Bridges
State Highway and Transporatation Officials.
America A Association of State Highway and Transportation Officicils, 200 an

American Concrete Institute, 2008, Guide for the Design and Construction
Externaly
Bonded
R PPP Systems Externally Bonded RRP Systems for Strengthen
Fammingon Hills, Ameican Concrete lenstute.

Anon, Delcam, available (accoessed 25 May 2016)

Anon, Roobert McNeel \& Associctes, avalable at
.ates.avalable a hntp:///www.en.na.mmenee.
Hart, D. 2007 , The Basisis of Designn-Assist Contracting, the AI
International Code Council. 1 nc. 200 Country Club Hills: Intemationonal Coode Council, hnc., p. 543

Lambrych, K. 300 Ft Tall FRP.

Miller, N , 2012 , The Proving Ground, avaiable a thtto://www theprovingrgund.org/2
accessed July 2016 .
Pauer, R. 2016, Durability.
Stanford University, 2009. Architectural Facades for the Heydar Aliyev
Turner Construction, Turner Construction Standard Contract.

THE 2016 SERPENTINE PAVILION A CASE STUDY IN LARGE-SCALE GFRP STRUCTURAL DESIGN AND ASSEMBLY

Since 2000, the Serpentine Gallery in London has ommissioned a yearly pavilion to be built and displayed during the summer months. A renowned international
architect is chosen to design the installation, the only condition being that whoever is chosen has not completed a project in the UK at the time of invitation. These exciting commissions must therefore balance the opportunities or experimentation that a temporary structure affords must go from initial concept to completion onsite in less than six months.
The 2016 Serpentine Pavilion, designed by BIG (Bjarke Inels Grup) and engineered by AKT II Bresents (Bjarke Ingels Gloup) and engineered by AKT II, presents a and advanced structural analysis tools in undertaking such time-constrained projects.

Concept and form

The pavilion centres on a (deceptively) simple concept; two 30 m -ong sinusoidal walls - one concave and one
into a single interlocked form at their apex (Fig. 1). Each 14m-high wall is comprised of open-ended boxes and set in an inverse checkerboard pattern to its
neighbour, enabling the upper reaches of both walls to overlap and interlock into one continuous cellular grid. Back at ground level, the stepping and staggering of these 40 cm -tall boxes creates a 'pixelated' external landscape
open to climbing and sitting, while inside BIG has taken open to climbing and sitting, while inside BIG has taken the opportunity to sculpt a series of differently scaled
spaces intended for seating, a bar and live performances.
This formal ambiguity is reinforced by the use of open-ended boxes: when viewed longitudinally, they appear solid and substantial; however, as a visitor passes
through and around, they turn face-on and seem to dematerialise down to mere grids of lines and moire interference, enabling views through and out of the pavilion to the park landscape beyond (Fig. 3). Parametric workflow

To realise such a large and structurally complex pavilion,

coordinated production information in less than three months. In addition to these time pressures, budgetary quantities be optimised as far as possible without quantities be optimised as far as possible w
compromising the ambition of the design.

For these reasons, the BIG and AKT II design teams chose to generate the entire geometry through parametric design processes. This enabled the rapid valuation of different options for the underlying and square grids at different scales, as well as more complicated pin-wheel and reciprocal arrangements for the boxes. For each option, the design team could efine an array of parameters - from micro values such as the individual box height and width through to m
dimensions such as the minimum 'offset' between adjacent boxes, overall wall heights, lengths and sin wave proportions - and interrogate the resulting forms to extract quantities for material volume, number of xings and so on. At every were passed along to fabricators to establi.
timeframes for production and assembly.

As the initial conceptual phase moved into detailed design, these parametric models had to become more complex and take on additional structural and fabrication
criteria. To aid this process, AKT II utilised their proprietary Re.AKT toolkit, which allows information
to be fre exchanged and integrated between modelling analysis and documentation software. This creates a streamlined workflow in which new information from
different parties is rapidy model from where it can propagate outward and update other packages. Re.AKT is always configured specifically for each project based on the scale, typology and materials. In the case of the pavilion, the best Re.AKI workflow was therefore to establish connectivity between Rhino and Grasshopper (geometric modelling), Sofistik
and SAP (structural analysis) and Microstation (drawing and SAP (structural analysis) and Microstation (drawing
production). With this parametric workflow in place, the different design teams - spread between the US, UK and Denmark - could rapidly exchange and refine ideas.

Material development

From the earliest stages of the project, BIG emphasised that they wanted to experiment with glass fibre-reinforced plastic (GFRP) manufactured using the 'pultrusion' process. GFRP is a composite material formed of glass typically has a strength comparable to that of steel, but with only around a quarter of the weight. This high specific strength has made GFRP an attractive material in instances in which weight is critical, such as aerospace and automotive applications, but the labour-intensive into custom-made moulds has historically made GFRP

only attractive in niche areas of structural and civil engineering. Manufacturing GFRP using automated
processes has been of increasing interest recently processes has been of increasing interest recently as a Pultrusion is one of these processes, involving the use of a mould through which the glass fibres are pulled and impregnated with the resin. The resulting material can sale, with a high degree of consistency and at a low cost.

To support our explorations with this material, BIG nvited Fiberline Composites A / S to join the project. Fiberline are one of the leading suppliers of pultruded
GFRP, and have developed several GFRP products with GFRP, and have developed several GFRP products with benetcicia structural properties as well as unique colours
and transparency levels. Initial discussions with Fiberline focused on the possibility of forming the entire pavilion rom a single type of GFRP element - a bespoke extrusion designed specifically for this project that would connections. However for speed and economy reat the design team instead chose a kit-of-parts solution, where each box is assembled from four GFRP plates,
stability and vertical load-bearing capacity. By utilising this system, the project benefited from the very fast production line Fiberline already has in place for tolerance in the resulting boxes could be assured.

In parallel with this development on the GFRP boxes, the design team considered a number of different option for connecting them. They ran tests on GFRP, carbon
fibre and steel connectors before settling on a 10 mm-thic cruciform-shaped aluminium that provided the necessary weight-to-strength ratio.
With over 95% of the pavilion made from only these two simple elements, the expression and detailing of the fixings between them was critical. The design team worked through several different options before finally selecting one suggested by StageOne: a bespoke
flatheaded bolt-and-sleeve that could be held in flat-headed bolt-and-sleeve that could be held in place asymmetrically on each box's inside face during
tightening consequently enabling a smaller offse fro the neighbouring GFRP angle face. By minimising this offset, the design team could specify shorter 'arms for all of the connector coulss-sections across the

Iternal space formed by
Connector typologies
3. Material ilightress and
transucuncror.

Parametric workfow

entire structure, resulting in faster production times,
significant cost savings and reduced weight of boo significant cost savings and reduced weight of box lusters. Advantageous cumulative effects like th

Structural design and physical calibration

Throughout the discussions with Fiberline, the
previously established parametric models were used
to test and provide feedback on different configuration With Re.AKT in place, each option could be analysed simultaneously at multiple scales - both globally and ocally (Fig.5). High resolution non-linear finite eleme generated at first, and later small clusters containing up to a dozen boxes - these were then used to calibrate global 2D and 3 D frame models. This process enabled he complex orthotropic behaviour of the boxes to be captured far more accurately and quickly than traditio timeframe of the project and the unusually large num of elements in the pavilion. Without this process in place, it would not have been possible to dissect the load paths and force flows within the structure so finely or to pare
down the final design. It is conceivable that utilising down the final design. It is conceivable that utilising lighter than if it were engineered in a traditional manner, with all the inherent savings this brings in material,
transportation and assembly.

The existing design guidance relating to GFRP is not widely recognised in its application to primary loadbearing structures, outside of highly specific and
specialised applications. To resolve this, a series of physical material tests were undertaken by Fiberline in order to provide further calibration and confirmation of the digital models. With the global models calibrated, it was clear that three thicknesses of box could be utilised: $10 \mathrm{~mm}, 6 \mathrm{~mm}$ and 3 mm . This would provide the necessary
stiffess where forces were concentrated, while minimising overall weight and cost and maximising the degree of translucency desired by BIG. Likewise, the varying forces present at the connection points could be transferre using either one
adjacent boxes.

The final optimised design thus comprises 1,800 boxes of 16 different lengths, as well as 3,500 connectors of 126 different typologies and more than 25,000 bolts (Fig. 4)
Although almost every single box and connector is Anique (in its combination of length, thickness and bolthole positions)(Fig. 2), with the Re.AKT workflow in place it was straightforward to automate the productio of schedules for all three elements, assigning unique codes to aid in figr)

With the major design principles in place, Fiberline began production of the first sheets in Denmark. Sever with the matching I-profles and these sheets were the cut into shorter plates that matched the different box lengths. At this point, Fiberline developed a bespoke process that quickly and accurately assembled these
constituent parts into a completed box The four GFRP constituent parts into a completed box. The four GFRP
plates of each box were laid out flat on top of a series of ratchet straps, and the corner L-profiles were each glued ratchet straps, and the corner L-profiles were each gh
to one of the plates. A chamfered block of foam was placed in the centre of one plate, and the entire assem was folded up around this block into a rectangle and bound together with the straps. At this point, air bladders
were inserted into the voids between the chamfered block and each corner of the box. By inflating these bladders with high-pressure air, it was possible to maintain a constant pressure along the entire length of the box during curing of the glue, which ensured the quality
of the bond.

This process was carried out in stages, so that batches of several hundred completed boxes were regularly ransported from Fiberline's facilities in Odense,
Denmark, to the Serpentine's chosen contractor
StageOne and their workshops in York, UK, for the next stage of production.

Pre-assembly
At StageOne, the arriving boxes were grouped by wall, and assembled into modules across several rows at a time. These modules were necessary given the significa The Central London location immediately rules out the use of any special order vehicles and significantly constrains the time window each day during which lorries
can access the site. Furthermore the site's small foottrint can access the site. Furthermore, he site's small footprin
limits the volume of material that can be stored between deliveries. In response to these constraints and also the truncated programme of the project, the entire structure was prefabricated offsite at StageOne, and a just-in-time delivery system brought small modules to the site on a daily basis. The size of these modules incorporated efficiency during transportation, reach and load capacity of the onsite mobile crane and stability of the preassembled modules during lifting. From this analysis, a 3×4 module was found to be optimal.

Even with this method established, the translation from atomised components into the final pavilion appeared to be a daunting hurdle. Setting out the $4-24$ boltholes for each box and the $8-24$ boltholes for each connector across the entire structure was a task inherently suited to However, physically aligning and setting out these

components into the complex, non-repetitive form of he pavilion required significantly more dexterity and than digital fabrication could provide.
This seeming paradox was overcome by fusing CNC nd manual fabrication. The manageable size of each connector and more constrained bolt locations made
them ideally suited to fabrication using CNC technique Once cut and drilled, these elements then became the template used to manually drill the more varied holes for each box. By using a single type of clip-on jig that a
connectors against their neighbouring boxes, the setting-out was simplified by an order of magnitude
This process had to be carried out in phases, as even StageOne's facilities could only accommodate a few rows shipped out to the Serpentine (except the uppermost ro of boxes): the temporary bolting between modules was emoved, and each one was made self-stable using atchets and wooden props to support it during delivery to the site in London. The retained uppermost row of
boxes was placed down on the ground to 'reses' the datum level - positions were checked and, using them as for setting out, the next set of rows began above.

Construction

Onsite, the lowest row of boxes for each wall was set out individually and bolted into a raft slab foundation using around 300 post-fix bolts. These connections
ensured a high degree of tolerance and created a ensured a high degree of tolerance and created a definitive datum above which he first modules could be
craned into place and rapidly bolted to their neighbour The north and south walls rely on each other to provid stability in the form of an arching action in the final condition. While it would have been possible to design
the structure for these 'cantilever' forces in the tempora condition, the increase in material thickness required was not economically or aesthetically desirable. Instead,
once the pavilion reached a set height, a grid of Layher once the pavilion reached a set height, a grid of Layher djustable scaffolding was utilised to temporarily adjustments to be made to the position of specific boxes and ensured a good fit where the two halves of the wall merged together

Once the structure passed above the merge zone, the pavilion was self-stable and the scaffolding could be
removed. This allowed the wooden floring to be laid inside at the same time that the final fully merged rows were added above. Just a few hours before the opening pavilion superstructure was complete (Fig. 7). Over this phase of the project, approximately 300 modules were delivered to the site and connected together in just 25 days

A rewarding collaboration

A holistic design approach was vital in realising this challenging concept in the time available. The collaboratio that emerged between different design disciplines was of itself very rewarding, and was strengthened further by
the positive critical and public reeeption that the 2016 Serpentine Pavilion has received since opening.

Just as significantly, it also seems that the pavilion wh connde to advance enversations on material form and structure in the future. Research is currently
being undertaken on live monitoring of its GFRP elements, and the entire pavilion looks likely to tour multiple cities across the world over coming years.
Acknowledgements
We would like to acknowletge and thank the rest ofthe Serpentine 2016
desigen team for their unfatifering enthussismm.expertise and commitment desigit team for their
throughout the project.
Client: The Serpentine Gallery Juilia Peyton-Jones, Hans Ulich Obist.
Julie Bunall)
Designer: BIG (Biarke Ingels, Thomas Chistoffersen, Maria Sole Bravo, Rune Cladet, Lorenz Kisisi, Wells Barber, Tianze Li, Aaron Powers).
Superstructure engineers: AKTIIH Hanif Kara, Ricardo Bapista, James
Kingman, ,eg Dudey, Krzystof Zdanowicz, Edoardo Tibuzzi, Lorenzo Greco and Stuart Sagar).
Foundation engineers: AECOM (Jon Leach, Amy Koerbel. Michae O OIt, Jack Katia Leszczynska, Max Smith).
Material supplien: Fiberinine Composites A/S Stig Krogh Pedersen, Preben
Veno Niel ses anand f fitz Vinter). Fabricator:Stage One Creative Services Ltd (Ted Featonby, Alan Doyle.
James MCNilla, Mick Mead).

BIOGRAPHIES

Monica Ponce de Leon is pioneering educator and
ward-winning architect Since e anuuary 2016, she has bee

 recipient of the prest Achitecture foom the Cooporer tevitt, Smithsononan National

\qquad

She is widely recognised asa leaderin the application of
robotic technologyto build ding fabicication. Buiding uoon

 he country.
As a practising architect who is deeply committed to
architectura e education, Ponce de leon builds brides

Ponce de Leon has also held teaching apoointments st
Northeaster Uniesisty, the souther Coliforimi Institute
 Institute of Te chnology. She eamed a Masters degeree in
archite cture and urban desigign fom the Harvard Graduate

Carl Bass
Carl Bassi is member of the Autodesk board of directors
and is spesentity serving as an andisor to the company.

 Design Musum, Art Center Colege of Design and Califirn
college of the A Ats and on on the advisory boards of Cornell Computingand Intormation science. UC Bererbely schoo
of 1 fitmation and UC Berkeley Colieg of nnineering.
 Antoine Pico
Antine Picon isthe G. Ware Travelstead Professoro of the Research at the GSD. He teachess courses in the history and
nginer, architect and historan, Picon works on the history entury to the epresent. His most most reent toom thok offera

 Archite cture: An lintisoducuction for for the Desesigign Porofessision (2010

Picon has received a number of awards for tis wititng
including the Meddaile de le vilile de e Pais, the Pixix du

oan
JENNY SABIN
MARIO CARPO

MARIO CARPO Where is your work heading right now? What are the key ideas?
JENNY SABIN As you know, one of the driving questions and obsessions in my work is fuelled by the diminishing gaa
between design intent and that which is materialised between design intent and that which is materialised -
what is modelled, rendered, etc, through scripts and algorithms - and how that meets the material world via
issues of fabrication tand materal constrains issues of fabrication and material constraints. I am really
interested in that operating as a loop both in the way 1 think through a design process and in the way it impacts on the tools that I produce and the projects that I generate. And at the core of that loop - which has driven an ongoing interest
in, say, textiles and weaving and the origins of digital space in, say, textiles and weaving and the origins of digital space is, very importantly, the presence of the human and often the
human hand (at least within the analogic prototyping stage).

Right now, my work is really about interventions within that loop generating feedback mechanisms. The latest paper to
come out of my lab is Robo-sesnse Context-dependent Robotic Design Protocols and Tools'. Mario, in your 2013 w Robotic Design Protocols and Tools. Mario, in your 2013 work
for AD, called The Art of Drawing, you reference Brunelleschi's use of the turnip as a way of modelling and conveying design intent to artisans onsite. So, what is the equivalent of the turnip now? In my lab, we have been working on developing pipeline
and software that allow for collaboration with machines such as sulla, our large industrial 6 -axis robot. I am interested in instilling a degree of design intuition in order for the interface to be more user-friendly and personal. This goes alongside the broader issues of fabrication and materiality, but really generates feedback and collaboration with these machines.
The human is very much at the core in terms of intuition and integration within the design process. On the practice end of my work, have been working in digitalceramics. One of the
printing to question how bricks are made. We have developed a way to 3D print non-standard bricks, where each brick is
different and yet there is a coherence to how they assemble different and yet there is a coherence to how they assemble how the bricks are structured and assembled and in how we conceive of the wall as an interface.
A second project I just opened recently, which continued a ongoing collaboration with Dr. Peter LLlyd Jones, is a project
installed in Philadelohia called The Beacon In worked with drones to dynamically weave a second exterior skin around a $20 \mathrm{ft-tall}$ modular steel structure over the cours of 10 days. The project looks at the intersection between medicine, architecture and emerging technologies, and at the future of all three. The drones and the Beacon project overal
served as an analogue and marker for discussion, and also as public spectacle. It was exciting to take on something new, where you aren't restricted to the six axes of a robot but are ompletely freeform in space as the drones deposit thread experimental act that will be looping back into the ongoing esearch trajectories within my lab.
MC When we started to deal with computation for . manipulation of complex materials i ie of non-stand the manipulation of complex materials, i.e. of non-standard we could at long last engage with the indeterminacy and complexity of natural and organic matter - which is a revers of the tradition of structural design. Architecture, even building since the beginning of time, always tried to standardise natu simple isotropic and standard so we could more easily not them, calculate them and fabricate them. This is the story of the scientific and industria revolution. But this trend, which
to a sudar reversa, Is-20 years ago because wis computers we could do exactly the opposite. Instead of making materials are, because through simulation and computers we could are, because through simulation and computers we could
increasingly deal with the unpredictabilty, complexity indeterminacy and randomness of materials as found we could even design material with variable properties when needed. This was the fascination, the dream, the excitement of $15-20$ years ago. Do you have the impression that we are still
on the same wavelength today? Or (and this is ist a suspicion I have) are the powers of computation so immense that even if we sometimes delude ourselves into thinking that we are dealing with complex materials, we are in fact only dealing with them, no matter how complex they may be, because we can
reduce them, simplify them and calculate them more or less reduce them, simplify them and calculate them more or less
as a traditional engineer would always have done? But if that is so, then what we see as tools of vitality, indeterminacy and intuition are in fact traditional tools of notation, except that they are so powerful that we can now almost determine
complexity in a sense at least to the extent needed for practical purpose - not reversing but fulfiling the dream of a nineteenth-century engineer. Twenty years ago, we thought we were doing the opposite. When llook at the work of some of our friends, I have an impression that the discourse they make is still a discourse of postmodernism and indetermina almost traditional engineering, amplified by the power of computational tools. Do you perceive a risk or an ambiguity in these two diverging strategies?
JS I would agree with the idea of an ambiguity. But I would also argue that $15-20$ years ago there was a severe lack of any engagement with materials and materiality. Istill think only small percentage of our friends actually engage with materials
exciting that this is not only becoming part of their discussions, but also drives them. For example, in one of my collaborative projects, eSkin, we work with nano- to micro-scale features are actually scalable. One of the primary topics is structural colour, which is wavelength-dependent colour change. There are numerous examples in nature that exhibit structural colo so we have been extracting, synthesising and redeploying those constraints and features with the idea and hope that w
can move some of it into architecture that is scalable. If ound with $m y$ team, that there was no existing software that was robust enough to render the complexity of these materials. We developed our own tools, working side by side with
material scientists, to simulate and approximate the material scientists, to simulate and approximate the amplexity of these effocs, so thatwe could meaningfully Having said that, I don't think we are quite there yet. Anothe intriguing example relates to one of my pavilion projects recent commission for the Cooper Hewitt, titled Poly Thread where I worked very closely with an engineer from Arup.
wanted to dig into the behaviour of the knitted material from stitch to row to whole, so we did many analogue stress tests, embeddaing them into our simulations. And yet, despite
our sophisticated testing, we were still not able to completely simulate it. So yes, It think there is ambiguity.

MC Yes, it goes both ways. We can adapt our design process ot the randomness, or the animation, of the material -as if the material were a cat that behaves unpredictably, and you have to cope with it because a cat is temperamental the area of unpredictability, and to design in a very traditiona way with complex materials for which we can now model a level of granularity that a traditional engneer could never have
scale in the traditional way, i.e. with a deterministic design-and-prediction methodology, we end up with two games tha can co-exist. Which is more important in your work? Do y

JS I am partial to the unpredictable cat. I am intrigued by the unexpected, and the agency of the material that one must respond to in the design process. I think in both my core research and applied projects, there is also a process that is This usually happens at the prototype phase and is so crucial to allowing for the emergence of the unexpected, which I the opportunistically tame, but only in pursuit of the next potentia scalability. So I would say I never want to fully tame that

MC And tis is where digita tools afford a levelof interaction with the naturality of the material which until recently only an expert artisan would provide. An expert artisan can deal with whatever iregularity is found in a chunk of timber because tha log. If the log has a hole inside, he can just feel it or, by just tapping on it, can hear the reverberation of the sound. Likewise, if a particular log has some irregularity, he can work around it. Machines traditionally couldn't work this way, so we material which is the same all over because mechanical machines cannot deal with anything else. But sensors and computers can now increasingly interact with irregular materials almost as well as a skilled artisan could. But the poin whereas every computer can with the right programme. So that is our advantage today. And it is a reversal of the traditiona science of materials. Until recently, the rule was to make

3. Detail of responsive eSkin prototype featuring The goal of eSkin is to explore materiality from based upon an understanding of the dynamics of human cell behaviours. 4. eSkin prototype featuring dynamic switching of structural colour and transparency change over time. eSkin, 2010-2014 / Jenny E Sabin and Andrew Lucia (architecture), Cornell University; Shu Yang $J a n$ Van der Spiegel and Nader Engheta (electrical and systems engineering), Kaori Ihida-Stansbury, Pet Lloyd Jones (cell biology) University of Pennsylvani This project is funded by the National Science Foundation Emerging Innovation, Science in Energy and Environme housed at the University University. This prototype part of the 9th ArchiLab, FRAC Centre, Orléans

5.Porybick
the rues and
soverning
 Petail of thinh Aproject by Sabin Design
Labl Cornell
Pin
Pin

 Currently on ilisplasar at
The Cooper evith esign
Museum as part of feauty The Cooper Hewitt Design
Mussumas sart t feeauty
-Cooper Hevitt Design
Triennial

technicuus forththe digital
fabirio
fobiotion and production
fabication and procuuction
of of onstandar cormaic
briok componenents for the
 printed dand
biricks.
Aproject by Sabin Design
Lab. Cornell Univesity, 2015
L.

 Nicholas Cassab. Cu
on display at the Co
 art t f Beauty - Cooper
Hewitt Desigig Tiennial.
Images: Courtesy Cooper
Hewitt Design Musum.
because if you scan them and push the resolution of the sca as far as needed, there is a level where the material become oredictable again and you can design at that scale. But again, at that point intuition is replaced by calculation, so the magic
of the game may be lost in favour of the predictability of the result. So it is a difficult game, which again can go both ways. But what worries $m e$ is that we are often still within the frame of mind of postmodernism; we still interpret non-linearity in
the way that Manuel Del anda taught us all so well But at he way that Manuel DeLanda taught us all so well. But a
the same time the tools we use achieve levels of design predictability that are no longer those of traditional structura engineers, but rather those of a surgeon or a dentist. This is where I think there may be a divergence between our frame f mind and the tools we use: we see them through the lens of an ideology which no longer applies to the way these tools
actually work. In their thinking. Cecil celebrate the magic of the material in a way that a traditiona ngineer would find delirious. But the teams of engineers th work at Arup do not really see their work that way

S Cecil Balmond is one of my most important mentors. was a student of his, then I taught a seminar with him called Form and Algorithm, and then we taught a research studio ogether for several years at PennDesign before I came to ornel. fagree winh your worry, and think, for me, the focus is hat references my ongoing interest in biology, starting with oundation I formed around a decade ago with Dr. Peter Lloyd Jones, who is a matrix biologist by training. For me, it has very much been a process; it is only recently that I have been able matrix bioiology in design. For me, it is about thinking and the mpact it has had upon my design process. For example, in matrix biology the bigidea is that halt he secret toifie resides
are specified by protein events within the dynamic extracellular matrix. So very early on, I was presented with a series of incredibly powerful ecological modells for us to expression, athough there is a residue of that in the work, and more about a way of thinking that engages feedback loops, where events - within a material, or inspired by intuition, or through a colaboration - together create a dam develoing ow ar phin this forward in a really sophisticated way. But lagree that we are in an ambiguous moment - and we get caught sometimes.
MC Yes, and it is inevitable, because we are in fact to a large extent dealing with the unknowns of artificial intelligence. community has been nurturing since the 1990s is now going mainstream. So there are a lot of technological applications for these ideas that 20 years ago were seen as wacky, impractic and impossible to explo.

JSI see the most impact not necessarily in industry and the built environment, but in other fields. For example, in my collaboration with Peter, he is looking at how this thinking can familiar with these ideas for over 20 years, what are your ideas on the role of the architect in pushing forward a discussion that is now in every field?
MC Paradoxically, I think the traditional role of the architect as it has been known since the Renaissance - even if the tools and traditional models are gone - is to have a bigger picture, to be in charge simultaneously of notation/geometry, calcu
structure and fabrication/technology without being a

specialist in any of these fields. This is stilla role for which some architects are uniquely prepared, but it is a rare position.
Of 100 of our students, 95 will become specialists, and they will sell speciailised skills in a specialised marketplace to ey will sell specialised skilis in a specilalised marketplace to earn
their living. The remaining 5% will be those who will have this general holistic view of how we make things. We train them knowing that most of them will end up being specialists and a ew will end up being architects. And this is good, because we
need the generalist and the specialist.

JS So what you are stating is that we need both?
MC Well, $90-95 \%$ of our students will only be as good as the 5 , 5 sol don't know.

JS I would say the number is higher in terms of those who secome architects - whether they are acting within an offic practices I Inesitate to put a number out there start but Id definitel think it is higher. At Cornell, there is a long history in the art of making and drawing. Students graduating from Cornell Architecture have a comprehensive understanding of the a of building, making and drawing. Many go on to become

MC To have a holistic view, to be the master builder who ca determine notation, calculation and fabrication, you need to use ideas, not just notations or numbers or script. It it true that in the last 15-20 years, I have seen the best and brightest of they were the precursors, the early experimenters of many digital technologies.

JS I would like to go back to the turnip. I can't remember the last time linitiated a design process with plan, section and elevation. Sure, Istis becauset but that is not how I work at all. Effectively, Brunelleschi turned the turnip into a piece of technology that allowed him to communicate information about form.
MC Yes, notating a three-dimensional model was difficult at a time when parallel projections did not exist. But then he had another problem: he wanted these instructions to builders to
remain secret, which is why after showing the turnip he ate it! And the builders would need him on the scaffolding, onsite every day - he was a modern designer, but he was designing as a medieval artisan and not like a Renaissance architect. Tha
would come one generation later with Alberti. Alberti cam up with the idea of making as many drawings as needed, then putting a name and date on them, so the builders would just follow the drawings. And when the building really looks like the drawing, then the designer can claim, "It is 'my' building;
not because I made it but because I made the drawin" This not becuse I made it, but because made the drawing." This
is the act of foundation of the modern architectural profession Brunelleschi was not yet there, because he wanted to have the
building built according to his ideas, but he didn't want to make building built according to his ideas, but he didn't want to mak drawings - he wanted to keep his ideas as secret as possible. He still had the mentality of a medieval craftsman, which he
was - he was a goldsmith by training. And by the way, we stil don't know how he built the dome - it was a secret, still is!
JS I think many of us engaged in this type of work have a strong interest in the return to the site $-I$ think that's also why
in so many projects the work exists currenty within eith gallery or a museum as an installation, because we are still at the nascent stage of how this can move into the built environment
as architecture. There are still so many constraints.

MC Yes, because now, in many ways, the distance between the designers who make the notation but don't materialise it is teine by do dont inve it is being eliminated by the technical logic of digital tools.
With digital design and fabrication, this distance has already collapsed. And so we go back to the medieval and prenotational way of thinking and making at the same timehis is what we call digitial craft, which is why I think we are much closerto he way we made physical things 500 or 600 pre-Brunelleschian way of making. It think we are closer to he model of a medieval city where master builders were members of guilds, who had to conceive and make at the same time. The separation between the thinker and the maker this great invention of modernity - was not yet there. We are
ow reverting to this intellectual model, and I wonder if we ari also reviving the social and political model which went with it. That would be an interesting parallel, because in a sense the first phase of the digital turn reversed the industrial revolution,
eliminating the need for mass production, standardisation and conomies of scale Artificial intelligence now suggests an almost pre-scientific intuitive approach to making. We really don't know much about this magic powero digita intuition. From a distance, it is clear that its closest parallel is not the nineteenth-century engineer, it is not the twentieth-century master builder, the artisan who can manipulate materials and can conceive and make without designing. Paradoxicall, we are returning to this.
IS Some of the tools I developed with Peter and with my ongoing collaborators, material scientist Dr. Shu Yang and
bio-engineer Dan Luo, allow us to generate models to simulate
data. I still think that these developments have the most relevance in terms of both navigating this return that you
describe - the medieval master builder were describe - the medieval master builder, where making and designing is a collapsed condition - and, at the same time,
navigating the future. I do think that - in designing with tools and simulations that work with these abundant data, that in turn allow us to develop inturitions in a design space which references these lo potential there.

MC I agree, there is something bis we are all trying to a new kind of science. The science that entrenched
the power of the West- the science we studied at school mostly does not apply - any more. We we do not use this science and there are probaly lrge swathes of it that we don't need any more. Often today, when students make a structural model, they can test it in simulation right away and get immediate feedback, so they can tweak their first model tentatively, by trial and error, as many times as needed.
When I was a student each one of those trials would have required three months' work from an engineer. So the traditional feedback from engineers, an indispensable part of the design process when I was a student, is no longer needed. This is good in a sense, because we can almost do away with the science of engineering, but then almost inevitably the next
step might be that the end user can do away with us! Today, cab drivers complain that Uber is making them obsolete, and Uber drivers say they are making cab drivers obsolete. But in a few years, driverless cars will make Uber drivers obsolete. few years, diverless cars will make Uberdrivers ol
Gloat in the glory, but you will be the next in line.

MONICA PONCE DE LEON
VIRGINIA SAN FRATELLO
RONALD RAEL

MARILENA SKAVARA Welcome to each of you and thank you for making time for this conversation. Our wish is that you
develop a conversation between you. As convener, , will only develop a conversation between you. As convenen, I will only
prompt you here and there if necessary. To get started, may prompt you here and there if necessary. To get started, may
l ask a straightforward opening question: where is your work heading right now, what are the key ideas and questions heading rige
driving it?
RONALD RAEL We ask questions about material - particularly in terms of material provenance - in other words, where materials come from, where they are going and how they are
fittered through various kinds of media. We are on a continual journey of exploration as we think about how particular materials - such as salt, recycled grape skins, recycled car tires - could be used in 3 D printing to make building materials.
To demonstrate this, we are doing several proof-of-concept pavilions, as well as integrating them more and more into architecture.
VIRGINIA SAN FRATELLO We are trying to find practical applications for 3 D printing in the near future, and we also want to start putting these materials together in the same building.
With so much $3 D$ printing it seems that only used at a time. We are developing a small house that uses several different $3 D$ printed materials, including $3 D$ printed clay and 3D printed cement, and we are even thinking about how omix materials within one print, which
MONICA PONCE DE LEON 1 am interested in the fit between technology and construction, and how everyday construction is
affected by both the realities of technology and the myth of aftected by both tene radities of thechnolog agn tre thing a certain level of precision, but in reality both it and the way we deploy it are imprecise.

VSF You are widely recognised as a pioneer in applying obotic technology to fabrication within architectural education. How do you imagine buildings will be made need to happen for these predications to come true?
MPdLI cannot predict the future at all. If you had asked me to guess where the discipline would be today 20 year ago, my guess would probably have been far away from
where we are now. One of the exciting things in architectur is that there is no formula, and when you think everything has been exhausted, people come along and provide new twists and turns. So Idon't have predictions. I am interested in how, through building projects in the nitty-gritty of the we do in academia. Ron and Virginia are very interested in real projects, whether they are test cases for a particular exhibition or whether they are for clients with budgets. ften, clients do not want the kind of material that one is researching, and you have to convince them that discipline at large.
RRI Ithink about past projects of yours such as Casa la Roca -that was an amazing project because it almost predicted but in traditional ways. Can you tell us about that?
MPdL We were very much thinking parametricallyhe kind of rule geometry that generated the figures of those wails and the layout of the bricks of those walls is part of the same explorations executed through robotic fabrication, as opposed to by hand, and to see the research coming out of
geometry we had imagined with a different technolog.
This goes to show that there is again a loose fit between
technog technology, execution and the culture of contingency that
was intended for the house in Venezuela, which used vernacular materials - with terracotta tiles and terracotta bricks everywhere.
RR What does that say about the development of architecture Are we moving forward but yet not moving forward at the in terms of thinking about parametric brick stacking, and yet the way parametric brick stacking has now entered into the profession is very banal - w'd much rather have a robot that
stacks straight bricks in straight courses - and is almost stack straight bricks in straight courses - and is almost retrogressive. How does tectnology help us move forward?
How does it prevent us from moving forward?

MPdL Your hacking of technology poses an alternative to to status quo. I think there is a difference between accepting
tools as they are and misusing the tool - and in misuse, the tools create a new way to think about materials, the relationshiss between them and their culture and context. This is one of the things llove about your work - you are always misusing the materials, misusing the technology, defamiliarising material and methods of fabrications. The history is still embedded, but were asked to think about it differently. Ithink this offers a way to bing technology into question, and to destabilise.
VSF Im reminded of the Helios House and the
Tectonic Argument at MoMa, and how those projects Tectonic Argument at MoMa, and how those projects
referenced fashion design - and l'm thinking about overlaps between architects and other design disciplines including computer science, perhaps as a way of destabilising building

product designers and fine artists - I was wondering how
thets yourwork and research
MPdL If we are going to misuse material and technology, think it's helpful to look outside the discipiline for tech hniques that can be appropriated and reinvented within architecture
and construction. I tend to work opportunistically - if 1 see somenthing in a different t field that lookss like it might work, Itry to adapt it. Like tailoring, for example, that's something I pursue project and how one builds a project. I think drawing is a way of bringing techniques from different disciplines into architecture. Through model-making you can bring analogous techniques from other disciplines as a way to explore cultural concerns. I think you do this extremely well - the way you have reinvented
the vermacular by applying techniques that do not necessarily belong to the history of a material. You mention 3D printing and how, by hacking the equipment, you use materials that would ot normally be 3D printed - this is another version of using echniques outside of a particular mode of construction.

RR We have also looked closely at building traditions - one of he things we did prior to 3D printing was travelling around the world to look at traditional vernacular buildings and learn from hem. I think one thing that certain technologies have allowed within vernacular constructions into new systems we cas with a brick that can absorb water and passively cool a space by having ventilation in it, but where that comes from is a muc more complex and beautiful demonstration of many different techniques - the creation of wooden screens, ceramic vesses
traditions of collecting water, massive constructing rooms. In many ways, much is lost through these translations and much is gained. We always struggle when thinking about how old
new traditions that will emerge in the technological era? I don believe in the idea that giant 3D printers will replace all the building traditions that exist. I think there needs to be an integration of older and newertra,

MS What do you think are the most valid terms of reference to think about design? ? sit performance, narrative or scarcity - or is it something else?

MPdL One of the challenges, if you think about architecture only in terms of the immediate present, is that you end up with a series of buzzwords which can be very transitory. I can only imagine in the long run that scarcity, performance, etc, are not actually going to matter. What I Ilways care about is whether a
piece of work is culturally relevant and can be understood as part of a wider context, and for that it has to engage with a long understanding of a place, reflecting on the past, present and future. Architecture both constructs a particular idea of cultur

RR I agree; I was thinking about two particular categories that are creating a split in architecture culture. For example, there is a split between the social project and the parametric project

- I understand those kinds of projects are divided, but why do they never attempt to cross over?

VSF That's a good point - designing for per particular Grasshopper script and merging that with social allow for new culturally relevant works to emerge. RRI think there are cultural tendencies toward technology that
suggest that its output must do something or perform
something - it should have feedback the way an iPhone does. think this limits architecture to having a very singular role. Things can be more mutit-levelled and expansive than doing might be very complex, but architecture is even more complex in its cultural associations, and we often overlook that - we overlook how complex the making of a building can be, and all the references tha bol inform and appear

VSF How do you teach students this at your school?
MPdL I think always asking "why?" or "why not?" is important. Nothing makes me more impatient than when someone says
something is impossible - well. why? Or when a student take sometting is mpossible - well, why? Orwhen a student take
a particular direction - why? For me, a key component of architectural education is to demythologise the process of design, fabrication and construction so that your student is really focused on imagining alternative scenarios, speculating
hypotheticals. This is particularly true outside city centres - the hypotheticals. This is particularly true outside city centres - the
state of building today and the state of the landscapes and the sites around us is deplorable, so if we don't teach our students different ways of operating within these conditions, and if we don't push ourselves to imagine alternatives, then change wo take place. For me, it's not about becoming proficient with all aspects of architecture so it opens up the imagination.

RR The demythologising surmounts the impossible. For som tudents, architecture is a myth - it seems impossible to part of the 'demystification' - asking how we can achieve the mpossible. Another aspect of this might be the emergence of female leaders in the field (such as Jenny Sabin, Neri

of demythologising, or changing societal forces, or even the paradigm of fabrication technology itself, as contributing to

MPdL Women have been around forever; we have been doing stuff forever. I was the Director of the Digital Fabrication Lab a Harvard in 2003 , over 13 years ago - and I was working with fabication prior to that. became a Dean at Michigan eight long history- perhaps the media is highlighting it more today so it seems as if we are more present. But I think women have been interested in technology from the very beginning. just as men have. Perhaps there is more of an effort now to make sure they are equally represented in the media, which may
seem as if they are only now emerging in the field.

VSF For me, the paradigm of fabrication has been very significant, it's allowed me to be a craftsman and use materials that otherwise I had never worked with - I wonder if other women feel the same.

MPdL I think we are all individuals. I worked in a mill workshop before studying architecture, so have the opposite experience. I ended up pursuing digitial fabrication because soon after I graduated I reaised that the same mill workshops
were no longer doing things the way I had done them myself. but yet this was not a conversation we had in academia. Sol became interested in digital fabrication precisely because I saw it as an emerging context for the building industry tha was being ignored by the academy. For me, it was not a wa
of enabling meto do things that 1 other wise couldn' 1 think that your earlier question about Casa la Roca is very relevant, though. We were drawing by hand and then it became easy to draw with Grasshopper. But it is really a question of how long it
takes - we are still drawing by hand. it ijst takes five times as
ong. But I think that applies to everyone, men and wome equally and all generations equally. One of the things lam material invention and advanced technologies. I think one of the chalienges for me, as a designer and educator, is that ther has been a divide between material interest and advanced abrication (it seems as if there are those only interested in materials). What I love about your work is that you are unapologetic about bringing together - and allowing the history of - sourced materials to be understood as part of a continuum with the more recent generation of tools. That peens the door to a future which Ithink is very exciting; we no
onger have to compartmentalise what is high tech and what sn't. So there is a conflation of ways of looking at materials that wasn't part of the discipinine before.

RR Smithsonian magazine came out a couple of years ago
witha list of the top 40 things you must know about the futue With a ist of the top 40 things you must know about the future,
and number one was that advanced buildings would be made out of earth. This is not an anachronistic material - it is a technological material that has undergone 10,000 years of human development. If we look at every moment in history when there was some sort of global crisis, the scarcity of
materials often asked humankind to review materials that they could already use - I think that we are now in that cultura moment. We are looking at materials that we are good at, and that's why there is a tremendous interest in the relationship between ceramics and technology. We are talking about larger
cultural connections and ecologies of material. This is one of those moments where we can step aside and say, sure, it might be easy to put clay in a 3D printer or in a robot, but there are reasons why we are doing it culturally and historically - the

shumans to engage a material which has evolved with us over he course of human civilisation.

VSF Perhaps the same can be said of salt. For example, in South America there are towns, hundreds of years old, built entirely out of salt. Salt is an ancient material that has the potential to be used as an advanced building material in the future in places ocal it's renewable and there are both historical and ecoll easons for building with salt Instead of shipping sand and cement all around the world to make concrete buildings, architects have new opportunities to revisis old materials and new manufacturing tec hniques for thinking about the evolutio

MPdL I am curious about your attitude towards precision. have always been fascinated with the fact that architecture seems to rely on the concept of precision for its own isciplinary existence. You have the notion of tolerance and use certain details as a way of hiding the lack of precision
-base boards are used to hide the gap between the wall and the floor, ground mouldings to hide the gap between the wall nd the celing, and so on. We operate with tolerances, and f course in digital fabrication each tool has its own level of imprecision and you are actually fabricating with a certain
level of tolerance. In your use of vernacular materials, through the use of fabrication tools, lam wondering what your approach is toward precision?
RR One thing we realised is that there is a fundamenta tween machine precision and material precisis do another. So many of our experiments are wresting with or negotiating between these two conditions - and this means
we can have a certain degree of prediction about what the
machine will want to do, and yet no degree of understanding these materials I Ithink the to do, because we are hacking these materials. It think the most recent experiments in clay are accepting errors - and errors fundamentally become the vehicle with which we explore the making of forms and the materiaisation of objects. They become giltches we accept the fact that we will never make the perfect objec we conceive of onscreen, so why don't we just hack that cases - a kind of aesthetic agenda. More and more, we discover that there are some structural logics to these imprecisions, and so we find a series of ceramic objects that can be crush-tested because we reaise that the way we lay and this is all through a series of controlled errors.

VSF He is talking about vessels - we call them the ' G-code vessels', which are mostly cylindrical in shape, and instead of moder sin form we use he G-code iself to desig. And we printer can do it, or if they're going to break, so we keep pushing it until we see at what point it will fail. And at the same time, when we 3D print with cement, it is fairly accurate We are currently working with engineers who are helping to
develop a strong cement material which has more water in it, but then the cement prints come out bigger, puffier. We have had to keep working back and forth between the digital and the physical to figure out what the limitations are and we build those into our material specifications.

RR What are your thoughts on precision?
MPdL I think my work has focused more on precision of ideas

- understanding that there is a loose fit between how tight an
${ }^{42} \mathbf{4} 5.5$ Star Lounge
Images. Courtess
Manthew will
Phototoraphy.
dea is and its execution, so peeling away, for example, is something lam interested in, because you can peel at differen moments and you dont have to precisely peel in a particu equipment. I have also been interested in certain geometries in which the pattern can also hide the fact that the equipment will never be completely precise. I used to give a lecture called Zero Tolerances where l used the relationship between the semi-precision of a piece of equipment and the imprecisio
of the site where the equipment will be installed to rethink designs, the structure of the design process and the actual architectural object. So to me, imprecision is something that makes us very human and also makes us very beautifu, and we can really gauge the relationship between buidding a space and

RSo
RR so do you see this as alarger critique of some of the humanist momention in fabrication when many are you see ext it achieve what is on the scriean - hyper-smany are attemptin for example, or seamlessness - how do you see that?

MPdL One of the first exercises I give my students when we are working with a robotic arm is to ask them to design a stoo with very few cuts and very litle waste, and it is interesting to
see how they struggle with the fact that the robotic arm is not actually as precise as they had assumed, and that it actually affects the set of the pieces. The more they had assumed tha piece of equipment was precise, the harder it is to deploy and the harder it is to come up with a cultural object, like a stool. So the critique is also embedded within the equipment
itself - which means you have to pretend that the piece of equipment is precise to even talk about precision. When one accepts the implications of the piece of equipment, you will
end up with a more interesting conversation.

RR Given that we accept that there are not categories not of curation, design or education - - would you defin

MPdL Architects are always curating and educating - wheneve we choose one material or form over another, we are curating. We have an arsenal of history, we have an arsenal of what is available to us today - and in that we are choosing from these things, we are constantly curating. This is our primary
discilinary trajectory. At the same time, in terms of educatin I think buildings educate the public. When limagine someone looking at your hay house, the public will look at that and learn what it means to build today within a larger frame of reference.
So l have always seen all of these things as one and the same I see them as all related and somehow all architecture. VSF That's beautiful. l love the way that it turns out all the same
for you - it's all about culture and imprecision and imagination!

Q\&A 3
CARL BASS
BOB SHEIL
ACHIM MENGES

ACHIM MENGES I think what makes the FABRICATE conference unique is that it bringss together people from both
academia and industry. It revolves not only around research academia and industry.I trevolves not only around research
findings, but also around proiects. l'ts not just about submitting findings, but also around projects. It's not just about submitting
a paper, but also about presenting your research or practice through the project, which is quite a unique format in our world. Being in Stuttgart, we tried to give it a special focus, world. Being in stuttgart, we tried to give it a special focus, fabrication, with strong connections to industry. So we hav
also established special industry talks by cutting idge also established special industry talks by cutting-edge
companies - for example, the robot manufacturers KUKA So it is really about bringing together leading practitioners, academics and industries, and exposing their conversation to a broader audience who come equally from practice and academia.

BOB SHEIL Looking back on the work you presented in 2014 and where your work is now, what do you feel has been th major stepping stone in the last three years? And where are you headed next?

AM What we have seen is that computation is becoming closely related to material isation, with the physical world rapidly emerging from within the digital domain. This is a very interesting situation. We have realised we cannot focus
on computational design exclusively, but instead that it is inseparable from construction. This is the reason why we have changed our name to the Institute for Computational Design and Construction. We are working towards a higher level of convergence between design and making, with ramifications on how we conceptualise designs, how we work
with designers and where the industry is soing Forus, this is with designers and where the industry is going. For us, this is
decisive. We like to borrow from robotics (where it has also been recognised that you cannot separate your design
method from your hardware or software but in fact that you
can co-design these three things in unison). This is what we can co-desigg these three things in unison). This is what we
have increasingly realised: we are co-designers of desigg and
manufacturing processes.

Carl, I am incredibly pleased that you are doing the keynote for FABRICATE, particularly because FABRICATE is about he future of making, which on the one hand is one of the key concerns and the ekey ambitions of Autodesk. This way, Ithink we can share the vision that design and making are undergoing our knowledge and our tools. On the other hand, we agree that this challenge is also an enormous opportunity for both industry and education. What lfind interesting is a basic but
profound question: how can we negotiat the fact that the profound question: how can we negotiate the fact that the of making things?
CARL BASS To a degree, design has gone from documenting design to informing design, and itis now moving to a place
where the act of designing is going to be one of co-creation where the act of designing is going to be one of co-creation
between people and machines. Only five years ago did we between peoppe and machines. Only five years ago did we
start asking: if you had all the computing power in the world, how would you design things differently? Until then, we had treated computers as a scarce and precious resource, as pposed to an abundant one. As the price of computation er increased
exponentially, you started asking how you would design and engineer things differently. We are getting to a place where various practitioners all along this spectrum, having been barely informed by computation before, are now moving to designs that are completely co-created with a comput
Another profound change was the introduction of the micro-processor, so that you could now make high-quality low-cost objects or products in small batches. As unique as
single building or a single structure, these objects would be
low volume or custom-run. This inverted the basis of the industrial revolution, where you could make a huge quantity of high-quality, low-cost things if they were all the sameby micro-processors, you are able to do do it in a completelly different way that allows for low volume and high quality at a reasonable cost. The third thing tying these together is the availabilty and soon-to-be ubiquity of sensors. Something
performed in the real world can be measured to see if there is fidelity between the digital and the real, as well as to gather information that can be fed back into the next iteration of the design cycle. So i you look at computation for design and engineering, micro-processors evolved in the process of
manufacturing, and sensors closed the loop between desig manufacturnig, and sensors closed loop between de

AM When we look at technological developments,
we note that there is an initial phase where new technologies are used to mimic old processes and products. This is true for
almost all technologies; for example, material technologies almost all technologies, for example, material technologies
-there are composite materials initially employed to mimic - there are composite materials intialy employed to mimic
old processes and products - but it also applies to software technologies where, in the first generation of commercial CAD applications, the screen mimics the drawing boards and the mouse mimics the pencil. It is also true for production
technologies. CAM was primarily used to automate and better techntrol fabrication processes that existed before. One can
coll argue that we are currently transitioning from this first phase of using digital technologies for designing and making things that are essentially pre-digital products to a second phase where we are begining to explore processes and related products have made or even conceived of in pre-digital days. This enables us to tap into the potential of computation as it

radically new ways of designing and making. This has great promise, but also offers quite a challenge because it means that we, as designers, have to adjust our design thinking. design thinking also needs to be fundamentally updated.
BS Do either of you envision a point in the future where we stop prototyping? In a sense, computation, simulation and the design process have become so complete that manufacturing
is only about the delivery of the final piece. Or will prototyping remain as the middle ground between design and making?
CBI don't think there's an absolute. As people become more CB I don't think there's an absolute. As people become more
fluent and proficient with their digital facsimiles, they will be able to go without prototyping for things of greater complexity. feel, smell or experience the thing you are building. If you look at CAD software, just like every other technology it tries to mimic the technology that came before it found a life of its own - CAD technology started out mimicking the drafting
able. Now, the goal of most CAD software is to build a digita model, a replica of the thing you are going to build. We are only partially there, but if you think about a building in CAD
software, we now have a fairly good understanding of what software, we now have a fairly good understanding of what it will look like, what that structure is how the air will move in the
building how it will sound how you feel when you move in the buiding, or how it will react to environmental conditions. But there is no reason to presume that, over the next 10 to 20 years, we won't be able to get very good approximations of the things we build. In essence, in manufacturing, I think prototypes that are small and manageable will continue to any one-off building, are prototypes in themselves and we can only prototype parts of them. I think that is where we are headed.

BS Looking at your work, Achim, l enjoy what you say about adding the word 'construction' to the lab. Your recent work is becoming increasingly performative, in that the spectacl
of making is a wonderfy thing to watch of making is a wonderful thing to watch. It shows that the
performance of making is a part of design. This performance opens up the imagination for other things that we can make. Do you have a conscious view on performance as being part of the act?
two ways: 1 the performance of the process itself, and 2) the performance of the object or structure. Especially interesting is the way in which digital fabrication processes become more open-ended, flexible or, in other words, designable. When we talk about a prototype, we like to prototype not only the actual product, but the processes,
too. Today, designers actively engage in developing new fabrication processes as part of the design process, instead of just using existing products and technologies. That leads to new modes of what one may call the co-design of processes and products, which is a different way of going about
For me, this is one of the essential aspects of robotic fabrication - it extends your possibility as a designer beyond the product, beyond the building, to the processes in which the buildings and the products come about. We have a lot of collaborations here with production engineers - people that
come from manufacturing - and $i t$ is interesting to see how come from manufacturing - and it it interesting to see how
designers bring a different agenda to the table as opposed to someone who is trained traditionally in this field. It really broadens the spectrum of what we refer to as ' making', in the broadest sense, to a kind of design thinking. The other aspect
that is of interest to me is how we can concetalise this that is of interest to me is how we can conceptualise this
convergence of design and making In recent years, one of the most radical changes is that the line between what we call 'making' and what we call 'design' is beginning to bur.
This relates to the prototye because the prototype is what
we see as a step between design and making. With the arriva of what we here in Germany call 'cyber-physical systems', w see that design and making can happen in a kind of feedback oop, where they co-exist and co-evolve. This is also part of environment with an abundance of sensors, which means that all of a sudden what you actually make becomes the model for what you want to make. This means that a machin
is no longer just executing a control code taken from is no longer just executing a control code taken from
previously established models, but actually has a far active interaction with the process of making, to the point where it can begin to make its own decisions so that the designer designs conditions and performances that need to
be fulfilled, and a certain level of decision-making can happe be fulfilled, and a certain level of decision-making can happe
on the level of the machine (taking into consideration the fact hat these machines are increasingly capable of learning sophisticated ways to operate in the physical world). Sol think we can overcome this idea that design comes to an end, and then we prototype, and then we make - instead, these things start to co-exist in the same space. This begins to challen conceptualisation of what a designer is and does.
CB There's an example from some work we did recently whic shows the way in which design and fabrication become more vehicle chassis, so we built the frame of this car in a very traditional way and then hired a bunch of drivers from
Hollywood to take it into the desert and drive it, aggressively or 10 days. The vehicle was monitored for the duration. When we were finished, we had enough knowledge about the
forces that acted during extreme stress testing. We took that information and put it back into an algorithm that generated an ideal structure for that vehicle, and then we added in three
different fabrication techniques and said: given this idealised
form, how would you realise it through different fabrication techniques? One was an improved version of something that was made out of tubing, and the others are these two
wild-looking designs that were intended t o be widd-looking designs that were intended to be done with
additive manufacturing, one out of chromoly and the other out of titanium. What's interesting is that you have this form that you want to get to, and then you have three different kinds of material and processes to actually realise the design

AM One example that llike to mention from our work is one of our recent research pavilions, where we inflated a membrane to look like a big balloon which we then reinforced by gluing carbon fibre inside it, and therefore turned this flims membrane into a building envelope that is actually supported by the fibres. The interesting thing is that during the fabrication
process, the structure changes shape constantly so you no longer have a finite design. In this case, the robot has the capacity to sense the stress in the membrane and actually see where the membrane is in space, adjusting its carbon fibre layout path accordingly. So there is direct feed back between
the environment in which the robot operates, the structures it builds and the way it is controlled. This is something you can't fully predict. It's also something you can't predefine in a sort of representational geometric model; it's really about forces, structures and predictive simulation and also about real-time sensing and the constant exchange of all that data. In that case,
it is really interesting, because sometimes the robot makes semi-autonomous motions which obviously leave traces of carbon fibre, which become part of the design. It is diffificult to nd here and fabrication a kind of coalescing of the two.

BS How can we look for a gear shift in the construction industry at a more general level, and how can a designer's
playfulness and inventiveness have an impact on a much

CB I don't have the same prejudice as Achim, because I am not in Germany. I am slightly more optimistic, due to
the timeline. The construction industry is botto the timeline. The construction industry is bottom-line driven,
so whenever we can build better things more cheaply, so whenever we can build better things more cheaply,
construction will pick it up. Yet construction companie are actually very resistant to change. If you look at job sites today, they look nothing like jobs sites thirty years ago - the skills, the people, the tools they use, the processes,
the materials they are working with - they move with the times the materials they are working with - they move with the times
quite effectively. There is a kind of capital istic tech approach quite effectively. here is akind of capitalistic tech approcach
that serves as a counterpoint to what happens in architectural artistic practices. Just as I can go to my workshop and dream up and build any crazy thing I want - and it does not have to make economic sense - I think many firms can build that way and llove this experimentation and it should continue. On the
other hand, the construction industry offers a check and balance on this, saying what makes sense and what is sustainable. In that sense, I am pretty optimistic about construction companies moving forward with digital fheir choices.

BS Do either of you see a future in which the construction industry gets challenged by lots of micro design and maker industries, simila to the way in which artisan beer makers distinction as opposed to mass production and profit?

CB My initial response is no. What I would say is that spending six dollars for a beer instead of three and a half is a decision th millions of people can make every day. The stakes involved
the cost of a building are so much higher, and what we see when things become more expensive and discretionary is
that the number of owners who are willing to incur that extra
expense are few and far between. Obviously there are all kinds

of wildly innovative projects being buil, but I don't think it could traditional processes to the stage where we start to uncover
ever become a mass makket thing However once we get to a ever become a mass market thing. However, once we get to a
point where we can build more unique designs for the same kinds of prices, then all bets are off.
SS Is this prospect on the horizon?
AM Well, I also have quite an optimistic outlook on how the construction industry might change. Very often, we have the the hand-laid brick wall and the robot-laid brick wall, which is something you have mentioned. It boils down to which is cheaper to produce. It think the real question to ask is: does the robot really want to build a brick wall? And the answer is penchmark digital processes on pre-digital construction systems. But as we are just making the transition from the tage where we employ comptational technologies to mimi
radically different solutions, we need to challenge norms and estabished ways of doing things. How do we want to build
when we have computational construction, cyber-physica systems and man-robot collaboration? Obviously, the goal cannot just be the automation of the building site and the automation of existing offsite processes. Accordingly, how do
we move it towards following the logics and economies of the we move it towards foll owing the logics and economies of the
digital age? This is where we really need to get the construction digtal age? This is where we realy need to get the construction
industry to. This is a challenge, but also a new opportunity we might perhaps be able to democratise what the ordinary
or extraordinary is.

Q\&A 4
ANTOINE PICON
BOB SHEIL

BOB SHEIL We are delighted that you have agreed to be a keynote at FABRICATE 2017, extending the tradition, which began with Mario Carpo at FABRICATE 2014, of having a what are the key ideas and questions driving it?

ANTOINE PICON Between 2010 and 2015 , I devoted three books to looking at how the rise of digital culture links to Architecture (2010), Ormament (2013) and Smart Citites (2015) These books identified a series of theoretical issues that I would like to concentrate more specifically on in the years to come, such as the question of materiality and the links en the evolution of architecture and subjectivity in the digital era. Alongside these lines of investigation, I plan to focus on
techniques themselves - on sotware in particular and its influence on the design processs. If the first line of inquiry is ase to anthropology of technique second would be

BS How have your work/interests evolved over the past decade?
API have gradually shifted more towards urban and societal issues. For instance, the need to reconcile the quest for sustainability with digital advances appears to me to be a major challenge. More generally, I am perhaps less interested rarchitecture as such and more in broader issues of space technology and society.

SS Looking ahead to the context of FABRICATE and your forthcoming keynote, do you believe we are witnessing a new era in computation/design/making?

AP The rise of digital fabrication represents a major turning point, even if there are still a lot of ideological discourses that obscure the path it is taking. Not everyone will becom a maker.' I also think that the notion that thanks to digital
fabrication the designer will become a kind of postmode craftsman is also ideological. Comparing oneself to Ruskin
seems to me to be profoundly dubious.

BS So what lies ahead?

AP Another crucial evolution will stem from the urgent need to reconnect the digital with the quest for sustainability. Also, what does it mean to design in a true context of augmented reality - at the level of the articulation of atoms and bits?

BS What are the most valid terms of reference for new ways to think about design?
AP As I have argued repeatedly, one of the main consequences of the digital revolution is to make design rather than being about the revelation of some pre-existing formal idea. Design becomes synonymous with event-making and with the production of scenarios.

Making and speculating tend to become more and more intimately linked, but not in a 'craftsman' way. They are linked
more by a common inquiry into the foundations of materiality.
Nostalgia is inevitable, since the digital has separated information from matter while pretending that it does the contrary Material computation is actually permeted with nostalgia. For me, this is part of what makes it interesting beyond its claim to a new objectivity.

DISCRETE COMPUTATION
 FOR ADDITIVE MANUFACTURING

gilles retsin / manuel jiménez garcia /VICEnte sole
 The Bartlett School of Architecture, UCL

Large-scale discrete fabrication

The research presented in this paper, based on two projects, investigates design methods for discrete computation and fabrication in additive manufacturing The first project, CurVoxels (Hyunchul Kwon, Amreen Kaleel and Xiaolin Lii) introduces a discrete design mer spatial 3D printing with industrial robots. The second project, INT (Claudia Tanskanen, Zoe Hwee Ta Xiaolin Yi and Qianyi Li) proposes to make this discrete approach physical, suggesting a fabrication method based on robotic discrete assembly. This discrete desig and fabrication framework aligns itself with research that are physically digital (Gershenfeld et al., 2015). Th uggested methods aim to establish highly complex and performative architectural forms without compromising n speed and cost. Both projects propose design and do not require any form of postrationalisation to be abricated. The research argues that, compared to D printing, robotic discrete fabrication offers mor
opportunities in terms of speed, muiti-materiaity and
reversibility. The proposed design methods demonstrate how discrete strategies can create complex, adaptive
and structurally intelligent forms. Moreover, by movi computation to physical space, discrete fabrication is able to bridge the representational gap between simulation and fabrication. This representational gap is a result of a two-step process usually associated with computation digitally and then passed on to be fabricated.
Analogue and digital fabrication
The projects described in this paper are produced in a research-through-teaching context within The Bartlet Cluster 4 (RC4). RC4 is a part of BPro, an umbrella of postgraduate programmes in architectural design at The Bartett School of Architecture, UCL. The research can be
situated in the context of robotic manufacturing and the automation of construction processes. The two projects presented are based on the use of industrial robots, but
with other types of custom-made enots but the resent with other types of custom-made robots, but the research in question here is first and foremost focused on design
methods. Both projects should effectively be understood as research into design methods, rather than as researc into robotics and manufacturing itself. In terms of fabrication, both projects are additive fabrication and INT (Fig. 3) is an additive assembly workflow.

There have been significant research efforts into robotics and automated construction, especially in the context of additive processes. Gramazio Kohler has developed additive projects such as The Programmed Wall (2006) (2014). However, these attempts to automate construct (2014.) However, these attempts to automate constr between complexity and speed (Gershenfeld et al., 2015), Neil Gerschenfeld argues the need for digitising not ju 2015). In this context, The Centre for Bits and Atoms has developed the notion of digital materials - parts th

(Gershenfeld et al., 2015). These materials are able to be assembled quickly into complex and structurally
efficient forms. These digital materials establish material efficient forms. These digital materials establish mate
organisations that are digital rather than analogue. organisations that are digital rather than analogue.
Following Gershenfeld's distinction between analogue Following Gershenfeld's distinction between analogue fabrication projects are to be considered analogue.
Despitite the e f discrete elements for assembly, these elements tend to use analogue connections, which are
continuously differentiated. Unlike digital materials, ontinuously differentiated. Unlike digital materias increasing the degrees of freedom and possibilities for error. Continuing from Mario Carpo's distinction between continuous and discrete design processes, the notion that structures can be physically digital, rather than analogue,
becomes an important driver for the work presented in becomes an important driver for the work presented in
this paper (Carpo, 2014). However, as a design method, these digital materials present some fundamental problems. In order to be considered digital, the elements necessarily need to be serialised. As a result, the digital
materials proposed by The Centre for Bits and Atoms are materials proposed by The Centre for Bits and Atoms are design point of view, these structures are effficient, but not complex in terms of formal possibilities. A possible

Jose Sanchez demonstrates how standardised, serially repeated elements can result in differentiated and complex wholes (Sanchez, 2014).

Towards discreteness

In the first instance, this research is driven by the question of how the notion of discreteness can make the automation of construction processes more efficient while also allowing to combine the efficiencies of digital materials with combinatorial design methods. Secondly, as a broader question, the projects presented develop design methods that remove representation, resulting in structures that
are digital both in the design process and as a physical are digital both in the design process and as a physical
product. The research first introduces discreteness as a product. The research first introduces discreteness as a
design process in the CurVoxels project, and subsequently as a fabrication process in INT. Both projects can be considered additive manufacturing processes.
More specifically, the CurVoxels project questions ho discrete computational processes can make spatial printing with robots more effective, while also opening up more formal possibilities. It demonstrates how the
2. Curroxels $\operatorname{RCC} 42014-15)$.
Half 3 P printed chair 3.0 .

3.INT (RCC 20015-16).

 García.
4. Curvoxels (RCC 2 $2014-15$).

Robotic extrusion of ABS | Robotic extrusion of ABS |
| :---: |
| filament I Image: Curvoxels. | 5. INT TRC4 2015-16). Humn-asotcololaboration

or the assembly of chair
rror mitigation and prototyping. The project presents acase for combinatorial design as a method to create and complex for differentiated material distribution epetitive and homogenous grids usually associate with spatial printing (Fig. 4)

The second project, $I N$, , explores the implications of physical discreteness and discrete assembly as an alternative, non-continuous method of additive manufacturing assembly compared to 3D printing. INT sets out a framework for discrete fabrication with combinatorial building blocks, investigating both the design of the unit and their assembly procedures. The work experiments with human-robot interaction and questions the The fabrication procedure proposed by $I N T$ aims to resolve some of the problems associated with continuo dditive manufacturing, such as the lack of speed and mono-materiality (Fig. 5).

CurVoxels and INT

CurVoxels is a team of students in RC 4 who developed he project Spacial Curves (2014-15). The project is a continuation of research into spatial printing, wh
started with a previous team of students called Filamentrics (2013-14). Spatial printing is now a popula method for robotic printing, but first appeared in the Mesh Mould project (GHack, Lauer, Gramazio, Kohler, 2014). The printing process is based on a tool head, mounted on a robot arm, extrucing hot plastic along
a spatial vector. This method saves a lot of time in comparison to layered methods. Preferably, the robot does not stop during the process, but continuously xtrudes material. Robotic spatial printing has a numb of limiting constraints, the most important being that material. There are also structural constraints: materia can only be extruded in the air for a limited range t some point, support structures are needed. Therefore ost spatial printing projects make use of a highly epetitive toolpath organisation, based on parallel
contours connected with a triangular toolpath. The formal possibilities are limited, and the toolpath organisation is not very complex.
CurVoxels developed a design method which is aimed at controlling the toolpath constraints and developing new freedoms within these constraints. CurVoxels computational approach is based on discretisation: a voxel
fragment. It was decided to use a Bézier curve as a unit to compose the toolpath. The team then developed a process that cycles through the voxel space in a layered Every time a voxel is accessed, the Bezzier curve inside the voxel is rotated to connect to the line in the previous voxel. In principle, there are 24 rotations possible but a number of these are not printable, as the extrusion tool would intersect with the curve. The logic of combining there is a discrete set of options for how curves can connect without losing continuity. The printing pro can be prototyped on a few voxels, rather than having space is not continuously differentiated but disereter limited. After the toouspth is tested for a single curve and limited. After the toolpath is tested for a single curve-
voxel in 24 different rotations, it can be used to assemble thousands of toolpath fragments together into one continuous, kilometres-long, printable line. The size of the voxel itself also introduces a structural parameter: the structure becomes denser. If it is bigger, the and the structure becomes denser. I it it is bigger, the structur
is more porous and less strong. This observation was translated into an OcTree subdivision for the voxels, linked to structural data. In areas that carry more load, voxels are subdivided and more material is deposited. The design method was tested on the generic shape
of a panton chair. The shape of the chair itself is not questioned and has to be understood as a generic placeholder, similar to the Stanford bunny or the Utah teapot. In total, three chairs were printed. The last chair, which made use of the OcTree subdivision logi
was strong enough to withstand up to 80 kg of load.

182/183 The next project, INT, combines discrete design with discrete fabrication. Similar to CurVoxels, a combinator unit is developed, but this time as a physical building
block that can be aggregated and assembled. This unit block that can be aggregated and assembled. This unit
is able to combine with itself in different ways and can is able to combine with itself in different ways and can
be robotically assembled. Similar to Neil Gershenfeld's digital materials, the unit is serialised and has a discrete set of connection possibilities. The 'digital' building block, or tile, has a geometry which can be inscribed in voxel space: one L-shaped unit is comprised of three oxels. The tile is further defined by a series of subtractions so that it can be picked up by a gripper too
in different orientations. It is also marked with multiple reflectors that help a camera system to track the elements in physical space. The project is based on multiple scales of CNC-milled timber blocks. The smallest can be specifically designed gripping spots. A combinatorial logic was developed to combine tiles into structurally stable forms. Different combinations of blocks are structurally evaluated in terms of surface area. In areas
of the design that reauire more strength combinations of the design that require more strength, combinations
with a larger area of shared surface are privileged. The robot is given a specific boundary and total amount of tiles to fabricate a structure. One tile is placed as a star and then, for every robotic action, the position of the
next tile is calculated (Fig. 6). Users can intervene in the next tile is calculated (Fig. 6). Users can intervene in the
process by placing tiles themselves. These are tracked by process by placing tiles themselves. These are tracked by tiles. The robot can then subsequently add new tiles to complete the structure. In case the new tile would, for example, break the boundary of the design, the robot
can remove the tile again. The robot is able to address can remove the tile again. her erobet in able to address
imperfections in the assembly process - for example, if a tile falls off the structure, it can re-evaluate its position and add a new tile. The design process was ested on two different chairs. The first chair is purely a product of automated decisions, without human where the students decided to favour symmetry. The fabrication process is significantly faster than for the 3 printed chair, both of INT's chairs being completed in under 45 minutes (Fig. 7)

From continuous to discrete

Both projects question established design methods based on discretisation. They capitalise on the be considered less representational.

The CurVoxels project enables the effcient generation and evaluation of complex toolpaths. After optimising

one toolpath fragment in one voxel, an entire structure can be generated without further problems. This serialised approach reduces the amount of unique
problems to solve. Toolpaths with continuous formal differentiation, on the other hand, also have to deal with continuously differentiated problems, which all require unique solutions. The proposed combinatorial method, in combination with the OcTree logic, allows for complex differentiation and adaptability to structural criteri character commonly associated with digital materials is avoided. Through always combining the initial toolpath unit into different patterns, complex structures
with differentiated formal qualities and structural with differentiated formal qualities and structura behaviour can be designed. This introduces a
fundamental shift away from the paradigm most usually associated with digital design: from mass customisation and continuous differentiation of parts to discrete, serially repeated element

The resulting objects are not a result of a postrationalisation, where a shape would be first designed and then sliced into layered toolpaths for printing.
The design method operates directly on the toolpath
itself. However, the project does not manage to bridg he gap between design and fabrication. Essentially,
he design first has to be generated and then sent off he design first has to be generated and then sent off in the fabrication, the entire object has to be probted in the fabrication, the entire object has to be printed
again. There are significant logistical constraints to the project: multi-materiality is hard to achieve, and the printing time is slow
On the other hand, the $I N T$ project allows for the efficient assembly of objects which could potentially be multiassembly of objects which could potentialy be muli complexity and heterogeneity. The research establishes structures that are physically digital. It introduces interesting new questions about the potential interactio f robots and humans in the design process. The project eedback loops between the simulation and the physic assembly. The use of heavy, compression-based materia introduces an added difficulty to the assembly process, presenting a whole range of structural problems. More significantly, the project makes use of joints, but in the
end relies on a significant amount of glue in order to be assembled. The use of glue prevents the reassembly and reconfigurability promised by the project. The problem with the joint is one of the main limitations of discrete fabrication: the smaller the elements, the more joints are
created. Potential solutions could attempt to make the element itself interlocking, but this would inevitably increase the complexity of the robotic assembly proces and again severely limit the formal possibilities.

Discrete fabrication

The design methods developed in the CurVoxels and INT projects have significant implications for additive manufacturing, the automation of construction and
architecture. The proposed discrete design methods architecture. The proposed discrete design methods complex material organisations. The shift from continuous fabrication to discrete fabrication moreover introduces a series of advantages, such as multimateriality, structural performance, speed and
reversibility. The proposed combinatorial method allow reversibiity. The proposed combinatorial method allows
or complex differentiation compared to the repetitive character commonly associated with digital materials. Formal differentiation no longer relies on the mass customisation of thousands of different parts, but can e achieved by the recombination of cheap, serialised locks, in combination with increased assembly speed, reduced error space and vast formal possibilities, provides a frm ground for additive manufacturing
techniques to scale up. From a design point of view, in moving computation to physical space, discrete fabrication is able to bridge the representational gap physical data a are aligned. Computation and fabta and physical data are aligned. Computation and fabrication
can happen in parallel, and design decisions can be made during the fabrication process. This versatility makes the process more robust and adaptable to demanding scenarios such as onsite fabrication.
The potential for reversibility has implications reaching far beyond automated construction. Architectural building elements that are recombinable could significantly change the lifecycle of buildings. The combinatorial aspects can help to introduce complexity and adaptability in
prefabricated building systems, without losing the benefits prefabricated building system,

References

Carpo. M.. 2014. Breaking the Curve. Big Data and Digital Design in Antforum
$52,6,6,168-17$.
 Ward, J, 2010.0.AAditive Assembly of Digital Materials, , hD thesis,
Massachusets

Cershenfeld, N. Carney M, lenet B, Caisor Sad Macrofabicication with Digital Materials: Robobotic Assembly in in Architectural ,

CILLLIA

METHOD OF 3D PRINTING MICRO-PILLAR STRUCTURES ON SURFACES
difelou/gershon dublon/ chin-yicheng / hiroshilishil
MITMedia Lab
KARLWILLIS
Addimation Inc.

Throughout nature, hair-like structures can be found on animals and plants on many different scales. Beyon ornamentation, hair provides warmth a nd aids in the
sense of touch. Hair is also a natural responsive materi that interfaces between the living organism and its environment by creating functionalities like adhesion, ocomotion and sensing. Inspired by how hair achieves hose properties with its unique high-aspect ratio structure, this project explores ways of digitally surfaces of manmade objects. Material science and mechanical engineers have long been investigating various methods of fabricating hair-like structures ${ }^{1{ }^{12}}$. In this paper, we present Cilllia, a digital fabricatio method to create hair-ike structures using
tereolithographic (SLA) 3 D printing.
The ability to 3D print hair-like structures would open up new possibilities for personal fabrication and interaction.
We can quickly prototype objects with highly customised fine surface textures that have mechanical adhesion properties, or brushes with controllable stiffness and
texture. A 3D printed figure can translate vibration into
a controlled motion based on the hair geometry, and printed objects can now sense human touch direction
and velocity. In this paper, we will focus on introducing and velocity. In this paper, we will focus on introducing
the fabrication pipeline and the emerging mechanical adhesion property of the printed hair surface.
The 3D printing revolution
3D printing is rapidly expanding the possibilities for hobrication process has tremendous potential to enable fabrication process has tremendous potential to enable
the fabrication of physical objects not previously possible. High resolution 3D printers have become increasingly affordable and widely available, enabling the fabrication of micron-scale structures. Cilllia is a bottom-up printing
pipeline intended to fully utilise the capability of current pipeline intended to fully utilise the capabiity of current large amounts of fine hair on the surfaces of $3 D$ objects. We introduce methods, algorithms and design tools for mechanical adhesion.

In this paper, the following contributions are presented 1. A bottom-up approach for generating 3D printable
micro-pillar structures. micro-pillar structures.
. A simple graphical interface that allows users to easily design hair structure. into hair structures.
As high resolution 3D printers become increasingly properties of physical materials, whether optical or mechanical, electrical or biological, can be encoded and decoded directly by users. This allows us to customise
and fabricate interactive objects as needed.

The challenges of Cillla

Although the resolution of recent 3D printers has been improving, it is still considered impractical to directly print fine hair arrays on object surfaces. This is due to the lack of an efficient digital representation of CAD
models with a fine surface texturef. Most of the current commercially available 3 D printers use a layer-by-layer method to deposit/solidify materials into shapes that are designed in CAD. The process follows a top-down pipeline, in which users create digital 3D models, and
then a programme slices the models into layers for the printer to print. In the field of computer graphics, the standard way to represent surface texture is through lofting bitmaps on the CAD model to create an optical
illusion. These representations do not actually capture illusion. These representations do not actually capture mpractical to create many thousands of small hairs with real geometry using conventional CAD systems.

The data for describing the total geometry become extremely large and rendering such comp
can also be computationally expensive.
To overcome these challenges, the goal of the project is to bypass the modelling and slicing process of the 3D printing, and instead to directly generate machine 3D printing hair-like structure

We introduce a bottom-up approach to 3D printing hair-like structures on both flat and curved surfaces Our approach allows users to control the geometry of individual hairs, including aspects such as height, thickness and angle, as well as properties of the hair
array, such as density and location. We then present thre example applications to demonstrate the capabilities of our approach.
All the tests and examples shown in this paper, unless stated differently, are printed on a commercially available digital light processing (DLP) 3D printer (Autodesk Ember Printer). The DLP printer takes stacks of bitmap images from the CAD models and directly projects the image onto the liquid resin layer by layer. The printer has a feature resolution of 50 mion the X and Y axes, and
$25 \mu \mathrm{~m}$ on the Z axis. The build volume is $64 \times 40 \times 15 \mathrm{~mm}$. The print material is near UV light photopolymer.

Printing hair-like structure

The bottom-up 3D printing approach presented here allows one to design and fabricate hair-like structures
without first making a 3D CAD model. The user directly generates printing layers that contain hair structure
information for the 3D printer. The method can be viewed in three layers:
A single hair's geometry (1D): height, thickness, angle and profile.
geometry across stherfaces (2D): varying single hair geometry across the array on $a \mathrm{a}$ surface.
Hair array on curved surfaces (3 D): generating hair array on arbitrary curved surfaces.

Single hair geometry

 Compared to other surfaces textures, such as the wri comprises a high-aspect ratio cone that is vertical/angled o the surface, although the height, thickness andprofile might vary. As we know, the diameter of profile might vary. As we know, the diameter of a cone
continuously decreases from the base to the tip. Howe the smallest unit in the DLP printer is a pixel. Therefore we need to find a way to construct a model that could approximate the geometry of a cone. We set the base f a pillar to be a matrix of array (e.g. 3×3 pixels). As the layer increases, the pixels linearly reduce in a spiral
stairs manner, leaving the top layer with just one pixel. This method gives us the highest resolution control of he printed cone shape. We can also add acceleration to the base pixel, reducing velocity to create hair with adifferent profile.

For tilting the hair to a certain angle, we can offset the pixel group in the X or Y direction every few layers. As the printer has the double resolution on the Z axis ompared to the X and Y axis ($25 \mu \mathrm{~m}$ vs. $50 \mu \mathrm{~m}$), the
$\tan \theta=(\mathrm{L} / 2) \times \mathrm{P}$
where L is the number of layers and P is the number of offsetting pixels. We successfully printed a series of sample surfaces with oriented hair. Fig. 2 shows that our
printed geometry matches the computer visual isation.

Users can easily change the parameters of the hair geometry through a graphical user interface that we generating bitmaps for printing.
We can also generate curved hair by offsetting the pixe group in a spiral layer by laye.
Hair array on flat surfaces
The ability to individually control hair geometry can be applied to thousands of hairs across a flat surface.
In order to do this quickly, we use a colour mapping
method to make an RGB bitmap in Photoshop, then turn it into a hair array. The values of the R, G and B of each
pixel correspond to one parameter of hair geometry. The algorithm checks the bitmap every few pixels to create a new hair based on the pixel's colour. One can
therefore easily vary the density of the hair by changing how frequently the bitmap is checked.

Based on our experience, height and angle are the most common parameters that need to be varied frequently. We therefore map the R-value to the angle of the X axis,
the G-value to the angle of the Y axis and the B-value to the height of the hair. We use this method to create the conveyor panels in the later section. In the future, we plan to develop a more general approach to encode hair other prameters such as profle and thickness can be other parameters
included as well.

Hair array on curved surface
In order to apply the presented techniques to a variety of models, it is desirable to print hair on an arbitrary curved
surface. To do that, we developed a hybrid method, where users create the curved surface in CAD software, then generate bitmaps that contains pixels of hair array.
To do this, we first import the STL file and position it in the correct printing position. We then find the centroid location of each triangle on the mesh and shoot a ray along the direction of the triangle's normal. A plane moves along the Z axis to intersect with the mesh to create bitmaps of the CAD model, and to intersect with the rays to draw pixels for the hair. In this way,
we created bitmaps that contain both CAD model and hair array information. This method allows us to apply the control of hair geometry while slicing as well.
However, the generated hair array is highly dependent
on the distribution and amount of the triangles. For the examples in this paper, we try to use meshes that have
dense and evenly distributed triangles. One can use publicly available online tools (e.g. Meshlab) to create more uniform models. We should also notice that the 3D printer allows only 60° of overhang, so rays beyond that range are ignored. There might also be parts of the hair
hat penetrate the nearby surface if the surface is curved nwards. We can eliminate this by reducing the hair length correspondingly (Fig. 3).
There are three advantages when directly generating bitmaps of hair structures:

By manipulating a single pixel, we can control aspects of a single hair's geometry, such as height, thickness and angle, with a precision of $50 \mu \mathrm{~m}$.
Without a CAD model of the hair and slicing process, In becomes possibce to print a high density hair array hair on a $30 \times 60 \mathrm{~mm}$ flat surface.
hair on a $30 \times 60 \mathrm{~mm}$ flat surface.
H. Hair array can 'grow' on any arbitrary CAD model
while the model is being sliced.

Printing with laser beam-based SLA

We also experimented with the layer-by-layer method on a laser beam-based SLA printer (Form1). In the experiment, we directly manipulate the exposure time
and the moving path of the laser beam to create an array of laser 'dots' for polymerising the liquid resin. We move the laser beam to the spot where we would like to have hair structure and turn on the laser for two mill isecond
then move to the next spot and turn it on for another two milliseconds. Based on our experiment, two millis polymerise the resin. It produces a dot with a $100 \mu \mathrm{~m}$ diameter. To increase the size, one can increase the exposure time. However, we discovered that as one into a long oval instead of a circle shape This is due to the shape distortion of the laser beam. Although the Form1+ has a larger build platform and potentially can be useful for more applications, we decided to use the
Ember printer, as it produces more uniform results.

Applications for designers
To show the capability of our printing method, we create three types of possible application for designers

Objects with fine surface textures

 As we can generate hair on curved surfaces, we ca now 3D print animal figures with such features. We can also vary the thickness of the hair to creat
Customised brushes

We can also directly 3D print brushes with customised textures and different densities. With the colour mapping method, one could create a more comple
shape of brush for increased and varied artistic shape of brush for increased and varied artistic expression. In our example, all brushes are 30mm
in diameter. The length and density vary based on the input bitmap.

Mechanical adhesion

One interesting phenomenon we found during our exploration is that two panels with dense hair can tightly This is adue to the the when their hair is is pressed together. This is due to the large amount of contact surface on the
hair that creates friction. To demonstrate this, we printed several hair panels ($40 \times 40 \mathrm{~mm}$) and glued them into boxes. These boxes can be easily attached to each other. In order to keep the hairs on two panels fully in touch with each other, the gaps between the hairs must have the
same size as the diameter of the hair base. In our exam ame size as the diameter of the hair base. In our examp.
the hair base and the gap are both four pixels ($200 \mu \mathrm{~m}$).

We tested the strength of the adhesion in relation to the tilting angle of the printed hair. In our experiment, pair of hair panels $(30 \times 30 \mathrm{~mm})$ were glued onto a solid
truncated pyramid $(30 \times 30 \times 30 \mathrm{~mm}$). We pushed the hair surfaces against each other and measured the force that was needed to pull them apart. Our test shows that as the ilting angle of the hair increases, the adhesion force rises as well.

uccessful fabrication of

ustomised hair-like structures
To summarise, we present a method of 3 D printing hair-like structures on both flat and curved surfaces. This a lows a user to design and fabricate hair geometry
at the resolution of $50 \mu \mathrm{~m}$. We built a software platform to let one quickly define a hair's angle, thickness, density and height. The ability to fabricate customised hair-1ike structures not only expands the library of 3 D printabl mechanical adhesion properties.

While we demonstrated methods and a possible design space for 3D printed micro-pillar structures, we are aware that the technique is very much limited by the physical constraints of current SLA 3D printers. For example,
if we had to create an arbitrarily shaped object fully if we had to create an arbitrarily shaped object fully
covered by hair, we would have to split the object so covered by hair, we would have to spit the object so that
the curvature of the surface could still be printed without a supporting structure. The printable materials are also limited in terms of colour and stiffness. Our current
algorithm for generating hair on curved surfaces is algorithm for generating hair on curved surfaces is also highly dependent on the amount and distribution of the
triangles of the CAD model. This means that to print high quality hair requires either a clean mesh model or a preprocessing step for the model. In the future, we will
add re-mesh function to our softwe add re-mesh functions to our software platform to control hair distribution. It would also be very interesting to test
if tilted hair is mechanically weaker than straight hair, as there is less contact area for each layer of the voxel.
Notes
 Arays, Microelectionic Engineering, VOI. 98, ISNN O167-937, p.483-487,
 Noture Communication, 5 .

 p. $589-598$.

Hogkinson, N, Hague, R.J.M. and Dickens. P.M. 2006, Rapid Manufacturing: An Induststial
Chichester, Wiey,
. 43 -45.

FUSED FILAMENT FABRICATION FOR MULTI-KINEMATIC-STATE
CLIMATE-RESPONSIVE APERTURE

The aim of this project paper is to present new find in the implementation of a design for fused filament methods, alongside a stimulus-responsive 3D printed prototype (Fig. 1). The project demonstrates control in the design and manipulation of new composite material create architectures capable of complex kinematic deformations in response to environmental stimulu,
The project highlights hygroscopic, doubly-curved, shape change apertures capable of autonomous climat adaptive kinematic response.
While recent research into stimulus-responsive materials (SRM), such as timber composites (Wood et al, 2016) imetals (Sung, 2008) and multi-material composite (Tibbits, 2013), have had to rely primarily on multiple abrication steps in order to assemble structures capab of double curvature shape deformations, the presented research can build custom directional deformation with
a single fabrication process. Moreover, unlike Poly-Jet matrix approaches to SRM, the presented FFF method, using fibrous fillers, enables anisotropic properties hrough the deposition and the make-up of the materia
itself. The project showcases a methodology that couples a design-oriented and computationally enabled method th integrates aD printing viar material syntax strategies. The project highlights precise kinematic geometric deformation with multi-directional curvature made possible via a precise understanding and negotiation of
the material properties and behaviours inherent to the FFF process. Variations on behaviourial properties through the development of a custom polymer composite provide an outlook into the capacity to programme differentiated kinematic response time and material performance fo bespoke applications. The research builds upon over seven years of previous work by the authors into
hygroscopic actuators using wood composites and bio-inspired 3 D printed architectures, furthering this research by transferring and expanding the functiona principles and material intelligence of these mechanisms.

Double curvature as a functional principle
The primary research question for this project concerned
the integration of double curvature as a function the integration of double curvature as a functiona

118

 iilin

principle into the development of a multi-hierarchical ystem architecture. Previous research by the authors or 3D printed SRM Presented reiable shape chang
actuation with single curvature deformations using wood fibre composites (Correa et al, 2015). Early tests highlighted that shape change curvature direction could be further directed into controlled twisting angles through the differences in the dominant angle of deposition
orientation of each layer (Fig. 2) (Correa et al, 2015). Similar to previously developed veneer composite bilayers (Reichert, Menges \& Correa, 2015) or hygrogels (Erb et al., 2013), varying the angle of deposition can enable twisting
of the sample through global manipulation of the of the sample through global manipulation of the composite architecture. That is, the changes in material
orientation apply homogeneously across the whole sample. The key principle that allows SRM composites to shape change is the ability to direct small expansion forces from the SRM material over a non-SRM substrate. Therefore single curvature shape change deformations
are most effective when all expansion forces are directed along a single axis. To achieve double curvature, it is herefore necessary to further expand the understanding f these principles by investigating material organisation methods and composite architectures that can negotiate For the presented project, the development of an architectural aperture capable of double curvature shap change was selected as the medium to investigate

New insights through collaboration

Using a customised additive manufacturing process, the
double curvature in the hygroscopic-responsive SRM flap
is achieved in a single step. Fabrication of the complete multi-aperture assembly involves two steps: firs, the printing of the SRM flaps with the fastening non-responsive understructure that positions the flaps into apertures.
Research into two-stage, doubly-curved pine scale actuation, in coll aboration with the Plant Biomechanics Group at the University of Freiburg, provided novel
insight into the kinematics and functional material differentiation that allows double-curved shape chang in pine scales (Poppinga et al., 2015). This functional
principle of double curvature actuation was abstracted into a double-curved flap component with two integrated curling axes. Consequently, for each individual flap, the performance goal is to have a dominant and a secondary curling axis. The primary axis is responsible for the opening of the aperture, while the secondary axis double-curved shape. As the flaps are configured concentrically within the aperture, their lateral interaction is facilitated by this secondary double curvature deformation. In the closed state, the double
curvature deformation allows for the aperture to form a curvature deformation allows for the aperture to form a
segmented dome geometry, while in the opening state th flaps push each other further into the open position, enabling a wider aperture diameter. Moreover, the flap actuation within the aperture is further supported by a secondary functional region located at the base/stem.
This region is both responsible for the fastening of the flap to the aperture understructure and also designed to have a single
curling axis.

Completed ipece in
Controleded clinate c chamber

 Martin Gopius Bau in Berlin
Ilosed aperturuse indicate liosed apertures

 3iD sphepe change urifing
direction in reationto material deposition angles
(Correa etal. 2015).
3.Mult-ininematic-state
limate-responsive apertue climate-responsive apertur
ime apsesthape change
tom hig $R H$.

For the hygroscopic shape change actuation, the hygroscopic SRM material and a secondary constraint material, which has negligible hygroscopic expansion characteristics. While several FF plastics with a limited butadiene styrene (ABS) filament was selected in order to facilitate fuse bonding of the flaps to the aperture understructure. For the hygroscopic SRM material,
two materials were tested: commercially available wo materials were tested: commercially available vood composite polymer (WCP) filament and a custom
developed cellulose composite polymer (CCP). Both materials rely on the fibrous cellulose or wood fillers or hygroscopic expansion, and the presented SRM composites make use of the shear-induced alignment of the fibres in the 3 D printed beads to define the While single curvature deformation only requires a primary angle of material deposition perpendicular to the shape change axis, the presented double curved lap mechanisms must negotiate different directio of expansion and corresponding constraint. Early
tests indicated that positioning two mirrored angles of deposition at 10° from the main curling axes was effective at enabling double curvature, but it achieved a limited curling angle along the primary axis. It was speculated that the central region, along the central axis,
did not provide enough material alignment perpendicular o the primary axis. In this initial test, the stem region was designed to be longer in order to compensate for this limited curling angle along the primary axis (Fig. 3)
While this is an effective strategy for the aperture opening, a second approach was developed that could adaptively change the deposition angle to meet both axis requirements. In this second approach, a paraboloid curve was implemented in the toolpath that allowed fo, the material to be deposited at 90° from the main axis, the 10° angle for the lateral sections. This approach
functionally distributed the material in relation to the
desired curvature and reduced internal stresses resulting from different areas of expansion meeting at a narrow angle along the central axis. As a result, the flaps were angle along the central axis, without compromising curvature changes on the secondary curling direction (Figs. 4 and 5). After achieving the target performance for the main functional region of the flap, the stem regio
was reduced in order to be more seamlessly integrated within the substructure; it therefore plays a more limited role in the overall angle of opening of the aperture. For
organisation along both the primary and secondary axis followed the same corresponding functional distribution.
The main constraint material beads are deposited in line (0°) with the primary curling axis, while the secondary constraint follows a 90° angle. Addditionally, in order to better integrate the stem and the main flap region, a boundary edge is implemented.
While the WCP provided the desired hygroscopic shape change performance for the doubly-curved mechanisms,
a second custom SRM material was developed and tested a second custom SRM material was developed and test developed, using isolated wood cellulose fibres embedded in a proprietary co-polyester polymer. It was of interest to test the effect that the isolated cellulose fibres had in relation to the SRM composite response time and shape composite polymer with hygroscopic fibres allowed u test the effectiveness of the previously developed shape change methods.
The design of a bespoke composite filament allowed for the verification that no additional colourings or foreig the verification that no acditional colourings or foreign
fillers were added that could directly or indirectly affec the performance of the SRM composite. While technical characterisation of the material falls outside of the scope of this project paper, empirical tests, with both isolated curvature aperture, indicate a small increase in moisture absorption and desorption in the samples, resulting in a faster stimulus response time. However, the colour to have an impact in tests using radiation from light to have an impact in tests using radiation from light
sources. As opposed to the darker WCP samples, the

 6. From left to right, three sizes
of ressonsive flass s supoort

whiter CCP samples can reflect most wavelengths of light, resulting in reduced temperature increase. Due to and localised surface evaporation can have in moisture desorption, the samples have a uniquely different performance profile. When subjected to moisture desorption tests, the WCP samples can have a faster response time under exposure to light radiation due to
their colour while the CCP samples can be faster in low their colour, while the CCP samples can be faster in low
light environments with equivalent low relative humidity

The ABS 3D printed substructure was designed to provide a support structure that can accommodate three scales of flap mechanisms ranging from 38 to 72 mm (measured along their primary axis). The piece is composed of two halves, containing a total of 14
apertures. Small changes in angle direction allow the piece to generate a sense of enclosure while exposing each aperture to slightly different light angles.

Developing a new 'smart' material

Wood composite 3D printed filament enabled the application of a found material 'wood' into a new fabrication process, using a thermoplastic polymer materi in andes the deposition of the material in a directed and controlled matter. In other FFF 3D printer and the hygroscopic properties inherent in the material to enable the development of a new designed meta-material/'smart' material. By isolating
cellulose, the active hygroscopic compont cellulose, the active hygroscopic component of wood,
the new custom cellulose composite highlights the the new custom cellulose composite highights the
possibility of selectively choosing desired performanc properties. In collaboration with material science experts and industry partners, additional aesthetic or functional performance characteristics can be further integrated to meet desired applications. The integration of 'smart'
functional material performance into a multi-hierarchical architectural system enables closer insight into the conception of truly smart and adaptive buildings, whereby the function, material and form are intrinsically d to and anticipate user performance needs.

In this content, it is evident that in addition to furthering research into SRM shape change architectures, more research and testing is needed for the adequate
characterisation of both composite flaments and the resulting meta-material composites. The potential of FFF for form generation continues to be widely investigated, but the physical and material intricacies resulting from the material interactions of FF layered deposition remain
poory understood. While there is substantial research ttle is base constituent polymers used in FF plastics, little is known about their final physical performance once they are chemically modified/optimised for FFF criteria. Long-term testing for flexural strength, material
fatigue or UV decay will be required in order to be able o consider possible technical applications. Moreover meta-material composites with SRM multi-material architectures offer additional layers of complexity and pportunity, requiring a wider scope of investigation a multidisciplinary context (Le Duigou et al., 2016).

New directions for material inteligence

This novel approach to generating shape-changing rchitectures using FFF provides new opportunities
or architectural design that can further access materia intelligence through programmable and adaptive esponsive systems. The competence of architects lies in the conception of material organisation strategies hat are functionally integrated through geometric and material interdependence. Reciprocities in form, conceptual understanding as a formal and material assembly, in order to implement effective and adaptive nulti-hierarchical functional structures capable of performance-driven local differentiation. Nevertheless,
he challenge for architects and designers is that while material science forms a critical component of materialoriented architectural research, it does fall outside its core field of expertise and professional scope. It is only through a truly interdisciplinary research approach that nnovative approaches and applications.

The outlook of this research presents the possibility of applying and expanding the presented FFF methods into direction or the integration of synclastic and anticlastic curvature changes within a single piece. Additionally, material development of the composite filament offers great potential to include bespoke performance
of the actuation response. Development of testing of the actuation response. Development of testing
methodologies to evaluate feasible applications into architectural applications can foster better understanding of desired technical performance and limitations. Moreover, considerations of the lifecycle of the material sstems is of particular concern; further studies into th can also be biodegradable is of critical importance for his research.

Acknowledgements
D.C. doctoral esearch was supported by the Natural Sciences and
Engineering Research houncil of Conada, PGSS D Award and the JNOS
Resear Research N etwork. We would also Ike to thank D.S.Simon Poppinga and
Professor Thomas speck trom the Plant Biome hanaics Group Uni-feribu

Refrences

 ${ }^{\text {International Journal of } A} 1$

Corea, D.D.Papadopopolou, A, Guberan, C. . Jhaveri, N. Reichert, S., Menges, A.

Eb, R.M., Sander. J.S. Grisch, R. and Studarat. A.R., 2013, Self-Shaping
Composites with

 Biomechanics Internatational Confererence, 30,1.1-0.1.2.2015

LeDiigou, A, Castro, M., Bevan, R.and Marti, ,.,.2016, 3 D Printing of Wood

3D METAL PRINTING AS STRUCTURE FOR ARCHITECTURAL AND SCULPTURAL PROJECTS

paulkassabian/graham cranston/Juhun lee

RALPH HELMICK / AARAH RODRIGO
Helmick Sculpture

198/199 Tools and materials currently available The material world is broad. For structural performance, he AEC industry typically works with a limited range materials dominated by steel, reinforced concrete and wood. We believe 3 printing will open up opportunitie
for other materials where the technology will provide greater performance possibilities (examples include structural plasticss, which have existed and been used for decades on industrial structural applications,
fibre-rinforced composites where placement of the fibres fibre-reinforced composites where placement of the fibres
can be optimised, etc). Contour crafting can be optimised, etc). Contour cratting ${ }^{4}$ developed at
USC, and other similar approaches, have developed printed concrete technology and there will be much more innovation going forward. For this paper and the mmediate next step in development, we focus on the wider range of metals.

Metal 3D printing can be divided into powder-bed fusion and deposition-based approaches. In the former, the metal powder is sintered layer by layer via high-energy methods
such as electron beam melting (EBM) and direct metal such as electron beam melting (EBM) and direct metal laser sintering (DMLS). For the latter, metal is dep
in a manner similar to continuous welding in air.
Powder-bed fusion approaches allow for high-quality control and production of the resulting metal, with alloy powders of particle sizes between 45 and 100 microns.
This process allows for fine detail, albeit within a current limited build envelope of approximately $0.05 \mathrm{~m}^{3}$. Deposition-based approaches produce a more coarse
build, but the build envelope is essentially limitless.

Certain metals, such as stainless steel, titanium and Certain metals, such as stainless steel, titanium and
aluminium, are more conducive to this approach than typical softer metals such as bronze or copper. As the cost of the EBM and DMLS processes are driven more by energy requirements than by bulk material cost, We are seeing lower costs in the market for 3D printing
of titanium than for stainless steel - a different paradigm than normal for the architectural/sculptural design market in AEC.
While printed metal can reach equivalent tensile strength to standard metal product, there is ongoing research work
for all these metals aimed at achieving suffcient The sintering process forms a granular structure that is not directly equivalent to typical structural metals, esulting in less ductility. To date, this has been addressed either by limiting sustained deformations of
the printed item to the elastic regime or by annealing or treatment by hot isostatic pressing (HIP). Both remedies have cost implications.

How can these benefits be made real on AEC projects?
As stated above, there are real benefits to 3D printed structural components that are valuable to the AEC industry, including mass customisation, complexity at
low/no cost, reduction in assembly effort, production of low no cost, reduction in assembly effort, production
forms previously not feasible and others. We see two areas of technological development that can make the benefits of 3 D metal printing real:
Development of integrated design tools: most structural software is focused on analysis only and
is inflexible to the changing design process. For 3 D printing, the generation of a form and its iterations are intrinsic to the process, so new methods and approaches are required.

Understanding of the metallurgical process: currently the resulting printed metal is not identical to metal product and design standards, as they do not yet exist
for 3D printed metal. Hence, to provide an equivalent for 3D printed metal. Hence, to provide an equivalent performance, the metallurgical process and its effee
on the design must be understood and integrated accordingly.
Overall, there is no better learning than doing. We have worked on two recent projects, one sculptural and one technology forward.

Sculptural project:

Schwerpunkt at MIT, Cambridge, Massachusetts, USA
Helmick Sculpture was commissioned to create a 3 D anamorphic sculpture for MIT's McGovern Institute for Brain Research in Cambridge, MA. The sculpture is comprised of a hundred individual neuron sculptures
ranging in size from 305 mm to 915 mm in the longest dimension, and suspended in a three-storey atrium with viewpoints throughout the space. The individual neuron sculptures must 'read' from every direction, with primary views from below and the exterior entry plaza on a main pedestrian and vehicular artery of the area known as
'Technology Square'. The composition not only had to work in the round but create a culminating moment when one reaches the third-floor entry to the Institute, where all the neurons visually coalesce into a 'drawing' of the human brain.

Design approach
approach to sculpture is the human eve's remarkable approach to sculpture is the human eye's remarkable
ability to collate disparate data points into a recognisable

> Schwerpunkt: view from
beneath the sulpture.
> 2. View from the side

neurons distributed | nevownom |
| :---: |
| in space. |
| ins |

> 3.The sculpture seen from
mage - essentially connecting the dots to quickly ecognise patterns.
forms. Any repeat forms, notwithstanding changes in size and orientation, became visually apparent. Over time, the creation of the cul minating brain image required specific collection of forms from various viewpoints.

From a formal perspective, unique neuron forms, and specifically unique dendrites, would be the most effcient and successful approach to the sculpture design, but the fabrication of a hundred unique organic forms using
traditional methods was daunting. Previous Helmick sculptures with similar forms were made using bronze casting, although this does not allow for specialisation and one-of-a-kind pieces without prohibitive pricing.
After creating a physical suspended $1 /$ scale 3 D sketch of the entire sculpture in the studio, we also explored other
methods such as a 'kit of parts' approach, but we found the number of components needed in order to achieve the appearance of individuality made the kits impractical in scale. Is it really a kit of parts if you produce three each of effficient or cost-effective kit

Finally, we turned to the possibility of direct 3D printing.
3D metal printing and design
Helmick studio has long combined digital tools - 3D laser scanning, rapid prototyping, CAD modelling - with
traditional sculpting methods, but this approach created an entirely new fabrication sequence for us. Instead of starting with a hand-sculpted object and digitising it,
we would start with a digital object and hand-finish it. starting with a hand-sculpted object and digitising it,
we would start with a digital object and hand-finish it.
Helmiok Studio Helmick Studio modelled each neuron individually in
Rhino, and Simpson Gumpertz \& Heger (SGH) expanded this same model to include both the existing structure this same model to include both the existing structure model itself. Through an iterative approach, the HelmickSGH team simultaneously evaluated varying parameters
including the three-dimensional location of the neurons combined with strength and deflection of the suspended ceiling (which was a typical lightweight suspended ceiling not typically rated for the loads of the sculpture).
SGH also performed physical material and system testing SGH also performed physical material and system testing
at their in-house materials lab of sample framing and panels to quantify their strength and stiffness. The testing provided accurate information for the design iterations and also confirmed the need for an additional design element: adhering thin plexiglass to the ceiling panels where required for added stiffness.

Helmick Studio developed the Rhino model further by breaking each neuron into a number of pieces (five to ten)
based on bed sizes and material parameters, and had all

the pieces direct printed in a bronze/stainless steel alloy This approach had several advantages: we maintained
weight tolerances for each neuron by hollowing larger weight tolerances for each neuron by hollowing larger
pieces and making smaller neurons solid; we made the cell body to dendrite connections structurally robust in a quantifiable way; we labelled each individual component in CAD for easy assembly and tracking; and we were able significantly lower cost than creating the same pieces significantly lower cost than creating the same piec
using traditional sculpture fabrication methods.

Once printed, the neurons were hand-finished, assembled, primed and finally goldleafed, again by hand. The final result is a sculpture that would not have been
possible to create on this budget even a few years prior.

Structural project:
Entrance Building, Northern Massachusetts, USA
This ongoing project is a new two-floor entrance pavilion building to an existing office headquarters in northern Massachusetts. The client is confidential, but is associated with design and the AEC industry. Thus the
 of Boston, MA.

The building facaade consists of articulated glass panel hat relate to both the internal structure and an architecturally defined skin. The combination of façade panel being at a different distance from the slab edge. At the first-floor slab edge, where four glass panel corner meet, each glass panel corner is at a unique distance and orientation from the normal cento tocal slab edg

Initial design iterations focused on modulating the slab edge geometry and geometric options for the
glass panels. Although these options reduced the
amount of geometric variation, they did not result in any practical benefits to cost or fabrication complexity The connectors would still be a variety of welded plate was a clear candidate fortings. Thus 3D metal printing was a clear candidate fo
the façade connections

The SGH team focused on developing design and
analytical approaches that could provide valuable analytical approaches that could provide valuable insight and information on the connectors without
limiting design creativity and iteration, and where the limiting design creativity and iteration, and where the
resulting designs could still be analysed to an accurac required for refined shape-forming and printing. The team recognised that the integrated and unique nature
of architectural and structural requirements fo of architectural and structural requirements for these components would need addressing during the design
process rather than being left to a delegated design process rather than being left to a delegated design potential cost benefit of using titanium, we chose stainless steel for the material design to provide a more direct comparison as well as a level of comfort to
other parties involved. For future projects, we expett to other parties involved. For future projects, we expect to
be designing with 3 p printed titanium and developin forms and performance not feasible with other standard production processes.

Design approach

SGH develope two workflows that were used to take the project from concept through to the final print process. Workflow 1: the 'quick and dirty' method. This approac allows, as a starting point, for rapid generation of the
range of structural topologies based on gemetry range of structural topologies based on geometry and
wind loads. SGH developed custom C\# scripts within Grasshopper/ ${ }^{6}$ Millipede?, using the building façade geometry as input to automatically generate a finite

number of element models to calcuiate the effect of the orces at the connection points for the range of wind load
cases. In essence, this provided the envelope of force vectors (magnitude and direction) at each of the unique onnection points. Starting with a similar structural block or design space at each connection point, we sed ${ }^{D}$ topology optimisation to remove material of lew stress and computationally iterated on the analysis as an integrated geometric and structural process until

The result of this stage was a series of 3D-related forms hat satisfied overall structural requirements but would need more design and analytical refinement.
Workflow 2: the 'detailed and accurate' method. This stage followed from the above family of 3 D -related forms and design discussions with the team, and allowed for refinement of the design, analytical accuracy and geometric refinement for the printing process. We performed multi-obiective toenlogy optis istion performed multi-objective topology optimisation and
a detailed finite element analysis. The resultant mesh geometry from the optimisation process is 'pixelated' and therefore produces a rough surface finish. We imported the geometry into ZBrush 9 to smooth the surface profile nd clean up the mesh. We then brought the form back capacity criteria.

3D metal printing

As proof of the process, we selected one connector to print in stainless steel. We worked closely with Addaer
Inc. of New Britain, Connecticut, during the Workflow 2 stage above, who provided invaluable advice on all practical printing aspects, including overall maximum ize, local detailing and geometry file accurac
requirements, among others
The resulting printed connector is a hollow volume with shell thickness of only 1.5 mm optimised for architectural and structural performance. Printed at the arche time as he connector were test coupons which are being used for strength and ductility. This work is ongoing.
The technological development of metal 3 D printing proceeds at a rapid pace. The benefits afforded by 3 printing have significant value to the AEC industry
ur vision outlined in this paper to deploy 3 D metal printed components in architectural and sculptural applications takes advantage of these benefits to
enable new structural forms. Continued developm of computational tools and materials specifcally
designed for these applications is best served t b project experience, where a goal gives focus and drives progress forward, especially with production and

Acknowledgements

The authors wish to thank Richard Merlino of Addaero Inc. for his technica Notes

 Leach. N. Carsos., A. . Khoshnevis. B. .and Th hangavelu, M. 2 2012. Robootic
Constuction international Journal of Archite etural Computing, Vol. $10, \mathrm{No}$.
p. 423 -

Milipede, Panagiotis Michalatos used with permission of creator).
8. ANSYS Workbench Mechanical Enterpise, release 17.0
9. $Z 8$ rush, Pixologic, version $4 R$?
4. Wind forres and stresses
5. Refine topological 5.Refined topological
optimasion and finite
olementanalysisis. $\underset{\substack{\text {. } \\ \text { stainless steel } \\ \text { stinnt } \\ \text { print }}}{ }$

MOBILE ROBOTIC FABRICATION SYSTEM

 FOR FILAMENT STRUCTURESMARIA YABLONINA/MARSHALL PRADO/EHSAN BAHARLOU/TOBIAS SCHWINN/ACHIM MENGES Institute for Computational Design, University of Stuttgart

In the past decade, robotic fabrication in the field of architecture has developed rapidly, opening up new techniques allow the utilisation of materials like fibre composites in the field of architectural construction by employing qualities of the material that were previously not feasible. However, the equipment used for materia exploration in the field is often standard industria
machines, originally designed for assembly line applications, which have scale and process limitations.

Introducing a new generation of mobile constructio machines capable of operating onsite would allow expansion of the capabilies of currently developed fibre obot system of cooperative, mobile machines operating within the context of the surfaces of existing architectura environments: facades, walls, ceilings. Anchoring new
tensile flament structures to these surfaces activates a tensile filament structures to these surfaces activates upon and modifying it to current spatial requirements in real time (Fig. 1).

Using custom mobile robots
The presented project aims to expand the scope of robotic fabrication for filament and composite fibre architecture through the introduction of custom, cooperative mobile robots. Over the past decade, a significant body of work related to applying fibre composite materials to architecture and design without the need for elaborate
moulds or formworks has been developed (Menges \& Knippers, 2015). Simultaneously, advancement in mobile robotics and autonomous control have become more prominent in relation to design and fabrication through research projects (Jokic et al., 2014). Developments in research to take things one step further, through the introduction of mobile collaborative robots for fibre composite fabrication. Mobile machines are directly matched to the unique affordances of fibre composites lightweight properties of the material as well as the structure allow for low payload agile machines iteratively applying layers of fibre to create a structure

Exploring the potential for in-situ fabrication through the introduction of machines capable of operating in architectural environments would expand robotic
fabrication processes beyond the constraints of the production hall. This expansion exposes the possibility of urban and interior environments as the unique framework for onsite fabrication. Multi-robot systems
have the potential to provide larger solution spaces and have the potential to provide larger solution spaces and design potentials than traditional robotic fablic fabrication in environments that are not - and could not be - equipped to house industrial-scale machines.
Significant conceptual differences between operating mobile and standing machines require a distinct chang in all stages of fabrication and development, starting with design. In this work, new design (CAD) and manufacturing (CAM) processes are to be developed
in order to fully take advantage of new hardware tols for construction.
new approach to fibre composites in constructio
Developments in mobile robotics and autonomous control systems allow for automation of various tasks in industrial
and household applications (Novikov, 2015) Companies such as Amazon have implemented mobile robots for the automation of manual labour required at their warehouse
are being developed in order to operate in dangerous and unreachable environments, such as earthquake sites (Zhang, 2007). Quadcopters have replaced complex
equipment in the filming industry. Surface-climbing robots are used for the maintenance of building façad (Mahajan \& Patil, 2013). In the field of digital fabrication, projects like the Aerial Construction research at the Gramazio Kohler Research group of the Eidgenössische Technische Hochschule in Zurich (Mirhan, Gramazio
Kohler, 2015) demonstrate that the application of collaborative mobile machines to construction with lightweight materials is very promising.
The integration of fibre composite materials into the architectural construction process has been a foous of exploration for designers and researchers since the late 1950s. High performance of these materials has promised a revolution in construction and design possibilities. Multiple attempts at fabrication with fibre composites at a large scale, such as the Monsanto
House in California in 1957 (Phillips, 2004), influenced discourse but failed to find a foothold in the construction market. Standard fabrication techniques for fibre composites imply a serial production scale which
became undesirable in "society that increasingly became undesirable in a "society that increasingly
valued individual ism" (Knippers \& Menges, 2015). The necessity of creating large complex moulds for each fabricated piece made it inefficient for the fabrication of unique elements.

Human-scale structure
prototype fabicicated using prototype fabicated u us

the system. | 2.Series of mobile robotic |
| :--- |
| prototypestor orthe mobie | lobotic fabictition system

for liament structures. 3.Exploded diagram of the

final I robotic prototype. | Images: Maria Yablonina, |
| :--- |
| Institute for Computational | Institut for Computa

Design nuivesity of
Stuttgat 2015

Today, we see a new approach to fibre composite Computational developed at the Institute for Building Struectues (ICD) and Institute of at the University of Stuttgart suggests a new way of at the University of Stuttgart suggests a new way of
building with fibre composites using industrial robots. Through iterations of research pavilions (Menges \& Knippers, 2015), coreless filament winding (Prado et al, 2014) and integrated formwork (Vasey et al., 2015) methods have been developed. These methods embrace ength and introduce techniques that reduce necessary moulds down to cheap and reusable formwork through continuous winding strategies. The fabrication strategies hat a robot provides allow the creation of comple eometries without requiring a solid mould.

A unique property of fibre filament material is its virtually infinite length. The material can span large and small distances, which means it can work at both local and global design scales within the same system. The latter

Tensile flament systems require anchoring to solid
formwork to be stable. Using the existing surfaces of architectural environment instead of constructing new ones would create a new layer of architectural complexity in existing habitats. An industrial arm, designed to wo
on a production line with car-sized objects, does not on a production line with car-sized objects, does n
provide this level of scalability and flexibility of environment interaction.
Constructing a system for complex environments
The first stage of research focuses on conceptualising and developing a locomotion system that would suit our research goals. As the aim is to develop a system for constructing complex shapes in three-dimensional space a simple wheeled robot would not be effcient. The system environments, and for converting the façades, walls and ceilings of architectural surroundings into fabrication anchor surfaces. Alongside the development of mechanica locomotion solutions, software for control and real-time unstructured environments.

Once the locomotion system is developed, additional exactly does the material interact with the environment and what functions does the machine require in order to be able to perform the interaction? A solution for transforming an existing architectural environment into anchor points and an attachment mechanism.

A fabrication process involving multiple robotic units requires the development of an interaction system between the independent machines on both hardware and software levolt in way the actuation and localisation is required.

Developing and controlling the robots

The proposed hardware system consists of multiple obotic units of the same design enabled with variou types of actuation and sensor in order to perform the fabrication process. In the concept development stage, (Fig. 2). The first step was to to test out basic locomotion and control systems in order to explore the possibilitities hey offered. Initial prototypes were simple wheeled machines, with a focus on exploring methods of
to navigate three-dimensional spaces arose In order for a system to operate in 3D environments of human This prototype was based on a wheeled wall-climbing robot (Dethe \& Jaju, 2014) (Fig. 3) that uses vacuum pressure to adhere itself to the surface. A centrally located vacuum motor provides enough force for the machine to carry approximately 10 kg in addition
to its own weight. Four independently controlled actuated wheels allow for the robot to accelerat steer and rotate in place. Controlling each wheel with an independent motor provides more force for
situations of high payload and creates a smalle stuations of high payload and creates

In order for the machines to navigate in unpredictable environments, a control system capable of localisation and real-time path correction was also developed. Since mobile system movements are hard to predict due to distance travelled (Gil, Reinoso, Fernandez \& Vicente distance travelled (Gil, Reinoso, Fernandee $\& v$ icente,
2006), a feedback loop for local vector correction is required. Visual sensors (cameras) and the control unit are positioned externally to the bodies of the robots, space simultaneously, process the data and send commands back to the machines. Fiducial markers (Bencina \& Kaltenbrunner, 2005) placed on the robots

4.Stucture building process
 Institute for Computationa Design, पुivesisty of

and perceived by the cameras provide constant feedback Af each unit's position with a tolerance of $10-20 \mathrm{~mm}$. motors, the current acceleration vector is compared to the desired one in order to calculatete a trajectory correction. is employed. algorithm (Hart, Nilsson $\&$ Raphael, 1968) is employed.
Once obstacles and restricted areas are defined by the user on a global fabrication site map, the algorithm define
custom robotic effector was developed to efficiently
A custom robotic effector was developed to efficiently between robots. The mechanism allows the bobbin to be wrapped around slender anchor hooks. It is actuated with a single motor through a set of gears (Fig. 3). A material
bobbin is mounted onto a circular rotating plate with a slit on one side. As the robot approaches an anchoring hook, the rotational element is placed into the capturing position so that the hook slots into its centre. Actuating
the motor causes the bobbin to spin around the anchor,
 wrapping the thread around it. Each robot is equipped
with a set of electromagnets that allow each of them o pass or receive the fibre bobbin to or from other obotic units.
This application of the system is developed specifically o operate in an interior environment where anchoring oo operate in an interior environment where anchoring
surfaces are approximately at a 90° angle to each other. Each surface of the room (floor, walls, ceiling) is inhabited by one robot and has an external camera capturing it. urfaces are manually equipped with anchors prior to the robotic fabrication process. Machines navigate
the surfaces, attaching the thread to anchor points in a predetermined sequence. Each wrapping routine is followed by a passing routine where the material bobbin is passed from one machine to another, in order between surfaces.

Once the fabrication process begins, all of the robot movements are choreographed autonomously. However, safety mechanism can be implemented. Whenever the operator spots a problem or a mistake, the system can be
switched into troubleshooting mode and the robots can be operated manually from a pendant. This switch between autonomous and manual control can be made at any time during the process and allows smooth continuation from the previous point thereafter

Global geometry, size and position of anchor surfaces, number of anchors and the sequence in which they are
connected are defined by the user prior to fabrication.

Once the software receives the information, it computes sequence for each robot

Assessing the basic functions of the system

This system has been successfully tested in a scenario of interior environment fabrication process with two surfac climbers spanning a simple human-scale structure made of nylon thread between two anchor surfaces (Fig. 4). locomotion, interaction and anchoring. The fabricated prototype has been designed to test basic functions of the system rather than to explore design possibilities (Fig. 5), he result is a 2.5 m -long and 0.5 m -diameter doubly curved hollow fibre structure capable of supporting a
human. It consists of 35 layers of thread anchored to 26 anchors. The total count of passes is 455 and the total length of thread used is approximately 800 m . The winding process took approximately 50 hours. This proposed mobile robotic system is therefore
successful in working with flement conditions of onsite fabrication. While these machines cannot compete with industrial robots in payload and precision, they open up the possibility of building entirely new structures that would be impossible otherwise. The
ability to interact with onsite environments as well as the potential for various scales of fabrication make this process extremely useful for in-situ interior and urban process extremen
scale fabrication

Increasing the number of machines involved in the process could allow more complex multi-surface areas to be utilised, as well as increasing the speed of production. The currently existing constraint of 90 surface orientation can also be avoided through the
modification of the effector hardware. Simultan upgrading current system far more efficient.
The vacuum motors being utilised have a high power demand, which makes it necessary to supply power via a cable. sing more efficient vacuum motors along wit
powerful batteries would allow the machines to be wireless and thus to move with more freedom during fabrication. Once the robots can manoeuvre between previously laid fibres without the risk of entangling the
power cable, complex fibre interactions, where subsequent fibre layers shape the previous ones into a new condition, can be achieved.

Having proven the feasibility of the proposed system, urther research is required in order to achieve a more robust fabrication strategy and to explore new design
and construction potentials. Further development of current design software would allow the creation of more performative fibre patterns and structural composite spaces. Embedding tools for editing winding syntax and anchor placement would allow for planning lements such as openings, branches and space divides would be a possible next step.
Potentially the system could occupy the externa surfaces of urban environments, using building facades
as formwork. The architecture that would be created is then a parasitic structure (Melis, 2004) growing on existing architectural environments, using its input as a design driver and as a formwork for the structure
that is then created after. One can imagine structures being created in an urban context without human created where ant when it is needed and disassemble created where and when
once no longer relevant.

The proposed system, alongside other research into robotic applications in architecture, lays the foundatio for a broader variety of task-specific machines for construction. Building a larger library of tools, inclucing industrial arms and CNe tools as well as further expand the possibilities of architecture. One could imagine a modular robotic platform consisting of various machines, where each performs a custom task, compensating for the limitations of others. This can be
envisioned as a universal multi-material construction envisioned as a universal multi-material constructio
system where machines and tools can be added and removed in response to the specific requirements of a fabrication task.

ferernces

 shape-of-the-robotst-that-will-hape
 ${ }^{\text {Pranssaction }}$.
Zhang. H . 2007 , Climbing $\&$ Walking Robots Towards New Applications,
1-Tech Education and P ublishing (ISBN $978-3-902613-16-5$)
Mahain. R.G. and Patil. S.M. 2013 , Development of Wall Climbing Robot for Cleaning Appication in international Journal of Emerging Technology and
Advanced Engineering, vol 3 , Issue 5, May 2013
(ISSN $2250-245, ~ I S O$ 9 Advanced
Mirian, A. Gramazio, F.and Kohler, M. 2014 , Building with Flying Robotsts in
 Cold War Hothouses Inventing Postwar C 1 Ier

 ais. informatikni.feil
3 september 2016 .

Hart, P.E, Nilsson, N.J.J. and Raphael, B, . 1968 , A Formal Basis for the Heuristic

THE SMART TAKES FROM THE STRONG

 3D PRINTING STAY-IN-PLACE FORMWORK FOR CONCRETE SLAB CONSTRUCTIONThe wider aim of this research is to explore the
architectural potential of additive manufacturing
AM) for preabricating large-scale building compon
It investigates the use of AM for producing building components with highly detailed and complex geometry educing material use and facilitating the integration of technical infrastructure.

In order to achieve this, the concept of stay-in-place 3D printed formwork is introduced. AM is employed to produce sandstone formworks for casting concrete in any shape, regardless of geometric complexity
This approach explores the synergy between the This approach explores the synergy between the
geometric flexibility of $3 D$ printing sand formwor geometric flexibility of 3D printing sand formworks
and the structural capacity of concrete. It allows the production of composite components with properties superior to either individual material.
This new fabrication method is demonstrated and arge-scal $1 \cdot 1$ ceiling slab prototypes (Figs. 1 and 2), which are described in this paper.

Large-scale binder jetting technology in architecture
3 D printing, or additive manufacturing, refers to the process of producing artefacts by successively adding material using a computer numeric control (CNC) system. A digital 3 D model of an artefact is created and sliced along a vertical axis. The data about each slice is
then translated and fed to a 3 p printing machine, and the machine creates the artefact by building up material laye by layer.

There are a few different types of AM technological process. In the context of architecture, the interest lies artefacts onsite and prefabricated components offsite. This research focuses on binder jetting for prefabrication (Fig. 3). Binder jetting is an AM process in which a liquid bonding agent is selectively dropped on thin layers of powder material to bind it.

Several characteristics of binder jetting make it interesting for prefabrication in architecture. Due to

be used with any powder material that can be bonded
(cement, plastics, ceramic, metals, sand, sugar, plaster, etc; Rael \& San Fratello, 2011). Moreover, this process has the advantage that, within a set bounding box, increasing geometric complexity results neither in longer productio
time nor in higher cost. Complex cantilevering forms and even interior structures can be $3 D$ printed without auxiliary support, because the powder-bed itself performs this function. Lastly, there are a number of larger-scale facilities that use binder jetting technology to produc large-scale artefacts. An example is the D-shape system
by Enrico Dini (Dini, 2009). This is one of the largest 3D printers in the world, but unfortunately this system only reaches a limited resolution. This resolution depends on the grain size of the powder, the layer height and the resolution of the print head. In contrast, there are
industrial 3 D sand printers that can produce parts that are both large and highly detailed. Currently, they are used by the foundry industry to produce moulds for metal casting. These moulds can be printed
at a very high resolution in the range of a tenth of at a very high resolution, in the range of a tenth
millimetre, and at a maximum volume of $8 \mathrm{~m}^{3}$.

The project Digital Grotesque by Dillenburger and Hansmeyer (2013) demonstrated the potential of 3D printing sand for the fabrication of highly detailed 3D sand printing in architecture has barely begun to reach its potential. One reason for this is that large-scale 3D printed sand parts are too weak to operate as a building material - the bending strength of 3 D printed sandstone is very low. As a result, the current application
are limited to building components which are mostly under compression.
The advantages of 3D printed sandstone
The central question of this research is how to use the unique advantages of 3 D printed sandstone and
overcome its limitations in order to enable the fabrication overcome its limitations in order to enable the fabrica
of large-scale building components. The research introduces and examines the concept of stay-in-place 3D printed sandstone formworks as a solution that
combines the geometric flexibility of 3D printing combines the geometric flexibility of 3D printing
sandstone and the structural capacity of concrete (Fig. 4). Specifically, the following questions are investigated:
How do concrete and 3D printed sandstone interface? To answer this question, the fabrication constraints of 3 D printed formwork and the performance and
efficiency (functional, structural, material) of the resulting load-bearing building components are investigated.

1. Prototype B. displaying an intric ate tubural topopolog
designed to reduce weight 2. Prototype A dosigned to reduce eveight hrounghthe
use of a ribbed substructure 3. Sand binded jetting with a
lage industrial 30 printer. 4. Composite building
element with load-bearing
 capanaty. Phy
the integity
prototype.

What is the impact of this new fabrication process and geometric freedom on the design of archite
components? Can this approach facilitate the fabrication of fully integrative building compon with reduced material?

One reason to search for new ways to fabricate complex forms with fewer constraints is that doing so allows us to reduce material use through the optimised design
of components: wall thickness can be adapted and of components: wall thickness can be adapted and undercuts, microstructures and
topologies can be fabricated.

With its excellent geometric flexibility - recesses, undercuts, internal voids and tubular structures are
possible $-3 D$ printed sandstone formwork lends itself possible - 3D printed sandstone formwork lends itself
well to the production of such complex architectural elements. The main means of demonstrating the easibility of this construction method in this research is the production of two large-scale $1: 1$ slab prototypes.
The two prototypes investigated forms which were found The two prototypes investigated forms which were found by computational strategies (e.g. oppology optimisation) material use and efficiently distribute the remaining material in order to maximise the slab's strength.
Prototype A (Figs. 1 and 5) is a slab designed for a Prototype A (Figs. 1 and 5) is a slab designed for a
ood case with three supports in the centre. This slab folds into a hierarchy of ribs that give stability to the large cantilevering areas. Prototype B addresses a load case of four perimetral support points (Fig. 2 and 4). It features a
sophisticated topology of tubular elements branching in sophisticated topology of tubular elements branching in (50 litres) corresponds to a solid slab a mere 3 cm thick.
o produce the large prototypes, the following step were take

Compression and bending tests of combination of different types of powders and binders. Structural tests of different concrete mixtures considered for potential combination with sand-print. Rheology studies of casting concrete in sand-printed vocabulary as a design guideline (Fig. 6). Exploration of various computational design strategies to optimise the use of the chosen labrication method with respect to the structur

Secause its main use is casting moulds for metal relatively little was known about the structural properties
ate to measure its resistance to compression printed sandstones. has reasts showed that 3 D compression, but is brittle when exposed to bending ces. Below is the list of parameters involved in the compression and bending tests:
Parameters of the compression tests Size of the specimens: $50 \times 50 \times 50 \mathrm{~mm}$. with and without epoxy surface infiltration. Spatial orientation in the printer bed: X, Y and Z . Number of specimens per combination: 3 . Total number of specimens: 36 .

Parameters of the bending tests:
Size of the specimens: $250 \times 50 \times 50 \mathrm{~mm}$. Three-point bending, supports at 200 mm distance central point load.
as the compression tests
The compression and bending tests were also applied for parts with different types and binders - as the table on only marginal, apart from the bending strensth of infiltrated parts. This is because the sand is less densified during printing, and heat curing vaporises more of the liquid. As a result, more resin infiltrates the part. As expected, adailonal

The behaviour of 3D printed sandstone in combination with ultra-high performance fibre-reinforced concrete

	Phenolic binder (PDB)		Furanic binder	
	Without infiltration	With infiltration	Without infiltration	With infiltration
Compression strength [MPa]	8.56	12.32	8.46	12.80
Bending strength [MPa]	2.95	8.85	2.96	6.49

group for Physical Chemistry of Building Materials
(PCBM, D-BAUG, ETH Zurich), with the following four main intentions (Fig. 7):
Develop a concrete recipe with adequate admixtures
Ahat has the desired rheological properties. reinforcement to achieve ductile behaviour while maintaining the ability to cast in narrow channels. Understand the impact of the porosity and sorptivity of the 3D printed sandstone formwork (how do the capillary absorption and transmission of water of
the 3D printed sandstone influence the hardening of the concrete?).
Mechanically test the bond between the two materials a composite.
The details and results of the study are documented in 3D Sand-Printed High Performance Fibre-Reinforced Concrete Hybrid Structures' (Stutz, Montague de Taisne, 2016)
From a design perspective, an important finding of this thesis project is a series of formal guidelines. According to these, cavities and tubular structures in the formwork can be dimensioned in relation to both the length and the volumetric content of the fibres in the concrete mixture hese guidelines informed the design of the two rheological aspects with regard to the concrete casting process. Moreover, both prototypes exploit the entire size
$(180 \times 100 \mathrm{~cm})$ of the Ex-One S-MAX 3D printer bed.

Formwork production
Production of formworks with a high degree of detailing and precise geometric features for large concrete components is very challenging - and sometimes
impossible - if using other formwork fabriction such as robotic wire-cutting, 3 -and 5 -axis CNC milling such as robotic wire-cutting, 3 - and 5 -axis CNC milling
and fabric formworks. The described $1: 1$ slab prototypes show how 3D printing can facilitate the fabrication of
such formworks.

3D printing is particularly suitable for producing stay-in-place formwork. This is because the bond
between the sandstone formwork and the UHPFRC is very durable. Mechanically removing a 9 mm -thick layer of 3 D printed sand completely requires pressure greater than $3,000 a t m$ with a water jet. Removable
temporary formwork is possible (and was successfully tested in another project) but requires a coating treatmen of the formwork which closes the pores to prevent the concrete from percolating through the sandstone
formwork. The geometry of the formwork and the formwork. The geometry of the formwork and the
minimum dimensions of its hollow features were minimum dimensions of its hollow features were
dictated by the constraints of the fabrication processes post-processing of the 3D printed formwork and the rheological properties of the concrete mix.

Parameters related to 3D printing sand

loose sand from and infiltrating the outer surface of 3 D printed formworks. Thus the geometry and diameter of the hollow features had to be designed in such a way as to facilitate removal of the loose sand (Fig. 8).

The thinness of the 3D printed formwork as it relates to the fabrication process was also studied. This dimension was tested from 6 to 10 mm , and thinner walls were found to be unstable during the removal of loose sand (due to erosion from compressed attes or vacu nuig) as well as
during casting (as hydrostatic pressure built up in deeper channels and penetrated the thin formwork walls).
At $1.8 \mathrm{~m}^{2}$, the overall size of the components also approached a limit in terms of both the manipulation
of the formwork and the stability of the 3D printed piece. While smaller parts can increase the complexit piece. While smaller parts can increase the complexity
of the assembly, they are easier to handle. Therefore the dimensioning of the parts is always a trade-off betwee
weight number of connections and logistical factors

The f $3 D$ printed sandstone needs to be carefully considered, especially when scaling up the manufacturing process
and fabricating components in larger volumes. A strategy
5.Detal of prototype A, A,

PROCESS CHAIN FOR THE ROBOTIC CONTROLLED PRODUCTION OF NON-STANDARD, DOUBLE-CURVED, FIBRE-REINFORCED CONCRETE PANELS WITH AN ADAPTIVE MOULD

hendrik Lindemann / Jörg petri/ stefan neudecker/harald kloft
TU Braunschweig IInstitute for Structural Design (TE)

New developments in digital workflow

Research at ITE aims to bring computational design, digital fabrication and new materials together. The main interest in a so-called digital workflow is to develop innovative and resource-efficient building components, building systems and fabrication processes.
In past decades, we have lost structural intelligence for economic reasons; today, we mostly realise buildings of
simple geometries with high-mass structural elements. By using the potential of digital planning and digital fabrication, we will in the future be able to design
innovative customised structures that will be efficient economically as well as in terms of resources.

In fact, the main research focus at ITE is based on the potential of ultra-high performance concrete (UHPC) The enormous compressive strength of this material promises a large reduction of structural material for future buildings without loss of performance, as well as the fabrication of innovative lightweight concrete
structures. Conventional fabrication technologies in concrete industries do not work with this high-tech material, as geometries have to become much more
complex in order to exploit this material's potential. As concrete is a mono-material, and more importantly a complex compound system with graded properties of different components, new ways of fabrication have to be taken into consideration. Conventional casting structures, as they are limited to planar geometries with high element thickness. New optimised materials and developments in digital fabrication are opportunities to rethink the production and design of reinforced concrete
structures. They can overcome geometrical limitations structures. They can overcome geometrical limitations
and lead to a completely new design space for the use of concrete (DBZ, 2016).
So, for instance, future load-bending effects of building elements can be tare load-bending effects of building thents can be taken into consideration at the planning adaptation of the element curvatures using shell effects. In the fabrication of non-standard concrete structures,
currently mostly customised one-way formwork is used.

This fabrication technology is very cost-intensive and slow and produces a lot of waste, while the reinforceme procest to a large material thickness. This paper preses a method to build up customised double-curved fibre-reinforced concrete panels in a very short time without creating any waste of formwork material. The process is sequenced in several fabrication steps and
involves a robot for human-machine interaction (HMI). The method is still in its testing phase, but the present results already show significant potential with regard to conventional casting techniques.
To implement the described research aims, the ITE has created a format called 'DBF--studio' where students and
researchers learn how to design with materiality. The
.Finished DBF-studio
nock-up (close-up).
2. Preparing the robots
movement.
3. The Digita Builiding
Fabrication Laboratory

Fatrication Laborato
athe 1 T.E.
4. Overlapping shingles
5. Fina libre pattern.
6.Stating the
participants can directly combine data processing with fabrication techniques together with the use of specific naterial. Programming, design and construction becon It is a design approach that uses bottom-up rather than op-down thinking. The use of computer programmes like Rhino and Grasshopper enables the participants to communicate easily with the advanced fabrication environments. The DBF-studio has become a key element
for the Institute's workflow, a platform to push an existing idea, to verify a thesis or simply to generate a variety of possible directions.

In this paper, the robotic controlled production of non-standard double-curved fibre-reinforced concrete panels by using an adaptive mould needed to be chain of production. The described research idea deals with a lot of parameters and constraints that have to be taken into account. To automate these complex and manifold fabrication processes, they need to be divided into severa process steps and tacked independen
This strategy enables a process without complex programming, the use of sensors or complex adaptation systems. In addition, the collaboration of man and machine is a key factor insofar as it creates a very
powerful combination, in which both machine and powerful combination, in which both machine and
human can act to their strengths. The robot is unbeatable in its accuracy and humans are able to make flexible decisions. This creates a completely new workflow, in which physical results may be unexpected but may also lead to a new a
formal traces.

The topic of advanced moulding systems for complex concrete elements has been previously addressed in different research initiatives and projects. In this respect, we would like to mention the TailorCrete project
'Industrial Technologies for Tailor-Made Concrete Structures' (ETH, 2009-13), where the research team used an adaptive metal mould that stabilised a wax cast
concrete elements. Within this context, the team from the Design to Installation of Free-form Roof Cladding w Flexible Mold - - Building the Public Transport Terminal at Arnhem' at the IASS in 2015 (UNStudio, 2015). The panel was projected on a metal mould to give the heigh values for the 21 adjustable pins that would individually calibrate the surface to produce the concrete roof pane.
In addition, two directly related projects need to be In addition, two directly related projects need to be mentioned, too - the 'Robotic Clay Molding' (ETH Zürich,
2012) and the 'Prozedurale Landschaften 2' (ETH Zurich, 2011) workshops where, together with the research team, students developed different robotically controlled methods for the surface treatment of a clay mould and

The next steps

How are we able to take the referenced research projects step fur chain for the production of a double-curved fibre-
reinforced freeform concrete panel in a reusable mould This paper investigates the interdependent relationship between production and design, in this case a coherent wis needs to e eluated is one. Which tool and with which specific materials are we able to produce
a double-curved fibre-reinforced freeform concrete panel in a sustainable manner with the least amount of material?
The envisioned production process results from a link etween the functional and structural criteria of a freeform concrete element and its design. What does the
process chain look like and what impact does it have on the architectural appearance of the final element? Is it possible to express new design ideas through technology nd through the choice of specific materials? What is th impact of these factors on the fina appearance? Can architectural expression?
The ICD/ITKE Research Pavilion 2012 team of Achim Menges and Jan Knippers in Stuttgart have had a grea Menges and Jan Knippers in Stuttgart have had a grea
mpact on the development of the research outlined in this paper, specifically within the context of robotically placed reinforcement fibre strategies.

The process of making

A preliminary method for the making of individual double-curved reinforced concrete elements was developed by the research team at ITE. The method
is divided into six individual steps which all involve

a 6 -axis robot in combination with different end effectors material is in

At the beginning, a formwork will be created by the robot pushing the sand compound from the centre to the edges of the sand mould. This creates a rough approximation of the desired surface. Additional sand or resulting sand heaps of the process chain, the deviations of the actual surface and the planed surface were tested. In the next phase, a 3D camera scans the sand surface and compares the data with the digital model of the planed surface, By evaluating the areas with too much sand and the
areas with not enough sand, the geometry can be iteratively corrected and the sand compound placed in the exact shape required. By scooping from the low to high areas, a rough mould is prepared. The results were
satisfying, but the digital process was too complicated satisfying, but the digital process was too complicated the manual workflow.

After this first rearranging of the sand compound is developed to sneumatic cylinder connected to the robot mixture. Depending on the tool head and the surface curvature, the tool prints a so-called digital pattern in the mould which can be adjusted by the frequency of the up-and-down movement of the tool, the robot movement
speed and the angle of the end effector according to the speed and the angle of the end effector according to the surface. The pneumatic cylinder minimises the robot
movement and adds a significant amount of speed to the process. In preliminary tests, the cylinder acted as an independent tool and performed its up-and-dow movement without being coordinated to the robot's movement. Later, the movement of the cylinder for a second whenever the cylinder compressed the sand. This helped to create a more accurate surface
finish by not scooping sand with the extended tool.
$222 / 223$ After finishing the sand mould, a specific amount of concrete is applied manually. Following this, the to
is changed in order to enable the robot to rearrange he fluid concrete material into the desired shape. This distribution process can be a simple offset of the
mould surface, which results in a constant thickness. Additionally, the concrete can be adjusted to the structural requirements by locally varying the thickness of the concrete panel.
In a subsequent step, the end effector is changed to a specially constructed adaptive fibre placer which pulls specially constructed adaptive fibre placer which pulls
and rolls the selected glass or carbon fibres through the fresh concrete, enabling the laying of fibre bundles in specific areas according to the structural needs of each Individual element. With the help of FEA analysis tools
ike ANSYS, these areas can be easily located within a specific individual piece but also within the context of an overall assembled structure
In earlier tests, patches of prefabricated standard fibre meshes were placed in the fresh concrete to reinforce specific areas. This method was only successfully applied
o planar geometries because the meshes were not flexible enough to adapt to curvature or complex geometries. Whenever the curvature was getting too strong, the patches were folding back into planar mode and could not
reinforce the concrete in the right location. Alternative prefabrication strategies of double-curved reinforcement cages were evaluated in an earlier DBF-studio, described in the IASS 2016 paper 'DBF-studio - Evaluation and Development of Research Topics through the App
of Advanced Fabrication Technologies'(ITE, 2016) The newly developed method shows a lot of potential for which allow the fibres to stay exactly in place where they need to be (Fg. S). As a corollary benefit, we see that ths create thin, structurally optimised concrete elements.
In the final step of the process, the placed fibres are covered with a second layer of concrete (Fig. 6) in the same manner. The overall set-up of the production line
is a computer linked by Ethernet to a UR 5 robot running Rhino and Grasshopper. The plug-in to control the robot, developed at the ITE, enables easy access to the machinery (Figs. 2 and d). Different multi-curved panels
can be produced with this method. Paterns of wisted can be produced with this method. Patterns of twisted
surfaces came out especially well, showing that this technique leaves traces of the process that can be used as a material and aesthetic expression of the fabrication method.

Moving forward

The latest DBF-studio combined the experience of the 2014 and 2015 teams working with HMI robots (IASS 2016 , 'DBF-studio - Evaluation and Development of Research Topics through the Application of Advanced Fabrication
Technologies') The goal was to build a complete Technologies'). The goal was to build a complete
structure out of several unique fibre-reinforced shingles (Figs. 1 and 7). The shingle design consists of four surfaces: two trapezoids, and two rhombuses on the side. The trapezoids can be twisted (double-curved) in contrast to the rhombuses, which are designed to always form a planar surface. The planar surfaces overlap with the neighbouring planar surface. Due to the conve
concave section of the design, the overlap acts as an interlocking element between the shingles.
To keep the elements positioned in a longitudinal direction, every single piece nal ol mal nose, almost like the detail of a classic roof shingle. In order to create the shingle nose, two methods were tested. The first one was to remove sand from the mould on the
desired edge and compress the gap in the mould again.

The cavity could then be filled with concrete and worked he form of an extended nose. The second method was the result of the casting process. By scooping leftover material to the sides, a thin rim started to pile up and programming an extra offset to the edge, the nose of the shingle was created without any extra mould. The idea of the mock-up was to evaluate the full potentia By producing the shingles either with the front side By producing the shingles either with the front side
in the sand or the back side in the sand, both processes (creating the mould and filling it) can be displayed, sowing their individual formal expressions and aesthetic value (Fig. 4).

With a well-connected production chain, 64 individual concrete elements were produced within 10 days. The results were quite convincing, although there is still lot of potential to improve the method. It allowed us to produce a wide range of geometrical possibilities. Double-curved, single-curved and planar elements
with sharp edges with a continuous thickness could be produced and could even vary and be fine-tuned according to the structural needs of each single piece Reviewing the results of the mock-up shingles and study objects produced earlier shows the potential of
the process. Compared to earlier investigations with more curvature, the shingle geometry does not differ enough from an actual planar surface and therefore the process traces appear like an irritation on an almost even frace rather han a torrated process trace. Ether this can be optimised in further post-production steps, or the
nature of the surface has to become an integrated part of the design and the process logic to form the optimal geometry in terms of stiffness, material behaviour and production method.

New steps for the production chain

The promising results of the latest mock-up encourage
the transfer of the production chain to the new Digital he transfer of the production chain to the new Digital Building Fabrication Laboratory (DBFL), which was
introduced at the beginning of 2017 by the ITE. A introduced at the beginning of 2017 by the ITE. A
scaling-up has to go hand-in-hand with a full atomisation of the process. The previously tested process steps, such
as the 3D scanning of the surface, could become valuable as the 3D scanning of the surface, could become valuab additions to the process chain. An atomised fill-up could result in an improvement of production speed
and improved accuracy of the concrete elements. An important issue will be the surface finish. Integrating the design of the surface appearance, as a result of a
flexible process and production technique, will lead to
new perceptions of the material and its manuacturing and will give the designer a layer expression.
Traditional moulding techniques in concrete industrie have led us to a limit in form and in geometric
complexity. They have been optimised to perfectly replicate the design of formal architecture via top-down processes and to find a compromise between design and structural properties. By reaching the limits of material properties for creating resource-efficient and sustaina described here, the digital workflow from the early design stages to final production has to be rethought. As the optimisation processes of building elements in the fabrication stage could have a big impact on the final design, and also because architectural design
ideas could not directly lead to a final building sha recursive feedback loops have to be established in the design process. Similar to growth processes in nature, highly optimised fabrication processes in architecture as a genotype lead to a unique phenotypical shape. these fabrication constraints becomes itself a new kind of architectural expression. One can't be done without the other. Fabrication and form have to be in balance.
References

TailorCrete, 2014, TailorCrete brochure (PDFF, Denmark, avaiable a thttp/:
min

 Archiectura elementin in Concrete in Proceedings ofthe itemational

 http://gamazziokonh
September 2016).
Gramazio and Kohler, 2011, Prozedurale Landscchaften 2, avaiabble athttp:// ${ }_{2016)}^{\text {gramaz }}$

ELYTRA FILAMENT PAVILION

 ROBOTIC FILAMENT WINDING FOR STRUCTURAL COMPOSITE BUILDING SYSTEMSMARSHALL PRADO/MORITZ DÖRSTELMANN/ACHIM MENGES
Institute for Computational Design, University of Stuttgart
JAMES SoLIY / JAN KNIPPERS
JAMES SOLLY / JAN KNIPPERS
Institute of Building Structures and Structural Design, University of Stuttgart

Novel design and fabrication strategies

Ongoing research conducted at the University of Stuttgart is focused on material-efficient construction through the development of novel design and fabrication strategies for fibre composite lightweight construction
systems. In a long-term bottom-up development across systems. In a long-term, bottom-up development across
multiple demonstrator projects, the underlying structural principles of fibrous lightweight structures in nature principles of fibrous lightweight structures in nature
have been investigated in interdisciplinary collaboration with biologists, leading to the development of building technological advancements which allow the transfer of biological lightweight construction principles into technical fibre composite structures (Menges, 2015,
Dörstelmann, 2015a, Van de Kamp, 2015). A series
of prototypical demonstrator projects have showcased
a higher degree of material efficiency and functional a higher degree of material efficiency and functional integration than current building methods.
The presented project continues this line of research
in a site-specific installation at the Victoria and Albert Museum in London. The project aims to further develop
the previously prototypically tested processes at a larger

functional capacities being building system that is suitable for niche applications in architecture. Developments include significant
advancements in coreless flament winding techni advancements in coreless filament winding techniques,
embedding of sensory systems into the fibre composite building parts, integration of construction detailing and interfaces to complementary building systems such as façade and ground anchoring, structural simulation methods, reconfiguration and expansion capacity based
on a sensor-informed learning system in combination on a sensor-informed learning system in combination
with a local fabrication set-up. The focus of the presente paper is the advancements in robotic fabrication methods for bespoke fibre composite parts.
Fibrous composites are versatile and structurally performative materials, useful for many architectural applications. They have been utilised in many engineering industries (e.g. aerospace and auto for decades, due to their high strength-to-weight ratio and high degree of formability. The use of these materialas has
not been fully developed with respect to architectural not been fully developed with respect to architectural
production, although the building sector could largely production, although the building sector could largely
beneftit from the material performance, efficiency and degree of functional integration in fibrous lightweight constructions (LeGault, 2014). Early experiments with
fibre-reinforced polymer (FRP) buildings in the 1960s fibre-reinforced polymer (FRP) buildings in the 196 os
were unsuccessful due to the lack of appropriate design were unsuccessful due to the lack of appropriate design
flexibility and construction methods for this group of
materials. The fibrous material, which is often a hand-laid fibre-woven textile, creates a sturdy albeit homogeneous material arrangement that only takes limited advantage
of the anisotropic nature of the fbres for structual of the anisotropic nature of the fibres for structural
effficiency. Many of the traditional composite fabric effciency. Many of the traditional composite fabricatio
techniques require full-scale surface moulds, which is inefficient in both material usage and cost (Weitao, 2011). This often leads to serialised production of similar parts in order to take advantage of the initial material formwork
investment, which is the case in these early architectural investment, which is the case in these early architectural
explorations. The legacy fabrication techniques, which have not changed much in nearly nine decades, are restrictive from the perspective of both design and material performance
Filament winding, the most efficient and cost-effective method of composite fabrication, is an alternative to hand-laid fibres that can be automated for speed and efficiency in industrial production (Peters, 2011). Fibre orientation can be controlled, which makes this proces
more adaptable to the structural requirements and changing boundary conditions of architectural changing boundary conditions of architectural
production. Industrial processes often still require surface moulds or mandrels for geometric articulation and composite performance. Precedent work on the use of FRP in architectural construction developed at the Institute for Computational Design (ICD) and the
Institute for Building Structures and Structural Design (ITKE) at the University of Stuttgart was focused on the

1.Photo of the onsite
fabication core of the Elytra

2.Photo of component
2. Photo of ompo
production and
cone
connection tests.
magee: ivVA Musum,
tond
development of integrated design, engineering and
fabrication methods that allow the hain haterial characteristics of fibrous materials for build construction while reducing the need for surface mould (Doirstelmann, 2014, Waimer, 2013, Reichert, 2014). The
ICD/ITKE Research Pavilion 2013-14 showcased the ability to make a dual-layered composite structural system from highly differentiated components using a coreless filament winding' system and reconfigurable
winding frame (Prado 2014) This projet winding frame (Prado, 2014). This project pushed the possibiilities for morphological exploration and novel arms fitted with reconfigurable frames created a highly adaptable fabrication setup, where geometric articulation and morphologic differentiation were key areas of investigation. This project showed high potential in bo
the developed dual-layered structural system and the coreless winding fabrication process.
While the previously mentioned fabrication process was capable of a high degree of morphologic freedom or expanding the design potential of the system), for simpler applications this process could be refined to reduce complexity and increase fabrication efficiency. The Elytra Filament Pavilion proposed an adaptive econfigurable construction set with structural various configurations. This resulted in a unified edge condition for each component, making a reconfigurable rame unnecessary while still allowing for unique, ndividualised geometries and fibre arrangements to be created. More research interest was placed performative component geometries suitable for this design implementation
The development of a versatile fibrous building system hat of previous investigations. First, to show its applicability as an architectural system, it must be utilised at a larger architectural scale. More specifical
in the case of the Elytra Filament Pavilion the scale in the case of the Elytra Filament Pavilion, the scale required Ionger spans and cantilevers to test the use of
the structural system in various scenarios. Furthermore, beyond purely structural considerations, a fibrous building system should be able to integrate, incorporate or interface with other building systems such as the roo
enclosure, wall façade construction, floor or foundation, which are important preconditions for wider applications which are important prec
in the building industry.

Fibre composite building system

Small-scale pavilions have historically often served as ahics forighirghting innovation in design, materia functional requirements allowa focus on specific research questions. Similar past projects, such as the ICD/ITKE Research Pavilions 2012 and 2013-14 (Knippers, 2015, Dörstelmann, 2015b), were scientific demonstrators built on the campus of the University of with other building systems. In comparison, the Elytra with other buulling systems. In comparison, the Elytra
Filament Pavilion is formed from fibrous components interlinked with multiple other material systems.
Additionally being sited in a prominent public Additionally, being sited in a prominent public space, it was required to pass through the rigorous
certification process required for an inhabitable architectural structure.
The key components of the pavilion building system include (from top to bottom): the makrolon cladding panels, coreless wound fibre composite cells , bolted
component-to-component joints, integrated lighting and sensor systems, coreless wound fibre composite column halves, bolted component-to-frame joints, stee supporting columns, membrane-support bracketry, core-enclosing membrane, core steel frame, foundatio
plates and helical ground anchors. Many of these elements are common within the building industry but as no standard interface details exist for coreless wound fibre composite components, these wer

Robotic coreless filament winding allows complex spatial arrangements of filament rovings to structurally connect various points in space. The distribution and spacing of winding points not only influences the component's shape and fibre layout resolution, but is also most sultable
to be used as fabrication-inherent connection detailing if equipped with aluminium or stainless steel metal sleeves. Through the nature of the robotic winding process, the fibre composite rovings are bundled around the winding points, so the metal sleeves are embedded and
structurally connected to the composite material. Rather than cutting or drilling (operations often used to create mechanical connections in fibre composites), the fibre rovings remain intact and structurally uncompromised. To increase the load transfer capacity of the metalcomposite interface, sleevesw ith structured exterior these connection points through the composite structure is enhanced as the anisotropic fibres naturally align towards the connection during the winding proces.

The inside of the metal sleeves can be blank or threade o enable screw and bolt connections to the various
building systems mentioned above. The use and typ building systems mentioned above. The use and type
of connector can be preprogrammed as part of the frame assembly for the specific application required.

Robotic fabrication process

The presented fabrication process utilised a refined custom production set-up as well as further developments in the coreless filament winding process. An 8 -axis brm linked to a 2 -axis turntable which carries a multipart fixed frame, was used for winding (Fig. 3). For offsite production, a custom resin bath and spool holder which could carry up to six carbon fibre spools simultaneously were utilised for higher production speeds, while for were used. A higher degree of integrated construction detailing was enabled by advancements in the robotic coreless filament winding techniques. A multi-stage
winding process was developed, which relied on several
phases of frame assembly and disassembly throughout configurations (Fig. 4) With this technique specific connectors and structural spokes could be created to interface with a transparent shingled roof enclosure system. Through adaptations in the robotic fabricatio process, the construction of a wide variety of
component geometries with tailored structural component geometries with tailorel structural The differentiation in system morphology, which would not be possible with standard FRP fabrication techniques, showcases the refinement and control of the coreless
winding system. The surface curvature and the size winding system. The surface curvature and the size Expanding beyond single-surface topologies (emblematic of fabrication techniques requiring a mould) enabled a hierarchical organisation of volumetric form, including a global bilayer structure. This structural system, used in components with was ref ed to reate larger daiameter area with less volume. This made the system highly efficient, requiring less material for a larger structure.

Coreless winding 4. Diagram of muti-staz

the reusable winding frame. The process was highly automated and could be performed with a single robotic
operator. Material handling, resin mixing and frame assembly are still manual processes in this scenario, improve manufacturing efficiency.

The Elytra Filament Pavilion cells are formed from a mix of unidirectional carbon and glass fibre roving to tailor structural efficiency. The stiffer carbon fibres provide the
primary load paths within the cells, while the glass fibre creates the required geometry, distributes load and stabilises the carbon fibres. The flexibility of the fabrication set-up enables variation of the cell aperture size, changing the resulting performance of the structure. A small aperture uses more material in the top and bottom surfaces of the component, resulting in a heaver
but stiffer element ($F i g .5$. The cell's corners, which include connection points to its neighbours, then receive a variation in carbon material quantity based on the amount of load to be supported, with higher forces

In certain critical parts of the structure, the whole cel is reinforced with a layer of carbon fibre to provide improved load transfer and strength. These strongest
cells are capable of supporting a load of un
sooks a cantilevering condition. In earlier cellular to proototypes the free edges arising from this base geometry were susceptible to buckling issues, but this was eliminated in the final demonstrator through the closed outer body reinforcement mentioned previously (Fig. 4). The pavilio
cells are therefore toroid-like beams that, when joined, reate a continuous double-layer shell without free ed and with significant shear connectivity (Figs. 1, 2 and 7). Apart from geometric variation, the additive nature of cell geometry and reinforcement known, a computational tool was developed to determine material placement,
balancing stiffness and load distribution across the balancing stiffness and load distribution across the
structure while achieving deflection limits (Fig. 5).

The project uses the integrative capacity of fibrous building systems to embed a sensor system that monitors visitor movements, microclimatic conditions an onsite fabrication set-up, the project showcases the potential of fibrous lightweight structures to become responsive learning systems that expand and
ne internal stress states of the composite structure, while thermal imaging enabled the gathering of anonymous statistics of visitior utilisation of the courtyard. Local
weather data and climate simulation processes allowed weather data and climate simulation processes allowed
predictions of local microclimatic conditions. Interpreting predictions of local microclimatic conditions. Interpreti
these data sets interrelations allowed for reactive or proactive expansion and reconfiguration behaviours of he canopy and deriving of the respective fibre layout and fabrication data for new components. During the run of
the exhbibition, new components were produced at specific the exhibition, new components were produced at specific
onsite fabrication events. The onsite fabrication setup utilised the compactness of industrial robot arms and the fibre composite material spools. After assessing the structural capacity of the global system and local loading conditions, the new components were produced with even less material, continuing to push the boundaries of
lightweight construction throughout the ongoing research process. The produced components were added during onsite reconfiguration events, resulting in two cantilevers reaching out by 5.5 m and 6 m from the next support, highlighting the structural performance
implemented fibre composite building system.

The Elytra Filament Pavilion was installed in the
John Madejki Garden at the Victoria and Albert John Madejski Garden at the Victoria and Albert
Museum in London in May 2016 In its starting Museum in London in May 2016. In its starting from 40 differentiated roof components resting on Seven columns. It covered an area of $200 \mathrm{~m}^{2}$, which was extended to $220 \mathrm{~m}^{2}$ during the exhibition run. The fibre composite structure weighs only $9 \mathrm{~kg} / \mathrm{m}^{2}$, while the entire canopy weighs 2.5 tonnes. The project showcases the
future potential of fibrous building systems and how integrated design, engineering and fabrication strategies allow for simultaneous advancements in building allow for simultaneous advancem

Future fabrication scenarios
Future research will focus on the upscaling of building parts while maintaining the level of detair and resolution in differentiation and local adaptation. Preceding projects
have shown how fabrication time can be reduced by fabricating fewer components on larger scales. This a reduces the amount of joints required and increases the fibre continuity for higher structural efficiency. Scaling
up the existing fabrication scenario would not be possible up the existing fabrication scenario would not be possible
due to the workspace limitations of an industrial robotic arm and transportability volume, but alternative setups may be used which incorporate a robotic linear axis or onsite fabrication methods using small moveable fabrication agents. Industrialisation of the winding process could require further refinement, including
sensor-integrated cyber-physical winding strategies for increased automation, error correction and live adaptation of the robotic movements, or material quality control for composite durability and UV and fire resistance. Answering these questions would provide a
big step towards developing a fibrous building system fo big step towards developin
architectural applications.

®ํํ룰

5. Diagagam of structural testing of cell vapariations.
 6: Diagram of sensor data visulisation:

 7. Photo of canopy structur
 arrangement. Image: NA ARO.

 gisineme.

Peters. S. .T. (ed).
Matereilial Pak.
Doistelman, M. Parascho, S. Prado, M. Menges, A. and Knippers,, , 2014,

Waimer, F. La Magna, R, Reichert, S.S.Schwinn, T, Knippers, , .and Menges,

 Beririn 2013, Veralade
$98-3-89462-243-5)$

 Composite Structures in Architecture based on Biomimetic Design
 Components in McGee, W. and Ponce de Leon, M. Ledss.). Proceeedings. of the Robots in Architecture C
(ISBM9783319046624).

 Design, Vol. 85.1
10.1002/ad. 1953).
Dörstelmann. M. Knippers, J. Menges, A. Prarascho, S. . Prado, M. and

Victoría A Abert Museum, London

Kuka Roboter Cmm
SGLCarbon SE
SGLCaraons
Hexion
Covestro AG
Covestro AG
FBESIItemational NV
Amold AG

Stanlibau Wendele
Langer itter GbH
STLLLGmbH

SENSORIAL PLAYSCAPE

ADVANCED STRUCTURAL, MATERIAL AND RESPONSIVE CAPACITIES OF TEXTILE HYBRID ARCHITECTURES AS THERAPEUTIC ENVIRONMENTS FOR SOCIAL PLAY

SEAN AHLQUIST
University of Michigan, Taubman College of Architecture and Urban Planning

Computational design commonly focuses on the synchronisation of advanced manufacturing technolog.
and material behaviour. This allows for technical and material behaviour. This allows for technical
specificity, or instrumentalisation, to be achieved in material, structural and architectural performance. The research discussed in this paper extends such a material-based practice by utilising aspects of sensorial experience to drive the design and engineering of This is explored as a part of the Social Sensory Architectures research project, through the articulation of textile hybrid structures and their application to the development of skills in motor control and social
interaction for children with autism spectrum disorder interaction for children with autism spectrum disorder
(ASD). The research is developed at the University of Michigan, through a collaboration between the Taubman College of Architecture and Urban Planning, the Department of Psychiatry and the School of Kinesiology. his alignment of disciplines integrates material research kinesthetic activity.

This interdiscipl.inary researchis described, in this pape through the development of the sensoryPLAYSCAPE prototype. The prototype, as a malleable multi-sensor
architecture, seeks to unravel associations between deficiencies in motor planning and processing of sensory stimuli with limitations in social function for children with autism. Defined as a spectrum disorder, a hallmark of autism is the highly unique and specific sensory an
behavioural issues related to each individual. This is captured in the commonly used phrase: "when you've met one person with autism, you've met one person with autism". Accordingly, a significant criterion for the prototype is to enable the child to instrumentalise the
sensorial experience of the architecture to suit their sensorial experience of the architecture to suit their
particular preferences. The intentions are to develop skills in motor planning that will assist social functioning through collaborative play. Navigating through the tactile architecture simultaneously reinforces such physiologica and social activities through the sensorial adaptability of the architecture.

$236 / 237$ This research concentrates on tailoring the hierarchical relationships between the various multi-modal sensations triggered via the interactive textile hybrid environment.
Tactile, visual and auditory stimuli are activated through physical deformation of textile surfaces and moving hroug the intricate spatial . This requires the prion playscape prototype (rig. 2). This requires the priority
of the textile hybrid system to move beyond primarily resolving the stresses of internal material behaviour and
structural forces, where minimal load-baring reserves structural forces, where minimal load-bearing reserves
remain. Through advances in the use of CNC-knitting remain. Through advances in the use of CNC-knitting
of the tactile, structural interface and lamination of of the tactile, structural interface and lamination of
bending-active glass fibre-reinforced (GFRP) beams, the highly variable and dynamic loads incurred as a
structural landscape for play are enabled.

Nexus of movement and social function

Autism is a neurological disorder affecting 1 in 68 children and involving global impairments in communication,
social interaction and the regulation of physical and social interaction and the regulation of physical and emotional behaviour (Baio, 2014). An underlying ye
prevalent factor is the inability to receive, sort and integrate sensory information related to social and environmental stimuli (Spradlin \& Brady, 1999). Such ineffective means for integrating sensory
information prevents the learning of adaptive, information prevents the learning of adaptive,
generalised behaviours and coordinated movement (Bundy et al., 2002).
Specifically, atypical tactile sensory processing is often
a characteristic cin children with autism (Rogers et al chara the 2003). The development of fine and gross motor contro
relies heavily on the somatosensory system, where accurate tactile and proprioceptive sensation are most critical (Cauller, 1995). Thus impairments in fine and gross motor skills are also commonplace, hindering precision for task-oriented movement, hand-eye (Dawson \& Watling, zooo). . veralll, the quality of motor performance is influenced when guided feedback from the sensory system is diminished (Baranek, 2002).
As a part of the research into sensorial architectures, the primary exploration is the interconnection betwee the domains of movement, as driven by sensory
processing, social function and communication. processing, social function and communication. Touch is a primary method for rudimentary non-verbal
communication, while the whole of the somatosensory system is pivotal in more nuanced interaction. Gesture and facial expressions function via feedback from stretch receptors of the skin and muscles in the hands and arms
(Cascio, 2010). Abnormalities in the somatosensory

system, such as for children with autism, are thus seen to corelate with reduced social attention and impairmen in non-verbal communication (Foss-Feig et al., 2012).
Children who experience limitations in motor skills are shown to have fewer opportunities for social interaction with peers, correlating with lower levels of physical activity (MacDonald et al., 2014). In comparison with
children having speech-language impairments or learning disabilities, those with autism are approximately 50 percent less likely to be invited to social activities and 450 percent more likely never to see friends (Shattuck et al., 2011).
Environment also plays an influential and often magnified role in the socio-sensory experience. Stress for a child may emanate from a mismatch between the environment
and the child's aberrant processing of its multi-modal and the child's aberrant processing of its multi-modal
stimuli. Research has shown that successful intervention stimuli. Research has shown that successful intervention
can occur through a focus on altering environment as opposed to eliminating the atypical behaviour which results from dysfunctional sensory processing (Lovass $\&$ Smith, 2003). The performance of motor tasks has been shown to be better for children with autism when
developed in a meaningful and related context (Baranek 2002). This is a core principle of dynamic systems theory where one domain - environment - affects another
domain - movement (Ketcheson et al,, 2016). Therefore
the forming of new behaviours has to account for both domains, to ideally trigger the cascading effect of
producing new opportunities for social interaction.

Sensory responsiveness in textile hybrids

The ability to formulate and execute patterns of
movement, through feedback between motor co movement, through feedback between motor command and sensory data, is pivotal to the development of social behaviour. The relationship between movement and it intentions of movement and, ultimately, provides the knowledge that allows the interpretation of other peoples gestures (Izawa et al., 2012). For children with autism, learning new patterns of movement is most reliant on
proprioceptive feedback - sensation from muscle and proprioceptive feedback - sensation from muscle and of the limbs and body. Visual stimulation has a secondary impact, meaning the non-physical stimuli can often play a less influential role (Haswell et al., 2009).
To synthesise movement and social behaviour, the multi-sensory nature of the playscape prototype is
focused most heavily on its sactile qualities. This operates through multiple scales and in the instrumentalisation of elasticity at each scale. One level attends to forming skills for grading of movement, the ability to assess and complete a task. Yarn, variegated stitch structure and the calibration of tensile forces generate an increasingly magnified tactile feedback as one pushes on the surfaces to greater depths (Fig. 3). Another level of engagement corresponds to movement of the body through space and
time, the proprioceptive and vestibular senses that guide orientation and pace. The calibration of the pre-stressed textiles, laminated GFRP beams and spatial arrangement generates the combined experience of localised pressure
at the interaction of the body with the textile and at the interaction of the body with the textile and
minimised (though recognisable) deflection at the scale
of the entire material system (Fig. 1). Elasticity is tailored

to satisfy deeper sensations of touch and register fine and gross movements. Correlation with the visual and auditor landscape fosters continual variability and saliency. Textile hybrid sensoryPLAYSCAPE prototype

A hybrid structure denotes a system which integrates more than one fundamental structural strategy (Engel, 2007). The textile hybrid incorporates tensile form-active
surfaces and boundary elements stiffened through their configuration into curved bending-active geometries to generate a structural form (Lienhard et al., 2012, Ahlquist et al., 2013). More specifically, through this research at the University of Michigan, the hybrid system
is uniquely comprised of seamless $C N C$-knitted textiles and bending-active GFRP rods laminated into curved and bending-active GFRP rods laminated into curved
structural beams (Ahlquist, 2015) (Fig. 4) In the design, engineering and manufacturing of the playscape prototype, the topologies of the textile architectur and rod configurations are articulated through
simulation in the Java-based springFORM softwa (Ahlquist et al., 2014).

Bending-active laminated GFRP beam

The active bending of the GFRP rods in a textile hybrid serves to maximise stiffness and simultaneously activate tension in the integrated textile surfaces. Traditionally,
the relationship between the GFRP rod cross-section and desired stiffness is designed solely to satisfy a target geometry. Unfortunately, this leaves little in structural reserve for additional load-bearing purposes. Typically, the bending-active GFRP boundary is comprised of a
single rod cross-section, meaning rods of the same cross-section are utilised throughout the entire system This is problematic, as it clamps the scale of the entire tructure (or the GFRP component within it) to its

[^2]a certain freedom for spatial articulation, while still contributing to overall structural stability. In this to acutely contrology of the knitted structure is designe to acutely control transition and non-orthogonal orientations between surface and cylindrical geometries.
Rather than a more traditional method of shaping tubular Rather than a more traditional method of shaping tubular
geometries, panels are merged to and from tubular forms as a part of generating singular seamless textiles. Such logic is initiated in the springFORM simulation in order to tailo the tensile forms and also follow the logic

CNC knitting machines are equipped with two independent but adjacent needle beds, easily allowing for tubular
textiles to be manufactured by textiles to be manufactured by knitting across the front
needle bed continuously to the back bed returning again needle bed continuously to the back bed, returning again
to the front and repeating the pattern. Shaping, or altering the number of stitches from one pass along the needle bed to the next, provides the capacity to contour the tubular form. To accomplish the dramatic transition
from a surficial to tubular condition in the playscape from a surficial to tubular condition in the playscape
prototype, two independent panels are knitted, each on a separate needle bed, and merged at the ends of on a separate needde bed, and merged at the ends of
the tubular structure (Fig. 6). To accomplish the offset between the top and bottom surfaces of the two
interlocked textiles, the tubular portion is both ite interlocked textiles, the tubular portion is both iteratively knitted and shifted, or transferred, across the needle bed.
Where it is branched from the bottom surface at one edge, the tubular structure is linked to the top surface at the opposite edge, producing seamless textiles which span across the length of the GFRP boundary.
The overall textile architecture is dictated through extrapolating geometry and relative force calculations
from the springFORM model in comparison to knitted from the springFORM model in comparison to knitte
1:1 textiles swatches. The knitted swatches utilise a nylastic (co-mingled elastic nylon and spandex core) yarn with an alternating tuck-tuck-stitch structure knitted o ${ }_{14 \text {-gauge CNC knitting machine (Fig. 7). The method of }}$ extrapolation is approximate, as the stitch structure is altered in the final textile via shaping of the overall form and manipulating the stitch length, in order to accomplish certain conditions such as achieving maximal stretch to if across the widest dimensions
of the structure. The performance of the tensioned of the structure. The performance of the tensioned high degree of elasticity, which serves as the tactile interface. Yet this is still in balance with its service
to the textile hybrid system, where the CNC-knitted textiles improve the overall structural stiffness by approximately 15 percent.

Interface architecture

To embed visual and auditory interactivity, the prototype integrates projection, sensing via the Microsoft Kinect
and interface design developed in the programming environment Unity (Fig. 8). The depth map data are
extracted from the Microsoft extracted from the Microsoft Kinect for use in capturing he base geometry of the textile surfaces and also in
dentifying, through difference mapping, any alteratio to the geometry based on physical interactions. To locate the point and exact depth of touch, the difference map is posterised to produce clear contours and to search out touches at any given moment.

In order to align physical space with the projected magery, a chessboard mapping is utilised with a homographic translation. Each region of the chessboard distortions from one region to the next. This facet of the algorithm is critical, as it allows for contoured surfaces to be analysed with higher accuracy through an increased esolution of the chessboard. The same method can be interactions on a two-dimensional surface

The method of sensing functions as a standalone algorithm outputting data for location and depth of
interaction with the textile surfaces. This allows for interaction with the textile surfaces. This allows for complete interchangeability between the form of the
structure and the modes of visual and auditory feedback It defines a designation between sensoryARCHITECTURE and stretchINTERFACE. For the prototype in his research, the architecture is defined as the developed in Unity, have been employed. StretchCOLOR is developed as a painting tool where colour is determined by the amount of pressure being applied
to the surface. StretchANIMATE projects pre-rendered

animations across the surface of the structure based on touching the textiles at key locations. StretchSWARM provides more intimate interactions, where a quick touch disturbs a free-flowing school of fish, while a long touch
generates an attractor for the fish to circle around, also triggering a randomised soundscape of wind chimes.

Therapeutic capacity of sensory architectures

Two primary skills are being addressed - motor planning and social function - through the sensoryPLAYSCAP
prototype in combination with the various software modes for multi-sensory feedback. Through an ongoing pilot study with the Spectrum Therapy Center in Ann Arbor, the stretch $C O L O R$ interface is utilised to attend Where poor signalling from the somatosensory syste Where poor signalling from the somatosensory system
and lack of muscle tone may contribute to dimininished nuance in motor function, the visual and physical
feedback of the prototype provides compensatory data.

$\begin{array}{ll}\text { Projected colours, based on depth of touch, and resistance } & \text { the isolating comfort zone while staying within their } \\ \text { in the elastic textiles, increasing with the amount of } & \text { FDL. The sensory component serves dually to make }\end{array}$ in the elastic textiles, increasing with the amount of pressure applied, provide magnified feedback for
varying degrees of movement. Through iterative experience, an understanding of motor planning emerges through the child's own unique physiological and sensory processing capabilities. Data are collected
through the software, capturing location, depth and hrough the software, capturing location, depth and frequency of touch. Motor skills are measured through
a pre- and post-kinesthetic assessment using the Peabody Developmental Motor Scales and Bayley Scales of Infant and Toddler Development for measuring motor skills and dentifying developmental delays.

The social component of this research is assessed hrough the concepts formed by the PLAY project, an early intervention program developed in Ann Arbor
by Dr. Richard Solomon and focused on modes of play oncourage communication and social moder of play (Solomon et al., 2oo7). Assessment tracks three (Solomon et al., 20007). Assessment tracks three
characteristics: (i) fundamental developmental level (FDL) - milestones for emotional, social and cognitive development, (ii) sensory motor profile - the dynamics between environment, social interaction and selfegulation, and (iii) comfort zone - preferred, often
non-social, activities. The intent of the PLAY project approach is to generate reciprocal interaction, or circles approach is to generate reciprocal interaction, or circles
of communication. This is generated through following
the child's lead, yet tempering activities to refrain from
the activity attractive while also providing a positive reinforcer to the back-and-forth social interactions. The sensoryPLAYSCAPE prototype embeds these concepts through the synthesis of variable and multiscalar tactile qualities with modes of interaction that encourage combined play (Fig. 9).

create new architectures

The research described in this paper provides the foundation for an architecture which sets the sensorial experience as the primary performative constraint by
which material, spatial, visual and sonic landscapes are instrumentalised. Yet perception of space and time, in its social and environmental constituents, is largely atypical for children with autism. In response, those who engage with the architecture are given considerable agency to
actively and dynamically articulate its material and immaterial natures. Performance of the prototype is defined by the measured understanding of the physiological and sociological human behaviours that
occur within it. The manner in which be architecture is transformed communicates the individualised nature of the socio-sensorial experience.

[^3]Acknowledgements

 Ketcheson from the school of Kinesiology. The team consists of esesearchers
from architecture: Oliver Popadich, Shanica Shammin and Adam Wang and

References

 Stethinking prototyrying
Springer, Berin p.p-14.

Ahlquist, 5.2 2015, SOcial Sensory Architectures: Articulating Textile Aybrid
structues for Multisensory Pesponsiveness and Collaborative Play in

 CNC Kniting in Kawaguchi, K.e etal. (eds). Proceedings of the IAS

Ashburner, J. Z.ivani, J. Jand Roodger, S., 2008. Sensory Processing and

Sundy, A.C.L.Lane. S.J. Murray, EA. and Fisher, A.G., 2002. Sensory Integration:
Cascio. C. .2010, Somatosensory Processing in Neurodedvelopmental
Disorders
in
Iournal of Neurodevelopmental
Disorders. $2(2)$, p.

ngel H . 2007 , Trogsysteme - Structure Systems, fourth edition, Hatie Cantz
 aiterns and thei Association with Core fatures in Autism
Disorders in R Research in Autism Spectrum Disorders. 6.033

ET. et al. 2006,'Change Detectioction in Autism:an Auditory Event-elelated fuMI

 euroscience, 12, p.970-972.
 Over-Sele ectively on Proprioce
Autism Research, 5, . $1241-136$.
Ketcheson, L., Hauck, J. and Ulich, D. D . 2016 , The Effect of Early Motor Skil
 Epub.
 Process in in Proceedings of ofthe intermational AASs Symposium, ..650-657.

 Autism Severity in Young Chidrden with Autism 5 peec
Addopted Physicol Activity Quarterly $3(12)$, $.95-105$.
 smotill
 in Social Activities am.
PLos One, $6(11)$, P.-9.

BENDING-ACTIVE PLATES
PLANNING AND CONSTRUCTION

SIMON SCHLEICHER
University of California, Berkeley, College of Environmental Design (CED), Berkeley, United States of America
RICCARD LA MAGNA / JN KNIPPRPS
RICCARDO LA MAGNA / JAN KNIPPERS and Structural Design (ITKE), Stuttgart, Germany

Bending-active plate structures

In 2015, researchers at the University of California, Structu, and the Institute of Building Structures and Structural Design (ITKE) at the University of Stuttgart
collaborated with the aim of contributing to research on bending-active plate structures. They place particular emphasis on the further development of the formal and structural potential of this relatively new structural system and construction principle. In general, bending-active structures are fascinating because they take advantage of large elastic deformations as a form-giving and self-stabilising strategy. Previous esearch has mainly focused on a bottom-up form-finding strips were predefined first and the global shape of the structure resulted from the interaction of assembled parts. In contrast, the main emphasis of this work will e on demonstrating a possible top-down approach that is based on form-conversion.

For bending-active plate structures that implement
form-conversion, the process starts with the design

panels, with due consid then subdivided into bespote geometry and structural characteristics. By attaching greater importance to the target shape, form-conversio offers severa beneits and opens up a larger design
space than a bottom-up form-finding. However, the key challenge remains - and essentially boils down to the question of how to assess both the global shape and the local features of the constituent parts for structures in which geometric characteristics and material properties are inevitably linked together and similarly
affect the result.

To demonstrate the potentials and challenges of the form-conversion approach, the authors will discuss this research method in general and show its feasibility in th
planning of two built case studies in particular. Each structure emphasises a different aspect of this design approach. While the first case study takes advantage of translating a predefined shape into a self-supporting
woven pattern, the second case study gains significant woven pattern, the second case study gains significant
stability by translating a given form into a multilayered shell. Finally, the means of architectural prototyping will
provide proof of concept. By reflecting on how these case studies were actually constructed, the authors will give valuable insights into the opportunities and limitation
of designing bending-active plate structures by of designing bending-active plate structures by form-
conversion, and will hopefully spark further research conversion, and
in this direction.

Breakthroughs in modelling tools
In recent years, the architecture community has witnessed astonishing changes in digital design and Physics, Karamba and SOFiSTiK, new types of versatile tool have become widely accessible, enabling the creative design of highly complex geometrical
models and also allowing for the integration of models and also allowing for the integration of
real-time, physics-based simulations in common CAD environments. Thus equipped, it is nowadays possible to rapidly form-find and freely interact with particle systems, or accurately analyse and
optimise structures by means of the finite elem method Due to thesy chans one cement method. Due to these changes, one can now describe
and evaluate the mechanical behaviour and structural
apacity of a model under simultaneous consideration In responal forces and internal material stresses. engineers to these developments, architects and neers are rediscovering a widespread interest in structural systems in which form and stress state cannot between geometry, interacting forces and material properties. In this context, bending-active structures are perfectly suited to illustrate the innovative potential that physics-based simulations can have on the design process. As a reatively new typology, bending-active
structures are characterised by the clever integration structures are characterised by the clever integration
of large elastic deformations of initially planar building materials in order to generate geometrically complex constructions (Knippers et al., 2011). While the conventional maxim in engineering is to limit the
amount of bending, this structural system promotes the opposite approach and instead harnesses material fexibility for lightweight designs. This idea is as simple as it is versatile. It can be used, for example, as a
form-giving and self-stabilising strategy in static orm-giving and self-stabilising strategy in static structures, as suggested by Lienhard (2014), or be
considered for the design of compliant mechanism and kinetic structures, as shown by Schleicher (2015).
Bending-active structures can generally be divided into two main categories, which relate to the geometrica
dimensions of their basic building blocks. For inctan one-dimensional systems can be built from slender rods while two-dimensional systems employ thin plates, While extensive knowledge exists for 1D system ith elastic gridshells as their most prominent application, plate-dominant structures have not yet
received much attention and are considered more difficult o design. However, what makes this subset of bending active structures particularly interesting is the fact that plates have a clear scale separation. They are typically very large in one dimension and progressively smaller heir width in centimetres and their height only in millimetres. This hierarchy makes it easier to assess he structural behaviour and accurately anticipate the pates' deformed geometry with digital simulations.
mong the most prominent examples for bending-active Among the most prominent examples for bending-active the ICD/ITKE Research Pavilion 2010. While the first example follows a rational geometry-based approach in which the shape of a sphere is approximated with regular tiling of identical plates (Fuller, 1959, Marks, 1973, the design of the second example integrates
intensive structural simulations and takes advanta of computational mass customisation (Lienhard et al. 2012, Fleischmann et al., 2012)

Design space
The design space of bending-active plate structures is
limited by material formability. The only shapes that can be achieved within stress limits are those the minimise be achieved within stress limits are those that minimise
the stretching of the material. For plate-like elements, these are reduced to developable surfaces: cylinders and cones. Attempting to bend a sheet of material in two directions will result in either irreversible plastic constraints, designers mostly follow a bottom-up form-finding approach, which usually starts with planar sheets and recreates the bending process digitally (Lienhard et al., 2011). By using the method of ultra-elastic cables, as described by Lienhard et al. (2014) one can deform multiple plates and couple them to form
complex structures in equilibrium. Depending on the simulation software used, this method can be very quick and interactive or particularly accurate and reliable regarding its results. The drawback of form-finding, are often not known from the start. A designer with a certain shape in mind would therefore have to conduct multiple simulations with gradually changing parameter
to approximate a target design (Schleicher et al., 2015).
 Berkeley Weave.

The constraints related to form-finding raise the burning uestion of whether a radically different approach cou while at the same time guaranteeing that components are only bent within permissible limits. In an earlier publication, the authors introduced a different approac
and coined for it the term 'form-conversion' and coined for it the term 'form-conversion' (La Magna et al., 2016). Here, the design process is top-down and
begins with a predefined target surface or mesh, which is then discretised further into smaller bent tiles based on the flexibility of the plate material used. Investigating his strategy furner allows for the possibility of bending-active structures.

Muti-directional bending

The key conceptual idea behind form-conversion is to overcome the obstacle that a plate can only be bent in curvature without stretching or plastically deforming he material. To achieve multi-directional bending, one needs to remove material strategically and thereby surroundings. As a result, one would get single-curved developable surfaces with no or very little Gaussian curvature. A similar approach was presented by Xing
can be integrated into the subdivision int the authoers aplied this mothod to the design of two exemplary case studies.

The first case study that follows a form-conversion approach is called Berkeley Weave. This project considers not only the effect of bending of slender strips but also their torsion. A saddle-shaped design, based on a modified Enneper surface (Fig. 2A), was chosen because of its challenging anticlastic geometry, with locally high
Gaussian curvature. The subsequent conversion into a bending-active plate structure followed several steps. The first one was to approximate the surface with a quad mesh (Fig. 2B). A curvature analysis of the resulting mesh reveals that its individual faces are not planar but
double-curved (Fig. 2c). The planarity of the quads, however, is an important precondition for the later assembly process. In a second step, the mesh was transformed into a four-layered weave pattern with composed strips that feature pre-drilled holes. Her each quad was turned into a crossing of two strips
in one direction, with two other strips at a 90° angle. The resulting interwoven mesh was then optimised for planarity. However, only the regions where strips overlapped were made planar, while the mesh faces between the intersections remained curved (Fig. 2D).
A second curvature analysis illustrates the procedure and shows zero Gaussian curvature at the intersection of the strips, while the connecting faces are both bent and twisted (Fig. 2E).
Specific routines in the form-conversion process permissible bending radii. In the last step, this converted shape was used to generate a fabrication model that featured all the connection details and strip subdivisions placed in the planar regions betwen intersecting strips Since the strips were composed of smaller segments, it was also important to control their position in the four-layered weave and the sequence of layers. A pattern
was created which guaranteed that strip segments only was created which guaranteed that strip segments only ended in layers 2 and 3 and were clamped in between
continuous strips in layers 1 and 4 . A positive side effect of this weaving strategy was that the gaps between segments were never visible and the strips appeared to be made out of one piece. The resulting challenge, and required individual positioning of the screw holes.

The second case study, called Bend9, showcases another

arch that spans over 5.2 m and has a height of 3.5 m . It was designed top orove the technical feasibility of using
bending-active plates for larger load-bearing structures. In comparison to the previous case study, this project mplements a d fferent tiling pattern and explores the possibility of significantly increasing a shape's rigidity by
cross-connecting distant layers with each other. To fully cross-connecting distant layers with each other. To fuly
exploit the large deformations that plywood allows for, the thickness of the sheets had to be reduced to the minimum leading to the radical choice of employing 3mm birch plywood. Since the resulting sheets were very flexible,
additional stiffness needed to be gained by giving the global shell a peculiar geometry, which transitioned from an area of positive curvature to one of negative curvature This pronounced double curvature provides additional
stiffness and helps avoid undesirable deformation of the stiffness and helps avoid undesirable deformation of the structure. Despite the considerable strength achieved
by the shape alone, the choice of using extremely thin sheets of plywood at that scale necessitated additional reinforcement to provide further load resistance. These needs were met ty a double-layered structure with two first step of the process was to convert the base geometry into a mesh pattern. In the next step, a preliminary analysis of the structure was conducted and informed he offsetting of the mesh to create a second layer. As the distance between the two layers varies to reflect the bending moment calculated from the preliminary analy
the offset of the surfaces changes along the span of the arch. The offset reflects the stress state in the individual layers, and the distance between them increases in the
critical areas to improve the global resistance of the critical areas to improve the global resistance of the system. The subsequent form-conversion process was
nce again driven by material constraints and by the permissible stress limits with respect to bending and orsion. The resulting tiling logic that was used for both
that each component could be bent into the specific shape required to construct the whole surface. More precisely, this was achieved by strategically placing voids into target positions of the master geometry, ensuring that the
bending process could take place without prejudice for bending process could take place without prejudice for
the individual components. Although initially fat each the individual components. Although initially flat, each
element underwent multi-directional bending and was locked into position once it was fastened to its neighbours. The fexible 3 mm plywood elements achieved consistent stiffness when jointed together, as the pavilion, althoug
a discrete version of the initial shape, still retained a discrete version of the initial shape, still retained
substantial shell stiffness. This was validated in anoth finite element analysis that considered both self-weight and undesirable loading scenarios.

Prototyping

To evaluate these case studies and to demonstrate proof of concept, the authors referred to architectural prototyping. Constructing with the actual material is still one of the best ways to quickly validate assumptions,
gain intuition about practical design issues and lay the foundations for future research.

The first case study was constructed in the dimensions of $4 \mathrm{~m} \times 3.5 \mathrm{~m} \times 1.8 \mathrm{~m}$ and was exhibited at various occasions at UC Berkeley. The structure was assembled from 480 together with 400 bolts. The material used was 3 mm thick birch plywood with a Young's modulus of EmII $16,471 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{Em}=11,029 \mathrm{~N} / \mathrm{mm}$. Dimensions and material specifications were employed for a finite element of self-weight and stored elastic energy, the minimal bending radii in both the digital simulation and the built structure were no smaller than 0.25 m and the resulting
stress peaks were below 60 percent of the permissible
${ }^{6}$. Leftementatail ofthe Retigh: detail
he comnecting elements. he centre outwards, and during the construction proce t was interesting to experience how the global stiffness hcreased the more elements were added and the more the structure was force
configuration (Fig. 3).
similarly, the second case study was also constructed in the original scale and was shown at Autodesk's ier 9 and at UC Berkeley. The built structure employe 7 square wood profiles of $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ were used to 6 square wood profiles of $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ were used to
connect the two plywood skins (Fig. 6). Due to the arying distance between the layers, the connectors ad a total of 156 exclusive compound mitres. The whole structure weighs only 16 okg , a characteristic which also
highlights the efficiency of the system and its potential for lightweight construction. The smooth curvature ransition and the overall complexity of the shape clearly emphasise the potential of the construction processes can be applied to any kind of double-curved processes can be applied to any kind of double-curve
freeform surface, not only the ones presented here.

Feasibility for the future

The two case studies clearly illustrate the feasibility of orm-conversion for the planning and construction of bending-active plate structures. Both structures are
directly informed by the mechanical properties of the hin plywood sheets employed for the project. Their
overall geometry is therefore the result of an accurate negotiation between the mechanicall limits of the material negotiation between the mechani
and its deformation capabilities.

The assembly strategy devised for both prototypes drastically reduces fabrication complexity by resorting
to exclusively planar components which make up the entire double-curved surfaces. Despite the large amount of individual geometries, the whole fabrication process was optimised by tightly nesting all the components to minimise material waste, flat-cut the elements and finally assemble the piece onsite. The very nature of the projects ssessment of the fabrication and assembly constraints. Vverall, the Bend9 pavilion and the Berkeley Weave installation exemplify the technical feasibility of a form-conversion process and showcase the capacity
for bending-active surface structures to be employed s lightweight constructions. For ongoing research, as lightweight constructions. For ongoing research,
the buildings serve as first prototypes for the furthe exploration of surface-like shell structures that derive heir shape through elastic bending

Forthe Berkeler Weave installation, the authors would like to thank Sean Ostid Anderes rand Rex Crabb for their support. The Bend9 pavilion and its entire staff.
Reference

 Manuul for Por Pormers + Membranes
Finding, Design, Walter de Guyter.

 of the IABSE-ASS Symposium
Lienhard, J, L. La Magna, R. and Knippers, J., 2014, Form-finding Bending-active Structures with Temporary Ultra-e
Rapidly Assem Struct $N, 136,107$.
Lienhard, J., 2014, Bending-active Stucutures. Form-finding Strategies s sing
Elastic Deformation in intatic and K Kinetic systems ond the structural potentiols thererin.
Marks. R.W. and F Fuller, R.B., 1973, Dymaxion World of fuckminster Fuller,
Anchor Books.
 Design: Tronsfering Bending
Fexexibe Kinetic structures.
Schleichere, S., Rasteteter, A., La Magna, R, Sch ohonbrunner. A. Haberbosch. N.
 p.03-65.

Xing, Q, Esquivel, G, A. Akleman, E, Chen, J. and Gross, J. A, Ausut 2011. 'Band

PRECAST CONCRETE SHELLS A STRUCTURAL CHALLENGE

The primary focus of this research project is the prefabricated concrete elements. By using a processprefabricated concrete elements. By using a process-
based approach, many different research questions we combined into one interdisciplinary project. The material technological aspects led to the search for interesting rchitectural uses for ultra-high performance concre (UHPC). It is extremely well-suited for thin-walled, iouble-curved prefabricated elements; however, use
in highly efficient structures is only imaginable once appropriate joining methods have been developed.
Modern possibilities in digital design and manufacturing in combination with industrial robots raise questions in combination with industrial robots raise questions
about alternative shaping methods that could achieve a higher quality and efficiency in the production process of structural elements. These fundamental ideas were investigated over a period of three years by a team of
architects, civil engineers, material engineers and architects, civil engineers, material engineers and
mechatronic engineers. The result was a production process that covered every step from the first design ideas all the way to the final product.

In the last hundred years, concrete has greaty infuenced building culture worldwide. Today it is one of the mo used consumer goods. UHPC is unique due to its
quasi-non-porous structure and its high compressiver strength, which ranges up to $200 \mathrm{~N} / \mathrm{mm}^{2}$. Due to its material properties, it is ideal for use in light structure and structures which span large distances. The sophisticated processing of the raw materials into
UHPC is very similar to that of standard precast concrete production. Joining precast elements using mechanical screwing systems and press-fitting the contact surfaces is extremely effective when compared to conventional methods of filing the joints with in-situ concrete. It also creates a new and different feeling for concrete structures.

The heyday of the concrete shell structure is ong gone. However, it is just as relevant today that a structure which is engineered efficiently can transfer loads mainly as
membrane forces. This, in turn, means that slender membrane forces. This, in turn, means that slender optimised. This is not the case with standard flexural concrete elements, and most concrete elements that are designed are flexural elements. The historical decline in
 associated with their production. This is illustrated
by the fact that the largest portion of Felix Candela structures was built in the 1950 s -6os, and the increase in the Mexican minimum wage was responsible for the
end of this boom. The high costs involved in producing complex, time-consuming formwork compared to the costs of the cheap materials used to produce concrete are obviously unfavourablee. After the first patent application rom Wallace Neff, a new branch of research was born. This concentrated on principles of pneumatic formwork

- the most well-known of these being the Binishells? Pier Luigi Nervi (1891-1979) suggested an alternative. After he founded his building company in 1920, he developed a building system based on semi-precast panels which were supported by a falsework and finally
finished with in-situ concrete. These three examples show that examining the building method is the key to a re-evaluation of concrete shell production. These three different approaches show that there is a connection between the history of shell constructions and the search
for an efficient production method.

Research context

Because of the rapid developments within architecture in digital fabrication and robotic production, questions elements are increasingly in the spotlight. Numerous questions have been posed, with solutions and strategies varying considerably. One such project was TailorCrete. This involved pouring the concrete onsite into a milled foam formwork. A part of the project introduced a variable
moulding table based on adjustable pixels and an elastomer mat. The formwork was then created using wax and the parts were cast conventionallyt. The steel rebars were then bent and welded automatically using robots5. A similar method was also develeped by the ADAPA, which made method was also based on a flexible membrane, which was shaped using adjustable pins ${ }^{6}$. The PhD thesis 'Double-Curved Precast Concrete Elements' presented a variable moulding table and a complementary concrete
mix whereby the shape was adjusted after the initial mix whereby the shape was adjusted atter the initial
setting time. This meant that no countering formwork was necessary. This project concentrated on the propertie of the concrete?. The problem of joining precast concrete parts is usually solved, in the same manner as in Nervi' structures, by pouring concrete into the joints onsite.
The project 'Lokale Lasteinleitung... mit Implantaten in Bauteilen aus ultra-hochfestem Beton' proposed a steel connector for thin concrete elements. These are suitable connector for thin concrete elements. Thes.

Digital prefabrication for concrete shells
Taking current research aspects into account, the following goals were defined. Concrete shell structures should not be cast individually using large, complex, onsite form- or falsework, but constructed by joining
elements that have been accurately prefabricated. Th requires the double-curved surfaces to be divided into a number of individual elements. The dimensions of these elements are based on the boundary conditions of the laboraty where they are produced, as well as the bilities for transportation.

If it can be assumed that the structure is a freeform one without any type of symmerry, a large number of irregular elements will be produced and few, if any, of them will be identical. As soon as the formwork canno production methods is even more relevant. The structuring of this question was based on the production chain, from the first concepts through to the final joining of
the elements. The main aim was to design a fexible the elements. The main aim was to design a flexible
formwork which could be controlled by a robot and would formwork whin could be controled by a robot and would
be robust enough to survive in a prefab concrete factory The requirements of the concrete element, including the carbon fibre reinforcement grids and steel fibres, called for the expertise of concrete technologists.

It was also necessary to consider alternative joining

 perfo performance concrete elements. The conventional joiningmethod, such as that used by Nervi, involving filling the

1. Final mock-up and steel
connectors
2. Pixel field prior to
moulding.
3. Completed hall-moulds
beforo closing.

joints with in-situ concrete, would not do the aesthetics or he material properties of the UHPC justice. Much can be taken from the methods of historical stonecutters, who
built vaults where the forces were transferred through the contact surfaces. Compared to these historical vaults, however, stability was not provided by the element being thick or extremely heavy (which is advantageous for a press-fif). Instead, this was replaced by a mechanical press-ft on the contact surfaces, which is common in
concrete construction. This method requires the contact surfaces to be extremely precise and to have a high-grade finish. Due to the requirements of the contact joint and the precision involved, it was necessary to document the
deviation from the planned geometry constantly This deviation from the planned geometry constantly. This
method resulted in continual measurements, as well as suggestions for sensor-controlled iterative processing ycles for both the settings of the variable moulding table and the grinding of the joint surfaces.

Process-based design

A fictive hall construction, a sort of case study, was therefore devised on which the research approaches for design and implementation could be tested. The
questions of how the surface should be divided and questions of how he surface should be divided and freeformed, wave-like roof structure of the fictitious hall. All the building elements that were analysed and all the
construction. This information was also linked to the digital model of the structure. The aim of this project
was not to optimise the model for specific external forces. The goal was rather to calibrate and define the boundary conditions of maximul calibrate and define the bound table. This meant that both the design process and the tabroduction process could be developed for one specific exemplary design. Setting limits for the manufacturing processes for larger and smaller objects followed in other projects. By using parametric construction tools, it was possible to keep the information consistent for all members of the team, in every phase of the project.
The extremely clear separation and focus of the development of the joining system and the moulding table made it possible defined interfaces.

Conventionally, the formwork for casting double-curved concrete elements is milled from extruded polystyrene, painted and then sanded. The disadvantage of this
method is that every element needs two forms which method is that every element needs two forms which
are then no longer required and have to be discarded are then no longer
after a single use.

By evaluating the results obtained from experiences in other projects, not only does this method consume large amounts of resources but it is also not very economical.
For example, to achieve a fair-faced concrete, long milling times are necessary and therefore the cost of manufacture increases dramatically. This is why a variable moulding table was favoured in this project, making it possible to the very becining of of the very beginning, one of the primary goals was to
create a simple, robust tool which had a long life expectancy and was appropriate for use in a precast concrete factory environment without breaking.
Two different moulding tables were investigated: a so-called pin field and a so-called pixel field. Both
of these can be controlled or adjusted by an externa of these can be controlled or adjusted by an external
industrial robot. The robot can be used for other parts of the production process, as it is separate and not fixed to the moulding tables. The pin field has a formable surface connected to joint-mounted heads. These heads
are connected to the pins, which are evenly distributed across an orthogonal field. The double curvature is then produced by moving the pins along their longitudinal axis and deforming the surface.

On the other hand, the pixel field is made up of a number of plastic rods, each with a square cross-section, which can be slid along their longitudinal axis (Fig. 2). In this case, the industrial robot pushes the plastic rods into the
correct position for the final precast concrete elemen or the elastic mat. When considering the fastest reuse f the pixel field, When considering the fastest reuse casting process from the moulding table of the concrete easting process from the moulding table, it became clea form made of quartz sand. Here, a layer of bonded sand was put on the elastomer mat and compacted, as is usual in casting techniques. This has many advantages: the sand adopts its shape quickly and therefore only needs to
be on the pixel field briefly The quality of the surface is be on the pixel field briefl. The quality of the surface is
also very high. According to what is known today, there is hope that with this bonded sand a formwork material has been found which expands the possibilities for fair-faced concrete formwork (Fig. 3). A UHPC concrete with steel fibres from Dykerhoff was used, with Nanodur Compound
5941 binding material. This was combined with two layers of carbon fibre grid mats. In this project, spacers were developed which could be clamped between the two sand forms. They held the carbon fibre reinforcement mats (CFRP) 5mm away from the surface as precisely as were ground in a wet state. The connecting edges are
extremely complex. They are spatially curved, stripe-like surfaces. An essential requirement for this step is the positio three points which are always in the same position relative to each other, which are integrated into the panels. These points are the interface between the
reference points in the CAD/CAM files and the real plate. This makes it possible for the plate and edges to be spatially positioned correctly over and over again. At the momentary stage of development, it is necessary 1 to remove 5 -10m. 1 mm can beercoled, diamond-tipped grinding bit (Fig. 4).
The joints of the nine plates were press-fitted using the specially developed screw connection. The bent rebar
which were anchored into the cross-section of the concrete plate, transferred the tension forces from pre-tensioned screw connections into the concrete and the contact surfaces were then pressed together
(Fig. 1). The calculation of the reinforcement and the design of the screw on finite element software.

Sensor-based evaluation
elopment of the manufacturing process was the observation of the ifferent manufacturing steps. The digital workflow process enables safe and accurate production. It is,
however, interrupted by several intermediary steps however, interrupted by several intermediary steps.
Firstly, this means that the two steps which are carried out by the industrial robot are at the beginning and the end of the production process. Secondly, the digital processes themselves can also deviate from the desire output. This deviation can also beyond the defined strial robe

The industrial robot that is used for both the adjustment of the pixels in the pixel field and the grinding of the ontact surfaces can carry out production steps with
accuracy of $\pm 0.25 \mathrm{~mm}$. To determine the cause of the siz was recorded using measurement technology and checked: from the production and the robotic adjustment of the moulding table to creating the sand mould, all the way up to the final grinding of the joining surface (Fig. 5).
The evaluation of the information showed that there were The evaluation of the information showed that there were two possible reasons for the deviations, both of which ca.
be controlled and automated using sensory technology.

. Adjusting the pixels

Setting up the moulding table by adjusting the pixels worked well. After the moulding table had been $\pm 0.25 \mathrm{~mm}$ of the planned position. The tolerance of
$\pm 0.50 \mathrm{~mm}$ was only exceeded by pixels around the
edge. The source of these larger displacements is that
$\underset{\substack{\text { 6. Highly precise } \\ \text { robot-diven optic }}}{ }$
some pixels move their neighbouring pixel with the even though they have already been adjusted. To be able to detect these discrepancies automatically and put the pixels back in their correct position, the tip of the robot tool was coupled with a prototype sensor. An
extra routine was also added to the adjustment script, which checked the position of the neighbouring pixel after adjustment to make sure that it had not been unintentionally moved. If so, it was also readjusted.
2. Tool/component interaction

Formatting the concrete panels using wet-state grinding is very dependent on the tool/component interaction. The combination of UHPC and steel fibres eads to wear on the tool. Within just one processing stage where the plate is reduced to an acceptable siz
within the tolerance range, the tool experiences significant wear. The wear on the tool is also dependent on the amount and direction of the steel fibres and therefore it cannot be estimated
beforehand. A high-precision measuring de
beforehand. A high-precision measuring device was
installed on the robot which checked the results after installed on the robot, which checked the results after steps should be carried out to correct discrepancies (Fig. 6)
The tool mentioned above for pixel adjustment makes t possible to control large numbers of pixels easily During the pixel adjustment, the decision as to whethe to proceed or go back and readjust - and the iterative process of grinding, measuring and regrinding - are not particularly typical manufacturing cycles, but they could
elp to develop new production concepts in the fields of civil engineering and architecture

Collaboration between experts

Because the project introduced here was extremely broad, was necessary for a number of different experts to exemplary processing of the linked case study showe he method to be successful. By including digital manufacturing methods and robotic technology, it led
to a usable, variable moulding table for flexible shapes. to a usable, variable moulding table for flexible shapes.
New standards were set for high surface quality and formability by using sand with a binding agent as a formwork. The quality of the grinding using an industry obot makes it possible for small factories to produc precise, prefabricated concrete elements. The newly concrete comparable to glass construction. This method shows great economic potential that validates it for future
is presently carrying out, should show that this metho can be used for large format, ultra-thin prefabricated concrete elements. The case study is a sinder roof construction made from four 10m-long, 2 m -wide and 6 cm -thick double-curved prefabricated concrete
elements. This should also show that the technical innovations described will also find their way into the construction industry. Being able to build light constructions out of concrete and reduce the amount of formwork will be the key to success.

Notes

Michel, M. and Knaack, U. 2014 , 'Grundlagen zur Entwicklung adaptiver Schalungsssteme fititrie iefo
Boutechnik. $91(1)$. $.845--85.3$

Pier Luig Nervi cit

Designto
p. $14-154$.

 ,
 TU Defft Delft Cuniveristy of Technology.
8 Sobek, W, .and Mittelstiatt,. .2014, Introduction of Compressive,

 University Peess, . .643-659.

FROM LAMINATION TO ASSEMBLY

 MODELLING THE SEINE MUSICALE
hanno stehling/FABIAN SCheUrer

Design-to-Production
JEAN ROULIER
EANROULIE
hélorigeglo /mathias hofmann
Hess Timber

The Seine Musicale by Shigeru Ban (formerly known as
Cité Musicale) is envisioned as the flagship project for Cité Musicale) is envisioned as the flagship project for the urban renewal attempt of the 1 Ile Seguin in the west of
Paris. Built in place of a former Renault manufacturing plant, the complex will host various concert and rehearsa spaces. The egg-shaped auditorium features a doublycurved timber structure consisting of 1,300 individual glue-laminated and CNC-machined beam segments, as
well as a secondary structure formed by 3,300 individual timber pieces supporting the hexagonal and triangular
façade elements.
For fabrication and assembly of both timber structures, a fully parametric 3D CAD model was implemented, detailed down to the last screw and containing both the raw and final geometries of all timber elements. This model was the central node in the digital plannin process. It was the origin of fabrication data for amination and CNC milling of all timber pieces, used to simulate assembly situations throughout the whole structure.

This paper gives an overview of the digital planning and fabrication process of the primary timber structur of the Seine Musicale. The second part describes h
Woodpecker, the timber fabrication plug-in for the parametric modelling environment Grasshopper, was further developed in this context.
Topology and detailing
The primary timber structure is a hexagonal grid consisting of 15 horizontal rings and 86 diagonals running around the egg-shaped building. Structurally, the rings are formed by up to 24 m -long segments (Fig. 2) acting as tension or compression rings in the lower or
upper building parts respectively. The diagonals are segmented into shorter pieces of $4-5 \mathrm{~m}$ in length (Fig. 4) always spanning from one ring to the next. The whole structure rests on supports at the lowermost and uppermost rings with no additional support points in

In terms of detailing, there was a requirement by the

$260 / 261$ timber structure. All the cross jintst, as well as the longitudinal joints of the compression rings, were designed as lap joints, which is a traditional timber assure precise positioning. The ring/diagonal crossings
also act as longitudinal joints for the diagonals. For the also act as longitudinal joints for the diagonals. For the
longitudinal joints of the tension rings, a splice joint wa developed, featuring toothed inlays CNC-cut from beech plywood (Fig. 3).
Describing the structural properties of these details in depth would exceed the scope of this paper. However, for freeform projects, the purely geometric properties are equally important, namely to ensure the assemblability
of all pieces (see F. Scheurer, H. Stehling, F. Tschümperlin, of all pieces (see F. Scheurer, H. Stehling, F. Tschümperli
2013 'Design for Assembly - Digital Prefabrication of 2013, 'Design for Assembly - Digital Prefabrication of
Complex Timber Structures', Beyond the Limits of Man, Proceedings of the IASS 2013 Symposium).
Assembly
Traditional lap joints have only one degree of freedom, Traditional lap joints have only one degree of freedom, direction (from above' in respect to the joint plane). With curved beam segments spanning over multiple crossings, many lap joints with different directions have to be engaged at the same time, blocking assemb altogether. This problem has to be solved in every
freeform project, with solutions highly dependent on the respective geometric properties.
In case of the Seine Musicale, assembly was solved by In case of the Seine Musicale, assembly was solved by
slightly skewing the lap joint side face des onding Slightly skewing the lap joint side faces depending on
individual assembly directions for every beam segment.

The diagonal segments were pre-assembled into X-shaped elements. Onsite, these elements had to be mounted by engaging two lap joints at the same time,
For the rings, the assembly was defined as a circular movement rather than a linear translation. With this concept, the four to eleven lap joints of each segment could be engaged one after the other, rather than all at the same time.
Notably, the 'toothed splice joint' helped a lot in easing assembly, as it features a wide range of possible assembly
directions. This is in contrast to a more conventional directions. This is in contrast to a more conventional connection with slots, steel plates and steel dowels, which slots/plates.

Assembly of every single segment was simulated in the 3D CAD model in order to detect and solve collisions and other issues blocking assembly.

Lamination
Beam segments for structures like the one discussed are usually CNC-milled from a mixture of straight, singlecurved and double-curved glue-laminated timber blanks.
The decision of which type of blank to use is a trade-off between structural strength, material cut-off and lamination costs.
For the Seine Musicale, a special constraint for the primary structure was that all timber beams be fabricated with the
timber fibres exactly following the final geometry in orde
2. Ring beam segments in different stages of
pre-assembly.
3.The lon itudinal tension
oint featurus toothed
beech lywood inlays
bect hlywood inlays
instaed of stel 1 lates. Nex
tote
tothe structural properties
the min advantage over

can be engaged within the
opening angle of the teeth
along the beam (alpha).
lertical to horizontal
vertical to torizon
crosswise (beta).
4. Diagonal segments during
finishing after miling. blanks had to be double-curved, too.

More than 1,200 pieces were laminated from stick lamellas with a cross-section of only $32 \times 40 \mathrm{~mm}$.
Thus the typical piece consisted of about 110 lam Thus the typical piece consisted of about 110 lamellas itself had to be adjusted to the desired shape of every single piece. To streamline this process, a simulation of the press bed was implemented in the parametric 3D CAD model, permitting export of data sheets and drawings for press settings and quality control. Due to he number of pieces, wwo different kinds of press beds

For some of the longest ring segments, lamination from stick lamellas was not feasible. Instead, these were produced with a more conventional two-step approach: straight planks are laminated into a single-
curved beam on a conventional large-scale press bed curved beam on a conventional large-scale press bed
for single curvature. The beam is then cut into strips crosswise to the lamination direction, resulting in single-curved plank lamellas. A second single-curved
lamination process then yields a double-curved result.

To ensure precise placement of the up to 24 m -long beam To ensure precise placement of the up to 24 -long bean
segments in the CNC milling machine, despite lacking any planar face as reference, positioning points were defined in the 3D CAD model and exported along with the lamination data. These points were defined based on press bed positions and thus could be marked on the
pieces during lamination. As data for CNC milling were later generated from the same model, the positioning points could be referenced again and related to physical support points in the CNC milling machine.

This process allowed for the minimum blank oversize to be no more than 10 mm per side, which was necessary to meet the criterion of not cutting through the first lamella during $C N C$ milling. In addition to the aesthetic quality, the small oversize helped to save material, which in

CNC milling

The interface from the CAD model to the CNC machine is the critical point in any digital fabrication process (see H. Stehling, F. Scheurer, J. Roulier, 2014.' 'Bridging he Gap from CAD to CAM', FABRICATE - Proceeding of the International Conference. Zurich: gta Verlag).
While parametric modelling enables the definition

of thousands of individual components through the same set of rules, in fabrication every piece becomes
a physical instance which has to be laminated machined, a physical instance which has to be laminated, machined In conventional processes, this is mirrored on the software side, where every piece is individually prepared for CNC milling based on a CAD model showing the desired result in full detail. To streamline this process,
a set of BTL (Building Transfer Language see a set of BTL (Building Transfer Language, see www.
design2machine.com/btl) files was exported for ever piece. Described in more detail in the aforementioned FABRICATE 2014 paper, BTL allows the definition of fabrication operations based on geometry, not machin
features. So BTL does not remove the individual features. So BTL does not remove the individual
math a level where already defined operations can be batc processed instead of trying to define operations based on a piece of volumetric geometry.
This process can be described as optimal in terms of origin of the BTL data prevent individual mistakes during machining preparation, while every piece is still looked at by an experienced operator, who spots possible otherwise have been overlooked. Especially for complex details like the beech-toothed
splice joint, close collaboration between the parametric
5.A Asembly concept tor the
diagonals. To fo failitate the
 legs forming the x has to be
subdivided intotwo tayers.
6. The erected timber
structure viewed from the structure viewed form
outratid. The seondary
strucuture forming the structure forming the
transition to the (notyet Mounted feagade elements
canbe seen ontopont the
main beam segments.

modeller (knowing all the details and their geometric range) and the fabrication operator (knowing the ensure an efficient process in fabrication preparation In the case of the Seine Musicale, several test iterations were run until a satisfying data set was achieved, and mprovements to the BTL layout were made even after

Conclusion

For the timber structure of the Seine Musicale, a highly integrated digital fabrication process incorporating
lamination and CNC milling has been set up. High demands in terms of aesthetics and detailing lead to innovation in the fields of lamination and connection details. Assemblability is one of the key aspects (if not the key aspect) in freeform projects and has to be taker
into account as early as possible. The interface into into account as early as possible. The interface into and processes, but has to be further developed to meet the specific needs of each project. Optimally, a balance between automatisation and manual control is found.
Erection of the timber structure of the Seine Musicale nished in summer 2016. At the time of writing, the façade is being installed. The scheduled opening date of the building is April 2017.

Addendum

Keeping it state of-the att-updte on Woodpecker, the timber CAD/CAM interface for Grasshopper The BTL has proven itself as a very suitable CAD/CAM interface format in many freeform timber projects, such as the D1 Tower Canopies (Innovarchi, Dubai 2015), the
French Pavilion at the Exp in French Pavilion at the Expo in Milan (X-Tu, Milan 20 Himmelb(1)au, Asten 2016).
Originally a side-product of project-specific implementations, a BTL export plug-spin for Grasshopper was released by the authors in 2014 (see www.food 4rhino
com/project/woodpecker). This plug-in features the most generic operations and allows the generation of BTL files including 5 -axis contours directly from Grasshopper. Since then, development has focused on projects such as
the ones mentioned above, which were notably not done the ones mentioned above, which were notably not done in Grasshopper but used the same Bli export code. In
spring 2o17, the first major update is being released as Woodpecker Version 2. As well as supporting a wider variety of BTL operations and a series of bug fixes and other improvements, the plug-in will allow the export o BILX. B LX is XML ASCI-based BTI forme a 1.0 was released in 2015 and is gradually being adopted.

Woodpecker remains free for educational purposes

SCALING ARCHITECTURAL ROBOTICS CONSTRUCTION OF THE KIRK KAPITAL HEADQUARTERS
ASbJøRN søndergaard /Jelle feringa
Odico Formwork Robotics

At FABRICATE 2011, the authors of this article encountere two new research trajectories (Dombernowsky, 2011 ,
Verde, 2011), on, respectively the design of topologic optimised concrete structures and hot-wire-cutting of expanded polystyrene (EPS) construction elements. Over lunch, the potential for a synthesis was gauged In the years that followed, the intense coliaboration MoGe 2013 Feringa 2014 Sandergocts and art The industrial merit of the approaches explored paved the way to further develop these at an industrial scale, leading to the founding of Odico Formwork Robotics in the spring of 2012 (Ssndergaard, 2014). At Odico he challenges faced when deploying and building wit of novel fabrication processes have been developed in an industrial context.
Are quantity and quality mutually inclusive?
Automation is often discussed in the framework of effciency - of increasing productivity at lower labour costs. This is to say that robotics is discussed in a
quantitative framework, rather than a qualitative one. The potential quality that robotics has to offer the building industry is central to its further develop
Architectural robotics has been enthusiastically embraced by the design-led research community, exploring specific traits of machining processes for their intrinsic or tectonic potential. The cultivation
of new manufacturing aesthetics, precipitated by the new degrees of freedom and material control offered by digital machining, has been a central motif over the past decade. Performance is rarely addressed, especially in direct quantitative terms.
So far, the literature lacks an accepted methodology and criteria to assess and contrast the relative merits of various existing technologies. Within internal technology research and development at Odico, quantity and quality represent the axes on which the merits of methods are plotted The following criteria serve as guidelines to gauge the pertinence of technology: Transferability - does the approach translate across
multiple applications, discipilines or material systems?

Performance - does the approach offer a faster or more founding the company, the respective research projects effective manner of producing results, compared to existing methods?
Degrees of freedom - does the approach under
consideration enable new opportunities in desig, either by relaxing existing production constraints orther by relaxing existing production constraints design space?
Within these frameworks, quantitative and qualitative propositions are complementary - not conflicting for large-scale impact in construction. Considerable attention has been directed within Odico to exploring the implications of one such technical approach and
its derivatives - robotic hot-wire-cutting (RWW) of its derivatives - robotic hot-wire-cutting (RHWC) of
expanded polystyrene (EPS) formwork for concrete expanded polystyrene (EPS) formwork for concrete
casting. The following paper outlines the central developments within this effort.
Scaling production - Kirk Kapital Headquarters
The insight that underpinned the founding of Odico was that RHWC of expanded polystyrene formwork fo
dvanced concrete casting could offer transformative advanced concrete casting could offer transformative
advantages when deployed at industrial scale. When
by the authors of this paper allowed for the comparison of
efficiencies between robotic CNC milling versus hot-wire cutting of EPS moulds, which found that RHWC reduced maine McGee, 2012). This finding is particularly relevant in
achieving feasible scalability within construction manufacturing, where the throughput of large material volumes is a central concern.
For robotic fabrication of such volumes, machining time a the key cost factor and hence is a primary focus. While robotic CNC milling has long prove its versatility, its mechanical principle of incremental material subtraction is inherently slow and thus not
suited to scale economically beyond the exclusivit suited to scale economicall bey high the excclusivity of high-profile construecion projectalumes of expanded
of RHWC to cut through large volu foams at significantly lower processing times, while resulting in high-smoothness casting surfaces, can yield
considerable cost reductions in formwork manufacturing

Odico set out to engage the construction market for early-stage adoption and to mature the technology through input from the commercial pilot production. roduction pipeline provides a continuous testbed for urther advances in new technology that might be considered tangential to the objective of reaching a industrial scale in production.

This milestone was reached in 2013 when Odico Formwork Robotics received the commission to
produce over $4,500 \mathrm{~m}^{2}$ of bespoke formwork for produce ver $4,50 \mathrm{om}^{2}$ of bespoke formwork for
the Kirk Kapital Headquarters (KKHQ) in Veje, enmark. KKHQ is a six-storey office complex and is architecturally Scandinavia's most ambitious and is architecturally Scandinavia's most ambitious
office building. The project represents an international frrst in that it applies architectural RHWC for the roduction of critical load-bearing concrete structures (Fig. 2)

The design comprises four intersecting cylindrical perimeter walls, which rise out of the harbour basin With a height of 32.3 m , the cylindrical walls are interspersed with 19 intersecting hyperbolic paraboloid
void walls, spanning vertically across all storeys. With dimensions varying from $7.4 \times 2.8 \times 5.2 \mathrm{~m}$ to $4.2 \times 3.2 \times$ 5.2 m , the volume of formwork to be produced would surmount $70-110 \mathrm{~m}^{3}$ per storey section.

 of the Sonnesgade 11 mixe
use complex. Aarus,
Sle
 $\xrightarrow{\text { Image: }}$ COAST.
2. Construction site
overview :the roboticaty

Construction site
ovotwive: the tobotically
hot-wiv--ut tormwork is
used in combination with

Image: Courtesy
KikF Pooperty A / s.
3. Onsite prefabiciction
using a standard , rectangu
.
scaffold ing for formwork
supportagianst bespoke
EPS intill

While building a test mock-up, traditional wooden moulds were contrasted with the EPS moulds supplied by Odico. The EPS mould stayed more true to form und casting pressures, while a relatively low-density EPS material was selected for the test where the traditional nding Odico obtained a vote of confdence from the building contractor Jorton to go ahead and produce the formwork for the project.
The formwork system developed for the project entailed hree primary variants. First, an in-situ profebrication workflow, where polystyrene mould parts were inserted into a rectangular timber scaffolding box. This procedur segments, which were pubsequention of curved wall (Fig. 3)

A second workflow was established for in-situ casting of lower-level hyperbolic walls. Here, the formwork wa
designed as a $110 \mathrm{~m}^{3}$ solid foam plug, orthogonally
segmented relative to the size of the standard foam stock dimensions of $1,200 \times 1,550 \times 2,400 \mathrm{~mm}$. To minimise the produced and repeatedly used in all topologically similar cases, achieving minimisation of material as well as providing auxiliary support against the casting pressure, while imposing few geometric constraints on the formwork design itself. The final formwork system application was designed for parabolic endwalls to intersect the cylindrical perimeter walls. In this case, rolled steel repetitive-use formwork was used to create
the main wall geometry, while foam inserts were used as vertical plugs to achieve the parabolic opening. This ability to utilise RHWC seamlessly within the existing casting workflows was in adopting the process for the project.

The above workflow required the organisation, design and manufacturing of around 3,800 unique RHWC formwork units. With the design not developed with
the RHWC approach in mind aspects of fabrication
 had not been a concern in the design and engineering
development. As such, a considerable post-rationalisation effort was required. In order to segment the building to patterns that fitted stock material, a semi-automated CAD workflow was developed in McNeel Grasshopper and GH Python. While the project in principle would have
sustained a shared, central BIM model, at the time the IFC 4^{1} specification, which allows for NURBS'2 surfaces, was not available throughout the involved digital chain. The ability to exchange geometry in NURBS was a hard requirement, given the suled geometry the project.

As a result, the model was sourced from a number of CAD platforms; and with the lack of software supporting IFC 4 at the time, this effectively disrupted a fluent geometric integrity of the model. As a result, a substantia effort in geometry pre-processing and optimisation of formwork design was required. Since then, Odico has provided support for IFC 4 for its offli latform, PyRAPID (Feringa, 2015).

Taking on a recently founded start-up to deliver a central feature of the project - the production of over 130 truckloads of unique formwork for realising the most prestigious office building in Scandinavian construction history - was a risk offset by the disruptive properties Robotics to deliver at a considerably lower price point while handling all aspects involved with a small team.

Following the KKHQ project, Odico Formwork Robotics has seen a rapid expansion, completing over 200 project in the four years since its formation, including several
high profile commissions in the United Arabic Emirates, the United Kingdom, Norway and Denmark.
One recent example was the design and production of EPS foam guides for the manufacturing of 2,000 uniquely bent a fauminium profiles, targeted at the doubly-curved
glass façades of Opus Dubai, an iconic premium hotel resort designed by Zaha Hadid Architects in Dubai, UAE. In this case, enabled by the geometric coherence of the
design scheme, a complete automation of the workflow design scheme, a complete automation of the workflow was established. This enabled the entirety of profile
geometries to generate mould design and resulting robot code in a single batch operation. This optimisation allowed for an increase of output from 80 unique units per 24 hours to $200-300$ units, helping to accelerate the

High volume applications, such as stairs, panels and structural components - as well as advanced infrastructura developments, where formwork expenditure represents a
significant cost factor - form a testbed for the demonstration of the combined effects of the hot-wire machining speeds, the degrees of freedom offered in robotic control and the cost-effective EPS material.
Indeed, this represents a viable pathway for a dramatic offsetting of costs in industrial concrete production

The production of hot-wire-cut moulds for the KKHQ main structure corroborates that RHWC can act as a cost-effective method for the production of complex concrete moulds, a
construction uses.

In such cases, as is typical for the majority of Odico's production, the primary threshold is the successful demonstration that the technology can be effectively
applied to designs that did not anticipate the use of advanced robotic fabrication - or RHWC specifically in the conceptual design phase.
Conversely, a growing interest from design partners in explorition is starting to complement these initial efforts.
production The architectural capacity of robotically controlled wire-cutting is being investigated as a constitutiv

4. Bladerunner concree
 GXN Nnovation The
demonstator is pat of
seeies of explorations of

design assembies.s.se
do capitisiso onthe
ond
esthetic opportunties
within the constraints of the
within the e onstraits o st the
olt-wie-cuttitng process.
5. The benches as installed
ithe Winton Gallery December 2016.
mage: $:$ Luke Hayes.
Production UPHC
prototype of bench 85
por the Science Musum
orthe Science Museu
Winton Galerey y
Mathematics. design
Mathematics, design
zanhe Hadian Computaio
and Design Group.
premise for design, with the outline of capitalising on the specific degrees of freedom offered by the process, while maintaining the cost adv
practical applications (Fig. 4).

One of the first to address this potential in a commercia context, Zaha Hadid Computation and Design Group engaged with Odico to develop process-specific designs within various applications. An initial outcome
of this effort was the design for 14 unique UHPC bench of this effort was the design for 14 unique UHPC bench for the Winton Gallery of Mathematics at the science
Museum, London. For this project, a design scheme wa developed within the constraints of wire-cutting moulds, enabling Odico to offer a production scheme favorable over existing fabrication approaches. The resulting enches were produced as 35 mm high performance (Figs. 5 and 6).
While robotically controlled hot-wire-cutting of concrete ormwork offers a distinct solution space in which nove design vocabularies can be explored, the mechanical
concept per se can be extended across several domains of material processing and motion types. This line of hinking constitutes an important exploration within Odico's internal development efforts. Over the course
of four tooling prototypes robotic abrasive wire-cuttin of four tooling prototypes, robotic abrasive wire-cutting
(RAWC) has been developed and implemented within Odico's production.

While subjected to the same geometric and motion onstraints as RHWC, abrasive wire-sawing enables the processing of hard materials such as marble (Feringa
2014), timber, non-flammable foams and ice (Fig. 9). This in turn facilitates a conceptual shift from producing the intermediate product of formwork designs to the architectural component itself.

Adjacent to this strand of development, Odico recently began to explore the domain of ceramic brick fabricatio In collaboration with Strgjer Tegl, a leading Danish producer of ceramic bricks, a robobtic system was devised or production of bespoke tile designs. Early work on the opic (e.g. Adreano, 2012) indicated the architectural
potential for bespoke ceramic tiles. Odico explored a different mechanical approach for processing the clay material due to the density of the clay utilised. By the development of an oscillating end effector, in whic orward and quick lateral movement of a wire is
combined, a rapid manufacturing process was devised, paving the way for rapid production while directly integrating with Strgjer's manufacturing process.
As such, the installation enables the production of

uniquely designed tiles. This quality was explored shortly after the initiation of the facility for an interior
wall cladding of Odense Theater by Creo Arkitekter A / S, emulating the undulating motion of the theatre curtain.

Double-curved formwork - blade cutting
Odico tendered in a consortium for the production of the formwork of the Waalbrug bridge extension project many thousand square metres of double-curved formwork. The constraint of double curvature cou not be met in a satisfactory way using ruled surface rationalisation and hot-wire-cutting, so that approach
was dismissed in favour of timber formwork, which meant that Odico did not participate in the realisation of the project. However, the tender did inspire an idea:
by bending a blade, double curvature could be closely

approximated. This method allows the production of moulds at a new level of scale and effcieiency, enabling
the realisation of large-scale double-curved concrete structures. The cross-disciplinary research project
BladeRunner was formutat, BladeRunner was formulated, and two more years of
development culminated in a patented technology where development cul minated in a patented technology where
unique double-curved formwork no longer incurs an unreasonable cost penalty (Ssndergaard, 2016, Brander, 2016). This method is now under preparation for pilot production (Figs. 7 and 8), with expected construction

$\underline{\text { What technology wants }}$

The past decade has seen the genesis of a range of specific robotic construction technologies and process construction. Thanks to this accumulation of academic efforts, momentum is building. The critical test is whethe architectural robotics can scale beyond the lab to the construction site and become a commercialy sustainable
industry, possibly breaking the current technological stasis

In What Technology Wants, Kevin Kelly offers a compelling perspective on the forces that drive technology: "The second great force pushing evolution o its immense journey is positive constraints that channel
evolutionary innovation in certain directions. In tandem with the constraints of physical laws outlined above, the extropy of self-organisation steers evolution along a trajectory. While these internal inertias are immensely
important in biological evolution they are even important in biological evolution, they are even more
consequential in technological evolution. In fact, in the consequential in technological evolution. In fact, in the
technium, self-generated positive constraints are more than half the story; they are the main event" (Kelly, 2011).
In the context of advanced architectural fabrication, we may characterise these positive constraints as demands of a progressive architecture, having the capacity to scale architectural artefacts of a novel character, while coincidentally challenging the price
point at which these can be delivered.

Due to the inertia of the building industry there is stil ample time to learn from other industries, especially when the former concepts of work and industry are changing. Considering the effciencies of the vast, highly
automated production lines in the automotive industry, automated production lines in the automotive industry,
automotive entrepreneur Elon Musk said: "The biggest epiphany I've had this year is that what really matters is the machine that builds the machine - the factory."

greater than today's levels was to be expected through this target, rather than through the product itself.

Does the same hold true for construction? Could a shift in design orientation from the object to the 'machine that
builds the house' trigger unprecedented architectural builds the house' trigger unprecedented architectural innovation? Ironically, in the construction industry, the field of architectural conservation may offer us an insight.
With the processing of natural stone becoming highly automated, has its manual handling evolved to become a punitive task, reminiscent of the image of Howard Roark working in the granite quarry in The Fountainhead
rchitectural conservation is an area where novel fabrication methods involving robotics have been adopted early, resulting in industry-wide acceptance. Companies hat have not invested in the past two decades in CNC or robotic fabrication will today or in the near future no longer be able to compete, given the cost of labour
and the efficiencies gained by automation. The Sagrada Familia has been architectural conservation's most enterprising project, and its expected completion date has been brought nearer by embracing robotic fabrication Burry, 2008). Today, the architectural merits of the past Scanning sculptures and reproducing stone elements has become a default approach, as the recent recreation f Palmyra's Arch underscores

The challenges faced by large-scale automation in construction could be the call to disrupt the present order "Not alone have the older forms of technics served to onstrain the development of the neotechnic economy, used to maintain, renew and stabilise the structure of the old order... Paleotechnic purposes with neotechnic means: that is the obvious characteristic of the present order'
(Mumford, 2010).

References

 Brander, D.etal. 2016, Desiginin for Hot-Blade Cutting: Geomettic

Burry, M. Armengol, J. and Tomownow, T. 2008, Gaudi Unseen: Completing the

Feringa, J. and Krinen, T. T. 2015, 'BIM and Robotic Manufacturuing-Towards a

\qquad Kelly K 2011 What Technology Wants London Penguin Books Ltd p. pl

 ,
Munford. LL.2010, Technics \& Civilization, Chicago, University of Chicago
Press,, 2666 .

 Sondergarad, A. . 2014 : Odico Formwork Robotics in in Gramazio, F. and Kohler
M. (edss

Notes
To support the best way to exchange rich geometry-preserving types, such has advanced B-rep (NURBS), faceeted B-rep and surface
 including tapering and presentation stryes, such as colours and textures
which can be added tot these geometries:

-

```
\_combinatorcomfutureelon
```

hitpos:/theconnersation.com/should-we-za-print-a-new
palmyara-57014

Responding to climate and landscape MPavilion is a unique architecture commission and design event for Melbourne, Australia.
A new temporary pavilion is commissioned each year Irom a leading intern.

Each structure takes shape in the downtown oasis of Queen Victoria Gardens to accommodate a free programme of talks, workshops, performances and installations from October to February. Building on and a meeting place - an intriguing form, a temporary landmark, a spontaneous detour, a starting point and a base to explore design's role in the creative city.
At the conclusion of its lifespan in Queen Victoria Gardens, the pavilion is demounted and gifted to location to create an enduring legacy.

The brief was an opportunity for a structure that respond to its climate and landscape, exploiting the temporary speaks in response to the weather.

Rooting the pavilion in its parkland setting, the vision for MPavilion was to create the sensation of a forest canopy,
with beautiful dappled light where visitors could see the with beautiful dapple lighy whore
sun and the sky - a drea a diverse programme of events for four months.
The design was driven by an ambition not only to integrate the pavilion with its parkscape environment but also to involve the wind, and sometimes the rain, as part
of the experience. And so the structure needed to balance a degree of flexibility in its response to the atmosphere with subtle movements, with sufficient stability to safely host thousands of visitors over the summer. The pavilion would be a celebration of those natural shetters whet
people come together: an exceptionally light, open peopie come together: an exceptionally light, open
structure that sits gently on the land while affording protection from the unpredictable weather of Melbourne.

The twin natures of the seemingly ephemeral pavilion necessitated both swift construction and deconstructio methodologies while in its temporary home before becoming an embodiment of curability in order to

Challenging the notion of public space
MPavilion was designed to challenge the notion of what public space can and should be, a structure defined b connections to the surrounding landscape. This approach drove the design and thus the context for the research.
The sensation of a forest canopy was created by 44 seemingly fragile, translucent petals supported by 97 slender columns up to 4.2 m high that sway gently in th
breeze. At the centre, the petals should tightly cluster and be layered to produce a continuous shingled surface As the pavilion fades out into the parkland, the size and
number of spaces increase until the trees themselves tale over the pavilion's role and the structure dissolves.

Moreover, the context was indelibly shaped by the person The MPavilion recipe has ingredients from around the from a number of different industries - but just like the design itself, the build solution is quite unique.
AL_A worked with the specialist fabricator mouldCAM (now ShapeShift) and engineers Arup to employ the to create the translucent petals.

As ShapeShift explains, "MPavilion is a great example
of collaboration drawing together inspiring design,

3D technology, advanced materials and engineering and the all-important ingredients of practical experience and construction management.
AL_A have a long history of working with boarbuilders of which Australia has some of the finest. Initial inspiration was provided by the innovative materials typically used in aerospace and in the surfboard industry and the latest technology used in nautical engineering -
in particular, the large sails utilised in high-performance in particular, the large sails utilised in high-performance aesthetics and material capabilities.
The overall design was optimised to keep the fabrication simple by using symmetry. Therefore the final design was f just two different sizes, while stil allowing for multiple coniguratio

Establishing a framework

The ambition and contexts - conceptual, physical, material - established the framework for a series of
questions that in their answering would define the success of the pavilion.
At its heart was the notion of how to dematerialise a structure, albeit a temporary one and to make it feel and look less like a permanent building. The solution of a forest of petals surmounting impossibly thin columns In order to make it as transparent and as light as possible simply uncovered further questions as to its materia composition and fabrication methodology.

Consequently, the challenge became one of achieving sufficient lightness and transparency or translucency in the form of the petals without compromising its

structural efficacy. This would impact on the relative sizes of the petals and their modularity, as well as their cross-section, with a flatter petal with additional petal both initially appearing viable.

Simultaneously, there was a balancing act between
allowing the columns to visibly move and the petals allowing the columns to visibly move and the petals to enough to withstand hurricane conditions.

The desire for ephemerality extended into an ambition or no visible wiring and for minimal light fittings and peakers, which posed questions to be answered in the

Moreover, the brief necessitated $\mathrm{a} 200 \mathrm{~m}^{2}$ weather protected area at the centre of pavilion, while the vision was for an unconditioned space that would

A balancing act

The success of MPavilion would be determined by
the delicate equipoises of flexibility and strength, he delicate equipoises of flexibility and strength, of translucency and solidity. A solution to this balancing act
could only be reached by a programme of comprehensive trials, of testing and prototyping composite materials.
It was determined early on in the design process that the arger petals would be hexagram-shaped in plan and 5 m oo aid fabrication, while the smaller petals would be trefoil-shaped in plan and 3 m in diameter

The larger petals would have columns positioned on their
perimeters 2 m apart and in the centre would be a $4 \times 4 \mathrm{~m}$,

Nevertheless, the final choice of material was selected after due consideration of its high strength-to-weight ratio very high tensile strength and mouldability that enabled

Each petal, measuring only 5 mm to 7 mm in thickness, is formed by a carbon fibre weave, interlacing structure and aesthetic together to form the pattern. Reinforcement is embedded into the surface of the borderless petal rathe than as an encircling frame.

The greatest challenge was finding the perfect balance between achieving the thinnest possible petals, with the strength to support their weight over spans of 5 m , and the esired level of transparency
his necessitated a programme of testing utilising reinforcement in the petals to produce rigidity. These trials noted a direct correlation between reinforcemen and translucency, whereby greater quantities of fibre produced an adverse impact on the desiriable levels of petals that were clear but structurally flawed or petals that were sufficiently rigid but cloudy to the point of almost complete opacity. uring times and the correct placement and layering of he fibreglass and carbon fibre reinforcements were the keys to achieving the right balance between flexibility and rigiaity of the petals.
After further trials of reinforcement fibres, the optimum balance between clarity and strength was ascertained and used to manufacture the petals for MPavilion. The team developed a cost-effective method of incorporating custom-built tension loom manufactured by a specialist subcontractor.
Placement was not only optimised for structural performance, whereby the lines of fibre are never folded to allow for maximum efficiency, but also for the creatio of a beautiful radial pattern that became the defining graphic of the entire project.
Rejecting the idea of a profiled three-dimensional petal to provide the necessary rigidity, the design and fabrication eam opted for a flat petal with a carbon fibre 'backbone' reinforcement. This decision was partly influenced by the equirements for drainage and the need to cascade water from one petal to another. In turn, this backbone allowed
the incorporation of the columns' capitals into the body of the petal without additional fixings.
The backbones were formed by injection moulding, hich proved to be a more efficient solution with improved structural performance and a more elegant
form. The moulds were CNC-cut from the 3D CAD to ensure accuracy and repeatability.
The opportunity to capitalise on the inherent strength shape is a singular advantage of the use of composite materials, as MPavilion proved.

Most significantly, it was decided to add external reinforcement by affixing multiple columns to each
petal. This allowed the pavilion petals to be significantly peta. This allowed he paw 12 mm down to $5-7 \mathrm{~mm}$ allowing for a great level of transparency
MPavilion was a constant technological battle and hecessitated the development of bespoke solutions in order There was undoubtedly a necessary balance made between the ideal, yet unrealisable, scenario of almost perfect transparency and the structural almost perfect transpare

Similary, the balancing act of allowing the column to move in the wind yet not be broken by gale force 3D computer resolved by structural simulations of the combinations of the before fabrication, testing differe section of the columns.

The thin, high-strength columns used in the final pavilion were 45 mm in diameter with 4 mm wall thicknesses. Like the petals, they are the product of a process of research
and development undertaken during their industrial manufacturing, which in this case saw the tubes initially developed for camera tripods.
In order to amplify the perceived movement, clusters of one, three and five small petals were created. This
combination of the number of columns and petals created a different mass per column ratio, allowing them to sway gently in the breeze.
In turn, these were counterbalanced by a cluster of larger petals in the middle of the structure. This also assisted edges simpler, as well as allowing a wider column-free space for events.
The ambition to dematerialise the structure and blur the threshold between pavilion and park was achieved by material innovation working in parallel with the overal design. Once the 3D computer model was complete, a new fixing method was created for the vertically stacked petals, tying one into another. visitors to see glimpses of the sky and the surrounding tree canopies.
Each petal was mounted on slender carbon fibre column that were designed to conceal the wiring of lights and the pavilion. This is heightened still further by a halo-like effect created by an LED strip forming the capital to the column, while pioneering technology turns the petal
themselves into amplifers. From the surrounding themselves into amplifiers. From the surrounding high-rises, the pavilion appears to have a glowing aura
and a particular presence in the otherwise darkened garden at night.

The commission and associated programme is quickly becoming one of Australia's leading design and leading summer attractions.

By February 2016, AL_A's MPavilion had attracted mo than 64,000 visitors over 126 days to 419 free events through collaborating with more than 260 cultural choreographers, scientists and designers.

In December 2015, Wallpaper** named MPavilion 2015 as one of 15 installations that capture the global imagination. In January 2016, designboom named
MPavilion 2015 in the 'Top 10 Temporary Structures of 2015 ?
One of the unique features of the MPavilion project is After its four-month programme the pavilin warn After its four-month programme, the pavilion was
disassembled and moved to its new permanent site Melbourne's parklands. This creates a permanent legacy that will become part of the cultural heritage and public menities of Mebourne, attracing tourism, indust development and civic pride

The 2015 pavilion opened to the public in its new permanent location in the Docklands public park in August 2016.
The pavilion's lasting legacy is a tribute to the ambition and collaboration that commissioned, conceived, eam to extend the boundaries of the possible in taking ordinary materials to new levels is testament to this
spirit of innovation shared by all and to a mutual spirit of innovation shared by all and to a mutual
confidence in each member's expertise. MPavilion is a beautiful example of how taking materials and echnology beyond their everyday applications can eliver extraordinary and unique results.
Project credits
Architect:AL_A.A.
Project irectors: Amanda Levete

Fabicator: mouldCAM (now Shapeshify
Main contractor: Kane Constructions
Lighting and sound design: Bluebootle and Sam Redsto

In recent years, technology and digital innovation have provided a series of new design tools for the architectu world, which have dramatically morphed the massing of
modern buildings. The envelopes which were traditionally constrained to a relatively planar or curved setting-out became complex forms, moulded in the digital environme shapes that pusht the traditional boundaries of

This shift has generated a dichotomy, in which solutions have become apparent: one where the envelo has its own supporting system, often quite complex, which is then dropped onto the main structural skeleton the envelope at the same time.

In both cases, the challenges posed by these comple geometries required a series of digital tools and emetrical form-finding structural optimisatio
fabrication output. At AKT II, the work developed on new digital design-to-fabrication techniques has allowed the
use of a building technology that integrates architectural
form, structural armature and environmental enclosure in single multi-performative skins. This technology, Which has been successfuly tested on a number of use of material, energy and labour, by offering multiple . An extension of monocoque construction, commonly used in aeronautical application, this technology is
based on the prefabrication of large components in th factory, simplifying assembly in the field. Components are designed to be bolted as a kit of parts and then welde a smooth, waterproof enclosure.

Interrogatives

This applied research and
fundamental question
One: can the envelope, with its aesthetic and environmental functions, also provide a main structural function?
 maximise efficiency and connect the architectural inten o the structural design while respecting the fabrication limits and tolerances?

Drawing Studio, Bournemouth

The Drawing Studio for Arts University Bournemouth by Crab Studio will be used as the first example to showca
the design process of a multi-performative skin. It is designed to create different conditions of light within the same space through openings within the organically shaped building. Constructed by specialist stee
fabricators very much like the hull of ship the abricators very much like the hull of a ship, the structure consists of an 8 mm doubly-curved external
plate, stiffened by thin internal welded steel rib-plates, creating a 16 m -span column-free space. This was factory-prefabricated in large panels, then bolted and welded onsite to produce a smooth structural enclosur The structural skin is internally insulated, and the internal inish itted to the inside flange of the internal
stiffeners. No external cladding or secondary framing was required, as the insulated structural skin provides complete climate control.
The organic shape proposed by the architects consisted of a large continuous massing, with one large opening for the main window and one wavy opening in the middle section for a secondary window, two entrances on each side of the building and some ground level openings to

Structure
a skin manufactured envisaged in this case consisted of were laser-cut and find using simple flat metal sheets which welded together in the workshop using curvature, and orthogonally to the main plate to prevent buckling and provide stiffness. The waterproofing of the enclosure was guaranteed by the welding of the contiguous metal parts,
and corrosion an wh prevented by paint.
An early stage detailed investigation was carried out to determine the factors influencing the construction
and build-up of the steel semi-mione monocoque is made up of a continuous top structural skin and ribs with and without a bottom flange.

The aim of the analysis was to minimise the plate thickness and maximise the rib spacing. The minimisation of the plate thickness was intended to reduce the overall weight of the structure and to reduce the amount of resources used in the construction. However, a lower li of 8 mm was taken to ensure weldability, because lower than this, due to excessive plate distortion.
From the analysis, it was found that the thickness of the top sheet of steel is controlled by plate buckling, due
the compression force that arises from the bending action. This was also affected by the spacing of the rib but to a lesser degree. Where large rib spacing was used, the stress at which the plate buckled reduced, making the
section less structurally effcient.

1. From dijititat forbiciction.

2.Ribbing pattens
2. Fabicication.

The overall structural depth is controlled by the deflection riteria. The semi-monocoque structure allows much smaller depths to be used than could be achieved through he use of traditional steel beams.
Workflow, optimisation, Re.AKT
he project used a complete workflow, from the modelling hrough bespoke smoothing algorithms, to the automated analysis of the structure, enabled by real-time interoperable models which interface with analysis and optimisation tools.

This workflow extends all the way through to patterning tools which set out plates and stiffeners, interfacing with automated fabrication methods designed to achieve high levels of precision in the final fabricated form. The three fundamental steps followed were:

1. Rationalisation of the provided surface to remove impurities in terms of curvature tangencies and incomplete boundaries.

Definition of the optimal pattern for the internal stiffening plates. elements for fabrication.

The rationation of ensure the elimination of folds which an essential step to a clear interruption of the metal sheets. This process was implemented using a smoothing algorithm that was initially created for the movie animation industry. The Catmull-Clark algorithm takes an initial crude mesh and recursively subdivides it, averaging the faces' vertices.
This algorithm was embedded in AKT II's internal toolkit (Re.AKT) and enhanced, introducing between other functionalities the option to assign constraint points curves and surfaces. This allows the user to sculpt an interpolated smooth surface while still maintaining the
original constraints. The differences between the original surface and the rationalised one were assessed by mapping the distortions as a coloured gradient on the surface.

By removing all the initial creases, it was possible to obtain one single smooth surface, and this therefore
allowed the study of various patterns of stiffening ribs.

A parametric model was built to control the patterning A the ribs and, using an internal toolkit (Re.AKT), the nitial geometry was plugged into the FEA structural
solver. This step allowed the quick generation of various options for the ribs, with the aim of finding a solution
that could balance the need for strength and stiffes hat could balance the need for strength and stifness imit the self-wight of the structure.

An initial proposal was to use the principal stress
curves to define the rib patterns, which also genera curves to define the rib patterns, which also generated a sub-option where a specific quadrangular module was
mapped on the stress distribution. This option, although quite effcient, would not have been compatible with the into a square grid subdivision first, and then, in order to reduce the spacing and weight, was optimised in the fin configuration: a customised pattern, spaced circa 1.2 m
hat provided the best performance and the lightest configuration (Fig. 2).

Fabrication

The fabricator (CGI International) was able to us subdivision of patches that could be cut from single metal sheets. This process was necessary to obtain strips that could be easily fabricated and transported to the site. The
splices were coordinated with the stiffeners' locations in splices were coordinated with the stiffeners locations in onsite. Once this information was added to the digital model, the fabricator started production and preassembly in its warehouse. The stiffeners were laser-c nd propped in place, then welded to form a skeletal networn wich the setting-out of the skin loyers.

The flat metal sheets defining the skin were then welded onto the skeleton of ribs and locally adjusted to remove any distortion generated by welding and the imperfection
generated in the fabrication process, to maintain tangency generated in the fabrication process, to maintain tangency
along the splits. To achieve tight curvatures around the openings, prefabricated metal tubes were used.
Installation
Once the building was fully pre-assembled the parts were carefully dismounted and loaded onto trucks to be delivered to their final location. The vertical side walls were the first to be craned in and welded together, forming
the boundary perimeter where the horizontal enclosure

could then be supported and welded on. To make sure the structure was not going to distort in its temporary unconnected condition, props were used while the patches
were craned into place. After every patch was placed and the local adjustments were made, an onsite welding the local adjustments were made, an onsite welding
process took place to seal all the edges and create a sk which could act as a singular structural element, at the same time providing waterproofing to the building To complete the installation, several layers of paint were laid onto the structure to preserve the metal fro

Library Walk, Manchester
The Library Walk Cloud pavilion is a link between the Manchester Town Hall and the adjacent Central Library uses frampsess Architects (Fig. 7). The $175 \mathrm{~m}^{2}$ pavilio 30 -tonne, stainless steel roof structure. The distinctiv shape of the roof was form-found using mathematical
algorithms designed to create a smooth organic but algorithms designed to create a smooth, organic but
'rational' undulation in the soffit, based on spherical distortions of a flat surface.

Different story, a shared path

Differing from the previous example, this case used digital tools to generate the final curved surface of the digita toots to generate the inha curved surface of the
roof instead of optimising it for fabrication. In addition to this, the digital tools were set in such a way that the locations of the spheres distorting the flat surface cou parameter By manipulating those values the design was able to position and alter the weight distribution of the overall roof, having total control of the design.
4. Shaping steel.
5. Cloud stiffening ribs.
Image:

6. Cloud instalation limage: Courtesy of

G Architecture.
Manchester Library Walk.
8. Two-layered structure
Image: A AKTI.

The facade, which is a frameless set of 7.4 m -high
structural glass panels supporting the roof and providing lateral stability.
The roof, which consists of a polished stainless stee monocoque construction, allowing it to span 15 m
across a column-free space (Fig 8). These external, exposed surfaces are welded to an internal armature of stiffeners, creating a rigid structure.
The simplicity and purity of this building is achieved by he simple combination of the two structural elements vertical glass façade, which are rigid in virtue of their form.
Another interesting difference of this installation when compared with the previous project is that the internal
stiffening ribs follow a simple planar grid, and their distribution is regular due to the smaller number of patches required for the installation. The stainless steel s also welded on top of the stiffeners, following a simila rocedure to the Drawing Studio (Fig. 4). The main entrance was envisaged to be a reflective surface from the beginning. To achieve this, the fabricator first ground the welding line until it disappeared, and the surfaces were hen sand-blasted to further reduce the imperfections generated by the welds. The entire surface was then
polished to create the mirror finish and protected with obust film for transportation. Finally, the prefabricated sections of the upper Cloud were transported to the site and erected onto the pre-installed glass perimeter.
In a world where craft and science are merging, fusing interactive collaborative process between disciplines. This union has ignited the development of bespoke digital tools for design, optimisation and fabricatio
hat are pushing designers to think deeply about that are pushing designers to think deeply about skins are one example that, with their integrated echnology, can address many of the economic and environmental challenges our industry face

THE ARMADILLO VAULT
BALANCING COMPUTATION AND TRADITIONAL CRAFT phllippe block/matthias rippmann/tom van mele ETH Zurich - Block Research Group
The Escobedo Group

This paper describes the development and fabrication of
the Armadillo Vault, an unreinforced, freeform, cut-stone the Armadiilo vault, an unreinforced, freeform, cut-stone vault, which embodies the beauty of compression m
possible through geometry. Specifically, the paper provides insights on how a highly interdisciplinary team managed to bridge the difficult gap between digital modelling and realisation by learning from historic precedent and by extending traditional cratt
with computation.

The vault is the centrepiece of Beyond Bending, contribution to the 15 th International Architecture Exhibition - La Biennale di Venezia 2016, curated by Alejandro Aravena (Fig. 2). Wrapping around the
columns of the Corderie dell'Arsenale, the shell's shape comes from the same structural and constructional principles as stone cathedrals of the past, but is enhanced by computation and digital fabrication. Comprising 399
individually cut limestone voussoirs with a total weight of approximately 24 tonnes the vault stands in pure compression, unreinforced and without mortar betwee the blocks. It spans more than 15 m in multiple directions, overs an area of $75 \mathrm{~m}^{2}$ and has a minimum thickness of

 by the hard constraints of a historically and assembected setting and by tight limitations on time, budget and constructio On the one hand, digital tools were developed for the form-finding process of the shell's funicular geometry, the discretisation of the thrust surface, the computational CNC machining proess On the other heometry and the CNC machining process. Ot the other hand, together wi were investigated, analysed and revisited to develop appropriate and effcient stone-cutting and processing echniques and approaches to sequencing and assembly

The lessons learned from historical precedent, combined with traditional craft enhanced by digital computation, allowed a collaborative team of engineers, designers and skilled masons to deal with the hard constraints of the project. Although such an interdisciplinary strategy of master builders in Gothic times that contrasts with today's more linear building processes, the presented work is not a romantic attempt to revive the Gothic. Rather, it is a direct critique of the current practice of also a demonstration of how material and fabrication constraints are not equivalent to limited design possibilities, but can be the starting point for expressive
and efficient structures.

The challenges of working in a historic setting

The Corderie dell'Arsenale is a historically protected

 nothing could be atta Additionally, the average stress on the floor could not exceed $600 \mathrm{~kg} / \mathrm{m}^{2}$, which corresponds to that caused by a tightly packed crowd of people. This also meant that no heavy equipment, such as a mobile crane, could be used forthe assembly. Thus alternative methods for the manual setting of stones had to be developed. Furthermore, only five months were available for the entire project. This includes time needed for the design, engineering, fabrication and construction of the vault. The challenge
was effectively to convert a 'perfect world' digital design into a 'real world' fabrication and construction process an extremely short period of time for a constructional/ material system without obvious mechanisms to compensate for tolerances.

Digital process

For this project, a smooth digital pipeline/workflow was developed to realise a structurally optimised

Structural design and analysis
The vault's funicular geometry, which allows it to
1.The Armadill Vaut spans

 ot the compespession shel
Image: \mathbf{W} wan Bean. 2.The Armadill Vault in
the Corderie dellellaten
 La caiiennale of iveneziaia, 2016,
 ETHZurich.
3.The local shell thickness ranges from just 5 ccm at
the midspan to 12 2cm at the midspan to 120 cm at

the internal touch-cown | and point spininging |
| :--- |
| Image: Anna Maragkouaki |

4. The overall tesselataio
desising is defined by
design is define diby
tsone courses aliged
perendicuar tothe
perpendicular to the
ocal force eflow
mage
in pure compression, results from a form-finding and optimisation process based on thrust network analysis
(Block \& Ochsendorf, 2007, Van Mele et al., 2014). These hovel computational methods offer a more controlled,

The dominant self-weight of the vault was taken as a design load to define the middle surface of the struct which was then offset according to assigned local
thicknesses based on experience and weight constra thicknesses based on experience and weight constraints define a local shell thickness ranging from 5 cm at the midspan and only 8 cm along the line supports to 12 cm at the internal touch-down and point springing (Fig. 3).
Based on the designed force flow, the stone envelope was etised into courses and the courses into vo Staggering of the voussoirs, and alignment of the course
to the force flow and the boundary, guaranteed proper interlocking of all stones in the surface of the discrete shel
(Fig. 4). To speed up the fabrication process the veussoirs were ma de as large as possible with an asproximate ringe were made as large as possible with an approximate range
of 45 to 135 kg , so that they could still be handled by hand or with a lightweight jib crane. The stability of the unreinforced, dry-set assembly under various load conditions, including concentrated loads, settlements
of the supports and earthquake loads, was confrmed of the supports and earthquake loads, was confirmed
using discrete element analysis (Van Mele et al., 2016). Architectural geometry and fabrication Due to the limited timeframe and large number of vas to reduce the averge cutting time for process was to reduce the average cutting time for each stone.
Additionally, since there is no mortar between the voussoirs, which could have compensated for tolerances the interfaces between stones had to be flush and herefore precisely cut and set.

To optimise the fabrication process, the voussoirs were designed to have a convex cutting geometry along the interfaces, such that they could be cut efficiently with a circular saw (Rippmann et al., 2016). However, the vault has several areas with negative Gaussian curvature. Since it is geometrically impossible to discretise such a
surface with a convex, planar mesh (Li, Liu \& Wang, 2015), the faces of the extrados were allowed to disconnect and create a stepped, scale-like exterior. This visually emphasised the discrete nature of the shell and allowe he flat extrados faces of the voussoirs to be used as a blanks no longer needed to be flipped and re-referenced, reducing fabrication time of the voussoirs significantly.
The curved intrados faces were formed by side-by-side
 uts with a circular blade, spaced such that thin stone fin hammered off manually to create a rough but precisely curved surface. The side surfaces perpendicular to the
force flow were processed with custom profling tools force flow were processed with custom profiling tools
that create ruled surfaces with male/female registration grooves. These grooves are primarily used as reference geometry to assist assembly, but also prevent local sliding failure. The other side surfaces of each voussoir were created with simple planar cuts.

From digital to realisation
The vault was test-assembled offsite to allow a team of expert stonemasons to become familiar with the process. During the test assembly (and also during
onsite assembly) each voussoir was fully supported by a falsework consisting of a standard scaffolding system with a custom-made wooden grid on top (Fig. 5) The voussoirs were placed manually, starting from the courses at the supports and converging towards the keystone' courses at the top. To gradually decentre
the vault as evenly as possible, a specific sequence for lowering the falsework was determined, cycling throug the independent scaffolding towers in several rounds. Using imprecise formwork

In traditional cut-stone or stereotomic stone vaulting, voussoirs are never placed directly on falsework. Instead they are positioned using shims. This insight was used leal with the rough interior surfaes of the stones o deal with the rough interior surfaces of the stones.
The wooden falsework was offset inward/downward by 3 cm . As a result, large wooden shims could be placed in between the rough, knocked-off fins to support the stones on the falsework and precisely control their position. Additionally, this meant that precise positioning of the
falsework sections was less critical. This resulted in significant time-saving and reduced logistical challenges As an added bonus, the shims served as visual guides during decentring. Once they started falling on the
ground the shell was standing by itself.

Not building the designed geometry

Due to unavoidable machining tolerances, each of the youssoirs could only be within +-0.4 mm of the designed digital geometry. Since the vault was designed to have a
high degree of structural redundancy and indeterminacy by introducing locally high degrees of double curvature, hese small imprecisions had little or no effect on the structural integrity and behaviour of the overall

f the intrados and extra of the stone shell results fabrication constraints, machining efficiency and

CONTRIBUTORS

BIOGRAPHIES

assembly-based construction detailis for robotic assembly.
Arizz hold da diplonsin
Bunens Alies and and an MS

Kim Baber is afllow in Civil Engineering and Architecture
atthe Univesisty of Queensland. He is is aso a repistered

 archite cture and divil engineering students to design,
develop onad o onsturt the structural use of timber.
Ehsan Baharlo is a docotoral candidate a the Institute for

 thinking at the ICD D sice 2010. His researchis surrently
focused on the integation of fabrication and constuction

 roject is the design of the production srocesss itself, with
 Califoria hastitut of A Acrititectur, they have prodiced a art, architecture and fabicication.
Ricardo Bapista joined AKTII in 2005 after completinga previous academic experience gained foom the Technica
Superior Institute in Lisbon As a director a $A K T I M$ he

Michael Eerginis P Pinicipal Research Scientist, Product
Designerand Team Leader fort the Userexexeerience team in
the Design Research group. parto of the Office of the CTO and Bergin contributes to the emerging field dof fenereative design

Mathias Bernhard studuied architecture at ETH Lausanne and
ETH Zurich. Afte specialising ind ifitita fabiciction while

 Combining mach hine learning and dattificial intelligencence with
computational geometry. He joined the group for Digital

Phil Bersstain is an architect and an Autodesk Fellow. He eaches Professional Practice at Yale, wherene herecived

 Contract Docum ents Co
Clarke Pelli irchitects.
Shajay Yhooshan is an Associate at ahan Hadid Architects,
wherene heads the e esearchactivities of the Conputation

 completed an MPhil at the University of Batat and an MArcc
tt the AA. He has taughtand presented workat various AAG 20016, sim cuud 2015, 2014 and 2001, Sigigraph h 2008 , ETH

 he Swis N sational Cente of Competence in Research-
Digital Fabication. BRGis research fo cuses on stuctural

 ind design of non-standard structures.as well as Cranston uses high fidelitys structural modelests, finite element
analysis and computational tools to solve diverse structural
 Vid builidings. Cranstot is a licensed structural engineerin

Xavier De Kestelier is a P Pincipal at AASSELL, where he sthe Head of Desigig Technology and IInovation. He was
reviously a Patner a t Foster + Partners, where he jointly headed itis Speciailist Modelling Group, projeet-diviven
RaD group that specialises in complex geometrical

Senijmin Dillenburger is an architect and A ssistan
Hofessosor for Digital Building Technologies at the
nis

 as well as to open up new path
nore engaging architecture.
Moritz Dorstelmann isa Research Associate a th the Institute
orcomputational Desig and Constuction (ICD) at

Cershon Dublon is an artist electrical engineer and PhD

 Jeg Dudley is a computational designer currently yorking
 of Bath before working for companies across the design
spectum, including Robofofld, Heatherwick Studio and
 optimisistion and construction ot complex geometries.
He has sun workshops sand lectured at severala academic nstitutions, including the Roval College of AAt UCL L and the
USiversity of Westminter, where he is a visting Lecturer. David Escobedodo is founding owner of the Escobedo Group.

 and as such is involved inthe realisatio

Wa Katrine Friis Tinning is an architect and Kaospiot
 SA Archite cture, Tinning graduated from CITA Studio in
Computation in Architecture. Since 2014, Tinining has worke

Christopher Hutchinson is Profefssorin Materials with an

 Hiroshi shiilis the Jerome B. Wiesner Professoro of Media

 emphassing that the development of tangibie interfaces
requires the rigour of both scientific and artisitic eview.

 programme: in addition, he curates Plexus, a m M.
lecture series based on computational desigg.

 Paul Kassabian is astuctural engineer and Associate Pincipal
at Simpson Sumpertz $\&$ Heger (SGH). He works on a wide

Since 201,., Harald Kloft has been a Professor in Structural
Designand the Head ofthe Institute of Stuctural Design

 Co-founder and Patrine of the in ineremational, enginereiting

Jan Knippers specialises in lightweight stucctures and

 Conjunction with his partarer Fabio Goble Aramazio, theceres

If industrial Tootsts. Kohlers work has been widely publishe

 Radovan Kovacevivi is Professor of Mechanical Engineering
and holds the Herman
Brown Chair in Engineering ats

 A,

 William Kreyoviser is founder and CEO of Kreysters

 ogether to improve processes and acceler.
ofigital fabicication tools and techniques.
Ric cardo La Magna is astructura enginee and P PD D
candidate at the institute of fuilding stucturus and Stru
 e focuses on simulution technology, innovative structur
Ting-Uei J Jeff) Lee is a PhD candidate a the University
of ouvensiland where he exploressthe intersection of curved-creases foldeded geomentries. parametric modellis
and the mantaracture of comosistestructures

Junun Lee is a computational designera a Simpson Gumpertz iis undergaraduate worlar and two verars of porforesisional

Coot Leinwweber was a visting fubbight researcher at CITA

 desigers and architects to realise projectst sas divers firmation mapping and architecturual spacess.
AL-A A A Amanda Levete Acchitects) is the award-wining

 Hendik Lindemann works sas research assistant at the

 fabrication methods on the design workflow and its phys
results in industrial products and architectural design. Henry David Louth is a Senior Designe at T2ana Halid
Architects sa parto fthe Computation and Design CoDe

 PPC (2015

Jörg Petri
Before takin

Pavid Revevs is sa designer. programmer and researchee

 Giiles Retsini is the founder of filles Retsinin Architecture
young award-w inind
rovoctive proposals for initerational compertions, and

 Eezen, as wella in iadademilic cont.
Roger Ridsdill Smith leads foster P Partrens's Structural
ngineering team. He eained his degerein

 and Patners, becoming a director of the firmin 2003 and
subsequently running a multidiscipinary engineering group

Matthias Rippmann has beena member of the Block
Research Group at ETH Zurich since 2010

 n 2010., he co-founded the consu
Oesterle K Kauss G mbH (ROK).

Tre international Journal of space Structures, Bauingenieu: ACADAA.RobAACh and
aper Award in 2014.
rah Rodicigi is an artist and arts manager with over twe

Jean Roulier trined as ajoiner. carpenter and wood builidn
engineer. Having accumulutated extensive experience in $C A D$

 Siencce and architecture and gained professional experien consultant. II 2002. he joined Ludger Hovestadt's CAAD
group at TTH Zurich, where he cofofunded Design-to-

 architects, engineer.
of complex design.
Simon Schleicher is an Assistant Professor in the Departmen
of Architecture at the U Uiversity of califormi, Berkeley. His

 Patrik Schumacher has been Pincicipal at Zanh Hadic

ange from prefabicated concrete shell elements to the
ange from prefabicated concrete shell elements to the
ange from prefabicated concrete shell elements to the

Kar D.D. Willis is a member of the Integrated Additive

Maria Yablonina is a researcher and a PhD candidate at the

 ars

FABRICATE 2017: ‘RETHINKING DESIGN AND CONSTRUCTION’ IS THE THIRD VOLUME IN A TRIENNIAL SERIES OF CONFERENCE PUBLICATIONS THAT BEGAN WITH 'MAKING DIGITAL ARCHITECTURE' IN 2011 AT THE BARTLETT SCHOOL OF ARCHITECTURE, UNIVERSITY COLLEGE LONDON. THE FIRST CONFERENCE EMERGED FROM A NEED TO EXPLORE THE WAYS IN WHICH TECHNOLOGY, DESIGN AND INDUSTRY ARE SHAPING THE WORLD AROUND US. IN 2017, THE CONFERENCE TAKES PLACE IN STUTTGART, WITH A FOCUS ON HOW NEW PARADIGMS ARE EVOLVING AND TAKING US IN NEW DIRECTIONS. THIS BOOK FEATURES THE WORK OF DESIGNERS, ENGINEERS AND MAKERS WITHIN ARCHITECTURE, CONSTRUCTION, ENGINEERING, COMPUTATION AND MANUFACTURING, ALL OF WHOM ARE WORKING TOWARDS EXCITING GOALS WITHIN FABRICATION. EXPLORING CASE STUDIES OF COMPLETED BUILDINGS, ANALYSES OF WORKS-IN-PROGRESS, THE LATEST RESEARCH IN DESIGN AND DIGITAL MANUFACTURING AND INTERVIEWS WITH LEADING THINKERS, FABRICATE ENGAGES WITH THE KEY CHALLENGES WE FACE DURING AN EXTRAORDINARY MOMENT FOR THE BUILT ENVIRONMENT.

fabricate.org

ISBN: 978-1-78735-000-7

UCLPRESS

Free open access versions available from www.ucl.ac.uk/ucl-press

[^0]: As the editors of FABRICATE 2017, we have many people to thank. In the first instance, with over 250 submissions from 5 countries, we wish to thank everyone who responded to the call for works, an achievement requiring perseverance
 and commitment on all sides. We also thank all authors and collaborators on every selected project, and everyone who has kindly agreed to present. Each submission took time and involved others in addition to those who authored the
 content, so we wish to thank all the teams behind every ontent, so we wish to thank all the teams behind photographers and the IT teams who ensured that our networks didn't go down hours before the deadline. We also wish to thank the administrators who ensured
 that every submission was received, that every submission was received, catalogued and made avaiable on stable plattorms so that the business
 of processing them ran smoothly no matter where those who needed to access them were at any given time. We are indebted to more than 30 ' distinguished peer eviewers who fulfilled their duties with impeccable professionalism and care, especially as many did so in
 the holiday period of late summer. You know who you are, and we thank you.
 Each edition of FABRICATE has adopted differen organisational models. In 2011, botht the event and the School of Architecture, UCL, led by the project's founders, Ruairi Glynn and Bob Sheil. FABRICATE 2014 was managed by a team at ETH Zurich, led by chairs Fabio Gramazio and Matthias Kohler, with Silke Langenberg and consultancy
 from Mariena Skavara. Arrangements for FABRICATE 2017 from Marilena Skavara. Arrangements for FABRICATE 201
 have been approached as a collaboration between the Institute for Computational Design, University of Stuttgart and The Bartlett School of Architecture, UCL, with ICD taking the lead on the conference.

[^1]: 5. Robotic fabication
 simulion.
 simulation.
 Imabilege of
 Architecture and
 In Peaninictut Tongani Univivesisty.
 6.Site assembly.
 mage:
 mie Zhenyu
[^2]: 3. StetethColoriniterface developed in Untry, on the I ocation and amount
 of pressurue applied to the of pressuru applied
 tactiles elastic k kitt
 textile.
 4. Textile hybrid structure
 installed at Southerm lliniois

 interconnected with
 form-active CNC-Knited
 texiles.
 mages: Sean Ahlquist,
[^3]: nthe is of spatial
 mage: Ssean Anlquist,
 Univesity of Michigan

