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Preface

We have written this book in the hope that the following engineers, or potential engineers,
will benefit from it: 

•  Recent graduates in electrical engineering who need to understand the tools and tech-
niques currently available in the analysis of small-signal dynamic performance and
design.

• Practicing electrical engineers who need to understand the significance of more recent
developments and techniques in the field of small-signal dynamic performance.

• Postgraduate students in electrical engineering who need to understand current devel-
opments in the field and the need to orient their research to achieve practical, useful
outcomes.

• Undergraduate electrical engineering students in courses oriented towards electric
power engineering in which there is an introductory subject in power system dynamics
(for access to basic material).

• Managerial staff with responsibilities in power system planning, and system stability
and control.

An aim of the book is to provide a bridge between the mathematical/theoretical and phys-
ical/practical significance to the topic. Some of the fundamental background relevant to the
main topics of the book is presented in the early chapters so that the necessary material is
readily available to the reader in the one book.

• Because the emphasis is on controllers for generators, for FACTS and other devices,
the pertinent topics in classical control and eigenanalysis techniques are provided in
Chapters 2 and 3. 

• The authors have covered in Chapter 4 a wide range of small-signal generator models,
equations, and associated material. Third- to eighth-order generator models in their
coupled-circuit and operational parameter versions are described. The following fea-
tures are also included in the generator models: (i) the 'classical' and 'exact' definitions
xvii
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of the operational parameters; (ii) the various approaches to the modelling of satura-
tion; (iii) the formulation of the differential-algebraic generator equations to exploit
sparsity. These models and features are employed in the Mudpack software package.
Small-signal equations and models of FACTS devices employed in the software are
also described. Devices covered include SVCs, STATCOMS, Thyristor Controlled
Series Compensators, HVDC links with Voltage Source Converters or with line-com-
mutated converters. 

• In Chapters 5, 9 and 10 there is an emphasis on practical robust techniques, based on
the P-Vr method, for the design of robust stabilizers for generators in multi-machine
systems.

• Two other techniques for the tuning of stabilizers, the GEP and the Method of Resi-
dues, are examined in Chapter 6. The benefits and limitations of the two as well as
those of the P-Vr method are reviewed.

• An introduction to the tuning of Automatic Voltage Regulators is provided in Chapter
7. The authors have attempted to outline in some detail potential design approaches
for (i) TGR (transient gain reduction), (ii) PI and various types of PID control; (iii)
brushless, static and conventional excitation systems.

• A detailed analysis of the 'Integral of accelerating power' stabilizer for generators, not
previously published, is provided in Chapter 8, together with other practical PSS
structures.

• In Chapter 11 the tuning of stabilizers for various FACTS devices in a large power sys-
tem for operation over a range of conditions is described and illustrated, together with
the merits and limitations of the design.

• The concept, theory, and calculation of Modal Induced Torque Coefficients are out-
lined in Chapter 12,. This is a new method of analysis, developed by one of the
authors and forms the basis for Chapter 13. The synchronizing and damping torques
induced on generator shafts at the modal frequencies by both PSSs and FACTS device
stabilizers are derived.

• The interactions between, and effectiveness of, PSSs and FACTS device stabilizers in a
multi-machine power system are analysed in Chapter 13. A new and potentially valua-
ble tool, which is based on the Stabilizer Damping Contribution Diagrams (SDCD)
and developed by the authors, enables the engineer to assess the effectiveness of stabi-
lizers installed on generators or FACTS devices in enhancing the damping and stability
of the power system.

• In Chapter 14 the coordination of PSSs with PSSs, or PSSs with FACTS device stabi-
lizers is achieved by either heuristic or an optimization techniques. In either case it is
based on the newly developed tool, the SDCD, of Chapter 13.



Preface xix
A number of chapters in the book are based on a PhD Thesis by Pouyan Pourbeik, ‘Design
and Coordination of Stabilisers for Generators and FACTS devices in Multi-machine Power
Systems’, The University of Adelaide, Australia, 1997. The comprehensive, small-signal
modelling of devices is a major contribution by David Vowles to the development of the
Mudpack software, as is the architecture of - and graphics in - the package. Many of these
developments were based on the earliest versions of the software written by Rainer Korte.

The authors are indebted to the following organizations for their support through R & D
grants for the development of Mudpack software and research in the field of power system
dynamics: Australian Energy Market Operator, Powerlink Queensland, TransGrid (New
South Wales), Transend Networks (Tasmania) and ElectraNet (South Australia).

Finally, we wish to thank our families for their support and patience over the long period of
the gestation of the book.

Michael Gibbard Pouyan Pourbeik David Vowles





List of Symbols, Acronyms 
and Abbreviations

Mathematical symbols

Variables and parameters

(i,j)th element, the ith row and the ith column vector of the matrix A, 
respectively. All elements may have real of complex values.

Inverse, the transpose complex conjugate transpose of the matrix A.

, Real and imaginary parts of a complex number.

I,  0, diag Identity, null and diagonal matrices.

 j;   s ; the Laplace operator.

,  , Time derivative, initial condition, and perturbation of variable 

Diagonal matrix , elements 

A,  B System state and input matrices.
C,  D System output and direct-transmission matrices.

, Mode controllability and observability matrices.

D, Kd Damping coefficients

b Susceptance

,  Field voltage, and voltage proportional to d-axis flux linkages.

aij, ai*
, a

*i, A

A
1–
, A

T
, A

       

ai 

1–

x· x0 x x

X3 x1 x2 x3  D= X3 x1 x2 x3 

B̂ Ĉ
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MB-PSS Multi-band PSS

MIMO Multi-input multi-output

MITC Modal induced torque coefficient

MMPS Multi-machine power system

MS Mode shape

o.c open circuit

O.C.C. Open-circuit characteristic

*op nth order operation impedance (model of a generator)

PF Participation factor

PI Proportional plus integral (compensation)

PID Proportional plus integral plus derivative (compensation)

POD
Power Oscillation Damper (referred to as a FACTS device stabilizer, 
FDS, in the following chapters)

PSS Power system stabilizer

PSS®E Power System Simulator (Software package from PTI)

PTI Power Technologies International.

pu per-unit

P-Vr TF P-Vr transfer function

PWM Pulse Width Modulation

RMS root-mean-square

RI A synchronously rotating network reference frame

RTF Ramp tracking filter

SDCD Stabilizer damping contribution diagram

SI International System of Units 

SISO Single-input single-output

SMIB Single machine infinite bus (system)

STATCOM Static compensator
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Chapter 1

Introduction 

1.1 Why analyse the small-signal dynamic performance of power sys-
tems?

We shall be concerned mainly with the analysis of the dynamic performance and control of
large, interconnected electric power systems in the following chapters. The differential-alge-
braic equations which describe the behaviour of a power system are inherently non-linear.
Among the non-linearities are functional types (e.g. ), product types (e.g. voltage
current), limits on controller action, saturation in magnetic circuits, etc. The general method
of assessing the performance of the system, with all its non-linearities, is through a time-do-
main simulation which reveals the response of the system to a specific disturbance, e.g. a
fault, the loss of a generating unit, line switching. Typically, it may be necessary to conduct
many such studies with disturbances applied in various locations in the system to ascertain
its stability and dynamic characteristics. Even with many such studies, many of the charac-
teristics of the dynamic behaviour may be missed and insights into system performance lost.
In small-signal analysis of dynamic performance of multi-machine systems the stability and
characteristics of the system are readily derived from eigenanalysis and other tools. Further-
more, in such linear analysis the design of controllers and their integration into the dynamics
of plant are facilitated.

Modern linear control system theory contains many powerful techniques, not only for de-
termining the stability and dynamic characteristics of large linear systems, but also for tuning
controllers that satisfy steady-state and dynamic performance specifications. Fortunately

sin  
1



2 Introduction Ch. 1
and importantly, Henri Poincaré [1] showed that if the linearized form of the non-linear sys-
tem is stable, so is the non-linear system stable at the steady-state operating condition at
which the system is linearized. Moreover, the dynamic characteristics of the system at the
selected operating condition can be established from linear control system theory and, as
long as the perturbations are small, the time-domain responses can be calculated. With such
information the design of linear controllers may be undertaken and the resulting controls
embedded in the non-linear system. In practice, if the modelling of the devices is adequate,
small-signal tests involving generator controls, for example, have revealed close agreement
between simulation and test results. Continuously-acting controllers of interest for synchro-
nous generating units are Automatic Voltage Regulators (AVRs), Power System Stabilizers
(PSSs) and speed governors. In a later chapter an analysis of the controls and stabilizers for
FACTS-based devices is conducted; such stabilizers are commonly called a Power Oscilla-
tions Dampers (PODs). Many of the techniques and control concepts are also applicable to
the small-signal analysis of dynamic performance of wind turbine-generators and other tech-
nologies.

1.2 The purpose and features of the book

The main purpose of this book is to introduce the graduate engineer to the concepts and
applications of small-signal analysis and controller design for the enhancement of the dy-
namic performance of multi-machine power systems. To this end, the analyses of the con-
trol and dynamic performance are illustrated by examples based on an interconnected high-
voltage system comprising fourteen generating stations and various types of FACTS devic-
es. An emphasis in the book is on more recent theoretical developments and application to
practical issues which are amenable to small-signal analysis using a comprehensive software
package. In addition, the tools in - and features of - such a software package for analysis and
controller design are illustrated.

The aim and features of the book are illustrated in the following summary.

1. In the following chapters it is assumed that the reader has already been introduced to
the basics of: (i) the steady-state and dynamic performance of power systems [2], [3],
[4], [5], [6], [7], [8] and (ii) control system theory [9], [10]. However, because control-
ler design and tuning are described in later chapters of this book, Chapters 2 and 3
are devoted particularly to those aspects of basic control theory and the associated
analysis and design techniques which are employed in later. Practical insights and lim-
itations in control theory and analysis are emphasized in order to isolate that material
which is important for application in later chapters.

2. For the practical design of robust power system stabilizers (PSSs), a tuning approach
based on the generator P-Vr characteristics, which are a development of the GEP
Method for single generator applications, is applied to multi-machine systems [11],
[12]. The uses of the P-Vr characteristics are (a) analysed in detail in Chapter 5 for a
single generator power system in order to explain the features of the P-Vr Method
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and its limitations; (b) applied in Chapters 9 and 10 to the multi-machine system
over a range of operating conditions.

3. It is shown in Chapters 5 and 10 that the rationale in the tuning of PSSs based on
the P-Vr method is that: 

(i) there are two important components in the PSS transfer function  which are

essentially decoupled for practical purposes 1:

(a) the rotor modes are more-or-less directly left-shifted 2 by the PSS
compensating transfer function  with increase in the PSS damp-

ing gain, k 3;

(b) the extent of the left-shift of the rotor modes is determined by the
damping gain, k;

(c) the incremental left-shifts of the rotor modes are linearly related to
increments in damping gain for changes about the nominal values (typ-
ically  to pu on generator MVA rating) [11];

(ii) the tuning of the PSS is based on a more extreme set of encompassing operat-
ing conditions; 

(iii) the PSS damping gain has special significance: it is also the damping torque
coefficient induced by the PSS on the shaft of the generator. It forms the basis for
the theoretical developments in Chapters 5, 10, 12 to 14.

(iv) the PSS damping gain can be adjusted to ‘swamp out’ any inherent negative
damping torques;

(v) as a result of (i), (ii) and (iv) above, the PSS transfer function  is robust

over the encompassing range of normal and outage operating conditions [12]; 

(vi) the PSS damping gain, when expressed in per unit on generator MVA rating,
is a meaningful quantity, unlike the term “PSS gain” currently used. PSS
damping gains less than 10 pu are low, are normal between 10 and 30 pu, and
greater than 30 pu tend to be high.

As opposed to the application of advanced control techniques, the signifi-
cance of the above rationale is that the natural characteristics of the generator
and the system are employed and thus meaningful insight and explanations
for the dynamic behaviour of the system can be established. 

1. The features described in items (i)(a) and (i)(b) are illustrated for six operating conditions 
in Figure 10.26

2. By ‘direct left-shift’ is implied that the mode shift is , . As explained in
Chapter 13, deviations from the ‘direct left-shift’ of modes are mainly due to interactions
between multi-machine PSSs and non-real generator participation factors.

3. The ‘damping’ gain of the PSS is defined in Section 5.4.

kG s 

– j0  0
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4 Introduction Ch. 1
4. Methods other than the P-Vr method for the design of PSSs, namely the commonly-
used Method of Residues [13] and the GEP Method [14], are described in Chapter 6.
By means of an example the merits, deficiencies and limitations of the latter Meth-
ods and the P-Vr approach are examined [15]. (See item 4 in Section 6.7.)

5. Various concepts and methods for the tuning of automatic voltage regulators
(AVRs) are introduced and examined in Chapter 7. Some simplifications in the
approaches to the commonly-used techniques are suggested.

6. A more fundamental and detailed examination is undertaken - than previously con-
ducted - to explain, and understand more fully, not only the performance of certain
devices but also the theory behind certain tools. Examples are: (a) the performance
of the ‘Integral of accelerating power PSS’ in Chapter 8; (b) the characteristics of two
tools, Mode Shapes and Participation Factors in Chapter 9 (these are used in the
analysis of the performance of multi-machine systems).

7. The tuning of power oscillation dampers for FACTS devices (PODs, also referred to
as FACTS Device Stabilizers (FDSs)) is described in Chapter 11. Some of the prob-
lems encountered in the design are revealed in the case of a multi-machine system
for a wide range of operating conditions [16], [17].

Due to the short-comings of existing techniques for the tuning of FACTS Device Sta-
bilizers, their robustness is more difficult to achieve compared the tuning of PSSs for
robustness (see item 3 above). 

8. The concept, theory, and calculation of Modal Induced Torque Coefficients
(MITCs) are described in Chapter 12. In this chapter the synchronizing and damping
torques induced on a generator by both PSSs and FDSs at the modal frequencies are
explained; this chapter provides the theoretical basis for Chapter 13 [16], [17].

9. The interactions between, and effectiveness of, PSSs and FDSs in a multi-machine
power system are analysed in Chapter 13. A valuable aid in establishing the relative
effectiveness of stabilizers are the Stabilizer Damping Contribution Diagrams
(SDCDs) [18]. Extending the concepts introduced in Chapter 13 the SDCDs form a
basis for the heuristic coordination of power system stabilizers and FACTs device
stabilizers. Both the latter approach as well as an optimization approach based on
linear programming are illustrated in Chapter 14 and [20]. 

10. A comprehensive set of the various small-signal models of synchronous generators
and FACTS devices are provided in Chapter 4. These models are intended to be
embedded in a set of differential and algebraic equations (DAEs) which are
employed to take advantage of sparsity in the system equations [21], [22].

11. The practical theme throughout this book is based on consulting projects for indus-
try and queries raised by industry on practical problems that they have encountered.
Many of the queries relate to some lack of understanding of the theoretical or practi-
cal backgrounds to the issues raised.
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An aim of the design of controllers is to enhance the damping of the rotor modes of oscil-
lation, either to stabilize unstable oscillations or to ensure that the damping criteria for the
power system are satisfied. Therefore the concepts of synchronizing and damping torques
[23] - which operate on the shafts of generating units - are introduced in Section 1.3, fol-
lowed by the concepts and definitions of stability in Section 1.4.

1.3 Synchronizing and damping torques

It is assumed that the reader is generally familiar with the basic concepts of power system
stability, such as the equal area criterion; these concepts are covered in many texts [2] - [7].
However, let us consider a somewhat simplistic scenario which may reveal not only the na-
ture of dynamic interactions between a generator rotor and a power system following a dis-
turbance but also the actions that occur within the rotating system of the generator itself.

Assume a synchronous generator is connected through its transformer by two parallel trans-
mission lines to a receiving-end transformer and a large system. This scenario is summarized
in Figure 1.1(a). 

 

Figure 1.1 (a) Single-machine infinite-bus power system. (b) Power-angle characteristics.
(c) Expanded view about , Pe0. 
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6 Introduction Ch. 1
The per unit voltage behind transient reactance of the generator is E, and the large system
is represented by an infinite bus, voltage V per unit. The reactance x1 comprises the transient
and transformer reactances of the generating unit; x2 represents the reactances of the receiv-
ing-end transformer plus the Thévenin equivalent of the large system. The effective reac-
tance of the parallel lines is xL; their series resistance and shunt capacitance are negligible.
All reactances are in per-unit (pu) on the generator MVA rating. The direction of current
flow I is consistent with the generator producing power. The system is assumed to be loss-
less.

Because the power flow is from the generator to the large system, the rotor of the generator
leads that of the infinite bus by an angle  (rad). The power output of the generator is 

   (per unit). (1.1)

The associated power-angle curve is shown in Figure 1.1(b). The power output of the gen-
erator increases from zero at zero rotor angle and reaches a maximum value of 

 (pu).

Let us assume that (i) when two lines are in service an equilibrium or steady-state condition
exists in which the power output of the prime-mover Pm0 is equal to the electrical power
output of the generator, Pe0 , at synchronous speed and the rotor angle is ; (ii) the power
output of the prime-mover remains constant during a disturbance on the electrical system;
(iii) at time zero, one of the two lines is opened. Because the effective reactance of the lines
is now 2xL , it follows from (1.1) that immediately after the disturbance the electric power
output of the generator falls to Pt at  on the one-line-in power-angle characteristic shown
in Figure 1.1(c). The net torque acting on the shaft of the generator will cause it to accelerate
with respect to the system. The rotor angle of the generator, , immediately starts to in-
crease from  on the latter characteristic thereby increasing the electrical power flow from
the generator. Once the electrical power output exceeds the prime-mover power output Pm0

at  the generator decelerates but, due to the inertia of the rotor, the rotor angle continues
to increase until the speed falls to synchronous. At this time the electric power output and
the rotor angle are at their peak values, Pp and . However, the net decelerating torque con-

tinues acting on the shaft to reduce both the electrical power flow and the rotor angle along
the lower characteristic until zero net accelerating torque once more arises at  in
Figure 1.1(c). Due to inertia, the electric power output and rotor angle continue to decrease
and reach their minimum values at Pt and  at synchronous speed. Thereafter the process
repeats itself with the electric power output and rotor angle oscillating about Pm0,  be-

tween peak and trough values Pp,  and Pt, , respectively.


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In the absence of damping, these oscillations will continue indefinitely. Synchronism in this
scenario is maintained by the electrical power flow, given by (1.1), between the generator
and the system, resulting in a synchronizing torque  being produced on the shaft of the
generator. For the oscillations to decay away a damping torque must also be established on
the rotor of the generator, typically by means of a PSS. The inherent damping torques acting
on the shaft of the generator are typically associated with eddy currents flowing in the rotor
iron and/or the damper (amortisseur) windings installed on the rotor, together with wind-
age, friction and other losses.

Throughout the analysis which follows in the later chapters it will be shown that the pro-
duction of sufficient positive synchronizing and damping torques on the shaft of a generator
is a continuing requirement for stable dynamic performance. Following a disturbance, the
perturbation in the electromagnetic torque of a synchronous machine, either a generator or
a motor, can be resolved into the two components defined as follows:

1. synchronizing torque component: a torque in phase with rotor angle perturbations,
and 

2. damping torque component: a torque in phase with rotor speed perturbations.

Those familiar with the equal area criterion will recognize that for the scenario shown in
Figure 1.1(b) the power system is stable if positive damping torques are present. What are
implied by power system stability and some associated concepts are reviewed in the follow-
ing section.

1.4 Definitions of power system stability

“Power system stability is the ability of an electric power system, for
a given initial operating condition, to regain a state of operating equilib-
rium after being subjected to a physical disturbance, with most system
variables bounded so that practically the entire system remains intact.”
[24].

This definition is intended to apply to an interconnected system in its entirety, however, it
also includes the instability and timely disconnection of an element such as a generator with-
out the system itself becoming unstable.

There are three main categories of power system stability: rotor-angle stability, voltage sta-
bility and frequency stability. Ensuring stability in all its categories is the primary focus of
the design of power system controllers. Such controllers are designed to ensure, through the
specifications on the dynamic performance of the system, that adequate margins of stable
operation are attained over a range of normal operating conditions and contingencies.

Pe t  
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In the following chapters we are concerned with rotor-angle stability which is defined as fol-
lows [24]:

“Rotor angle stability refers to the ability of synchronous machines of
an interconnected power system to remain in synchronism after being
subjected to a disturbance. It depends on the ability to maintain/restore
equilibrium between electromagnetic torque and mechanical torque of
each synchronous machine in the system. Instability that may result oc-
curs in the form of increasing angular swings of some generators leading
to their loss of synchronism with other generators.”

Rotor-angle stability, and oscillations of the rotors of synchronous generators, are essentially
governed by the equations of motion of the unit; the relevant versions of the equations are
derived in Chapter 4. In terms of the per unit rotor speed , synchronous speed  and

the per unit prime-mover torque and the torque of electromagnetic origin, , the

equations of motion are given by (4.58) and (4.59) which are repeated below: 

 and

.

.H is the inertia constant (MWs/MVA) of the generating unit and D (pu torque/pu speed)
is the damping torque coefficient. From the above equation it is apparent that a steady-state
condition exists when the torques are in balance and thus there is no change in rotor angle
or in speed about synchronous speed. However, a disturbance on an element of the electrical
system will result in an imbalance in the torques and cause the rotor to accelerate or decel-
erate, in turn causing the rotor angle to increase or decrease. The shaft equation is linear so
it is applicable to large and small disturbances. For large disturbances the term ‘transient sta-
bility’ is defined as follows [24]:

Large-disturbance rotor angle stability or transient stability, as it
is commonly referred to, is concerned with the ability of the power sys-
tem to maintain synchronism when subjected to a severe disturbance,
such as a short circuit on a transmission line.

On the other hand, rotor-angle stability for small disturbances is defined as [24]:

Small-disturbance (or small-signal) rotor-angle stability is con-
cerned with the ability of the power system to maintain synchronism
under small disturbances. The disturbances are considered to be suffi-
ciently small that linearization of system equations is permissible for
purposes of analysis.

 0

Tm and Tg

p b  0– =

p 1
2H
------- Tm Tg– D  0– – =
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Associated with transient stability are severe events or disturbances such as system faults,
the opening of a faulted line - or a heavily loaded circuit, the tripping of a large generator,
the loss of a large load. As indicated in Section 1.1, for transient stability analysis the dynamic
behaviour of certain devices are modelled by their non-linear differential and algebraic equa-
tions. The presence of the various types of non-linearities in the equations results in tran-
sient stability analysis, in practice, being conducted by simulation studies in the time domain.
The basis of such analyses is a power flow study, an equilibrium or steady-state operating
condition to which the relevant disturbance is applied.

Stable, large-disturbance performance of a multi-machine power system depends on ade-
quate synchronizing power flows being established between synchronous generators to pre-
vent loss of synchronism of any generator on the system. High gain excitation systems are
employed to increase synchronizing power flows and torques. The decay of oscillations, not
only following the initial transient (usually the first swing) but also following cessation of
limiting action by controllers, is dependent on the development of damping torques of an
electro-magnetic origin acting on the generator rotors. Damping torques may be degraded
significantly by high gain excitation systems such that, if the net damping torque is negative,
instability occurs. To counter this type of instability, positive damping torques can be in-
duced on generators by installing continuously-acting controllers known as stabilizers.

Small-disturbance or small-signal rotor-angle stability is associated with disturbances
such as the more-or-less continuous switching on and off of relatively small loads. The anal-
ysis of small-signal rotor-angle stability is conducted for a selected steady-state operating
condition about which the non-linear differential and algebraic equations and other non-lin-
earities are linearized. This process produces a set of equations in a new set of variables, the
perturbed variables. Important features of small-signal analysis are: (i) as shown by Poincaré,
information on the stability of the non-linear model at the selected operating condition,
based on the stability of the linearized system, is exact; and (ii) all the powerful tools and
techniques in linear control system analysis are available for the design and analysis of dy-
namic performance. The design of power system stabilizers for inducing damping torques
under normal and post-contingency conditions is conducted using such facilities.

Two forms of spontaneous small-signal instability may be: (i) a steady increase in rotor angle
due to inadequate synchronizing torque, or (ii) rotor oscillations of increasing amplitude due
to insufficient damping torque. Most generally in practice, however, the latter is of concern
in small-signal rotor-angle stability analysis.

While we are mainly interested in small-signal rotor-angle stability in the following chapters,
the definitions of voltage and frequency stability are quoted from [24] for information and
for the sake of completeness.

Voltage stability refers to the ability of a power system to maintain
steady voltages at all buses in the system after being subjected to a dis-
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turbance from a given initial operating condition. It depends on the abil-
ity to maintain/restore equilibrium between load demand and load
supply from the power system. Instability that may result occurs in the
form of a progressive fall or rise of voltages of some buses.

(In system planning studies it is occasionally found that analyses which suggested rotor angle
instability are, in fact, associated with voltage instability; at times, it may be difficult to dis-
criminate between them.)

Frequency stability refers to the ability of a power system to maintain
steady frequency following a severe system upset resulting in a signifi-
cant imbalance between generation and load. It depends on the ability
to maintain/restore equilibrium between system generation and load,
with minimum unintentional loss of load. Instability that may result oc-
curs in the form of sustained frequency swings leading to tripping of
generating units and/or loads.

1.5 Types of modes.

The term ‘mode’ is used to refer to the natural or characteristic response to a disturbance of
the small-signal dynamics of the power system. Such modes may be oscillatory or monoton-
ic and in the time domain are of the forms:

   or   , respectively.

A mode, and its typical frequency range, is usually identified with a phenomenon of one of
the following types.

• Global Mode. This is a low-frequency mode of 0.05 - 0.2 Hz (approx. 0.3 - 1.2 rad/s) in
which all generating units move in unison. Such a phenomenon is observed, for exam-
ple, in isolated systems connected to an AC system through a HVDC link [25]. 

• Low-frequency mode. This is a localized oscillatory mode of frequency 0.01 - 0.05 Hz
(approx. 0.05 - 0.3 rad/s). For example, they have been associated with interactions
between the water column and the governors on hydro-generators [26], [27].

• Local-area mode. This is an oscillatory electro-mechanical mode and is usually associ-
ated with the rotors of synchronous generating units 1 in a station swinging against the
rest of the power system, or against electrically-close generating station(s). Its fre-
quency range is normally in the range 6 - 12 rad/s (1 - 2 Hz).

1. By a ‘synchronous generating unit’ is implied the synchronous generator, its prime mover 
and their controls.

y1 t  A1e
1t

1t 1+ sin= y2 t  A2e
2t

=
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• Intra-station or intra-plant mode. This oscillatory electro-mechanical mode is associated
with units within a generating station swinging against each other. The range of modal
frequencies is normally 10 - 15 rad/s (1.5 - 2.5 Hz).

• Inter-area mode. This is an oscillatory electro-mechanical mode and is associated with
a group of generating stations in one area of the system swinging against a group of
stations in one or more other areas of the system. Inter-area modes are usually associ-
ated with (possibly) weak interconnecting ties between geographically separated areas
of the system. The range of modal frequencies is typically 1.5 - 6 rad/s (0.25 - 1.0 Hz).

• Torsional modes. These modes are normally associated with oscillations between the
rotating masses on the prime-mover - generator shaft. The frequencies of these
modes are normally greater than 50 rad/s (8 Hz) for nuclear units, and greater than 95
rad/s (15 Hz) for other small and large generating units.

• Control modes. These modes may be oscillatory or monotonic and may be identified
with the controls of generating units or FACTS devices.

A number of the above modes are referred to as the ‘electro-mechanical’ modes. As stated
earlier the associated oscillations are the characteristic or natural modes of the system, the
frequency and damping of which generally change with the operating conditions, i.e. chang-
es in the system configuration and the loading conditions. Such changes in operating condi-

tion may cause the system to drift - or be forced 1- towards a small-signal stability limit.
Instability of torsional modes caused by interactions with other controllers or other devices
has been observed [2].

In recent times it has been necessary to operate power systems closer to stability limits be-
cause of environmental and economic considerations. Furthermore, lightly damped inter-
area modes are becoming more common since interconnections between power systems are
also increasing. This is because interconnections allow adjacent systems (i) to share spinning
reserve, (ii) to reduce costs by better utilisation of the more efficient generating stations, and
(iii) to reduce the environmental impact by using the most efficient units, thereby facilitating
the postponement of investment in new generation. Methods are continually being sought
for increasing the power transfer over existing (possibly weak) interconnections thereby re-
ducing the damping of the already lightly-damped modes. Consequently, ensuring that the
damping of modes of rotor oscillation in power systems provides adequate margins of sta-
bility has been - and still is - of concern to system planners and operators.

A most important feature of small-signal analysis is that it provides an understanding of the
underlying modal structure of a power system and gives insights into a system's dynamic
characteristics that cannot easily be derived from time-domain simulations. For example, in
the time-domain response following a major fault shown in Figure 10.32 only three of the
thirteen modes appear to be excited; the nature and location of the fault does not signifi-
cantly excite the local-area modes outside the faulted area at all. Understanding the nature

1. In the aftermath of a major disturbance on the system.
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of the modal behaviour as revealed from small-signal analysis yields a synoptic view of the
system characteristics which would require many large-signal studies of faults and other dis-
turbances in different locations to gain similar, but not exact, information.

1.6 Synchronous generator and transmission system controls

In Figure 1.2 are shown the basic controllers and control signals for a prime mover, synchro-
nous generator and static VAR compensator (SVC). These are the basic devices with which
we will be concerned in later chapters in the context of the design of controllers, however,
other Flexible Alternating Current Transmission System (FACTS) devices such as Thyristor
Controlled Series Capacitors (TCSCs), HVDC transmission links, and their controls will also
be considered [28], [29].

The control objectives are to ensure that system voltages and frequency lie within specified
ranges during normal and abnormal operating conditions. For system voltage control this is
achieved by adjusting the voltage references (or set points) to appropriate levels on genera-
tors and SVCs, by on-load tap-changing transformers, or by injecting or absorbing reactive
power by switching of capacitor banks or reactors. System frequency control may be imple-
mented in several ways (e.g. through generator dispatch by adjustment of the speed or load
set-points on governors). For the purpose of small-signal stability analysis our focus is on
the dynamic behaviour of continuously-acting control systems. Discontinuous controls
such as transformer tap-changers, or switching operations of capacitor banks or reactors,
typically incorporate dead-bands, hysteresis, and time delays. For small-signal stability anal-
ysis at a given operating condition, the outputs of discontinuous controllers are usually as-
sumed to be fixed at their initial steady-state values. This is legitimate because for small-
disturbances the changes in the discontinuous controller inputs are assumed to be negligibly
small and insufficient to trigger changes in the controller output.
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Figure 1.2 Basic controls for a synchronous generating unit and a SVC. Other reactive 
and voltage controls include other types of FACTs devices, reactors and capacitor banks.

When investigating the small-signal performance of a system, not only is its behaviour under
normal conditions of interest but also is its performance in the immediate post-fault condi-
tion before tap-changer and reactive switching operations have had time to occur and also
when all such operations have been completed following the disturbance. Any investigations
would include establishing if the margin of stability for such conditions is adequate. 

1.7 Power system and controls performance criteria and measures.

1.7.1 Power system damping performance criteria
The criteria for small-signal damping performance of the power system are the more rele-

vant in the analyses in the following chapters. These measures take different forms 1, name-
ly:

• The damping ratios of the dominant local or inter-area modes of rotor oscillation
should exceed a specified value, e.g. 0.03 or 3%.

• The time constant of the dominant mode should less than a nominated value. (The
time constant of the mode is time taken for the mode to decay to 37% of its initial
value). 

1. Values for these measures used by a number of organizations are given in a 1996 report 
[30].
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• The settling time of the dominant mode should be shorter than a specified value. For
example, depending on the definition, the mode will decay to within 10%, 5% or 2%
of its initial value within 2.3, 3 or 4 times the time constant of the mode.

As an example, a slightly different form of the criterion used in South-Eastern Australia is,
as stated in detail in the National Electricity Rules [31]:

“Damping of power system oscillations must be assessed for planning
purposes according to the design criteria which states that power system
damping is considered adequate if after the most critical credible con-
tingency event, simulations calibrated against past performance indicate
that the halving time of the least damped electromechanical mode of os-
cillation is not more than five seconds.

“To assess the damping of power system oscillations during operation,
or when analysing results of tests ..... , the Network Service Provider
must take into account statistical effects. Therefore, the power system
damping operational performance criterion is that at a given operating
point, real-time monitoring or available test results show that there is
less than a 10 percent probability that the halving time of the least
damped mode of oscillation will exceed ten seconds, and that the aver-
age halving time of the least damped mode of oscillation is not more
than five seconds.”

The above criteria imply that (i) the damping constant of the mode should be less than
0.139 Np/s for a halving time of 5 s, and (ii) for an inter-area mode of 2 rad/s (0.32 Hz),
say, the damping ratio should be greater than 0.07.

1.7.2 Control system performance measures
The measures commonly quoted to characterize the performance of a control system are
(i) in the time domain: rise time, percentage overshoot, settling time, steady-state error; (ii) in
the s-domain: damping ratio, damping constant; (iii) in the frequency domain: phase and
gain margins, gain-crossover frequency, bandwidth. However, these measures are deter-
mined not only by the controller(s) but also by the device under control; such measures are
considered in more detail in Chapter 2.

For specific control systems such as synchronous generator excitation systems, governing
systems, etc., detailed performance criteria are the subject of various technical standards. For
example, in the case of excitation systems, two sources of relevant information are (i) the
IEEE Std. 421.2-1990 [32] which is a guide that presents dynamic performance criteria, defi-
nitions, and test objectives for excitation control systems as applied in power systems; (ii)
Clause S5.2.5.13 “Voltage and reactive power control” of the Australian National Electricity
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Rules [31] which specify dynamic performance criteria for excitation systems of generation
connected to the Australian grid.

1.8 Validation of power system models

Power system simulations for the purpose of detailed dynamic performance analysis are re-
quired for a variety of purposes including real-time operational control (e.g. dynamic secu-
rity assessment), operational and long-term planning, controller design and tuning. If the
results of such dynamic simulations are to be trusted then the models of the generating
plants and their controls, the system loads and the interconnecting network, on which on
which the simulations are based must be accurate. In a number of jurisdictions, to achieve
the required level of modelling accuracy it is required that field tests be performed to estab-
lish the parameters of generating plants and their controls, and to verify that the model ac-
curately represents the dynamic performance of the plant at its point of connection to the
network. For example, in Australia the Generating System Model Guidelines [33] - which
are enforceable under the National Electricity Rules [31] - stipulate requirements for steady-
state, short-circuit and dynamic models of generating plant that are connected to the grid.
In 2007 the Western Electricity Coordinating Council (WECC) in the United States similarly
developed and maintained guidelines for generating system technical data, testing and model
validation [34]. An IEEE Task Force published guidelines for validation testing of generator
models for rotor-angle stability analysis  [35]. Models for rotor-angle stability analysis are
typically required to be accurate in the frequency range from DC to at least 5 Hz (31.4 rad/
s). In some jurisdictions the minimum accuracy requirements are expressed quantitatively;
in others engineering judgment is applied on a case-by-case basis to assess the accuracy of
models.

In addition to validating the models of individual generating plant and control systems, sys-
tem wide tests are typically undertaken from time to time to establish the validity of the in-
tegrated system models. Furthermore, the results of such tests may be used to calibrate the
system models. Such system tests may be staged with the intent of exciting key system dy-
namic responses, for example, by switching transmission circuits, energizing braking resis-
tors. System disturbances may be unstaged with important system dynamic responses being
excited, say, by a system fault. Recently, on-line modal estimation schemes have also been
employed to assist in validating and/or calibrating small-signal models of power systems
[36].

1.9 Robust controllers

In what follows it is assumed - based on some design procedure or technique - that the con-
figuration and parameter values of a robust controller are fixed, i.e. gain scheduling, condi-
tional path switching or some such form of variation is not employed. For the purposes of
the analyses in later chapters a fixed-parameter controller is said to be robust if over the de-
fined range of modal frequencies, and over a prudently-chosen, encompassing range of N
and N-1 operating conditions, the stabilizers induce adequate positive levels of damping and
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synchronizing torques on the shafts of the generators such that the power system is stable
subject to the relevant stability margins. (See Section 1.2, item 3)   (Note: as is shown in
Chapter 13, for some inter-area modes the stabilizer may degrade the damping torques on
other generators.)

1.10 How small is ‘small’ in small-signal analysis?

For the purpose of small-signal analysis it is often convenient or necessary to express the
shaft equation for the synchronous machine in terms of the perturbations in the per-unit
mechanical and airgap torques  and , acting on the shaft. The equation for the

small-signal motion of the shaft, evaluated at a steady-steady operating condition, is derived
in (4.59), and is expressed in a commonly-used per-unit form as:

,   

where  is the per-unit perturbation in the angular speed of the shaft, H is the inertia con-
stant of the prime mover, shaft and generator (MWs/MVA), and D is a damping coefficient
(pu torque/pu speed perturbation). It should be noted that for small perturbations in speed:
(i)  and  (per-unit); (ii) the perturbation in the electrical power out-

put of the generator ( ) is related to the air-gap power ( ) by 

where  is the stator resistance (per-unit),  and  are the steady-state and the perturba-

tions in stator current (per-unit), respectively. Typically,  is very small and consequently

.

In using the linearized equations for the generator and other elements of the power system,
or when conducting field tests on devices, it is necessary to decide for what size of distur-
bance the system response can deemed to be linear. For example, for what peak-peak swing
in electrical power output is the generator response essentially small signal? For the particu-
lar application an analysis may be required to determine for what size perturbations the per-
formance of the system can be considered ‘small signal’. 

In the context of the ‘small-signal analysis’ of the dynamic performance of power systems
the question often arises in practice ‘how small is small’. As mentioned earlier, we know
from Poincaré that the non-linear model of the power system at a selected operating condi-
tion is stable if its linearized system at that operating condition is stable. However, informa-
tion on the perturbations in the variables in the linearized system becomes exact only as their
magnitudes tend to zero. In practical applications such as staged tests, this implies that the
magnitude of any perturbations must be kept ‘small’, e.g. for step-changes in the reference
input signal for the testing of a closed-loop control system whose design is based on linear
control theory.

For illustrative purposes consider the classical power-angle characteristics, treated earlier, of
a simple transmission line, reactance  in per-unit. The non-linear power-angle function is
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 , (1.2)

in which  is the power (per-unit) transmitted from the sending to receiving end,  is the
difference in voltage angle (rad) between the sending- and receiving-end buses;  and 
are the respective voltage magnitudes (per-unit). For convenience we define

.

For small-disturbances the non-linear power-angle function is linearized about an initial
steady-state operating point  employing, for example, the method used in
Section 3.3. The resulting small-signal characteristic is described by:

per unit at . (1.3)

Let . In Figure 1.3 two regions of linear operation on the non-lin-
ear characteristic are shown. For these regions the steady-state operating conditions are re-
spectively P0 = 500 MW, =  and P0 = 940 MW, = . The criterion employed

for a linear range is, say, that the maximum power deviation between the linear and non-
linear characteristics is less than 8.5 MW.

Figure 1.3 Regions of the power-angle characteristic about  and  for which 
peak to peak oscillatory swings in power and rotor angle can be considered linear. 

Over these ranges the maximum deviations between the linear and non-linear power 
characteristics are less than 8.5 MW (i.e. 0.0085 pu)
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Based on our criterion, for a continuous oscillatory angular swing of  peak-peak about
the steady-state angle of ; the power swing of 300 MW peak-peak is ‘linearly related’ to
the angular swing. Similarly, at the steady-state angle of  the maximum power swing is
restricted to 90 MW peak-peak and is ‘linearly related’ to a smaller angular swing of 
peak-peak. Clearly, under more stressed conditions the range of perturbations over which
the system performance can be considered more-or-less linear is much smaller. Therefore,
depending on the application and the type of disturbance, engineering judgement - and anal-
ysis - is required to establish ‘how small is small’.

1.11 Units of Modal Frequency

Throughout this book the preferred unit of frequency  of the mode  is in radian/
second (rad/s) and the damping constant  is in Neper/second (Np/s). The damping ratio
is defined in Section 2.8.2.1 as: 

 if , say.

Knowledge of the value of  is important, in particular the system is stable if  and
unstable if . Moreover, the value of  not only provides a measure of the margin of
stability but yields the settling time of the modes, e.g. the time for the envelope of an oscil-
latory mode to decay to a value of 5% of the final value is three time constants, .

For lightly damped modes it is useful to remember that if , and if  is in rad/
s, then .

In reports and papers of some organizations, it is common to characterize a mode by its val-
ues of  and  (in Hz) rather than  (in Np/s) and  (in rad/s). Therefore, in order to
estimate (mentally) the value of  for a lightly damped stable mode it is necessary multiply

 (in Hz) by . For example, if  and  Hz, then  rad/s and
 Np/s; it may then be considered that the associated margin of stability of

 Np/s is too low.

If the frequency is specified in rad/s an approximate value is sometimes given in Hz, and
vice-versa; for example  rad/s or 1 Hz.

1.12 Advanced control methods

It should be emphasized that, in this book, techniques for the analysis and design of con-
trollers employ the ‘inherent’ characteristics of the components of the power system, for ex-
ample the ‘P-Vr’ characteristic of the generator for the tuning of its power system stabilizer.
These techniques are mainly based on the so-called ‘classical’ control theory. Other tech-
niques, sometimes called ‘Advanced Control Methods’ [37], tend not to utilize the ‘inherent’
system characteristics and in the case of large, multi-machine systems advanced methods of
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control have had limited application in practice to date. Nevertheless, combining the ideas
in advanced control methods, and utilizing the ‘inherent’ characteristics of the system and
its devices, may not only be a fruitful line of research but may also lead to practical out-
comes.

1.13 References

[1] Jules Henri Poincaré, b. 1853, d. 1912. See web references to ‘Poincaré maps and sta-
bility’.

[2] P. Kundur, Power system stability and control. New York: McGraw-Hill, 1994.

[3] J. J. Grainger, and W. Stevenson, Power system analysis, McGraw-Hill Education -
Europe, 1994.

[4] A. R. Bergen and V. Vittal, Power system analysis. Second Edition, Prentice Hall,
1999.

[5] H. Saadat, Power system analysis. Third Edition. PSA Publishing, 2010.

[6] J. D. Glover, M. S. Sarmi, and T. Overbye, Power system analysis and design. Prentice-
Hall, 1998.

[7] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Prentice Hall, New
Jersey, 1998.

[8] L. L. Grigsby (Ed.), Power System Stability and Control, Electric Power Engineering
Handbook, 3rd Edition, CRC Press, Taylor & Francis Group, Boca Raton, 2012.

[9] G. F. Franklin, J. D. Powell and Abbas Emami-Naeini, Feedback Control of Dynamic
Systems, Prentice Hall, 6th Edition, Oct. 2009.

[10] R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice Hall, 12th Edition,
July 2010.

[11] M. J. Gibbard, “Coordinated design of multimachine power system stabilisers based
on damping torque concepts,” IEE Proceedings C Generation, Transmission and Dis-
tribution, vol. 135, pp. 276-284, 1988.

[12] M. J. Gibbard, “Robust design of fixed-parameter power system stabilizers over a
wide range of operating conditions,” Power Systems, IEEE Transactions on, vol. 6, pp.
794-800, 1991.

[13] F. L. Pagola, I. J. Perez-Arriaga, and G. C. Verghese, “On sensitivities, residues and
participations: applications to oscillatory stability analysis and control,” Power Sys-
tems, IEEE Transactions on, vol. 4, pp. 278-285, 1989.

[14] E. V. Larsen and D. A. Swann, “Applying power system stabilizers: Part I – III,” Pow-
er Apparatus and Systems, IEEE Transactions on, vol. PAS-100, pp. 3017–3046, June
1981.



20 Introduction Ch. 1
[15] M. J. Gibbard and D. J. Vowles, “Reconciliation of methods of compensation for
PSSs in multimachine systems,” Power Systems, IEEE Transactions on, vol. 19, pp.
463-472, 2004.

[16] P. Pourbeik and M. J. Gibbard, “Damping and synchronizing torques induced on
generators by FACTS stabilizers in multimachine power systems,” Power Systems,
IEEE Transactions on, vol. 11, pp. 1920-1925, 1996.

[17] P. Pourbeik, M. J. Gibbard, and D. J. Vowles, “Proof of the Equivalence of Residues
and Induced Torque Coefficients for Use in the Calculation of Eigenvalue Shifts,”
Power Systems, IEEE Transactions on, IEEE, vol. 22, pp. 58-60, 2002.

[18] M. J. Gibbard, D. J. Vowles, and P. Pourbeik, “Interactions between, and effective-
ness of, power system stabilizers and FACTS device stabilizers in multimachine sys-
tems,” Power Systems, IEEE Transactions on, vol. 15, pp. 748-755, 2000. 

[19] M. J. Gibbard and D. J. Vowles, “Reconciliation of methods of compensation for
PSSs in multimachine systems,” Power Systems, IEEE Transactions on, vol. 19, pp.
463-472, 2004.

[20] P. Pourbeik and M. J. Gibbard, “Simultaneous coordination of power system stabi-
lizers and FACTS device stabilizers in a multimachine power system for enhancing
dynamic performance,” Power Systems, IEEE Transactions on, vol. 13, pp. 473-479,
1998.

[21] K. E. Brennan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, Society for Industrial and Applied Math-
ematics, Philadelphia, 1996.

[22] I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, 2003.

[23] F. P. de Mello and C. Concordia, “Concepts of Synchronous Machine Stability as Af-
fected by Excitation Control,” Power Apparatus and Systems, IEEE Transactions on,
vol. PAS-88, pp. 316-329, 1969.

[24] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, “Definition and
Classification of Power System Stability”, Power Systems, IEEE Transactions on, vol.
19, no. 2, May 2004, pp. 1387 - 1401.

[25] R. Grondin, I. Kamwa, G. Trudel, L. Gerin-Lajoie, and J. Taborda, “Modeling and
closed-loop validation of a new PSS concept, the multi-band PSS,” in Power Engi-
neering Society General Meeting, 2003, IEEE, 2003, p. 1809 Vol. 3.

[26] F. R. Schleif, G. E. Martin, and R. R. Angell, “Damping of System Oscillations with
a Hydrogenerating Unit,” Power Apparatus and Systems, IEEE Transactions on, vol.
PAS-86, pp. 438-442, 1967. 



Sec. 1.13 References 21
[27] H. V. Pico, J. D. McCalley, A. Angel, R. Leon, and N. J. Castrillon, “Analysis of Very
Low Frequency Oscillations in Hydro-Dominant Power Systems Using Multi-Unit
Modeling,” Power Systems, IEEE Transactions on, vol. 27, pp. 1906-1915, 2012.

[28] Narian G. Hingorani and Laszlo Gyugyi, Understanding FACTS: concepts and technol-
ogy of flexible AC transmission systems, IEEE Press, Piscataway, NJ, 2000. 

[29] Xiao-Ping Zhang, C. Rehtanz and B. Pal, Flexible AC Transmission Systems: Modelling
and Control, Springer-Verlag Berlin Heidelberg, 2012.

[30] CIGRE Task Force 07.01.38, Analysis and Control of Power System Oscillations,
CIGRE Technical Brochure No. 111, Dec. 1996.

[31] Australian Energy Market Commission, National Electricity Rules, Vers. 61, March
2014.

[32] “IEEE Guide for Identification, Testing, and Evaluation of the Dynamic Performance of
Excitation Control Systems,” IEEE Std. 421.2-1990, 1990.

[33] Australian Energy Market Operator, Generating System Model Guidelines, Planning
Department, Doc. No. 118-0009,Vers. No. 1.0, Feb. 2008.

[34] “WECC Guideline: Generating Facility Data, Testing and Model Validation Require-
ments,” Western Electricity Coordinating Council, 13 July 2013. Available: http://
www.wecc.biz/library/WECC%20Documents/Documents%20for%20Genera-
tors/Generator%20Testing%20Program/WECC%20Gen%20Fac%20Test-
ing%20and%20Model%20Validation%20Rqmts%20v%207-13-2012.pdf.

[35] L. Hajagos, J. Barton, R. Berube, M. Coultes, et al., “Guidelines for Generator Stabil-
ity Model Validation Testing,” in Power Engineering Society General Meeting, 2007.
IEEE, pp. 1-16.

[36] Juan Sanchez-Gasca (Task Force Chairman), “Identification of Electromechanical
Modes in Power Systems”, Special Publication, TP462, Task Force on Identification of
Electromechanical Modes. Power System Stability Subcommittee of the Power Sys-
tem Dynamic Performance Committee of the IEEE PES, July 2012, 282 pages.

[37] B. Pal and B. Chaudhuri, Robust Control in Power Systems, Springer Science+Business
Media, Inc., New York, 2005.





Chapter 2

Control systems techniques for 
small-signal dynamic performance analysis

2.1 Introduction

2.1.1 Purpose and aims of the chapter
As emphasized in the Section 1.1 the equations describing an electric power system and its
components are inherently non-linear. The equations contain non-linearities such as the
product of voltage and current, functional non-linearities such as sine and cosine, and non-
linear characteristics such as magnetic saturation in machines. The analysis of dynamic sys-
tems with non-linearities is complex, particularly for power systems which are large and have
a variety of non-linear elements. On the other hand, in the case of linear control systems,
there is a comprehensive body of theory and a wide range of techniques and tools for as-
sessing both the performance and stability of dynamic systems. 

For small-signal analysis of power systems, the non-linear differential and algebraic equa-
tions are linearized about a selected steady-state operating condition. A set of linear equa-
tions in a new set of variables, the perturbed variables, result. For example, on linearization,
the non-linear equation  becomes a linear equation in the per-

turbed variables, , at the initial steady-state operating

condition . The constant coefficients  depend on the initial condition.

The question now is: how does the assessment of stability and dynamic performance based

y f x1 x2  xn    f x = =

y k1x1 k2x2  knxn+ + +=

Y0 X10 X20  Xn0   ki
23
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on the analysis of the linearized system relate to those aspects of the non-linear system? As
also mentioned earlier, a theorem by Poincaré states that information on the stability of the
non-linear system, based on a stability analysis of the linearized equations, is exact at the
steady-state operating condition selected. However, information on the variable

 becomes exact only as . That is, for practical purposes, the pertur-

bations must be small - typically a few percent of the steady-state value.

Small-signal analysis of power systems, based on the linearized dynamic equations, provides
a means not only of assessing the stability and the damping performance of the system
(through eigenanalysis and other techniques), but also for designing controllers and deter-
mining their effectiveness. The various applications of small-signal analysis in the field of
power systems dynamics and control are the subjects of later chapters. The purpose of this
chapter is to introduce and extend some of the concepts in linear control theory, analysis
and design which are particularly relevant to understanding of later material.

2.2 Mathematical model of a dynamic plant or system

Why model? Maybe a reason is that we wish to describe the behaviour of the plant when
subjected to some disturbance or to the action of a control signal. One means of character-
izing its behaviour is by determining its time response to a test signal such as a step input.
However, in order to calculate the response we require a mathematical model of the plant.
Such a model can be derived from tests but often is most simply described by a set of dif-
ferential equations which are derived from first principles. Let us consider two simple ex-
amples the results of which will be of interest in later cases. In these examples let p represent
the differential operator , i.e. . Note that we can manipulate expressions
in p as we would any algebraic variable.

Example 1. 
A simple resistive-inductive circuit is shown in Figure 2.1. Write down the equations which
describe the behaviour of the current  when an arbitrary voltage  is applied to the
circuit. The circuit resistance is r (ohm) and its inductance is L (Henry); the inductor is air-
cored.

Figure 2.1 Simple resistive-inductive circuit

Because there is no iron in the magnetic circuit the voltage drop across the inductance is lin-
early related to the current through it. Thus, from Kirchoff’s voltage law, the voltage-current

xi xi X+
i0

= xi 0

d dt  p d dt =

i t  vs t 

L ri(t)

vs(t)
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relationship at time t is

,

or .

The latter equation can be expressed in a more convenient form involving the operator
, i.e.

 . (2.1)

Note that in (2.1) we recognise that the variables are instantaneous quantities in the time do-
main and therefore we have dropped the dependency on time, (t).

------------------- 

Example 2
A load is driven by a d.c. motor at an angular speed of  (rad/s) as illustrated in
Figure 2.2. The speed of the motor and load is controlled by varying the DC supply voltage

 (volts), the field current being held constant. The back-emf developed by the motor is
; the torque of electromagnetic origin developed by the motor is  (Nm) and the

opposing load torque,  (Nm), is proportional to shaft speed. The combined polar mo-

ment of inertia of the rotors of the load and motor is J (kg-m2). The resistance and induct-
ance of the armature winding are r (ohm) and L (Henry), respectively. The effect of armature
reaction on the field flux is negligible.

Figure 2.2 DC motor and load

(i) Write down the equation that describes the behaviour of the load current i(t) when an
arbitrary voltage  is applied to the circuit. 

Based on Kirchoff’s voltage law, the voltage-current relationship at time t is:

,         or

. (2.2)

vs t  i t r L
di t 

dt
-----------+=

di t 
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----------- i t  r
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---+
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(ii) Derive an expression which describes the behaviour of the shaft speed when the motor
torque is varied.

Based on Newton’s Second Law of Motion, the accelerating torque on the shaft is

 . (2.3)

Let the load torque-speed characteristic be defined by . Following substitution of

the latter expression for  in (2.3), we find:

. (2.4)

(iii) Derive the differential equation which describes the variation of motor speed with
changes in supply voltage.

Because the field flux is independent of the load current the electrical torque is proportional
to load current, . The back e.m.f. is proportional to speed, .

Substitute for  in (2.4), with the result that:

. (2.5)

Substitution of (2.2) in (2.5) yields 

 . (2.6)

Speed , the dependent variable, can then be expressed in terms of the supply voltage, the
independent variable , in the following form:

 . (2.7)

-------------------

The plant equations such as (2.1) and (2.7) are simple; more complex cases will be consid-
ered later. The significance of these equations is that they represent simple forms of the fol-
lowing general form of the differential equation:

, .                                              (2.8)

Notice all the terms in the output or dependent variable  are collected on the left-hand
side of the equation, those in the input variable  on the right-hand side. Importantly, the

resulting equation is a single, nth order differential equation in the dependent variable ,
i.e. the nature of the time-domain response depends on the form of the input variable .
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For example, the input signal may be a step function or a sinusoidal function of time, both
of which are commonly-used test signals. 

In the general case . The system of order n is said to be “proper” when , or
“strictly proper” when . 

Example 3
For the plants described in (2.1) and (2.7), n = 1, m = 0 and n = 2 and m = 0, respectively;
both systems are therefore strictly proper.

 ------------------- 

2.3 The Laplace Transform

The theory and application of Laplace Transforms are covered in detail in the literature [1]
[2], hence only features of significance to the understanding of the material in this and the
following chapters are reviewed. 

A valuable application of Laplace Transforms is the solution of linear differential equations
of the form of (2.8).

Example 4 
Form the Laplace Transform of the following second-order differential equation which de-
scribes the dynamics of a plant:

. (2.9)

Let F(s) be the Laplace Transform of a function f(t). The following results are derived from
a table of Laplace Transforms: 

,           a is a constant coefficient;

,     f(0) is the value of f(t) at time zero;

,    pf(0) is the value of the derivative at

time zero.

A convention is adopted that the input  commences at time , hence at time zero
 and all its derivatives are zero, i.e. . Initial conditions on the

dependent variable are specified at . 

Substituting the expressions for the Laplace Transforms in (2.9), and accounting for initial
conditions on , we find

m n m n=
m n

p2y a1py a0y+ + b1pu b0u+=

L af t   aF s =

L pf t   sF s  f 0 –=

L p2f t   s2F s  sf 0 – pf 0 –=

u t  t 0 + 
u t  u 0  pu 0   0= = =

t 0=

u t 
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Thus the output response Y(s) can be expressed in terms of both the forcing function U(s)
and the initial conditions on the output as:

  and  (2.10)

Note that we can manipulate the Laplace operator s as any other algebraic variable.

There are two terms in the output response Y(s) in (2.10). The first term, called the forced
response, is determined by the nature of the forcing function, the input U(s). The second
term, called the natural response, is determined only by initial conditions on the dependent
variable; in this case the output signal and its derivatives at time zero. If all initial conditions
are zero, only the forced response is present in the output. Similarly, only the natural re-
sponse exists in the output in the absence of an input signal (U(s) = 0).

If all initial conditions are zero, equations of the form of (2.10) can be written as:

.

 is called the Transfer Function (TF) between the input U(s) and output Y(s).
-------------------

In summary, therefore, if it is assumed that:

• the initial conditions on the dependent variable and all its derivatives are zero, i.e.

, and

• the input signal is applied at time  (so that u(t0) and all its derivatives are zero),

then the Laplace Transform of (2.8) and (2.9) can be simply formed from the differential equation
by replacing the differential operator p by the complex Laplace operator, s. The time-domain
variables y(t) and u(t) become the Laplace variables Y(s) and U(s), respectively. Applying
these results directly to (2.8), we find the general form of the differential equation describing
the plant becomes 

,  . .(2.11)
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The transfer function, which can be expressed a ratio of two polynomials in s, is thus

. (2.12)

Notice that a significant short-cut for writing the transfer function directly from the differential
equation is demonstrated. 

Note that if  then the transfer function can be written in the form:

.

The above transfer function consists of two paths, one being the direct path between input
and output through the gain ; this path is simple to accommodate in any analysis - for
example in that of lead and lag transfer functions. Note that in the following analysis and
chapters it will be assumed that , i.e. all transfer functions are proper or strictly proper.
It will be found in the analyses that follow in this chapter that the transfer function (2.12) is
a more useful and practical form of the plant or system model than the form described by

the nth order differential equation, (2.8). 

An example illustrating an application of the above results is discussed below.

Example 5
Find the time response y(t) of a plant described by (2.12) given an input signal u(t).

If the input function U(s) is known, the solution for the response Y(s) is

.

The Laplace Transforms for a range of input signals are given in tables of Laplace Trans-
forms; for example:

step input:            u(t) = R0 for all t > 0, u(t) = 0 for t < 0: ;

sinusoidal input:   : . 

As an illustration, let us determine the response of the current through the inductor in
Example 1 to a step increase in the input voltage of V0 volts. Assuming zero initial condi-
tions, replacing p by s in (2.1) and setting U(s)=V0/s, we find

.
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From a table of inverse Laplace Transforms [1] [2], the time responses for the terms 
and  are found to be 1 and , respectively. Hence the time re-
sponse of the inductor current is:

.
-------------------

The concepts and results discussed above are of particular value in analyzing and designing
power system controllers. The so-called “classical” methods for the analysis and design of
linear control systems are based on the single-input, single-output transfer-function model
of a plant or system. The examination of the properties of the transfer function, and of the
information on system dynamic performance derived from those properties, is the subject
of the following sections.

2.4 The poles and zeros of a transfer function.

Considerable information on the stability and dynamic performance of a plant is derived
from the knowledge of the location of the poles and zeros of its transfer function. Impor-
tantly, such knowledge is obtained without having to solve the differential equation of the
form of (2.8) for the plant. Not only may a solution of the differential equation be time-con-
suming to conduct, but the information derived from the associated time response is not as
extensive as that extracted from an analysis of its associated transfer function (2.12).

The transfer function  of (2.12) can be expressed in the following pole-zero form,
namely,

   ,  ,

when  and  are factorized into factors with real roots or complex-conjugate pairs
of roots. The denominator polynomial , when set equal to zero, is known as the char-

acteristic equation:

  . (2.13)

The roots of the characteristic equation  are known as the zeros of  or the

poles of ; for example the poles lie at  in the complex s-plane. Like-
wise,  are the zeros of both  and  and lie at  in the com-
plex s-plane.
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Note that the poles and zeros of  may be real or complex. For example the poles of the
transfer function,

,

are a complex-conjugate pair and lie at  in the complex s-plane;
the zero lies at .

The significance of the poles and zeros of  will be examined in more detail in the fol-
lowing sections.

2.5 The Partial Fraction Expansion and Residues

2.5.1 Calculation of Residues
If all the poles are distinct, i.e. there is not more than one pole at any location, the transfer
function given by (2.12) can be written as

 , . (2.14)

If  and , say, are a complex-conjugate pair,  and  are also a complex-conjugate
pair. 

The coefficient  is calculated by multiplying both sides of (2.14) by  (this isolates

 in (2.14)), and then setting  equal to  (this sets all other terms, except the , to zero).
Thus, for example, to isolate and calculate  we evaluate the expression,

  ,  , (2.15)

using the procedure illustrated in the following example.

Example 6
Evaluate the partial fraction expansion for the following transfer function.

,   hence  .

Multiply terms two and three by (s+2) to isolate K1, 

.      Then set , thus

,      hence     .
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Following the same procedure for the pole at , we find .
-------------------

When the transfer function  is expressed as a summation of first-order transfer func-
tions, as in (2.14), the constant  is also known as the residue, , of the pole at .
For a pair of complex poles, the residue  and its complex conjugate exists.

The case when there is a zero in close proximity to a pole is of particular interest. Say, there
is a zero at , close to the pole at . The factor in  in (2.15), will be small or

negligible and so too will be the residue . This useful result will be employed in different
contexts later. (To confirm this observation, try evaluating the residues when the zero at

 in the transfer function  of Example 6 is replaced by one at .)

The special case of multiple poles at any location is not considered here; see [1] or [2].

2.5.2 A simple check on values of the residues
The following result assists in the calculation - or in checking the calculation - of residues.

Let us multiply out the right-hand side of (2.14), i.e.

, (2.16)

where ri = Ki. The numerator term of (2.16) is thus

. (2.17)

The order of the denominator is n. Hence, if the order of the numerator is:

* one less than the denominator, i.e. , the coefficient of  must be 

,

* two or more less than the denominator, the coefficient of  vanishes, i.e 

.

What can you say when ?

2.6 Modes of Response

Let us examine the response of a plant to a step input. If  is a unit step input, i.e.
, then the response  is

 .  (2.18)
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This can be expressed in partial fraction form as: 

  . (2.19)

Using a table of inverse Laplace transforms yields the time response to the step input, 

. (2.20)

Note that 

• the response comprises a steady-state component  and transient terms;  is
the response after all the transients components have decayed away; 

• , is the amplitude at time zero of the transient terms, ; 

• if the input step-size were increased by a factor , all the terms in (2.19) and (2.20) are
multiplied by the same factor;

• the form of the transient response  is determined by the n roots of the character-
istic polynomial, , or by the n poles of .

• if  and  are a complex-conjugate pole pair, i.e. , then the associated res-

idues are also a complex-conjugate pair, . 

For the present time, assume all roots of  have negative real parts. In general, there will
be real and complex roots of  of the form,

 for the  real root, 

and  and  for the complex pair .

Associated with each real root , there is a term in the partial fraction expansion

                                                           .

Taking the inverse transform of the latter term, as in (2.19) - (2.20), results in a term in the

time-domain response . If  is negative, this response is a monotonically, exponential-

ly-decaying mode 1.

Likewise, for the complex pair,  and,  there are terms in the
partial fraction expansion of the form

1. See a note on the term ‘mode’ in Section 3.5.2.
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, where  and  are complex conjugates. 

Correspondingly, there will be a term in the time-domain response of the form 

. If  is negative, this response is an oscillatory, exponentially-decaying, 

sinusoidal mode. In power systems analysis the term “mode” usually refers to a broader set 
of properties that characterize the physical behaviour of the natural system responses. Other 
modal characterisations include whether it is an electro-mechanical mode, for example, or a 
controller mode, etc. 

The significance of the above analysis is that it reveals, by a simple examination of the poles
of the transfer function, the nature of the transient response in the time domain. The real
part of the pole, , measured in Neper/s (Np/s), indicates how rapidly the modes in the
response decay away. The imaginary part, , of a complex pole pair is the frequency in rad/
s of the damped sinusoidal oscillation. These results provide another valuable short-cut in
linear analysis: there is no need to solve the differential equations to determine the nature of the
transients in the response.

Let us illustrate some of the important concepts outlined above by means of examples. They
are intended to provide some useful insights into the dynamic behaviour of systems.

Example 7
In the following cases, find the time-response of the plant to a step input of magnitude A
units.

Case 1. The plant is described by the second-order differential equation

,
where u(t) and y(t) are the input and output signals, respectively. 

Assuming initial conditions are all zero, the plant transfer function is found by replacing the
differential operator p by the Laplace operator s, i.e.

.

For a step input, . The response can be found using a partial fraction expansion,
i.e.

.

Note that the sum of the residues in this case is zero since . Using the inverse
Laplace transform tables, the response in the time domain is found to be

.
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Note that the coefficients of the modes  and , 3A and 4A respectively, are the initial
amplitudes of the transient response and are of comparable magnitude.

Case 2. Assume that the zero in the previous plant transfer function lies at  Np/s

instead of at  Np/s. The coefficient of the mode  is then zero. (Note that the
pole at Np/s still exists in the plant; this aspect is considered later.) This case shows
that pole-zero cancellation causes the amplitude of mode to become small or negligible.
Pole-zero cancellation, or close cancellation, is sometimes used in control system design.

However, it should be used with caution because the mode  is then only partially ob-
servable - or even unobservable - in the output.

Case 3. Let the plant transfer function be:

.

The time response to the step input  is 

 .

In this case the pole at  Np/s is much closer to the origin of the complex s-plane

than that at  Np/s. The response of the fast mode  at a time equal to its time
constant, i.e.  s, is about 37% of its initial amplitude (see Section 2.8.1). The

response of the slow mode  at  s is about 82% of its initial amplitude. In this
case the contribution to the overall response of the fast mode rapidly diminishes with time.
Thus the response of the slow mode with a time constant of 1/2 s, dominates until it itself
decays after a time equal to four time constants (2 s). 

Case 4. Furthermore, it can be shown that the initial amplitude of the response of the fast
mode becomes smaller as the pole at  is moved further into the left-half of the s-
plane relative to the location of the pole of the slow mode. For example, for the transfer
function:

, 

the step response is . 

Note that the initial amplitude  – and therefore the time response – of the fast
mode is almost negligible in comparison to the slower mode.
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Case 5. Let the plant transfer function be:

.

The time response to the step input is .

Although the poles in this case are the same as those in Case 3, the initial amplitude of the

fast mode  is relatively much larger. Due to this mode the overall response of the plant
is much faster, although it settles in a time determined by the slow mode. 

The significance of the results illustrated in Cases 3 and 5 is that the slower modes tend to
dominate the response. Case 5 reveals that the placement of a zero at an appropriate position
can speed up the response of a sluggish system. In this case the location of the zero at

 Np/s relatively close to the pole  Np/s diminishes the effect of the slow
mode. This concept is commonly used in classical control system design for speeding up the
response of a sluggish system.

Case 6. The plant transfer function of Case 1 is modified so that the damping ratio of its
second-order poles is less than one, say,

.

There are a pair of complex poles at . The response to a step of magnitude

 results in the following partial fraction expansion 

.

Replacing each term by its inverse Laplace transform, we find the closed-form expression
for the oscillatory response is:

The denominator of the transfer function, , is of the form . (The

following results are described in Section 2.8.2.1). The undamped natural frequency is
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 rad/s. The oscillatory mode thus has a damping ratio ; the
damping constant is  Np/s. If this were a rotor mode having a frequency of oscillation

of  rad/s, it would be considered well damped. 

As has been pointed out earlier, the form of the mode  can be derived by
inspection of the poles of the transfer function without having to solve for the time response
to a step input of the system described by the second-order differential equation,

.
-----------------

Let us emphasize some important results:

• The response to an input of a linear system consists of a steady-state response and a
transient response.

• The steady-state term bears a direct relationship to the input function (e.g. doubling
the amplitude of the input signal doubles the amplitude of the response).

• The transient terms are determined by the initial magnitude of the input function (at time

t(0+). However the transient response has a form which is characteristic of the system,
and may by identified with the position of the poles of the transfer function; these poles
are. the zeros of the characteristic equation. 

• The concept not only of modes, poles and zeros, together with information provided
through the partial fraction expansion, provide important engineering short-cuts for
predicting the characteristic response of the plant in the time domain. By inspection of
the factorised denominator of the plant transfer function - thus revealing the pole
positions - we can ascertain: whether the plant responses will contain monotonic or
oscillatory (i.e. sinusoidal) components, how rapidly transients decay away, and the fre-
quency of any oscillation. 

2.7 The block diagram representation of transfer functions

Block diagrams are a very convenient way of communicating knowledge about the structure
of the plant and its control system. Typically, a block diagram contains a number of blocks
that represent the transfer functions of elements or components in the system. Moreover,
such blocks can be combined or eliminated in a series of operations that reduce or modify
the system to a form that is amenable to analysis. Both the basic transfer function blocks
and the operations on the blocks are outlined below.
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Figure 2.3 (a) The basic transfer function block. (b) Combining blocks in series. 
(c) Combining blocks in parallel.

Assume the input to a block such as that in Figure 2.3(a) represents the transfer function of
system elements that have high input impedances and negligible output impedances (i.e.
there is no loading by the elements). Figure 2.3(b) shows that the cascading of two or more
blocks can be represented by a single block whose transfer function is the product of the
individual transfer functions, . Likewise, in Figure 2.3(c) it is demonstrated that
blocks in parallel can be represented by the sum or difference of the individual transfer func-
tions, . These building blocks form the basis for the analyzing, manipulating
or reducing block diagrams representing more complex systems.

A transfer function of particular interest is that representing a closed-loop control system
with negative feedback as shown in Figure 2.4. A purpose of the automatic control of stable
closed-loop systems is to minimise the error , i.e. the difference between the input and
feedback signals, so that the output signal  aligns closely with the reference input .
In the following the transfer functions , ,  and  are known as the
forward-loop, feedback-loop, open-loop and closed-loop transfer functions, respectively.

Figure 2.4 The elements of the basic closed-loop control system, .
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The relation between the error signal and the output and reference signals are:
.

Eliminating the error signal and rearranging the terms, the closed-loop transfer function is
found, i.e.

. (2.21)

This result is basic to the analysis of closed-loop control systems and is referred to frequently
in the following sections and chapters.

2.8 Characteristics of first- and second-order systems

In an earlier section we noticed that the poles of the system determined its modes - and thus
the form of the transient response. We will now examine how the pole locations determine
the characteristics of that response. It is important to note that, by understanding the nature
of the transient responses for simple first- and second-order systems, it is possible to predict
the characteristics of the dynamic behaviour of higher-order systems. 

2.8.1 First-order system
The transfer function of the first-order system has the forms:

; (2.22)

T is called the time constant of the system, U(s) and Y(s) are its input and output signals,
respectively.   

The response to a step input, , is ,

or            . (2.23)

 The time-domain response  is shown if Figure 2.5. Note the following important prop-
erties of the first-order system:

• At a time t equal to the time constant, , the term  in the above
response is , i.e. this term has decayed to 36.8% of

its initial value, . The value of the response, however, is

, i.e. 63.2% of its final value.

• After a time equal to four time constants, the response  lies within 2% 1 of the
final value,  units, i.e. in effect, the transient response  has completely decayed
away. This time is known as the “2% settling time”, . Similarly, a “5% settling
time” is often quoted for which .

1. Actual value at four time constants is 1.83%; for three time constants it is 4.98%.
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From the denominator of (2.22) we note there is a real pole at  Np/s. The associated
term in the transient response is . Thus a real pole is associated with an exponentially
decaying mode in the response if  is negative.

Figure 2.5 Time response of a first-order system to a step input of magnitude  units.

2.8.2 The second-order system

2.8.2.1 The characteristics of the second-order system
The typical form of the differential equation of a second-order system is:

.

Having taken the Laplace Transform and assuming zero initial conditions, we can express
the transfer function in the following two forms:

    if   . (2.24)

The second form is the ideal or classical form of the second-order transfer function which
has complex poles. The parameters  and  in (2.24), and associated quantities marked as
important (*), are defined below:

• *   is the undamped natural frequency (rad/s), ;

• *   is the damping ratio, ; .

The poles of the above transfer function are complex when  and are of the form
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• *   (rad/s) is the frequency of the damped oscillations in the transient response, 

• *   is the damping constant (Neper/s), and

• * the relation between radian frequency and frequency f in Hertz (Hz) is .

The characteristic equation for the system of (2.24) is

, with roots .

Since the damping ratio lies in the range  the complex poles of the second-order
transfer function are:

. (2.25)

Based on the above definitions the frequency of the damped oscillations and the damping con-

stant are given by  rad/s and  Np/s, respectively. Solving for 

from the latter two relations it is found that the damping ratio is:

   if   .

The time-domain response of the second-order transfer function (2.24) to a step input of
magnitude  units is:

.

The associated time response consists of two terms, the steady-state term of value  and a
transient component (an exponentially decaying sinusoid); it is:

 ,  , (2.26)

where  and . 

It is often useful to refer to the characteristics of the step response of the ideal second-order
system with a complex pole pair. The damped oscillatory response is shown in Figure 2.6 in
which some meaningful measures that characterize the response are defined.

d



 2f=

s2 2ns n
2+ + 0= s1 2 n n 2 n

2––=

0  1

s1 2  =  jd n jn 1 2––=

d n 1 2–=  n–= 

 – 2 d
2+  –  d=  0.3d

A

Y s 
n

2

s2 2ns n
2+ +

---------------------------------------- A
s
---=

A

y t  A
A

1 2–
------------------ e nt– dt + sin –= 0  1

cos = sin 1 2–=



42 Control systems techniques Ch. 2
Figure 2.6 Characteristics of the response to a unit step input of the ideal second-order 
system with a complex pole-pair. 

The frequency in Hertz of the damped oscillation is:   Hz. 

The period of the oscillation is:   s.

The time to the first peak is 1/2 of the period:  s. 

For a unit step input the peak overshoot occurs at  and is: 

.

As already stated, the settling time  is the time for envelope to decay to a value of 2% (ac-

tually 1.8%) of the final value of  and is equal to four time constants:

 i.e.   s.1

The useful reference family of normalised-time responses for a step input is shown in
Figure 2.7 for values of  between 0.1 and 1. The figure can be interpreted as follows. If,
say,  rad/s and  then the first peak in the transient occurs at 3.2 s, however,
if  the first peak is reached at 1.6 s, etc.

1. A 5% settling time is equal to three time constants
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Figure 2.7 Response of the second-order transfer function to a unit step input as a func-
tion of normalised time, , for damping ratios between 0.1 and 1.

2.8.2.2 Implications for the dynamic performance of power systems
Certain electro-mechanical modes of oscillation, associated with the rotors of generators, are
typically complex and lightly damped and of the form . The important features of
these modes to which frequent reference will be made are listed in Section 2.8.2.1. 

In the analysis of power system dynamic performance the damping ratio, is used in sev-
eral contexts, e.g. a criterion for the dynamic performance of the system is that the damping
ratio for all rotor modes should be better than, say, 0.05 (or 5%). For the second-order trans-
fer function given in (2.24), the complex poles  vary as shown in Figure 2.8 for .

A line of constant damping ratio makes an angle  with the negative real axis such that
. Note that the loci of the poles in the complex s-plane is along a semi-circle of

radius . The nature of the time-domain response for a mode located on the semi-circle
can be ascertained directly by inspection.
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Figure 2.8 Trajectory of the complex poles of the second-order transfer function, (2.24), 
for the damping ratio . 

2.9 The stability of linear systems

A plant or a system is described by a mathematical model such as a nth order differential
equation or transfer function. If the system is passive there is no internal source of energy.
A bounded input signal is the only available source of the energy to provide the energy nec-
essary in the output signal; moreover, some of the input energy may be dissipated internally
within the system. Such a system is inherently stable since the output must also be bounded.
A system is defined as stable if a bounded input always produces a bounded output. 

In an active system there is an internal energy source from which the energy contained in
the output signal is derived. In this case the possibility of a bounded input producing an un-
bounded output exists. Such a system may therefore be unstable.

We saw earlier, for linear systems, that the response consists of a steady-state and a transient
component. If the system is to be stable all transient terms must decay to zero. For this to
occur, we noted in the examination of the modes for first and second order system that the
real part  of the mode must be negative. Thus for a system to be stable, the poles of the
transfer function - or the roots of the characteristic equation (2.13) - must all have negative
real parts. An alternative way of stating the same result is: for stability, all the poles of the
transfer function must lie in the left-half of the complex s-plane.

If, in the characteristic equation, the real part of a complex pair of poles,  and

 is positive ( ), the pair lies in the right-half of the s-plane. The asso-
ciated instability is manifested in a term in the time response which is an exponentially in-
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creasing sinusoid. A similar result applies to a first order pole, i.e. an exponentially increasing
response.

If any poles lie on the imaginary axis, all others being in the left-half of the s-plane, the sys-
tem is said to be marginally stable. However, in practical linear control systems it is not pos-
sible to locate and maintain poles exactly on the imaginary and therefore marginal stability
is of academic interest only.

2.10 Steady-state alignment and following errors

One reason for the use of closed-loop control systems is to automatically control the output
of a system to align with a reference input or a set-point as closely as possible. If the refer-
ence is fixed, i.e. set to a constant value, the difference between the set-point and the con-
trolled output in the steady-state is called the alignment error. However, the reference input
may be time varying; in this case it is necessary for the controlled output to track or follow
the reference as closely as possible. In order to assess how well a closed-loop control system
aligns with - or follows - a reference input a set of test reference signals is devised that pro-
vides a measure of the quality of system performance. These tests signals are analysed in the
following sections. 

The steady-state value of a time-varying signal , i.e. its value after all oscillations associ-
ated with any transients have died away, , can be derived from the final-value theorem
(FVT), i.e.

 . (2.27)

From this result the steady-state value of the output of a system, the alignment and following
errors for a given test reference-input can be determined.

The closed-loop control system under study is shown in Figure 2.9, where  is the con-
trolled output signal,  is the reference input signal and the error signal is

. With forward-loop and feedback-path transfer functions 
and , respectively, the transfer function of the closed-loop system of Figure 2.9 has
been shown in (2.21) to be

.
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Figure 2.9 Block diagram of the classical closed-loop system

2.10.1  Steady-state alignment error.
The response of the closed-loop system to a step change in the reference input is shown in
Figure 2.10. Under steady-state conditions following the change in the reference input ,
the steady-state output  may not be equal to the constant value of the reference, .
Based on the final value theorem the steady-state alignment error  is defined as: 

,  where   . (2.28)

Figure 2.10 The steady-state alignment error  following a step input.

Thus from (2.28) a general result for the alignment error follows, i.e. 

. (2.29)

In the following we will derive the alignment errors for a unity-feedback closed-loop system,
i.e. when . In the case of a closed-loop system in which the feedback back is not

unity gain, the alignment errors can be derived by using the general result (2.29) or by direct
application of the final value theorem. Let us consider two special cases for the unity-feed-
back system, namely without and with integration in the forward path. 
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2.10.1.1 (a) No integration in the forward path, H(s)=1.

Let us assume  takes the form   .

In the steady-state following a transient,  as . Note the form of the factors
 - not  - in the transfer function is important; with no integration in the for-

ward path the gain K is often called the static gain. According to (2.29) the associated align-
ment error is

,

 i.e.   , (2.30)

  , (2.31)

since .

The result in (2.31) provides a very useful insight, namely, the higher the static gain  the
smaller is the alignment error. However, there is a downside to high gain settings without
suitable compensation, i.e. the dynamic performance of the closed-loop system may become
more oscillatory and even unstable. The latter effect will revealed through the analysis of the
stability and performance of the closed-loop system using the Bode plot in Section 2.12.2.

2.10.1.2 (b) Single integration in the forward path, H(s)=1.

In this case  takes the form . Let ,

then . Substitute this limit for  in (2.30) above; the steady-state error is thus 

. 

This is a very useful result; it shows that a single integration in the forward path “integrates
out” to zero any error  that develops between the reference input and the controlled
output. If there is no integration in the forward path the introduction of proportional plus
integral (PI) compensation [1], [2] into that path ensures zero alignment error in the steady
state. This is highly desirable in some types of closed-loop control systems, however, like the
case above, there is a disadvantage. For example, introduction of pure integration  also
introduces a phase-lag of  in the open-loop transfer function. In turn, the Phase Margin
is reduced, and consequently the closed-loop system may become unstable. This is discussed
in Section 2.12.2.
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2.10.2 The steady-state following error 
A test reference input of a suitable form for defining the following error is the ramp signal,

. Based on the final-value theorem the steady-state following error  is given

by:

, or

. (2.32)

This is a general result for the following error. However, let us again consider a unity-feed-
back system and two special cases, without and with integration in the forward path.

2.10.2.1 (a)  No integration in the forward path, H(s)=1. 

Assume  again takes the form . In the steady-

state following the decay of the transient we find  as . By substitution of
this limit in (2.32), the following error becomes

 , (2.33)

, i.e. . (2.34)

The result reveals that the following error becomes increasingly large with time; the latter is
illustrated in Fig. 2.11. The controlled output thus cannot follow a reference input that
changes linearly with time. Such a closed-loop system cannot track, for example, a satellite
passing overhead.

2.10.2.2 (b) Single integration in the forward path, H(s)=1. 

As shown in Section 2.10.1.2 above,  as . Substitution for  in (2.33)

above yields a following error given by:

. (2.35)

Thus after any oscillations have died away following the application of the ramp, there is a
constant difference, or error, between the ramp input and the controlled output given by
(2.35), as illustrated in Figure 2.11.
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Figure 2.11 The following error  resulting from a ramp input.

Exercise. Show that if the forward-loop transfer function  in a unity feedback system
contains two integrations, the following error for a ramp reference input is zero, but is finite

for a parabolic input .

Example 8 
A unity feedback system has a forward-loop transfer function:

.

Find the value of the gain K’ such that the steady-state following error  units for

a ramp input of 2 unit/second. 

Change the factors in  into the form , i.e

 , where the ‘static’ gain is  .

In order to satisfy the specification, the error , i.e. , or

.
-----------------

2.11 Frequency response methods

The purpose of this section is to outline briefly frequency response methods of analysis and
to provide insight and understanding of those features of the analysis that are relevant to
power system dynamics and control.   

In frequency response analysis the injected frequency will be represented by  (rad/s) rath-

er than by  - which will refer to rotor speed in later chapters.
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Frequency response methods assume that a sinusoidal signal of constant amplitude is ap-
plied to system. That is, when a signal  of frequency  is injected

into the system , a steady-state sinusoidal signal  of the same frequency appears at
the output after the transient terms have died away. In the Laplace domain the response of
the system is

,

where, for a sinusoidal signal, . The response is thus

. 

Forming the partial fraction expansion as described in Section 2.5, we find

,

where  are the poles of  and  are their residues.

Taking the inverse Laplace transforms, the time-domain response is

. (2.36)

Let , where the phase angle  of

 is a function of frequency. Following substitution for these terms in (2.36), the time-

domain response tends to

,

after all transient terms have decayed away. 

Hence  is the steady-state response. The steady-state out-

put  is a sinusoid of amplitude  with phase shift  with respect to the

input signal. The ‘frequency response’ of  is a plot of  and  as 

is varied over a range of the frequencies. Typically the frequency response is plotted in two

forms, the polar plot and the Bode plot; we shall employ the Bode-type responses in later

chapters.
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It is interesting to note that the analysis so far has allowed us to take several short-cuts. First-
ly,  was formed by replacing, for zero initial conditions, the differential operator p by s

in the differential equations for the system. Secondly, the frequency response is obtained
simply by replacing  by  in . 

2.12 The frequency response diagram and the Bode Plot 

The following treatment of the Bode Plot contains two main features, firstly, the graphical
plotting of the frequency response and, secondly, its application to the determination of the
stability of closed-loop control systems. Although the frequency response plot of a given
transfer function is readily obtained using the appropriate software, the ability to visualise
the frequency response plot is a very useful skill, or conversely, to deduce the form of a
transfer function when its frequency response plot is presented. By understanding the basis
of the frequency response plot it becomes easier to carry out the required visualisation or
interpretation expeditiously.

For the analysis of stability of closed-loop control systems the frequency response plot of
interest is that of the open-loop transfer function, , where  and  are

the forward-loop and feedback-path transfer functions, respectively, shown in Figure 2.9.
The associated log-magnitude and phase responses of  are known as the Bode

Plot from which information on stability can be deduced - subject to certain conditions.
Consequently, the following is a brief description of the basis of techniques not only for
drawing the Bode Plot, but also for interpreting the Plot to assess both the margin of stabil-
ity of the closed-loop control system and its dynamic performance. 

The system is excited by a sinusoidal signal  of unity amplitude and frequency  (rad/

s). The two plots of the Bode diagram are both plotted as a logarithmic function of frequen-
cy, . The first plot is of the log (on base 10) of the magnitude (LM) of the open-loop

transfer function, i.e.  in dB; the second plot is of the argument (Arg)

- or phase -  of the open-loop transfer function in degrees. 

It should be noted that for any fairly simple transfer function the frequency response can be
drawn manually using the graphical technique described in the following section.

2.12.1 Plotting the frequency response of the open-loop transfer function
Any transfer function can be divided into a number of basic first- or second-order factors
which form the numerators or denominators of the element. The magnitude and phase re-
sponse of the basic factors are simple to derive and recall. By combining the responses of
the factors, the overall frequency response of the transfer function is generated.
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Any transfer function (with ) contains factors, , of the following types in its

numerator or denominator.

 =   =

(i)        from , a scalar gain

(ii) from

(iii) from

(iv) from

Note the forms of the type (iii) and (iv) factors, i.e. the polynomial form  , rather

than pole-zero form .

Example 9 
Find log-magnitude and phase of the open-loop transfer function:

.

The log-magnitude and phase responses are:

;

.

-------------------

This example demonstrates that multiplication or division of the four types of factors be-
come addition or subtraction of their log-magnitudes and of their phase contributions. This
simplifies analysis because it involves simple addition or subtraction of the component
terms; such operations are the basis for plotting manually the frequency response of transfer
functions.

Let us consider the log-magnitude and phase plots of each of the factors  as a func-

tion of .

2.12.1.1 (i)  A factor in the transfer function is a constant gain K. 

The transfer function is , and the associated log-magnitude and phase are:

 and  if , (or  if ) respectively. The

magnitude response is shown in Figure 2.12.
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Figure 2.12 Transfer function of a constant gain K

Increasing or decreasing the gain K results in the plot of  moving vertically up or
down.

2.12.1.2 (ii)  A factor in the transfer function contains pure differentiation or integration of 
multiplicity n

The transfer function is of the form: ,  . Differentiation is as-

sociated with +n and integration with -n. The log magnitude of the transfer function is: 

 dB. (2.37)

This asymptote, when plotted against , is a straight-line having a slope

. According to (2.37) it intersects the frequency axis when LM = 0 dB at

, i.e. at  rad/s. The phase response is , i.e. it is a

constant for a given n over the entire frequency range. The log-magnitude and phase re-
sponses are plotted in Figure 2.13.

Figure 2.13 (a) Magnitude and (b) phase responses of  when n=1

2.12.1.3 (iii)  A factor in the transfer function contains a real pole / zero of multiplicity n:

The transfer function is of the form:  , . Its log magni-

tude is:
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 dB. (2.38)

Consider the asymptotes for (a) a low frequency case when , (b) a high-frequency

case when . 

(a) , dB. This low-frequency asymptote is a horizontal

line when plotted against  .

(b) , dB.

This log-magnitude asymptote, when plotted against  , is a straight-line. The slope of

the line is  for each decade of frequency (i.e. for each  unit). The low-
frequency and high-frequency straight-line asymptotes of the log-magnitude plots are shown
in Figure 2.14 for zeros (+n) or poles (-n). The actual plot is also drawn for a transfer func-

tion  over a frequency range about the so-called corner frequency  where

the high- and low-frequency asymptotes intersect;  rad/s. The differences be-
tween the actual plot and the straight-line asymptotes are easily remembered. In the case of
multiple poles the actual log-magnitude plot is 3n dB down at the corner frequency and n
dB down at an octave above and below the corner.

Figure 2.14 Magnitude response for a real pole or zero of order n.

Consideration of (2.38) reveals that for multiple zeros   the actual log-magnitude

plot and the straight-line asymptotes are the mirror image about the frequency axis of those
for multiple poles as shown in Figure 2.14.

Consider now the plot of the phase shift  for the transfer function .
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(a) for : , hence ;

(b) for : , hence ;

(c) for  (corner): , hence .

The phase response for real poles of order n is shown in Figure 2.15. A straight-line approx-

imation of the phase response is employed from a decade below the corner, phase , to a
decade above the corner at . The straight-line approximation to the response, which
passes through the corner frequency at , differs at most from the actual by

 over a decade in frequency on either side of the corner. The phase re-
sponse for multiple zeros is the mirror image about the frequency axis of those for the mul-
tiple poles shown in Figure 2.15.

Figure 2.15 Phase response for real poles of order n.

2.12.1.4 (iv)  A factor in the transfer function contains a complex pair of poles or zeros of mul-
tiplicity n:

The transfer function is of the form: .

The frequency responses of this factor for a single pair of complex poles ( ) are
shown in Figure 2.16 for damping ratios . The responses are given for a normal-
ised frequency , where  is the undamped natural frequency. The straight-line ap-
proximations which can be employed are crude and therefore the more accurate plots
shown in the figure are used as templates when sketching the frequency responses of com-
plex poles or zeros. Note that for a single pair of complex zeros the magnitude and phase
plots are those shown in Figure 2.16 rotated a half-turn about their respective frequency ax-
es; note that for  the associated phase varies between zero and .
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Figure 2.16 Magnitude and phase responses as a function of the normalized frequency 
 for a pair of complex poles.

Example 10. Lead compensation
Lead compensation is often employed as a more practical form of derivative compensation
over a range of frequencies. In its application in power system dynamics and control it is
used to provide phase lead over a desired range of frequencies; the design of cascade phase-
lead compensation for conventional closed-loop control systems is covered in [1].

The form of the lead transfer function is  , where  is an adjusta-

ble gain. The range of values for  is typically  when the transfer function is im-
plemented using analog devices. For  the phase lead is . For values of 
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the additional phase lead provided is small. For example, cascading two identical lead net-
works with  produces the same maximum phase shift as a single lead network
with .

Figure 2.17 Frequency response for a lead transfer function.

The form of the frequency response of the lead compensator is shown in Figure 2.17; the
important feature of this response is the phase lead introduced by the compensator. The
maximum phase lead, , occurs at the geometric mean of its corners, , where

. The maximum phase lead can be shown to be

. Note that at  the log-magnitude is .

---------------------

2.12.1.5 Exercise.   
Show that the magnitude and phase plots of the lag block,

, 

are those shown in Figure 2.17 reflected in their respective frequency axes. It is a practical
form of integral compensation over a range of frequencies; identify that range.

---------------------

Example 11.  Plotting the frequency response
It is often useful to visualize or sketch the frequency response of a given transfer function
based on the straight-line approximations to the frequency responses of the component fac-
tors.

Draw the straight-line approximations to the frequency response of the following open-loop
transfer function of a unity-feedback control system. Show both the straight-line asymptotes
and the actual plot.
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. (2.39)

Note the linear factors are in the form  rather than   form required for plot-
ting the asymptotes. By dividing the denominator factors by 10 and 100 the form of (2.39)

is changed to  ; note the gain is 10, or 20 dB. Set  .

The corner frequencies of the transfer function are , i.e  and

 rad/s for the two factors   and  , respectively. The
straight-line representations for the four factors are shown in Figure 2.18. These are com-
bined, making allowance for the deviations of the actual responses from the straight-line ap-
proximations as shown in Figure 2.14 and Figure 2.15, to form the response of the transfer
function.

Figure 2.18 Frequency response plots of the transfer function  
using straight-line approximations.
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2.12.2 Stability Analysis of the closed-loop system from the Bode Plot

The transfer function  of the closed-loop system shown Figure 2.9 was derived in

Section 2.7; the transfer function is . 

As mentioned earlier, the important feature of the Bode Plot is that the stability of the
closed-loop system can be derived from the plot of the open-loop transfer function

. The theoretical basis for this result requires that no poles or zeros of 
lie in the right-half of the complex s-plane, i.e. it is open-loop stable and ‘minimum phase’
[1]. (If zeros of  lie in the right-half of the s-plane the latter transfer function is
called ‘non-minimum phase’.) The criterion for the stability of closed-loop systems based on
the Bode Plot of open-loop stable transfer functions follows from the more generally appli-
cable Nyquist criterion that covers both open-loop unstable and non-minimum phase sys-
tems [1].

Assume the Bode Plot in Figure 2.19 is drawn in the vicinity of the gain cross-over frequen-
cy, , for the open-loop transfer function . (This analysis may be carried

out for the transfer function  in Figure 2.18;  satisfies the condition that it is open-
loop stable and minimum phase.)

Figure 2.19 Gain and Phase Margins defined on the Bode Plot of the .

It can then be shown that when the phase shift , the corresponding value of

the LM must be negative for stability.The amount by which the gain can be increased before
instability results, is called the ‘Gain Margin’. 
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The term, ‘Phase Margin’ is defined as the difference between the  line and the phase
plot when the Log Magnitude Plot crosses the zero dB axis, i.e. when . The Phase
Margin for a minimum-phase system must be positive for stability. The Phase Margin can
also be interpreted as the amount of phase lag that can be introduced at unity loop-gain be-
fore instability of the closed-loop system results.

Example 12. Derive the information on stability and dynamic performance of the
closed-loop system from the Bode Plot
Assume that the transfer function  in the Example 11 represents the open-loop transfer
function of a unity gain feedback system, i.e. . The Gain and
Phase Margins for this system are illustrated in Figure 2.20 for the Bode Plot for .
The following information can be extracted from the Plot. 

• Because the Gain and Phase Margins are positive the closed-loop system is stable. 

• If the gain in the forward-loop is increased by 21 dB the closed-loop system becomes
marginally stable and, ideally, it would oscillate with a constant amplitude at a fre-
quency of 32 rad/s. Note that the gain-crossover frequency shifts to the right -
increasing in frequency from 8 to 32 rad/s as the magnitude plot shifts vertically
upwards. 

• Further indicative data on the dynamic performance of the closed-loop system is
revealed by the Phase Margin (PM ). A rule of thumb is, if the closed-loop system
has a pair of dominant complex poles, the damping ratio of the closed-loop poles is
approximately PM /100 [1].

For a good servo-system transient response, the Phase Margin should be about  for a
closed-loop system that has a dominant pair of complex poles. For such a Phase Margin it
would be necessary to reduce the gain by 9.3 dB in the case of Figure 2.20. Note the gain
crossover frequency is reduced to 3.3 rad/s; this implies that the frequency of the damped
sinusoidal response to a step change at the input of the closed-loop system would also be
reduced, possibly to 4 - 5 rad/s.

The significance of this example is that it illustrates how a variety of useful information for
the design of the performance of the closed-loop system can be derived from the Bode Plot of the
open-loop system.
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Figure 2.20 Bode Plot of the open-loop transfer function showing the gains 
and phase margins. 

As stated, in applications to power system analysis one should be aware of open-loop sys-
tems that are non-minimum phase when using the Bode Plot for stability analysis. An exam-
ple of such a case is the model of a Francis turbine in a hydro-electric plant. This model
contains a right-half plane zero (which causes the turbine power output to rise initially as the
wicket gates are closed). 

2.13 The Q-filter, a passband filter 

The Q-filter is a bandpass filter which passes a selected band of frequencies and attenuates
those which lie outside the bandwidth of the filter. The transfer function of the filter is

, (2.40)
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where  (rad/s) is the centre or resonant frequency, i.e. the frequency at which the mag-

nitude of Q(s) is a maximum;  is the damping ratio. The 3 dB bandwidth is

 where ; the quality factor of the filter is defined as

. The frequency response characteristics of the filter are shown in Figure 2.21
as a function of the damping ratio; note that the phase responses pass through zero degrees
at resonance. These characteristics are relevant to a type of stabilizer in section Appendix 8–
I.3.

Figure 2.21 Frequency response of the Q-Filter for damping ratios  from 0.1 to 10.
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Chapter 3

State equations, eigen-analysis and applications

3.1 Introduction

The description of the dynamics of large systems, such as power systems, by their transfer
functions is unsatisfactory for a number of reasons. For example, for a system of order n,
say 100, the characteristic polynomial has degree 100 and 101 coefficients of s. Moreover,
such systems typically have more than one output variable and more than one input signal.
modelling based on the multi-input multi-output state equations of the system is simpler and
problems of loss of accuracy are reduced. Moreover, such modelling has a number of ad-
vantages and features some of which are described in the following sections. To illustrate
the formation of the state equations of a plant or an electro-mechanical system, let us con-
sider two examples.

Much of the material on linear systems analysis in the later sections is covered by [1].

3.1.1 Example 3.1.
Find a set of state and output equations for the simple RLC circuit shown in Figure 3.1. The
voltage supplied by an ideal source is , and the required outputs are the capacitor volt-

age are  and inductor current .

vs t 

vC t  iL t 
63
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Figure 3.1 RLC circuit

Loop voltages: , (3.1)

where p is the differential operator .

Current flow: . (3.2)

Note that each of the right-hand equations is a first-order differential equation with the de-
rivative specifically sited on the left-hand side of the equation.

There are two independent energy storage elements, C and L. Because the instantaneous en-

ergy stored in C and L is   and  , respectively, the variables  and

 are ‘natural’ selections for states. Hence, the state equations are formed as follows:

From (3.1), ,  which becomes  , 

and, from (3.2), , we  have  .

The two output equations required are  and  . 

The state and output equations can thus be written in matrix form as follows:

or , and

or ,

+
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where ,  ,  , and . 

---------------------------------

3.1.2 Example 3.2
A drive system shown in Figure 3.2 consists of a DC motor driving an inertial load through
a speed-reducing gearbox. The controlled DC supply voltage to the armature is supplied by
a power amplifier. The motor field current is maintained constant (i.e. the flux/pole is con-
stant). Write down the equations of motion for this system.

Figure 3.2 Load driven by a DC motor through a gearbox

The equations describing the dynamic behaviour of the system are developed below. The
variables, parameters and their units are:

 and  are respectively the supply voltage and the back emf of the motor (V); 

 is the armature current (A);

 is the motor (armature) torque (Nm);

 and  are load torques referred to the load and motor shafts, respectively (Nm);

 and  are the motor and load speeds (rad/s), n:1 is the gearbox ratio;

 and  are the resistance (ohm) and self-inductance (Henry) of the armature circuit;

 is the inertia constant of the rotating system (kg-m2);
 is the coefficient of viscous friction (Nm/rad/s);

 are constants of proportionality.

Armature circuit equation:  

Back emf of motor:  

Torque developed by motor:    

A
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= C 1 0
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Opposing load torque:    

Speed of motor shaft:  

Power transfer across gearbox:  

Eliminating , , ,  and  from the above equations, and inserting
the derivative terms on the left-hand side of the relevant equations, we find

, (3.3)

. (3.4)

Assume the outputs of interest are: . 

Let the states be  and , then substituting these quantities in (3.3) and (3.4)
we find:

 or  . (3.5)

The outputs of interest can be expressed as:

, then

 or  , . (3.6)

Note there are 2 state equations, 1 input, 4 outputs. Thus A is dimension , b is ,
C is , d is  and is a zero vector.

Equations (3.5) are called the state equations for this second-order system, (3.6) are its output
equations. There are two independent energy storage elements, the field-circuit inductance
and the inertia of the rotating system, L and J. As stated, the energy stored in these elements

is  and , respectively at any time t, and are uniquely determined by the instan-

taneous values of  and . Thus  and  are thus ‘natural’ selections for
the state variables. In general there are as many states in the system as there are independent
energy-storage elements - with the addition of those states and state equations representing
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pure integration (e.g. the relation  between speed v and distance d).
---------------------------------

3.2 The concept of state and the state equations [1]

Definition: The state of a system at any time  is a minimum set of numbers which, to-

gether with the input function  for  and the equations describing the dynamics, are

sufficient to determine the future behaviour of the states and the output of the system.

The state of the system at time t is described by a vector of n state variables

. A knowledge of the initial values of the state variables

 at time t0 and the m input signals  for

, is sufficient to determine the future values of the state variables and the output.

These concepts lead to the state-space model of a system in terms of a set of n first-order dif-

ferential equations (in contrast to a single nth - order differential equation from which the
conventional transfer function is derived). Recall that in each first-order equation the deriv-
ative of the state variable is placed on the left-hand side of the equation and all terms in the
state variables and inputs on the right-hand side. A general form of the n state equations,
with m input signals, is thus

 : :

(3.7)

The p output equations are:

: :

(3.8)

A more compact arrangement of the above equations is the matrix form:

, (3.9)

pd v=

t ti=

u t  t ti

x1 t  x2 t   xn t 
T

x1 t0  x2 t0   xn t0 
T

u1 t  u2 t   um t 
T

t t0

x·1 a11x1 a12x2  a1nxn b11u1 b12u2  b1mum+ + + + + + +=

x·2 a21x1 a22x2  a2nxn b21u1 b22u2  b2mum+ + + + + + +=

x·n an1x1 an2x2  annxn bn1u1 bn2u2  bnmum+ + + + + + +=

y1 c11x1 c12x2  c1nxn d11u1 d12u2  d1mum+ + + + + + +=

yp cp1x1 cp2x2  cpnxn dp1u1 dp2u2  dpmum+ + + + + + +=

x
·

t  Ax t  Bu t +=

y t  Cx t  Du t +=
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where  ,  , (3.10)

of dimension  and , respectively, and

where , , (3.11)

of dimension  and .

The  state vector is , 

the  input vector is , and 

the  output vector is .

Examples of state and output equations have been given in Examples 1 and 2. (Also see [1],
[2] and [3].)

3.3 The linearized model of the non-linear dynamic system

The equations describing the power system and its dynamics are non-linear. For analyzing
the dynamic performance of the non-linear plant and the system, typically following a large
disturbance such as a fault, a step-by-step integration of the non-linear equations is carried
out to calculate the time-domain responses of the system variables. Such variables are gen-
erator speeds and rotor angles, bus voltages, controller outputs, etc. Because the dynamic
behaviour of the system depends very much on the location and the severity of the distur-
bance, as well as the operating conditions, it is necessary to conduct a large number of so-
called transient stability studies to characterise the dynamics of the system [4].

Linearizing the set of non-linear equations for a selected operating condition results in a new
set of equations in a new set of variables. These variables are the perturbations  about the
steady-state quantities . The variable  in the non-linear equations is related to the former
pair by . The advantages of forming the linearized equations of a system are:

• All the powerful analytical methods developed in linear control theory are available for
the analysis of the linearized dynamic system.

A

a11 a12  a1n

a21 a22  a2n

. . . .

an1 an2  ann

= B

b11 b12  b1m

b21 b22  b2m

. . . .

bn1 bn2  bnm

=

n n  n m

C

c11 c12  c1n

c21 c22  c2n

. . . .

cp1 cp2  cpn

= D

d11 d12  d1m

d21 d22  d2m

. . . .

dp1 dp2  dnm

=

p n p m

n 1 x t  x1 t  x2 t   xn t 
T

=

m 1 u t  u1 t  u2 t   um t 
T

=

p 1 y t  y1 t  y2 t   yp t 
T

=

x
x0 x

x x x0+=
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• If the linearized system is stable at the selected steady-state operating point then,
according to a theorem by Poincaré [5], the non-linear system is also stable at that
operating point.

• The dynamic performance of the linearized system can be characterized by the loca-
tion of its poles in the complex s-plane. Based on results in the theory covered in Sec-
tions 2.8 and 2.9, the real parts of these poles (or damping constants) provide the

information on stability, how well damped the modes 1 are, the nature of the transient
response, etc. Such information cannot be gleaned directly from the results of time-
domain analysis of the non-linear system.

If the transient responses of the linearized system to a disturbance are calculated, a question
is ‘how accurate are the responses’. Poincaré proved that the response of the linearized sys-
tem to a disturbance is exactly the same as that of the original non-linear system if the dis-
turbance is vanishingly small. As explained in Section 1.1, the responses predicted by the
linearized model are often sufficiently accurate for practical analysis and design purposes.
However, care must be exercised to take into account the nature of the non-linearities, the
operating point and the size of the perturbation when deciding if the linearized model is
practically applicable to the analysis being performed.

3.3.1 Linearization procedure
In [6] the set of nonlinear differential-algebraic equations (DAEs) describing the dynamic
behaviour of the integrated power system are derived and are shown to be of the form:

, , ,

where the vector  represents the n states of the system,  the r algebraic variables,  the
m system input variables, and  the p output variables.

At the steady-state operating condition, which is the equilibrium point about which the sys-
tem is to be linearized, implies by definition that all rates of change are zero, , thus 

, ,  . (3.12)

Assume the system is subjected to a small perturbation from the steady state such that 

, , , . (3.13)

The perturbed the variables must satisfy (3.12). For example, in the case of the output y in
(3.13)

.

Because the perturbations are small, the nonlinear function  can be expressed as

a first-order Taylor’s series expansion. Consider the ith output, , :

1. See a note on eigenvalues, modes and stability in Section 3.5.2.

x· f x  u  = 0 g x  u  = y h x  =

x  u
y

x· 0=

f x0 0 u0,,  0= 0 g x0 0 u0,, = y0 h x0 0, =

x x0 x+=  0 += u u0 u+= y y0 y+=

y y0 y+ h x0 x  0 +,+ = =

y h x , =

yi i 1  p,,=
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where the partial derivatives , ; and ,  are evaluated at the in-

itial steady-state operating point .

Because  in the above equation, it reduces to an equation in the perturbed
variables:

. (3.14)

Similar expressions can be derived for the two remaining functions in (3.12), for j=1, ... , n:

, (3.15)

. (3.16)

The sets of linearized equations, (3.14) to (3.16) are more conveniently expressed in matrix
form,

(3.17)

or more compactly:

(3.18)

where the  element of the  sub-matrix of the system Jacobian matrix is  eval-

uated at the initial steady-state operating point. The elements of the other sub-matrices are
similarly defined.

The formulation of the linearized equations of the system as a set of DAEs possesses a num-
ber of significant advantages, including:.

• The ‘natural’ formulation of the equations for devices and their controllers is
exploited when building the set of system equations;

yi yi0 yi+ hi x0  0, 
hi
x1

--------x1 
hi
xn

--------xn

hi
1

--------1 
hi
r

-------r+ ++ + + += =

hi
xa

-------- a 1  n,,=
hi
b

-------- b 1  r,,=

x0 0 u0,, 

yi0 hi x0  0, =

yi

hi
x1

--------x1 
hi
xn

--------xn

hi
1

--------1 
hi
r

-------r+ ++ + +=

x·j

fj
xa

--------xa

fj
b

--------b

fj
uc

--------uc
c 1=

m

+
b 1=

r

+
a 1=

n

=

0
gk
xa

--------xa

gk
b

--------b

gk
uc

--------uc
c 1=

m

+
b 1=

r

+
a 1=

n

=

x· Jfxx Jf Jfuu+ +=

0 Jgxx Jg Jguu+ +=

y Jhxx Jh Jhuu+ +=

x·

0

y

Jfx Jf Jfu

Jgx Jg Jgu

Jhx Jh Jhu

x


u

=

i a th Jfx

fj
xa

--------
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• The equations for large systems are inherently highly modular and extremely sparse
(i.e. the Jacobian matrix contains very large numbers of zeros). Highly efficient com-
putational algorithms for processing modular and sparse matrices are exploited when
computing frequency responses, transfer-function residues - as well as computing a
subset of the system eigenvalues within a selected region of the complex s-plane.

• The modularity and sparsity of the system equations can be exploited when comput-
ing eigenvalue sensitivities.

Elimination of the algebraic variables from the DAEs yields the conventional ‘ABCD’ form
of the state equations, i.e.

,  , (3.19)

,where  . (3.20)

Equations (3.19) are the state and output equations and are a form commonly used in the
literature on linear control theory to describe a system. 

3.4 Solution of the State Equations

The solution of the state and output equations (3.19) in matrix form can be obtained by tak-
ing the Laplace Transform of each of its first-order differential equations, i.e.

, or 

, (3.21)

where I is the nth order identity matrix. Pre-multiplying both sides by , we obtain:

. (3.22)

The first term on the right of (3.22) is the natural response and the second is the forced re-
sponse. The time-domain solution is of the form:

.

The solution involves the matrix-exponential , whose numerical computation for high
order systems is very challenging [7]. The following analysis reveals important theoretical as-
pects of the time response. However, it is emphasized that these methods are not employed
in practice to numerically calculate time-responses.

3.4.1 The Natural Response
The Natural Response is derived from (3.22): 

x
·

t  Ax t  Bu t += y t  Cx t  Du t +=

A Jfx JfJg
1–
Jgx–=

C Jhx JhJg
1–
Jgx–=

B Jfu JfJg
1–
Jgu–=

D Jhu JhJg
1–
Jgu–=

sX s  x 0 – AX s  BU s +=

sI A– X s  x 0  BU s +=

sI A–  1–

X s  sI A–  1–
x 0  sI A–  1–

BU s +=

x t  e
At

x 0  e
A t – 

Bu   d
0

t
+= y t  Cx t  Du t +=

e
At
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. (3.23)

The matrix  is known as the resolvent matrix. The solution for  in (3.23) can
be expressed in the form:

. (3.24)

Let . The  element of ,  is defined as 

where  is the  minor of ;  is the  matrix obtained by deleting

the jth row and ith column of  [1].

3.4.2 Example 3.3

Let  ;   compute .

,

, and so on, to yield

.

---------------------------------

For a solution which is non-trivial it is necessary that: 

  . (3.25)

This is also the characteristic equation of the system; the zeros of (3.25) are the poles of the
system defined by the state matrix . This is an important result because it reveals that the
characteristic dynamic behaviour of system is encapsulated in the state matrix. Unfortunate-
ly, the solution for  based on (3.24) becomes unmanageable for fourth- and higher-or-
der systems.

We can write the natural response,  in the form  where
 is known as the  state transition matrix. It describes the transition of the n

states over the interval  and is equal to . If ,  is replaced by , 

X s  sI A–  1–
x 0 =    or   x t  e

At
x 0 =

Y s  CX s =    or   y t  Cx t =

sI A–  1–
X s 

X s  sI A–  1–
x 0  Adjoint sI A– 

Determinant sI A– 
------------------------------------------------------x 0 = =

B Adjoint A = i j th B bij bij 1–  i j+ 
det Mji( )=

Mji j i th A M n 1–  n 1– 

A

A
1 3– 4

2– 1 3

4 2 3

= B Adjoint A =

b11 1–  1 1+ 
det 1 3

2 3 
 
 

1  1 3 3 2–  3–= = =

b12 1–  1 2+ 
det 3– 4

2 3 
 
 

1–  3– 3 4 2–  17= = =

B
3– 17 13–

18 13– 11–

8– 14– 5–

=

Determinant sI A–  0=

A

X s 

x t  e
At

x 0  = x t   t t0– x 0 =

 t t0–  n n  

t0 t e
At

t0 0=  t t0–   t 
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. (3.26)

We note, by examination of (3.24) and (3.26), that the Laplace Transform of  is

. Hence  can be determined by evaluating the resolvent matrix,

, and taking the inverse Laplace Transform.

3.4.3 Example 3.4: Natural response 
The state, input, output and direct-transmission matrices in this example are:

, , ,  respectively.

(a) Calculate the state transition matrix  for the state-matrix.

Firstly, we evaluate the resolvent matrix  using the result for the inverse given in
(3.24). The Adjoint (Adj) matrix is the transpose of the matrix formed by replacing the ele-
ments aij by their cofactors (signed minors). Thus,

, and . 

Hence .

Note the poles of the system, , are associated with each element of the matrix.

Taking the inverse Laplace Transform, we find: . 

(b) Find the responses of the outputs  when

 and .

The responses of the two states are  , i.e.

x t   t x 0  =

 t 

 s  sI A–  1–
=  t 
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A 0 2–

1 3–
= B 0

1
= C 2  0

0  1
= D 0=
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--------------------------------- 2–
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---------------------------------

1
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--------------------------------- s
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---------------------------------

= =
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The output responses are thus:  .

Note for this second-order system there are two eigenvalues in the responses, . 
---------------------------------

3.4.4 The Forced Response
Assuming all initial conditions are zero in (3.22), the state and output responses are:

. Eliminating X(s), we find:

   or   . (3.27)

From (3.27) the multi-input, multi-output (MIMO) transfer function is defined as:

.

Clearly, if there are no pure gain paths directly between input and output, then . The
MIMO transfer function is then:

. (3.28)

3.4.5 Example 3.4 (continued).

(c) Find G(s) given: , .

The elements of C are given in part (b) of Example 3.4. Hence, by substitution in (3.28),

.

----------------------------------

3.5 Eigen-analysis

3.5.1 The eigenvalues of the state matrix, A 

The  eigenvalue of a real,  matrix  is the real or complex scalar quantity, , which
is the non-trivial solution of the equation

 . (3.29)
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The -element column vector, , is called the right eigenvector of

the matrix  corresponding to the eigenvalue .

To calculate the eigenvalue, let us rewrite (3.29) in the form

.

For a solution which is non-trivial, .

This is also the characteristic equation of the system and is the same as (3.25) with  replaced
by . The eigenvalues of the state matrix  are thus the same as the poles of the transfer func-

tion, and are independent of which variables in the system are selected to be inputs or out-

puts. For the -order system there are  eigenvalues which are real or exist in complex-
conjugate pairs.

Likewise, there exists a n-element row vector, , which satisfies the

equation

; (3.30)

 is called the left eigenvector of the matrix  corresponding to the eigenvalue . 

Let us form the  matrices of right and left eigenvectors  and , respectively, corre-
sponding to the eigenvalues , i.e.

 , and . (3.31)

Also let us form the diagonal matrix  of eigenvalues, .

Equations (3.29) and (3.30) can then be expressed respectively as 

,   and    .

If  is non-singular, which is usually the case for realistic power system models, then:

 and ,

from which we may conclude that .

The latter equation reveals a useful orthogonality property of eigenvectors corresponding to
a selected eigenvalue, , namely

, (3.32)
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whereas, for eigenvectors corresponding to different eigenvalues,  and , .

  and  are respectively known as the right and left modal matrices of the state matrix . 

3.5.2 A note on eigenvalues, modes and stability

As described in Section 3.5.1, an eigenvalue  of the  system matrix  is a real or
complex number. The system matrix has n eigenvalues, some real and some in complex-con-
jugate pairs. Each real eigenvalue ( ) is associated with a monotonic mode which in the

time-domain has the form . Each complex-conjugate pair of eigenvalues

( ) is associated with an oscillatory mode which in the time-domain has the form

. The unforced response of a linear time-invariant system is a
(weighted) superposition of the response of each of the system modes. In power systems
analysis the term mode usually refers to a broader set of properties than just the damping and
frequency of oscillation in order to characterise more completely the physical behaviour of
the natural modes of system response in the time domain. Other modal characterisations in-
clude, for example, whether it is an electro-mechanical mode, or a controller mode, etc. In
the case of electro-mechanical modes we refer to sub-classifications such as inter-area
modes, local modes, etc. (see Section 1.5). In conjunction with the engineer’s detailed
knowledge of the system structure, the eigen-decomposition of the system, including eigen-
values, eigenvectors and participation factors, is a tool employed to characterize the system
modes. In the following text the term mode is, at times, used instead of eigenvalue. Note that

there are occasions when the symbol  refers to either the hth mode or the hth eigenvalue;
the application depends on the context. See Section 9.1.1 for further details.

It has been noted in Section 2.9 that the system is unstable if a pole or a pair of complex
poles lies in the right-half of the s-plane. Correspondingly, instability arises if the real part of
any eigenvalue is positive; the associated mode therefore increases exponentially with time.

3.6 Decoupling the state equations

Let us consider the response of the states in the state equations of (3.9) when the system

responds to a set of initial conditions with zero input. Substituting  and  in
the resulting state equation, 

, we find (3.33)

. (3.34)

Cross-coupling between states exists in the state equations (3.33) which represent the phys-
ical system. However, because the matrix  is a diagonal matrix of eigenvalues, no cross-
coupling terms exist in (3.34); the latter equation is a said to be a decoupled form of the state
equations, with pseudo-states . 

g h wgvh 0=

V W A

i n n A

1

y1 t  A1e
1t

=

2 j

y2 t  A2e
2t

t 2+ sin=

h

x Vz= x
·

Vz
·

=

x
·

t  Ax 0 =

z· V
1–
AVz 0  z 0 = =



z t 



Sec. 3.7 Residues from the state equations 77
In the above analysis we have invoked two transformations,

   and   .

3.7 Determination of residues from the state equations

In the following sections much of the material relating to the applications to power system
dynamics is covered in [8] to [12].

The full set of state equations (3.9) can be expressed in a decoupled form by letting .
The resulting state equations in the new state vector  are:

 ,       , (3.35)

where  is a diagonal matrix of the system eigenvalues,

 is the mode-controllability matrix,

 is the mode-observability matrix, and

 (usually a null matrix in power system applications).

A mode  is observable in an output signal  if and only if . Consequently,

 is a measure of the observability of the mode in the output . Similarly,

 is a measure of the controllability of the mode from an input .

Assume that there are  distinct eigenvalues. The transfer function between the  input

and the  output is

The form of the transfer function displayed in the last equation is the same as that in (2.14)
in which  is the residue associated with the eigenvalue at . Here, the residue for

the eigenvalue  is defined as 

  , (3.36)
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which, according to the above definitions, is a combined measure of observability and con-
trollability. 

Based on the concepts of controllability the mode of concern is ‘highly’ controllable from

the  input of the state-space model of the system if the magnitude of  is large relative

to that evaluated at all other inputs - subject to a note of caution 1. Likewise, the signal at

 output of the model is ‘highly’ observable - and is suitable as a feedback or stabilizing

signal for the selected mode - if the magnitude of  is large relative to the values found
for other possible feedback or stabilizing signals. Hence, for a candidate controller or a sta-

bilizer in the path from the  output to the  input to be effective, the magnitude of the

residue  must be relatively large at the modal frequency . 

3.8 Determination of zeros of a SISO sub-system

Although power systems are MIMO systems there is often interest in the analysis of a single-
input, single-output (SISO) subsystem. Consider the SISO from the ith input to the jth out-
put of the MIMO system described by the general set of state-equations in (3.9). Let  be

the ith column of the input matrix ,  the jth row of the output matrix  and  be the

ijth element of the direct-transmission matrix. The resulting SISO sub-system is described
by:

(3.37)

in which  and  are respectively the ith and jth input and output.

The objective is to find the set of zeros of the SISO subsystem: that is, complex frequencies

,  for which the forced response to the non-zero input 

results in the output  for all time. It is also assumed that none of the zeros are equal

to any of the system poles, i.e. there are no pole-zero cancellations. The forced response of

the state-variables is  and their rate of change is . Sub-

stituting for the driving input and associated forced responses in (3.37) results in:

1. A note of caution: because the various output or input signals will be different (e.g. out-
put signals may be voltage, power, speed, etc.), care should be taken in assessing the 
effects of scaling. 
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ĉmh

m
th

q
th

rmq
h h

bi

B cj C dij

x
·

t  Ax t  biui t +=

yj t  cjx t  dijui t +=

ui t  yj t 

h h 1  m,, n= uih t  uih0e
ht

=

yjh t  0

xh t  xh0e
ht

= x
·

h t  xh0he
ht

=



Sec. 3.8 Zeros of a SISO sub-system 79
. (3.38)

The non-trivial solution of (3.38) requires:

. (3.39)

Expansion of the above determinant results in a polynomial in  and the associated roots

correspond to the zeros of the SISO sub-system.

Equation (3.39) does not provide a tractable means for computing the zeros of systems with
more than a few state variables. Thus, (3.38) is rewritten in the form of a generalized eigen-
value problem as follows:

, (3.40)

where ,  and ; (3.41)

the objective is to compute all finite values of  for which there exist non-trivial solutions

of (3.40).

The well-known QZ algorithm developed by Moler and Stewart [13] is a numerically robust
procedure for computing . The Fortran LAPACK library [14] provides a suite of subrou-

tines in the public domain that implement the QZ algorithm. The Matlab function qz pro-
vides an interface to the appropriate LAPACK library routines.

At the heart of the QZ algorithm is the determination of unitary matrices  and  such
that both  and  are upper diagonal. As stated in [13] the two eigenval-
ue problems  and  are unitarily equivalent: they both have the

same eigenvalues  and their eigenvectors are related by . Suppose the hth diag-

onal entries of  and  are respectively  and  then . If  is zero, or

computationally very close to zero, then . If both  and  are zero, or compu-

tationally very close to zero, then the system is said to be degenerate.

Extensions of the above approach to the determination of the properties and computation
of the various kinds of zeros of MIMO systems have been devised by a number of investi-
gators [15, 16, 17]. Methods for computing dominant zeros in large systems have been de-
veloped and implemented by Martins, et al. [18, 19, 20]. 
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3.9 Mode shapes

Let us assume that we able both to excite a particular mode and to evaluate the time respons-
es of the states of the system. In (3.22) it was noted that the response can be separated into
its natural and forced components. Assuming (i) non-zero initial conditions on the states,
and (ii) no forcing signals applied at the inputs to the system, we can write the equation for

the natural response of the states in the form .

In the previous section a decoupled form of the state equations is derived (3.35),

, 

assuming the pseudo-states and the original states,  respectively, are related by
. With no external excitation at the inputs and initial conditions , the natural

response is

 ,

where  is the Laplace transform of ;

 i.e.    . (3.42)

On expressing the latter equation in terms of the original state variables, but retaining the
decoupled modes, the response becomes

,

the right and left modal matrices ( ) being defined in (3.31). An alternative form of
(3.42) is

 . (3.43)

If we account for the fact that the inner product of two vectors is a scalar we can rewrite
(3.43) as

.

Let us assume that initial conditions on the states are set equal to the right eigenvector of
the ith eigenvalue, i.e. . The latter equation becomes
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 . (3.44)

From (3.32), . Hence the above equation reduc-

es to

 . (3.45)

Thus only mode i is excited. Moreover,

 . (3.46)

Note that each of the modal responses, , has an identical form but their shapes

are determined by the initial amplitude  in each response. Thus for a given mode, the
relative amplitudes or shapes of the responses are determined by the associated right eigen-
vector. Consequently, we can plot the mode shapes for selected modes, these shapes revealing
not only the relative amplitude of the states in the mode, but also the relative phase between
the responses of the states. From (3.46) the relative amplitudes of states at time t are

 : ,  : , ... ,1, ... : , or : ,  : , ... ,1, ... : , (3.47)

where  is the element with the largest magnitude among the selected states whose mode
shapes are to be displayed; this result will be employed later in Chapters 9 and 10.

A note of caution. Prior to the development of participation factors (see Section 3.10), the
element  of the right eigenvector was employed to determine the ‘involvement’ of the

state variable  in mode i. A large relative value of  was assessed as representing a sig-

nificant involvement of  in the ith mode. However, this is misleading as the numerical val-

ues of the elements  depend on the units selected (e.g. speed in pu, angle in rad.) for the

associated state variables, i.e. they are not dimensionless, they are scaling dependent. It
should be noted, therefore, that the relative amplitude of the component  re-

vealed in (3.47) should not be interpreted as implying the relative participations of states j
and m in mode h. The concept of ‘participation’ is considered in Section 3.10.

In a practical application, the elements in the right eigenvector corresponding to the speed
states of all generators are selected to reveal the speed mode-shape, say, for an inter-area
mode. For such a mode the relative phase between the speed states reveal, for example, that
machines in areas A and B swing against generators in area C. The plots of mode shapes and
their significance in the analysis of dynamic behaviour of power systems will be discussed in
more detail in Chapters 9 and 10.
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The significance of modal response and the mode shapes are most simply illustrated by
means of a numerical example.

3.9.1 Example 3.5: Mode shapes and modal responses

The state matrix of a system is given by . 

Determine its modal responses and mode shapes.

The eigenvalues of  are evaluated from the characteristic equation, ; there
are two eigenvalues, a slower at . 

Let the right modal matrix be . The right eigenvector associated with the eigen-

value  is found from (3.29),

, i.e.  .

Likewise, for , .

Let , then .

The time response, as given by (3.43), is

, or

.

The form of this response illustrates a number of significant points.

As stated earlier, if the initial value of the states is equal to either of the right eigenvectors,
the associated mode is the only mode present in the response, e.g. for eigenvalue 1,

,

.
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Correspondingly, for eigenvalue 2, :

.

Note that in each of the two modal responses, the responses  are related by

a constant factor for all , i.e.  for 1, and  for 2. We ob-

serve that 
(i) for both modes, the responses of the states  and  vary in anti-phase; 

(ii) for the slow mode  the relative amplitudes of the two states are same, but for

the fast mode  they differ by a factor of two. 
Thus, for a given mode, the mode shape reveals not only relative phase between the time re-
sponses of the states but also the relative amplitudes of the states in the modal responses; fur-
thermore, the mode shape is determined by the right eigenvector of the associated
eigenvalue. 

Further insight into the physical significance of mode shapes is provided in Section 9.2.
---------------------------------

3.10 Participation Factors 

We will make fairly extensive use of participation factors later, mainly to determine the de-
gree to which certain states of certain generators or other devices participate in a selected
mode. For example, by examining the speed states of generators, the generators which are
involved in a selected mode of rotor oscillation can be found.

3.10.1 The relative participation of a mode in a selected state
We will analyse participation factors in two stages. In the first it is assumed that the initial

conditions on the states are such that only the  state is excited, i.e. , the unit

vector. Then (3.43) becomes:

  .

Note that, although only the  state is excited, all eigenvalues are excited by the unit vector.
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Let us consider the state , i.e

. (3.48)

The participation of hth eigenvalue in state  is defined as

. (3.49)

Thus, (3.48) becomes .

However, from (3.32) we know

. (3.50)

The inner product  (= 1) is dimensionless, therefore the numbers  are also di-

mensionless and are invariant under changes in the units of the state variables of the system.
Hence  in (3.49) provides a measure of the relative extent to which hth eigenvalue participates

in state  at time ;  is therefore known as the participation factor of the hth eigen-

value in the  state. (Note that since each mode in the system decays at a different rate the
relative amplitude of each mode in the response (3.48) does change with time.)

3.10.2 The relative participation of a state in a selected mode
For the second stage it is assumed that the initial conditions on the states are such that each
state is excited in turn by the unit vector, i.e. . Using (3.43) and the

principle of superposition, the form of (3.48) is modified to the following,

             for :          

                                    

             for :         

                                    

             for :         .

xk t 

xk t  vk1 w1k e
1t

+ vkh whk e
ht

+ vkn wnk e
nt

+=

          w1k v
k1

 e
1t

+ whk v
kh

 e
ht

+ wnk v
kn

 e
nt

+=

k

phk whk vkh = vkh whk =

xk t  p1k e
1t

+ phk e
ht

+ pnk e
nt

+ pjke
ht

h 1=

n

= =

whk vkh
k 1=

n

  phk
k 1=

n

 1= =

whvh whk vkh

phk

k t 0= phk

k
th

x 0  ej= ,  j 1  n =

j 1= x1 t  w11 v
11

 e
1t

+ wh1 v
1h

 e
ht

+ wn1 v
1n

 e
nt

+ +=

                                                                           

j k= xk t   w1k v
k1

 e
1t

+ whk v
kh

 e
ht

+ + wnk v
kn

 e
nt

+=

                                                                           

j n= xn t  w1n v
n1

 e
1t

+ whn v
nh

 e
ht

+ wnn v
nn

 e
nt

+ +=



Sec. 3.11 Eigenvalue sensitivities 85
If we replace  by the participation factors, , the coefficients of exponential
terms in the above set of equations can be formed into the following column arrays,

.

Consider the hth eigenvalue. According to (3.50), the sum of the participation factors in the
column array  is unity. Hence, when each state is excited in turn by the unit vector, the

participation factor  also provides a measure of the relative extent to which each of the n

states participates in the hth eigenvalue at time .

3.10.3 Example 3.6: Participation factors
In Example 3.4 the right and left modal matrices are

; 

these are associated with the eigenvalues .

The participation factors, , for states  and  in each of the two eigenval-
ues are:

,   and    .

Likewise, the participations of the eigenvalues  and  in each of the two states are:

 , and .

Note for both eigenvalues the participation factors sum to one.

Further insight into the significance of participation factors is described in Section 9.3.
---------------------------------

3.11 Eigenvalue sensitivities

In the analysis of power system dynamics, it is of interest to assess the effect of the change
of a system parameter, or some element of the state matrix. Later we will need to examine
the effect on certain modes of a change in an element  of the state matrix, . Earlier we

defined the relationship between the state matrix, the eigenvalues and right eigenvectors, i.e. 
.
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Differentiation of this expression with respect to  yields,

.

Collecting terms and pre-multiplying by the left eigenvector, we find 

.

Since, by definition , the left-hand side vanishes. Furthermore ,

and all elements except the  of  are zero. The sensitivity of the eigenvalue  to

a change in the element  is thus

. (3.51)

In its simplest form , and the sensitivity is the product of the elements

 of the left and right eigenvectors,

. (3.52)

In the case , and , the eigenvalue sensitivity is , i.e. the

participation factor of the hth eigenvalue in state .

Note, however, that the element  in (3.52) may be a function of a device parameter, ,

i.e. . Moreover, several elements of  may be functions of the same parameter.

The above analysis can then be extended to evaluate the sensitivity of  to changes in the
parameter .
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Chapter 4

Small-signal models of synchronous generators,
FACTS devices and the power system

4.1 Introduction

In this chapter various models of synchronous generators, FACTS devices and of the power
system are developed in forms which are employed in software for the analysis of the small-
signal dynamic performance of multi-machine systems. Small-signal models for the synchro-
nous generator are formulated in Section 4.2.  An essential feature of this analysis is that the
higher order coupled-circuit representation of the generator electromagnetic dynamic be-
haviour is formulated in Section 4.2.3. This is treated as the fundamental model from which
the following two alternative but equivalent formulations of the electromagnetic model are
derived. The first is the Operational Parameter formulation described in Section 4.2.12. The
second, described in Section 4.2.13, is referred to as the Classical Parameter formulation and
is expressed directly in terms of the classically-defined standard parameters of the generator.
The Classical Parameter formulation is presented because it is employed in widely used pow-

er system simulation software packages such as Siemens PTI PSS®E [1] and GE PSLF™ [2].
The parameters for the fundamental coupled-circuit formulation are the resistances and in-
ductances of the d- and q-axis circuits. The parameters for the Operational Parameter rep-
resentation of the electromagnetic equations are the gains and time constants of the transfer-
function representations of the respective axes and are collectively referred to as the ‘exactly-
defined standard parameters’. The Classical Parameter formulation requires the classically-
defined standard parameters. The relationship and conversion between the three parameter
sets are outlined in Section 4.2.14. 
89



90 Generators, FACTS devices & system models
Small-signal models of a range of FACTS devices are formulated in Section 4.3 and include
those of the Static VAR Compensator (SVC), Voltage Sourced Converter (VSC), Static Syn-
chronous Compensator (STATCOM), and HVDC transmission links. The general purpose
VSC model formulated in Section 4.3.3 is used as a component in the simplified STATCOM
model in Section 4.3.4 as well as for the rectifier and inverter in the model of the VSC
HVDC transmission link in Section 4.3.7. A general model for a voltage-commutated thy-
ristor-controlled AC/DC converter is formulated Section 4.3.8; this model is then used in a
modular fashion to represent the rectifier and inverter of a line-commutated HVDC trans-
mission link. A methodology to formulate the small-signal equations of the power system is
described in Section 4.4. Finally, in Section 4.5 a general purpose small-signal representation
of a static load model is described.

4.2 Small-signal models of synchronous generators

4.2.1 Structure of the per-unit linearized synchronous generator models
Before developing the details of the per-unit linearized model of the synchronous generator
the overall mathematical structure of the model is described by means of the block diagram
in Figure 4.1. The linearized model is formulated in the rotating direct- and quadrature-axis
(dq) coordinate system in which the d-axis is aligned with the magnetic north pole of the field
winding and the q-axis leads the d-axis by 90 deg. (electrical). The model is linearized about
an initial steady-state operating point that is defined by the initial stator terminal quantities
which are typically obtained from a power flow solution. The calculation of the generator
initial conditions from the specified terminal quantities is described in Section 4.2.9. The
two principal components of the linearized generator model in Figure 4.1 are the electro-
magnetic (em) equations and the shaft equations of motion. The em equations comprise a
set of differential equations that describe the dynamic characteristics of the d- and q-axis ro-
tor-winding flux linkages together with algebraic equations for the stator voltage compo-
nents. 

As described in Section 4.2.10 the connection of the generator stator to the network requires
the transformation of the perturbations in the stator voltage and current components in the
generator dq coordinate system to the corresponding components in the synchronously ro-

tating RI-network coordinate system1.

There are two control inputs to the generator. The first is the perturbation in the field volt-
age ( ) developed by the excitation system. As explained in Section 4.2.7 it is important

to note that  is expressed in the non-reciprocal per-unit system of the generator field.

The field voltage input in this per-unit system must be converted to the reciprocal per-unit
system which is employed in the formulation of the generator electromagnetic equations.
Similarly, the field current in the reciprocal per-unit system must be converted to the non-

1. RI refers to the Real and Imaginary components in the network coordinate system.

Efd

Efd
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reciprocal per-unit system for use in the excitation system model. The second input is the
perturbation in the mechanical torque ( ) developed by the turbine / governor system

which is expressed in per-unit on the generator base value of mechanical torque. Models for
the excitation and turbine / governor systems are not included in this chapter.

The generator models are designated by a code of the form ndmq-c{0,1} in which n and m
are the number of d- and q-axis rotor-windings respectively; c1 and c0 are used to indicate,
respectively, that unequal mutual coupling between the d-axis rotor windings is represented
or neglected. The 1d0q-c0 model comprises three state-variables: the rotor-angle, rotor-
speed and d-axis field flux-linkages. This is the basis for the Heffron-Phillips model [3, 4]
that is frequently used for developing concepts for generator controls. It is, however, not
recommended for use in power system analysis. The 3d3q-c1 model, the most complex mod-
el considered in this work, comprises a field winding, and two damper windings in the d-axis
and three q-axis damper windings; unequal mutual coupling between the d-axis rotor wind-
ings is represented. This model – with eight state-variables comprising the six rotor-winding
flux-linkage variables and rotor angle and rotor speed – is the most complex model encoun-
tered in small-signal analysis of large power systems. The most commonly employed models
in large scale small-signal stability studies are the fifth and sixth order models 2d1q-c0 and
2d2q-c0 in which unequal mutual coupling effects are neglected.

The formulation of the em equations for the 3d3q-c1 model described in Section 4.2.3 is
based on the ideal coupled-circuit representation of the synchronous machine for which the
model parameters are the resistances, mutual and leakage inductances of the windings. As
explained in Section 4.2.4 the em equations developed for this model are readily modified
to represent machine models with fewer damper windings in the respective axes. In particu-
lar, the structure of the em equations and their interface with other components in the over-
all model of the generator are unaffected by changes in the number of damper windings.

The linearized coupled-circuit formulation of the state- and algebraic equations of the com-
plete generator model are given in matrix form in equation (4.117) on page 133 followed in
Table 4.9 by a step-by-step procedure for calculating the associated coefficient matrices.

Tm
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Figure 4.1 Structure of the per-unit linearized model of the synchronous generator. (Refer 
to Tables 4.3 and 4.4 for descriptions of the parameter and variable symbols in this figure).
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Test procedures that are used to identify synchronous generator models for dynamic analy-
sis commonly employ the Operational Parameter representation of the generator. As ex-
plained in Section 4.2.12 this representation comprises three d-axis transfer-functions and
one q-axis transfer-function to completely characterise the machine. The test procedures
identify the gains and time constants of these transfer-functions. These transfer-function
constants are referred to as the “standard parameters” such as , , , , etc. In

order to employ the coupled-circuit formulation of the em equations when only the standard
parameters are provided it is necessary to transform the standard parameters to the coupled-
circuit parameters as outlined in Section 4.2.14. A troublesome aspect of using the standard
parameters is that over the years two alternative and inconsistent definitions of the param-
eters have evolved. The ‘Exact’ definitions correspond to the exact roots of the above trans-
fer-functions. In the ‘Classical’ definitions the d-axis standard parameters are related to the
parameters of the equivalent circuit of the machine by the classical relationships which are
based on the assumptions that (i) during the transient period the damper winding resistances
are infinite; (ii) during the subtransient period the resistance of the field winding is zero and
the resistances of the second damper winding is infinite; (iii) finally, during the sub-subtran-
sient period the resistances of the field and first damper winding are assumed to be zero. In
the q-axis, analogous assumptions are made to arrive at the classical definitions of the q-axis
standard parameters in terms of the coupled-circuit parameters. It is important to know if
the generator standard parameters that are provided conform to the ‘Exact’ or ‘Classical’
definitions and if necessary to transform them appropriately to suit the requirements of the
simulation model in use. This is particularly important for the q-axis parameters.

The em equations in some widely-used simulation packages are formulated directly in terms
of the classically-defined standard parameters. This is referred to as the Classical Parameter
formulation in this book. It is emphasised that the Classical Parameter formulation is exactly
equivalent to the coupled-circuit formulation provided: (i) that the unequal coupling between the
d-axis rotor windings is neglected, and (ii) that the same method for representing magnetic satu-
ration is employed in the two models.

4.2.2 Generator modelling assumptions
For the purpose of rotor-angle small-signal analysis the following generator modelling as-
sumptions are made:

• The d-axis is aligned with magnetic axis of the field winding and the q-axis leads the d-
axis by 90 degrees (electrical).

• The following non-reciprocal Park/Blondel transform [5, 6] is used to transform vari-
ables in the stationary abc coordinate system to the rotating dq coordinate system:

, . (4.1)
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• In the stator voltage equations the transformer voltage terms,  and , are

omitted because, in the bandwidth of interest, they are negligible in comparison with
the speed voltage terms,  and  [7].

• For the purpose of calculating the d- and q-axis stator voltages the perturbation of the
per-unit rotor-speed  from the per-unit synchronous speed  is assumed to be

negligible and thus, for this purpose, . Rotor angle and speed perturbations

are, necessarily, represented in the rotor equations of motion.

• A consequence of the above assumption is that the per-unit power transferred across
the airgap is independent of perturbations in the rotor speed. Thus, it is also necessary
to assume that the mechanical power developed by the turbine is independent of per-
turbations in rotor speed.

• The generator equations are expressed in per-unit form in which the base quantities
are summarized in Section 4.2.3.2. In particular, the Lad-base reciprocal per-unit sys-
tem is chosen for the rotor windings [8, 9, 10].

• As recommended in IEEE Std. 421.5 [11] a non-reciprocal per-unit system is assumed
to be employed for the representation of generator excitation systems. As explained in
Section 4.2.7 it is therefore necessary to appropriately adjust the scaling of the field
current and voltage at the interface between the generator and excitation system mod-
els.

4.2.3 Electromagnetic model in terms of the per-unit coupled-circuit parameters
The development of the per-unit generator equations in the rotating dq coordinate system
from the ideal coupled-circuit representation of the synchronous machine in the stationary
abc coordinate system is provided in reference [12]. In this section the per-unit coupled-cir-
cuit formulation of the electromagnetic equations of the machine are listed. These equations
are then linearized about the initial steady-state operating point of the machine in
Section 4.2.11. The Operational Parameter and Classical Parameter formulations for the em
equations are summarized in Sections 4.2.12 and 4.2.13 respectively.

The third to eighth-order coupled-circuit machine models require data in the form of the d-
and q- axis equivalent circuit winding resistances and leakage and mutual inductances.

Though not commonly used the 3d3q-c1 model has been included because there is evidence
in the literature that this number of rotor circuits may be required to adequately represent
some machines. Test methods have already been developed to identify machine models with
this number of rotor windings, for example [13, 14, 15, .16] Figure 4.2 shows the stator and
rotor winding flux linkages in terms of the winding mutual and leakage inductances and the
winding currents. The unequal mutual coupling between the d-axis rotor windings is repre-

pd  pq 

d  q 

 0

 0=
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sented by the inductances  and  which are referred to as the Canay inductances. The

shielding of the field winding by the damper windings has been identified in the literature as
important in correctly predicting the field voltage and current [13, 17, 18]. Unequal mutual
coupling between the q-axis rotor windings is not represented since these windings are not
directly observable. The d- and q-axis equivalent circuits for the 3d3q-c1 model are shown
in Figure 4.3.

Figure 4.2 Per-unit d-axis flux linkage distribution showing the unequal mutual coupling 
between the rotor windings as described by Canay [17, 18].

Importantly, in the following analysis, once the equations for the eighth-order model are de-
fined, the lower-order coupled-circuit models are readily derived. All lower-order coupled-cir-
cuit models are formed by deleting the equations and variables associated with those damper
windings to be omitted in the formulation of the simpler model.

Two equivalent approaches to the representation of magnetic saturation are accommodated
in the formulation of the model. The specific details of the non-linear saturation functions
and their linearization are provided in Section 4.2.8.

4.2.3.1 Notes on vector and matrix nomenclature
The nomenclature in the following table applies to matrices and vectors that are extensively
employed in the formulation of the models.
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Table 4.1  Vector and matrix nomenclature

4.2.3.2 Summary of the generator per-unit system

The principal base quantities for the machine are normally  (kV),  (MVA) and 

(Hz) which are respectively values for the stator RMS line-to-line voltage, the stator three-
phase apparent power and the stator frequency. Usually, but not necessarily, the generator
rated values of these quantities are chosen. Additionally, the base value of time  is chosen

to be one-second. Finally, the relationship between mechanical and electrical angles requires
knowledge of the number of rotor pole pairs, .

Symbol Meaning

Denotes a column vector

Denotes a matrix or, depending on the context, a vector.

, Denotes vector and matrix transposition respectively

Null matrix or vector. The null matrix has zero rows and/
or zero columns. The possibility of a non-zero number of 
rows or columns ensures dimensional consistency of 
matrix equations. The dimension is to be inferred from 
the context.

The identity matrix. The dimension is to be inferred from 
the context and in some situations may be the scalar iden-
tity (i.e. 1) or the null or empty matrix.

The zero matrix or vector. The dimension is to be 
inferred from the context and in some situations may be 
the scalar zero (i.e. 0) or the null matrix.

Denotes a column vector whose entries are all ones. The 
dimension is to be inferred from the context.

• If  is a n x 1 vector then  is a n x n matrix of 
all ones.

•  is the sum of all the elements in 

Denotes block diagonalization which is the result of 
appending the mx x nx matrix  and the my x ny matrix 

 to create the (mx + my) x (nx + ny) matrix as shown. If 

 and  are scalars or diagonal matrices the result is a 
diagonal matrix.
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Figure 4.3 The d- (top) and q-axis (bottom) equivalent circuits for the 3d3q-c1 generator 
model represented by three rotor windings in each axis and unequal mutual coupling be-

tween the d-axis rotor windings. (Note: inductance & flux-linkage values are scaled by  
because the base value of time is one second). 

The base values of the rotor winding currents and flux-linkages are determined such that (i)
the per-unit mutual inductances between all pairs of windings are reciprocal; (ii) the mutual
inductances between all d-axis rotor windings and the stator are equal to the per-unit d-axis
mutual inductance ; (iii) the mutual inductances between all q-axis rotor windings and

the stator are equal to . Furthermore, the base values of rotor-winding voltages are cho-

sen such that the form of the rotor winding voltage equations in SI units and in per-unit are
identical. This choice of base values for the rotor quantities is equivalent to that recommend-
ed by Rankin in 1945 [8, 9] and is referred to as the “Lad-base reciprocal per-unit system”
[10]. It has gained very wide, if not universal, acceptance in the power system analysis field.

On the above basis for the generator per-unit system are derived the base values for the me-
chanical, stator winding and rotor winding quantities in Table 4.2.
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Table 4.2  Base values for generator quantities (Note: a bar above a quantity (e.g. ) 
means the SI value and the subscript ‘b’ denotes the base value of a quantity.).

Base 
Quantity

SI Units Description

Principal base quantities from which all other base quantities are derived

kV (rms, 
ph-ph)

Arbitrary choice, but usually rated RMS phase-to-phase stator voltage 
(sometimes referred to as VBASE).

MVA
Arbitrary choice, but usually three-phase MVA rating of the machine 
(sometimes referred to as MBASE).

Hz

Arbitrary choice, but usually rated generator frequency.
(This is not necessarily the same as nominal frequency of the system to 
which the generator is connected. For example, when a generator rated 
at 60 Hz is connected to a 50 Hz system or vice-versa).

Number of pole pairs.

s Base value of time is chosen to be 1 second.

Derived base quantities

s-1

Base value of the time differential operator: 

 where  s-1.

(elec) 
rad/s

Base electrical frequency: .

V(peak, 
ph-n)

Stator base voltage: peak value of phase to neutral voltage

.

VA Machine three-phase VA (apparent power) base: .

Joules Base energy: .

A (peak, 
line)

Stator base current: peak value of line current .

 Stator base resistance / impedance: .

H Stator base inductance: .

Wb-turns Stator base flux-linkages: .

(mech) 
rad/s

Base mechanical rotor speed: .

Nm Base mechanical torque: .

Nm Base electrical torque: .
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4.2.3.3 Parameter and variable definitions
The parameters and variables used in the formulation of the model are listed in Tables 4.3
and 4.4 respectively together with their base values as defined in Table 4.2.

d-axis rotor quantities

(per-unit unsaturated d-axis mutual inductance  is used in the following.)

A
Base field current in the reciprocal per-unit system of units:

.

V Base field voltage in the reciprocal per-unit system: .

A
Base field current in the non-reciprocal per-unit system: 

.

V

Base field voltage in the non-reciprocal per-unit system: 
,  is the field resistance in at the specified tem-

perature.

A
Base current of the d-axis damper windings:

, .

V
Base voltage of the d-axis damper windings:

, .

, , 
Wb-turns

Base flux-linkages of d-axis rotor windings:
,  & .

, , 


Base resistance of the d-axis rotor windings:
,  & .

q-axis rotor quantities

(per-unit unsaturated q-axis mutual inductance  is used in the following.)

A
Base current of the q-axis damper windings:

, .

V
Base voltage of the q-axis damper windings:

, .

Wb-turns
Base flux-linkages of the q-axis damper windings:

, .


Base resistance of the q-axis damper windings:

, .

Base 
Quantity

SI Units Description

Lad Lad Lsb=

ifdb ifdb Ladsb  Lafd Lad Lafd isb= =

efdb efdb Sb ifdb=

Ifdb Ifdb ifdb Lad=

Efdb Efdb rfd Ifdb= rfd

ikdb ikdb Ladsb  Lakd Lad Lakd isb= = k 1 2=

vkdb vkdb Sb ikdb= k 1 2=

fdb 1db

2db
fdb vfdb b= 1db v1db b= 2db v2db b=

rfdb r1db

r2db
rfdb vfdb ifdb= r1db v1db i1db= r2db v2db i2db=

Laq Laq Lsb=

ikqb ikqb Laqsb  Lakq Lad Lakq isb= = k 1  3 =

vkqb vkqb Sb ikqb= k 1  3 =

kqb kqb vkqb b= k 1  3 =

rkqb rkqb vkqb ikqb= k 1  3 =
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Table 4.3  Summary of the parameters in the per-unit coupled-circuit
representation of the 3d3q-c1 synchronous machine model.

Per-unit Parameter
Base Value

(see Tab. 4.2)
Description

n/a
The base frequency (elec. rad/s) which appears explic-
itly in the per-unit equations due to the choice of one 
second as the base value of time.

Aggregate inertia constant of the generating unit. 
Refer to Appendix 4–II.2 for derivation.

, Aggregate incremental mechanical damping torque 
coefficient of the generating unit. Refer to 
Appendix 4–II.2 for derivation.

Stator resistance, assumed identical in the d- and q-
axes.

Stator leakage inductance, assumed identical in the d- 
and q- axes.

, 
Respectively the d- and q-axis unsaturated airgap 
mutual inductance between the corresponding stator 
and rotor windings.

The operating point dependent values of the d- and q-

axis mutual inductances. (Note:  may be a varia-

ble depending on the method used to represent mag-
netic saturation).

, , 
, , Resistances of the field winding and the first and sec-

ond d-axis damper windings respectively.

, , 

See Note (1)

Leakage inductances of the field winding and the first 
and second d-axis damper windings respectively. 
These inductances represent flux that links only their 
respective windings.

Mutual inductance between the field and first damper 
winding which represents flux linkages between these 
windings but which do not link the stator or the sec-
ond damper winding. To neglect unequal coupling 
between the d-axis rotor windings .

Mutual inductance between the three d-axis rotor 
windings which represents flux that links all three d-
axis rotor windings but not the stator.

, , 
, , 

Resistances of the three q-axis damper windings.

b

H 2Ub  b
2

D
Tmb mb

Tb b

rs Zsb

Ll Lsb

Ladu
Laqu

Lsb

L
˜ adq Lad Laq

T
= Lsb

L
˜ adq

rfd r1d r2d

rfdb r1db

r2db

Lfd L1d L2d

Lc1

Lc1 Lc2 0= =

Lc2

r1q r2q r3q

r1qb r1qb

r2qb
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In the literature on models of generators reference is often made to per-unit machine reac-
tances (e.g. , , etc.) rather than per-unit machine inductances (e.g. , ). In this

book we adopt per-unit machine inductances. It should be noted that in the per-unit system
used the values of per-unit reactances and inductances can be used interchangeably.

, , See Note (2)

Leakage inductances of the three q-axis damper wind-
ings. Note that unequal coupling between the q-axis 
rotor windings is not represented since the q-axis is 
observable only from the stator.

(1) The d-axis rotor-winding per-unit inductance matrix  is 

defined in terms of the corresponding matrix  in terms of SI units  where the d-axis rotor-

winding leakage inductance matrix  is defined in (4.19),  (H) and 

.

(2) The q-axis rotor-winding per-unit inductance matrix  is 

defined in terms of the corresponding matrix  in terms of SI units where the q-axis rotor-wind-

ing leakage inductance matrix  is defined in (4.20),  (H) and 

.

Per-unit Parameter
Base Value

(see Tab. 4.2)
Description

L1q L2q L3q

Lrd Laduu
T

Llrd+
b

Sb
------ 
  irdbLrdirdb= =

Lrd

Llrd Lrd

Lffd Lf1d Lf2d

Lf1d L11d L12d

Lf2d L12d L22d

=

irdb ifdb i1db i2db  D=

Lrq Laquu
T

Llrq+
b

Sb
------ 
  irdqLrqirqb= =

Lrq

Llrq Lrq

L11q L12q L13q

L12q L22q L23q

L13q L23q L33q

=

irqb i1qb i2qb i3qb  D=

Xd Xad Ld Lad
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Table 4.4  Summary of variables in the per-unit coupled-circuit representation of the 
3d3q-c1 synchronous machine.

Variable (in per-unit)
Base Value

(see sec. Tab. 4.2)
Description

d- and q-axis stator terminal voltage respec-
tively.

d- and q-axis stator winding current respec-
tively. Direction of positive stator current is 
from the generator into the network.

d- and q-axis airgap flux linkages respectively.

d- and q-axis stator flux linkages respectively.

d-axis rotor flux linkages in which subscripts 
‘fd’ refers to the field winding and ‘1d’ and ‘2d’ 
refer respectively to the first and second d-axis 
damper windings.

q-axis rotor flux linkages in which the sub-
scripts ‘1q’, ‘2q’ and ‘3q’ refer respectively to 
the three q-axis damper windings.

d-axis rotor-winding voltages in which  is 

the per-unit field winding voltage in the recip-
rocal base system. The damper windings are 
short-circuit so their voltages are zero.

q-axis rotor winding voltages are identically 
zero since the damper windings are short-cir-
cuit.

d-axis rotor winding currents.  is the per-

unit field winding current in the reciprocal 
base system.

q-axis rotor winding currents.

Note: For compactness the d- and q-axis rotor winding variables are aggregated as follows:

, , .

, , Per-unit field current and voltage respectively 
in the non-reciprocal base system.

v
˜dq vd vq

T
= vsb

i
˜dq id iq

T
= isb


˜ adq ad aq

T
= sb


˜ dq d q

T
= sb


˜ rd fd 1d 2d

T
= fdb 1db 2db

T


˜ rq 1q 2q 3q

T
= 1qb 2qb 3qb

T

v
˜ rd efd 0 0

T
= efdb v1db v2db

T

efd

v
˜ rq 0 0 0

T
= v1qb v2qb v3qb

T

i
˜rd ifd i1d i2d

T
= ifdb i1db i2db

T
ifd

i
˜rq i1q i2q i3q

T
= i1qb i2qb i3qb

T


˜ rdq


˜ rd


˜ rq

= v
˜ rdq

v
˜ rd

v
˜ rq

= i
˜rdq

i
˜rd

i
˜rq

=

Ifd Efd Ifdb Efdb
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4.2.3.4 Summary of the coupled-circuit formulation of the generator electromagnetic equa-
tions
Summarized below are the per-unit coupled-circuit equations describing the electromagnet-
ic behaviour of the generator in the rotating dq coordinate system. These equations are de-
veloped from first principles in [12].

The d- and q-axis rotor-winding voltage equations are respectively:

 and (4.2)

;

The demagnetizing components of the d- and 
q-axis excitation current that is required to 
account for the effects of magnetic saturation 
in the respective axes. This saturation excita-
tion current is incorporated in the model only 
if the second method of saturation modelling 
in Section 4.2.8.2 is employed.

 where As above, but the non-reciprocal per-unit sys-
tem is employed. This representation of the 
demagnetizing effects of magnetic saturation is 
employed in the Classical Parameter formula-
tion of the em equations in Section 4.2.13.

(elec. rad)
Relative rotor angle being the angular position 
of the d-axis with respect to the synchronously 
rotating network reference (in elec. rad).

(elec. rad)
Stationary rotor angle being the angular posi-
tion of the d-axis with respect to a stationary 
reference (in elec. rad).

Rotor-speed.

Synchronous speed. Note, if the nominal sys-
tem frequency is equal to the generator base 
frequency then .

Electrical power output.

Electromagnetic (or airgap) torque.

Variable (in per-unit)
Base Value

(see sec. Tab. 4.2)
Description

i
˜sdq isd isq

T
= ifdb i1qb

T

I
˜sdq Isd Isq

T
=

Isd Ladu
i
sd

=

Isq Laqu
i
sq

=

ifdb Ladu


i1qb Laqu






 b

0 b
0 1=

Pe Sb

Tg Tmb

1
b
------p

fd

1d

2d

1

0

0

efd

rfd 0 0

0 r1d 0

0 0 r2d

ifd

i1d

i2d

–=
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, (4.3)

These equations are conveniently expressed in the following compact forms:

 in which ; (4.4)

and  in which . (4.5)

The above equations are combined as follows.

The per-unit flux linkage equations for the d-axis are presented in terms of the winding mu-
tual and leakage inductances, and the winding currents based on Figure 4.2 on page 95. As
mentioned earlier, the flux linkages of the q-axis windings neglect unequal coupling between
the q-axis rotor windings. This is valid because the q-axis is observable only from the stator.
Consequently an equivalent circuit that assumes equal coupling between the q-axis rotor
windings can be identified that represents the  observable q-axis  behaviour.

Referring to Figure 4.2 the d-axis mutual (or airgap) flux linkages are:

, where (4.9)

and analogously the q-axis mutual flux linkages are:

. (4.10)

The values of  and  depend on the method used to represent magnetic saturation.

Two mathematically equivalent methods for representing magnetic saturation are consid-
ered. In the following, the method is denoted by the parameter  if the first method

is being used, or  for the second method. If magnetic saturation is to be neglected

then .

1
b
------p

1q

2q

3q

r1q 0 0

0 r2q 0

0 0 r3q

i1q

i2q

i3q

–=

p
˜ rd

bredefd br
rd

i
˜rd–= rrd rfd   r1d   r2d  D= bred b 0 0

T
=

p
˜ rq

br
rq

i
˜rq–= rrq r1q   r2q   r3q  D=

Rotor Voltage Equations

, (4.6)

in which  and (4.7)

 where . (4.8)

p
˜ rdq

br
rdq

 – i
˜rdq breefd+=

rrdq rrd rrq D=

bre
bred

0
= bred b 0 0

T
=

ad Lad ifd i1d i2d id–+ +  Lad u
T

i
˜rd id– = = u 1 1 1

T
=

aq Laq i1q i2q i3q iq–+ +  Laq u
T

i
˜rq iq– = =

Lad Laq

sm 1=

sm 2=

sm 0=
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The first method for representing magnetic saturation ( ) is described in detail in

Section 4.2.8.1. In this method it is assumed that the airgap mutual inductances are non-lin-
ear functions of the airgap flux linkages whereas the leakage inductances in both axes and
the unequal mutual inductances between the d-axis rotor windings are assumed to independ-
ent of the fluxes linking them and are therefore constant parameters. Thus, in this method:

, . (4.11)

In the second method ( ), for which the details are provided in Section 4.2.8.2, the

unsaturated values of the airgap mutual inductances are retained; instead the components of
the excitation current,  and , necessary to represent the demagnetizing effect of satu-

ration in the respective axes, are deducted from the excitation current in equations (4.9) and
(4.10) respectively, i.e.

, (4.12)

where . (4.13)

If method 2 is being used to represent magnetic saturation then the unsaturated values of the air-

gap mutual inductances are used in the equations (i.e.  and ).

As explained in Section 4.2.8.2 the demagnetizing currents which account for the effect of
saturation are non-linear functions of the airgap flux linkages:

, . (4.14)

Defining  results in the following compact matrix equation for the d- and q-

axis airgap flux linkages:

sm 1=

Lad Lad ad aq = Laq Laq ad aq =

sm 2=

isd isq

ad

aq

Lad 0

0 Laq

u
T

0

0 u
T

i
˜rd

i
˜rq

id

iq

– s2
isd

isq

–
 
 
 
 

=

s2

1   if sm 2=

0   otherwise



=

Lad Ladu
= Laq Laqu

=

isd isd ad aq = isq isq ad aq =

u2 u u D=

Airgap Mutual Flux Linkage Equations

, in which (4.15)

(4.16)

and . (4.17)


˜ adq

Ladq u2
T

i
˜rdq i

˜dq– s2 i
˜sdq– =

Ladq

Lad ad aq  Laq ad aq  D    if sm 1=

Ladu
Laqu
 D Ladqu

=    otherwise






=

s2

1   if sm 2=

0   otherwise



=
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The d- and q-axis rotor winding flux-linkages are expressed in terms of the mutual and leak-
age flux linkages as follows:

 and . (4.18)

in which the d- and q-axis rotor leakage inductance matrices are respectively:

 and (4.19)

. (4.20)

From (4.18) the rotor winding flux linkage equations are written in the following compact
form:

The stator winding flux linkage equations are:

, (4.22)

which have the following compact form:

(4.23)

The generator d- and q-axis stator voltage equations in which, consistently with the model-
ling assumptions in Section 4.2.2, both the transformer voltages and the rotor-speed pertur-
bations are neglected are:

, (4.24)

which are expressed in the following compact form:


˜ rd

adu Llrd i
˜rd+= 

˜ rq
aqu Llrq i

˜rq+=

Llrd

Lfd Lc1 Lc2+ +  Lc1 Lc2+  Lc2

Lc1 Lc2+  L1d Lc1 Lc2+ +  Lc2

Lc2 Lc2 L2d Lc2+ 

=

Llrq L1q   L2q   L3q  D=

Rotor winding flux-linkage equations

 in which . (4.21)
˜ rdq

u2
˜ adq

Llrdqi
˜rdq+= Llrdq Llrd Llrq D=

d

q

ad

aq

Ll 0

0 Ll

id

iq

–=

Stator winding flux-linkage 
equations


˜ dq


˜ adq

Lli˜dq–=

vd

vq

rs 0

0 rs

id

iq

– 0
0 1–

1 0

d

q

+=
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(4.25)

The electromagnetic behaviour of the machine is characterised by the differential equations
for the rotor winding voltages (4.6) and the algebraic equations for the airgap flux linkages
(4.15), the rotor winding flux linkages (4.21), the stator winding flux linkages (4.23) and the
stator voltages (4.25).

4.2.3.5 Linearization of the coupled-circuit formulation of the electromagnetic equations
The coupled-circuit formulation of the generator electromagnetic equations in the previous
section are now linearized about the initial steady-state operating point of the machine. The
procedure for determining the initial steady-state values of the generator quantities from the
power flow solution of the generator stator terminal quantities is given in Section 4.2.9. All
of the electromagnetic equations are linear, apart from the airgap flux-linkage equations. The
linear equations are linearized trivially by replacing the variables with their perturbed values
(i.e. replace  with ).

Equation (4.15) for the airgap mutual flux-linkages is firstly linearized for the case in which
saturation method 1 (i.e. ) is used. The initial steady-state values of the saturated air-

gap mutual inductances are  and the corresponding flux linkages are

. The perturbations in the airgap flux linkages are:

, (4.26)

in which ,   and (4.27)

 . (4.28)

If saturation method 2 (i.e. ) is used then the linearized airgap flux linkage equations

are:

. (4.29)

It is noted that the two methods of representing magnetic saturation are mutually exclusive.
Thus, it is convenient to define the “saturation variable”  depending on the method used

to represent magnetic saturation:

Stator winding voltage equations

 where .v
˜dq rsi

˜dq– 0Wdq
˜ dq

+= Wdq
0 1–

1 0
=

x x

sm 1=

Lad0
Laq0
 

ad0
aq0
 


˜ adq

Ladq0
u2

T i
˜rdq  i

˜dq–  s1C
aldq0

L
˜ adq+=

Ladq0
Lad0

Laq0
 D= Caldq0

ad0

Lad0

-----------
aq0

Laq0

-----------
 
 
 
D=

s1

1   if sm 1=

0   otherwise



=

sm 2=


˜ adq

Ladqu
u2

T i
˜rdq  i

˜dq– s2 i
˜sdq– =

z
˜s
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(4.30)

As mentioned earlier the definition of the airgap mutual inductance matrix also depends on
which saturation method is employed, as formalized by the following definition:

(4.31)

From equations (4.26) and (4.29) the saturation coefficient matrix  is defined as:

(4.32)

Thus the linearized matrix equation for the airgap mutual flux linkages, which is applicable
to either method of representing magnetic saturation, is:

. (4.33)

It will be shown in Section 4.2.8 that the perturbation in the saturation variable is related to
perturbations in the airgap mutual flux linkages by the operating point dependent matrix

 as follows:

, (4.34)

in which (4.35)

where  is defined in (4.73) on page 123 and  is defined in (4.80) on page 124.

Thus, from equations (4.6) on page 104, (4.21), (4.23), (4.25), (4.33) and (4.34) the differen-
tial and algebraic equations describing the electromagnetic behaviour of the machine are lin-
earized about the initial steady-state operating point of the machine to yield:

z
˜s

L
˜ adq   if sm 1=

 i
˜sdq    if sm 2=

Ø          if sm 0=





=

Ladq

Ladq0
Lad0

Laq0
 D=    if sm 1=

Ladqu
Ladu

Laqu
 D=    otherwise







=

Casdq0

Casdq0

Caldq0
  if sm 1=

Ladq–    if sm 2=

Ø          if sm 0=





=


˜ adq

Ladq u2
T i

˜rdq  i
˜dq–  Casdq0

z
˜s+=

Csadq0

z
˜s Csadq0


˜ adq

=

Csadq0

Cladq0
    if sm 1=

Cmadq0
  if sm 2=

Ø           if  sm 0=





=

Cladq0
Cmadq0
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(4.36)

The above equations are rewritten in the following matrix form:

(4.37)

In order to consolidate the structure of the above equations it is convenient to define the
following consolidated vector of  algebraic variables:

(4.38)

and the associated consolidated matrix coefficients:

p
˜ rdq

br
rdq

 –  i
˜rdq breefd+=

0 u2
˜ adq

Llrdq i
˜rdq 

˜ rdq
–+=

0 Ladq u2
T i

˜rdq  i
˜dq–  Casdq0

z
˜s 
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˜ adq
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˜ dq
–=
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
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˜s
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˜dq
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˜dq
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, , , 

, (4.39)

Substitution of the quantities in (4.38) and (4.39) into (4.37) results in the following compact
form of the linearized electromagnetic equations:

(4.40)

These equations preserve the important structural characteristics of the underlying coupled-
circuit model and the elements in the coefficient matrices have a simple form. For these and
other reasons it may be desirable to implement the generator model in the form of (4.40)
without eliminating the internal algebraic variables . However, it is also straight forward

to eliminate  from (4.40) as follows:

(4.41)

in which ,  ,   and  , (4.42)

where  and  . (4.43)

The perturbations in the algebraic variables are given by:

. (4.44)

Suppose a subset of the generator algebraic-variables in (4.38) is required as output variables
 from the generator. Let ,  be the index in  of the ith output variable.

Then, 

, (4.45)
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in which ,  ,  and all other elements of  are ze-

ro. Substituting for  from (4.44) into (4.45) yields the following output equation in terms

of the generator state-variables and stator current components:

. (4.46)

For example, in order to monitor (i) the generator field-current set , or (ii) the d-axis

airgap flux-linkages set .

The equations for perturbations in AC terminal quantities such as the voltage magnitude and
angle, real and reactive power output, current magnitude, are formulated for FACTS Devic-
es in Section 4.3.1. These equations, which are calculated in terms of the perturbations in
the voltage and current components in the RI network frame of reference are also applicable
to the generator stator terminal.

4.2.4 Alternative d- and q-axis rotor structures
The model development so far has been based on a representation with three rotor windings
in each axis and in which the unequal mutual coupling between the d-axis rotor windings is
represented by means of the Canay inductances (i.e. model 3d3q-c1). A suite of simpler mod-
el structures that are commonly employed in practice is readily extracted from the 3d3q-c1
model. The modifications to the rotor winding variables and parameters required to repre-
sent a range of alternative rotor structures are summarized in the following. Once these
modifications are made the formulation of the linearized equations of the generator in ma-
trix form proceeds independently of the number of rotor windings.

Models of d-axis rotor structures with a field winding and respectively nkd = 0, 1 and 2
damper windings for a total of nd = 1, 2 and 3 rotor windings are developed. Cases with two
or three d-axis rotor windings represented are provided which either neglect (c = 0) or in-
clude (c = 1) unequal coupling between the rotor windings. Definitions are given in
Table 4.5 for the d-axis rotor-winding variables  and , the associated resistance and

leakage inductance parameters  and , and the input matrix  for the resulting five

alternative structures.
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Table 4.5  Summary of d-axis rotor variables and parameters with one, two or three 
rotor windings and with the inclusion (c = 1) or exclusion (c = 0) of unequal coupling 

between the rotor windings.

Note that the leakage inductance matrices for rotor structures #2 and #4 which neglect un-
equal coupling between the rotor windings (i.e. c = 0) can be obtained from the correspond-
ing matrices for rotor structures #3 and #5 (i.e. c = 1) by setting, in the latter structures, the
rotor mutual inductances  and  to zero.

Table 4.6 presents definitions of the q-axis rotor-variables ,  and the associated re-

sistance and inductance parameters  and  for four q-axis rotor structures with

nq = 0, 1, 2 or 3 damper windings.

Table 4.6  Summary of q-axis rotor variables and parameters with zero to three rotor 
windings.
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4.2.5 Per-unit electromagnetic torque and electrical power output
The per-unit equations for the electromagnetic torque and electrical power output of the
machine presented below are developed from first principles in [12].

Under balanced conditions the non-linear per-unit equations for the electrical power output
and electromagnetic torque are respectively:

 and . (4.47)

It is instructive to express the per-unit generator power output in terms of the stator currents
and flux linkages by eliminating from equation (4.47) the stator voltages by substitution
from equation (4.24) on page 106 to yield:

. (4.48)

It is important to recall at this point that (4.24) neglects the transformer voltage terms and
rotor-speed perturbations in the speed voltage terms. Therefore the electrical power equa-
tion in (4.48) also neglects these effects.

Then, substituting for  in the preceding equation from (4.47) gives the follow-

ing relationship between the per-unit electrical power and electromagnetic torque:

. (4.49)

Substituting for  from (4.47) into (4.49) gives the electromagnetic torque in terms of the

stator voltage and current components:

. (4.50)

The airgap power is the electrical power output of the generator inclusive of the stator re-
sistive losses:

, and thus (4.51)

. (4.52)

This confirms that the relationship between the airgap power and torque neglects the per-
turbations in rotor speed which occurs as a consequence of neglecting perturbations in rotor
speed in the calculation of the stator voltage.

The electromagnetic torque equation (4.50) is linearized about the initial steady-state oper-
ating point  to yield:

, (4.53)
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in which   and  . (4.54)

Note that if, as normally is the case, the per-unit synchronous speed  then from

(4.49) the per-unit electrical power output of the generator is equal to the electromagnetic
torque less the resistive losses in the stator winding.

An essential point, that is overlooked in some commercial software packages, is that when
calculating the mechanical torque developed by the turbine from the mechanical power it
necessary to neglect perturbations in the rotor speed. That is:

. (4.55)

This is to be consistent with neglecting the rotor speed perturbations in the relationship be-
tween airgap power and torque revealed in equation (4.52). It is shown in Appendix 4–II.5
that if the relationship between mechanical power and torque does include rotor speed per-
turbations then the effect is to erroneously increase the generator damping constant  by

 per-unit.

4.2.6 Per-unit rotor equations of motion

The per-unit rotor equations of motion in which the rotor-position, , is measured with re-
spect to the synchronously rotating network reference frame (see Section 4.2.10 and
Appendix 4–II) are:

 and (4.56)

. (4.57)

in which  is defined in (4.47) and equivalently in (4.50). The mechanical torque  de-

veloped by the turbine is treated as a generator model input.

The equations of motion are linearized about the steady-state operating point, in which it is
assumed that the machine is rotating synchronously with the network reference frame at a
speed  per-unit to yield:

 and (4.58)

. (4.59)

Substituting the expression for the perturbation in the electromagnetic torque  from

(4.53) into the preceding equations yields the following formulation of the shaft acceleration
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equation in terms of perturbations in the rotor-speed, the stator voltage and current com-
ponents and mechanical torque:

. (4.60)

Importantly, the above formulation is independent of the model employed to represent the rotor-
winding structure.

To facilitate analysis in later chapters an alternative formulation of the linearized acceleration
equation is now developed in terms of the perturbation of acceleration power. Multiplying
the acceleration equation (4.57) by the per-unit rotor-speed yields:

. (4.61)

Substituting for  from (4.51) in the preceding equation gives:

. (4.62)

Linearizing the preceding equation yields:

. (4.63)

If, as is normally the case  and if , it follows that:

. (4.64)

In the preceding equation  is sometimes replaced by .

4.2.7 Non-reciprocal definition of the per-unit field voltage and current
Although the Lad-base reciprocal per-unit system has a number of advantages from the per-
spective of representing the generator it is usually the case that a different per-unit system,
referred to as the “non-reciprocal” or “unity-slope” per-unit system, is used when represent-
ing the excitation system of the generator. Thus, it is necessary to establish the relationship
between these two per-unit systems for the purpose of interfacing between the field winding
of the generator and excitation system models.

To begin, consider the generator represented by the per-unit equations in the reciprocal per-
unit system and neglecting magnetic saturation. Suppose that the generator is on open-cir-
cuit and rotating steadily at one per-unit speed. Under this steady-state condition

,  and the rates of change of all variables in the dq coordinate sys-

tem are zero. From the d-axis rotor voltage equations (4.2) on page 103 it is deduced that
 and the d-axis damper winding currents are zero (i.e. ). From the

corresponding q-axis equations (4.3) the q-axis damper winding currents are also found to
be zero (i.e. ). Given these initial values of the winding currents it is deduced from
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the d- and q-axis airgap flux-linkage equations (4.15) on page 105 and the d- and q-axis flux-
linkage equations (4.23) on page 106 that  and . From the d- and q-axis

stator voltage equations (4.24) it follows that  and . If the

field current in the reciprocal per-unit system is one per-unit then the stator voltage is 

per-unit (neglecting saturation) and the field voltage is  per-unit.

Thus, an equivalent way of defining the base field current in the Lad-base reciprocal per-unit
system is:

The base field current  in the reciprocal per-unit system is that field

current, in Amperes, which is required to generate  per-unit stator

voltage on the airgap line when the machine is open-circuit and rotating
steadily at one per-unit speed. The base field voltage  is the corre-

sponding field voltage in Volts divided by the per-unit field winding

resistance 1 at the specified field winding temperature.

The above reciprocal definition of the base field current and voltage is not consistent with
the non-reciprocal definition of the base values of the field quantities which is recommend-
ed in Annex B of IEEE Std. 421.5 [11] for the modelling of excitation systems. The follow-
ing definition of the non-reciprocal per-unit system for the field current and voltage is
consistent with that given in IEEE Std. 421.5. Note that in the reciprocal per-unit system
quantities related to the field current and voltage are denoted by lower case ‘i’ and ‘e’ re-
spectively whereas the corresponding quantities in the non-reciprocal per-unit system are
denoted by upper-case ‘I’ and ‘E’.

The base field current  in the non-reciprocal per-unit system is that

field current, in Amperes, which is required to generate 1.0 per-unit sta-
tor voltage on the airgap line when the machine is open-circuit and ro-
tating steadily at one per-unit speed. The base field voltage  in this

per-unit system is the field voltage in Volts, corrected to the specified
field winding temperature, required to generate the base field current

.

1. From Table 4.2, the per-unit field resistance is  where  is the field 

resistance in ohms and  (ohm) is the base value of field resistance in the 

reciprocal per-unit system.
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The above definitions lead to the following mathematical conversions between the per-unit
field current  (and voltage ) in the non-reciprocal per-unit system and the corre-

sponding value of  ( ) in the reciprocal per-unit system:

 and . (4.65)

The conversion between the reciprocal and non-reciprocal definitions of the field current is
shown graphically in the generator open-circuit characteristic in Figure 4.4 in which three
field current scales are shown: (i) Amperes, (ii) per-unit on the reciprocal base system; and
(iii) per-unit on the non-reciprocal base system.

Figure 4.4 Generator open-circuit characteristic with the field current scaled in Amperes, 
and in per-unit according to the reciprocal and non-reciprocal per-unit systems.

The scaling required at the interface between the model of the exciter and the generator field
winding is depicted in Figure 4.5. It is assumed that the output from the exciter is the field
voltage in per-unit in the non-reciprocal per-unit system and the input to the generator is
the per-unit field voltage in the reciprocal system. It is assumed that the generator per-unit
field current in the reciprocal system is, from model signal flow perspective, an output signal
from the generator which is input to the model of the exciter in per-unit in the non-recip-
rocal per-unit system.
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Figure 4.5 Interface between the generator and exciter model taking account of the con-
version between the reciprocal and non-reciprocal per-unit systems in the

respective models.

In the reciprocal per-unit system it follows from (4.2) on page 103 that under steady-state
condition . By applying the conversion in (4.65) to this relationship it follows

that in the non-reciprocal per-unit system the steady-state value of the field voltage and cur-
rent are equal (i.e. ).

Some of the reasons why the non-reciprocal per-unit system is preferred [10] are:

• The measured generator open-circuit characteristic (O.C.C.) rarely extends beyond a
stator voltage of 1.1 per-unit and never to . Thus, direct graphical determination

of the base field current  from the measured O.C.C. is straight-forward in the

non-reciprocal system whereas supplementary calculation is required to determine the
base field current  in the reciprocal system.

• The numerical value of per-unit field-voltage  in the reciprocal per-unit system is

very small whereas, under steady-state conditions,  in the non-reciprocal sys-

tem.

Although IEEE Std. 421.5 recommends the use of the non-reciprocal per-unit system for
modelling of the excitation system, it is sometimes the case that vendors or testing contrac-
tors provide excitation system model parameters on a different per-unit system. For exam-
ple, sometimes the base value of field current is defined as that field current, in Amperes,
that is required to produce rated stator voltage when the generator is operating at rated out-
put and frequency. Therefore, it is essential that those who are entering data into simulation
programs understand the basis on which model parameters are supplied and, if necessary,
adjust parameter values to comply with the per-unit system assumed by the simulation pro-
gram being used.

4.2.8 Modelling generator saturation
Before proceeding further the two methods for representing the effects of magnetic satura-
tion introduced in Section 4.2.3.4 are described in some detail. It is emphasised that these two
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methods are strictly equivalent and yield identical results. Both methods are employed in dif-
ferent simulation packages. In the first method the airgap mutual inductances in the respec-
tive axes are assumed to be subject to magnetic saturation. The objective in this case is to
show that the perturbations in these inductances,  and , about their steady-state

saturated values  and  can be expressed in terms of the perturbations in the airgap

flux linkage components in the respective axes. In the second method, the component of
excitation current necessary to account for the demagnetizing effect of magnetic saturation
is deducted from the respective axes. The d-and q-axis components of the “saturation de-
magnetizing current” are referred to as  and  respectively. The objective in the follow-

ing is show that the perturbations in the saturation demagnetizing currents  and 

about their steady-state values of  and  can also be expressed in terms of the pertur-

bations in the airgap mutual flux-linkages. Provision is made for these two representations
when formulating the generator equations in Section 4.2.3.4 by including the perturbations
in either the mutual inductances or saturation demagnetizing currents depending on the
method employed.

In both methods, the saturation level is determined from the user-supplied, open-circuit sat-
uration characteristic(s). The user may choose to supply only the d-axis characteristic and
select one of several functions for determining the q-axis characteristic from the d-axis char-
acteristic. Alternatively, the manufacturer or testing contractor may supply a separate char-
acteristic for each axis.

Figure 4.6 Open-circuit characteristic of the generator in the non-reciprocal per-unit sys-
tem. (Note that the per-unit values of terminal voltage and airgap flux linkages are equal 

when the machine is open-circuit and rotating steadily at base rotor speed.)
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An open-circuit saturation characteristic is shown in Figure 4.6 in the non-reciprocal or uni-
ty-slope per-unit system. If  is the terminal voltage and  is the corresponding voltage

on the airgap line, then the saturation function  is defined as

. (4.66)

For the given open-circuit characteristic of the generator, saturation is characterized by the
values of  and  such that  together with the selection of a function

to interpolate between the latter two points on the saturation characteristic. Typically,
pu and pu. Several commonly employed interpolation  functions are

detailed in Table 4.7 although other functions may be used.

Table 4.7  Interpolation functions for saturation characteristics. 

So far only the open-circuit characteristic has been considered. However, when the genera-
tor is loaded the open-circuit characteristics no longer apply. A common approximation is
that the resultant airgap flux  is indicative of the level of saturation when the generator

is on-load. This is based on the fact that when the generator is on open-circuit and rotating
at one per-unit speed the terminal voltage and airgap flux are equal in the per-unit system
used. Other approximations for the level of saturation which are employed in widely-used
software packages are described in Section 4.2.13.2.

Note that in Table 4.7 the value of  to be used depends on the context. When determining
the parameters A and B of the interpolation function the values of  are the o.c. flux-link-
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ages (equivalently o.c. voltages) obtained from the open-circuit-characteristic. When evalu-
ating the saturation function when the machine is loaded then  is the value of the selected

saturation level indicator such as the resultant airgap flux ( ), the resultant kth-transient

flux-linkages ( ), etc.

The resultant airgap flux linkages are defined as: 

. (4.67)

To determine the steady-state operating value of the airgap flux, it is noted that  is also

equal to the voltage behind the stator resistance and leakage inductance in the per-unit sys-
tem used, taking into account any difference between the synchronous speed and base fre-
quency of the generator (i.e. to account for the situation when ).

, (4.68)

in which ,  and  are respectively the initial steady-state values of the generator sta-

tor terminal voltage, and real and reactive power output.

The perturbations in the resultant airgap flux linkages about the operating point  de-

fined in (4.68) and in which the corresponding steady-state values of the d- and q-axis flux
linkages are  and  respectively are obtained by linearizing equation (4.67) to give:

. (4.69)

It should be noted that the saturation characteristic interpolation functions listed in
Table 4.7 are intended to be used when the machine is operating within its normal range of
steady-state operating conditions, i.e.  is expected to range at most between about 0.8

and 1.3 pu. The interpolation functions may require modification at higher flux levels that
may occur under some large disturbance conditions.

The d- and q-axis saturation characteristics are denoted by  and  respectively. In the

situation where a q-axis saturation characteristic is not provided one of the rules in Table 4.8
can be used to derive the q-axis characteristic from the d-axis characteristic provided.
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Table 4.8  q-Axis saturation characteristics as a function of those for the d-axis

4.2.8.1 Method 1: Non-linear airgap mutual inductances
As mentioned earlier the first method for representing generator magnetic saturation is to
treat the d- and q-axis airgap mutual inductances as non-linear parameters that depend on
the resultant airgap flux linkages. It is assumed that the leakage inductances are not subject
to magnetic saturation and are thus assumed to be constant parameters.

The values of the d- and q-axis airgap mutual inductances are expressed in terms of their re-
spective saturation characteristics by:

 and . (4.70)

The steady-state saturated values of the airgap mutual inductances  and  are ob-

tained by substituting  in (4.70).

A
1

Note A: 

B

N/A N/A

Note B: The points  and  on the q-axis open-circuit saturation charac-

teristic are specified. The same interpolation function used for the d-axis character-
istic is employed.

C Note C: . This characteristic is based on empirical 

results reported by Shackshaft [19]; the variation of  and  with rotor position 

is neglected.

D
0 0

Note D: The q-axis is unsaturated. Useful in modelling salient pole machines.

E
Note E: This option is employed in the saturation model of some software.

F

, where

Note F: This option is employed in the saturation model of some software.
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The perturbations in the airgap mutual inductances about the operating point  defined

in (4.68) are obtained by linearization of the equations for the non-linear airgap mutual in-
ductances in (4.70) to yield:

(4.71)

Substituting for the perturbations in the resultant airgap flux linkages from equation (4.69)
into the preceding equation results in the following expression for the perturbations in the
airgap mutual inductances in terms of the perturbations in the airgap flux-linkages:

4.2.8.2 Method 2: Saturation demagnetization current
The second method for representing the effects of magnetic saturation involves deducting
non-linear components of d- and q-axis saturation demagnetization current  and 

from the excitation of the d- and q-axis windings respectively. In this formulation the model
utilizes the fixed unsaturated airgap mutual inductances. This is especially advantageous
when representing saturation in the Classical Parameter Formulation of the generator model
because it is unnecessary to adjust the classically-defined standard parameters to account for
the effects of saturation.

To determine the expression for  it can be deduced from (4.12) on page 105 that:

. (4.74)
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Alternatively, if the effects of magnetic saturation are represented by non-linear mutual air-
gap inductances according to (4.70) (i.e. by Method 1) then from (4.12) with  and

with  defined according to (4.70) it follows that:

. (4.75)

Substituting from the preceding equation for  into (4.74) yields:

. (4.76)

The q-axis saturation demagnetization current component is similarly derived:

. (4.77)

Equations (4.76) and (4.77) are combined to yield:

 in which . (4.78)

Linearizing the preceding equation about the operating point  yields the

following expression for the perturbations in the saturation demagnetizing current compo-
nents in terms of the perturbations in the airgap flux-linkages.
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and . (4.81)
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4.2.9 Balanced steady-state operating conditions of the coupled-circuit model
The initial steady-state values of the coupled-circuit generator model variables when oper-
ating under balanced conditions are now calculated. In the following analysis the subscript
‘0’ denotes the steady-state value of the variable.

It is assumed that the steady-state generator stator voltage magnitude, , and the real and

reactive power output  and  of the generator are given, in per-unit on the gen-

erator base quantities. These initial values are usually obtained from the power flow solution
on which the dynamic analysis is to be based.

Under steady-state conditions  so from (4.56) on page 114 it follows that 

per-unit; and  so from (4.57) on page 114 it follows that . Note, that nor-

mally the generator rated frequency is the same as the system nominal frequency and so nor-
mally . However, if, for example, a generator rated for 60 Hz is connected to a 50

Hz system and  is chosen to be , then  per-unit.

Under balanced steady-state operating conditions the stator voltage is represented as a pha-

sor  in the complex plane in which the d-axis corresponds to the real axis of the complex

plane and the q-axis to that of the imaginary axis so that:

. (4.82)

where  is the angle by which the voltage phasor leads the d-axis. (Note that  is defined

differently than the “load angle” which is the angle by which the voltage phasor lags the q-

axis. The use of  is convenient analytically and the results are consistent.).

The phasor representing the generator current output is:

, (4.83)

where

(4.84)

is the magnitude of the current; and
1 (4.85)

is the angle by which the current phasor leads that of the voltage.
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If the effects of magnetic saturation are being represented then, for the purpose of calculat-
ing the initial steady-state operating conditions, the following steady-state saturated values
of the d- and q-axis airgap mutual inductances obtained from (4.70) are used. This applies to
both of the methods of representing the effects of magnetic saturation in the dynamic model
of the machine.

 and , (4.86)

in which the resultant airgap flux-linkages, , are obtained from (4.68) on page 121.

The saturated values of the d- and q-axis synchronous inductances at the steady-state oper-
ating point are:

 and . (4.87)

Since, under steady-state conditions,  and since  it is deduced from (4.5)

on page 104 that . Consequently, from equation (4.12) on page 105,

(4.88)

and then from (4.22) on page 106 it follows that:

, (4.89)

a result that is independent of the number of rotor windings.

From (4.24) and (4.89), under steady-state conditions,

; (4.90)

which again is independent of the number of rotor windings.

The d-axis damper winding currents are zero in the steady-state so from (4.9) on page 104,
(4.22) on page 106 and (4.65) on page 117 it follows that:

 and (4.91)

1. Definition of :
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else if  then if , ; else ,

otherwise let  and define  then

First quadrant:  and  then ;

Second quadrant:  and  then ;

Third quadrant:  and  then ; and

Fourth quadrant:  and  then .
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. (4.92)

From (4.24) on page 106 and (4.92) the following expression for the steady-state q-axis volt-
age is obtained:

. (4.93)

The stator voltage phasor is obtained by combining (4.90) and (4.93) to yield:

(4.94)

in which (4.95)

Rearranging (4.94) yields:

. (4.96)

The artificial voltage phasor  is aligned with q-axis and corresponds to the voltage

behind the impedance .

Now, substituting for  and  from equations (4.82) and (4.83) into the preceding equation

yields:

. (4.97)

By equating the arguments of both sides of (4.97) yields , the angle by which voltage pha-

sor leads the d-axis:
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+  Î+ j0

Lad0

Ladu

----------
 
 
 

Ifd0
Ld0

Lq0
– id0

–
 
 
 

jEq= = =
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(4.98)

This result is independent of the number of d- or q-axis rotor-windings or of the representa-
tion of coupling between the d-axis rotor windings. Figure 4.7 is a phasor diagram showing

the computation of ,  and the associated location of the d- and q-axes with respect to

the voltage phasor. The d- and q-axis components of the voltage and current phasors are
also shown in this diagram.

Figure 4.7 Phasor diagram showing the computation of ,  and the location of the d- 

and q-axes in relation to the voltage and current phasors. The d- and q-axis components of 
the voltage and current are also shown.

in which, from equations (4.84) & (4.85) respectively:
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Having calculated the steady-state saturated values of the airgap mutual inductances and syn-
chronous inductances according to (4.86) and (4.87) and the values of ,  and  in

(4.98) the initial steady-state values of those generator variables that are independent of the
rotor winding structure are readily found to be:

(4.99)

The calculation of , the initial steady-state value of the angle by which the d-axis leads the
R-axis of the synchronously rotating network reference frame is deferred until
Section 4.2.10.

For the 3d3q-c1 model the steady-state values of the following d- and q-axis rotor winding
current and flux-linkage and variables are:

(4.100)

For generator models which neglect unequal coupling between the d-axis rotor windings
. For models with only one d-axis damper winding the variables  and 

do not exist and the non-existence of  is represented by setting its value to zero in the

above equations. Similar trivial modifications are made to (4.100) so they can be applied to
coupled-circuit models with other rotor structures.
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4.2.10 Interface between the generator Park/Blondel reference frame and the syn-
chronous network reference frame
The generator equations are developed in the Park/Blondel co-ordinate system in which, as
mentioned earlier, the d-axis is aligned with the magnetic axis of the rotor field winding and
the q-axis leads the d-axis by 90 electrical degrees. The dq reference frame rotates in an anti-
clockwise direction at the speed of the generator rotor  per-unit. As explained in the de-
velopment of the generator equations of motion in [12] the generator rotor angle  (elec.
rad) is measured relative to a synchronously rotating reference. In the analysis of multi-ma-
chine systems the R-axis of the synchronously rotating network RI reference frame is chosen
as the reference for the rotor angle of each generator.

To facilitate the analysis of multi-machine systems it is necessary to transform the stator cur-
rent and voltage at the machine terminals between the generator dq reference frame and net-
work RI reference frame.

In Figure 4.8 the stator current phasor, , is shown at the instant t. The superscript (g)

denotes that the current phasor is in per-unit of the generator base quantities. At this instant
the d-axis leads the R-axis by  (rad) and the current phasor leads the d-axis by  (rad).

In the generator dq reference frame the current phasor  is expressed as:

,

and in the RI reference frame it is:

.

Expanding the preceding equation  yields the following relationship between the current
phasor components in the dq and RI reference frames.

Equating respectively the real and imaginary components in the above equation yields the
following matrix relationship between the current components in the respective reference
frames:

, (4.101)

In compact matrix form this equation is denoted as:

, (4.102)
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in which ,  and . (4.103)

The inverse relationship is:

. (4.104)

The unitary matrix  is referred to as the rotation matrix and its inverse is equal to its
transpose:

. (4.105)

When linearizing the model the partial derivative of the rotation matrix is required:

and . (4.106)

The transformation of the stator terminal voltage between the respective reference frames
is similar to that for the stator current:

and (4.107)

Figure 4.8 Relationship between the Park/Blondel (dq) and Network (RI) reference 
frames.
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Again referring to Figure 4.8 the angle by which the voltage phasor leads the R-axis is .
The initial steady-state value of this angle, , is typically obtained from the power flow

solution. Given this angle, it follows that the initial steady-state value of the rotor angle  is:

, (4.108)

where  is given by (4.98). From the above value of  and the initial steady-state values

 and  from (4.99), the initial steady-state values  and  are deduced from

equations (4.102) and (4.107) respectively.

and (4.109)

Linearizing the current transformation equations (4.102) and (4.104) about the steady-state

operating point  yields:

(4.110)

and . (4.111)

The voltage transformation equations (4.107) are similarly linearized about the steady-state

operating point  to give:

(4.112)

and . (4.113)

There is normally a change in the apparent power base between the generator model and
that of the network. For generality it will also be assumed that there is a change in base volt-
age between the generator and that of the network bus to which the generator is connected.
However, most simulation programs assume that the respective base voltages are identical. 

Let  MVA and  kV be respectively the generator three-phase MVA base and line-

to-line RMS voltage base values of the generator (see Table 4.2 on page 98). Let  and

 be the corresponding quantities for the network bus to which the generator is connect-

ed. The base stator currents in the respective per-unit systems are then deduced as:
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 (A) and  (A). (4.114)

Let  and  be the stator voltage components in the network RI reference frame in the

per-unit systems of the generator and network, respectively. It follows that the two are re-
lated by:

 in which , (4.115)

and similarly for the current components in the respective per-unit systems:

 in which  and . (4.116)

4.2.11 Linearized coupled-circuit formulation of the generator model equations
The linearized state- and algebraic-equations of the coupled-circuit generator model incor-
porating generator saturation and the transformation between the dq generator and network
RI reference frames that were developed in the previous sections are now combined in ma-
trix form. A systematic procedure for formulating the coefficient matrices is also provided.

The generator equations are linearized about the initial steady-state operating condition cal-
culated in Sections 4.2.9 and 4.2.10.

The linearized generator equations comprising (i) the electromagnetic state and algebraic
equations (4.41) on page 110; (ii) the rotor equations of motion in (4.58) and (4.60) on
page 115; (iii) the transformation of the stator current and voltage components from the dq
to RI coordinate systems in equations (4.110) and (4.112) on page 132; and (iv) the conver-
sion from the generator to network per-unit systems for the voltage and current compo-
nents in equations (4.115) and (4.116) are combined to form the following matrix equation,

. (4.117)

In the preceding equation the generator state- and input-variable vectors are respectively:

 and (4.118)
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and the vector of electromagnetic state-variables are:

. (4.119)

The step-by-step procedure to formulate the coefficient matrices in (4.117) is given in the
following table.

Table 4.9  Step-by-step procedure to compute the coefficient matrices in the linearized 
coupled-circuit equations of the generator.

Step Operation Source

1
Obtain the model parameters according to the number of d- and q-axis 
rotor windings  and  respectively.

2

If magnetic saturation is neglected set . Otherwise obtain the 

saturation model parameters and set (i)  if the incremental 

inductance; or (ii) set  if the demagnetizing current representa-

tion of saturation is employed.

3
Compute the generator steady-state initial conditions in the dq reference 
frame.

Section 4.2.9

4
Compute the initial values of the generator rotor-angle ( ) and stator 

voltage and current in the synchronously rotating RI reference frame.
Section 4.2.10

5
If  then in the following  and  other-

wise  and 
(4.31) pg. 108

6
Define , , ,  and  depending on  the number 

of d-axis rotor windings and whether or not unequal mutual coupling 
between the d-axis rotor windings is to be represented.

Tab. 4.5 
pg. 112

7
Define , ,  and  depending on the number of q-axis 

damper windings.

Tab. 4.6 
pg. 112

8 Construct  and 
(4.7) pg. 104 & 
(4.21) pg. 106

9 Construct  in which (4.8) pg. 104

10 Construct the airgap mutual inductance matrix (4.31) pg. 108
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11

Construct the coefficient matrices in the stator voltage equations: 

(4.25) pg. 107

12

Calculate the coefficient of the saturation variable in the airgap mutual 
flux linkage equation:

(4.32) pg. 108

13

Calculate the coefficient matrix  of the saturation variable equa-

tion (4.34) on page 108 depending on the method used to represent sat-
uration.

, where

(4.35) pg. 108

13(a)  and (4.73) pg. 123

13(b)

 in which

.

... Continued on following page ...

(4.80) pg. 124 & 
(4.81) pg. 124
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The d- and q-axis saturation functions ,  and their 

derivatives  and  depend on the selected interpolation func-

tion in Table 4.7 on page 120. If parameters for the q-axis saturation 
characteristic are not specified then one of the relationships in Table 4.8 
may be used to express  as a function of .

14

Compute the coefficient sub-matrices in the electromagnetic state- and 
algebraic-equations of the machine (4.41) on page 110.

, ,  

, 

(4.39) pg. 110

 and (4.43) pg. 110

, ,  & (4.42) pg. 110

15

Compute the coefficient matrices  and  in the shaft acceler-

ation equation (4.60) on page 115

 and (4.54) pg. 114

16

Compute the transformation matrices between the generator dq and 
network synchronously rotating RI coordinate systems.

, 

.

(4.103) pg. 131, 
(4.106) pg. 131
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17

Construct the coefficient matrices in the generator state- and algebraic-
equations in (4.117):

, , 

, , , 

, , , 

 and 

(4.41) pg. 110, 
(4.58) pg. 114 & 
(4.60) pg. 115

18
Compute the generator to network voltage and current scaling factors:

, , ,
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(4.116) pg. 133
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4.2.12 Transfer-function representation of the electromagnetic equations
In the previous sections fundamental electromagnetic circuit concepts were employed to
provide a sound physical basis for modelling the dynamic performance characteristics of
synchronous generators in terms of coupled circuits. However, tests to directly identify the
coupled-circuit parameters (resistances and inductances) of these models are not routinely
performed in practice. Rather, parameter identification is commonly based on the so-called
“operational” or, in modern terminology, “transfer-function” representation of the machine
depicted in Figure 4.9. In the transfer-function representation the d-axis of the machine is
represented by a two-port network comprising the stator and field terminals and the q-axis
by a single port network.

Figure 4.9 General transfer-function representations of the d- and q-axis of the synchro-
nous generator.

The transfer impedance representation of the incremental form of the d-axis two port net-
work can be shown to be [22]

. (4.120)

Note that the impedance matrix is symmetrical since the network is passive and linear. The
scaling of the impedance matrix by the base electrical frequency occurs because one second
is the base value of time. The following hybrid formulation of the transfer characteristic is
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useful because the input quantities are the d-axis stator current and field voltage and is a for-
mulation frequently encountered in the literature (e.g. [6, 15, 20, 21, 22, 23]):

. (4.121)

The three d-axis operational parameters are:

. (4.122)

in which  is referred to as the “d-axis operational inductance” of the stator with con-

stant field voltage;  is the “stator-to-field transfer-function” and  is the “opera-

tional admittance of the field with the stator open-circuit”.

The single port representation of the q-axis is:

. (4.123)

 is referred to as the “q-axis operational inductance”.

It is important to note that no assumptions have been made at this stage about the internal
electromagnetic structure of the machine.

4.2.12.1 Exact relationship between coupled-circuit and transfer-function representations of 
the electromagnetic equations
In [12] the exact relationships between the coupled-circuit formulation of the electromag-
netic equations in Section 4.2.3.4 and the transfer-function representations are established.
It is found that for a machine with nd d-axis rotor windings and nq q-axis rotor-windings the
transfer-functions have the following forms:

, ,  and (4.124)

in which the d-axis numerator polynomials are:

, , . (4.125)

The d-axis denominator polynomial is:

d s 

ifd s 

Ld s  G s 

s
b
------G s – Yfd s 

– id s 

efd s 
=

Ld s 
b

s
------ Z11 s  Z12 s Yfd s Z12 s – =

G s 
b

s
------Z12 s Yfd s =

Yfd s  rfd Z22 s +  1–
=

Ld s 

G s  Yfd s 

q s 
b

s
------Zq s iq s – Lq s iq s –= =

Lq s 

Ld s  Ld

NLd s 
Dd s 
-----------------= G s  G0

NG s 
Dd s 
---------------= Yfd s  Y0

NY s 
Dd s 
--------------= Lq s  Lq

NLq s 
Dq s 
-----------------=

NLd s  1 akds
k 

k 1=

nd

+= NG s  1 bkds
k 

k 1=

nd 1–

+= NY s  1 ckds
k 

k 1=

nd 1–

+=



140 Generators, FACTS devices & system models
. (4.126)

The q-axis numerator and denominator polynomials are:

 and . (4.127)

The coefficients in the above polynomials (i.e. , , etc.) are functions of the coupled-

circuit parameters.

It is normal practice to factorize the d-axis numerator and denominator polynomials such
that:

,  ,  , (4.128)

(4.129)

where , , and .

Similarly, for the q-axis:

and (4.130)

such that ,

The time constants ,  are referred to as the “d-axis principal short-circuit

time constants” and are denoted as the d-axis transient ( ), subtransient ( ) and sub-

subtransient ( ) short-circuit time constants. The denominator time constants ,

 are referred to as the “d-axis principal open-circuit time constants” and are

denoted as the d-axis transient ( ), subtransient ( ) and sub-subtransient ( )

open-circuit time constants. Analogous definitions apply to the q-axis principal short- and
open-circuit time constants. 

As shown in [12] the d- and q-axis operational-inductances can also be expressed as sums of
partial fractions as follows:
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, where  and (4.131)

, where . (4.132)

The inductances ,  in (4.131) are referred to as the “d-axis principal dynam-

ic inductances” and are denoted as the d-axis transient ( ), subtransient ( ) and sub-sub-

transient ( ) inductances. Analogous definitions apply to the q-axis principal dynamic

inductances.

The exact mathematical relationships between (i) the coupled-circuit parameters and (ii) the
time constants and principal dynamic inductances in the above factorizations of the opera-
tional parameters are very complex when there is more than one rotor-winding in an axis.
Exact bi-directional transformations have been derived between the coupled-circuit param-
eters of the machines and the transfer-function parameters in [12]. Software for performing
these exact transformations are available on the website of this eBook [24].

4.2.12.2 Classical definitions of the standard parameters in terms of the coupled-circuit 
parameters
The opportunity for considerable simplification in the relationships between the coupled-
circuit and standard parameters of the d-axis has long been recognized (e.g. Concordia [20]).
If the d-axis is assumed to be represented by a field winding and one damper winding the
simplification is based on the observation that the d-axis damper winding resistance  is

usually much larger than the field winding resistance . Consequently, following a distur-

bance the d-axis damper winding flux-linkages tend to decay much more rapidly than those
of the field. Thus, the relatively rapid rate of decay of the damper winding flux-linkages in
the so-called subtransient period immediately following a disturbance can be approximated by
assuming that  and that the field flux linkages remain constant during this period.

The behaviour of the generator in the transient period which follows the subtransient period
is approximated by neglecting the damper winding (i.e. ) on the assumption

that the damper winding current has decayed to zero. Finally, the behaviour in the steady-
state period, following the decay of the transient response, is approximated by neglecting
both the damper and field windings. By applying these approximations, the “classical defi-
nitions” of the standard-parameters in terms of the coupled-circuit parameters result. By ap-
plying analogous approximations to the q-axis and extending the approximations to axes
with three rotor-windings, classical definitions of the standard parameters in terms of the
coupled-circuit parameters are obtained in [12]. In the case of a d-axis represented with two
rotor-windings it is usually found that there is little difference between the standard param-
eters which are specified in accordance with the exact definitions and those which are spec-
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ified in accordance with the classical definitions. However, if the q-axis is represented with
two or more windings, or if the d-axis is represented by three rotor windings, the accuracy
of the classical approximations of the standard parameters may be considerably diminished.
This is because there is greater overlap between the transient and subtransient periods of the
q-axis than occurs in the d-axis. Similarly, when three rotor windings are represented there
is a tendency, particularly in the q-axis, for there to be overlap between the transient, sub-
transient and sub-subtransient periods with consequential inaccuracy of the classical approx-
imations of the standard parameters.

Table 4.10 gives the transformation from given coupled-circuit parameters to the classically-
defined principal open- and short-circuit time constants and the principal dynamic induct-
ances for the d- or q-axis represented by one, two or three rotor-windings respectively.
Table 4.11 gives the inverse transformation (i.e. classically-defined standard parameters to
coupled-circuit parameters). If the transformations are being performed for the d-axis the
subscript ‘a’ in these tables is substituted with ‘d’; ‘1’ with ‘f’; ‘2’ with ‘1’ and ‘3’ with ‘2’. Thus,

 is replaced by ;  by ;  by ;  by , etc. If the q-axis parameters are

being converted then the subscript ‘a’ is substituted with ‘q’. An exception to the above rules
is that the airgap mutual inductance  is substituted with  or  depending on which

axis is being converted. These transformations assume that unequal coupling between the
d-axis rotor windings is neglected (i.e. ).

When the q-axis is represented with a single rotor winding it is conventional practice to label
the standard parameters as being the subtransient parameters (i.e. (i.e. ,  and )

instead of the transient parameters ,  and  . This is because the principal q-axis

time constants for a machine whose q-axis is adequately represented by a single rotor wind-
ing tend to be short. Thus, in this scenario, in order to apply the conversions in Tables 4.10
and 4.11 it is necessary to substitute the transient parameters in the tables with the given sub-
transient q-axis parameters.

The electromagnetic equations in some widely-used simulation packages are formulated di-
rectly in terms of the classically-defined standard parameters. This classical parameter for-
mulation of the model is summarized in Section 4.2.13. It is emphasised that the classical
parameter formulation is exactly equivalent to the coupled-circuit formulation provided (i) that
the unequal coupling between the d-axis rotor windings is neglected, and (ii) that the same meth-
od for representing magnetic saturation is employed in the two models.

La Ld L1a Lfd r2a r1d Ta' Td'

Laa Lad Laq
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Table 4.10  Classical definitions of the principal short- and open-circuit time constants 
and dynamic inductances in terms of the coupled-circuit parameters for the d- or q-axis 

represented with na = 0, 1, 2 or 3 rotor windings. [CC2CS]

Inputs: Coupled-
circuit parameters

Outputs:
Classically-defined standard parameters

Synchronous parameters (na ≥ 0)

, 

Transient parameters (na > 0)

, 

Subtransient parameters (na > 1)
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Table 4.11  Derivation of coupled-circuit parameters from the classically-defined open-
circuit time constants and dynamic inductances for the d- or q-axis represented with

na = 0, 1, 2 or 3 rotor windings. [CS2CC]

Inputs:
Classically-defined 

standard 
parameters

Outputs:
Coupled-circuit parameters

na ≥ 0

, 

na > 0

, 

na > 1

, 

na > 2

, 

Use ,   and 

 to derive the principal dynamic 

inductances if the principal short- and open-circuit time 
constants are given; or use , 

 and  if 

the principal dynamic inductances and short-circuit time 
constants are given.
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4.2.13 Electromagnetic model in terms of classically-defined standard parameters
Some widely used rotor angle stability analysis software packages employ generator models
which are formulated directly in terms of the classically-defined standard parameters. It is
shown in [12] that the “Classical Parameter Model” is exactly equivalent to the coupled-circuit
formulation of the electromagnetic equations provided (i) unequal coupling between the d-axis
rotor windings is neglected; and (ii) the same representation of magnetic saturation is employed.

The transfer-function block-diagram representation of the classical parameter model shown
in Figure 4.10 is often presented in the literature [34, 13 (vol 3)]. The associated state- and
algebraic-equations for the model, which are rigorously derived from the underlying cou-
pled-circuit formulation of the model in [12], are summarized in Section 4.2.13.1. The rela-
tionships between the classically-defined standard parameters and the underlying coupled-
circuit parameters are given in Tables 4.10 and 4.11 of Section 4.2.12.2.

Please turn over to Figure 4.10.
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4.2.13.1 Summary of classical parameter electromagnetic model equations
The d-axis rotor winding equations in terms of the classically-defined standard parameters
are summarized below. The equations are applicable to models with up to three rotor wind-
ings (i.e. nd = 3). Note that the field voltage and current are expressed in the non-reciprocal

per-unit system as is the demagnetizing current, , representing the effects of magnetic

saturation in the d-axis.

Field Winding Equations

Note:  if  and  if 

(4.133)

(4.134)

First d-axis Damper Winding Equations (include if nd > 1)
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. (4.138)

Second d-axis Damper Winding Equations (include if nd > 2)
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, (4.140)

, (4.141)

. (4.142)

The q-axis rotor winding equations in terms of the classically-defined standard parameters
are summarized below. The equations are applicable to models with up to three q-axis
damper windings (i.e. nq = 3). By analogy with the field winding, the current in the first q-

axis damper winding, , is expressed in the non-reciprocal per-unit system such that
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. Similarly, the q-axis saturation demagnetizing excitation current, , is in

per-unit in the non-reciprocal base system (i.e. ).

First q-axis Damper Winding Equations

Note:  if  and  if .

, (4.143)

. (4.144)

Second q-axis Damper Winding Equations
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Third q-axis Damper Winding Equations

, (4.149)

, (4.150)

, (4.151)

. (4.152)

It is noted that the d-axis transient flux linkages  are related to the field winding flux link-

ages  in the underlying coupled circuit model as follows:

. (4.153)
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perturbations in the rotor-speed are neglected in the formulation of the electromagnetic
equations it follows that  and, in the usual case when  then .

By analogy, in the q-axis and .

To facilitate the formulation of the stator-winding d-axis flux linkage equations the follow-

ing d-axis “kth-transient flux-linkage” ( ) and “kth-transient inductance” ( ) quantities are

defined depending on the number of d-axis rotor-windings:

 and (4.154)

- and similarly for the q-axis.

The d- and q-axis stator winding flux linkage equations are respectively:

 and . (4.155)

The following expressions for the d- and q-axis airgap mutual flux linkages are derived in
terms of the kth-transient flux-linkages and inductances from (i) the coupled-circuit equa-
tions for the airgap flux linkages in (4.12) on page 105 with  (i.e. Method 2 for rep-
resenting magnetic saturation); and (ii) from the equations for the d- and q-axis flux linkages
in (4.23) on page 106 and from (4.155).
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From the coupled-circuit equations for the stator-voltage components in (4.25) on page 107
and the preceding equations for the airgap flux linkages the following equations for the d-
and q-axis stator voltage equations are derived.
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4.2.13.2 Magnetic saturation in the classical parameter model
Saturation Method 2 in Section 4.2.8.2, in which the demagnetizing effect of magnetic sat-
uration is represented by deducting a component of excitation current from each axis, is
used in the classical parameter model. In that section the resultant airgap flux linkages were
chosen to represent the level of flux-linkages on the saturation characteristic. This choice
can also be applied to the classical parameter model. However, some widely used commer-
cial software packages choose other flux quantities to represent the level of saturation. These
alternative choices change both the initial steady-state operating condition of the machine
as well as the dynamic response. Two such alternative choices are considered below.

4.2.13.2.1 Resultant kth-transient flux-linkages as the saturation level indicator

When saturation of both the d- and q-axis is to be represented the resultant kth-transient flux-

linkages  is sometimes used as the saturation level indicator, particularly when represent-
ing round-rotor machines.

, (4.160)

and the demagnetizing currents in the respective axes are

 and . (4.161)

The initial steady-state values of the saturation level indicator and the saturated d- and q-axis
airgap inductances are now derived. Once these values are determined the procedure out-
lined in Section 4.2.13.3 can be used to calculate the initial steady-state values of the other
generator variables.

The following expression for the initial steady-state value of the d-axis saturation demagnet-

izing current is obtained by substituting for the yet unknown value of  from(4.161) into

(4.156)  and recognizing that under steady-state conditions the damper winding currents are
zero.

. (4.162)

Similarly, the steady-state q-axis saturation demagnetizing current is given by:

. (4.163)

The following expressions for the steady-state values of the d- and q-axis stator voltages are
obtained by substituting the saturation demagnetizing current components from equations
(4.162) and (4.163) into equations (4.158) and (4.159) to yield:
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 and , (4.164)

in which

 and (4.165)

From equations (4.82) on page 125 and (4.164) the initial steady-state voltage phasor is:

, (4.166)

in which  is obtained from (4.83) in terms of the initial steady-

state real and reactive power output and stator voltage magnitude and

. (4.167)

Equation (4.166) is rearranged into the same form as equation (4.97) on page 127

, (4.168)

from which the initial steady-state value of the angle by which the voltage phasor leads the
d-axis, is given by:

. (4.169)

This equation is identical in form to the calculation of  in equation (4.98) on page 128 for

the coupled-circuit formulation of the model. However, the value of  is different be-

tween the coupled-circuit and classical parameter formulations because different representa-
tions of saturation are used in the respective formulations.

In order to calculate the initial steady-state value of the q-axis synchronous reactance  in

equation (4.165) it is necessary determine the initial value of the resultant kth-transient flux-

linkages  and thence the value of the q-axis saturation characteristic . In the case

where  it can be shown that:

. (4.170)
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However, when the kth-transient inductances in the respective axes are unequal a closed

form solution for  is not possible. In this case the following set of three simultaneous

non-linear equations must be solved iteratively  to determine the initial steady-state values

of ,  and .

(4.171)

Having solved for the initial value of the saturation level indicator  from equation (4.170)

or (4.171) the initial values  and  are obtained from (4.165).

4.2.13.2.2 Transient d-axis flux-linkages as saturation level indicator

When saturation only of the d-axis is to be represented the transient flux-linkages  are

sometimes used as the saturation level indicator. This approach is sometimes used to repre-
sent saturation in salient pole machines. In this case the d- and q-axis saturation demagnet-
izing currents are respectively:

 and . (4.172)

Since it is assumed that the q-axis is unsaturated it follows that:

,  (4.173)

and the initial steady-state value of  is calculated according to (4.98) on page 128; the in-

itial steady-state values  and  are calculated from (4.99).

The objective of the following steps is to calculate the initial steady-state value  taking

account of saturation. The following expression for the initial steady-state value of the d-axis
saturation demagnetizing current is obtained by substituting for  from (4.134) into

(4.172) and recognizing that under steady-state conditions the damper winding currents are
zero.

. (4.174)
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The following expressions for the steady-state values of the d- and q-axis stator voltages are
obtained by substituting for the above expression of the d-axis saturation demagnetizing
current component, together with , into equations (4.158) and (4.159) to yield:

,  (4.175)

and . (4.176)

Following a procedure similar to that in equations (4.166) to (4.168) the following relation-
ship is obtained

. (4.177)

By equating the imaginary components of the above expression the following equation for
the field current is obtained:

. (4.178)

By substituting for  and  from equations (4.178) and (4.172) into equation (4.134)

on page 147 the following expression for  is derived:

. (4.179)

The value of  is now back-substituted into equation (4.176) to obtain the initial saturated

value of the d-axis synchronous inductance . This value of  together with the value

of  in (4.173) are used to calculate the initial values in (4.99) on page 129.

4.2.13.2.3 Resultant airgap flux-linkages expressed in terms of kth-transient flux-linkages 
and stator-current components
As explained in Section 4.2.8.2, when the resultant airgap flux-linkages are chosen to repre-
sent the saturation level, the saturation demagnetizing current components are given by:

, (4.180)

in which  and . (4.181)
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In the present context of directly representing the machine in terms of the classically-defined
standard parameters it is convenient to express the airgap flux-linkages in terms of the kth-
transient flux linkages and stator winding current components. Thus, from equations (4.156)
and (4.157) on page 149 it follows that:

 in which . (4.182)

Substituting for  from the preceding equation in (4.180) yields the following expression

for the saturation demagnetizing current components:

. (4.183)

4.2.13.3 Balanced steady-state operating-conditions of the classical parameter model
As in the case of the coupled-circuit representation of the generator model it is assumed that
the steady-state generator stator voltage magnitude, , and the real and reactive power out-

put  and  of the generator are given in per-unit of the generator base quantities.

The procedure for calculating the generator steady-state initial conditions for the classical
parameter model is the same as that described for the coupled-circuit formulation of the
generator model in Section 4.2.9 except that the initial saturated values of the d- and q-axis
synchronous inductances  and  in equation (4.86) on page 126 are modified de-

pending on the method used to represent the level of magnetic saturation as summarized in
Table 4.12.

Table 4.12  Initial values of the saturation level and the corresponding saturated values 
of the d- and q-axis synchronous inductances depending on the method of representing the 

level of magnetic saturation.

The initial values of the saturation demagnetizing currents in the non-reciprocal per-unit
system are

# Calculation of Calculation of  and 

1 Calculated according to (4.68) pg. 121 Calculated according to (4.86) pg. 126

2

If  then  is calculated 

according to (4.170); otherwise  is 

obtained from the iterative solution 
of (4.171).

Calculated according to (4.165)

3 Calculated according to (4.179)
Calculated according to equations 
(4.176) and (4.173) respectively.
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and , (4.184)

where  is the initial value of the saturation level indicator from Table 4.12. The initial

values of the following d- and q-axis rotor winding variables are deduced from equations
(4.133) on page 147 to (4.152) on page 148.

(4.185)

4.2.13.4 Linearization of the classical parameter formulation of the electromagnetic equations
In this section the generator d- and q-axis rotor-winding equations (4.133) on page 147 to
(4.152) on page 148, the generator stator voltage equations (4.158) and (4.159) on page 149
and equations in Section 4.2.13.2 representing the effects of magnetic saturation are line-
arized about the initial steady-state operating point determined in Section 4.2.13.3. The ob-
jective is to reduce the linearized electromagnetic equations of the machine, expressed in
terms of the classically-defined standard parameters, to the following matrix form. This for-
mulation is structurally similar to that for the coupled-circuit model equations in (4.41) on
page 110.

. (4.186)

The differences between the above classical parameter formulation and that of the coupled-
circuit parameter formulation in (4.41) are (i) the vector of rotor-winding state-variables

 in the classical parameter formulation is different to that in the coupled-circuit formu-

lation ; (ii) the field-voltage input in the classical parameter formulation is in per-unit

in the non-reciprocal base system (i.e. ) whereas in the coupled-circuit formulation it is

in per-unit in the reciprocal base system (i.e. ); (iii) although the coefficient sub-matrices

in the two formulations have the same names their values are different. Since the two alter-
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native formulations of the generator electromagnetic equations are structurally the same
they can be used interchangeably within the complete model of the generator which is de-
picted in Figure 4.1 on page 92. The linearized rotor-equations of motion developed in Sec-
tions 4.2.5 and 4.2.6 are applicable to the classical model as are the equations in
Section 4.2.10 which provide the interface between the dq reference frame and the synchro-
nously rotating network RI reference frame.

The rotor d- and q-axis state-variables in the classical formulation are respectively:

 and . (4.187)

The detailed  derivation of the coefficient matrices in the linearized electromagnetic equa-
tions of the generator in (4.186) is given in Appendix 4–I. Once these equations are formed
the linearized state- and algebraic equations of the generator including the rotor equations
of motion and interface with the network are formulated as in (4.117) on page 133 but with

 and  redefined as follows:

 and . (4.188)

4.2.14 Generator parameter conversions
Conventionally synchronous generator parameters are provided in the form of standard pa-
rameters. These are based on manufacturers’ design calculations or the results of actual tran-
sient response tests, such as sudden short-circuit or load-rejection tests.

As explained in Section 4.2.12 the standard parameters are ambiguous if they are specified
without also specifying whether they conform to their ‘Classical’ or ‘Exact’ definitions. Fur-
thermore, it is important to know if the standard parameters are ‘saturated’ or ‘unsaturated’.
If saturation is being modelled explicitly then the ‘unsaturated’ machine parameters should
be used. Conversely, if saturation is not being modelled explicitly, the ‘saturated’ machine
parameters should be used, though this approach to the representation of saturation in
small-signal stability analysis is not recommended.

It is frequently the case that data supplied by manufacturers is based on the ‘Classical’ defi-
nitions, although this is not always so. While the difference may be insignificant in the case
of salient pole machines, it may not be so when round rotor machines are modelled with
two q-axis damper windings. In the latter case it is possible that significant errors in predict-
ed system responses will occur if the software assumes the parameters conform to the ‘Clas-
sical’ definition when the standard parameters input to the program are actually specified
according to the ‘Exact’ definitions or vice-versa.
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Some software packages represent the machine internally using the coupled-circuit formu-
lation although the user is permitted to input standard parameters. The software package
then internally converts the user-supplied standard parameters to coupled-circuit parame-
ters. Again, to avoid ambiguity, it is important that the user is aware whether the software
requires that the standard parameters conform to the exact or classical definitions. Some
software packages internally formulate machine electromagnetic equations directly in terms
of the classically-defined standard parameters as summarized in Section 4.2.13. In such a
case, if the user has standard parameters for the machine which conform to the exact defi-
nitions then they should first be converted to conform with the classical definitions.

Figure 4.11 shows a parameter conversion roadmap. It is important to note that direct con-
version between the classical and exact definitions of the standard parameters is unneces-
sary. Rather, if for example, conversion from exact to classical parameters is required then
the ES2CC transformation is applied to the exact standard parameters to yield the coupled-
circuit parameters. These are then converted to the classical parameters using the CC2CS
transformation.

Figure 4.11 Generator parameter conversion roadmap.
(Note: The conversions CS2CC and CC2CS are given in tables 4.11 and 4.10 respectively. 
The conversions ES2CC and CC2ES are developed in [12] and software implementations 

are provided in [24]).

4.3 Small-signal models of FACTS Devices

Equipment and plant which incorporate power electronics are referred to as components in
Flexible AC Transmission Systems or as FACTS devices. The linearized equations will be for-
mulated for the small-signal models of five commonly-used FACTS devices, namely, the
Static VAR Compensator (SVC), the Static Synchronous Compensator (STATCOM), a
High Voltage Direct Current link with Voltage Source Converters (VSCX), a HVDC link
with line-commutated thyristor controlled converters (TCCX), and Thyristor-Controlled
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Series Capacitors (TCSC). The core of many modern FACTS devices is the Voltage Sourced
Converter (VSC) for which the linearized equations are also summarized. The HVDC link
may comprise overhead lines, or underground or submarine cables. Details of these devices
and their operation, items which not directly relevant to the following sections, are described
in [10, 25,  26, 27, 29, 30, 31].

The following assumptions are made which are consistent with the requirements for rotor-
angle small-signal analysis. (i) The FACTS device is not operating at a limiting condition in
the steady state. (ii) The losses in power electronic converters are constant for small pertur-
bations about the steady-state operating condition. (iii) Only the fundamental-frequency
components of the AC voltages and currents are relevant to the analysis. (iv) DC currents
are free of ripple. (v) Depending on the device, the DC voltage may contain some ripple -
the average value of the ripple voltage is then used. (vi) When analysing any device, all AC
related parameters are in per-unit on the specified base quantities of the device; at the AC
interface between the device and the network, conversions between the device and network
base quantities may be required. (vii) All DC related quantities are in SI units. As a conse-
quence of these assumptions, (i) the very fast switching processes at the heart of power elec-
tronic devices are approximated by algebraic equations; and (ii) many of the sophisticated
limiting controls which are required under large-disturbance conditions are omitted from
the linearized model of the device.

The linearized DAEs for the devices are summarized in this section. However, to integrate
the DAEs of these device models with those of the AC network and the control systems to
which they are connected they must first be rewritten in the form described in Section 4.4.
The details of how such reformulation can be performed are provided in [12].

As shown in Figure 4.12 the general form of a linearized representation of a FACTS device
comprises  AC terminals that are connected to AC network buses. For generality it is as-
sumed that the base values of the interface quantities between the network buses and the
corresponding device terminals differ, as will be discussed in Section 4.3.1. For the kth ter-
minal the perturbations in the real and imaginary components of the network bus voltage

 are applied to the device terminal through the base conversion factor ; the

current outputs  from the device are injected into the network, again through a base

conversion factor of . The steady-state operating condition about which the model is

linearized is determined from the power flow solution for the buses to which the device ter-
minals are connected.
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Figure 4.12 Interface between the network and a general FACTS device with nt

AC terminals.

Prior to considering a particular device, some results generally applicable to the AC termi-
nals of FACTS devices are first derived.

4.3.1 Linearized equations of voltage, current and power at the AC terminals of 
FACTS Devices: general results
As shown in Figure 4.12, a general FACTS device has multiple points of connection to the
AC network. In the following the connection of just one terminal, k, of the FACTS device
to its network bus is considered. The results are applicable to the connection of the other
terminals of the device to their respective network buses. As noted in Section 4.2.3.5 the re-
sults in this section are also applicable to calculating the quantities at the stator terminals of
generator models.

Normally the principal base quantities for the kth terminal of the device and the network bus
to which the terminal is connected are the RMS line-to-line voltage, the three-phase appar-
ent power and the fundamental frequency as listed in Table 4.13. These base quantities are
specified by the user (as indicated by the subscript ‘usb’). The base value of time, for both
the device and network, , is chosen to be one-second.
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Table 4.13  Principal base quantities for the kth device terminal and the network bus to 
which it is connected.

The set of base quantities for the kth terminal of the device is denoted as  and the cor-
responding set of base quantities for the network bus to which the kth terminal is connected

is denoted as .

The per-unit values of voltage, real and reactive power and current in the base system of the
of the kth terminal of the device (denoted by the superscript (d,k)) are related to the corre-
sponding quantities in the network base system (denoted by the superscript (n,k)) as follows:

 in which , (4.189)

 in which , (4.190)

 in which . (4.191)

It is assumed that the initial steady-state values , ,  and  at the bus to

which the kth terminal of the device is connected are obtained from the power flow solution.

Base Quantity

Units DescriptionDevice 
Terminal 

Network 
Bus

kV (RMS, 
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The base value of the fundamental-frequency positive-
phase sequence component of the RMS line-to-line volt-

age of the kth terminal of the device. Normally 

.

MVA

The base value of the three-phase apparent power of the 

kth terminal of the device. Normally,  is related to 

the device rating. The value of  is normally the 

apparent power base of the power flow analysis.

Hz

The base value of fundamental frequency of the kth termi-

nal of the device. Normally . It is assumed 

that  is the nominal operating frequency of the net-

work.
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For the purposes of analysis the voltages and currents are represented by the real and imag-
inary components of their phasor quantities in the synchronously rotating network frame of
reference. Thus, in per unit on the base quantities of the kth terminal of the device,

, (4.192)

in which

, , and (4.193)

,   and . (4.194)

The initial steady-state value of the voltage magnitude is  per-unit on

; the initial value  is then obtained by substitution of  and

 in (4.194). By substituting superscript d with n in equations (4.192) to (4.194)

the voltage magnitude and RI components are obtained in per-unit of the base voltage of
the network bus to which the kth terminal is connected.

The linearized forms of the voltage magnitude  and angle  of the kth terminal
of the device are written, respectively, as

(pu), and (4.195)

, (rad) (4.196)

in which the superscript (d,k) is omitted from the voltage quantities.

The terminal current phasor is expressed in terms of the terminal voltage and the real and
reactive power injected by the device from its kth terminal into the network as follows. All
quantities are in per-unit on the base quantities of either the kth terminal of the device (d,k)

or those of the network bus to which the kth terminal is connected (n,k).

(pu) (4.197)
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Equating the real and imaginary components of the preceding equation results in the follow-
ing matrix relationship:

. (4.198)

The initial values of the current components , in the network per-unit system, are

found by substituting the initial values , ,  and  obtained from the
power flow solution into equation (4.198) and then in the per-unit system of the device ter-

minal by setting .

The perturbations in the current components about their initial values are obtained by line-
arizing equation (4.198) and by eliminating perturbations in the voltage magnitude using
(4.195) to give:

(pu), in which , (4.199)

 and . (4.200)

The current magnitude:

(4.201)

is linearized about the initial steady-state operating point to yield:

(pu); (4.202)

 is obtained from (4.201) by substitution of the initial values of the current components

.

The apparent power is , where all quantities are in per-unit on the bases of

either (i) the kth terminal of the device (d,k); or (ii) the network bus to which the terminal is
connected (n,k). From this relationship it follows that:

 (pu) and  (pu). (4.203)

The perturbations in the real and reactive power are thus given by:

iR

iI

1
V
--- 
  cos sin

sin cos–

P

Q

1

V
2

------ 
  vR vI

vI vR–

P

Q
= =

i
˜RI0

n k 

V
n k   k 

P0
n k 

Q0
n k 

i
˜RI0

d k 
i
˜RI0

n k 
KI

k =

 i
˜RI JisS

˜
Jivv

˜RI+= S
˜ P Q

T
=

Jis
1

V0
2

------
 
 
  vR0

vI0

vI0
vR0

–
= Jiv

1

V0
2

------
 
 
  P0 2iR0

vR0
–   Q0 2iR0

vI0
– 

Q0 2iI0
vR0

– –   P0 2iI0
vI0

– 
=

I iR
2

iI
2

+=

I iR0
I0 iR iI0

I0 iI+ 1 I0  i
˜RI0

T  i
˜RI= =

I0

i
˜RI0

P jQ+ V̂Î=
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(pu). (4.204)

Consider the general case of an AC current flow  from terminal 1 to terminal 2 through a

reactance X connected between the terminals, the terminal voltage phasors being  and

; all quantities are in pu on the appropriate bases. Thus,  from which the

components of the terminal 1 voltage are:

,  and   . (4.205)

Because the equations (4.205) are linear, the linearized equations are formed by replacing the
variables by their perturbed quantities.

4.3.2 Model of a Static VAR Compensator (SVC)
The purpose of the SVC, through its control system, is to maintain the voltage of a busbar
constant by acting as a source or sink of reactive power. From small-signal considerations,
the SVC model comprising a controllable susceptance , as shown in Figure 4.13, is the
simplest to construct. Since a wide variety of SVC control systems exist in practice the con-
trol system model is omitted from the following.

Figure 4.13 Model of a SVC
(All quantities are shown in per-unit of the SVC base values)

Since the SVC is a single-terminal device the terminal descriptor k is redundant and is there-

fore omitted from the following equations. The SVC equations are ,

 and  each in per-unit of the SVC base quantities. The positive
direction of current and reactive power flow is from the SVC and into the network. The base
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Î

V̂1

V̂2 V̂1 V̂2 jXÎ+=
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value of admittance on the SVC base quantities is  and on the network

bus base quantities is . Thus, the SVC susceptance in per-unit of the

network bus base admittance is related to the per-unit value on the SVC base admittance by

 in which  and where  and  are defined in (4.189) and

(4.190) respectively. The initial value of the SVC susceptance is 

where  and  are the initial steady-state values obtained from the power-flow solu-

tion.

The real and imaginary components of the SVC current are respectively  and

 which upon linearization yield the following perturbations of the SVC cur-

rent components:

. (4.206)

The perturbed output equations for the voltage magnitude and angle are given by equations
(4.195) and (4.196) respectively; the current magnitude is given by (4.202) and the reactive
power by (4.204).

The quantity  is the signed current generated by the SVC and is commonly used as
an input signal to the SVC control system for representing the current droop feedback. Not-
ing that  it follows that the perturbed variable is: 

(4.207)

in which all quantities are in per-unit on the SVC base values.

The linearized equations of the SVC are written in the following matrix form in preparation
for interconnection with the transmission network, as described in Section 4.4. Note that
the model does not have any state-variables.

(4.208)
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,  . (4.209)

, , , ,

, , and .

4.3.3 Model of a Voltage Sourced Converter (VSC)
The Voltage Sourced Converter (VSC) is a core component of a number of FACTS devices
including the Static Synchronous Compensator (STATCOM), VSC based HVDC transmis-
sion links, etc. [25, 26, 27, 28]. A generic VSC model, as depicted in Figure 4.14, is devel-
oped based on concepts in [28]. While this model is suitable for small-signal rotor-angle
stability analysis it is not applicable when the dynamic behaviour of a fast acting Pulse Width
Modulation (PWM) scheme, switching controls, and such-like is required.

The VSC acts as an AC voltage source where both magnitude and phase angle of the source
are controllable. As shown in Figure 4.14 the VSC model has two terminals, c1 and c2 on
the AC side. This allows the model to be used as a series connected element as well as a

shunt connected element. In the latter case the voltage  of terminal c2 is constrained
to zero.
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Figure 4.14 Generic VSC model.

The VSC base voltages and apparent power for terminals c1 and c2 are assumed to be,

 (kV),  (MVA); (4.210)

the corresponding network bus base values are  and  for terminal c1, and

,  for terminal c2.

From equations (4.189) and (4.190) on page 160 the conversion factors between the net-
work and VSC base values for the c1 terminal voltage and apparent power are

 and , (4.211)

- and similarly for terminal c2:

 and (4.212)

The voltage magnitude and phase angle at terminals c1 and c2 are found from (4.193) on
page 161 in terms of the real and imaginary voltage components of terminals c1 and c2,

 and .

The source voltage magnitude and phase are controlled by the modulation ratio  and

phase angle control  both of which are inputs to the VSC. The magnitude of the source
voltage, which is the magnitude of the voltage difference between the two AC terminals (c1)
and (c2), is related to the modulation ratio as follows:

. (4.213)

Rp
c 

Rc
c 

Cc
c 

Vd
c 

Id
c 

Vdc
c 

Idc
c 

Idp
c 

Ids
c 

V̂
d c1 

V̂
d c2 

V̂
n cr 

The interconnecting net-
work between the VSC 
AC terminals (c1) and 

(c2) and the phase refer-
ence bus (cr) is repre-
sented in the power 

Î
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In the latter equation  is the DC voltage across the converter in kV and  is the AC

to DC transformation ratio, which for a linear PWM scheme is ;   in kV is the

internal AC base voltage of the voltage source [28]. 

The voltage angle at bus cr,  rad, is the reference angle for the VSC phase-angle control

signal input  rad. Thus, the phase-angle of the voltage source is:

(rad). (4.214)

The internal voltage base  is usually chosen to equal the base voltage of the VSC ter-

minals, , when the VSC is shunt connected. However, for a series connected VSC the

internal   base voltage may be selected in relation to the series voltage rating of the device.
The VSC internal and terminal voltage bases are thus related by the following,

. (4.215)

The internal VSC apparent power base, , is defined to be equal to the VSC terminal VA

base,  MVA. Thus, the VSC internal base value AC current,  A, is defined as,

(A), (4.216)

where (A) is the VSC base current at its respective terminals.

The voltage source phasor is:

 pu on , (4.217)

where ; (4.218)

The initial steady-state values  and  are calculated from the power flow solu-

tion as described in Section 4.3.1. These values are then substituted in (4.218) to calculate

the initial values of the voltage source components, .

The voltage source magnitude  and phase , in terms of the real and imaginary com-

ponents of the source voltage are:
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, , (4.219)

which are linearized to yield the following expressions for these quantities about their initial
steady-state values:

(pu),    (rad), (4.220)

where  is obtained by substituting  in (4.219).

It is assumed that the initial steady-state value of the DC voltage, , is a specified quantity.

Thus from (4.213) it follows that the initial value of the modulation ratio is,

. (4.221)

The perturbations in the VSC source voltage magnitude are obtained by linearizing equation
(4.213) to give:

pu on . (4.222)

The VSC source current components , in per-unit on the internal VSC

value of base current  A, are related to VSC terminal currents on the terminal base cur-

rent , by the following relationships,

. (4.223)

Furthermore, in accordance with (4.191) on page 160 the terminal c1 and c2 current com-
ponents in the respective network bus per-unit systems are related to the corresponding val-
ues on the VSC terminal base current as follows:

 in which  and (4.224)

 in which . (4.225)

The net real and reactive power,  and , generated by the VSC are given by:

pu on  MVA (4.226)
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which are calculated in terms of the source voltage and current components in accordance

with equation (4.203) on page 162 and the associated perturbations in  and  are de-
rived from (4.204).

The often substantial switching losses in a VSC are represented by a user supplied fixed

quantity  pu on . Thus, the DC power output from the VSC is,

MW, (4.227)

where  is in A and, as mentioned earlier,  is in kV.

The initial DC power and current are respectively:

MW and  A. (4.228)

Linearizing equation (4.227) gives the perturbation in the DC power output from the VSC:

MW. (4.229)

As shown in Figure 4.14 there are two shunt elements across the DC terminals (i) a resist-

ance  across the terminals, (ii) a capacitance  F and a resistance  in series

across the terminals. In the most general case the relevant equations are: 

capacitor state equation: kV/s, (4.230)

voltage drop across shunt resistor:  kV, (4.231)

voltage drop across RC element: kV, (4.232)

Kirchoff’s Current Law: A. (4.233)

Because (4.230) to (4.233) are linear equations the variables can be replaced by their per-
turbed values. There are some special cases for which the above equations can be modified,
namely,

(a) no shunt elements are modelled;

(b) only the resistance across the terminals is connected; 

(c) only the resistance and series capacitance combination is present.

It is convenient to define a variable  representing the external input to the DC terminal
of the VSC which is normally defined as:
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(A) or (kV) (4.234)

depending on whether the source on the DC side of the VSC is represented as a current or
voltage source.

This VSC model has two control input signals denoted by  and . From a detailed

modelling perspective these two variables are typically (i) the VSC phase-angle measured

with respect to the phase reference bus cr, , and (ii) the VSC voltage modulation ratio

 resulting in the following constraints:

(rad) and . (4.235)

It is often desirable to provide a simplified functional representation of the VSC control sys-
tems, for example, (i) in scoping studies before the details of the VSC control systems are
known, or (ii) in studies where detailed representation of the VSC controls have an insignif-
icant effect on the dynamic performance of the system. For example, if the VSC is equipped
with a fast acting control system whose objective is to maintain constant DC power flow

then control input  can be set to  rather than . By doing so it is unnecessary to

represent the details of the DC power control loop of the VSC. 

4.3.3.1 Summary of linearized VSC equations
Listed below is a consolidated list of the linearized DAEs of the VSC.

DC side equations
Note that the DC side equations can be modified depending on the representation of the

DC shunt network. In all such alternative representations the variables , , 

and  are retained.

(kV/s) from (4.230), (4.236)

(MW), power conservation from (4.229), (4.237)

(MW) from (4.229), (4.238)

(kV) from (4.232), (4.239)

(kV) from (4.231), (4.240)
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(A) from (4.233). (4.241)

VSC AC side converter equations

(pu) from (4.218), (4.242)

(pu) from (4.220), (4.243)

(rad) from (4.220), (4.244)

(rad) (4.245)

from (4.196),

(pu) (4.246)

from (4.204) on page 163,

(rad) from (4.214), (4.247)

(pu) from (4.222). (4.248)

VSC terminal 1 / network bus interface

(pu) from (4.223), (4.249)

(pu) from (4.224), (4.250)

(pu) from (4.189) pg. 160. (4.251)

VSC terminal 2 / network bus interface
Note that if the VSC is shunt connected equations (4.252) to (4.254) are omitted from the

model as are variables  and , including the coefficients of  in

(4.242).

(pu) from (4.223), (4.252)

(pu) from (4.225), (4.253)
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(pu) from (4.189) pg. 160. (4.254)

Input to / Output from the DC side of the VSC

(A) and (kV) from (4.234), (4.255)

or conversely, (kV) and (A). (4.256)

VSC control inputs

As mentioned earlier, in a flexible VSC model, it is desirable for the control inputs 

and  to be constrained to two independent variables depending on the user’s require-

ments. For detailed VSC modelling the inputs are set to the VSC phase angle and voltage
modulation respectively:

(rad) from (4.235), (4.257)

 from (4.235), (4.258)

Examples of useful alternative constraints on the first control input are:

, or , or (4.259)

in which  is a remote AC power system signal such as the power flow in a transmission

element. Similarly, examples of alternative constraints on the second control input are:

, or (4.260)

in which  is a remote AC power system signal such as the reactive power flow in a

transmission element or the voltage magnitude of remote bus.

The linearized VSC equations (4.236) to (4.260) can be assembled into a compact matrix
form which is suitable for integration with the linearized DAEs of the power system as out-
lined in Section 4.4 and elaborated on in [12].

4.3.4 Simplified STATCOM model
The purpose of the STATCOM is similar to that of the SVC, that is, to control voltage by
absorbing or generating reactive power. The STATCOM model in this section is based on
a simplified version of the VSC model described in Section 4.3.3. The AC terminal (c2) of
the VSC in Figure 4.14 on page 166 is connected to the zero voltage reference plane and the
AC terminal (c1) is renamed to (c). That is, the VSC at the heart of the STATCOM is shunt
connected. The basic concepts on which this model are based are found in [25, 26] , for ex-
ample. The simplified VSC model, which is depicted in Figure 4.15, makes the following ide-
alizing assumptions.
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• The VSC phase control system is sufficiently fast and accurate that the generated AC
current phasor is assumed to always be in quadrature with the voltage phasor at the
phase reference bus as depicted in Figure 4.15(b). This has the consequence that the

VSC input  (see Section 4.3.3, page 170).

• The VSC fixed losses, , are negligible.

• The VSC DC capacitor is sufficiently large that the DC voltage is assumed to be con-
stant during small-disturbances. Thus the VSC capacitor is depicted as a fixed DC
source in Figure 4.15(a).

• A lossless reactor is connected between the converter AC terminal (c) and the phase
reference bus as shown in Figure 4.15(a). This reactor is included in the model and
therefore the VSC phase reference bus is AC terminal (s) in the simplified VSC model
of the STATCOM.

Figure 4.15 Simplified VSC model for a STATCOM: (a) power-circuit schematic, (b) re-
lationship between terminal voltage and current phasors, (c) equivalent control-system 

block-diagram of the VSC.

Based on the above assumptions the equivalent control-system block-diagram representa-
tion of the simplified VSC model for the STATCOM shown in Figure 4.15(c) is now for-
mulated.
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(a) Below, power-circuit schematic 
showing VSC with constant DC voltage 
and reactor between the converter (c) 
and phase-reference (s) terminals.

(c) Right, equivalent control-system 
block-diagram representation of the VSC 
for the simplified STATCOM model.
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voltage and current phasors.
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In accordance with Table 4.13 on page 160 the base values of voltage and apparent power
for the AC terminal of the VSC are specified respectively as

(kV) and (MVA). The corresponding quantities for the network bus to

which the STATCOM VSC terminal (s) is connected are (kV) and (MVA).

The voltage phasor at the phase reference terminal (s) is,.

 in per-unit on , (4.261)

and is regarded as an input to the VSC model derived from the voltage at the network bus
to which the terminal is connected.

The voltage phasor at the converter terminal (c) is:

  in per-unit on . (4.262)

The equality of the phases of the voltages at the (s) and (c) terminals is derived from equa-
tion (4.214) on page 167 with the assumption, stated earlier, that the VSC phase-angle con-

trol input, , is zero.

Since it is assumed that the DC voltage is constant it follows from (4.213) on page 166 that
the magnitude of the voltage at VSC AC terminal (c) is equal to the VSC modulation ratio
multiplied by a constant gain factor, i.e.

  where the constant . (4.263)

Thus, for modelling purposes, it is permissible and convenient to eliminate the modulation
ratio and instead treat the VSC AC terminal voltage as the second control input signal to the

VSC, i.e. .

The current output from the simplified VSC model is,

, (4.264)

where the magnitude of the injected current, which is in quadrature with the voltage, is

, (4.265)

in per-unit on the VSC current base of  (A).
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Thus, equations (4.264) and (4.265) which represent the current injected by the simplified
VSC model into the network, are equivalent to the control-system block-diagram in
Figure 4.15(c).

A voltage control system can then be combined with the above simplified VSC model in
order to regulate the voltage at the STATCOM terminal, (s). This results in a simplified
model of a STATCOM such as that depicted in Figure 4.16. In this model the STATCOM

current droop feedback is explicitly represented by . In common with the
SVC, the STATCOM voltage control system usually incorporates current droop designed to
reduce the voltage at the regulated bus in proportion to the current injected by the STAT-
COM into the network. Typically, the droop setting, , is between 0.01 and 0.05 per-unit

on the STATCOM base quantities. It is also possible to add a supplementary control signal
to the AVR summing junction from, say, a Power Oscillation Damper (POD).

Figure 4.16 Simplified STATCOM model formed by combining the simplified VSC mod-
el in Figure 4.15(c) with a voltage control system.

The small-signal representation of the simplified VSC model is now derived. As described

in Section 4.3.1 the initial steady-state values of the voltage  and current  com-

ponents in the VSC per-unit system are obtained from that the initial steady-state values of

, ,  and  obtained from the power flow solution. It is noted that in

the power flow the STATCOM is assumed to be represented as a PV bus 1 in which, for
consistency with the assumption that the STATCOM current is in quadrature with its ter-

minal voltage, .

1. In power flow terminology the term “PV bus” denotes a bus at which the generated 
power and voltage magnitude are specified; the generated reactive power and voltage 
angle are the unknowns to be determined by the power flow solver.
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With appropriate changes in notation equation (4.193) on page 161 is used to derive the

STATCOM voltage magnitude  from the voltage components  as

,

which is linearized about the operating point, in accordance with (4.195) on page 161, to
yield:

. (4.266)

From (4.196) on page 161, with appropriate changes in notation, the perturbation in the
STATCOM terminal voltage phase angle is:

. (4.267)

The perturbation in the STATCOM current magnitude is obtained by linearizing equation
(4.265) to yield,

. (4.268)

From equation (4.264) the STATCOM current phasor can be rewritten as,

, (4.269)

from which it follows that

and . (4.270)

The perturbations in the current components output from the STATCOM terminal are de-
rived by linearizing the preceding equations at the operating point to yield,

and . (4.271)

From (4.204) on page 163, with appropriate changes in notation, it follows that the pertur-
bation in the reactive power output from the STATCOM is:

. (4.272)

In accordance with equations (4.189) and (4.190) on page 160 the perturbations in the
STATCOM terminal voltage and current components, in per-unit on the base values of the
network bus to which the STATCOM is connected, are respectively,

and . (4.273)
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As for the SVC model, the linearized equations (4.266) to (4.268) and (4.271) to (4.273) for
the simplified STATCOM model can be rewritten in the following matrix form suitable for
interconnection with the transmission network model. Note that the model does not have
any state-variables. The linearized equations are of the form:

in which (4.274)

 and .

Note that these equations do not include the model of the STATCOM voltage regulator or
any supplementary control system  – they represent only the simplified VSC component of
the STATCOM.

4.3.5 Modelling of HVDC Transmission Systems
Two models of HVDC transmission systems are considered with the general structure in
Figure 4.17. The first is based on Voltage Sourced Converters (VSCXs) and the second on
line-commutated Thyristor Controlled Converters (TCCXs). The HVDC transmission sys-
tem may comprise overhead lines or cables; the system can be either mono-polar or bipolar.
For both the rectifier and inverter it assumed that the number of bridges in series, NB, is the
same as the number of converter transformers operating in parallel on the AC side. 

Figure 4.17 Structure of HVDC system model showing the interface between the DC side 
components. The directions of positive voltage and current-flow at the external interfaces 

of the components are indicated by the arrows.

Because the models of both VSCX and TCCX systems employ the same model of the
HVDC link, the model of the link is analysed first. Models of the VSCX and TCCX systems
are then considered in turn.

The HVDC models described in the following sections assume that the following informa-
tion is provided by the power flow solution: the steady-state voltages, the real and reactive
power flows at the AC terminals of the rectifier and inverter, and the initial steady-state val-
ues of the DC voltages of each converter. All plant on the AC side of the converter termi-
nals, e.g. three-winding transformers, reactors, is assumed to be modelled in the power flow
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analysis. The nature of the interface between the AC terminals of the rectifier and inverter
and the buses to which they are connected in the AC system is shown in Figure 4.12.

4.3.6 Model of a distributed-parameter HVDC transmission line or cable
In the small-signal model of a long, HVDC transmission line or cable it is not possible to
represent the strictly distributed-parameter nature of the circuit. Let us assume that the dy-
namics of the line is adequately represented by NT T-sections, of which the kth section is
shown in Figure 4.18. Clearly, the greater the number of sections the closer to a distributed-
parameter system the model becomes. Let: 

RL    - total link resistance in (ohm),
LL    - total link inductance in (Henry),
CL    - total link capacitance (Farad),
RCL  - total cable sheath resistance (ohm).

The parameters of each T-section in SI units are therefore:
L = LL/(2 NT),   R = RL/(2 NT),   C = CL/NT,   RC = RCL/NT.

Figure 4.18 The kth T-section of a long, HVDC transmission line or cable.

The circuit diagram of the HVDC line / cable depicted in Figure 4.19 comprises the series
connection of NT of the above T-sections. Note that:

1. The series resistance  (ohm) and inductance  (H) connected to the rectifier end

of the link (R) includes the resistance  (ohm) and inductance  (H) of the

series smoothing reactor, if any, connected to the rectifier, i.e.

and . (4.275)

2. Similarly, the series RL branch connected to the inverter node (I) includes the series
smoothing reactor, if any, connected to the inverter, i.e.

and . (4.276)
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3. The parameters of the internal series RL elements are  and  because the right

arm of the kth T-section is connected in series with the left arm of the (k+1)th T-sec-
tion.

Figure 4.19 Circuit diagram of a HVDC link model comprising the series 
connection of NT of the T-sections in Figure 4.18 and the rectifier and inverter smoothing 

reactors.

The rectifier- and inverter-end voltages,  and , are treated as model inputs. The rec-

tifier- and inverter-end currents,  and , are outputs from the

link model which are to be input to the devices connected to the respective DC terminals.
The state-equations for the inductor currents are written first, followed by the state-equa-
tions for the capacitor voltages and finally the algebraic nodal voltage and current equations.

All currents are in Amperes (A) and all voltages are in Volts (V) - except  and 

which are in kV.

Inductor current state-equations

, (4.277)

, , (4.278)

. (4.279)

Capacitor voltage state-equations

, . (4.280)

Nodal voltage and current equations

, , (4.281)

, . (4.282)
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Note that the equations (4.277) to (4.282) are linear. Each variable can therefore be replaced

by its perturbed value at the steady-state value, e.g. the variable  is replaced by  at

the steady-state value . Given the initial steady-state values of the rectifier- and inverter-

end voltages, the initial values of the other variables are obtained by solving the aforemen-
tioned set of linear equations with the rates of change in the inductor currents and capacitor
voltages set to zero. The initial values of the rectifier and inverter end currents are given by:

A. (4.283)

Simplified modelling of the HVDC transmission line / cable is appropriate when the link is
short or when detailed modelling such as that described above is otherwise unnecessary or
infeasible. For example, the link may be represented as a series RL branch incorporating the
rectifier and inverter smoothing reactors, or simply as a series resistance.

4.3.7 Model of HVDC transmission with Voltage Sourced Converters (VSCX)
In the model of a VSCX the rectifier (r) in Figure 4.17 is represented by a shunt connected
VSC model as described in Section 4.3.3. The linearized equations for the rectifier are listed
in Section 4.3.3.1 in which the superscript (c) is replaced by (r). The linearized model of the
inverter is similarly represented - but with (c) replaced by (i). For both converters the DC
input and output are the perturbations in the DC current and voltage respectively, i.e. equa-
tion (4.255) on page 172 applies to both converters. Since the converters are shunt connect-
ed the equations and variables associated with the second terminal, (r2) and (i2), of the
respective converters are omitted from the model equations as described in Section 4.3.3.
The HVDC link is represented by the equations (4.277) to (4.282). The interconnections be-
tween the linearized equations for the converters and HVDC link are represented by the fol-
lowing linear constraint equations:

 (A),  (A),  (kV),  (kV) (4.284)

Typically, one of the converters is used to control the power transferred by the link and the
other converter is used to control its DC voltage. Each converter is normally used to control
either its reactive power output or the AC voltage of an adjacent bus. The control systems
are specific to the application and are omitted from the VSCX model.

The linearized model equations of the VSCX system can be written in the following form
which is suitable for integration with the linearized DAEs of the power system as described
in Section 4.4. The superscript (T) denotes that the quantity is associated with the integrated
VSCX system.
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(4.285)

The state ( ), algebraic ( ) and control-input, ( ) variables in the preceding
equation combine the corresponding variables from the HVDC link model and the rectifier
and inverter models. The current components injected by the VSCX into the AC buses - to

which the rectifier and inverter AC terminals are connected - are  and the associated

bus voltages are . The latter current and voltage quantities are in per unit on the base
values of the buses to which the converter terminals are connected.

4.3.8 Model of HVDC transmission with Voltage Commutated Converters
A small-signal model of a HVDC transmission system with voltage-commutated thyristor-
controlled converters is now presented. The resulting TCCX model has the structure shown
in Figure 4.17. A general purpose converter model,  depicted in Figure 4.20, is formulated
on the basis of [10, 25, 29, 30, 31, 32, 33]; it is then used in a modular fashion to represent
the converter at one end of the link operating in rectifier mode and at the other end as an
inverter. The distributed parameter model of the HVDC link in Section 4.3.5 is used to con-
nect the rectifier and inverter.

Figure 4.20 Voltage-commutated thyristor-controlled converter. The artificial network 
for calculating the converter commutation voltage is also shown.

In the following the converter identifier indicated by the superscript (k) is substituted either
with (r) for the rectifier or (i) for the inverter. The AC terminal quantities are defined in per-
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unit on the device base values as specified in Table 4.13 on page 160. The DC side quantities
are in SI units as specified below.

As mentioned in Section 4.3.5, the converter is assumed to comprise  identical bridges
connected in series on the DC side and in parallel on the AC side.

4.3.8.1 Internal DC voltage and current variables
For the purpose of developing the voltage-commutated thyristor-controlled converter mod-

el, internal values of the DC current,  (A), and DC voltage,  (kV), are employed. In

Section 4.3.8.9 the relationships are established between these internal DC quantities and
their corresponding external interface values shown in the general HVDC link model  of
Figure 4.17.

It is important to note that the DC current must flow in the direction of the thyristor valves

and by definition this is the positive direction of . Consequently  is positive whether
the converter is operating as a rectifier or as an inverter. The direction of positive DC volt-

age  is defined to be in the positive direction of . Thus, as will be seen in the follow-

ing,  is positive if the converter is operating as a rectifier and is negative when operating

as an inverter.

4.3.8.2 Relationship between the AC and DC quantities of the converter
In the analysis of voltage-commutated converters it is assumed that an ideal, sinusoidal,
three-phase source is connected to the converter through a reactance, which is referred to

as the commutating reactance,  per bridge. The AC voltage source is referred to as the

commutating voltage. Assuming a thyristor firing-angle delay,  (rad), and an overlap an-

gle,  (rad), due to the commutating reactance, it is shown in the analysis of [29] that the
average DC voltage at the converter is,

 , (kV), (4.286)

in which the DC current is  (A) and where the no-delay, no-load DC output voltage 

(kV) is given in terms of the magnitude of the commutating voltage magnitude, (per-

unit on  kV):

(kV), where (kV), and (4.287)
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(ohm), in which (ohm). (4.288)

The so-called “commutation resistance”, , is an artefact that accounts for the DC volt-
age drop due to commutation overlap; it does not generate power losses.

By substituting for  from (4.287) into equation (4.286) the DC voltage is obtained in

terms of the commutating voltage magnitude, the DC current, firing-angle delay and com-
mutation resistance as follows:

(kV). (4.289)

In using this converter model the value of the commutation reactance must be selected, ide-
ally it is the Thévenin impedance looking into the AC system from the converter AC termi-
nals. The use of the commutation bus is therefore an artefact for the calculation the DC

voltage, . Importantly (i) the transformers and associated components connected to the

AC terminals of the converter are represented in the AC network model; (ii) the commuta-
tion reactance and commutation bus are not included in the AC network model.

The converter switching losses are assumed to be fixed and are represented by a user sup-

plied quantity  pu on . Thus, due to the conservation of energy, the DC power

output from the converter is related to the AC power output  by:

MW. (4.290)

As mentioned earlier, it is assumed that the initial steady-state values of the following quan-
tities are obtained from the power flow solution: (i) the real and reactive power output from

the converter AC terminal,  and  respectively; (ii) the voltage magnitude and

angle at the AC terminal,  and  respectively; and (iii) the DC voltage . The

initial steady-state values , ,  and , are calculated from the power

flow solution as described in Section 4.3.1. The initial steady-state values of the DC power
and current are then obtained from (4.290) as follows:

(MW) and (A). (4.291)

The perturbation in the DC power output of the converter is now obtained by linearizing
equation (4.290) about the above operating point values.
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. (4.292)

4.3.8.3 Perturbations in commutation voltage in terms of converter terminal quantities
From Figure 4.20 the commutating voltage phasor is obtained from the conditions at the
converter AC terminals as follows.

 pu on , (4.293)

from which,

(4.294)

The initial steady-state values  and  calculated in the previous section are then

substituted in (4.294) to calculate the initial values of the commutating voltage components,

.

Based on (4.193) on page 161, the commutating voltage magnitude  is:

, (4.295)

which is linearized according to (4.195) to yield the following expression for the perturba-
tion in the commutation voltage about its initial steady-state value,

(pu), (4.296)

where  is obtained by substituting  in (4.295).

The initial steady-state firing-angle delay  is obtained by back substituting into (4.289),

 from the power flow solution,  from (4.291) and  (calculated above), to give:

. (4.297)

Pd
k 

Susb
d k P

d k 
– Vdx0

k 
10

3 Idx
k 

Idx0

k 
10

3 Vdx
k 

+= =

V̂C
d k 

VC
d k 

e
jC

k 

vCR
d k 

jvCI
d k 

+ V̂
d k 

j
XC

d k 

NB
k 

--------------
 
 
 

Î
d k 

–= = = Vusb
d k 

v
˜CRI

d k 
vCR

d k 
vCI

d k 
T

VC
d k 

C
k  cos C

k  sin
T

= =

vR
d k  XC

d k 

NB
k 

--------------
 
 
 

iI
d k 

+

 
 
 
 
 

    vI
d k  XC

d k 

NB
k 

--------------
 
 
 

iR
d k 

–

 
 
 
 
 

T

=

v
˜RI0

d k 
i
˜RI0

d k 

v
˜CRI0

k 

VC
d k 

VC
d k 

vCR
d k  

2
vCI

d k  
2

+ v
˜CRI

d k  
T

v
˜CRI

d k 
= =

VC
d k  1

VC0

d k 
--------------
 
 
 

v
˜CRI0

d k  
T
v

˜CRI
d k 

=

VC0

d k 
v
˜CRI0

d k 

0
k 

Vdx0

k 
Idx0

k 
VC0

d k 

0
k  Vdx0

k 
RC

k 
10

3– Idx0

k 
+

cvd
k 

VC0

d k 
----------------------------------------------------------

 
 
 
 

acos=



Sec. 4.3 HVDC transmission with Voltage Commutated Converters, TCCX 185
The perturbation in the DC voltage about its initial steady-state value is obtained by lineariz-
ing equation (4.289) to yield:

. (4.298)

4.3.8.4 Perturbation in real and reactive power supplied from the commutation bus

The current output from the converter terminal, , is equal and opposite to that output

from the commutation bus, , i.e.

. (4.299)

The real and reactive power supplied from the commutation bus is:

. (4.300)

Substituting in the preceding equation for  in terms of the converter terminal voltage

and current from (4.293) and then substituting for  from (4.299) yields:

From the preceding equation the real and reactive power output from the commutation bus
is expressed in terms of the real and reactive power output from the converter AC terminal,

 and , and the magnitude of the AC converter current, , i.e.:

and . (4.301)

The initial steady-state value  is obtained from (4.201) on page 162 using the previous-

ly determined current components . Then  and  are derived by substitut-

ing the previously determined values of ,  and  in (4.301).
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ÎC
d k 

Î
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Let  (rad) be the angle by which the fundamental-frequency commutation bus current

phasor  lags the rms phase-neutral commutation voltage phasor . The factor

 is the power factor - or displacement factor - of the fundamental waveforms and

is a function of the converter firing-delay and extinction-delay angles,  (rad) and 
(rad), respectively.

An approximate value of the power factor is

. (4.302)

However, an exact expression for the power factor angle is provided in [29]: 

. (4.303)

The reactive power output from the commutation bus is related to the real power output

and the power-factor angle, , by:

. (4.304)

Equations (4.303) and (4.304) are now used to calculate the initial steady-state value of the

extinction-delay angle. The initial steady-state values  and  were determined

earlier in this section and  was determined in (4.297). Thus, from (4.304) it follows that

1. Substituting for the known values of  and

 in (4.303) results in the following non-linear equation for the initial value of the extinc-
tion-delay angle:

, where (4.305)

 is known.

1. Note that the atan2 function is used to ensure that the power-factor angle is located in 
the correct quadrant. This is important when the converter is operating as an inverter. 
See the footnote on page 126 for the definition of atan2.
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The preceding equation can be solved using any one of a number of methods including a
fixed-point iteration method or the Newton-Raphson method with an initial estimate of

 determined from (4.302).

Let  (rad) be the overlap angle, then

. (4.306)

It is noted that inconsistencies can arise between the steady-state solution of converter var-
iables in the power flow and the initial conditions determined for the purpose of linearizing
the converter model. Such inconsistencies are frequently attributable to the way in which the
power-factor angle is expressed as a function of the thyristor firing and extinction angles.

The linearized form of (4.303) is:

(4.307)

where ,

and . (4.308)

The perturbation in the reactive power output from the commutation bus is thus obtained
by linearizing equation (4.304) about the operating point to give:

. (4.309)

4.3.8.5 Perturbations in converter AC current and apparent power output
From equations (4.290) and (4.301) the following expressions for the real and reactive power
output from the converter terminals are found:

 and . (4.310)

The perturbations in these quantities about the operating point are obtained by linearizing
the preceding equations to yield:

and . (4.311)
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The perturbations in the AC converter current components about the operating point are
obtained in terms of the perturbation in the converter apparent power output

( ) and the perturbations in the AC terminal voltage compo-

nents by application of equations (4.199) and (4.200) on page 162 to yield:

(pu), in which (4.312)

, and 

. (4.313)

The perturbations in the converter AC current required in equation (4.311) are obtained by
applying equation (4.202) on page 162 to the converter AC terminal (k) as follows:

(pu). (4.314)

4.3.8.6 Modifications of the general converter model for inverter operation
The voltage-commutated thyristor-controlled converter model developed above is general
in that it applies whether the converter is operating as a rectifier or inverter. When the con-

verter is operated as an inverter the firing-angle delay  must be greater than  rad in
order to produce a DC voltage that opposes the flow of the DC current through the thyris-
tor valves. The DC voltage produced by the rectifier forces the DC current through the in-
verter valves against the opposing inverter DC voltage. When describing the operation of

the inverter it is common practice to refer to the firing-angle advance, (rad), and the

extinction-angle advance,  (rad) which are related to the corresponding delay angles by:

and . (4.315)

Thus, although it is mathematically unnecessary, in the case of inverter operation the above
equations of the advance angles are added to the general converter equations in accordance
with conventional practice.

4.3.8.7 Converter control input

The converter model has a single control input signal denoted by . From a detailed mod-

elling perspective this input is usually the thyristor firing-angle delay, . However, it is
also common when representing the inverter control system to employ either the firing-an-
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gle advance, , or the extinction-angle advance, , as the control signal. Thus, one of
the following constraints on the converter input signal is typically employed for detailed
modelling of the converter controls:

(rad) or (rad) or (rad). (4.316)

It is often desirable to provide a simplified functional representation of the converter con-
trol systems. For example, if the converter is equipped with a fast acting control system

whose objective is to maintain constant DC power flow then the control input  can be

set to  rather than .

4.3.8.8 Summary of the linearized converter algebraic equations
A consolidated list is presented below of the linearized algebraic equations for the voltage-
commutated thyristor-controlled converter model. The initial steady-state operating condi-
tion is determined from the power flow solution as described in the preceding sections.

DC side equations
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Commutation bus equations
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from (4.309). (4.323)
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Converter AC terminal equations

from (4.311), (4.324)

from (4.311), (4.325)

from (4.312) and (4.313), (4.326)

from (4.314). (4.327)

Advance angle equations

and from (4.315). (4.328)

Input control signal equation
As mentioned in Section 4.3.8.7 it is desirable in a flexible converter model for the control
input signal to be constrained to an independent variable depending of the user’s specific
requirements. For detailed modelling the input control signal will typically be defined by one
of the following equations:

or or , from (4.316). (4.329)

Alternatively if the functional behaviour of the converter control system is to be represented

then the input is constrained to some other user-selected system variable  such that: 

. (4.330)

4.3.8.9 Relationship between the internal model and external interface values of the DC volt-
age and current in the general HVDC transmission model.

As described in Section 4.3.8.1 the positive direction of the DC current variable  used in

the internal formulation of the converter model is in the direction of the thyristor valves.

The positive direction of the DC voltage variable  used in the formulation of the model

is in the positive direction of . The rectifier (r) and inverter (i) define external interface
variables for the DC voltage and current for the respective converters in the general model
of the HVDC transmission system shown in Figure 4.17 on page 177. Figure 4.21 shows the
relationship between the internal and external interface DC current and voltage variables for
two scenarios:

1. The DC current flow is from the rectifier to inverter for which the relationships
between the internal and external variables are:
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for the rectifier: and , (4.331)

for the inverter: and . (4.332)

2. The DC current flow is from the inverter to rectifier for which the relationships
between the internal and external variables are:

for the rectifier: and , (4.333)

for the inverter: and . (4.334)

Of course, in both cases the DC power flow is from the rectifier to the inverter; in the first
case the DC current and power flow in the same direction, whereas in the second case the
direction of DC power flow is opposite to that of the DC current 

Figure 4.21 Relationship between converter internal and external DC variables.

4.3.8.10 Assembly of the TCCX model
In the small-signal model of a TCCX the rectifier (r) in Figure 4.17 is represented by a volt-
age-commutated thyristor-controlled converter model in accordance with the linearized
equations listed in Section 4.3.8.8. In the rectifier model the superscript (k) in the general
equations is replaced by (r). The relationship between the internal values of the rectifier DC
voltage and current - and the corresponding external interface values of these quantities - is
defined by either equation (4.331) or (4.333) depending on the direction of DC current flow.
The linearized model of the inverter is similarly represented but with (k) replaced by (i). The
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HVDC transmission line/cable is represented by the equations (4.277) to (4.282) on
page 179. The interconnections between the linearized equations for the converters and
HVDC line/cable are represented by the following linear constraint equations:

 (A),  (A),  (kV),  (kV). (4.335)

It is possible to implement a wide range of control strategies with this general purpose mod-
el. The principal control strategies are: (i) the rectifier operates in constant-current control
and the inverter operates in constant extinction angle control, or (ii) the rectifier operates in
constant firing-angle control and the inverter operates in constant-current control. Supple-
mentary control strategies to achieve a range of objectives are possible, including regulation
of power flow, regulation of frequency and damping control. The control systems are spe-
cific to the application and are omitted from the model.

The linearized model equations of the TCCX system can be written in the following form
which is suitable for integration with the linearized DAEs of the power system as described
in Section 4.4. The superscript (T) denotes that the quantity is associated with the integrated
TCCX system.

(4.336)

The state, the algebraic, and the control-input variables ( , , ) in the preced-

ing equation combine the corresponding variables from the rectifier and inverter models and
the HVDC line/cable model. The current components injected by the TCCX into the AC

buses to which the rectifier and inverter AC terminals are connected are  and the as-

sociated bus voltages are . These latter current and voltage quantities are in per-unit
of the base values of the network buses to which the converter terminals are connected.

4.3.9 Thyristor Controlled Series Capacitor (TCSC)
A model for the TCSC suitable for small-signal rotor-angle stability analysis is shown in
Figure 4.22.

It is assumed that under steady-state conditions the TCSC is represented in the power flow

as a series susceptance, , between buses j and k as shown in Figure 4.22(a). The super-

script (n) denotes that the susceptance is in per-unit on the network base quantities. The

steady-state voltages at buses j and k,  and  respectively, are also

obtained from the power flow solution.
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Figure 4.22 Representation of the TCSC (a) under steady-state operating conditions in 
the power flow, and (b) as a dynamic device with controllable series reactance.

Thus in the complex network nodal current equations in (4.337) below the TCSC is repre-

sented by the admittance  of the branch between buses j and k.

(4.337)

where  and , , are respectively the voltage and current injected into bus

m, each in per-unit on the network base quantities.

In order to represent the TCSC in a dynamic model of the system, those terms associated
with the steady-state representation of the TCSC are deleted from the nodal admittance ma-
trix. At bus j, these are respectively the series element  and term  in the self admit-

tance term . The same approach is adopted at bus k for the terms  and . In the

dynamic model depicted in Figure 4.22(b) the series branch is replaced by equivalent current
injections from terminals 1 and 2 of the TCSC into the network buses  j and k. It is assumed

that the control input is the reactance  of the series capacitor. The superscript (d) de-
notes that the quantity is in per-unit on the TCSC base quantities.

The methodology outlined below can be adapted to derive the relationships of greater com-
plexity for the current flows through a series branch whose impedance (or admittance
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) is to be controlled dynamically; there may also be shunt elements at terminals 1
and 2 in Figure 4.22(a).

It is assumed that the following network base quantities are specified for buses j and k to
which terminals 1 & 2 of the TCSC are connected:

(kV) and (MVA). (4.338)

Correspondingly, it is assumed that the TCSC device base quantities are:

(kV) and (MVA). (4.339)

The base value of admittance in the TCSC per-unit system is  ohm and

in the network per-unit system it is  ohm. Thus, the susceptance in the

network and TCSC per-unit systems are related by

, (4.340)

in which  and where  and  are defined in accordance with (4.189) and

(4.190) on page 160. Thus, .

Let  be the phasor current flow from terminal 2 to 1 of the TCSC and let

(4.341)

be the voltage difference between the terminals of the TCSC. The TCSC terminal currents
are:

and . (4.342)

The TCSC current/voltage characteristic is  from
which it follows that:

and . (4.343)

The initial steady-state value of the TCSC voltage difference is .

The TCSC control input is the series reactance rather than the series susceptance. The two

quantities are related by  for which the linearized form is:

. (4.344)
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The perturbation in the TCSC current components about their initial steady-state values are

found by linearizing (4.343) and substituting for  from (4.344) to yield:

and . (4.345)

The linearized form of the relationships between the TCSC current 

and its terminal currents are found from (4.342) to be,

and (4.346)

The linearized form of the equations describing the interconnection between the device ter-
minals and the network buses to which they are connected are:

,  for the current and (4.347)

,  for the voltages. (4.348)

The linearized equations (4.345) to (4.348) are sufficient to represent the TCSC. However,
it is also desirable to provide supplementary output equations for perturbations in the fol-
lowing quantities at one or both of the TCSC terminals:

• the voltage magnitude and angle by application of (4.195) and (4.196) on page 161;

• the real and reactive power flow by application of (4.204) on page 163;

• the magnitude of the current flow by application of (4.202) on page 162.

The TCSC linearized model equations (4.345) to (4.348) together with the supplementary
output equations can be written in a form suitable for integration with the linearized DAEs
of the power system as described in Section 4.4.

4.4 Linearized power system model 

A fundamental assumption in this work is that during steady-state operation all generators
and loads produce balanced three-phase fundamental-frequency voltages and currents. It is
assumed the interconnecting AC network is three-phase and balanced. Consequently, for
steady-state modelling purposes, a fundamental-frequency positive phase sequence rep-
resentation of the generators, loads and AC transmission system is employed. In this rep-
resentation the balanced three-phase system voltages and currents are represented by
fundamental-frequency positive phase sequence stationary complex phasors. For the pur-
pose of small-disturbance modelling the stationary assumption is relaxed to permit small
perturbations in the current and voltage phasor magnitudes and phases. The resulting con-
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cept of quasi-stationary, fundamental-frequency, positive phase sequence phasors [34]
forms the basis for rotor-angle small-signal stability analysis of power systems in this section.

A high-level mathematical description of how the linearized differential and algebraic equa-
tions (DAEs) of the interconnected system are assembled from (i) the DAEs of each of the
devices and their associated control systems, and (ii) the network nodal admittance equa-
tions which are provided below. The resulting equations have a modular and extremely
sparse structure which must be exploited to ensure computationally efficient analysis of
large power systems.

4.4.1 General form of the linearized DAEs for a device and its controls

It is assumed that the  device has an ordered list of  AC terminals which are connected

to a corresponding list of network buses , . It is also assumed that the

device and its controls do not have inputs from any other device. (Note that the equations
of devices that are interconnected through their control systems are combined to form a sin-

gle super-device). The  device and its associated controls is represented by a set of line-
arized DAEs of the following form:

(4.349)

in which ,  and  are respectively vectors of  states,  algebraic variables and

 external input-variables, associated with the  device. Moreover,

 are the real and imaginary components of the current

injected by the  terminal of the  device into bus ,  and

 are the real and imaginary components of the voltage at bus
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, . The voltage and current components are in the synchronously-rotating

network frame of reference, and are each in per-unit on their respective network base quan-

tities. The constant coefficient matrices , , etc. are typically sparse and depending on

the device some of the coefficient matrices may be zero.

4.4.2 General form of the network nodal current equations

It is assumed that bus k is connected to a list  of  current injecting dynamic devices

and to a list  of  immediately adjacent buses through series admittance elements. Each

element of  contains the identifier of both the device and the terminal within the device

which is connected to the bus. Most buses in large sparse networks do not have any dynamic
devices connected to them and so in most cases  is empty. Applying Kirchoff’s Current

Law to bus k results in the following nodal current equations, one for the real component
of the current and the other for the imaginary component.

, (4.350)

in which  and (4.351)

correspond respectively to (i) the sum of all admittance elements connected to bus k, and (ii)
the negated total series admittance between buses k and l (i.e. admittances of parallel branch-
es between two nodes are summed). These equations are sparse in the sense that they in-
volve the voltages at a very small subset of the buses in the network.

The network nodal current equations for all of the buses  are now expressed

in the following matrix form in which the buses connected to dynamic devices are parti-
tioned from the internal passive buses. It is emphasised that computationally sparse matrix
storage and analysis methods are used in which only the non-zero admittance blocks in each
nodal current equation are stored and analysed. Furthermore, for many purposes distin-
guishing between the dynamic and passive buses is unnecessary. The network nodal current
equations are:

, (4.352)

in which:

bi l  l 1  nti
 =

Jfx
i 

Jfz
i 

dk ndk

ck nck

dk

dk

0 Ykkv
˜RI

k 
Yklv

˜RI

ck l  

l 1=

nck

  i
˜RI

dk i  k 

i 1=

ndk

–+=

Ykk
Gkk Bkk–

Bkk Gkk

= Ykl
Gkl Bkl–

Bkl Gkl

–=

k 1  nb =

0

0

Ydd Ydp

Ypd Ypp

v
˜RI

d 

v
˜RI

p 

Jdi

0
 i

˜RI–=



198 Generators, FACTS devices & system models
 and 

are respectively vectors of voltage components (i) of the  buses to which dynamic de-
vices (d) are connected; and (ii) the remaining set of passive buses (p). Furthermore,

is the vector of the current components injected by the  dynamic devices into the buses

to which they are connected. For the ith device the current injection vector is composed of
 elements, one for each of its AC terminals, such that:

. (4.353)

4.4.3 General form of the linearized DAEs of the interconnected power system
The equations for each dynamic device with the form in (4.349) are interconnected through
the network nodal current equations (4.352) to yield the following general form of the line-
arized DAEs of the interconnected power system.

(4.354)

In equation (4.354) , ,  are respectively the system

state-variables, the internal algebraic-variables and the external system input variables of all
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the dynamic devices connected to the system. The coefficient matrix  has the following

block diagonal structure:

, (4.355)

and the coefficient matrices , , ,  and  similarly have a block diagonal

structure. The structure of the coefficient matrices associated with the current and voltage
components such as ,  and  depend on the relative ordering of the dynamic devic-

es and the buses to which they are connected. In any event, for large systems, these matrices
are also very sparse.

4.4.4 Example demonstrating the structure of the linearized DAEs
For illustrative purposes the structure of the linearized DAEs of the small power system in
Figure 4.23 is given in Figure 4.24. The system model in Figure 4.23 incorporates a device
(1) with two terminals connected to two buses (1 and 2); buses 1 and 2 are each connected
to two devices (1 and 2) and (1 and 3) respectively; and finally the bus (3) is connected to
one dynamic device (4). This interconnection of dynamic devices and buses represents the
range of possibilities usually encountered in practice.

Figure 4.23 Example network to illustrate the modular and sparse structure 
of the linearized DAEs of the interconnected power system.
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In Figure 4.23 blank space indicates the corresponding matrix entries are zeros. The matrix
block labelled ‘A’ corresponds to the sub-matrix  in equation (4.354), block ‘B’ corre-

sponds to , etc.

4.5 Load models

4.5.1 Types of load models
In large scale power system stability studies loads are typically aggregated at bulk supply sub-
stations. In rotor-angle stability studies a static representation of loads is commonly em-
ployed, as reported in a recent international survey [37]. In such a representation the real and
reactive power consumed by the load at a point in time is dependent on the voltage and fre-
quency at the same instant [35, 36]. Composite load models, such as those described in [38],
which incorporate an equivalent representation of the distribution network as well as a va-
riety of dynamic and static load model components are not considered in this book. The fol-
lowing is a general representation of a static load model.

(4.356)

in which  and  are the real and reactive power consumed by the load in per-unit on the
base MVA of the system;  is the terminal voltage of the load in per-unit of the base voltage
of the bus to which the load is connected; and  is the frequency of the load bus voltage in
per-unit of the system base frequency. , ,  and  are the corresponding initial

steady-state values. The load model parameters are , , ,  for ,  and

. Furthermore, in (4.356)

 and . (4.357)

The formulation in (4.356) can be used to represent a range of commonly employed load
models such as the ZIP (composite constant impedance, current and power) representation
and the exponential load model.

Three basic types of static loads can be represented by the following: 

1. A constant impedance load: a1 = 1 and a2 = a3 = 0, mp1 = 2; b1 = 1 and b2 = b3 = 0,

mq1 = 2, af = bf =0;
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2. A constant current load: a1 = a3 = 0 and a2 = 1, mp2 = 1; b1 = b3 = 0 and b2 = 1,

mq2 = 1, af = bf =0;

3. A constant power load: a1 = a2 = 0 and a3 = 1, mp3 = 0; b1 = b2 = 0 and b3 = 1,

mq3 = 0, af = bf =0. 

Note that the load can be any linear combination of the above and the type of the real and
reactive parts may differ. For example, a load may have a constant-current real component
and a constant-impedance reactive component; this combination is the most commonly
used static load model in the absence of any further information or measurement on the load
characteristics of the system under study [35]. The frequency dependence of loads is not
modelled. 

Work, such as [38, 40], shows that loads may have a significant impact on the damping of
rotor modes and therefore accurate dynamic modelling, whenever possible, of loads is high-
ly desirable in both transient and small-signal stability studies. 

4.5.2 Linearized load models
For the purposes of small signal analysis, equations (4.356) are readily linearized about the
steady-state operating point to yield:

and , (4.358)

in which , , and (4.359)

and ,  and  are calculated analogously.

The above small-signal model of a load is connected to the network by relating the real and
reactive power, voltage magnitude and bus voltage frequency to the voltage components,

, of the bus to which the load is connected and the current components, , injected by

the load into the bus. The reference for the voltage and current components is the synchro-
nously rotating network frame of reference; the voltage and current are each in per-unit on
their respective network base quantities. It is assumed that the initial values of the real and
reactive power,  and , and the voltage magnitude and angle,  and  are given by

the power flow solution. From these initial values the following are derived:

, . (4.360)

The voltage magnitude is  which is linearized about the steady-state operating

point to yield:
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. (4.361)

The perturbation in the frequency of the load bus frequency is given by:

, (4.362)

in which  is the base value of system frequency in rad/s and  is the perturbation in

the bus voltage angle in radians and  is time in seconds. It is important to recognise that
 is not a state-variable and therefore that rate-of-change of bus voltage angle is approxi-

mated by means of a highpass (i.e. washout) filter with a very short time constant, for which

 with  is a reasonable choice1. Thus, in the s-domain the bus frequen-

cy perturbation is approximated by:

. (4.363)

Transformation of the preceding equation to the time-domain results in the following state-
and algebraic equation:

(4.364)

The bus voltage angle is  which upon linearization yields the following ex-

pression for :

. (4.365)

The current injected by the load into the bus to which it is connected is given by:

. (4.366)

By linearizing the real and imaginary components of the preceding equation about the initial
steady-state operating point the following equation for the perturbation of the current com-
ponents injected by the load into the network are obtained:

1. Some time domain analysis programs utilize integration algorithms which require inte-
gration time-steps to be shorter than the shortest model time-constant. For use in such 
programs a larger value of  may be required.
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, (4.367)

in which , (4.368)

 and . (4.369)

The initial steady-state values of the current components are obtained from (4.366). The lin-
earized state- and algebraic-equations (4.358), (4.361), (4.364), (4.365) and (4.367) represent-
ing the load are now amalgamated into the following matrix equation which is in the general
form of the device equations in (4.349) on page 196.

(4.370)

in which , , , 

, and ; (4.371)

 and  are defined in (4.369).

If the frequency dependence of loads is neglected then equation (4.370) is simplified by
omitting the state-variable , the algebraic-variables  and , and the associated equa-

tions. In this case it is also possible to omit the explicit equations for the load and instead
implicitly include the effect of the voltage dependence of the load by modifying the self-ad-
mittance of the bus to which the load is connected as follows. It can be shown that the per-
turbation of the current injected by the load is given by:

. (4.372)
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in which  where (4.373)

 and

. (4.374)
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Appendix 4–I Linearization of the classical parameter 
model of the generator.
The objective is to develop the linearized equations for the generator model in terms of the
classically-defined standard parameters in the form described in Section 4.2.13.4. The for-
mulation proceeds assuming that there are three rotor windings in each axis after which it is
demonstrated that the equations are readily reformulated for models with fewer rotor wind-
ings.

The rotor d- and q-axis state-variables are respectively:

 and (4.375)

The algebraic-variables associated with the d-axis rotor windings are grouped as follows:

,  and . (4.376)

Similarly for the q-axis rotor windings:

,  and (4.377)

Based on the above groupings of state- and algebraic-variables the d-axis rotor-winding
equations in (4.133) to (4.142) on page 147 are linearized about the initial operating condi-
tion derived in Section 4.2.13.3 as follows.

(4.378)

in which the coefficient sub-matrices are:
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, , (4.381)

, (4.382)

, (4.383)

, (4.384)

and (4.385)

The d-axis rotor-winding algebraic variables  are defined as:

(4.386)

The coefficient sub-matrices in (4.379) to (4.384) are combined to form the following con-
solidated set of sub-matrices:

, ,  and
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(4.388)

The consolidated vector of algebraic variables in (4.386) and associated consolidated coeffi-
cient sub-matrices in equations (4.387) and (4.388) are substituted in the d-axis rotor-wind-
ing equations in (4.378) to yield the following compact formulation:

(4.389)

The q-axis rotor-winding equations (4.143) to (4.152) on page 148 following compact for-
mulation of the linearized q-axis rotor-winding equations is similarly developed to yield,

, (4.390)

in which the following variable and coefficient sub-matrix definitions apply:
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 and . (4.392)

in which, analogously with the d-axis sub-matrix definitions in equations (4.379) to (4.384),
the following q-axis sub-matrix definitions are obtained from the q-axis rotor-equations.
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, , , (4.395)

, , (4.396)

, , (4.397)

, . (4.398)

The d- and q-axis rotor-winding equations (4.389) and (4.390) are now combined to give,

. (4.399)

The following variable and coefficient matrix definitions apply to the preceding equation.
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In order to readily generalize the formulation of the equations to generator models with few-
er than three rotor windings in each of the axes it, is convenient to define the kth-transient
flux-linkages in terms of the rotor winding state- and algebraic variables as follows. The co-
efficient matrices in the following equation change depending on the number of rotor wind-
ings:
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(4.403)

in which  and  and where (4.404)

, . (4.405)

For the case of three rotor-windings in each axis the constituent matrices have the following
values:

 and . (4.406)

The d- and q-axis voltage equations (4.158) and (4.159) on page 149 are consolidated to give:

(4.407)

in which  and . (4.408)

Three alternative methods of representing the saturation level have been presented: (i) the
resultant airgap flux-linkages ( ) in Section 4.2.13.2.3; (ii) the resultant kth-transient flux-

linkages ( ) in Section 4.2.13.2.1; and (iii) the transient d-axis flux-linkages ( ) in

Section 4.2.13.2.2. For each of these methods the perturbations in the saturation demagnet-
ization currents can be expressed as follows. The definitions of the coefficient matrices in
the equation are given in Table 4.14 for each of the three methods for representing the sat-
uration level.

(4.409)

In Table 4.14 the saturation characteristics for the d- and q-axes are combined into a single
diagonal matrix,

(4.410)

where  is the saturation level indicator for the method chosen to represent the effects of

magnetic saturation. The saturation demagnetizing current components in the d- and q-axes
in terms of the selected saturation level indicator  are, in matrix form,
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Table 4.14  Coefficient matrices of the linearized, saturation demagnetizing current 
equations for the three methods of representing the saturation level.

Equations (4.403), (4.407) and (4.409) are incorporated with the rotor-winding equations in
(4.399) to yield the following system of DAEs:

(4.412)
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In order to simplify the structure of the above equations it is convenient to define the fol-
lowing consolidated vector of algebraic variables:

(4.413)

and the associated consolidated matrix coefficients:

, , ,  and 

. (4.414)

Substitution of the quantities in (4.413) and (4.414) into (4.412) results in the following com-
pact form of the linearized electromagnetic equations:

(4.415)

The algebraic variables  are now eliminated from (4.415) to yield the generator electro-

magnetic equations in the required form:

(4.416)

in which , ,  and (4.417)

and where  and (4.418)

The perturbations in the algebraic variables are given by:

(4.419)
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As outlined in Section 4.2.13.4 the electromagnetic equations in (4.416) are combined with
the rotor equations of motion and the network interface equations as in (4.117) on page 133.
However,  and  are redefined as follows:

 and . (4.420)

Appendix 4–II Forms of the equations of motion of the 
rotors of a generating unit

App. 4–II.1 Introduction
In the literature various forms of the equations of motion are employed, often depending
on the application. However, it is important to understand the nature of any approximations
used and their relevance to the application. When attempting to simulate small-signal events
using a large-signal (transient stability) software, it has been found that the damping of var-
iables does not match that derived from a small-signal analysis software. The reason may be
associated with the form of the shaft equations employed in the large-signal simulation soft-
ware. Consequently, several forms of the large-signal equations in per-unit form are derived
in this appendix, followed by the associated small-signal versions.

Figure 4.25 (a) Rotating mechanical system, prime mover and generator
(b) Rotating speed vectors and associated angles

For a given generating unit consider the mechanical system of Figure 4.25(a) rotating at an
angular velocity  electrical rad/s (the term ‘speed’ is synonymous). Let us assume (i) a
two-pole generator (i.e. ), (ii) the total moment of inertia of the rotating system is J

(kg-m2), (iii) the effective coefficient of viscous friction for small disturbances in speed in
the vicinity of synchronous speed is B (N-m/rad/s), and (iv) the shaft is infinitely stiff. The
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equation of motion of the shaft in SI units, due to a net accelerating torque  (N-m) act-

ing on it, is:

, (4.421)

where  is the prime mover torque (N-m);  is the airgap torque of electro-mag-

netic origin developed by the generator; time is in seconds.

Under perturbed, stable conditions the instantaneous angular velocity ( ) of the unit var-
ies about the synchronously rotating speed reference ( , rad/s) of the system. As shown

in Figure 4.25(b) the rotor angle  of the unit with respect to a stationary system refer-
ence frame is:

  (rad),

where  (rad) is the rotor angle of the unit with respect to the synchronously rotating
speed reference. The rotational speed of the shaft is thus:

 (rad/s), or . (4.422)

For clarity at the present, let us denote per-unit quantities by the subscript p and let base
speed be  rad/s, thus the per unit speed is

, and . (4.423)

Since we are considering a two pole machine base electrical and mechanical speeds are iden-
tical. Let us define the per-unit synchronous speed as,

. (4.424)

Note that normally, but not necessarily,  rad/s.

Let us define base power  (VA) and base torque  (N-m) by the relationship:

  (see Tables 4.2-4.4 on page 102). (4.425)

Dropping the time dependency of the variables and dividing (4.422) through by , we find

that in per-unit 

and . (4.426)

Let us now consider several forms of the per-unit shaft equations.
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App. 4–II.2 Shaft equations expressed in terms of per-unit angular 
speed and torques

Dividing through (4.421) by the base torque  of the generating unit, and expressing the

equation in terms of per unit speed  based on (4.423), we find

  per unit. (4.427)

Firstly, let us rearrange in (4.427) the term, , where 

. (4.428)

 is defined as the inertia constant of the unit, and is the ratio of the stored energy in Joules
of the rotating system at base speed to the base apparent power, , of the unit in VA. The

rotating system normally consists of the prime mover, and the generator and exciter.

Secondly, consider in (4.427) the term,  where D is a damping torque coef-

ficient. It is the damping torque for a speed difference equal to base speed per unit of the
base torque.

Thirdly, the terms on the right hand side of (4.427) are the per unit mechanical and airgap
electro-mechanical torques, Tmp and Tgp respectively.

The per-unit equations of motion of the rotor resulting from (4.426) and (4.427), respective-
ly, are

and , (4.429)

which are the equations of motion listed in equations (4.56) and (4.57) on page 114.

Note that there are no approximations made in the derivation of the above equations. How-
ever, the relationship between damping torque and speed perturbations about synchronous
speed, characterized by the coefficient D, is generally unknown at any operating condition.
Typically, the damping torque coefficient D is small, and being unknown, it is often set to
zero or some low value. Importantly, damping effects of electromagnetic origin are due to
losses in the resistances of the damper windings of the generator models. Such losses should
therefore not be accounted for in damping torque coefficient of the shaft acceleration equa-
tion.
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The per-unit equations of rotor motion given by (4.429) are linear in the speed and torque
variables. These variable can therefore be replaced by the perturbed variables to form the
set of linearized equations, i.e.

and ; (4.430)

these are the linearized equations of motion listed in (4.58) and (4.59) on page 114.

App. 4–II.3 Per-unit shaft acceleration equation in terms of rotor-
speed and power
In a rotating system, the power, torque and speed of rotation - all in SI units - are related
through the product non-linearity 

(W). (4.431)

The mechanical power delivered to the shaft by the turbine and the power transferred across
the airgap of the machine are respectively,

 (W) and  (W). (4.432)

Note that because the shaft is assumed to be rigid the mechanical and electrical rotor-speeds
are identical, observing that in this analysis a two pole machine is assumed.

Based on equation (4.432) it can be shown that the per-unit shaft acceleration equation can
be expressed in terms of the per-unit accelerating power , i.e.

(4.433)

for which the linearized form is,

. (4.434)

Furthermore, it can be shown that in the linearized acceleration equations the terms in the
torque perturbations in (4.430) and in terms of the power perturbations (4.434) are exactly
equivalent, i.e. . 

It is important to note that no approximations have been made in the formulation of this
non-linear equation. Specifically, perturbations in the rotor-speed in calculating the relation-
ship between the accelerating torque and power have been retained.

As mentioned earlier normally, but not necessarily, synchronous speed  rad/s is equal to

the base speed  rad/s in which case  per-unit. If this is the case it follows

that the per-unit perturbations in torque and power are identical.
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App. 4–II.4 Shaft acceleration equation neglecting speed perturba-
tions in the torque/power relationship
It is commonly assumed, for the purpose of calculating the generator d- and q-axis stator
voltages, that the perturbations of the rotor-speed from synchronous speed are negligible.
As stated in Sections 4.2.2 and 4.2.5 this assumption is adhered to in this book, i.e. the airgap
power is related to the airgap torque by:

(repeat of (4.52) on page 113).

Given the above approximation it is essential that the relationship between the mechanical
power and torque also neglect perturbations in the rotor-speed, that is,

. (4.435)

The consequence of ignoring the above approximation but rather setting  is

discussed in Appendix 4–II.5.

With the assumption that perturbations in the rotor-speed are negligible for the purpose of
calculating the shaft accelerating power, it is shown that the linearized shaft equations ex-
pressed in terms of torque perturbations (4.430) are identical to the equations expressed in
terms of power perturbations(4.434).

App. 4–II.5 A common misunderstanding in calculating the acceler-
ating torque and power
The consequences of a misunderstanding that sometimes occurs in the formulation of the
shaft acceleration equation are now discussed. The misunderstanding is that the rotor speed
perturbations are neglected in the relationship between the airgap torque and power (as dis-
cussed above) but erroneously the speed perturbations are retained in the relationship be-
tween the mechanical power and torque. That is to say, the error is to define the per-unit
mechanical and airgap power differently as follows:

Error: and . (4.436)

From the preceding equation the following inconsistent expression for the accelerating
torque is derived,

, (4.437)

which when substituted into the per-unit acceleration equation (4.429) results in,

Error: . (4.438)

Linearizing the above inconsistent expression for the acceleration equation about the oper-
ating point yields,
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which, upon substitution of , results in the following incorrect form of the line-

arized acceleration equation.

. (4.439)

Comparison of the correct formulation of the linearized acceleration in (4.430) with the
above expression (4.439) shows that the effect of the misunderstanding is erroneously to in-

crease the damping coefficient of the generator model by .

2H
pd

dt
------------- D p+ Pmp p0

 Pmp0
p0

2 p– Pgp 0–=

p0
0=

2H
pd

dt
------------- D Pmp0

0
2+  p+ Pmp Pgp–  0 Tmp Tgp– = =

Pmp0
0

2





Chapter 5

Concepts in the tuning of power system stabilizers 
for a single machine system

5.1 Introduction

Although this chapter is concerned with the application of a power system stabilizer (PSS)
to a single-machine system, the concepts for the most part are applicable to multi-machine
systems: such applications will be discussed in Chapters 9 and 10. Various important aspects
of the tuning of the PSS can therefore considered in some detail because the analysis in-
volves a simple system only.

The reasons for the wide-spread deployment of PSSs in power systems today are twofold,
(i) to stabilize the unstable electro-mechanical modes in the system, (ii) to ensure that there
is an adequate margin of stability for these modes over a wide range of operating conditions
and contingencies, that is, the electro-mechanical modes are adequately damped. Some sys-
tems, such as the Eastern Australian grid, would be unstable without the use of both PSSs
and stabilizers installed on certain FACTS devices.

A marginally stable electro-mechanical mode is oscillatory in nature and is very lightly
damped. The frequency of rotor oscillations is typically between 1.5 to 15 rad/s, and the 5%
settling time may be many tens of seconds. Typically a mode of a lengthy duration would
not satisfy the system operator’s criterion for modal damping. A stable mode is said to be
‘positively’ damped, whereas an unstable mode is referred to as being ‘negatively’ damped.
223
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With the growth of power systems, and the need to transmit power over long distances by
means of high-voltage transmission lines, the problems of instability following a major fault
or disturbance have increased. Instability in such events is typically the result of a generator
falling out of step due to insufficient synchronizing torques being available to hold genera-
tors in synchronism. In order to increase the synchronizing torques between generators,
high-gain fast-acting excitation systems were developed with the objective of increasing field
flux linkages rapidly during and following the fault. However, such high-gain excitation sys-
tems may introduce negative damping on certain electro-mechanical modes. 

In linear control systems design, rate feedback is employed not only to stabilize an unstable
system but also to enhance the system’s damping performance. A PSS that uses generator
speed (i.e. the rate of change of rotor angle) as a stabilizing signal is such a rate-feedback
controller. However, to introduce on the shaft of the generator a torque of electromagnetic
origin that is purely a damping torque requires that the compensation transfer function pro-
vided in the PSS is properly designed. ‘Pure’ damping occurs when the induced electrical
torque is in phase with speed; this is an essential function of the PSS. Such a torque opposes a
change in rotor-speed.

The main role of the PSS is to provide damping of the electro-mechanical modes for small
disturbances on the system. Therefore, in order to analyse the dynamic performance of the
system and to tune stabilizers, the non-linear equations describing the dynamic behaviour of
the generator and system are linearized about a steady-state operating condition. As outlined
in Section 2.1.1 a set of linear equations in terms of the new set of perturbed variables results.
A significant consequence is that the powerful methods and techniques provided by linear
control systems theory become available both for the analysis of dynamic performance and
for controller design.

This chapter is concerned with illustrating the concepts associated with the design and tun-
ing of a PSS using small-signal analysis techniques. The performance of the system under
large-magnitude disturbances - such as fault conditions as mentioned above - is treated brief-
ly in Chapter 10. However it should be mentioned that, following clearance of a fault, the
system may appear to be stable following the second or subsequent swings in the rotor an-
gles but becomes unstable as the steady-state is seemingly approached. Such instability is due
to the existence of one or more unstable electro-mechanical modes in the post-fault operat-
ing condition. For example, transmission lines may have been switched out of service in or-
der to clear the fault and instability is a consequence of network voltages falling during the
post fault period. The PSSs must be designed to ensure small-signal stable operation in the
steady-state that follows the worst-case contingencies.

The benefits of small-signal analysis in complementing large-signal (or transient stability)
analysis are described in Section 10.9.1.1.



Sec. 5.1 Introduction 225
The paper by de Mello and Concordia in 1969 provided the basis for the design of many
Power System Stabilizers in operation today [1]. Based on the concept of damping torques
developed on the generator shaft, a technique is presented in the paper for the design and
tuning of a speed-input PSS for a single-machine infinite-bus (SMIB) system. The PSS trans-
fer function is designed to provide phase compensation for the transfer function between
the voltage reference of the AVR and the electrical torque. Ideally, any perturbations in shaft
speed produce pure damping torques on the shaft.

In a set of papers by Larsen and Swann in 1981 [2] the concepts in [1] were extended and
applied to the tuning of PSSs and their tuning on site. Firstly, frequency response measure-
ments between the voltage reference of the AVR and the terminal voltage yield a transfer
function which, because the speed perturbations are assumed negligible, is equivalent to the
phase response between the voltage reference and electrical torque. The transfer function is
called the generator (G), excitation system (E) and power system (P) transfer function,
GEP(s). Secondly, the PSS compensation is then designed to offset the phase-lags in
GEP(s) by means of phase-lead transfer function blocks. Finally, the PSS gain is raised until
prolonged oscillations are observed, i.e. the generator is on the brink of modal instability.

The PSS gain is then set to 1/3rd of the limiting value, providing a gain margin of 3:1 or 10
dB. This approach to PSS tuning is considered in more detail in Chapter 6.

An alternative approach which is applicable to single- and multi-machine systems is based
on the Method of Residues and is also described in Chapter 6. Some of the features of the
these methods, and approaches to the tuning and implementation of PSSs, are described in
an IEEE Tutorial Course [3]. 

Using the damping torque concepts developed for the single machine system [1], [2] and [4],
a procedure called the P-Vr approach for the tuning of PSSs in multi-machine systems was
proposed by Gibbard in 1988 [5]. This procedure is in part an extension of the GEP Meth-
od, however, specific and meaningful information is derived concerning both the phase compen-
sation for, and the gain setting of, the PSS. (See Section 1.2, item 3) 

The P-Vr tuning procedure is described in this chapter for a single machine system to illus-
trate in some detail the concepts in the tuning of PSSs, however - as stated earlier - the pro-
cedure is readily applied to multi-machine systems and is the subject of later chapters.

The literature on PSSs, and their associated stabilizing signals, for single- and multi-machine
systems is fairly extensive and is discussed in more detail in Chapter 8, ‘Types of Power Sys-
tem Stabilizers’. The purpose of this chapter, however, is to provide an understanding of the
fundamentals of PSS design and tuning.

In this chapter the preliminary tuning of a PSS will be based on the Heffron and Phillips
model of the SMIB system [6]. This model, being fourth order, is amenable to simple anal-
ysis and thus it is possible to derive simple, closed-form solutions for certain transfer func-
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tions and torque-related expressions which are applicable to a range of operating conditions.
These features provide a more detailed insight and understanding of the relevant concepts. How-
ever, to partially bridge the gap between the low-order Heffron and Phillips model and the
practical models used in multi-machine systems, the tuning of a PSS for a higher-order ma-
chine model will be employed later in the chapter. For higher-order models it is not practical
to derive similar closed-form solutions and therefore other approaches must be employed.
In addition, a somewhat more realistic representation of the external system will be adopted
so that system quantities, such as voltage levels on busbars, lie within normally acceptable
ranges.

Some of the earlier material in this Chapter, Section 5.2 to 5.7, is also covered in the IEEE
Tutorial Course [3].

In this and subsequent chapters we will employ the term “range of operating conditions”. It
is assumed that, for the subsequent analysis, a set of steady-state conditions are selected
which encompass those conditions for which the stabilizer is to be tuned. The latter conditions
should include normal operation and contingencies such as line and generator outages, etc.
By judiciously selecting the encompassing set should result in a reduction of the number of
conditions that need to be studied and result in an acceptable stabilizer design.

In the following sections the excitation system 1, which includes the automatic voltage reg-
ulator (AVR), is modelled by a simple first-order transfer function. In practice for the tuning
of the PSS an accurate model of the excitation system and associated parameters are re-
quired. The excitation system should be properly tuned and the model validated by meas-
urements. Because the excitation system is in the PSS control loop the resulting
performance of the PSS is likely to be poor if the that model is inadequate.

5.2 Heffron and Phillips’ Model of single machine - infinite bus sys-
tem

De Mello and Concordia based their analysis on a linearized model, developed by Heffron
and Phillips [6], of a single machine connected to an infinite bus through an external imped-
ance, , representing the sum of the impedances of the generator transformer and the
Thévenin equivalent impedance of the system. The Heffron and Phillips model includes a
third-order representation of the generator and a first-order model of the excitation system
as shown in Figure 5.1. The constants K1 to K6 are defined in [1] and are given in
Appendix 5–I.1.

1. According to [7] the excitation system is comprised of that “equipment providing field 
current for a synchronous machine, including all power, regulating, control, and protec-
tive elements”. The regulation of terminal voltage is a function of the AVR.

re jxe+
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Figure 5.1 Heffron and Phillips’ Model of a SMIB system. 

All variables are in the Laplace (or s) domain, although much of the later analysis is conduct-
ed in the frequency domain with , where  is the frequency in rad/s. The per-unit

perturbations in the variables are defined below:
Electrical torque, a function of rotor angle
Torque of electro-magnetic origin
Damping torque associated with windage, friction, and losses in the damper
windings
Accelerating torque acting on the shaft of the generator-turbine unit
Prime mover torque

Voltage proportional to direct axis flux linkages

Terminal voltage

Reference voltage

Rotor speed
Rotor angle

5.3 Synchronizing and damping torques acting on the rotor of a syn-
chronous generator

In the context of a linearized model of a single-machine infinite-bus system, de Mello and
Concordia [1] developed the concept of a complex torque  of electro-magnetic origin
acting on the shaft of a generator. For reasons discussed shortly, the component of this
torque in-phase with speed was called a damping torque and that component in-phase with
rotor angle was called a synchronizing torque. Both these torques are braking torques, that is,
they act to oppose changes in speed or rotor angle, respectively. 
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In the context of the Heffron and Phillips’ model of Figure 5.1, let us consider the torque
of electro-magnetic origin, , developed on the rotor of the generator. If the perturba-
tions in prime-mover torque are negligible, = 0, the sum of the electrical torques acting
on the rotor can be expressed as

, (5.1)

or . (5.2)

Based on (4.58) the relation between the rotor angle (rad) and the per-unit speed can be ex-
pressed as

 , (5.3)

in the s-domain. The dependency on the Laplace operator ‘s’, i.e. (s), will not be shown
when the variables are clearly in the s-domain. 

The terms in (5.2), other than , are expressed in terms of  and . Let the trans-

fer function between  and  be , and let that between  and  be

 where, based on (5.3),

. (5.4)

The component of electrical torque  in (5.2) can be split into components, a real

component in phase with rotor angle and a real component in phase with speed. The ex-
pression for  can then be written in the form:

. (5.5)

The paths in the Heffron and Phillips’ model encompassed by transfer function 

are shown in Figure 5.2. This transfer function can be found by block diagram manipulation
to be 

. (5.6)

Referring to (5.5), let us define the coefficients of  and  as  and  respec-
tively, i.e.

   and   , (5.7)

hence (5.5) becomes                . (5.8)

The terms  and  in (5.8) are damping and synchronizing torques, re-

spectively. Consequently  is known as a damping torque coefficient and  as a syn-
chronizing torque coefficient.
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Figure 5.2 Evaluation of the transfer function  

in the Heffron and Phillips’ model. 

As mentioned earlier, for analysis in the frequency domain, let  where  is the fre-

quency in rad/s. From the shaft relation (5.3), we note that in the frequency domain the ro-
tor angle and speed are related by . Equation (5.8) can thus

be written in the form:

, (5.9)

where  and  are torque coefficients and are respectively the real and

imaginary parts of the transfer function . Thus any positive torque coeffi-

cient in phase with speed produces a positive damping torque on the machine shaft. Corre-
spondingly, any positive torque coefficient in quadrature lagging on speed implies a positive
synchronizing torque.

A useful expression for each of the torque coefficients can be derived from (5.9), i.e.

 and . (5.10)

Later in Section 5.10.2 reference is made to the phrase ‘disabling the shaft dynamics of the ma-
chine’ for the purpose of calculating the torque coefficients. The shaft dynamics are disabled
if the speed signal is completely isolated, for analysis purposes, from the accelerating torque
acting on the shaft. This achieved by opening the output of the block  in

Figure 5.2 1. We can now treat the speed signal  as an input signal to the transfer func-
tion  in (5.10), and hence calculate the torque coefficients.

1. Since M = 2H, setting the machine inertia constant, H, to infinity serves the same pur-
pose [4].
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5.4 The role of the Power System Stabilizer - some simple concepts

Before further examining the Heffron and Phillips’ model in detail, and in order to provide
some insight, some simple concepts about the role, function and effects of a PSS can be
demonstrated by simplifying the Heffron and Phillips’ model shown in Figure 5.1. Let us
assume that (i) there are no perturbations in the reference voltage Vr, (ii) the exciter and

open-circuit time constants,  and  (with ), respectively, are very short,

and (iii) any disturbances to the system occur through mechanical torque perturbations,
. The model of the generator in Figure 5.1 can then be simplified to the second-order

model shown in Figure 5.3 in which the torques acting of the shafts and the resulting speed

and angular deviations are shown 1.

Figure 5.3 A very simplified model of the generator in a SMIB system.

In Figure 5.3 the torque of electro-magnetic origin  acting on the rotor is the sum of

the synchronizing and damping torques,  and , respectively, i.e. 

. ((5.8) repeated) 

The transfer function between the mechanical torque perturbation and the rotor angle re-
sponse of the generator shaft is

. (5.11)

Typically the damping of such a system is light and its response to a step input is oscillatory.
Thus there are a pair of complex poles that lie at: 

  , (5.12)

1. The model in Figure 5.3 has the same form as that which is obtained with a classical gen-
erator model. In the latter it is assumed that the voltage proportional to d-axis flux-link-
ages are constant during the study period (i.e. ).
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when . The frequency of the damped rotor oscillations (the imaginary part

of the pole) is . From a consideration of the pole locations we can con-
clude that as the damping torque coefficient kd is increased (hypothetically) from some initial
value:

• The poles shift more-or-less directly to the left 1 in the complex s-plane at a constant
frequency of oscillation as long as the associated damping ratio is less than about 0.2 -
0.3.

• The damping constant, defined in Section 2.8.2.1, is , i.e. it is inversely

proportional to H, the inertia constant 2. For example, consider two generating units
with identical per-unit parameters on machine base but their inertia constants are in
the ratio of 2:1, say; of the two, the lighter unit is the better damped.

• The frequency of damped oscillation is proportional to the square root of ratio
. Thus, if switching lines out of service halves the synchronizing torque

coefficient - or if the inertia constant of a unit is doubled - the frequency of oscillation

is decreased by about 30% (to ).

• If the damping ratio exceeds ~0.2 as kd is increased, the trajectory of the complex
poles move along a semi-circle of constant radius in the complex s-plane (see
Figure 2.8).

• If the value of  is positive (i.e. the damping torque coefficient  is

negative) then, according to (5.12), a pair of poles lie in the right-half of the complex
s-plane; the system is therefore unstable.

Let us assume that we can add a feedback loop from rotor speed  to the torque signal
 - as shown in Figure 5.4 - such that . It is clear that increasing the gain

k has the same effect as increasing the damping torque coefficient , that is, enhancing the
damping of rotor oscillations. A PSS is a device that ideally induces on the rotor a torque of
electro-magnetic origin proportional to speed perturbations. The ‘ideal’ PSS gain k, which is
a damping torque coefficient, we shall call the damping gain of the PSS. The ‘ideal’ PSS will
produce a direct left-shift in the rotor mode, as manifested in (5.12), from  to

. The gaol in the tuning of a practical PSS is to achieve the same result, the
damping gain of the PSS being adjusted to meet the specifications on damping for the rotor
modes of oscillation.

1. By ‘direct left-shift’ is implied that the eigenvalue / mode shift is , .
2. Some additional significance of this result is derived from the analysis in Section 13.2.2.
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Figure 5.4 The ideal PSS introduces a pure damping torque  
on the rotor of the generator.

As noted Section 5.1, the PSS feeds back a signal proportional to speed, i.e. the rate of
change of position, a technique known as “rate feedback”. The technique is commonly used

in conventional control system design to control speed of a rotating device 1, to improve the
damping - or to stabilize - a closed-loop system. Under ideal steady-state conditions the per-
turbations in speed are zero in a stable system - and thus rate feedback acts only when the
system is disturbed in some way, e.g. by noise - which is always present.

Note that speed appears to be the ideal stabilizing signal because the damping torque in-
duced on the shaft of the generator by the associated PSS is related to speed through a sim-
ple gain. Moreover, this gain being a damping torque coefficient has practical significance,
e.g. a damping gain in the range 20 - 30 pu on machine MVA rating is a moderate damping
gain setting for a speed-PSS. Practical forms of the “speed-PSS”, such as the “integral-of-
accelerating-power PSS”, are discussed in Chapter 8.

In practice the ‘ideal’ speed-PSS, consisting simply of a damping gain k, is replaced by a
transfer function , where  consists of a compensating transfer func-

tion and relevant filters. In this chapter the design of the transfer function  is outlined
for a SMIB system to illustrate a number of concepts which are also applicable to multi-ma-
chine systems.

5.5 The inherent synchronizing and damping torques in a SMIB sys-
tem

Prior to attempting to discuss or tune the PSS for a generator it is instructive to ascertain the
levels of the inherent damping of the rotor modes. One approach is to calculate the eigen-
values of the system. A second approach is to determine the natural or inherent damping
torque coefficient over the range of rotor frequencies for the system (although in this case

1. In order to control speed the feedback signal (from the ‘ideal PSS’) must negated at the 
summing junction as shown in Figure 5.4.
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of a SMIB system there is only one mode of rotor oscillation). In order to provide a com-
plementary point of view, the second approach will be adopted.

Based on the Heffron and Phillips’ model of Figure 5.1 and equations (5.7) and (5.8) the syn-
chronizing and damping torque coefficients can be determined for the SMIB system. In the
absence of a PSS,  and  in (5.7) are the synchronizing and damping torque coefficients

inherently produced by the generator. Using a simple example let us calculate these torque
coefficients to examine not only their values in the vicinity of the frequency of the single
rotor mode but also how they vary with the generator loading. 

5.5.1 Example 5.1
For present purposes a third-order model of the generator and a first-order model of the
excitation system are used. The unit is connected to an infinite bus through transformer and
transmission line reactances representing the external system. 

The parameters of a SMIB system and the steady-state operating conditions are:

Generator: D = 0,  H = 3.0 MWs/MVA,  ra = 0, xd = 1.9 pu,  xq = 1.8 pu,    = 0.30 pu, 

= 6.5 s, rating 250 MVA.
Exciter:     Kex = 200 pu,  Tex = 0.02 s.
Transformer and line reactance: xt = 0.15 pu and xL = 0.225 pu, respectively.
The generator is under closed-loop voltage control, terminal voltage Vt = 1.0 pu.
Operating Conditions: System frequency = 50 Hz. Rated real power output is P = 0.9 pu,
and reactive power outputs are Q = -0.20, 0.0, 0.2 and 0.4 pu. 
The machine and system base is 250 MVA. The constants K1 to K6 are defined in [1] and
Appendix 5–I.1.

Note. For present purposes it is assumed that this SMIB system is a representation of a generator
and transmission system within a multi-machine system in which the electro-mechanical modes
may range from 1.5 - 15 rad/s. While there is a single rotor mode in this example, the PSS is to
be tuned for the latter frequency range.

For each operating condition at 0.9 pu real power output the rotor angle, the terminal volt-
age angle, the infinite-bus voltage, the K-constants, the eigenvalues for the rotor mode, and
the inherent synchronizing and damping torque coefficients are given in Table 5.1. The ei-
gen-analysis reveals that all the real parts of the rotor mode are positive and thus the system
is unstable for the range of reactive power outputs of the generator; the frequency of the
unstable rotor modes is between 7.9 and 9.3 rad/s. The damping and synchronizing torque
coefficients for all operating conditions are given at a frequency of 8.69 rad/s, a value close
to the mid-range of the frequencies of oscillation of the rotor modes. The negative damping
torque coefficients at 8.69 rad/s (-16.9 to -2.3 pu) are consistent with the unstable rotor
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xd
Tdo
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modes. Relative to the damping torque coefficients the variation of the synchronizing
torque coefficients (1.6 to 1.2 pu) is much less over the range of operating conditions. 

Table 5.1   K-constants, rotor modes and inherent torque coefficients kd , ks , 
for P = 0.9 pu, 

For later reference it is instructive to consider the frequency response of the transfer func-
tion for the inherent torque coefficients. Referring to Figure 5.2 and (5.6), the transfer func-
tion is

 (5.13)

where  is the accelerating torque. An examination of (5.13) reveals that at both low and

high frequencies ( ) the transfer function rolls off at 20 dB/decade at a
phase angle of , i.e. the damping torque coefficients at these frequencies are zero.
There is phase variation from  in the intermediate frequency range as shown in the re-
sponses in Figure 5.5(a).

Note from Figure 5.5(a) the damping torque coefficient, kd = gain x cosine(phase angle), is
negative for all the selected outputs; the associated inherent damping torques in
Figure 5.5(b) are therefore destabilizing. This result is consistent with those revealed in
Table 5.1.

Clearly for this system the degree of instability (as revealed by both the negative inherent
damping torque coefficient and the real part of the eigenvalue of the rotor mode) increases
as the generator operates at increasingly leading power factors. The potential for small-signal
instability is a characteristic of generator operation at leading power factors. A device called
an under-excitation limiter is normally fitted to a machine to prevent the steady-state oper-
ating point from drifting too far into the leading power factor region.
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Figure 5.5 (a) Frequency response of the transfer function  for the inherent 
torque coefficients for real power output P = 0.9 pu as reactive power Q (pu) varied. 

(b) The associated damping and synchronizing torque coefficients.

We have examined only a few operating conditions at rated real power output of 0.9 pu. For
present purposes, however, this simple set of studies reveals that a PSS - when installed -
should possess a damping gain, i.e. a positive damping torque coefficient, greater than
k = 16.9 pu to ensure stability under the most onerous operating condition, P = 0.9 and
Q = -0.2 pu.

Note from Table 5.1 that the voltage at the infinite-bus end of the high voltage lines is out-
side a practical range of 0.95 to 1.05 pu for three of the four operating conditions. Later in
Section 5.10.4 - when a more practical system is employed - we will ensure that a more ap-
propriate set of operating conditions is studied.

5.6 Effect of the excitation system gain on stability

In practice it is common for excitation system gains to lie in the range of 200 to 400 pu 1, or
more. High gains may be desirable to satisfy requirements for steady-state voltage regula-
tion, or to boost generator field flux linkages during the fault period thereby enhancing syn-

1. For example, subject to certain conditions, a requirement in a set of Rules [8] requires 
that generators must have an excitation control system that regulates voltage at an agreed 
location to within 0.5% of the set-point. This implies an excitation system gain of at least 
200 pu.
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chronizing torques between generation in the early post-fault period. In the case of small-
signal dynamic performance, the effect of the excitation system gain on damping torques,
and therefore stability, is analysed in detail in [1].

From Table 5.1 it is observed that the system is unstable for the range of steady-state oper-
ating conditions covered in the studies. Because the excitation system gain of 200 pu in this
application is considered fairly high, it is instructive to assess the effect of lower and higher
gains on the rotor modes.

In Figure 5.6 are shown the loci of the rotor mode as the excitation system gain is increased
from zero to 300 pu for two of the operating conditions included in Table 5.1. Without a
PSS this SMIB system is stable only at very low excitation system gains, i.e. less than 30 pu.
As the power factor becomes less lagging, i.e. at Q = 0, the damping of the rotor mode tends
to degrade further as the gain increases.

In this simple model of the generator and excitation system the higher-order dynamics are
ignored. Such a model may be satisfactory at low excitation system gains, but at high gains
the effect of the unmodelled dynamics is to degrade stability. Care therefore should be taken
when analysing simplified low-order models in high-gain excitation systems.

Figure 5.6 Variation of the rotor mode with increasing excitation system gain Kex for two 
steady-state operating conditions, P = 0.9 and Q = 0, Q = 0.4 pu. No PSS in service.

5.7 Effect of an idealized PSS on stability

In Section 5.4 it was noted for the very simplified model of the SMIB system that the left-
shift in the rotor mode due to an idealized speed-PSS is , where k is the damping
gain of the PSS and H is the inertia constant. Somewhat analogous to the treatment in
Section 5.4 of the effect of the PSS on the rotor mode, let us consider the performance of
an idealized PSS on the SMIB system represented by the Heffron and Phillips model of
Figure 5.1 on page 227.
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Because the element D in Figure 5.1 is a pure damping gain, , it can be re-

placed - or augmented - by an idealized speed-PSS of gain k. Setting k = D = 20 pu and by
calculating the poles of the closed-loop transfer function  ((5.69) 
Appendix 5–I.2), the effect on the rotor mode of such a PSS can be assessed. 

Let us consider in Table 5.1 on page 234 the steady-state condition P = 0.9, Q = 0 pu for
which the rotor mode is  with no PSS in service. Based on the above-men-
tioned calculation the rotor mode with the idealized PSS is . The mode shift
due to the action of the idealized PSS is  which, for practical purposes, is a
direct left-shift of 1.554 Np/s. This is in good agreement with the shift of 
Np/s for an inertia constant of  MWs/MVA. The result will be reviewed later when
a practical PSS is employed with the Heffron and Phillips model of the SMIB system.

5.8 Tuning concepts for a speed-PSS for a SMIB system

The simple Heffron and Phillips model for the linearized SMIB system, shown in Figure 5.1
on page 227, will used to illustrate the concepts employed in the tuning of a PSS based on
the so-called ‘P-Vr’ method.

As foreshadowed in Section 5.4, the form of the transfer function of the speed-PSS is

   where  ; (5.14)

the right-hand-side transfer functions are defined below. Let us now consider a five-step
procedure for the tuning of the PSS transfer function .

1. Determine the compensating transfer function Gc(s) such that, over a selected range
of modal frequencies, a torque of electro-magnetic origin proportional to speed is
induced by the PSS on the shaft of the generator.

2. Select the value of the damping gain k.

3. Select the parameters of the PSS washout filter . This filter blocks steady-state
offsets (i.e. DC signals) and significantly attenuates low-frequency signals below the
range of rotor modal frequencies. Ideally, its transfer function over the range of
rotor modal frequencies is .

4. Select the parameters of the low-pass filter  that significantly attenuates high-
frequency signals above the range of rotor modal frequencies. In the range its trans-
fer function is ideally . The filter may also attenuate the higher-frequency shaft
torsional modes to ensure that they are not excited by the PSS. If a true-speed input
PSS is employed, which is rare in practice, it may require specialized filters to attenu-
ate the torsional modes.

D Pdp =

Vt s  Vr s 

0.514 j8.70
1.040– j8.57

1.554– j0.13

k 4H  1.667=

H 3=

HPSS s  kG s = G s  Gc s  GW s  GLP s  =

HPSS s 

GW s 

1 0

GLP s 

1 0
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5. Implement the PSS tuning, assess its performance, and confirm the validity of the
design over an encompassing range of operating conditions.

These steps are discussed in the following sections.

5.8.1 Determination of compensating transfer function

The determination of compensating transfer function  is the first step in the PSS tun-

ing procedure outlined above.

The output of the speed-PSS is injected at the summing junction of the voltage reference
and terminal voltage signals - or at some point in the AVR of low signal-power level. The
PSS forms a feedback loop as shown in dashed lines in Figure 5.7. Note that the sign on the
output signal of the PSS is (maybe unexpectedly) . However, comparing  Figure 5.7
with Figure 5.4, we note that the negation already occurs at the output  of the internal
path  in  Figure 5.7 and hence a positive sign must arise the input summing
junction. 

From Steps 3 and 4 above it follows that, over the range of frequencies of the electro-me-
chanical modes (i.e. 1.5 to 15 rad/s), the product of the washout and the low-pass filter
transfer functions  should be close to . Under these conditions the PSS
transfer function of (5.14) is of the ideal form

, (5.15)

where k is the desired damping torque coefficient (or PSS damping gain), and  is a
compensating transfer function. 

From an examination of Figure 5.1 on page 227 the equation for the torque of electromag-
netic origin is, in (5.1),

,   .

The action of the speed-input PSS is to induce a torque of electromagnetic origin propor-
tional to speed on the shaft of the generator through the electro-magnetic components of
torque  and , shown in Figure 5.7. The system being linear, the principle of super-
position can be employed to derive expressions for each of the torque components in terms
of the relevant variables, and then combine them appropriately.

Gc s 

Vs+

P2

P2 ––

GW s GLP s  1 0

HPSS s  kGc s =

Gc s 

P0 s  P1 s  P2 s  P3 s + += Pm 0=

P1 P2
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Figure 5.7 Inclusion of a speed-stabilized PSS in the SMIB model.

The paths in the Heffron and Phillips’ model encompassed by transfer function 
are shown by the solid line in Figure 5.8(a). In the absence of perturbations in reference volt-
age  (or stabilizing signal ) the latter transfer function can be shown by block dia-
gram manipulation to be:

: (5.16)

Figure 5.8 Evaluation of transfer functions, 
(a)  (b) 
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The transfer functions (5.16) and  can be combined into a single transfer
function, , i.e.

. (5.17)

Let us now examine the path in Figure 5.8(b) from the voltage reference  to the torque

component . The blocks enclosed by the dashed line form the transfer function 1:

. (5.18)

A form of this transfer function that will be useful later is:

. (5.19)

It has been emphasized that Figure 5.8(b) and (5.18) represent the transfer function from
the voltage reference to a component of the torque of electromagnetic origin for no pertur-
bations in the steady-state rotation of the rotor, i.e. ; this, in effect, implies
that the shaft dynamics are disabled. Importantly, the transfer function , which is cal-
culated with the shaft dynamics disabled, will be referred to in the following chapters as the 
P-Vr transfer function or the P-Vr characteristic of the generator. 

A useful modified form of Figure 5.7  is represented by the block diagram of Figure 5.9. The
P-Vr transfer function  is formed as  or .

The blocks in Figure 5.9 representing the dynamic behaviour of the shaft are shown as
 and . Turbine / governor action can be included - if desired

- in the block HGOV(s). The transfer function of the speed-PSS is represented in its ideal
form as

. (5.20)

Observe that in Figure 5.9 there are three distinct feedback paths, namely, the path through
the PSS and the transfer function , the path through the rotor angle, and the path
through the governor and turbine. We shall find the formation of the first two of the sepa-
rate paths is useful and revealing in the analysis of both single- and multi-machine systems.

1. This transfer function is related to the GEP(s) function as explained in Section 6.4
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Figure 5.9 Modified form of Heffron and Phillips’ model including PSS and turbine/gov-
ernor transfer functions. (X is the point at which the speed path is opened to disable the 

shaft dynamics.)

From Figure 5.9 we note that the output of block  comprises the superposition of

two components . For no disturbances at the reference input,

(5.21)

when each input-output relation is replaced by its transfer function. By definition, the term
 in (5.21) is a damping torque coefficient (see Section 5.3). It is clear that a

torque of electromagnetic origin in phase with speed is induced by the PSS if this coefficient
is set to the scalar PSS damping gain, k, i.e.

, (5.22)

thus . (5.23)

Note that  is chosen to compensate for the transfer function . Following the
substitution of (5.23) in (5.20), the basic transfer function for the speed-PSS becomes

. (5.24)

Let us determine, for the Heffron and Phillips’ model, the compensating transfer function
to be implemented by the PSS. Substitution of (5.18) in (5.23) yields:

     . (5.25)

In an alternative form this compensating transfer function can be expressed as:

J(s) =HPVr(s)

N(s) =HP(s)

HPSS(s)

o/s

1/(sM)

Vr

Vs





= k Gc(s)





HGOV(s)

 Pa

Pm

P

P2_V

Feedback path through
rotor angle

Feedback path
through PSS

Generator and
power system

(see (5.18))

(see (5.17))

HPVr s 

P2 HPVr Vr Vs+ =

P2 Vr 0=

P2

Vs
----------

Vs


---------  =

HPVr s  kGc s  =

HPVr s  kGc s 

HPVr s  kGc s  k=

Gc s  1 HPVr s =

Gc s  HPVr s 

HPSS s  kGc s  k HPVr s = =

Gc s 
s

2
K3T

ex
Td0 s Tex K3Td0+  1 K3K6Kex+ + +

K2K3Kex
-------------------------------------------------------------------------------------------------------------------------=



242 Tuning PSSs for SMIB system Ch. 5
. (5.26)

As has now been established for the single-machine system, we will find that in the multi-
machine case the compensation provided by the PSS is simply the inverse of the P-Vr trans-
fer function ; it will form the basis for the tuning of PSSs in the following sections
and chapters. Note: 

• We are proposing to cancel the set of poles in the transfer function  of

(5.18) with a corresponding set of zeros; this is allowable as long as the poles of (5.18)
are stable. 

• The transfer function  in (5.25) is not proper (see definition in Section 2.2),
however, this is remedied later.   

The basis for the calculation of the P-Vr transfer function can be established from Figure 5.9
with the PSS and governor blocks removed from the diagram. The torque of electromagnet-
ic origin is . If, in the figure, the speed output from the block J(s) is opened

at X then the speed signal - and thus the shaft dynamics - are disabled ( ). Un-
der this condition the output of the block , , is zero and thus the P-Vr transfer

function can be calculated directly from the transfer function . 

The inherent damping and synchronizing torques of the generator are supplied through the
block . As was revealed in Example 5.1, Section 5.5.1, the inherent damping torques

may augment or degrade the damping torque induced by the PSS over the frequency range
of the rotor modes of interest.

For this simple SMIB system, with a third-order model of the machine, the compensating
transfer function  of the PSS can be calculated directly from (5.26) for a given operat-
ing condition. We shall see in Chapter 10 for higher-order generator models and multi-ma-
chine systems that such a direct closed-form calculation is not practical and alternative
methods will be employed for determining the P-Vr characteristic and the associated com-
pensating transfer function . However, for present purposes, the P-Vr transfer func-
tion is calculated directly from (5.18); this is illustrated in the following example.

5.8.2 The nature of the P-Vr characteristic
In a theoretical analysis [10] it is shown that the P-Vr transfer function of a machine consists
of two components. The first component depends on the parameters of the generator and
its AVR/exciter and is independent of the external system. On the other hand, the second
component depends on both the parameters of the generator and the dynamics of all other
generators in the system; however, this second term is dominated by the Thévenin equiva-
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lent impedance seen from the terminals of the generator looking into the rest of the system.
This result provides a theoretical basis for the observation in [5] that the P-Vr transfer func-
tion is relatively robust to changes in the system operating conditions. Typically the frequen-
cy response of the P-Vr transfer function for both the gain (for real power outputs greater
than 0.7 pu) and the phase shift - in particular - do not vary appreciably over a wide range
of operating conditions and system configurations. Consequently, PSSs designed based on
the synthesized P-Vr transfer function are also robust over a wide range of operating con-
ditions.

It must be emphasized for future reference: The PSS must be tuned to be robust 1 to a full range
of N and N-1 operating conditions. For this purpose it is necessary to select a set of operating
conditions which encompass, and therefore include, the range of conditions. Be examining the
bordering conditions this approach reduces the number of cases for which the P-Vr character-
istics must be evaluated.

5.8.3 Example 5.2: Evaluate the P-Vr characteristics of the generator and deter-
mine the PSS compensating transfer function.
The P-Vr characteristics for the generator in the SMIB system of Example 5.1 are to be cal-
culated using the P-Vr transfer function (5.18) when the real power output is P = 0.9 pu and
the reactive power outputs are Q = -0.2, 0.0, 0.2 and 0.4 pu. The P-Vr frequency response
plots are calculated using the machine and system parameters listed in Example 5.1, together
with the K-constants found in Table 5.1 on page 234. 

The P-Vr frequency response plots which are shown in Figure 5.10 cover the range of modal
frequencies of 7.9 to 9.3 rad/s for the four operating conditions, Cases A to D. 

Based on a mid-range modal frequency of 8.7 rad/s 2 the phase of the P-Vr characteristics
are, from Figure 5.10, -58.9 , -47.7 , -41.3  and -37.5  for values of Q = -0.2, 0, 0.2 and
0.4 pu, respectively. We will select the P-Vr characteristic for Case B, Q = 0, as its phase of
-47.7  lies close to the middle of the band of characteristics at the modal frequency, assum-
ing for the present that the PSS is to be tuned for a real power output of P = 0.9 pu. This
means the phase of the characteristic for any other value of Q, , will be within
about 11  of that of the selected P-Vr characteristic. We shall find later, for a range of more
practical operating conditions, the latter phase variation is typically within  to  of

the selected characteristic 3. 

1. See item 3 of Section 1.2
2. This is the frequency of the unstable rotor mode for P = 0.9, Q = 0.
3. A wider spread exceeding  may not be unusual depending on the generator param-

eters and if the range of leading and lagging power outputs of the machine is wide. The 
rated reactive power range of the generator may be wide but not necessarily achievable 
due to voltage constraints, transformer tap ranges, etc.
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Figure 5.10 P-Vr characteristics of SMIB System for P = 0.9, Q = -0.2, 0.0, 0.2 and 0.4 pu.

The steady-state or static gain of the P-Vr transfer function is, from (5.18),
. The static gain range is within dB of the gain of the P-Vr

characteristic for Case B, Q = 0. Later, in Chapter 10 for the multi-machine system, we shall
find that over the range of operating conditions the gain variation is typically within  dB
of the selected characteristic. However, in this example the range of reactive power outputs
in Cases A and D may be considered to represent the more extreme conditions and may be
weighted accordingly. We shall refer to a selected or representative P-Vr characteristic such
as Case B as the “Design Case”.

We have now determined the P-Vr characteristic for which the compensating transfer func-
tion of the PSS is to be evaluated. Substitution in (5.26) of the relevant parameters given in
Example 5.1, together with the K-constants for Q = 0 from Table 5.1 on page 234, yields the
compensating transfer function:

. (5.27)

As noted earlier the above transfer function is not proper; this will be remedied in
Section 5.8.6. It has also been noted that the required form of the PSS transfer function is

. We will now determine the damping gain k.
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5.8.4 Determination of the damping gain k of the PSS
The determination of the damping gain k is the second step in the PSS tuning procedure
outlined in Section 5.8.

In Section 5.4 and in the associated Figure 5.4 it is shown that an ideal PSS introduced a
damping torque of electro-magnetic origin proportional to speed, , where k is

both a damping torque coefficient and the damping gain of the ideal PSS. Likewise, we find
from consideration both of the loop through the PSS in Figure 5.9 and of equations (5.21)
- (5.23) that a torque proportional to speed is produced, i.e.

. (5.28)

The damping gain k of the PSS should be large enough to:

• swamp any inherent negative damping torques over the range of rotor modes for the
range of operating conditions,

• ensure that the most lightly-damped rotor mode satisfies the criteria for system damp-
ing.

As pointed out earlier, a damping gain of 20 to 30 pu on machine rating is considered to be
a moderate gain. 

5.8.5 Example 5.3. Calculation of the damping gain setting for the PSS 
For illustrative purposes it will be assumed that, for the most poorly damped rotor mode,
the damping performance criterion as represented by its 2% settling time should be better
than 8 s; this implies that the real part of the rotor mode should be more negative than

 Np/s (see Section 2.8.2.1) 

According to Table 5.1 on page 234, without a PSS the most poorly damped mode is that
for the operating condition P = 0.9, Q = -0.2, i.e. . To achieve the specified
damping target of -0.5 Np/s the PSS must cause a left shift in the mode of at least

Np/s. From Section 5.4 and (5.12) we note, for a rough

guide, that for the very simplified model of the SMIB system the left-shift  in the mode
associated with a damping gain kd is . For an inertia constant  the value
of  required to achieve the specified left shift is  pu.
Thus, we anticipate that a moderate PSS damping gain of  will achieve the spec-
ified damping performance. Moreover, the value for the damping gain of 20 pu will swamp
the inherent damping torque coefficient of -16.9 pu for  pu.
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5.8.6 Washout and low-pass filters

5.8.6.1 The washout filter
The selection of parameters of the washout filter is the third step listed in the PSS tuning
procedure in Section 5.8.

A washout filter is incorporated in the PSS to ensure that steady-state or slow changes in
system frequency - and thus shaft speed - do not offset, in the steady state, the terminal volt-
age of the generator from its reference value. The transfer function of the washout filter is
of the form:

. (5.29)

The frequency response of the filter is shown in Figure 5.11(a). Note from (5.29) that as
, , i.e. steady-state offsets or d.c. signal levels are blocked. Signals be-

low the corner frequency  are attenuated, and the phase shift introduced by the filter

tends to  as . For frequencies much greater than the corner, , i.e.

unity gain. A basis for the selection of the washout time constant  is to place its corner

frequency (i.e.  rad/s) about a decade below the lowest frequency of the rotor modes

of oscillation, normally an inter-area mode. At a frequency a decade above the corner fre-
quency the phase lead introduced by the washout filter is about , i.e. almost negligible for
tuning purposes. In particular, this basis for the selection of the washout time constant mit-
igates against any excessive phase lead at low inter-area modal frequencies.

Two washout filters in cascade are often employed in practice to block slow ramp-like
changes in system frequency that occur in system operation. The washout filter will be dis-
cussed more fully in Chapter 8.

5.8.6.2 The low-pass filter
The selection of the parameters of the low-pass filter is the fourth step in the PSS tuning
procedure of Section 5.8.

Low-pass filters are added to attenuate high-frequency signals that would otherwise be am-
plified by the PSS, and to ensure that the PSS transfer function is proper. Attenuation of
shaft torsional mode components is typically accomplished by specialized filtering of the
speed input signal. The simplest form of the filter is

. (5.30)

The corner frequencies associated with the time constants  are usually placed a
decade above the highest frequency of the rotor modes of oscillation, normally a local area
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or an inter-machine mode of oscillation. The order p of the filter is selected to provide ad-
equate high-frequency attenuation and / or to ensure a proper PSS transfer function. The
frequency response plot of a second-order low-pass filter  is
shown in Figure 5.11(b).

Figure 5.11 Frequency response of (a) a first-order washout filter and (b) a second-order 
low-pass filter. The corner frequencies are normalized to 1 and 10 rad/s, respectively. For 

another corner frequency,  rad/s, scale frequency axes to  or .

Assume that the two corner frequencies of the second-order low-pass filter are set to 200

rad/s 1. Based on Figure 5.11, a decade below the corner, i.e. at 20 rad/s, the phase lag is
. Ideally, for tuning purposes the phase lags due to the low-pass corners should be

small to negligible over the range of the modes of rotor oscillation, typically 1.5 to 15 rad/
s. Of course, in a specific application the relevant modal frequency range might be much
less. Often, in practice, the maximum corner frequency of the low-pass filters may be limited
by the PSS manufacturer to values in the range from about 20 to 50 rad/s.

Note that torsional modes may not be insignificant and must be attenuated. The frequencies
of these modes may be as low as 8 Hz (50 rad/s). For example, if 40 dB attenuation at 50
rad/s is required, the corner frequency of a second-order filter is 5 rad/s. Such a filter intro-
duces a phase lag of  at 5 rad/s - possibly in the mid-range of modal frequencies; more-

1. For the purposes of this study the corner frequencies of 200 rad/s are chosen so that the 
effects of the low-pass filter over the modal frequency range are minimal.
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over, the damping gain of the PSS amplifies the torsional modes if insufficiently attenuated.
This conflict between the requirements of the PSS design and attenuation of the torsional
frequencies is overcome either by the adoption of specialized filtering of the PSS speed-in-

put signal 1 or by using alternative PSS structures such as the ‘integral-of-accelerating-power’
PSS; this is discussed in more detail in Chapter 8.

5.9 Implementation of the PSS in a SMIB System

The implementation of the PSS design, assessment of its performance, and confirmation of
the validity of the design is the fifth step listed in the PSS tuning procedure of Section 5.8.

5.9.1 The transfer function of the PSS 
In summary, it has been noted that the following are among the requirements for the imple-
mentation of a practical PSS:

• A washout filter (5.29) is required to eliminate the offset resulting from the steady-
state level of the input signal to the PSS. Its response to frequencies in the range asso-
ciated with rotor modes should ideally be .

• The elemental PSS transfer function in (5.26) is not proper; the selection of a low-pass
filter (5.30) of an appropriate order can overcome this deficiency. The response of the
filter to frequencies in the range associated with rotor modes should ideally be .

• The PSS must not excite the torsional modes of the rotors of the generator - prime-
mover system. Depending on the magnitude and frequency of the torsional modes the
higher-order low-pass filter having an order 2 or greater may serve this purpose -
though separate specialized filtering of the PSS speed-input signal may be required.

• The damping gain setting k (pu on generator rating) is selected to have a moderate
value 20 - 30 pu and / or to satisfy the criterion for system damping performance -
though very high damping gain settings should be avoided.

The practical form of the PSS should include or account for the above set of requirements
over the range of modal frequencies. Two general forms of the speed-PSS, , which
includes the washout and low-pass filters, therefore become

, (5.31)

or , (5.32)

where the filter transfer functions are given by (5.29) and (5.30), respectively. 

1. ‘Notch filters’ are used for the same purpose [9].
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The compensating transfer function  of the speed-PSS (5.26) is of the form:

. (5.33)

Substitution of the latter equation and the filter transfer functions in (5.32) yields an equa-
tion containing all the relevant parameters for the practical PSS for this single machine case,
i.e.

. (5.34)

It is important to note that, in the context of (5.34), the gain  has been referred to as the
‘damping gain’ of the PSS. If the washout filter is ignored, the ‘DC’ gain of the PSS is ;

conventionally this is referred to as the ‘PSS Gain’. The choice of the parameters and the im-
plementation of the practical PSS is now examined.

5.9.2 Example 5.4. The dynamic performance of the speed-PSS
In Examples 5.1 to 5.3 a SMIB system has been analysed for the operating conditions
P = 0.9 pu, Q = -0.2, 0.0, 0.2 and 0.4 pu. The single rotor mode of oscillation to which the
criterion for damping must be applied is given in Table 5.1; these modes lie in the range 7.9
to 9.3 rad/s and all are unstable. The components of the tuning procedure will be now be
reviewed.

The PSS compensating transfer function. This was evaluated in Example 5.2. Because the
PSS is a fixed parameter device, i.e. its parameters are not changed with changes in operating
conditions, the compensating transfer function is based on a P-Vr characteristic that best
represented the phase responses of the characteristics over the set of operating conditions.
The appropriate P-Vr characteristic was shown to be that for the operating condition
P = 0.9, Q = 0 (Case B); the associated compensating transfer function is given by (5.27), i.e.

.

The washout filter. The corner frequency of the filter is placed a decade or more below the
lowest rotor modal frequency, 7.9 rad/s. For a washout time constant of TW = 5 s the filter’s
corner frequency is 0.2 rad/s, a value that satisfies the latter requirement. The frequency re-
sponse of this washout filter is shown in Figure 5.11(a). (Note that a washout time-constant
of 5 s will ensure that the PSS contributes a pure damping torque at a frequency of about
10/5 = 2 rad/s.)

The low-pass filter. The corner frequency of the filter should ideally be a decade or more
above the highest rotor modal frequency, 9.3 rad/s. The selection of a second-order filter
with corners at 200 rad/s results in a small phase lag of  at 9.3 rad/s; this selection ensures
that the PSS transfer function is proper.
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(If connected to multi-machine system, and if modal frequencies other than that at 9 rad/s
and other issues are not of concern, the washout and low-pass filter time constants could be
modified to 2 and 0.01 s, say.)

The PSS transfer function. On insertion into (5.34) of the parameters determined above, to-
gether with the damping gain of  pu on machine rating, the practical PSS transfer
function becomes

. (5.35)

A plot of the PSS transfer function is shown in Figure 5.12 in which the following features
are observed. (i) Below the range of modal frequencies, 1-15 rad/s, the washout filter be-
comes effective. (ii) Over the range of modal frequencies the responses are the mirror image
of those of the P-Vr characteristic for Design Case B, Figure 5.10. The phase lag of ~
in the P-Vr characteristic at the modal frequency of 8-9 rad/s is cancelled by the phase lead
introduced by the PSS. (iii) Over the range of modal frequencies the PSS gain is close to

, or  dB. (iv) Above the modal frequency range the second-order low-pass fil-
ter becomes effective. As mentioned earlier, to reduce the high frequency gain the corner
frequencies of the low-pass filter should be reduced. 

Figure 5.12 Frequency response plot of PSS transfer function, (5.35). Over the modal 
frequency range the responses are the mirror image of those of the P-Vr characteristic for 

Design Case B
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Note that in the transfer function of the compensation in (5.35), i.e.

,

(i) the zeros are real and lie at -12.5 and -38.0, and (ii) the low-pass filter time constants (5

ms) may be too short to implement in a PSS in practice 1. However, the 5 ms time constants
are retained in the present analysis so that their effect over the range of modal frequencies,
1.5 - 15 rad/s (~0.25 - 2.5 Hz), is minimal.

The rotor modes of the SMIB system with the PSS in service can now be calculated assum-
ing that the SMIB and PSS parameters are those provided in Example 5.1 and (5.35). The
resulting rotor modes and the associated shifts in the modes for the selected operating con-
ditions are listed in Table 5.2; the same information is displayed in Figure 5.13 on page 252.

Table 5.2  Effect on rotor modes with PSS in service (P = 0.9 pu), k = 20 pu. 

The table reveals that, with the PSS in service, the 2% settling time of the rotor mode for all
operating conditions is shorter than the criterion of 8 s, i.e. all modes are better damped than
a mode with a real part of -0.5 Np/s. The PSS design therefore satisfies this performance
specification. 

Note that the left-shift in modes varies over a range of generator reactive output. The rea-
sons for this and the variations in modal frequencies are now examined.

5.9.3 Analysis of the variation in the mode shifts over the range of operating con-
ditions
Upon an examination of Table 5.2 and Figure 5.13 the following questions arise: Why does
the extent of the left shift of the modes increase as the reactive power output of the gener-
ator changes from 0.4 lagging to 0.2 leading? Bearing in mind that the PSS tuning is based
on the Design Case B (P = 0.9, Q = 0 pu), why does the modal frequency increase when the
reactive power output decreases from that for the Case B, and decrease as the reactive out-

1. The realization of an alternative transfer function to overcome both this and the high 
gain at higher frequencies is considered in an example in Section 5.12.

Case / 
Q pu

Eigenvalues, rotor mode

Mode shiftwith PSS out of 
service

with PSS
in service

A / -0.2

B /  0.0

C /  0.2

D /  0.4

GHc s  1
4.935
------------- 1 s0.1064 s20.002106+ + 

1 s0.005+  1 s0.005+ 
-------------------------------------------------------------------=

1.148 j9.23 0.684– j9.54+ 1.832– j0.305+

0.514 j8.70 1.072– j8.67+ 1.586– j0.025–

0.267 j8.25 1.008– j8.08+ 1.275– j0.166–

0.198 j7.94 0.836– j7.75+ 1.034– j0.193–
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put increases from that for the design case? The following addresses these and some other
questions.

Figure 5.13 Rotor modes of oscillation for the PSS in and out of service for operating 
conditions P = 0.9 pu: Q = -0.2 (A), 0 (B), 0.2 (C) and 0.4 (D) pu; damping gain k = 20 pu.

In Example 5.3 of Section 5.8.5 it was pointed out that, for the very simplified SMIB system
of Figure 5.4, an estimate of the left-shifts of the rotor modes due to the action of the ideal
PSS is . Because the left-shifts of the rotor modes in Table 5.2 differ
significantly from the latter value, let us investigate the reasons for these discrepancies.

For a SMIB system it will be shown in Chapter 13 that, due to an increment in the damping
gain  of the PSS, the shift in the complex rotor mode  is given by

, (5.36)

where  is the complex participation factor of the generator’s speed state in the mode
, evaluated with the PSS in service with the damping-gain setting, k = ko. [Equation (5.36)

is derived from (13.8)]. The left-shift in mode h is . Ideally, the compensating

transfer function of the PSS is given by (5.23), i.e. , thus (5.36) be-
comes

     . (5.37)

If the participation factor  of the generator is complex, the mode shift
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 , (5.38)

is complex. However, for cases in which the participation of the generator is relatively high
the participation factor  is real or almost real, the mode shift  is directly to the left

in the complex s-plane 1; this left-shift is a prime aim of stabilization using PSSs.

Note that equations (5.23), (5.36) and (5.37) strictly apply at the complex rotor mode
. However, because the modes are relatively lightly damped, with damping

ratios typically less than 0.15 to 0.20, it is assumed that conventional frequency response anal-
ysis can be applied with . The affect of this assumption will be assessed below.

Strictly, equation (5.37) applies only to the case when the compensating transfer function
 is based on the P-Vr characteristic for the operating condition selected to be the De-

sign Case, i.e. P = 0.90, Q = 0 as determined in Example 5.2. However, it is illustrative to
examine the effect on the mode shift of employing the P-Vr characteristic at some other op-
erating condition p than that for the Design Case, and attempt to account for the contribu-
tions to any differences in the respective mode shifts. For the Design Case let

. The P-Vr characteristic at operating condition p is given by, 

. (5.39)

Substituting for  and  from (5.33) and (5.39), respectively, in (5.36) the

mode shift for operating condition p is:

, (5.40)

where subscript ‘o’ refers to the coefficients in the compensating transfer function which is
implemented in the PSS. In Section 3.10 it is shown that the participation factor is a function
of the eigenvectors and thus it must be calculated for the mode . The oth-

er terms in (5.40) will be calculated for  and for the frequency . The expres-

sion for the mode shift in (5.40) reduces to:

, (5.41)

where the gains Ko, Kp and the phase shifts ,  are calculated from the P-Vr character-

istics (5.18);  is the phase angle of the participation factor at . The gain and phase

contributed by the combination of the washout and low-pass filters are Kfilt and .

1. For this case of a single rotor mode  in (5.37).
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Based on (5.41), for the modal frequency  and the frequency , we can cal-
culate and account for all contributions to the mode shift and provide an estimation of that
shift. This then allows us to:

• compare the estimated value with the actual mode shift (which employs the complex
modal frequency );

• examine the contributions to the mode shift for operating conditions other than the
condition used as basis for tuning purposes, and hence

• gain an understanding of the nature of the complex mode shifts observed in
Figure 5.13 in terms of the P-Vr characteristics for the various operating conditions
versus the condition used as the basis for tuning purposes. 

For each operating condition in Table 5.3 the estimated mode shifts evaluated from (5.41)
and their components using  are compared to those shifts which are calculated with

. The operating conditions and closed-loop rotor modes are those listed in

Table 5.2. In columns 4 to 10, Table 5.3, are incorporated the components or elements that
determine not only the nature and extent of the left-shift but also the change in the modal
frequency due to the action of the PSS. Note, however, the incremental gain  in (5.41)
assumes a value of 20 pu based on the damping gain setting, ko = 0 (because the PSS is ini-
tially out of service). The significance of using what may be considered to be large value of
incremental gain and its effect on the participation factor is discussed below.

From Table 5.3 the following are preliminary insights into the PSS design are derived:

1. For this example and for the operating condition p, the estimated left-shifts in col-
umn 10 based on P-Vr characteristic for p agree within one percent for two methods
of calculation,  and . For tuning purposes the use of the conven-
tional frequency response method in the analysis does not lead to significant errors.
For damping ratios of the rotor modes exceeding 0.15 to 0.2 the accuracy of the cal-
culation may decrease significantly and should be verified.

2. Consider in Figure 5.13 and Table 5.2 a selected operating condition - say Case C -
with the PSS off; the mode for this condition is . When the PSS is in
service with a damping gain of 20 pu the mode is shifted by  to

. With a small imaginary component in the mode shift, the compensat-

ing transfer function  has effected a more-or-less pure left shift of the mode while
the damping gain has determined the extent of the shift. For the selected operating con-
dition the components in columns 3 to 9 in Table 5.3 which contribute to the mode
shift do not alter significantly as the damping gain is increased. Therefore, as implied
by (5.36), , i.e. the incremental mode shift is proportional to the increment in

s h= s jh=

h

s hp=

s jhp=

k

s h= s jh=

0.267 j8.25
1.275– j0.166–

1.008– j8.08+

Gc h 

h k
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damping gain; it will be noted in Figure 10.26 that this applies to relatively large
changes in gain of 5 to 20 pu.

Table 5.3  Components of estimated mode shift (5.41),  or , 
P = 0.9, Q pu  

Consider now the contributions to the complex mode shift as revealed in the columns of
Table 5.3. 

3. The participation factor is non-linearly dependent on the complex modal frequency,
, through its eigenvectors, . The participation factors in column 3

are therefore taken as the average of the complex participation factors for the PSS
in- and out-of-service. For case A the latter two factors are, respectively,

 at a damping gain of k = 20 pu and  at k = 0 pu. Because
the participation factors change as the gain k increases from 0 to 20 pu, the average
value is assumed to be a best estimate for present purposes. Note from (5.38) that a

Case 
/

Q pu

(P =
0.9 
pu)

Modal
Response

,

or Freq. 
Response

Average  
particip-

ation factor
Washout

Filter
Low-pass

filter

Product

. Estimated
Mode Shift using 
P-Vr for operating 

condition p

Actual
Mode Shift based 

on P-Vr for 
Design Case B

(see Table 5.2)mag, phase

(abs), ( )

mag (abs), 

phase 

mag (abs),      

phase 

mag, phase

(abs), ( )

col.1 col.2 col.3 cols.4-5 cols.6-7 cols.8-9 col.10 col.11

A /
-0.2

0.450, 5.7
1.00,  1.2

1.00,  1.2

1.00, -5.5

1.00, -5.5

1.240, -12.1

1.241, -11.2

B / 
0.0

0.475,  4.7 
1.00,  1.3

1.00,  1.3

1.01, -5.0

1.00, -5.0

1.000,   0

1.000,   0

C / 
0.2

0.483, 4.2
1.00,  1.4

1.00,  1.4

1.01, -4.6

1.00, -4.6

0.792,   7.0

0.797,   6.2

D / 
0.4

0.484,  3.5 
1.00,  1.4

1.00,  1.5

1.01, -4.4

1.00, -4.4

0.644,  10.7

0.651,   9.7

Eigenvalues, rotor modes, PSS in service    (see Table 5.2)

 for Cases A: ; B: ; C: ; D: .

.

Note: H=3.0 MWs/MVA;  pu on machine MVA rating; K-constants from Table 5.1 on page 234; 

 at  or .
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negative phase angle for the participation factor leads to an increase the modal fre-
quency , while a positive angle produces a decrease in frequency. The latter observa-
tions explain in part the shapes of the eigenvalue plots in Figure 5.13 for the range
of operating conditions. Note the magnitude of the participation factors are less
than 0.5; the reasons for the slightly lower values are explained in Chapter 9. 

4. The phase angles introduced by the washout and low-pass filters in columns 5 and 7
contribute to the change in modal frequency, i.e. a negative phase angle so introduced
produces an increase in modal frequency and vice-versa.

5. For the P-Vr characteristic on which the PSS compensation is based (i.e. Case B) the
product  (see columns 8-9). As shown in Figure 5.10

on page 244 the phase of the P-Vr characteristic  for Case A (Q = -0.2)

lags (is more negative than) that of the selected P-Vr (case B, Q = 0). Consequently
the phase of the product  in (5.36) is negative, thus leading to

an increase in modal frequency. For Cases C and D (Q = 0.2, 0.4) there is a decrease
in modal frequency corresponding to their P-Vr phase characteristics being more
positive than that of Case B at the modal frequency.

6. The low-frequency gain of the P-Vr characteristic (Figure 5.10 on page 244) for
Case A being greater than that for the design Case B results in the magnitude of the
product  in (5.36) being greater than 1. The magnitude of the

resulting mode shift is thus greater for those P-Vr characteristics whose low frequency
gains are greater than that of the design Case B and vice-versa.

7. For the Design Case B the actual mode shift (column 11) at the modal frequency
 should ideally be purely real. However, the non-zero phase shifts in the

washout and low-pass filters as well as the participation factor introduce a small
imaginary component into the actual mode shift. 

8. The main factors which cause the left-shift to deviate from the ideal, or from that
for the Design Case, are highlighted in (5.36), i.e. the variations with operating con-
dition of both the participation factor from  and the product

 from .

Note that the observations and concepts introduced in the items above are particularly rel-
evant to the design of PSSs in multi-machine systems that are considered in Section 10.4.

For implementing the compensation based on the P-Vr characteristic selected for the tuning
of PSSs, it may be that the manufacturer of the PSS has not provided sufficient number of
blocks to supply the phase lead required at the modal frequency . The phase of the prod-
uct  (of unity magnitude) will then be negative (due to the net phase lag)
and will result in an increase in the frequency of the mode shift according to (5.36). If the

h

HPVro h  Gco h  1 0=

HPVrp h 

HPVrp h  Gco h 

HPVrp h  Gco h 

s h=

0.5 0
HPVrp h  Gco h  1.0 0

h

HPVr h  G h 
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net phase lag is large, say , the increase in modal frequency is equal to 
times the magnitude of the mode shift; correspondingly the left-shift is reduced to

 times the magnitude.

5.10 Tuning of a PSS for a higher-order generator model in a SMIB 
system

In the previous sections of this chapter there are several noteworthy features: 

• The tuning of the PSS was based on a closed-form relation for the compensating trans-
fer function of the PSS, given by (5.26), for the third-order generator model and its
first-order excitation system. In practice such an expression is not easily derived for a
higher-order generator, particularly in a multi-machine system. 

• Because of the simplicity of the SMIB system model the P-Vr characteristics and other
relations can be presented as closed-form expressions in an in-depth analysis. Insight-
ful information about the process of PSS tuning and its performance can then follow.

• The operating conditions in the SMIB system, in which the external system is repre-
sented by a simple series impedance, resulted in bus voltage levels outside the range of
0.95 to 1.05 pu for the more extreme operating conditions as shown in Table 5.1.
Results are more meaningful if practical operation within voltage limits is observed;
this is the case in the following analysis for a much wider range of conditions includ-
ing line outages. 

• The real power output of the generator was confined to its rated value. The perfor-
mance of the system with the PSS in service at rated and at lower real power outputs is
also of interest.

• For practical purposes the phase characteristics of the P-Vr about the design case were
revealed to be more-or-less invariant over a range of operating conditions. The varia-
tion in the P-Vr gain characteristics was as much as  dB, this value however
depends on the choice of the Design Case P-Vr characteristic. Do these observations
apply to higher-order generator models with operational constraints applied?

In order to introduce further operational and modelling considerations, the P-Vr character-
istics will thus be based on both a sixth-order generator model and its excitation system and
a wider, practical and encompassing set of normal and contingency operating conditions. In
normal practice, higher-order generator models and higher-order excitation systems are
used in the simulation of the dynamic performance of power systems.

The purpose of the following sections is to examine again (i) the synchronizing and damping
torque coefficients of the sixth-order generator and its excitation system in a SMIB context,
(ii) its P-Vr characteristics, and (iii) the tuning of the PSS. The procedure will form the basis

30 30sin 0.5=

30cos  0.87=

4
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for the tuning of PSSs in multi-machine power systems. In addition, it is of interest to examine
the effect of the d- and q-axis windings of the generator on the synchronizing and damping
torque coefficients.

The more practical SMIB power system and the model of the generating unit are described
in Section 5.10.1. The tuning of the associated PSS is illustrated by means of an example in
which both normal and line-outage conditions are considered for a range of generator real
and reactive power outputs. The P-Vr characteristics are calculated and the performance of
the PSS - the tuning of which is based on these characteristics - is then examined. From such
an examination the implications for the tuning of PSSs in a multi-machine system are as-
sessed.

5.10.1 The power system model
A ‘more practical’ SMIB system now considered consists of the generator connected to an
infinite bus through a step-up transformer and a pair of transmission lines as shown in
Figure 5.14. However, in this case the transformer is fitted with a tap changer, shunt capac-
itance is included in the model of the transmission lines, and a constant impedance load is
connected to the high voltage terminals of the generator transformer. Post-fault contingen-
cies are represented by one or both of the circuits ‘a’ and ‘b’ being out-of-service. This ar-
rangement represents more closely a practical configuration in the vicinity of a generating
station that feeds into a large system. Clearly, it not intended to model a tightly-meshed sys-
tem of generating stations, loads and interconnecting transmission lines.    

Figure 5.14 A ‘more practical’ SMIB system.

For a given set of machine and system parameters, the real and reactive power outputs (P,
Q) of the generator together with the complex power of the load are selected as input quan-
tities together with a terminal voltage setting of 1 pu.

The Thévenin equivalent at the generator terminals of the system between the infinite bus
and the generator terminals is calculated. The model of the generating unit, together with
the Thévenin-equivalent voltage source and the associated impedance, form the model of
the SMIB system. 

For convenience, the coupled-circuit form of the sixth-order generator model described in
[9] is adopted for the analysis in the remainder of this chapter. Closed-loop control of the

Infinite Bus

a

Constant Im-
pedance Load

b
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generator terminal voltage is again implemented by means of a simple first-order model of
the excitation system. 

The linearized model of the generator and excitation system used in this application is also
that described in [9]. The equations for the sixth-order generator in a SMIB system, together
with those of the excitation system, are given for completeness in Appendix 5–I.3. Because
a model of the stabilizer is required in a later section, the equations for the complete gener-
ator-excitation system-PSS are also included in the Appendix. These equations are in state-
space form, rather than the transfer function form employed in the earlier sections of this
chapter. 

5.10.2 Calculation of the synchronizing and damping torque coefficients
In Section 5.3 it was noted that the synchronizing and damping torque coefficients can be
calculated from the transfer function  given by (5.10) with the shaft dynamics dis-
abled. In the context of the state equations given by (3.9), this implies removing the row and
column associated with the speed state in the A matrix and treating shaft speed  as an
input signal. The latter column then becomes a column associated with shaft speed in the
input matrix, B. The column associated with the speed output in the output matrix C is also
moved to the column of the  matrix corresponding to the speed input; the torque of elec-
tro-magnetic origin  remains an output signal. 

For illustrative purposes and simplicity, assume that (i) a set of third-order state equations
describes the dynamic performance of the system, (ii)  is the speed state , and (iii)

 is the output . The state equations are:

. (5.42)

Setting the input  to zero and eliminating the rows of the A, B & C matrices associated
with the speed state as well as the corresponding column in the A matrix, we find:

. (5.43)

with  being the speed input signal. From the modified state equations (5.43) the fre-

quency response  is calculated. The calculation of the frequency re-

sponses of the torque coefficients is outlined in Section 5.3 and is given by:

and [(5.10), repeated].
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5.10.3 Calculation of the P-Vr characteristics for a SMIB system with high-order 
generator models
As mentioned in the Introduction, Section 5.1, the theoretical basis for the use of the P-Vr
characteristic for the tuning of PSSs is given in [10]; in this paper the application of P-Vr
characteristic in PSS designs, described in earlier papers [5] and [11], is confirmed. The anal-
ysis in [10] is applied to multi-machine power systems - of which the SMIB system is a spe-
cial case; the results of this analysis are reviewed in the multi-machine context in Section 9.4. 

The tuning of the speed-PSS described in Section 5.8 is based on determining the compen-
sating transfer function of PSS, , given by (5.23), i.e.

.

In the case of the Heffron and Phillips’ model of the SMIB system a closed-form expression
for the second-order P-Vr transfer function,  - and thus , was derived. For

the seventh-order generator-excitation system model, the P-Vr characteristic is sixth-order
(the shaft dynamics being disabled). For this transfer function, and for multi-machine systems
in particular, the derivation of a closed-form solution for  is not only tedious but is
unnecessary. Unnecessary, because 

• the calculation of the P-Vr frequency responses is straight-forward and is based on a
set of state equations relating the torque of electromagnetic origin to the reference
voltage with the speed state disabled;

• from the set of P-Vr frequency responses - such as those in Figure 5.10 - the P-Vr
characteristic is selected that best represents the family of such characteristics over the
range of operating conditions;

• typically, only a low-order representation of the P-Vr characteristic is required in order
to provide a suitable PSS compensating function, ;

• it is usually relatively easy to synthesize a low-order transfer function representation of
the selected P-Vr characteristic.

Because the P-Vr transfer function is that from the voltage reference input to the torque of
electro-magnetic origin as output with the shaft dynamics disabled, its calculation is similar to
that for the torque coefficients in (5.42) and (5.43). The torque of electromagnetic origin

 remains an output signal. Retaining the third-order system of (5.42) for illustrative pur-

poses for this case, we note that  remains the torque of electromagnetic origin  and

 the speed state , however, the input  is now the voltage reference signal, .

On elimination of the speed state, (5.42) reduces to:

Gc s 

Gc s  1 HPVr s =

HPVr s  Gc s 

Gc s 

Gc s 

P0

y t  P0

x2 t   u t  Vr
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. (5.44)

The P-Vr characteristic  is calculated from the state equations, modified

as illustrated by (5.44). 

5.10.4 Example 5.5: Tuning and analysis of the performance of the PSS for the 
higher-order generator model

5.10.4.1 Parameters of the SMIB system and generator
The generator is connected to the infinite bus through a step-up transformer and two 330
kV transmission lines; the lines are connected to a common bus at their midpoint as shown
in Figure 5.14. Nominal system frequency is 50 Hz.

Parameters: 

• Transmission lines. For each of the four 330 kV line sections, length 290 km, the
parameters are given on the generator MVA rating and base of 500 MVA. The series
impedance each line is  pu, shunt susceptance  pu. For
the outage of transmission line section ‘a’ in Figure 5.14 the series impedance from
the generator HV bus to the infinite bus is  pu, the associated

shunt susceptance is  pu. For the outage of two lines, both sections ‘a’ and
‘b’ are out of service and  pu,  pu.

• Transformer. Series impedance is  pu on 500 MVA. The off-nominal tap
setting t is the per-unit turns ratio (= 1 pu at nominal taps); the taps are assumed to be
on the low-voltage side and adjustable in steps of 1%. (In practice, taps are located on
the high voltage side of the transformer, however, the convention in [9] is adopted.) 

• Constant shunt admittance load located at the station’s high voltage bus. The per unit
complex load power at 1 pu voltage is Po = 0.09, Qo = 0, 0.02, 0.03, 0.04 (or Qo = 0.29
pu when a shunt reactor is brought into service).

• Generator. Rating 500 MVA. 

D = 0,   H = 3.0 MWs/MVA,   ra = 0,   xd = 1.9 pu,   xq = 1.8 pu,     = 0.30 pu, 

xl = 0.20 pu,   = 0.55 pu, = 0.26 pu, = 0.26 pu, = 6.5 s, = 1.4 s,

= 0.035 s, = 0.04 s, on the generator rating.

The per-unit parameters on generator rating for the corresponding sixth-order coupled-cir-
cuit model are:
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262 Tuning PSSs for SMIB system Ch. 5
Xd = 1.9,  Xad = 1.7,  Rfd = 0.00088453,  Xfd = 0.106250,  R1d = 0.0227364,  X1d = 0.15, 
Xq = 1.8,  Xaq = 1.6,  R1q = 0.0046564, X1q = 0.4480, R2q = 0.0336146, 
X2q = 0.0724138.

Excitation system:    Kex = 200 pu,  Tex = 0.02 s. 

The state-equation model for the generator, which is under closed-loop voltage control, is
given in Appendix 5–I.3.1.

The ranges of operating conditions for the generator are P = 0.9 and 0.7 pu, 
pu, and P = 0.1, 0.3, 0.5, 0.7 and 0.9 pu at unity power factor. Normal conditions and one
line and two lines out-of-service are analyzed. All conditions are subject to the 330 kV bus-
bar voltages lying in the range 0.95 to 1.05 pu. Note that the above selection of operating con-
ditions encompasses not only a wide range of normal and outage conditions but also reactive
power outputs at 0.9 and 0.7 pu real power.

5.10.4.2 Steady-state and dynamic performance of the system, no PSS in service
The steady-state voltages and rotor angles, together with the associated eigenvalues, are cal-
culated for the range of operating conditions using the system and generating-unit parame-
ters listed above. The relevant results are given in Table 5.4 for selected operating
conditions.

Without a PSS at a generator real-power output of 0.9 pu (450 MW), the system is unstable
for all the selected operating conditions. For all real power outputs and a given system con-
figuration (e.g. a single line outage) shown in Table 5.4 it is significant that:

• the rotor angle increases as the power factor becomes more leading - and can exceed
;

• correspondingly, the stability of the system degrades.

Furthermore, at a selected complex power output (e.g.  pu), stability degrades
with the increased series impedance of the transmission system associated with the outages
of line sections ‘a’ then ‘a’ and ‘b’.

5.10.4.3 Inherent synchronizing and damping torques coefficients, 6th order generator model

As was the case for the third-order Heffron and Phillips’ model in Section 5.3, it is again re-
vealing to examine the inherent synchronizing and damping torque coefficients for the rotor
before the tuning of the PSS is considered. In this case the generator terminal voltage is con-
trolled by a first-order model of the excitation system. 

0.2– Q 0.4 

90

S 0.9 j0.3+=
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Table 5.4  Steady-state operating conditions and eigenvalues for the SMIB system; no 
PSS in service (P, Q in pu on 500MVA base)

The modified state equations for the calculations of the inherent torque coefficients are de-
rived as outlined in Section 5.10.2. From these equations the frequency response of the syn-
chronizing and damping torque coefficients are calculated, that is, from the transfer function

.

With reference to Figure 5.15 and Table 5.4 it is noted that the inherent damping torque co-
efficient is markedly negative for many of the cases over the range of the rotor modal fre-
quencies, 7.8 to 9.2 rad/s. This observation applies at the more heavily stressed conditions,
particularly (i) as the series impedance of the transmission system increases with the line out-
ages, and (ii) at the more leading power factors. The least damped condition is that for case
G with a coefficient of -13 pu, only slightly poorer than that for case A. Note that: (i) as the
damping torque coefficients become more negative for the cases shown in the figures so the
degree of instability increases for the corresponding cases in Table 5.4; (ii) at the lower inter-
area modal frequencies, potentially 1.5 to 6 rad/s, the inherent damping torque coefficients
tend to be negative. Such degradations in damping must be remedied by the action of the
PSS.

Case
Generator 
Output,
P, Q pu

Lines
out of 
service

Load
pu

Po, Qo #

Trans-
former
taps %

Rotor
angle

Voltage pu ( )
Eigenvalues,
Rotor ModeGen.Ter-

minals
Gen. 

HV Bus
Inf. 
Bus

A 0.9, -0.1 none 0.09, 0  0 80.7 1.024 1.020

B 0.9,  0 none 0.09, 0.04 -1 76.0 1.019 1.002

C 0.9,  0.2 none 0.09, 0.04 -4 67.6 1.021 0.959

D 0.9,  0.4 none 0.09, 0.29 -6 60.8 1.015 0.967

E 0.9, -0.1 one 0.09, 0 +5 87.7 0.978 1.017

F 0.9,  0.3 one 0.09, 0.03 -8 68.2 1.053 0.952

G 0.9,  -0.07 two 0.09, 0.03 +6 91.7 0.965 1.049

H 0.9,  0.3 two 0.09, 0.03 -7 74.0 1.041 0.951

J 0.7, -0.2 none 0.09, 0.04  0 76.2 1.035 1.049

K 0.7,  0 none 0.09, 0.04 -3 64.6 1.036 1.004

L 0.7,  0.2 none 0.09, 0.04 -5 55.9 1.029 0.954

M 0.7, -0.2 one 0.09, 0.03 +5 81.3 0.990 1.044

N 0.7,  0.2 one 0.09, 0.03 -6 59.6 1.040 0.950

# Load at 1 pu voltage on generator HV bus 





1 17.6 0.773 j9.16

1 17.7 0.552 j9.12

1 17.6 0.261 j9.02

1 17.6 0.113 j8.98

1 24.5 0.936 j8.48

1 21.7 0.245 j8.44

1 30.1 0.927 j7.98

1 27.6 0.322 j7.84

1 13.1 0.323 j9.06

1 13.0 0.065– j8.92

1 13.1 0.198– j8.76

1 18.2 0.493 j8.41

1 16.8 0.096– j8.19

P0 jf   jf 
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Figure 5.15 Inherent synchronizing and damping torque coefficients for SMIB system at 
a generator real power output (a) P = 0.9 pu, and (b) P = 0.7 pu. Reactive power output var-
ies between 0.2 pu leading and 0.4 pu lagging with all lines in service, or the outage of one 

or two lines.

As observed in Section 5.5.1 the damping gain k of the PSS - when installed - should be
greater than k = 13 pu to ensure stability under the most onerous operating condition, i.e.
in Case G: P = 0.9, Q = -0.07 pu, with two lines out of service.

Note from Table 5.4 that the magnitudes of damping ratios of the rotor modes are generally
less than 0.1. The torque coefficients are therefore again calculated using conventional fre-
quency response methods with . 

5.10.5 The P-Vr characteristics for a SMIB system with a 6th order generator 
model
The basis of the P-Vr characteristics and their calculation are discussed in Section 5.10.3.

The P-Vr characteristics are shown in Figure 5.16 for generator real power outputs of 0.9
and 0.7 pu. These characteristics mainly relate to the more extreme ends of the range of re-
active power outputs and system configurations listed in Table 5.4.
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Figure 5.16 P-Vr characteristics for the SMIB system at generator real power outputs 
(a) P = 0.9 pu, and (b) P = 0.7 pu; all lines in service, or outage of one or two lines.

Note that, for constant real power outputs, the low-frequency gains of the P-Vr character-
istics increase as the reactive power changes from lagging to leading. 

As is the case for the lower-order generator model of Section 5.8, the P-Vr characteristics
in the latter figures form the basis for the tuning of the speed-PSS.

5.10.6 Tuning a speed-PSS for a SMIB system with a 6th order generator model

The same form  of the transfer function of the speed-PSS is employed as in
Section 5.8. The tuning of the PSS transfer function is considered in the same five steps.

Step 1 of Section 5.8. 
The determination of the compensating transfer function  such that, over a selected
range of modal frequencies, a torque of electro-magnetic origin proportional to speed is in-
duced by the PSS on the rotor of the generator.

5.10.6.1 Selection of the P-Vr characteristic for compensating transfer function 

For the selected set of operating conditions listed in Table 5.4 the frequencies of the rotor
modes cover a range from 7.8 to 9.2 rad/s. Based on a mid-range modal frequency of about
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8.7 rad/s, the phase of the P-Vr characteristics for P = 0.9 pu varies over the range 
(Case A) to  (Cases J & H). Let us choose the P-Vr characteristic for P = 0.9, Q = 0.2
pu (Case C) because its phase of  lies close to the middle of the band of characteristics
at the modal frequency. The phase of any characteristic associated with the operating con-
ditions listed in Table 5.4 is thus within  of that of the selected characteristic. Case C
will be called the ‘Design Case’.

At low frequencies (1 rad/s), the extent of the range of gains of the P-Vr characteristics
shown in Figure 5.16(a) is from 7.8 dB (Cases H) to 14.6 dB (Case A). These differ from the
selected P-Vr characteristic (Case C) by -3.9 and +2.9 dB, respectively.

An inspection of the P-Vr characteristics for P = 0.7 pu in Figure 5.16(b) reveals that these
characteristics are suitably represented by Design Case C.

5.10.6.2 Synthesis of the compensating transfer function 

We wish to synthesize the P-Vr transfer function, , for Design Case C in order to

form the PSS compensating transfer function  by means of (5.23). In order to provide
some useful insights the process is illustrated using some basic concepts in frequency re-
sponse analysis.

Imagine, on the P-Vr characteristic of Case C in Figure 5.16(a), the straight-line asymptotes
as  and as  are drawn on the magnitude plot for the Design Case C. These

asymptotes roll off at 0 and -40dB/decade, respectively, and intersect at 19 rad/s. Because
the slope of the magnitude plot monotonically decreases with increasing frequency it is as-
sumed that there are no zeros in the transfer function (or, if any exist, they are cancelled by
closely-located poles). Furthermore, the phase response tends to  as . A sec-

ond-order form of the synthesized transfer function  possessing a pair of complex

poles is thus assumed, i.e.

   or   , (5.45)

where . The frequency response characteristics for such a transfer function are
shown in Figure 2.16. From a comparison of the P-Vr response for Case C in Figure 5.16(a)
with that of the latter figure it is observed that:

• The intersection of the asymptotes occurs at the undamped natural frequency
= 19 rad/s; the associated magnitude response in Figure 2.16 is 6 dB down at this

frequency. Assume that the damping ratio = 1; the corresponding gain from the P-
Vr plot is about 4 dB down. The damping ratio is thus less than 1.0 and therefore the
transfer function possesses a pair of complex poles.
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• There is no resonance apparent in the magnitude response, i.e. the damping ratio  is
greater than 0.707.

A trial-and-error method, a curve fitting process, or some other convenient method can now
be adopted to determine the damping ratio . From the eigenvalues of the A matrix for the
P-Vr characteristic in (5.45) it may be possible for this simple SMIB system to isolate a pair
of poles for the second-order transfer function of (5.45). These are found to be located at

 - from which = 0.85 and = 19 rad/s. The low-frequency gain of the P-
Vr characteristic for Case C in Figure 5.16(a) is 11.7 dB or 3.84 pu. Inserting the relevant
values into (5.45), the synthesized P-Vr transfer function for Case C becomes:

. (5.46)

Thus, based on (5.23), Step 1 for the determination of the compensating transfer function
 can be completed, i.e.

. (5.47)

Steps 2, 3 and 4 of Section 5.8: 
These steps cover the selection of: the value of the damping gain k; the parameters of the
PSS washout filter; and the high-pass filter parameters that ensure  is proper. It is as-
sumed that attenuation of the torsional modes is not required.

As stated earlier a practical form of the speed-PSS for the SMIB system includes the damp-
ing gain k, together with the washout and low-pass filters, as explained in Section 5.9. Incor-
porating the PSS compensating transfer function  from (5.45), the practical PSS
transfer function described in (5.34) becomes:

. (5.48)

For the range of modal frequencies of rotor oscillation shown in Table 5.4 (i.e. 7.8 - 9.2 rad/
s) an examination of Figure 5.15 for the damping torque coefficients reveals that a damping
gain of about 13 pu is required to overcome the inherent negative damping. A value of

= 20 pu is adopted on a trial basis. The same parameters as in Section 5.9 are adopted for
the washout and low-pass filters because the range of modal frequencies is essentially the
same. With the insertion of the latter parameters together with those from (5.47) into (5.48)
the transfer function of the speed-PSS for the SMIB system becomes:

. (5.49)
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Note that (i) the zeros in the transfer function of the compensation are complex and (ii) the
low-pass filter time constants of 5 ms are very short. These matters are considered in more
detail in Section 5.12.

Prior to considering Step 5 in the tuning procedure of Section 5.8 (i.e. the assessment if the
dynamic performance of the PSS) it is instructive to view the frequency characteristic of the
damping torque induced by the PSS. Step 5 is discussed in Section 5.11.

5.10.6.3  Damping and synchronizing torque coefficients induced by the PSS
Let us assess the coefficients of the synchronizing and damping torques induced on the gen-
erator through the action of the PSS. Not only does this serve as a check and partial valida-
tion of the analysis and tuning of the PSS represented by (5.49), but it also provides
additional insights into the action of the PSS. 

Referring to Figure 5.9 on page 241, the procedure for examining the synchronizing and
damping torques developed through the action of the PSS involves disabling the shaft dy-
namics of the machine, injecting a speed perturbation into the PSS+excitation-system+ma-
chine loop only, and calculating the complex torque , i.e.

. (5.50)

Note that the inherent torque coefficients associated with the path  are excluded

in formulation of (5.50). 

The product  in (5.50) is by definition a complex torque coefficient, .
This coefficient can be expressed in terms of the PSS compensating transfer function 

and the washout and low-pass filters (  and ) by:

. (5.51)

For the operating condition which forms PSS Design Case C, the compensating transfer
function of the PSS is ideally given by (5.23), i.e. , thus (5.51) becomes

. (5.52)

Assuming the transfer functions of the washout and low-pass filters are each real numbers,
i.e. , at the modal frequency, equation (5.52) represents the already-stated purpose of
the speed-PSS, i.e. it should induce a damping torque coefficient equal to k as outlined in
Section 5.8.1.

For operating conditions other than the Design Case, (5.51) becomes:

, (5.53)

where the subscripts ‘p’ refer to the P-Vr transfer function which changes with operating
condition; subscripts ‘o’ refer to the compensating transfer function which is implemented

Pa

Pa  Pm 0=
HPVr s  HPSS s   =

 P

HPVr s  HPSS s   s 
Gc s 

GW s  GLP s 

 s  HPVr s  G s  k HPVr s  Gc s = = GW s  GLP s  k  

Gc s  1 HPVr s =

 s  GW s = GLP s  k 

1 0

p s  HPVrp s  Gco s  GW s = GLP s  k 
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in the PSS. At the modal frequency  the transfer functions of the washout and

low-pass filters are close to , thus (5.53) becomes 

, (5.54)

where Kp,  and Ko,  are defined following (5.41).

As shown in Section 5.8.3 and Section 5.10.6.1, at the modal frequency  the P-Vr phase
responses typically lie in a narrow band of some  about that of the Design Case.
The torque coefficient in (5.54) is essentially a real number, i.e. a damping torque coefficient,
given by

. (5.55)

The significance of the above result is that the damping torque coefficient induced by the
PSS at any operating condition and the modal frequency  is the damping gain k modified
by the ratio of the P-Vr gain at the operating condition to that of the Design Case.

Firstly, consider now the calculation of the torque coefficients induced through the PSS path
only in Figure 5.9 on page 241. The complex coefficient  is expressed in (5.51) in terms
of the synthesized and PSS transfer functions  and , given by (5.46) and

(5.49), respectively. For the SMIB system the frequency responses of the synchronizing and
damping components are derived from  using the result from (5.10) as employed in
Section 5.10.2. 

In Figure 5.17 are shown the synchronizing and damping torque coefficients induced by the
PSS for two operating conditions, the Design Case C (P = 0.9, Q = 0.2 pu), and the most
poorly-damped condition Case G (P = 0.9, Q = -0.07 pu, two lines out-of service). The de-
tails of the steady-state operating conditions for these cases are given in Table 5.4.

Two important features of the responses of the damping torque coefficients are seen in the
figure. Firstly, they are more-or-less flat over the range of modal frequencies of interest, 7
to 9 rad/s. Secondly, the damping torque coefficient of 20 pu required by the design is
achieved in the Design Case C, however, for Case G a value slightly less results. In
Figure 5.16(a) the respective P-Vr gains at a modal frequency in the vicinity of 7 to 9 rad/s
are 3.7 and 3.3 pu. According to (5.55) the damping torque coefficient induced by the PSS
for Case G is , a value which closely agrees with that found from
Figure 5.17.

s h= jh
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Figure 5.17 Coefficients of the per unit generator synchronizing and damping torques in-
duced through the PSS path (i.e. excludes the inherent torques); P = 0.9 pu.

Secondly, consider inherent torque coefficients that are induced through the rotor angle
path  in Figure 5.9 on page 241. The frequency response  for

Cases C and G are shown in Figure 5.18 and possess some interesting features. Firstly, the
magnitude responses roll off fairly consistently at 20 dB/decade and the phase responses
vary about an angle of . This is consistent with integration in the transfer function

 (as revealed in (5.3) and Figure 5.9). Secondly, the damping torque co-

efficient is related to the cosine of the phase angle and is therefore positive when the phase
angles are more positive than . 

However, as foreshadowed in Section 5.5.1, the positive contribution of the PSS to the gen-
erator torque coefficients will be reduced if the inherent torque coefficients are negative. As
established in Section 5.10.4.3 and Figure 5.15 the inherent damping torque coefficients are
mainly negative at the modal frequencies listed in Table 5.4 on page 263; it is therefore nec-
essary to examine the net effect on the torque coefficients of the PSS and rotor-angle paths.
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Figure 5.18 Frequency response of the inherent torque coefficients for Case C (the PSS 
Design Case); P = 0.9, Q = 0.2 pu, and Case G (Outage of two lines); P = 0.9, Q = -0.07pu.

In Figure 5.19(a) and (b) the frequency responses of the inherent and PSS-induced torques
coefficients are shown separately and summed together. Figure 5.19(a) applies to the Design
Case C and Figure 5.19(b) to the ‘worst case’ operating condition, Case G. The responses of
the PSS-induced torques coefficients in the two figures are the same as those in Figure 5.17.
However, due to the very different nature of the inherent torque coefficients in the two cas-
es, the combined responses are markedly different. While the combined responses are
‘somewhat’ flat over the modal frequency range 7 to 9 rad/s, the values of the sum of the
damping torque coefficients are significantly different, i.e. about 17 and 5 pu in
Figure 5.19(a) and (b), respectively. Although these coefficients are both positive, the eigen-
value of the rotor mode for the Design Case will be characterized by a significantly greater
shift into the left-half s-plane than that for Case G. This is to be examined in Section 5.11
in assessing the performance of the PSS over the range of operating conditions. 

Due to the inclusion of the damper windings to represent rotor eddy-current losses in the
model of the sixth-order generator the frequency response characteristics of the inherent
damping torque coefficients are seen in Figure 5.19 to vary greatly over the selected range
of operating conditions. In Case C at low frequencies (less than 1 rad/s) the damping torque
coefficient is significant, being of the order of 50 to 60 pu. For case G, on the other hand,
the damping torque coefficient is negative and destabilizing. 
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Figure 5.19 Components of the torque coefficients induced on the generator for the op-
erating condition (a) Case C (the PSS Design Case); P = 0.9, Q = 0.2 pu,

(b) a ‘worst case’ operating condition, Case G (outage, two lines); P = 0.9, Q = - 0.07 pu.

As an aside, it is of interest to ascertain what are the components of, or the contributions to,
the inherent torque coefficients by individual rotor windings given a set of generator and sys-
tem parameters and selected operating conditions. With shaft dynamics disabled the inher-
ent torque and its components are calculated from (5.77) in Appendix 5–I.3.2, i.e.

,

the rotor angle and flux states being given in terms of the input speed signal by (5.76). The
coefficient K1 is a synchronizing torque coefficient whereas K2, K21, K22 and K23 are torque
coefficients due to flux linkages associated with the field, direct-axis and the two quadrature-
axis windings. The inherent synchronizing and damping torque coefficients are shown in
Figure 5.20 for two operating conditions with all lines in service, P = 0.9 pu and (a) Q = 0.2,
and (b) Q = -0.07 pu (outage, two lines); these conditions are the same as in Figure 5.19.

In the leading power factor operating condition (Q = -0.07 pu, Figure 5.20(b)) the contribu-
tions to the damping torque coefficients by the q-axis windings are negligible, however, in
Figure 5.20(a) for the lagging power case (Q = 0.2 pu) they are significant. The field and d-
axis windings tend to be the dominant contributors to the damping torque coefficients. 

While it is possible to assign to each of the damping windings a contribution to the torque
coefficients, concerns over the validity of the results are likely to arise due to questions re-
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lating to the accuracy of both the model and the parameters values attributed to the wind-
ings. The frequency dependence of the damping contribution of the damping windings
emphasizes the importance of employing higher-order generator models to adequately rep-
resent the damping performance of power systems.

Figure 5.20 Components of the inherent synchronizing and damping torque coefficients 
for SMIB system for generator real power output (a) P = 0.9, Q = 0.2 pu, all lines in service,

and (b) P = 0.9, Q = -0.07 pu, outage of two lines.

5.11 Performance of the PSS for a higher-order generator model 

Step 5 in the tuning procedure outlined in Section 5.8 is ‘the confirmation of the validity of
the design, and assessment of the performance of the PSS’.

The improvements in the damping of the rotor modes of oscillation due to the operation of
the PSS are revealed in Table 5.5 and Figure 5.21.
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Table 5.5  Effect on rotor modes with PSS in service; 6th order generator model.
PSS damping gain k = 20 pu on machine rating. 

It is informative to compare these results for the 6th order generator model with those in

Figure 5.13 on page 252 and Table 5.2 for the 3rd order model. The left-shift of the mode
in Table 5.5 for Design Case C is 1.60 Np/s, which agrees well both with that the Design
Case B in Table 5.2 and with the predicted left-shift  Np/s for a SMIB sys-
tem in Section 5.9.3. As expected, the shift in the associated frequency (  rad/s)
in Design Case C is minimal for the reasons discussed in the latter section.

The same explanations that are given in Section 5.9.3 for the nature and magnitude for the

mode shifts are also applicable to the 6th order generator in a SMIB system. In the results
for the latter, however, there are some additional issues to consider; these are:

• At a lower real power output, i.e. P = 0.7 pu, and a selected reactive power output, the
rotor mode when the PSS is either in- or out-of-service is better damped than for
P = 0.9 pu, e.g. comparing Cases B and K in Table 5.5 for all lines in service. This is to
be expected as the corresponding steady-state rotor angle is smaller (see Table 5.4 on
page 263).

Case 
Generator 

Output
P, Q pu

Lines
out of 
service

Eigenvalues, rotor mode

Mode shiftwith PSS out of 
service

with PSS
in service

A 0.9, -0.1 none

B 0.9, 0 none

C 0.9, 0.2 none

D 0.9,  0.4 none

E 0.9, -0.1 one

F 0.9,  0.3 one

G 0.9,  -0.07 two

H 0.9,  0.3 two

J 0.7, -0.2 none

K 0.7,  0 none

L 0.7,  0.2 none

M 0.7, -0.2 one

N 0.7,  0.2 one

0.773 j9.16 1.156– j9.51 1.929– j0.35

0.552 j9.12 1.271– j9.31 1.823– j0.20

0.261 j9.02 1.338– j9.03 1.599– j0.02

0.113 j8.98 1.305– j8.93 1.418– j0.05

0.936 j8.48 0.632– j8.64 1.568– j0.16

0.245 j8.44 1.042– j8.34 1.687– j0.10

0.927 j7.98 0.409– j8.04 1.336– j0.06

0.322 j7.84 0.774– j7.72 1.096– j0.11

0.323 j9.06 1.727– j9.46 2.050– j0.40

0.065– j8.92 1.770– j8.94 1.705– j0.02

0.198– j8.76 1.579– j8.66 1.381– j0.10

0.493 j8.41 1.171– j8.57 1.664– j0.15

0.096– j8.18 1.240– j8.03 1.144– j0.15

kd 4H  1.67=

h 0.02=
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Figure 5.21 Rotor mode for the PSS on and off for the set of operating conditions given 
in Table 5.5, Cases A to N. The Design Case is Case C. The upper plot is for P = 0.9 pu, the 

lower for P = 0.7 pu.

• The modal frequencies decrease as one and then two lines are taken out of service -
with the result that the series impedance of the transmission system increases. This
matter was observed in Section 5.4 based on a simple analysis of the factors that
determine the real and imaginary parts of the rotor mode. 

• It is observed in Figures 5.13 and 5.21 that, with PSSs off, the most poorly damped
rotor mode is associated with the most leading power-factor condition. However, a
characteristic of the P-Vr tuning approach is that the gain in the P-Vr characteristics is
greatest for this condition. As illustrated in Figure 5.21 the net result with the PSS in

  A P=0.9 Q=−0.1, B Q=0.0, C Q=0.2, D Q=0.4
  E P=0.9 Q=−0.1, F Q=0.3; G P=0.9 Q=−0.1, H Q=0.3
  J P=0.7 Q=−0.2, L Q=0.2; M P=0.7 Q=−0.2, N Q=0.2
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service is that the left-shift in the rotor mode is greatest for the leading power factor
condition - a desirable and beneficial outcome.

The discussion so far has considered real power outputs at or near rated values. The ques-
tion arises: how does the PSS perform at lower values of real power outputs? To illustrate
the answer, the P-Vr characteristics and the rotor modes of oscillation are also calculated at
real power outputs at P = 0.9, 0.7, 0.5, 0.3 and 0.1 pu, all at unity power factor. The P-Vr
characteristics are shown in Figure 5.22 together with that for the Design Case C (P = 0.9,
Q = 0.2 pu). The associated rotor modes with and without the PSS in service are listed in
Table 5.6.

Table 5.6  Shifts in rotor modes at lower real power outputs with PSS in service. 
PSS damping gain k = 20 pu on machine rating. 

Based on Table 5.6 let us consider the performance of the system with the PSS out-of-ser-
vice as the real power output is decreased at unity power factor. The rotor mode is stable
for real power outputs of 0.7 pu or less. With further reduction in real power the damping
improves; for power outputs less than 0.5 pu the damping performance criterion stated in
Section 5.8.5 is satisfied, namely, that the real part of the rotor mode should be more nega-
tive than  Np/s. In fact, at the lower power levels in this example, PSS action may not
be required - but this depends on the encompassing range of operating conditions. 

For real power outputs between 0.9 and 0.5 pu, Figure 5.22 reveals that the magnitude and
phase responses in the P-Vr characteristic lie in a relatively narrow band, the centre of which
is the design characteristic, Case C. The shifts in the rotor modes due to the action of the
PSS are listed in Table 5.6. The explanation for the extent of the mode shifts in the power
range is similar to that given in Section 5.9.3. For real power outputs less than 0.5 pu the left
shift of the mode reduces significantly with reduction in power output. This is due to the
gain of the associated P-Vr characteristics reducing significantly below that of the Design

Case characteristic 1. Nevertheless, the damping of the rotor mode for lower power levels

Case 

Generator 
Output, 

pu
P, Q pu

Lines
out of 
service

Eigenvalues, rotor mode

Mode shiftwith PSS out of 
service

with PSS
in service

B 0.9,  0 none

K 0.7,  0 none

R 0.5,  0 none

S 0.3,  0 none

T 0.1,  0 none

C (Ref) 0.9,  0.2 none

0.552 j9.12 1.271– j9.31 1.823– j0.20

0.065– j8.92 1.770– j8.94 1.705– j0.02

0.539– j8.50 1.874– j8.36 1.335– j0.14

0.779– j8.04 1.610– j7.89 0.831– j0.15

0.816– j7.77 1.121– j7.70 0.305– j0.07

0.261 j9.02 1.338– j9.03 1.599– j0.02

0.5–
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below 0.5 down to 0.1 pu is markedly enhanced. Typically, in practice, the PSS may be
switched out of service for real power levels less than ~0.3 pu.

Figure 5.22 P-Vr characteristics for the SMIB system for real power outputs from 0.1 to 
0.9 pu at unity power factor.

While the effect of the variation of the real power output on the P-Vr characteristic is noted,
information concerning the effect of reactive power output on the characteristic may be de-
duced from Figure 5.16 on page 265. From the figure for the system in this example and
loading conditions (P = 0.9 & 0.7 pu) it can be deduced that, at constant real power output,
(i) the magnitude responses of the P-Vr transfer function typically lie within a band of 
dB about the Design Case C, (ii) the phase responses lie within a band of  over the
range of modal frequency. It may also be observed that the magnitude responses at constant
real power decrease as the power factors change from maximum leading to maximum lag-
ging. The two effects on the P-Vr characteristics of the variations in real and reactive outputs
are explained in the context of multi-machine systems in Chapters 9 and 10. It is interesting
to examine the relation between the P-Vr characteristics of Figure 5.16 and the plots in
Figure 5.21.

1. The reason for the nature of the P-Vr gain variation is discussed in Section 9.4.1.

    B: P=0.9     K: P=0.7
    R: P=0.5     S: P=0.3
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Due to the basis of selection of the synthesized P-Vr for Design Case the PSS transfer func-
tion is robust - for practical purposes - to changes in operating conditions at the higher val-
ues of generator real power outputs, together with variations in reactive power, was pointed

out in Section 5.9.3 1. The results of further studies as revealed in Figures 5.16 and 5.22, also

demonstrate the robustness of the PSS design 2 to wide variations in operating conditions.
The two effects on the P-Vr characteristics of the variations in real and reactive outputs are
explained in the context of multi-machine systems in Section 9.4.1; the robustness of fixed-
parameter PSSs and an associated theoretical basis for robustness are discussed further. 

5.12 Alternative form of PSS compensation transfer function

In Section 5.10.6.2 the compensation transfer function for the PSS included a pair of com-
plex zeros to represent the inverse of the P-Vr transfer function. Referring to (5.49) and ig-
noring the gain kc = 3.84 for present purposes, the relevant transfer function is

 . (5.56)

The frequency response plot for this PSS transfer function is shown in Figure 5.23.

A practical PSS may not be capable of accepting complex zeros, moreover, time constants
of 5 ms may be too short to implement in either a digital or analog PSS. Alternatively, let us
assume the transfer function may be represented by a set of lead blocks of the form:

, in which the zeros are real and . (5.57)

The alternative transfer function in (5.57) is required not only to increase the values of the
time constants Tdk in the denominator of the transfer function in (5.56) but also to provide
the phase lead determined from the P-Vr characteristic over the range of modal frequencies,
1.5 - 15 rad/s. A third-order lead transfer function is found which closely matches the fre-
quency response over the desired modal frequency range as shown in Figure 5.23:

. (5.58)

1. For operating conditions, P = 0.9 and 0.7 pu, the magnitude of the P-Vr transfer func-

tions consistently lie within a band of  dB, that is, by factors of 1.26 and 0.79 (see 
Figure 5.16). In the case of the SMIB system this provides confidence that for practical 
purposes the left-shifts of the rotor mode over the encompassing range of operating con-
ditions will lie in the range 1.26:1 and 0.79:1.

2. See item 3 of Section 1.2

2

Gc s  1 s0.0895 s20.00277+ +
1 s0.005+  1 s0.005+ 

-------------------------------------------------------------=

Gc s 
1 sTnk+ 
1 sTdk+ 

-------------------------

i 1=

k

= Tnk Tdk

Gc s  1 0.0438s+
1 0.0158s+
----------------------------

3 1 s 22.8+
1 s 63.3+
--------------------------

3
=
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Figure 5.23 Frequency response of the PSS second-order transfer function 

when its zeros are complex or, alternatively, when the transfer function is
implemented by three lead blocks. 

The maximum deviation of the latter frequency response from that of that derived from
(5.56) is [0.8 dB, ] at 10 rad/s and [1.1 dB, ] at 15 rad/s. Although the denominator
time constants are increased from 5 ms to 16 ms, a further increase in these time constant
may impact deleteriously on the desired frequency response of the compensation in the
range of modal frequencies. It is also noted in Figure 5.23 that the gain at high frequencies
in the alternative compensation is reduced for torsional frequencies above 100 rad/s (~16
Hz). The concern that the high frequency gain in the PSS might excite such modes is over-
come in the ‘integral-of-accelerating-power PSS’ by means of a pre-filter, a purpose of which
is to significantly attenuate the torsional modes (see Section 8.5).

5.13 Tuning an electric power-PSS based on the P-Vr approach

In [14] the authors highlight an electric-power based PSS that does not require the imple-
mentation of a phase-lead transfer-function network. The power-based PSS may have some
attraction (i) in cases where only the damping of local modes is of concern; (ii) in a PSS for

which the number of blocks may be restricted 1. It is sometimes the case too that a unit is
provided with a power input PSS even in situations where this would not have been the pre-
ferred choice. The P-Vr approach of Sections 5.8.1 to 5.8.5 can also be applied to the tuning

1. An alternative approach to tuning a power-based PSS is described in Section 8.3.
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of this type of PSS with the advantages revealed earlier, namely that the procedure is system-
atic and the value of the PSS gain is a meaningful quantity - it is also the damping gain de-
fined in Section 5.4.

In the following the transfer function of the power-PSS is derived and assumes that the
number of blocks in the PSS is restricted. The analysis commences with equation (5.21)
which is employed in development of the P-Vr-based speed-PSS in Section 5.8.1. The latter
equation is based on an ideal PSS developing a damping torque proportional to rotor speed
and takes the form:

 pu, (5.59)

assuming the shaft dynamics are disabled (sdd) on all generators;  is a damping torque

coefficient. (It is seen from Figure 5.9 that  and  are the same transfer
functions.)

The term  is identified as the P-Vr characteristic  and  the transfer

function of the speed-PSS;  is also the damping gain,  is the compensation trans-

fer function of the speed-PSS. That is:

   ((5.21) repeated) (5.60)

Based (4.59) the equation of rotor motion derived for the case when the perturbations in
mechanical power are zero is

 pu or . (5.61)

The substitution for  from (5.61) in (5.59) yields:

. (5.62)

In the above equation the term  may be identified as , the P-Vr transfer

function, and  identified as the transfer function of the power-PSS. 
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Strictly, over the range of modal frequencies of interest we require .

Furthermore, in order to attenuate low and high frequencies responses outside the range,
washout and the low-pass filters are added, i.e.

. (5.63)

By equating (5.62) and (5.63), the transfer function of the power PSS is determined, namely:

. (5.64)

For the Design Case (e.g. Case C in Section 5.10.6) the P-Vr transfer function  is

calculated as in Sections 5.8.1 to 5.8.3. The ‘extended P-Vr transfer function’,

, is then derived by curve-fitting. Let us assume that synthesized transfer func-

tion is of the simple form . The resulting transfer function of the fixed-param-
eter power-PSS can be then be formed, i.e.:

. (5.65)

Note that, because of negation in the power-PSS path of (5.64), the signal  is fed into

the summing junction with a positive sign 1.

5.13.1 Example 5.6: Tuning of a power-based PSS

Case C (the ‘Design Case’), and the more extreme cases, Cases A, G and H in the SMIB sys-
tem of Section 5.10.5 and Table 5.4 are used to demonstrate the tuning of a power-PSS. 

The P-Vr characteristic for the Design Case C, shown in Figure 5.24(a), is combined with

the transfer function  to form the ‘extended P-Vr’, XPVr(s), ; the P-Vr

and the XPVr are also shown in Figure 5.24(a). The synthesized transfer function of
XPVr(s) - which results from curve fitting - is shown in the same figure and found to be 

XPVr(s) = . (5.66)

1. A similar phenomenon occurs with the speed-PSS. See Section 5.8.1.
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Assuming the damping gain is  pu on generator rating, and that the time constants
of the washout and low-pass filters are 5 s and 0.01 s respectively, the transfer function of
the power-PSS based on Design Case C is:

. (5.67)

For comparison, the transfer-function of speed-PSS derived in Section 5.10.6.2 is

.  ((5.49) repeated) (5.68)

The eigenvalues for the four cases with the speed- and power-PSSs out- and in-service are
calculated; these are listed in Table 5.7.

Figure 5.24
 (a) Case C: P-Vr, the extended P-Vr (XPVr), and the synthesized characteristic of XPVr(s)

(b) Synchronizing and damping torque coefficients induced by the power-PSS. 
Cases A and C: All lines in service; Cases G and H: Two lines out. For comparison the 

torque coefficients of the speed-PSS for Case C from Figure 5.17 are also plotted.
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Table 5.7  Rotor modes with speed- and power-PSS in service; 6th order generator 
model. PSS damping gain = 20 pu on machine rating.,

Note in Table 5.7 that the rotor mode shifts for both types of PSS are directly to the left.
However, it is observed that the left-shifts due to the power-PSS are greater than those of
the speed-PSS. The differences arise due to (i) mismatches between the XPVr characteristic
based on Case C and the fitted transfer-function XPVR(s), (ii) differences between the P-Vr
characteristics of Design Case C and the other (more extreme) cases as seen in Figure 5.16. 

In the case of the speed-PSS the induced damping torque coefficients in the PSS path,
shown in Figure 5.17 for Cases C and G, are 20 and 18 pu over a modal frequency range 2
to 15 rad/s. The question arises: what are the corresponding characteristics of the damping
torque coefficients for the power-PSS?

The characteristics of the synchronizing and damping torque coefficients for the power-PSS
are illustrated in Figure 5.24(b) for the four cases when the damping gain is 20 pu. At the
rotor modal frequencies of 7.5 to 9.5 rad/s the damping torque coefficients range from 14
to 26 pu. The reasons for the differences between the damping torque coefficients for Case
C and the other cases are as explained above for the greater rotor-mode shifts by the power-
PSS. The torque coefficients for a speed-PSS based on Case C are shown in Figure 5.24(b)
for comparison.

However, in a multi-machine scenario with inter-area modal frequencies above 2 rad/s,
damping torque coefficients exceeding 11 pu are potentially induced by the power-PSS for
the worst-case operating condition (H). Adjusting the damping gain setting from 20 pu will
raise or lower the damping torque coefficients and likewise modify the left-shifts of the rotor
mode.

Note that: (i) In synthesizing the power-PSS difficulties may occur in finding a simple curve-
fitted transfer function for the XPVr due to the shape of P-Vr and the modal frequencies of
interest. (ii) As will be discussed in Chapter 8, power-PSSs may cause terminal voltage and
reactive power swings due to changes and ramping of mechanical power [15]. Reducing the
washout time constant from 5 s in the latter example may alleviate this problem.

Case 
Generator 

Output
P, Q pu

Lines
out of 
service

Eigenvalues, rotor mode

with PSS out of 
service

with speed-PSS
in service

with power-PSS
in service

A 0.9, -0.1 none

C 0.9, 0.2 none

G 0.9, -0.07 two

H 0.9, 0.3 two

k

0.773 j9.16 1.156– j9.51 1.443– j9.53

0.261 j9.02 1.338– j9.03 1.524– j8.95

0.927 j7.98 0.409– j8.04 0.465– j7.98

0.322 j7.84 0.774– j7.72 0.809– j7.65
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5.14 Summary: P-Vr approach to the tuning of a fixed-parameter PSS

The P-Vr approach provides a systematic and consistent method for tuning PSSs for a se-
lected set of encompassing operating conditions. It possesses the following features.

1. The aim of the PSS tuning procedure is to introduce on the generator shaft a damp-
ing torque (a torque proportional to machine speed); this causes the modes of rotor
oscillation to be shifted to the left in the complex s-plane.

2. The PSS compensation transfer function  is tuned to achieve a direct left-shift

in the complex s-plane of the relevant modes of rotor oscillation. 

3. The damping gain  (pu on machine rating) of the PSS determines the extent of the
left-shift.

4. The damping torque coefficient contributions induced by the PSS can be designed
to be constant (‘flat’) over a desired range of local- and inter-area modal frequencies
(e.g. as in Figure 5.17). The damping gain should be selected to ensure that the
damping torque coefficients swamp any inherent negative contributions by the gen-
erator over the range of operating conditions.

5. If the above features are realized the PSS transfer function  is said to be
robust (see item 3, Section 1.2). 

The analysis of the P-Vr approach to the tuning of fixed-parameter speed-PSS and its im-
plications for a single-machine infinite-bus system have demonstrated the following.

1. For practical purposes, the phase response of the P-Vr is more-or-less invariant over
an encompassing range of operating conditions. Similarly, at the higher real power
outputs, typically 0.5 to 1 pu of rated power, the magnitude response retains its
shape and consistently lies in a band of  dB of the Design Case P-Vr characteris-
tic. The PSS based upon the generator’s P-Vr characteristics is robust because it
induces positive damping torque coefficients on the shaft of the generator over: (i)
the defined range of modal frequencies, (ii) the encompassing range of N and N-1
operating conditions, (iii) a range of leading and lagging power factors.

2. At higher levels of generator real power output the magnitude and phase of the P-Vr
frequency response characteristics lie in relatively narrow bands for a wide range of
operating conditions. This permits the selection of a Design Case whose magnitude
and phase response are within the band.

3. In the following chapters it is recommended that system studies be conducted over a
“wide range of operating conditions”. The selection of the “Design Case” should be
representative of the P-Vr characteristics for a set of operating conditions which
encompasses the extreme range of operation, including the most leading and lagging
reactive power output conditions. That is, by a prudent choice of an encompassing,

Gc s 

k

kGc s 

2
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representative set of N and N-1 operating conditions a fewer number of studies may
be required to determine the selection of the “Design Case”.

4. The selection of the Design Case may be biased by experience, e.g. power factors
less than 0.98 leading are very unlikely to occur.

5. The formulation of a PSS ‘damping gain’ (in pu on machine MVA rating) has the
advantages, (i) it is the damping torque coefficient induced on the generator over the
design range of modal frequencies; (ii) it is a meaningful number - a moderate damp-
ing gain is 20-30 pu, high values exceed 30 to 50 pu. The term ‘PSS gain’ lacks mean-
ing unless it is clearly defined on such a basis.

6. As the operating conditions change the inherent damping torque coefficients can
vary from significant negative to large positive values over the modal frequency
range of concern. By adjustment of the damping gain such negative torques must be
swamped by the positive damping coefficients induced by the PSS.

7. An alternative PSS tuning approach is the GEP(s) method (see Chapter 6). It
employs the phase characteristics of the P-Vr method but provides no information
or guidance on the selection of the PSS gains. The extension of the analytical
approach to the GEP(s) to include the additional information available from the P-
Vr method is a simple further step.

8. It is shown in Section 5.10.6.2 that the compensation transfer function for the
speed-PSS may include a pair of complex zeros to represent the inverse of the P-Vr
transfer function. A practical PSS may not be capable of accepting complex zeros,
however, it is shown the transfer function may be represented by a set of lead blocks
of the form , in which the zeros are real and .

9. In the tuning of speed-PSSs a trade-off may need to be found between the modal
frequency range of interest, the possible high gain of the PSS compensation transfer
function at higher frequencies, the low-pass filter parameters, and the attenuation of
the torsional modes. Use of notch filters [9], or employing integral-of-accelerating-
power PSSs (Section 8.5), may overcome some of these issues. In the case of hydro-
generators no adverse interaction between the generator and the network at the tor-
sional modal frequencies have been reported [9].

10. A comprehensive evaluation of PSS performance must include consideration of the
response of the system to large disturbances (i.e. transient stability analysis). This
aspect has been omitted from this chapter which has focussed on fundamental con-
cepts but is examined briefly in Section 10.9. The settings of limiters on the output
of the PSS are not considered.

11. It is shown in Section 5.13 that the P-Vr approach for tuning a speed-PSS can be

adapted to the tuning of a power-based PSS 1. The same advantages of the speed-
PSS apply to power-PSS; for example, the procedure is systematic, the value of the
PSS gain is a meaningful quantity - it is also a damping gain. An advantage of this

1 sTnk+  1 sTdk+  Tnk Tdk
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power-PSS is that it does not require the implementation of a phase-lead transfer-
function network.The power-PSS may be more relevant, say, to cases for which a
simple PSS is required for damping a local mode, when the number of blocks pro-
vided for implementing the PSS is limited, a speed-stabilizing signal is not readily
available, etc. 

Other benefits of the P-Vr approach will become evident when (i) the GEP and the Method
of Residues are discussed in Chapter 6, and (ii) multi-machine systems are analysed in
Chapter 10.
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Appendix 5–I

App. 5–I.1 K-coefficients, Heffron and Phillips Model of SMIB Sys-
tem
The steady-state values of variables are designated with the subscript ‘0’. All quantities are
in per-unit except angles are in degrees. Computation of the initial conditions is based on
solution of the SMIB model equations given in the Appendix of [1].

Vb
Source voltage of the Thévenin equivalent of the system connected
 at the generator terminals.

et0 Generator terminal voltage.

ed0, eq0 Direct and quadrature components of the terminal voltage.

id0, iq0 Direct and quadrature components of the generator current.

Eq0 Voltage behind quadrature-axis reactance of the generator.

Angle between the quadrature axis of the generator and the infinite bus.

re, xe
Resistance and reactance of the Thévenin equivalent of system connected
 at the generator terminals.

0

A re
2

xe Xd+  Xq xe+ +=

K1 Eq0Vb re 0 xe Xd+  0cos+sin   A +=

iq0Vb Xq Xd–  xe Xq+  0sin re 0cos–  A

K2 reEq0 A iq0 1 xe Xq+  Xq Xd–  A+ +=

K3 1 xe Xq+  Xd Xd–  A+  1–
=

K4 Vb Xd Xd–  xe Xq+  0sin re 0cos–   A=

K5 Vb ed0 et0 Xq re 0 xe Xd+  0cos+sin = A +

Vb eq0 et0 Xd re 0cos xe Xq+  0sin–  A

K6 eq0 et0  1 Xd xe Xq+  A–  reX
q

ed0 et0  A+=
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App. 5–I.2 Transfer function of the SMIB system with closed-loop 
control of terminal voltage
Based on Figure 5.1 for the Heffron and Phillips model for the SMIB system with closed-
loop voltage control, the transfer function for the terminal voltage response to perturbations
in reference voltage is:

, (5.69)

where the damping torque coefficient D = 0.

,

,

.

The K-coefficients are listed in Appendix 5–I.1

App. 5–I.3 Model of the 6th-order generator and excitation system

App. 5–I.3.1 State-space model

In Section 12.6 of [9] the state-space model of a 6th-order generator model, having one and
two damper windings on the direct and quadrature axes, respectively, is developed. It is of
the form: 

,   . Thus,

. (5.70)

The elements of the A- and B-matrices are defined in Section 12.6 of [9]. 

Elements  are functions of , , ,  and , respectively (see equations

12.171 to 12.183, [9]).
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The elements  are functions of the generator parameters. Note, in equation

12.179 of [9]

.

The terminal voltage is given by equation 12.185 of [9]:

, (5.71)

where ,

,

,

,

.

The coefficients  are defined in Section 12.6 of [9]. The transfer function
of a first-order excitation system of the form shown in Figure 5.7 on page 239 is

, (5.72)

where  is the field voltage (pu), and  in the output from a PSS, if fitted.

The time-domain form of (5.72) is 

, or

(5.73)

a3i, a4i, a5i, a6i
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where ,

. (5.74)

Augmenting the state-space model (5.72) with (5.73), the equation for the model becomes:

(5.75)

Note, the element  assumes the value of  in (5.70).

App. 5–I.3.2 Calculation of the inherent torque coefficients.
In Section 5.3 it was noted for the SMIB system that the synchronizing and damping torque
coefficients can be calculated from the transfer function  given by (5.9) on
page 229 with the shaft dynamics disabled. For the 6th-order generator model a new set of
ABCD matrices is formed by (ii) eliminating the first row in (5.75) and (ii) expressing the
electrical torque  as output and the speed signal  as input, i.e.

(5.76)

The expression for torque, , is given by Equation 12.170 in [9]:

. (5.77)

These K-coefficients are listed in Equation 12.171 of [9].
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Chapter 6

Tuning of PSSs using methods based on 
Residues and the GEP transfer function

6.1 Introduction

In Section 5.8 the P-Vr method for the tuning of the PSS for a generator in a single-machine
infinite-bus (SMIB) system is described. Several other methods, which will be shown to be
somewhat related to the P-Vr method, are described in the literature. Two other methods
will be discussed here, the first is based on Transfer-Function Residues, the second on the
so-called GEP Method. The P-Vr method, the Method of Residues and the GEP Method
are reconciled for a practical, multi-machine system in [1]. However, for illustrative purposes
in this chapter we will examine only the application of the Residues and GEP Methods to a
generator in a SMIB system.

The background to the Method of Residues is provided in [2] and its application to PSSs is
illustrated in Appendix A of [3]. The method is also used in practice for the design of Power
Oscillation Dampers (PODs) which are fitted to FACTS devices such as SVCs, typically to
enhance the damping of inter-area modes. The design of PODs using the Method of Resi-
dues is described in [4], however, this topic is considered in more detail in Chapter 11.
293
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6.2 Method of Residues

6.2.1 Theoretical basis for the Method
The theoretical basis, calculation and significance of the residues of a transfer function are
discussed earlier in Section 2.5. In essence, for a set of distinct poles  is the residue of the

pole at . A transfer function  is described by its partial fraction expansion equa-
tion (2.14), or by

. (6.1)

The derivation of residues from the state equations is outlined in Section 3.7.

Consider a SMIB system for which a PSS is to be designed and installed. The transfer func-
tion from the reference voltage input to the speed output signal of the generator is

. The PSS, with transfer function , is a speed-input PSS (although

other stabilizing signals can be employed). When operating in closed-loop the PSS output is
connected to the AVR summing junction, as shown in Figure 6.1. 

It is emphasized that the following simple approach to the determination of the compensa-
tion transfer function of the PSS is based on the change of the rotor mode of oscillation
when the PSS feedback path is switched from open to closed loop.

Figure 6.1 SMIB system GS(s) and PSS transfer function F(s) on open loop. 

Let the PSS transfer function be:

, (6.2)

where the transfer function  of the PSS in this application is designed to provide the

appropriate phase compensation and is assumed to consist of m lead or lag blocks of the

form 1:

1. This form is used in the determination of the order m and time constants Tn and Td in 
Appendix 6–I.1.

ri

s pi= G s 

G s  P s 
Q s 
-----------

r1

s p1–
-------------=

r2

s p2–
------------- 

ri

s pi–
------------ 

rn

s pn–
-------------+ + + + +=

GS s    Vref= F s 

PSS transfer function

AVR, excitation system,
generator, & power system

Vref


+

VS F(s)

GS(s)

+

F s  kRH s  kRGc s  GW s = = GLP s 

Gc s 
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. (6.3)

The PSS gain setting in (6.2) is  in pu on device base (note, this is not the ‘damping gain’
associated with the P-Vr method). The washout and low-pass filter transfer functions,

 and , are given by (5.29) and (5.30), respectively. It is assumed that the values

of the time constants in the latter two transfer functions have been appropriately selected
(see Section 5.8.6). The objective of the tuning procedure is to determine the values kR, Tn,

Td and  that satisfy the relevant requirements on damping.

Note that in Figure 6.1 positive feedback is assumed for the following analysis. The transfer
function of the SMIB system and PSS when the loop is closed is therefore:

  using (6.2).

The poles of the closed-loop transfer function are derived from its characteristic equation: 

; (6.4)

these poles are also the eigenvalues of the system of  1. Let us evaluate the shift 
in the pole (eigenvalue)  resulting from the closure of the feedback loop. Assume the

plant and system, , is excited by the eigenvalue  when on open loop, i.e. from (6.1),

,

where  is the residue of the eigenvalue  of the forward-loop transfer function, .

The associated characteristic equation is, from (6.4),

,  or  , (6.5)

noting that  in (6.2). Suppose the pole of the closed-loop system is shifted

by a small amount  from the open-loop pole . The root of the new characteristic

equation is thus  and (6.5) becomes:

. (6.6)

If the mode shift is ‘small’ then the transfer-function H(s) in the neighbourhood of 
can be represented by the first-order Taylor series expansion:

. (6.7)

1. See Sections 3.7and 2.5
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Substitution of (6.7) in (6.6) leads to 

; (6.8)

equations for the evaluation of  are given in Appendix 6–I.2, (6.25) and (6.26).

If the gain  is chosen such that

, (6.9)

then (6.8) reduces to:

. (6.10)

The result in (6.10) is significant for the design of the PSS compensation. As illustrated in
Figure 6.2 the residue of the eigenvalue  of  is a complex number, , where

. In order for the mode shift  in (6.10) to be , i.e. a direct left-shift
of  in the complex s-plane is required, 

. (6.11)

The compensation angle  provided by the PSS thus must be

 . (6.12)

Figure 6.2 Examples of phase compensation required for possible residues of .

Based on (6.10) the following is a procedure for determining the PSS parameters.

To effect a left shift in the rotor mode of interest, , choose the parameters Tn, Td for the

m lead or lag compensator blocks, (6.3), such that .
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In order to determine a nominal value of an upper limit on the gain kR such that the approx-
imation for the mode shift in (6.10) is acceptable, let us define a nominal limit kRm based on
(6.9) as

 ,  or (6.13)

  pu. (6.14)

An acceptable gain might lie in the range , say, but will depend on the nature

of the problem.

It was shown in Section 3.7 that the residue for mode h is the product of an ‘observability

measure’  and a ‘controllability measure’  given by

. (6.15)

Ideally for a selected stabilizing signal these measures should reflect both good observability
of the stabilizing signal and good controllability of the output variable.

From (6.10) it is noted that (i) the larger the magnitude of the residue, the greater is the mode
shift; (ii) for a robust design it is desirable that the magnitude and phase of the residue re-
main more-or-less unchanged over the range of operating conditions; (iii) the real and im-
aginary components of the open-loop mode  may also vary over a range of operating
conditions in practice.

6.3  Tuning a speed-PSS using the Method of Residues

6.3.1 Calculation of the compensation transfer function of the PSS 
As an example consider the tuning of a true-speed PSS founded on the Method of Residues.
The design is based on a selected set of operating conditions for the SMIB system described
in Table 5.4 on page 263 in which the rotor modes with the PSSs out of service are also list-
ed. To represent a range of operating conditions four normal conditions are selected (Cases
A, B, C, D) together with cases in which one and two lines are out of service (E, F and G,
H respectively).

For the transfer function from the voltage reference input signal to speed-output perturba-
tions the residues, which are calculated using a small-signal dynamics software package, are
displayed in Figure 6.3. The residues lie in a relatively narrow phase-band of approximately

 with a spread in magnitude between 0.19 and 0.31 units.
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Figure 6.3 Polar plot of residues for selected cases A to H for the SMIB system. 
The residue for Case C is selected as representing the group. 

It is now necessary to select from the group in Figure 6.3 a representative residue on which
the compensation is to be based. If the residue of maximum amplitude is selected (e.g. that
for Case A in the figure) the resulting value of nominal limit kRm would be lower than if some
other residue were selected (according to (6.14)). The decision depends on the application
or may be determined by the system criteria which specify the minimum level for damping
(say) for the outage of two lines (Cases G and H here). However, as in Section 5.10.6.1, the
design Case C is again selected to facilitate a comparison of the performance between the
PSSs based on the Residues and P-Vr methods. From the polar plot in Figure 6.3 the residue
for Case C, , is selected as it fairly well represents the group in amplitude and
phase. The PSS is thus required to provide phase-lead compensation of

= .

From Table 5.4 for Case C the modal frequency is . Compensation for
the phase shift introduced by the washout and low-pass filters at this complex modal fre-
quency is also required.

Let us assume a single lead transfer function, and washout and low-pass filters with time
constants of TW = 5 s and TLP = 0.0125 s, respectively, are employed. The PSS of (6.2) thus
takes the form: 

. (6.16)

At the complex modal frequency a net phase lag of  is introduced by the washout and
low pass filters; the total phase compensation required is therefore 
at the rotor mode . Employing the algorithm outlined in

Residues for the transfer function
   h  Vref h 

0.266 132.4

180 132.4– 47.6

C 0.261 j9.02=

F s  kRH s  kR

sTW

1 sTW+
-------------------

1 Tns+

1 Tds+
------------------ 1

1 TLPs+
---------------------= =

5.27
47.57 5.27+ 52.84=
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Appendix 6–I.1 an iterative procedure is used to calculate the parameters of the lead transfer
function for the rotor mode. The resulting time constants are Tn = 0.359 and Td = 0.038 s.

It was suggested earlier that an acceptable gain might lie in the range , where

the nominal upper gain limit kRm is determined by (6.14). Substitution in the latter equation

with values  and  yields kRm = 13.4 pu on

machine MVA rating. Let us assume an acceptable gain range for kR of 0 to 1.34 pu. 

6.3.2 Design Case C. Performance of the PSS with increasing PSS gain
Using the PSS transfer function given by (6.16) let us estimate the values of the rotor mode
as the gain kR is increased from zero (open loop) to 10% of kRm, i.e 1.34 pu.

Three values of the mode are calculated for each value of kR, that is, (i) an approximate value
of the mode based on (6.10), (ii) a corrected value based on (6.8), and (iii) an eigenvalue cal-
culated using the software package Mudpack [5]. The results of these calculations are shown
in Table 6.1.

Table 6.1  Rotor modes as PSS gain kR is increased from zero to 10% of kRm.

From the table it is observed that the real parts of the rotor modes based on the approximate
and corrected estimated values start to differ from the eigenvalues by more than 10% for
PSS gains kR greater than 8% to 10% (i.e. 1.1 - 1.3 pu). It should be remembered that more
accurate eigen-analysis takes into account the effect of other zeros and poles on the modal
trajectory as kR is increased whereas the approximate trajectory increases linearly. Engineer-

Gain
kR (% of 

kRm)

Approximate * Corrected+ Eigenanalysis
Difference 

EigAnal-Approx.
Difference

EigAnal-Corr’d

Real Imag Real Imag Real Imag Real Imag Real Imag

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10#

 0.261
 0.148
 0.035
-0.078
-0.192
-0.305
-0.418
-0.531
-0.644
-0.758
-0.870

9.018
9.020
9.021
9.021
9.021
9.021
9.025
9.022
9.022
9.022
9.022

 0.261
 0.148
 0.034
-0.080
-0.194
-0.308
-0.422
-0.537
-0.651
-0.765
-0.879

9.018
9.019
9.016
9.011
9.003
8.993
8.981
8.966
8.949
8.930
8.909

 0.261
 0.147
 0.030
-0.089
-0.210
-0.334
-0.459
-0.587
-0.716
-0.846
-0.976

9.018
9.016
9.012
9.004
8.991
8.974
8.953
8.925
8.892
8.851
8.804

-
-0.001
-0.005
-0.011
-0.018
-0.029
-0.041
-0.056
-0.072
-0.088
-0.106

-
-0.004
-0.009
-0.017
-0.030
-0.047
-0.072
-0.097
-0.130
-0.171
-0.218

-
-0.001
-0.004
-0.009
-0.016
-0.026
-0.037
-0.050
-0.065
-0.081
-0.097

-
-0.003
-0.004
-0.007
-0.012
-0.019
-0.028
-0.041
-0.057
-0.079
-0.105

# 0.1kRm=1.34 pu     * Eqn. (6.10)      + Eqn. (6.8)       EigAnal: Eigen-analysis
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ing judgement based on system requirements is needed to decide on the value of the gain
setting - and if it is appropriate for other operating conditions. 

6.3.3 Significance of the gain kR and the damping gain k

The gain kR itself has no significance unless it can be related to the damping torque coeffi-
cient induced by the PSS, i.e. the damping gain k. Let us relate the results of the simulation
study in Table 6.1 to that based on the P-Vr-based design in Chapter 5 for the same operat-
ing condition, Case C in Table 5.4. However, to facilitate the comparison, the following
modifications are made to the PSS based on the P-Vr transfer function in (5.49) on
page 267, (i) the low-pass filter time constants of the PSS transfer function are set to 0.0125
and 0.005 s, and (ii) its damping gain is set to k = 77.4% of 20 pu (15.5 pu); the washout
filter time constant remains at 5 s. The latter gain setting results in the real part of the eigen-
value (the rotor mode) being equal to that produced by simulation for the tuning design
based on Residues Method, i.e  Np/s with kR = 10% of kRm (see column 6 of
Table 6.1).

Referring to Figure 6.4 we note that for the PSS tuned based on the P-Vr Method the damp-
ing torque coefficient is essentially flat at ~15 pu over the frequency range 1 to 10 rad/s for
the setting of the damping gain to 15.5 pu. For the PSS design based on Residues Method
the damping torque coefficient equals that of the P-Vr method at 15 pu at a frequency of
~9.2 rad/s. However, in the residues-based method the damping torque coefficient is seen
to vary markedly over the frequency range 2 to 12 rad/s, a variation which will be shown to
be unsatisfactory if the SMIB system represents an approximate, reduced equivalent of a
larger multi-machine system in which a range of electro-mechanical modal frequencies exist.
Thus, in a multi-machine system to ensure a robust PSS design using the Residues Method
it is necessary to take into account all of the electro-mechanical modes in which the gener-
ator participates. A reduced-order system equivalent with a range of modal frequencies is
proposed in [6] to facilitate robust application of the Residues Method. Nevertheless, it is
necessary to verify robustness by closely examining damping performance over an encom-
passing range of operating conditions. 

6.4 Conclusions, Method of Residues

Based on the preceding analysis and the example it is noted that: 

• In the Method of Residues tuning procedure, the determination of the PSS compensa-
tion parameters is based both on the value of the complex rotor mode on open loop
and on the variation of the mode on closed loop as the gain kR is incremented (as in
Table 6.1). In both the P-Vr method and the GEP Method (which follows next) the
analysis is based on frequency response, . Clearly an analysis based on complex

modal frequencies in the Method of Residues is likely to be more accurate - all else
being equal; this is discussed in Section 5.9.3 with reference to Table 5.3 on page 255.

0.976–

s jf=
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Figure 6.4 Case C: Synchronising and damping torque coefficients induced on the gener-
ator. PSS tuning is based on (i) P-Vr Method and (ii) Method of Residues. 

• The relations (6.10) and (6.8) for the approximate and corrected mode shifts provide
useful estimates of the mode shifts with increase in gain kR. However, in the multi-
machine case, eigen-analysis may reveal that the effect of system poles and zeros may
cause the trajectory of the rotor mode to deviate from a direct left-shift at relatively
low values of the gain kR.

• In the example presented the Method of Residues can provide a basis for determining
the PSS transfer function, and yields acceptable values of mode shifts with increasing
PSS gain. However, the performance of the PSS needs to be validated over an encom-
passing range of operating conditions using a small-signal dynamics software package,
particularly in the application of the method to PSSs in multi-machine systems [4],
[10].

• In the P-Vr method, the damping gain k represents the damping torque coefficient
induced by the PSS over a desired range of rotor modal frequencies. In the Method of
Residues the value of the PSS gain kR has no obvious significance.

         P−Vr based Method
         Residues based Method
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• The P-Vr method yields inherently robust PSS designs (see item 3 of Section 1.2).
Moreover, the PSS can be tuned to yield a more-or-less constant positive damping
torque coefficient over a modal frequency range covering the low frequency inter-area
modes to the higher frequency local-area and intra-plant modes (see Figure 6.4). In
comparison, robust PSS design using the Residue Method requires accurate determi-
nation of the residues of all rotor modes in which the generator participates signifi-
cantly.

6.5 The GEP Method

Larsen and Swann described in 1981 a practical procedure for tuning PSSs based on meas-
urements taken in the field [7]. The procedure is based on the design approach of de Mello
and Concordia [8]. The transfer function between the voltage reference input to the AVR
and the electrical torque developed on the shaft is called the generator, excitation system and
power system transfer function, GEP(s). GEP(s) can be shown to be proportional to the
transfer function from voltage reference ( ) to terminal voltage ( ); the frequency

response  is relatively straight-forward to measure in the field. The com-

pensation angle for the PSS transfer function is the negative of the phase shift of the meas-
ured frequency response. From this result, a compensating transfer function is synthesized
for the PSS. A further test is performed to determine the gain setting of the PSS. This test
consists of raising the gain until the onset of instability is observed; the PSS gain is then set
to 1/3rd of this value - providing a gain margin of about 10 dB. Further developments of
the GEP approach are reported in [6], [9].

The use of the field measured frequency-response for PSS design relies on the assumption
that, because the generator is connected to a large power system, its speed remains more-or-
less constant during the frequency response measurements. This is equivalent to assuming
that the inertia constant of the unit is very large or, alternatively, the speed and angle pertur-
bations are negligible. For example, based on the Heffron and Phillips model of a SMIB sys-
tem under closed-loop voltage control in Figure 5.8 on page 239, the transfer functions for
both the torque of electro-magnetic origin and the terminal voltage can be written with re-
spect to the reference voltage perturbations as:

,  and (6.17)

, (6.18)

 respectively; both these equations are independent of the shaft-dynamics. An inspection of
the two transfer functions reveal that (i) they are simply related by the scalar ratio 

and, (ii) the phase responses of terminal voltage and the P-Vr characteristics are identical.
The PSS tuned according to the GEP method must therefore introduce phase lead to com-
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pensate for the lagging phase characteristic of . The phase response of

the synthesized compensation therefore corresponds to the negation of the lagging phase
characteristic.

6.6 Tuning a speed-PSS using the GEP Method

Let us consider the tuning of a true-speed PSS based on the GEP method for the sixth-order
generator and SMIB system of Section 5.10.4.1. Because the measurements of the frequency
responses when conducted in the field are likely to be at lower levels of real power output,
operating conditions Cases R and K for the SMIB system listed in Table 5.6 on page 276 are
used as examples. (For reasons of security, field measurements are likely to be carried out at
lower values of real power output.) The generator is under closed-loop voltage control with
power outputs of 0.5 and 0.7 pu at unity power factor; the associated rotor modes are

, respectively.

The terminal voltage frequency responses are compared with those of their P-Vr character-
istics in Figure 6.5. The presence of the resonance associated with the lightly damped rotor
mode for Case K is particularly evident in the terminal voltage responses of the GEP fre-
quency responses. If the GEP transfer function is calculated with all shaft dynamics disabled
(GEPSDD), the resonances in Cases R and K are eliminated and the phase response of
GEPSDD generally agrees closely with that of the P-Vr transfer function, as seen in
Figure 6.6.

The P-Vr characteristic representing the synthesized GEPSDD phase responses is

.

Thus the associated transfer function of the PSS derived from the negation of the synthe-
sized GEPSDD phase responses takes the form, 

, (6.19)

which includes a washout and a first-order a low-pass filter; let kG = 1.

6.6.1 Example 2. Performance of the PSS based on Design Case C
For purposes of comparison with the Method of Residues the performance of the PSS based
on the GEP approach is evaluated for Design Case C of Table 5.4, P = 0.9 Q = 0.2 pu using
the PSS given by (6.19).

The damping torque coefficient for the PSS is calculated as in Section 6.3.3 for the Residue
Method. The frequency response of the damping torque coefficient is shown in Figure 6.7
and reveals that the value of the coefficient at the modal frequency of 9.0 rad/s is 4.1 pu.
Consequently the PSS gain kG = 1 is equivalent to a damping gain of 4.1 pu in the vicinity
of the modal frequency of rotor oscillations. 

Vt jf  Vr jf 

0.539– j8.50  and 0.065– j8.92
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Figure 6.5 Frequency responses for the transfer function  and the P-Vr 
characteristics for lower levels of real power output at unity power factor.

Figure 6.6 Comparison of the GEP phase response with shaft dynamics disabled (GEPS-
DD) and those of the associated P-Vr characteristics. The synthesized phase response for 

the design Case C of Table 5.4 is also shown.
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Note that in Figure 6.7 the damping torque coefficient has, relatively, a more level frequency
response over the range 1.5-15rad/s than that in Figure 6.4 for the PSS design based on the
Method of Residues. This is because the phase compensation of (6.19) reflects that of the
P-Vr approach over the frequency range - rather than that designed at a single selected mod-
al frequency.

Figure 6.7 Case C: PSS-induced damping torque coefficient for a PSS designed according 
to the GEP method and with gain kG = 1.

Let us compare the mode shifts based on the GEP Method and the P-Vr method. For
kG =4.88 pu (equivalent to a PSS damping gain of 20 pu on machine MVA rating), the rotor

mode using the GEP method is  for operating condition C. The mode shift
associated with this gain is , a value which is close agreement with that derived
based on the P-Vr method, i.e.  (refer to Table 5.5). 

From a comparison of Figure 6.5 and Figure 6.6, the following observations are offered.

• As is to be expected, the magnitude responses of the conventional GEP and the P-Vr
transfer functions differ. (Because the generator is under closed-loop voltage control
the gain of the GEP transfer function tends to unity at low frequencies.)

• The conventional GEP phase response may be ‘distorted’ by a number of resonances
associated with the rotor modal frequencies in a multi-machine system. (These should
be significantly attenuated by the damping introduced by a properly-designed PSS).
Such phase responses and the lack of appropriate magnitude information complicate
the synthesis of the PSS transfer function. (It is usually a matter of finding a number
of lead networks to obtain the desired lead compensation over the range of modal fre-
quencies.)

• For measurements in the field, one would be reluctant to proceed with frequency
response measurements approaching a resonance because of an uncertainty concern-
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ing its magnitude. The range of the frequencies measured may therefore be restricted
to lower values when resonances are encountered. Such resonances may not be
encountered at lower real power outputs from the generator.

• The magnitude responses for the P-Vr and the GEPSDD transfer functions differ by
a constant gain value. There is close agreement between the P-Vr and GEPSDD
phase responses for the sixth-order model of the generator. The GEPSDD phase
response which is determined by analysis in this exercise is seen to provide a good
‘smoothed’ representation of that of the GEP.

6.7 Conclusions, GEP method

Based on the preceding analysis and Example 2 it is noted that:

1. In a single- or multi-machine system the field-measured GEP responses may be
adulterated by resonances due to lightly damped local or intra-station modes. The
range of the measured frequency responses may be curtailed as the size of the reso-
nance under field conditions is typically unknown.

2. Field-measured GEPs can assist in the validation of the small-signal system model
of the generator and system used in simulation-based PSS tuning methods. It should
be noted that, for PSS tuning using analytical techniques, accurate models of the
generator and excitation system are highly desirable. 

3. By eliminating the resonances associated with the rotor modes of the conventional
GEP transfer functions, the phase responses of the GEPSDD transfer functions
determined by analysis provide a sounder basis for the determination of phase com-
pensation required for PSS than by field measurements. However, for the evaluation
of the GEPSDD one would need to have confidence in the accuracy of the model of
the generator and system.

4. If, in the tuning of a PSS based on the conventional analysis of GEP(s), the shaft

dynamics are disabled 1 then the same phase information is available in the fre-
quency responses of both the GEP(s) and the P-Vr methods. However, the associ-
ated magnitude responses in the GEP(s) method are ignored. Because the P-Vr
method provides guidelines for the settings of PSS damping gains, the concepts,
analysis and results in Chapters 10, 12 -14 are lost. 

5. Of the three methods which are discussed in this chapter and are complementary,
the P-Vr frequency response provides continuous, consistent information over the
range of rotor modal frequencies and encompassing operating conditions for both
magnitude and phase; this simplifies considerably the synthesis of the PSS transfer
function and its tuning. 

1. The transfer function in the case is .P s  Vref s 
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6. The PSS damping gain associated with the P-Vr method has particular significance. It
provides a sound and proper basis for the systematic selection of PSS gains. Moreo-
ver, its significance as a damping torque coefficient is used in the theoretical and
practical applications demonstrated in Chapters 12 to 14. It is also a meaningful
quantity. For example, 20 pu damping gain on machine rating is a moderate gain
value; neither the PSS gain kR of (6.2), associated with the Residue Method, nor kG

(6.19) of the GEP Method, have any significant meaning when expressed on
machine rating.

7. Because of the advantages listed above, and other merits, the P-Vr approach is
employed in practice by a number of organizations for the tuning of PSSs in the
multi-machine environment described in Chapter 10.
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Appendix 6–I

App. 6–I.1 Algorithm for the calculation of stabilizer parameters
The algorithm is based on the general form of the stabilizer transfer function F(s) 

,    (6.20)

which consists of the compensator, and the washout and low-pass filters [4], [10]. Lead com-
pensation is to be designed such that the compensation angle  provided by the stabilizer
is  at the selected complex frequency .

For this complex mode let us assume that the washout and low-pass filters introduce a phase
lead of ; the maximum phase lead to be contributed at frequency  by the compensator
is then . For a compensator consisting of m first-order lead blocks the phase
lead to be contributed by each block is . Let us therefore consider the first-

order lead compensator described in Section 2.12.1.4 Example 10 1.

. (6.21)

If the maximum phase lead that can be produced by the above compensator is assumed to
be , then the allowable range for  is . Substitution of the complex frequency

 in (6.21) results in:

.

The phase lead introduced by the compensator at  is equal to

. (6.22)

The desired maximum phase lead,  occurs at  where = 0. Noting

that  is a constant and applying the constraints  and , the expression
= 0 is solved to give

. (6.23)

1. Note that for , i.e. ,  and . 
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Substitution of (6.23) into (6.22) yields an expression for the maximum phase lead:

. (6.24)

To design a first-order lead block to provide the required maximum phase lead  at the
modal frequency , the following procedure is proposed to solve for the com-

pensator parameters  and T in (6.21).

1. Select m such that  where . 

2. Calculate  as an initial estimate of .

3. Calculate  as an initial estimate of T.

4. Set (i) a tolerance level for the iterative calculations, e.g. , and (ii) the coun-
ter to k = 1.

5. Given that , solve for T using (6.23) in the form

,

and choose the smallest positive value of T. Set Tk = T.

6. Solve (6.24) for  letting , i.e. solve the equation

,

and choose the smallest positive value of . Set .

7. If  and  then end, else go to 5.

The required first-order compensator parameters are  and T = Tk.

Note that if the compensation angle is negative, i.e. , the parameters of a lag com-
pensation transfer function are calculated.
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App. 6–I.2 Calculation of the nominal upper limit of the range of sta-
bilizer gains
A nominal measure of the upper limit of range of stabilizer gain is shown to be:

. (6.14) (repeated)

The residue rh is specified as are the parameters of the washout and low-pass filters. Having
selected the desired order m of the compensator its parameters are calculated using the

above algorithm. It then remains to calculate  and evaluate it at the selected modal fre-

quency .

Assuming the three blocks in the transfer function are in forms such as those in (6.20), the
derivative can be expressed in a general form:

. (6.25)

From the above expression the derivative of the three transfer functions in (6.20) can de-
rived by setting the following quantities for the:

compensator , a = 1, Tn = T1, Td = T2, m = p; 

washout filter , a = 0, Tw = T1 = T2, w = p;

low-pass filter , a = 1, T1 = 0, TLP = T2, z = p.

Given H(s) in (6.20) is of the form , the expression for the derivative is:

.      (6.26)
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Chapter 7

Introduction to the Tuning of 
Automatic Voltage Regulators

7.1 Introduction

7.1.1 Purposes
Given a model and the parameters of the generator and its exciter, there is little published
in the literature describing the various methods for the tuning of automatic voltage regula-
tors (AVRs) to achieve certain performance specifications for the generator off- and on-line. 

An aim of this chapter is to introduce and provide an analytical basis for various tuning
methodologies, which provide a set of parameters for the particular AVR model. Further
analysis may depend on the type and form of the AVR supplied by a manufacturer. Howev-
er, even for complex AVR structures, the proposed methodologies may provide an initial
set of parameters based on a simplified model of the AVR. Subsequent fine-tuning, based
on the complex structure, can then yield an appropriate final set of parameters. 

It should be emphasized that the tuning methodologies considered here are based on the
concept of transient gain reduction, though various other design approaches are employed
[1]. Depending on the type of AVR, rate-feedback may also be used to essentially effect a
similar behaviour as transient gain reduction. Furthermore, more modern systems which
employ proportional-integral-derivative (PID) controls can be tuned to give a response akin
to transient gain reduction. It is recognized that manufacturers of the equipment have their
313
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own, effective procedures for tuning. However, when tuning, it is important in a number of
scenarios to account for the power system characteristics over an encompassing range of
normal and outage conditions. The latter considerations are often of concern to the trans-
mission service provider (TSP) who may be responsible for system security. It is therefore
desirable that staff in such TSPs understand the relevant methodologies and can undertake
or validate, if necessary, the tuning of AVRs.

A further objective in the description of the methodologies is to provide for young engineers
an introductory and a reference text which not only covers the relevant control systems
background but also highlights the power system requirements and performance. 

7.1.2 Coverage of the topic
Because powerful methods of analysis are available in linear control systems theory, the tun-
ing of AVRs is based on small-signal analysis and the linearized models of the power system
and associated devices. The performance of the resulting tuned AVR, and the other ele-
ments of the power system, should then be subject to simulation studies for an appropriate
set of large-signal disturbances over the range of operating conditions. In such simulations
the limits on AVR and the exciter quantities, as well as saturation, should be modelled.

7.2 The excitation control system of a synchronous generator

The IEEE Standard 421.1 [2] defines the excitation control system (ECS) as the feedback
control system that includes the synchronous generator and its excitation system. Essentially
the excitation control system is the system which excites and controls the rotor field current
of the generator and thus the term ECS includes the generator. The excitation control sys-
tem as well as the excitation system (ES) are shown in the block diagram of Figure 7.1. The
excitation system is defined as ‘the equipment providing field current for a synchronous gen-
erator, including all power, regulating, control, and protective elements’. The main ‘power
element’ is the exciter, however, the ‘regulating, control, and protective elements’ are re-
ferred to in the Standard as the ‘synchronous machine regulator’. 

Figure 7.1 Block diagram of the excitation control system [2].

Power SystemSynchronous
machine
regulator

Exciter Synchronous
generator

Excitation System

Excitation Control System
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We shall refer to the ‘synchronous machine regulator’ as the ‘automatic voltage regulator’ or

AVR 1. We will assume the AVR comprises all the control elements and any lower-power,
power-electronic devices which drive the input to the exciter. 

IEEE Standard 421.2 [3] concerning aspects of the testing and evaluation of dynamic per-
formance of excitation control systems is also of interest here. 

A component of the AVR is the compensating control provided to ensure that the excitation
control system satisfies certain steady-state and dynamic performance criteria for the unit off-
and on-line. The main objective in ‘AVR tuning’ is to determine the parameters of the ap-
propriate compensator which satisfy the criteria. The block diagram of the excitation control
system, which forms the basis for the analysis which follows later, is shown in Figure 7.2.
The element  typically represents the simplified dynamics of the AVR power

amplifier and the gain. However, this block diagram does not apply to rate-feedback com-
pensation which is treated in Section 7.10. 

When the generator is on-line the transfer function Ggen(s) includes the dynamics associated
with the external power system. When the unit is off-line it is assumed to be under closed-
loop voltage control and operating at rated voltage at synchronous speed. It should be noted
that the dynamic behaviour of the excitation system and generator may differ significantly
when off- or on-line under closed-loop voltage control.

Figure 7.2 Excitation control system with compensation in the forward path of the AVR

When forming models of the components of the excitation control system from results of
tests, careful attention must be paid to the per unit definitions of the components and the
per unit relations between components. Commonly-used definitions are listed in Chapter 4.

1. The IEEE Standard 421.1 [2] refers to ‘automatic voltage regulator’ as ‘a term often used 
to designate either the voltage regulator alone or the complete control system comprised 
of limiters, etc.’
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7.3 Types of compensation and methods of analysis

A variety of types of compensation is employed in the AVR and a number of these will be
discussed in the following sections. Each of these are analysed and, where appropriate, a de-
sign method or procedure is formulated. The aim in each method is to achieve a desired
transient gain reduction over a selected range of modal frequencies. For each type, illustra-
tive examples are provided of the tuning method to achieve specified dynamic performance
criteria with the generator off- and on-line in a simple power system. The types of compen-
sation considered are:

• Transient gain reduction (TGR), the simpler type of compensation 1 (Section 7.6).

• Proportional plus Integral plus Derivative (PID) compensation (Section 7.7). A number
of forms of PID compensation is analysed and procedures for the calculation of the
parameters are proposed. In the case of a type of PID, called Type 2B here, a detailed
analysis is undertaken to determine a suitable set of PID parameters for both normal
and N-1 operating conditions for a remote, three-generator power station in which
brushless AC exciters are installed. (Section 7.11). 

• Proportional plus Integral (PI) compensation (Section 7.9). The concepts in the PI
design procedure are simple, and follow on from the earlier sections. The extension of
PI compensation to PID compensation using a series lead-lag block is illustrated and
the equations for the parameter conversion to the PID structure are formulated.

• Rate feedback of the AVR or exciter output (RFB) (Section 7.10). The aim of the analysis
is to determine the gain and time constant in the feedback transfer function that sat-
isfy the performance specifications. A method for calculating the latter parameters is
proposed which is based on a simple model of the excitation system. However, it is
shown that the results can be applied to more complex systems which, for instance,
include PI compensation in the forward path.

The small-signal performance of the system is analysed using software packages such as
Matlab® [4] or Mudpack [5]. Several methods of linear system analysis such as frequency
response, root-locus, step response and eigen-analysis are employed. The theory behind
these linear system analysis techniques are described in references [8] and [9].

7.4 Steady-state and dynamic performance requirements on the gen-
erator and excitation system

In some types of excitation systems there is a requirement for high values of gain in the for-
ward loop of the excitation system for closed-loop voltage control. Such gains are typically
employed (i) to provide fast response of the generator terminal voltage to disturbances, (ii)

1. Transient gain reduction has not been used in some cases with fast-response, high gain, 
static excitations systems [6], [7].
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to boost field flux linkages following a major disturbance in order to increase synchronizing
power, and (iii) to satisfy requirements on the error in the terminal voltage in the steady-state
(‘zero frequency’ and final equilibrium point).

At higher modal frequencies high gains in the forward loop of the closed-loop voltage con-
trol system are destabilizing. In order to provide a stable, robust system it is necessary to
reduce, by compensation, the high forward loop gain (KA) to a lower “transient gain” (KT)
at higher frequencies. This concept is illustrated in Figure 7.3. 

Figure 7.3 Straight-line approximation of the magnitude response of the compensation 
transfer function showing high gain at low frequency and transient gain reduction at higher 

frequencies.

In general, the basis of the approaches is (i) to establish a transient gain reduction over an
appropriate range of modal frequencies, and (ii) to provide a well-damped response of the
generator terminal voltage to a step change in reference voltage. Such a range of modal fre-
quencies depends on the rating and location of the generator and its participation in the in-
ter-area, local-area and intra-station modes. It will be assumed for present purposes that the
range of modal frequencies is 1.5 to 15 rad/s. On the other hand, if local-area modes only
were of concern the relevant frequency range might be 6 to 12 rad/s (see Section 1.5). The
compensation provided should also satisfy the criteria for the dynamic performance of the
generator off-line under closed-loop voltage control (this matter is treated in sections 7.6.3, 
7.7.2.3 and 7.11.2.2). 

The level of transient gain is determined in the first instance by the closed-loop performance
of the generator and excitation system under voltage control when the unit is off-line and
running at synchronous speed. In order that the terminal voltage response to a step change
in reference voltage is well damped, it is suggested in [10] that the transient gain  should

be approximately less than . For example, if the generator’s open-circuit time
constant is = 5 s and the exciter time constant is = 0.1s, the transient gain should
be less than 25 pu on machine base. It is also stated in [10] that “... the closed-loop response
of this voltage-component regulating-loop (i.e. ignoring the contribution from rotor angle)
under load conditions is not materially different from the closed-loop response on open cir-
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cuit”. This implies that the approximate value  is appropriate on-line.

However, it also pointed out in the discussion in [10] that the performance with values of
transient gain exceeding  has proved satisfactory. Note that cases are illustrated
in which the closed-loop terminal voltage response to a step change in reference voltage is
well damped but the rotor modes are poorly damped. Such cases may required a coordinated
tuning with the PSS installed on the generator.

The range of the transient gain is typically 25 to 50 pu on machine base. In the examples in
this chapter a transient gain of 32 pu (~30 dB) is usually adopted. 

In order to ascertain the characteristics of the closed-loop voltage control system of a gen-
erator, either off- or on-line, step changes in the voltage reference of up to 5% of rated ter-
minal voltage are employed in practice. The size of the steps is such that the response is
measurable above the noise level but not so large as to produce over-voltages of the exciter
output. However, for the small-signal (i.e. linear) simulation studies in this book, a step size
of 1% from 1 pu is a more convenient and meaningful measure.

Minimum performance requirements on generators and excitation systems are usually spec-
ified by the system operator in a code or a set of rules; the latter will be referred to as the
‘Rules’. As an example - and as applied in this chapter - typical requirements that may be
imposed on the generator and excitation system are:

• Under closed-loop voltage control the generating unit must be stable when off-line
and on-line. For planning purposes, when the unit is on-line the halving time of any
inter-regional or intra-regional rotor oscillations should be less than 5 s (e.g. [11]).

• Each excitation control system must provide continuous voltage regulation to within
0.5% of the selected set-point value at all operating points within generator capability,
(e.g. [11]). This is interpreted as requiring that the effective DC gain of the terminal
voltage control loop is at least 200 pu for the steady-state terminal voltage error to be
less than 0.5% (see Section 2.10.1) (this is assuming a proportional-only control).

• With the generator on-line and under closed-loop voltage control, the settling time
following a disturbance equivalent to a 5% step change in the measured generating-
unit terminal voltage must be less than 5 s. This must be satisfied at all operating
points within the generating unit capability. It is assumed here that the step change
does not lead to the activation of limiters in the excitation system. The settling time is
the time for the terminal voltage response to decay to within a prescribed percentage
of the final steady-state level. (In Section 7.11 a 10% settling time employed; unless
otherwise stated a 2% settling time is adopted in this book.)

• When the unit is under closed-loop voltage control and is running off-line at rated
speed the corresponding settling time is 2.5 s, or less.

KT Tdo 2TE 

Tdo 2TE 
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The objective of the analysis in this chapter is to determine the compensation that must pro-
vided by the AVR to satisfy the relevant Rules and, when appropriate, to align with excita-
tion system models in the IEEE Standard 421.5 [12].

Other helpful background material is provided in [7] and in [13] to [15].

As mentioned earlier an objective of this chapter is to provide a theoretical background and
some guidelines to the various approaches to AVR tuning. Each method of compensation
that is analysed is followed by an illustrative example, typically for the generator off- and on-
line under closed-loop voltage control. Because the requirements and performance specifi-
cations may vary from application to application, there is flexibility available for fine tuning
of the controls based on any of the approaches.

The following discussions are based on small-signal analysis. In particular, Bode plots of the
open-loop frequency response of a system will be employed to assess the stability and per-
formance of the closed-loop system using the concepts of Phase Margin and the gain-cross-
over frequency. The open-loop system should therefore have no poles or zeros in the right-
half of the s-plane [8].

As emphasized earlier, the results obtained based on small-signal analysis should be re-
viewed in the context of appropriate and relevant large-signal (transient stability) studies.

In modelling excitation systems, limiting of the outputs is imposed on certain types of
blocks, namely integrators, first-order blocks, lag-lead and lead-lag blocks. Use of an inte-
grator, say with windup limiting, can result in additional phase shifts.Windup should not be
an issue in strictly small-signal analysis but one should be aware of it occurring following
large-signal disturbances. (See Appendix 7–I.4.)

7.5 A single-machine infinite-bus test system

In the examples to illustrate the application of the methods of compensation the single-ma-

chine infinite-bus (SMIB) system shown in Figure 7.4 is employed 1. One line (‘a’) of a pair
of parallel lines is out of service, e.g. for maintenance or following a fault on the line. The
generator output at unity power factor is 0.4 pu power (a value above the range 0.1 to 0.3
pu at which the PSSs typically are switched into service). The load is modelled as constant
impedance. For on-line analysis the generator transfer function block, referred to as

, accounts for the dynamics of both the generator and the system to which it is con-

nected. The sixth-order generator parameters are listed in Appendix 7–I.1. Note that the
model of the exciter is a simple first-order lag; a more detailed model is used for a brushless
exciter in Section 7.8.

1. For the studies in Section 7.8 concerning the Type 2B PID, a different but more relevant 
power system is chosen. 

Ggen s 
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Figure 7.4 SMIB test system, outage of line ‘a’; Case W. 
Generator output P = 0.4, Q = 0 pu. Load: P = 0.02, Q = 0 pu at 1 pu voltage. 

Parameters 1 are in pu on machine base (MVA). System frequency is 50 Hz.

Only this one operating condition (an N-1 condition) is analysed to illustrate some of the
issues that may arise in the design process. Without a PSS installed on the generator in this
case a lightly damped rotor mode is present. In practice an encompassing range of normal
and N-1 operating conditions should be examined in order to determine the appropriate
compensation. For the purposes of this chapter we will deem damping performance to be

adequate if the halving time of the rotor mode of oscillation is shorter than 5 seconds 2. This
is consistent with the requirements in the Australian National Electricity Rules (NER) [11].

7.6 Transient Gain Reduction (TGR) Compensation

7.6.1 Introduction

In classical control terminology Transient Gain Reduction (TGR) is referred to as cascade
lag-lead compensation; such compensation is incorporated in the control system of the AVR
as shown in Figure 7.5.

 .
Figure 7.5 Excitation control system with Transient Gain Reduction

1. The generator and excitation system parameters which are given in Appendix 7–I.1.1 dif-
fer from those in Section 5.10.4. However, the transformer and line parameters are the 
same on the generator MVA base as those in the latter section.

2. The stability limit is derived from , i.e.  Np/s.

Z=0.0225+j0.225, B=0.11

a

Constant Impedance
Load

xt =0.15, tap 0.96
Infinite Bus

Parameters per line:
Vt =1.0 10

VB=0.9871 0
V=1.043 6.8

1 e
a5–

 0.5= a– 0.139–=

Gex Ggen

Vref + Vt

        Excitation system

KA

1+ sTA

1+ sTC

1+ sTB

TGR 
Compensation

Exciter
Gex = 1/(KE+sTE)

Vr EfVerr

TA = 0



Sec. 7.6 Transient Gain Reduction Compensation 321
 The transfer functions for the TGR block and the associated classical lag-lead block are:

   or    , respectively, where  or . (7.1)

Let  be the frequency of the exciting sinusoidal signal. In the frequency domain at high

frequencies ( ) the transfer functions in (7.1) reduce to  or . At such fre-

quencies the gain of the AVR transfer function in the forward loop is
,

where  is the per-unit transient gain. TGR compensation thus provides a gain reduction

KT/KA = TC/TB.

The concept of TGR is illustrated in Figure 7.3 on page 317 in which the corner frequencies
are  and .

The classical design approach for determining the parameters  and  are considered in
Section 2.12.1.5 and in texts on control system analysis [8], [9]. However, let us demonstrate
a somewhat different approach bearing in mind that the relevant performance requirements
of the generation and excitation system have to be satisfied for the generator on-line. In par-
ticular, the unit must operate stably at lower power levels before the PSS is switched on, say,
at 0.3 pu power. Furthermore, the requirements should apply for the appropriate range of
operating conditions, particularly at leading power factors, N-1 contingencies, etc.

A method for determining the parameters for TGR compensation and evaluating its perfor-
mance is demonstrated in the following illustrative examples which consider both the on-
line and off-line cases.

7.6.2 The performance of the generator and compensated excitation system on-
line 

7.6.2.1 Preliminary off-line considerations
When the unit is off-line (i.e. with the generator main breaker open and the unit running
isolated from the power system) and under closed-loop voltage control the transfer function
of the generator is assumed to be , = 5.0 s. The simple transfer

function of the exciter is , where KE = 1.0, TE = 0.1 s. (For the on-
line analysis the generator parameters are listed in Appendix 7–I.1.1.) For this unity feed-
back system, shown in Figure 7.5, the low frequency or ‘DC’ gain of the forward loop is thus
KA when off-line. In order for the voltage regulation to be better than 0.5% when the unit
is off-line, the AVR gain KA = 250 pu is selected; this results in a steady-state error of

% - which is less than the specified value of 0.5%. (see Section 7.4).
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7.6.2.2 On-line studies
The approach to the design of the TGR block is demonstrated for an excitation system with
an AVR gain initially set to lower values of KA without compensation. The initial study is
based on the generator on-line connected to the external system shown in Figure 7.4. A
study of the performance of the generator on-line without and with TGR compensation in
its AVR will follow.

For KA = 1 pu, TA = 0 and without compensation the Bode Plot  with the terminal-

voltage feedback loop open is shown in Figure 7.6. If the forward-loop gain KA is increased
to 32 pu (~30 dB) without compensation, we note that the gain cross-over frequency 

is 3.1 rad/s and the associated Phase Margin (PM) is 78 . With such a PM not only is the
system stable when the voltage feedback loop is closed, but the time response of the termi-
nal voltage to a step change in reference voltage will be over-damped. (A PM > 60  for the
terminal-voltage feedback loop typically provides a well-damped response to disturbances
in that loop. However, the response associated with the lightly-damped rotor mode at about
9 rad/s (evident in Figure 7.6) may be superimposed on the well-damped terminal voltage
response to a step change in reference voltage.)

A transient gain KT = 32 pu will be adopted in this and other examples. As stated in
Section 7.4 it is suggested that the transient gain should be less than 25 pu for the latter time
constants. However, it will be established that the selected value of transient gain is satisfac-
tory for this N-1 operating condition.

The proposed AVR gain is KA = 250 pu or 48 dB. Since the desired transient gain is KT = 32,
the TGR transfer-function must provide attenuation of KT/KA = 32/250 = 0.128 (-18 dB)
at frequencies less than that of gain-crossover frequency ( = 3.1 rad/s). Furthermore,
the PM of 78  with KT = 32 pu should not be significantly reduced by the TGR transfer-
function. As pointed out, such a value for the PM is likely to lead, under closed-loop voltage
control with TGR, to an over-damped terminal voltage response to a step change in refer-
ence voltage.

Let us locate the upper corner  of the TGR transfer function at a decade below .

The effect of the corner at  will cause the PM to be reduced by about .

Therefore rad/s, or s.
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Figure 7.6 Unit on-line: Bode Plots of the open-loop terminal voltage for (i) no TGR 
compensation, KA = 1 pu; (ii) no TGR, KA = 32 pu; (iii) with TGR, KA = 250 pu.

The attenuation provided by the TGR transfer function over the frequency range, from DC
to high frequencies ( ), is shown in Section 7.6.1 to be  or . The log-mag-

nitude attenuation of the TGR transfer function is 18 dB, i.e.  dB, or .

The lower corner frequency of the TGR transfer function is then located at 
rad/s, i.e. s.

Thus, for KA = 250 pu, the TGR transfer function is . The Bode Plots for the case

KA = 250 pu (with TGR compensation), is shown in Figure 7.6.

The PM for the compensated case is 76  at 3.1 rad/s (a value close to that of 78  for the
uncompensated case with KA = 32 pu). Eigen-analysis conducted on the closed-loop system

(with outage of line ‘a’) reveals that the rotor mode of oscillation is ; the asso-
ciated halving time is 2.55 s which satisfies the damping performance requirements. The
closed-loop time responses for perturbations in the terminal voltage, exciter voltage and field
current due to a step increase in the reference voltage of 0.01 pu (i.e. 1%) are shown in
Figure 7.7.
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Figure 7.7 Unit on-line with closed-loop control of terminal voltage: perturbations in gen-
erator terminal voltage (Vt), field voltage (Ef) and current (If ) for a step change in reference 

voltage from a steady-state value of 1.0 pu to 1.01 pu (1%).

Increasing the forward-loop gain, or increasing the time constant TC, could reduce the PM
from 76  to a lower value. This would improve the closed-loop terminal voltage response
from over-damped to well damped. However, there may be concern that the compensated
system lacks robustness, say, to  dB variation in the loop gain. For example, it may be
deduced from Figure 7.6 that a 6 dB increase in gain increases the gain-cross-over frequency
to about 6 rad/s. This would not only result in a poorly-damped terminal voltage response
to a step change in the reference-input but, due the proximity to the lightly-damped rotor
mode, a damped oscillation of frequency 8.8 rad/s would be superimposed on it. Bearing in
mind that the system is operating in a N-1 condition, the risk associated with the lack of ro-
bustness would need to be taken into consideration. It will be shown later it is necessary to
examine a range of encompassing N and N-1 conditions to establish the validity of the se-
lected compensation. 

As will be illustrated in Appendix 7–I.5, it is desirable for the phase response shown in
Figure 7.6 to be “flatter” in the vicinity of the gain cross-over frequency to ensure a phase
margin of at least, say of 60 , for a  dB variation in the loop gain.

7.6.3 The performance of the generator and compensated excitation system off-
line
The performance of the generating unit when running off-line at rated speed and under
closed-loop voltage control is now considered.

Typically, the only relevant generator parameter when off-line is its open-circuit time

constant 1. As stated earlier, the generator is modelled in Figure 7.5 by the simple transfer
function . The gain = 250 pu.
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The open-loop Bode Plots, , (i) with no compensation, and (ii) with the TGR pa-

rameters determined above for the on-line case, are shown in Figure 7.8. With no compen-
sation, the phase margin (PM) of 26  at 21 rad/s suggests that under closed-loop voltage
control the responses to step changes in voltage will be lightly damped and oscillatory. With
compensation the phase margin PM is 60  at 5.5 rad/s, thus the closed-loop step response
is adequately damped. The time responses of terminal voltage to a 1% step change in refer-
ence voltage are shown in Figure 7.9.

Figure 7.8 Unit off-line, KA = 250 pu: Bode Plots of the open-loop terminal voltage 

 with and without TGR 

(with TGR, PM=60  at 5.5 rad/s; without TGR, PM=26  at 21 rad/s).

1. The effects of generator saturation have been ignored. Saturation may result in a reduc-
tion of loop gain, at 1 pu terminal voltage, in the simple model of the generator.
In some types of excitation systems, such as brushless, it may be necessary to model the 
demagnetizing effects of the generator field current on the performance of the exciter 
and the reduction in generated field voltage due to loading of the excitation system recti-
fier [12].
These effects are taken into account in Section 7.11.
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Figure 7.9 Unit off-line: Perturbation in terminal voltage on closed loop due to a step 
change in reference voltage from a steady-state value of 1.0 pu to 1.01 pu (1%) 

(with and without TGR compensation).

7.6.4 Comparison of performance of the excitation control system on- and off-line
The analysis of the performance of the generating unit on- and off-line is summarised in
Table 7.1.

Table 7.1  Performance of the unit on- and off-line with TGR compensation

Performance Measures On-line Off-line

Phase Margin from Bode 
Plots
KA=250 pu

Uncompensated
32  at 

13.2 rad/s
26  at 

21 rad/s

TGR compensation
76  at 

3.1 rad/s
60  at 

5.5 rad/s

Performance under closed-loop voltage control with TGR Compensation (KA = 250 pu):

Rotor mode of oscillation
Value -0.27 8.8 a -

Halving time (s) 2.6 -

Voltage response to a step 
change of 0 to 1% in Vref

Peak overshoot (% of
step size)

none 9% at 0.55 s 

90% rise time (s) 0.6 0.3 

2% settling time (s) 4.3 0.8

Terminal voltage
regulation

Steady-state error, (% of
step size)

1.5 0.4

Effective DC gain (pu) 67 250

Note a: Without compensation the on-line rotor mode is .
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The performance of the generating unit off-line satisfies the performance criteria. However,
it is significant that, for the selected operating condition with the unit on-line, the effective
steady-state (‘DC’) gain is reduced from 250 to 67 pu. As a result, the steady-state error ex-
ceeds the requirements of the Rules. Furthermore, due to the lower gain, the response of
terminal voltage to a step change in voltage reference is somewhat sluggish (see Figure 7.7)
- although the settling time satisfies the specification of 5 s. 

Ideally, it is desirable to adjust the AVR gain of the unit so that the effective gain on-line is
200 pu or more, i.e. by a factor of 200/67 = 3, so that the requirements of the Rules are sat-
isfied. The AVR gain must therefore be increased significantly; however, this increase must
be attenuated at low frequencies by the same factor so that conditions in the vicinity of the
gain cross-over frequency in the Bode Plot remain unchanged. The high-gain solution may
be unacceptable. The resolution of this problem is (i) to review the design in the light of the
Rules and the relevant operating conditions, (ii) to examine alternative methods of compen-
sation - for example, PID compensation which is considered next.

7.7 PID compensation

In considering the use of Proportional plus Integral plus Derivative (PID) Compensation it
should be emphasized that the approach adopted here is aimed specifically to its application
in the tuning of AVRs. The design of PID controllers for other applications, such as process
controls, is covered in texts such as [14], [15]. 

The structure of the PID Compensation for application to excitation control systems is
shown in Figure 7.10. The block  in the AVR is a simple representation of
other dynamic or control elements.

Figure 7.10 Block diagram of PID compensation.

When under closed-loop voltage control the purpose of the integrating block is to ‘integrate
out’ any steady-state voltage error to zero by providing, in effect, an infinite steady-state
gain. The voltage regulation is therefore zero or, in the steady state, the pu terminal voltage
is equal to the pu reference voltage (see Section 2.10.1.2). This feature applies to both off-
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and on-line conditions and therefore it is an attractive approach to compensation to ensure
the relevant requirements of the Rules are always satisfied. As in Transient Gain Reduction
a second aim for the compensator is to provide a relatively low transient gain, KT, say 25 to
50 pu, in the forward path over the relevant frequencies of the rotor modes of oscillation.

The derivative action of the derivative block (i) speeds up what otherwise might be a slug-
gish response of the unit to disturbances in terminal voltage, (ii) boosts the speed of re-
sponse of the field voltage following the application and clearance of a major fault, and (iii)
limits the potentially high gain at high frequencies by means of the low-pass filter

. During the immediate post-fault transient the associated increase in field flux
linkages enhances the synchronizing power flow between the generator and the system -
thereby enhancing stability. 

Procedures for the general-purpose tuning of PID compensation is covered fairly extensive-
ly in the literature. However, a systematic approach to the design of PID compensation for
application to the tuning of AVRs of synchronous generators is to be developed for which
the theoretical background to the method is outlined in the following section. Thereafter,
an example of the method is provided for comparison with the other methods of compen-
sation described in other sections. 

We will assume that the general form of the desired characteristics for PID compensation
in the application to AVR tuning is summarized in the straight-line frequency response plot
of the transfer function  in Figure 7.11.

Figure 7.11 Straight-line approximation of the magnitude response of the PID 
transfer function .
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7.7.1 PID Compensation: Theoretical Background

Figure 7.12 Block diagram of the practical PID compensator

The block diagram of a practical form of the PID compensator is shown in Figure 7.12. Its
transfer function is:

. (7.2)

It is convenient to consider a number of forms of this compensator both from the analysis
and practical applications points of view. We will describe the forms that are to be analysed
as PID Types 1 to 3 as follows:

Type 1:   The PID transfer function is

(7.3)

Type 2A and 2B:  The PID transfer function is

. (7.4)

Type 3:  The PID transfer function is described by (7.2)

with .

While the forms of the transfer functions for Types 2A and 2B are identical, the locations
of the upper corner frequencies  and  with respect to the range of modal frequen-
cies differ. This is explained in more detail in Section 7.7.1.2.

The analysis of the PID transfer function represented by (7.2) is somewhat complex. Initially
however, we can obtain useful insights and information from an analysis based on the simple
Type 1 PID transfer function of (7.3). We will return to Types 2 and 3 later.
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7.7.1.1 Characteristics of Type 1 PID compensation
In Type 1 PID compensation it is assumed that the derivative time constant is zero,

. Three convenient forms of the simple Type 1 PID are:

. (7.5)

The zeros of this transfer function  can be derived from the numerator of

(7.5) when it is expressed in the following form: 

. (7.6)

Equating the coefficients of s in (7.6) with the numerator coefficients

 in (7.5), we find that the corner frequencies are

, moreover, (7.7)

 and . (7.8)

In the sequel it is helpful to express (7.5) in terms of the zeros :

. (7.9)

Note that if  the corner frequencies reduce to

. (7.10)

If the corner frequencies are well-spaced apart, say , we observe that the fre-

quency  is that associated with the corner of the transfer function , likewise

 with the corner of .

For the simple Type 1 model of the PID, the condition for the corner frequencies of (7.7)

to be real is . Thus the value of the proportional gain, , at which the real

zeros evolve from complex values is

. (7.11)
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Substitution of this value of  in (7.7) yields the identical corner frequencies

. According to (7.8) when  we find

 rad/s, (7.12)

at which frequency the zeros are real for increasing values of .

The frequency response of the transfer-function  is obtained by setting  in

(7.5) or equivalently in (7.9):

. (7.13)

For real values of the corner frequency the straight-line approximation of the magnitude re-
sponse of the simple Type 1 PID transfer function (7.5) is shown in Figure 7.13. 

Figure 7.13 Straight-line approximation of the magnitude response of the simple Type 1 
PID transfer function  ( ).

The desired transient gain reduction of the compensator is ideally established over the range
of modal frequencies in the constant gain region of the straight-line response between the
corner frequencies  and . At very low and at high frequencies the slope of the magni-

tude response is  and +20 dB/decade, respectively. In the actual magnitude response

the gain is a minimum, , at the geometric mean of the two corner frequencies 1,

i.e. at a frequency of .

Using the result of equation (7.8), the frequency at minimum gain is given by

, (7.14)
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and is independent of the value of the proportional gain, . Again we note the values of

 from (7.12) and  from (7.14) are identical.

Let us assume  is to be varied over a range of values consistent with an appropriate level

of transient gain reduction. Substitution of  in (7.5) for  yields

a value of . In other words, the minimum gain of the simple Type 1 PID over

the frequency range is equal to the setting of the proportional gain, KP. As has been noted - in
terms of the magnitude response of Figure 7.13 - the straight-line segment between  and

 represents the gain KP (dB). The value of the proportional gain KP is thus close to the
value of the transient gain, KT, particularly when the corners are well-spaced apart.

The above analysis provides a procedure for AVR tuning when based on the simple Type 1
PID transfer function (7.5). The steps in the procedure are:

1. Select a value for the desired minimum transient gain  over the modal frequency
range. Note that, since this is the minimum value between the corner frequencies,
the effective gains closer to the corners will be somewhat higher. 

2. Select the value for the lower corner frequency  which is typically close to the

value  (see (7.10)); hence deduce a value for . 

3. In order to achieve the desired transient gain reduction, set  to a value in the
vicinity of the geometric mean of the selected modal frequency range, say 
rad/s for a range of modal frequencies, 1.0 to 10 rad/s. From (7.14)

; hence estimate .

4. From (7.11) check that the value of  selected ensures that the corner frequencies

assume real values. That is, ensure .

5. Evaluate the actual corner frequencies of the simple Type 1 PID transfer function
from (7.7), and plot the frequency responses.

6. Analyse the dynamic performance of the generator and excitation system when off-
line and on-line over a range over steady-state operating conditions. Adjust the

1. Alternatively, for a transfer function of the form of (7.5), i.e. , a simple 

analysis reveals the magnitude of the transfer function is a minimum at , 

. Furthermore, the phase angle traverses from  at low frequencies to +  
at high frequencies and passes through zero phase at . This result can also be deter-
mined easily from (7.13). 
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parameters of the PID to satisfy the performance specifications for the generating
unit off- and on-line; repeat steps 1 to 6.

It should be noted that the gains, as determined and discussed in the context of this chapter,
are in per-unit on the relevant generator and exciter field voltage and current base values,
and generator stator base voltage. However, the gains of the AVR as identified in the actual
software (or hardware) of the excitation system may be on quite different and varied bases
depending on the manufacturer’s scaling system in their control design. As such, care needs
to be exercised in the field when translating gains to and from the actual settings in the con-
trols and those which are used in simulation platforms such as that discussed here.

7.7.1.2 Characteristics of Type 2 PID compensation
An expanded form of the Type 2 PID transfer function of (7.4), in which

, is

. (7.15)

The zeros of this transfer function are derived from the numerator of (7.15):

. (7.16)

This equation is of the form:

. (7.17)

Equating the coefficients of s in (7.16) and (7.17), and solving for , we find:

(7.18)

thus  ;   . (7.19)

From (7.18) it can be shown that the zeros of , , are real if 

. (7.20)

An alternative form of (7.15) - which accommodates real corner frequencies  and  - is 

, (7.21)
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where . The method for deriving the straight-line approximation of the fre-

quency response of  based on (7.21) is outlined in Section 2.12 and texts on control

system analysis. This response is shown in Figure 7.14 for what will be called Type 2A PID
compensation in which

 . 

Type 2B PID compensation, for which , and

 will be considered in Section 7.8.

Figure 7.14 Straight-line approximation of the frequency response 
of the Type 2A PID compensator transfer function .

In a Type 2A PID the desired transient gain reduction of the compensator is ideally estab-
lished over the range of modal frequencies in the constant gain region of the straight-line
response between the corner frequencies  and . For the Type 2A PID (with )

the transient gain  is assumed to set to the value of KP, the proportional gain for purposes
of design. At low and high frequencies the slope of the response on either side of these fre-
quencies is  and +20 dB/decade, respectively. The effect of the corner  (> )

results in the gain at high frequencies of the PID transfer function (7.15) tending to 

 . (7.22)

This gain may be considered unacceptably high and appropriate adjustments to the param-
eters in (7.22) may be required. 

The frequency at which the magnitude response of the PID transfer function (7.15) is a min-

imum involves some tedious analysis 1. 

1. This involves finding the minimum of the magnitude of the PID transfer function (7.15) 
with  and making use of the Symbolic Maths Toolbox in MATLAB®.
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For a non-zero value of  the corner frequency  is typically a decade or more greater

than . In this case the magnitude and phase contribution of the transfer function

 to the frequency response at  is reduced by a factor of more than 0.995

( dB) and by an angle less than , respectively. As a result the minimum of the
magnitude of the practical PID transfer function occurs at a slightly lower frequency than

 based on (7.14).

7.7.1.3 Characteristics of Type 3 PID compensation 

Based on (7.2) and (7.15), the Type 3 PID Compensator can be expressed as

, (7.23)

which, like (7.21), is of the form:

, (7.24)

where  are real values given by (7.18) and . Being three

transfer function blocks in series, the frequency response analysis  based on (7.24)
can be conducted as described in Sections 2.7 and 2.12, and in texts on control system anal-
ysis.

With  in (7.24), and , the low-pass filter  may be employed

to attenuate high frequency signals - such as noise - as illustrated in Figure 7.11 on page 328.

7.7.2 Tuning methodology for PID Compensation Types 1 and 2A

7.7.2.1 Tuning of simple Type 1 PID compensation
Let us adopt the following specifications as the starting point for the tuning of Type 1 PID
compensation based on (7.5). 

1. Over the range of local- and inter-area modal frequencies of 1.5 to 12 rad/s the
effective transient gain, KT, of the AVR / excitation system is to be 25 - 50 pu on
machine base (i.e. 28.0 - 34.0 dB); a value of 32 pu will be selected.

2. The corner frequencies of PID transfer function are to lie outside the range of
modal frequencies of 1 to 10 rad/s.

3. For a 0 to 1% step change at the voltage reference input of the closed-loop voltage
control system, off-line or on-line, (a) the terminal voltage overshoot should be less
than 7.5%, (b) the 90% rise time should be less than 1 s, and (c) the 2% settling time
of the terminal voltage should be less than 5s. 
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4. The criterion for on-line system damping performance is that the real parts of all
rotor modes should be less than -0.139 Np/s (a halving time of 5 s).

Let us follow the steps in Section 7.7.1.1 for the determination of the parameters of the sim-
ple PID transfer function.

1. Assume the proportional gain setting of the PID, , is 32 pu; let KG = 1. 

2. Assume the lower corner frequency, , is 0.5 rad/s. The value of  is

thus 16 pu/s.

3. Based on the straight-line magnitude response in Figure 7.13, select the value of fre-
quency (rad/s) at which the magnitude of the simple PID is to be a minimum. For
the range of modal frequencies, say, a value of  rad/s is close to the

geometric mean ( ) of the specified modal frequency range. According to (7.14)

the ratio , thus selecting  pu-s;

let KD = 1.5 pu-s (say) with the result that  rad/s. 

4. From (7.11), the value of the proportional gain  at which the complex zeros of

the Type 1 PID transfer function assume a real value is  pu.

We also know that the value of gain at  is the setting of , .

5. With KP = 32 pu, KI = 16 pu/s and KD = 1.5 pu-s the corner frequencies of the
Type 1 PID are calculated from (7.7). The values are  and  rad/
s; both values are outside the specified range of modal frequencies.

It is instructive to derive the frequency response of the simple Type 1 PID compensator for
a range of values of KP from 0 to 44 pu, including the selected gain setting of 32 pu. The
responses are shown in Figure 7.15. For KP = 32 pu we note the value is almost constant
over the selected modal frequency range, that is, for all intents and purposes the value of the
transient gain KT is equal to the proportional gain KP .

The high-frequency gain (above the range of modal frequencies) may become excessive. To
limit the gain the time constant  in the PID transfer function of (7.4) is set to a non-zero
value. This is considered in the tuning of Type 2A PID compensation in the following sec-
tion.

KP
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min 3.2=

10

KI KD min
2
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Figure 7.15 Frequency responses of the Type 1 PID for  pu/s,  pu-s, 
s and values of  between 0 and 44 pu; the dashed lines apply to complex zeros 

of .

7.7.2.2 Tuning of Type 2A PID compensation
An approach to the tuning of this compensation for the off- and on-line dynamic perfor-
mance of the AVR is covered in some detail in Sections 7.7.2.2 to 7.7.2.4. Because a lightly
damped rotor mode arises in the on-line case, an exploratory tuning of a PSS for the gener-
ator and system is considered.

As foreshadowed in Section 7.7.1.2 and Figure 7.14 the low-pass filter  is intro-
duced to the Type 2A PID transfer function to limit its high-frequency gain.

The same specifications as for the Type 1 PID are assumed for the tuning of Type 2A PID
compensation based on (7.4), however, an appropriate value of the time constant  must
be determined. For the range of modal frequencies, 1.5 to 12 rad/s, a frequency of

rad/s is nominally assumed at which the magnitude response of the Type 1
PID transfer function is a minimum; in fact, the minimum will be a lower value for the Type
2A PID.
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Steps 1, 2 and 3 of the PID design procedure are the same as those listed in Section 7.7.2.1
for the Type 1 PID, which yielded pu, pu/s and pu-s. The cor-

ner associated with  is selected to have a value greater than that of the upper corner fre-
quency,  rad/s, calculated in step 5 for the Type 1 PID. Let us consider three

alternative values for TD, namely s; the associated corner fre-

quencies of  rad/s, respectively. 

With  and KG = 1 the value of the proportional gain  at which the real cor-

ners evolve from complex values is derived from (7.20), i.e.  pu. For

the range of values of  selected, the corner frequencies are real for values of the gain 
greater than = 10.4 pu. 

The corner frequencies  of the Type 2A PID are calculated from (7.18); the values
are given in Table 7.2 and are outside the specified range of modal frequencies, 1 to 10 rad/
s.The frequencies at which the magnitude responses of the Type 2A PID transfer function
(7.15) are a minimum, together with other relevant statistics, are also listed in Table 7.2. 

 The frequency responses of the PID for the selected values of  are shown in Figure 7.16.

Table 7.2  Characteristics of Type 2A PID (7.15)

 

(s)

Corner Frequencies (rad/s)
At minimum of magnitude 

response*:
High  

frequency 
gain 

(pu) |(dB)
 

 

rad/s
Magni-

tude (pu)
Phase 

0 0.51 20.8 - 3.27 32 0 -

0.0125 0.51 16.4 80 2.92 32.2 -1.6 152 | 43.6

0.0250 0.51 13.6 40 2.73 32.3 -3.0 92 | 39.3

0.0375 0.51 11.6 26.7 2.58 32.5 -4.3 72 | 37.1

PID Parameters are =32 pu, =16 pu/s, =1.5 pu-s, =1 pu; 

 is a variable parameter.

* Values read off frequency responses in Figure 7.16
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Figure 7.16 Frequency response of the Type 2A PID for a range of values of . 

The PID parameters are = 32 pu,  = 16 pu/s,  = 1.5 pu-s,  = 1 pu, . 

7.7.2.3 Dynamic performance of the Type 2A PID with the generating unit off-line
The following studies are based on the SMIB system in which one line is out of service as
shown in Figure 7.4. The block diagram of PID compensation and generator are shown in
Figure 7.10 on page 327; the gain  of the series block in the PID is set to unity and its
time constant  is zero. The parameters of the sixth-order generator are listed in
Appendix 7–I.1.1. When off-line, it is assumed - using first-order transfer functions - that
the relevant generator and excitation parameters are = 5.0 s and = 0.1 s, respective-

ly.

The purpose of the following analysis is to establish whether the specifications for the off-
line performance are satisfied. Firstly, from the open-loop frequency response plot of the
PID plus the excitation system and generator, it is desirable to determine information on the
stability of the closed-loop voltage control system and the nature of its dynamic perfor-
mance. The Bode plot of the open-loop system, , is shown in Figure 7.17 for the

range of values of TD listed in Table 7.2. 
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Figure 7.17 Unit off-line. Bode plot  of the open-loop voltage control system.

Type 2A PID parameters are  = 32 pu,  = 16 pu/s,  = 1.5 pu-s,  = 1 pu;  s. 

From Figure 7.17 it is observed that at the gain-crossover frequency of 5.9 rad/s the phase
margin is approximately  - for all values of . The generating unit when off-line is
therefore stable under closed-loop voltage control and the response of terminal voltage to a
step change in reference voltage is well damped. This is observed in Figure 7.18 which re-
veals that the value of the time constant  has little effect on the response.

Because the phase margin shown in Figure 7.17 for all values of  is adequate, it may be

of interest to increase the gains of the PID by increasing the setting of , say, by factors
of two or three (6 and 9.5 dB respectively). By lowering the 0 dB axis in the Bode diagram
of Figure 7.17 by 6 or 9.5 dB the resulting phase margins are shown in Table 7.3 to lie be-
tween 69  and 56 .
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Figure 7.18 Unit off-line. Perturbations in terminal voltage due to a step change in refer-
ence voltage from a steady-state value of 1.0 pu to 1.01 pu (1%). The unit is under closed-

loop voltage control for the specified range of values of , .

(Note scale range on y-axis).

Table 7.3  Phase Margins of the off-line generator for a range of settings of  and 

For the purpose of analysis of the performance of the unit on-line in the next section, it is
desirable to choose an appropriate value of KG and . To ensure the closed-loop terminal
voltage response to a disturbance is well-damped, let us choose from the table a value of
phase margin better than (greater than) 65 . Moreover, with higher values of the gain KG

the transient gain and the high frequency gain of the PID may be too high in the particular
application. Let us restrict the evaluation of the closed-loop terminal voltage responses to
those for KG = 1 and 2 pu. To complement the responses shown in Figure 7.18 for KG = 1
pu, the closed-loop voltage responses to a step change in the reference voltage when the unit
is off-line is shown in Figure 7.19 for KG = 2 pu and the range of values of .

(pu)

s s s s

PM PM PM PM

1 73 5.7 72 5.7 72 5.8 71 5.9

2 69 9.9 67 10.2 65 10.5 62 10.8

3 68 13.4 65 14.1 60 14.6 56 14.9

PM: Phase Margin ( ).    : Gain cross-over frequency (rad/s)

0 0.5 1 1.5 2 2.5 3
0.85

0.9

0.95

1

1.05

1.1

ΔV
t
 
(
%
)

Time (s)

    T
D
=0          T

D
=0.0125

    T
D
=0.025      T

D
=0.0375

TD KG 1=

KG TD

KG
TD = 0. TD = 0.0125 TD = 0.025 TD = 0.0375

 gco  gco  gco  gco

 gco

TD



TD



342 Introduction to the tuning of AVRs Ch. 7
Figure 7.19 Unit off-line. Perturbations in terminal voltage from the initial steady-state 
value due to a step change from1.0 to 1.01 pu (1%) in the reference voltage under closed-
loop voltage control for a range of values of , KG = 2 pu. (Note scale range on y-axis).

A comparison between the closed-loop step responses for generator off-line for the gains
KG = 1 and 2 pu is shown in Table 7.4 (step change of +0.01 pu (1%) in reference voltage).

Table 7.4  Characteristics of closed-loop, off-line, 0-0.01 pu step responses
 for  = 1 and 2 pu

In this application, selecting a value of  s ensures that the overshoot of the ter-
minal voltage to a step in the reference is less than 7.5% of the step size for both gain = 1
and 2 pu; for higher values of  the peak overshoot increases rapidly. Moreover, for

= 1 and 2 pu we note from Table 7.3 that the phase margin for  s is better

Rise Time: 
90% of step 

size (s)

Peak Overshoot 
(% on step size)

Time to Peak
(s)

2% Settling 
Time (s)  ##

1
~0.29 s for all 
values of 

5.6 to 4.6% for all values 
of  *

0.63 to 0.60 s for all val-
ues of  *

~2.1 s for all 
values of 

2
~0.16 s for all 
values of 

~7.5% for all values 
except for =0.0375 s 

the value is 8.6%

0.33 to 0.30 s for all val-
ues - except for 

=0.0375 s the value is 
0.27s

< 0.62 s for 
all values of 

* Note: First to last values in the range are = 0, 0.0125, 0.025, 0.0375 s
## 2% Settling-Time requirement is less than 5 s (see Section 7.7.2.1)
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than or equal to the specified limiting value of 65 . We also note that the step responses are
markedly faster for = 2 than for = 1 pu. 

7.7.2.4 Dynamic performance of the Type 2A PID with the generating unit on-line
Selecting TD = 0.025 s and gain KG = 1 and 2 pu, let us consider the stability of the gener-
ating unit on-line and under closed-loop voltage control.

The SMIB test power system is shown in Figure 7.4. Let us consider two operating condi-
tions,

• A line outage condition, Case W: generator output P = 0.4, Q = 0 pu (as in Figure 7.4
on page 320). 

• All lines in service, Design Case C: generator output P = 0.9, Q = 0.2 pu 1.

As in the previous AVR tuning method (Section 7.6), Case W is analysed initially. The Bode
plot of the open-loop transfer function  for the generating unit on-line is displayed

in Figure 7.20 together with the response when the PID is replaced by a simple gain element
having the same value as the PID proportional gain ( = 32 pu). Over the selected range
of rotor modal frequencies, 1 to 10 rad/s, the magnitude responses in the figure being in
close agreement reveals that the transient gains are practically identical. 

At the gain cross-over frequency of 3.2 rad/s the Phase Margin of 79  suggests that for
KG = 1 pu the closed-loop step response  should be well-damped; however the res-

onance at ~9 rad/s in the Bode plot may result in a rotor oscillation of about that frequency
being superimposed on the terminal voltage response. By ‘raising’ the magnitude plot of
Figure 7.20 by 6 dB - for KG = 2 pu - the Bode plot reveals that the Phase Margin is reduced
to 68  at a gain cross-over frequency of 6.6 rad/s. The closed-loop terminal voltage re-
sponse should again be well-damped, but the oscillatory response of the rotor mode should
be accentuated as the gain cross-over frequency approaches the resonant frequency of ~9
rad/s. These results are demonstrated in the associated closed-loop step responses of
Figure 7.21.

Because of oscillatory nature of the responses, as revealed in the closed-loop performance,
it is clear that the rotor mode is lightly damped and that a PSS is required. 

1. Case C is the ‘Design Case’ in Section 5.11. With all lines in service the steady-state 
power flow conditions for Case C are the same as those in Table 5.4. However, the gener-
ator and exciter parameters in Chapter 5 differ from those listed in the Appendix 7–I.1.1. 
Comparison of results between this and Chapter 5 may be misleading. 


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Figure 7.20 Case W: Unit on-line. Bode plot of . 

PID parameters:  = 32 pu,  = 16 pu/s,  = 1.5 pu-s,  = 1 pu;  = 0.025 s.
For ‘No PID’ the AVR gain is 32 pu. 

Figure 7.21 Case W: Unit on-line. Perturbations in terminal voltage due to a step change 
in reference voltage from a steady-state value of 1.0 pu to 1.01 pu (1%). Generator is under 

closed-loop control: gains KG = 1 and 2.0 pu. (Note scale range on y-axis.)
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7.7.2.5 Exploratory tuning of a PSS to improve the damping of the oscillatory mode
A PSS is typically switched into service at a lower value of real power output, say 0.1 to 0.3
pu. The procedure for tuning the PSS is the same as that outlined in Section 5.10.4. We will
assume that, for this system, Case C has also been established to be the PSS ‘design case’ for
the set of generator and excitation system parameters listed in Appendix 7–I.1.1.

The time-domain responses are faster for = 2.0 than for = 1.0 pu, however, for

= 2.0 pu the oscillatory response is less well damped. Because it may be necessary to se-

lect a value of  such that  pu, the P-Vr characteristic is derived for the design

case for the two values of . These characteristics, together with the synthesized charac-
teristics for Case C, are shown in Figure 7.22.

Figure 7.22 P-Vr characteristic for Case C for the set of PID parameters: 
KP = 32 pu, KI = 16 pu/s, KD = 1.5 pu-s, TD = 0.025 s and KG = 1.0 or 2.0 pu. 

The synthesized P-Vr agrees closely with actual P-Vr plots.

Including the low-pass and washout filters, the resulting PSS transfer functions based on
Case C are: 
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 for KG = 2.0 pu, (7.25)

respectively, with the damping gain k set to 20 pu on machine MVA rating 1.

With the PSS1 and PSS2 in service, the closed-loop step responses  are replotted in

Figure 7.23 for Cases C and W.

Figure 7.23 Cases C and W: Unit on-line. Perturbations in terminal voltage due to a step 
change in reference voltage from a steady-state value of 1.0 pu to 1.01 pu (1%). Generator 

is under closed-loop control with (a) PSS1, gain KG = 1 pu in service and (b) PSS2 for 
KG = 2. PSS damping gain is 20 pu on machine MVA base. (Note scale on y axis.)

The time-domain performance and modal characteristics of the closed-loop AVR, excitation
system and generator on-line are summarized in Table 7.5 when KG is set to 1 and 2 pu.

7.7.2.6 Concluding remarks: PID Type 2A Compensation based on Cases C and W
Based solely on the limited set of operating conditions considered in the tuning of the PID-
based AVR it may be concluded that with a PSS in service the setting of the PID gain KG

should lie between 1 and 2 pu. The former and latter settings yield on-line terminal voltages
responses to a step change, shown in Figure 7.23(a) and (b), which may considered sluggish
and over-responsive, respectively. Depending on the actual performance specifications, fur-
ther investigations should concentrate on values of KG, which lies in the range

, say 2. The rotor mode is well damped with the PSS in service and satisfies
the damping criterion for rotor modes. Clearly there are a number of issues that should be

1. The low-pass filter time constants (6.7 ms) are very short. Such time constants should 
typically be 3 or more times the cycle time of the PSS processor to reduce phase errors at 
higher frequencies.
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reviewed in the analysis of both the on- and off-line cases before a final set of parameters
for the PID is chosen. Such issues are:

Table 7.5  Characteristics of closed-loop, on-line, step responses for KG = 1, 2 pu.

• In practice, to ensure that the specifications are satisfied it is necessary to conduct a
set of on-line studies for an encompassing range of normal and N-1 operating condi-
tions.

• What is the maximum acceptable value for the high-frequency gain (KP+KD/TD)KG

(e.g. see Table 7.2 for Type 2A PID)?

• The choice of an acceptable range of transient gains ( ).

The example also reveals a basis for coordinating the tuning of the PID controls with the
tuning the PSS when the on-line responses do not meet the specifications for the rotor
modes. 

7.8 Type 2B PID Compensation: Theory and Application to AVR 
tuning

The theoretical basis and calculation of the parameters of the Type 2B PID are presented in
this section. However, because an application to the tuning of AVRs in a remote three-gen-
erator power station with brushless excitation systems is more detailed and complex it is
covered at the end of this chapter in Section 7.11. 

2. KG should be less than 1.56 to satisfy the specified upper limit on the transient gain of 

= 50 pu.

Case 
No.

 
pu

Time domain characteristics Rotor modes

90% 
Rise

 Time 
(s)

Peak 
Over-
 shoot 

(%)

Time 
to 

Peak (s)

2% Sett-
ling Time 

(s)
PSS in service

PSS out of 
service

Mode shift

C
1.0 0.63 s 5.2% 1.45 s 5.3 s 

2.0 0.41 s 13.4% 0.61 s 3.5 s 

W
1.0 0.63 s 1.0% 1.48 s 1.24 s 

2.0 0.40 s 9.2% 0.65 s 1.49 s 

PID Parameters are =32 pu,  =16 pu/s, =1.5 pu-s, ; =0.025 s

PSS damping gain is 20 pu on machine MVA rating.

KP KG

KG

1.94– j8.90 0.05– j 9.08 1.88– j 0.18

1.48– j9.13 0.33 j 9.15 1.82– j 0.02

1.56– j8.72 0.24– j8.87 1.32– j 0.15

1.39– j8.78 0.11– j8.93 1.28– j 0.15

KP KI KD KG TD

KP KG
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7.8.1 Tuning of Type 2B PID compensation
In contrast to the Type 2A PID, in the Type 2B PID the range of modal frequencies lies
above the corner  rad/s; this is illustrated in Figure 7.24.

Figure 7.24 Straight-line approximation of the frequency response of the Type 2B PID 
compensator transfer function ; range of modal frequencies > .

The use of the Type 2B PID compensator may occur in cases such as when the PID is re-
quired to contribute phase lead at low frequencies. In such a case the generator and exciter
time constants,  and , may be relatively long. Phase lead in the compensator is pro-

vided at the lower corner frequencies  and ; integration ensures the steady-state error

between the reference and terminal voltages is integrated out. 

Equations (7.15) to (7.22) are applied to Type 2B PID. The transient gain , which ideally
applies over - or above - the range of modal frequencies is, from (7.22),

. (7.26)

Note that . Furthermore, the corner frequencies  in Figure 7.24 are

given by (7.19), i.e. . Assuming , the upper corner is

then

, (7.27)

or  . (7.28)

Substituting (7.28) in (7.26) we find

. (7.29)

Equations (7.28) and (7.29) form the basis for the Type 2B PID design.
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7.8.2 Example: Evaluation of Type 2B PID parameters.
This example demonstrates the application of the above results to the tuning of the AVRs
for a more difficult case of a remote, base-load, three-machine power station supplying en-
ergy via 132 kV lines to a high voltage grid. The purpose of this example - and its continu-
ation in Section 7.11 - is 

• to illustrate the determination of the PID parameters which satisfy certain perfor-
mance specifications over a wide range of N and N-1 operating conditions; 

• to examine a systematic and structured method for the selection of PID parameters
which are robust over the range of operating conditions;

• to linearize the non-linear model of the brushless exciter and account for the variation
of its small-signal parameters with the steady-state operating conditions;

• to establish the requirements for software for automating and expediting the calcula-
tions in the design process for application in practical cases.

In this application the tuning of the AVRs is more complex because the time constants 
and TE of the generator and brushless exciter are relatively long and the only tunable param-
eters in the AVR are those of the PID; the tuning is covered in some detail in Section 7.11.
However, for this application the calculation of the characteristics of a relevant set of can-
didate PID parameters are required and are therefore examined in the following section.

7.8.2.1 Frequency response characteristics of Type 2B PIDs
The range of modal frequencies is known to be 4 to 7 rad/s. Assume that over this frequency
range an effective value of pu is required when KG = 1 pu. According to (7.26) and

Figure 7.24 the desired transient gain KTB must be somewhat higher, say, 40 - 70 pu; the val-
ues of KTB, ,  and  are subject to the condition: .

The PID parameters are the calculated based on (7.28) and (7.29) using the following rela-
tionships:

 ;   ;   ;   . (7.30)

For several sets of values for KTB, ,  and  the PID Type 2B parameters are de-
rived using the above algorithm and are listed in Table 7.6. The associated frequency re-
sponses, which are shown in Figure 7.25, demonstrate the effect of modifying the
parameters in the vicinity of 1 rad/s.

It is noted from Figure 7.25 or Table 7.6:

• Over the frequency range 4 to 7 rad/s the gain is close to the desired value of transient
gain,  pu.

Td0

KT 32

1 2 D 1 2 D 

TD 1 D= KP 2KTB= D KD KTB KP–  D= KI KP1
=

1 2 D

KT 32
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Figure 7.25 Frequency response plots of four Type 2B PIDs 
with the parameters in Table 7.6.

Table 7.6  Calculated parameters for PID Type 2B

• The minimum value of gain is about 23 dB (i.e. KP = 14 pu) at frequencies less than
. 

• With the higher values of the corner frequency , Figure 7.25 shows that PID Sets
2, 3 and 4 provide additional phase lead in the range of modal frequencies 3-8 rad/s.
For PID type 2 compensation the transfer function  in (7.21) is

Para-
meter

Set No.

Selected quantities Calculated PID parameters

KTB
 

(rad/s)
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KP 
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KD 
(pu s)

TD 
(s)

1 50 0.30 1.2 5 12 3.6 7.60 0.200

2 70 0.50 1.4 7 14 7.0 8.00 0.143

3 70 0.65 2.2 11 14 9.1 5.09 0.0909

4 70 1.0 1.9 9.5 14 14 5.89 0.1053
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a lead-lag element, thus by increasing  with respect to  the peak phase-lead is
increased.

Although KTB, ,  and  are selected to calculate the PID parameters, equations

(7.30) can be rearranged to calculate the parameters based on some other choice, e.g. KP,
KTB,  and , where KP<KTB. 

The example of the detailed tuning of the AVRs in the remote three-generator power plant
is described in Section 7.11. Other methods of AVR tuning are considered in the following
Sections 7.9 and 7.10.

7.9 Proportional plus Integral Compensation

7.9.1 Simple PI Compensation
The structure of the Proportional plus Integral Compensation (PI) in the AVR is shown in
Figure 7.26. We shall refer to this as Simple PI Compensation.

Figure 7.26  Simple PI Compensation

The aim of the integral block is to ‘integrate out’ any steady-state voltage error to zero by
providing, in effect, an infinite gain under steady-state conditions. The voltage regulation is
therefore zero or, in the steady state, the pu terminal voltage is equal to the pu reference volt-
age (see Section 2.10.1). As in Transient Gain Reduction a second aim for the compensator
is to provide a relatively low transient gain, , say 25 to 50 pu, in the forward path
over the frequencies of the rotor modes of oscillation. Let KG = 1.

The form of the simple PI compensator transfer function is:

, where . (7.31)

Let  pu be the desired transient gain, let’s place the corner frequency

 about a decade below the lowest frequency mode, say 5 rad/s, and let

 rad/s. The frequency response of the Simple PI Compensator with the resulting
integrator gain,  pu/s, is shown in Figure 7.27. The compensator trans-
fer function is thus:

D 2

1 2 D

1 2

KIP/s

KPP KG

+
+
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KPP KP=

Gc s  KIP s KPP+ KIP 1 T1s+  s= = T1 1 1 KPP KIP= =

KPP 32=

1 KIP KPP=

1 0.5=

KIP KPP1 16= =
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. (7.32)

An alternative implementation of PI compensation using positive feedback is described in
Appendix 7–I.3.

 
Figure 7.27 Frequency response plots of (i) Simple PI Compensation; 
(ii) Simple PI Compensation with a series lead-lag transfer function block

7.9.2 Conversion to a PID Compensator with an additional lead-lag block
For a number of reasons it may be desirable to boost the gain of the AVR at higher frequen-
cies, say, to improve the rate of response of the field voltage during the fault interval or in
the immediate post-fault period. This can be achieved by inserting a lead-lag block in series
with the PI block; the maximum phase lead of the lead-lag should occur at, or above, the
highest local-mode frequency. With this block it is also possible to improve the phase re-
sponse of the compensator at the higher modal frequencies. In Section 2.12.1.4 and [8], [9]
the lead-lag compensator is described; a form of the transfer function is

, where the values for  are less than unity.

For application with the simple PI compensator in Section 7.9.1, assume (i) the frequency
at which the maximum phase lead in the transfer function  occurs is 

rad/s and (ii) the high frequency gain is to be boosted by a factor of two (6 dB). The former
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requires that  rad/s and the factor ; hence the time con-

stant of lead-lag block is  s. The frequency response of the Simple PI Com-
pensator modified by the series lead-lag block is shown in Figure 7.27. This response is
similar to that shown for a Type 2A PID in Figure 7.16 for TD>0.

The PI with the series lead-lag compensator illustrated above can be converted to a PID
form. Letting  s, the transfer function of the PI plus lead-lag compensator is

. (7.33)

This equation is identical in form to (7.15) for Type 2 PID with KG=1; let us equate coeffi-
cients of the powers of s in the numerators of (7.33) and (7.15). We find:

  for  . (7.34)

These equations are solved sequentially for KI, KP and KD. 

In the above example the parameters for the PI of (7.31) and the series lead-lag compensator
of (7.33) are: 

KIP = 16 pu-s, T1 = 2 s, T2 = 0.07071 s, TD = 0.03536 s.

By substitution of these values in (7.34) we find the equivalent PID parameters are: 
KI = 16 pu-s, KP = 32.57 pu, KD = 1.111pu/s, TD = 0.03536 s.

The significance of the conversion to PID parameters is the following. It may be convenient
or simpler to determine the parameters of a PI and series lead-lag compensator rather than
to directly determine a set of PID parameters. If it is necessary to frame the compensation
in the form of a PID controller the conversion is readily calculated based on (7.34). 

Note. There are further modifications possible to the frequency response of the Simple PI
Compensator to meet particular requirements. For example: The addition of a series first-
order low-pass block  would provide high-frequency roll-off of -20 dB/dec-
ade on magnitude at frequencies above 100 rad/s. However there would be some reduction
in the phase lead over the range of rotor modes e.g. about 5 to 6 degrees at 10 rad/s.
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7.10 Rate feedback compensation 

7.10.1 Method of analysis
The block diagram of the generator and excitation system with rate feedback (RFB) of the
exciter voltage are shown in Figure 7.28. For the determination of the rate feedback gain KF

and associated time constant TF of the feedback loop, both frequency response and root lo-
cus methods may be employed.

Compensation based on rate feedback employs either the output voltage of the exciter
(which is also the voltage input to the field of the generator) or a signal related to exciter
field current (if field voltage is inaccessible). As in the case of TGR tuning, the aim of the
compensation is to derive for the Excitation System (ES) a desired transient gain reduction
over the range of modal frequencies. This is achieved by appropriately determining the val-
ues of the feedback gain and time constant, KF and TF, respectively.

In the types of analyses of ESs considered, a simple low-order model of the ES is employed.
It will then be shown that the analyses can be extended to account for more complex dy-
namic systems.

The tuning of the ES shown in Figure 7.28 will be illustrated first. This will be followed by
an examination of the dynamic performance of the generator off-line when it is under
closed-loop voltage control with the tuned ES. Finally, the associated performance of the
generator when on-line is assessed over a range of operating conditions to ascertain if the
performance specifications are satisfied.

7.10.2 Tuning of the Excitation System (ES)
As evident from Figure 7.28 the ES comprises only the closed loop formed by the AVR, the
exciter and the rate-feedback path, the rate-feedback transfer function being:

. (7.35)

Note that the block diagram in Figure 7.28 applies to the cases with the generator off-line
as well as on-line. In the latter case the block Ggen includes both the generator and the system
to which it is connected. 

In the case of a brushless excitation system the output voltage of the exciter is not accessible
for measurement. In this case a signal proportional to the exciter field current, typically des-
ignated Vfe , is used as the signal for rate feedback. The exciter field current is closely related
to the field voltage of the main generator (i.e. Ef ). To cover the cases of the exciter output
voltage being available or unavailable for feedback, a generalised approach is adopted in
which a voltage V pu, not defined, is the feedback signal - as shown in Figure 7.29. For the
purposes of initially illustrating a procedure, a simple first-order system is assumed for the
forward loop where the gain K and the time constant T represent those of the AVR, or the

GF s  sKF  1 sTF+ =
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AVR plus exciter, (referred to as the ‘Plant’). It will be demonstrated that this simple system
can then be modified to include additional dynamics in the forward path.

Figure 7.28 Generator and Excitation System with field-voltage feedback compensation.
The block Ggen accounts for the generator (and system) model when off-line (and on-line).

Figure 7.29 The Excitation System is shown as a simple closed-loop system with rate 
feedback.

The closed-loop transfer function of the Excitation System shown in Figure 7.29 is

. (7.36)

This transfer function can be expressed as 

, in which (7.37)
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 and (7.38)

The following analysis is mainly based on frequency response methods, however, the root
locus technique is used to demonstrate the fine-tuning of the rate feedback parameters
which is applicable to higher order excitation systems.

7.10.3 Rate feedback compensation using Frequency Response Methods.

The closed-loop transfer function (7.37) has one zero at , associated

with the feedback path, and two poles at . In order to obtain a more-or-less

constant transient gain reduction over the range of modal frequencies, say 1 to 10 rad/s, the
straight-line frequency response for the magnitude of the transfer function 

should have the form shown in Figure 7.30. 

Figure 7.30 Desired form of the straight-line magnitude response of the 
transfer function  for the closed-loop, rate-feedback control system.

From the desired form of the transfer function shown in Figure 7.30, the corner frequency
 should ideally be greater than, say,  to cover the desired range of modal frequen-

cies. Over that range the transient gain is KT. The lower corner  typically should be less

than  (to minimise the effect of the corner on the modal frequency range). Assume
that the transfer function in (7.37) can be divided into two blocks in series, say,

  and  . (7.39)

At frequencies greater than 1/TF, , where KT is the de-

sired transient gain. Thus,

. (7.40)

It is noted that  when . Moreover, from (7.38):
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 which, from (7.40), implies . (7.41)

Note that the upper corner frequency  is independent of the rate feedback parameters,
KF and TF. Following substitution of (7.40) and (7.41) in (7.38), we find

. (7.42)

If a value of the rate feedback gain, KF, is selected the associated value of the time constant
TF can be determined from (7.42), together with the lower corner frequency  from (7.40).
In this case the lower corner frequency cannot be specified.

However, according to (7.40), , either  or TF can be selected, given val-
ues of K and KT. An approach based on the frequency response of Figure 7.30 suggests that
the corner frequency 1/TF is a more meaningful quantity to select than the rate gain KF.
Thus, given the value of TF, KF can then calculated from a rearranged form of (7.42), i.e.

. (7.43)

Note that, if T is small, (7.43) can be expressed as 

,  if  . (7.44)

Thus, given the values of KF and TF, the ratio  is an estimate of the upper limit on

the value of the transient gain KT. 

An examination of the frequency response plot of (7.37) for  will reveal whether

the desired transient gain is more-or-less achieved over the range of modal frequencies. 

In the above analysis a simple model has been employed for the ES. In practice, the models
of both the AVR and the exciter may be of higher order. In some cases it may be possible
to adapt the above analyses to satisfy such systems. However, in other cases it is possible to
represent the excitation control system by low-order models in order to determine initial set
of values of the rate feedback parameters, KF and TF. These parameters can then be fine-
tuned using the more complex models and the associated frequency responses.

In (7.42) all quantities except KF and TF, the rate feedback parameters, are either known or
selectable. Using frequency response techniques an analysis of two cases will be considered:
Case 1 is based on the configuration in Figure 7.29; in Case 2 transient gain reduction or PI
compensation is included in the forward path of the AVR. Furthermore, it will been shown
that AVR and exciter transfer functions possessing additional dynamics can be incorporated
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in the analyses. In all cases a check should be made that the limits imposed on the ES by
conditions such as (7.40) and (7.41) are valid

7.10.3.1 Case 1: No TGR or PI compensation in forward loop of the AVR
Three illustrative examples based on the rate feedback of the exciter output are described
for Case 1. In Example 1 below the parameters of the rate-feedback block are determined
subject to certain specifications. In Example 2 the effects of additional dynamics in the for-
ward loop of the AVR are investigated. Finally, in Example 3 the significance of the rate-
feedback parameters employed in the Sample Data for the AC2A model of the excitation
system [12] is assessed against those values calculated by the approach adopted in
Section 7.10.3.

7.10.3.1.1 Example 1, Case 1. Simple excitation system

Assuming rate feedback of the exciter output voltage , the parameters of the ES in Figures

7.28 and 7.29 are KA = K = 250 pu, and the exciter gain and time constant are KE = 1 and
TE = T = 0.1 s, respectively; the time constant TA is assumed negligible. The specification for

the transient gain is KT = 32 pu (30.1  dB) over the modal frequency range 1 to 10 rad/s. 

The desired form of the straight-line frequency response of the magnitude of the closed-
loop excitation control system is shown in Figure 7.30. Referring to the latter figure, let us
assume the feedback time constant of is TF = 2 s. At the associated corner frequency

= 0.5 rad/s we know, based on Section 2.12.1.3, that the transient gain KT is close to
30.1 dB +3 dB.

From (7.40), the lower corner frequency is = 0.064 rad/s. Similarly, based

on (7.41) the upper corner frequency is = 78.1 rad/s; at this frequency

the transient gain is close to 30.1 dB -3 dB. For TF = 2 s the rate-feedback gain KF = 0.0541
pu-s is calculated from (7.43). The resulting exciter frequency response is shown in
Figure 7.31 together with those for several smaller values of TF and associated values of the
gain KF. The closed-loop responses reveal that for values of TF > 1.2 s the transient gain re-
quirements are satisfied.

The relevant characteristics of the responses are summarised in Table 7.7.

Ef

3

F

1 KT KATF =

2 KA KTTE =
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Table 7.7  Characteristics of frequency responses for varying 
rate-feedback time constant TF

Figure 7.31 Example 1, Case 1: Closed-loop frequency responses  

for the simplified rate-feedback excitation system model in Figure 7.29 for 
increasing values of the time constant TF (s) in the rate-feedback block.

-------------------------------------------

Ex. 1, Case 1   
Study No.

TF (s)
 

(rad/s)

 (
rad/s)

 
(rad/s)

KF  
(pu-s)

See Note 1.

1 0.747 1.34 0.171 78.13 0.020

2 1.222 0.818 0.105 78.13 0.0329

3 2.00 0.500 0.064 78.13 0.0541

ES parameters: K = KA = 250 pu, KT = 32 pu, T = TE = 0.1 s.
Note 1. Magnitude and phase of the responses are calculated at 1.0 rad/s.

F 1 2

34.4 dB 44.3–

32.3 dB 34.0–

31.1 dB 23.5–

    T
F
=0.75   T

F
=1.22   T

F
=2.0

10
−1

10
0

10
1

10
2

−60

−50

−40

−30

−20

−10

0

Frequency (rad/s)

P
h
a
s
e
 
(
d
e
g
)

10
−1

10
0

10
1

10
2

25

30

35

40

45

50

M
a
g
n
i
t
u
d
e
 
(
d
B
)

V Vref



360 Introduction to the tuning of AVRs Ch. 7
7.10.3.1.2 Example 2, Case 1. Higher-order excitation system
It has been pointed out that, in practice, the models of both the AVR and the exciter may
be of higher order. Referring to Figures 7.28 and 7.29 let us assume the AVR and exciter
transfer functions,  and , possess additional dynamics and are of the forms:

, respectively,

where TA = 0.05 s, T1 = 0.02 s, T2 = 0.01 s. Assume that the rate feedback parameters are
those for Study 2 in Table 7.7, namely, TF = 1.22 s and KF = 0.033 pu-s, and K = KA = 250
pu, KT = 32 pu, and T = TE = 0.1 s. The above analysis is based on T = 0.1 s and, because
the time constants TA, T1 and T2 of the additional elements are shorter than that of the ex-
citer, the corners associated with additional dynamics lie at higher frequencies than 1/TE.
The application of frequency response approach for Case 1 is therefore valid. The frequency
response with the additional faster time constants is shown in Figure 7.32, and is compared
with the frequency response if the faster dynamics are ignored.

Figure 7.32 Comparison of the closed-loop frequency responses of an excitation system 
having additional, faster dynamics than that for the simplified system in Figure 7.29. 

TF = 1.22 s and KF = 0.033 pu-s. 

In this case, over the range of modal frequencies of interest, the additional faster dynamics
have little effect on the frequency response of the simplified excitation system which has
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been tuned ignoring the effects of faster dynamics. The exciter time constant of 0.1 s has
been employed in the example is long. Typically, in practice, the exciter time may be less that
0.05 s; such values cause the upper corner  to increase in frequency. The

magnitude and phase responses, based on the frequency response for Case 1, therefore tend
to be ‘flatter’ over a range beyond the 1 to 10 rad/s range of modal frequencies.

An aside: Say the exciter time constant is TE = 0.05 pu and in the forward loop there is a
first-order lag with a time constant T1 = 0.25 s (corner frequency 4 rad/s) which lies in the
modal frequency range of interest. In this event the pole at  Np/s can be cancelled - for
practical purposes - and the pole shifted to say,  Np/s. 

-------------------------------------------

7.10.3.1.3 Example 3, Case 1: Application to excitation system model AC2A
The approach adopted in Example 1 can be adapted to excitation system (ES) models in
IEEE Standard 421.5 [12]. Type AC2A ES represents a field-controlled alternator-rectifier
exciter system (a brushless ES). A small-signal model of the AC2A is shown in Figure 7.33
in which, for present purposes, a simple model  is used for the exciter.

The following set of sample data for the Type AC2A model is provided in [12]:

KA = 400 pu, TA = 0.01 s, TB = TC = 0 s, KB = 25 pu, KH = 1 pu, KE = 1.0 pu, TE = 0.6 s,
KF = 0.03 pu-s, TF = 1.0 s.

By block diagram manipulation of Figure 7.33 with KE = 1.0 pu, it can be shown that

.

The above transfer functions reveals that the exciter time constant is reduced by a factor
, and consequently the speed of response of the exciter is increased. The

AC2A model of the excitation system can then be expressed in the form shown in
Figure 7.29 with  and , assuming TA = 0. 

Figure 7.33 Small-signal model of the AC2A ES with a simplified exciter model (TA = 0)

2 KA KTTE =

4–
25–

1 KE sTE+ 

EFD

VA
--------------

KB 1 KHKB+ 
1 sTE 1 KHKB+  +
--------------------------------------------------------=

1 1 KHKB+ 

T TE 1 KHKB+ = K KAKB 1 KHKB+ =

1

sTE

KE

++

EFD

VF

KB

Vref

KH

KFs

1+sTF

KA

1+sTA 1+sTB 

1+sTC 

+

VE

VRVA



362 Introduction to the tuning of AVRs Ch. 7
In this example the forward loop of the ES, , introduces a corner at 1/T = 43.3
rad/s lying above the selected range of modal frequencies 1 - 10 rad/s. The approach devel-
oped in Section 7.10.3 is thus valid since this corner lies above the upper end of the modal
frequency range. 

Let us consider the following two studies: 

1. assume the desired transient gain is KT = 32 pu. Given TF = 1.0 s calculate the asso-
ciated rate-feedback gains KF based on (7.43);

2. calculate the effective transient gain KT associated with the data supplied in [12] for
the AC2A excitation system model.

In Study 2, equation (7.43) is solved for KT, i.e.

. (7.45)

The results are summarised in Studies 1 and 2 of Table 7.8.

Table 7.8  Comparison of the closed-loop parameters for AC2A [12] in Studies 1 & 2 

In Study 2 it is of interest to note that, for the AC2A ES with the rate-feedback time constant
TF = 1 s and gain KF = 0.03 pu, the calculated transient gain is KT = 30.6 pu. These values
are close to those in Study 1 when the transient gain of KT is set to 32 pu and the calculated
rate-feedback gain is KF = 0.0286 pu, i.e. the AC2A has an inherent transient gain close to
that which has been adopted in this chapter. This observation is confirmed in the frequency
response plots of Figure 7.34; moreover, the transient gain is more-or-less constant over the
selected modal frequency range, 1 to 10 rad/s. 

 Study 
No.

TF (s) KT (pu)
 

(rad/s) (rad/s)
KF (pu-s) Basis of calculation Comment

1 1.0 32.0 0.083 52.1 0.0286*
Based on frequency 
response analysis, 
Case 1

KF calculated from 
(7.43) with KT = 32 
pu

2 1.0 30.6* 0.080 54.46 0.030
Based on data set for 
exciter AC2A [12]

KT calculated from 
(7.45) with 
KF = 0.03 pu 

* Calculated value, given the selected value of KT or KF.
, 1/TF and  are the corner frequencies of the closed-loop transfer function (7.37). 

EFD VA

KT
2

T KT KT TFK K
2
KF+ + – TFK

2
+ 0=

1 2

1 2



Sec. 7.10 Rate feedback compensation 363
It is noted that the combination of KF = 0.03 pu-s and TF = 1.0 s is commonly used in the
sample data sets for a variety of ESs in IEEE Standard 421.5 [12]. According to (7.44), for
latter values the effective transient gain is  pu.

Figure 7.34 Frequency responses  of the closed-loop rate-feedback ES for Studies 

1 and 2 of Table 7.8. * Calculated values when either KT or KF is the specified quantity.

-------------------------------------------

7.10.3.2 Case 2: Rate feedback with TGR or PI compensation in forward loop of the AVR

In Case 1, previously considered in Section 7.10.3.1, transient gain reduction or PI compen-
sation is omitted from the forward loop.

TGR or PI compensation may be employed in conjunction with rate feedback of the exciter
voltage or AVR output (the ‘Plant’ output) - as shown in general form in Figure 7.35(a).

The objective of the analysis is to derive a constant transient gain KT at frequencies in the
modal frequency range, say 1 to 10 rad/s. This implies that all corner frequencies in the
transfer function of the ES should lie outside of the latter range.
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Figure 7.35 Compensation with rate feedback of the exciter output voltage Ef or the 
equivalent exciter field current (Vfe )

(a) General form of the simple block diagram;   (b) Equivalent form.

Based on the equivalent form of the block diagram in Figure 7.35(b), the following analysis
considers the behaviour of system in the lower and higher frequency ranges. The lower
range includes the corner frequencies of the TGR or PI compensation together with the cor-
ner frequency 1/TF of the rate feedback block. The higher frequencies range which exceeds
10 rad/s includes plant corner 1/T - and possibly additional higher corner frequencies We
require  - assuming  is the highest corner in the lower frequency range -

and  rad/s. Ideally, the magnitude of the transient gain KT should then be constant
over the range of modal frequencies.    

Consider the limits as ,  of the following transfer functions whose corners

lie in the lower frequency range:

TGR transfer function (7.1)  ;

PI transfer function (7.31) ;

Rate feedback transfer function (7.35)  ; (7.46)

The plant transfer function when  is .

The upper corner frequency of the TGR, , and the corner frequency of the PI,

, are such that they are less than .

Let KC = TC/TB or let KC = KPP (these are the high frequency gains of the TGR or PI transfer
functions in (7.46), respectively).

Under the condition that, 
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  or , (7.47)

the transfer function for the systems shown in Figure 7.35 is

. (7.48)

The gain of the transfer function (7.48) represents the transient gain KT over the range of
frequencies of interest: 

i.e.,   , or . (7.49)

Note the corner frequency of the transfer function  in (7.48) lies at a value greater

than 1/T. The application of these results is considered in Example 4.

7.10.3.2.1 Example 4, Case 2: Transient gain reduction or PI compensation with rate 
feedback
The application of rate feedback with either TGR or PI compensation in a closed-loop con-
trol system is shown in Figure 7.35(a). The following parameters are provided for the com-
pensation and the plant, i.e.:

• TGR: TC = 5 s, TB = 12.5 s, upper corner of TGR is 1/TC = 0.2 rad/s;

• PI: KPP = 0.4 pu, KIP = 0.08 pu/s, corner of PI is KIP / KPP = 0.2 rad/s. 

• Plant: K = 250 pu, T = 0.05 s.

• For both forms of compensation: transient gain  KT = 32.0 pu. Assume TF = 2.0 s.

Condition (7.47) is valid for both types of compensator. Calculate the values of the feedback
gain KF for each compensation.

Based on (7.49), the rate feedback gains for the respective compensator types and for the
selected value of the feedback time constant are:

TGR: pu with  pu; 

PI: pu with  pu.

For the system of Figure 7.35 the frequency responses for the cases of TGR and PI com-
pensation are shown in Figure 7.36. For comparison, the response of the high-frequency
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transfer-function model of the system,  (7.48), rad/s, is also dis-

played. All three magnitude responses satisfy the transient gain requirement of 30 dB (32 pu)
over the selected range of modal frequencies. Because the (upper) corners of the TGR and
PI compensation and the feedback time constant are the same in both cases, their phase re-
sponses are almost identical for frequencies greater than 0.5 rad/s ( = 1/TF). The upper cor-

ner frequencies of all three responses lie at  rad/s, a value

greater than 1/T = 20 rad/s. For the purposes of comparison note that the parameters of
the TGR and PI compensation have been chosen such that the product K.KC in (7.49) is the
same in each case.

This example demonstrates that the relationships in (7.49) provide a basis for determining
the parameters for rate feedback analysis when coupled with other compensation functions.

Figure 7.36 Frequency responses for the system of Figure 7.35(a): TGR or PI compensa-
tion in the forward loop and, for comparison, the high-frequency transfer-function model, 

 (7.48), valid for .

-------------------------------------------

7.10.3.3 Case 3. Effect of other or additional dynamics in the forward loop

The analysis of rate feedback compensation has been based on the excitation system (ES)
configurations of Figures 7.29 and 7.35, (i) without and with TGR or PI compensation and
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(ii) when the corner frequency of the first-order ‘plant’ transfer function,  in the
ES, lies above the range of modal frequencies. It may be that the ‘plant’ transfer function is
of higher order than one, and/or that the additional pole(s) lie in the range of modal fre-
quencies, perhaps associated with higher-order models of linearized excitation systems.
Such additional dynamics in the forward loop can be accommodated in the analysis which
has been developed in Example 5, below.

7.10.3.3.1 Example 5, Case 3. TGR or PI compensation with rate feedback and additional 
dynamics in the forward loop
Let us consider Example 4 which includes transient gain reduction or PI compensation with
rate feedback. Let us assume that there are additional blocks which introduce poles at ,

 and  Np/s in the ‘plant’. The pole at  is associated with a corner frequency of
2.5 rad/s. Unfortunately, this corner lies in the modal frequency range of 1 - 10 rad/s over
which a transient gain of 30 dB is required. Moreover, this pole being associated with a
‘plant’ parameter may vary somewhat with the plant loading between -2.3 and -2.6 Np/s. 

An approach which is adopted for this scenario is to ‘cancel’ the pole at  Np/s and
shift it to a higher frequency beyond the modal frequency range using the lead-lag transfer

function, say , with corners at 2.38 and 23.8 rad/s 1. The corners
of the modified dynamics all lie above or at that of the ‘plant’ corner frequency of 1/T = 20
rad/s and thus the identical design used in Case 2 above is employed, i.e. the parameters of
the TGR, PI and rate feedback parameters are the same as in Example 4. The transfer func-
tion of the block associated with the ‘plant’ in Figure 7.35(a) therefore takes the form:

.

The frequency response of the closed-loop ‘plant’ with TGR or PI compensation and rate
feedback, with and without the additional dynamics, is shown in Figure 7.37 on page 368.

Figure 7.37 reveals that the magnitude plots with and without additional dynamics agree
closely over the range 1-10 rad/s. However, the phase plots start to diverge only at 2 - 3 rad/
s and at 10 rad/s there is an additional phase lag of about 20  due to the additional dynam-
ics. The performance of the closed-loop ‘plant’ can be improved with further fine-tuning.

1. Note: there is not complete cancellation of the pole at -2.5 with the zero at -2.38. For a 
disturbance to the system the magnitude of the response associated with the almost can-
celled pole at -2.5 should be small.
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Figure 7.37 Frequency responses for the closed-loop ‘plant’ of Figure 7.35 for TGR or 

PI compensation in the forward loop and rate feedback. With additional dynamics
the poles lie at , , , , the zero at  Np/s.

-------------------------------------------

7.10.4 Rate feedback compensation using the Root Locus Method
What is the significance of the root locus method for the purpose of determining the rate-
feedback parameters in addition to frequency response techniques? Firstly, if the AVR and/
or the exciter models are of higher order or differ from the form assumed in (7.36) / (7.37),
it may be possible to derive initial estimates only of the rate-feedback parameters KF and TF

from the analysis of Section 7.10.3. Secondly, the robustness or sensitivity of the damping
of the poorly-damped closed-loop poles to changes in a parameter value can be assessed
The use of a combination of the root locus method and frequency response techniques to
fine-tune the estimated parameters may then yield an acceptable set of parameter values.

The following is an unconventional application of the well-known root locus method de-
scribed in [8] or [9]. The basis for this application of the method to determine how the
closed-loop poles of the off-line generating unit under closed-loop voltage control vary as a
parameter such as KF in the feedback path is varied from zero to infinity. 

The block diagram of Figure 7.28 is manipulated in several steps into a form that is amena-
ble to determination of the gain KF using the root locus method, i.e. the gain KF appears in
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the forward path of the open-loop system. The desired form of the open/closed loop sys-
tem is that shown in Figure 7.38. In this form the generator and its voltage control loop be-
come a feedback loop about the AVR and exciter. Note that the closed-loop poles of the
transfer functions  and  are identical, however the zeros in the two transfer

functions differ. As the terminal voltage reference , shown in Figure 7.28 on page 355,

is not relevant to this scenario it is ignored in the root-locus analysis. This is now in the clas-
sical form of a closed-loop system for root locus analysis using Matlab®, the gain k being
varied over the range . (Note that for the unit on-line a root locus analysis can be con-
ducted using a power system small-signal software package. A succession of eigen-analyses
is performed as the gain k in the block diagram of Figure 7.38 is varied over an appropriate
range).

Figure 7.38 Block diagram of a generating unit off-line. An equivalent form of 
Figure 7.28 for root-locus analysis with a variable gain k. 

7.10.4.1 Example 6. Root Locus Method. Application to the generating unit off-line
For the analysis of the off-line performance of the generating unit the same parameters are
adopted as in Section 7.10.3.2.1 for TGR compensation with rate feedback of the exciter
voltage.

Generator and exciter parameters: = 5 s, KE = 1.0 pu, TE = 0.10 s; 
AVR parameters: KA = 250.0 pu, TA = 0.05 s; 
Transient gain reduction parameters: TC = 5.0 s, TB = 12.5 s;
Tuning of the feedback block parameters yielded values of KF = 0.0425 pu-s and TF = 2.0 s.

With reference to Figure 7.35, the exciter transfer function Gex(s) is included in the ‘plant’
transfer function; the feedback signal is the field-voltage perturbation. Because the condi-
tion (7.47), , applies to this scenario, the same values of KF and TF

apply to this example. Of interest is the effect on the damping of the closed-loop system of
changes in KF. This can be determined from the plot of the root loci shown in Figure 7.39
as the gain k in Figure 7.38 is varied  with KF set to 0.0425 pu-s. The associated
closed-loop poles for k = 1, i.e. k.KF = 0.0425, are marked on the plot and are all well
damped. 
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Figure 7.39 Root locus plot for the exciter-voltage feedback gain k.KF, KF = 0.0425 pu-s 
and TF = 2.0 s. Loci of the closed-loop poles start at the open-loop poles and terminate at 

the finite or infinite zeros as gain k is varied .

The closed-loop poles for an increase in the rate-feedback gain of 6 dB (k = 2) are also
marked on the locus plot; the dominant closed-loop pole at  Np/s (k = 1) is not sig-
nificantly affected. Furthermore, it is observed that the damping of the dominant pole im-
proves for an increase in gain of 5.7 times (  dB) before the damping commences to
decrease (the damping constant changes from  Np/s to  Np/s). For a decrease
in gain, say to = 0.18, the closed-loop pole lies just to the left of the open-loop
pole at  Np/s; the dominant pole of the off-line generator under closed-loop voltage
control is therefore robust to gain variations of  dB.

It is noted that the corner frequency 1/TE = 10 rad/s is a value at the upper end of the mod-
al frequency range. Nevertheless, a frequency response plot of the ES shows that transient
gain is held constant at 30 dB from 1.5 to 20 rad/s. 

The performance of the generator on-line under closed-loop voltage control with rate feed-
back compensation is very similar to those studied for TGR and PID compensation. The
similarity is a result of selecting the transient gain to be the same (KT = 32 pu) over the se-
lected modal frequency, 1-10 rad/s, in all cases.

-------------------------------------------

-8.8, k=1

-0.52, k=1
-0.54, k=2

 open-loop zero

 open-loop pole

 closed-loop pole

 Not to scale

-0.74+j0.30, k=7

-0.88, k=5.7

-10.6+j18.0, k=1

 k=0,-0.50

 k=0, -1.0+j11.9

 k=0

-3.9, k=2

-13.0+j27.9, k=2

 k=0, -28.0

0 

0.52–

15

0.52– 0.88–
k 1 5.7=

0.50–

15



Sec. 7.11 Tuning AVRs with type 2B PID compensation 371
7.11 Tuning of AVRs with Type 2B PID compensation in a three-
generator system

This section is a continuation of the example described in Section 7.8. Its purpose is 

• to demonstrate, in some detail, the more complex tuning of the AVRs;

• to satisfy the dynamic and steady-state performance specifications over a wide range
of normal and line-outage operating conditions;

• to analyse the performance 
• of a generator operating off-line at rated speed and under closed-loop voltage

control;
• of one, two or three machines on-line at part and at rated real power output

for a range of reactive power generation;

• to include models of the non-linear and the linearized brushless excitation system and
to determine the variation of parameters of the linearized model with operating condi-
tions.

7.11.1 The three-generator, 132 kV power system
A power station containing three identical generators, each rated 50 MW 0.85 power factor,
is connected by double-circuit 132 kV lines to a high voltage system, represented by an in-
finite bus, as shown in Figure 7.40. 

Figure 7.40 The three-generator, 132 kV power system

The parameters of the 5th order, salient-pole generator rated 58.8 MVA and its exciter are
listed in Appendix 7–I.1.2. The exciter is an AC generator with a rotating rectifier and is rep-
resented by an AC8B Excitation System Model [12] shown in Appendix 7–I.2, Figure 7.49.

Note that the following applies only to the analysis associated with the system shown in
Figure 7.40 and the associated AVRs with Type 2B PID compensation.

The PID parameters are to be determined assuming KG = 1, TG = 0. 
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Transmission line parameters in per unit /100 km on system base (100 MVA) are: 
Z = 0.0632+j0.2347,  b = 0.0484.

The load at bus 5 is 50 MW, 10 MVAr lag when it is ‘on’, zero when ‘off’. The most onerous
system contingency is the outage of the 130 km line ‘a’. 

The transformer parameters are:  
for each generator: Z = j0.20 pu on 100 MVA, tap range %.
for the transformer at the Infinite Bus:  Z = j0.05 pu on 100 MVA, tap range %.

The range of operating conditions is summarised in Table 7.9.

For each set of study cases C*1 to C*5 and C*6 to C*10, the real power output of each gen-
erator is maintained constant for the five reactive power outputs between 25 Mvar lagging
to 20 Mvar leading. That is:

• Output of each generator: 50 MW at: 25, 12.5 Mvar lag, 0 Mvar, and 10, 20 Mvar lead;

• Output of each generator: 25 MW at: 25, 12.5 Mvar lag, 0 Mvar, and 10, 20 Mvar lead;

• Number of generators on-line: one, two or three. Units are equally loaded; unequal
loadings are not considered in these studies.

Table 7.9  Power system operating conditions

The features of this generator-brushless-exciter and power system are: (i) the lines are long
with a surge impedance loading (SIL) of 45 MW; (ii) at rated output of the station the lines
are heavily loaded (about 1.7xSIL); (iii) with the outage of a line the loading on the second

No.of
Units

Power 
(MW)

*

Cases Load# Line ‘a’ Cases Load# Line ‘a’

Mvar: 25 lag to 
20 lead

in or
out

in or
out

Mvar: 25 lag to 
20 lead

in or
out

in or
out

One

50 C01-C05 in in C06-C10 in out

50 C11-C15 out in C16-C20 out out

25 C21-C25 out in - - -

Two

50 C41-C45 in in C46-C50 in out

50 C51-C55 out in C56-C60 out out

25 C61-C65 out in - - -

Three

50 C71-C75 in in C76-C80 in out

50 C81-C85 out in C86-C90 out out

25 C91-C95 out in - - -

* Power output per generator
# Load: 50 MW 10 Mvar. Line ‘a’ in or out of service.

10
10
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circuit is about 3.4xSIL; (iv) the open-circuit time constants of the generator and exciter are
relatively long; (v) the only adjustable parameters in the AVR are those of the PID and the

gain KG; (vi) for planning purposes the halving time 1 of any rotor modes should be less than
5 s. An implication of items (iv) and (v) is that the PID must introduce adequate phase lead
at lower frequencies, i.e. about 1 to 4 rad/s. This not only ensures stability but also satisfies
a requirement that, for a small step-change in reference voltage, the settling time of the ter-
minal voltage response to lie within a band of % of its final value in less than 5 s when
the generator is on-line; when off-line the 10% settling time is 2.5 s.

To ensure that the tuning of the PID covers a range of operating conditions, the 75 gener-
ating/operating conditions shown in Table 7.9 are examined. However, certain system con-
ditions are not credible because 132 kV bus voltages are outside the range of 95-108%, or
taps are at their limiting positions; several cases - such as C71 and C90 at maximum lagging
or leading reactive power output - are therefore discarded. The terminal voltage of each gen-
erator is maintained at 1 pu.

7.11.2 The frequency response characteristics of the brushless exciter and genera-
tor 

The closed-loop terminal voltage control system of each generator is shown in the block di-
agram in Figure 7.41; note that the generator model accounts for the effects of the external
system when the unit is on-line. Because the models of both the generator and the exciter
are non-linear, the parameters of the linearized model will change with conditions at the gen-
erator terminals. In order to establish suitable parameters for the excitation control system
it is necessary to determine the variation of the generator-exciter characteristics with termi-
nal conditions. 

Figure 7.41 Terminal voltage control system. The gain KAE accounts for the per unit sys-
tem of the excitation control system which includes a brushless exciter.

Over a range of terminal conditions such a characteristic is the frequency response of the
generator-exciter transfer function, as measured between the exciter field voltage as input

1. See definition in Section 10.2.2.

10
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and the transducer voltage output, . The use of the latter transfer func-

tion is particularly pertinent to brushless excitation systems in which the exciter output volt-
age is not accessible for measurement.

A 5th order model of the generator and a non-linear exciter model are available in a small-
signal power system dynamic performance package. Such models are automatically line-
arized at each operating condition by the software. The non-linear and linearized exciter
model are shown in Figure 7.49 and 7.50 of Appendix 7–I.2.

Based on (i) the power system of Figure 7.40, (ii) the system and device parameters given in
Section 7.11.1, the frequency responses of relevant blocks in the voltage control loop are
calculated for selected operating conditions. The set of frequency responses for the genera-
tor and exciter, Vtrn/Vexf , are shown in Table 7.42 when either one, two or three generators
are on-line; the output of a generator is 25 or 50 MW at 1 pu terminal voltage. 

For normal and N-1 operation of this system, operation at lagging power factors is more
likely to occur. The selection of the PID parameters may be influenced accordingly.

It is noted from Figure 7.42 that, for feasible cases C01 to C95 the gain in the generator/
exciter frequency responses in the region of 1.0 rad/s varies within  dB, and the phase
varies by about . The variations in the responses over the frequency range are due not
only to the range of steady-state conditions at the generator terminals but also to the asso-
ciated parameter values in the small-signal model of the exciter. An example of the exciter
parameters and the steady-state field voltage is illustrated in Table 7.10 of Appendix 7–I.2
for operating conditions C16 to C20 in which a single machine is on-line. 

The significance of the phase variation is the following. Let us assume that when the PID is
added to the forward loop the gain-cross-over frequency of the Bode plot of

 occurs at 1 rad/s. The gain variation in the generator/exciter frequency

responses at 1 rad/s is small but the phase variation remains at about . This will result
in a similar variation in the phase margin over the range of operating conditions with impli-
cations for both stability and transient response to a step change in reference voltage. The
Bode plots suggest that, when the units are under closed-loop voltage control, the greater
phase lags in the leading power factor cases (i) are not conducive to stability, and (ii) result
in the terminal voltage response to step changes in reference voltage being less-well or poor-
ly damped.

To determine an appropriate set of PID parameters for the range of operating conditions
let us base the analysis on a condition in the middle of the band of phase variations, say Case
C17, in which the output of a single generator is 50MW, 12.5 Mvar lagging; the line ‘a’ is out
of service and the load is disconnected. 

Vtrn jf  Vexf jf 

6
25

Vtrn jf  Vref jf 

25
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Figure 7.42 Envelopes of frequency responses between the generator terminal voltage 
transducer and the exciter field voltage, Vtrn/Vexf , for the feasible range of operating 

conditions shown in Table 7.9

7.11.2.1 Calculation of the PID Type 2B parameters
In order to establish a basis for the compensation to be provided by the PID, let us consider
for Case C17 the frequency responses of the generator and exciter, , and

(a) (b)

(a) One unit,  (b) Two units,  (c) Three units.

Solid lines: Maximum lagging reactive power
Dashed lines: Maximum leading reactive power

Real power output is 50 MW in all cases except for
C21-25, C61-65 and C92-95 when it is 25 MW.

Cases C76, C80, C81, and others are omitted because
operating constraints are infringed and are infeasible.
For some other cases the reactive power output per

generator is reduced, e.g. from  to  Mvar for
Case 79. 

Case C17 is adopted as the Base Case and is shown in
all three sets of plots.
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the AVR, . The PID parameters selected for trial are those for set

No. 2 in Table 7.6 on page 350. These two responses are shown in Figure 7.43 together with
the phase response of the open-loop transfer function .

Figure 7.43 Case C17 (one unit): Frequency responses of the component transfer 
functions in the open-loop system including the PID parameter Set No. 2 

(see Table 7.6 on page 350), 
i.e. KP = 14 pu, KI = 7.0 pu/s, KD = 8.0 pu-s, TD = 0.143 s, KG = 1.0. 

Gain cross-over frequency of the open-loop transfer function is 1.51 rad/s.

From the open-loop transfer function in Figure 7.43 it is noted that (i) the gain-cross-over
frequency occurs in the range 0.7 - 2.5 rad/s for which the possible variations in the loop
gain lie in the range  dB; (ii) the phase margin varies from  to  over the same
frequency range.

In determining appropriate PID parameters the phase margin should be more-or-less con-
stant about the gain-cross-over frequency for robustness to gain variations. Selecting a phase
margin of , say, ensures the closed-loop response of terminal voltage to a step change in
reference voltage is not significantly over-damped (for large values of the phase margin) or
under-damped (for small values of the phase margin). In the case of higher values of loop
gain associated with the gain-cross-over frequency exceeding 3 rad/s we note that the
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closed-loop step response of terminal voltage is likely to contain a damped oscillatory com-
ponent due to the electro-mechanical modal resonance at 5 to 6 rad/s.

We will therefore examine an approach to derive a more of less constant phase margin of
 over an appropriate frequency range for Case 17. The ‘phase matching’ method which

achieves this objective is described in Appendix 7–I.5 in which it is shown in Figure 7.55
that the parameter set No. 4 for PID Type 2B in Table 7.6 provides the required phase mar-
gin.

The significance of the analysis of the phase margin for the Base Case 17 is revealed in its
effect on the terminal voltage response of the closed-loop system due to a step change in
reference voltage for the full set of operating conditions. As shown in Figure 7.44 the re-
sponse of the system incorporating PID Set No. 2 (phase margin ) is well damped. How-
ever, with PID set 4 (phase margin ) a satisfactory, suitably-damped response results.
Moreover, the settling-time requirement that the response lies within 10% of its final value
within 5 s is satisfied with both PID Sets 2 and 4.

Figure 7.44 Case C17. Single unit only on-line. Perturbations in terminal voltage (Vt) due 
to a step change in reference voltage from a steady-state value of 1.0 pu to 1.01 pu (1%). 

PID parameter Sets 2 and 4, Table 7.6. The % band about the final value is also shown.

The dynamic performance of the single generator with PID Set No. 4, parameter values
KP = 14 pu, KI = 14 pu/s, KD = 5.89 pu-s and TD = 0.1053 s, appears satisfactory. The ap-
plication of this PID set to all the feasible operating cases and conditions for a generator off-
line and one, two and three units on-line is now examined.

7.11.2.2 Dynamic performance of a unit off-line under closed-loop terminal voltage control
When the generator is operating off-line at rated speed and under closed-loop voltage con-
trol it is required to satisfy the relevant performance specifications. For example, such spec-
ifications may require that the measured terminal voltage settles within 10% of the final
value in less than 5 s for a step change of 1% in the terminal voltage (see Section 7.4). in the

65

96
66

          PID #2     PID #4

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ΔV
t
 
(
%
)

Time (s)

10



378 Introduction to the tuning of AVRs Ch. 7
analysis.When the generator is off-line in the following analysis the 10% settling time in ter-
minal voltage for a 1% change in reference voltage is 2.5 s.

In previous examples simple models of the exciter and the generator have been employed,
i.e.  and . However, (i) at 1 pu voltage the small-signal gain of
the generator is determined by the slope of the saturation curve and is less than unity; (ii)
the perturbations in generator field current modulates the generator field voltage by two
mechanisms represented in the model of the exciter in Appendix 7–I.2, Figure 7.50. The
mechanisms are (i) the effect of the demagnetization term, KDE, and (ii) the non-linear re-
duction in rectifier average output voltage with increase in the rectifier load, i.e the generator
field current. The latter mechanism is represented by the value of the gain KCE and the as-
sociated mode of operation of the rectifier.

The linearized model of the off-line, fifth-order salient-pole generator and the exciter are
formed automatically. The off-line unit operates a rated voltage and speed. The other ele-
ments in the voltage control loop are PID Set No. 4 (see Appendix 7–I.5), the per unitizing
gain KAE and the terminal voltage transducer, time constant Ttrn . The generator and exciter
parameters are given in Appendix 7–I.1.2. The Bode Plot of the open voltage-control loop,

, and the associated closed-loop response in generator terminal voltage

due to a +1% step in the reference voltage, are shown respectively in (a) and (b) of
Figure 7.45. 

The closed-loop step response is adequately damped, as predicted by the Bode plot, and sat-
isfies the performance specification.

7.11.2.3 Dynamic performance over a range of operating conditions; one, two and three units 
on-line based on PID parameter Set No. 4.
The open-loop frequency responses for one, two and three units on-line are examined to
derive information on both the damping of the voltage control loop and the stability of the
power system under closed-loop conditions. The margins of rotor angle stability under
closed-loop conditions are also examined, assuming for planning purposes a 5 s halving time
for the dominant mode. Finally, the closed-loop responses of the generator terminal voltage
to step changes in its reference voltage are assessed to determine if the requirement that the
response lies within 10% of its final value within 5 s is satisfied over the range of operating
conditions.

1 KE sTE+  1 1 sTd0+ 

Vtrn jf  Vref jf 
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Figure 7.45 Generator off-line, operating at rated speed under terminal voltage control 
with PID Set No. 4. (a) Open-loop Bode Plot. (b) Perturbation in closed-loop terminal volt-

age step-response.

7.11.2.3.1 Open-loop frequency responses; one, two and three units on-line.
In the following Bode plots for generator #1 the terminal voltage feedback path is open on
that generator, but is closed on the other generators when more than one unit is on-line. The
Bode plots are shown in Figure 7.46 for the cases when one, two or three generators are on-
line. When all machines are under closed-loop voltage control these open-loop plots should
reveal the nature of (i) the damping in the voltage control loop on generator #1, (ii) the sta-
bility of the system, and (iii) the terminal voltage response of generator #1 to a step in its
reference voltage. One can equally well apply the above analysis to unit #2 or #3 instead. 

Because the Phase Margins derived from the Bode plots in Figure 7.46 are all positive the
system is stable over the range of operating conditions. However, the Phase Margins are
much less than the desired value of  at higher values of leading reactive power output,
e.g. for C20 the PM is  at 1.26 rad/s. Thus under leading power factor operation and
closed-loop voltage control the system damping is degraded. However, in the cases of one,
two or three generators on-line at rated real power output it should be noted that the higher
values of leading reactive power output are unlikely to arise in practice. In such cases the re-
active power import to the system at the infinite bus is somewhat greater than that absorbed
by the generator. For example, in case C55 the output of two units is 100 MW -40 Mvar and
the reactive import from the infinite bus is 64 Mvar. Similarly in case C15 for one generator,
output 50 MW -20 Mvar, 15 Mvar is imported from the system. Such reactive flows from
the real power sink to the real power source are unwarranted and uneconomic - especially
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for the outage of line ‘a’. Thermal limits of transmission lines and transformers, which may
be relevant under outage conditions, have been ignored. Clearly, under leading power factor
operation the reactive power absorbed by the generators must be limited. Such limits would
need to be determined by further studies.

Figure 7.46 All feasible Cases, C01 to C95: Bode plots  of the 

terminal voltage when the feedback path is open on generator #1 with PID Set No. 4.

  C42  C44  C46  C50
  C51  C55  C56  C60
  C61  C65  C17

10
−2

10
−1

10
0

10
1

10
2

−200

−180

−160

−140

−120

−100

−80

Frequency (rad/s)

P
h
a
s
e
 
(
d
e
g
)

10
−2

10
−1

10
0

10
1

10
2

−80

−60

−40

−20

0

20

40

60

M
a
g
n
i
t
u
d
e
 
(
d
B
)

  C01  C05  C06  C10
  C11  C15  C16  C20
  C21  C25  C17

10
−2

10
−1

10
0

10
1

10
2

−200

−180

−160

−140

−120

−100

−80

Frequency (rad/s)

P
h
a
s
e
 
(
d
e
g
)

10
−2

10
−1

10
0

10
1

10
2

−80

−60

−40

−20

0

20

40

60

M
a
g
n
i
t
u
d
e
 
(
d
B
)

(a) One unit, (b) Two units, (c) Three units. 
PID Set No.4 installed on all generators

 
Solid lines: Maximum lagging reactive power
output.
Dashed lines: Maximum leading reactive power
output.

Unit real power output is 50 MW in all cases ex-
cept for C21-25, C61-65 and C92-95 when it is 25
MW.

Cases C76, C80, C81, and others are omitted be-
cause operating constraints are infringed and are
infeasible. For some other cases the reactive pow-
er output per generator is reduced, e.g. from 
to  Mvar for Case 79. 

Case C17 is adopted as the Base Case and is
shown in all three sets of plots.

10–
5–

  C72  C75  C77  C79
  C82  C84  C86  C88
  C92  C95  C17

10
−2

10
−1

10
0

10
1

10
2

−200

−160

−120

−80

Frequency (rad/s)

P
h
a
s
e
 
(
d
e
g
)

10
−2

10
−1

10
0

10
1

10
2

−80

−40

0

40

M
a
g
n
i
t
u
d
e
 
(
d
B
)

(c)

(a) (b)

Vtrn jf  Vref jf 



Sec. 7.11 Tuning AVRs with type 2B PID compensation 381
7.11.2.3.2 System eigenvalues when generators are under closed-loop voltage control
While the Phase Margins derived from the Bode plots show that the system is stable, an ex-
amination of the eigenvalues for the rotor modes reveals the degree of stability of these
modes. The most onerous conditions most likely to yield rotor angle instability are the cases
for which line ‘a’ in Figure 7.40 is out of service and the load at bus 5 is off, i.e. the rated
output of the station is carried over line ‘b’. The local and inter-machine modes for one or
more units on-line are seen in Figure 7.47.

Figure 7.47 Eigenvalues for one, two and three units on-line. Line ‘a’ is out-of-service and 
the load at bus 5 is off. Conditions are shown for feasible maximum lagging and leading 

reactive power outputs at rated real power. PID Set No. 4 installed on all generators.

As shown in Figure 7.47, when three machines are on-line at rated real power output the 5
s halving time is breached, or nearly breached (cases C86-C88). To provide an adequate mar-
gin of stability for the most onerous condition it is therefore necessary to install power sys-
tem stabilizers on the generators. (This is not considered here.)

7.11.2.3.3 Step responses for the range of feasible operating conditions; one, two or three 
units on-line.
Based on the PID parameter Set 4 in Table 7.6, let us determine the terminal voltage re-
sponse of the closed-loop system to a +1% step change in reference voltage of generator
#1 over the range of operating conditions C01 to C95 considered in Figure 7.42. 

The perturbations in the generator # 1 terminal voltage from its initial steady-state value are
shown in Figure 7.48. For each of the Case sets in Table 7.9, e.g. C01 - C05, C50 - C60, only
the maximum feasible lagging and the maximum leading reactive power cases are plotted.
We observe the following.

1. All Cases C01 to C95 satisfy the terminal voltage settling-time criterion. As intended,
the choice of Case C17 as the base case results in a satisfactory set of responses. The
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overshoot of the terminal voltage response at leading power factors may be of con-
cern when one unit is on-line.

2. In Figure 7.46(a) the phase of the extreme Case C21 (25 MW 25 Mvar lag) is some
 less than that of Case C17 at a gain cross-over frequency of ~1 rad/s. Conse-

quently the phase margin for Case C21 is likely to be 65+20 = , a value which
results in an over-damped response - as is evident in Figure 7.48(a). The converse
argument applies to Case C20 (50 MW 20 Mvar lead), i.e. the resulting step response
is lightly damped. 

Figure 7.48  Closed-loop operation. The perturbations are shown in the terminal voltage 
of generator #1 due to a step change in reference voltage from a steady-state value of 1.0 pu 
to 1.01 pu (1%) for the feasible operating conditions. Responses lie within the 10% of the 

final value of the step amplitude in less than 5 s. 

The lack of damping at leading power factors, highlighted in Section 7.11.2.3.1, results in the
excessive over-shoot of the terminal voltage responses when one or two generators are on-
line. The otherwise satisfactory small-signal performance of the three-generator power sys-
tem based on parameter set No. 4 for PID Type 2 compensation (Table 7.6) is demonstrated
in Figure 7.48 for N and N-1 conditions. Studies examining the provision of PSSs for the
generators, the limiting of reactive power absorption by the generators, and the performance
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of the system for major disturbances would be undertaken in practice, but are beyond the
scope of this chapter.

7.12 Summary, Chapter 7

Suppliers of AVRs and excitation systems may have developed tuning techniques which are
peculiar to the structure and characteristics of their equipment. The aim of this chapter,
however, is to introduce some of the basic concepts in the tuning of AVRs which may help
others understand some of the approaches which could be used - as well as the relevant con-
trol system theory which underpins the analysis. The analysis of the various approaches to
tuning are complemented by examples to demonstrate the design procedure and the perfor-
mance of the type of compensation employed.

The concept of transient gain, which is the effective gain of the excitation system over a se-
lected range of modal frequencies, forms the basis for the various types of compensation.
Compensation such as Transient Gain Reduction (TGR) fulfils this objective when high
gain excitation systems are required, however the steady-state difference between the de-
sired and the actual terminal voltage following a disturbance may be greater than that spec-
ified. The use of PI compensation provides infinite gain at zero frequency and ensures zero
error in the terminal voltage in the steady state. 

The application of rate feedback of exciter voltage - or AVR output if exciter voltage is not
accessible for measurement - is also studied.

To boost the speed of response of the generator field voltage following the occurrence of a
disturbance, for example, PID compensation is employed. Assuming a general form of PID
compensation given by

, ((7.2) repeated)

three types are analysed. Type 1:  TD = 0, TG = 0, KG = 1, 
Type 2A or B: TD > 0, TG = 0, KG > 0,  and  Type 3: TD > 0, TG > 0, KG > 0.

To determine the parameters in (7.2), the user typically specifies the desired corner frequen-
cies and the transient and high frequency gains required. Except for Type 2B PIDs, the mod-
al frequencies and transient gain lie in a modal frequency range  to .Type 2B PID

compensation can be applied to cases in which the PID is required to contribute phase lead
at low frequencies. Such circumstances can occur, for example, when the generator and ex-
citer time constants, , are relatively long. 

A detailed example is given of the application of PID type 2B compensation to a remote,
three generator system over a range of operating conditions when one, two and three units
are in operation. A comprehensive set of studies of the frequency response characteristics
of the brushless-exciter-generator system for one or more machines on-line reveals that the
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closed-loop step responses of terminal voltage are likely to range from poorly to heavily
damped. An emphasis in the studies has been to determine a basis for the evaluation of a
suitable set of PID 2B parameters to satisfy the dynamic performance specifications over a
wide range of operating conditions. The analysis is based on an operating condition which
is chosen that ‘best’ represents those frequency response characteristics over the set of op-
erating conditions. 

The aim of new technique called the ‘phase matching’, explained in Appendix 7–I.5, is to
improve the robustness of the generator controls to variations in the gain of the voltage con-
trol loop. The studies employing this technique have illustrated the importance of obtaining
good models and parameters for both exciter and generator, preferably validated by test. 
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Appendix 7–I  

App. 7–I.1 Generator and exciter parameters

App. 7–I.1.1 Parameters for the 6th order generator and a simple exciter
Note. These models are only used in the application of all types of compensation except that
in Section 7.8 and 7.11 for Type 2B PIDs.

Generator model: 6th order, classical. Saturation ignored. Values in pu on machine MVA
base (the MVA base is stated in the application). (These parameters are the same as those
used for generator TPS_4 in Table 10.23 on page 527). System frequency is 50 Hz.

D = 0, H = 2.6 s, ra = 0, = 2.3, = 1.7,   = 0.30, 

= 5.0 s, xl = 0.2, = 0.40, = 2.0 s, = 0.25, = 0.25 s, 

= 0.25, = 0.03 s.

Exciter: Simple linear first-order lag model: KE = 1.0 pu, TE = 0.1 s. 

App. 7–I.1.2 Parameters for the 5th order salient-pole generator and a brushless AC 
exciter
Note. These models are only used in Section 7.8 and 7.11 for the application of the analysis
of Type 2B PIDs.

Generator model: 5th order, salient-pole generator; saturation is included. All values are in
per unit on machine rating (58.8 MVA) unless otherwise stated. System frequency is 50 Hz.

D = 0, H = 5.5 s, ra = 0, = 1.5, = 0.7, = 0.22, 

= 8.0 s, = 0.10,  = 0.16, = 0.12 s, = 0.16, = 0.04 s,

= 0.15, = 0.45. 

The exciter is an AC generator with a rotating rectifier and is represented by an AC8B Ex-
citation System Model [12] and is shown in Figure 7.49. Its parameters are:

KE = 1.0 TE = 0.7 s, KCE = 0.1, KDE = 1.25, KAE = 1.75, TA = 0. 
The terminal voltage transducer is represented by a first-order lag block, Ttrn = 20 ms.

App. 7–I.2 Models of the brushless AC exciter
The model of the brushless AC exciter is shown in Figure 7.49. 

xd xq xd

Td0 xq Tq0 xq Tq0

xd Td0

xd xq xd
Td0 xl xq Tq0 xd Td0

Sd 1.0  Sd 1.2 
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Figure 7.49 The brushless AC exciter is based on the AC8B Excitation System Model [12]

The rectifier regulation modes are expressed by the three equations:

.

The AVR comprises the Type 2B PID (TG = 0) in which the gain KG may represent power
amplification. The gain KAE, included in the exciter model, is a factor which accounts for the
per unitization of exciter and generator quantities. 

Figure 7.50 Small-signal model of the AC8B Excitation System Model

KP

KD

1+sTD

KI

s

KG

1+sTG

1

sTE

KDE

VESE(VE)

KE
FEX=fn(IN)

KCE IFD

VE

VE



IN

FEX

EFD

IFD

Vexf

+
+

+
+

+

+

+

+

+
+

VC

VS

Vref

Exciter AVR  

KAE

Vr

FEX f IN 

1.0 0.577IN–           IN 0.433

0.75 IN
2

–                   0.433 IN 0.75 

1.732 1.0 IN–           0.75 IN 1.0 








= =

1

sTE

KDE

KS

KE

FEX0

VE0

+

+

+

+
+

+

+

KEX

VE
EFD

IFD

IN

Vexf

FEX

KAE
+Vr

KIV 

KIF



388 Introduction to the tuning of AVRs Ch. 7
The parameters in the model are defined as follows:

,   .

The gain KS is related to the saturation function of the exciter and is dependent on the initial
steady-state value of the field voltage . It is given by the following expression:

.

Saturation in the exciter is assumed to be negligible under steady-state operating conditions
and thus KS = 0.

 As an example, the values of the parameters of the linearized exciter model for cases C16 -
C20 are provided in Table 7.10. The parameters of the exciter model are listed in
Appendix 7–I.1.2.

Table 7.10  Parameters of the small-signal model of the exciter 

App. 7–I.3 PI Compensation using positive feedback
A simple positive feedback implementation can be employed for PI Compensation. The di-
agram of the associated control blocks is shown in Figure 7.51.
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Figure 7.51 PI Compensator

The transfer function of the system from x to y, i.e. excluding the gain , is:

(7.50)

where, for the approximation , the low and high frequency corners are  and

 rad/s, respectively. These corners should be respectively about a decade or more be-
low and above the extremes of the range of frequencies of rotor oscillations.

Equation (7.50) can be rearranged into the following form representative of the PI structure:

For the compensator  the effective integrator gain is  and the proportional gain

is  over the range of rotor frequencies. The respective gains of the compensator
 become  and  if .

A plot of frequency responses of  is shown in Figure 7.52 for a range of values of .

As explained below, the value of  is such that the phase angle approaches zero degrees in

the mid-range of rotor frequencies, e.g. 4 rad/s.
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Figure 7.52 Frequency responses of the PI compensation using positive feedback for val-
ues of T2 from 1 to 5 s; associated values of T1 are such that the maximum phase angle is at 

4 rad/s.

For design of the parameters of the PI compensator it may be desirable to place the phase
angle characteristic such that phase is close to zero degrees over the range of rotor modal
frequencies. From the figure we note that we can choose a frequency at which the phase an-
gle is a maximum. This frequency, , occurs at the geometric mean of the corner fre-
quencies of the exact transfer function (7.50), i.e.

. (7.51)

Thus, given T2 and , the value of T1 can be derived from (7.51) to yield:

. (7.52)

Based on (7.50) and (7.51), the value of the phase characteristic  when  is 

. (7.53)
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Figure 7.52 is based on the selection  rad/s with T2 being varied from 1 to 5 s; the

corresponding values of T1 and  at  are calculated from (7.52) and (7.53), re-

spectively.

App. 7–I.4 Integrator Wind-up Limiting

Two types of limiter, anti-windup 1 and windup, are encountered in excitation system mod-
els. Examples of these types are shown in Figure 7.53 in the case of a simple integrator. The
upper and lower limits are UL and LL, respectively.

Figure 7.53 Integrator with (a) anti-windup limiting, and (b) windup limiting.

The operation of the two types of limiters are illustrated in principle in Figure 7.53, (a) and
(b). In illustration (b), with windup limiting, the output of the integrator y(t) continues to
increase once the limit UL is reached but starts to decrease only when the input u(t) changes
sign. Limiting ceases only when the output y falls below UL. With anti-windup limiting,
however, it ceases limiting as soon as the input changes sign. The advantage of anti-windup
limiting is that it eliminates the time delay  between sign reversal and wind-down to UL
that occurs in windup limiting. 

Anti-windup and windup limiting occur in other types of transfer function blocks incorpo-
rating lead-lag and PI compensation for example (see [7], [12]).

1. Anti-windup limiting is also known as “non-windup” limiting ([7], [12]).
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App. 7–I.5  A ‘phase-matching’ method for constant phase margin 
over an appropriate frequency range

Consider the phase responses of  for Case C17 and the parameter Set

No. 2 for PID Type 2B in Table 7.6; the responses are shown in Figure 7.54.

Figure 7.54 Case C17: Frequency responses of the phase of the component transfer func-
tions of the open-loop system. The phase response of the open-loop transfer function with 

PID Set No. 2 is shown by x-x-x.

Let  and  (deg.) be the phase responses of the generator-exciter and the PID

with parameter Set No. 2, respectively, as shown in Figure 7.54. The phase of the open-loop
transfer function is  shown by x-x-x in the figure. Depending on the location of the
gain-crossover in the range 0.7 - 2.5 rad/s, the phase margin is the difference between the
open-loop phase response ( ) and . At the gain-crossover-frequency, ,

the phase margin is 

. (7.54)

At low frequencies  and, for the PID, . Let 

 (7.55)

so that at low frequencies both  and . 

Assume the desired phase margin is PMdes, e.g. . The required values of , based on
(7.54) and (7.55), are 

(7.56)
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greater (i.e more stable) than the desired phase margin ; and vice-a-versa.)

Vtrn jf  Vexf jf 

     α, Exciter−Gen: V
trn

/V
exf

     β, AVR:          V
exf

/V
ref

 = PID #2

10
−2

10
−1

10
0

10
1

−180

−120

−60

0

60

Frequency (rad/s)

P
h
a
s
e
 
(
d
e
g
)

x x x x x x x x x x

x x  α+β: Phase OLTF, V
trn

/V
ref

α
β

 jf   jf 

 +

 + 180– f c=

PM c c 180– –+ c c 180+ += =

 0=  90–=

  90+=

 0=  0=

65 

des PMdes – 90–=

 des

PMdes



App. 7–I.5 A ‘phase-matching’ method 393
Thus, in order to match the phase margin with the desired phase margin it is necessary to
find the PID frequency response, , that closely matches the line  over the potential
range of gain-crossover-frequencies. Let

, thus (7.57)

. (7.58)

In order to illustrate a design procedure based on (7.58) let us consider the following steps.

1. Given a selected system operating condition, choose (i) a set of parameters for a
Type 2B PID as in Table 7.6, (ii) the design case C17 for the generator-exciter trans-
fer function  (see Figure 7.42), and (iii) set PMdes to , say.

2. Plot (i) , the negated phase angle of the transfer function  for

the selected operating condition, (ii) , the phase angle  of the Type 2B PID
advanced by , and (iii) the line showing where the response of  must lie with
respect to the plot of  to satisfy the Phase Margin requirement,

. The plots of  and  is

shown by ‘x x x’ in Figure 7.55

3. Based on the plot in Step 1 adjust the PID parameters systematically so that the
desired phase margin is satisfied, i.e. plots of  and  match closely - or overlap
-over the desired frequency range.

4. Check that the resulting PID satisfies the system performance criteria over the range
of operating conditions in which one or more units are on-line.

Let us consider the determination of the PID parameters based on the above steps.

For Step 1 the system operating condition Case C17 and a set of parameters have already
been selected for the analysis associated with Figure 7.54. The parameters are those in Set
No. 2, Table 7.6, KP = 14 pu, KI = 7.0 pu/s, KD = 8.0 pu-s, TD = 0.143 s, KG = 1.0. Let us
base our analysis in this step on this set of PID parameters and Case C17.

The plots of  and  associated with the transfer function  for Case

C17 and the PID parameter set, respectively, are shown in Figure 7.55. Also shown is a plot
(x x x) along which the angle  of the desired PID must lie in order for the open-loop trans-
fer function  to have the desired phase margin (assuming for this study that the

gain-cross-over frequency for the resulting open-loop transfer function (OLTF) lies in the
range 0.7 to 2.5 rad/s). 
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Figure 7.55 Plots of  for exciter-generator transfer function (TF) for Case C17, and  
of the phase-advanced PID TF together with the plot of  (x x x) which rep-

resents the desired location of the phase plot of the PID TF.

It is clear from Figure 7.55 that PID parameter Set No. 2 produces excessive phase lead and
therefore the phase margin of the OLTF is greater than the desired value PMdes = . Re-
ferring to Table 7.6 or Figure 7.25 it is seen that, by increasing the values of the corner fre-
quencies ,  and  for the PID sets, the plot of  in Figure 7.55 approaches the
desired phase margin plot. For PID Set No. 4 with parameters KP = 14 pu, KI = 14 pu/s,

KD = 5.89 pu-s, TD = 0.105 s, KG = 1.0, the plot of  coincides with desired phase margin
plot for gain-cross-over frequencies in the range 0.9 to 2.5 rad/s. 

Based on the PID parameter Sets 2 and 4, the composite OLTF for Case C17 is plotted in
Figure 7.56. From this Bode plot it is observed that (i) the gain cross-over frequencies for
the two sets are 1.5 and 1.3 rad/s, respectively, (ii) with parameter Set 4 the phase margin is
close to the desired value of . The phase margin variations for PID Sets 2 and 4 for a
loop-gain variation of  dB are shown in Table 7.11.
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Figure 7.56 Case C17. Bode Plots of the OLTF comprising  

and PID Sets 2 or 4.

Table 7.11  Case C17. Robustness: Phase Margin variation for 
loop-gain change of  dB

From Figure 7.56 and Table 7.11, it is evident that the phase margin variation of about 
associated with PID Set No. 4 implies it is robust to variation in the loop gain; this is revealed
by the relatively small changes in its phase in the figure. In Set 2, however, not only is the
phase margin variation considerably more but the phase margin exceeds the desired value of

 over the gain variation of  dB.

Set
Gain

change (dB)

Phase Margin at 
frequency of  ... Gain

change (dB)

Phase Margin at 
frequency of  ...

PM (deg)
Frequency 

(rad/s)
PM (deg)

Frequency 
(rad/s)

2 102 0.54 +6 69 3.0

4 70 0.80 +6 64 2.4

Desired phase margin is .

     Open−loop TF with PID #2, PM=91 deg.
     Open−loop TF with PID #4, PM=66 deg.
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Chapter 8

Types of Power System Stabilizers

8.1 Introduction

In Chapter 5 a speed-PSS based on the P-Vr design approach is described. The purpose of
this chapter is to describe in detail the theoretical basis for some of the widely deployed types
of PSSs and the associated practical implications. For some other types of PSSs, including
the multi-path, multi-band PSS developed by Hydro-Québec, only a brief overview is pro-
vided. Furthermore, the details of a number of other types of PSSs and their development
are omitted from this book, for example: delta-omega stabilizers (without and with torsional
filters) [1]; the use of notch filters to attenuate the first torsional mode [2]; the application
of the coordinated AVR/PSS, called the “Desensitized Four Loops Regulator” [3].

The input to the PSS in Chapter 5 is assumed to be the ‘true’ rotor speed as measured di-
rectly by a high-fidelity tacho-generator, a toothed wheel, or some other device mounted on
the shaft of the turbine-generator unit. In practice there may be physical difficulties in posi-
tioning any such device on the shaft as well as locating it to minimize the introduction of the
torsional modes of the shaft into the speed signal. Moreover, other difficulties such as noise,
lateral shaft movement (runout or ‘wobble’ [4]) in vertical units, may present themselves. In
this chapter, however, synthesized speed perturbations, which are assumed to accurately
represent the true rotor speed perturbations, are used as the input to the PSS. This means
that the same basis and procedure as that outlined in Chapter 5 can be employed for the de-
sign and tuning of the PSS.
397
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The major factor in the selection of a stabilizing signal for input to the PSS is the require-
ment that the modes of concern, which may be the local-, inter-area, and possibly the intra-
station modes, must be observable by the signal over a wide range of operating conditions.
Typically, perturbations in rotor speed, the electric power output, and the frequency at the
generator terminals are the commonly-used local signals.

Various types of pre-filters are in use which convert one or more signals derived from var-
iable(s) other than speed into a synthesized speed signal. Such variables are electric power,
bus-voltage angle, frequency, terminal voltage and current; some manufacturers develop a
‘speed’ signal from such variables using various techniques. Lack of fidelity and resolution
of the synthesized speed signal in representing the ‘true’ rotor speed are factors that result
in degradation in the performance of the PSS when the design is implemented in practice.
This chapter considers the design of the pre-filters which synthesize a speed signal, and
highlights some issues which may be detrimental to the performance of the resulting pre-
filter and speed-PSS.

The pre-filters which are discussed in the following sections employ as input signals:

• the electric power output of the generator,

• frequency (or the deviation of the frequency from its nominal value) at the generator
terminals [5], and

• electric power and a ‘speed’ deviation signal in the widely-used ‘integral-of-accelerat-
ing-power’ pre-filter [7], [8], [9].

Some of the practical issues concerning different types of PSSs, field testing and other as-
pects are covered in [10], [11]. In practice, the engineer who is responsible for tuning the
PSS does not often have the ability to influence the selection of the type of PSS. This chapter
is intended to provide the reader with approaches to tuning PSSs in circumstances where
‘ideal’ performance is not possible because the most appropriate PSS may not have been
specified or provided for the application.

PSS analysis and design procedures are based on linearized models for which the inputs are
the perturbations of the above signals from their initial steady-state values.

Frequency is also derived by some manufacturers from voltage and current measurements
at the generator terminals. The analysis in this chapter concerns only that derived from the
rate of change of a bus voltage-angle. 

In the design of PSSs attention must be paid to reducing the effects of the torsional modes
of the turbine-generator unit on its dynamic performance [5].
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Though the following concerns the small-signal analysis of PSS types, it should be borne in
mind that it is necessary to limit the input to the PSS such that limiting occurs ahead of lim-
iting at its output. This concept also applies to controllers other than PSSs.

Because the characteristics of washout filters may affect the performance of the pre-filter
and PSS significantly, the time- and frequency-domain responses of a single washout filter
and of two identical washouts in series are next examined, but in more detail than earlier in
Chapter 5.

8.2 Dynamic characteristics of washout filters

8.2.1 Time-domain responses
In Section 5.8.6.1 the washout filter is introduced with the purpose of eliminating any
steady-state offset, or DC level, in the input signal to a PSS. In this section, in addition to
those of the single washout filter, the dynamic characteristics of two identical washout filters
in series are examined and a comparison made with the dynamic performance of a single
washout.

The transfer functions of one and two washout filters having a washout time constant of
 (seconds) are, respectively:

, and (8.1)

. (8.2)

In analog terms, the analysis assumes a low impedance source drives the filters which then
feed into a high impedance sink. Expressions for the time-domain responses of each of the
filters to a step input of  units and a ramp input of  units/s are shown in Table 8.1.

Based on the definition of settling times in Section 2.8, the time-domain response of the sin-
gle washout filter to a step input decays to zero with a 2% settling time of  s. However,

for a ramp input the response of the single filter tends to a finite value  - also with a

settling time  s. Consequently, for a PSS having electrical power as the stabilizing signal,
and with the input being a slow ramp in electrical power, the single washout filter produces
a potentially undesirable offset in the terminal voltage of the generator. For the single wash-
out filter the forms of the step and ramp responses are illustrated in Figure 8.1 for washout
time constants of 4 and 8  s.
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Table 8.1  Analytical expressions for responses of washout filters to 
step and ramp inputs. 

Figure 8.1 Responses of a single washout filter to step and ramp inputs of 1 unit and 
1 unit/s, respectively, for washout time constants of 4 and 8 s.

For the case of two washout filters in series the following time-domain characteristics are of
interest.

1. The responses of two identical washout filters in series to a step input of 1 unit are
shown in Figure 8.2 for values of the washout time constant of 4 and 8 s. For a pos-
itive step input the response decays from the initial value , passes through zero at

time  s and under-shoots by a value  at  s. It then decays

to within  of zero after approximately  s. 
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Figure 8.2 Responses of two identical washout filters in series to a step input of 1 unit for 
washout time constant values of 4 and 8 s. 

2. For a positive ramp input the time domain response reaches a maximum value of

 at time  s. It then decays to zero. Notice that the maxi-
mum value of the response depends on the ramp rate and the value of the washout
time constant.

The responses to a ramp input of two identical washout filters in series is of particular inter-
est in the discussion of the ‘integral-of-accelerating-power’ PSS considered in Section 8.5.
Accordingly, the responses of two such filters to a ramp of 1 unit/s are shown in Figure 8.3
for a range of values of the washout time constant from 1 to 10 s.

In Figures 8.1 to 8.3 the time-domain characteristics listed in Table 8.1 are clearly illustrated.

8.2.2 Frequency-domain responses
The nature of the frequency response of a single washout filter, and its role in the dynamic
performance of speed-PSSs, are discussed in Section 5.8.6.1. Because the application of two
washouts is of interest in this chapter the frequency response of two identical washouts in
series, time constant TW, is shown in Figure 8.4. The response is normalised to a corner fre-
quency of 1 rad/s (i.e. TW = 1 s). For example, if TW = 5 s the associated corner frequency
is 0.2 rad/s, the magnitude and phase of the response at say 0.02 rad/s (as read off Figure 8.4
at  rad/s) are then  dB and , respectively.
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Figure 8.3 Responses of two identical washout filters in series to a ramp input of 
R0 = 1 unit/s as the washout time constant TW is varied from 1 to 10 s. 

Time-frames: (i) 0-15 s, (ii) 0-80 s. Solid lines TW 1-5 s; dashed lines TW 6-10 s.
Peak occurs at TW s.

Figure 8.4 Frequency response for two identical washouts filters in series normalised to 
a corner frequency of 1 rad/s. (For a single washout filter, halve all vertical-axis quantities.) 
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8.2.3 Comparison of dynamic performance between a single and two washout fil-
ters.
Let us compare the features of a single washout filter with two identical washouts in series.

Consider a power system in which the lowest inter-area modal frequency is 2 rad/s. For the
purpose of the design of the associated PSS, let us assume that if a single washout filter is
employed the corner frequency of the washout would be 0.2 rad/s, say, a decade below the
modal frequency. The time constant of the single filter is T1W = 5 s; the phase lead intro-

duced by the filter at the modal frequency is . To introduce the same phase lead at the
modal frequency for two identical washouts the corner frequency of each should be 0.1 rad/
s, i.e. T2W = 10 s. Based on these assumptions a comparison of dynamic performance is
summarized in Table 8.2.

Table 8.2  Characteristics of a single washout and two identical 
washout filters in series

Some observations on the characteristics of the washout filters of Table 8.2 are listed below. 

1. A reduction in time constants for both a single washout and two washouts in series
improves their dynamic performance through lower settling times.

2. The performance of the single washout filter in Table 8.2 is superior to that of two
washouts, except that the ramp response of the single washout filter tends to a finite
value. As mentioned in Section 8.2.1, in the case of an electrical power PSS this char-
acteristic can produce an offset in generator terminal voltage and reactive power
output when a ramp in electrical power output occurs. 

3. As noted, the time-domain performance of two identical washouts in series can be
improved by reducing the time constant. However, such a reduction is a compro-

One washout filter Two washout filters in series

Corner frequency, 
TW

0.2 rad/s, 
 5 s

0.1 rad/s,  
10 s

Phase lead introduced at 2 
rad/s

Step response of 1 unit:
Settling time
Under-shoot
Final value

4TW = 20 s
-
0

~5.4TW = 54 s
-0.135A0 = -0.135 at 2TW s

0

Ramp response of 1 unit/s:
Settling time
Peak value
Final value

4TW = 20 s
 Peak is the final value

TWR0 = 5 

By calculation

0

5.7

5.7 5.7

0.368R0TW 3.68=
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mise with the increase in phase lead at the lower modal frequencies. In the case of a
reduction in the time constant, say from 10 s to 5 s, the phase lead at the modal fre-
quency of 2 rad/s is increased from  to . If desired, the increased phase
lead so introduced by the two washouts can be compensated for in the tuning of the
PSS main compensation blocks.

4. If the inter-area modes are not of concern, the washout filter time constants can
likewise be determined based on the relatively higher frequency of the local-area
mode(s).

8.3 Performance of a PSS with electric power as the stabilizing sig-
nal.

8.3.1 Transfer function and parameters of the electric power pre-filter.
It has been common practice to use electrical power perturbations as a stabilizing signal. The
analysis and implementation of the associated PSS is simplified if the electrical power per-
turbations are converted to speed perturbations by means of a pre-filter. The transfer func-
tion of this pre-filter is now discussed.

The equation of motion of the rotor of a synchronous generator for small-signal disturbanc-
es is given in the Laplace domain by,

, all quantities in per unit. (8.3)

This equation has been a basis for analysis in Chapters 4 and 5. In (8.3)  and  are
the perturbations in mechanical and electrical torques (or powers), respectively, acting on
the shaft;  is the perturbation in rotor speed.

If we assume that perturbations in mechanical power and damping torques  acting on
the rotor are negligible, then (8.3) reduces to:

, (8.4)

where  is a speed signal synthesized from electrical power, and therefore can be em-
ployed as a stabilizing signal as long as the assumptions stated above are justified. The struc-
ture of the PSS becomes that shown in Figure 8.5. (The negative sign at the summing
junction for  reflects the inherent negation in (8.4)).

As shown in the figure the pseudo-integrator, or pre-filter, used in a practical PSS to replace
the ideal integrator in (8.4) is given by the transfer function:

. (8.5)
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Figure 8.5 Structure of the PSS with electric power as the stabilizing signal. Note the 
negative sign of the PSS output signal  at the summing junction to the AVR.

So that transfer function of the low-pass filter  acts as an integrator  over

the range of modal frequencies it is required that its corner frequency at  rad/

s should be a decade or more below the lowest (inter-area) modal frequency. With this
choice of , the gain of the filter rolls off at -20 dB/decade over the range of modal fre-
quencies and its associated phase angle is approximately -90 deg. This is the case for an ideal
integrator (see Section 2.12.1.2).

For example, assume the lowest (inter-area) modal frequency is 2 rad/s; the corner frequen-
cy should ideally be 0.2 rad/s or less. For a values of TH of 5.0 and 7.5 s the corner frequen-
cies are respectively 0.2 and 0.133 rad/s; Table 8.3 shows that for these values of TH the
frequency response of the associated pseudo-integrator agrees well with that of the ideal in-
tegrator at and above 2 rad/s. While it is common to set TH = TW a higher value of TH (say
TH = 7.5 s when TW = 5 s) is sometimes used in practice. 

Table 8.3  Responses of the ideal integrator and the pseudo-integrator
at lower frequencies.

Because a synthesized speed signal is derived from the electrical power output using the pre-
filter of (8.5), the design of the compensating transfer function of the PSS follows the pro-
cedure based on a speed-stabilizing signal as outlined in Section 5.10.6. The compensating
transfer function is the same as for the speed PSS given in (5.49).

The rapid attenuation of the electric power signal with frequency  is noted in Table 8.3.

A feature of the use of electric power perturbations as a stabilizing signal is that the torsional
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oscillations which occur on the shafts of generating units are heavily attenuated. This topic
is discussed later in Section 8.5.3. 

Several cautionary comments follow.

1. The electrical power output of the generator will closely follow any ramping of the
mechanical power output of the turbine. Depending on the ramp rate and the time
constant of the washout filter(s), there may be a significant deviation in the associ-
ated PSS output. As a result of this signal being injected into the excitation system,
there could be unacceptable variations in terminal voltage and hence in the reactive
power output of the generator [13]. This problem is ameliorated by providing an
appropriate pre-filter, such as in the Delta-P-omega stabilizer [14], or employing an
‘integral-of-accelerating-power’ PSS, to be discussed in Section 8.5.

2. Care should be taken to ensure that negative feedback of the PSS output signal is
applied at the AVR summing junction.

3. Prior to purchase due care should be taken to ensure that the power input PSS pro-
vides for the synthesis of a rotor-speed signal from the electrical-power input.

8.3.2 Dynamic performance of a speed-PSS with an electric power pre-filter. 
A PSS designed for a speed-stabilizing signal used with an electric power pre-filter forms the
basis for the assessment of the dynamic performance of the integrated stabilizer. Five oper-
ating conditions for the sixth-order generator-SMIB system, shown in Table 5.6, are used to
illustrate the performance of the PSS. Its performance is compared to that of the PSS which
uses “true” rotor speed for the same fives cases. 

A single washout filter with time constant of 5 s is selected in Section 5.10.6.2 for the five
Cases. The associated corner frequency of 0.2 rad/s is more than a decade below the single

rotor mode of oscillation (~ 9 rad/s) 1. The inertia constant of the unit is 3 MWs/MVA. As
revealed in Table 8.3 a suitable time constant for the pseudo-integrator is 7.5 s. The transfer
function for the electric power pre-filter is thus 

. (8.6)

A comparison of the modes resulting from the use of an electric power pre-filter that syn-
thesizes a rotor speed signal with those produced by a true rotor speed PSS is shown in
Table 8.4. Because there is close agreement in the values of the modes, it is concluded that
the pre-filter accurately synthesizes rotor speed perturbation with the caveat that slow vari-
ations in mechanical power may cause variations in the reactive output of the generator.

1. The corner frequency of 0.2 rad/s is a decade below any potential inter-area modal fre-
quencies of 2 rad/s if the SMIB system represents a generator in a multi-machine system.

TH 2H 
1 sTH+

----------------------- 1.25
1 7.5s+
-------------------=
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Table 8.4  Comparison of modes for Speed and Electric Power PSSs*

8.4 Performance of a PSS with bus-frequency as the stabilizing sig-
nal.

The frequency of the generator terminal voltage is used by some manufacturers as a PSS sta-
bilizing signal on the basis that bus frequency closely represents rotor speed perturbations
in magnitude and phase. The following analysis applies only to frequency signal derived
from the voltage angle. The frequency  is the rate of change of the terminal-voltage

angle,  (rad), thus

  pu of system frequency; (8.7)

the associated transfer function is

; (8.8)

where ,  being system frequency (Hz). Once again, the angular perturbations
are converted to a pseudo-speed signal by means of pseudo-differentiation, pseudo-differ-
entiation being employed to limit the gain and noise amplification at high frequencies associat-
ed with pure differentiation in (8.7). Moreover the torsional modes, if present in the terminal
voltage, are amplified. Equation (8.8) yields the transfer function of the bus-frequency pre-
filter:

. (8.9)

The time-constant TF incorporates the phase-lag inherent in the measurement of the bus-
voltage angle or bus-frequency. It is thus a property of the measurement transducer rather
than being a tunable or selectable parameter.

Case 
Generator 
Output,
P, Q pu

Rotor mode

with PSS out of 
service

true-speed PSS
in service*

Speed PSS with 
Electric Power 

pre-filter

A 0.9, -0.1

B 0.9,  0

C 0.9,  0.2

D 0.9,  0.4

G# 0.9, -0.07

* Results for the true-speed PSS are given in Table 5.4
#  Two lines are out of service in Case G. All lines are in service in Cases 

A - D.

0.773 j9.16 1.156– j9.51 1.163– j9.48

0.552 j9.12 1.271– j9.31 1.275– j9.29

0.261 j9.02 1.338– j9.03 1.339– j9.01

0.113 j8.98 1.305– j8.93 1.305– j8.91

0.927 j7.98 0.409– j8.04 0.409– j8.02

freq


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In order that the transfer function  acts as a differentiator over the range of
modal frequencies,

1. its low-frequency response should (ideally) pass through the 0 dB axis at 1 rad/s and
roll-up at  dB/decade with an associated phase angle of ; 

2. its corner frequency at  rad/s should ideally be a decade or more above

the highest modal frequency (typically a local-area mode). However the gain intro-
duced by the transfer function at higher frequencies may be destabilizing.

Note that the frequency response of the pre-filter of (8.9) can be deduced from that of the
single washout filter in Figure 8.4 by rearranging the pre-filter transfer function into the

form .

Although the pre-filter transfer function of (8.9) synthesizes a speed signal from the deriv-
ative of bus-angular perturbations (frequency), the question arises how well does bus fre-
quency represent the actual rotor speed perturbations in magnitude and phase? Let us
examine the performance of a PSS equipped with a bus-frequency stabilizing signal.

8.4.1 Dynamic performance of a speed-PSS with a bus-frequency pre-filter 
The bus-frequency pre-filter delivers a synthesized speed signal to a PSS whose design is
based on a true rotor-speed stabilizing signal. This so-called bus-frequency PSS forms the
basis for the assessment of the dynamic performance of the integrated PSS. Once again, the
five Cases for the sixth-order generator-SMIB system, listed in Table 5.5, are used to inves-
tigate the performance of the pre-filter.

The pre-filter is assumed to be of the form given in (8.9); its parameters are determined as
follows.

Assuming the upper modal frequency is 10 rad/s, ideally the corner frequency of the pre-
filter should be set a decade higher, at 100 rad/s. However, due to the higher gains intro-
duced at higher frequencies the choice of a corner frequency of 75 rad/s may be considered
to be a suitable compromise; thus TF = 0.0133 s. Nominal system frequency is 50 Hz,

 rad/s. The combined transfer function of the pre-filter and the speed-PSS of
(5.49), is thus

. (8.10)

The mode shift associated with both the original speed-PSS and the bus-frequency PSS of
(8.10) are shown in Table 8.5; the damping gain is 20 pu for both PSSs. 
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Table 8.5  Comparison of real parts of mode shifts for speed 
and bus-frequency PSSs, damping gains 20 pu.

From the table the following is observed:

1. In Cases A and G a high-frequency mode associated with the excitation system and
q-axis variables is unstable as the generator power factor becomes leading. 

2. The real parts of the mode shifts for the bus-frequency PSS are degraded signifi-
cantly (by a factor of 1/c) with respect to the speed-PSS. 

3. Therefore, because the differences in the imaginary parts of the two sets of mode
shifts are negligible, there appears to be a reduction in the loop gain of the PSS-
SMIB system when employing rate of change of angle of the generator terminal
voltage as the stabilizing-signal source. 

Let us consider these observations commencing with no.1 above. 

Case 

Gen. 
Out- 
put.
P, Q 
pu

Rotor mode 
----------------------------------------
## Excitation system mode for 

bus-frequency PSS ##

Rotor mode shifts, PSSs 
in service

Ratio*  

PSSs off
true-speed 

PSS
in service

bus-frequency  
PSS in service 

--------------
 ##

true-speed
 PSS

bus-frequency 
PSS

c 1/c

A
0.9, 

- - - -
1.56

-
0.64

-

B
0.9,  

0 - - - -
1.59

-
0.63

-

C
0.9,  

0.2 - - - -
1.64

-
0.61

-

D
0.9,  

0.4 - - - -
1.68

-
0.60

-

G# 0.9, 
- - - -

1.14
-

0.88
-

* Ratio:  c= (true-speed PSS mode-shift) / (bus-frequency PSS mode-shift) 

Note: Results for speed-PSS for a SMIB system are given in Table 5.5
# Two lines are out of service in Case G. All lines are in service in Cases A - D

## In column 5 the upper and lower quantities are the rotor mode and an excitation system 
mode, respectively

0.1–
0.77 j9.2 1.16– j9.5 0.46– j9.5

2.73 j80.0
1.93– j0.35 1.24– j0.30

0.55 j9.1 1.27– j9.3 0.60– j9.3

0.97– j80.9
1.82– j0.20 1.15– j0.17

0.26 j9.0 1.34– j9.0 0.71– j9.1

9.2– j81.9
1.60– j0.02 0.97– j0.03

0.11 j9.0 1.31– j8.9 0.73– j9.0

17.7– j82.0
1.42– j0.05 0.85– j0.01

0.07–
0.93 j8.0 0.41– j8.0 0.24– j8.1

16.3 j76.4
1.34– j0.06 1.17– j0.14

e e
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8.4.1.1 Stability of the closed-loop system for Case A
Let us examine the open-loop frequency response for the system of Case A, a leading power
factor condition, listed in Table 8.5. The open-loop transfer function is , where

 and  are the output of the PSS and the AVR reference voltage, respectively; it

includes the combined transfer function of the pre-filter and the speed-PSS given by (8.10).
A block diagram of the transfer function of the open-loop system  is shown in
Figure 8.6(a) and the associated frequency responses are given in Figure 8.6 (b).

As the open-loop system possesses one unstable pole-pair at , the stability of the
closed-loop system can be determined from the Nyquist Criterion based on the open-loop

system 1. In the case of Figure 8.6(b) (i) it can be shown that for closed-loop sta-
bility the gain at high frequencies must be less than unity (0 dB), and thus must be attenuat-
ed. This is achieved by changing the two time-constants of the low-pass filter of the PSS in
(8.10) from 0.005 to 0.01 s. The associated response of the open-loop transfer function
shown in Figure 8.6 (b)-(ii) results in a stable closed-loop system with poles at

 and  for the rotor and exciter modes, respectively. Further
studies are required to mitigate against instability for higher gains at high frequencies over
the range of operating conditions.

8.4.2 Degradation in damping with the bus-frequency pre-filter
Based on Table 8.5 the improvement in the damping-constant of the rotor mode due to the
frequency-PSS is substantially less than for the speed-PSS, although there is negligible
change in the modal frequency for both PSSs. This suggests that the use of bus-frequency,
derived from bus voltage-angle, results in a reduction in the loop-gain in the path through
the machine and PSS. Consider the simple system shown in Figure 8.7. The voltages and an-
gles are  internal to the generator and  at its terminals; the voltage at the

infinite bus is . The generator internal reactance is x and that of the equivalent exter-
nal circuit is xe. (One might speculate that, for a simple system such as this, the perturbations

in  are roughly related to those in  by a factor  - if the angles are not large.)

1. Because the PSS output is not negated at the summing junction of the AVR, the conven-
tional open-loop transfer  must be negated for application of the Nyquist Cri-
terion.

VS Vref

VS Vref

G s H s 

2.73 j80.0

G– s H s 

G s H s 

0.433– j9.75 12.0– j40.1

E and  Vt and 

Vb 0

  xe xe x+ 
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Figure 8.6 (a) Open-loop system . (b) Open-loop frequency response for 

Case A: (i) pre-filter and PSS transfer function given by (8.10) (the unstable mode in the 
open-loop system is ). (ii) the closed-loop system is stable with modification of 

the parameters of the low-pass filter.

Figure 8.7 A simple SMIB system

It can be shown that for small perturbations

. (8.11)

Since perturbations in both rotor speed  and bus frequency  are related to 

and  by equations of the form of (8.7), then

(b) Open-loop frequency response
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. (8.12)

The coefficient c is greater than unity for transmission angles . Because

 the PSS loop-gain is, in effect, reduced by a factor of 1/c. 

As an example, assume for a pseudo steady-state condition that the internal voltage E is the
voltage proportional to rotor flux linkages, , and the reactance x is the transient reactance

. If , then for ,

, and

 .

Thus, using bus frequency as the stabilizing signal rather than the true rotor speed, the PSS
loop-gain is inherently reduced, in this case by a factor of . (Note, as surmised
above, the ratio  is about .)

The above somewhat simplistic example reveals the order of the magnitude of the reduction
in the PSS loop-gain for a pseudo steady-state condition. This example raises the question:
what is the effect of the closed-loop dynamics and a more accurate generator model on the
gain reduction?

Consider Case B of Table 8.5 on page 409 the rotor mode is  when the bus-
frequency PSS is in service. Let us evaluate the frequency responses at 9.3 rad/s of both the
true rotor speed  and the bus frequency  for perturbations in reference voltage.

The ratio of the true rotor speed to the bus frequency at the modal frequency is 1.57; this
ratio agrees well with the value of c = 1.59 in the table. The phase difference between the
true and synthesized speeds is approximately  when the phase lag introduced by the cor-
ner 1/TF in the pre-filter (8.9) is accounted for. Thus, for practical purposes, the true speed
and the synthesized speeds are essentially in phase. We conclude that for the cases analysed
the use of the bus-angle perturbations as the input signal to the PSS results in a gain reduc-
tion in the machine - PSS loop. Moreover, there is a significant reduction in the mode shift
for the single rotor mode. Thus in the multi-machine context at the lower inter-area frequen-
cies, in which the generator may participate, are there marked reductions in loop gain - and
therefore reductions in the associated mode shifts due to the use of this type of PSS? 

An analysis of the performance of the PSS over the range of normal and contingency con-
ditions, such as that in Table 8.5, suggests that the effective attenuation in gain associated
with the bus-frequency PSS is roughly . As in Case G (Table 8.5) when the ex-
ternal impedance (jxe) is increased the attenuation is significantly reduced. Accordingly, a ju-
dicious increase in PSS gain is required in order to provide a performance similar to that of
a speed-input PSS over the encompassing range of operating conditions.

 1
0cos

k0 0 0– cos
-------------------------------------+ 

  freq c freq= =

0 90
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E
xd xd 0.3  xe 0.375= = Vt 1.0=

E 1.036  Vb 1.055  0 33.8=  0 18.7 == =

 k0 1.23  and  c 1.80= =

1 c 0.56=

xe xe x+  0.55

0.60– j9.30

  freq

0

xe xe x+ 
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Note: In the event of significant transients that lead to sudden changes in bus-voltage angle,
e.g. a line fault followed by the tripping of the circuit, the synthesized rotor speed derived
from the bus-voltage angle will not necessarily be representative of the true rotor speed until
the resulting large-amplitude oscillations have markedly decayed.

8.5 Performance of the “Integral-of-accelerating-power” PSS

8.5.1 Introduction
A third category of the PSS models listed in the IEEE Standard [15] is the integral-of-accel-
erating-power PSS (IAP PSS) and is referred to in the Standard as PSS2B. As shown in
Figure 8.8, the IAP PSS consists of two main components, a pre-filter which develops a syn-
thesized speed signal  and a conventional PSS the design of which is based on the rotor-
speed stabilizing signal discussed in Chapter 5.

Figure 8.8 Components of the integral-of-accelerating-power PSS

The inputs to the pre-filter are ‘speed’ and electric power signals,  and . The
‘speed’ signal may be derived in a number of ways, for example from

• frequency of the generator terminal voltage;

• speed of the rotor measured by tacho-generator, a toothed wheel mounted on the
shaft. etc.;

• filtered values of the instantaneous three-phase voltages and currents, and processing
of these signals.

These speed signals contain not only the inter-area and other rotor modes but also the tor-
sional modes of the turbine-generator-exciter unit. In order that the latter modes are not ex-
cited by the PSS, the torsional modes must be significantly attenuated; this is one of the roles
of the IAP pre-filter.

If the mechanical power output of the turbine - be it hydro, gas or steam - is changing, the
electric power output of the generator will follow it closely, particularly as the mechanical
power changes occur relatively slowly under normal operating conditions. As observed in
Section 8.3, changing the mechanical - and hence electrical - power input to the PSS can per-
turb the terminal voltage of the generator, possibly causing undesirable swings in its reactive
power output. Assuming the variation in mechanical power is a ramp, the pre-filter incor-
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porates a ‘ramp tracking filter’ which tracks a ramp ideally with zero tracking error - and
thereby offsets the ramp in the electrical power input; this is a second role of the IAP pre-
filter.

Let us consider the influence of the torsional modes, the ramping of mechanical power, and
the characteristics of the ramp tracking filter.

8.5.2 Torsional modes introduced by the speed stabilizing signal
A generating unit, in the case of a steam turbine, may consist of high pressure, intermediate
and low-pressure stages, the generator and an exciter. The lumped masses are connected by
shafts whose torsional stiffness is finite. As is illustrated in Chapter 9 for a linear spring-mass
system, the rotating masses similarly exhibit modal frequencies and damping dependent on
the inertia of the masses and the stiffness of the interconnecting shafts [5], [12].

Since the mechanical stiffness of the shaft components is at least an order of magnitude
higher than the effective electro-mechanical coupling between the generator and the power
system, the entire rotating mass of the mechanical shaft of a large turbo-generator is more-
or-less uniformly subject to the power system’s inter- and local-area modes of frequency 1.5
to 15 rad/s. The first torsional mode for large steam turbine units can be as low as 8 Hz (50
rad/s) [5], [6]. Depending on the mode shape of the particular torsional mode, a shaft-speed
transducer that is located in a region of the shaft that closely corresponds to a peak of the
torsional oscillations (an anti-node of the mode shape) can result in a significant component
of the torsional mode in the speed signal. One way to avoid this problem is to locate the
speed transducer at a node of the modal shape [5]; this, however, is not always practical since
in some cases the node may lie inside a turbine stage. 

It will be assumed in the analysis that the input speed signal to the pre-filter, , com-

prises the ‘true’ rotor speed component, , ‘corrupted’ by the first and higher torsion-
al modes (as well as noise), , i.e.

. (8.13)

8.5.3 The electric power signal supplied to the pre-filter 
The electric power signal input to the pre-filter is a filtered representation of the instantane-
ous electric power. The filtering process typically introduces a very small phase shift over
the range of electro-mechanical modal frequencies and consequently the input power signal
closely follows the low frequency perturbations in power associated with the local- and in-
ter-area modes. Furthermore, as mentioned earlier, if the mechanical power output of the
turbine is ramped, say, in the relatively slow process of generation despatch, i.e. changing
power output from one level to another, the electrical power output of the generator will
closely follow the mechanical power. 

C t 

in t 
t t 

C t  in t  t t +=
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If there is any component of the torsional modes in the electric power signal, depending on
how it is calculated, the component - being of significantly higher frequency than the rotor
mode - will be significantly attenuated by the integration in the pre-filter.

8.5.4 The Ramp Tacking Filter (RTF)

The RTF is a low-pass filter of the form,

,  where  . (8.14)

The RTF serves a number of purposes. Firstly, it tracks a ramp signal at its input with zero
tracking error. Secondly, it significantly attenuates signals at frequencies above the corner
frequency . Thirdly, as will be demonstrated, it passes the low frequency perturbations

associated with mechanical power changes with negligible attenuation. The frequency re-
sponses for two typical sets of parameter values for the RTF are shown in Figure 8.9. (It
should be noted that the tracking feature of the RTF is defeated if  deviates markedly

from , for example if ).

 
Figure 8.9 Frequency responses of the Ramp Tracking Filter for 
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It is clear from the plots that a torsional mode, say the first at 15 Hz (~95 rad/s), is attenu-
ated by 50 dB or more. The parameters commonly used for the RTF are N = 1, M = 5 and
T9 = 0.1. The value of the time constant T9 more-or-less determines the corner frequency of
the RTF. If for example, the variations in mechanical power output are slow, and the tor-
sional modes possess low frequency components, it may be desirable to reduce the value of
T9, and/or set N = 2. 

While the RTF tracks a ramp input signal  with zero tracking error, it tracks a

signal which is the integral of a ramp, i.e. a parabola , with a constant track-
ing error. The ramp-tracking characteristics of the filter are analysed in Appendix 8–I.2.
from which it can be shown that the steady-state tracking error to a parabolic input is finite,

i.e.  when  and N = 1, M = 5. 

8.6 Conceptual explanation of the action of the pre-filter in the IAP 
PSS

We will consider the action of the pre-filter in two steps, firstly without washout filters and
then considering their effects.

8.6.1 Action of the pre-filter, no washout filters
As explained in Section 8.5.2 the input speed signal to the pre-filter, , is assumed to
comprise the ‘true’ rotor speed component, , ‘corrupted’ by a torsional component
and high frequency noise, , i.e.

  (8.13) repeated. 

Similarly, an input to the pre-filter is the perturbation in the electric power output of the gen-
erator , which closely follows the ramping of mechanical power but also contains
perturbations in the associated local and inter-area modes.

For the purpose of explaining the conceptual basis of the pre-filter, let us assume that the
basic structure of the pre-filter is that shown in Figure 8.10 (omitting the washout filters).

Figure 8.10 The basic structure of the pre-filter 

In general, the relationship between the accelerating power (or torque) acting on the shaft
and instantaneous speed is given by the shaft equation (4.64) on page 115.
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  pu, (8.15)

where  is the perturbation in mechanical power output of the turbine and includes a
ramp change in turbine power. Rearranging (8.15) and integrating the resulting expression,
we can express the integral of the electrical power signal, IPE, as:

. (8.16)

Each term in (8.16) has the dimensions of speed (pu). Consequently, on the basis of (8.16),

the output of the integration of the electrical power signal, , contains

information not only on the mechanical power ramp and perturbations but also the ‘true’
rotor speed . As mentioned, if any torsional modes, which typically exceed 8 Hz (50
rad/s), are present in the electrical power signal they are heavily attenuated through the in-
tegrator transfer function , i.e. 50 dB at 50 rad/s for H=3 MWs/MVA. 

Let us combine the signal IPE with the input speed signal  of (8.13), as shown dia-
grammatically in Figure 8.11(i). A signal IPM results:

, (8.17)

i.e. . (8.18)

Note that IPM contains only the perturbations in mechanical power and the torsional
modes, the true rotor speed signals  in (8.17) having been cancelled out; this cancella-
tion is an essential feature of the IAP pre-filter.

As shown in Figure 8.11(ii), the signal IPM is passed through the RTF. By judicious selection
of the parameters of the RTF it will attenuate significantly the higher-frequency torsional
modes and track the integral of the mechanical power ramp-changes with negligible tracking

error 1. An analysis of these features of the RTF are given in Appendix 8–I. The output of

the RTF therefore contains the integral of mechanical power, 2, the

levels of the torsional modes having been attenuated significantly. 

1. Strictly-speaking, because of the ideal integrator in the basic pre-filter structure shown in 
Figures 8.10 and 8.11, the tracking error of the RTF to a ramp in mechanical power is 
non-zero. As explained in Section 8.6.2.2 this error is very small, and is zero when there 
are one or more washout filters ahead of the integrator.

2. Note that the slow changes in the integral of mechanical power are not attenuated by the 
RTF (see its frequency response in Figure 8.9).
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Figure 8.11 The action of the pre-filter. (i) The implementation of (8.13) and (8.16). 
(ii) The ramp tracking filter attenuates the torsional modes  in the speed input and 

tracks the integral of the mechanical changes with negligible steady-state error. 
(iii) The signals containing the integral of the mechanical changes are cancelled out at the 

summing junction and the true speed signal  is synthesized.

Finally, as shown in Figure 8.11(iii), the negated signal IPE is combined with the output of

the RTF at the summing junction. The component  present in each signal is

cancelled out resulting in the output of the pre-filter being the required ‘true’ rotor speed,
.

To compensate for a difference in the levels of the speed signal in the speed-signal path from

that derived from electric power 1, the gain  is provided as shown in Figure 8.12. (For ex-

ample, this adjustment may be required if an attenuated speed signal is derived from bus fre-
quency, see Section 8.4.2). Furthermore, to eliminate any steady-state levels in the electrical
power and speed inputs,  and , two washout filters are added to each input;

this completes the block diagram of the IAP pre-filter. (The effect on the synthesized speed
signal , say, of having two washouts in the speed input and one in the electric power

input path is discussed briefly in the later Section 8.6.4.2.)

We know that the RTF follows a ramp input at its terminals with zero steady-state error 

between its input and output. In practice there are washout filters and an integrator between
the mechanical ramp input and the input to the RTF. The input to the RTF may no longer
be a ramp, how does this affect the steady-state error?

1. The degradation in performance of the PSS in such a case is illustrated in Figure 8.20(i).
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Figure 8.12 Block diagram of the prefilter for the IAP PSS. The gain  is set to unity in 

the following analysis.

8.6.2 Effect of the washout filters and integrators on the performance of the pre-
filter
In the previous section the conceptual action of the pre-filter without washout filters was
analysed; let us now consider their effect on the tracking of the RTF and the dynamic per-
formance of the pre-filter.

In Section 8.2 the dynamic characteristics of one or two washout filters are analysed in their
own right. However, as a diversion, let us (i) assume the speed and torsional signals are neg-
ligible and (ii) examine the steady-state and dynamic performance only of the path associated
with the electric power input, namely the washout filters, the integrator and the RTF. This
path is shown in Figure 8.13. Note that a fictitious test input signal  is used for the purposes

of this analysis and is a step, ramp, parabolic or cubic function of time only. We will also con-
sider two cases when the integrator in the pre-filter is represented as an ideal or as a pseudo-
integrator; the latter is referred to as the ‘practical’ integrator. In essence, in this analysis the
performance of the RTF to a particular set of characteristics of the mechanical power output
is being studied.

It has been emphasized that the component  in the signal IPM should

pass through the RTF with zero following error so that it cancels (ideally) the same compo-
nent in the signal IPE when the mechanical power is ramped. Several questions arise. Due
to the action of the washouts and the integrator, does the output of the RTF still follow its
input with zero steady-state error when that input is no longer a ramp? For example, con-
sider the output of the washout filters in Figure 8.13. Does the RTF track with zero error

other mechanical power inputs, e.g. , n > 1?
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Figure 8.13 Path between the electric power input and the RTF output for a test input 

 which replaces the electric power signal.

Note that, because the blocks in the path of Figure 8.13 represent linear elements, the prin-
ciple of superposition permits the performance of this sub-system to be analysed inde-
pendently of the rest of the pre-filter. The behaviour of this sub-system also reflects its
behaviour when it is incorporated in the complete prefilter.

8.6.2.1 Dynamic response of the isolated path of Figure 8.13 to a ramp input
Useful insight is provided by examining both the dynamic and steady-state responses at the
input and output of the RTF as well the tracking errors for a ramp in mechanical power. We
are concerned only with the path of Figure 8.13.

Let us now demonstrate the nature of the response of the RTF for a ramp of rate
 pu/s in mechanical power output. For the current and later applications the

parameters of the complete pre-filter of Figure 8.12 are given below: 

• Washout filters:  s, assuming the lowest (inter-area)
modal frequency is 1.5 to 2 rad/s (only Tw3 and Tw4 in Figure 8.12 are relevant to the
signal path under study);

• Integrator: H=3 MWs/MVA; Pseudo-integrator (as derived in Section 8.3.1):
TH = 7.5 s;

• RTF: N = 1, M = 5, s, s. (The selection of s is
mentioned in Section 8.5.4).

It is shown in Figure 8.14 (a) it is noted that, for the ideal integrator, the output of the RTF
does not track the ramp in mechanical power but tends to a constant value

 in the steady state. Furthermore, the output of the RTF 

tracks its input  with negligible error which, as shown in Figure 8.14 (b), tends to zero

in the steady state. For the pseudo-integrator, however, it is observed in Figure 8.14(a) that
the output of the RTF follows the ramp in mechanical power with zero following error in
the steady-state (i.e. after some 50 s). This is because the pseudo-integrator ceases to act as
an integrator and becomes a low pass filter at low frequencies. 
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For a ramp in mechanical power it is also noted in Figure 8.14 (a) that zero tracking error
between the input and output of the RTF is achieved for both the ideal and the pseudo- in-
tegrator. 

Figure 8.14 Responses to a ramp in mechanical power for ideal and pseudo-integrators 
with two washout filters in the isolated path of Figure 8.13. The plots show (a) the input and 

output responses of the RTF , , and (b) that the error across the RTF, 

, in the responses is very small and tends to zero in the steady state. 

(To avoid a discontinuity at time zero in Figure 8.14 (a) and (b), the initial slope of the me-
chanical power output is varied in parabolic fashion from zero to the ramp rate of 0.0075
pu/s at 1 s.)

8.6.2.2 The steady-state tracking - and tracking errors - of the RTF

For the RTF with the parameters given in Figure 8.9 it is known that its output  tracks

a ramp change at its input  with zero steady state error. However, for a parabolic input

to the RTF its output tracks the input with a constant following error after any initial tran-
sients have decayed away.

Let us examine the behaviour of the isolated path of Figure 8.13 in more detail. Firstly, for
the sake of completeness, it is of interest to ascertain the performance of the RTF not only
for the four types of mechanical power change , but also the effects of none, one and
two washout filters on the tracking errors. Secondly, consideration is given to the effects of
the ideal and pseudo-integrators, the transfer function of the latter being

, (8.5). Of interest are not only the steady-state values of the input to the
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RTF but also how closely the output of the RTF tracks the input to the RTF. Consequently,
in Appendix 8–I.2 expressions are derived which analyse the nature of the tracking error for

power changes of a general form .1. The results are summarised in Table 8.6. 

The upper value in each row of the table is the steady-state input to the RTF, (not the power
changes at the input, ). The steady-state input is 

.2 .

The lower value is the steady-state tracking error of the RTF, i.e. the difference between the
steady-state input to the RTF and its output, i.e. . Note that:

•  means the quantity increases indefinitely with time.

• When the both the mechanical power and the input to the RTF are increasing indefi-
nitely with time the tracking error may be zero or finite (e.g. columns 5 to 8, parabolic
input).

Although the tracking error is zero for a ramp applied directly to the RTF (column 1), when
a ramp is applied to an ideal integrator in the path the tracking error is non-zero (Table 8.6,
ramp, col. 4). The conceptual discussion in Section 8.6 surrounding Figure 8.11, in which
there is an ideal integrator in the path, is based on the assumption that the tracking error is
zero. However, it can be shown that this error is small even for fast ramps. In practice of
course, there are one or more washout filters in the power-signal path in which case the
tracking error of the RTF is zero.

In summary, the practical case is the replacement of the ideal integrator by the pseudo-inte-
grator of (8.5) with one or two washout filters in the electric power input path. As noted in
Table 8.6 - and analysed in Appendix 8–I.2 - the steady-state tracking errors of the RTF are
zero if a pseudo-integrator is employed when the mechanical power input is a step, ramp, or
parabola.

1. The expressions are for the input to the RTF and the tracking error between RTF input 
and output. For the ideal integrator these are (8.29) and (8.32), respectively; for the 
pseudo-integrator they are (8.33) and(8.34).

2. Final Value Theorem. See Section 2.10. 
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8.6.3 Dynamic performance of the complete pre-filter
The SMIB system, Case C, described in Sections 5.10 and 5.11 will be used to investigate the
performance of the pre-filter using the parameters provided in Section 8.6.2.1. In Table 5.5
the input to the PSS is rotor speed; the rotor mode of oscillation is . Using an
IAP PSS with the pre-filter parameters of Section 8.6.2.1 together with the SMIB PSS pa-
rameters (derived in Section 5.10.6), the value of the rotor mode is virtually unchanged at

.

For illustrative purposes the following three disturbances are applied to the generating unit:

• A ramp increase in mechanical power input is 0.45 pu per minute, or 0.0075 pu/s,
over a period of 20 s. (This rate is exaggerated to highlight certain features in the
responses.) To avoid a discontinuity at time zero, the initial slope of the mechanical
power output is varied in parabolic fashion from zero to the ramp rate of 0.0075 pu/s
at 1 s. 

• A relatively small step increase of 5% in terminal voltage reference at 4 s, followed by
a step decrease of 5% at 12 s.

• An exaggerated, sustained torsional mode of 12 Hz (75.4 rad/s) and peak amplitude
0.25%, commencing at 12 s.

The simultaneous application of an increasing ramp, and the step change in voltage, should
reveal how the pre-filter discriminates between the changes in mechanical power input and
disassociated electrical power perturbations, oscillatory in nature, resulting from the change
in reference voltage. While responses to small changes in mechanical power at the ramp rate
specified are amenable to analysis using a small-signal model of the SMIB, the change in me-
chanical power of 0.45 pu per minute over a period of 20 s is not small. Although it is in-
consistent to mix small- and large-signal analyses, the important issue here is the assessment
the performance of the pre-filter which is a linear element. Moreover, using the small-signal
model of the SMIB system provides to the pre-filter the electric power and rotor speed signals
inputs of the correct relative amplitudes and phase. Again, for the purposes of illustration, the
amplitude of the sustained torsional mode is exaggerated and is large, being of the same or-
der of amplitude as the speed perturbations resulting from the step in reference voltage.

In Figure 8.15 the variable names and their locations in the pre-filter are defined for use in
subsequent figures. Variable names IPE and IPM are defined earlier in (8.16) and (8.18) re-
spectively. The ‘true’ rotor speed at the input is ;  represents the torsional modes
present;  is the speed output of the pre-filter (and ideally is equal to the ‘true’ speed
input ). The output of the second speed washout filter is  and that of the second

electric-power washout filter is ;  is the output signal of the RTF.
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Figure 8.15 The variable names and their locations in the pre-filter are defined for use in 
Figures 8.16 to 8.18.

For the three disturbances the responses of the variables in the pre-filter are shown in Fig-
ures 8.16 to 8.18. The left- and right-hand plots in each figure show the relevant responses
when torsional modes are absent or present, respectively. So that the responses to the
changes in reference voltage are clearly discernible, the damping gain of the PSS in Case C,
Section 5.10.6, is reduced from 20 to 10 pu.

From Figure 8.16 the following are noted: 

• In (a)-(i) the nature and timing of two of the input disturbances are shown.

• In (a)-(ii) the decaying oscillatory responses in true speed  due to the step
changes in reference voltage are observed; the output of the second speed washout fil-
ter  (not shown) is identical for practical purposes.

• In (a)-(ii), as predicted by (8.16), the output of the pseudo-integrator (IPE) contains
both the oscillatory rotor speed component and a component associated with the
ramp in mechanical power. Importantly, it is observed that the true speed component is
eliminated from the signal IPM which is input to the RTF. 

• However, in (b)-(i) the signal IPM at the input to the RTF contains a component associ-
ated with the ramp in mechanical power as well as the torsional mode, . As men-
tioned, the true speed component seen in IPE is absent from IPM.

In (b)-(ii) is shown , the torsional mode modulated by the true speed component. 
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Figure 8.16

(a) Torsional mode absent (b) Torsional mode present
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Consider Figure 8.17 in which are shown the responses of internal and external variables.

Figure 8.17

(a) Torsional mode absent (b) Torsional mode present
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; input  & output 
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In Figure 8.17 it is observed that:

• in (a)-(i) the output of the RTF, , follows the mechanical power component

related to the input signal to the RTF, IPM, with zero tracking error; 

• in (a)-(i) the speed output signal  from the pre-filter is identical to the ‘true’ speed

input signal ; the associated rotor mode is clearly evident in the terminal voltage
and reactive power responses in (a)-(ii).

• in (b)-(i) the torsional mode present at the input to the RTF, IPM, is not evident in the

heavily attenuated output of the RTF, .

In considering Figure 8.17(a)-(ii), it should be remembered that, as the electrical power out-
put increases while following the mechanical power ramp, the reactive output of the gener-
ator will also ramp in order to supply the additional I2X losses. Moreover, from the figure it
is noted that there is also a step increase/decrease in reactive power output associated with
the step changes in terminal voltage; this is superimposed on the reactive power ramp. In
Figure 8.17(b)-(ii) there is no evidence of the heavily attenuated torsional mode in terminal
voltage and reactive power responses.

The output of the second washout filter in the electrical power signal path  is dis-

played in Figure 8.18(a)-(ii), together with the output of the pseudo-integrator (IPE). The ef-
fect of the mechanical ramp change can be observed in both signals.

The responses of the speed output signal from the pre-filter  and associated response
of the PSS  are seen in Figure 8.18(a)-(ii). Note that there is negligible off-set in both

these signals from their zero values. Therefore, as a consequence, the offset in the output of
the pseudo-integrator (IPE) due the ramping of mechanical power will not be manifested as an
offset either in the PSS output, the terminal voltage, nor in the reactive power output of the unit.
When the torsional mode is present, due to amplification by the PSS, there is evidence of
the attenuated torsional mode in the PSS output in the expanded display of Figure 8.18(b)-
(ii). Bear in mind, however, the amplitude of the torsional mode, seen in Figure 8.18(b)-(i),
and the ramp rate of mechanical power have been exaggerated for illustrative purposes.

Figures 8.16 to 8.18 confirm that, due to the action of a properly designed pre-filter, the ef-
fects of neither the ramping of the mechanical power output of the turbine, nor of torsional
oscillations, are manifested in the output of the PSS. Furthermore, the swinging of terminal
voltage and reactive power output due to ramping of power is not observed. 
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Figure 8.18

 

8.6.4 Potential causes of degradation in performance of the pre-filter of the IAP 
PSS
Degradation in the performance of the pre-filter may be attributable to a number of causes.
Several of these are now examined.

8.6.4.1 Effects of non-ideal pre-processing the speed input signal to the pre-filter.
Any pre-processing of the speed input signal may result in incomplete cancellation of the
speed signal at the input to the RTF; complete cancellation is seen as an essential feature of
the pre-filter.
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In Section 8.5.1 it is pointed out that the speed signal may be derived from a number of
sources, including the true rotor speed which itself may be subject to some form of process-
ing prior to injection to the pre-filter of the PSS. In the case of a ‘speed’ signal derived from
bus-frequency the signal may be subject to attenuation as established in Section 8.4.2 For
illustrative purposes it will now be assumed that the true rotor speed signal  is pro-
cessed through a first-order pre-processing filter prior to input to the PSS pre-filter.

Let the transfer function  of the speed pre-processing filter of the true rotor speed

signal be 

. (8.19)

With this transfer function the effects of attenuation - or gain - and phase shift on the output
speed signal of the PSS pre-filter,  are to be analysed. The output of the

speed pre-processing filter is , A and TA are the gain and time constant. The relevant
elements of the PSS pre-filter which includes the speed pre-processing filter are shown in
Figure 8.19. Perturbations in mechanical power output and the torsional mode are assumed
to be absent; according to (8.4) the true rotor speed is 

. (8.20)

Figure 8.19 Signals in the IAP pre-filter assuming non-ideal pre-processing of the 
speed input signal through a transfer function  ( = 0).

Based on (8.19) and Figure 8.19 it can be shown that the output of the pre-filter is:

. (8.21)

Clearly, at low frequencies  and at high frequencies . Over

the frequency range typically of interest the responses, or distortion factors 

in the true speed, are shown in Figure 8.20 for a range of values of A and time constants TA.
The parameters of the RTF of (8.14) are N = 1, M = 5 and T9 = 0.1 s.
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Figure 8.20 Distortion factors, , due non-ideal pre-processing of the true 
speed input signal to the pre-filter. Values A: 0.8 to 1.2; (i) TA = 0, (ii) TA = 0.05 s.

Of concern in the figure are the effects of the amplitude and the phase shift on the pre-pro-
cessed speed signal  over the range of frequencies of the rotor modes, 1.5 to 15 rad/s,

and their deviation from the ideal response of . Although the range of values of A and
TA employed in Figure 8.20 may be considered somewhat extreme, the results imply that ap-
propriate care is required in the pre-processing of the speed input signal to the pre-filter.
These results show that depending on how the speed-input signal to the pre-filter is derived
in practice, significant distortion in both gain and phase of the synthesised speed signal can
occur. 

Various methods can be employed for calculating the electric power. Any pre-processing fil-
ters which are employed in the electric power input signals paths may also result in incom-
plete cancellation of the speed signal at the input to the RTF. This would likewise result in
distortion of the speed output of the PSS pre-filter. The effects of any pre-processing of in-
put signals to the PSS pre-filter should therefore be examined to assess if they degrade the
performance of the PSS. 
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Consider the case of a bus-frequency stabilizing input, the associated pseudo-speed signal
 being derived from the rate of change of terminal voltage angle as in (8.9). The deg-

radation in the amplitude of this signal is discussed in Section 8.4.2. The effect of such deg-
radation on the output of prefilter  is illustrated in Figure 8.20(i). Not only is the
amplitude of  modified but also is its phase- which could introduce an additional
phase lag in the PSS over the modal frequency range of interest.

8.6.4.2 One or two washout filters in the electrical-power and speed paths?
Recall that a washout filter is introduced with the purpose of eliminating any steady-state
offsets, or DC levels, in the input signal, as well as blocking very slow changes in the input.
It is thus necessary to include at least one washout filter in each path of the pre-filter. 

The effect on the response of the RTF of one or two washout filters in the electrical-power
path has been examined in Section 8.6.2. The performance requirements for the pre-filter
may thus determine the number of washout filters in this path. 

What are the effects of choosing a different number of washout filters in the speed and elec-
tric power paths? The following requirements must be satisfied:

• When considering the presence of the local- and inter-area modes in each of the two
signal paths, the frequency response of both one or two washout filters should be ide-
ally, or close to,  over the range of modal frequencies. This requirement dictates
the value of the washout time constant, Tw.

• The frequency response of a pseudo-integrator in the electrical-power path should be
ideally, or close to,  over the range of modal frequencies. This

requirement determines the time constant of the pseudo-integrator.

If there are different numbers of washout filters in the speed and power paths an imprecise
cancellation of the true rotor-speed at the input to the RTF occurs under perturbed condi-
tions. It is therefore desirable that the same number of washouts be employed in both input
paths.

8.6.4.3 Effect on the synthesized speed signal of setting the RTF time constant T8 to zero.

As in earlier sections, the SMIB system Case C, described in Section 5.10 will be used to in-
vestigate the performance of the pre-filter when the time constant  is set to zero.

In order for the RTF to follow a ramp with zero steady-state error a requirement is that
 in the RTF transfer function of (8.14). Setting  to zero turns the RTF into a

simple low-pass filter of order M if N = 1. With this setting and for a ramp in mechanical
power the output of the RTF follows the input signal IPM with non-zero error. In
Figure 8.21, and comparing it with Figure 8.18(a)-(ii), this error is seen to manifest itself not
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only in the synthesized speed signal at the output of the pre-filter, but also in the PSS output.
Consequently there is an associated undesirable swing of the generator terminal voltage and
reactive power output during ramping of the mechanical power.

Figure 8.21 Deviation in the synthesized speed output ( ) from the speed input 

( ), and the consequent effect on the PSS output signal ( ), due to setting  

in the RTF. (Compare these responses with those in Figure 8.18(a)-(ii).)

8.7 The Multi-Band Power System Stabilizer

A fourth category of the PSS models listed in the IEEE Standard [15] is called the Multi-
Band PSS (MB-PSS), PSS4B, which was first developed by Hydro-Québec and is in opera-
tion on the Hydro-Québec system [16], [17].

A block diagram of the MB-PSS structure is shown in Figure 8.22. It is noted that this PSS
has three separate tunable paths, unlike the integral-of-accelerating-power PSS, PSS2B [15],
which only has a single such path. The objective of the MB-PSS structure is to isolate and
focus the PSS tuning in three frequency bands which account for three phenomena:

• 0.05 - 0.2 Hz (~0.3 - 1.2 rad/s): very slow oscillations associated with the common or
global modes on a system 1;

• 0.2 - 1 Hz (~1.2 - 6 rad/s): low frequency, inter-area modes of rotor oscillation;

• 1 - 4 Hz (~6 - 25 rad/s): higher frequency, local-area and intra-plant modes of rotor
oscillation.

1. Note that it is important not to confuse the global mode with low-frequency modes 
sometimes observed with hydro-turbines, for example. The latter modes may be associ-
ated with governor - water column interactions and are localized phenomena [19]. 
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Figure 8.22 Multi-Band PSS.  SD: Speed Transducer. (See [16], [17] for details).

In particular, the low frequency band is introduced to provide damping for very low fre-

quency phenomena encountered on isolated systems 1, particularly the so-called global
mode in such a system. It is stated in [17] that the MB-PSS and the integral-of-accelerating-
power PSS “... can be tuned to achieve quite similar performance in the local, intra-unit and
torsional modes ... since they both use an electric power signal to capture the high frequency
dynamics. However, having many more degrees of freedom available to modulate its phase
lead over a wide frequency range allows the MB-PSS to better balance its performance in
inter-area modes from 0.1 to 0.8 Hz” (0.6 to 5 rad/s).

Low frequency oscillations have been observed, for example in hydro-systems: 0.63 rad/s
between the Northwest and Southwest power systems in the US [18]; 0.31 to 0.50 rad/s on
the Colombian system [19]. Oscillations lying in the intermediate range, associated with vor-
tex instability in hydro machines, are reported to be less than 0.5 Hz (3 rad/s) [20], and about
1 Hz (6 rad/s) [21].

The speed signal , input to the high frequency band, is derived from the measured gen-
erator electrical power output. A separate internal frequency transducer supplies a speed sig-
nal  to the low and intermediate frequency bands. Washout filters are provided in the
intermediate and high frequency bands; torsional (notch) filters may be incorporated in the
PSS structure. In each of the three bands is a differential filter arrangement; it is of interest
to understand the characteristics of such a filter. An analysis of a simplified form of the filter,
shown in Figure 8.23, is conducted in Appendix 8–I.3.

1. Systems may be isolated because there are no synchronous links to neighbouring systems.
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Figure 8.23 Filter G(s)

The analysis reveals the filter takes the form of the well-known Q-filter,

, (8.22)

where  rad/s is the frequency at which the frequency response is at its maximum value

K2. The frequency response of (8.22) with variation in damping ratio  is given Figure 2.21.

It is of interest to examine the nature of the frequency response of the MB-PSS omitting
washout filters, speed transducers, and torsional (notch) filters. Let the gains and centre fre-
quencies of the three bands, evaluated in Figure 5 of [16] be KL = 5.0 pu, FL = 0.04 Hz;
KI = 25.0 pu, FI = 0.70 Hz; KH = 120 pu, FH = 8.0 Hz; respectively. The frequency re-
sponses of three bands and the output of the MB-PSS are shown in Figure 8.24; they agree
closely with Figures 5 and 6 in [16].

In [17], a detailed comparison is provided on a test system between the designs of the MB-
PSS (PSS4B) and the integral-of-accelerating-power PSS (PSS2B). For the MB-PSS it is
found that, by separating out the low frequency and the higher frequency bands (each of
which have their own limits and wash-out filters), the lower-frequency band limits and wash-
out can be adjusted independently of the higher frequency bands to account for islanding
and large frequency deviations. 

Figure 8.24 reveals that, for the selected parameter values, the phase response varies be-
tween 35 and 60 degrees leading. That is, the phase response is relatively level over the range
of 0.1 to 25 rad/s (0.02 to 4 Hz) in this case. However, the MB-PSS gain varies over a wide
range. Interestingly, this approach contrasts with that of the P-Vr method (Section 5.8.1) in
which the PSS transfer function attempts to account for the inherent gain and phase char-
acteristic of the particular generator - on which the PSS is installed - over a relevant range
of modal frequencies (e.g. see Figure 5.16) and an encompassing set of operating conditions.
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Figure 8.24 Frequency responses of the MB-PSS assuming a common speed signal input 
to the three differential filters in Figure 8.22

A number of methods for the tuning the MB-PSS has been offered. For example, the pa-
rameters of the MB-PSS are selected by adjusting the centre frequency and gain of each band
so as to achieve the nearly flat phase response between 30 and 50 degrees over the range of
frequencies, say, 0.05 Hz and 3 Hz (0.3 to 20 rad/s) in order to cover the global and intra-
station modes. Other approaches, including optimization techniques, are proposed in [22],
[23], [24] and [25].

8.8 Concluding remarks

In Chapter 5 a PSS based on the P-Vr design approach is described; it assumes a ‘true’ speed
stabilizing signal is available. By ‘true’ speed is implied that the signal faithfully represents
the generator speed in magnitude and phase, torsional oscillations being negligible. In this
chapter electric-power and bus-frequency based pre-filters are employed to yield a synthe-
sized speed signal for input to a P-Vr based speed-PSS. A similar objective applies to the pre-
filter for the integral-of-accelerating-power PSS but overcomes some of the disadvantages
of the previous two pre-filters.
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The frequency of the generator terminal voltage is used as a PSS stabilizing signal on the ba-
sis that bus frequency closely represents rotor speed perturbations in magnitude and phase.
Although it may be synthesized from terminal voltages, bus frequency is assumed to be de-
rived from the rate of change of bus voltage-angle , i.e.  pu of

system frequency. Using the latter signal as the stabilizing signal for a ‘true’ speed-PSS is
shown to reduce the effective damping gain of the PSS (by as much as 40% in the cases stud-
ied). However, the damping gain of the PSS can be increased to compensate for the gain
reduction. Because differentiation of a signal occurs, care should be taken to provide ade-
quate attenuation at high frequencies (i) to reduce noise, and (ii) to eliminate a possible
source of instability - as is demonstrated in an example. In the signal processing for this and
other forms of bus-frequency transducers, care should be taken to avoid the introduction of
phase shifts which may degrade the design of the PSS unless they can be accounted for. The
effect on bus frequency of large, sudden disturbances at the generator terminals should be
examined.

The performance of the electric power PSS is shown to be close to that of designed for the
conventional ‘true’ speed-PSS. However, in comparison with a ‘true’ speed stabilizing signal
which in practice may contain torsional modes, the advantage of this pre-filter is that it sig-
nificantly attenuates these modes in its output speed signal. However, the conventional PSS
has the disadvantage that ramping of the mechanical power output of the prime mover caus-
es variations in the terminal voltage and reactive power output of the generator. This prob-
lem can be ameliorated by use of an integral-of-accelerating-power PSS.

The integral-of-accelerating-power (IAP) pre-filter generates the speed signal for a PSS de-
signed for a ‘true’ speed-stabilizing signal based on the P-Vr approach. A detailed analysis
of the pre-filter for the IAP PSS is conducted and demonstrates the role and effects of the
ramp tracking filter (RTF), and of the washout filters and the integrator in the power input
path. It is shown that the RTF itself consists of a unity feedback system with two integra-
tions in its forward path and therefore it tracks a ramp input at its input with zero error in
the steady state. However, depending on the number of washout filters, the type of integra-
tor, and the characteristics of the mechanical power output, the steady-state tracking errors
may be finite but are small. Because the effective operation of the pre-filter relies on the can-
cellation of the speed signal at the output of the integrator by the input speed signal, care
must be taken to ensure the fidelity - in amplitude and phase - of the speed input signal to
the pre-filter. If the latter signal lacks fidelity with respect to the ‘true’ speed, the perfor-
mance of the PSS may be markedly degraded.

PSS2B or PSS4B?

In considering the application of the multi-band and integral-of-accelerating-power PSSs
the following few items may be pertinent.

In comparison to the integral-of-accelerating-power PSS (PSS2B) the feature of the Multi-
Band PSS (PSS4B) is its ability to damp low-frequency and common-mode oscillations [17].

 freq 1 0  d dt =
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The sensitivity of the output of the latter PSS to ramping of mechanical power and slow sys-
tem frequency drift is likely to be low because 
(i) the gain in the low frequency band is relatively low (20-25% of the high frequency gain), 
(ii) the corner frequencies of the washout filters in the intermediate band are 1 rad/s, 
(iii) the high frequency speed signal transducer, in effect, has a washout corner frequency of
about 1.2 rad/s (0.2 Hz) 
Consequently, variations in reactive power are likely to be small. 

For large steam units with the first torsional mode being about 8-10 Hz, notch filters may
be required for the PSS4B. However, in the case of an integral-of-accelerating-power PSS
with a ramp tracking filter having the characteristics shown in Figure 8.9, the attenuation of
torsional frequencies at 8-10 Hz (50-60 rad/s) is 50 dB or more; notch filters may not be
needed. 

Thus, in generalizing, it is necessary to consider carefully - among other factors - the system
characteristics as well of those of the generating units in order to specify the system damping
performance requirements over the low to high range of modal frequencies. Following such
an investigation it may then be possible to select the required PSS structure.
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Appendix 8–I

App. 8–I.1 Action of the Ramp Tracking Filter (RTF)
It is noted in Section 2.10.2.2 that, if there are two integrations in the forward path of the
unity feedback system shown in Figure 8.25, the tracking error  for a ramp in-
put is zero.

Figure 8.25 Structure of a closed-loop control system

Let us assume that the 5th order forward-loop transfer function of this unity feedback sys-
tem is:

. (8.23)

(Note the double integration in .) The closed-loop transfer function is:

.

If  the closed-loop transfer function becomes:

. (8.24)

The transfer function of the ramp-tracking filter postulated in (8.14) is of the form: 

. (8.25)

Comparing the last two equations, we note that they are identical if ,  and
. 

Based on a formal method of analysis a general result for the open-loop transfer function of
(8.23) with  and  is derived:

. (8.26)

Thus, provided , the associated RTF has two integrations in the forward path and

consequently the RTF will track a ramp input with zero following error in the steady-state.
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For the case when  there are, in effect, N RTFs in cascade each satisfying the require-
ment . An analysis similar to that for N = 1 confirms the validity of the latter re-
sult. 

Note that the RTF will track, with a finite steady-state error, a signal which is the integral of

a ramp, i.e. . However, by extending the analysis of (8.26) it is a simple matter

to derive the following transfer-function of a Parabolic Tracking Filter (PTF):

, (8.27)

 which will track a parabolic input , as well as a ramp input, with zero steady-state error.

App. 8–I.2 Steady-state conditions at the input and output of the 
RTF and associated tracking errors for mechanical power input 

App. 8–I.2.1 With and without an Ideal Integrator
The mechanical power changes of interest in the following analysis are: (i) a step of magni-

tude  (for n = 0); (ii) a ramp , , (n = 1); (iii) a parabola , ,

(n  = 2); and (iv) a cubic , , (n = 3). Note that each of the last three

functions is an integral of the previous input function. Since the Laplace transform of  is

, the Laplace transform of each of the input functions is simply . Let us

consider the alternatives of either an ideal integrator or of a pseudo-integrator being em-
ployed in the integration of the mechanical power signal.

Let us assume that for the path in the pre-filter shown in Figure 8.13 consists of k ideal in-
tegrators, k = 0, 1 and m washout filters, m = 0, 1, 2; assume for the mechanical power input

, n = 0, 1, 2, 3. The output of the ideal integrator, i.e. the input to the RTF, is then

. (8.28)

Applying the Final Value Theorem of (2.27) to (8.28), the general form of the expression for
the steady-state input to the RTF, after the initial transients have decayed away, is found to
be

 as . (8.29)
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The associated output of the RTF, , is 

,  where  .   ((8.14) repeated)

To ascertain how well the output of the RTF tracks its input, let N = 1 and let us calculate
the tracking error  between the RTF’s input and output:

,

where  is given by (8.26). As , The tracking error in the steady state becomes 

. (8.30)

However, from (8.26) we can deduce

 . (8.31)

Following substitution of (8.29) and (8.31) in (8.30), the latter reduces to a general expres-
sion for the tracking error between RTF input and output.

. (8.32)

For example, for the case of an ideal integrator, two washout filters (column 8 of Table 8.6
on page 423), and a cubic mechanical power input, i.e. n = 3, k = 1 and m = 2, (8.32) be-
comes:
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Note, for the other inputs in column 8 when n < 3, efss = 0.

App. 8–I.2.2 With a Pseudo Integrator
The same analysis as in the previous section is conducted with the transfer function of a sin-
gle pseudo integrator replacing that of the ideal integrator. It can be shown that 

 as , and (8.33)

. (8.34)

App. 8–I.3 Multi-Band PSS transfer function
Consider a differential filter of form shown in Figure 3 of [16]; it is also illustrated in
Figure 8.26 in which R is a constant ratio. 

Figure 8.26 Differential filter Gdf

The input-output transfer function is

(8.35)

Equation (8.35) reveals that  is a band-pass filter. Let the frequency 
and ; (8.35) then becomes:

. (8.36)

However, at frequency  rad/s it is required that the differential filter have unit gain; i.e.

. Hence, from (8.36):
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, or (8.37)

. (8.38)

Solving (8.38) for R we find:

, with .

Following substitution of (8.37) in (8.35) the transfer function  becomes:

, (8.39)

where the damping ratio is . Equation (8.39) is that of a Q-filter with
maximum gain  at the centre frequency  rad/s. Its normalized frequency response is
shown in Figure 2.21 for K2 = 1 and a range of damping ratios from 0.1 to 10.
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Chapter 9

Basic Concepts in the Tuning of 
PSSs in Multi-Machine Applications

9.1 Introduction

The objective of the application of stabilizers in multi-machine power systems is to stabilize
the system by providing adequate damping for the critical rotor modes of oscillation. These
modes typically involve several power stations and their machines. In the case of inter-area
modes many power stations, geographically widely separated, may participate in both the lo-
cal and inter-area modes. It is therefore necessary that the stabilizer which, when fitted to a
generator, contributes with stabilizers on other machines to the damping of the relevant
modes. Furthermore, because operating conditions on the system continuously change, the
performance of a fixed-parameter stabilizer should be robust to any such changes.

By employing the P-Vr method in the tuning of the PSS, as demonstrated in Chapter 5, the
inherent magnitude and phase characteristics of the generator and power system are being
utilized; for practical purposes these characteristics consistently lie in a relatively narrow
band. Not only can the method account for variations over a wide range of loading condi-
tions on the system, line outages, etc., but the resulting PSS is most effective and beneficial
at the higher generator real power outputs as revealed in Table 5.6, and discussed in the as-
sociated text.

Prior to considering the application of the P-Vr method to the tuning of PSSs in multi-ma-
chine power systems, the use and significance of two valuable tools in the small-signal anal-
447
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ysis of the dynamic performance of such systems are discussed. These tools concern the so-
called “Mode Shape” and “Participation Factor” analyses of the system for a selected oper-
ating condition. Such analyses reveal the nature and significance of the various modes (both
rotor or other modes), the involvement - and extent of involvement - of generators in the
modes, and other insights such as the nature of the dynamic behaviour of other devices in
the system (e.g. FACTS devices and their controls).

The application of other PSS tuning methods, namely the GEP Method and the Method of
Residues, is discussed in Chapter 6. While these approaches can be adapted to the multi-ma-
chine system, for the reasons explained in the latter chapter the P-Vr method is considered
to possess some significant advantages.

9.1.1 Eigenvalues and Modes of the system

It has been pointed out in Section 3.5, that the  eigenvalue of the real,  system ma-
trix  of the state equations is the real or complex scalar quantity, ; it is the non-trivial
solution of the equation

 . (9.1)

The -element column vector, , is the right eigenvector of the matrix  corresponding
to the eigenvalue .

For low-order dynamic systems, typically with less than 2500 states, the eigenvalues are cal-
culated using an algorithm that employs QR factorisation [1]. As the number of states ap-
proach 2500 the computation tends to become much slower. However, if fast computation
is required to determine only those eigenvalues in a selected region of the complex s-plane,
or if the system order is greater than 2500, methods such as Modified Arnoldi [2], Subspace
Iteration [3] and Multiple-Shift-Point Sparse-Eigenanalysis [3] are available. Such facilities
are normally included in software packages for the analysis of the small-signal dynamic per-
formance and control of large power systems [4].

As has been discussed earlier, eigen-analysis is an extremely valuable tool because the  ei-
genvalues of the system characterize the nature of its dynamic behaviour in the following
ways: 

1. The time-domain responses of the system states and outputs to a disturbance are

weighted sums of terms of the forms  and , where  is

a real eigenvalue and  is a complex-conjugate pair of eigenvalues. The

real and/or the real plus imaginary parts of the eigenvalues therefore clearly define the
form of its responses.

2. The system is stable if the real parts, , of all  eigenvalues are negative.
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3. The monotonic and oscillatory terms  and  are the ith and kth

modes 1 of the system, respectively.

In the case of the oscillatory modes, assuming that the mode is unique, the right and left
eigenvectors of the complex conjugate eigenvalues are also complex conjugates. Therefore,
the mode shape and participation factors (as described below) of the mode can be identified
by considering only the eigenvectors of one of the complex conjugate pair of eigenvalues.
In addition, in later sections we will present the concept of the response of the system to a
complex frequency, namely the modal frequency of a decaying oscillatory mode. Again, it
can be shown that it suffices to evaluate the transfer function at one of the two complex
conjugate eigenvalues. For these reasons, throughout the text we have sometimes referred
to an oscillatory mode as, say, mode h where h is the index or number of the first of two
complex conjugate eigenvalues which together constitute the mode.

The above items are valuable pieces of information but they do not answer the following
questions concerning the modes of the system: 

• What type of mode it is? (For example, is it primarily associated with the controller of
a FACTS device?)

• What states participate in this mode, in what manner and to what extent? (Do the
rotor speed states of generators i and j both participate significantly in the oscillatory
mode ?)

• Can analysis reveal the behaviour of one group of generators with respect to other
groups in the case of the electro-mechanical modes? 

• Which generators participate significantly in the lightly-damped or potentially unstable
modes? (In practice it may be necessary to identify some or all of the rotor modes,
particularly those that fall into the categories of being unstable or lightly damped.)

We shall therefore, in the following sections, examine two methods which are used to iden-
tify the modes by resolving the above issues, namely, Mode Shape and Participation Factor
Analyses [5].

9.2 Mode Shape Analysis

In the analysis of the dynamic performance of multi-machine power systems, the concept
of ‘mode shapes’ provides a practical and meaningful tool. In essence, mode shapes assist
one to identify the mode type such as ‘inter-area’, ‘local-area’, ‘inter-machine’ / ‘intra-sta-
tion’.

1. See Section 3.5.2 concerning the distinction between ‘eigenvalues’ and ‘modes’.
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The theoretical basis for mode shapes is outlined in Section 3.9. It was shown that if the state
equations of the dynamic system are excited by the right eigenvector  of a selected mode
of rotor oscillation, , only that mode appears in the time-domain responses of the states -
the responses for all other modes are zero; this is succinctly summarised by (3.45), namely

. (9.2)

The electro-mechanical or rotor modes of oscillation are usually identified with the pertur-
bations of rotor speed about synchronous speed. The mode shape is therefore identified
mainly from the phase of the elements of the right speed-eigenvector of the selected mode. 

Rather than considering a complex multi-machine system, the significance and application
of mode shapes are illustrated more simply - and in some detail - initially using a two-mass
spring system.

9.2.1 Example 1: Two-mass spring system
A two-mass spring system which is constrained to move freely in the positive x-direction
from a reference position is shown in Figure 9.1(a). The instantaneous position and speed
of the centre of mass j is  (m) and  (m/s), respectively, are highlighted in

Figure 9.1(b).  is the mass (kg),  is the viscous damping coefficient (N/m/s) between

the mass and the ground plane,  is the spring stiffness coefficient (N/m), and  is an

externally applied force (N).

Figure 9.1 (a) A two-mass system free to move in the x-direction on a flat surface,
(b) the general form of the parameters and variables for the jth mass.

Based on Figure 9.1(b), a general form of the equation of motion for mass  can be ex-

pressed as [6], [7], [8]:

. (9.3)

This equation can be rewritten in state equation form as follows:
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,    and

. (9.4)

Applying the above relationships to the two masses in turn, a fourth-order set of state equa-
tions is formed in the state variables ; the derivation of the set of equations is

left as an exercise to the reader.

Consider the following parameters for the four-mass spring system:
, and  

For these values of the system parameters the eigenvalues of the system are given in
Table 9.1.

Table 9.1  Eigenvalues of the two-mass spring system

We note that there are two stable oscillatory modes having damping ratios of 0.067 for mode
A (which is associated with the complex conjugate eigenvalue pair 1,2) and 0.055 for mode
B (eigenvalue pair 3,4). However, there is no information that reveals the nature of the sys-
tem performance; for example, what is the relative characteristic behaviour of the masses
for mode A? 

The right speed-eigenvectors for the two oscillatory modes are shown in Table 9.2. It is not-
ed for mode A, when it alone is excited, that the speed states  and  of masses 1 and 2

are essentially in anti-phase. The mass  is said to ‘swing against’ mass . The displace-
ment states  and , which are almost in anti-phase, lag their respective speed states by

nearly . When the right eigenvectors are normalised to  for the state with the largest
magnitude (the speed state  for mode A,  for mode B), the modal behaviour of the
states is interpreted more easily using the polar plots for the relevant modes as shown in
Figure 9.2.

Often in mode-shape analysis only the speed elements in the right eigenvector are plotted.
In this event the plot is the same as that in Figure 9.2 except all other states are omitted.
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Table 9.2  Right eigenvectors for the oscillatory modes

Figure 9.2 Normalised right eigenvectors of speed (v) and displacement (x) 
for the oscillatory modes

Let us now consider the time-domain responses of the states when the mass-spring system
is excited by the right eigenvector consisting of the real parts of its elements for each of the

modes in Table 9.2, e.g. by the initial condition  for mode
A. The transient response to this initial condition is shown in Figure 9.3.

Note in Figure 9.3 the instantaneous phase relationship between the states is consistent with
Figure 9.2 and/or Table 9.2. From the figure it is seen that 

• the time constant and the period of the response are consistent with the single mode,
;
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Figure 9.3 First ten seconds of the transient response speed (v) and displacement states 
(x) for the two-mass spring system to an initial condition which excites only 

mode A, .

• the speed states  and  as well as the displacement states  and  are, respec-

tively, nearly in anti-phase;

•  and , respectively, lag  and  by nearly ;

• as might be expected for mode A, , in which the masses swing against
each other as shown in Figure 9.3, the amplitude of the oscillation of the smaller mass
is larger. 

Likewise, as seen in Figure 9.4 if the system is excited by an initial condition

 on the four states in Table 9.2, only mode B is excited. In
this case the speed states  and  as well as the displacement states  and  are, respec-

tively, nearly in-phase, i.e. the two masses ‘swing together’ with respect to the reference
frame. Again, the form of the responses is consistent with the results in Figure 9.2 and/or
Table 9.2.
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Figure 9.4 First ten seconds of the transient response of the two-mass spring system to 
an initial condition which excites only mode B, .

It is noted above for mode A, in which the masses swing in anti-phase, the amplitude of the
oscillation of the smaller mass is larger. This suggests that the nature of the oscillations ob-
served in the responses of Figure 9.3 and Figure 9.4 are associated with the interchange of
energy between the energy storage elements. Let us calculate the instantaneous stored ener-

gies in the masses and the spring. The instantaneous stored energy in a mass is  and

that in a spring is . For mode A the time responses of the stored energy in

each of the five elements for the relevant initial conditions are plotted in Figure 9.5.

As is to be expected, the envelope of the decay of the stored energies decays with a time

constant of one-half of that of mode A 1. Further we note:

• The stored energy in each of the two masses peak more-or-less simultaneously; at that
time the stored energy in each of the three springs is zero;

1. Assume that the response of a speed state of a mass is . The stored 

energy will decay as .

Time (s)

A
m

pl
itu

d
es

 

v1
v2
x1
x2

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.098– j1.77

Mjvj
2

2

Kjk xj xk– 2 2

v t  V0e
t–

=

v
2

t  V0
2
e

2t–
=



Sec. 9.2 Mode Shape Analysis 455
• A quarter cycle later of the modal frequency (3.21 rad/s, period approximately 2 s),
the latter condition is reversed, i.e. the stored energies in the springs peak more-or-less
simultaneously; at that time the stored energy in each of the masses is zero.

• If the losses during the interchange were zero (i.e. no viscous damping, ), the
system would oscillate indefinitely with constant amplitude and the peaks and troughs
in the responses would coincide exactly.

Figure 9.5 Stored energy response in each of the masses and springs for an initial condi-
tion which excites only mode A, .

A plot of the stored energy responses, similar to Figure 9.5, for mode B ( )
can be predicted from the mode shape shown in Figure 9.2 or the amplitude responses of
Figure 9.4. This is left as an exercise to the reader.

The interchange of energy between energy storage elements every quarter of a cycle of the
oscillatory behaviour is explained in any text book on the fundamentals in physics or engi-
neering. The significance of mode shapes in the analysis of dynamic performance is that it
reveals the nature of the behaviour of the masses (or inertias) in selected modes - normally
the electro-mechanical modes in power system dynamic performance.
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This example illustrates that, for the two-mass-spring system, there is one oscillatory mode
representing the relative dynamic behaviour between the two masses. The second mode
portrays the behaviour of the masses with respect to the reference frame. 

9.2.2 Example 2: Four-mass spring system

To highlight some further relevant issues a somewhat more complex mass-spring system
than that in Example 1 (Section 9.2.1) is analysed; the system is shown in Figure 9.6. 

Unlike the previous example there are no springs restraining movement between the masses
and the reference plane. The previous example of the two-mass-spring system is simple
enough to demonstrate not only the concepts of mode shapes, but also the associated tran-
sient responses and the responses of the stored energy. However, the purpose of this exam-
ple is to demonstrate for higher-order systems the types of interactions between elements
that are revealed through mode-shape analysis. Moreover, the more complex system pro-
vides additional insight into the use of participation factor analysis described in Section 9.3.

Figure 9.6 A four mass, three-spring system

The following are the parameters for the four-mass spring system:
,  , and

 The units of these parameters are supplied in
Section 9.2.1. 

The eight eigenvalues and five modes of system are given in Table 9.3. 

Table 9.3  Eigenvalues and modes, A to E, of the four-mass system

Eigenvalue number and value

Mode A (Oscillatory)
Mode B 
(Mono.)

Mode C 
(Mono.)

Mode D (Oscillatory) Mode E (Oscillatory)

1 2 3 4 5 6 7 8

-0.18+j4.12 -0.18-j4.12  -0.46 0 -0.19+j1.82  -0.19-j1.82 -0.21+j3.43  -0.21-j3.43

Mono.: a monotonically increasing or decaying mode

K12K34 K23

M4

x4

M2 M1

B4

M3

B2 B1B3

x3 x2 x1

v1v2v3v4

f1(t)

M1 1  M2 2  M3 4  M4 2   B1;=== 0.3  B2 0.8= = = B3 2.4,  B4 0.6= =

K12 10  K23 8  K34 15.= = =
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We note that there is a pole at the origin in the case of mode C (eigenvalue 4), the remaining
eigenvalues constitute modes that are stable, and that the oscillatory modes have a damping
ratio between 0.04 for mode A (eigen-pair 1,2) and 0.10 for mode D (eigen-pair 5,6). 

In the analysis of multi-machine power system dynamics it is common practice to employ
the normalised right speed-eigenvectors in assessing mode shapes for the electro-mechani-
cal modes. These eigenvectors of the oscillatory modes for the four-mass system are shown
in both Table 9.4 and the plots of Figure 9.7. It is observed for oscillatory mode A, the only
mode excited, that 

• the speed states of masses  and  move together essentially in anti-phase with
those of masses  and ; 

• the lighter masses  and  have the larger amplitudes; 

• the frequency of oscillation of this mode is the highest of all the modes. 

Table 9.4  Four mass system: Normalised right speed-eigenvectors for 
the three oscillatory modes

The speed-eigenvector plot for the monotonically decaying real mode (B in Table 9.3) re-
veals that all masses move in-phase with respect to the reference when this mode is

excited 1. In the case of the oscillatory mode D (eigen pair 5,6), the lighter masses  and
 swing together against  and the heaviest mass ; the frequency of oscillation is the

lowest of all the modes. Similarly, for mode E (eigen pair 7,8) the lighter masses  and 

State

Normalised right speed-eigenvectors for oscillatory modes 

Mode A: Mode D: Mode E: 

Magnitude Angle  Magnitude Angle Magnitude Angle  

1.00      0 1.00           0 0.516     6.5

0.703  -177.9 0.668     -1.1 0.096 -161.6

0.167       8.2 0.306  -178.3 0.579 -174.9

0.131  -173.3 0.549  -176.6 1.00   0

1. In Table 9.3 the elements of the speed eigenvector of mode C (eigenvalue 4), which rep-
resents a pole at the origin of the s-plane, are all zero. If mass 4 were attached to the ref-
erence plane through a spring with non-zero coefficient K40, one is likely to find that 
modes B and C represent a fourth complex conjugate pair which would constitute a 
common oscillatory mode in which all four masses oscillate in-phase against the refer-
ence.

M1 M3

M2 M4

M1 M2

0.18– j4.12 0.19– j1.82 0.21– j3.43

  
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v4
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swing predominantly against the heaviest mass . It is these types of phenomena that
mode shapes are particularly useful in revealing when this analysis is applied to the electro-
mechanical modes of a multi-machine power system. For example, when two large groups
of generators swing against each other, the frequency of oscillation is typically low (e.g. 2 to
5 rad/s), but if a single generator swings against the rest of the machines the frequency tends
to be relatively much higher (e.g. 7-10 rad/s).

Figure 9.7 Normalised right speed-eigenvectors for the three oscillatory modes (A, D, E)
 and the monotonically decaying real mode B. 

In this example of a four mass-spring system, there are three oscillatory modes representing
the relative dynamic behaviour between the four masses. A fourth real or complex mode
typically portrays the behaviour of all four masses with respect to a reference. Typically, if
there are N masses, there are N-1 modes representing the dynamic characteristics of inter-
actions between the masses. Instead of an analysis of masses which are subject to linear dis-
placement an analysis of rotating masses can be conducted using a similar approach. Thus
for N generators connected to a multi-machine system, there are N-1 modes of rotor - or
electro-mechanical - oscillation representing the relative dynamic interactions / behaviour be-
tween the N rotating masses. The N modes are associated with N pairs of complex conjugate
eigenvalues - that is, a total of 2N eigenvalues.

M3

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Mode A: -0.18+/-j4.12

v1

v2

x1

Mode D:-0.19+/-j1.82

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

v3

v4
x2

x4
x3 v1

v1
v2

v3
v4

x1

x2

x3

x4

Mode B, Mono.: -0.46

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

v1
v2

v3v4

x1
x2

x3
x4

1

Mode E: -0.21+/-j3.43

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

v1

v2

x4

x3

x1

x2

v3

v4



Sec. 9.3 Participation Factors 459
However, a note of warning is appropriate here. The mode shapes do not reveal the relative
extent in which the set of states participate in a selected mode, or the relative extent for
which a selected state participates in the set of system modes. As seen in Figures 9.3 and 9.4
the elements of the right eigenvector  in (9.2) represent the relative amplitude of the states
at time zero and thereafter. These elements are not dimensionless; the first four elements
have the dimensions of speed in m/s, the second four, displacement in m. The set of states
in a model of a multi-machine power system is comprised of states of very different types,
e.g. fluxes, control and excitation system variables, as well as rotor speed and angle. Again,
the elements of the right eigenvector are not dimensionless and would alter if the per-unit
system employed were changed. It is therefore not possible to measure the relative partici-
pation, say, of each of the system states in a selected mode based on the right eigenvector,
unless the measure is expressed in a dimensionless form. This is achieved using the concept
of participation factors.

9.3 Participation Factors

In the case of a multi-machine power system we may suspect from the mode shapes that the
speed state or a field voltage state of a generator is involved in a particular rotor mode of
oscillation, but how extensively are they involved, and how much relative to the involvement
of other generators? Although an analysis of modes shapes reveals the phase relation be-
tween speed states in a given rotor mode of oscillation, the participation in that mode by
some other state may be greater than that of the rotor speed state, e.g. field voltage (if the
PSS damping gain is set to a high value).

Firstly, if  and  are the right and left eigenvectors, respectively, it is shown in

Section 3.10, based on [5], that the dimensionless participation factor  pro-

vides a measure of the relative extent to which each of the  states participates in the 
eigenvalue at time . Recall also that the sum of the participation factors for eigenvalue

 is unity.

Secondly, it is also shown in Section 3.10.1 that the participation factor also provides a meas-
ure of the relative extent to which eigenvalue  participates in state  at time . Bear
in mind, however, that at some later time  some modes will have decayed away and

only the more dominant modes prevail; consequently, the participation of the  eigenval-
ue in state  will have changed from the values at . The participation factor is thus a
meaningful measure only at  - which is the basis of its definition.

The first of the alternative forms of applying the participation factor concept is employed in
the following chapters.
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9.3.1 Example 4.3
In Example 4.2 the mode shapes for a four-mass spring system are derived. Due to the few
number of states involved, let us now consider the associated participation factors for the
states in the relevant modes for this simple system.

The participation matrix can be calculated as the element by element product of the left ei-
genvector matrix and the transpose of the right eigenvector matrix. The hth row then repre-
sents the participation factors of the states in the hth eigenvalue, as shown in Tables 9.5 and
9.6. Likewise, the kth column represents the participation factors of the modes in the kth

state.

Table 9.5  Participation factors for the speed states  in the system modes.

Table 9.6  Participation factors for the displacement states  in the system modes.

It can be confirmed that the sum of the participation factors covering the eight eigenvalues
is . Note that the participation factors are complex but, as is often the case for the
larger factors, they are almost real. Therefore, for ease of interpretation the magnitudes of
the participation factors are plotted in the bar-chart form illustrated in Figure 9.8. The bar

Mode 
No.

Eigen-
value 
No

Eigenvalue
Participation factors  for the eight states

A. (Osc) 1 -0.18+j4.12 23.5-j0.2 23.2+j1.5 2.5+j0.7 0.8+j0.2

B. (Mon) 3 -0.46 10.8 21.9 45.2 22.2

C. (Mon) 4 0 0 0 0 0

D. (Osc) 5 -0.19+j1.82 17.5+j1.4 15.6+j0.7 6.5+j0.9 10.4+j2.1 

E. (Osc) 7 -0.21+j3.43 3.6+j0.7  0.2+j0.1 18.4+j2.8  27.8-j0.7

Osc.: Oscillatory mode.   Mon.: Monotonic mode

Mode  
No.

Eigen-
value 
No

Eigenvalue 
Participation factors  for the eight states

A. (Osc) 1 -0.18+j4.12 23.4-j1.9 23.2-j0.8  2.6+j0.3 0.8+j0.1

B. (Mon) 3 -0.46  3.7 2.7 -14.2 7.6

C. (Mon) 4 0 7.3 19.5 58.5 14.6

D. (Osc) 5 -0.19+j1.82 17.4-j1.5 15.4-j2.8  6.6-j1.2 10.5+j0.4

E. (Osc) 7 -0.21+j3.43  3.7+j0.4 0.2+j0.1 18.7-j0.4 27.5-j3.1
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chart for mode C, , is not shown as the participation factors for the speed states are

all zero. 

For this simple case the participation of the set of modes in a selected state can be read from
Figure 9.8, e.g. the magnitude of the participation factors for the eight eigenvalues, shown
in Table 9.3, in the speed state  are . 

 
Figure 9.8 Participation factors of the set of states  

in selected modes.

A comparison between the plots of the participation factors and the modes shapes of
Figures 9.8 and 9.7 is instructive. For oscillatory modes A, D and E the participation factors
of the pairs of states  are almost identical but the magnitudes of the mode shapes for
the same pairs differ significantly, typically by a factor of two or more to one in this example. 

As demonstrated through the two examples, very pertinent information on the dynamic per-
formance characteristics of the system is provided by the combination of modes shapes and
the participation factors. It is the relative phase information provided by modes shapes that
is particularly useful; the relative amplitude of the states depends the units of the states. As
mentioned earlier if the system of units were changed, as in the selection of the per unit sys-
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tem, the relative amplitudes of the states could change. On the other hand, the participation
factors indicate the relative degree of involvement not only of all the states in a mode on a
dimensionless basis but also of the modes in a state; the participation factors are therefore
a characteristic of the system, invariant to change in units. In the two examples the ampli-
tudes of the right speed (note, only speed) eigenvectors for a given mode shape appear to
correlate fairly well with the participation factors for the same mode; this may lead to the
misconception that the amplitudes in the mode shape represent the ‘participation’ of the
speed states in the selected mode.

The application of these tools will be demonstrated in analysing the dynamic behaviour of
a multi-machine power system in Chapter 10.

9.4 Determination of the PSS parameters based on the P-Vr 
approach with speed perturbations as the stabilizing signal

9.4.1 The P-Vr transfer function in the multi-machine environment
Earlier, in Section 5.8, the tuning of a speed-input PSS for a generator in a single-machine
infinite-bus system is outlined in detail. The P-Vr transfer function is introduced in
Section 5.8.2, and its application to the tuning of the PSS compensating transfer function

 is described in the subsequent subsections of Chapter 5. It is pointed out in those sec-
tions that the PSS tuning and use of the P-Vr transfer function are applicable to multi-ma-
chine systems; this is the case, but issues such as interactions between PSSs outlined in a later
chapter need to be accounted for.

The comment in Section 5.8.2 for SMIB systems also applies to the tuning of PSSs in multi-ma-
chine systems, namely: The PSS must be tuned to be robust to a full range of N and N-1 operating
conditions. For this purpose it is necessary to select a set of appropriate operating conditions
which encompass, and therefore include, the full range of conditions. By examining the border-
ing conditions this approach reduces the number of cases for which the P-Vr characteristics
must be evaluated. 

In the case of the multi-machine system the P-Vr transfer function is defined as follows: The

P-Vr transfer function for generator i is the transfer function from the voltage reference 

of the AVR of generator i to the electrical torque output of the generator, , with the shaft

dynamics of all generators in the power system disabled. Note that shaft dynamics on all gen-
erator are disabled for the purposes of the analysis.

Diagrammatically, this shown by a comparison of Figure 9.9(a), for the intact generators,
and Figure 9.9(b) in which the shaft dynamics of all generators are disabled. An examination
of Figure 9.9(b) reveals that there are a number of signal-flow paths associated with the P-
Vr transfer function. For example, not only is there the direct path from the reference volt-
age input  on generator i to its electrical torque output  - but there are also

Gc s 

Vri s 

Pei s 

Vri s  Pei s 
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paths through both the power system and the other generators to the electrical torque out-
put on i. A question is: Compared to the SMIB system, do these additional paths diminish
the effectiveness of the P-Vr approach to PSS tuning?

Figure 9.9 (a) Model of a generator in a multi-machine power system; (b) conceptually, 
with shaft dynamics on all machines disabled.

The terminology used here, i.e. `P-Vr transfer function', as defined above for the multi-ma-
chine context is that introduced in [9]. However, this same transfer function has been deter-
mined by different techniques elsewhere. For example, for the tuning of the PSS of a
generator in a multi-machine power system, phase information on the P-Vr transfer func-
tion has been determined by field tests [10] or is based on SMIB models with the machine
inertia constant set to a very large value on the generator of interest [11], [12]. In references
[10], [11]and [12] no attempt is made to employ the P-Vr transfer function for the formal
tuning of PSSs in a multi-machine system - including the concept and setting of the PSS
damping gain, or as a basis for the coordination of PSSs.

The method adopted here for calculating the P-Vr transfer function is that presented in [9].
The significance of this approach is that a simple direct method is provided for determining
both the magnitude and phase response of the P-Vr transfer function for each generator. 

The theoretical basis for the P-Vr characteristic of generator i, , in

a multi-machine system of N generators is considered in [14], [15]. With the shaft dynamics
of all generators disabled it is shown that the electrical power or torque of the N generators
is given by

. (9.5)

Furthermore, it is shown that matrices Av and  are essentially diagonal or block diagonal

due to the diagonal dominance property of the reduced network admittance matrix into
which the generator dynamic admittances are embedded as network elements. For brevity,
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let us now consider only the first term in (9.5) associated with the P-Vr-like matrix of gen-
erators in the multi-machine system, i.e.

 , where from [15], (9.6)

, (9.7)

and  , (9.8)

and where Y is the reduced network admittance matrix. In the first term of the summation
in (9.7),  - and in (9.8)  - are essentially functions of the steady-state conditions

and are modified by the generator operational reactances  and . Moreover, in

(9.7) the first term is determined mainly, and diagonally dominated, by the network admit-
tance matrix Y. The Thévenin equivalent of the network as seen from the terminals of gen-
erator i is not much affected by the dynamics of the other generators in the system. The
second term  in (9.7) depends only on the parameters of the generator i, its excitation

system and a scalar multiplier vdo_i , the d-axis steady-state terminal voltage, i.e.: 

, (9.9)

where Ggen_i , Gavr_i and xdi are respectively the operational transfer functions of generator
i, its AVR / exciter, and its direct-axis synchronous reactance; these functions are independ-
ent of the external system. 

The phase characteristic of  is independent of operating conditions in the external
system, however, the magnitude of the low-frequency response varies only with the scalar
gain vdo. The magnitude characteristic thus retains its shape over the range of operating con-
ditions. Consider firstly the variation of  with generator reactive power output at con-
stant real power (P) and 1 pu terminal voltage as shown in Table 9.7. The low frequency gain
of the P-Vr characteristics decreases with increasing lagging reactive power (Q); this obser-
vation is reflected in the P-Vr characteristics of Figure 5.16 for the SMIB system.

Likewise, as illustrated in Table 9.8 and manifested in the P-Vr characteristics of Figure 5.22,
 decreases with decrease in real power output at unity power factor. At rated power out-

put vdo is relatively large, but tends to zero as the real power output is reduced. 

A consideration of Table 9.7 suggests that it is prudent to include a range of reactive power
outputs in the set of encompassing operating conditions. 
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Table 9.7  Variation of  with increasingly lagging Q at constant real power outputs

Table 9.8  Variation of  with reduction in P at unity power factor

Because  is the more significant term of the two in (9.7), it determines the consistently
narrow bands of the frequency responses of the P-Vr characteristics of generator i given by

. For example, for the SMIB system the relatively minor varia-

tions in the phase of the P-Vr characteristic with steady-state operating conditions observed
in Figure 5.16 are caused by the contribution of first term in (9.7), , over

the modal frequency range.   

In [15] the authors imply that the P-Vr characteristic of generator i can be calculated if the
network is represented by a SMIB system connected at the generator terminals. However,
in multi-machine cases, it may not be clear what value should be attributed to the impedance
of the Thévenin equivalent, particularly as it will change with line outages, whether electri-
cally close-by machines are on/off line, the effect of close-by loads, etc. It is then simpler

and more efficient to calculate the P-Vr characteristics of generator i 1 for each operating
condition using the complete model of the multi-machine system. Moreover, each generator
may participate in a range of local- and inter-area modes as well as intra-station modes, not
in a single mode as is the case in the SMIB system.

These results in [15] provide a theoretical basis for the observation in [13] that the P-Vr
transfer function is relatively robust to changes in the system operating conditions in multi-
machine systems. That is, for higher values of generator real power outputs both the gain,
phase and the shapes of the frequency response of the P-Vr transfer functions do not vary
appreciably, for practical purposes, over a wide range of operating conditions and system

Corresponding values of Q and 

P=0.9, Q pu -0.2 0 0.2 0.4

 pu 0.930 0.851 0.766 0.686

P=0.7, Q pu -0.2 0 0.2 0.4

  pu 0.892 0.783 0.680 0.591

Corresponding values of P and 

Q=0, P pu 0.9 0.7 0.5 0.3 0.1

 pu 0.851 0.783 0.669 0.475 0.177

1. Or the characteristics of generating station i if there are a number of identical units in 
the station.
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configurations. Consequently, in multi-machine systems, individual PSS designs that are based
on the synthesized P-Vr transfer function using the methodology adopted in Section 5.10 are also
robust over a wide range of operating conditions. Typically, this applies for generator real pow-
er outputs exceeding 0.5 pu. An examination of Figures 5.21, 5.22 and Tables 5.5 and 5.6
reveals that the mode shifts are essentially real, an observation which supports the above
statement.

The robustness and application of the P-Vr characteristic has been demonstrated and veri-
fied for generators on very large systems [20].

For the multi-machine system the P-Vr characteristics of each generator,
, are calculated in a similar fashion to that for the single-

machine infinite-bus system, except that the characteristics are calculated for the entire net-
work with the shaft dynamics of all machines disabled. The calculation is similar to that de-
scribed in Section 5.10.3 in which rows and columns of the A, B and C matrices associated
with the speed states in the states equations (3.9) are eliminated; the D matrix is usually a null
matrix. The relationship between perturbations in electric power (or torque) as the output
quantity and voltage reference as the input quantity can then be formed, and the frequency
response evaluated for the set of encompassing operating conditions and over the range of
modal frequencies.

The derivation of the synthesized transfer function, 

, (9.10)

which is selected from the family of P-Vr frequency response characteristics as the most
suitable basis for the tuning of the PSS, has been covered in Section 5.10.6.

9.4.2 Transfer function of the PSS of generator i in a multi-machine system
The basic concepts for the determination of the parameters of a PSS in a single machine sys-
tem have been outlined in Chapter 5. The approach in the case of a generator in a multi-
machine systems follows along similar lines in Section 5.8.1 and therefore can be summa-
rized fairly briefly.

Consider the model of generator fitted with a speed-PSS in multi-machine system as shown
in Figure 9.10. Note that the transfer functions from  or  to  are identical.

It has been established in Section 5.9.1 that the PSS transfer function for a generator - say
the ith - takes the form

, (9.11)

HPVri jf  Pei jf  Vri jf =

HPVrSi
s  Pei s  Vri s 

Synth
=

Vri Vsi Pei

HPSSi
s  kiGi s  ki GWi s  G ci s = = GLPi s 
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where  is the damping gain;  is the PSS compensation block;  and 

are the transfer functions of the washout and low-pass filters, respectively.

Figure 9.10 Model of generator i fitted with a PSS in a multi-machine power system

As has been outlined earlier in Section 5.14:

1. The aim of the tuning procedure is to introduce on the generator shaft a damping
torque (a torque proportional to machine speed); this causes the modes of rotor oscil-

lation to be shifted directly to the left 1 in the complex s-plane. 

2. The compensation transfer function  is tuned to achieve the desired left-shift in
the complex s-plane of the relevant modes of rotor oscillation. 

3. The damping gain  (on machine MVA rating) of the PSS determines the extent of
the left-shift.

Based on item 1, the ideal transfer function between speed  and the electrical damping
torque perturbations  due to the action of the PSS i over the range of modal frequen-
cies should ideally be: 

, (9.12)

where  is a damping torque coefficient and is a real number (p.u. on generator MVA rat-

ing). The transfer function  compensates in magnitude as well as phase for the synthe-

1. By ‘direct left-shift’ is implied that the mode shift is , . As explained in 
Chapter 13, deviations from the ‘direct left-shift’ of modes are mainly due to interactions 
between multi-machine PSSs and non-real generator participation factors.
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sized P-Vr transfer function of machine i, , defined in (9.10). With rotor speed

being used as the input signal to the PSS, whose output is , the expression (9.12) for
 can also be expressed in terms of the P-Vr and PSS transfer functions as:

; (9.13)

hence, rearranging (9.13), we find

. (9.14)

It follows from an examination of (9.14) that

  and , (9.15)

Note from (9.15) that  is a damping torque coefficient. Assuming that the synthesized
transfer function  is of the general form

, (9.16)

then, from (9.15), the compensation block transfer function is

, (9.17)

where  are parameters determined from the synthesized P-Vr

characteristic in the tuning procedure. Note that in the form of (9.16) (i) real and complex
zeros can be accommodated in the synthesized P-Vr transfer function; (ii) the coefficient of

 is unity.

Substitution of (9.17) in (9.11), and incorporating the washout and low pass filters, yields the
PSS transfer function:

.

(9.18)

For generator i,  is the time constant of the washout filter;  are the time con-

stants of the low-pass filter which may be added (i) to ensure  is proper, (ii) to mit-

igate against excitation of the torsional modes of the rotating turbine/generator/exciter
shaft system. 
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Earlier the gain  has been referred to as the ‘damping gain’ of the PSS. The gain  is the
DC gain of P-Vr characteristic of generator i. If the washout filter is ignored the DC gain of
the PSS transfer function is ; conventionally this is referred to as the ‘PSS Gain’. (How-

ever, the PSS gain  has been attributed little meaning because the significance of the

gain  has not been recognized.)

Note, assuming that the synthesized P-Vr characteristic  for generator i closely
matches that for the selected operating condition, , it follows that

, (9.19)

(i.e. equal to the damping gain) over the modal frequency range 1. In the next chapter, by
examining the damping torque coefficient, this result will be used to confirm that the de-
signed damping gain ki of PSS i is, in fact, achieved (see Section 10.6).

In the multi-machine PSS tuning methodology the PSS is designed not only to swamp any
negative (destabilizing) inherent damping torque coefficients on that machine over the range
of frequencies of the rotor modes, but also to provide sufficient damping so that the asso-
ciated damping criteria of the multi-machine system are satisfied [9], [13]. These issues, to-
gether with the contribution to damping by stabilizers installed on FACTS devices, are
considered in a later chapters.

Examples of the application of the P-Vr approach to the tuning of PSSs in multi-machine
power systems have been presented in several publications [9], [13], [16], [17], [18] and [19].
In Chapter 10 the tuning the PSSs of generators in an inherently unstable 14-generator, mul-
ti-machine power system is described. Based on this system, the features of the PSS tuning
technique discussed above are illustrated through an example for which the complete system
data is provided. 

9.5 Synchronising and damping torque coefficients induced by PSS i 
on generator i

The concepts of synchronising and damping torques over a range of frequencies 

are explained in the context of the single-machine system in Sections 5.3 and 5.5. The same
concepts are employed in the multi-machine application to assess the synchronising and
damping torque coefficients developed by PSS i on generator i. However, let us first assess
the significance of Figure 9.11 which is derived from Figure 9.10.

1. Note  is the compensation which applies over the range of modal frequencies. 
The washout and low-pass filter time constants lie outside the latter range and are not 
included in , but are included in the PSS transfer function, .
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Figure 9.11 Model of generator i in a multi-machine system with (i) shaft dynamics on all 
machines disabled and (ii) switches Sdel and SPSS in rotor angle and PSS paths, respectively.

Consider generator i. When the shaft dynamics on all generators are disabled with switch
Sdel in the rotor angle path closed and the PSS out of service, the signal flow paths can be
deduced from Figure 9.11. As in the case of the SMIB system there are signal flow paths
directly from  through  to  (or to  in Figure 5.2). However, in the multi-
machine case there are paths from  through the network to perturbations in rotor angles

and terminal voltages on other generators, then to the inherent torque output . The
principle of superposition in linear systems analysis says that these paths remain when the
shaft dynamics are enabled and the full system is reinstated. 

The object of the following analysis is to determine in the multi-machine cases if the PSS
performance is consistent with its design basis, i.e. if , over

the modal frequency range for an encompassing range of operating conditions. In other
words, is the per unit damping gain ki of the PSS the realised? This objective is illustrated in
Figure 9.11 when the PSS is in service with switch SPSS closed and the rotor angle path is
open by means of switch Sdel. 

The synchronising and damping torque coefficients for generator i are defined in Section 5.3
and apply to generator i in Figure 9.11: 

    and   , (9.20)

i.e. components on generator i of torques in quadrature and in phase with rotor speed on
unit i. 
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The theoretical basis for concept of the inherent synchronising and damping torques for
generators in a multi-machine is derived from [14], [15] and the associated equation (9.5).
Recall that the shaft dynamics of all generators are disabled (i.e. switch Sdel is closed and SPSS
is open in Figure 9.11. The torque-like relationship of interest for generator i is extracted
from (9.5), i.e.

, where (9.21)

. (9.22)

In (9.22) ,  and are essentially functions of the steady-state conditions

and are modified by the generator operational reactances  and . Notice that the

first term, through (9.8), is determined mainly by the reduced network admittance matrix Y.

According to [14] both terms in (9.22) are essentially functions of the steady-state conditions
at the generator terminals. However, the first term in (9.22) also involves the Thévenin
equivalent of the network as seen from the terminals of generator i, and the generator pa-
rameters. Unlike the second term  in (9.7),  does not display phase invariance

in its frequency response over a wide range of operating conditions. This implies that, unlike
the P-Vr characteristics, the inherent synchronising and damping torques coefficients for
generators in a multi-machine system do vary with changes in operating conditions. More-
over, both  and  incorporate a multiplying factor  with the result that at

high and low frequencies the frequency response rolls off at 20 dB/decade and exhibits a
constant phase of . This observation is illustrated in the SMIB cases by a comparison
of the inherent torque coefficients in Figures 5.5(a) and 5.18.

As implied in Figure 9.9(a), in reality with the shaft dynamics of all generators enabled, there
are also paths through the power system, the AVRs, and the other generators. A disturbance
in the speed of generator j will therefore induce a torque on the generator i, the unit of in-
terest, at the inter-area and other modal frequencies. The components of this torque in
phase, or lagging by , with the speed of generator i are damping or synchronizing torques
induced on unit i by j. The associated torques coefficients, without and with PSSs in opera-
tion and with the shaft dynamics of all generators enabled, are analysed in Chapter 12 and are
referred to as Modal Induced Torque Coefficients.
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Chapter 10

Application of the PSS Tuning Concepts 
to a Multi-Machine Power System

10.1 Introduction

The previous chapter introduced some important concepts in the tuning of PSSs in multi-
machine power systems. The purpose of this chapter is to demonstrate the application of
the associated techniques for the analysis and tuning of PSSs in a fourteen-generator power
system which, without continuously acting PSSs, is inherently unstable. Each ‘generator’ in
this system, in fact, represents a power station which accommodates between one and
twelve units; the number of units in-service (nu) depends on the particular operating condi-
tion. The units in a power station are assumed to be identical, therefore the rating of the
equivalent generator for a station is nu times the rating of a single unit. It is assumed that the
individual generators in each power station are fitted with identical excitation systems and
PSSs. 

In a later chapter a class of stabilizers known as Power Oscillation Dampers (PODs) are dis-
cussed; these are stabilizers that can be fitted to power-electronic based transmission devices
such as FACTS (e.g. Static Var Compensators) and HVDC transmission. The analysis and
tuning of POD stabilizers are demonstrated by means of examples in Chapter 11. In the
fourteen-generator power system described in this chapter the Static Var Compensators
(SVCs) are fitted with continuously acting voltage regulators controlling bus voltage, but are
not fitted with stabilizers.
475
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The steps in the tuning of PSSs of machines in a multi-machine system are explored, com-
mencing with (i) the eigen-analysis of the system with all PSSs out of service, and (ii) the as-
sociated analysis based on Mode Shapes and Participation Factors. The PSSs are then tuned
using the P-Vr approach discussed in Section 9.4. Having completed the determination of
the PSS parameters, the effect on the shifts of eigenvalues associated with the rotor modes
are assessed as the damping gains of the PSSs are increased; ideally over the range of oper-
ating conditions such shifts are directly to the left in the complex s-plane.

In practice a new power station is built to supply energy to an existing power system in
which many of the existing generators may already be fitted with PSSs. The latter PSSs
would have been tuned and their parameters set to fixed values. The PSSs in a new power
station have to be tuned to satisfy the damping and other performance criteria of the system
operators over the range of system operating conditions and contingencies. However, in the
following example the PSSs fitted to all generators are tuned at the same time, and the effect
on damping established as the PSS damping gains are increased from zero to 30 pu on ma-
chine base. This analysis reveals a number of issues that are not found in the analysis asso-
ciated with the new power station in an existing system. Nevertheless, the approach adopted
in the example is applicable to the tuning of PSSs for additional generation.

Earlier work has investigated the tuning of PSSs to adequately damp both local- and inter-
area modes [1] [2]. It will be demonstrated that the design of PSSs based upon the P-Vr con-
cept inherently damps both types of modes.

Although each power station is represented by a single composite generator formed from
the nu units in service, it is often necessary to represent the individual machines in the sta-
tion. Because the PSS tuning techniques do not directly determine the nature of the intra-
station modes (i.e. modes of oscillation between machines in a single power plant), the ef-
fects of the PSS tuning on these modes are examined in Section 10.8 to assess their charac-
teristics. If the damping of the intra-station modes is poor, it will be necessary to determine
what action needs to be taken to remedy the problem.

Normally the main emphasis is placed on the dynamic performance of the multi-machine
power system following large-signal disturbances. Such disturbances are major faults on the
system, switching of heavily-loaded transmission lines, the tripping of a generator, the loss
of a significant load, etc. Notwithstanding the non-linear nature of the limiting action of
controllers immediately following the fault, the dynamic performance is determined by the
non-linear nature of differential-algebraic equations. The question arises: what is the rele-
vance and significance of small-signal analysis to the analysis and understanding of large-sig-
nal dynamic behaviour? These issues are investigated in Section 10.9 by examining the
transient response of the 14-generator system following the incidence of a major fault in a
critical location. Furthermore, interesting recent developments are establishing a “bridge”
between small- and large-signal analysis; this has been achieved by including the second-or-
der terms in the Taylor series expansion about the steady-state operating condition as dis-
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cussed in Section 10.9.2. To provide further understanding of the nature of the system
behaviour, concepts of “modal interactions” and their significance with respect to both
large- and small-signal dynamic performance are briefly discussed.

10.2 A fourteen-generator model of a longitudinal power system

The simplified system of 14 power stations 1 is shown in Figure 10.1. It represents a long,
linear system as opposed to the more tightly meshed networks found in Europe and the
USA. For convenience, the system has been divided into 5 areas in which areas 1 and 2 are
more closely coupled electrically. There are in essence 4 main areas and hence 3 inter-area
modes, as well as 10 local-area modes. Without PSSs installed on generators in this system,
many of these modes are unstable.

For the purpose of designing generator PSSs in practice a wide range of both normal oper-

ating conditions and contingencies 2 are considered. However, to simplify the procedures
for illustrative purposes in this and the following chapters, a limited number of cases encom-
passing a range of fairly diverse, normal conditions is employed. The encompassing range of

operating conditions 3, system loads and major inter-area flows are listed in Table 10.1. 

Table 10.1  Six normal steady-state operating conditions

1. In the analysis a power station with n units on-line is represented as a single generator. 
Consequently the station is often referred to as a ‘generator’

2. These are referred to as N and N-1 conditions respectively.
3. The term “encompassing range of operating conditions” in defined Section 5.1. It is 

assumed that, for the subsequent analysis, a reduced set of steady-state conditions are 
selected which encompass those conditions for which the stabilizers are to be tuned. 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Load Condition Heavy
Medium-

heavy
Peak Light Medium Light

Total generation (MW) 23030 21590 25430 15050 19060 14840

Total load  (MW) 22300 21000 24800 14810 18600 14630

Inter-area flows
(North to 

south)
(South to 

north)
(Area 1 to N 

& S)
(Area 2 to N 

& S)
(N & S to 
Area 1)

(~Zero       
transfers)

Area 4 to Area 2  (MW) 500 500 -500 -200 300 0

Area 2 to Area 1  (MW) 1134 1120 -1525 470 740 270

Area 1 to Area 3  (MW) 1000 1000 1000 200 -200 0

Area 3 to Area 5  (MW) 500 500 250 200 250 0
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For the six cases the ratings of generators, the number of units on line, and their real and
reactive power outputs are listed in Table 10.2. The power stations are designated *PS_<ar-
ea number>, e.g. HPS_1 refers a power station (PS) called ‘H’ in area 1. Note that the num-
ber of units on-line in certain stations can vary considerably over the range of operating
conditions. A number of the units in the hydro station HPS_1 can operate as synchronous
compensators, or as synchronous motors driving pumps in a pump-storage mode of oper-
ation.

Table 10.2  Generation conditions for six power flow cases.

Power Station/Bus 
#

Rating
Rated power factor

Case 1
No. units

MW
Mvar

Case 2
No. units

MW
Mvar

Case 3
No. units

MW
Mvar

Case 4:
No. units

MW
Mvar

Case 5:
No. units

MW
Mvar

Case 6:
No. units

MW
Mvar

HPS_1 / 101
12 x 333.3 MVA
0.9 power factor lag

4
75.2
77.9

3
159.6
54.4

12
248.3
21.8

2
0

-97.4
Syn.Cond

3
-200.0
-26.0

Pumping

2
0

-102.2
Syn.Cond

BPS_2 / 201
6 x 666.7 MVA
0.9 power factor lag

6
600.0
95.6

5
560.0
38.9

6
550.0
109.1

4
540.0
-30.8

5
560.0
38.7

3
560.0
-53.5

EPS_2 / 202
5 x 555.6 MVA
0.9 power factor lag

5
500.0
132.7

4
480.0
60.5

5
470.0
127.6

3
460.0

-2.5

4
480.0
67.2

3
490.0

-7.3

VPS_2 / 203
4 x 555.6 MVA
0.9 power factor lag

4
375.0
132.8

3
450.0
82.4

2
225.0
157.0

3
470.0

9.4

2
460.0
83.1

3
490.0

3.7

MPS_2 / 204
6 x 666.7 MVA
0.9 power factor lag

6
491.7
122.4

4
396.0
17.8

6
536.0
96.5

4
399.3
-43.6

4
534.4
55.2

3
488.6
-61.2

LPS_3 / 301
8 x 666.7 MVA
0.9 power factor lag

7
600.0
142.3

8
585.0
141.1

8
580.0
157.6

6
555.0
16.6

8
550.0
88.1

6
550.0

9.4

YPS_3 / 302
4 x 444.4 MVA
0.9 power factor lag

3
313.3
51.5

4
383.0
63.3

4
318.0
49.6

2
380.0

-9.3

3
342.0
43.8

2
393.0

-6.9

TPS_4 / 401
4 x 444.4 MVA
0.9 power factor lag

4
350.0
128.7

4
350.0
116.5

4
350.0
123.2

3
320.0
-21.9

4
346.0
84.9

3
350.0
-32.6
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10.2.1 Power flow analysis
Data for the power flow analysis of the six normal operating conditions given in Table 10.1
are supplied in Appendix 10–I.2. Included in Appendix 10–I.2 are relevant results of the
analysis such as reactive outputs of generators and SVCs, together with tap positions on gen-
erator and network transformers. This information permits the power flows to be set up on
any power-flow platform and the results checked against those provided in this document.

10.2.2 Dynamic performance criterion
The dynamic performance criterion requires 

• that all modes are stable;

• for all normal and N-1 system conditions the damping of the electro-mechanical
modes is to be such that the associated halving times are 5 s or less. 

The ‘halving time’ is defined as the time for the mode or its envelope to decay to half its
initial amplitude. The real parts of the electro-mechanical modes must therefore be less than

 (since ) to satisfy the latter requirement. 

CPS_4 / 402
3 x 333.3 MVA
0.9 power factor lag

3
279.0
59.3

3
290.0
31.4

3
290.0
32.0

2
290.0

-2.4

3
280.0
45.4

3
270.0

4.7

SPS_4 / 403
4 x 444.4 MVA
0.9 power factor lag

4
350.0
52.3

4
350.0
47.2

4
350.0
47.3

3
320.0
14.2

4
340.0
46.3

2
380.0
25.2

GPS_4 / 404 
6 x 333.3 MVA
0.9 power factor lag

6
258.3
54.5

6
244.0
39.8

6
244.0
40.0

3
217.0

-3.5

5
272.0
50.4

3
245.0

3.9

NPS_5 / 501
2 x 333.3 MVA
0.9 power factor lag

2
300.0
25.3

2
300.0

-8.8

2
300.0

6.5

2
280.0
-52.5

2
280.0
-35.2

1
270.0
-42.2

TPS_5 / 502
4 x 250 MVA
0.8 power factor lag

4
200.0
40.1

4
200.0
53.0

4
180.0
48.8

3
180.0

-1.8

4
190.0

0.1

4
200.0

-9.7

PPS_5 / 503
6 x 166.7 MVA
0.9 power factor lag

4
109.0
25.2

5
138.0
36.9

6
125.0
32.6

1
150.0

2.2

2
87.0
3.5

2
120.0
-11.2

Power Station/Bus 
#

Rating
Rated power factor

Case 1
No. units

MW
Mvar

Case 2
No. units

MW
Mvar

Case 3
No. units

MW
Mvar

Case 4:
No. units

MW
Mvar

Case 5:
No. units

MW
Mvar

Case 6:
No. units

MW
Mvar

 0.139–= 5 exp 0.5=
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Figure 10.1 Simplified fourteen-generator system.
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10.3 Eigen-analysis, mode shapes and participation factors of the 14-
generator system, no PSSs in service

In order to gain some insight into the dynamic performance and characteristics of the sys-
tem, a series of analyses is conducted without - and later with - PSSs in service on all gener-
ators. 

10.3.1 Eigenvalues of the system with no PSSs in service
The preliminary objective of the eigen-analysis is to identify the nature of the unstable and
lightly-damped modes.

Let us consider the eigen-analysis of Case 1, a heavy load condition, in the 14-generator
power system with no PSSs or SVC stabilizers in service. In this case there are 125 states and
consequently 125 modes. Because there are Ng=14 generators in service there are Ng-1=13
rotor modes that reflect the modal interplay between generation. A fourteenth real or com-
plex mode typically portrays the behaviour common to all fourteen rotating masses with re-
spect to a reference (see Section 9.2.2). 

For this simple system the eigenvalues are calculated using an algorithm that employs QR
factorisation. The unstable modes are displayed either as a listing of the eigenvalues, or on
a plot in the complex s-plane. For Case 1 such a plot, with eigenvalue designations, is shown
in Figure 10.2 for a limited region about the positive imaginary axis. 

Figure 10.2 Plot of eigenvalues for Case 1, no PSSs in service

D

A

B
CE

G

F

J I H

K

L
M
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Figure 10.2 reveals that there are five unstable oscillatory modes, one stable oscillatory mode
that does not satisfy the dynamic performance criterion and seven other lightly-damped os-
cillatory modes with damping ratios less than 0.1.

Valuable information on the stability of the modes is provided by the eigenvalue plot but it
does not reveal the type or nature of modes. In this case it is desirable to identify all thirteen
electro-mechanical modes, particularly those which are unstable or are lightly damped. Par-
ticipation Factor and Mode Shape Analyses are employed for this purpose.

10.3.2 Application of Participation Factor and Mode Shape Analyses to Case 1

Consider in Figure 10.2 the unstable, oscillatory mode  (designated ‘Mode L’).
Let us view the plots not only of the magnitudes of its participation factors (PFs) but also
of its mode shape (MS); the plots are shown in Figure 10.3.

Figure 10.3 Magnitude of the participation factors (left) and the mode shape (right) 
for the unstable mode L, . No PSSs are in service. 

(In the plot of the participation factors ‘W’ and ‘DEL’ are the rotor speed and angle pertur-
bations, respectively.)

Recall that the concepts of participation factors (PFs) and mode shapes (MSs) were dis-
cussed in Chapters 3 and 9. In this case the participation factor is the participation of the
states in the selected mode arranged in decreasing values of the magnitude of the PFs. For
the selected mode the mode shape is the plot of the normalised magnitude and phase of the

0.088 j2.60+

0.088 j2.60+
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right speed eigenvectors and reveals, for example, that a group of generators swing with - or
against - another group of machines. 

According to the plot of the PFs in Figure 10.3 the two states, rotor speed and angle, of a
number of generators dominate the involvement of the states in mode L; this mode is there-
fore an electro-mechanical mode. There are a total of 125 states in this system model. The
MS reveals that the generators in Areas 5 and 4 swing against those in Areas 1 and 2; the
participation factors of those in Area 3 are small. Mode L is therefore classified as an ‘inter-
area’ mode. However, note that: 

• although the magnitude of the MS phasor of generator NPS_5 is the second largest,
the PF of its speed state is the twelfth largest; 

• as highlighted in Section 9.2.2, some care should therefore be attached to interpreting
the lengths of the MS phasors. The length of the MS phasors for some generators is
shorter than for others because their inertias on system MVA base may be signifi-
cantly greater. In Figure 10.3, for example, the relative lengths of the MS phasors for
BPS_2 and PPS_5 are in the ratio 0.274:1, the ratio of their inertias is 2.56:1. The most
useful feature of the MS plot is therefore the relative phase information that it pro-
vides.

• the PFs for mode L are nearly real (e.g. PF is  for both the speed and
rotor angle states of PPS_5). When in a later Chapter 13 we analyse the mode shift
contributed by the PSS of a given generator we shall find that the complex value of its
PF plays a major role [4].

For a second unstable mode, , the PF plot in Figure 10.4 reveals that this mode
is also an electro-mechanical mode; the MS shows that generators in Areas 3 and 1 swing
against machines in Areas 2 and 5. This mode, called ‘K’, is also an inter-area mode. 

For reference in later studies the PFs and MS for the third inter-area mode (‘M’) are shown
in Figure 10.5. In this case Areas 5, 3 and 2 swing against Area 4.

0.101 j0.013+

0.115 j3.97+
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Figure 10.4 Participation factors and mode shape for the unstable mode K
 ( ), no PSSs are in service.

Figure 10.5 Case 1. Participation factors and mode shape for the inter-area mode M 
( ), no PSSs are in service. 

0.115 j3.97+

(a) (b)

0.016– j2.03+
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To determine the nature of other lightly-damped or unstable oscillatory modes with fre-
quencies between 7 and 11 rad/s, shown in Figure 10.2, the plots of their MSs and PFs are
examined. Such plots are displayed in Figure 10.6; each plot reveals a rotor mode of oscilla-
tion. All three are found to be local-area modes:

• in mode  VPS_2 swings against EPS_2;

• in the unstable mode  SPS_4 swings mainly against CPS_4 and GPS_4;

• in the unstable mode  BPS_2 swings mainly against EPS_2, VPS_2 and
TPS_4.

Figure 10.6 Case 1. Participation factors and mode shapes for three lightly-damped 
modes, A, B & C, respectively ; the latter 

two modes are unstable.

The behaviour and type of the thirteen electro-mechanical modes in the fourteen machine
system are summarised in Table 10.3.

Though not shown in the eigen-plot of Figure 10.2 there is an oscillatory mode at about
 which could be of interest since it lies in the frequency range of the rotor modes.

In the PF plot, shown in Figure 10.7, it is observed that the states mainly participating in the
mode are associated with the direct axis of the generators at NPS_5, i.e. the field voltage and
the AVR. Thus, this mode is likely to be a controller mode associated with the AVR and

0.17– j10.4+

0.11 j9.58+

0.04 j8.96+

0.17– j10.4 0.11 j9.58 0.04 j8.96+++ 

1.4– j2.8
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generator dynamics of NPS_5. Because such an examination of the PFs of a selected mode
quickly establishes the nature of the mode, participation factor analysis proves to be a very
useful tool.

Table 10.3  Behaviour and type of the electromechanical modes, Case 1; 
no PSSs in service

Figure 10.7 Participation factor plot for an oscillatory mode that participates mainly in 
states associated with the direct axis of NPS_5.

The analysis of the behaviour of the electro-mechanical modes demonstrated above for
Case 1, Table 10.3, is repeated for the other cases 2 to 6 for all PSSs out of service. In Tables
10.4, 10.15 and 10.16 the modes for each case are sorted such that each row contains the

Mode
Mode Behaviour Mode Type

No. Real Imag

A
B
C
D
E
F
G
H
I
J
K
L
M

-0.17
 0.11
 0.04
-0.56
-0.26
-0.61
-0.44
 0.01
-0.19
-0.62
 0.12
 0.09
-0.02

10.44
 9.58
 8.96
 8.63
 8.37
 8.05
 7.96
 7.81
 7.72
 7.43
 3.97
 2.60
 2.03

 0.02
-0.01
-0.01
 0.06
 0.03
 0.08
 0.06
-0.00
 0.02
 0.08
-0.03
-0.03
 0.01

VPS_2<-->EPS_2, BPS_2
SPS_4<-->CPS_4, GPS_4

EPS_2, VPS_2<-->BPS_2
NPS_5<-->TPS_5

CPS_4, SPS_4<-->GPS_4, TPS_4, 
HPS_1, MPS_2<-->EPS_2, VPS_2, LPS_3
MPS_2, HPS_1<-->EPS_2, BPS_2, VPS_2

TPS_4<-->GPS_4, SPS_4, MPS_2
YPS_3, MPS_2<-->LPS_3, EPS_2

PPS_5<-->TPS_5, NPS_5
Area 3 <--> Area 5, Area 2

Area 5, Area 4 <--> Area 2
Area 5, Area 3 <--> Area 4

Local Area
“
“
“
“
“
“
“
“

Local Area
Inter-area

“
Inter-area

<--> means ‘... swings against ...’.  - damping ratio.
In ‘Mode Behaviour’, generators or areas are listed in descending order of their participation factors.




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modes of the same behaviour and type. For example,. in Table 10.4 the modes ‘J’ in row 10
for Cases 3 and 4,  and , respectively, are modes in which the
same generators are the main participants and both are local-area modes. This type of infor-
mation will prove useful in a later chapter.

Table 10.4  Rotor modes of oscillation and damping ratios, Cases 3 and 4,
peak and light loads. No PSSs in service

10.4 The P-Vr characteristics of the generators and the associated 
synthesized characteristics

The basis for the P-Vr characteristics is outlined and illustrated in Chapter 5 for single-ma-
chine infinite-bus systems. The extension for their application to multi-machine systems is
explained and illustrated in Section 9.4. This section highlights the calculation of the P-Vr
characteristics, an examination of their forms, and the synthesis of a P-Vr characteristic rep-
resenting a set of P-Vrs of a particular generator.

For each of the 14 generators the P-Vr characteristics are determined (with all shaft dynam-
ics disabled) and are shown in each of Figures 10.8 to 10.21 for the six operating conditions;
each characteristic is in per unit on the generator rating given in Table 10.23. These charac-
teristics, determined with all shaft dynamics disabled, are calculated using a software package
for the analysis of the small-signal dynamic performance and control of large power systems
[5].

Mode 
No.

Case 3. Peak load Case 4. Light load

Real Imag Real Imag

A
B
C
D
E
F
G
H
I
J
K
L
M

-0.38
 0.10
-0.30
-0.58
-0.18
-0.13
-0.14
-0.19
-0.08
-0.58
 0.01
 0.02
-0.03

11.11
 9.56
 9.02
 8.66
 8.48
 6.31
 8.26
 7.91
 7.38
 7.62
 4.08
 2.67
 2.05

 0.03
-0.01
 0.03
 0.07
 0.02
 0.02
 0.02
 0.02
 0.01
 0.07
-0.00
-0.01
 0.01

 0.20
 0.03
-0.17
-0.51
-0.18
-1.54
-0.56
-0.43
-0.21
-0.19
 0.17
 0.02
-0.01

10.48
 9.67
 9.37
 8.52
 8.78
 8.28
 8.58
 8.21
 8.28
 7.20
 4.74
 3.57
 2.68

-0.02
-0.00
 0.02
 0.06
 0.02
 0.18
 0.07
 0.05
 0.03
 0.03
-0.03
-0.01
 0.00

 is the damping ratio

0.58– j7.62 0.19– j7.20

 


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To avoid unnecessary complexity it should be noted in this analysis that the limited number
of encompassing operating conditions on which the power flows - and thus the P-Vr char-
acteristics - are based are normal operating conditions. In practice, the P-Vr characteristics
for a relevant encompassing set of contingency conditions must be included in the deter-
mining the synthesized characteristic.

Examination of Figures 10.8 to 10.21 reveals that, over the modal frequency range of 1 to

15 rad/s, the bands of P-Vr characteristics 1 for any generator under normal operating con-
ditions may possess the following features:

• Magnitude plots: The width of the bands is typically less than 6 dB; the variation about
a characteristic lying in the centre of the band is therefore  dB or less.

• Phase plots: The maximum width of the bands at the relevant frequency is typically
less than ; the variation about a central characteristic is thus  or less.

1. The word “characteristics” is shortened to “Xstics” in the following figure captions.

3

15 7.5

Figure 10.8 P-Vr Xstics, HPS_1
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Figure 10.9 P-Vr Xstics, BPS_2
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Figure 10.10 P-Vr Xtics, EPS_2
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Figure 10.11 P-Vr Xtics, MPS_2

  Case 1   Case 2   Case 3
  Case 4   Case 5   Case 6
  Synthesized PVr

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

Frequency (rad/s)

P
h
a
s
e
 
(
d
e
g
)

10
−1

10
0

10
1

10
2

−30

−20

−10

0

10

20

M
a
g
n
i
t
u
d
e
 
(
d
B
)

Figure 10.12 P-Vr Xtics,VPS_2
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Figure 10.13 P-Vr Xtics, LPS_3
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Figure 10.14 P-Vr Xtics, YPS_3
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Figure 10.15 P-Vr Xtics, CPS_4
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Figure 10.16 P-Vr Xtics, GPS_4
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Figure 10.17 P-Vr Xtics, SPS_4
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For each set of generator P-Vr characteristics a synthesized P-Vr characteristic is derived
based on the following:

  Case 1   Case 2   Case 3
  Case 4   Case 5   Case 6
  Synthesized PVr
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Figure 10.18 P-Vr Xtics, TPS_4 Figure 10.19 P-Vr Xtics, NPS_5
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Figure 10.20 P-Vr Xtics,TPS_5 Figure 10.21 P-Vr Xtics, PPS_5
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• The synthesized characteristic is a best fit of a generator’s P-Vr characteristics for the
range of cases examined over the modal frequency range of interest, 1.5 to 15 rad/s.
As outlined in Section 5.10.6.1 the ‘best fit’ characteristic for these studies is consid-
ered to be that lying in the centre of the magnitude and phase bands formed by the P-

Vr characteristics 1.

•  If particular P-Vr characteristics tend to lie outside the bands formed by the majority
of the characteristics, the synthesized P-Vr may be offset towards the band formed by
the majority (e.g. see Figures 10.17 and 10.19). However, weighting of P-Vrs depends
on knowledge of the system, the contingencies and engineering judgement.

The transfer function of the synthesized P-Vr characteristic, PVR(s), for each of the 14 gen-
erators is given in Table 10.5.

In several figures, e.g. Figures 10.12 and 10.21 for generators VPS_2 and PPS_5 respective-
ly, the bands of the low-frequency responses for the magnitude plots are much wider than
those in other figures, e.g. Figure 10.20 for TPS_5. An examination of the generation con-
ditions for the six power flow cases in Table 10.2 reveals that the generator real power out-
puts vary from 45% to 98% of rated real power for VPS_2, and 60% to 100% for PPS_5;
on the other hand, the variation for TPS_5 is much smaller, 90-100%. These observations
are consistent with those in Section 5.11 and Figure 5.16, namely, that the low-frequency
magnitude response (the gain) of the P-Vr characteristic decreases as the real power output
of the generator is reduced. This phenomenon is explained in Section 9.4.1. It is shown that
the gain of the P-Vr characteristic varies only with the scalar gain vdo, the steady-state d-axis
component of the terminal voltage, but retains its shape over the range of operating condi-
tions. At rated power output vdo is relatively large, but tends to zero as the real power output
is reduced. However, from 70% to 100% of real power output the magnitude characteristic

is, for practical purposes, lie within a band of less than  dB from the Design Case 2. (Sim-
ilarly, at constant real power output the magnitude of the gain decreases as the reactive pow-
er output is varied from maximum leading to maximum lagging power factor. See Tables
9.7 and 9.8).

The more-or-less invariant nature of the phase responses of the P-Vr characteristics is also
explained in Section 9.4.1.

1. A least squares estimation procedure, or the MATLAB® Signal Processing Toolbox rou-
tine ‘invfreqs.m’, can be employed to determine.the parameters for the synthesized trans-
fer function.

2. ‘Design Case’ is defined in Section 5.10.6.1.

3
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Table 10.5  Transfer functions of synthesized P-Vr characteristics, PVR(s)

10.5 The synthesized P-Vr and PSS transfer functions

Because the forms of the transfer functions of the synthesized P-Vr transfer functions - and
consequently those of the PSS compensation and low-pass filters - vary significantly be-
tween generators, it is instructive to list the parameters that have been evaluated for all PSSs.

The parameters of the compensation transfer function of the PSS are based on those of the
synthesized P-Vr transfer function given by (5.45). However, a more general form of the
synthesized function, which includes (say) additional poles and zeros as required by the form
of the design-case P-Vr, is 

.

The transfer function of the associated speed PSS, the structure of which is shown in
Figure 10.22, incorporates the compensation transfer function and the other elements as de-
scribed by (10.1), i.e.

Generation PVR(s)

HPS_1

BPS_2

EPS_2

MPS_2

VPS_2

LPS_3

YPS_3

CPS_4

GPS_4

SPS_4

TPS_4

NPS_5

TPS_5

PPS_5

PVR s  1.3 1 s0.373 s
2
0.0385+ + =

PVR s  3.6 1 s0.128 s
2
0.0064+ + =

PVR s  4.3 1 s0.286+  1 s0.
·

111+  1 s0.040+  =

PVR s  3.0 1 s0.01+  1 s0.
·

1 s
2
0.0051+ +  =

PVR s  3.5 1 s0.0292+  1 s0.0708+  =

PVR s  1.6 1 s0.168 s
2
0.0118+ + =

PVR s  3.35 1 s0.05+  1 s0.509 s
2

0.132+ +  =

PVR s  4.25 1 s0.278+  1 s0.100+  =

PVR s  3.3 1 s0.115 s
2

0.00592+ + =

PVR s  3.16 1 s0.0909 s
2
0.00207+ + =

PVR s  2.8 1 s0.208+  1 s0.208+  =

PVR s  5.13 1 s0.3+  1 s0.033+ 2 1 s0.3 s
2
0.111+ +  =

PVR s  3.4 1 s0.500+  1 s0.0588+  1 s0.0167+  =

PVR s  5.62 1 s0.350+  1 s0.0667+ 
1 s0.02+  1 s0.167+  1 s0.187+  1 s0.2+ 

-----------------------------------------------------------------------------------------------------------------=

HPVrSi
s  kci

1 sTb1i
+ 

1 c1is c2is
2+ +  1 sTa1i

+ 
----------------------------------------------------------------------------=
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(10.1)

where  .

Figure 10.22 Structure of the PSS for analysis and design purposes

The damping gain, the compensation transfer function and the low-pass filter can be includ-
ed in the one structure if the relevant number and type of blocks are provided in the PSS.
Blocks which can accommodate complex poles and zeros are desirable in the PSS structure,
as will be seen from the form of PSS transfer functions in (10.4) and (10.6) below.

The damping gain for all PSSs is assumed to be  pu on generator MVA rating, a val-
ue that is assumed to be a medium value of gain. Similarly, in all PSSs the washout time con-
stant  is set at 7.5 s. Its corner frequency of 0.133 rad/s is more than a decade below the
lowest inter-area modal frequency of about 2 rad/s; the phase lead it introduces at the latter
frequency is therefore small, less than . Omitting the damping gain ki and the washout
filter, the compensation transfer function and the low-pass filter are combined in the fol-
lowing transfer function (TF), i.e. 

. (10.2)

However, for simplicity and illustrative purposes in this example the time constants of the
low-pass filters are all selected to be 0.00667 s; the associated corner frequency is 150 rad/

s 1. The reason for the selection of the value of the corner frequency is to reduce phase lags
introduced by the filter on the phase lead provided by the compensation at the frequencies
of the local-area modes, e.g. for three low-pass filter poles the filter contributes a phase lag
of  at 10 rad/s. These issues have been discussed in more detail for the single machine
case in Sections 5.8.5 and 5.8.6.

Form of the third-/fourth-order compensation TF having real zeros, and a low-pass filter:

Based on (10.2) the form of this TF follows in (10.3); its parameters are listed in Table 10.6. 

1. For illustrative purposes the very short time constants (6.7 ms) of the low-pass filter are 
used here to minimise its influence in the range of modal frequencies. However, such 
time constants should typically be 3 or more times the cycle time of the PSS processor to 
reduce phase errors at higher frequencies.

HPSSi s  ki

sTWi

1 sTWi+
--------------------- Kci

1 c1is c2is
2+ +  1 sTa1i+ 

1 sTb1i+ 
---------------------------------------------------------------------------- 1

1 sT1i+ 
------------------------------ =

Kci 1 kci=

V
  sTW

1+sTW 
k

Compensation 

transfer function 
Vs

Washout
Filter

Damping
Gain

LP Filter

ki 20 =

TW

5

Hci s  Kci

1 c1is c2is
2+ +  1 sTa1i

+ 

1 sTb1i+  1 sT1i+  1 sT2i+ 
------------------------------------------------------------------------------------------=

11
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. (10.3)

Table 10.6  Compensation and LP Filter Parameters 
for PSS based on (10.3).

Form of the fourth-order compensation TF having real and complex zeros, and a low-pass filter:
Based on (10.2) the form of this TF is:

. (10.4)

The associated parameters are given in Table 10.7:

Table 10.7  Compensation and LP Filter Parameters 
for PSS based on (10.4)

Form of the second-order compensation TF having real zeros, and a low-pass filter.
The form of this low-order TF is:

. (10.5)

Its parameters are provided in Table 10.8.

Generator Kc Ta Tb Tc Td Te Tf Tg Th

EPS_2 0.233 0.286 0.111 0.040 0 0.00667* 0.00667* 0.00667* 0

PPS_5 0.178 0.200 0.187 0.167 0.020 0.350 0.0667 0.00667* 0.00667*

TPS_5 0.294 0.500 0.0588 0.0167 0 0.00667* 0.00667* 0.00667* 0

*  Low-pass filter parameters

Generator Kc Ta Tb a b Td Te Tf Tg

MPS_2 0.333 0.010 0 0.10 0.0051 0.00667* 0 0.00667* 0.00667*

YPS_3 0.298 0.050 0 0.5091 0.1322 0.00667* 0 0.00667* 0.00667*

NPS_5 0.195 0.033 0.033 0.30 0.1111 0.300 0.00667* 0.00667* 0.00667*

* Low-pass filter parameters

Hc s  Kc

1 sTa+

1 sTe+
------------------

1 sTb+

1 sTf+
------------------

1 sTc+

1 sTg+
------------------

1 sTd+

1 sTh+
------------------   =

Hc s  Kc

1 sTa+

1 sTd+
------------------

1 sTb+

1 sTe+
------------------ 1 as bs

2
+ +

1 sTf+  1 sTg+ 
---------------------------------------------  =

Hc s  Kc

1 sTa+

1 sTe+
------------------

1 sTb+

1 sTf+
------------------ =
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Table 10.8  Compensation and LP Filter Parameters 
for PSS based on (10.5)

Form of the second-order compensation TF having complex zeros, and a low-pass filter
The TF is:

. (10.6)

Table 10.9  Compensation and LP Filter Parameters 
for PSS based on (10.6)

10.6 Synchronising and damping torque coefficients induced by PSS 
i on generator i

The concepts of synchronising and damping torques coefficients are explained in the con-
text of the single-machine system in Sections 5.3 and 5.10.6.3. The basis for the application
of the same concepts in the multi-machine case is explained in Section 9.5 to assess the syn-
chronizing and damping torque coefficients developed by PSS i on generator i. The object
of the following analysis is to determine if the PSS transfer function  is consistent

with its design basis, i.e.  (eqn. (9.19)), over the modal fre-

Generator Kc Ta Tb Te* Tf*

TPS_4 0.357 0.2083 0.2083 0.00667 0.00667

CPS_4 0.235 0.2777 0.1000 0.00667 0.00667

VPS_2 0.286 0.0708 0.0292 0.00667 0.00667

* Te and Tf are low-pass filter parameters

Generator Kc a b Te* Tf*

HPS_1 0.769 0.3725 0.03845 0.00667 0.00667

BPS_2 0.278 0.1280 0.00640 0.00667 0.00667

LPS_3 0.625 0.1684 0.01180 0.00667 0.00667

GPS_4 0.303 0.1154 0.005917 0.00667 0.00667

SPS_4 0.316 0.0909 0.002067 0.00667 0.00667

* Te and Tf are low-pass filter parameters

Hc s  Kc
1 as bs

2
+ +

1 sTe+  1 sTf+ 
--------------------------------------------=

kiGci jf 

HPVri
jf  kiGci jf   ki j0+
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quency range for the selected operating condition. In other words, recalling that ki is also a
damping torque coefficient, is the desired per unit damping gain ki of PSS i realized?

The relevant part of Figure 9.11 is shown in Figure 10.23 in which the rotor dynamics on all
generators are disabled.

 
Figure 10.23 Model of generator i fitted with a PSS in a multi-machine power system; 

 shaft dynamics on all machines are disabled.

The damping torque coefficient is defined in Section 5.3 and applies to generator i in
Figure 10.23: 

 . (10.7)

Firstly, with the path through Sdel in Figure 10.23 closed, and SPSS open, let us examine the

inherent frequency responses of the torque coefficients  for several generators in
the fourteen-generator system when the individual machines are either heavily or lightly
loaded (see Tables 10.2 and 10.10). The responses are shown in Figure 10.24 in per unit on
generator base.

As anticipated in Section 9.5, at high and low frequencies the frequency response character-
istically rolls off at 20 dB/decade and exhibits a constant phase of . Over the range of
modal frequencies, however, the phase varies about  implying that the inherent damp-
ing torque coefficient is negative when the phase is less than , and positive when greater
than . Unlike the P-Vr characteristics, it appears that it is not possible to characterize
the variation of the damping torque coefficients; as foreshadowed in Section 9.5 the torque
coefficients depends mainly on the steady-state conditions of the generator. 

Machine i  

o/s

AVRi

i

i

Vri

Vti

PSSi

Di Pdi

Pei

Vsi
Sdel  

SPSS  

P
O
W
E
R

S
Y
S
T
E
M

kdi 
Pei jf 
i jf 
------------------------

 
 
 

=

Pei i

90–

90–

90–

90–
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Table 10.10  Generator loading and study case-numbers

Figure 10.24 Frequency responses of the inherent torque coefficients  when 

the unit is either heavily (Hy) or lightly (Lt) loaded (in pu on unit rating)

Secondly, let us examine separately the frequency responses of the inherent and the PSS-in-
duced synchronizing and damping torque coefficients for generators whose inherent torque

Units

Heavily loaded Lightly loaded

Case
Number &

output*
Case

BPS_2 1 6 @ 100% 4 4 @ 90%

VPS_2 6 3 @ 98% 3 2 @ 45%

PPS_5 4 1 @ 100% 5 2 @ 58%

* Number of equally loaded units on-line and percentage of 
rated real power output

   BPS_2 Case 1 Hy    Case 4 Lt
   VPS_2 Case 6 Hy    Case 3 Lt
   PPS_5 Case 4 Hy    Case 5 Lt
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coefficients are negative at low frequencies. For the calculations the shaft dynamics are dis-
abled and, as above, in the case of the inherent torque coefficients the PSS path is open. For
the PSS-induced synchronizing and damping torque coefficients the rotor-angle path is
open and the PSS path closed (see Figure 10.23). The responses are shown in Figure 10.25
for two generators for the operating condition Case 1; the coefficients are in per unit on gen-
erator rating.

Figure 10.25 Case 1. Synchronizing and damping torque coefficients for EPS_2 (5x555.6 
MVA) and LPS_3 (7x666.7 MVA); the coefficients are in per unit on generator base.

Over the range of modal frequencies, 1.5 to 15 rad/s, the following are observed from
Figure 10.25. 
(i)   The PSS gain is more-or-less flat at the desired damping gain setting of 20 pu on gener-
ator MVA rating; the deviations from 20 pu are typically accounted for by the factors listed
in Section 5.10.6.3. (Thus the question raised at the beginning of this section (is the damping
gain ki realized?) - is successfully answered.)
(ii)  For each machine the positive damping torque coefficient induced by the PSS swamps
the inherent negative damping torque coefficient.
(iii) It is desirable to attenuate the PSS output signal at higher frequencies to avoid exciting
torsional modes at 50 rad/s or greater. This is achieved by means of an integral-of-acceler-
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ating-power PSS (see Section 8.5); other types of PSSs may require the use of torsional
notch-filters as mentioned in Chapter 8.

The significance of the above analysis and observations is that they confirm - or provide a
check - that the PSS transfer function designed for each machine is being realized.

It will be shown that more meaningful information on synchronizing and damping torque
coefficients can be derived through ‘Modal Induced Torque Coefficients’ - which are the
subject of Chapter 12.

10.7 Dynamic performance of the system with PSSs in service

10.7.1 Assessment of dynamic performance based on eigen-analysis
PSSs are assumed installed on all generators in each of the power stations. Two units only
are on-line at HPS_1 in Cases 4 and 6 and are operating as synchronous compensators. In
Case 5, however, three units at HPS_1 are operating as pumps with their PSSs in service.
Due to the motoring action in the latter case the sign on the PSS output for HPS_1 units is
negated. 

The damping gain on each PSS is set to 20 pu on generator MVA rating. In Table 10.11 is
shown the values of the modes of rotor oscillation for a heavy and a light load condition,
Cases 1 and 4, with the PSSs out of and in service. Also shown are mode shifts and damping
ratios for each of the modes. The corresponding set of results are provided for remaining
cases in Tables 10.15 and 10.16.

It is instructive to track the shifts in the rotor modes as the PSS damping gains are jointly
increased from zero to 150% of the damping gain of 20 pu on machine MVA rating. For
Cases 1 to 6 the modes shifts for each of modes A to M are tracked in Figure 10.26 as the
damping gain on all unit is increased in 25% (5 pu) steps; the value of 100% corresponds to
20 pu on machine MVA rating. The plots in the figure are 
(a) Case 1 (heavy load), 
(b) Case 2 (medium-heavy load), 
(c) Case 3 (peak load), 
(d) Case 4 (light load), 
(e) Case 5 (medium load), and 
(f) Case 6 (light load). 

See Table 10.3 for the details of the nature and types of modes A to M. 
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s, Cases 1 and 4.
g..

ight load

SSs in service Mode Shift

Imag Real Imag

10.77
 9.95
 9.81
 8.83
 8.79
 8.17
 9.06
 8.28
 8.44
 7.49
 4.58
 3.32
 2.51

0.22
0.21
0.23
0.27
0.25
0.20
0.27
0.27
0.29
0.17
0.23
0.17
0.23

-2.57
-2.19
-2.10
-1.98
-2.09
-0.15
-1.94
-1.85
-2.34
-1.13
-1.25
-0.59
-0.58

 0.29
 0.29
 0.44
 0.30
 0.01
-0.11
 0.48
 0.07
 0.17
 0.29
-0.16
-0.25
-0.17

s compensator.

 †



Table 10.11  Rotor modes and modes shifts for heavy and light load
All PSS damping gains are 20 pu on generator MVA ratin

No.

Case 1. Heavy load Case 4. L

No PSSs All PSSs in service Mode Shift No PSSs All P

Real Imag Real Imag Real Imag Real Imag Real

A
B
C
D
E
F
G
H
I
J
K
L
M

-0.17
 0.11
 0.04
-0.56
-0.26
-0.61
-0.44
 0.01
-0.19
-0.62
 0.12
 0.09
-0.02

10.44
 9.58
 8.96
 8.63
 8.37
 8.05
 7.96
 7.81
 7.72
 7.43
 3.97
 2.60
 2.03

 0.02
-0.01
-0.01
 0.06
 0.03
 0.08
 0.06
-0.00
 0.02
 0.08
-0.03
-0.03
 0.01

-2.19
-1.98
-1.93
-2.51
-1.95
-1.97
-1.87
-1.78
-2.06
-1.89
-1.04
-0.39
-0.52

10.39
 9.74
 9.29
 8.86
 8.26
 8.49
 7.76
 7.64
 7.87
 7.59
 3.64
 2.40
 1.80

0.21
0.20
0.20
0.27
0.23
0.23
0.23
0.23
0.25
0.24
0.28
0.16
0.28

-2.02
-2.09
-1.97
-1.95
-1.69
-1.36
-1.44
-1.79
-1.87
-1.26
-1.16
-0.47
-0.51

-0.06
 0.16
 0.33
 0.22
-0.11
 0.44
-0.21
-0.17
 0.15
 0.16
-0.33
-0.20
-0.23

 0.20
 0.03
-0.17
-0.51
-0.18
-1.54
-0.56
-0.43
-0.21
-0.19
 0.17
 0.02
-0.01

10.48
 9.67
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Figure 10.26 Tracking of rotor modes for values of PSS damping gain 0 to 150% (30 pu)
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It is noted:

1. the modes, particularly the local-area modes, shift more-or-less horizontally to the
left in the complex s-plane; 

2. the extent of the left shift is least for the peak and heavily-loaded conditions, and
most for the light-load cases;

3. for a given Case and a selected mode the extent of the left shift for each 25% incre-
ment in damping gain is fairly uniform; the amount of the left shift for the selected
mode varies from Case to Case;

4. items 1 to 3 above satisfy the definition for robustness in item 3 of Section 1.2;

5. a variation to items 1 to 3 above applies to the inter-area mode L. The increment in
the left shift progressively reduces at the higher values of the damping gains; this
phenomenon will be discussed in Chapter 14 (there is inadequate damping support
for mode L). Employing the P-Vr concept to determine the parameters for decen-
tralized PSSs is shown in the above studies to improve the damping performance of
both the local- and inter-area modes. It will be demonstrated in Chapter 13 that the
smaller increments in the mode shift of the inter-area modes with PSS gain are due
(i) the smaller values of the participation factor of generators participating in the
mode, and (ii) the affect of interactions between their PSSs [4].

10.7.2 Assessment of dynamic performance based on participation and mode-
shape analysis
It is interesting to establish if the nature of the rotor modes for this system have changed
between the case when all PSSs are out of service to that when all are in service with the
damping gain set to 20 pu on machine MVA rating. 

The participation factor and mode shape plots for representative modes are therefore re-ex-
amined for Case 1, the medium-heavy load condition for the system. The plots for an inter-
area mode and a set of three local-area modes are shown in Figures 10.27 and 10.28, respec-
tively. 

The mode shapes in both figures reveal that the nature of the four modes has not changed
from the case when the PSSs are out of service (see Figures 10.4 and 10.6). For example, for
the inter-area mode the Area 3 generators continue to ‘swing against’ generators in Areas 5
and 2. However, a comparison of the participation plots with PSSs out and in service in the
four figures demonstrates that, with the PSSs in service, the following states associated with
the action of the PSSs participate noticeably:

• internal states in the PSSs (e.g. x081);

• field voltage (EF);

• voltage behind d-axis transient reactance (Eq’).
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Figure 10.27 Case 1. Participation factors and mode shape for the inter-area mode K 
( ) when all PSS damping gains are set to 20 pu. (Compare with Figure 10.4)

Figure 10.28 Case 1. Participation factors and mode shapes for the local-area modes
 A ( ), B ( ), and C ( ); 

PSSs in service, damping gains are 20 pu. (Compare with Figure 10.6)

1.04– j3.64+

2.19– j10.4+ 1.98– j9.74+ 1.93– j9.29+
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10.7.3 Assessment of dynamic performance based on time responses
The transient responses of a two-mass spring system to an initial condition which only ex-
cites a single mode are demonstrated in Figures 9.3 and 9.4. As an example of the same con-
cept applied to the dynamics of a multi-machine power system let us consider the case of a
stable, lightly-damped system when the PSS damping gains for Case 1 are each set to 5 pu
on machine MVA rating. This low gain setting is chosen because the oscillatory nature of
the responses will be more pronounced than at higher gains.

The plot of the rotor modes for Case 1 with increasing gain is shown in Figure 10.26(a). Let
us consider the inter-area mode labelled ‘M’ associated with a PSS damping gain 25% (5 pu);
the value of this mode is . The initial conditions for the transient response
are the real parts of all elements of the right speed eigenvector; none of the control inputs
is excited. The mode shape for this scenario and the transient response of representative ma-
chines which are the most responsive in this mode are shown in Figure 10.29.

 
Figure 10.29 Case 1. PSS damping gains 5 pu on machine MVA rating. 

(a) Mode shape for the inter-area mode M ( ).(Compare with Figure 10.5) 
(b) Time responses of rotor speed perturbations for initial conditions comprising the real 

parts of all elements of the right speed eigenvector. 

The nature of the transient response reflects the relative phase and magnitude information
provided not only by the mode shape but also confirms the values of the real and imaginary
parts of the complex eigenvalue (by rate of decay and frequency of oscillations). The relative
magnitude and phase relationships apply for all . Thus, as emphasized earlier, these
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tools provide valuable aids for the rapid assessment of the characteristics of the dynamic be-
haviour of the system.

An alternative method of exciting mainly this mode in an analysis of the transient response
is to apply small step changes in mechanical power to appropriate generating units. In this
case, guided by the mode shape, step increases in power are applied to units which swing
together in phase and step decreases in power to those that swing together in anti-phase.
The magnitudes of the steps must be adjusted to accentuate the mode of interest and to re-
duce the influence of other modes which might also be excited, such as some local area
modes. The sum of the positive and negative changes in mechanical power should amount
to zero.

Figure 10.30 Case 6, light load operating condition. Simulated time responses for a step 
change in reference voltage on the single generator on-line and under test at SPS_4. The PSS 
damping gain (k) is varied from 0 to 20 pu on machine MVA rating; all other PSS gains are 

set to 20 pu.

In commissioning a PSS the recording of the time responses of generator outputs to small
step changes in the generator’s reference voltage is often used to verify that the parameters
of the PSS have been correctly set. Such verification is conducted by comparing the meas-
ured response with those of the time responses predicted by simulation. For illustrative pur-
poses, the nature of the time responses for a set of step changes are displayed in Figure 10.30
for a range of gain settings on the PSS of a generator at SPS_4 when only the unit on test at
the generating station is on-line under a light load condition. The damping gains on the latter
PSS are varied from zero to 20 pu (100%) on machine MVA rating; the damping gains of all
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other PSSs are set to 20 pu. For a given setting of the PSS damping gain the superimposed
step responses from the commissioning test and that derived from simulation should agree
closely.

10.8 Intra-station modes of rotor oscillation [6], [7]

In the previous studies and the associated eigen-analysis the generators in a power station
have been treated as a single generator which is assumed to represent the number of identi-
cal, equally-loaded units on-line.

In the studies all units within a power station could have been individually represented.
However, for our purposes this would added complexity to both the analysis and assessment
of results. In practice, representation of individual units may be necessary, (i) if the loadings
on individual unit differs markedly for different operating conditions, (ii) if there are ma-
chines of different rating and parameters in the station, and (iii) in order to understand the
nature of the intra-station modes and how the PSS tuning affects these modes. If there are
m machines in a station, there are  modes of rotor oscillations; we will refer to these
as the intra-station or inter-machine modes.

In Table 10.12 are shown the three intra-station modes when the four unequally loaded units
at SPS_4 and PPS_5 are represented individually for the heavy load condition, Case 1. The
three intra-station modes in each station are well damped when all machine PSSs are set to
20 pu on machine MVA rating; the values of the other 13 modes, both local-area and inter-
area, are close to those given in Table 10.11 for Case 1. The frequencies of the intra-station
modes for the SPS_4 machines are significant higher than all other rotor modes, primarily
because the inertia constant of each unit is relatively low at 2.6 MWs/MVA. On the other
hand, the frequencies of the intra-station modes for the PPS_5 machines are relatively lower,
the inertia constant of each unit being greater at 7.5 MWs/MVA.

By means of the participation factors and mode shapes the nature of the intra-station modes
is demonstrated in Figure 10.31 for SPS_4. Unit #1 in SPS_4 predominantly swings against
the other three machines in the case of mode 105. For mode 107 SPS_4 unit #2 swings
mainly against machine #3 whilst for mode 109 unit #4 swings mainly against machine #3.
Because of the level of the damping gain of the PSSs, the PSS and d-axis states participate
more markedly in these modes.

For a light-load condition, Case 4, three units at SPS_4 are in service and one at PPS_5 (see
Table 10.2). From a comparison of light and heavy load conditions in Tables 10.13 and
10.12, respectively, it is noted that the two intra-station modes for SPS_4 are comparable.

m 1–
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Table 10.12  Case 1: Heavy load. Intra-station modes for four units 
at SPA_4 and PPS_5.

Figure 10.31 Case 1. Participation factors and mode shapes for intra-station modes 
,  and  for 4 units on-line at SPS_4. 

All PSS damping gains are all set to 20 pu. 

Generator Generator output Inter-machine modes

MW Mvar PSSs off PSSs on  Mode shift

SPS_4  no. 1 400 58.3

SPS_4  no. 2 367 54.4

SPS_4  no. 3 333 50.7

SPS_4  no. 4 300 47.4

PPS_5  no. 1 149 30.2

PPS_5  no. 2 122 26.7

PPS_5  no. 3 96 24.0

PPS_5  no. 4 69 21.9

 All PSS damping gains set to 20 pu on machine MVA rating

 †

0.08 j12.2

0.21 j12.2

0.33 j12.2

2.75– j13.6

2.78– j13.6

2.79– j13.5

2.83– j1.42

2.99– j1.41

3.12– j1.38

0.43– j7.25

0.81– j7.17

1.10– j7.05

1.34– j7.43

1.57– j7.40

1.81– j7.22

0.91– j0.18

0.76– j0.22

0.71– j0.17

 †

2.75– j13.6+ 2.78– j13.6+ 2.79– j13.5+
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Table 10.13  Case 4: Light load. Intra-station modes 
for the three units at SPS_4

Note that the PSS design procedure based on the P-Vr characteristic does not explicitly at-
tempt to shift the intra-station modes directly to the left in the complex s-plane. For the
SPS_4 units, from the condition in Table 10.12 when all PSSs are off to that when all PSSs
are in service and damping gains set to 20 pu, there is a marked increase in modal frequency
in the intra-station mode shifts (i.e. by ~ 1.4 rad/s); however, such a mode shift does not
apply to the intra-station modes for the four PPS_5 units (~ 0.20 rad/s). As a matter of
course in the design process the effects of PSS tuning on the intra-station modes should be
assessed to ensure they are adequately damped, and that there are no unexpected interac-
tions between controllers.

The design of an ancillary controller specifically to damp the intra-station modes is proposed
in [8].

10.9 Correlation between small-signal dynamic performance and that 
following a major disturbance

In Section 1.10 the question: “how small is small” in small-signal analysis is discussed. In
practice, of particular concern is the stability and dynamic performance of the power system
following a major disturbance, i.e. a “large-signal” disturbance. To name a few examples,
such disturbances are faults, tripping of a large generators, the opening of transmission lines,
the loss of significant loads. It is important to realize that the nature of the responses fol-
lowing a major disturbance correlates with the performance predicted from small-signal
analysis, particularly after limiting action by controllers has ceased. In other words, small-
signal analysis provides significant insights into, and understanding of, the nature of the
large-signal dynamic performance - or the transient stability - of the system.

10.9.1 A transient stability study based on the fourteen-generator system
We shall examine the dynamic behaviour of the simplified fourteen-generator system of
Figure 10.1 to a three-phase fault at a major busbar on the high-voltage side of a large power
station, i.e. busbar #206 at BPS_2. Because there is no line switching or other system chang-
es associated with this busbar fault, which is cleared in 0.120 s, the system configuration and

Generator Generator output Intra-station modes

MW Mvar PSSs off PSSs on  Mode shift

SPS_4  no. 1 330 4.5

SPS_4  no. 2 320 3.4

SPS_4  no. 3 310 2.4

 All PSS damping gains set to 20 pu on machine MVA rating

 †

0.20 j12.0
0.24 j12.0

2.79– j13.3
2.80– j13.3

2.99 j1.36–

3.04– j1.35

 †
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steady-state operating conditions in the post- and pre-fault periods are the same. The system
modes are therefore unchanged.

In order to reveal features of the dynamic responses following the clearance of the fault, the
low value of the damping gain of 5 pu on machine MVA rating is adopted for all the PSSs.
As is seen in Table 10.14 or Figure 10.26(a) for Case 1, a heavy load condition, the system
is stable and the real parts of the rotor modes lie between -0.05 and -1.00. The mode behav-
iour shown in the table does not differ significantly from that of Table 10.3 when all PSSs
are out of service.

Table 10.14  Behaviour and type of the rotor modes, Case 1; 
damping gain of PSSs is 5 pu.

The responses of speed perturbations about synchronous speed following the incidence of
the three-phase fault are shown in Figure 10.32 for selected generators. As stated, the fault
occurs at the 330 kV bus at BPS_2 (bus 206) and is cleared in 0.120 s. The responses are
divided into three time intervals so that the various features of the modal behaviour in each
interval can be examined; the time intervals are (a) 0 to 7 s, (b) 7 to 16 s, (c) 16 to 30 s. (Note
the changes of scales on both axes.)

Mode

Mode Behaviour Mode Type
No. Real Imag

A
B
C
D
E
F
G
H
I
J
K
L
M

-0.68
-0.39
-0.42
-1.00
-0.68
-0.88
-0.81
-0.40
-0.64
-0.92
-0.18
-0.05
-0.14

10.47
 9.65
 9.06
 8.73
 8.38
 8.27
 7.80
 7.82
 7.83
 7.48
 3.93
 2.57
 1.98

0.065
0.041
0.046
0.114
0.081
0.106
0.103
0.052
0.082
0.123
0.046
0.021
0.073

VPS_2<-->EPS_2
SPS_4<-->CPS_4, GPS_4
BPS_2<-->EPS_2, VPS_2
NPS_5<-->TPS_5

CPS_4, SPS_4<-->TPS_4, GPS_4, 
HPS_1, EPS_2<-->MPS_2, LPS_3

HPS_1, MPS_2<-->EPS_2, BPS_2
TPS_4<-->GPS_4, SPS_4, MPS_2

YPS_3, MPS_2, HPS_1<-->LPS_3, EPS_2
PPS_5<-->TPS_5, NPS_5
Area 3 <--> Area 5, Area 2

Area 4, Area 5 <--> Area 2
Area 5, Area 3 <--> Area 4

Local Area
“
“
“
“
“
“
“
“

Local Area
Inter-area

“
Inter-area

<--> means ‘... swings against ...’.     Generators or areas are listed under ‘Mode Behaviour’ are in 
descending order of their participation factors.


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Figure 10.32 Rotor speed perturbations of selected generators following a 3-phase fault
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During the interval 0 to 4 s the responses shown in Figure 10.32(a) for selected rotor speed
perturbations is dominated by the mode C, , subject to the caveat discussed
later. The phase relationship between the principal participants in the response appears close
to that predicted by the mode shape in Figure 10.33. Although remote from the faulted bus,
PPS_5 is excited by the inter-area mode L, , in which machines in Area #2 also
participate, as revealed in Figure 10.33. The same comment applies to LPS_3 with respect
to the inter-area mode K, .

During the interval 7 to 14 s shown in Figure 10.32(b) the responses principally associated
with mode C, , decay away and merge into the modal behaviour revealed in
the mode shape in Figure 10.33 for the inter-area mode L, . After 16 s, except
for LPS_3, the machines participate in the slowly decaying mode L, with a 5% settling time
of ~56 s. LPS_3 continues to participate in the more rapidly-decaying mode K,

, (see Figure 10.33(c)). 

Figure 10.33 Participation factors and mode shapes for the principal modes in the re-
sponse, the local-area mode C ( ) and the inter-area modes K ( ) 
and L ( ); all PSS damping gains in Case 1 are all set to 5 pu on machine MVA 

rating. (<*PS_area> refers to all generators in the numbered area.)

10.9.1.1 Benefits of small-signal analysis of large power systems
This example demonstrates how small-signal analysis complements that based on transient
stability studies. 
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The above example reveals the important features of small-signal analysis, that is, it furnish-
es not only an understanding of the underlying modal structure of the power system and but
also provides insights into a system's dynamic characteristics that cannot easily be derived
from time-domain simulations for large magnitude disturbances. It is the case in
Figure 10.33 that only a few of the thirteen modes appear to be excited; the nature and lo-
cation of the fault does not significantly excite the local-area modes outside the faulted area
at all. Understanding the nature of the small-signal modal behaviour therefore yields a syn-
optic view of the system characteristics which would require many large-signal studies of
faults in different locations to gain similar, but not exact, information [9]. 

Knowledge of the behaviour of certain local and inter-area modes has revealed the nature
of the responses of the speed states following a major disturbance on the system. However,
as stated earlier, the behaviour of the system is highly non-linear during the initial phase of
the response. During the first 0.6 s certain exciters reach their ceiling voltages and some
PSSs, together with most SVCs, hit limits on their outputs. In the context of the magnitude
of rotor speed oscillations, the question is asked in Section 1.10, “how small is small?”. The
peak amplitudes of the speed perturbations in Figure 10.32(a) are 1.5 to 2% which are not
small. The functional non-linearities come into play and therefore the small-signal analysis
is based is not strictly accurate. In the following section the applicability and validity of the
small-signal analysis that has been conducted in this section is reviewed.

10.9.2 The analysis of modal interactions [10], [11], [12]
As has been discussed earlier, small-signal analysis is based on the first-order approximation
of the non-linear power system equations, both differential and algebraic, about a steady-
state operating condition. Strictly speaking, such analysis is valid as the perturbations in var-
iables become vanishingly small. Consequently, once limiting by controllers has ceased fol-
lowing a large-magnitude disturbance, techniques based on linear analysis are unlikely to
provide accurate information on the dynamic behaviour of the system when the variations
in system variables is large. This is likely to be valid particularly for so-called stressed condi-
tions in which the system is heavily loaded and/or the system performance is bordering on
instability in the period immediately following the disturbance. 

In [10] the significance and application of extending first-order (linear) system analysis to
include the second-order terms is reviewed. The Taylor series expansion about the steady-
state operating condition now includes both the first- and second-order terms, but no third-
or higher-order terms. Based on the second-order form of the expansion for a state equa-
tion, and employing Normal Form analysis, it is shown in [10] that the ith state equation can
be expressed as:

 , (10.8)xi t  vijzj0e
j t vij h2kl

j
zk0zl0e

k l+ t

l 1=

n


k 1=

n


j 1=

n

+

j 1=

n

=
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where ,  and  are ‘conventional’ eigenvalues of the state matrix ;  is an element

of the right eigenvector corresponding to the eigenvalue or mode ;  is a function of

the initial conditions;  is a function of , .

Equation (10.8) reveals the relation between the state variables , the first-order system

modes , and the second-order modes,

                                 . 

Note the following:

• The terms associated with the mode pairs  represent “modal interactions” that
arise due to the inclusion of the second-order terms. 

• The second-order terms supplement information provided from the first-order linear
approximation of the power system equations.

• If the system is stable, the second-order mode  lies to the left of either of its

constituent modes,  or , in the complex s-plane; it therefore decays more rapidly
than either of the individual modes.

• The “interaction coefficients”, , of the exponential terms  in (10.8)

provide a measure of the participation of any of the mode pairs in the state variable. 

Firstly, for the first- and second-order modes discussed in the following, let us assume the
linear coefficient term, , and the interaction coefficients in (10.8) are not negligible.

Secondly, we will assume  and  are the complex conjugate

pair of the dominant first-order mode, normally an inter-area mode. When 
in (10.8), the mode pair ; likewise when , the

mode pair . Thus, due to modal interactions, a second-order mode of

double the frequency and double the damping constant of the first order mode is introduced
into the response; significantly, however, it decays in half the settling time of the linear mode.
Thirdly, let us assume there is some other, more heavily damped first-order mode present,

. When  in (10.8), the second-order mode pair

 is introduced. Thus the resulting complex second-order

mode will be of higher frequency than the dominant first-order mode and, because ,

it will decay with a settling time of less than half the settling time of the linear mode.

j k l A vij

j zp0
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Figure 10.34 Case 1. Responses of rotor angles of selected generators to a three-phase 
fault at the hv bus at the terminals of the transformers at BPS_2 cleared in 0.250 s. Angles 

are relative to that of LPS_3. All PSS gains set to 20 pu on machine MVA rating.

The transient response of the rotor angles of generators is shown in Figure 10.34 for a three-
phase fault at bus #206, the high-voltage bus at the terminals of the generator transformers
at BPS_2. The system conditions are the same as those in Figure 10.32 except the fault clear-
ing time has been increased from 120 ms to 250 ms. The system, which is marginally stable
with rotor angle differences across the system reaching  at about 1 s, is heavily stressed
in the immediate post-fault period. The essential point of the analysis in this section is that in
this period, during or after which no limiting by controllers occurs, one should be aware that
second-order modes of some significance may arise. However, because such modes are bet-
ter damped than their constituent first-order modes, they tend to decay more rapidly. 

The analysis of modal interactions based on Normal Forms for a large system is compute-
intensive and complex, mainly because of the size of the system and the number of combi-
nations of both the second-order modes  and the associated interaction coefficients.
Moreover, given the identical system conditions and type of disturbance, the latter coeffi-
cients will vary depending on the instant in the transient response at which initial conditions
are selected. 

In the particular cases of Figures 10.32 and 10.34 it is clear from (10.8) that the first-order
modes exist in the responses. However, without a detailed analysis based on Normal Forms
it is unclear what modal interactions are present, and their magnitude at any instant - at least
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up to one half of the settling time of the dominant mode when the responses of second-
order modes  have effectively decayed away. From studies in the literature it appears
that for less stressed systems the effects of modal interactions dissipate well within the latter
time. For the Study Case 1, shown in Figure 10.32, this may well be the situation. In [14],
[15] interesting comparisons are made between the transient response of a stressed system
to major disturbances and the first- and second-order responses based on the results of Nor-
mal Form analysis. For the scenarios considered the second-order responses agree closely
with those derived from the transient responses based on the step-by-step simulation.

The above summary of modal interactions and their significance is necessarily very brief.
More extensive details are provided in other papers referenced in [10], [14], [15], [16].

10.10 Summary: Tuning of PSSs based on the P-Vr approach

The case study illustrates the basis and benefits of the P-Vr method but also helps to identify
some of the limitations of the basic design technique. (These limitations motivate certain de-
velopments which follow in later chapters.)

• The P-Vr method provides a systematic approach and a formal basis for the design of
PSSs. The phase of P-Vr characteristics are, for practical purposes, more-or-less invar-
iant over the prudently-selected set of encompassing operating conditions (see
Section 9.4.1). At higher real power outputs, typically 0.5 to 1 pu of rated power, the
magnitude response of the P-Vr characteristic retains its shape and consistently lies in a
band of  dB from the Design Characteristic.

• These encompassing conditions should not only cover normal operation but also
include various contingencies, line outages, and perhaps some potentially extreme
conditions in order to ensure that the PSS is adequately tuned. 

• The calculation of P-Vrs for normal operation and for contingencies is easily auto-
mated, resulting in the display of a full set of P-Vr characteristics and providing a basis
for the synthesizing of the PSS transfer function.

In tuning fixed-parameter PSSs using the P-Vr approach the concept of robustness is based
on the following considerations:

• There are two important components of a fixed-parameter PSS transfer function
 which are essentially decoupled for practical purposes;

(a) the rotor modes are more-or-less directly left-shifted by the PSS com-
pensating transfer function  with increase in the PSS damping

gain, ;

(b) the extent of the left-shift of the rotor modes is determined by the
damping gain, ;

k l+

3

kGc s 

Gc s 

k
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(c) the value of the damping gain should be such that the damping torque
contributions induced by the PSS swamp the negative inherent contri-
butions by the generator.

• Ideally, the incremental left-shifts of the rotor modes are linearly related to increments
in PSS gain for changes about selected nominal values. 

• Such considerations should apply over the set of encompassing operating conditions
and an appropriate range of rotor modes.

In Section 10.7.1, and from an examination of the modes shifts induced by the PSSs as
shown in Tables 10.11, 10.15 and 10.16, we observe that the above considerations for ro-
bustness are - in essence - satisfied. However, there are two factors which cause the a devi-
ation from a direct left shift of the modes, an increase or decrease on modal frequency with
increase in damping gain.

Firstly, in Figure 10.26 it is noted that mode shifts for the selected gain increment vary with
the type of mode (e.g. a local mode) and the machines participating in the mode. In
Section 5.9.3 it is foreshadowed that the shift in the complex rotor mode  is given by

,    ((5.36) repeated) (10.9)

where  is an increment in the damping gain of the PSS and  is the complex partic-
ipation factor of the generator’s speed state in the mode , evaluated with the PSS in ser-

vice with a damping-gain setting, k0 . It is shown in Section 13.3 that  is essentially real
for generators participating strongly in the mode, but for those participating with a relatively
small participation factor it ( ) may acquire a not insignificant positive or negative im-
aginary component. However, being small the contribution by the generator to the mode
shift  may be minor.

Secondly, in Chapter 13 it is shown that in the multi-machine environment the modes shift
in (10.9) can either be enhanced or degraded by the action of PSSs installed on other gener-
ators. This is caused by the production of a positive or negative damping torque being in-
duced on generator i by the action of the PSS fitted to machine j [4]. Furthermore, we
observe in Figure 10.26 that the mode shifts associated with the inter-area modes are smaller
than those of the local modes. This feature is also considered in Chapter 13.

We have examined the intra-station modes and emphasized that their damping should be
examined because information on how the design methods (including the GEP and Residue
Methods) influence these modes is not readily available. Though exciter modes, which can
become lightly damped or unstable, have not been examined, the same comments are rele-
vant [6], [7].
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the modes of rotor oscillation for Cases 1 to 6
ll set to 20 pu on machine MVA rating.

nd peak loads, Cases 2 & 3. 
A rating.

Case 3. Peak Load

All PSSs in service Mode Shift

Real Imag Real Imag

-1.91
-2.04
-2.28
-2.52
-2.03
-2.03
-1.95
-2.01
-1.93
-1.93
-1.12
-0.43
-0.58

11.24
 9.72
 9.10
 8.91
 8.38
 5.91
 8.49
 7.73
 7.53
 7.80
 3.71
 2.42
 1.86

0.17
0.21
0.24
0.27
0.24
0.32
0.22
0.25
0.25
0.24
0.29
0.17
0.30

-1.53
-2.14
-1.98
-1.94
-1.84
-1.90
-1.81
-1.82
-1.86
-1.36
-1.13
-0.45
-0.55

  0.14
  0.16
  0.08
  0.25
 -0.10
 -0.41
  0.27
 -0.18
  0.15
  0.18
 -0.37
 -0.25
 -0.19



App. 10–I.1 Modes of rotor oscillation for Cases 2, 3, 5 and 6
The following Tables 10.15 and 10.16, together with Table 10.11, show the values of 
with the PSSs out and in service. When the PSSs are in service, the damping gains are a

Table 10.15  Rotor modes and modes shifts for medium-heavy a
All PSS damping gains are 20 pu on generator MV

No
.

Case 2. Medium-heavy load

No PSSs All PSSs in service Mode Shift No PSSs

Real Imag Real Imag Real Imag Real Imag

A
B
C
D
E
F
G
H
I
J
K
L
M

 0.07
 0.10
-0.25
-0.53
-0.18
-0.70
-0.92
-0.21
-0.06
-0.49
 0.19
 0.05
 0.08

10.74
 9.56
 9.26
 8.67
 8.48
 8.29
 8.61
 7.93
 7.39
 7.57
 3.77
 2.86
 1.92

-0.01
-0.01
 0.03
 0.06
 0.02
 0.08
 0.11
 0.03
 0.01
 0.06
-0.05
-0.02
-0.04

-2.40
-2.04
-2.37
-2.49
-2.04
-2.44
-2.81
-2.03
-2.02
-1.81
-0.77
-0.45
-0.43

10.96
 9.72
 9.64
 8.94
 8.38
 8.37
 8.96
 7.74
 7.49
 7.77
 3.54
 2.54
 1.76

0.21
0.21
0.24
0.27
0.24
0.28
0.30
0.25
0.26
0.23
0.21
0.17
0.24

-2.47
-2.14
-2.12
-1.96
-1.86
-1.74
-1.88
-1.82
-1.96
-1.33
-0.96
-0.50
-0.51

 0.22
 0.16
 0.38
 0.27
-0.10
 0.08
 0.35
-0.19
 0.11
 0.20
-0.24
-0.32
-0.16

-0.38
 0.10
-0.30
-0.58
-0.18
-0.13
-0.14
-0.19
-0.08
-0.58
 0.01
 0.02
-0.03

11.11
 9.56
 9.02
 8.66
 8.48
 6.31
 8.26
 7.91
 7.38
 7.62
 4.08
 2.67
 2.05

 0.03
-0.01
 0.03
 0.07
 0.02
 0.02
 0.02
 0.02
 0.01
 0.07
-0.00
-0.01
 0.01

 Mode Number  - damping ratio.


  

 
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ads, Cases 5 & 6.
ng. 

Light load

SS in service Mode Shift

Imag Real Imag

10.71
10.65
10.02
 9.02
 8.51
 8.17
 9.54
 8.24
 8.45
 7.55
 4.64
 3.30
 2.45

0.20
0.20
0.20
0.26
0.26
0.20
0.26
0.24
0.29
0.21
0.23
0.17
0.21

-2.49
-2.50
-1.94
-1.93
-2.18
-0.19
-2.29
-1.78
-2.37
-1.24
-1.28
-0.62
-0.56

 0.32
 0.51
 0.59
 0.29
-0.07
-0.07
 0.62
 0.11
 0.17
 0.30
-0.17
-0.25
-0.15

ous compensator in this case.

 †



Table 10.16  Rotor modes and modes shifts for medium and light lo
All PSS damping gains are 20 pu on generator MVA rati

No
.

Case 5. Medium load Case 6. 

No PSSs All PSS in service Mode Shift No PSSs All P

Real Imag Real Imag Real Imag Real Imag Real

A
B
C
D
E
F
G
H
I
J
K
L
M

 0.18
 0.09
-0.16
-0.50
-0.26
-0.52
-0.18
 0.01
-0.16
-0.77
 0.19
 0.01
 0.06

10.94
 9.57
 9.17
 8.55
 8.45
 7.98
 8.70
 7.90
 7.74
 7.24
 4.15
 3.12
 2.15

-0.02
-0.01
 0.02
 0.06
 0.03
 0.07
 0.02

 0   
 0.02
 0.11
-0.05

-0   
-0.03

-2.41
-1.99
-2.09
-2.47
-2.02
-2.38
-2.19
-1.85
-2.12
-1.86
-0.88
-0.46
-0.50

11.26
 9.76
 9.39
 8.83
 8.38
 7.97
 9.12
 7.81
 7.87
 7.45
 3.90
 2.89
 1.96

0.21
0.20
0.22
0.27
0.24
0.29
0.23
0.23
0.26
0.24
0.22
0.16
0.25

-2.59
-2.07
-1.90
-1.98
-1.76
-1.86
-2.01
-1.86
-1.96
-1.09
-1.08
-0.46
-0.56

 0.32
 0.19
 0.22
 0.27
-0.07
-0.01
 0.42
-0.09
 0.13
 0.21
-0.25
-0.23
-0.20

 0.28
 0.32
-0.13
-0.46
-0.14
-1.51
-0.23
-0.30
-0.21
-0.36
 0.20
 0.05
 0.04

10.39
10.14
 9.42
 8.74
 8.58
 8.24
 8.92
 8.13
 8.29
 7.25
 4.81
 3.55
 2.60

-0.03
-0.03
 0.01
 0.05
 0.02
 0.18
 0.03
 0.04
 0.03
 0.05
-0.04
-0.02
-0.01

-2.22
-2.14
-2.07
-2.38
-2.32
-1.70
-2.52
-2.08
-2.58
-1.60
-1.08
-0.57
-0.52

 Mode Number  - damping ratio.  PSS of HPS_1 is OFF as it operates as a synchron



  

   †



522 PSS Tuning in Multi-Machine Systems Ch. 10
App. 10–I.2 Data for steady-state power flow analysis

Table 10.17  SVC bus numbers, ratings and operating conditions for Cases 1 to 6. 

Table 10.18  Switched Shunt Capacitor / Reactor banks (C/R) 
in service, Cases 1-6 (Mvar)

SVC name / 
Bus No.

Reactive 
Power 
Range

(Mbase)

Qmax Qmin
Case 1
Voltage
Mvar

Case 2
Voltage
Mvar

Case 3
Voltage
Mvar

Case 4
Voltage
Mvar

Case 5
Voltage
Mvar

Case 6
Voltage
Mvar

Mvar @ 1.0 pu voltage

ASVC_2 / 
205

650.0 430.0 -220.0
1.055
-68.3

1.055
41.8

1.02
-5.2

1.045
-39.3

1.045
-118.3

1.045
-29.4

RSVC_3 / 
313

800.0 600.0 -200.0
1.015
71.4

1.015
129.4

1.015
158.8

1.015
86.7

1.015
54.9

1.015
54.2

BSVC_4 / 
412

1430.0 1100.0 -330.0
1.000
58.2

1.000
63.9

1.000
83.8

1.000
-52.2

1.000
22.8

1.000
-0.2

PSVC_5 / 
507

500.0 320.0 -180.0
1.015
22.6

1.040
36.8

1.043
18.0

1.010
-4.0

1.015
13.8

1.000
-3.7

SSVC_5 / 
509

550.0 400.0 -150.0
1.030
10.6

1.027
50.2

1.050
-63.4

1.030
-109.3

1.030
-123.8

1.030
-109.3

Note: System frequency is 50 Hz.

Bus 
Number

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

211 - - 100 C - - -

212 400  C 150  C 150  C 400  C 400  C 400  C

216 300 C 150  C 150  C 300  C 300  C 300  C

409 60 C 60 C 60 C 60 C 60 C 60 C

411 30 C 30 C 30 C 30 C 30 C 30 C

414 30 R 30 R 30 R 30 R 30 R 30 R

415 60 R 60 R 60 R 60 R 60 R 60 R

416 60 R 60 R 60 R 60 R 60 R 90 R

504 - 90 R 90 R - - -
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Table 10.19  Transmission Line Parameters; Values per circuit

From bus
/ to bus

Line 
No.

Line:  r+jx, b
(pu on 100MVA)

From bus
/ to bus

Line 
No.

Line:  r+jx, b
(pu on 100MVA)

102   217
102   217
102   309
102   309

1,2
3,4
1,2
3

0.0084   0.0667   0.817
0.0078   0.0620   0.760
0.0045   0.0356   0.437
0.0109   0.0868   0.760

... cont’d
309   310
310   311
312   313
313   314
315   509

1,2
1,2
1
1

1,2

0.0090   0.0713   0.874
0.0000  -0.0337   0.000
0.0020   0.0150   0.900
0.0005   0.0050   0.520
0.0070   0.0500   0.190

205   206
205   416
206   207
206   212
206   215
207   208
207   209
208   211
209   212
210   213
211   212
211   214
212   217
214   216
214   217
215   216
215   217
216   217

1,2
1,2
1,2
1,2
1,2
1,2
1

1,2,3
1

1,2
1,2
1
1
1
1

1,2
1,2
1

0.0096   0.0760   0.931
0.0037   0.0460   0.730
0.0045   0.0356   0.437
0.0066   0.0527   0.646
0.0066   0.0527   0.646
0.0018   0.0140   0.171
0.0008   0.0062   0.076
0.0031   0.0248   0.304
0.0045   0.0356   0.437
0.0010   0.0145   1.540
0.0014   0.0108   0.133
0.0019   0.0155   0.190
0.0070   0.0558   0.684
0.0010   0.0077   0.095
0.0049   0.0388   0.475
0.0051   0.0403   0.494
0.0072   0.0574   0.703
0.0051   0.0403   0.494

405   406
405   408
405   409
406   407
407   408
408   410
409   411
410   411
410   412
410   413
411   412
414   415
415   416

1,2
1

1,2,3
1,2
1

1,2
1,2
1

1 to 4
1,2
1,2
1,2
1,2

0.0039   0.0475   0.381
0.0054   0.0500   0.189
0.0180   0.1220   0.790
0.0006   0.0076   0.062
0.0042   0.0513   0.412
0.0110   0.1280   1.010
0.0103   0.0709   0.460
0.0043   0.0532   0.427
0.0043   0.0532   0.427
0.0040   0.0494   0.400
0.0012   0.0152   0.122
0.0020   0.0250   0.390
0.0037   0.0460   0.730

303   304
303   305
304   305
305   306
305   307
306   307
307  308

1
1,2
1
1

1,2
1

1,2

0.0010   0.0140   1.480
0.0011   0.0160   1.700
0.0003   0.0040   0.424
0.0002   0.0030   0.320
0.0003   0.0045   0.447
0.0001   0.0012   0.127
0.0023   0.0325   3.445

continued ...

504   507
504   508
505   507
505   508
506   507
506   508
507   508
507   509

1,2
1,2
1
1
1
1
1

1,2

0.0230   0.1500   0.560
0.0260   0.0190   0.870
0.0008   0.0085   0.060
0.0025   0.0280   0.170
0.0008   0.0085   0.060
0.0030   0.0280   0.140
0.0020   0.0190   0.090
0.0300   0.2200   0.900

Note: System frequency is 50 Hz.
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Table 10.20  Transformer Ratings and Reactances.

Buses

Number
Rating,  

each Unit
(MVA) 

Reactance per
transformer

From To
 % on 
Rating

per unit on 
100MVA

101
201
202
203
204
209
213
301
302
304
305
305
308
401
402
403
404
413
501
502
503

102
206
209
208
215
210
214
303
312
313
311
314
315
410
408
407
405
414
504
505
506

g
g
g
g
g
4
4
g
g
2
2
2
2
g
g
g
g
3
g
g
g

333.3
666.7
555.6
555.6
666.7
625.0
625.0
666.7
444.4
500.0
500.0
700.0
370.0
444.4
333.3
444.4
333.3
750.0
333.3
250.0
166.7

12.0
16.0
16.0
17.0
16.0
17.0
17.0
16.0
15.0
16.0
12.0
17.0
10.0
15.0
17.0
15.0
17.0
 6.0
17.0
16.0
16.7

0.0360
0.0240
0.0288
0.0306
0.0240
0.0272
0.0272
0.0240
0.0338
0.0320
0.0240
0.0243
0.0270
0.0338
0.0510
0.0338
0.0510
0.0080
0.0510
0.0640
0.1000

g - Generator/transformer unit; in service if 
associated generator is online. 

Note: System frequency is 50 Hz.                            
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Figure 10.35 Transformer Taps Convention

The transformer tap ratios listed in Table 10.21 are based upon the convention shown in
Figure 10.35.

Table 10.21  Transformer Tap Ratios for power flow Cases 1 to 6

Buses
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

From To

101
201
202
203
204
209
213
301
302
304
305
305
308
401
402
403
404
413
501
502
503

102
206
209
208
215
210
214
303
312
313
311
314
315
410
408
407
405
414
504
505
506

0.939
0.943
0.939
0.939
0.939
0.976
1.000
0.939
0.952
0.961
1.000
1.000
1.000
0.939
0.952
0.952
0.952
1.000
0.952
0.962
0.962

0.948
0.948
0.948
0.948
0.948
0.990
1.000
0.935
0.952
0.961
1.000
1.000
0.960
0.939
0.952
0.952
0.952
1.000
0.952
0.930
0.930

0.948
0.939
0.939
0.939
0.939
0.976
1.000
0.930
0.952
0.948
1.000
1.000
1.000
0.939
0.952
0.952
0.952
1.000
0.952
0.930
0.930

1.000
1.000
1.000
1.000
1.000
0.976
1.000
1.000
1.000
0.961
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
0.971
0.971
0.971
0.971
0.976
1.000
0.961
0.961
0.961
1.000
1.000
1.000
0.952
0.952
0.952
0.952
1.015
0.985
0.995
0.985

1.000
1.010
1.010
1.010
1.010
0.976
1.000
1.000
1.000
0.961
1.000
1.000
1.000
1.010
1.000
1.000
1.000
1.000
1.015
1.020
1.020

t:1 Zt

“From”
      bus

“To”
      bus

Taps-ratio convention employed

V1

V1/t
V2
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For simplicity, loads are assumed to behave as constant impedances in the small-signal anal-
ysis.

Table 10.22  Busbar Loads (P MW, Q Mvar) for Cases 1 to 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Bus
No.

P Q P Q P Q P Q P Q P Q

102
205
206
207
208
211
212
215
216
217
306
307
308
309
312
313
314
405
406
407
408
409
410
411
412
504
507
508
509

 450
 390
 130
1880
 210
1700
1660
 480
1840
1260
1230
 650
 655
 195
 115
2405
 250
 990
 740
   0

 150
 260
 530
 575
1255
 300
1000
 800
 200

 45
 39
 13

188
 21

170
166
 48

184
126
123
 65
 66
 20
 12

240
 25
 99
 74
  0
 15
 26
 53
 58

126
 60

200
160
 40

 380
 330
 110

1600
 180
1445
1410
 410
1565
1070
1230
 650
 655
 195
 115

2405
 250
1215
 905
   0

 185
 310
 650
 700
1535
 200
 710
 520
  70

 38
 33
 11

160
 18
145
140
 40
155
110
123
 65
 66
 20
 12
240
 25
120
 90
  0
 20
 30
 65
 70
155
 40
140
105
 15

 475
 410
 140
1975
 220
1785
1740
 505
1930
1320
1450
 770
 770
 230
 140
2840
 300
1215
 905
   0

 185
 310
 650
 700
1535
 300
1100
 800
 100

 50
 40
 15
200
 25
180
180
 50
200
140
150
 80
 80
 25
 15
290
 30
120
 90
  0

 20
 30
 65
 70
155
 60
220
160
 20

 270
 235
  80

1130
 125
1060
1000
 290
1105
 750
 900
 470
 620
 140
  92

1625
 180
 730
 540
   0

 110
 190
 390
 420
 922
 180
 640
 490
 122

 30
 25
 10
120
 15
110
110
 30
120
 80
 90
 50
100
 15
 10
165
 20
 75
 55
  0

 10
 20
 40
 45
100
 20
 65
 50
 15

 340
 290
 100

1410
 160

1275
1245
 360

1380
 940

1085
 580
 580
 170
 105

2130
 222
 990
 740
   0

 150
 260
 530
 575

1255
 225
 750
 600
 150

 35
 30
 10

145
 20

130
125
 40

140
 95
110
 60
 60
 20
 15

220
 25

100
 75
  0
 15
 30
 55
 60

130
 25
 75
 60
 15

 270
 235
  80

1110
 125

1035
1000
 290
1105
 750
 900
 470
 620
 140
  92

1625
 180
 730
 540
   0

 110
 190
 390
 420
 922
 170
 565
 450
 117

 30
 25
 10

120
 15
110
110
 30

120
 80
 90
 50

100
 15
 10

165
 20
 75
 55
  0
 10
 20
 40
 45

100
 20
 65
 50
 15

Load Characteristics: Constant Impedance
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App. 10–I.3 Data for dynamic performance analysis
The parameters of the fourteen generators are listed in Table 10.23.

Table 10.23  Generator Parameters ##

Gen-
erator

Bus
Or-
der

Rat-
ing

MVA

No. of
Units

H
MWs

/
MVA

Xa
pu

Xd
pu

Xq
pu

Xd'
pu

Tdo'
s

Xd"
pu

Tdo"
s

Xq'
pu

Tqo'
s

Xq"
pu

Tqo"
s

HPS_
1

101 5 333.3 12 3.60 0.14 1.10 0.65 0.25 8.50  0.25 0.050 - - 0.25 0.200

BPS_
2

201 6 666.7 6 3.20 0.20 1.80 1.75 0.30 8.50  0.21 0.040 0.70  0.30 0.21 0.080

EPS_
2

202 6 555.6 5 2.80 0.17 2.20 2.10 0.30  4.50 0.20 0.040  0.50 1.50 0.21 0.060

MPS_
2

204 6 666.7 6 3.20 0.20 1.80 1.75 0.30 8.50  0.21 0.040 0.70  0.30 0.21 0.080

VPS_
2

 203 6 555.6 4 2.60 0.20 2.30 1.70 0.30  5.00  0.25 0.030 0.40 2.00  0.25 0.250

LPS_
3

301 6 666.7 8  2.80 0.20 2.70 1.50 0.30 7.50  0.25 0.040  0.85 0.85 0.25 0.120

YPS_
3

302 5 444.4 4 3.50  0.15  2.00 1.80 0.25 7.50 0.20 0.040 - -  0.20 0.250

CPS_
4

402 6 333.3 3  3.00 0.20 1.90 1.80  0.30 6.50  0.26 0.035 0.55 1.40  0.26 0.040

GPS_
4

404 6 333.3 6 4.00 0.18 2.20 1.40 0.32 9.00 0.24 0.040 0.75 1.40 0.24 0.130

SPS_
4

403 6 444.4 4 2.60 0.20 2.30 1.70 0.30  5.00  0.25 0.030 0.40 2.00 0.25 0.250

TPS_
4

401 6 444.4 4 2.60 0.20 2.30 1.70 0.30  5.00  0.25 0.030 0.40 2.00 0.25 0.250

NPS_
5

501 6 333.3 2 3.50 0.15 2.20 1.70  0.30 7.50  0.24 0.025 0.80 1.50 0.24 0.100

TPS_
5

502 6 250.0 4 4.00 0.20 2.00  1.50 0.30  7.50 0.22 0.040  0.80 3.00 0.22 0.200

PPS_
5

503 6 166.7 6  7.50 0.15 2.30  2.00 0.25 5.00  0.17 0.022  0.35 1.00 0.17 0.035

## Classically-defined operational parameters (see Section 4.2.12.2 and  Section 4.2.13).
Generator reactances in per unit on machine rating as base. System frequency is 50 Hz.
For all generators the stator winding resistance (Ra) and damping torque coefficient (D) are both assumed to be zero.
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App. 10–I.3.1 Excitation System Parameters
Two basic types of excitation systems are employed, AC4A and AC1A [13]. The parameters
of the AVR have been tuned to ensure that the open-circuit generator under closed-loop
voltage control is stable and satisfies the performance specifications.

Figure 10.36 Small-signal model of a type AC4A Excitation System

Figure 10.37 Small-signal model of a type AC1A Excitation System; demagnetizing effect 
of field current neglected

     1
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
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
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Vr

Vc


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

Vs



1+sTC

1+sTB 

KA
1+sTA
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



App. 10–I.3 Data for dynamic performance analysis 529
Table 10.24  Excitation System Parameters: 14-generator system

Table 10.25  Excitation System Parameters: 14-generator system (continued)

HPS_1 BPS_2 EPS_2 MPS_2 VPS_2 LPS_3 YPS_3

Type AC4A AC4A AC1A AC4A AC4A AC4A AC1A

Tr (s) 0 0 0 0 0 0 0

KA (s) 200 400 400 400 300 400 200

TA (s) 0.10 0.02 0.02 0.02 0.01 0.05 0.05

TB (s) 13.25 1.12 0 1.12 0.70 6.42 0

TC (s) 2.50 0.50 0 0.50 0.35 1.14 0

KE - - 1.0 - - - 1.0

TE (s) - - 1.0 - - - 1.333

KF - - 0.029 - - - 0.020

TF (s) - - 1.0 - - - 0.8

CPS_4 GPS_4 SPS_4 TPS_4 NPS_5 TPS_5 PPS_5

Type AC4A AC4A AC4A AC4A AC1A ST5B AC4A

Tr (s) 0.02 0 0 0 0 0 0

KA 300 250 300 300 1000 400 300

TA (s) 0.05 0.20 0.01 0.10 0.04 0.50 0.01

TB (s) 9.80 0.0232 0.70 40.0 0 16.0 0.8

TC (s) 1.52 0.1360 0.35 4.00 0 1.40 0.2

TB1 (s) 0 0 0 0 0 0.05 0

TC1 (s) 0 0 0 0 0 0.60 0

KE - - - - 1.00 - -

TE (s) - - - - 0.87 - -

KF - - - - 0.004 - -

TF (s) - - - - 0.27 - -
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Figure 10.38 Small-signal model of the controller for the SVCs.

Vref





Vd

   KA

    s 

2.5

1+sTd

Vt
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B

Q/Vt]
Vs

 

 and  are in per-unit on MBASE.

pu on SBASE and s

SVC name / bus 
number

Mbase
(Mvar)

KA KS

ASVC_2 / 205 650 500 6.5

RSVC_3 / 313 800 500 8.0

BSVC_4 / 412 1430 500 14.3

PSVC_5 / 507 500 250 5.0

SSVC_5 / 509 550 250 5.5

B  Q Vt 

Kd 0.01= Td 0.005=

KS

1
KS
------



Chapter 11

Tuning of FACTS Device Stabilizers

11.1 Introduction

In the 1990s the development of high power semiconductor devices found application in
power electronic equipment in power systems. Such transmission systems and associated
devices are generally known as Flexible AC Transmission Systems (FACTS); a comprehen-
sive description of the technology, the devices and references to the literature are given in
[1] (published in 2000). 

In this chapter the tuning of stabilizers is outlined for FACTS devices such as Static Var
Compensators (SVCs), the converters at the ends of High Voltage Direct Current (HVDC)
transmission lines, Thyristor-Controlled Series Capacitor (TCSC), and other similar FACTS
devices. Such stabilizers are generally known as Power Oscillation Dampers (PODs), how-
ever, the role of PSSs is also to act as power oscillation dampers - hence we will refer to
PODs as FACTS Device Stabilizers (FDSs) to emphasize the application to FACTS devices. 

Consider the studies for Cases 1 to 6 presented in the previous chapter. Referring to Tables
10.11, 10.15 and 10.16 it is noted that, for all PSSs in service with the damping gain set to
20 pu on machine MVA rating, the real parts of the mode shifts for the local-area modes
typically vary from -1.3 to -2.5 Np/s over the encompassing range of operating conditions
covered by the six cases. However, the real parts of the mode shifts for the inter-area modes,
modes K, L and M, roughly vary over a much smaller range, from -0.4 to -1.1 Np/s for the
same operating conditions. The damping of all modes in these cases is good, the lowest
damping ratio being about 15%. However, because the damping of some modes may be
531
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poor, stabilizers installed on FACTS devices can provide a significant improvement in the
damping of targeted modes. By reducing PSS damping gains to 5 and/or 10 pu on machine
MVA ratings, cases of poorer damping are also examined in which the damping ratios of the
inter-area modes are in the range 2 to 8%.

The common configuration of the FACTS device and controllers is shown in Figure 11.1.
In the case of a Static Var Compensator (SVC), for example, the controller regulates the
voltage at its terminals or at an electrically close, high-voltage busbar where voltage support
is required [1], [2]. The location of the SVC in the network may be such that a stabilizer in-
stalled on the SVC is effective in improving the damping of certain inter-area modes. An
effective stabilizing signal may be the perturbations in frequency at its terminals, an appro-
priate power flow, etc. [3].

.
Figure 11.1 Configuration of the FACTS device, its controller and stabilizer (FDS)

The objective of FDS tuning is to improve the damping of lightly damped modes, ideally
without degrading the damping of other modes, or compromising the performance of the
primary control function of the device. As foreshadowed above, an inter-area mode is typ-
ically - but not necessarily - the mode which is targeted for enhanced damping.

As background, a ‘simplistic’ tuning procedure for a SVC is considered to illustrate the intent
of the FDS tuning methods. The theoretical basis of the Method of Residues, already ana-
lysed in Chapter 6, is briefly summarized and will provide the basis for the tuning of FDSs
[4], [5], [8]. However, in the multi-machine case there is a major difference with respect to
the SMIB case of Section 6.3; the FDS may be tuned to provide damping over a range of
modal frequencies. 

A variety of other methods for tuning the stabilizers of a range of FACTS devices are de-
scribed in the literature, [9] to [19]. Reference [20] provides a more detailed account of mod-
elling shunt FACTS devices such as SVCs and Static Compensator. The tuning methods and
approaches investigated in this chapter are presented using simple models for the FACTS
devices; however, the methods are equally applicable for more sophisticated systems. The
models presented in [20] provide detailed descriptions of modern control features such as

FACTS
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Stabilizing Signal

FACTS 
Controller

Control Signal

FDS

Controller 
Reference  

Signal
Vs
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coordinated control of nearby switched capacitor banks by the SVC. Such functions are not
considered any further in this book in which only small deviations about a steady-state op-
erating condition are relevant to small-signal analysis.

11.2 A ‘simplistic’ tuning procedure for a SVC

The application of a ‘simplistic’ procedure to the tuning of a SVC, BSVC_4, at bus number
410 in the fourteen-generator network in Figure 10.1 is now examined. As stated in
Table 10.17, the maximum and minimum reactive power generation for BSVC_4 is 1100
and  Mvar, respectively, giving a reactive range (Mbase) of 1430 Mvar. The operating
condition selected is the heavy load condition of Case 1 (see Table 10.2). For all PSSs in ser-
vice, with their damping gains set to 20 pu on machine MVA rating, the local and inter-area
modes are shown in Table 10.11. For illustrative purposes we will consider the more lightly
damped of the complex inter-area modes, M ( ).

The terminal voltage bus frequency,  (pu of system frequency), which is the rate of

change of the terminal-voltage angle,  rad, is employed as the stabilizing signal. As shown
in (8.9) the transfer function of the bus-frequency pre-filter is:

, (11.1)

where  (rad/s) and  is the system frequency (Hz). At = 50 Hz,

; TF  is normally set so that high frequency noise above the selected cor-

ner frequency (1/TF) is attenuated, say, TF = 0.005 s 1.

The block diagram of the FACTS device controller and stabilizer is shown in Figure 11.2.
Let us assume that the transfer function of the FDS is , a real gain

(i.e. omitting compensation, washout and low-pass filters). Let’s calculate the values of the
mode M for a range of gain values (not knowing as yet what constitute high gain values). As
noted in Figure 10.38, the value of Mbase is 1430 Mvar, Sbase = 100 Mvar.

1. The time constant TF (5 ms) is very short. Such time constants should typically be 3 or 
more times the cycle time of the PSS processor to reduce phase errors at higher frequen-
cies.

330–
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------------------------ 1 0  s
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Figure 11.2 The controller and stabilizer, F(s), for SVC BSVC_4 showing terminal voltage 
control, the provision of droop, and the frequency stabilizing signal .

In Table 11.1 the mode shifts in mode M for Case 1 are shown as the stabilizer gain kfds is
increased from zero with the stabilizer in service. The mode shift for a gain of 30 pu is
shown in Figure 11.3. Ideally, to introduce pure damping to the mode, the mode shift should
lie at . Phase lag compensation must therefore be provided for the multi-machine sys-
tem in this example noting that the required lag compensation angle increases with increas-
ing gain. Although the lag compensation which the stabilizer transfer function should
provide is as much as  for the selected gain range, let us derive the transfer function of
the lag compensation with a lag angle of  at  (1.8 rad/s) for the stabilizer
gain of 30 pu. 

Table 11.1  Case 1. Shifts in inter-area mode M with increasing FDS 

transfer function gain kfds 
a     

kfds (pu) Mode M Mode Shift Angle b

0 - -

10 5.0

20 7.6

30 11.1

40 15.7

Note: (a) FDS is a pure gain transfer function.
(b) Required lag compensation angle
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Figure 11.3 Shift in mode M both for Kfds= 30 pu and  for FDS transfer function 

(11.2).

The calculation of the transfer function of the lag compensator is similar to that for lead
compensation in the example in Section 2.12.1.4 and is based on frequency response analy-
sis with . The simple compensator transfer function for the lag angle of  at
1.8 rad/s is . When washout and low pass filters, with corner fre-
quencies 0.17 and 30 rad/s respectively, are included the transfer function of the FDS is:

, with  pu. (11.2)

With the FDS of BSVC_4 in service with the above transfer function the resulting value of
mode M is  for  pu compared to the value of  for the

scalar transfer function  in Table 11.1. While the FDS enhances the damping of

mode M relative to the case when the FDS is out of service, the mode shift 
is not quite that desired; moreover, its modal frequency is increased from that with the sta-
bilizer off-line. There are therefore a number of observations that can be found in this ‘sim-
plistic’ procedure.

• The agreement between the value of the targeted mode using the ‘simplistic’ proce-
dure to evaluate the stabilizer transfer function is not as close as desirable. (Further
iterations of the procedure could improve the result.)

• The lag compensation of the stabilizer transfer function is based on the frequency
response calculation using  rather than the complex value in the vicinity of the

targeted mode, . This problem is compounded when the washout and
low-pass filters are added. A more rigorous, iterative process is required to converge
on a lag transfer function for the stabilizer - with the specified filters - in the vicinity of
the targeted mode. (With the FDS out of service, mode M varies between

 and  over the six operating conditions, see Tables 10.11,
10.15 and 10.16.)
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• No cognizance has been given to the suitability of the stabilizer transfer function
(11.2) over an encompassing range of operating conditions (including outages, etc.) in
enhancing the damping of the targeted mode.

• Although the damping of the targeted mode may be enhanced over the range of oper-
ating conditions, the damping of other modes may be degraded.

• Under some operating conditions the presence of zeros or modes (other than rotor
modes), in the vicinity of the targeted mode may significantly affect the trajectory of
the mode as the stabilizer gain is increased.

• From Figure 10.26 it is observed that the frequency of the inter-area mode M
decreases with increasing PSS damping gains. To improve synchronizing torques it
may be desirable to tune the FDS to enhance not only the damping of the targeted
mode but also to increase its oscillatory frequency.

It is clear that a method for tuning the stabilizers is desirable that better takes account of the
range of operating conditions, the filters and the complex value of the targeted mode.

11.3 Theoretical basis for the tuning of FACTS Device Stabilizers

Some of the relevant theoretical material, based on the ‘Method of Residues’, is described in
Section 6.2.1 and is summarized here for ease of reference.

Let the stabilizer transfer function be:

, (11.3)

where the transfer function of the stabilizer in this application is tuned to provide the
appropriate phase compensation and is assumed to consist of m lead or lag blocks of the
form:

,  . (11.4)

The FDS gain setting in (11.3) is  (note, this is not the ‘damping gain’ value). The wash-

out and low-pass filter transfer functions,  and , are given by (5.29) and (5.30),
respectively. It is assumed that the values of the time constants in the latter two transfer
functions have been appropriately selected (see Section 5.8.6). The objective of the tuning

procedure for the ith stabilizer is to determine the values of the parameters , Tni and Tdi,

 in (11.4) that satisfy the relevant requirements on damping.

The following analysis (which repeats part of that in Section 6.2.1) assumes that (i) initially
the FDS is out of service, and then it is in service with the FDS gain set to , (ii) the FDS

feedback is positive (see Figure 6.1 and 11.2). It is shown in (6.8) that the mode shift in the
targeted mode  is: 
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, (11.5)

where  is the residue of the transfer function  (no FDS);  is

the stabilizing signal selected to be the input to the FDS.

If in (11.5) the gain  is chosen such that   then (11.5) reduces to

yield the approximate value of the mode shift, i.e.:

. (11.6)

Let the value of  for which be , a quantity which provides

a nominal measure of an upper value of the gain. According to (11.6) for values of 

the mode shift increases linearly with stabilizer gain. Thus it follows from the definition of
 that

. (11.7)

In order for the mode shift  in (11.6) to be , i.e. a direct left-shift of  in the
complex s-plane, 

. (11.8)

Therefore the compensation angle  provided by the FDS is

 . (11.9)

Typically  is selected to be less than . However, in multi-machine cases the effect

on the actual modal trajectories of other system poles and zeros, as the FDS gain is increased
from , may result in mode shifts estimated from the above analysis differing sub-
stantially from actual shifts, even at gains much less than . 

Other comments in Section 6.2.1 are also applicable to FDS tuning.

Consider now the application of the above results to the tuning of a FDS in a multi-machine
system. It may be necessary to tune the FDS to improve the damping of several rotor modes
and to accommodate the associated variation in magnitude and phase of the associated res-
idues.

The application of the Method of Residues is now illustrated by a number of studies; two
studies illustrate the tuning of a FDS for a SVC using bus frequency or real power flow as
stabilizing signals. A study on a different FACTS device concerns the tuning of a stabilizer
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for a thyristor-controlled series capacitor (TCSC). In the latter case the stabilizer transfer
function is required to accommodate power flows in both directions through the TCSC. In
all studies the trajectories of selected inter-area modes are tracked as the stabilizer gain is in-
creased from zero to an appropriate value. The aims of mode-tracking studies are (i) to de-
termine the stability of the system, (ii) to investigate the characteristics of the mode shifts
with increasing stabilizer gain, (iii) to compare the estimated mode shifts calculated using
(11.5) or (11.6) with those calculated by eigen-analysis, and in some cases (iv), to account for
the nature of the deviation between estimated and calculated values.

11.4 Tuning SVC stabilizers using bus frequency as a stabilizing sig-
nal

As mentioned earlier, a SVC is primarily installed for voltage support and control, typically
in areas more remote from generation - such in the vicinity of loads or at intermediate sub-
station buses on higher voltage transmission lines. 

In this application of FDS tuning it is assumed that there are inter-area modes whose damp-
ing may be improved by a FDS installed on a SVC close to a major load centre. Conceptu-
ally, when close to a major load centre the FDS should modulate the load-area voltage such
that load real power is reduced concomitant with a fall in system frequency - thereby en-
hancing the damping of the mode. This suggests that frequency may be a suitable stabilizing
signal.

Because it has been the basis of a number of studies the 14-generator power system em-
ployed in Chapter 10 is used as the study system. From Tables 10.11, 10.15 and 10.16 it is
observed that the inter-area modes L and M typically have values in the vicinity of

 and , respectively, over the range of the normal cases 1 to 6 with all
PSS damping gains set to 20 pu. Inter-area mode K is generally well damped, but may be
enhanced by the FDSs. 

With reference to the system diagram in Figure 10.1, the SVCs ‘BSVC_4’ in Area 4 and
‘PSVC_5’ in Area 5 will be used to establish what improvements in damping of the inter-
area modes can be achieved using perturbations in local frequency as a stabilizing signal. It
will also be found that it is desirable to install a SVC in Area 2; this is considered in
Chapter 14.

Based on the results in Chapter 10 when all PSS damping gains are set to 20 pu it may be
considered that it is not necessary to install stabilizers on any FACTS device. On the other
hand, say, can the PSS damping gain settings be reduced with the installation of FDSs? Let
us therefore establish a whether a FDS transfer function tuned for 20 pu PSS damping gains
adequately covers a lower range of PSS damping gain settings, say 10 to 20 pu.

0.5– j2.8 0.5– j1.9
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For illustrative purposes and to avoid complexity, line outages and other conditions which
cause a degradation in the damping of the inter-area modes have not been included in the
limited analysis which follows. The tuning of a frequency-stabilized FDS for BSVC_4 is now
investigated.

11.4.1 Use of bus frequency as a stabilizing signal for the SVC, BSVC_4
The perturbations in local bus frequency is synthesized from angular perturbations  (rad)
in the terminal voltage of the SVC at bus 412 in Figure 10.1. The basis for employing bus-
frequency perturbations =  (pu of system frequency) as a stabilizing signal is

outlined in Section 11.2; the transfer function of the frequency transducer is given by (11.1).

Initially it is of interest to learn which of the inter-area modes over the encompassing range
of normal operating conditions, Cases 1 to 6, are best damped by means of the FDS on
BSVC_4. Mbase for BSVC_4 is 1430 Mvar (see Figure 10.38). 

11.4.1.1 Determination of the stabilizer transfer function for BSVC_4

Referring to (11.3) and (11.4), the aim of the analysis is to determine , the transfer

function of the compensation, as well as the parameters of the washout and low-pass filters
such that the damping of the mode(s) satisfies the relevant performance criteria. Further-
more, the improvement in damping of any inter-area mode should not lead to an unaccept-
able degradation in the damping of other inter-area modes or of local modes in the vicinity
of the SVC.

Let us assume (i) all SVCs are in service and controlling the voltage on their respective buses,
(ii) the FDS path in Figure 11.2 is open, and (iii) all PSSs are in service and their damping
gains are set to 20 pu on machine MVA rating. The residues of the transfer function

 for the inter-area modes K, L and M are then calculated for the operat-

ing conditions 1 to 6. Depending on the characteristics of the residues as revealed by their
polar plots, it is of interest to ascertain if the compensation should in fact target any one of
the three inter-area modes. It is also possible, for example, that compensation based on the
residues for mode L may enhance or degrade the damping on mode M, or vice-versa.

Using the Mudpack small-signal, power system dynamic performance package [21] the polar
plot of the residues for modes L and M is shown in Figure 11.4. The residues are of the SVC
transfer function  for the range of operating conditions, Cases 1 to 6.

The residues of the inter-area mode K are negligible and are omitted from the plot. The val-
ues of modes L and M are listed in Tables 10.11, 10.15 and 10.16.

As foreshadowed in the Section 11.4, it is desirable to establish whether the same FDS trans-
fer function adequately covers the 10 and 20 pu sets of PSS damping gains. The polar plot
of the residues for the lower set of PSS damping gains is shown in Figure 11.5. 
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Figure 11.4 Polar plot of the residues for the transfer function, , for modes 

L and M and six operating conditions. All PSS damping gains set to 20 pu on machine MVA 
rating. The values of modes L and M are in the vicinity of  and , re-

spectively.   Note: the magnitude scale is to be multiplied by 0.1. 

Figure 11.5 Polar plot of the residues as for Figure 11.4 with all PSS damping gains set to 
10 pu on machine MVA rating. Note scaling.
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A comparison of the magnitudes of the residues in Figures 11.4 and 11.5 reveals (i) the res-
idues for mode M are about four times greater than those of mode L, and (ii) the band of
phase angles of the residues is narrower than that for mode L. The compensation will there-
fore target mode M for which, as revealed in Figure 11.4, the residues lie in a relatively nar-
row phase-band of approximately  with a spread in magnitudes between 0.013 and 0.018
units.

For the range of operating conditions it is now necessary to select representative values of
(i) the compensation angle for the calculation of the compensator transfer function, (ii) the
magnitude of the residues for determining the nominal upper gain value, and (iii) a single
mode value considered to cover the modes of interest or concern. 

From Figure 11.4 for PSS damping gains set to 20 pu a representative angle for the residues
of mode M is selected to be  which lies in the mid-range of values. The required com-
pensation angle is therefore  (or  lagging). For mode M the maximum value of the
residues of  pu (on SVC base) is selected from Figure 11.4. (These decisions may de-
pend on the application, e.g. whether to weight certain operating conditions more heavily,
or whether to abide by the system criteria which specify the minimum level for damping,
say, for the outage of a critical circuit.) For mode M, and for the range of modal values over
the encompassing operating conditions, a targeted value of complex frequency is selected to
be , a value which tends to favour the heavier load conditions. 

An associated set of representative values can be deduced from Figure 11.5 when all PSS
damping gains are set to 10 pu; similarly a set for 5 pu is derived. The values are summarized
in Table 11.2.

Table 11.2  Representative values for evaluation of 
compensation transfer function, mode M

In Mudpack [21] there are facilities to calculate iteratively the compensation transfer func-
tion of the stabilizer given the desired compensation angle, a representative or target com-
plex tuning frequency, the order of the lag or lead compensator, and the required number of

PSS
gain (pu)

Phase spread
(deg)

Represent-
ative phase 
angle (deg)

Compensa-
tion angle 

(deg)

Maximum
residue

Represent-
ative modal
frequency*

20 -164 --> -176 -168 -12 0.0176

10 -168 --> -176 -172 -8 0.0151

5 -171 --> -184 -178 -2 0.0149

* Representative modal frequencies over the range of operating conditions

13

168– 
12– 12

0.0176
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washout and low-pass filters and their parameters (see Appendix 6–I.1). Based on (11.3) and
(11.4) the form of stabilizer transfer function is given in (11.10). 

. (11.10)

There are also facilities in the software to estimate, for a selected stabilizer gain, the mode
shifts for the target and other selected modes, according to (11.5), for each of the operating
conditions. The provision of estimates of local as well as inter-area modes can reveal if a lo-
cal mode, say, is unduly degraded by the stabilizer and therefore may be of concern. How-
ever, it is also necessary to establish through Bode- or eigen-analysis the range of FDS gains

 for which the closed-loop system is stable. It may happen that a mode other than a ro-

tor mode becomes unstable.

Two cases of FDS tuning could now be considered. In the first case the washout and low-
pass filters are selected to cover a wide band of modal frequencies; in the second the filters
provide a narrow band which specifically targets mode M. Wide-band compensation only is
now considered; a practical example of narrow band compensation is analysed in [6] using
the Method of Residues. The objectives of the former are to improve the damping of the
inter-area modes as well as local-area modes, if possible. To cover the range of operating
conditions and rotor modes in Tables 10.11, 10.15 and 10.16, a first-order compensator is
specified, together with first-order washout and low-pass filters with parameters TW = 6 s
and TLP = 0.033 s. The phase shifts of the filters, which lie a decade above and below the
corner frequencies of 0.17 and 30 rad/s, respectively, are less than . The FDS transfer
function thus takes the form: 

. (11.11)

The representative values for 20 pu PSS damping gain settings in Table 11.2 is used to cal-
culate the compensation transfer function because 

1. In practice the PSS damping gain settings may tend towards the higher value of 20 pu
because normal, outage and N-1 operating conditions must all satisfy the system
damping performance specifications. 

2. The range of residue angles in Table 11.2 for 10 and 5 pu PSS damping gains are
essentially covered by that for the 20 pu gain settings.

3. The representative residue angles differ by  at most, and the associated range of
compensation angles lie between  to  lagging. ‘Over compensation’ in this study
is likely to increase the frequency of the inter-area modes at the lower gain settings and
thereby improve synchronizing torques. (This may help to offset the decrease in the
inter-area frequencies, observed in Figure 10.26, with increase in PSS damping gains.)
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Based on the representative values in Table 11.2 for the evaluation of the compensation
transfer function, the iterative procedure described in Appendix 6–I.1 is used to calculate
the parameters of the lag transfer function for PSS damping gains of 20 pu. The PSS transfer
function (11.11) is found to be 

, (11.12)

the nominal upper gain value being = 398 pu.

11.4.1.2 Range of stabilizer gains for stability
Before the trajectories of the selected modes are calculated by eigen-analysis it is desirable
to ascertain for what range of gains the system with the stabilizer transfer function calculated
above is stable. It may not be clear if some other mode (e.g. a controller mode) becomes
unstable as the stabilizer gain is increased - or if instability occurs, say, for some value of gain
less than  where  is the nominal upper value determined by the Residues Method.

From Tables 10.11, 10.15 and 10.16 for the six operating conditions with all PSS damping
gains set to 20 pu on machine MVA rating, and for no FDSs in service, it is known (i) that
the system is stable, and (ii) that the stabilizer transfer function of (11.12) possesses left-half
plane poles. Therefore, with no right-half plane poles, we can use the open-loop Bodes plots
to determine closed-loop stability as well as the gain and phase margins for a selected stabi-
lizer gain. 

Lest us insert the stabilizer transfer function (11.12) in the feedback path in Figure 11.2. The
feedback path at the summing junction is left open in order to calculate the open-loop trans-
fer functions . For the Case 1, a heavy load condition, the associated

Bode plot is shown in Figure 11.6 remembering that, for stability analysis using the Bode
plot, negative feedback is assumed (positive feedback of the stabilizer output is specified in
Figure 11.2). 

Note in Case 1 that the gain margin for stability (673 pu) is greater than 10% (i.e. ~40 pu)
of the upper gain value ( = 398 pu) necessary to satisfy the nominal upper value of gain
as determined by the Method of Residues. The stability limits for cases 1 to 6 are confirmed
by eigen-analysis. Within the gain range of 0 to 40 pu the selection of the gain setting 

is dependent on a number of factors: for example: (i) Can the desired damping of the target
mode be achieved with lower gain settings such that the reactive power output of the SVC
is not continually hitting limits for acceptable variations in frequency? (ii) Is the damping of
other modes unduly degraded? (iii) Can we be confident about the accuracy of the models
of the devices and the system? (iv) What are the effects of high controller gains on unmod-
elled dynamics, etc.
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Figure 11.6 Case 1: FDS plus SVC. Open-loop frequency response  for 

= -1 pu on device base. The gain margin is 56.6 dB (673 pu on device base) at 

241 rad/s. All PSS damping gains are set to 20 pu. 

11.4.1.3 Inter-area modal trajectories as the stabilizer gain is increased
To ascertain the effectiveness of the FDS tuning, which assumes all PSS damping gains are
set to 20 pu on machine MVA ratings, the eigenvalue trajectories are calculated as the FDS
gain is increased from zero to 100 pu on the SVC base. For the same FDS parameters the
trajectories are also evaluated for the case when all PSS damping gains are set to 10 pu. Based
respectively on Cases 1 and 4 both heavy and light load conditions are considered. The tra-
jectories of modes L and M are shown in Figure 11.7.

From the modal trajectories, it is observed that: 

• For increases of stabilizer gain up to 40 pu the shift in the inter-area mode M is more-
or-less directly to the left in the s-plane with small changes in modal frequency at
higher gains.

• The shift in mode L is negligible. It may be necessary to investigate whether stabilizers
on other SVCs in the system enhance the damping of mode L.

• The use of the FDS transfer function, whose tuning is based on a damping gain set-
ting of 20 pu on all PSSs, is satisfactory for (i) both the heavy and light load cases
investigated, (ii) both PSS damping gain settings of 10 and 20 pu.
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• As predicted from Figure 11.6 no evidence of closed-loop instability is found over the
FDS gain range 0 - 100 pu for the six cases investigated.

Figure 11.7 Cases 1 and 4. Trajectories of the inter-area modes L and M as the stabilizer 
gain  is increased in 10 pu steps from zero (shown by an arrow) to 100 pu on the SVC 

base. All PSS damping gains are set to 10 or 20 pu on machine base.
Z: Estimated mode values from (11.5) for stabilizer gain = 40 pu.

11.5 Use of line real-power flow as a stabilizing signal for a SVC

Consider the case when a major load is connected to two separate areas of generation
through high voltage transmission lines. Associated with these areas there is an inter-area
mode which is assumed to be lightly damped. If a SVC is located close to the load centre the
FDS may be able to improve the damping of the oscillatory power flow between the areas
by modulating the load-area voltage - and hence the real power flow into the load.

Referring to the system diagram in Figure 10.1, it is observed that a major load and the SVC
BSVC_4 are both connected to bus 412. It is also noted that the power flow on transmission
lines between buses 410 and 412 and between buses 411 and 412 supply the net real power
to the load at 412. The total net power flow perturbations, , at bus 412 into the load
bus will be considered to be a potential stabilizing signal.

For the purposes of calculating the residues of the transfer function ,

the SVC is placed under closed-loop voltage control with the FDS path in Figure 11.8 open.
All PSSs are in service with their damping gains set to 20 pu on machine base. A polar plot
of the residues is shown in Figure 11.9 from which it is noted that, by comparison with that
of Figure 11.4, the spread of amplitude and phase over the range of operating conditions is
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greater. Note: we cannot compare the residues derived from power signals with those de-
rived from bus frequency (see Section 3.7).

Figure 11.8 The controller and stabilizer for SVC BSVC_4 showing terminal voltage and 
droop controls, as well as the real power stabilizing signal .

Figure 11.9 BSVC_4. Polar plot of the residues of the transfer function  for 

modes L and M and six operating conditions. PSS damping gains 20 pu. 
Note: the magnitude scale is to be multiplied by 10.

As previously discussed, the objectives of the compensation is to improve the damping of
the inter-area mode M and, if feasible, mode L and the local-area modes as well. To cover
the range of rotor modes (see Tables 10.11, 10.15 and 10.16), a compensation angle of 
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is selected together with a representative value for the residue of 2.0 pu on SVC base. A first-
order compensator is specified, together with parameters of the first-order washout and
low-pass filters of TW = 7 s and TLP = 0.02 s, respectively. The complex tuning frequency is

again , targeting mode M.

Using an iterative procedure in Mudpack the parameters of the compensator are calculated
based on (11.11). The resulting FDS transfer function is 

;

the nominal value of the upper gain is = 2.02 pu.

With the FDS in service, the trajectories of the inter-area modes L and M, together with that
of a controller mode X associated with the FDS, are plotted in Figure 11.10 for Case 1. It is
seen that mode X becomes unstable when the stabilizer gain = 3.47% or 0.070 pu on

SVC base. This result is confirmed from the Bode plot of the open-loop transfer function
.

Figure 11.10 Case 1 with power flow FDS. Trajectories of the inter-area modes L and M 
and stabilizer mode X as the stabilizer gain  is increased in 0.5% steps from zero to 5% 

(0.101 pu on SVC base). All PSS damping gains set to 20 pu. 

In Table 11.3 the estimated rotor mode shifts for the inter-area mode M are compared with
the eigen-analysis-based (‘actual’) values for a range of stabilizer gains. The estimated mode
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shifts are based on (11.5) and the ‘actual’ shifts are calculated by the software package for
the full system.

Table 11.3  Estimated a and actualb mode shifts in mode M for Case 1, = 1 to 4%

From the table it is observed: (i) With increasing gain the left shift in the real part of the
mode calculated from eigen-analysis is 30 to 70% greater than the corresponding estimated
shifts. (ii) The system is unstable at % (0.070 pu), however, the Method of Res-

idues does not indicate that the instability of a controller mode occurs.

Allowing for a 10 dB (3.1 times) margin the gain setting  should be 0.070/3.1=0.022 pu

(1.1%). The associated mode shift is small and therefore the operation of a power-stabilized
FDS may not be justified for this system based on this study alone.

11.6 Use of bus frequency as a stabilizing signal for the SVC, PSVC_5

It was noted in Section 11.4.1.1 that the frequency-stabilized FDS installed on the SVC,
BSVC_4, did not usefully contribute to the damping of inter-area modes K and L. For the
purposes of coordination of stabilizers in Chapter 14 it is of interest to ascertain if the SVC,
PSVC_5 at bus 507, contributes to the damping of any of the inter-area modes. The maxi-
mum and minimum reactive power generation for PSVC_5 is 320 and  Mvar, respec-
tively, giving a reactive range (Mbase) of 500 Mvar. The relevant details are provided in
Table 10.17 and in the block diagram of Figure 11.2; Sbase = 100 Mvar.

A similar procedure to that outlined for BSVC_4 is followed: (i) to determine the parameters
of the FDS, and (ii) to evaluate the damping performance of PSVC_5 by means of the modal
trajectories for increasing FDS gain. For this purpose the FDS at BSVC_4 is out of service.

The local bus frequency Frq is used as the stabilizing signal and is synthesized from angular
perturbations  (rad) in the terminal voltage of the SVC, bus 507 in Figure 10.1. For Cases

Rotor mode
shift

Stabilizer gain, 

1% (0.020 pu) 2% (0.040 pu) 3% (0.061 pu) 4% (0.081 pu)

Estimated shift

Estimated mode

Actual mode shift

Actual mode value

a: Based on (11.5).  b: Calculated from eigen-analysis
Value of mode M at  is .

kfds

kfds

0.02– j0.02 0.05– j0.04 0.07– j0.06 0.09– j0.07

0.54– j1.78 0.57– j1.76 0.59– j1.74 0.61– j1.72

0.03– j0.02 0.08– j0.02 0.12– j0.00 0.15– j0.05

0.55– j1.78 0.60– j1.78 0.65– j1.80 0.68– j1.85

kfds 0= 0.52– j1.80

kfds 3.47=
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1 to 6 the polar plot of the residues of the inter-area modes K, L and M are shown in
Figure 11.11; the damping gain of the PSSs is set to 20 pu. 

Figure 11.11 PSVC_5. Polar plot of the residues for the transfer function  

for modes K, L and M and six operating conditions. All PSS damping gains are set to 20 pu 
on machine MVA rating. The values of modes K, L and M are in the vicinity of

 ,  and , respectively. 
Note: the magnitude scale is to be multiplied by 0.1.

Because the magnitudes of the residues for mode L in Figure 11.11 are two to three times
greater than those for modes M and K, the FDS tuning targets mode L. It is evident from
Table 11.4 that the representative values for PSS damping gains of 20 pu are likely to lead
to a satisfactory FDS design for the case when all PSSs are set to the lower value of 10 pu. 

Table 11.4  Representative values for evaluation of 
compensation transfer function, mode L

PSS
gain (pu)

Phase spread
(deg)

Represent-
ative phase 
angle (deg)

Compensa-
tion angle 

(deg)

Maximum
residue

Represent-
ative modal
frequency

20 -111 --> -151 -131 -49 0.0294

10 -123 --> -148 -136 -44 0.0251

Frq Vref

1.0– j4.0 0.45– j2.6 0.5– j1.9

0.45– j2.6

0.29– j2.7
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The FDS transfer function, based on the PSS damping gains of 20 pu is found to be: 

,     pu; (11.13)

the same washout and low-pass filter time constants as for the FDS of BSVC_4 are em-
ployed to cover the ranges of the inter-area modal frequencies.

To evaluate the effectiveness in the damping introduced by the FDS on PSVC_5 a similar
set of modal trajectories to those in Figure 11.7 are plotted in Figure 11.12.

Figure 11.12 Mode trajectories for Cases 1 and 4 as the FDS gain on PSVC_5 varies from 
zero (shown by an arrow) to 100 pu on device base in 10 pu steps. In each case all PSS damp-

ing gains are set to 10 or 20 pu on generator MVA rating.

For the range of FDS gains 0 to 100 pu this system is stable.

From the trajectories of the inter-area modes the following are observed.

• Mode L is left-shifted in the s-plane with a slight decrease in frequency when all PSSs
are set to 20 pu. However, its improvement is limited in the light-load condition, Case
4, when the FDS gain exceeds 30 pu. 

• Improvement in the damping of mode M is also limited for Case 1, the heavy load
condition, when the stabilizer gain exceeds 30 to 40 pu. 

• There are marginal improvements in the damping of mode K, but are limited for FDS
gains exceeding 30 pu.
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Because the FDSs on BSVC_4 and PSVC_5 induce marked shifts in modes M and L respec-
tively, coordination between the FDSs is desirable to achieve the best improvement in the
damping of these modes within the limitations which have been observed. The coordination
of stabilizers, PSSs and FDSs, will be considered in Chapter 14.

11.7 Tuning a FDS for a TCSC using a power flow stabilizing signal

A series capacitor is primarily installed to reduce the series inductive reactance of transmis-
sion lines thereby improving both the voltage and rotor-angle stability of the interconnected
system [2], [22] and [23]. It also reduces the voltage drop between buses straddling the line
and series capacitor - as well as reducing the I2X losses in the circuit. The proportion of the
line’s series inductive reactance which the series capacitor cancels out depends on a number
of factors which are determined by the characteristics of the system, [23]; such factors are
beyond the scope of this discussion.

For present purposes it is assumed that in a Thyristor-Controlled Series Capacitor (TCSC)
the series reactance is effectively perturbed by an amount  through the action of the sta-
bilizer [24]. Conceptually, for perturbations in real power flow in the line the action of the
FDS is to reduce the effective series reactance of the line when the power flow tends to in-
crease, and vice-versa. Damping of both the relevant modes and the line flow perturbations
is thereby improved. Due to the action of its washout filter the FDS does not respond to
relatively slow changes in the line’s real power flow associated with changes in load or in
generation dispatch.

The Method of Residues is again employed for the tuning of the stabilizer for the TCSC;
this technique is applied in [4], [5], [25], [26], and Appendix A of [27]. Other techniques are
covered in [28], [30] and [31].

It is assumed that equivalent single series capacitance, located between buses 310 and 311
in the simplified 14-generator system (see Figure 10.1), is thyristor controlled [29]. The
MVA base (Mbase) for the TCSC is selected to be 300 Mvar, The relevant section of the
network and the format of the stabilizing controls are shown in Figure 11.13 (a) and (b), re-
spectively.

In Figure 11.13(b), for the purposes of analysis, (i) a dummy reference is inserted in the con-
troller, and (ii) the gain in the forward path is KA = 1 pu on Mbase. Based on the transmis-
sion line data in Table 10.19, the effective series reactance of the two capacitors in parallel
is  pu on system base (Sbase = 100 MVA). 

X

j0.01685–
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Figure 11.13
(a) TCSC in the simplified 14-generator system (see Figure 10.1 for bus numbering). 

(b) Model of FDS using the perturbation in the real power flow (pu) through the TCSC 
as the stabilizing signal. (KS = Sbase/Mbase=100/300)

 (pu) is the perturbation in the series reactance of the equivalent single capacitor.

For the purposes of testing the variation of the residues with PSS damping gains it is as-
sumed that the inter-area modes may be heavily or lightly damped for all the operating con-
ditions. Such damping is implemented by setting all PSS damping gains to 20 pu or by
reducing all such gains to 5 pu on generator MVA rating. The effect of the gain reduction
on all the rotor modes in Cases 1 to 6 can be seen in Figure 10.26; for the inter-area modes
the associated eigenvalues are listed in Table 11.5. It is of interest to learn if an improvement
in the damping of the inter-area modes such that their damping ratios exceed 0.1 is achiev-
able with the FDS installed on the TCSC.

In order to derive a transfer function for the FDS we follow the procedure outlined in the
previous studies.

With no stabilizers in service on the SVCs and at the TCSC, the values of the lightly- and
heavily damped inter-area modes are listed in Table 11.5 for PSS damping gains of 5 and 20
pu; the residues are calculated for these PSS damping gains and modes.

According to Table 11.5 for the operating conditions in Cases 1, 3 and 4 the power flow
through the TCSC is from Area 1 to Area 3, and from Area 3 to Area 1 for Cases 2, 5 and
6. It is therefore proposed to use the modulus of the total power  through

the TCSC as the stabilizing signal with the object of deriving a single FDS transfer function
covering flows in both directions. For the purpose of calculating the residues of the transfer
function  the FDS path in Figure 11.13(b) is open. Polar plots of the

residues are shown in Figures 11.14 and 11.15 for PSS damping gain settings of 20 and 5 pu,
respectively.
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Table 11.5  Modes K, L, M. No FDSs on SVCs and at TCSC. 
PSS gains 5 and 20 pu on generator MVA rating.

Figure 11.14 reveals that a lag compensation angle exceeding  would cause a degradation
in the damping of Mode L for Case 2. Four assumptions are therefore made in determining
the representative values for calculating the compensation transfer function. (i) The degra-
dation in mode L is ignored unless it becomes excessive (i.e. other stabilizers are capable of
providing additional damping for this mode). (ii) The target mode for improvement in
damping is mode K. (iii) The FDS on the TCSC is switched off-line only when the steady-
state power flow in the TCSC is less than 200 MW, i.e. in Cases 4 and 6. (iv) It is anticipated
that PSS damping gains are normally in the vicinity of 20 pu on machine base.

For the FDSs designed for SVCs it is noted in mode trajectories, such in Figure 11.12, that
the imaginary parts of the modes tend to decrease with increasing gain when the compen-
sation shifts the residue such that the imaginary part of the residue is negative. For example,
in Figure 11.14 the residue for mode K, Case 5, is ; if the compensation angle
were  lagging, say, the residue is shifted to . It is therefore decided to provide over-
compensation with a compensation angle of  in order to increase the frequency of os-
cillation of the inter-area modes; this applies to Cases 1, 2, 3, and 5. 

Case
TCSC/
Line*
(MW)

PSS
gains 
(pu)

 Mode K  Mode L  Mode M

Value Value Value

1
763/
984

5 0.05 0.02 0.07

20 0.28 0.16 0.28

2
-1291/
-1023

5 0.04 0.03 0.03

20 0.21 0.17 0.24

3
730/
984

5 0.07 0.05 0.08

20 0.29 0.17 0.30

4
58 /
199

5 0.03 0.04 0.06

20 0.23 0.17 0.23

5
-379 /
-201

5 0.02 0.04 0.04

20 0.22 0.16 0.25

6
-141 /

0

5 0.03 0.03 0.04

20 0.23 0.17 0.21

* Total power flow through (i) TCSC at and from bus 310 (upper value);  (ii) Line, from bus 102 to 309 at 

309 (lower value)  - Damping ratio

  

0.18– j3.93 0.05– j2.57 0.14– j1.98

1.04 j3.64– 0.39– j2.40 0.52– j1.80

0.05– j3.75 0.11 j2.81– 0.050 j1.88–

0.77– j3.54 0.45– j2.54 0.43– j1.76

0.28 j4.02– 0.12 j2.63– 0.16 j2.01–

1.12 j3.71– 0.43– j2.42 0.58– j1.86

0.14 j4.74– 0.13 j3.53– 0.16 j2.64–

1.08– j4.58 0.56– j3.32 0.59– j2.51

0.08 j4.13– 0.12 j3.08– 0.09 j2.12–

0.88– j3.90 0.46– j2.89 0.50– 1.96

0.12 j4.80– 0.11 j3.51– 0.11 j2.57–

1.08– j4.64 0.57– j3.30 0.52– j2.45



60

6.1 70.7–
90 161–

110–
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Figure 11.14 TCSC: Polar plot of the residues for the transfer function 
 for modes K, L and M and six operating conditions.

All PSS damping gains set to 20 pu. Note: magnitude scale is to be multiplied by 100.

Figure 11.15 TCSC: Polar plot of the residues for the transfer function 
 for modes K, L and M and six operating conditions.

All PSS damping gains set to 5 pu. Note: magnitude scale is to be multiplied by 100.

Pmod h  Vref h 

Pmod h  Vref h 
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For the FDSs designed for SVCs it is noted in mode trajectories, such in Figure 11.12, that
the imaginary parts of the modes tend to decrease with increasing gain when the compen-
sation shifts the residue such that its imaginary part is negative. For example, in Figure 11.14
the residue for mode K, Case 5, is ; if the compensation angle were  lagging,
say, the residue is shifted to . It is therefore decided to provide over-compensation
with a compensation angle of  in order to increase the frequency of oscillation of the
inter-area modes; this applies to Cases 1, 2, 3, and 5. 

It is decided to base the calculation of the compensation transfer function on PSS damping
gains of 20 pu because: 

• the nature of the residues in Figures 11.14 and 11.15 are comparable for PSS damping
gains set to 20 and 5 pu, respectively; 

• the representative values in Table 11.6 for 5 pu PSS damping gains are essentially cov-
ered by those for the 20 pu gain settings.

Table 11.6   Representative values for evaluation of the compensation 
transfer function, mode K (excluding Cases 4 and 6)

The transfer function is therefore based on the representative values for PSS gains of 20 pu.
Because the required phase lag is greater than  and less than  a second-order trans-
fer function is selected (see Appendix 6–I.1). The transfer function is therefore:

 pu. (11.14)

11.7.1 Gain range for the stability of TCSC with the FDS in service
Maximum power flow through the TCSC from buses 310 to311 occurs in Cases 1 and 2 (763
and -1291 MW, respectively). Analysis to establish the range of gains for which the system
is stable is based on the Bode plot of the open-loop transfer function 

and assumes (i) negative feedback at the open-loop summing junction 1, (ii) there are no
open-loop poles in the right-half of the s-plane. For Cases 1 and 2 and with all PSS damping
gains set to 20 pu the Bode plot of the open-loop transfer function  is

shown in Figure 11.16. With the FDS in closed-loop operation the plot establishes for

PSS 
damping
gain (pu)

Phase spread
for K (deg)

Represent-
ative phase 
angle (deg)

Compensa-
tion angle 

(deg)

Revised 
Comp. angle

(deg)

Represent-
ative residue

Represent-
ative modal

value

20 -71 --> -93 -82 -98 -110 20.3

5 -86 --> -100 -93 -87 -110 20.1

1. Positive feedback of the FDS transfer function is assumed in Figure 11.13.

6.1 70.7– 90
161–
110–

1– j4

0.14– j4.2

60 120

Vref
Pmod
------------------- kfds H s  kfds

6s
1 6s+
--------------- 1 0.078s+

1 0.429s+
-------------------------

2 1
1 0.025s+
-------------------------  = = kRm 0.404=
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Case 1 that the system is stable - theoretically - over the gain range zero to infinity. In prac-
tice due to unmodelled dynamics the gain range for system stability may be limited. Howev-
er, for Case 2 the Bode Plot reveals that the system is unstable for stabilizer gains exceeding
0.21 pu on the TCSC base (this limit corresponds to 51.5% of the nominal upper gain of
0.404 pu). Eigen-analysis of the closed-loop system reveals that a mode associated with a
stabilizer state migrates into the right-half of the s-plane at the limiting value of gain.

Figure 11.16 TCSC. Cases 1 and 2: Open-loop frequency responses of the FDS and SVC, 
, = -1. Case 1 is stable over the gain range; for Case 2 the gain margin is 

 dB at 0.35 rad/s. All PSS damping gains 20 pu on generator MVA ratings.

11.7.2 Inter-area mode trajectories with increasing stabilizer gain
The stabilizer transfer function is given by (11.14). With the stabilizer loop closed, it is de-
sirable (i) to assess the nature of the variation of the inter-area modes K, L and M as the
value of the gain  is increased, and (ii) to compare modal values with those estimated

based on (11.5) of the Residue Method. For the heavier load Cases 1 and 2, and for stabilizer
gain settings between zero and 0.135 pu, the trajectories of the inter-area modes are plotted
in Figure 11.17. The modal trajectories are the eigen-value plots calculated by the Mudpack
software package. 

In Figure 11.17 for Case 1 the estimated values based on (11.5) of the Residue Method agree
closely with those from eigen-analysis. However, for Case 2 in Figure 11.17 the modal values
calculated from eigen-analysis diverge from those estimated for FDS gains greater than
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0.045 pu. As predicted from the plot of residues for Case 2, the damping of mode L degrades
slightly with increasing FDS gain.

Figure 11.17 TCSC, Cases 1 and 2. Trajectories of the inter-area modes K, L and M as the 
stabilizer gain is increased from zero (shown by an arrow) to 0.135 pu in 0.015 pu steps. 

All PSS damping gains are set to 20 pu on machine MVA rating.
Z: Estimated mode values from (11.5) for stabilizer gain  of 0.03, 0.06 and 0.09 pu on 

TCSC base. 

For this study there are only a few feasible operating conditions on which to base the tuning
of the FDS with confidence. In addition to line and other outages conditions it would be
desirable to include operating conditions in which the flow through the TCSC from Area 1
to Area 3 is of a comparable magnitude to that in Case 2, i.e. about 1300 MW. Clearly the
range of encompassing conditions needs to be widened - and the benefits established - in
order to justify an expensive FACTS device such as a TCSC with stabilizing controls.

11.8 Concluding comments

11.8.1 Improving the damping of inter-area modes using FACTS devices
A number of papers on the tuning of a stabilizer for a FACTS device consider a SMIB sys-
tem or simple four machine system with a single inter-area mode. However, the examples
in this chapter illustrate the potential difficulties of developing such a stabilizer at a particular
location in a multi-modal, multi-machine system, particularly as the location of the device is
chosen primarily for reasons other than damping rotor modes. Consequently, the stabilizer
may not be able to provide the desired damping for some or all the lightly-damped modes
of concern. The examples do suggest that a number of locations at which FACTS devices
are situated could be examined to determine their suitability for improving the damping par-
ticular modes. While the frequency-stabilized FDS might be feasible for BSVC_4 for im-
proving the damping of the inter-area mode M (in Section 11.4.1), it has a much smaller
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effect on mode L. A FDS in some other part of the network may, because of its location,
provide superior damping for mode L but may be less effective for mode M. It might there-
fore be useful to screen the appropriate FACTS devices to ascertain if a stabilizer installed
on the device might be effective in damping particular modes.

In considering the FACTS devices in the 14-generator system analysed in Chapter 10 there
are a number of sites at which SVCs are located. However, an examination - for example -
of the residues of the SVC in Area 3, RSVC_3, reveals that over the range of operating con-
ditions a FDS installed on this SVC produces relatively much greater mode shifts for the
inter-area mode K than for modes L and M. Furthermore, other analyses show that incre-
menting the PSS damping gain of the generators at LPS_3 in Area 3 is very effective in en-
hancing the damping of mode K. A stabilizer installed on this SVC would have been of more
interest if it were relatively more effective in damping mode L, say.

11.8.2 Robustness of FDSs
In tuning fixed-parameter FDSs the concept of robustness is based on the following con-
siderations:

• there are two important components of a fixed-parameter FDS transfer function
 which should be decoupled for practical purposes;

(a) the rotor modes are more-or-less directly left-shifted by the FDS compen-

sating transfer function  with increase in the FDS gain, 1;

(b) the extent of the left-shift of the rotor modes is determined by the gain,
;

• ideally, the incremental left-shifts of the rotor modes are linearly related to increments
in FDS gain for changes about selected nominal values. 

• such considerations should apply over the set of encompassing operating conditions
and an appropriate range of rotor modes.

The securing of a predominately left-shift of the relevant modes with increasing stabilizer
gain is a requirement for the simultaneous coordination of PSSs and FDSs in Chapter 14,
[32]. 

From the various studies presented in this chapter it is clear that the task of ensuring robust-
ness is complex and time-consuming. In particular the FDS typically enables the damping
of certain modes only, such damping being found to be dependent upon the location of the
FACTS device in the system and the type of stabilizing signal employed.

1. This is not a ‘damping’ gain which is associated with P-Vr based PSS tuning.

kfdsGc s 

Gc s  kfds

kfds
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Unlike the P-Vr characteristics which contributes robustness in the analysis of generator
PSS parameters, there appears to be no corresponding system characteristics for the deter-
mination of FDS parameters. The issue of robustness of FDSs is a deficiency associated with
the Method of Residues.

11.8.3 Estimated versus calculated mode shifts
From the mode trajectories for increasing stabilizer gains in Figures 11.7 and 11.17 it is ob-
served that the value of the estimated mode, derived from the mode shift calculated using
(11.5), diverge significantly at higher gains from those calculated using eigen-analysis.

The estimated mode shifts are based on the simple relations in (11.5) or (11.6). These do not
account of the characteristics of a multi-machine system. In particular, as is well-known in
the root-locus analysis of transfer functions, with increasing gain the modes migrate from
the open-loop poles to the finite system zeros or those zeros at infinity. As the gain of the
FDS is increased from zero, the influence of system zeros arises and the mode trajectories
deviate from the ideal direct left-shift, or approach a close-by zero. Moreover, these modes
may diverge from the estimated left-shift at relatively low or high gains. If there are open-
loop zeros in the right-half s-plane, poles may migrate towards them resulting in instability,
possibly at a relatively low value of stabilizer gain.

11.8.4 The notion of a ‘nominal upper gain’ for FDSs
The value of the stabilizer gain can be expressed as a fraction or a percentage of the so-called
‘nominal upper gain’,  (per unit). Note that (11.7) shows that  is inversely propor-
tional to the representative value selected for the magnitude of the residue. If the largest
magnitude is chosen then the value of  may provide a notional warning

that the mode shift may no longer increase linearly with increase in stabilizer gain for certain
modes or operating conditions. As stated above, it has been shown that in multi-machine
systems a number of other factors may result in linear changes in mode shift ceasing at lower
values of . Depending on the application, the latter values may provide a convenient

or meaningful gain limit - or a warning for the user.
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Chapter 12

The Concept, Theory, and Calculation of 
Modal Induced Torque Coefficients 

12.1 Introduction

In this chapter the concept, the theory, and calculation of modal induced torque coefficients
(MITCs) in multi-machine power systems are introduced. The concept of a modal induced
torque coefficient is new [1], [2]. It forms the basis for calculation of the shifts in rotor
modes when the stabilizer gains of one or more PSSs and/or FDSs are incremented by 
(pu) on device base. Based on the concept of MITCs, the background theory of the rotor
modes shifts, together with analysis of the effectiveness of, and interactions between, PSSs
and FDSs in multi-machine systems are described in Chapter 13.

The theoretical development of MITCs in this chapter is fairly detailed and can be omitted
if the practical applications of the analysis of rotor modes shifts are of primary interest.
Where relevant, references are made in Chapter 13 to the results and equations that are de-
veloped in this chapter. A case study in the latter chapter demonstrates the significance of
the MITCs and the insights that they provide into the dynamic performance of a multi-ma-
chine power system.

In essence, the concept of a modal induced torque coefficient is a further development of
the concepts of damping and synchronising torque coefficients based on frequency re-
sponse analysis (i.e. ) [1]. In this chapter the torque coefficients are evaluated at the

k

s jf=
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complex rotor modes ( ). The frequency-analysis-based torque coefficients are
introduced in Section 5.3 for a SMIB system and in Sections 9.5 and 10.6 for the multi-ma-

chine case. With shaft dynamics enabled, the modal induced torque coefficient, , for the

complex rotor mode  is defined as a complex torque coefficient which is induced on gen-
erator i due to a perturbation in the stabilizing signal of stabilizer j. The stabilizer in question
may be a power system stabilizer (PSS) or a FACT device stabilizer (FDS) installed on a
FACTS device. Such FACTS devices are static var compensators (SVCs), high voltage DC
links, thyristor controlled series capacitors (TCSCs) among others. It will be shown that the
effect of any such stabilizer on the damping of any mode of rotor oscillation can be quanti-
fied. The concept can be extended to other devices such as wind turbine generators, photo-
voltaics and any other power-converter based transmission or generation equipment. The
calculation of the MITC is from any controller to the effective induced torque coefficient
on a specific synchronous generator. The controller may be installed on another synchro-
nous generator on or any other dynamic device.

The analysis of the torque coefficients for generator i in the earlier chapters is based on the
frequency response of the transfer function , all machine dynamics

being disabled. However, it is possible that due to perturbations in the speed of machine j a
torque coefficient is induced on generator i. However, because we cannot relate speed per-
turbations on machine j to those on generator i when the shaft dynamics are disabled, the
component of electro-magnetic torque induced by perturbations on generator i, .

in phase with speed perturbations on generator i, , cannot be calculated, i.e. the

damping torques induced by other machines on generator i are not available. However, the
concept of modal induced torque coefficients (MITCs) overcomes this problem and facili-
tates, among other outcomes, the calculation of synchronizing and damping torque coeffi-
cients at modal frequencies. Essentially the analysis is divided in parts, (i) analysis with rotor
dynamics enabled; (ii) analysis based on part (i) to derive the MITCs; (iii) analysis based on
the MITCs to derive mode shifts due to stabilizer gain increments (this analysis is conducted
in Chapter 13). The advantage of this approach is that it facilitates the study of (i) the effects of
controls on individual rotor modes, and (ii) the relative effects of controls on a set of selected
modes. It should be emphasized that the analysis of a large system with shaft dynamics enabled
is complex, and the effects of controls on selected modes may be difficult to separate out.

For the purposes of generality in the initial analysis of MITCs, it is assumed that the con-
troller to which all  speed stabilizing signals are fed is a “centralized” PSS, a full  ma-
trix transfer function. Following the derivation of a set of general results, “decentralized”
PSSs are employed in which the PSS matrix transfer function is diagonal. The decentralized
stabilizer is, of course, the practical form of the PSS. Likewise for FACTS devices, the  lo-
cal stabilizing signals are transmitted to a centralized FDS which is represented by a full 
matrix transfer function. Each output of the centralized FDS is then fed to the summing

h  j=

Tij
h

h

P0i s  i s  s jf=
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junction of the controller on each FACTS device. In the practical form of the decentralized
FDS the matrix transfer function is diagonal.

This chapter is structured as follows. In Sections 12.2.2 to 12.5 the concept of the modal
induced torque coefficient (MITC) is introduced and its physical significance is explained.
In order to apply the concepts to a multi-machine system a transfer function model of the
system and its controllers is derived. in Section 12.3. Furthermore, a method is outlined for
calculating MITCs when either a centralized PSS or FDS is in service. The application to
decentralized controllers follows in Section 12.6. Using parameter-perturbation analysis in
the remaining parts of the chapter, the relationship between MITCs and stabilizer gains is
established. On this relationship is based the calculations in Chapter 13 of the shifts in the
rotor modes of oscillation caused by an increment in the gain of any or all stabilizers. 

12.2 The Concept of Modal Induced Torque Coefficients (MITCs)

12.2.1 Conventional frequency response techniques versus modal analysis
In previous chapters the analysis of decentralised, fixed-parameter PSSs and FDSs has been
based mainly on frequency response techniques, i.e. with . However, in the analysis

that follows we are interested in the components of torques of electromagnetic origin in-
duced on the shaft of a generator at a modal frequency of rotor oscillation, ,
through the action of a generator or FACTS device stabilizer. Because certain relationships
[(12.67) and (12.69)] apply only at a modal frequency of rotor oscillation , modal anal-
ysis must be employed in the associated analysis. [It is easy to show that for a complex modal
frequency , which is a damped-sinusoid, the response of the transfer func-
tion  at that modal frequency (and only at that modal frequency), is . The deriva-
tion of this result is similar to that in Section 2.11 for ]. For the sake of generality,
however, in parts of Sections 12.2.4 to 12.6 which are applicable in both the domains

 and  the relevant expressions are expressed as functions of the form

.

12.2.2 Modal torque coefficients induced by the action of a power system stabi-
lizer 
Two generators in a linearized representation of a multi-machine power system are shown
in Figure 12.1(a). The speed-input PSS on machine j is assumed to be in service; machine i
is not fitted with a stabilizer. A small system disturbance is assumed to occur which results
in (i) only the hth complex mode of rotor oscillation, , being excited; (ii) the rotors of the
generators being perturbed from synchronous speed. For machines i and j, the relative mag-
nitude and phase of perturbations in their speeds,  and , respectively, are related by

(12.67) in Appendix 12–I.1 (repeated here):

s jf=

s   j= =

s =
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, (12.1)

where, for the eigenvalue ,  and  are the ith and jth elements of the right-eigenvector

corresponding to the respective speed states of the two generators.

Figure 12.1 (a) Conceptually, at complex modal frequency , due to speed pertur-

bation on machine j acting through its PSS, the MITCs  and  for mode  are in-

duced on machines i and j respectively. 

(b) Likewise, the electrical torque coefficient  is induced on machine i due to the per-

turbation in the local stabilizing signal  acting through the FDS on FACTS device j.

Consider in Figure 12.1(a) the signal path from the speed perturbation  through PSS j

to the torque of electro-magnetic origin acting on the rotor of generator j. As has been dis-
cussed in Section 10.6, there will be in the latter torque a component  induced on the

shaft of generator j by its own PSS. However, there is also a signal path from  through

PSS j to the electrical torque component  on the rotor of generator i. The component
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of  on generator i in phase with the speed perturbation  on generator i is a damping

torque induced on that generator; this torque arises from the perturbation in  and the action

of PSS j [3]. Consequently, for the complex modal frequency , a complex modal induced

torque coefficient, , can be defined which relates the change in a component of the

torque of electro-magnetic origin  on generator i to the change in speed  on the

same machine, the electrical torque being a result of the perturbation, say, of the input signal
on stabilizer j, i.e.

. (12.2)

Using (12.1) the torque coefficient, , may be expressed as follows:

. (12.3)

The term in (12.3), , is the transfer function from the speed of machine

j, , through PSS j to the electrical torque component . The effect of the term,

, is to relate the perturbation in  to a perturbation in speed  on machine i,

rather than machine j. Because, in (12.3), there are components of  on machine i in

phase and quadrature with , the concept of damping and synchronising torques can be

employed [4]. Conceptually, the complex modal induced torque coefficient, , can be

considered to be embedded in the linearized model of machine i, as shown in the dashed
blocks of Figure 12.1(a). 

An examination of the linearized model of Figure 12.1(a) reveals that a modal torque coef-
ficient is also induced on machine i due to a speed perturbation on machine j acting through

the feedback path of the rotor angle  of machine j; this path is parallel to that of PSS j.

Though not shown in Figure 12.1(a), this is an inherent torque coefficient. Since the inherent
torque coefficient is associated with a path which is independent of the PSS feedback path,
it is induced on the generators both in the absence and presence of the PSS. However, the
emphasis in this and Chapter 13 is on the role of stabilizers in enhancing the damping per-
formance of the multi-machine power system. Nevertheless, it is important to ensure that
negative inherent modal torque coefficients are not significant enough to swamp out the
positive torque coefficients induced by the PSS.

12.2.3 Modal torque coefficients induced by the action of a FACTS device stabi-
lizer

Consider a FACTS device in service in a multi-machine power system. In Figure 12.1(b) are
shown representative elements of a linearized model of the power system consisting of n
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generators and z FACTS devices and z FDSs. An examination of the figure reveals there is
a signal path from the local stabilizing signal, , through FDS j to the electric torque com-

ponent  on generator i. 

In the analysis of the matrix transfer function representation of the multi-machine system
in Section 12.3 a system output vector is defined in (12.10) as:

, (12.4)

where  is the electrical power output of generator i; the vector of the z FDS stabilizing

signals is . As a result of a perturbation in the stabilizing signal 

a complex modal torque of electromagnetic origin is induced on the shaft of the generator
i. The electric torque component  induced on the shaft of machine i can be expressed

as: 

. (12.5)

Again, of particular interest for generator i is the component of  in phase with the

speed on machine i. To determine the induced damping and synchronising torques, (12.5)
must be modified such that the induced electrical torque component on machine i is related
to its own speed perturbation, . If a single mode of rotor oscillation, , is excited then

the relative magnitude and phase of the two signals,  and the FDS stabilizing signal, ,

can be calculated using (12.69) in Appendix 12–I.1, 

, where (12.6)

• q = (n+j) since  is both the (n+j)th element of the output-vector  and the jth

of ; 

•  is the qth row vector of the output state matrix C; 

•  is the right-eigenvector of the eigenvalue ; and 

•  is the ith element of  corresponding to the speed-state of generator i. 

For the purposes of analysis, however, it is again more convenient to define a complex in-
duced torque coefficient rather than consider the induced torque itself. The modal torque co-

efficient induced on machine i due to the action of FDS j is  therefore defined as 

. (12.7)
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Using (12.6) an expression for the torque coefficient  is derived:

. (12.8)

The term, , in (12.8) is the transfer function from the stabilizing signal

 through FDS j to the torque component  on machine i, evaluated at the mode of

interest. This gives the component of electrical torque induced on machine i due to pertur-
bation in . The second term, , relates the perturbation in torque  to

the perturbation in speed  on machine i. Because in (12.7) there are components of

 on machine i in phase and quadrature with , the concept of damping and syn-

chronizing torques can again be applied. As was the case in Figure 12.1(a), the complex

MITC  can also be considered, conceptually, to be embedded in the linearized model of

machine i, as shown in Figure 12.1(b).

12.2.4 Modal torque coefficients induced by centralized stabilizers

In the following analysis it is assumed that a single centralized PSS accepts n speed input
signals and supplies n output signals to the n generators. Similarly, a centralized FDS accepts
z stabilizing signals and delivers z output signals at the z summing junctions of the FDSs.
The assumption that the stabilizing signals of the centralized PSS are shaft speeds is made
for convenience, but is not a necessary condition for the analysis; the theory of modal in-
duced torque coefficients can be developed for an appropriate stabilizing signal.

In order to analyse the contributions to the MITCs on generators by the PSSs and FDSs in
a multi-machine system a transfer function matrix model of a power system is first derived.

12.3 Transfer function matrix representation of a linearized multi-
machine power system and its controllers

To calculate the modal induced torque coefficients it is necessary to identify the signal paths
which cause torques of electromagnetic origin to be developed on the rotors of generators,
and to be able to evaluate the associated components of torque. Consequently, in this sec-
tion a transfer function matrix (TFM) model of a power system is derived which facilitates
the calculation of the shaft torques that result from the action of PSSs and FACTS Device
Stabilizers (FDSs) [1], [2]. Moreover, the associated state equations not only form the basis
for the calculation of the MITCs, but also the design of stabilizers for FACTS devices, the
coordination of FDSs with the PSSs, the interactions between stabilizers, and the develop-
ment of the so-called ‘stabilizer damping contribution diagrams’. 

Let the number of states be N, the number of generators be n and the number of FACTS
devices be z. The input vectors  and  represent voltage reference inputs to the gen-
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erator AVR and the FACTS controllers, respectively. Similarly the vectors  and 
represent, respectively, the generator electrical power outputs and the local signals which act
as inputs to FACTS device stabilizers. The vector of system states can be divided into three
groups, ,  and  which represent the generator speeds, the generator rotor-angles
and the set of all other system states, respectively.

Consider the state-space model: 

,    , (12.9)

where 

; , 

; (12.10)

;   ; (12.11)

; (12.12)

; (12.13)

. (12.14)

Note that it is assumed that the system matrix, D, is a zero matrix; the physical interpretation
of which is that there is no instantaneous relationship between system outputs and system
inputs. This is a valid assumption in the context of power system models. Furthermore, as-
sume that in the above state-space model: 
(i)   there are no PSSs fitted to the generators,
(ii)  governors and turbines are not modelled, and
(iii) there are no stabilizers fitted to the FACTS devices in the system.

In order to disable the dynamics of all generator shafts, let us (i) temporarily remove the state
equations describing the shaft dynamics from (12.9), and (ii) treat  as an input vector.
As explained in Sections 5.10.2 and 5.10.3 this is similarly achieved by eliminating the rows
associated with  in matrices A, B and C, and transferring the columns associated with
the speed states in these matrices to expanded B and D matrices to form a new set of state
equations. Therefore, (12.9) reduces to 
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, and (12.15)

. (12.16)

Using (12.15) and (12.16) we can write a TFM equation which relates the vector of system

outputs,  in (12.10), to the vector of system inputs, , with shaft dynamics

disabled. That is, 

, (12.17)

where

; (12.18)

; (12.19)

; (12.20)

; (12.21)

; (12.22)

. (12.23)

The above equations represent the TFMs from perturbations (i) in generator reference volt-
ages , (ii) in the FACTS device reference inputs , and (iii) in generator rotor-angles

, to perturbations both in generator electric power outputs  and in stabilizing signals

 of the local FACTS devices. Details of the calculation of the matrices  and 

are supplied in Appendix 12–I.3.

 The shaft dynamics equations, which were temporarily eliminated from (12.9) in forming
(12.15), can be expressed as 

                      (12.24)
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where 

. (12.25)

The generator shaft dynamics represented by (12.25), and the rest of the system dynamics
represented by equations (12.18) to (12.23), are combined with the TFM representing the
PSSs, FDSs and governors to form a TFM model of the power system. This model is shown
in Figure 12.2. 

Figure 12.2 Transfer function matrix model showing three paths through which compo-
nents of electrical modal torques are induced on the generator rotors.

The significance of each TFM block in the figure is examined below.

: is initially a TFM of a centralized speed PSS and is a full  matrix. In later sec-

tions, because in practice each generator is fitted with a single, decentralized PSS, 

becomes a diagonal matrix. 
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: is initially a TFM of a centralized FACTS device stabilizer and is assumed to be a

full  matrix. The inputs are the local stabilizing signals given by the vector , .
The outputs of the centralized FDS, , are inputs to the summing junctions of the

FACTS device controllers. Again in later sections,  becomes a diagonal matrix rep-

resenting the transfer functions of decentralized FDSs.

 is a TFM of the governors; it is a  matrix.

: is a full  TFM which relates the perturbations in torque contributions of elec-

tromagnetic origin on generators, , , due to perturbations in the reference in-

puts, , , on the AVRs when . Of particular significance is that the diagonal

element, , is the P-Vr transfer function of machine i. 

: is a full  TFM which relates the perturbations in torque contributions of elec-

tromagnetic origin on generators,  , due to perturbations in the reference signals

on the FACTS device controllers, , , when .

: is a  diagonal TFM which represents the shaft dynamics of the units.

: is a  TFM of diagonal elements ; it relates the perturbations in rotor angle
due to speed to perturbations on the units. 

: is a full  TFM which relates the perturbations in torque contributions of elec-

tromagnetic origin, , due to perturbations in the rotor angles of machines. It is through
this TFM that the inherent torques are produced. 

,  and : are full TFMs which relate the perturbations in the stabi-

lizing signals, , due to perturbations in the rotor angle ( ), the machine reference volt-
age, ( ), and the FACTS controller reference signals, ( ), respectively, when  and

.

In Figure 12.2 three distinct paths are shown through which components of electrical torque
are induced on the shafts of generators. The first path, #1, is through the speed-PSS feed-
back path, the second, #2, is through the FDS feedback path and the third, #3, is via the
rotor-angle feedback path. From Figure 12.2 it is revealed that the torque induced by the
third path is given by 

                                           . (12.26)

Hfds s 

z z  z 1
Us

Hfds s 

Hgov s  n 1

HPVr s  n n

PVr s  n 1

Vr n 1 Vs 0=

HPVr_ii s 

HPUr s  n z

PUr n 1

Ur z 1 Us 0=

J s  n n

N s  n n 0 s

HP s  n n

P

H s  HVr s  HUr s 

 
Vr Ur Vs

Us 0=

P s  HP s N s  s =



574 Modal Induced Torque Coefficients Ch. 12
Substitution of (12.20) and (12.25) for  and , respectively, into (12.26) yields 

. (12.27)

The term  is a matrix of real, constant, inherent synchronising torque coefficients (com-
pare this with the coefficient K1 in the SMIB case of Figure 5.1). The term

 represents the inherent feedback paths from  through the
generator electromagnetic circuits, the network and the AVR/exciter to the electrical torque
induced on the rotors of the generators. Because the term is complex at any frequency, its
real and imaginary components represent the inherent damping and synchronising torque
coefficients on each machine.

Following a large-magnitude disturbance, high gain AVRs tend to increase synchronising
power flows and thus enhance first swing stability [6]; however, high-gain AVRs have a ten-
dency to reduce damping torques [7]. As has been discussed in earlier chapters, the objective
of PSS and FDS design in small-signal analysis is to induce positive damping torques on gen-
erator rotors for all modal frequencies of rotor oscillation. In order to achieve a constant
damping torque coefficient over the range of rotor modes of oscillation, the frequency re-
sponse (for ) of the coefficient induced by the PSSs should ideally be flat with neg-

ligible phase shift and must swamp the negative inherent damping torque coefficients (see
Section 10.6). Furthermore, the PSS or FDS should not significantly reduce the inherent
synchronising torque coefficients. Paths #1 and #2 in Figure 12.2 will therefore be analysed
in more detail to determine quantitatively the modal torque coefficients induced on each
generator by the PSSs and FDSs. 

12.4 Modal torque coefficients induced by a centralized speed PSS

The analysis in the previous section is formulated on a centralized stabilizers. The modal in-
duced torque coefficients for the centralized PSS are derived below. The results for the de-
centralized PSS are then developed in Section 12.6.

Based on Figure 12.2 it is seen that the total electrical torques induced on the rotors of gen-
erators are the sum of the torque components associated with paths #1 to #3 and are ex-
pressed by the vector 

,   where (12.28)

 - is the vector of contributions to the electrical torques resulting from rotor speed

perturbations being fed back through the centralized PSS, path #1; 
 - is the vector of contributions resulting from the perturbations in the local stabi-

lizing signals for FACTS devices being fed back through the centralized FDS, path #2; 
 - is the vector of contributions to the inherent electrical torques, path #3. 
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Note the effects of speed-governors are ignored here, but they can be included in the TFM
, as shown in Appendix 12–I.2, without affecting the following analysis.

Let us consider the contribution made by the TFM of the centralized speed-PSS to electrical
torques on the generators. It is shown in Appendix 12–I.2 that the block diagram in
Figure 12.2 can be reduced to that illustrated in Figure 12.3; the latter shows only the loop
associated with the centralized PSS feedback path. The rest of the system dynamics, includ-
ing that of the centralized FDSs, etc., has been incorporated in the TFM .

Figure 12.3 TFM representation of a linearized multi-machine system showing the loop 
associated with PSS feedback paths. All other dynamics are included in Gp(s).

From Figure 12.3, the vector of contributions of electrical torque, , resulting from gen-

erator speed perturbations, , fed to the centralized speed PSS  is 

 , (12.29)

where  is a  TFM which relates speed perturbations on any

machine to the PSS-induced torque perturbations on any machine. Based on (12.29), the to-
tal PSS-induced torque on the rotor of generator i due to the speed perturbations on all n
generators is given by 

, (12.30)

where the elements of the speed-torque TFM  are given by 

. (12.31)

The jth element of the summation in (12.30), , which is the component of the PSS-

induced torque on machine i due to speed perturbation on machine j, is

. (12.32)

The above equation relates to torques induced on generator i by speed perturbations on i
and all other machines. However, to calculate the synchronizing and damping torques in-
duced on generator i we need to explicitly determine torques in-quadrature and in-phase
with the speed perturbations on generator i, caused by speed perturbations on all generators.
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Bearing in mind the comments in Section 12.2.1, consider now a complex mode of rotor os-

cillation, . The torque  can therefore be defined in terms of the modal in-

duced torque coefficient  in (12.2), i.e. 

, (12.33)

where the MITC is given in (12.3) by

. (12.34)

Substitution in (12.34) of  for  from (12.32) thus yields 

. (12.35)

This equation provides an expression for calculating the MITC on machine i due to speed
perturbations on machine j, at the single modal frequency . Equation (12.35) is substitut-
ed into (12.30) to give, 

. (12.36)

The term  is the total MITC on machine i due to perturbations in the speed of all

n generators being fed back through the PSS TFM, . The total MITC on machine i

is defined as 

. (12.37)

 Using this definition, (12.36) becomes 

. (12.38)

Hence, considering all n machines in the system, (12.29) can be written TFM form as 

(12.39)

at the modal frequency , where the matrix .

At this point it is important to reiterate the physical significance of the MITCs. Because the

real part of  represents a damping torque coefficient, the total damping torque coeffi-

cient induced on generator i by the action of all stabilizers is . 
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In summary, for a centralized speed-PSS whose elements  are known, the total

induced torque coefficient  for generator i and mode  can be calculated by succes-
sively evaluating (12.31), (12.35) and (12.37).

12.5  Modal torque coefficients induced by a centralized FDS

Figure 12.4 TFM representation of a linearized multi-machine system showing the loop 
associated with FDS feedback paths; other dynamics are included in TFMs GF(s) and L(s).

Let us consider now the contribution made by the TFM of a centralized FDS to the modal
electrical torque induced on the generators, . It is shown in Appendix 12–I.2 that the
transfer function block diagram in Figure 12.2 can be simplified to that illustrated in
Figure 12.4; the latter shows only the loops associated with the centralized FDS feedback
path. All other system dynamics and feedback paths, such as the PSSs, have been absorbed
into the TFMs  and . This figure shows that there is a closed path from , the
vector of generator speeds, to , through the TFM of the FDSs. Therefore, associated
with speed perturbations there will be components of torque in phase and quadrature with
speed induced on the shaft of each machine through the feedback path of the FDSs. Based
on Figure 12.4 the stabilizing signals supplied to the FDSs are given by the vector

, (12.40)

where  is the centralized FDS TFM defined in Section 12.2.4. The components of

torque induced through the feedback path of the FDSs are 

 . (12.41)

The vector  is the vector of reference set points at the summing junction of the FACTS

device controllers (see Figure 12.2). Let us assume that there is no perturbation in these sig-
nals, i.e. . Therefore, (12.40) and (12.41) become 

, (12.42)
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 (12.43)

Solving (12.42) for  and substituting this into (12.43) we find 

. (12.44)

------------------------
AN ASIDE: As in the case of the centralized speed-PSS (12.30), the effective action of the trans-

fer function matrix of the centralized FDS,  in Figure 12.4, can be replaced by the equiv-

alent  speed-torque TFM  of (12.44). 

If the power system model used here represented a SMIB system, with a single FACTS device in
the system, evaluating  would be relatively easy;  would represent the transfer func-

tion between the generator’s speed and electrical torque, due to the action of the FDS. Therefore,
for this case, a FDS could be designed based on damping torque concepts as for PSSs. That is,
based on (12.44), if the FDS transfer function were designed such that 

, (12.45)

then ideally a real damping torque coefficient, equal to kfds, would be induced on the

shaft of the generator. By solving (12.45) for  we find the FDS transfer function

to be

. (12.46)

This is equivalent to the design procedure, based on a frequency response approach, derived in
[8]. 

------------------------

In the case a multi-machine system evaluating the TFM  in (12.44) is not a trivial task,

especially since  is not a diagonal matrix [9]. Therefore, no attempt will be made

here to evaluate ; moreover (12.46) cannot be extended to the multi-machine case in
an approach analogous to that for PSSs in Section 12.4.

In contrast to the tuning of PSSs, which is described in Chapters 5 and 10 and which is based
on frequency response methods, a different approach to the tuning of FDSs in a multi-ma-
chine system is adopted here. First an expression will be derived which relates the perturba-
tion in the electrical torque induced on the shaft of generator i to the perturbations in the

PUr s  HPUr s Hfds s  s =
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HPUr s Hfds s  I HUr s Hfds s –  1–

L s 

n n  
   s =

F s  s =

                  

Hfds s 

n n F s 

F s  F s 

PUr


------------- HPUr s Hfds s  1 HUr s Hfds s –  1–

L s  kfds= =

Hfds s 

Hfds s 
kfds

HPUr s L s  kfdsHUr s +
----------------------------------------------------------------------=

F s 

HUr s 

F s 
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signal . Then, as in section Section 12.4, an expression will be derived for this compo-

nent of torque at a selected mode of rotor oscillation, .

Based on (12.43), the torque induced on generator i due to the action of the z FDSs is 

, (12.47)

where, from (12.43), the elements of the speed-torque TFM  are given by

. (12.48)

Let us consider the jth element of the summation in (12.47), i.e.

 . (12.49)

Equation (12.49) relates to torques induced on generator i by stabilizing signal perturbations
on FDS j. However, to calculate the synchronizing and damping torques induced on gener-
ator i we need to explicitly determine torques on generator i in quadrature and in-phase with
the speed perturbations on generator i, caused by stabilizing signal perturbations on all
FDSs.

At a selected rotor mode of oscillation, , the torque of electromagnetic origin

 can also be defined in terms of the MITC , as in (12.33), 

. (12.50)

Referring to (12.69) in Appendix 12–I.1, the MITC is given by (12.8) becomes

(12.51)

where q = (n+j) and  is the jth element of the vector  and the (n+j)th element of the

system output vector  (see (12.4)).

Following substitution of the transfer function  from

(12.49) into (12.51) the MITC on machine i associated with the signal path through FDS j
becomes

. (12.52)

We can also define the total MITC on machine i, , associated with signal paths through

all z FDSs, i.e. 

j

h

PUr_i s  PUr_ij s 
j 1=

z

 fds_ij s j s  
j 1=

z

= =

fds s 

fds_ij HPUr_il s Hfds_lj s  
l 1=

z

=

PUr_ij s  fds_ij s j s =

s h=

PUr_ij TFij
h

PUr_ij h  TFij
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TFij
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j
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h
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. (12.53)

 Consequently, at the single modal frequency , (12.49) can be written as

. (12.54)

Once again, an examination of (12.50) and (12.54) reveals that the real parts of both 

and  represent damping torque coefficients on the ith generator.

In summary, for a centralized FDS whose elements  are known, the total MITC

for generator  can be calculated by successively evaluating (12.48), (12.52) and (12.53)

for the mode .

12.6 General expressions for the torque coefficients induced by con-
ventional, decentralized PSSs & FDSs

In Sections 12.4 and 12.5 centralized speed-PSSs and FDSs are assumed. However, for a de-
centralized PSS, the stabilizing signal on machine i is derived only from the speed signal of
machine i. Consequently, the TFM  is a diagonal matrix, i.e. , and

thus (12.31) becomes

. (12.55)

An expression for the modal torque coefficient induced on machine i due to speed pertur-
bation, , on machine j acting through PSS j is derived by substituting (12.55) into

(12.35), i.e. 

, (12.56)

where  is simply written as . The total MITC for generator i, , is

given by (12.37).

Similarly, decentralized, practical FDSs are designed for the various FACTS devices. That
is, for each FACTS device a local stabilizing signal is selected as an input to its FDS and thus
the TFM  becomes a diagonal matrix. Consequently, (12.48) becomes 

. (12.57)

Substituting (12.57) into (12.52) we find the modal torque coefficient induced on machine i
due to perturbations in the local stabilizing signal of FDS j is

Fi
h TFij

h
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=

h
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j

TPij
h HPVr_ij h Hpss_j h 

vjh

vih
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h
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, (12.58)

where  is the jth element of the diagonal TFM .

Let us assume that the transfer function of any decentralized stabilizer is . This is the

transfer function between the qth system output (which represents a local stabilizing signal)
and the jth system input (the summing junction of either a generator or FACTS device).
Based on (12.56) and (12.58), the following generalised form which applies to both PSSs and
FDSs is proposed for the MITC:

. (12.59)

Note that for PSSs ; for FACTS devices .

The transfer function  is evaluated at the modal frequency  with all machine shaft

dynamics disabled. To calculate the TFMs  and  at a number of modal

frequencies, (12.18) and (12.19) are employed, e.g. 

, (12.18) repeated.

Following the calculation of the eigenvalues and eigenvectors of  the TFM is decom-
posed into a form which allows it to be evaluated easily at the required modal frequencies. 

12.6.0.1 Relationship between: MITC  and PSS damping gain ki 

Any appropriate stabilizing signal can be used for a PSS. Note that a speed-input PSS is a
special case because the speed of a machine is both a state and an output of the system.
Therefore if a speed-PSS is installed on the th generator then the th row of the output ma-

trix of the state equations (12.9) is ; hence the term  in (12.59)

reduces to . Furthermore, it is of interest to note from (12.59) that the MITC in-

duced on generator i due to its own PSS is

, (12.60)

since for a well-tuned PSS 1. That the MITC is equal to the nominal

damping gain of PSS i is consistent with the design objectives for PSSs discussed in
Chapter 5 and summarized in Section 5.14. 

1. As in Chapter 5 this assumes that for the mode of interest .

TFij
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12.6.1 The total modal induced torque coefficients for systems with both PSSs and 
FDSs
The total induced torque coefficient on generator i due to PSSs and FDSs is given in (12.37)

and (12.53), respectively. Because in both these equations the MITC  can be replaced by

the generalised expression of (12.59), the total induced modal torque coefficient for mode
 can be evaluated from the contribution of all n PSSs and z FDSs, i.e.

. (12.61)

12.6.2 A relationship between modal induced torque coefficients and incremental 
stabilizer gains

Let the transfer function of the jth stabilizer (PSS or FDS) be ; the

torque coefficient induced by this stabilizer on machine i is then given by (12.59). For a se-
lected operating condition and stabilizer gain setting , the calculation of the eigenvalues

 and eigenvectors in this equation is based on the model of the system dynamics de-

scribed by (12.9). However, the relationship between  and the stabilizer transfer function

, given by (12.59), is based on this system with its shaft dynamics and rotor angle

feedback paths disabled. Into this disabled and therefore different system are injected the
mode  and right-eigenvector components  and  selected from eigenanalysis of the

original system. Therefore, in differentiating (12.59) with respect to  neither  nor its ei-

genvector components are functions of  in the disabled system. Hence, for small changes

in the stabilizer transfer functions,

. (12.62)

The increment  is given by 

. (12.63)

As is shown in [1], the term  for PSSs. For FDSs the

stabilizer gain is chosen to satisfy a gain criterion which ensures that the term

 is negligible. Therefore ignoring the latter term, equation (12.63) reduces

to:

                                    , 
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h
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h
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=
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cq*
v

*h

vih
----------------
 
 
 
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and, by substituting it into (12.62), we find

 . (12.64)

This is a first-order Taylor series approximation, and is based on parameter perturbation

analysis, i.e.  and  represent increments in the parameters  and , respectively. 

An array of incremental MITCs, , , is now defined. Its elements are
complex numbers. The n rows of the array represent the n generators on which the incre-
mental MITCs are induced, while the  columns represent the stabilizers (the n PSSs and
z FDSs) on which the gain increments are made. The significance of the array can be ex-
plained as follows: 

• The element, , is the incremental MITC on machine i due to the increment in the

nominal gain of its own PSS i, . 

• The jth element of row i, , is the incremental MITC on machine i due to the incre-
ment  on stabilizer j. 

• All elements  for which  are due to PSSs and all those for which  are
due to the FDSs.

For mode number h the summation of all elements in row i of the array yields the total in-

cremental MITC, , on machine i due to the gain increments on all PSSs and FDSs in

the system It is derived from (12.61), i.e.

. (12.65)

The practical application and significance of the arrays of incremental and total MITCs,
which are given by (12.64) and (12.65), are addressed in Chapter 13 and are illustrated with
several case studies.
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Appendix 12–I  

App. 12–I.1 Appendix: System response at a single modal frequency
The natural response of a linearized system is given by the differential equation

. For a given vector of initial conditions  the solution of this equation
for the vector of states is 

, (12.66)

 where ,  are the right and left modal matrices of , respectively. The condition for
exciting only one mode, e.g. mode , is , where  is the hth

column vector of , and  is an arbitrary real constant, e.g. unity. When only mode  is
excited, (12.66) reduces to 

.

Then the ratio of the qth and kth responses is  .

Thus in the case of the linearized power system model (12.9), the speed perturbation of ma-
chine i is related to the speed perturbation of machine j, when only one mode is excited, by

  . (12.67)

Furthermore, since the vector of system outputs is given by , then the ratio

of the qth to the kth outputs is 

,   and (12.68)

,   (12.69)

where  is the qth row vector of the  matrix. Thus, if only the hth mode, , is excited

by setting , at any instant of time the ratios of any two system output respons-

es is related by constant magnitude and phase. By mathematical induction it may be shown
that if  is set to some linear combination of right-eigenvectors then all of the corre-
sponding modes will be excited. 
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App. 12–I.2 Reducing the TFM model in Figure 12.2 to those in 12.3 
and 12.4

The multi-machine TFM power system model in Figure 12.2 can be reduced to that in
Figure 12.3 by closing the mechanical torque loop, i.e. 

, 

where  is a diagonal TFM representation of the governor/turbine dynamics and

 is the diagonal TFM of machine shaft dynamics given by (12.25), i.e.

.

Based on Figure 12.2, the following expressions may be written (Note: for convenience the
Laplace operator s is omitted): 

,      ,      ,  and

.

The expressions for the TFM , etc. are given by (12.18) to (12.23). Therefore 

. (12.70)

Let the perturbation in the reference-set-point inputs at the summing junctions on genera-
tors and FACTS devices,  and , respectively, be zero-vectors. Hence, (12.70) be-
comes

.

Close loops #2 and #3 in Figure 12.2, around the shaft and governor /turbine dynamics,

, by letting . Figure 12.2 thus reduces to Figure 12.3. 

A similar analysis can be adopted to reduce Figure 12.2 to Figure 12.4, i.e. 

.

and by letting , and .
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App. 12–I.3 Elements of the output matrix, C 

The following is an important aside. In the above formulation of the TFM power system
model, the matrix partitions  and  may appear to have been ignored, because nei-

ther of the two matrix partitions appear in equations (12.18) to (12.23). It is important to
show that these terms are not ignored because by doing so it will become apparent that cer-
tain partitions of the system matrices A and C are related. These relationships are then used
in a proof in [10]. To show that they have not been ignored, consider the following argu-
ment. From (12.20) and (12.21): 

. (12.71)

Comparing this with (4.64) on page 115, and noting that governor/turbines have not been
modelled in (12.9) (i.e. ), it is clear that 

(12.72)

where  is the accelerating power acting on the generator shaft, which is equal to the ma-

chine electric power output, , plus the stator copper losses. Neglecting copper losses

and since, based on (12.13) and (12.9),  it can be shown that

, and (12.73)

; (12.74)

the latter two equations can be substituted in (12.18) to (12.20) as required.
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Chapter 13

Interactions between, and effectiveness of, 
PSSs and FDSs in a multi-machine power system

13.1 Introduction

In this chapter the theoretical basis and a case study are used to illustrate the concepts of
interactions between, and effectiveness of, PSSs and FDSs in a multi-machine power sys-
tem. The theoretical relationships between the incremental modal induced torque coeffi-
cients (MITCs), the associated mode shifts, and increments in stabilizer gains are outlined.
The case study will illustrate how the method developed for estimating rotor mode (eigen-
value) shifts can be used to assess the relative effectiveness of stabilizers and, thereby, gain
some important insights which form a basis for the coordination of stabilizers [1], [2], [3],
[4].

Techniques have been described in the literature for determining shifts in the modes of rotor
oscillation due to changes in stabilizer parameters [5], [6], [7], [8]. These techniques have
been used not only for determining optimal locations for PSSs and FACTS devices [6], [7],
[8] but also for tuning PSS parameters [9], [10]. 

In this chapter the theory and analysis is used to: 

• develop a new method, based on incremental MITCs, for estimating the mode or
eigenvalue shifts; 
589
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• develop, for a given rotor mode, a method for estimating the contributions to damp-
ing of selected stabilizers for a selected increment in stabilizer gain, be they PSSs or
FDSs; 

• deduce the relative effectiveness of selected stabilizers in contributing to damping, say,
of an inter-area mode;

• assess the effect of interactions 1 between PSSs, particularly for inter-area and local
modes;

• provide a basis for the systematic coordination of both PSSs and FDSs in multi-
machine systems [4].

13.2 Relationship between rotor mode shifts and stabilizer gain 
increments

Recall from Section 12.6 that the MTIC  is the modal (complex) torque coefficient for

the hth mode, , this torque coefficient being induced on the shaft of the ith generator by

the jth stabilizer. It is established in (12.59) for both PSSs and FDSs that  is dependent

on the gain setting  (in pu on device base) of stabilizer j. In Section 12.6.2 a relationship

is developed between the incremental MITCs and increments in stabilizer gains; this is then
employed in the following analysis to determine the eigenvalue shifts due to increments in
any or all of the gains of the n PSSs and z FDSs. This allows us to calculate for generator i

the change in , , caused by a change in stabilizer gain . An expression will now

be derived relating the shift in the hthmode of rotor oscillation, , due to the change .

The gain increments  may differ in magnitude and sign, i.e. they may be positive, nega-

tive or zero.

The proposed technique provides a direct relationship between the eigenvalue shift, ,

and an increment in gain  on any stabilizer, be it a PSS or FDS. Note that  is the

contribution to the mode shift by generator i due to an increment in gain on its own PSS;
this is, in essence, the objective of the PSS design methods discussed in Chapters 5 and 9.

The shift  also represents the contribution to the shift of the mode  by generator i

due to a gain increment, , on some other stabilizer j. Depending on its sign, the shift

 may enhance or degrade the damping of the mode ; the mode shift  therefore

1. Such interactions have been observed earlier [11]
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represents the contribution of the interaction between stabilizer j and generator i to the shift
in the hth mode. The proposed method provides a basis for quantifying the effects of such
interactions for selected modes of rotor oscillation; this analysis is discussed in

Section 13.2.2. Moreover, by appropriately summing the mode shifts, , the contribution

made either by each generator or by each stabilizer to the total shift in a rotor mode can be
calculated for a set of stabilizer gain increments. This provides a basis for the coordination
of all stabilizer gains, both PSSs and FDSs [4].

Figure 13.1 A simple model of the generator with an ideal speed-PSS 

Consider the simple generator model with an ideal PSS in Figure 13.1. The PSS damping
gain  shown in this figure is a real damping torque coefficient because it induces on the

shaft of machine i a component of torque, , which is in phase with the ma-

chine’s speed perturbation. Using a first-order Taylor series approximation, the change in
the eigenvalue for an incremental change in the torque coefficient , is 

. (13.1)

Assume that n generators and z FACTS devices are fitted with stabilizers in a multi-machine
system; consider an ideal PSS on generator i. Though the torque coefficient, , by defini-

tion is real and the modal induced torque coefficient  on generator i by stabilizer j is
complex, conceptually they both have the similar effect on machine i. Thus, by using the

artifice of replacing  in (13.1) by the total incremental MITC  due to

all  stabilizers, the variation in  due to the increments in gains of all stabilizer gains
is given by the total differential, 
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. (13.2)

Alternatively ,    where    . (13.3)

If  is an eigenvalue of the system matrix A, and if  and  are respectively the asso-
ciated left and right eigenvectors, it is shown in Section 3.11 that

. ((3.51) repeated) (13.4)

The system matrix A is given by (12.11). Differentiation of (12.11) with respect to  yields

                                           ,

and thus (13.4) becomes 

, (13.5)

where  is the complex participation factor of the ith system state - namely the

rotor speed perturbation of the ith generator  - in the rotor mode ;  is twice the
inertia constant (H) of generator i. Substitution of (13.5) into (13.3) yields the expression for
estimating the contribution to the eigenvalue or mode shift by generator i due to an incre-

mental change in the torque coefficient, , on machine i, i.e.     

. (13.6)

Recall for mode , that the incremental MITCs for generator i are related to the incremen-
tal gains on the n PSSs and the z FDSs by

, ((12.64) repeated)). (13.7)

where , the gains being in pu on the base of the device.
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Finally, by substitution of (13.7) in (13.6), a general expression is derived for the contribu-
tion to the mode shift by generator i due to an increment in gain on stabilizer j, namely

, (13.8)

where stabilizer j may be a PSS or a FDS. Note that for PSSs ,

; for FACTS device stabilizers, , . The

transfer function  is evaluated at the modal frequency  with all machine shaft dy-

namics disabled. 

In addition to (13.8) three additional expressions will be employed in later sections. The first
is the contribution to the mode shift by all n generators as a result of an increment in gain
on any PSS j, 

. (13.9)

The second expression is the contribution by generator i to the mode shift caused by incre-
ments in the gains in some or all of the n PSSs and z FDSs:

. (13.10)

Thirdly, the total contribution to the mode shift by all n generators as a result of increments
in the gain on some or all n+z stabilizers is:

. (13.11)

13.2.1 Relationship between residues and MITCs in calculation of mode shifts
It is shown in Chapters 6 and 11 that, for mode h and generator i, the contribution to the
mode shift by generator i is related to an increment in gain on stabilizer j by:

, (13.12)

where  is the residue of the transfer function from the input to the summing junction of

generator i (e.g. Vref_i) to the output used as the stabilizing signal (e.g. speed for a PSS, bus
frequency for a FDS).

In comparing (13.8), i.e.  with (13.12), it

is observed in [1], [12] that the residue is

. (13.13)
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The expression in (13.13) contains much more information than the form of the expression
in (13.12) which is the basis for the analysis in Chapters 6 and 11. The roles of the partici-
pation factor  and the inertia constant Hi (= Mi/2) in (13.6), the MITCs (through (13.7)),
and the P-Vr or P-Ur characteristics in the residue of (13.13), are isolated. These compo-
nents will help to explain certain characteristics, including ‘interactions’, derived in this chap-
ter.

13.2.2 Concept of ‘interactions’
Based on (13.10) the concept and implications of ‘interactions’ between stabilizers and of
‘interactions’ between generators will now be defined. Let us assume for simplicity that a
gain increment is made on the PSS fitted to generator i and then on other stabilizers,

. The contribution to the mode shift by generator i is 

(13.14)

The first term in (13.14), an alternative form of (13.10), is the contribution to the mode shift
by an increment  in the gain of the PSS fitted to generator i. However, if both the stabi-

lizer gains  and  are increased, it is apparent from the second term in (13.14) that the

gain increment  can be considered to modify the effect of the gain increment  on the

mode shift. The net effect on the mode shift depends on the resulting sign of the real part
of second term. If the net effect of the increment  is to enhance the damping of the

mode  then there is a positive interaction of stabilizer j with PSS i. It is important to note

that the jth stabilizer can be either a PSS or FDS. Clearly, if the increment  degrades the

damping of the mode  then the interaction between stabilizers is a negative. Let us call
all such interactions stabilizer interactions [3]. 

It is also insightful to consider a scenario in which the gain of the PSS fitted to the ith gen-
erator is unchanged (i.e. ). Then, the contribution to the mode shift by generator i
is due only to its interactions with the other stabilizers in the system, i.e.

. (13.15)

In the event that gain increments are restricted only to FDSs the summation in (13.15) is
restricted to j = n+1 to n+z. This reveals that FDSs contribute indirectly to the shift in mode
h by their interactions with the generators.

It is at times more informative to assess the contributions to the mode shifts by the n gen-
erators due a gain increment on stabilizer i only. If the stabilizer is a PSS, these contributions
can be expressed by an alternative form of (13.9): 
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. (13.16)

The above equation reveals that the contribution to damping of generator i due to its own
PSS (the first term in (13.16)) may be enhanced or degraded due to contributions from, or
interactions with, the remaining generators (the second term) through the network. Let us call
such interactions generator interactions [3].

Consider now the case in which a gain change is restricted to stabilizer FDS j only. The re-
sulting contribution to the mode shift by an increment  in the gain of FDS j is given by

(13.9).This result reveals that FDS j acts to shift mode h only by means of its interactions
through the network with each of the n generators.

In addition to the cases associated with the three equations, (13.9) to (13.11), a case of special
interest is the contribution by generator i to the mode shift due to an increment in the damp-
ing gain ki of its PSS (assumed ideal). By substitution of (12.64) in (13.6), this self-contri-
bution is found to be:

. (13.17)

This result 1 provides a type of benchmark for the contribution of an ideal PSS to damping.
Typically if a machine participates significantly in a mode (usually a local-area mode), the
speed-state participation is about 0.5 or less. The mode shift is then directly to the left in the
s-plane and is equal to  or . (The latter result is consistent with that

which was derived based on an analysis of the block diagram for a SMIB system in
Section 5.4.) Clearly from (13.17), with low participation in the speed state, the extent of the
mode shift is reduced. However, a reduced contribution to the mode shift may also be at-
tributed in part to the effect of interactions as explained above. This will be illustrated in
Section 13.3.

Note from (13.17) that the extent of the mode shift for low-inertia generating units is greater
than that of high inertia units of the same rating, all else being equal. Fitting PSSs to the for-
mer units are likely to more effective than to the latter.

13.2.3 Relationships between mode shifts, MITCs, participation factors and stabi-
lizer gains

Eventually, our aims are: (i) to determine the mode shift  in a selected mode  due to

gain increments on a single or on a number of PSSs and/or FDSs, and (ii) to assess the rel-

1. This result is also employed in Section 5.9.3.
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ative effectiveness and contribution of individual stabilizers to the enhancement or degra-
dation of modal damping. However, let us firstly review some of the background equations.

Consider generator i and its PSS. From (13.6) it has been shown that incremental mode shift

 is related to the incremental MITC by:

, (13.18)

that is, through a complex factor which is the inertia weighted, speed participation factor,
. For mode , it has been shown using (13.7) that the incremental MITC for

generator i is in turn related to the incremental gain on PSS i, i.e.

  or, (13.19)

for a ideally-tuned PSS,   . (13.20)

The three equations, (13.6), (13.18) and (13.20) are of particular interest in the following dis-
cussions.

A case study is now used to illustrate some of the physical insights provided by the theoret-
ical analysis. In particular, based on (13.8) to (13.17), the concept and effects of interactions
between stabilizers will be discussed. Furthermore, it will be demonstrated how the method
developed above for estimating eigenvalue shifts can be used to assess the relative effective-
ness of stabilizers and thereby gain some important insights which form a basis for the co-
ordination of PSSs and FDSs.

13.3 Case Study: Contributions to MITCs/Mode Shifts by PSSs and 
generators

The purpose of this study is to demonstrate the insights that the incremental MITCs and the
associated mode shifts provide in the dynamic performance of a multi-machine power sys-
tem. This study illustrates a basis for the tuning and coordination of PSSs, and of PSSs and
FDSs. Recall that the basic approaches to methods for the tuning of PSSs has been dis-
cussed in the earlier Chapters 5 and 9, and for FDSs in Chapter 11.

The single-line diagram of the fourteen generator power system employed in the case study
is shown in Figure 10.1. Only Case 1, which is a heavy-load operating condition - and which
has been the subject of studies for both PSSs and FDSs in earlier chapters - is now exam-
ined. Two modes, an inter-area mode M and the local-area mode B will be the initial focus
of the studies.

For illustrative purposes all PSS damping gains are set to 5 pu on machine base; the PSS-
related parameters are listed in Tables 10.5 to 10.9. The FACTS device is the SVC, BSVC_4,
located at bus 412 in Figure 10.1; the parameters for its bus-frequency FDS are provided in
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(11.12) of Section 11.4.1.1. Based on Figure 11.7 the gain of the FDS is set to 30 pu on de-
vice base, a value at the lower end of its potential gain range. The characteristics of the as-
sociated rotor modes are given in Table 13.1. 

Table 13.1  Characteristics of the electromechanical modes, Case 1; 
PSSs and FDS of BSVC_4, in service.

In order to assess the effects of the incremental changes in the MITCs and associated mode
shifts due to changes in stabilizer gains, let us increase the damping gain of all PSSs by 1 pu
(20% of 5 pu) and the gain of the FDS by 0.9 pu (3% of 30 pu), such gains being in per unit
on the device bases. Although the increases in PSS gains are 1 pu, an examination of
Figure 10.26 reveals that the left shifts in the associated modes are close to being linearly
related to the PSS gain increments. Similarly, for the FDS the left shift in the mode is like-
wise related to FDS gain increments in the vicinity of the nominal gain setting of 30 pu
(Figure 11.7). As foreshadowed, with the PSSs and the FDS in operation, it is of interest to
analyse for Case 1 the MITCs and mode shifts for the inter-area mode M,

, and for the local mode B, ; the generators in Area
4 participate fairly significantly in both modes. (It is shown in Table 10.14 that without a
FDS in operation on BSVC_4 these modes are respectively  and

.)

Mode
Mode Behaviour Mode Type

No. Real Imag

A
B
C
D
E
F
G
H
I
J
K
L
M

-0.68
-0.40
-0.42
-1.00
-0.65
-0.88
-0.84
-1.24
-0.64
-0.92
-0.18
-0.14
-0.42

10.47
 9.66
 9.06
 8.73
 8.32
 8.27
 7.80
 8.09
 7.83
 7.48
 3.93
 2.56
 2.04

0.065
0.041
0.047
0.114
0.078
0.105
0.107
0.151
0.081
0.123
0.046
0.056
0.201

VPS_2<-->EPS_2, BPS_2
SPS_4<-->CPS_4, GPS_4, TPS_4
BPS_2<-->EPS_2, VPS_2, TPS_4

NPS_5<-->TPS_5
CPS_4, SPS_4<-->GPS_4, TPS_4, 
MPS_2, LPS_3<-->HPS_1, EPS_2, VPS_2
HPS_1,MPS_2,<-->YPS_3, EPS_2, VPS_2

TPS_4<-->GPS_4, SPS_4, EPS_2
YPS_3, MPS_2<-->LPS_3, EPS_2,

PPS_5<-->TPS_5, NPS_5
Area 3 <--> Area 5, Area 2

Area 5, Area 4 <--> Area 2
Area 5, Area 3 <--> Area 4

 Local-area
“
“
“
“
“
“
“
“

Local-area
Inter-area

“
Inter-area

Nominal gain settings. All PSSs:  5 pu damping gain on machine MVA rating  
FDS of BSVC_4:  30 pu on the device base.

<--> means ‘... swings against ...’.  - damping ratio.
In ‘Mode Behaviour’, generators or areas are listed in descending order of their participation 
factors.





M 0.42– j2.04= B 0.40– j9.66=

M 0.14– j1.98=

B 0.39– j9.65=
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Let us examine the state participation factors, shown in Figure 13.2, for modes B and M. 

Figure 13.2 Case 1. Magnitudes of the state participation factors for local-area mode B 
and inter-area mode M. The PSSs and the FDS on BSVC_4 are in service.

For the local mode B the speed and rotor angle states of generators in Area 4 dominate the
participation of the state in the mode. In the case of mode M, the inter-area mode, a con-
troller state in the FDS of the SVC is dominant, followed by speed and rotor angle states of
generators in Areas 3, 4 and 5. The mode shape for mode M is similar to that shown in
Figure 10.29(a) when the FDS is out of service. It reveals that machines in Areas 5 and 3
swing against those in Area 4. However, it is the complex inertia-weighted, speed participa-
tion factors that are of interest in (13.6); these participation factors are shown in
Figure 13.3(a) and (b). In this figure it is noteworthy that:

• because fewer machines participate in the local mode, the magnitudes of the participa-
tion factors in Figure 13.3(a) are much greater than those for the inter-area mode in
Figure 13.3(b). (Recall that the sum of the complex participation factors for mode 
is unity.) Larger values of the speed participation factors of local-area modes are typi-
cally a characteristic which differentiates them from inter-area modes.

• in Figure 13.3(b) for the inter-area mode M, the dominant speed participation factors
of generators in Areas 3, 4 and 5 are - for most purposes - real (or nearly real), and
thus so is the factor  in (13.6).

Mode B Mode M

(a) Local-area mode B (b) Inter-area mode M

h

ih 2Hi 
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Figure 13.3 Case 1. Magnitude and angle of inertia-weighted, speed participation factors, 
, , of generators for local mode B and inter-area mode M. 

13.3.1 Contributions to the MITC of each generator, local mode B

Based on (13.7) the full  array of incremental MITCs for the local mode B
( ) is shown in Table 13.2 on page 601. The full array contains a number
of features. (i) For the increments in gains of all PSSs (1 pu) and of the single FDS (0.9 pu)
the array of incremental torque coefficients have a direct bearing on the associated mode shifts
in Table 13.3 on page 603. (ii) Interesting aspects of the MITCs for the local mode B will be
compared with similar aspects for the MITCs of the inter-area mode M,

. Figures 13.2 and 13.3 reveal that the generators in Area 4 participate
fairly significantly in both modes B and M. 

The rows of Table 13.2, which are on the MVA ratings of the generator nominated in the
left-hand column, show the contributions to the total incremental MITC of each generator
resulting from gain increments: (i) on individual stabilizers (a PSS or the FDS) or (ii) on all
PSSs and the FDS (that is, the row sum,

 ). (13.21)

Alternatively, a column in the table reveals the components of the complex incremental
MITCs induced on each generator due to a gain increment on a selected stabilizer. Note: if
the MITCs in the array were expressed on system base MVA then the sum of MITCs in each
column would yield the total MITC induced by an individual stabilizer.

10.8 deg

10.6 deg
-9.5 deg

-1.4 deg

15.9 deg

28.4 deg

26.0 deg

32.7 deg

-29.5 deg

-68.9 deg

Mode M

(b) Inter-area mode M

-1.7 deg
5.6 deg

-1.6 deg

18.6 deg

Mode B

(a) Local-area mode B
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A diagonal element, which is the incremental torque coefficient induced on generator i by

the PSS on generator i, is essentially real 1, i.e. it is a pure damping coefficient; the diagonal
element is referred to as the ‘self’ contribution. It is also observed that for such elements the
incremental damping torque coefficients are - in most cases - close to unity; ideally, this re-
sult is predicted by the incremental form of (13.20),

 pu. (13.22)

Strictly speaking, the above result applies to the operating condition for which the PSS of
the particular generator is tuned, usually at or close to rated power output (typically 0.7 to
0.9 pu on generator MVA rating, see Chapters 5 or 10). Assume for the encompassing range
of operating conditions the P-Vr Design Case may lie at 0.7 pu on generator MVA rating.
Typically, over the range of power outputs the band of P-Vr characteristics lie within  dB
and  of the desired P-Vr design characteristic. At lower levels of power output, less
than 0.7 pu, the low frequency gain of the associated P-Vr characteristic is less than that of
the P-Vr Design Case. Consequently, in Case 1 for generating stations on part load, such as

HPS_1, MPS_2 and PPS_5, the value of  in the table is less than  pu 2. Converse-
ly, for generators operating at rated power output such as LPS_3 and NPS_5, the gain of the
associated P-Vr characteristic typically exceeds that of the P-Vr Design Case. As a result, the

value of  in the table for such machines exceeds  pu.

An examination of the Table 13.2 on page 601 provides an insight, for example, why a PSS
is not contributing to damping of mode(s) to the extent expected, or by what mechanism
are FDSs contributing to damping. 

Consider generator SPS_4. 

1. From the row we note that if all stabilizers are incremented by 1 pu the incremental
damping component of the total incremental MITC for SPS_4 is enhanced from
that induced by its own PSS, 0.93, by 0.21 to 1.14 pu. According to (13.6) the damp-
ing of mode B would also be enhanced, however, the extent of improvement is
determined by the inertia-weighted, speed participation factor of SPS_4. 

2. A gain increment only on the PSS of CPS_4 (col. 9) increases the damping compo-
nent of the MITC of SPS_4 by 0.13 pu on the latter’s MVA rating - for which there
will be an associated improvement in the damping of mode B as implied by (13.6).

1. This is the objective of the PSS design procedures discussed in Chapters 5 or 10.
2. See Section 9.4.1. It is shown that with decreasing real power output (P) at constant reac-

tive power (Q) the scalar voltage  decreases. Correspondingly the low frequency gain

of the P-Vr characteristic reduces. However,  also decreases at constant P as Q be-
comes more lagging (see Table 9.7). Both these effects influence the P-Vr characteristics.

Tii
h ki 1=

3
10

Tii
h 1 0

vd0

vd0

Tii
h 1 0
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Table 13.2  Case 1, Mode B. MITCs on each unit due to gain increments 
on PSSs/FDS

Consider now generators PPS_5 and LPS_3.

Contributions to incremental modal induced torque coefficients  of each generator i listed in the 

left-hand column due to an increment in the gain of the stabilizers j listed in the column headings (pu 
on generator MVA rating)

Local-area mode B, 

Gener
ator

HPS_
1 PSS

BPS_2 
PSS

EPS_2 
PSS

VPS_
2 PSS

MPS_
2 PSS

LPS_3 
PSS

YPS_3 
PSS

TPS_4 
PSS

CPS_4 
PSS

SPS_4 
PSS

GPS_
4 PSS

NPS_
5 PSS

TPS_5 
PSS

PPS_5 
PSS

BSVC
4 FDS

Row 
Sum

Col. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HPS_
1

    0.72     0.27     0.01     0.23     0.04     0.01        0   -0.44     0.01   -0.04     0.04        0        0        0     0.03    0.87

 -j0.07   j0.82   j0.31   j0.06  -j0.18   j0.01       j0   j0.07  -j0.42   j0.46  -j0.18       j0       j0       j0  -j0.05   j0.20

BPS_
2

  -0.01     0.99     0.04     0.07     0.02        0        0     0.35     0.18   -0.17     0.07        0        0        0   -0.01    1.52

  j0.01  -j0.06  -j0.07  -j0.03  -j0.02       j0       j0   j0.39   j0.36   j0.43   j0.19       j0       j0       j0       j0 -j0.43

EPS_
2

    0.02     0.23     1.03     0.04     0.01        0        0   -0.13   -0.18     0.19   -0.07        0        0        0        0    1.14

-j0.04  -j0.05  -j0.13   j0.07       j0       j0       j0   j0.25  -j0.19   j0.21  -j0.09       j0       j0       j0  -j0.02   j0.02

VPS_
2

 -0.02     0.02   -0.01     0.99   -0.02        0        0     0.19   -0.26     0.29   -0.13        0        0        0   -0.02    1.03

 -j0.02  -j0.71   j0.33  -j0.03   j0.02       j0       j0   j0.29   j0.10  -j0.08   j0.02       j0       j0       j0   j0.01  -j0.08

MPS_
2

    0.14     1.36   -0.17   -0.17     0.87        0        0   -0.44   -0.86     0.91   -0.38        0        0        0   -0.03    1.22

 -j0.18  -j1.75   j0.35    j0.11  -j0.03       j0       j0   j1.27  -j0.62   j0.78  -j0.36       j0       j0       j0  -j0.03  -j0.46

LPS_
3

  -1.28   -1.90     0.58   -0.05     0.35     1.04   -0.04     0.40     0.81   -0.85     0.32        0        0        0     0.06   -0.56

  j0.45   j0.29   j0.02   j0.24   j0.09  -j0.06   j0.03  -j1.03   j0.53  -j0.65   j0.31       j0       j0       j0   j0.08   j0.30

YPS_
3

    0.56   -2.41     1.21     0.30     0.74   -0.50     1.03   -0.93     1.19   -1.34     0.56        0        0        0     0.21    0.61

 -j0.16   j2.08   j0.45   j1.05  -j0.14   j0.90  -j0.26  -j1.07  -j0.72   j0.71  -j0.21       j0       j0       j0  -j0.01   j1.74

TPS_
4

       0     0.01        0        0        0        0        0     1.03   -0.06     0.08   -0.03        0        0        0     0.17    1.18

      j0       j0       j0       j0       j0       j0       j0   j0.05  -j0.59   j0.65  -j0.21       j0       j0       j0  -j0.06  -j0.16

CPS_
4

       0        0        0        0        0        0        0     0.02     0.99     0.15        0        0        0        0        0    1.16

      j0       j0       j0       j0       j0       j0       j0  -j0.03  -j0.04  -j0.08   j0.01       j0       j0       j0  -j0.01  -j0.15

SPS_
4

       0        0        0        0        0        0        0   -0.01     0.13     0.93     0.08        0        0        0        0    1.14

      j0       j0       j0       j0       j0       j0       j0       j0  -j0.04  -j0.03  -j0.04       j0       j0       j0        0  -j0.10

GPS_
4

       0        0        0        0        0        0        0     0.09   -0.31     0.86     0.89        0        0        0        0    1.54

      j0       j0       j0       j0       j0       j0       j0  -j0.01   j0.20  -j0.71   j0.05       j0       j0       j0  -j0.02  -j0.49

NPS_
5

    0.92   -3.20     1.64     0.33     0.92   -1.10   -0.16   -0.47     0.75   -0.82     0.33     1.08   -0.18   -0.02     0.21    0.21

 -j2.33   j1.03  -j0.11   j1.51   j0.10   j1.02  -j0.03  -j0.59  -j0.49   j0.50  -j0.12  -j0.19   j0.15   j0.04       j0   j0.50

TPS_
5

    1.18  -4.38     2.37     0.74     1.35   -1.41   -0.23   -0.95     1.03   -1.14     0.48   -0.19     1.06   -0.04     0.31    0.18

-j3.46   j2.21  -j0.48   j2.18  -j0.04   j1.66  -j0.01  -j0.77  -j0.99   j1.02  -j0.30   j0.14  -j0.15   j0.04  -j0.04   j1.02

PPS_
5

 10.22 -18.00     9.02   -0.38     4.76   -7.66   -0.81   -2.29     4.24   -4.63     1.76   -1.16   -1.81     0.87     1.12   -4.73

j12.35   j0.88   j1.81   j8.97   j1.84   j3.80  -j0.42  -j3.09  -j2.30   j2.36  -j0.56   j0.51   j0.52   j0.05   j0.24   j2.27

Col. 16, the Row Sum, is given by (13.21). All PSS damping gains=5 pu, increment 1 pu on machine ratings.
Gain of FDS=30 pu, increment 0.9 pu on SVC base.
The incremental MITC induced by a generator’s PSS is shaded in yellow.

Tij
B

B 0.40– j9.66=
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3. An increment in the PSS gain on BPS_2 (col. 2) or LPS_3 (col. 6) significantly
degrades the incremental MITCs on PPS_5, while increments in the gain of other
PSSs enhance or degrade the incremental MITCs relatively less. The net effect is a
significant degradation in the damping component of MITC of PPS_5 (in col. 16).
However, a reference to Figure 13.3 on page 599 reveals that the inertia-weighted,
speed participation factor of PPS_5 for mode B is exceedingly small so that the
effects of any stabilizer, including its own, on the associated mode shifts is negligible.

A similar comment applies to an increment in PSS gain on generator LPS_3.

Consider SVC BSVC_4.

4. For an increment in the gain of the FDS on BSVC_4 the induced damping coeffi-
cients are small or negligible on those generators in Area 4 which have significant
inertia-weighted, speed participation factors. Therefore their contribution to damp-
ing of mode B by the FDS will be small; for other generators - for which the latter
participation factor is negligible - the contribution will also be negligible.

13.3.2 Contributions of the mode shifts of each generator to mode B damping
Let us now consider the full array of mode shift contributions for the local mode B,

, and compare its features with those highlighted for its associated array
of MITCs. The mode shift array is shown in Table 13.3 on page 603.

Further to the observations made for the MITCs of mode B, the following comments are
offered on the associated mode shifts.

5. The contribution to the incremental mode shift of generator i is related to the MITC

generated by its own PSS by (13.6), . Bearing that in mind,

the earlier observations on the MITCs (numbered 1 to 4 concerning the implications
for the associated mode shifts) are confirmed by an examination of Table 13.3.

6. Ideally, the diagonal elements of the MITC array are  pu. According to

(13.6) above, the incremental mode shift for the mode is ideally the value for genera-
tor i given by the inertia-weighted, speed participation factor of Figure 13.3. Accord-
ingly, this mode shift for unity MITC for generator SPS_4 is ideally

 units ( ). As shown in Table 13.2 on

page 601 the value of the incremental MITC is actually  thus

the mode shift according to (13.6) is  or  units;

the value in Table 13.3 is .
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Table 13.3  Case 1. Mode B: Mode Shifts on each unit due to gain increments 
on PSSs & FDS.

Contributions to Mode Shift  by each generator (row) and by each PSS or FDS (col.) (x )

Local-area mode 

Gener
ator

HPS_
1 PSS

BPS_
2 PSS

EPS_
2 PSS

VPS_
2 PSS

MPS2 
PSS

LPS_
3 PSS

YPS_
3 PSS

TPS_
4 PSS

CPS_
4 PSS

SPS_4 
PSS

GPS_
4 PSS

NPS_
5 PSS

TPS_
5 PSS

PPS_
5 PSS

Sum 
PSSs

SVC4 
FDS

Row 
Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

HPS_     
1

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

BPS_
2

   0    0.01        0       0        0       0       0        0   0.01  -0.01        0        0        0        0        0        0        0

  j0 -j0.02       j0      j0       j0      j0      j0 -j0.01       j0       j0       j0       j0       j0       j0 -j0.03       j0 -j0.03

EPS_
2

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0 -j0.01      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0 -j0.01       j0 -j0.01

VPS_
2

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

MPS         
2

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

LPS_
3

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

YPS_
3

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

TPS_
4

   0  -0.01        0       0        0       0       0  -1.04  -0.14    0.15  -0.04        0        0        0  -1.09  -0.18  -1.27

  j0       j0       j0      j0       j0      j0      j0 -j0.41  j0.62 -j0.70   j0.23       j0       j0       j0 -j0.26  j0.01 -j0.25

CPS_
4

   0    0.01        0       0        0       0       0  -0.43 -20.6  -3.33    0.03        0        0        0 -24.3    0.08 -24.3

  j0       j0       j0      j0       j0      j0      j0   j0.53 -j1.10   j1.37 -j0.29       j0       j0       j0   j0.52  j0.21   j0.73

SPS_    0        0        0       0        0       0       0    0.44  -7.61 -55.5  -4.57        0        0        0 -67.2  -0.19 -67.4

  j0       j0       j0      j0       j0      j0      j0 -j0.01   j2.36   j3.40   j2.38       j0       j0       j0   j8.13 -j0.25   j7.88

GPS_
4

   0        0        0       0        0       0       0  -0.57    1.85  -5.21  -5.50        0        0        0  -9.43    0.03  -9.39

  j0       j0       j0      j0       j0      j0      j0   j0.06 -j1.31  j4.54 -j0.14       j0       j0       j0   j3.15   j0.14   j3.30

NPS_
5

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

TPS_
5

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0       j0       j0       j0       j0

PPS_
5

   0        0        0       0        0       0       0        0         0        0        0        0        0        0        0        0        0

  j0       j0       j0      j0       j0      j0      j0       j0        j0       j0       j0       j0       j0      j0       j0       j0       j0

Col. 
Sum

   0    0.01        0       0        0       0       0  -1.61 -26.5 -63.9 -10.1        0        0        0 -102.  -0.26 -102.

   0 -j0.02 -j0.01      j0       j0      j0      j0   j0.16   j0.58   j8.62   j2.18       j0       j0       j0 j11.5   j0.11 j11.6

All PSS damping gains=5 pu, increment 1 pu on machine MVA rating. 
Gain of FDS=30 pu, increment 0.9 pu on device base. 
The incremental mode shift induced by the generator’s own PSS is shaded in yellow.
The box highlights the PSSs and generators which are the main contributors to the damping of mode B.
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7. From the columns in Table 13.3 we can assess the contribution to the shift of mode
B due to a gain increment on any PSS or the FDS, or a selected group of stabilizers.
For instance, a 1 pu increment in the gain of the SPS_4 PSS only (col. 10) causes a
real mode shift of -55.5 units to be induced on SPS_4. However, due to an ‘interac-
tion’ between the PSS of SPS_4 and the other PSSs in Area 4, a real mode shift con-
tribution is also induced on each of the other generators, i.e. -5.2, -3.3 and 0.15 units
on GPS_4, CPS_4 and TPS_4, respectively. Therefore, due to the increment in the
SPS_4 PSS gain, the units in Area 4 contribute a real mode shift of -64 units.

8. The total mode shift comprising the sum of the real components of all the diagonal
(self) terms in the table is -82.6 units. Including the mode shifts induced by all PSS
interactions, the real part of total mode shift due to PSSs is -102 units (col. 15).
Interactions have thus enhanced the damping of the local mode B.

9. From the inertia-weighted, speed participation factors of Figure 13.3 it is observed
that the generators SPS_4, CPS_4 and GPS_4, in that order, are the dominant par-
ticipants in mode B; all other generators participate in small (e.g. TPS_4) or negligi-
ble amounts. It is therefore not surprising that, for a 1 pu increment in all PSS gains,
the three dominant participants contribute a real component of -101 units out of a
total real contribution of -102 units (col. 15) to the enhancement of the damping of
mode B.

10. In assessing the effectiveness of PSSs on the damping of mode B note that, accord-
ing to the ‘column sum’, a 1 pu increment in the gain of the PSS on SPS_4 is about
2.5 times and 6 times more effective than a similar change on the PSSs of CPS_4 and
GPS_4, respectively. 

13.3.3 Contributions to the MITCs of each generator, inter-area mode M
Let us now assess the full array of the contributions to the MITC of each generator for the
inter-area mode M, . The array for 1 pu and 0.9 pu gain increments on
the PSSs and the FDS, respectively, is shown in Table 13.4 on page 605.

From Table 13.3 on page 599 for the inertia-weighted, speed participation factors it is noted
that generators in Areas 4, 5 and 3 are the dominant participants in the inter-area mode M.
Let us examine the MITCs for units within the latter Areas, initially ignoring the contribu-
tions from the FDS, and remembering that for each row the MVA rating is the base quantity
of the associated generator.

M 0.42– j2.04=
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Table 13.4  Case 1, Mode M. MITCs on each unit due to gain increments 
on PSSs/FDS

11. In the case of mode M, let us assume that only the PSSs gains on each machine in
Area 4 are raised 1 pu on generator MVA rating; the remaining PSS gains remain
unchanged. The off-diagonal terms for Area 4 generation in the box in Table 13.4

Contributions to incremental modal induced torque coefficients of each generator i due to an 

increment in the gain of the stabilizers listed in the column headings listed in the left-hand column (pu 
on generator MVA rating)

Inter-area mode M, 

Gener
ator

HPS_
1 PSS

BPS_2 
PSS

EPS_2 
PSS

VPS_
2 PSS

MPS_
2 PSS

LPS_3 
PSS

YPS_3 
PSS

TPS_4 
PSS

CPS_4 
PSS

SPS_4 
PSS

GPS_
4 PSS

NPS_
5 PSS

TPS_5 
PSS

PPS_5 
PSS

BSVC
4 FDS

Row 
Sum

cols 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HPS_
1

    0.74   -0.04   -0.02       0   -0.08   -0.33   -0.02     0.02       0        0        0        0        0       0 -0.01 0.26

      j0   j0.01   j0.01  -j0.01   j0.01  -j0.03      j0   j0.00       j0       j0       j0       j0       j0       j0 j0.01 -j0.01

BPS_
2

    0.21    0.90   -0.20   -0.11   -0.30    0.01       0     0.07     0.01     0.01     0.01        0        0        0 -0.04 0.56

  j0.07   j0.10   j0.03  -j0.03  -j0.08   j0.04   j0.01   j0.10   j0.01   j0.01   j0.02       j0       j0       j0 j0.04 j0.32

EPS_
2

    0.13   -0.20    1.00   -0.10   -0.08   -0.08   -0.01     0.03     0.01        0        0        0        0        0 -0.05 0.65

  j0.21   j0.07   j0.07   j0.19   j0.12   j0.09   j0.01   j0.04   j0.01 j0.01   j0.01       j0       j0       j0 j0.01 j0.84

VPS_
2

    0.31   -0.31   -0.31    1.00   -0.02    0.01       0     0.06     0.01     0.01     0.01        0        0        0 -0.07 0.68

  j0.17  -j0.06   j0.01   j0.08  -j0.06   j0.09   j0.01   j0.05   j0.01   j0.01   j0.01       j0       j0       j0 j0.04 j0.37

MPS_    
2

    0.05   -0.18   -0.06   -0.01    0.77   -0.08       0     0.03     0        0        0        0        0        0 -0.02 0.50

  j0.07   j0.02   j0.02  -j0.01   j0.09  -j0.02      j0   j0.02       j0       j0       j0       j0       j0       j0 j0.02 j0.22

LPS_
3

  -0.01       0       0       0   -0.01    1.04   -0.12        0        0        0        0   -0.01   -0.02   -0.01 0 0.85

  j0.02      j0      j0      j0      j0   j0.04   j0.06       j0       j0       j0       j0       j0       j0       j0 j0 j0.12

YPS_
3

    0.03       0       0       0   -0.01   -0.59    1.04        0        0        0        0   -0.01   -0.01   -0.01 0 0.46

  j0.03      j0      j0      j0      j0   j0.21  -j0.07       j0       j0       j0       j0       j0       j0       j0 j0 j0.18

TPS_
4

  -0.01    0.01       0       0       0   -0.06       0     0.71   -0.14   -0.11   -0.13        0        0        0 0.61 0.93

  j0.01  -j0.01      j0      j0      j0      j0      j0   j0.14   j0.02  -j0.04   j0.04       j0       j0       j0 j0.07 j0.11

CPS_
4

       0       0       0       0       0       0       0   -0.11     0.92   -0.30   -0.19        0        0        0 0.10 0.41

      j0      j0      j0      j0      j0      j0      j0   j0.16   j0.08   j0.12   j0.16       j0       j0       j0 -j0.08 j0.45

SPS_
4

       0       0       0       0       0       0       0     0.01   -0.14     0.90   -0.24        0        0        0 0.14 0.67

      j0      j0      j0      j0      j0      j0      j0  -j0.01  -j0.01   j0.10  -j0.01       j0       j0       j0 -j0.09 -j0.02

GPS_
4

       0       0       0       0       0       0       0   -0.05   -0.12   -0.33     0.77        0        0        0 0.11 0.37

      j0      j0      j0      j0      j0      j0      j0       j0  -j0.01  -j0.03   j0.07       j0       j0       j0 -j0.09 -j0.07

NPS_
5

       0       0       0       0       0   -0.05   -0.01        0        0        0        0     0.76   -0.61   -0.32 0 -0.24

      j0      j0      j0      j0      j0   j0.03      j0       j0       j0       j0       j0   j0.06   j0.09  -j0.03 j0 j0.15

TPS_
5

       0       0       0       0       0   -0.07   -0.01        0        0        0        0   -0.15     1.06   -0.17 0 0.65

      j0      j0      j0      j0      j0   j0.03      j0       j0       j0       j0       j0   j0.02   j0.06   j0.02 j0 j0.12

PPS_
5

       0       0       0       0       0   -0.07   -0.01        0        0        0        0   -0.20   -0.47     0.74 0 0.00

      j0      j0      j0      j0      j0   j0.01      j0       j0       j0       j0       j0  -j0.05  -j0.05   j0.12 j0 j0.02

All PSS damping gains=5 pu, increment 1 pu on machine MVA rating..
Gain of FDS=30 pu, increment 0.9 pu on device base.
The incremental MITC induced by the generator’s PSS is shaded in yellow.

Tij
M

M 0.42– j2.04=
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are negligible or negative - and therefore the associated interactions between the
Area 4 units are destabilizing. As is evident in col. 16, the net effect for each Area 4
generator is that the resulting real contribution to the MITC of each is less than that
contributed by its own PSS. In the case of local mode B on the other hand, and with
the exception for units in Area 5, it was found that the off-diagonal terms tend to
enhance the contribution to the damping (see Table 13.2 on page 601.)

12. The same comments apply to generators in Areas 3 and 5 when only the PSS gains
in the same Area are incremented.

13. An increment in gain on the FDS mainly increases the MITCs on Area 4 generators
and consequently improves the damping of mode M. 

14. The relative MITCs of both the local-area mode B and the inter-area mode M are
demonstrated in the bar chart shown in Figure 13.4 on page 607. Note (i) the charts

reflects the ‘Row Sum’, , in column 16 for each generator in Tables

13.2 and 13.4; (ii) the Row Sum includes the FDS contribution; (iii) due to interac-

tions the value of  hovers about 1 pu for mode B, but is significantly less for
than 1 pu for mode M. 

13.3.4 Contributions of the mode shifts of each generator to the Mode M damping
As was examined for mode B in Section 13.3.2, let us now consider the full array of mode
shift contributions for the inter-area mode M bearing in mind that mode shifts are directly
related to the MITCs through (13.6). The components of contributions to the mode shifts
are listed in Table 13.5 on page 608. From the latter table the following are noted.

15. If, for exploratory purposes, it is desirable to increase the gains on all PSSs by 1 pu
and the FDS gain by 0.9 pu, the total shift in the real part of mode M is found from

the table to be -40.8 units (col. 17), where 1 unit = . Under the same conditions,
the total shift in the real part of mode B is -102 units, a factor of 2.5 times that of
mode M. This result emphasizes the relatively poorer damping characteristics of the
inter-area mode compared to the local mode for the same increments in stabilizer
gains.

16. Gain increments of 1 pu on the PSSs of generators in Area 2 provide a relatively
small net improvement in damping of mode M (see cols. 2 to 5, 15). 

17. If damping of Mode M is to be improved by increasing the gains on PSSs by varying
amounts, the PSSs which ought to be selected are revealed by an examination of the
columns of Table 13.5. It is evident that 1 pu increment in the gain of the LPS_3
PSS followed by GPS_4, SPS_4 and TPS_4 PSSs provide a net greater boost to the
damping of mode M (-8.4, -6.5, -4.1 and -4.0 units, respectively) (see the ‘Col. Sum’).
In comparison, for the local mode B, the same increment in gain only on the SPS_4,
CPS_4, and GPS_4 PSSs boosts the damping of mode B (-63.9, -26.5 and -10.1

i
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units, respectively). To boost the damping of mode M, it may be desirable to coordi-
nate the increase the gain, say, of LPS_3 by 3 pu, GPS_4 by 3pu and SPS_4 by 2 pu.

Figure 13.4 Total incremental MITCs, , on generators produced by increments of 1 
pu on all PSSs and 0.9 pu on the FDS from gain settings of 5 pu on PSSs and 30 pu on the 
FDS, inter-area & local modes M & B.  Note: 20% of MITC for PPS_5 for mode B is shown 

(actual is -4.73+j2.27 pu on machine MVA rating). 

18. The FDS provides a relatively significant boost to the total incremental damping of
mode M. In Table 13.5 the PSSs gain increments contribute shifts of -30.7 units and
the single FDS -10.1 units, i.e about 25% of the total mode shift of -40.8 units.

19. In Section 13.3.1 it was noted that with the FDS on BSVC_4 out of and in operation
(gain: 0 and 30 pu) the real part of mode M was enhanced from -0.14 to -0.42 Np/s,
a change of -274 units. In Table 13.5, for gain increment of 1 pu on the FDS, the
total boost of the damping of mode M is -10.1 units. Decreasing its gain by 30 pu to
zero yields an estimate of the change in the real part of mode M of

 units. For exploratory purposes, the magnitude of these
changes are close enough to suggest that the relationship between gain increments
in the FDS and shifts in mode M is reasonable linear in the vicinity of 30 pu. More-
over, if the effect of an increase in the FDS gain on the damping of mode M is being
investigated, with some confidence it can be assumed that the boost in the real part
of mode M, say a 10 pu gain change, is likely to be from -0.42 to about -0.52 Np/s.

Mode MMode B
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Table 13.5  Case1, Mode M. Mode Shift contributions for gain increments on 
PSSs/FDS

20. Let us compare, for a significant participant in each of the modes B and M, the real
parts of the diagonal element with that of the column sum for a selected PSS. For
example, for a 1 pu gain increment in the PSS of SPS_4, Table 13.3 on page 603

Contributions to Mode Shift  by each generator (row) and by each PSS or FDS (col.) (x 10-3)

Inter-area mode M, 

Gener
ator

HPS_
1 PSS

BPS_
2 PSS

EPS_
2 PSS

VPS_
2 PSS

MPS2 
PSS

LPS_
3 PSS

YPS_
3 PSS

TPS_
4 PSS

CPS_
4 PSS

SPS_4 
PSS

GPS_
4 PSS

NPS_
5 PSS

TPS_
5 PSS

PPS_
5 PSS

Sum 
PSSs

SVC4 
FDS

Row 
Sum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

HPS
_1

 -0.52    0.02    0.01        0    0.06    0.26    0.01  -0.01        0        0        0        0        0        0  -0.17        0  -0.18

  j0.46 -j0.03 -j0.02  j0.01 -j0.06 -j0.19 -j0.01   j0.01       j0       j0       j0       j0   j0       j0   j0.19 -j0.01   j0.17

BPS_
2

 -0.07  -0.11  -0.03    0.03    0.08  -0.04  -0.01  -0.10  -0.01  -0.01  -0.02        0        0        0  -0.28  -0.04 -0.33

 j0.20   j0.90 -j0.20  j0.11 -j0.30   j0.01       j0   j0.07   j0.01   j0.01       j0       j0       j0       j0   j0.60 -j0.04   j0.55

EPS
_2

 -0.23  -0.05  -0.14  -0.19  -0.11  -0.09  -0.01  -0.04  -0.01 -0.01  -0.01        0        0        0  -0.89   0.01  -0.90

  j0.12 -j0.21   j1.02 -j0.12 -j0.09 -j0.09 -j0.01   j0.03   j0.01       j0       j0       j0       j0       j0   j0.65 -j0.05   j0.60

VPS
_2

 -0.13    0.06    0.01  -0.13    0.04  -0.06  -0.01 -0.04  -0.01  -0.01  -0.01        0        0        0  -0.26  -0.02  -0.28

 j0.18 -j0.19 -j0.18   j0.62 -j0.01       j0       j0   j0.03   j0.01       j0       j0       j0       j0       j0   j0.45 -j0.05   j0.40

MPS
_2

 -0.15    0.08    0.01    0.03  -0.61    0.08        0  -0.04  -0.01  -0.01  -0.01        0        0        0  -0.62  -0.02  -0.64

  j0.04 -j0.29 -j0.11  j0.02    j1.2 -j0.12 -j0.01   j0.03   j0.01       j0       j0       j0       j0       j0   j0.70 -j0.04   j0.66

LPS_
3

   0.05    0.02    0.02    0.01    0.08 -11.0    1.20  -0.01        0        0        0    0.11    0.23    0.11  -9.12  -0.01  -9.13

-j0.18 -j0.03 -j0.02   j0.01 -j0.06   j1.37 -j0.82   j0.01       j0       j0       j0  j0.01 -j0.03   j0.01   j0.28 -j0.02   j0.26

YPS
_3

 -0.12    0.01        0        0    0.01    1.05  -2.27        0        0        0        0    0.01    0.02    0.01  -1.27        0  -1.27

-j0.03 -j0.01       j0       j0 -j0.01 -j1.24   j1.50       j0       j0       j0       j0 -j0.01 -j0.02 -j0.01   j0.18       j0   j0.18

TPS_
4

   0.09  -0.10    0.01    0.03    0.03    0.04        0  -5.54    1.11    0.84    0.99        0        0        0  -2.50  -4.73  -7.23

-j0.05   j0.10 -j0.02 -j0.04 -j0.04   j0.01       j0 -j0.92   j0.14   j0.28   j0.29       j0       j0       j0 -j0.23 -j0.44 -j0.68

CPS
_4

   0.02  -0.02        0        0        0    0.01        0    1.15  -6.68    2.50    1.74        0        0        0  -1.28  -0.90  -2.18

-j0.02   j0.03       j0 -j0.01 -j0.01       j0       j0 -j0.97 -j2.48 -j0.29 -j0.80       j0       j0       j0 -j4.55   j0.37 -j4.19

SPS_
4

       0        0        0        0        0        0        0    0.22    2.04 -12.8    3.41        0        0        0  -7.59  -2.26  -9.85

      j0       j0       j0       j0       j0       j0       j0   j0.04   j0.53 -j4.04   j0.87       j0       j0       j0 -j2.61  j0.95 -j1.65

GPS
_4

   0.02  -0.02        0    0.01    0.01    0.01        0    0.85    1.93    5.46 -12.5        0        0        0  -4.29  -2.15  -6.44

      j0   j0.01       j0 -j0.01 -j0.01       j0       j0   j0.24   j0.56   j1.62 -j3.61       j0       j0       j0 -j1.19   j1.18   j0.01

NPS
_5

       0        0        0        0        0    0.32    0.03        0        0        0        0  -3.09    2.87    1.30    1.42        0    1.42

  j0.01       j0       j0       j0       j0       j0       j0       j0       j0       j0       j0 -j2.35   j1.31   j1.02 j0       j0  -j0

TPS_
5

 -0.01        0        0        0        0    0.58    0.05        0        0        0        0    1.09  -6.79    1.20  -3.87        0  -3.87

  j0.02       j0       j0       j0       j0   j0.06   j0.01       j0       j0       j0       j0   j0.43 -j4.17   j0.51 -j3.14       j0 -j3.14

PPS_
5

       0        0        0        0        0    0.37    0.03        0        0        0        0    0.89    2.30  -3.54    0.01        0    0.06

  j0.01       j0       j0       j0       j0   j0.13   j0.02       j0       j0       j0       j0   j0.78   j1.47 -j2.53 -j0.12       j0 -j0.11

Col. 
Sum

 -1.03  -0.10  -0.10  -0.18  -0.40  -8.42  -0.95  -4.01  -1.65  -4.09  -6.46  -0.99  -1.37  -0.91 -30.7  -10.1 -40.8

  j0.79   j0.27   j0.45   j0.34   j0.57 -j0.05   j0.68 -j1.42   j1.21 -j2.41 -j3.24 -j1.14 -j1.44 -j1.00 -j8.79   j1.84  j6.96

All PSS damping gains=5 pu, increment 1 pu on machine MVA rating. 
Gain of FDS=30 pu, increment 0.9 pu on device base.
The incremental mode shift induced by the generator’s own PSS is shaded in yellow

ij
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(col. 10) and Table 13.5 (col. 10), reveal that interactions not only increase the left-
shift of the local mode B from -55.5 to -63.9 units, but also reduce significantly the
left-shift of the inter-area mode M from -12.8 to -4.1 units.

13.4 Stabilizer damping contribution diagrams

In order to assess the relative effectiveness of the stabilizers concerned, the contributions to
the mode shifts of many PSSs and FDSs may need to be examined jointly and compared.
Much of the information inherent in the arrays of the contributions to mode shifts for the
local- and inter-area modes can be meaningfully displayed graphically in stabilizer damping
contribution diagrams (SDCDs). From a SDCD it is possible to assess the joint effects of
positive, zero or negative gain increments of differing magnitudes on individual stabilizers.
Such diagrams relate either to the column or row sums of mode shift contributions in the
arrays of Tables 13.3 or 13.5 and therefore take the effect of interactions into account. Ear-
lier, in Section 13.2.2, the concepts of stabilizer interactions and generator interactions are in-
troduced based on the associated forms of the equations (13.14) and (13.16) which relate the
complex mode shifts to incremental stabilizer gains. 

The SDCDs are now examined for the two types of interactions for three inter-area modes
and one local mode; the variety of information provided by each SDCD is illuminating.

Consider firstly the mode shift on generator i resulting from an increment in its PSS gain;
the shift is derived from (13.16):

As mentioned in Section 13.2.2 the first term in the above equation shows the mode shift
on generator i resulting from a gain increment  on its own PSS. The second term reveals

that, for the same PSS gain increment , there are also contributions to the mode shift of

generator i by the other  generators. The relevant information is provided in the col-
umns for each PSS in Tables 13.3 and 13.5. For example, consider col. 6 in Table 13.5 for
the mode M, . Listed in col. 6 are the component mode shifts resulting

from a gain increment of 1 pu on the PSS of generator LPS_3. The mode shift  which

is displayed in row 6 of col. 6 is  units (1 unit = ).The mode shifts 

which are associated with interactions with the other generators are listed in the remaining

 elements in col. 6. The net mode shift, , is the sum of all the contributions in

col. 6, i.e.  units; in this case the effect of interactions is to degrade the damping
contribution of the PSS on generator LPS_3 by 2.6 units.
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Secondly, consider the SDCD associated with a gain increment on each stabilizer as dis-
played in Figure 13.5 for the inter-area modes M ( ) and L

( ). As noted above for the inter-area mode M the net mode shift,

, for the increment in the damping gain of the LPS_3 PSS is  units; this

result is also shown in the figure. The main contributors (found from the column sums in
the last row of Table 13.5) to the damping of the inter-area mode M are not only the PSSs
in Areas 3 & 4 but also the FDS on BSVC_4. Note that in col. 16 of Table 13.5 for mode
M the contribution from the FDS to the mode shift is  units. This is the dom-
inant contribution which results from the increment in the FDS gain and is clearly observed
in Figure 13.5. 

Figure 13.5 Case 1. Stabilizer damping contribution diagram for inter-area modes L & M 
for a damping gain increment of 1 pu on each PSS and 0.9 pu on the FDS. 

Nominal gain settings: All PSSs 5pu, FDS 30 pu. Note scale.

As an aside, consider the contribution of the FDS derived from (13.8) in which the gain of
FDS j is incremented by . The resulting contribution of FDS j to the mode shift is:

,

and demonstrates that the FDS interacts with all of n generators to produce a shift in the
mode.

M 0.42– j2.04=

L 0.14– j2.56=

h
pss_i

8.42– j– 0.05

10.1– j1.84+

Mode MMode L

kj

h
fds_j

ih Mi Hij h  cj*
v

*h vih 
i 1=

n


 
 
 

–= Gj h  kj 



Sec. 13.4 Stabilizer damping contribution diagrams 611
The SDCD in Figure 13.5 further reveals that the damping of mode L is effectively im-
proved by increasing the gains of PSSs in Areas 2 and 5 as well as the gain of the FDS. 

Figure 13.6 Case 1. Stabilizer damping contribution diagram for local- and inter-area 
modes B & K for damping a gain increment of 1 pu on each PSS and of 0.9 pu on the FDS. 

Nominal gain settings: All PSSs 5pu, FDS 30 pu. Note scale.

In Figure 13.6 is shown the SDCD associated with a gain increment on each stabilizer for
the local-area mode B, , and the inter-area mode K,

. For mode B the main contributors to the enhanced damping of this

local-area mode (found from the column sums in the final row of Table 13.3 on page 603)
are the PSSs in Area 4. Useful information revealed by the SDCD for the inter-area mode
K is that increasing the PSS gain on unit LPS_3 is an effective way of boosting the damping
of that mode. Incrementing the gain of the FDS, however, is ineffective in improving the
damping of both modes. Note that the SDCDs do not show the extent of the interactions
between PSSs which may enhance or degrade the damping of the mode; such effects are re-
vealed in the off-diagonal elements in the columns of Tables 13.3 and 13.5.

Note that the relative amounts of the increments in individual stabilizer gains, whether they
be positive, zero or negative, depend on a number of factors. In particular, before gain in-
crements are decided upon, the effects of gain changes on the pertinent local- and inter-area
modes need to be examined for an encompassing range of operating conditions, normal and
outage.

Mode B Mode K

B 0.40– j9.66=

K 0.18– j3.93=
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An alternative set of SDCDs, shown in Figures 13.7 and 13.8, is based on (13.14), namely:

.

The contributions to the mode shift by generator i resulting from a gain increment on each
of the  stabilizers are shown in the rows for that generator in Tables 13.3 and 13.5. For

each generator in these tables the net mode shift,  (the ‘Row Sum’ in col. 17), is

displayed in the SDCD.

Figure 13.7 shows the contributions to damping of modes L and M by each generator when
all stabilizer gains are increased.

In Figure 13.7 it is of interest to note that generator PPS_5 makes a negligible contribution
to mode M although it is a dominant participant in the state participation factors in
Figure 13.2. This is seen to apply also to mode L in Figure 10.33 when all PSS gains are 5 pu
on machine base but the FDS is out of operation. From these observations it is concluded
that strong participation in a mode does not necessarily mean that the unit contributes to
the damping of that mode - as is evident in Figure 10.32. Examination of the row for the
generator PPS_5 in Table 13.4 on page 605 for mode M reveals that the real component of
the incremental MITC of 0.74 pu due to the PSS installed on that generator is cancelled by
negative interactions with the other stabilizers, notably TPS_5, NPS_5 and LPS_3. Conse-
quently, even though the inertia-weighted participation factor of about 0.06 pu for PSS_5 in
Figure 13.3 is not insignificant the mode shift due to PPS_5 is negligible because the net in-
cremental MITCs for the generator are negligible. 

h
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Figure 13.7 Case 1. Contributions to mode shifts of modes L & M by each generator for a 

damping gain increment of 1 pu on all PSSs and 0.9 pu on the FDS. 
Nominal gains: All PSSs 5pu, FDS 30 pu. Note scale.

The contributions to damping of modes B and K by each generator in Figure 13.8 on
page 614 appear to be similar to those in Figure 13.6 for the contributions to damping of
modes B and K by each stabilizer. This not the case in Figures 13.5 and 13.7 for modes M
and L. The observation on modes B and K is valid for those units for which the interactions
with other stabilizers are small compared to the mode shifts induced on generators by their
own PSSs. Furthermore, note that the contribution by the FDS to the damping of modes B
and K is negligible; it is significant for modes M and L.

While Tables 13.3 and 13.5 and the SDCDs provide - for tuning or exploratory purposes -
similar useful information on the effectiveness of stabilizers for small increments in gain, the
question arises ‘for what size gain increments is that information valid?’. The following illus-
trates an approach for answering the question.

Mode MMode L
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Figure 13.8 Case 1. Contributions to mode shifts of modes B and K by each generator for 
a damping gain increment of 1 pu on all PSSs and a gain of 0.9 pu on the FDS. 

Gains: All PSSs 5pu, FDS 30 pu. Note scale.

13.5 Comparison of the estimated and actual mode shifts for incre-
ments in stabilizer gain settings

In the studies of Section 13.3 the increments in PSS and FDS gains are set to 1 pu and 0.9
pu, respectively. A comparison of the estimated modal trajectories from the SDCDs and the
actual trajectories is therefore made (i) for the local-area mode B, and (ii) for the inter-area
mode M, for gain increments  of 1, 5 and 10 pu for all PSSs, and 0.9, 4.5 and 9.0 pu for
the FDS based on the nominal gain settings of 5 and 30 pu for the PSSs and the FDS, re-
spectively. The estimated mode shifts, , the associated estimated mode value, ,

and the actual mode values, , are shown in Table 13.6. The actual values are determined
by recalculating the eigenvalues with the nominal plus the incremented values of the stabi-
lizer gain settings.

Mode B Mode K

k

est est

act
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Table 13.6  Estimated changes from the SDCDs and actual changes in modes B & M
 for increasing increments in PSS and FDS gains 

From Table 13.6 it is observed that both the real and imaginary parts of the actual and esti-
mated mode values agree within 5% for gain increments up to five times the increments of
1 and 0.9 pu for the PSS and FDS gains. As the gain increments increase towards ten times
the latter gain increments, the actual and estimated mode values agree within 7.5% for mode
M; the agreement for mode B remains within 5%. The nature of the actual trajectory for
mode M observed in Table 13.6 is consistent with that observed in Figure 11.7, i.e. from val-
ues of the FDS gain above 35 pu the change in the mode value does not increase linearly
with change in gain.

As seen in the above tables and in figures such as Figure 10.26, the predominately left shift
of the modes with increasing stabilizer gain is the objective of the tuning procedures out-
lined in Chapters 5, 6 and 11. Given that the stabilizer transfer functions are of the form

, where  is a real gain (in pu on device base) and  is the compensation transfer

Local-area mode B, 

Gain increments

PSSs FDS col. 1 col. 2 col. 3 col. 4

20%, 1pu * 3%, 0.9 pu

100%, 5pu 15%, 4.5 pu

200%, 10pu 30%, 9.0 pu 

* Increments in stabilizer gain settings used for Table 13.3 and for the SDCDs
Nominal gain settings for PSSs and the FDS are 5 and 30 pu, respectively.

Inter-area mode M, 

Gain increments

PSSs FDS col. 1 col. 2 col. 3 col. 4

20%, 1pu * 3%, 0.9pu

100%, 5pu 15%, 4.5pu

200%, 10pu 30%, 9.0pu 

* Increments in stabilizer gain settings used for Table 13.5 and for the SDCDs
Nominal gain settings for PSSs and the FDS are 5 and 30 pu, respectively.

 

B 0.40– j9.66+=
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est est 0.40– j9.66+ +=

M 0.42– j2.04+=

est est act act est–

0.041– j– 0.007 0.459 j2.032+– 0.459 j2.031+– 0 j– 0.001
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0.408 j– 0.070– 0.826 j1.969+– 0.887 j1.929+– 0.061 j0.040––

est est 0.42– j2.04+ +=
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function, then ideally, (i)  ensures the left shift of all modes over a range of modal fre-
quencies, and (ii) the gain  determines the extent of the mode shift.

The basis for the tuning of PSS transfer functions  using the P-Vr method is ex-
plained and applied in Chapters 5, 9 and 10. Adopting this approach, and employing the ap-
propriate SDCDs, suggest that the coordination of stabilizers can be achieved through the
coordination of their gains, . This is the basis of the analysis in Chapter 14.

The acceptable extent to which the actual and estimated modal trajectory diverge as the sta-
bilizer gains are incremented depends on the user’s application and objectives. For example,
in a formal procedure for the coordination of gain settings for PSSs and FDSs it is necessary
to confirm that the gain increments selected do not result in the difference between the es-
timated and actual mode shifts exceeding acceptable limits over a range of operating condi-
tions [4].

13.6 Summary

13.6.1 Interactions [3] 1

The analysis of interactions is based on PSS and FDS transfer functions being of the form
. As stated, the transfer function  is tuned to effect a left-shift of the rotor

modes and the gain  determines the extent of the shift. It is shown that, for an increment

in PSS damping gain  the self-induced modal torque coefficient on generator i and the

associated self-contribution to the shift in mode  are  and

, respectively. This is consistent with tuning techniques based on the

P-Vr method, however, due to interactions from other generators,  and  may be
enhanced or degraded. Hence:

• The machines with higher inertia-weighted participation factors, , are the more
effective contributors to damping.

• For local modes, which typically have only a few machines participating, the magni-
tudes of the factors  for the dominant machines are significantly larger than
those for the inter-area modes, which may have numerous machines participating.

Thus the self-contributions to damping  by dominant machines are likely to be

less for inter-area modes than for local modes. 

1. ©  2000 IEEE. Reprinted with permission [3]. 
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• For inter-area modes, the effect of interactions is to degrade further the already lower

self-damping contribution  of generators. As is shown in the study, and observed
in practice, the damping of inter-area modes is generally poorer than local modes and
is more difficult to improve using PSSs. The damping of local modes maybe enhanced
by interactions (as observed in [13]).

• The studies show that the damping of several inter-area modes can be enhanced sig-
nificantly by fitting a FACTS device placed at a suitable location with a tuned FDS
[14]. The FDSs may have little effect on the damping of local-area modes, however,
this is location, system and operating condition dependent.

• For the inter-area mode M the FDS in the study induces positive damping torques on
the generators and thus contribute to damping by each generator. In this case, the
interactions between the FDS and the PSSs are positive, i.e. an increment in FDS gain
enhances the self-damping resulting from an increment in PSS gain on generator i.

• It can be shown that the term  in (13.13) is the

residue from the voltage reference to the speed output on machine j [12]. However,
associated information on interactions provided by (13.8), which incorporates the res-

idue , is not available through the Method of Residues in Chapters 6 and 11.

13.6.2 Relative Effectiveness of Stabilizers [3]

• The stabilizer damping contribution diagram is a simple, productive tool for display-
ing simultaneously the contributions to damping by some or all of the PSSs and FDSs.
Hence those stabilizers which make the most significant contributions to the damping
of rotor modes can be identified rapidly.

• Such diagrams provide the engineering insight and basis for the simultaneous coordi-
nation of PSSs with PSSs, and PSSs with FDSs [4]. These aspects have been found to
be particularly valuable in practical applications and will be employed in Chapter 14.

• For practical applications the increments in stabilizer gains can be applied to one,
some or all stabilizers simultaneously. This facility permits the coordination of all sta-
bilizers in Area 2 only, say, to investigate the improvement in the damping of the rele-
vant local- and inter-area modes. 

• The disadvantage of the diagram is that it applies to small increments in stabilizer
gains. However it has been found, for example, that mode shifts due to PSS gain
increments of  pu on machine base are accurate typically within 5%; such informa-
tion needs to be confirmed for the power system under study.
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Chapter 14

Coordination of PSSs and FDSs using 
Heuristic and Linear Programming Approaches

14.1 Introduction

Various techniques have been reported in the literature for the coordination of PSSs in mul-
ti-machine power systems [1], [2], [3], [4]. Some of these techniques have used linear pro-
gramming solutions for coordinating PSS gains [5], [6]. However, little attention has been
given to the simultaneous coordination of PSSs and FDSs [7], [8], [9] [10]; this aspect is the
subject of this chapter. It must be emphasized that in the current context the term ‘coordi-
nation’ is used to mean coordinating the gains of stabilizers installed on generators and
FACTS devices, say, in an area of interest for the purpose of improving the damping of rotor
modes. This is as opposed to coordination in the context of coordinating controllers, e.g.
AVR-PSS coordination, within a single generating unit [11]. In the following text the damp-
ing gains of PSSs and the gains of FDSs are collectively referred to as stabilizer gains.

It has been emphasized that the predominately left shift of the modes with increasing stabi-
lizer gain is the objective of the design procedures outlined in Chapters 5 and 10 for PSSs
and Chapter 11 for FDSs. In essence, because the stabilizer transfer functions are of the
form , where  is a real gain and the transfer function  provides the phase com-
pensation, then ideally, (i)  ensures the left shift of all modes over the selected range of
modal frequencies, and (ii) the gain  determines the extent of the left-shift of the mode.
This basic approach to the tuning of stabilizers provides the following rationale for the
methods of heuristic and automated coordination. 
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• In both the heuristic and automated coordination procedures the stabilizer gain and
the phase compensation are the two important components which are essentially
decoupled for practical purposes. Therefore, in the coordination procedures that fol-
low, the stabilizer gains are the adjustable quantities and the parameters of the com-
pensation transfer functions  remain unchanged.

•  For the process of stabilizers coordination the PSSs and FDSs should be robust over
an encompassing range of operating conditions, normal and outage (see Section 1.2
item 3 and Section 11.8.2, respectively). 

• Ideally, the incremental left-shifts of the rotor modes should be more-or-less linearly
related to increments in stabilizer gain for small changes about the nominal values.
(See 10.26 for PSSs.) For FDSs certain rotor modes may be insensitive to changes in
stabilizer gain (see Figure 11.7).

• The nature of the trajectories for the inter-area modes K, L and M are shown in
Figure 11.7 for BSVC_4 (for mode M), Figure 11.12 for PSVC_5 (modes L, M), and
in Figure 14.2 for SVC2 (modes K, L). At the lower values of gain the incremental
left-shift of the nominated modes increases linearly with the increments in gain.

In Chapter 13 a basis is developed for the heuristic coordination of PSSs and FDSs employ-
ing stabilizer damping contribution diagrams (SDCDs). Nevertheless, it is apparent from the
example in Section 13.4 that the approach presented in that chapter would require a series
of calculations to determine the appropriate stabilizer gain settings to enhance the damping
of each rotor mode; the approach can therefore be tedious for larger systems where certain
damping criteria are to be met for a large number of rotor modes. Moreover, in the approach
presented in Chapter 13 it is not clear how the following constraints can be satisfied: (i) lim-
iting any right-shift in exciter/controller modes that may occur as a result of increasing sta-
bilizer gains; (ii) constraining the shift in the frequency of rotor modes (i.e. the imaginary
part of their eigenvalues) which may result from increases in stabilizer gains. Since it has
been established that the coordination of the stabilizers can be achieved by coordinating
their gains, then an appropriate method for automating the gain selection procedure subject
to a series of constraints is to use linear programming [7], [8], or genetic algorithms [4], for
example. Nevertheless, it is informative to reveal the insights provided through heuristic co-
ordination.

Based on the SDCDs an example of the analysis and process of heuristic coordination of
PSSs and FDSs over six operating conditions is presented in Section 14.3. 

The method for heuristic coordination is extended in Section 14.4 to the application of lin-
ear programming (LP) for stabilizer coordination. Employing this approach the calculation
of the gain settings becomes automated, and thus less tedious. Furthermore, the gain set-
tings given by the solution of the LP problem is an optimal set; however, it is not guaranteed
that the solution is unique [12]. 

G s 



Sec. 14.2 The 14-generator power system 623
For both the heuristic and the automated approaches the two-stage coordination procedure
is adopted to determine the parameters of the PSS and FDS transfer functions . In

stage one, the transfer functions  are designed to left-shift the relevant modes by pro-

viding the appropriate phase compensation (as explained in Chapters 5, 10 and 11). In the
heuristic approach in stage two, information on the sensitivity of the real part of a selected
mode to an increment in any stabilizer gain is derived from the SDCDs. The necessary in-
crements in stabilizer gains can then be calculated to achieve a desired left-shift in the mode.
For the automated analysis in stage two, the stabilizer gains  are determined by solving a

LP problem. The objective function of the LP problem is selected such that the weighted
sum of the stabilizer gains is minimised, subject to (i) satisfying a desired level of damping
for selected modes of rotor oscillation, (ii) constraining the right shift of the exciter or other
controller modes, and (iii) limiting the allowable change in the frequency of oscillation of the
rotor modes. The objective function is chosen because, for small system disturbances, low
stabilizer gains reduce not only the effect of limiting action on the output of the stabilizer,

the AVR and excitation systems, but also the reactive power swings on generators 1.

To illustrate the two methods of stabilizer coordination the studies are based on the multi-
machine power system used in the studies in Chapters 10, 11, and 13.

14.2 The 14-generator power system

The 14-generation system described in Section 10.2 again serves as an example to illustrate
the procedures for heuristic and automated coordination. The parameters of the PSSs are
provided in Tables 10.5 to 10.9; the transfer functions for the bus-frequency FDSs on
BSVC_4 and PSVC_5 on buses 412 and 507, respectively, are given in equations (11.12) and
(11.13).

Because separate studies have shown the need for a SVC and stabilizer to provide voltage
control and to assist in providing damping for mode L (frequency ~2.6 rad/s), a SVC (base
MVA is 200 Mvar) is installed at bus 212, a major load bus, located in the vicinity of other
load buses in Area 2. It is therefore necessary (i) to install in the power flow analysis a SVC
on the selected bus, (ii) to provide voltage regulation at bus 212, and (iii) to include voltage
droop. The procedures developed in Chapter 11 will then be employed to the evaluate the
parameters of its bus-frequency stabilizer. In the studies in Chapter 10 the SVCs, BSVC_4
and PSVC_5, are on-line under closed-loop voltage control but with their FDSs out of ser-
vice. For Cases 1 to 6 the associated voltages, real and reactive power flows, and other var-
iables in the steady-state power flows are provided in Table 10.2, together with the rotor
modes in Tables 10.11, 10.15 and 10.16. Note that these quantities will be slightly modified
with the addition of the SVC, called SVC_2. For Case 1 with SVC_2 in service under closed-

1. Reactive power swings on generators can occur with certain types of PSS (see 
Section 8.3.1)
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loop voltage control the inter-area modes are K , L , and
M  (all FDSs out of service). 

The small-signal model of the controller for SVC_2 is that shown in Figure 10.38. Its pa-
rameters are: 200 MVAr (Mbase), KS = 2.0, KA = 1000,  pu on Sbase

(100 MVA) and s The parameters of its bus-frequency FDS for SVC_2 are to

be determined in the following section.

14.2.1 Evaluation of the transfer function for the SVC at bus 212.
The polar plot of the residues for modes K, L and M is shown in Figure 14.1 for the SVC
transfer function  for the range of operating conditions, Cases 1 to 6.

The damping gains of PSSs are all set to 20 pu or all to 10 pu; no other FDSs are in opera-
tion. The selection of representative tuning parameters is weighted towards mode L; the res-
idues for mode M are negligible.

.
Figure 14.1 Polar plot of the residues for the transfer function  for SVC_2, 

modes K, L and M and six operating conditions. All PSS damping gains set to 20 pu on ma-
chine base. For L the values of the modes are in the vicinity of . 

Note: the magnitude scale is to be multiplied by 0.1.

The calculation of the FDS transfer function is based on the representative values, shown
in Table 14.1, with the PSS gains of 20 pu rather than 10 pu, because (i) after coordination
of PSSs and FDSs the PSS damping gains are expected to be greater than 10 pu and in the
vicinity of 20 pu; (ii) based on previous studies, the damping contributions of the FDS at the
lower PSS gains are unlikely to be reduced markedly.
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Table 14.1  Representative values for evaluation of compensation transfer function, 
mode L 

Based on the algorithm in Appendix 6–I.1, the FDS transfer function for SVC_2 when all
PSS damping gains are set to 20 pu is:

,     pu; (14.1)

the same washout and low-pass filter time constants are employed as for the FDSs of
BSVC_4 and PSVC_5 to cover the range of the rotor modal frequencies.

Figure 14.2 SVC_2. Cases 1 and 4. Trajectories of modes K and L as the stabilizer gain, 
kfds, is increased from zero (shown by an arrow) to 100 pu in steps of 10 pu on the SVC base; 

changes in Mode M are negligible. PSS damping gains are set to 20 and 10 pu.

To establish the effectiveness of the FDS on SVC_2 in improving the damping of the inter-
area modes K and L, the modes are tracked in Figure 14.2 as the FDS gain is increased from
zero to 100pu. The trajectories of the modes are illustrated for both Cases 1 and 4 (heavy
and light-load conditions), and for all PSS gains set to 20 or 10pu. Over the gain range the
modes shift more-or-less linearly with increments in FDS gain; all other modes are stable.

PSS
Gains 
(pu)

Mode & 
Phase spread

(deg)

Represent-
ative phase 
angle (deg)

Compensa-
tion angle 

(deg)

Maximum
residue

Represent-
ative mode

20 L: 20 * -136 -44 0.008

10 L: 17 * -152 -28 0.008

* Note: The residues for mode M are small.
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14.3 A Heuristic Coordination Approach

14.3.1 Coordination of stabilizers for damping the inter-area modes
The object of the coordination procedure is to satisfy the criteria for the damping and other
small-signal requirements of the system. Such criteria should include both normal and the
relevant outage conditions; for simplicity, the latter conditions are excluded from the analy-
sis but are notionally accounted for in the formulation of performance criteria. 

The dynamic performance criteria in the following procedure are (i) the damping ratio of the
inter-area modes is to be greater than 0.2 (20%), (ii) the PSS and FDS gains are be held at
‘low’ values for reasons explained earlier; e.g. initially set all PSS damping gains to 5 or 10
pu. In the following study the damping criterion has been chosen to be somewhat high so
that the system is likely to be small-signal stable for the outage of a major transmission ele-
ment. 

As has been emphasized, there is no unique method for the heuristic coordination of the
gain settings of those PSSs and FDSs units which are selected for the purpose. However, to
reveal the insights that can be derived, the following procedure is adopted.

For the FDSs that participate in the coordination of stabilizers the characteristics of their
eigen-trajectories should be noted, namely;

• In Figure 11.7 for BSVC_4 the shift in mode M is more-or-less to the left in a gain
range of 0 to 40 pu on device base; the left-shifts in modes K & L are negligible.

• For PSVC_5 it is observed in Figure 11.12 that the shift in mode L is to the left over a
gain range 0 to 100 pu on device base. There is a less extensive left shift in mode K
over a gain range 0 to 50 pu on device base. 

• The left shifts in modes K and L for SVC_2 are seen in Figure 14.2 to increase linearly
with gain increments from 0 to 100 pu on device base. The shifts in mode M are neg-
ligible.

Consider the operating conditions, Cases 1 to 6. Initially, using Case 1, the stabilizer gains
will be adjusted to satisfy the damping criterion for the inter-area modes. Proceeding to Case
2 the inter-area modes will be evaluated using the same gains to establish if the criterion is
infringed; if so, the gains are appropriately adjusted. This process, covered by a set of steps,
is continued on in Cases 3 to 6 until an acceptable set of gains is found that cover all cases
- possibly after several iterations. The steps, and the inputs and outcomes of each step in the
process, are listed in Tables 14.2 and 14.3.
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In Step 1 for Case 1 the effects on the inter-area modes of selecting an initial or nominal set
of stabilizer gains are examined. These studies will form the basis for the subsequent analy-
sis. Details of the analysis in Steps 1 to 5 for Case 1 are shown in Table 14.2.

Table 14.2  Steps in the coordination procedure, Case 1

Step 1a, Case 1. It is assumed that the required PSS damping gains will exceed 10 pu. With
the FDSs on the SVCs off, the inter-area modes and their damping ratios are calculated; the
latter are less than 0.2
Step 1b, Case 1. It is assumed that the gains of the PSSs and the FDS will exceed, respectively,
the nominal values of 10 pu and 20 pu on device bases; the gains are set initially to these
values. However, the performance criterion ( ) is not satisfied by the nominal gains
although there is a significant left-shift in modes L and M due to the action of the FDSs.

Step 2, Case 1. In order to determine the effectiveness of the FDSs their gains are increment-
ed by 10% (2 pu). The stabilizer damping contribution diagram (SDCD) is shown in

Step

Gains: Nominal, PSSs & FDSs
----------------------------------------

Incremental (pu)

Inter-area mode 
---------------------------

damping ratio 

PSSs
Gain/
Inc.

BSVC
4

PSVC
5

SVC
2

### K L M

1a

All

10 
0 

0 
0 

0 
0 

0 
0 

Act.
0.126 0.069 0.131

1b
10
0

20
0

20
0

20
0

Act.
0.14 0.16 0.27

2 All 10 / 0 20 / 2 20 / 2 20 / 2 Est.

3 All 10 / 1 0 / 0 0 /0 0 / 0 Est.

4a

All

10 / 0 20 / 2 20/12 20/14 Est.

4b 10 22 32 34 Act.
0.15 0.20 0.30

5a LPS_3, 
YPS_3
Other 
PSSs 
Nom. 
10pu

10 / 5 22 32 34 Est

5b 15 22 32 34 Act.
0.21 0.20 0.32

Notes. ## Est: Estimated values of modes from SDCD. 
Act: Actual values of modes from eigen-analysis



0.50– j3.91 0.18– j2.55 0.25 j1.92–

0.55 j3.94– 0.41 j2.59– 0.55 j1.98–

0.55 j3.94– 0.44– j2.59 0.58 j1.99–

0.56– j3.89 0.20– j2.54 0.28 j1.91–

0.58– j3.96 0.53– j2.61 0.63 j2.00–

0.58– j3.95 0.53– j2.61 0.63 j2.00–

0.82– j3.89 0.53– j2.61 0.67 j1.99–

0.81– j3.88 0.53– j2.60 0.67 j1.99–

 0.2
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Figure 14.3; it is clear from the figure that the FDSs have little influence on mode K. How-
ever, BSVC_4 contributes significantly to the damping of mode M.

Figure 14.3 Step 2, Case 1. Contributions to the mode shifts of inter-area modes K, L & 
M by each SVC for a gain increment of 2 pu on the bus-frequency FDSs. 
Nominal gains: All PSSs 10 pu, FDSs 20 pu on device bases. Note scale. 

Step 3, Case 1. Based on Step 1b the aim is to establish, with all FDSs out of service, (i) the
relative effectiveness of the PSSs in improving damping, (ii) which PSSs influence mode K
in particular when the gains of all PSSs are incremented by 10% (1 pu). The resulting SDCD
is given in Figure 14.4. 

From the figure it is observed that an increase in the gain on the PSS of LPS_3 is most ef-
fective in improving the damping of mode K. PSSs in Area 2 also contribute marginally to
the damping of modes K and L. Likewise, PSSs in Areas 3 and 4 are of some minor benefit
to mode M. In comparison, in Figure 14.3 it is demonstrated that all three SVC FDSs im-
prove the damping of mode L.

Step 4a, Case 1. In Step 1b of Table 14.2 it is noted that the damping of mode L is improved
significantly when the FDSs are on-line with all gains set to a nominal value of 20 pu. For
the damping ratio of mode L to increase to 0.2, stabilizers must shift the real part of mode
from  by -0.12 Np/s to . Based on the mode shifts for a gain incre-
ment of 2 pu produced by FDSs in Figure 14.3, gain increments in PSVC_5, SVC_2 and
BSVC_4 of 12 pu, 14 pu and 2 pu, respectively, would yield a shift in mode L of -0.12 Np/
s (i.e. ). Likewise
modes K and M should benefit by real shifts of -0.034 and -0.075 Np/s, respectively. The

Mode K Mode L Mode M

-0.0075

-0.0205

-0.0100

-0.0079

-0.0045

0.41 j2.59– 0.53 j2.6–

12 2  pu  0.01–  14 2  pu  0.0075–  2 2  pu  0.0045– + +
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estimated real shifts are confirmed in Figure 14.5; there are small positive shifts in the imag-
inary components. 

Figure 14.4 Step 3, Case 1. Contributions to the mode shifts of inter-area modes 
K, L & M by each PSS for a gain increment of 1 pu. 

Nominal gains: All PSSs 10 pu, FDSs 0 pu. Note scale.

Step 4b, Case 1. Eigen-analysis reveals (i) that there is close agreement with the estimated
mode values from Step 4a, and (ii) that the damping ratios of modes L and M are equal to
or better than 0.2; however, the damping ratio of K is 0.15 which does not satisfy the per-
formance criterion.

Step 5a, Case 1. The aim now is to increase the damping ratio of mode K at Step 4b from
0.15 to 0.2. In Figure 14.4 it is noted that the PSS on LPS_3 is most effective in increasing
the shift of the latter mode. An increase of 5 pu in the damping gain of the PSSs on LPS_3
and YPS_3 could shift the mode from  by -0.24 to , say, to yield a
damping ratio of 0.2 (i.e ). It is shown that
the estimated inter-area modes in Step 5a agree closely with the actual values in Step 5b in
Table 14.2 and also satisfy the criterion on the damping ratios.

-0.0417

-0.0059

-0.0143

Mode K Mode L Mode M

0.58– j3.95 0.82– j3.95
5 pu  0.0417–  5 pu  0.0059– + 0.24–=
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Figure 14.5 Step 4a, Case 1. Contributions to the mode shifts of inter-area modes K, L & 
M by SVC_2, BSVC_4 and PSVC_5 for gain increments of 14 pu, 2 pu and 12 pu on the 
respective FDSs. Nominal gains: All PSSs 10 pu, FDSs 20 pu on device base. Note scale. 

It is now necessary to check if the stabilizer gain settings at Step 5b satisfy the performance
criterion for Case 2. The coordination of the stabilizer gains for Cases 2 to 6 continues in
Table 14.3.

Table 14.3  Steps in the coordination procedure, Cases 2 to 6

Step/
Case

Gains: Nominal
---------------------------

Incremental (pu)

Inter-area mode 
---------------------------------

damping ratio 

PSS Gain
BSVC

4
PSVC

5
SVC

2
## K L M

S6/
Case 2

Gens_3**
Other PSSs 

15
10

22 32 34 Act.
0.15 0.19 0.32

S7/
Case 2

Gens_3
Other PSSs

15/1.5
10/1.0

22/2.2 32/3.2 34/3.4 Est

S8/
Case 2

Gens_3 15 / 4.5

Gens_2 10 / 5 22 / 0 32 / 0 34 / 6 Est.

Other PSSs 10 / 0

S9/
Case 2

As above
19.5

15, 10
22 32 40 Act.

0.21 0.21 0.34

S10/
Case

3-6
As above

19.5, 
15, 10

22 32 40 Act.  All damping ratios exceed 0.2

Mode K Mode L Mode M



0.58– j3.75 0.55– j2.75 0.62 j1.84–

0.66– j3.74 0.60– j2.73 0.70 j1.83–

0.80– j3.71 0.60– j2.70 0.68 j1.84–

0.80– j3.70 0.59– j2.70 0.68 j1.85–
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Step 6, Case 2. Eigen-analysis based on the stabilizer gains in Step 5b reveals that the damping
ratios of mode K and L are less than 0.2.

Step 7, Case 2. In order to ascertain the relative effectiveness of the stabilizers in this case, all
PSS and FDS gains are increased by 10%. The resulting contributions to the mode shifts of
the inter-area modes are revealed in Figure 14.6. 

Figure 14.6 Step 7, Case 2. Contributions to the mode shifts of inter-area modes K, L & 
M by all stabilizers for gain increments of 10% in nominal gains. Note scale. 

Check
S11/
Case1

As above As above
0.27 0.22 0.34

Notes. ## Est: Estimated values of modes from SDCD. Act: Actual values of modes from eigen-analysis.
           ** Gens_A implies all generators in the area number A,

Step/
Case

Gains: Nominal
---------------------------

Incremental (pu)

Inter-area mode 
---------------------------------

damping ratio 

PSS Gain
BSVC

4
PSVC

5
SVC

2
## K L M



1.06– j3.79 0.58– j2.58 0.71 j1.96–

Mode K Mode L Mode M

-0.0281
-0.0178

-0.0062
-0.0029
-0.0036

-0.0053

-0.0069
-0.0145

-0.0325

-0.0138
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From Step 6, Case 2 it is noted that is necessary to shift mode K from  by -0.21
Np/s to  to yield a damping ratio of 0.2. It is observed from Figure 14.6 for
Step 7, Case 2, that the combined real shift in mode K is -0.0350 Np/s for a 10% gain in-
crement (1.5 pu) on the PSSs of LPS_3 and YPS_3. Likewise, for a 10% increment (1.0 pu)

on the PSSs of Gens_2 1 the total real shift is -0.0180 Np/s. Furthermore, the gain incre-
ment of 3.4 pu on SVC_2 (nominal gain 34 pu) produces a real shift in mode K of -0.0178
Np/s. To achieve the desired mode shift in mode K let us increase the gain on the stabilizers
from the nominal values as follows:

Gens_3 by 3x1.5=4.5 pu from 15 pu. Real shift = 3x(-0.0350) = -0.1050 Np/s
Gens_2 by 5x1.0=5.0 pu from 10 pu. Real shift = 5x(-0.0180) = -0.0900
SVC_2 by 6.0 pu from 34 pu. Real shift = (6/3.4)x(-0.0178) = -0.0314

Total real shift = -0.2264

The new stabilizer gain settings are:
Gens_3: 15+4.5 = 19.5 pu; Gens_2: 10+5 = 15 pu; SVC_2: 34+6 = 40 pu.
Unchanged:  Other PSSs: 10 pu;  BSVC_4: 22 pu; PSVC_5: 32 pu.

Although the resulting FDS gain increases on SVC_2 and PSVC_5 are comparable with the
original nominal gains of 20 pu for each FDS, the left shift of the inter-area modes are close-
ly linearly related to the increments in gain over the gain ranges (see the modal trajectories
for these modes in Figures 11.7, 11.12 and 14.2).

Step 8, Case 2. Using the SDCD shown in Figure 14.7 the mode shifts and modes are esti-
mated with the gain increments proposed in Step 7; note that the required mode shift of -
0.2264 Np/s for mode K is achieved. The damping ratios of all inter-area modes in Case 2
now satisfy the dynamic performance criterion.

Step 9, Case 2. Eigen-analysis confirms the validity of the results of Step 8. 

Step 10, Cases 3 to 6. Based on the stabilizer gains confirmed in Step 9 the damping perfor-
mance of the inter-area modes is validated using eigen-analysis, i.e. in these Cases the crite-
rion ( ) is satisfied.

Step 11, Case 1. With the same gain settings of Step 9 the values of the modes and damping
ratios for Case 1 are recalculated and compared with those in Step 5b of Table 14.2. The
damping of the inter-area modes calculated in this Step is an improvement over that in Step
5b.

1. Gens_m covers all generators in Area m.

0.58– j3.75
0.79– j3.75

 0.2
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Figure 14.7 Step 8, Case 2. Contributions to the mode shifts of inter-area modes K, L & 
M for the stabilizer gains increments given in Table 14.3. Note scale.

In comparing the eigenvalues K, L, M in Step 1a, Case 1, at the start of the procedure of
coordination, with those for the final stabilizer settings in Step 11, Case 1, it is observed:

(i)  the real parts of eigenvalues have left-shifted by some 100 to 200% 1;
(ii) the imaginary parts have remained within a band of about 3%.

These observations are consistent with the rationale of the P-Vr approach to the tuning
PSSs and of the Method of Residues for tuning FDSs. 

14.3.2 Coordination of local-area modes.
The effect of the increases in stabilizer gains on the local-area modes, which are well
damped, has so far been ignored. However, it may be the case that certain modes have been
degraded during the above procedure designed to ensure the damping criterion is satisfied
for the inter-area modes. Also of interest is which local-area modes are affected by the FDSs,
and the extent of the resulting mode shifts.

The SCDC in Figure 14.8 for local modes I, G and H is based on the nominal gain settings
for Step 9. Increments of 1 pu on all PSSs and 4 pu on all FDSs are assumed. The SDCD
demonstrates that increases in stabilizer gains enhance the damping of the three local modes.
In particular, a 4 pu increment in the FDS of BSVC_4 causes a significant shift in mode H,
a mode in which TPS_4 (a generating unit electrically relatively close to the SVC) swings
against the other units in Area 4. The FDSs have little effect on the seven remaining local
modes apart from BSVC_4 which slightly degrades mode E (not shown - it is the second of

1. With the higher gain settings on the FDSs, a possible extension of the Mvar range and 
ratings of the SVCs may be required.

Mode K Mode L Mode M
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the three local-area modes in Area 4). If only the gain on FDS of BSVC_4 were increased,
it may occur that the damping on mode E is more severely degraded; this should be checked
if the mode is relatively poorly damped.

Figure 14.8 Case 1. Contributions to the mode shifts of local-area modes I, H & G for 
increments of 1 pu on all PSSs and 4 pu on all FDSs. Nominal gains: as for Step 9. 

Note scale. 

14.4 Simultaneous Coordination of PSSs and FDSs using Linear Pro-
gramming

14.4.1 Introduction
In Section 14.3 a heuristic approach is outlined for the coordination of PSSs and FDSs.
Nevertheless, it is apparent from the case studies in Section 14.3 that the approach requires
a series of calculations to determine the appropriate stabilizer gain settings to enhance the
damping of the selected rotor modes. This approach may be tedious for larger systems
where the criterion for damping is to be satisfied for a large number of rotor modes. More-
over, in the heuristic approach it is not clear how the following constraints can be met: 
(i)  limiting any right-shift in exciter/controller modes that may occur as a result of increas-
ing stabilizer gains;
(ii) constraining the shift in the frequency of rotor modes (i.e. the imaginary part of their ei-
genvalues) which may result from increases in stabilizer gains.

Mode I Mode H Mode G
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Since it has been established that the coordination of the stabilizers can be achieved by co-
ordinating their gains, then an appropriate method for automating the gain selection proce-
dure subject to a series of constraints is to use linear programming. Thus, the heuristic
method for coordination is extended in the following by the use of linear programming (LP).
Employing this approach the calculation of the gain settings becomes automated, and thus
less tedious. Furthermore the gain settings given by the solution of the LP problem is an
optimal set; however, it is not guaranteed that it is a unique solution [12]. Moreover, a useful
feature in the LP solution is a set of limitations or constraints that can be applied to the solu-
tion, namely:

• (i) a minimal level of damping for selected rotor modes;

• (ii) a right-shift in the eigenvalues associated with generator exciters or other control-
lers, due to increasing stabilizer gains; 

• (iii) changes in the left-shift of selected rotor modes;

• (iv) changes in the frequency of selected rotor modes. 

Through a LP solution some unexpected insights into the support provided by certain sta-
bilizers to the damping of nominated modes may be experienced.

A two-stage coordination algorithm is developed. Stage one is the same as for heuristic co-
ordination. That is, for the transfer functions of the form  for the PSSs and FDSs,

the transfer functions  are designed to provide appropriate phase compensation as ex-

plained in Chapters 5, 10 and 11. However, in stage two the stabilizer gains  are now de-

termined by solving a LP problem. The objective function of the LP problem is selected
such that the weighted sum of the stabilizer gains is minimised, subject to any of the above
set of constraints. For practical reasons this function is chosen because, for small system dis-
turbances, low stabilizer gains reduce not only the effects of limiting in the stabilizer and the
AVR and excitation systems, but also reduce swings on the reactive output of generators.

14.4.2 Comment on the LP solution: optimality versus uniqueness
The algorithm used to solve the LP problem is the revised two-phase simplex algorithm [12],
[13]. The process of solving a LP problem can be summarised as follows. The search begins
at an extreme point of the solution space called a basic feasible solution. The procedure then
determines if a shift to an adjacent point in the solution space can improve the objective
function. If so, the algorithm moves the solution to the point which offers the greatest im-
provement. This procedure continues until an optimal solution is found or it is determined
that the problem is unbounded or infeasible. Typically it is difficult to determine a basic fea-
sible solution by observation. Therefore to start the procedure, a set of artificial variables are
introduced into the problem. This allows us to manipulate the problem such that zero be-
comes a basic feasible solution. However, if another basic feasible solution were found, and
the LP algorithm started at that point, the algorithm may converge to a different optimal

kjGj s 

Gj s 

kj
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solution. The practical implication of this is that other optimal solutions may exist. Moreo-
ver, it is possible to establish whether more than one optimal solution exists. Nevertheless,
having determined an optimal solution it is not generally possible to ascertain what the other
optimal solutions are.

14.4.3 Coordination of PSSs and FDSs
As stated, the aim of both the PSS and FDS design methods is to achieve a left-shift in the
modes of rotor oscillation by inducing pure damping torques on the shafts of generators.
The aim of the coordination procedure is to determine the minimum required stabilizer
gains to achieve desired damping criteria for selected rotor modes and to prevent undesira-
ble right shifts in other modes. 

Because the stabilizer transfer functions cannot provide ideal compensation, and due to the
effect of PSS interactions, the shift in rotor modes will not be a pure left-shift. Consequently
there will be changes in the frequency of oscillation of the rotor modes. Any excessive such
changes will be constrained by the LP problem in order to limit undesirable changes in syn-
chronising torques.

Assume that the transfer functions, , have been tuned for the relevant set of the n gen-

erators and z FACTS devices using the methods described in Chapters 10 and 11. Let each
stabilizer be a fixed-parameter device of the form . For a given vector of small gain

increments,  , the shift in selected modes of the system can be estimated based
on (13.9), or: 

, where (14.2)

. (14.3)

Based on this equation a linear programming problem is formulated for the simultaneous
coordination of the (n+z) stabilizer gains.

Let the set of m modes of interest be
,

which may be a combination of rotor modes of oscillation and exciter/controller modes.
This set is a subset of the N system eigenvalues (the system being represented by a 
state-matrix for which there are N eigenvalues). Without loss of generality let the desired
damping criteria be achieved by left-shifting the m modes of interest by 

. 

Also, let the changes in the modal frequencies be bounded by 

Gj s 

kjGj s 
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.

 Assuming each stabilizer gain is weighted by a coefficient  the LP problem can be stated: 

minimise , subject to: (14.4)

  Np/s, (14.5)

  rad/s, (14.6)

, (14.7)

where . This problem is solved by using the two-phase simplex al-

gorithm. Note that the LP problem becomes infeasible if: 

• The set of gain limits  are too small for the required left-shifts  Np/s. 

• The allowable modal frequency deviations  rad/s are too small. This may imply
that the tuning of some stabilizers may be poor and hence result in excessive fre-
quency shifts in the modes of interest. 

Also note that the coefficients, , in (14.4) can be chosen to weight all stabilizer gain in-

crements equally (with unity values) - or they may be chosen to bias the solution in favour
of the most effective stabilizers. Furthermore, it is important to note that the accuracy of
the estimated shift in an eigenvalue, given by (14.2), diminishes as the gain  becomes

larger. This is because (14.2) is a linear approximation to the non-linear eigenvalue trajectory.
To reduce the error due to this linear approximation, the coordination procedure may be
carried out in a number of steps. 

Let the total required left shift in the modes of interest be  Np/s. Then the LP

problem can be split into  steps, with a shift of  required per step. The fol-
lowing algorithm is proposed for the coordination of PSSs and FDSs having transfer func-
tions of the form .

Two-stage Coordination Algorithm Using a LP Solution

Stage 1: Determining stabiliser transfer functions, 

Follow the tuning procedures that have been described in Chapters 10 and 11 for PSSs and
FDSs, respectively. 

Stage 2: Determining stabilizer gains, :

 1 2  m   =
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1. Set the required vectors of the total shift in the real parts and the allowable total shift in
the imaginary parts of the modes of interest to  Np/s and  rad/s, respec-

tively, in order to achieve a desired damping ratio (say) for the modes. The vector 
also contains the constraints on right-shifts in exciter/controller modes. Set  and

. 

 2. Set the number of steps  to two or more; the gain weighting vector  to unity (say);
the step counter  to zero; the initial stabilizer gains to a vector of nominal values (e.g. 5
pu) or zero.

3. Calculate  based on (14.3).

4. Form the LP problem given by (14.4)-(14.7) with
, ;

 and .

Initialise the vector of gains  to zero and solve the LP problem. 

5. If the LP problem is infeasible then: 
(a) choose a larger value of , and/or 

(b) allow a slightly greater value of  for the mode  which is most tightly constrained.
(If the increase in modal frequency  is too large then certain stabilizers may need retun-
ing, i.e. return to Stage 1). 

6. Set the step counter  and increment the vector of gains .

7. If  then recalculate system eigenvalues/vectors with the new gain settings and go
to 3.

There is an opportunity to view the intermediate results after line 7, following the eigen-anal-
ysis. According to (14.2) the contribution to the shift in the hth mode by the jth stabilizer (a
PSS or FDS) is 

. (14.8)

This result is based on (14.2). At the end of each of the  steps of the coordination algo-
rithm (i.e. following item 7 above), the user may assess the effectiveness of the contributions
of each stabilizer and each generator to the damping of a selected mode. This and other
physical insights provided by this technique will be demonstrated in the case study in the
next section.
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14.5 Case study: Simultaneous coordination in a multi-machine 
power system of PSSs and FDSs using linear programming 

The purpose of this study is to demonstrate:

1. the method of simultaneous coordination of selected PSSs and FDSs;

2. the insights - some unexpected - revealed by the action of the step-by-step LP pro-
cedure of determining the stabilizer gains;

3. the contributions of selected stabilizers to the damping of the rotor modes (and the
inter-area modes, in particular);

4. the benefits and disadvantages of the automatic process of determining stabilizer
gain settings.

The system under study in this section is the fourteen generator system employed in
Section 14.2 in which three SVCs and their FDSs are in service, namely SVC_2 at bus 212,
BSVC_4 at bus 412, and PSVC_5 at bus 507.

A study is conducted on Case 1 in which a number of scenarios are examined as the con-
straints on modal damping ratios, modal damping constants, and stabilizer gains are varied.
The nominal gains of the PSSs and the FDSs are all set to 5 pu on device base. Reducing the

gains from the higher values employed in Section 14.3.11 for heuristic coordination allows
for more flexibility in the optimization of the gain settings. The rotor modes are listed in
Table 14.4 for Case 1 with the stabilizers out of service and then in service with their gains
set to the nominal values.

In order to understand the action of the LP algorithm in adjusting the stabilizer gains let us
firstly consider the SDCD for Case 1 with the nominal gain settings. Because the emphasis
in the following analysis concerns the inter-area modes K, L, and M, the SDCD for these
modes is shown in Figure 14.9 to ascertain the effects on the modes of a 1 pu increment on
all stabilizers.

1. See step 1b, Table 14.2; nominal PSS gains 10 pu, FDS gains 20 pu.
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Table 14.4  Rotor modes and modes shifts for heavy load condition, Case 1 1. 
Nominal gains of all stabilizers 5 pu on device base.

For insight, based on Figure 14.9, consider the stabilizers which dominate - in descending
order left to right - the contributions to the damping (i.e. left-shifts) for each of the inter-
area modes.

:

1. The values of the modes in the table differ slightly from those in Table 10.14 due to: (i) 
the addition of a SVC on bus 212, and (ii) the FDSs on all three SVCs being in service at 
their nominal gains of 5 pu.

No.

Case 1. Heavy load

Stabilizers off
All PSSs & FDSs in service. 
Nominal stabilizer gains on 

device bases: all 5.0 pu
Mode Shift

Real Imag Real Imag Real Imag

A
B
C
D
E
F
G
H
I
J
K
L
M

-0.16
 0.11
 0.03
-0.56
-0.26
-0.68
-0.40
 0.02
-0.19
-0.62
 0.08
 0.06
 0.01

10.45
 9.58
 8.93
 8.63
 8.37
 8.00
 8.05
 7.81
 7.72
 7.42
 4.02
 2.61
 2.03

 0.01
-0.01
-0.00
 0.06
 0.03
 0.08
 0.05
-0.00
 0.02
 0.08
-0.02
-0.02
-0.00

-0.67
-0.39
-0.43
-1.00
-0.69
-0.85
-0.85
-0.53
-0.65
-0.92
-0.22
-0.12
-0.20

10.49
 9.65
 9.03
 8.74
 8.37
 8.25
 7.87
 7.86
 7.82
 7.49
 3.99
 2.60
 1.99

0.06
0.04
0.05
0.11
0.08
0.10
0.11
0.07
0.08
0.12
0.06
0.05
0.10

-0.51
-0.50
-0.46
-0.45
-0.43
-0.17
-0.45
-0.54
-0.46
-0.31
-0.31
-0.19
-0.21

 0.04
 0.07
 0.10
 0.09
 0.00
 0.25
-0.18
 0.05
 0.10
 0.07
-0.03
-0.01
-0.03

 Mode Number.  is the damping ratio.

Mode Stabilizer

K LPS_3 YPS_3 EPS_2 MPS_2

L PSVC_5 SVC_2 MPS_2 GPS_4 HPS_1

M BSVC_4 GPS_4 PSVC_5 SPS_4 TPS_4



 

 
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Figure 14.9 Case 1. Contributions to modes shifts of inter-area modes K, L & M by each 
stabilizer for a gain increment of 1 pu. Nominal gain settings for all stabilizers is 5 pu on 

device base. (Note: contribution of LPS_3 is off-scale; the value is 

.)

Notice there are several stabilizers that can affect the contributions to the damping of more
than one mode. For example, if the gain on PSVC_5 needs to be increased by the LP algo-
rithm to satisfy a requirement on mode L, it also produces a contribution to damping on
mode M. Similar implications apply to MPS_2 and GPS_4; such observations may help to
explain what may be unexpected results.

To examine the action and performance of the LP algorithm five scenarios are considered
in which all stabilizer weightings  and the following constraints or limits are varied: 

1. the maximum gain on selected stabilizers, 

2. the type of mode (local- or inter-area),

3. the real part of the mode-shift is limited by
• the modal damping constant  which must be less than or equal to a speci-

fied value; 

Mode MMode LMode K

-0.043 -0.010

5 8.57 j1.9  10
3– 0.043– j0.01=

wj 1=

–
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• the damping ratio  of the rotor mode which must be greater than or equal to
a nominated limit; 

• the change in the damping constant  which must be less than or equal to a
specified value.

In the following five scenarios shown in Table 14.5 for Case 1 the first three implement a
real left-shift on the inter-area modes K, L and M with the constraint that their damping ra-
tios are . The maximum stabilizer gains are reduced over Scenarios 1 to 3 to investi-
gate the reallocation of stabilizer gains between stabilizers. In Scenario 4 the limits on modes
K, L and M require that the real parts of the modes are  with maximum stabilizer
gains of 20 pu on device base. Finally, in Scenario 5 the stabilizer gains must satisfy (i) a limit

 on the real parts of modes K, L and M, (ii) the constraint  for the more
lightly damped local-area modes A, B, C, I and H.

The optimum stabilizer gains (in pu on device base) derived from the LP analysis and the
associated constraints for the five scenarios are summarized in Table 14.5

14.5.1 Scenario 1: Inter-area modes. Maximum PSS & FDS gain 40 pu.
In this scenario the damping ratios of the inter-area modes are to be equal to or greater than
0.2. From col. 2 of the table it is noted that the FDSs on two of the three SVCs are at their
limiting gains, and that the gains of only three of the fourteen PSSs are increased from their
nominal values. The condition  requires a significant left-shift on the higher frequen-
cy inter-area modes as revealed in the eigen-trajectories in Figure 14.10. Some local-area
modes are only marginally left-shifted by the increases in stabilizer gains, some significantly.

It is evident from the SDCD of Figure 14.9 that, of the three modes, for 1 pu gain increment
on any one stabilizer the contributions to the shifts in modes K and M are generally greater
than or comparable to those for mode L. Because stabilizers PSVC_5, SVC_2, MPS_2 and
GPS_4 contribute most to mode L, their gains are increased and, as a result, their contribu-
tions to modes K and M are also raised. As a consequence a lower contribution to mode K
by LPS_3 (the largest potential contributor to the mode) is required.



–

 0.2

 0.4–

 0.4–  0.1

 0.2
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Table 14.5  Case 1. Optimum stabilizer gains determined by LP for five scenarios.

The stabilizer gains are listed in col. 2. Gain limits of 40 pu occur only on the FDSs of
PSVC_5 and SVC_2 which are the main contributors to mode L. 

In Figure 14.10 the estimated and actual values of the three inter-area modes at each step in
LP procedure are in close agreement. The associated initial and final values of the ten local-
area modes, A to J, are also recorded.

PSS or FDS gain

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Modes -->
Inter-area K, L, M K L M & local area 

A B C H I

Kmax PSSs (pu) --> 40 40 20 20 20

Kmax FDSs (pu)--> 40 (All) 20 (FDS) 20 (All) 20(All) 20(All)

Mode constraints --
> Damping ratio, KLM: 

KLM: KLM: 

ABCIH: 

Generator / SVC
|

Gain 
(pu on device base)

Gain (pu on device 
base)

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6

HPS_1 5 14.0 20 11.7 5

BPS_2 5 5 5 5 7.7

EPS_2 5 5 16.9 5 15.0

VPS_2 5 5 5 5 6.1

MPS_2 18.8 40 20 20 19.4

SVC_2 40 5 20 20 20

LPS_3 15.7 15.7 15.9 7.4 6.6

YPS_3 5 5 5 5 6.9

TPS_4 5 5 5 5 6.0

CPS_4 5 5 5 5 5

SPS_4 5 5 6.8 5 11.5

GPS_4 8.7 40 20 20 19.9

BSVC_4 5 5 20 5.4 6.1

NPS_5 5 18.7 17.1 5 5

TPS_5 5 34.2 20 16.6 9.4

PPS_5 5 5 12.5 5 5

PSVC_5 40 20 20 20 20

Sum of device gains 183 233 234 166 174

The yellow shading indicates that the stabilizer gain is a maximum.

 0.2  0.4–
 0.4–
 0.1
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l
Figure 14.10 Case 1, Scenario 1. In the lower box the eigen-trajectories of inter-area 

modes K, L and M are plotted ( ). The six steps of the trajectory are shown; at each 
step the estimated values B to G of the mode are shown to agree closely with the actual val-
ues H to M. In the upper box the initial and final eigenvalues of the left-shifted local-area 

modes A to J are also marked.

14.5.2 Scenario 2: Inter-area modes. Limits PSS gains 40 pu, FDSs 20 pu
For comparison with Scenario 1 the effect of the reallocation of gains to other stabilizers
resulting from the reduction in the maximum gain on all FDSs from 40 to 20 pu is of inter-
est. (See col. 3 of Table 14.5.) The gain limit of 40 pu now occurs only on the PSSs of MPS_2
and GPS_4, and limit of 20 pu on the FDS of PSVC_5. It is insightful to examine the char-
acteristics of the main contributions by the stabilizers to the real shifts in modes K, L and
M at steps one to six of the LP calculation. Such contributions are shown in Table 14.6 in
which it is noted: 

• (i) the relative real shifts contributed by a stabilizer to the inter-area modes correspond
closely to those shown in the SDCD in Figure 14.9 (e.g. for MPS_2 in the SDCD the
ratio of the contributions to L and K are about 2:1; this is reflected in the table); 

• (ii) the resulting stabilizer gain is

, 

where  is the incremental gain factor and  is the nominal gain setting of the sta-

bilizer. The resulting gains are listed in col. 3 of Table 14.5. 

B B

AA

C

F

C
DD

EEF
G G

JJI
I HH

Initial and final values of local-area modes A to J

Inter-area modes:
                            K

                            L
                            M

 = 0.1
 = 0.2

 0.2

k 1 fj
j 1=

6

+
 
 
 

knom=

fj knom
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• (iii) Also, from Table 14.6, the associated contribution to the real shift in inter-area
mode h by stabilizer j is given by

.

• (iv) Stabilizers MPS_2, PSVC_5, GPS_4 and TPS_5 play a major role in contributing
to the real left-shift in the mode L. In so doing, GPS_4 and PSVC_5 are also major
contributors to real shift in mode M. Similar observations also apply to LPS_3 and
MPS_2 for mode K.

14.5.3 Scenario 3: Inter-area modes. Limits: all stabilizer gains 20 pu
As to be expected in comparison with Scenario 2, additional stabilizers - namely the FDSs
on the three SVCs and PSSs on four generators - operate at the maximum gain of 20 pu.
The gain of the PSS of LPS_3 is more or less constant (15.7 - 15.9 pu) over scenarios 1 to 3
for reasons discussed in Section 14.5.1.

14.5.4 Scenario 4: Inter-area modes. Limits ; all stabilizer gains 20 pu

The limit on the inter-area modes is much less onerous on modal damping than in Scenarios
1 to 3 for which the limit is . Note that in latter studies the real part of the eigenvalue
for mode K is  at the limit. Consequently in this scenario the PSS gain of LPS_3 is ap-
proximately halved, but the FDS gains of SVC_2, PSVC_5 and PSSs on MPS_2 & GPS_4
are at the limit of 20 pu.

14.5.5 Scenario 5: Inter-area modes; local-area modes A, B, C, H, I

The limits for this scenario are: inter-area modes ; the selected local-area modes
; limit on all stabilizer gains 20 pu.

The object of this scenario is to assess, in comparison with Scenario 4, the influence of the
constraint on the selected local modes on the distribution of the gains between stabilizers.
The local-area modes are selected on the basis that they are the more lightly damped. The
eigen-trajectories for both inter- and local-area modes are plotted in Figure 14.11.

An expanded and more detailed plot of the eigen-trajectories of the local-area modes are dis-
played in Figure 14.12. Note that in both this and previous figure the shifts in the trajectories

are more-or-less directly to the left 1. For practical purposes in the LP procedure, the extent
of left-shift associated with increases in stabilizer gain remains decoupled from the stabilizer
phase compensation over the range of frequencies of the rotor modes.

1. By ‘directly to the left’ is implied that the mode shift is , .

h
total hj

j 1=

6

=

 0.4–

 0.2
0.8–

 0.4–
 0.1

– j0  0
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Table 14.6  Case 1, Scenario 2. Contributions by stabilizer to the real shifts on Modes K, L and M Real left-shifts greater than 10 

_3 GPS_4

0 -13.1 1.167 -1.1 -16.7 -32.6

0 -12.0 1.167 -1.0 -15.1 -34.2

0 -12.2 1.167 -1.1 -14.4 -35.1

0 -11.8 1.167 -1.1 -13.6 -36.3

0 -11.8 1.167 -1.2 -13.2 -37.0

0 -11.9 1.167 -1.2 -12.8 -38.1

its),   1 unit = 10-3 Np/s.

_5 SVC_2 & BSVC_4

-14.9 -13.2 0 0 0 0

-15.2 -12.3 0 0 0 0

-14.7 -11.7 0 0 0 0

-14.3 -11.7 0 0 0 0

-13.5 -10.5 0 0 0 0

-12.7 -10.0 0 0 0 0

its),   1 unit = 10-3 Np/s.

L M f K L M

L M f K L M
units (0.01 Np/s) are high-lighted.

Step
HPS_1 MPS_2 LPS

1 1.093 +4.0 -14.0 -2.1 1.167 -10.6 -19.7 +0.6 0.393 -84.2

2 0.219 +0.8 -2.5 -0.5 1.167 -10.7 -18.4 +0.5 0.359 -75.7

3 0.405 +1.6 -4.5 -2.1 1.167 -10.6 -17.9 +0.5 0.364 -76.7

4 0 0 0 0 1.167 -10.5 -17.2 +0.6 0.347 -73.2

5 0 0 0 0 1.167 -10.3 -16.8 +0.8 0.343 -72.8

6 0.088 +0.4 -0.9 -0.1 1.167  -9.9 -16.5 +1.0 0.339 -72.7

f - Stabilizer incremental gain factor.           - Modal real shift (un

Step
NPS_5 TPS_5 PSVC

1 0 0 0 0 0 0 0 0 0.5 -3.0

2 0 0 0 0 1.167 -5.3 -14.5 -10.0 0.5 -3.0

3 0 0 0 0 1.167 -5.2 -14.5 -9.4 0.5 -2.9

4 0.659 -2.1 -6.8 -3.4 1.167 -5.2 -14.5 -8.8 0.5 -2.9

5 0.918 -3.0 -9.3 -4.5 1.167 -5.1 -14.0 -8.5 0.5 -2.8

6 1.167 -3.9 -11.7 -5.5 1.167 -5.1 -13.3 -8.2 0.5 -2.7

- Stabilizer incremental gain factor.           - Modal real shift (un

f K L M f K L M f K

m

f K L M f K L M f K

f m
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Clearly, in comparison to Scenario 4 and in satisfying the additional constraints imposed by
the local-area modes, the gains of the stabilizers change somewhat (see Table 14.5, col. 6).
The degradation in the figure of merit - i.e. the sum of the gains - increases slightly from 166
for Scenario 4 to 174.

Figure 14.11 Case 1, Scenario 5. The eigen-trajectories are plotted of inter-area modes K, 
L and M as well as local-area modes A, B, C, H and I. The six steps of the trajectories are 

marked; at each step the estimated values B to G of the mode and the actual values H to M 
agree closely as shown. The initial (A) and resulting final (N) eigenvalues of the remaining 

local-area modes are also indicated.

14.6 Concluding remarks

The approaches for tuning PSSs in Chapters 5 and 10 and FDSs in Chapter 11 provide the
means of the coordination of stabilizers by the coordination of their gains using either the
SDCD- or LP-based procedures. The preliminary tuning of stabilizers constitutes Stage 1 in
their coordination. The purpose of Stage 2 in the either of the two procedures of coordina-
tion is to satisfy certain criteria on modal damping and on stabilizer gain values.

Heuristic coordination
In the heuristic based approach the SDCDs provide information on the extent of the left-
shift available on a selected rotor mode for gain increments on a range of stabilizers, PSSs
and FDSs. Such information permits the user to estimate the gain increments required to
produce an adequate left-shift in the mode that satisfies the modal damping criteria within
a nominated range of gains. 

Local-area modes (see Fig 14.12 for details)

Inter-area modes:  K

                              L

                              M

= -0.4 Np/s


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Figure 14.12 Case 1, Scenario 5. Trajectories of local mode A-J. The six steps are shown 
for the constrained modes A, B, C, I and H; at each step the estimated values B to G and 

the actual mode values H to M are plotted. For the modes D, E, F, G and J the initial values 
A and the final values N are displayed. 

Having established a set of stabilizer gains required for a selected operating condition, this
set can be tested on other operating conditions to ascertain if the criteria on the modes are
satisfied or not. If not, the SDCDs for the new operating condition are invoked to establish
the changes in the stabilizer gains required to satisfy the relevant criteria. By iterating
through the range of encompassing operating conditions a set of stabilizer gains can be
found which satisfies all conditions; this is illustrated in Section 14.3. Clearly the process
may be tedious and does not lead to a unique solution as it depends on the user’s method-
ology and experience.

It is assumed that those stabilizers that are required to be in service are initially set to certain
minimal gains. In the scenarios demonstrating the LP procedure the nominal stabilizer gains
are all set to 5 pu on device base. This allows for flexibility in the procedure, e.g. it may reveal
that the gains of some stabilizers remain at the minimum value and therefore do not effec-
tively contribute to any improvement in damping. 

Automated coordination
The LP-based approach reveals aspects of the coordination process that are not obvious or
accounted for in the SDCD-based procedure. It reveals that certain stabilizers are (unex-
pectedly) more influential in satisfying the modal criteria than those stabilizers which may
appear to be the more obvious candidates. This is particularly the case in dealing with modes

Mode B

Mode E

Mode F

Mode G
Mode J

Mode D

Mode A

Mode C

Mode H

Mode I





Sec. 14.6 Concluding remarks 649
that are initially more poorly damped. Such information may fruitfully be incorporated into
the SDCD-based analysis.

The example of applying the LP-based procedure to the 14-generator system suggests alter-
native approaches can be adopted to the setting of stabilizer gains to satisfy the rotor modal
criteria. For example, if is intended to determine a set of gains for PSSs and FDSs for Area
2 only, the settings in other Areas remaining unchanged, a tailored approach may be re-
quired.

The LP-based procedure offers the following benefits. 

• (i) The criteria for damping of some rotor modes may differ from those for others;
this, together with a larger number of local- and inter-area modes, complicate the
analysis in the SDCD-based approach. 

• (ii) Criteria can be placed on exciter or controller modes to limit their right-shift. 

• (iii) The roles and merits of certain stabilizers are high-lighted, e.g. MPS_2, SVC_2;
these roles may not be readily apparent from the SDCD of Figure 14.9. 

• (iv) The stabilizer gains are no higher than necessary. 

• (v) Stabilizers that are the more critical to the support and improvement in the
damping of a poorly-damped rotor mode are revealed.

• (vi) The number of trial-and-error studies required for coordination are reduced. 

• (vii) The comparison between scenarios of the sum of stabilizer gains (the quantity
minimized in the objective function) is an indicator of the ‘gain loading’ on the
stabilizers; the larger the sum the more likely it is that further maximum stabiliz-
ers gains are imposed. 

• (viii) Information gleaned from LP-based procedure, such as in (iii) above, together
with the knowledge of the practical implications, can be incorporated into the
analysis based on the SDCD-based approach. The two approaches can comple-
ment each other.

The scenarios demonstrating the performance of the LP-based procedure highlight the ef-
fectiveness of the bus-frequency stabilized FDSs. In the studies their contributions to the
damping of certain inter-area modes is more extensive and effective than PSSs, and no del-
eterious effects are observed on the local-area modes. The potential degradation in damping
on rotor modes when SVCs or the FDSs are out of service requires investigation. Likewise,
a study would be required into the effect of the outage of generation on a difficult-to-damp
mode, e.g. the loss on MPS_2 on mode L. 
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The disadvantage of the LP-based procedure is that it provides a set of stabilizer gains, sub-
ject to certain constraints, that are optimum for the selected operating condition; it does not
have the facility to optimise the gains over a range of operating conditions (See [4], [6]).
However, at other encompassing operating conditions for which the stabilizers are tuned,
the rotor modes are likely to be left-shifted with increases in stabilizer gains as long as the
gains are in the acceptable range of values.

Using the automated approach, a case study such as that in Section 14.5 can used to examine
stabilizer coordination in a selected area of a larger power system, e.g. Area 2 in Figure 10.1.
This would provide some guidance on how better to improve damping on the system and
where additional PSSs and/or FDSs may be located to achieve better damping.

The SDCD- and the LP-based approaches are together a useful set of tools because they
provide information and insight into the power system’s dynamic characteristics. Such in-
formation and the guidance allows the user to make judicious, practical decisions on the pa-
rameter settings of stabilizers. Of note, the automated approach to stabilizer coordination
has been extended to cover the set of encompassing operating scenarios in [6] and [16].

Studies on the coordination of the controllers for other FACTS installations such as multi-
ple HVDC links are reported in the literature, e.g. [14], [15].
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