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Preface

During the 1980’s there have been many new developments regarding the
nonequilibrium statistical mechanics of dense classical systems. These
developments have had a major impact on the computer simulation methods
used to model nonequilibrium fluids. Some of these new algorithms are discussed
in the recent book by Allen and Tildesley, Computer Simulation of Liquids.
However that book was never intended to provide a detailed statistical mechanical
backdrop to the new computer algorithms. As the authors commented in their
preface, their main purpose was to provide a working knowledge of computer
simulation techniques. The present volume is, in part, an attempt to provide a
pedagogical discussion of the statistical mechanical environment of these
algorithms.

There is a symbiotic relationship between nonequilibrium statistical mechanics
on the one hand and the theory and practice of computer simulation on the
other. Sometimes, the initiative for progress has been with the pragmatic
requirements of computer simulation and at other times, the initiative has been
with the fundamental theory of nonequilibrium processes. Although progress
has been rapid, the number of participants who have been involved in the
exposition and development rather than with application, has been relatively
small.

The formal theory is often illustrated with examples involving shear flow in
liquids. Since a central theme of this volume is the nonlinear response of systems,
this book could be described as a text on Theoretical Rheology. However our
choice of rheology as a testbed for theory is merely a reflection of personal
interest. The statistical mechanical theory that is outlined in this book is capable
of far wider application.

All but two pages of this book are concerned with atomic rather than molecular
fluids. This restriction is one of economy. The main purpose of this text is best
served by choosing simple applications.

Many people deserve thanks for their help in developing and writing this book.
Firstly we must thank our wives, Val and Jan, for putting up with our absences,
our irritability and our exhaustion. We would also like to thank Dr. David
MacGowan for reading sections of the manuscript. Thanks must also go to Mrs.
Marie Lawrence for help with indexing. Finally special thanks must go to
Professors Cohen, Hanley and Hoover for incessant argument and interest.

D. J. Evans and G. P. Morriss
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1. Introduction

Mechanics provides a complete microscopic description of the state of a system.
When the equations of motion are combined with initial conditions and boundary
conditions, the subsequent time evolution of a classical system can be predicted.
In systems with more than just a few degrees of freedom such an exercise is
impossible. There is simply no practical way of measuring the initial microscopic
state of for example, a glass of water, at some instant in time. In any case, even
if this was possible we could not then solve the equations of motion for a coupled

system of 10" molecules.

In spite of our inability to fully describe the microstate of a glass of water, we
are all aware of wuseful macroscopic descriptions for such systems.
Thermodynamics provides a theoretical framework for correlating the equilibrium
properties of such systems. If the system is not at equilibrium, fluid mechanics
is capable of predicting the macroscopic nonequilibrium behaviour of the system.
In order for these macroscopic approaches to be useful their laws must be
supplemented not only with a specification of the appropriate boundary
conditions but with the values of thermophysical constants such as equation of
state data and transport coefficients. These values cannot be predicted by
macroscopic theory. Historically this data has been supplied by experiments.
One of the tasks of statistical mechanics is to predict these parameters from
knowledge of the interactions of the system's constituent molecules. This then
is a major purpose for statistical mechanics. How well have we progressed?

Equilibrium classical statistical mechanics is relatively well developed. The basic
ground rules - Gibbsian ensemble theory - have been known for the best part
of a century (Gibbs, 1902). The development of electronic computers in the
1950's provided unambiguous tests of the theory of simple liquids leading to a
consequently rapid development of integral equation and perturbation treatments
of liquids (Barker and Henderson 1976). With the possible exceptions of phase
equilibria and interfacial phenomena (Rowlinson and Widom, 1982) one could
say that the equilibrium statistical mechanics of atomic fluids is a solved problem.
Much of the emphasis has moved to molecular, even macromolecular liquids.

The nonequilibrium statistical mechanics of dilute atomic gases - kinetic theory
- is likewise, essentially complete (Ferziger and Kaper, 1972). However attempts
to extend kinetic theory to higher densities have been fraught with severe
difficulties. One might have imagined being able to develop a power series
expansion of the transport coefficients in much the same way that one expands
the equilibrium equation of state in the virial series. In 1965 Cohen and Dorfman
(1965 and 1972) proved that such an expansion does not exist. The Navier-Stokes
transport coefficients are nonanalytic functions of density.
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It was at about this time that computer simulations began to have an impact on
the field. In a celebrated 1957 paper, Kubo (1957) showed that linear transport
coefficients could be calculated from a knowledge of the equilibrium fluctuations
in the flux associated with the particular transport coefficient. For example the

shear viscosity M, is defined as the ratio of the shear stress, -F, «, to the strain
rate, dufiy =y,
Pym-ny (1.1)

The Kubo relation predicts that the limiting, small shear rate, viscosity, is given

by

(1.2)

where P is the reciprocal of the absolute temperature T, multiplied by

Boltzmann's constant s, V is the system volume and the angle brackets denote
an equilibrium ensemble average. The viscosity is then the infinite time integral
of the equilibrium, autocorrelation function of the shear stress. Similar relations
are valid for the other Navier-Stokes transport coefficients such as the self
diffusion coefficient, the thermal conductivity and the bulk viscosity (see Chapter
4).

Alder and Wainwright (1956) were the first to use computer simulations to
compute the transport coefficients of atomic fluids. What they found was
unexpected. It was believed that at sufficiently long time, equilibrium
autocorrelation functions should decay exponentially. Alder and Wainwright
discovered that in two dimensional systems the velocity autocorrelation function
which determines the self-diffusion coefficient, only decays as ¢"'. Since the
diffusion coefficient is thought to be the integral of this function, we were forced
to the reluctant conclusion that the self diffusion coefficient does not exist for
two dimensional systems. It is presently believed that each of the Navier-Stokes
transport coefficients diverge in two dimensions (Pomeau and Resibois, 1975).

This does not mean that two dimensional fluids are infinitely resistant to shear
flow. Rather, it means that the Newtonian constitutive relation (1.1), is an
inappropriate definition of viscosity in two dimensions. There is no linear regime
close to equilibrium where Newton's law (equation (1.1)), is valid. It is thought

that at small strain rates, . If this is the case then the limiting value

of the shear viscosity would be infinite. All this presupposes
that steady laminar shear flow is stable in two dimensions. This would be an
entirely natural presumption on the basis of our three dimensional experience.
However there is some evidence that even this assumption may be wrong (Evans
and Morriss, 1983). Recent computer simulation data suggests that in two
dimensions laminar flow may be unstable at small strain rates.
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In three dimensions the situation is better. The Navier-Stokes transport
coefficients appear to exist. However the nonlinear Burnett coefficients, higher
order terms in the Taylor series expansion of the shear stress in powers of the
strain rate (§2.3, §9.5), are thought to diverge (Kawasaki and Gunton, 1973).
These divergences are sometimes summarised in Dorfman’s Lemma (Zwanzig,
1982): all relevant fluxes are nonanalytic functions of all relevant variables! The
transport coefficients are thought to be nonanalytic functions of density,
frequency and the magnitude of the driving thermodynamic force, the strain
rate or the temperature gradient etc.

In this book we will discuss the framework of nonequilibrium statistical
mechanics. We will not discuss in detail, the practical results that have been
obtained. Rather we seek to derive a nonequilibrium analogue of the Gibbsian
basis for equilibrium statistical mechanics. At equilibrium we have a number of
idealisations which serve as standard models for experimental systems. Among
these are the well known microcanonical, canonical and grand canonical
ensembles. The real system of interest will not correspond exactly to any one
particular ensemble, but such models furnish useful and reliable information
about the experimental system. We have become so accustomed to mapping
each real experiment onto its nearest Gibbsian ensemble that we sometimes forget
that the canonical ensemble for example, does not exist in nature. It is an
idealisation.

A nonequilibrium system can be modelled as a perturbed equilibrium ensemble,
We will therefore need to add the perturbing field to the statistical mechanical
description. The perturbing field does work on the system - this prevents the
system from relaxing to equilibrium. This work is converted to heat, and the
heat must be removed in order to obtain a well defined steady state. Therefore
thermostats will also need to be included in our statistical mechanical models.
A major theme of this book is the development of a set of idealised
nonequilibrium systems which can play the same role in nonequilibrium
statistical mechanics as the Gibbsian ensembles play at equilibrium.

After a brief discussion of linear irreversible thermodynamics in Chapter 2, we
address the Liouville equation in Chapter 3. The Liouville equation is the
fundamental vehicle of nonequilibrium statistical mechanics. We introduce its
formal solution using mathematical operators called propagators (§3.3). In Chapter
3, we also outline the procedures by which we identify statistical mechanical
expressions for the basic field variables of hydrodynamics.

After this background in both macroscopic and microscopic theory we go on to
derive the Green-Kubo relations for linear transport coefficients in Chapter 4
and the basic results of linear response theory in Chapter 5. The Green-Kubo
relations derived in Chapter 4 relate thermal transport coefficients such as the
Navier-Stokes transport coefficients, to equilibrium fluctuations. Thermal
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transport processes are driven by boundary conditions. The expressions derived
in Chapter 5 relate mechanical transport coefficients to equilibrium fluctuations.
A mechanical transport process is one that is driven by a perturbing external
field which actually changes the mechanical equations of motion for the system.
In Chapter 5 we show how the thermostatted linear mechanical response of many
body systems is related to equilibrium fluctuations.

In Chapter 6 we exploit similarities in the fluctuation formulae for the mechanical
and the thermal response, by deriving computer simulation algorithms for
calculating the linear Navier-Stokes transport coefficients. Although the
algorithms are designed to calculate linear thermal transport coefficients, they
employ mechanical methods. The validity of these algorithms is proved using
thermostatted linear response theory (Chapter 5) and the knowledge of the
Green-Kubo relations provided in Chapter 4.

A diagrammatic summary of some of the common algorithms used to compute
shear viscosity, is given in Figure 1.1. The Green-Kubo method simply consists
of simulating an equilibrium fluid under periodic boundary conditions and
making the appropriate analysis of the time dependent stress fluctuations using
(1.2). Gosling, McDonald and Singer (1973) proposed performing a
nonequilibrium simulation of a system subject to a sinusoidal transverse force.
The viscosity could be calculated by monitoring the field induced velocity profile
and extrapolating the results to infinite wavelength. In 1973 Ashurst and Hoover
(1975), used external reservoirs of particles to induce a nearly planar shear in a
model fluid. In the reservoir technique the viscosity is calculated by measuring
the average ratio of the shear stress to the strain rate, in the bulk of the fluid,
away from the reservoir regions. The presence of the reservoir regions gives rise
to significant inhomogeneities in the thermodynamic properties of the fluid and
in the strain rate in particular. This leads to obvious difficulties in the calculation
of the shear viscosity. Lees and Edwards (1972), showed that if one used ‘sliding
brick” periodic boundary conditions one could induce planar Couette flow in a
simulation. The so-called Lees-Edwards periodic boundary conditions enable
one to perform homogeneous simulations of shear flow in which the low-Reynolds
number velocity profile is linear.

With the exception of the Green-Kubo method, these simulation methods all
involve nonequilibrium simulations. The Green-Kubo technique is useful in that
all linear transport coefficients can in principle be calculated from a single
simulation. It is restricted though, to only calculating linear transport
coefficients. The nonequilibrium methods on the other hand provide information
about the nonlinear as well as the linear response of systems. They therefore
provide a direct link with rheology.
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Figure 1.1. Methods for determining the Shear viscosity

The use of nonequilibrium computer simulation algorithms, so-called
nonequilibrium molecular dynamics (NEMD), leads inevitably to the question
of the large field, nonlinear response. Indeed the calculation of linear transport
coefficients using NEMD proceeds by calculating the nonlinear response and
extrapolating the results to zero field. One of our main aims will be to derive a
number of nonlinear generalisations of the Kubo relations which give an exact
framework within which one can calculate and characterise transport processes
far from equilibrium (chapters 7 & 8). Because of the divergences alluded to
above, the nonlinear theory cannot rely on power series expansions about the
equilibrium state. A major system of interest is the nonequilibrium steady state.
Theory enables one to relate the nonlinear transport coefficients and mechanical
quantities like the internal energy or the pressure, to transient fluctuations in
the thermodynamic flux which generates the nonequilibrium steady state
(Chapter 7). We derive the Transient Time Correlation Function (TTCEF, §7.3)
and the Kawasaki representations (§7.2) of the thermostatted nonlinear response.
These results are exact and do not require the nonlinear response to be an analytic
function of the perturbing fields. The theory also enables one to calculate specific
heats, thermal expansion coefficients and compressibilities from a knowledge
of steady state fluctuations (Chapter 9). After we have discussed the nonlinear
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response, we present a resolution of the van Kampen objection to linear response
theory and to the Kubo relations in Chapter 7.

An innovation in our theory is the use of reversible equations of motion which
incorporate a deterministic thermostat (§3.1). This innovation was motivated by
the needs imposed by nonequilibrium computer simulation. If one wants to use
any of the nonequilibrium methods depicted in Figure 1.1 to calculate the shear
viscosity one needs a thermostat so that one can accumulate reliable steady state
averages. It is not clear how one could calculate the viscosity of a fluid whose
temperature and pressure are increasing in time.

The first deterministic thermostat, the so-called Gaussian thermostat, was
independently and simultaneously developed by Hoover and Evans (Hoover et.
al.,, 1982, and Evans, 1983). It permitted homogeneous simulations of
nonequilibrium steady states using molecular dynamics techniques. Hitherto
molecular dynamics had involved solving Newton’s equations for systems of
interacting particles. If work was performed on such a system in order to drive
it away from equilibrium the system inevitably heated up due to the irreversible
conversion of work into heat.

Hoover and Evans showed that if such a system evolved under their
thermostatted equations of motion, the so-called Gaussian isokinetic equations
of motion, the dissipative heat could be removed by a thermostatting force which
is part of the equations of motion themselves. Now, computer simulators had
been simulating nonequilibrium steady states for some years but in the past the
dissipative heat was removed by simple ad-hoc rescaling of the second moment
of the appropriate velocity. The significance of the Gaussian isokinetic equations
of motion was that since the thermostatting was part of the equations of motion
it could be analysed theoretically using response theory. Earlier ad-hoc rescaling
or Andersen's stochastic thermostat (Andersen, 1980), could not be so easily
analysed. In Chapter 5 we prove that while the adiabatic (ie unthermostatted)
linear response of a system can be calculated as the integral of an unthermostatted
(ie Newtonian) equilibrium time correlation function, the thermostatted linear
response is related to the corresponding thermostatted equilibrium time
correlation function. These results are quite new and can be proved only because
the thermostatting mechanism is reversible and deterministic.

One may ask whether one can talk about the ‘thermostatted’ response without
referring to the details of the thermostatting mechanism. Provided the amount
of heat @, removed by a thermostat within the characteristic microscopic
relaxation time T, of the system is small compared to the enthalpy [, of the fluid
(ie. ), we expect that the microscopic details of the thermostat will

be unimportant. In the linear regime close to equilibrium this will always be the
case. Even for systems far (but not too far), from equilibrium this condition is
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often satisfied. In §5.4 we give a mathematical proof of the independence of the
linear response to the thermostatting mechanism.

Although originally motivated by the needs of nonequilibrium simulations, we
have now reached the point where we can simulate equilibrium systems at
constant internal energy E, at constant enthalpy I, or at constant temperature
T, and pressure P. If we employ the so-called Nosé-Hoover (Hoover, 1985)
thermostat, we can allow fluctuations in the state defining variables while
controlling their mean values. These methods have had a major impact on
computer simulation methodology and practice.

To illustrate the point: in an ergodic system at equilibrium, Newton's equations
of motion generate the molecular dynamics ensemble in which the number of
particles, the total energy, the volume and the total linear momentum are all

precisely fixed (N, E, V, 2"' ). Previously this was the only equilibrium
ensemble accessible to molecular dynamics simulation. Now however we can
use Gaussian methods to generate equilibrium ensembles in which the precise

value of say, the enthalpy and pressure are fixed (N, I, P, 2“' ). Alternatively,
Nosé-Hoover equations of motion could be used which generate the canonical

ensemble (¢ "). Gibbs proposed the various ensembles as statistical distributions
in phase space. In this book we will describe dynamics that is capable of
generating each of those distributions.

A new element in the theory of nonequilibrium steady states is the abandonment
of Hamiltonian dynamics. The Hamiltonian of course plays a central role in
Gibbs' equilibrium statistical mechanics. It leads to a compact and elegant
description. However the existence of a Hamiltonian which generates dynamical
trajectories is, as we will see, not essential.

In the space of relevant variables, neither the Gaussian thermostatted equations
of motion nor the Nosé-Hoover equations of motion can be derived from a
Hamiltonian. This is true even in the absence of external perturbing fields. This

implies in turn that the usual form of the Liouville equation, . [di =0 for the

N -particle distribution function /, is invalid. Thermostatted equations of motion
necessarily imply a compressible phase space.

The abandonment of a Hamiltonian approach to particle dynamics had in fact
been forced on us somewhat earlier. The Evans-Gillan equations of motion for
heat flow (§6.5), which predate both the Gaussian and Nosé-Hoover thermostatted
dynamics, cannot be derived from a Hamiltonian. The Evans-Gillan equations
provide the most efficient presently known dynamics for describing heat flow
in systems close to equilibrium. A synthetic external field was invented so that
its interaction with an N-particle system precisely mimics the impact a real
temperature gradient would have on the system. Linear response theory is then
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used to prove that the response of a system to a real temperature gradient is
identical to the response to the synthetic Evans-Gillan external field.

We use the term synthetic to note the fact that the Evans-Gillan field does not
exist in nature. It is a mathematical device used to transform a difficult boundary
condition problem, the flow of heat in a system bounded by walls maintained
at differing temperatures, into a much simpler mechanical problem. The
Evans-Gillan field acts upon the system in a homogeneous way permitting the
use of periodic rather than inhomogeneous boundary conditions. This synthetic
field exerts a force on each particle which is proportional to the difference of
the particle's enthalpy from the mean enthalpy per particle. The field thereby
induces a flow of heat in the absence of either a temperature gradient or of any
mass flow. No Hamiltonian is known which can generate the resulting equations
of motion.

In a similar way Kawasaki showed that the boundary condition which
corresponds to planar Couette shear flow can be incorporated exactly into the
equations of motion. These equations are known as the SLLOD equations (§6.3).
They give an exact description of the shearing motion of systems arbitrarily far
from equilibrium. Again no Hamiltonian can be found which is capable of
generating these equations.

When external fields or boundary conditions perform work on a system we have
at our disposal a very natural set of mechanisms for constructing nonequilibrium
ensembles in which different sets of thermodynamic state variables are used to
constrain or define, the system. Thus we can generate on the computer or analyse
theoretically, nonequilibrium analogues of the canonical, microcanonical or
isobaric-isoenthalpic ensembles.

At equilibrium one is used to the idea of pairs of conjugate thermodynamic
variables generating conjugate equilibrium ensembles. In the canonical ensemble
particle number N, volume V, and temperature T, are the state variables whereas
in the isothermal-isobaric ensemble the role played by the volume is replaced
by the pressure, its thermodynamic conjugate. In the same sense one can generate
conjugate pairs of nonequilibrium ensembles. If the driving thermodynamic
force is X, it could be a temperature gradient or a strain rate, then one could
consider the N,V,T,X ensemble or alternatively the conjugate N,P,T,X
ensemble.

However in nonequilibrium steady states one can go much further than this.
The dissipation, the heat removed by the thermostat per unit time dOfdr | can
always be written as a product of a thermodynamic force, X, and a
thermodynamic flux, J(I'). If for example the force is the strain rate, Y, then

the conjugate flux is the shear stress, ~ P.. One can then consider nonequilibrium
ensembles in which the thermodynamic flux rather than the thermodynamic
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force is the independent state variable. For example we could define the
nonequilibrium steady state as an N, V, T, .J ensemble. Such an ensemble is,
by analogy with electrical circuit theory, called a Norton ensemble, while the
case where the force is the state variable N, V, T, X, is called a Thévenin
ensemble. A major postulate in this work is the macroscopic equivalence of
corresponding Norton and Thévenin ensembles.

The Kubo relations referred to above, only pertain to the Thévenin ensembles.
In §6.6 we will discuss the Norton ensemble analogues of the Kubo relations and
show how deep the duality between the two types of ensembles extends. The
generalisation of Norton ensemble methods to the nonlinear response leads for
the first time, to analytic expressions for the nonlinear Burnett coefficients. The
nonlinear Burnett coefficients are simply the coefficients of a Taylor series
expansion, about equilibrium, of a thermodynamic flux in powers of the
thermodynamic force. For Navier-Stokes processes, these coefficients are expected
to diverge. However since until recently no explicit expressions were known
for the Burnett coefficients, simulation studies of this possible divergence were
severely handicapped. In Chapter 9 we discuss Evans and Lynden-Bell’s (1988)
derivation of, equilibrium time correlation functions for the inverse Burnett
coefficients. The inverse Burnett coefficients are so-called because they refer to
the coefficients of the expansion of the forces in terms of the thermodynamic
fluxes rather than vice versa.

In the last Chapter we introduce material which is quite recent and perhaps
controversial. We attempt to characterise the phase space distribution of
nonequilibrium steady states. This is essential if we are ever to be able to develop
a thermodynamics of nonequilibrium steady states. Presumably such a
thermodynamics, a nonlinear generalisation of the conventional linear irreversible
thermodynamics treated in Chapter 2, will require the calculation of a generalised
entropy. The entropy and free energies are functionals of the distribution
function and thus are vastly more complex to calculate than nonequilibrium
averages.

What we find is surprising. The steady state nonequilibrium distribution function
seen in NEMD simulations, is a fractal object. There is now ample evidence that
the dimension of the phase space which is accessible to nonequilibrium steady
states is lower than the dimension of phase space itself. This means that the
volume of accessible phase space as calculated from the ostensible phase space,
is zero. This means that the fine grained entropy calculated from Gibbs’ relation,

(1.3)

diverges to negative infinity. (If no thermostat is employed the corresponding
nonequilibrium entropy is, as was known to Gibbs (1902), a constant of the
motion!) Presumably the thermodynamic entropy, if it exists, must be computed
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from within the lower dimensional, accessible phase space rather than from the
full phase space as in (1.3). We close the book by describing a new method for
computing the nonequilibrium entropy.
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2. Linear Irreversible Thermodynamics

2.1 The Conservation Equations

At the hydrodynamic level we are interested in the macroscopic evolution of
densities of conserved extensive variables such as mass, energy and momentum.
Because these quantities are conserved, their respective densities can only change
by a process of redistribution. As we shall see, this means that the relaxation
of these densities is slow, and therefore the relaxation plays a macroscopic role.
If this relaxation were fast (i.e. if it occurred on a molecular time scale for
instance) it would be unobservable at a macroscopic level. The macroscopic
equations of motion for the densities of conserved quantities are called the
Navier-Stokes equations. We will now give a brief description of how these
equations are derived. It is important to understand this derivation because one
of the objects of statistical mechanics is to provide a microscopic or molecular
justification for the Navier-Stokes equations. In the process, statistical mechanics
sheds light on the limits of applicability of these equations. Similar treatments
can be found in de Groot and Mazur (1962) and Kreuzer (1981).

Let M(t) be the total mass contained in an arbitrary volume V, then

(2.1)

where PIr./) is the mass density at position r and time t. Since mass is conserved,
the only way that the mass in the volume V can change is by flowing through
the enclosing surface, S (see Figure 2.1).

(2.2)

Here u(r,t) is the fluid streaming velocity at position r and time t. dS denotes
an area element of the enclosing surface S, and V is the spatial gradient vector
operator, (e/ax,a/ay,a/gz). It is clear that the rate of change of the enclosed mass

can also be written in terms of the change in mass density PIr.!}, as

(2.3)

11
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Figure 2.1. The change in the mass contained in an arbitrary closed volume
V can be calculated by integrating the mass flux through the enclosing surface
S.

If we equate these two expressions for the rate of change of the total mass we
find that since the volume V was arbitrary,

(2.4)

This is called the mass continuity equation and is essentially a statement that
mass is conserved. We can write the mass continuity equation in an alternative
form if we use the relation between the total or streaming derivative, and the
various partial derivatives. For an arbitrary function of position r and time t,

for example a(r.7), we have

(2.5)

If we let alr.Z)=pir.i) in equation (2.5), and combine this with equation (2.4)
then the mass continuity equation can be written as

(2.6)

In an entirely analogous fashion we can derive an equation of continuity for
momentum. Let Git) be the total momentum of the arbitrary volume V, then
the rate of change of momentum is given by
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(2.7)

The total momentum of volume V can change in two ways. Firstly it can change
by convection. Momentum can flow through the enclosing surface. This
convective term can be written as,

(2.8)

The second way that the momentum could change is by the pressure exerted
on V by the surrounding fluid. We call this contribution the stress contribution.
The force dF, exerted by the fluid across an elementary area dS, which is moving
with the streaming velocity of the fluid, must be proportional to the magnitude
of the area dS. The most general such linear relation is,

idF m=idS-P (2.9

This is in fact the definition of the pressure tensor P. It is also the negative of
the stress tensor. That the pressure tensor is a second rank tensor rather than a
simple scalar, is a reflection of the fact that the force dF, and the area vector dS,
need not be parallel. In fact for molecular fluids the pressure tensor is not
symmetric in general.

As P is the first tensorial quantity that we have introduced it is appropriate to
define the notational conventions that we will use. P is a second rank tensor
and thus requires two subscripts to specify the element. In Einstein notation

equation (2.9) reads , where the repeated index P implies a
summation. Notice that the contraction (or dot product) involves the first index
of P and that the vector character of the force dF is determined by the second
index of P. We will use bold san serif characters to denote tensors of rank two
or greater. Figure 2.2 gives a diagrammatic representation of the tensorial relations
in the definition of the pressure tensor.

13
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Figure 2.2. Definition of the pressure tensor.

Using this definition the stress contribution to the momentum change can be
seen to be,

(2.10)

Combining (2.8, 2.10) and using the divergence theorem to convert surface
integrals to volume integrals gives,

(2.11)

Since this equation is true for arbitrary V we conclude that,

(2.12)

This is one form of the momentum continuity equation. A simpler form can be
obtained using streaming derivatives of the velocity rather than partial
derivatives. Using the chain rule the left hand side of (2.12) can be expanded
as,

(2.13)
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Using the vector identity

and the mass continuity equation (2.4), equation (2.13) becomes

(2.14)
Now,

(2.15)
so that (2.14) can be written as,

(2.16)

The final conservation equation we will derive is the energy equation. If we
denote the total energy per unit mass or the specific total energy as ¢l r./ ), then
the total energy density is P(r. 1 [r.1). If the fluid is convecting there is obviously
a simple convective kinetic energy component in ¢(F.f ). If this is removed from
the energy density then what remains should be a thermodynamic internal
energy density, PiF.1U(r,t).

(2.17)

Here we have identified the first term on the right hand side as the convective
kinetic energy. Using (2.16) we can show that,

(2.18)

The second equality is a consequence of the momentum conservation equation
(2.16). In this equation we use the dyadic product of two first rank tensors (or
ordinary vectors) u and V to obtain a second rank tensor uV. In Einstein notation
(uV)gqt =u oV p. In the first form given in equation (2.18) V is contracted into
the first index of P and then u is contracted into the second remaining index.
This defines the meaning of the double contraction notation after the second
equals sign in equation (2.18) - inner indices are contracted first, then outer
indices - that isuV:P=(uV)yt P g =u gV ¢ P g

15
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For any variable a, using equation (2.5) we have

(2.19)
Using the mass continuity equation (2.4)

(2.20)
If we let the total energy inside a volume V be E, then clearly,

(2.21)

Because the energy is conserved we can make a detailed account of the energy
balance in the volume V. The energy can simply convect through the containing
surface, it could diffuse through the surface and the surface stresses could do
work on the volume V. In order these terms can be written,

(2.22)

In equation (2.22) J q, is called the heat flux vector. It gives the energy flux
across a surface which is moving with the local fluid streaming velocity. Using
the divergence theorem, (2.22)can be written as,

(2.23)

Comparing equations (2.21) and (2.23) we derive the continuity equation for
total energy,

(2.24)

We can use (2.20) to express this equation in terms of streaming derivatives of
the total specific energy

(2.25)

Finally equations (2.17) and (2.18) can be used to derive a continuity equation
for the specific internal energy
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(2.26)

where the superscript T denotes transpose. The transpose of the pressure tensor
appears as a result of our double contraction notation because in equation (2.25)
V is contracted into the first index of P.

The three continuity equations (2.6), (2.16) and (2.26) are continuum expressions
of the fact that mass, momentum and energy are conserved. These equations are
exact.

2.2 Entropy Production

Thus far our description of the equations of hydrodynamics has been exact. We
will now derive an equation for the rate at which entropy is produced
spontaneously in a nonequilibrium system. The second law of thermodynamics
states that entropy is not a conserved quantity. In order to complete this
derivation we must assume that we can apply the laws of equilibrium
thermodynamics, at least on a local scale, in nonequilibrium systems. This
assumption is called the local thermodynamic equilibrium postulate. We
expect that this postulate should be valid for systems that are sufficiently close
to equilibrium (de Groot and Mazur, 1962). This macroscopic theory provides
no information on how small these deviations from equilibrium should be in
order for local thermodynamic equilibrium to hold. It turns out however, that
the local thermodynamic equilibrium postulate is satisfied for a wide variety of
systems over a wide range of conditions. One obvious condition that must be
met is that the characteristic distances over which inhomogeneities in the
nonequilibrium system occur must be large in terms molecular dimensions. If
this is not the case then the thermodynamic state variables will change so rapidly
in space that a local thermodynamic state cannot be defined. Similarly the time
scale for nonequilibrium change in the system must be large compared to the
time scales required for the attainment of local equilibrium.

We let the entropy per unit mass be denoted as, s(r,t) and the entropy of an
arbitrary volume V, be denoted by S. Clearly,

(2.27)

In contrast to the derivations of the conservation laws we do not expect that by
taking account of convection and diffusion, we can totally account for the
entropy of the system. The excess change of entropy is what we are seeking to
calculate. We shall call the entropy produced per unit time per unit volume, the
entropy source strength, O(r,t).

17
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(2.28)

In this equation J(r.1) is the total entropy flux. As before we use the divergence
theorem and the arbitrariness of V to calculate,

(2.29)

We can decompose J(F.1) into a streaming or convective term P Js(r,t)u(r,t)

in analogy with equation (2.8), and a diffusive term . Using these terms
(2.29) can be written as,

(2.30)

Using (2.5) to convert to total time derivatives we have,

(2.31)

At this stage we introduce the assumption of local thermodynamic equilibrium.

We postulate a local version of the Gibbs relation . Converting
this relation to a local version with extensive quantities replaced by the specific
entropy energy and volume respectively and noting that the specific volume

VIM is simply P(r.s) ", we find that,

(2.32)

We can now use the mass continuity equation to eliminate the density derivative,

(2.33)
Multiplying (2.33) by p(r.{) and dividing by T(r,t) gives

(2.34)

We can substitute the energy continuity expression (2.26) for ¢U/di into (2.34)
giving,

(2.35)

We now have two expressions for the streaming derivative of the specific
entropy, pir.i 1 ds(r,t)/dt, equation (2.31) and (2.35). The diffusive entropy flux
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J §(r,t), using the time derivative of the local equilibrium postulate @ =Tds  is
equal to the heat flux divided by the absolute temperature and therefore,

(2.36)
Equating (2.31) and (2.35) using (2.36) gives,

(2.37)

We define the viscous pressure tensor 11", as the nonequilibrium part of the
pressure tensor.

(2.38)

Using this definition the entropy source strength can be written as,

(2.39)

A second postulate of nonlinear irreversible thermodynamics is that the entropy
source strength always takes the canonical form (de Groot and Mazur, 1962),

(2.40)

This canonical form defines what are known as thermodynamic fluxes, /i, and
their conjugate thermodynamic forces, Xi. We can see immediately that our
equation (2.39) takes this canonical form provided we make the identifications
that: the thermodynamic fluxes are the various Cartesian elements of the heat
flux vector, J o(r,t), and the viscous pressure tensor, I1(r,t). The thermodynamic
forces conjugate to these fluxes are the corresponding Cartesian components
of the temperature gradient divided by the square of the absolute temperature,
rirg)* VT(r,t), and the strain rate tensor divided by the absolute temperature,

Tira) Vu(r,t), respectively. We use the term corresponding quite deliberately;
the a” element of the heat flux is conjugate to the o element of the temperature
gradient. There are no cross couplings. Similarly the @.f element of the pressure
viscous pressure tensor is conjugate to the @.5 element of the strain rate tensor.
There is clearly some ambiguity in defining the thermodynamic fluxes and
forces. There is no fundamental thermodynamic reason why we included the

temperature factors, T(r.r) " and T(r.0)"', into the forces rather than into the
fluxes. Either choice is possible. Ours is simply one of convention. More
importantly there is no thermodynamic way of distinguishing between the fluxes

19
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and the forces. At a macroscopic level it is simply a convention to identify the
temperature gradient as a thermodynamic force rather than a flux. The canonical
form for the entropy source strength and the associated postulates of irreversible
thermodynamics do not permit a distinction to be made between what we should
identify as fluxes and what should be identified as a force. Microscopically it is
clear that the heat flux is a flux. It is the diffusive energy flow across a comoving
surface. At a macroscopic level however, no such distinction can be made.

Perhaps the simplest example of this macroscopic duality is the Norton constant
current electrical circuit, and the Thevénin constant voltage equivalent circuit.
We can talk of the resistance of a circuit element or of a conductance. At a
macroscopic level the choice is simply one of practical convenience or convention.

2.3 Curie’s Theorem

Consistent with our use of the local thermodynamic equilibrium postulate, which
is assumed to be valid sufficiently close to equilibrium, a linear relation should
hold between the conjugate thermodynamic fluxes and forces. We therefore
postulate the existence of a set of linear phenomenological transport coefficients
{Lij} which relate the set forces {Xj} to the set of fluxes {J;}. We use the term
phenomenological to indicate that these transport coefficients are to be defined
within the framework of linear irreversible thermodynamics and as we shall see
there may be slight differences between the phenomenological transport
coefficients Ly and practical transport coefficients such as the viscosity
coefficients or the usual thermal conductivity.

We postulate that all the thermodynamic forces appearing in the equation for
the entropy source strength (2.40), are related to the various fluxes by a linear
equation of the form

(2.41)

This equation could be thought of as arising from a Taylor series expansion of
the fluxes in terms of the forces. Such a Taylor series will only exist if the flux
is an analytic function of the force at X=o.

(2.42)

Clearly the first term is zero as the fluxes vanish when the thermodynamic forces
are zero. The term which is linear in the forces is evidently derivable, at least
formally, from the equilibrium properties of the system as the functional
derivative of the fluxes with respect to the forces computed at equilibrium, X=o.
The quadratic term is related to what are known as the nonlinear Burnett
coefficients (see §9.5). They represent nonlinear contributions to the linear theory
of irreversible thermodynamics.
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If we substitute the linear phenomenological relations into the equation for the
entropy source strength (2.40), we find that,

(2.43)

A postulate of linear irreversible thermodynamics is that the entropy source
strength is always positive. There is always an increase in the entropy of a system
so the transport coefficients are positive. Since this is also true for the mirror
image of any system, we conclude that the entropy source strength is a positive
polar scalar quantity. (A polar scalar is invariant under a mirror inversion of the
coordinate axes. A pseudo scalar, on the other hand, changes its sign under a
mirror inversion. The same distinction between polar and scalar quantities also
applies to vectors and tensors.)

Suppose that we are studying the transport processes taking place in a fluid. In
the absence of any external non-dissipative fields (such as gravitational or
magnetic fields), the fluid is at equilibrium and assumed to be isotropic. Clearly
since the linear transport coefficients can be formally calculated as a zero-field
functional derivative they should have the symmetry characteristic of an isotropic
system. Furthermore they should be invariant under a mirror reflection of the
coordinate axes.

Suppose that all the fluxes and forces are scalars. The most general linear relation
between the forces and fluxes is given by equation (2.41). Since the transport
coefficients must be polar scalars there cannot be any coupling between a pseudo
scalar flux and a polar force or between a polar flux and a pseudo scalar force.
This is a simple application of the quotient rule in tensor analysis. Scalars of like

parity only, can be coupled by the transport matrix L,

If the forces and fluxes are vectors, the most general linear relation between the
forces and fluxes which is consistent with isotropy is,

(2.44)

In this equation L j is a second rank polar tensor because the transport
coefficients must be invariant under mirror inversion just like the equilibrium
system itself. If the equilibrium system is isotropic then L j must be expressible
as a scalar L times the only isotropic second rank tensor I, (the Kronecker delta
tensor I = Oy ). The thermodynamic forces and fluxes which couple together
must either all be pseudo vectors or polar vectors. Otherwise since the transport
coefficients are polar quantities, the entropy source strength could be pseudo
scalar. By comparing the trace of L j; with the trace of L;; I, we see that the polar
scalar transport coefficients are given as,

(2.45)
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If the thermodynamic forces and fluxes are all symmetric traceless second rank
tensors J ;, X ;, where J; ="'/, (J;+ J; ) - '/3Tr (J ;) I, (we denote symmetric
traceless tensors as outline sans serif characters), then

(2.46)

is the most linear general linear relation between the forces and fluxes. L i @ is
a symmetric fourth rank transport tensor. Unlike second rank tensors there are
three linearly independent isotropic fourth rank polar tensors. (There are no
isotropic pseudo tensors of the fourth rank.) These tensors can be related to the
Kronecker delta tensor, and we depict these tensors by the forms,

(2.47a)

(2.47b)

(2.47¢)

Since L @ is an isotropic tensor it must be representable as a linear combination
of isotropic fourth rank tensors. It is convenient to write,

(2.48)

It is easy to show that for any second rank tensor A,

(2.49)

where A is the symmetric traceless part of A ®, A = '/,(A - A ") is the
antisymmetric part of A ® (we denote antisymmetric tensors as shadowed sans

serif characters), and . This means that the three isotropic fourth rank
tensors decouple the linear force flux relations into three separate sets of
equations which relate respectively, the symmetric second rank forces and fluxes,
the antisymmetric second rank forces and fluxes, and the traces of the forces
and fluxes. These equations can be written as

(2.50a)

(2.50b)

(2.50¢)
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where J ; is the antisymmetric part of J, and J = '/3Tr(J). As J ; has only three
independent elements it turns out that J ; can be related to a pseudo vector.
This relationship is conveniently expressed in terms of the Levi-Civita isotropic
third rank tensor € ¥. (Note: € «f ¥ = +1 if «B ¥ is an even permutation, -1 if af
¥ is an odd permutation and is zero otherwise.) If we denote the pseudo vector
dual of J;as J; " then,

(2.51)

This means that the second equation in the set (2.50b) can be rewritten as,

(2.52)

Looking at (2.50) and (2.52) we see that we have decomposed the 81 elements of
the (3-dimensional) fourth rank transport tensor L j; @, into three scalar quantities,
Ly,
sets of forces and fluxes. Couplings only exist within the sets. There are no
couplings of forces of one set with fluxes of another set. The sets naturally
represent the symmetric traceless parts, the antisymmetric part and the trace of
the second rank tensors. The three irreducible components can be identified
with irreducible second rank polar tensor component an irreducible pseudo
vector and an irreducible polar scalar. Curie's principle states that linear transport
couples can only occur between irreducible tensors of the same rank and parity.

L* ;. and L" ;;. Furthermore we have found that there are three irreducible
J 1

If we return to our basic equation for the entropy source strength (2.40) we see
that our irreducible decomposition of Cartesian tensors allows us to make the
following decomposition for second rank fields and fluxes,

(2.53)

The conjugate forces and fluxes appearing in the entropy source equation separate
into irreducible sets. This is easily seen when we realise that all cross couplings
between irreducible tensors of different rank vanish; I:J;=1:X=J; : X =0,
etc. Conjugate thermodynamic forces and fluxes must have the same irreducible
rank and parity.

We can now apply Curie's principle to the entropy source equation (2.39),
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(2.54)

In writing this equation we have used the fact that the transpose of P is equal
to P and we have used equation (2.51) and the definition of the cross product
Vxu = - € ¥ : Vu to transform the antisymmetric part of P *. Note that the
transpose of P is equal to - P. There is no conjugacy between the vector J (r,t)
and the pseudo vector Vxu(r,t) because they differ in parity. It can be easily
shown that for atomic fluids the antisymmetric part of the pressure tensor is
zero so that the terms in (2.54) involving the vorticity Vxu(r,t) are identically
zero. For molecular fluids, terms involving the vorticity do appear but we also
have to consider another conservation equation - the conservation of angular
momentum. In our description of the conservation equations we have ignored
angular momentum conservation. The complete description of the hydrodynamics
of molecular fluids must include this additional conservation law.

For single component atomic fluids we can now use Curie's principle to define
the phenomenological transport coefficients.

(2.55a)

(2.55b)

(2.55¢)

The positive sign of the entropy production implies that each of the
phenomenological transport coefficients must be positive. As mentioned before
these phenomenological definitions differ slightly from the usual definitions of
the Navier-Stokes transport coefficients.

.[,‘, = =AVT (2.56&)
(2.56b)

(2.56¢)

These equations were postulated long before the development of linear
irreversible thermodynamics. The first equation is known as Fourier's law of
heat conduction. It gives the definition of the thermal conductivity A. The second
equation is known as Newton's law of viscosity (illustrated in Figure 2.3). It
gives a definition of the shear viscosity coefficient n. The third equation is a
more recent development. It defines the bulk viscosity coefficient ny. These
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equations are known collectively as linear constitutive equations. When they
are substituted into the conservation equations they yield the Navier-Stokes
equations of hydrodynamics. The conservation equations relate thermodynamic
fluxes and forces. They form a system of equations in two unknown fields - the
force fields and the flux fields. The constitutive equations relate the forces and
the fluxes. By combining the two systems of equations we can derive the
Navier-Stokes equations which in their usual form give us a closed system of
equations for the thermodynamic forces. Once the boundary conditions are
supplied the Navier-Stokes equations can be solved to give a complete
macroscopic description of the nonequilibrium flows expected in a fluid close
to equilibrium in the sense required by linear irreversible thermodynamics. It
is worth restating the expected conditions for the linearity to be observed:

1. The thermodynamic forces should be sufficiently small so that linear
constitutive relations are accurate.

2. The system should likewise be sufficiently close to equilibrium for the local
thermodynamic equilibrium condition to hold. For example the
nonequilibrium equation of state must be the same function of the local
position and time dependent thermodynamic state variables (such as the
temperature and density), that it is at equilibrium.

3. The characteristic distances over which the thermodynamic forces vary
should be sufficiently large so that these forces can be viewed as being
constant over the microscopic length scale required to properly define a
local thermodynamic state.

4.  The characteristic times over which the thermodynamic forces vary should
be sufficiently long that these forces can be viewed as being constant over
the microscopic times required to properly define a local thermodynamic
state.

25



26

Statistical Mechanics of Nonequilibrium Liquids

Figure 2.3. Newton's Constitutive relation for shear flow.

After some tedious but quite straightforward algebra (de Groot and Mazur,
1962), the Navier-Stokes equations for a single component atomic fluid are
obtained. The first of these is simply the mass conservation equation (2.4).

(2.57)

To obtain the second equation we combine equation (2.16) with the definition
of the stress tensor from equation (2.12) which gives

(2.58)

We have assumed that the fluid is atomic and the pressure tensor contains no
antisymmetric part. Substituting in the constitutive relations, equations (2.56b)
and (2.56c) gives

(2.59)

Here we explicitly assume that the transport coefficients Ny and n are simple
constants, independent of position r, time and flow rate u. The af component
of the symmetric traceless tensor Vu is given by

(2.60)

where as usual the repeated index ¥ implies a summation with respect to ¥ . It
is then straightforward to see that
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(2.61)

and it follows that the momentum flow Navier-Stokes equation is

(2.62)

The Navier-Stokes equation for energy flow can be obtained from equation (2.26)
and the constitutive relations, equation (2.56). Again we assume that the pressure
tensor is symmetric, and the second term on the right hand side of equation
(2.26) becomes

(2.63)
It is then straightforward to see that

(2.64)

2.4 Non-Markovian Constitutive Relations: Viscoelasticity

Consider a fluid undergoing planar Couette flow. This flow is defined by the
streaming velocity,

(2.65)

According to Curie's principle the only nonequilibrium flux that will be excited
by such a flow is the pressure tensor. According to the constitutive relation
equation (2.56) the pressure tensor is,

(2.66)
where M is the shear viscosity and ¥ is the strain rate. If the strain rate is time

dependent then the shear stress, . It is known that many fluids
do not satisfy this relation regardless of how small the strain rate is. There must
therefore be a linear but time dependent constitutive relation for shear flow
which is more general than the Navier-Stokes constitutive relation.

Poisson (1829) pointed out that there is a deep correspondence between the shear
stress induced by a strain rate in a fluid, and the shear stress induced by a strain
in an elastic solid. The strain tensor is, V€ where £(r,t) gives the displacement
of atoms at r from their equilibrium lattice sites. It is clear that,
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(2.67)

Maxwell (1873) realised that if a displacement were applied to a liquid then for
a short time the liquid must behave as if it were an elastic solid. After a Maxwell
relaxation time the liquid would relax to equilibrium since by definition a liquid
cannot support a strain (Frenkel, 1955).

It is easier to analyse this matter by transforming to the frequency domain.
Maxwell said that at low frequencies the shear stress of a liquid is generated by
the Navier-Stokes constitutive relation for a Newtonian fluid (2.66). In the
frequency domain this states that,

(2.68)
where,

(2.69)
denotes the Fourier-Laplace transform of A(t).
At very high frequencies we should have,

(2.70)

where G is the infinite frequency shear modulus. From equation (2.67) we can
transform the terms involving the strain into terms involving the strain rate (we
assume that at 7 = 0, the strain €(0)=0). At high frequencies therefore,

(2.71)

The Maxwell model of viscoelasticity is obtained by simply summing the high
and low frequency expressions for the compliances iw/G and n*,

(2.72)

The expression for the frequency dependent Maxwell viscosity is,

(2.73)
It is easily seen that this expression smoothly interpolates between the high and

low frequency limits. The Maxwell relaxation time T, =0/G controls the
transition frequency between low frequency viscous behaviour and high
frequency elastic behaviour.
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Figure 2.4. Frequency Dependent Viscosity of the Maxwell Model.

The Maxwell model provides a rough approximation to the viscoelastic behaviour
of so-called viscoelastic fluids such as polymer melts or colloidal suspensions.
It is important to remember that viscoelasticity is a linear phenomenon. The
resulting shear stress is a linear function of the strain rate. It is also important
to point out that Maxwell believed that all fluids are viscoelastic. The reason
why polymer melts are observed to exhibit viscoelasticity is that their Maxwell
relaxation times are macroscopic, of the order of seconds. On the other hand the
Maxwell relaxation time for argon at its triple point is approximately 10"
seconds! Using standard viscometric techniques elastic effects are completely
unobservable in argon.

If we rewrite the Maxwell constitutive relation in the time domain using an
inverse Fourier-Laplace transform we see that,

(2.74)

In this equation Mu(?) is called the Maxwell memory function. It is called a
memory function because the shear stress at time ¢ is not simply linearly
proportional to the strain rate at the current time ¢, but to the entire strain rate
history, over times s where 0 =< s<r. Constitutive relations which are history
dependent are called non-Markovian. A Markovian process is one in which the
present state of the system is all that is required to determine its future. The
Maxwell model of viscoelasticity describes non-Markovian behaviour. The
Maxwell memory function is easily identified as an exponential,

(2.75)
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Although the Maxwell model of viscoelasticity is approximate the basic idea
that liquids take a finite time to respond to changes in strain rate, or equivalently
that liquids remember their strain rate histories, is correct. The most general
linear relation between the strain rate and the shear stress for a homogeneous
fluid can be written in the time domain as,

(2.76)

There is an even more general linear relation between stress and strain rate which
is appropriate in fluids where the strain rate varies in space as well as in time,

(2.77)

We reiterate that the differences between these constitutive relations and the
Newtonian constitutive relation, equations (2.56b), are only observable if the
strain rate varies significantly over either the time or length scales characteristic
of the molecular relaxation for the fluid. The surprise is not so much the validity
of the Newtonian constitutive relation is limited. The more remarkable thing is
that for example in argon, the strain rates can vary in time from essentially zero
frequency to 10" Hz, or in space from zero wavevector to 10°m", before
non-Newtonian effects are observable. It is clear from this discussion that
analogous corrections will be needed for all the other Navier-Stokes transport
coefficients if their corresponding thermodynamic fluxes vary on molecular time
or distance scales.
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Figure 2.5. The transient response of the Maxwell fluid to a step-function
strain rate is the integral of the memory function for the model, " ,(t).
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Figure 2.6. The transient response of the Maxwell model to a zero time delta
function in the strain rate is the memory function itself, " (t).
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3. The Microscopic Connection

3.1 Classical Mechanics

In nonequilibrium statistical mechanics we seek to model transport processes
beginning with an understanding of the motion and interactions of individual
atoms or molecules. The laws of classical mechanics govern the motion of atoms
and molecules so in this chapter we begin with a brief description of the
mechanics of Newton, Lagrange and Hamilton. It is often useful to be able to
treat constrained mechanical systems. We will use a Principle due to Gauss to
treat many different types of constraint - from simple bond length constraints,
to constraints on kinetic energy. As we shall see, kinetic energy constraints are
useful for constructing various constant temperature ensembles. We will then
discuss the Liouville equation and its formal solution. This equation is the central
vehicle of nonequilibrium statistical mechanics. We will then need to establish
the link between the microscopic dynamics of individual atoms and molecules
and the macroscopic hydrodynamical description discussed in the last chapter.
We will discuss two procedures for making this connection. The Irving and
Kirkwood procedure relates hydrodynamic variables to nonequilibrium ensemble
averages of microscopic quantities. A more direct procedure we will describe,
succeeds in deriving instantaneous expressions for the hydrodynamic field
variables.

Newtonian Mechanics

Classical mechanics (Goldstein, 1980) is based on Newton's three laws of motion.
This theory introduced the concepts of a force and an acceleration. Prior to
Newton's work, the connection had been made between forces and velocities.
Newton's laws of motion were supplemented by the notion of a force acting at
a distance. With the identification of the force of gravity and an appropriate
initial condition - initial coordinates and velocities - trajectories could be
computed. Philosophers of science have debated the content of Newton's laws
but when augmented with a force which is expressible as a function of time,
position or possibly of velocity, those laws lead to the equation,

mr = Fir,r,z) (3.1)

which is well-posed and possesses a unique solution.

Lagrange's equations

After Newton, scientists discovered different sets of equivalent laws or axioms
upon which classical mechanics could be based. More elegant formulations are
due to Lagrange and Hamilton. Newton's laws are less general than they might
seem. For instance the position r, that appears in Newton's equation must be a
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Cartesian vector in a Euclidean space. One does not have the freedom of say,
using angles as measures of position. Lagrange solved the problem of formulating
the laws of mechanics in a form which is valid for generalised coordinates.

Let us consider a system with generalisedcoordinates 4 . These coordinates may
be Cartesian positions, angles or any other convenient parameters that can be
found to uniquely specify the configuration of the system. The kinetic energy

T, will in general be a function of the coordinates and their time derivatives q.
If W¢) is the potential energy, we define the Lagrangian to be

. The fundamental dynamical postulate states that the
motion of a system is such that the action, S, is an extremum

(3.2)

Let @ (1) be the coordinate trajectory that satisfies this condition and let (7} + dqtr)

where 94(t) is an arbitrary variation in «(f), be an arbitrary trajectory. The
varied motion must be consistent with the initial and final positions. So that,

. We consider the change in the action due to this variation.

(3.3)

Integrating the second term by parts gives

(3.4)

The first term vanishes because 94 is zero at both limits. Since for fa <7 <1, dglt)
is arbitrary, the only way that the variation in the action 85, can vanish is if the
equation,

(3.5)

holds for all time. This is Lagrange's equation of motion. If the coordinates are
taken to be Cartesian, it is easy to see that Lagrange’s equation reduces to
Newton's.

Hamiltonian mechanics

Although Lagrange's equation has removed the special status attached to Cartesian
coordinates, it has introduced a new difficulty. The Lagrangian is a function of
generalised coordinates, their time derivatives and possibly of time. The equation
is not symmetric with respect to the interchange of coordinates and velocities.
Hamilton derived an equivalent set of equations in which the roles played by
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coordinates and velocities can be interchanged. Hamilton defined the canonical
momentum I,

(3.6)

and introduced the function

(3.7)

This function is of course now known as the Hamiltonian. Consider a change in
the Hamiltonian which can be written as

(3.8)

The Lagrangian is a function of ¢, ¢ and ¢ so that the change dL, can be written
as

(3.9)

Using the definition of the canonical momentum P, and substituting for dL, the
expression for dH becomes

(3.10)

Lagrange's equation of motion (3.5), rewritten in terms of the canonical momenta
is

(3.11)
so that the change in H is

(3.12)

Since the Hamiltonian is a function of ¢, P and ¢, it is easy to see that Hamilton
equations of motion are

and (3.13)

As mentioned above these equations are symmetric with respect to coordinates
and momenta. Each has equal status in Hamilton's equations of motion. If H has
no explicit time dependence, its value is a constant of the motion. Other
formulations of classical mechanics such as the Hamilton-Jacobi equations will
not concern us in this book.
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Gauss' Principle of Least Constraint

Apart from relativistic or quantum corrections, classical mechanics is thought
to give an exact description of motion. In this section our point of view will
change somewhat. Newtonian or Hamiltonian mechanics imply a certain set of
constants of the motion: energy, and linear and angular momentum. In
thermodynamically interesting systems the natural fixed quantities are the
thermodynamic state variables; the number of molecules N, the volume V and
the temperature T. Often the pressure rather than the volume may be preferred.
Thermodynamically interesting systems usually exchange energy, momentum
and mass with their surroundings. This means that within thermodynamic
systems none of the classical constants of the motion are actually constant.

Typical thermodynamic systems are characterised by fixed values of
thermodynamic variables: temperature, pressure, chemical potential, density,
enthalpy or internal energy. The system is maintained at a fixed thermodynamic
state (say temperature) by placing it in contact with a reservoir, with which it
exchanges energy (heat) in such a manner as to keep the temperature of the
system of interest fixed. The heat capacity of the reservoir must be much larger
than that of the system, so that the heat exchanged from the reservoir does not
affect the reservoir temperature.

Classical mechanics is an awkward vehicle for describing this type of system.
The only way that thermodynamic systems can be treated in Newtonian or
Hamiltonian mechanics is by explicitly modelling the system, the reservoir and
the exchange processes. This is complex, tedious and as we will see below, it is
also unnecessary. We will now describe a little known principle of classical
mechanics which is extremely useful for designing equations of motion which
are more useful from a macroscopic or thermodynamic viewpoint. This principle
does indeed allow us to modify classical mechanics so that thermodynamic
variables may be made constants of the motion.

Just over 150 years ago Gauss formulated a mechanics more general than
Newton's. This mechanics has as its foundation Gauss' principle of least constraint.
Gauss (1829) referred to this as the most fundamental dynamical principle
(Whittacker 1937, Pars 1965). Suppose that the cartesian coordinates and
velocities of a system are given at time 7. Consider the function C, referred to
by Hertz as the square of the curvature, where

(3.14)

C is a function of the set of accelerations {F}. Gauss' principle states that the
actual physical acceleration corresponds to the minimum value of C. Clearly if
the system is not subject to a constraint then C = 0 and the system evolves under
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Newton's equations of motion. For a constrained system it is convenient to change
variables from T to Wi where

(3.15)

Because the '{“'- }‘, are related to the Jacobi metric, we will refer to this coordinate
system as the Jacobi frame.

The types of constraints which might be applied to a system fall naturally into
two types, holonomic and nonholonomic. A holonomic constraint is one which
can be integrated out of the equations of motion. For instance, if a certain
generalised coordinate is fixed, its conjugate momentum is zero for all time, so
we can simply consider the problem in the reduced set of unconstrained variables.
We need not be conscious of the fact that a force of constraint is acting upon
the system to fix the coordinate and the momentum. An analysis of the two
dimensional motion of an ice skater need not refer to the fact that the gravitational
force is exactly resisted by the stress on the ice surface fixing the vertical
coordinate and velocity of the ice skater. We can ignore these degrees of freedom.

Nonholonomic constraints usually involve velocities. These constraints are not
integrable. In general a nonholonomic constraint will do work on a system.
Thermodynamic constraints are invariably nonholonomic. It is known that the
Action Principle cannot be used to describe motion under nonholonomic
constraints (Evans and Morriss, 1984).

We can write a general constraint in the Jacobi frame in the form

(3.16)

where £ is a function of Jacobi positions, velocities and possibly time. Either
type of constraint function, holonomic or nonholonomic, can be written in this
form. If this equation is differentiated with respect to time, once for
nonholonomic constraints and twice for holonomic constraints we see that,

(3.17)

We refer to this equation as the differential constraint equation and it plays a
fundamental role in Gauss' Principle of Least Constraint. It is the equation for a
plane which we refer to as the constraint plane. n is the vector normal to the
constraint plane.

Our problem is to solve Newton's equation subject to the constraint. Newton's
equation gives us the acceleration in terms of the unconstrained forces. The
differential constraint equation places a condition on the acceleration vector for
the system. The differential constraint equation says that the constrained
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acceleration vector must terminate on a hyper-plane in the 3N-dimensional
Jacobi acceleration space (equation 3.17).

Imagine for the moment that at some initial time the system satisfies the constraint
equation £=0. In the absence of the constraint the system would evolve
according to Newton's equations of motion where the acceleration is given by
wi=g (3.18)
This trajectory would in general not satisfy the constraint. Further, the constraint
function £ tells us that the only accelerations which do continuously satisfy the
constraint, are those which terminate on the constraint plane. To obtain the
constrained acceleration we must project the unconstrained acceleration back
into the constraint plane.

Gauss' principle of least constraint gives us a prescription for constructing this
projection. Gauss' principle states that the trajectories actually followed are those
which deviate as little as possible, in a least squares sense, from the unconstrained
Newtonian trajectories. The projection which the system actually follows is the
one which minimises the magnitude of the Jacobi frame constraint force. This
means that the force of constraint must be parallel to the normal of the constraint
surface. The Gaussian equations of motion are then

W, =L -hn (3.19)

where A is a Gaussian multiplier which is a function of position, velocity and
time.

To calculate the multiplier we use the differential form of the constraint function.
Substituting for the acceleration we obtain

(3.20)

It is worthwhile at this stage to make a few comments about the procedure
outlined above. First, notice that the original constraint equation is never used
explicitly. Gauss' principle only refers to the differential form of the constraint
equation. This means that the precise value of the constrained quantity is
undetermined. The constraint acts only to stop its value changing. In the
holonomic case Gauss' principle and the principle of least action are of course
completely equivalent. In the nonholonomic case the equations resulting from
the application of Gauss' Principle cannot be derived from a Hamiltonian and
the principle of least action cannot be used to derive constraint satisfying
equations. In the nonholonomic case, Gauss' principle does not yield equations
of motion for which the work done by the constraint forces is a minimum.
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Figure 3.1 Gauss' Principle of Least Constraint

The derivation of constrained equations of motion given above is geometric,
and is done in the transformed coordinates which we have termed the Jacobi
frame. It is not always convenient to write a constraint function in the Jacobi
frame, and from an operational point of view a much simpler derivation of
constrained equations of motion is possible using Lagrange multipliers. The
square of the curvature C is a function of accelerations only (the Cartesian
coordinates and velocities are considered to be given parameters). Gauss' principle
reduces to finding the minimum of C, subject to the constraint. The constraint
function must also be written as a function of accelerations, but this is easily
achieved by differentiating with respect to time. If G is the acceleration
dependent form of the constraint, then the constrained equations of motion are
obtained from

(3.21)

It is easy to see that the Lagrange multiplier A, is (apart from the sign) equal to
the Gaussian multiplier. We will illustrate Gauss' principle by considering some
useful examples.

Gauss' Principle for Holonomic Constraints

The most common type of holonomic constraint in statistical mechanics is
probably that of fixing bond lengths and bond angles in molecular systems. The
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vibrational degrees of freedom typically have a relaxation timescale which is
orders of magnitude faster than translational degrees of freedom, and are therefore
often irrelevant to the processes under study. As an example of the application
of Gauss' principle of least constraint for holonomic constraints we consider a
diatomic molecule with a fixed bond length. The generalisation of this method
to more than one bond length is straightforward (see Edberg, Evans and Morriss,
1986) and the application to bond angles is trivial since they can be formulated
as second nearest neighbour distance constraints. The constraint function for a

diatomic molecule is that the distance between sites one and two be equal to @iz,
that is

, (3.22)

where we define I': to be the vector from I to Iz, (Fi: ®TF: —T,), Differentiating

twice with respect to time gives the acceleration dependent constraint equation,

(3.23)

To obtain the constrained equations of motion we minimise the function C
subject to the constraint equation (3.23). That is

(3.24)
For i equal to 1 and 2 this gives

(3.25)

Notice that the extra terms in these equations of motion have opposite signs.
This is because the coefficients of the I and T2 accelerations have opposite signs.
The total constraint force on the molecule is zero so there is no change in the
total momentum of the molecule. To obtain an expression for the multiplier A
we combine these two equations to give an equation of motion for the bond
vector Tz,

(3.26)

Substituting this into the differential form of the constraint function (3.23), gives

(3.27)

It is very easy to implement these constrained equations of motion as the
multiplier is a simple explicit function of the positions, velocities and Newtonian
forces. For more complicated systems with multiple bond length and bond angle
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constraints (all written as distance constraints) we obtain a set of coupled linear
equations to solve for the multipliers.

Gauss' Principle for Nonholonomic Constraints

One of the simplest and most useful applications of Gauss' Principle is to derive
equations of motion for which the ideal gas temperature (ie. the kinetic energy)
is a constant of the motion (Evans et. al. 1983). Here the constraint function is

(3.28)

Differentiating once with respect to time gives the equation for the constraint
plane

(3.29)

Therefore to obtain the constrained Gaussian equations we minimise C subject
to the constraint equation (3.29). That is

(3.30)
This gives
(3.31)

Substituting the equations of motion into the differential form of the constraint
equation, we find that the multiplier is given by

(3.32)

As before, A is a simple function of the forces and velocities so that the
implementation of the constant kinetic energy constraint in a molecular dynamics
computer program only requires a trivial modification of the equations of motion
in a standard program. Equations (3.31 & 32) constitute what have become
known as the Gaussian isokinetic equations of motion. These equations were first
proposed simultaneously and independently by Hoover et. al. (1982) and Evans
(1983). In these original papers Gauss' principle was however not referred to. It
was a year before the connection with Gauss' principle was made.

With regard to the general application of Gauss' principle of least constraint one
should always examine the statistical mechanical properties of the resulting
dynamics. If one applies Gauss' principle to the problem of maintaining a constant
heat flow, then a comparison with linear response theory shows that the Gaussian
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equations of motion cannot be used to calculate thermal conductivity (Hoover
1986). The correct application of Gauss' principle is limited to arbitrary holonomic
constraints and apparently, to nonholonomic constraint functions which are
homogeneous functions of the momenta.

3.2 Phase Space

To give a complete description of the state of a 3-dimensional N-particle system
at any given time it is necessary to specify the 3N coordinates and 3N momenta.
The 6N dimensional space of coordinates and momenta is called phase space (or
I'-space). As time progresses the phase point T, traces out a path which we call
the phase space trajectory of the system. As the equations of motion for T are
6N first order differential equations, there are 6N constants of integration (they
may be for example the 6N initial conditions T'(0}). Rewriting the equations of
motion in terms of these constants shows that the trajectory of T is completely
determined by specifying these 6N constants. An alternate description of the
time evolution of the system is given by the trajectory in the extended I'" -space,

where I' = (I.1}. As the 6N initial conditions uniquely determine the trajectory,
two points in phase space with different initial conditions form distinct
non-intersecting trajectories in I'" -space.

Figure 3.2 Phase Space Trajectory 6N-dimensional T"-space. As time evolves
the system traces out a trajectory in 6N-dimensional T -space.

To illustrate the ideas of T'-space and I"' -space it is useful to consider one of the
simplest mechanical systems, the harmonic oscillator. The Hamiltonian for the
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harmonic oscillator is where m is the mass of the oscillator and
k is the spring constant. The equations of motion are

(3.33)

and the energy (or the Hamiltonian) is a constant of the motion. The T -space for
this system is 2-dimensional [-*.#) and the T-space trajectory is given by

(3.34)

The constants % and Po are the 2 integration constants written in this case as
an initial condition. The frequency  is related to the spring constant and mass

by w® = k/m. The T"-space trajectory is an ellipse,

(3.35)
which intercepts the x-axis at and the P-axis at
. The period of the motion is . This is the

surface of constant energy for the harmonic oscillator. Any oscillator with the
same energy must traverse the same T"-space trajectory, that is another oscillator
with the same energy, but different initial starting points (/%) will follow the
same ellipse but with a different initial phase angle.

The trajectory in I'" -space is a elliptical coil, and the constant energy surface in
I'" -space is a elliptical cylinder, and oscillators with the same energy start from
different points on the ellipse at time zero (corresponding to different initial
phase angles), and wind around the elliptical cylinder. The trajectories in
I'" -space are non-intersecting. If two trajectories in I'" -space meet at time ¢,
then the two trajectories must have had the same initial condition. As the choice
of time origin is arbitrary, the trajectories must be the same for all time.

In T -space the situation is somewhat different. The trajectory for the harmonic
oscillator winds around the ellipse, returning to its initial phase point (X /%)
after a time T. The period of time taken for a system to return to (or to within
an e-neighbourhood of) its initial starting phase is called the Poincaré recurrence
time. For a simple system such as the harmonic oscillator the recurrence time is
trivial to calculate, but for higher dimensional systems the recurrence time
quickly exceeds the estimated age of the universe.

3.3 Distribution Functions and the Liouville Equation

In the first few sections of this chapter we have given a description of the
mechanics of individual N-particle systems. The development which follows
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describes an ensemble of such systems; that is an essentially infinite number of
systems characterised by identical dynamics and identical state variables (N,V, E
or T etc.) but different initial conditions, (I'(1)). We wish to consider the average
behaviour of a collection of macroscopically identical systems distributed over
a range of initial states (microstates). In generating the ensemble we make the
usual assumptions of classical mechanics. We assume that it is possible to know
all the positions and momenta of an N particle system to arbitrary precision at
some initial time, and that the motion can be calculated exactly from the equations
of motion.

The ensemble contains an infinite number of individual systems so that the
number of systems in a particular state may be considered to change continuously
as we pass to neighbouring states. This assumption allows us to define a density
function f(I'.1), which assigns a probability to points in phase space. Implicit
in this assumption is the requirement that fIT.1), has continuous partial
derivatives with respect to all its variables, otherwise the phase density will not
change continuously as we move to neighbouring states. If the system is

Hamiltonian and all trajectories are confined to the energy surface then .
will not have a continuous partial derivatives with respect to energy. Problems
associated with this particular source of discontinuity can obviously be avoided

by eliminating the energy as a variable, and considering f(I'.1) to be a density
function defined on a surface of constant energy (effectively reducing the
dimensionality of the system). However it is worth pointing out that other sources
of discontinuity in the phase space density, may not be so easily removed.

To define a distribution function for a particular system we consider an ensemble
of identical systems whose initial conditions span the phase space specified by
the macroscopic constraints. We consider an infinitesimal element of phase space
located at I' = (4.p). The fraction of systems N, which at time f have coordinates
and momenta within 84, 0P of 4, P is used to define the phase space distribution
function f{a.m1), by

(3.36)

The total number of systems in the ensemble is fixed, so integrating over the
whole phase space we can normalise the distribution function,

(3.37)

If we consider a small volume element of phase space, the number of trajectories
entering the rectangular volume element 84 8P through some face will in general
be different from the number which leave through an opposite face. For the
faces normal to the ¢i-axis, located at 41, and 4 + 94, the fraction of ensemble
members entering the first face is
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Similarly the fraction of points leaving through the second face is

Combining these expressions gives the change in 8N due to fluxes in the ¢
direction

(3.38)

Summing over all coordinate (and momentum) directions gives the total fractional
change 8N as

(3.39)
Dividing through by the phase space volume element 84 3P we obtain the rate
of change in density , at the point (4.P),

(3.40)
Using the notation, for the 6 N-dimensional
phase point, this may be written as

(3.41)

This is the Liouville equation for the phase space distribution function. Using
the streaming or total time derivative of the distribution function, we can rewrite
the Liouville equation in an equivalent form as,

(3.42)

This equation has been obtained without reference to the equations of motion.
Its correctness does not require the existence of a Hamiltonian to generate the
equations of motion. The equation rests on two conditions: that ensemble
members cannot be created or destroyed and that the distribution function is
sufficiently smooth that the appropriate derivatives exist. AT} is called the
phase space compression factor since it is equal to the negative time derivative of
the logarithm of the phase space distribution function.

(3.43)
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The Liouville equation is usually written in a slightly simpler form. If the
equations of motion can be generated from a Hamiltonian, then it is a simple
matter to show that A(T')=0 _ This is so even in the presence of external fields
which may be driving the system away from equilibrium by performing work
on the system.

(3.44)

The existence of a Hamiltonian is a sufficient, but not necessary condition for
the phase space compression factor to vanish. If phase space is incompressible
then the Liouville equation takes on its simplest form,

(3.45)

Time Evolution of the distribution function

The following sections will be devoted to developing a formal operator algebra
for manipulating the distribution function and averages of mechanical phase
variables. This development is an extension of the treatment given by Berne
(1977) which is applicable to Hamiltonian systems only. We will use the compact
operator notation

(3.46)

for the Liouville equation, equation (3.41). The operator iL is called the
distribution function (or /-) Liouvillean. Both the distribution function /, and

the f-Liouvillean are functions of the initial phase T'. We assume that there is
no explicit time dependence in the equations of motion (time varying external
fields will be treated in Chapter 8). Using this notation we can write the formal
solution of the Liouville equation for the time dependent N-particle distribution

function [Tt} as

(3.47)

where , is the initial distribution function. This representation for the
distribution function contains the exponential of an operator, which is a symbolic

representation for the infinite series of operators. The / -propagator is defined
as,

(3.48)

The formal solution given above can therefore be written as
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(3.49)

This form makes it clear that the formal solution derived above is the Taylor
series expansion of the explicit time dependence of f(I'.t}, about

Time Evolution of phase variables

We will need to consider the time evolution of functions of the phase of the
system. Such functions are called phase variables. An example would be the

phase variable for the internal energy of a system, .
Phase variables by definition, do not depend on time explicitly, their time
dependence comes solely from the time dependence of the phase T'. Using the
chain rule, the equation of motion for an arbitrary phase variable B(I') can be
written as

(3.50)

The operator associated with the time derivative of a phase variable iL(T) is
referred to as the phase variable (or P-) Liouvillean. The formal solution of this

equation can be written in terms of the P -propagator, e™ . This gives the value
of the phase variable as a function of time

(3.51)

This expression is very similar in form to that for the distribution function. It
is the Taylor series expansion of the total time dependence of B(f), expanded
about B(0). If the phase space compression factor A(T') is identically zero then
the P-Liouvillean is equal to the f-Liouvillean, and the 7 -propagator is simply
the adjoint or Hermitian conjugate of the /-propagator. In general this is not
the case.

Properties of Liouville Operators

In this section we will derive some of the more important properties of the
Liouville operators. These will lead us naturally to a discussion of various
representations of the properties of classical systems. The first property we shall

discuss relates the P-Liouvillean to the f-Liouvillean as follows,
(3.52)

This is true for an arbitrary distribution function f{U}. To prove this identity
the LHS can be written as
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(3.53)

The boundary term (or surface integral) is zero because f(5)—=0 as any
component of the momentum goes to infinity, and / can be taken to be periodic
in all coordinates. If the coordinate space for the system is bounded then the
surface S is the system boundary, and the surface integral is again zero as there
can be no flow through the boundary.

Equations (3.52 & 53) show that L, L are adjoint operators. If the equations of
motion are such that the phase space compression factor, (3.43), is identically
zero, then obviously L=L and the Liouville operator is self—adjoint, or Hermitian.

Schroédinger and Heisenberg Representations
We can calculate the value of a phase variable 8(f) at time ¢ by following B as

it changes along a single trajectory in phase space. The average (B') can
then be calculated by summing the values of Blf) with a weighting factor
determined by the probability of starting from each initial phase T. These
probabilities are chosen from an initial distribution function . This is the
Heisenberg picture of phase space averages.

(3.54)

The Heisenberg picture is exactly analogous to the Lagrangian formulation of
fluid mechanics; we can imagine that the phase space mass point has a differential
box dI' surrounding it which changes shape (and volume for a compressible
fluid) with time as the phase point follows its trajectory. The probability of the
differential element, or mass f(I'WI" remains constant, but the value of the
observable changes implicitly in time.

The second view is the Schrodinger, or distribution based picture (Fig. 3.3).



Figure 3.3 The Schrodinger-Heisenberg Equivalence

(a) The Heisenberg picture:

(b) The Schrodinger picture: ;
ensemble representatives.

The Microscopic Connection

the local density of
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In this case we note that {B(1)} can be calculated by sitting at a particular point
in phase space and calculating the density of ensemble points as a function of
time. This will give us the time dependent N-particle distribution function

f(I'.1). The average of B can now be calculated by summing the values of B(I')
but weighting these values by the current value of the distribution function at
that place in phase space. Just as in the Eulerian formulation of fluid mechanics,

the observable takes on a fixed value B(T') for all time, while mass points with
different probability flow through the box.

(3.55)
The average value of B changes with time as the distribution function changes.
The average of B is computed by multiplying the value of B(I'), by the
probability of find the phase point T at time ¢, that is f(I'.1).
As we have just seen these two pictures are of course equivalent. One can also
prove their equivalence using the Liouville equation. This proof is obtained by

successive integrations by parts, or equivalently by repeated applications of
equation (3.52). Consider

(3.56)
One can unroll each P'-Liouvillean in turn from the phase variable to the

distribution function (for the first transfer we consider to be a composite
phase variable) so that equation (3.56) becomes,

This is essentially the property of phase and distribution function Liouvilleans
which we have already proved, applied to n" Liouvillean. Repeated application
of this result leads to

So finally we have the result,

(3.57)

The derivation we have used assumes that the Liouvillean for the system has no
explicit time dependence. (In Chapter 8 we will extend the derivation of these
and other results to the time dependent case.) Our present derivation make no
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other references to the details of either the initial distribution function, or the
equations of motion for the system. This means that these results are valid for
systems subject to time independent external fields, whether or not those
equations are derivable from an Hamiltonian. These results are also independent
of whether or not the phase space compression factor vanishes identically.

A final point that can be made concerning the Schréodinger and Heisenberg
pictures is that these two ways of computing phase averages by no means exhaust
the range of possibilities. The Schrodinger and Heisenberg pictures differ in
terms of the time chosen to calculate the distribution function, f(I'.f). In the
Heisenberg picture that time is zero while in the Schrodinger picture the time
is t. One can of course develop intermediate representations corresponding any
time between 0 and ¢ (eg. the interaction representation).

3.4 Ergodicity, Mixing and Lyapunov Exponents
For many systems it is apparent that after possible initial transients lasting a

time /o, the N particle distribution function f(I'.f), becomes essentially time
independent. This is evidenced by the fact that the macroscopic properties of
the system relax to fixed average values. This obviously happens for equilibrium
systems. It also occurs in some nonequilibrium systems, so-called nonequilibrium
steady states. We will call all such systems stationary.

For a stationary system, we may define the ensemble average of a phase variable
B(T'), using the stationary distribution function f(T'), so that

(3.58)

On the other hand we may define a time average of the same phase variable as,

(3.59)

where % is the relaxation time required for the establishment of the stationary
state. An ergodic system is a stationary system for which the ensemble and time
averages of usual phase variables, exist and are equal. By usual we mean phase
variable representations of the common macroscopic thermodynamic variables
(see §3.7).

It is commonly believed that all realistic nonlinear many body systems are
ergodic.

Example

We can give a simple example of ergodic flow if we take the energy surface to
be the two-dimensional unit square 0 < 7 <1 and 0 < ¢ <1. We shall assume that
the equations of motion are given by
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(3.60)

and we impose periodic boundary conditions on the system. These equations of
motion can be solved to give

(3.61)

The phase space trajectory on the energy surface is given by eliminating ¢ from
these two equations

(3.62)

If o is a rational number, ¢ =m/n, then the trajectory will be periodic and will
repeat after a period T =#. If a is irrational, then the trajectory will be dense
on the unit square but will not fill it. When « is irrational the system is ergodic.
To show this explicitly consider the Fourier series expansion of an arbitrary
phase function Al4.p),

(3.63)

We wish to show that the time average and phase average of Al4.7) are equal
for a irrational. The time average is given by

(3.64)
For irrational ¢, the denominator can never be equal to zero, therefore
{A), = A, (3.65)
Similarly we can show that the phase space average of A is
(3.66)

and hence the system is ergodic. For rational o the denominator in (3.64) does
become singular for a particular Jk-mode. The system is in the pure state labelled
by Jk. There is no mixing.

Ergodicity does not guarantee the relaxation of a system toward a stationary
state. Consider a probability density which is not constant over the unit square,
for example let f{4.p.1 = 0) be given by

(3.67)
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then at time ¢, under the above dynamics (with irrational ), it will be

(3.68)

The probability distribution is not changed in shape, it is only displaced. It has
also not relaxed to a time independent equilibrium distribution function.
However after an infinite length of time it will have wandered uniformly over
the entire energy surface. It is therefore ergodic but it is termed non mixing.

It is often easier to show that a system is not ergodic, rather than to show that
it is ergodic. For example the phase space of a system must be metrically transitive
for it to be ergodic. That is, all of phase space, except possibly a set of measure
zero, must be accessible to almost all the trajectories of the system. The reference
to almost all, is because of the possibility that a set of initial starting states of
measure zero, may remain forever within a subspace of phase space which is
itself of measure zero. Ignoring the more pathological cases, if it is possible to
divide phase space into two (or more) finite regions of nonzero measure, so that
trajectories initially in a particular region remain there forever, then the system
is not ergodic. A typical example would be a system in which a particle was
trapped in a certain region of configuration space. Later we shall see examples
of this specific type.

Lyapunov Exponents

If we consider two harmonic oscillators (see §3.2) which have the same frequency

w but different initial conditions (-'-.-.l”u] and (-'l.n.”:J, we can define the distance
between the two phase points by

(3.69)

Using the equation for the trajectory of the harmonic oscillator (3.34), we see
that as a function of time this distance is given by

(3.70)

where %1} and 7.U/) are the position and momenta of oscillator i, at time 7. This
means that the trajectories of two independent harmonic oscillators always
remain the same distance apart in I"-space.

This is not the typical behaviour of nonlinear systems. The neighbouring
trajectories of most N-body nonlinear systems tend to drift apart with time.
Indeed it is clear that if a system is to be mixing then the separation of
neighbouring trajectories is a precondition. Weakly coupled harmonic oscillators
are an exceptions to the generally observed trajectory separation. This was a
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cause of some concern in the earliest dynamical simulations (Fermi, Pasta & Ulam,
1955).

As the separation between neighbouring trajectories can be easily calculated in
a classical mechanical simulation, this has been used to obtain quantitative
measures of the mixing properties of nonlinear many-body systems. If we
consider two N-body systems composed of particles which interact via identical
sets of interparticle forces, but whose initial conditions differ by a small amount,
then the phase space separation is observed change exponentially as

(3.71)

At intermediate times the exponential growth of @(f) will be dominated by the
fastest growing direction in phase space (which in general will change
continuously with time). This equation defines the largest Lyapunov exponent i.
for the system (by convention i is defined to be real, so any oscillating part of
the trajectory separation is ignored). For the harmonic oscillator the phase
separation is a constant of the motion and therefore the Lyapunov exponent A,
is zero. In practical applications this exponential separation for an N particle
system continues until it approaches a limit imposed by the externally imposed
boundary conditions - the container walls, or the energy, or other thermodynamic
constraints on the system (§ 7.8). If the system has energy as a constant of the
motion then the maximum separation is the maximum distance between two
points on the energy hypersphere. This depends upon the value of the energy
and the dimension of the phase space.

The largest Lyapunov exponent indicates the rate of growth of trajectory
separation in phase space. If we consider a third phase point I':(/), which is
constrained such that the vector between I'i and T'; is always orthogonal to the
vector between I'i and Iz, then we can follow the rate of change of a two
dimensional area in phase space. We can use these two directions to define an

area element V:(?), and rate of change of the volume element is given by

(3.72)

As we already know the value of M, this defines the second largest Lyapunov
exponent *>. In a similar way, if we construct a third phase space vector I':(1)
which is constrained to be orthogonal to both I':{f} and I's(), then we can
follow the rate of change of a three dimensional volume element Vi(t) and

calculate the third largest exponent Ay

(3.73)

This construction can be generalised to calculate the full spectrum of Lyapunov
exponents for an N particle system. We consider the trajectory T(f) of a
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dynamical system in phase space and study the convergence or divergence of
neighbouring trajectories by taking a set of basis vectors (tangent vectors) in

phase space , where . Some care must be exercised in
forming the set of basis vectors to ensure that the full dimension of phase space
is spanned by the basis set, and that the basis set is minimal. This simply means
that constants of the motion must be considered when calculating the dimension
of accessible phase space. If the equation of motion for a trajectory is of the form

I'=G(I) (3.74)
then the equation of motion for the tangent vector 9 is

(3.75)

Here T(I') is the Jacobian matrix (or stability matrix #G/dT")for the system. If
the magnitude of the tangent vector is small enough the nonlinear terms in
equation (3.75) can be neglected. The formal solution of this equation is

(3.76)

The mean exponential rate of growth of the i" tangent vector, gives the i®
Lyapunov exponent

(3.77)

The existence of the limit is ensured by the multiplicative ergodic theorem of
Oseledec [1968] (see also Eckmann and Ruelle [1985]). The Lyapunov exponents

can be ordered and if the system is ergodic, the exponents are

independent of the initial phase I'(0) and the initial phase space separation &.(0}.

If we consider the volume element Vv where N is the dimension of phase space
then we can show that the phase space compression factor gives the rate of
change of phase space volume, and that this is simply related to the sum of the
Lyapunov exponents by

(3.78)

For a Hamiltonian system, the phase space compression factor is identically zero,
so the phase space volume is conserved. This is a simple consequence of
Liouville's theorem. From equation (3.78) it follows that the sum of the Lyapunov
exponents is also equal to zero. If the system is time reversible then the Lyapunov

exponents occur in pairs (<%..h.). This ensures that d(1), Va(), Vi(1)  etc. change
at the same rate with both forward and backward time evolution. It is generally
believed that it is necessary to have at least one positive Lyapunov exponent
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for the system to be mixing. In chapters 7 and 10 we will return to consider
Lyapunov exponents in both equilibrium and nonequilibrium systems.

3.5 Equilibrium Time Correlation Functions

We shall often refer to averages over equilibrium distribution functions /o (we
use the subscript zero to denote equilibrium, which should not be confused with
fil), a distribution function at 7= 0). Distribution functions are called
equilibrium if they pertain to steady, unperturbed equations of motion and they
have no explicit time dependence. An equilibrium distribution function satisfies
a Liouville equation of the form

(3.79)

This implies that the equilibrium average of any phase variable is a stationary
quantity. That is, for an arbitrary phase variable B,

(3.80)

We will often need to calculate the equilibrium time correlation function of a
phase variable A with another phase variable B at some other time. We define
the equilibrium time correlation function of A and B by

(3.81)

where B~ denotes the complex conjugate of the phase variable B. Sometimes we
will refer to the autocorrelation function of a phase variable A. If this variable
is real, one can form a simple graphical representation of how such functions
are calculated (see Fig. 3.4).

Because the averages are to be taken over a stationary equilibrium distribution
function, time correlation functions are only sensitive to time difference between
which A and B are evaluated. C.s(1) is independent of the particular choice of
the time origin. If iL generates the distribution function /o, then the propagator
exp(-iLt) preserves Jo. (The converse is not necessarily true.) To be more explicit

, so that C.x(!) becomes
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Figure 3.4 Equilibrium time autocorrelation function of real variable A.

for samples in the sum to be independent, T

should be chosen so that

(3.82)

In deriving the last form of (3.82) we have used the important fact that since
iL=dr'/dt*0/0T and the equations of motion are real it follows that L is pure
imaginary. Thus, (iL) =il and (¢"')" ="', Comparing (3.82) with the definition
of C.sll), above we see that the equilibrium time correlation function is
independent of the choice of time origin. It is solely a function of the difference
in time of the two arguments, A and B. A further identity follows from this
result if we choose i = ='. We find that

(3.83)
So that,

(3.84)
or using the notation of section 3.3,

(3.85)

The second equality in equation (3.85) follows by expanding the operator
exp(-iLt) and repeatedly applying the identity
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The term L/, is zero from equation (3.79).

Over the scalar product defined by equation (3.81), I. is an Hermitian operator.

The Hermitian adjoint of I. denoted, L’ can be defined by the equation,

(3.86)

Comparing (3.86) with (3.85) we see two things: we see that the Liouville operator
L is self adjoint or Hermitian (1.=1.); and therefore the propagator e™, is
unitary. This result stands in contrast to those of §3.3, for arbitrary distribution
functions.

We can use the autocorrelation function of A to define a norm in Liouville space.
This length or norm of a phase variable A, is defined by the equation,

(3.87)

We can see immediately that the norm of any phase variable is time independent
because

(3.88)

The propagator is said to be norm preserving (Fig. 3.5). This is a direct result of
the fact that the propagator is a unitary operator. The propagator can be thought
of as a rotation operator in Liouville space.
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Figure 3.5 The propagator is norm preserving

A phase variable whose norm is unity is said to be normalised. The scalar product,
(A,B) of two phase variables A, B is simply the equilibrium average of A and
B namely <AB™>,. The norm of a phase variable is simply the scalar product of
the variable with itself. The autocorrelation function Cy(t) has a zero time value
which is equal to the norm of A. The propagator increases the angle between
A" and Alt), and the scalar product which is the projection of Alf) along A’
therefore decreases. The autocorrelation function of a given phase variable
therefore measures the rate at which the 6N-dimensional rotation occurs.

We will now derive some relations for the time derivatives of time correlation
functions. It is easy to see that

(3.90)

3.6 Operator Identities

In this section we develop the operator algebra that we will need to manipulate
expressions containing Liouvilleans and their associated propagators. Most of
the identities which we obtain are valid for arbitrary time independent operators.
Thus far we have been dealing with propagators in the time domain. For many

59



60

Statistical Mechanics of Nonequilibrium Liquids

problems it is more useful to consider their frequency dependent Laplace, or
Fourier-Laplace, transforms. A useful mathematical object is the Laplace transform
of the propagator. This is called the resolvent. The resolvent is an operator in
the domain of the Laplace transform variable s,

(3.91)

Our first operator identity is obtained by considering two arbitrary operators
A and B,

(3.92)

This identity is easily verified by operating from the right-hand side of this
equation with (A + B}, so

(3.93)

The operator expression (A + B) ' is the inverse of the operator (A+ B}, To

. . 1 . .
interpret an operator inverse of (A + B) *, we use the series expansion

(3.94)
First we prove that the right-hand side of this expression is indeed the inverse
of the operator . To do this consider

(3.95)
so that this series expansion allows us to represent the inverse of in terms

of an infinite series of products of the operator A.

The Dyson Decomposition of Propagators

Now we can investigate the Laplace transform (or resolvent) of the exponential
of an operator in more detail. We use the expansion of the exponential to show
that

(3.96)
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This means that the resolvent of the operator, ¢ , is simply (£ +4) '. We can
now consider the resolvent derived from the operator (4 + £}, and using the first
identity above, relate this resolvent to the resolvent of A. We can write

(3.97)
Substituting the Laplace integrals for the operators (5 + A) " and into
this equation gives

(3.98)

As the equality holds for all values of s, the integrands must be equal, so

(3.99)

This result is a very important step towards understanding the relationship
between different propagators and is referred to as the Dyson decomposition when
applied to propagators (Dyson, 1949). The derivation that we have used here is
only valid if both of the operators A and B have no explicit time dependence.
(We consider the time dependent case in Chapter 8.) If we consider the

propagators €Xp({A +B)1) and «xplAf), then a second Dyson decomposition can
be obtained:

(3.100)

It is handy to use a graphical shorthand for the Dyson equation. Using this
shorthand notation these two equations become,

E= - & (0_o)<— (3.101)
and

>=>+ > (®-0)~> (3.102)
The diamond 4 denotes the (A + £)-Liouvillean and the circle o denotes the
A-Liouvillean; the arrows < and = denote the propagators exp(—{A + Bt} and
expliA + B} respectively, while « and — denote ©xpl-Af) and explAi)
respectively. An n -1 fold convolution is implied by a chain of n arrows.

As an example of the application of this result, consider the case where B is a
small perturbation to the operator A . In this case the Dyson decomposition gives
the full (A + B)-propagator as the sum of the unperturbed A-propagator plus a
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correction term. One often faces the situation where we want to compare the
operation of different propagators on either a phase variable or a distribution
function. For example one might like to know the difference between the value
of a phase variable A(I') propagated under the combined influence of the

N-particle interactions and an applied external field F., with the value the
phase variable might take at the same time in the absence of the external field.
In that case (Evans and Morriss, 1984)

A(tF) = = A(T)
=[>+ > (®-0)>+—>(®#-0)>(®-0)—>
+—>(®-0)—>(®-0)—>(®-0)~
+—>(®-0)—>(®-0)>(®#-0)>(¢®-0)~
F oo ] A(T)

Therefore we can write,

(3.103)

This equation is of limited usefulness because in general, 4 and —, do not
commute. This means that the Liouvillean frequently represented by #, is locked
inside a convolution chain of propagators with which it does not commute. A
more useful expression can be derived from (3.102) by realising that ¢ commutes
with its own propagator namely, =. Similarly o commutes with its own
propagator, —. We can 'unlock' the respective Liouvilleans from the chain in
(3.102) by writing,

S=>+€>5->50 (3.104)
We can recursively substitute for =, yielding,
>=>+®->->5-550
+ & & > S5 - 2 5 55 o0 + —->->-> o0 o0
+ e (3.105)

Now it is easy to show that,

(3.106)
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Thus (3.105) can be written as,

>={l1+t(®-0)+(t?/2))(®#®-2%0+00)
+ (2 /31) (¢ ¢ ¢ -3 & ¢ 0 + 3 & 00 -00 0)
F oo, - (3.107)

This equation was first derived by Evans and Morriss (1984). Its utility arises
from the fact that by 'unrolling' the Liouville operators to the left and the
propagator to the right, explicit formulae for the expansion can usually be
derived. A limitation of the formula is that successive terms on the right hand
side do not constitute a power series expansion of the difference in the two
propagators in powers of the difference between the respective Liouvilleans. To

3
It

be more explicit, the term, (¢ ¢ -3¢ %0+ 39 00-000)isnotin general
of order (¢ - 0)’.

Campbell-Baker-Hausdorff Theorem

If A and B are non commuting operators then the operator expression

explA)exp(B) can be written in the form €5p{C) where C is given by

(3.108)

The notation [,] is the usual Quantum Mechanical commutator. A rearrangement
of this expansion, known as the Magnus expansion is well known to quantum
theorists (Magnus, 1954). Any finite truncation of the Magnus expansion for
the time displacement operator, gives a unitary time displacement operator
approximation (Pechukas and Light, 1966). This result has not proved as useful
for nonequilibrium statistical mechanics as it is for quantum theory. We give it
here mainly for the sake of completeness.

3.7 The Irving-Kirkwood Procedure

In Chapter 2 we gave a brief outline of the structure of macroscopic
hydrodynamics. We saw that given appropriate boundary conditions, it is
possible to use the Navier-Stokes equations to describe the resulting macroscopic
flow patterns. In this chapter we began the microscopic description of
nonequilibrium systems using the Liouville equation. We will now follow a
procedure first outlined by Irving and Kirkwood (1950), to derive microscopic
expressions for the thermodynamic forces and fluxes appearing in the
phenomenological equations of hydrodynamics.

In our treatment of the macroscopic equations we stressed the role played by
the densities of conserved quantities. Our first task here will be to define
microscopic expressions for the local densities of mass, momentum and energy.
If the mass of the individual atoms in our system is m then the mass per unit
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volume at a position 1~ and time ¢ can be obtained by taking an appropriate
average over the normalised N-particle distribution function f(I'.1). To specify
that the particles should be at the macroscopic position r, we will use a
macroscopic delta function, (¥ =¥}, This macroscopic delta function is zero if
atom i is outside some microscopic volume dV; it is a constant if atom i is inside
this volume (& is a smeared out version of the usual point delta function). We
will assume that particle dynamics are given by field-free Newtonian equations
of motion. The value of the constant is determined from the normalisation
condition,

(3.109)

The volume V is envisioned to be infinitesimal on a macroscopic scale.

The mass density PIF) can be calculated from the following average,

(3.110)

The first line of this equation is a Schrodinger representation of the density
while the second and third lines are written in the Heisenberg representation.
The equivalence of these two representations is easily seen by 'unrolling' the
propagator from the distribution function onto the phase variable. Since r, is a
constant, a nominated position it is unchanged by this 'unrolling' procedure.

The momentum density, PIrf I}, and total energy density, PIrf)elr./), are
defined in an analogous manner.

(3.111)

(3.112)
In these equations V: is the velocity of particle i, P: is its momentum, i =¥, =T,
and we assume that the total potential energy of the system, ® is pair-wise

additive and can be written as,

(3.113)
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We arbitrarily assign one half of the potential energy to each of the two particles
which contribute ? to the total potential energy of the system.
The conservation equations involve time derivatives of the averages of the

densities of conserved quantities. To begin, we will calculate the time derivative
of the mass density.

(3.114)
The fifth equality follows using the delta function identity,

We have shown that the time derivative of the mass density yields the mass
continuity equation (2.4) as expected. Strictly speaking therefore, we did not
really need to define the momentum density in equation (3.111), as given the
mass density definition, the mass continuity equation yields the momentum
density expression. We will now use exactly the same procedure to differentiate
the momentum density.

(3.115)

We have used Newtonian equations of motion for the Liouvillean iL.
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If we consider the second term on the right-hand side then

(3.116)

In the final term in equation (3.116), uwir.f) is independent of the particle index
and can be factored outside the summation. The remaining summation is, using

equation (3.110), simply equal to the mass density PIF./ ). Combining these results
it follows that

(3.117)

We will now consider the first term on the right hand side of this equation in
some detail.

(3.118)
Treating themacroscopicdelta function as an analytic function, we may expand

B(r=r,) a5 a Taylor series about (¥ ~F.}, This gives



The Microscopic Connection

(3.119)
Thus the difference between the two delta functions is

(3.120)
where the operator 0; is given by,

(3.121)

Using this equation for the difference of the two delta functions ®(r =¥} and
d(r=r,) Jeads to

(3.122)

Comparing this equation with the momentum conservation equation (2.12) we
see that the pressure tensor is,

(3.123)

where is the force on particle i due to particle .

We will now use the same technique to calculate the microscopic expression for
the heat flux vector. The partial time derivative of the energy density is (from
equation (3.112))
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(3.124)

In the second term, the gradient operator ifr is contracted into V:. Using our
previous result for the difference of two delta functions, equation (3.120), gives

(3.125)
From equation (2.24) we conclude that,

(3.126)
Now the definition of the energy density, equation (3.112) gives

(3.127)
so that,

(3.128)

Similarly, from the definition of the pressure tensor P(r.1) (see equation (3.123)),
we know that

(3.129)

thus we identify the heat flux vector as,
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(3.130)

From the definitions of the mass density and momentum density (equations
(3.110) and (3.111)) we find that

(3.131)

so there is no contribution from the u® term. Further, if we define the peculiar
energy of particle i to be

(3.132)

then the heat flux vector can be written as

or,

(3.133)

3.8 Instantaneous Microscopic Representation of Fluxes

The Irving-Kirkwood procedure has given us microscopic expressions for the
thermodynamic fluxes in terms of ensemble averages. At equilibrium in a uniform
fluid, the Irving-Kirkwood expression for the pressure tensor is the same
expression as that derived using Gibbs' ensemble theory for equilibrium statistical

mechanics. If the fluid density is uniform in space, the 0; operator appearing
in the above expressions reduces to unity. This is easier to see if we calculate
microscopic expressions for the fluxes in k -space rather than real space. In the
process we will better understand the nature of the Irving-Kirkwood expressions.

In this section we derive instantaneous expressions for the fluxes rather than
the ensemble based, Irving-Kirkwood expressions. The reason for considering
instantaneous expressions is two-fold. The fluxes are based upon conservation
laws and these laws are valid instantaneously for every member of the ensemble.
They do not require ensemble averaging to be true. Secondly, most computer
simulation involves calculating system properties from a single system trajectory.
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Ensemble averaging is almost never used because it is relatively expensive in
computer time. The ergodic hypothesis, that the result obtained by ensemble
averaging is equal to that obtained by time averaging the same property along
a single phase space trajectory, implies that one should be able to develop
expressions for the fluxes which do not require ensemble averaging. For this to
be practically realisable it is clear that the mass, momentum and energy densities
must be definable at each instant along the trajectory.

We define the Fourier transform pair by

(3.134)

In the spirit of the Irving-Kirkwood procedure we define the instantaneous
r-space mass density to be,

(3.135)

where the explicit time dependence of PIr.) (that is the time dependence
differentiated by the hydrodynamic derivative i/, with r fixed) is through

the time dependence of F:l/). The k -space instantaneous mass density is then

(3.136)

We will usually allow the context to distinguish whether we are using ensemble
averages or instantaneous expressions. The time dependence of the mass density
is solely through the time dependence of i, so that

(3.137)
Comparing this with the Fourier transform of (2.4) (noting that in (3.137)
corresponds to in (2.4)) we see that if we let then,

(3.138)

This equation is clearly the instantaneous analogue of the Fourier transform of
the Irving-Kirkwood expression for the momentum density. There is no ensemble
average required in (3.137). To look at the instantaneous pressure tensor we only
need to differentiate equation (3.138) in time.

(3.139)
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We can write the second term on the right hand side of this equation in the form
of the Fourier transform of a divergence by noting that,

(3.140)

Combining (3.139) and (3.140) and performing an inverse Fourier transform we
obtain the instantaneous analogue of equation (3.123). We could of course
continue the analysis of §3.7 to remove the streaming contribution from the
pressure tensor but this is more laborious in k -space than in real space and we
will not give this here. We can use our instantaneous expression for the pressure
tensor to describe fluctuations in an equilibrium system. In this case the streaming
velocity is of course zero, and

(3.141)

The k-space analysis given provided a better understanding of the

Irving-Kirkwood operator 0; In k -space it is not necessary to perform the

apparently difficult operation of Taylor expanding delta functions.

Before we close this section we will try to make the equation for the momentum

density, , a little clearer. In k-space this equation is a
convolution,

(3.142)

Does this definition of the streaming velocity n, make good physical sense? One
sensible definition for the streaming velocity u, would be that velocity which
minimises the sum of squares of deviations from the particle velocities Vi. For
simplicity we set t =0, and let R, be that sum of squares,

(3.143)

If uir) minimises this sum of squares then the derivative of R with respect to

each of the Fourier components WK, ), must be zero. Differentiating (3.143) we
obtain,

(3.144)
This implies that
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(3.145)
Both sides of this equation can be identified as k -space variables,

(3.146)
So that

(3.147)

This is the Fourier series version of equation (3.142).

We can use the same procedure to calculate an expression for the heat flux
vector. As we will see this procedure is very much simpler than the
Irving-Kirkwood method described in §3.7. We begin by identifying the
instantaneous expression for the instantaneous wavevector dependent energy
density in a fluid at equilibrium,

(3.148)

This is instantaneous, wavevector dependent analogue of (3.112). To simplify
notation in the following we will suppress the time argument for all phase
variables. The time argument will always be ¢. If we calculate the rate of change
of the energy density we find,

(3.149)

Where we use the notation . If we denote the energy of particle i as

¢, and ¥ as the force exerted on particle i due to J then (3.149) can be rewritten
as,

(3.150)

This equation involves the same combination of exponents as we saw for the
pressure tensor in (3.140). Expanding exponentials to first order in k, and using
equation (2.24) we find that the wavevector dependent heat flux vector can be
written as
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(3.151)

In r-space rather than k-space the expressions for the instantaneous pressure
tensor and heat flux vector become,

(3.152)

(3.153)

Our procedure for calculating microscopic expressions for the hydrodynamic
densities and fluxes relies upon establishing a correspondence between the
microscopic and macroscopic forms of the continuity equations. These equations
refer only to the divergence of the pressure tensor and heat flux. Strictly speaking
therefore we can only determine the divergences of the flux tensors. We can
add any divergence free quantity to our expressions for the flux tensors without
affecting the identification process.

3.9 The Kinetic Temperature

We obtain an instantaneous expression for the temperature by analysing the
expression for the pressure tensor (3.150) for the case of an ideal gas at
equilibrium. Thus if 7(r.?) is the local instantaneous number density,

(3.154)

We will call this expression for the temperature, the kinetic temperature. In
using this expression for the temperature we are employing a number of
approximations. Firstly we are ignoring the number of degrees of freedom which
are frozen by the instantaneous determination of ulr.t}. Secondly , and more
importantly, we are assuming that in a nonequilibrium system the kinetic

temperature is identical to the thermodynamic temperature T,

(3.155)

This is undoubtedly an approximation. It would be true if the postulate of local
thermodynamic equilibrium was exact. However we know that the energy,
pressure, enthalpy etc. are all functions of the thermodynamic forces driving
the system away from equilibrium. These are nonlinear effects which vanish in
Newtonian fluids. Presumably the entropy is also a function of these driving
forces. It is extremely unlikely that the field dependence of the entropy and the
energy are precisely those required for the exact equivalence of the kinetic and
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thermodynamic temperatures for all nonequilibrium systems. Recent calculations
of the entropy of systems very far from equilibrium support the hypothesis that
the kinetic and thermodynamic temperatures are in fact different (Evans, 1989).
Outside the linear (Newtonian), regime the kinetic temperature is a convenient
operational (as opposed to thermodynamic) state variable. If a nonequilibrium
system is in a steady state both the kinetic and the thermodynamic temperatures
must be constant in time. Furthermore we expect that outside the linear regime
in systems with a unique nonequilibrium steady state, that the thermodynamic
temperature should be a monotonic function of the kinetic temperature.
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4. The Green Kubo Relations

4.1 The Langevin Equation

In 1828 the botanist Robert Brown observed the motion of pollen grains
suspended in a fluid. Although the system was allowed to come to equilibrium,
he observed that the grains seemed to undergo a kind of unending irregular
motion. This motion is now known as Brownian motion. The motion of large
pollen grains suspended in a fluid composed of much lighter particles can be
modelled by dividing the accelerating force into two components: a slowly
varying drag force, and a rapidly varying random force due to the thermal
fluctuations in the velocities of the solvent molecules. The Langevin equation
as it is known, is conventionally written in the form,

(4.1)
Using the Navier-Stokes equations to model the flow around a sphere it is known

that the friction coefficient & =6mand/m , where M is the shear viscosity of the
fluid, « is the diameter of the sphere and m is its mass. The random force per

unit mass F &, is used to model the force on the sphere due to the bombardment
of solvent molecules. This force is called random because it is assumed that

. A more detailed investigation of the drag on a sphere which
is forced to oscillate in a fluid shows that a non-Markovian generalisation (see
§2.4), of the Langevin equation (Langevin, 1908) is required to describe the time
dependent drag on a rapidly oscillating sphere,

(4.2)

In this case the viscous drag on the sphere is not simply linearly proportional
to the instantaneous velocity of the sphere as in (4.1). Instead it is linearly
proportional to the velocity at all previous times in the past. As we will see there
are many transport processes which can be described by an equation of this
form. We will refer to the equation

(4.3)

as the generalised Langevin equation for the phase variable A(T'). K(f) is the
time dependent transport coefficient that we seek to evaluate. We assume that
the equilibrium canonical ensemble average of the random force and the phase
variable A, vanishes for all times .
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: (4.4)

The time displacement by /o is allowed because the equilibrium time correlation
function is independent of the time origin. Multiplying both sides of (4.3) by
the complex conjugate of A(0) and taking a canonical average we see that,

(4.5)
where C(1) is defined to be the equilibrium autocorrelation function,

(4.6)
Another function we will find useful is the flux autocorrelation function f{t)

(4.7)

Taking a Laplace transform of (4.5) we see that there is a intimate relationship
between the transport memory kernel Kif) and the equilibrium fluctuations in
A. The left-hand side of (4.5) becomes

and as the right-hand side is a Laplace transform convolution,

(4.8)
So that

(4.9)

One can convert the A autocorrelation function into a flux autocorrelation
function by realising that,

Then we take the Laplace transform of a second derivative to find,

(4.10)
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Here we have used the result that C(0) =0, Eliminating C(s) between equations
(4.9) and (4.10) gives

(4.11)

Rather than try to give a general interpretation of this equation it may prove
more useful to apply it to the Brownian motion problem. €(0) is the time zero
value of an equilibrium time correlation function and can be easily evaluated as

kaTfm, and where F is the total force on the Brownian particle.

(4.12)

where

(4.13)
is the Laplace transform of the total force autocorrelation function. In writing
(4.13) we have used the fact that the equilibrium ensemble average denoted (...},

must be isotropic. The average of any second rank tensor, say (FIO)F(1)}, must
therefore be a scalar multiple of the second rank identity tensor. That scalar

must of course be

In the so-called Brownian limit where the ratio of the Brownian particle mass to
the mean square of the force becomes infinite,

(4.14)

For any finite value of the Brownian ratio, equation (4.12) shows that the integral
of the force autocorrelation function is zero. This is seen most easily by solving
equation (4.12) for C" and taking the limit as s —0.

Equation (4.9), which gives the relationship between the memory kernel and
the force autocorrelation function, implies that the velocity autocorrelation

function is related to the friction coefficient by the equation,

(4.15)

This equation is valid outside the Brownian limit. The integral of the velocity
autocorrelation function, is related to the growth of the mean square displacement
giving yet another expression for the friction coefficient,
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(4.16)

Here the displacement vector Arlf) is defined by

(4.17)

Assuming that the mean square displacement is linear in time, in the long time
limit, it follows from (4.15) that the friction coefficient can be calculated from

(4.18)
This is the Einstein (1905) relation for the diffusion coefficient D.

It should be pointed out that the transport properties we have just evaluated
are properties of systems at equilibrium. The Langevin equation describes the
irregular Brownian motion of particles in an equilibrium system. Similarly the
self diffusion coefficient characterises the random walk executed by a particle
in an equilibrium system. The identification of the zero frequency friction

coefficient 67nd/m , with the viscous drag on a sphere which is forced to move
with constant velocity through a fluid, implies that equilibrium fluctuations can
be modelled by nonequilibrium transport coefficients, in this case the shear
viscosity of the fluid. This hypothesis is known as the Onsager regression
hypothesis (Onsager, 1931). The hypothesis can be inverted: one can calculate
transport coefficients from a knowledge of the equilibrium fluctuations. We will
now discuss these relations in more detail.

4.2 Mori-Zwanzig Theory

We will show that for an arbitrary phase variable A(I'}, evolving under equations
of motion which preserve the equilibrium distribution function, one can always
write down a Langevin equation. Such an equation is an exact consequence of
the equations of motion. We will use the symbol iL, to denote the Liouvillean
associated with these equations of motion. These equilibrium equations of motion
could be field-free Newtonian equations of motion or they could be field-free
thermostatted equations of motion such as Gaussian isokinetic or Nosé-Hoover
equations. The equilibrium distribution could be microcanonical, canonical or
even isothermal-isobaric provided that if the latter is the case, suitable
distribution preserving dynamics are employed. For simplicity we will compute
equilibrium time correlation functions over the canonical distribution function,

f

[
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(4.19)

We saw in the previous section that a key element of the derivation was that
the correlation of the random force, F (1) with the Langevin variable A, vanished
for all time. We will now use the notation first developed in §3.5, which treats
phase variables, Al I'y, BT}, as vectors in 6/N-dimensional phase space with a

scalar product defined by , and denoted as (8.4 ). We will
define a projection operator which will transform any phase variable B, into a
vector which has no correlation with the Langevin variable, A. The component
of B parallel to A is just,

(4.20)
This equation defines the projection operator P.
The operator € =1-F is the complement of P and computes the component of
B orthogonal to A.

(4.21)

In more physical terms the projection operator ¢ computes that part of any
phase variable which is random with respect to a Langevin variable, A.

Figure 4.1. The projection operator P, operating on B produces a vector
which is the component of B parallel to A
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Other properties of the projection operators are that,
PP=P,Q0=0, (4.22)

Secondly, P and Q are Hermitian operators (like the Liouville operator itself).
To prove this we note that,

(4.23)

Furthermore, since & =1 - F where 1 is the identity operator, and since both the
identity operator and P are Hermitian, so is €.

We will wish to compute the random and direct components of the propagator
¢™. The random and direct parts of the Liouvillean iL are €L and iPL
respectively. These Liouvilleans define the corresponding random and direct

propagators, ¢*"" and ¢""'. We can use the Dyson equation to relate these two
propagators. If we take ¢*"* as the reference propagator in (3.100) and e™ as the
test propagator then,

(4.24)
The rate of change of All), the Langevin variable at time ¢ is,

(4.25)
But,

(4.26)

This defines the frequency iQ which is an equilibrium property of the system.
It only involves equal time averages. Substituting this equation into (4.25) gives,

(4.27)

Using the Dyson decomposition of the propagator given in equation (4.24), this
leads to,

(4.28)

We identify ¢““iC0LA as the random force F(1) because,

(4.29)



The Green Kubo Relations

where we have used (4.22). It is very important to remember that the propagator
which generates F(1) from F(0) is not the propagator ¢™, rather it is the random

propagator ¢ The integral in (4.28) involves the term,

as L. is Hermitian and i is anti-Hermitian, ,
(since the equations of motion are real). Since Q is Hermitian,

(4.30)

Figure 4.2. Schematic diagram of the frequency- and wavevector dependent
viscosity and stress autocorrelation function. We can resolve the wavevector
dependent momentum density into components which are parallel and
orthogonal to the wavevector, k.

where we have defined a memory kernel K1), It is basically the autocorrelation
function of the random force. Substituting this definition into (4.28) gives

(4.31)

This shows that the Generalised Langevin Equation is an exact consequence of
the equations of motion for the system (Mori, 1965a, b; Zwanzig, 1961). Since
the random force is random with respect to A, multiplying both sides of (4.31)

by and taking a canonical average gives the memory function equation,

(4.32)

This is essentially the same as equation (4.5).
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As we mentioned in the introduction to this section the generalised Langevin
equation and the memory function equation are exact consequences of any
dynamics which preserves the equilibrium distribution function. As such the
equations therefore describe equilibrium fluctuations in the phase variable A,
and the equilibrium autocorrelation function for A, namely C(1).

However the generalised Langevin equation bears a striking resemblance to a
nonequilibrium constitutive relation. The memory kernel K1) plays the role of
a transport coefficient. Onsager's regression hypothesis (1931) states that the
equilibrium fluctuations in a phase variable are governed by the same transport
coefficients as is the relaxation of that same phase variable to equilibrium. This
hypothesis implies that the generalised Langevin equation can be interpreted
as a linear, nonequilibrium constitutive relation with the memory function

K, given by the equilibrium autocorrelation function of the random force.

Onsager's hypothesis can be justified by the fact that in observing an equilibrium
system for a time which is of the order of the relaxation time for the memory
kernel, it is impossible to tell whether the system is at equilibrium or not. We
could be observing the final stages of a relaxation towards equilibrium or, we
could be simply observing the small time dependent fluctuations in an
equilibrium system. On a short time scale there is simply no way of telling the
difference between these two possibilities. When we interpret the generalised
Langevin equation as a nonequilibrium constitutive relation, it is clear that it
can only be expected to be valid close to equilibrium. This is because it is a
linear constitutive equation.

4.3 Shear Viscosity

It is relatively straightforward to apply the Mori-Zwanzig formalism to the
calculation of fluctuation expressions for linear transport coefficients. Our first
application of the method will be the calculation of shear viscosity. Before we
do this we will say a little more about constitutive relations for shear viscosity.
The Mori-Zwanzig formalism leads naturally to a non-Markovian expression for
the viscosity. Equation (4.31) refers to a memory function rather than a simple
Markovian transport coefficient such as the Newtonian shear viscosity. We will
thus be lead to a discussion of viscoelasticity (see §2.4).

We choose our test variable A, to be the x-component of the wavevector

dependent transverse momentum current J~ (K.r}.

For simplicity, we define the coordinate system so that k is in the ¥ direction

and J* is in the x direction.

(4.33)
In §3.8 we saw that
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(4.34)

where for simplicity we have dropped the Cartesian indices for J and k. We
note that at zero wavevector the transverse momentum current is a constant of

the motion, J=0. The quantities we need in order to apply the Mori-Zwanzig
formalism are easily computed.

The frequency matrix iQ, defined in (4.26), is identically zero. This is always

so in the single variable case as , for any phase variable A. The norm
of the transverse current is calculated

(4.35)
At equilibrium 7. is independent of 7«2 and so the correlation function
factors into the product of three equilibrium averages. The values of (p.) and

{.rﬂ::' are identically zero. The random force, F, can also easily be calculated
since, if we use (4.34)

(4.36)
we can write,

(4.37)
The time dependent random force (see (4.29)), is

(4.38)
A Dyson decomposition of ¢ in terms of ¢ shows that,

(4.39)
Now for any phase variable B,

(4.40)

Substituting this observation into (4.39) shows that the difference between the
L

propagators ¢“ and ¢" is of order k, and can therefore be ignored in the zero
wavevector limit.
From equation (4.30) the memory kernel Kit)is . Using equation

(4.38), the small wavevector form for K{1) becomes,
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(4.41)

The generalised Langevin equation (the analogue of equation 4.31) is

(4.42)

where we have taken explicit note of the Cartesian components of the relevant
functions. Now we know that the rate of change of the transverse current is

kP.(k.1) This means that the left hand side of (4.42) is related to equilibrium

fluctuations in the shear stress. We also know that , SO,
close to equilibrium, the transverse momentum current (our Langevin variable

A), is closely related to the wavevector dependent strain rate ¥(k), In fact the

wavevector dependent strain rate ¥k} is . Putting these two
observations together we see that the generalised Langevin equation for the
transverse momentum current is essentially a relation between fluctuations in
the shear stress and the strain rate - a constitutive relation. Ignoring the random
force (constitutive relations are deterministic), we find that equation (4.42) can
be written in the form of the constitutive relation (2.76),

(4.43)

If we use the fact that, , NIt is easily seen to be

(4.44)

Equation (4.43) is identical to the viscoelastic generalisation of Newton's law of
viscosity equation (2.76).

The Mori-Zwanzig procedure has derived a viscoelastic constitutive relation.
No mention has been made of the shearing boundary conditions required for
shear flow. Neither is there any mention of viscous heating or possible non
linearities in the viscosity coefficient. Equation (4.42) is a description of
equilibrium fluctuations. However unlike the case for the Brownian friction
coefficient or the self diffusion coefficient, the viscosity coefficient refers to
nonequilibrium rather than equilibrium systems.

The zero wavevector limit is subtle. We can imagine longer and longer

wavelength fluctuations in the strain rate ¥(k). For an equilibrium system

however t(k=0)=0 and . There are no equilibrium
fluctuations in the strain rate at k£ =01. The zero wavevector strain rate is
completely specified by the boundary conditions.
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If we invoke Onsager's regression hypothesis we can obviously identify the
memory kernel Mi{) as the memory function for planar (ie. k£ = 1) Couette flow.
We might observe that there is no fundamental way of knowing whether we
are watching small equilibrium fluctuations at small but non-zero wavevector,
or the last stages of relaxation toward equilibrium of a finite &, nonequilibrium
disturbance. Provided the nonequilibrium system is sufficiently close to
equilibrium, the Langevin memory function will be the nonequilibrium memory
kernel. However the Onsager regression hypothesis is additional to, and not
part of, the Mori-Zwanzig theory. In §6.3 we prove that the nonequilibrium
linear viscosity coefficient is given exactly by the infinite time integral of the
stress fluctuations. In §6.3 we will not use the Onsager regression hypothesis.

At this stage one might legitimately ask the question: what happens to these
equations if we do not take the zero wavevector limit? After all we have already
defined a wavevector dependent shear viscosity in (2.77). It is not a simple matter
to apply the Mori-Zwanzig formalism to the finite wavevector case. We will
instead use a method which makes a direct appeal to the Onsager regression
hypothesis.

Provided the time and spatially dependent strain rate is of sufficiently small
amplitude, the generalised viscosity can be defined as (2.77),

(4.45)
Using the fact that , and equation (4.34), we can
rewrite (4.45) as,

(4.46)

If we Fourier-Laplace transform both sides of this equation in time, and using
Onsager's hypothesis, multiply both sides by J/{=k.0) and average with respect
to the equilibrium canonical ensemble we obtain,

(4.47)

where €(k.1) is the equilibrium transverse current autocorrelation function

and the tilde notation denotes a Fourier-Laplace transform in time,

(4.48)

We call the autocorrelation function of the wavevector dependent shear stress,

(4.49)
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We can use the equation (4.34), to transform from the transverse current
autocorrelation function C(&.1) to the stress autocorrelation function Nik.t) since,

(4.50)
This derivation closely parallels that for equation (4.10) and (4.11) in §4.1. The

reader should refer to that section for more details. Using the fact that, p = Nm/V',
we see that,

(4.51)

The equilibrium average C(k.0) is given by equation (4.35). Substituting this
equation into equation (4.47) gives us an equation for the frequency and
wavevector dependent shear viscosity in terms of the stress autocorrelation
function,

(4.52)

This equation is not of the Green-Kubo form. Green-Kubo relations are
exceptional being only valid for infinitely slow processes. Momentum relaxation
is only infinitely slow at zero wavevector. At finite wavevectors momentum
relaxation is a fast process. We can obtain the usual Green-Kubo form by taking
the zero k limit of equation (4.52 ). In that case

(4.53)
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Figure 4.3. The relationship between the viscosity, nk.m), and the stress

autocorrelation function, Nik.m) . At k =0 both functions are identical. At

o =0 but k=0, the stress autocorrelation function is identically zero. The
stress autocorrelation function is discontinuous at the origin. The viscosity
is continuous everywhere but non-analytic at the origin (see Evans, (1981)).

Because there are no fluctuations in the zero wavevector strain rate the function

N(k.w) is discontinuous at the origin. For all nonzero values of &, N(k.,0) = O
Over the years many errors have been made as a result of this fact. Figure 4.3
above illustrates these points schematically. The results for shear viscosity
precisely parallel those for the friction constant of a Brownian particle. Only in
the Brownian limit is the friction constant given by the autocorrelation function
of the Brownian force.

An immediate conclusion from the theory we have outlined is that all fluids are
viscoelastic. Viscoelasticity is a direct result of the Generalised Langevin equation
which is in turn an exact consequence of the microscopic equations of motion.

4.4 Green-Kubo Relations for Navier-Stokes Transport
Coefficients

It is relatively straightforward to derive Green-Kubo relations for the other
Navier-Stokes transport coefficients, namely bulk viscosity and thermal
conductivity. In §6.3 when we describe the SLLOD equations of motion for
viscous flow we will find a simpler way of deriving Green-Kubo relations for
both viscosity coefficients. For now we simply state the Green-Kubo relation for
bulk viscosity as (Zwanzig, 1965),
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(4.54)

The Green-Kubo relation for thermal conductivity can be derived by similar
arguments to those used in the viscosity derivation. Firstly we note from (2.26),
that in the absence of a velocity gradient, the internal energy per unit volume

P obeys a continuity equation, . Secondly, we note that Fourier's
definition of the thermal conductivity coefficient i, from equation (2.56a), is

T, =-AVT, Combining these two results we obtain

(4.55)
Unlike the previous examples, both U and T have nonzero equilibrium values;
namely, (17} and {T7. A small change in the left-hand side of equation (4.55) can
be written as . By definition , so to first order

in A, we have PdAU/dt _ Similarly, the spatial gradient of (T does not contribute,
SO we can write

(4.56)

The next step is to relate the variation in temperature AT to the variation in

energy per unit volume &(pI/). To do this we use the thermodynamic definition,

(4.57)
where ¢v is the specific heat per unit mass. We see from the second equality,
that a small variation in the temperature AT is equal to APV P, . Therefore,

(4.58)
If is the thermal diffusivity, then in terms of the wavevector

dependent internal energy density equation (4.58) becomes,

(4.59)

If C(k.1) is the wavevector dependent internal energy density autocorrelation
function,

(4.60)

then the frequency and wavevector dependent diffusivity is the memory function
of energy density autocorrelation function,
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(4.61)

Using exactly the same procedures as in §4.1 we can convert (4.61) to an
expression for the diffusivity in terms of a current correlation function. From

(4.7 & 10) if ¢ = -C then,

(4.62)
Using equation (4.10), we obtain the analogue of (4.11),

(4.63)
If we define the analogue of equation (4.49), that is , then

equation (4.63) for the thermal diffusivity can be written in the same form as
the wavevector dependent shear viscosity equation (4.52). That is

(4.64)

Again we see that we must take the zero wavevector limit before we take the
zero frequency limit, and using the canonical ensemble fluctuation formula for
the specific heat,

(4.65)

we obtain the Green-Kubo expression for the thermal conductivity

(4.66)

This completes the derivation of Green-Kubo formula for thermal transport
coefficients. These formulae relate thermal transport coefficients to equilibrium
properties. In the next chapter we will develop nonequilibrium routes to the
thermal transport coefficients.
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5. Linear Response Theory

5.1 Adiabatic Linear Response Theory

In this chapter we will discuss how an external field F,, perturbs an N-particle
system. We assume that the field is sufficiently weak that only the linear response
of the system need be considered. These considerations will lead us to equilibrium
fluctuation expressions for mechanical transport coefficients such as the electrical
conductivity. These expressions are formally identical to the Green-Kubo
formulae that were derived in the last chapter. The difference is that the
Green-Kubo formulae pertain to thermal transport processes where boundary
conditions perturb the system away from equilibrium - all Navier-Stokes
processes fall into this category. Mechanical transport coefficients on the other
hand, refer to systems where mechanical fields which appear explicitly in the
equations of motion for the system, drive the system away from equilibrium.

As we will see it is no coincidence that there is such a close similarity between
the fluctuation expressions for thermal and mechanical transport coefficients.
In fact one can often mathematically transform the nonequilibrium boundary
conditions for a thermal transport process into a mechanical field. The two
representations of the system are then said to be congruent.

A major difference between the derivations of the equilibrium fluctuation
expressions for the two representations is that in the mechanical case one does
not need to invoke Onsager's regression hypothesis. The linear mechanical
response of a nonequilibrium system is analysed mathematically with resultant
expressions for the response that involve equilibrium time correlation functions.
In the thermal case - Chapter 4 - equilibrium fluctuations were studied and after
invoking Onsager's hypothesis, the connection with nonequilibrium transport
coefficients was made. Given a congruent mechanical representation of a thermal
transport process, one can in fact prove the validity of Onsager's hypothesis.

The mechanical field F., performs work on the system, preventing relaxation
to equilibrium. This work is converted into heat. It is easy to show that the rate
at which the field performs work on the system is, for small fields, proportional

to F.. As such this is, at least formally, a nonlinear effect. This is why, in the
complete absence of any thermostatting mechanism, Kubo (1957) was able to
derive correct expressions for the linear response. However in spite of heating
being a nonlinear effect, a thermostatted treatment of linear response theory
leads to a considerably more satisfying discussion. We will therefore include in
this chapter a description of thermostats and isothermal linear response theory.
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Consider a system of N atoms suddenly subject, at =0, to a time dependent
external field, T.. The generalisation of our discussion to vector or tensor fields
is straightforward. For simplicity we will assume that the particles move in a
three dimensional Cartesian space. For times greater than zero the system is
assumed to obey the dynamics given in the equations below,

(5.1)

The phase variables C:(I') and D/(I) describe the coupling of the field to the
system. We assume that the equations have been written in such a way that at
equilibrium in the absence of the external field the canonical kinetic energy K,
satisfies the equipartition relation,

(5.2)

This implies that the canonical momenta give the peculiar velocities of each of
the particles and that therefore,

(5.3)

In this case

(5-4)
is the instantaneous expression for the internal energy. We do not assume that
a Hamiltonian exists which will generate the field-dependent equations of motion.

In the absence of the external field and the thermostat, f is the total energy,
and is therefore a constant of the motion. The rate of change of internal energy
due to the field is

(5.5)
where J(I'}, is called the dissipative flux.

The response of the system to the external field can be assessed by monitoring
the average response of an arbitrary phase variable B(I') at some later time 1.
The average response of the system is the response that is obtained by perturbing
an ensemble of initial phases. It is usual to select the starting states from the
equilibrium canonical ensemble, thus
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(5.6)

The average response {B(1)) can be calculated from the expression,

(5.7)
This is the Schrodinger representation for the response of B. The problem of
determining the response then reduces to determining the perturbed distribution

function f(t). The rate of change in the perturbed distribution function is given
by the Liouville equation

(5.8)

The T'(1) in these equations is given by the first order form of the equations of
motion with the external field evaluated at the current time, ¢.

If the equations of motion are derivable from a Hamiltonian it is easy to show
that aT/al =0, (§3.3). We will assume that even in the case where no Hamiltonian

exists which can generate the equations of motion (5.1), that ¢ I/aT = 0. We refer
to this condition as the Adiabatic Incompressibility of Phase Space (AIl). A
sufficient, but not necessary, condition for this to hold is that the unthermostatted
or adiabatic equations of motion are derivable from a Hamiltonian. It is of course
possible to pursue the theory without this condition but in practise it is rarely
necessary to do so (the only known exception is discussed: Evans and MacGowan,
1986).

Thus in the adiabatic case if AIT" holds, we know that the Liouville operator is
Hermitian (see §3.3 & §3.5) and therefore,

(5.9)

If we denote the Liouvillean for the field free equations of motion as s, and
we break up the total Liouvillean into its field free and field dependent parts,
equation (5.8) becomes,

(5.10)

where the distribution function f1I'.1}, is written as /. +Af(.1), Since H, is a

constant of the motion for the field free adiabatic equations of motion, il
therefore preserves the canonical ensemble,
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(5.11)
Substituting (5.11) into equation (5.10) we see,

(5.12)

In (5.12) we are ignoring perturbations to the distribution function which are
second order in the field. (The Schrodinger-Heisenberg equivalence (§3.3), proves
that these second order terms for the distribution are identical to the second
order trajectory perturbations.) In §7.8 we discuss the nature of this linearisation
procedure in some detail. To linear order, the solution of equation (5.12) is,

(5.13)

The correctness of this solution can easily be checked by noting that at =0,
(5.13) has the correct initial condition, ( ) and that the solution for
Af(T.1) given in (5.13) satisfies (5.12) for all subsequent times.

We will now operate on the canonical distribution function with the operator,
iL(I}. We again use the fact that Lo preserves the canonical distribution function.

(5.14)
The adiabatic time derivative of H is given by the dissipative flux (5.5), so,

(5.15)

The time argument associated with iAL(5) is the time argument of the external
field.

Substituting (5.15) into (5.13) and in turn into (5.7), the linear response of the
phase variable B is given by

(5.16)
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In deriving the third line of this equation from the second we have unrolled the
propagator from the dissipative flux onto the response variable B. Note that the
propagator has no effect on either the canonical distribution function (which is

preserved by it), or on the external field F.({) which is not a phase variable.

It is usual to express the result in terms of a linear susceptibility Xs, which is
defined in terms of the equilibrium time correlation function of B and .J,

(5.17)

To linear order, the canonical ensemble averaged linear response for Bi1) is,

(5.18)

This equation is very similar to the response functions we met in Chapter 4 when
we discussed viscoelasticity and constitutive relations for thermal transport
coefficients. The equation shows that the linear response is non-Markovian. All
systems have memory. All N-body systems remember the field history over the

decay time of the relevant time correlation function, {B(1)J(0)}, Markovian
behaviour is only an idealisation brought about a lack of sensitivity in our
measurements of the time resolved many-body response.

There are, a number of deficiencies in the derivation we have just given. Suppose

that by monitoring {B(1) for a family of external fields F., we wish to deduce
the susceptibility %{/). One cannot blindly use equation (5.18). This is because
as the system heats up through the conversion of work into heat, the system
temperature will change in time. This effect is quadratic with respect to the
magnitude of the external field. If X increases with temperature, the long time

limiting value of {B(1)) will be infinite. If X decreases with increasing temperature

the limiting value of {B(1)} could well be zero. This is simply a reflection of the
fact that in the absence of a thermostat there is no steady state. The linear steady
state value for the response can only be obtained if we take the field strength
to zero before we let time go to infinity. This procedure will inevitably lead to
difficulties in both the experimental and numerical determination of the linear
susceptibilities.

Another difficulty with the derivation is that if adiabatic linear response theory
is applied to computer simulation, one would prefer not to use canonical
averaging. This is because a single Newtonian equilibrium trajectory cannot
generate or span the canonical ensemble. A single Newtonian trajectory can at
most span a microcanonical subset of the canonical ensemble of states. A canonical
evaluation of the susceptibility therefore requires an ensemble of trajectories if
one is using Newtonian dynamics. This is inconvenient and very expensive in
terms of computer time.
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One cannot simply extend this adiabatic theory to the microcanonical ensemble.
Kubo (1982) recently showed that if one subjects a cumulative microcanonical
ensemble (all states less than a specified energy have the same probability) to a
mechanical perturbation, then the linear susceptibility is given by the equilibrium
correlation of the test variable B and the dissipative flux ./, averaged over the
delta microcanonical ensemble (all states with a precisely specified energy have
the same probability). When the equilibrium ensemble of starting states is not
identical to the equilibrium ensemble used to compute the susceptibilities, we
say that the theory is ergodically inconsistent. We will now show how both of
these difficulties can be resolved.

5.2 Thermostats and Equilibrium Distribution Functions

The Gaussian Isokinetic Thermostat

Thermostats were first introduced as an aid to performing nonequilibrium
computer simulations. Only later was it realised that these devices have a
fundamental role in the statistical mechanics of many-body systems. The first
deterministic method for thermostatting molecular dynamics simulations was
proposed simultaneously and independently by Hoover and Evans (Hoover,
Ladd and Moran, 1982, and Evans, 1983). Their method employs a damping or
friction term in the equations of motion. Initially the use of such damping terms
had no theoretical justification. Later it was realised (Evans, Hoover, Failor,
Moran and Ladd, 1983) that these equations of motion could be derived using
Gauss' principle of least constraint (§3.1). This systematised the extension of the
method to other constraint functions.

Using Gauss' Principle (Chapter 3), the isokinetic equations of motion for a system
subject to an external field can be written as,

(5.19)

This is the thermostatted generalisation of equation (5.1) where the thermostatting
term ®P: has been added. In writing these equations we are assuming:

1. that the equations have been written in a form in which the canonical
momenta are peculiar with respect to the streaming velocities of the particles;

that ;
3. and that H is the phase variable which corresponds to the internal energy.

In order to know that these three conditions are valid, we must know quite a
lot about the possible flows induced in the system by the external field. This
means that if we are considering shear flow for example, the Reynolds number
must be small enough for laminar flow to be stable. Otherwise we cannot specify
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the streaming component of a particles motion (C; must contain the local
hydrodynamic flow field uir.t}) and we cannot expect condition (1) to be valid.

The isokinetic expression for the multiplier is easily seen to be ,

(5.20)

It is instructive to compare this result with the corresponding field free multiplier
given in (3.32). It is important to keep in mind that the expression for the
multiplier depends explicitly on the external field and therefore on time. This
is why we define the time and field independent phase variables %o, %

It is easy to show that if Gauss' Principle is used to fix the internal energy %
then the equations of motion take on exactly the same form (Evans, 1983), except
that the multiplier is,

(5.21)

It may seem odd that the form of the field dependent equations of motion is
independent of whether we are constraining the kinetic or the total energy. This
occurs because the vector character of the constraint force is the same for both
forms of constraint (see §3.1). In the isoenergetic case it is clear that the multiplier
vanishes when the external field is zero. This is as expected since in the absence
of an external field, Newton's equations conserve the total energy.

Gaussian thermostats remove heat from the system at a rate,

(5.22)

by applying a force of constraint which is parallel to the peculiar velocity of
each particle in the system.

We will now discuss the equilibrium properties of Gaussian isokinetic systems
in more detail. At equilibrium the Gaussian isokinetic equations become,

(5.23)

with the multiplier given by equation (5.20) with F. =0 Clearly the average
value of the multiplier is zero at equilibrium with fluctuations in its value being
precisely those required to keep the kinetic energy constant. Following our
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assumption that the initial value of the total linear momentum is zero, it is trivial
to see that like the kinetic energy, it is a constant of the motion.

The ergodically generated equilibrium distribution function f+(I'), can be
obtained by solving the Liouville equation for these equations of motion. It is
convenient to consider the total time derivative of /. From the Liouville equation
(3.34), we see that,

(5.24)
In computing the final derivative in this equation we get 3N identical intensive

terms from the 3N derivatives, . We also get 3N terms from P:* dafap,
which sum to give —a . Since we are interested in statistical mechanical systems

we will ignore terms of relative order IfN, in the remaining discussion. It is
certainly possible to retain these terms but this would add considerably to the
algebraic complexity, without revealing any new physics. This being the case,
equation (5.24) above becomes,

(5.25)
From (5.24) it is can be shown that,

(5.26)
or,

(5.27)

Integrating both sides with respect to time enables us to evaluate the time
independent equilibrium distribution function,

(5.28)

where the constant, . We call this distribution function the isokinetic

distribution /r (Evans and Morriss, 1983). It has a very simple form: the kinetic
degrees of freedom are distributed microcanonically, and the configurational
degrees of freedom are distributed canonically. The thermodynamic temperatures

of these two sub systems are of course identical.

If one retains terms of order ¥ in the above derivation, the result is the same

except that . Such aresult could have been anticipated in advance
because in our Gaussian isokinetic system four degrees of freedom are frozen,
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one by the kinetic energy constraint, and three because the linear momentum
is fixed.

One can check that the isokinetic distribution is an equilibrium solution of the

equilibrium Liouville equation. Clearly 4f At =0 As one follows the streaming
motion of an evolving point in phase space I'(), the streaming derivative of the
co-moving local density is,

(5.29)

This is a direct consequence of the fact that for a Gaussian isokinetic system,
phase space is compressible. It is clear however, that in the absence of external

fields , because the mean value of & must be zero. If we sit at a fixed
point in phase space and ask whether, under Gaussian isokinetic dynamics, the
isokinetic distribution function changes, then the answer is no. The isokinetic
distribution is the equilibrium distribution function. It is preserved by the
dynamics. Substitution into the Liouville equation gives,

(5.30)

The proof that the last two terms sum to zero is easily given using the fact that,

and that is a constant of the motion.

(5.31)

If the equilibrium isokinetic system is ergodic, a single trajectory in phase space
will eventually generate the isokinetic distribution. On the other hand a single
isokinetic trajectory cannot ergodically generate a canonical distribution. We
can however, ask whether isokinetic dynamics will preserve the canonical
distribution. If we integrate the equations of motion for an ensemble of systems
which are initially distributed canonically, will that distribution be preserved
by isokinetic dynamics? Clearly,

(5.32)

is not identically zero. In this expression K is a phase variable and not a constant,

and @ is only equal to zero on average. K would only be a constant if all
members of the ensemble had identical kinetic energies. The mean value of

INI2K is of course B.
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Consider the time derivative of the canonical average of an arbitrary extensive
phase variable, B, where the dynamics is Gaussian isokinetic.

(5.33)
The time derivative of the ensemble average is,

(5.34)
where . Equation (5.34) can be written as the time derivative
of a product of three extensive, zero-mean variables.

(5.35)
In deriving these equations we have used the fact that , and that the

ensemble average of the product of three extensive, zero mean phase variables

is of order N, while K, ={K) is extensive.

The above equation shows that although B is extensive, the change in (B(1))
with time, (as the ensemble changes from canonical at r = 0, to whatever for the
Gaussian isokinetic equations generate as  —= =) is of order 1 and therefore can
be ignored relative to the average of B itself. In the thermodynamic limit the
canonical distribution is preserved by Gaussian isokinetic dynamics.

Nosé-Hoover thermostat - canonical ensemble

The Gaussian thermostat generates the isokinetic ensemble by a differential
feedback mechanism. The kinetic temperature is constrained precisely by setting
its time derivative to be zero. Control theory provides a range of alternative
feedback processes. After the Gaussian thermostat was developed, Nosé (1984a,b)
utilised an integral feedback mechanism. As we will see the Nosé thermostat,
especially after a simplifying reformulation by Hoover (1985), provides a simple
and direct way of ergodically generating the canonical ensemble.

The original Nosé method considers an extended system with an additional
degree of freedom s, which acts like an external reservoir, interacting with the

system of interest by scaling all the velocities of the particles, ¥. = %9, . The new
potential energy that Nosé chose to associate with this new degree of freedom

was (g + 10k T'Ins where £ is related to the number of degrees of freedom of the
system and T is the desired value of the temperature. It is essentially the choice
of the potential for 5 which leads to dynamics which generate the canonical
ensemble.
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The equivalent Hoover formulation of the Nosé thermostat uses equations of
motion with the same form as the Gaussian equations. The difference being that
the thermostatting multiplier o, is determined by a time integral of the difference
of the actual kinetic temperature from its desired value. All present applications
of the Nosé thermostat use the Hoover reformulation rather than the original,
somewhat cumbersome approach.

The Nosé Hamiltonian for the extended system is,

(5.36)

where Q is effectively the mass associated with the heat bath (s is dimensionless

so the parameter € does not have the dimensions of mass). The equations of
motion generated by this Hamiltonian are

(5.37)

If we eliminate the variable 7. from the equations of motion obtaining instead
of the last two equations a single second order differential equation for &,

(5.38)

If the system is at equilibrium, the average force on the s coordinate must be
zero, so that

(5.39)
Suppose we interpret the time appearing in (5.37) to be a non-Galilaean fictitious
time, and the real velocities to be . The instantaneous temperature

is related to , and its time averaged value is equal to (& + )&T", where

% +1 is the number of degrees of freedom. This is consistent with a non-Galilaean
time average being given by

(5.40)

This is an unusual definition of a time average as it implies that equal intervals
non-Galilaean time df, correspond to unequal intervals in real time of dt/+. Large
values of s can be understood as corresponding to a rapid progress of fictitious
time . Division by & in the time averages appearing in (5.40) cancels out the
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uneven passage of fictitious time restoring the averages to their correct Galilean
values.

To calculate the equilibrium distribution function corresponding to the Nosé
Hamiltonian we use the fact that for an ergodic system, the equilibrium
distribution function for Nosé's extended system is microcanonical. The
microcanonical partition function for the extended system is,

(5.41)

(5.42)
where 4 and P are 3N -dimensional vectors, and I
we change variables from P to P, where P! = p./s for all i , then

(5.43)
where M, is the usual N particle Hamiltonian , (the prime

indicates that M is a function of P’ ). The integral over & can be performed as
the only contributions come from the zeros of the argument of the delta function.

If , then G has only one zero, that is
(5.44)
Using the identity it is easy to show that performing the

integral over s gives

(5.45)

The integral over 7. is the infinite integral of a Gaussian and the result is

(5.46)

If we choose & = 3N then this partition function is simply related to the canonical
partition function

(5.47)
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If the variables 4,P, 5, . are distributed microcanonically then variables P’ and
q are canonically distributed. The notion of non-Galilaean time makes this
formulation of the Nosé thermostat rather cumbersome to use and difficult to
interpret.

The next step in the development of this method was made by Hoover (1985)

who realised that if one's interest lies solely in computing averages over 4 P
in real time then you may as well rewrite the equations of motion in terms of

q,P’ and real time, ', and eliminate the P,x,7,,t variables entirely. He used
the time transformation

(5.48)

so that " =dif s, to rewrite the Nosé equations of motion as

(5.49)

where K, is the value of the kinetic energy corresponding to the required value

of the temperature , K(p') is the instantaneous value of the kinetic
energy, T is a relaxation time which is related to the mass of the s degree of

freedom ( )and L = p/Q. The motion of the system of interest can now
be determined without reference to s. It is an irrelevant variable which can be

ignored. The variable is a function of P" only, so the complete description

of the system can be given in terms of the variables 4 and P’ .

An important result, obtained from this time transformation by Evans and Holian

(1985), is that time averages in terms of the variables 4 , P’ and ' take their
usual form, that is

(5.50)

To obtain this result we start by considering the Nosé-Hoover phase variable

Liouvillean and relating it to the Nosé Liouvillean

(5.51)
Using the results:
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(5.52)
and

(5.53)
equation (5.51) becomes

(5.54)

If A is an arbitrary phase variable then the Liouvillean describes the rate of
change of A.If we consider A to be a function of 4 and P then the rate of change
of A with respect to time ¢ is

(5.55)

Since L. contains no explicit time dependence, integrating with respect to time
gives

(5.56)

In a similar fashion we can consider A to be function of 4 and P'. In that
circumstance it is natural to ask for the value of A at ¢’ .

(5.57)

Now A is function of the reduced phase space only, so the dependence on s and
P can be ignored. These two different representations of the phase variable can
be equated. To do this consider the time transformation (5.48). It implies,

(5.58)
So that #t" = dtfs , and
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(5.59)
Using (5.59) and the time transformation (5.48) we find that so
that we can rewrite the time average in the usual form,

(5.60)

So the time average over f is equal to the time average over ¢' . Using the variables

q,P’ and ' the time average over equal intervals of ¢ takes the usual form.
The time average over 4,P and ¢ however, involves the scaling variable &, or
equivalently a time average over unequal intervals of 7.

One can of course dispense with the original form of Nosé's equations entirely.
There is now no need to consider the notion of non-Galilaean time. We simply
repeat the derivation we gave for the isokinetic distribution based on the
Gaussian isokinetic equations of motion, for the Nosé-Hoover equations. Since
there is no need to refer to non-Galilaean time we refer to 4,P",7" simply as,
q,P,t (dropping the prime). The N particle distribution function f(I'.C)
generated by the Nosé-Hoover equations of motion can be obtained by solving
the Liouville equation for the equations of motion written in terms of 4,P and

t. It is convenient to consider the total time derivative of f(I.£) which from the
Liouville equation is

(5.61)
From the equations of motion (5.49), dropping the primes, it is easy to see that
dt/dr is a function of 4 and P, and hence independent of C. The only nonzero

contribution to the right hand side comes from the P dependence of dp/ di , SO
that

(5.62)

Consider the time derivative of the quantity . +30C°

(5.63)
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If we take & = 3N -1 then we find that

(5.64)

So that the equilibrium distribution function is the extended canonical

distribution [,

(5.65)

In the Hoover representation of the equations of motion, the scaling variable s
has essentially been eliminated so the number of degrees of freedom of the
system, changes from 3N +1 to 3N and £ changes from 3N to 3N -1.

5.3 Isothermal Linear Response Theory

In §5.2 we considered two forms of thermostatted dynamics - the Gaussian
isokinetic dynamics and the Nosé-Hoover canonical ensemble dynamics. Both
of these thermostatted equations of motion can add or remove energy from the
system to control its temperature. It is particularly important to incorporate
thermostatted dynamics when the system is perturbed by an external field. This
allows the irreversibly produced heat to be removed continuously, and the
system maintained in a steady, nonequilibrium state. We now generalise the
adiabatic linear response theory of §5.1, to treat perturbed thermostatted systems
we have developed in §5.2. We consider (Morriss and Evans, 1985) an N -particle
system evolving under the Gaussian isokinetic dynamics for ¢ <0, but subject
for to an external field ¥, for all times f >0. The equations of motion are given

by

(5.66)
The term ®Pi couples the system to a thermostat and we shall take

(5.67)
so that the peculiar kinetic energy, , is a constant of the

motion. In the absence of the field these equations of motion ergodically generate
the isokinetic distribution function, /r, equation (5.28), with . As

we have seen, the isokinetic distribution function Jr, is preserved by the field
free isokinetic equations of motion and that,
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(5.68)

we use iLr for the zero field, isokinetic Liouvillean.

To calculate the linear thermostatted response we need to solve the linearised
Liouville equation for thermostatted systems. Following the same arguments
used in the adiabatic case (equations (5.8-12)), the linearised Liouville equation
is,

(5.69)

where iL{f) is the external field dependent, isokinetic Liouvillean and

. Its solution is the analogue of (5.13), namely

(5.70)
Using equations (5.8), (5.28) and (5.66), and the fact that , it is easy
to show that

(5.71)
There is one subtle point in deriving the last line of (5.71),

(5.72)

The last line follows because K(#) is a constant of the motion for the Gaussian
isokinetic equations of motion. We have also assumed that the only contribution
to the phase space compression factor comes from the thermostatting term ®P:.
This means that in the absence of a thermostat, that is the adiabatic case, the
phase space is incompressible and

(5.73)

This assumption or condition, is known as the adiabatic incompressibility of phase
space (AIT). A sufficient, but not necessary condition for it to hold is that the
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adiabatic equations of motion should be derivable from a Hamiltonian. It is
important to note that AIl" does not imply that the phase space for the
thermostatted system should be incompressible. Rather it states that if the
thermostat is removed from the field dependent equations of motion, the phase
space is incompressible. It is essentially a condition on the external field coupling
terms C.(4.P) and 2(4.P). It is not necessary that Ci be independent of ¢, and
D, be independent of P. Indeed in §6.3 we find that this is not the case for planar
Couette flow, but the combination of partial derivatives in equation (5.73) is
zero. It is possible to generalise the theory to treat systems where AIT" does not
hold but this generalisation has proved to be unnecessary.

Using equation (5.67) for the multiplier o, to first order in N we have

(5.74)

This equation shows that 4iL{1) f(I') is independent of thermostatting. Equations
(5.74) and (5.15) are essentially identical. This is why the dissipative flux J is
defined in terms of the adiabatic derivative of the internal energy. Interestingly,
the kinetic part of the dissipative flux, #{I'}, comes from the multiplier «, while
the potential part comes from the time derivative of ®.

Substituting (5.74) into (5.70), the change in the isokinetic distribution function
is given by
(5.75)

Using this result to calculate the mean value of B(1), the isothermal linear response
formula corresponding to equation (5.16), is,

(5.76)

Equation (5.76) is very similar in form to the adiabatic linear response formula

derived in §5.1. The notation ( :}a o signifies that a field-free (0), isokinetic (T)
ensemble average should be taken. Differences from the adiabatic formula are
that;
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1.  the field-free Gaussian isokinetic propagator governs the time evolution in

the equilibrium time correlation function ,
2. the ensemble averaging is Gaussian isokinetic rather than canonical,
3. because both the equilibrium and nonequilibrium motions are thermostatted,

the long time limit of ':““ ]): on the left hand side of (5.76), is finite,

4. and the formula is ergodically consistent. There is only one ensemble
referred to in the expression, the Gaussian isokinetic distribution. The
dynamics used to calculate the time evolution of the phase variable B in
the equilibrium time correlation function, ergodically generates the ensemble

of time zero starting states (') We refer to this as ergodically consistent
linear response theory.

The last point means that time averaging rather than ensemble averaging can
be used to generate the time zero starting states for the equilibrium time
correlation function on the right hand side of equation (5.76).

It can be useful, especially for theoretical treatments, to use ergodically
inconsistent formulations of linear response theory. It may be convenient to
employ canonical rather than isokinetic averaging, for example. For the canonical
ensemble, assuming AIT’, we have in place of equation (5.71),

(5.77)
where is the difference between the rate of change of ® with the external
field turned on and with the field turned off ( )- Similarly

(see equation 5.67). The response of a phase variable
B, is therefore,

(5.78)

Using the same methods as those used in deriving equation (5.35), we can show
that if B is extensive, the second integral in equation (5.78) is of order 1 and
can therefore be ignored.

Thus for a canonical ensemble of starting states and thermostatted Gaussian
isokinetic dynamics, the response of an extensive variable B, is given by
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(5.79)

Like the isokinetic ensemble formula, the response, ':H“rﬁ}., possesses well
defined steady state limit.

It is straightforward to apply the linear response formalism to a wide variety of
combinations of statistical mechanical ensembles, and equilibrium dynamics.
The resultant susceptibilities are shown in the Table 5.1 below. It is important
to appreciate that the dissipative flux J(I') is determined by both the choice of
equilibrium ensemble of starting states and the choice of the equilibrium
dynamics.

Table 5.1 Linear Susceptibilities expressed as equilibrium time correlation
functions’

Adiabatic response of canonical ensemble

(T.5.1)
Isothermal response of canonical or isothermal ensemble

(T.5.2)
Isoenergetic response of canonical or microcanonical ensembles (Evans and Morriss, 1984b).

(T.5.3)
Isoenthalpic response of isoenthalpic ensemble

(T.5.4)

, isoenthalpic dynamics defined in (Evans and Morriss, 1984b).

Nosé dynamics of the canonical ensemble

(T.5.5)

1 Equilibrium dynamics: Iy, Newtonian; r, Gaussian Isokinetic; !+ Gaussian
isoenthalpic; . Nosé-Hoover. Ensemble averaging:- ( } canonical; ( :': isokinetic;
() microcanonical; (), isoenthalpic.

§ Proof of (T.5.5) can be found in a paper by Holian and Evans (1983).

5.4 The Equivalence of Thermostatted Linear Responses

We shall now address the important question of how the various linear
susceptibilities described in Table 5.1, relate to one another. For simplicity let
us assume that the initial unperturbed ensemble is canonical. In this case the
only difference between the adiabatic, the isothermal, the isoenergetic and the
Nosé susceptibilities is in the respective field free propagators used to generate
the equilibrium time correlation functions. We will now discuss the differences
between the adiabatic and isothermal responses, however the analysis of the
other cases involve similar arguments. Without loss of generality we shall assume
that the dissipative flux J and the response phase variable B are both extensive
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and have mean values which vanish at equilibrium. The susceptibility is of order
N.

The only difference between (T.5.1) and (T.5.2) is in the time propagation of the
phase variable B,

(5.80)

and
(5.81)

In equations (5.80) and (5.81) the Liouvillean L. is the Newtonian Liouvillean,
and L+ is the Gaussian isokinetic Liouvillean obtained from the equations of

motion (5.23), with @ given by the . =0 limit of equation (5.20). In both cases
there is no explicit time dependence in the Liouvillean. We note that the
multiplier «, is intensive.

We can now use the Dyson equation (3.102), to calculate the difference between
the isothermal and adiabatic susceptibilities for the canonical ensemble. If =
denotes the isothermal propagator and — the Newtonian, the difference between
the two relevant equilibrium time correlation functions is

(5.82)

where we have used the Dyson equation (3.102). Now the difference between
the isothermal and Newtonian Liouvillean is

(5.83)
Thus

(5.84)

where a is the field-free Gaussian multiplier appearing in the isothermal equation
of motion. We assume that it is possible to define a new phase variable B’ by

(5.85)

This is a rather unusual definition of a phase variable, but if B is an analytic
function of the momenta, then an extensive phase variable B’ always exists.

First we calculate the average value of H(1),
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(5.86)

Unless B is trivially related to the kinetic energy X, . Typically B
will be a thermodynamic flux such as the heat flux vector or the symmetric

traceless part of the pressure tensor. In these cases (B'(1,)) vanishes because of
Curie's Principle (§2.3).

Assuming, without loss of generality, that , then we can show ,

(5.87)

This is because . Because J, B and B’ are extensive and « is
intensive, equation (5.87) can be expressed as the product of three zero mean
extensive quantities divided by N. The average of three local, zero mean
quantities is extensive, and thus the quotient is intensive. Therefore, except in
the case where B is a scalar function of the kinetic energy, the difference between
the susceptibilities computed under Newton's equations and under Gaussian

isokinetic equations, is of order /N compared to the magnitude of the
susceptibilities themselves. This means that in the large system limit the adiabatic
and isokinetic susceptibilities are equivalent. Similar arguments can be used to
show the thermodynamic equivalence of the adiabatic and Nosé susceptibilities.
It is pleasing to be able to prove that the mechanical response is independent of
the thermostatting mechanism and so only depends upon the thermodynamic
state of the system.

Two further comments can be made at this stage: firstly, there is a simple reason
why the differences in the respective susceptibilities is significant in the case
where B is a scalar function of the kinetic energy. This is simply a reflection of
the fact that in this case B, is intimately related to a constant of the motion for
Gaussian isokinetic dynamics. One would expect to see a difference in the
susceptibilities in this case. Secondly, in particular cases one can use Dyson
decomposition techniques, (in particular equation (3.107)), to systematically
examine the differences between the adiabatic and isokinetic susceptibilities.
Evans and Morriss (1984) used this approach to calculate the differences,
evaluated using Newtonian and isokinetic dynamics, between the correlation
functions for each of the Navier-Stokes transport coefficients. The results showed
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that the equilibrium time correlation functions for the shear viscosity, for the
self diffusion coefficient and for the thermal conductivity and independent of
thermostatting in the large system limit.

References

Evans, D.J.,(1983). J. Chem. Phys., 78, 3297.

Evans, D.J. and Holian, B.L.,(1985). J. Chem. Phys., 83, 4069.

Evans, D.J., Hoover, W.G., Failor, B.H. , Moran, B. and, Ladd, A.J.C.,(1983).
Phys. Rev. A, 28, 1016.

Evans, D.J. and Morriss, G.P, (1983). Phys. Lett., 98A, 433.
Evans, D.J. and Morriss, G.P, (1983). Chem. Phys., 77, 63.
(1984). Chem. Phys., 87, 451.
Evans, D.J. and Morriss, G.P., (1984). Comput. Phys. Rep., 1, 297.
Holian, B.L. and Evans, D.J., (1983). J. Chem. Phys., 78, 5147.
Hoover, W.G., (1985). Phys. Rev. A, 31,1695.
Hoover, W.G., Ladd, A.J.C. and Moran, B.,(1982). Phys. Rev. Lett., 48, 1818.
Kubo, R., (1957). J. Phys. Soc. Japan 12, 570.
Kubo, R., (1982). Int. J. Quantum Chem., 16, 25.
MacGowan, D. and Evans, D.J., (1986). Phys. Lett., 117A, 414.

Evans, D.J. and Morriss, G.P,

Morriss, G.P, and Evans, D.J., (1985). Mol. Phys., 54, 629.
Nosé, S., (1984a). J. Chem. Phys., 81, 511.
Nosé, S., (1984b). Mol. Phys., 52, 255.






6. Computer Simulation Algorithms

6.1 Introduction

We will now show how linear response theory can be used to design computer
simulation algorithms for the calculation of transport coefficients. There are two
types of transport coefficients: mechanical and thermal. In this chapter we will
show how thermal transport coefficients can be calculated using mechanical
methods.

In nature nonequilibrium systems may respond essentially adiabatically, or
depending upon circumstances, they may respond in an approximately isothermal
manner - the quasi-isothermal response. No natural systems can be precisely
adiabatic or isothermal. There will always be some transfer of the dissipative
heat produced in nonequilibrium systems towards thermal boundaries. This
heat may be radiated, convected or conducted to the boundary reservoir.
Provided this heat transfer is slow on a microscopic timescale and provided that
the temperature gradients implicit in the transfer process lead to negligible
temperature differences on a microscopic length scale, we call the system
quasi-isothermal. We assume that quasi-isothermal systems can be modelled on
a microscopic scale in computer simulations, as isothermal systems.

In view of the robustness of the susceptibilities and equilibrium time correlation
functions to various thermostatting procedures (see §5.2,4), we expect that
quasi-isothermal systems may be modelled using Gaussian or Nosé-Hoover
thermostats or enostats. Furthermore, since heating effects are quadratic
functions of the thermodynamic forces, the linear response of nonequilibrium
systems can always be calculated by analysing, the adiabatic, the isothermal or
the isoenergetic response.

Because of the fundamental relations between the linear nonequilibrium response
and time dependent equilibrium fluctuations (Table 6.1) we have two ways of
calculating the susceptibilities. We could perform an equilibrium simulation
and calculate the appropriate equilibrium time correlation functions. The
principle advantage of this method is that all possible transport coefficients can,
in principle, be calculated from a single molecular dynamics run. This approach
is however, very expensive in computer time with poor signal-to-noise ratios,
and results that often depend strongly and nonmonotonically upon the size of
the system being simulated. A frequently more useful approach is to perform a
non-equilibrium simulation of the transport process. For mechanical transport
processes we apply an external field, F, and calculate the transport coefficient
L, from a linear constitutive relation:
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(6.1)

The use of equation (6.1) necessitates a thermostat since otherwise, the work
done on the system would be transformed continuously into heat and no steady
state could be achieved (the limit, ¢ —= =, would not exist). This method, known
as non-equilibrium molecular dynamics (NEMD), has the added advantage that
it can, in principle, be used to calculate non-linear as well as linear transport
coefficients. They can be calculated as a function of external field strength,
frequency or wavevector. The most efficient, number independent way to
calculate mechanical transport coefficients is to ignore the beautiful results of
response theory and to duplicate the transport process, essentially as it occurs
in nature.

Thermal transport processes are in principle much more difficult to simulate on
the computer. A thermal transport process is one which is driven by boundary
conditions rather than mechanical fields. For thermal processes we cannot perform
time dependent perturbation theory because there is no external field appearing
in the Hamiltonian which could be used as a perturbation variable. In spite of
this difference, susceptibilities for thermal processes show many similarities to
their mechanical counterparts (compare (5.3.8) with the results of Chapter 4). If
J, is the flux of some conserved quantity (mass, momentum or energy) and if
X is a gradient in the density of that conserved quantity, then a linear
Navier-Stokes transport coefficient is defined by a constitutive relation of the
form,

J=IX (6-2)

In Chapter 4 we showed that each of the Navier-Stokes transport coefficients I.,
is related to equilibrium fluctuations by Green-Kubo relations. These relations
are set out in Table 6.1. Remarkably Navier-Stokes thermal transport coefficients
are related to equilibrium time correlation functions in essentially the same way
as mechanical transport coefficients. We must stress however that this close
formal similarity between thermal and mechanical transport coefficients only
applies to Navier-Stokes thermal transport processes. If fluxes of non-conserved
variables are involved, then Green-Kubo relations must be generalised (see
equation (4.12) & Section 4.3).
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Table 6.1 Green-Kubo Relations for Navier-Stokes transport coefficients.

self diffusion (T.6.1)
thermal conductivity (T.6.2)
shear viscosity (T.6.3)
bulk viscosity (T.6.4)

The ensemble averages employed in Table 6.1, are usually taken to be canonical
while the time dependence of the correlation functions is generated by field free
Newtonian equations of motion. In §5.4, we proved that, except for bulk
viscosity, thermostatted equations of motion can also be used to generate the
equilibrium time correlation functions. For bulk viscosity the correlation function
involves functions of the kinetic energy of the system. We cannot therefore use
Gaussian isokinetic equations of motion (see equation (5.86) and (5.87)). This is
because, for these equations, the kinetic energy is a constant of the motion.

To calculate thermal transport coefficients using computer simulation we have
the same two options that were available to us in the mechanical case. We could
use equilibrium molecular dynamics to calculate the appropriate equilibrium
time correlation functions, or we could mimic experiment as closely as possible
and calculate the transport coefficients from their defining constitutive relations.
Perhaps surprisingly the first technique to be used was equilibrium molecular
dynamics (Alder and Wainwright, 1956). Much later the more efficient
nonequilibrium approach was pioneered by Hoover and Ashurst (1975). Although
the realistic nonequilibrium approach proved more efficient than equilibrium
simulations it was still far from ideal. This was because for thermal transport
processes appropriate boundary conditions are needed to drive the system away
from equilibrium - moving walls or walls maintained at different temperatures.
These boundary conditions necessarily make the system inhomogeneous. In
dense fluids particles pack against these walls, giving gives rise to significant
number dependence and interpretative difficulties.

The most effective way to calculate thermal transport coefficients exploits the
formal similarities between susceptibilities for thermal and mechanical transport
coefficients. We invent a fictitious external field which interacts with the system
in such a way as to precisely mimic the linear thermal transport process. The
general procedure is outlined in Table 6.2. These methods are called 'synthetic'
because the invented mechanical perturbation does not exist in nature. It is our
invention and its purpose is to produce a precise mechanical analogue of a thermal
transport process.
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Table 6.2. Synthetic NEMD.

T L J=LX

For the transport coefficient of interest i
transport coefficient,

. Identify the Green Kubo relation for the

2. F

Invent a fictitious field * ¢« and its coupling to the system such that the dissipative flux

3. Ensure Al is satisfied that the equations of motion are homogeneous and that they are consistent
with periodic boundary conditions.

Apply a thermostat.

F,

Couple ! ¢ to the system isothermally or isoenergetically and compute the steady state average,

L:"F. '[”}, as a function of the external field, F{ Linear response theory then proves,

With regard to step 3 in Table 6.2, it is not absolutely necessary to invent
equations of motion which satisfy AII" (see §5.3). One can generalise response
theory so that AIT is not required. However it is simpler and more convenient
to require AIT and thus far it has always proved possible to generate algorithms
which satisfy AIl'. Although AIT is satisfied, most sets of equations of motion
used in synthetic NEMD are not derivable from a Hamiltonian. The preferred
algorithms for thermal conductivity and shear viscosity are not derivable from
Hamiltonians. In the case of thermal conductivity the Hamiltonian approach
must be abandoned because of conflicts with the periodic boundary condition
convention used in simulations. For shear viscosity the breakdown of the
Hamiltonian approach occurs for deeper reasons.

Equations of motion generated by this procedure are not unique, and it is usually
not possible a priori to predict which particular algorithm will be most efficient.
It is important to realise that the algorithms generated by this procedure are

only guaranteed to lead to the correct linear (limit £. = 0) transport coefficients.
We have said nothing so far about generating the correct nonlinear response.

Many discussions of the relative advantages of NEMD and equilibrium molecular
dynamics revolve around questions of efficiency. For large fields, NEMD is
orders of magnitude more efficient than equilibrium molecular dynamics. On
the other hand one can always make NEMD arbitrarily inefficient by choosing
a sufficiently small field. At fields which are small enough for the response to
be linear, there is no simple answer to the question of whether NEMD is more
efficient than equilibrium MD. The number dependence of errors for the two
methods are very different - compared to equilibrium MD, the relative accuracy
of NEMD can be made arbitrarily great by increasing the system size.
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These discussions of efficiency ignore two major advantages of NEMD over
equilibrium molecular dynamics. Firstly, by simulating a nonequilibrium
system one can visualise and study the microscopic physical mechanisms that
are important to the transport processes (this is true both for synthetic and
realistic NEMD). One can readily study the distortions of the local molecular
structure of nonequilibrium systems. For molecular systems under shear, flow
one can watch the shear induced processes of molecular alignment, rotation and
conformational change (Edberg, Morriss and Evans, 1987). Obtaining this sort
of information from equilibrium time correlation functions is possible but it is
so difficult that no one has yet attempted the task. It is likely that no one ever
will. Secondly, NEMD opens the door to studying the nonlinear response of
systems far from equilibrium.

We will now give an extremely brief description of how one performs molecular
dynamics simulations. We refer the reader to far more detailed treatments which
can be found in the excellent monograph by Allen and Tildesley (1987) and in
the review of NEMD by the present authors (Evans and Morriss, 1984a).

Consider the potential energy, ®, of a system of N interacting particles. The
potential energy can always be expanded into a sum of pair , triplet, etc.,
interactions:

(6.3)
For the inert gas fluids it is known that the total potential energy can be
reasonably accurately written as a sum of effective pair interactions with an
effective pair interaction potential denoted $ir.r;) The Lennard-Jones potential,

oo . . .
v s frequently used as an effective pair potential,

(6.4)

The potential energy of the two particles /./ is solely a function of their separation
distance "i and is independent of the relative orientation of their separation
vector Yii. The Lennard-Jones potential is characterised by a well depth &, which
controls the energy of the interaction, and a distance ¢, which is the distance
at which the potential energy of the pair changes sign due to the cancellation

of the Van der Waals attractive forces by the short ranged quantum repulsive

forces. If and o = 34054, the Lennard-Jones potential forms a
surprisingly accurate representation of liquid argon (Hansen and Verlet, 1969).
For proper scaling during simulations, all calculations are performed in reduced

units where . This amounts to measuring all distances in units of

7, all temperatures in units of ¢/ky and all masses in units of m. The
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Lennard-Jones potential is often truncated at a distance, " =2-70. Other
potentials that are commonly used include the Weeks-Chandler-Andersen
potential, usually written as WCA, which is the Lennard-Jones potential

truncated at the position of minimum potential energy (2" ) and then shifted
up so that the potential is zero at the cutoff.

(6.5)

The main advantage of this potential is its extremely short range of interaction.
This permits simulations to be carried out much more quickly than is possible
with the longer ranged Lennard-Jones potential. Another short ranged potential
than is often used is the soft sphere potential which omits the ™ term from the
Lennard-Jones potential. The soft sphere potential is often truncated at 1.5t1.

In molecular dynamics one simply solves the equations of motion for a system
of ( ) interacting particles. The force on particle i, due to particle

7 F, , is evaluated from the equation,

(6.6)

The N interacting particles are placed in a cubic cell which is surrounded by an
infinite array of identical cells - so-called periodic boundary conditions. To
compute the force on a given particle in the primitive cell one locates the closest
(or minimum) image positions of the other N -1 particles. The minimum image
of particle i/, may be within the primitive cell, or in one of the surrounding image
cells (see Figure 6.1). One then finds all the minimum images particles for i, that
lie within the potential cutoff distance . and uses (6.6) to compute the

contributions to the force on i,
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Figure 6.1. Orthogonal periodic boundary conditions

Finally one solves Newton’s or Hamilton’s equations of motion for the system

6.7)

If, during the course of the motion, particle i leaves the primitive cell it will be
replaced under the periodic boundary condition convention by an image of
itself, travelling with exactly the same momentum, one lattice vector distant.
We prefer to use Hamilton’s form for the equations of motion because this form
is much more convenient than the Newtonian form both for NEMD and for
equilibrium molecular dynamics with velocity dependent forces (such as
thermostats). We often solve these equations of motion using a 5" order Gear
predictor-corrector method. In studies of the transient response of systems to
external fields we use the less efficient Runge-Kutta methods. Unlike the Gear
algorithms, Runge-Kutta methods are self-starting, achieving full accuracy in
the first timestep.

We will now give a summary of some of the synthetic NEMD algorithms that
have been used to calculate Navier-Stokes transport coefficients.
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6.2 Self Diffusion

The first NEMD algorithm for self-diffusion was devised by Holian (Erpenbeck
and Wood, 1977). In this elegant scheme the self-diffusion coefficient was
evaluated as the limiting value of the mutual diffusion coefficient as the two
species become identical. In this limit the two species differ only by a colour
label which plays no role in their subsequent dynamics but which is reset in a
probabilistic fashion as particles cross a labelling plane. A concentration gradient
in coloured species is set up and the mutual diffusion coefficient is calculated
from the constitutive relation (colour current/colour gradient). If the labels or
colours of the atoms are ignored, the simulation is an ordinary equilibrium
molecular dynamics simulation. If one calculates the species density as a function
of position, the periodic boundary conditions imply that it is a periodic saw
tooth profile. Exactly how sharp the teeth are, is not clear. The technique is
inhomogeneous and is not applicable to mutual diffusion of species which are
really different molecules. If the species are really distinct, the relabelling process
will obviously generate discontinuities in pressure and energy.

The techniques we will describe are homogeneous. They do not create
concentration gradients or coupled temperature gradients as does the Holian
scheme. The algorithms can be extended to calculate mutual diffusion or thermal
diffusion coefficients of actual mixtures (MacGowan and Evans, 1986a and Evans
and MacGowan, 1987).

We begin by considering the Green-Kubo relation for the self diffusion coefficient
(§4.1):
(6.8)

We design a Hamiltonian so that the susceptibility of the colour current to the
magnitude of the perturbing colour field is closely related to the single-particle
velocity autocorrelation function (6.8). Consider the colour Hamiltonian (Evans
et. al., 1983)

(6.9)

where H, is the unperturbed Hamiltonian. The ¢ are called colour charges. We
call this property colour rather than charge to emphasise that o is independent

of the set of colour charges {‘} At equilibrium, in the absence of the colour
field, the dynamics is colour blind. For simplicity we consider an even number
of particles N, with

¢ = (-1) (6.10)

The response we consider is the colour current density .,
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(6.11)

Since we are dealing with a Hamiltonian system, AIT (§5.3), is automatically
satisfied. The dissipation function is

(6.12)
Linear response theory therefore predicts that (§5.1 & §5.3),

(6.13)
where the propagator implicit in is the field free equilibrium propagator.

(Were we considering electrical rather than colour conductivity, equation (6.13)
would give the Kubo expression for the electrical conductivity.) To obtain the
diffusion coefficient we need to relate the colour current autocorrelation function
to the single particle velocity autocorrelation function. This relation, as we shall
see, depends slightly on the choice of the equilibrium ensemble. If we choose
the canonical ensemble then

(6.14)
In the thermodynamic limit, for the canonical ensemble, if i=i, then

. This is clear since if « is the sound speed, v A0 can only be
correlated with other particles within its sound cone (ie a volume with radius,
ct). In the thermodynamic limit there will always be infinitely more particles
outside the sound cone than within it. Since the particles outside this cone cannot
possibly be correlated with particle i, we find that,

(6.15)

Combining this equation with the Green-Kubo relation for self diffusion gives,

(6.16)
If we are working within the molecular dynamics ensemble in which the total
linear momentum of the system is zero, then V. is not independent of Vi . In

this case there is an order N'' correction to this equation and the self diffusion
coefficient becomes (Evans et. al., 1983),

(6.17)
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In the absence of a thermostat the order of the limits in (6.17) and (6.10) is
important. They cannot be reversed. If a thermostat is applied to the system a
trivial application of the results of §5.3 allows the limits to be taken in either
order.

As an example of the use of thermostats we will now derive the Gaussian
isokinetic version of the colour diffusion algorithm. Intuitively it is easy to see

that as the heating effect is nonlinear (that is O(F* 1), it does not effect the linear
response. The equations of motion we employ are:

(6.18)

and

(6.19)

where the Gaussian multiplier required to thermostat the system is obtained
from the constraint equation

(6.20)

In this definition of the temperature we calculate the peculiar particle velocities
relative to the streaming velocity of each species. If one imagined that the two
species are physically separated, then this definition of the temperature is
independent of the bulk velocity of the two species. In the absence of this
definition of the peculiar kinetic energy, the thermostat and the colour field
would work against each other and the temperature would have an explicit
quadratic dependence on the colour current. Combining (6.12 & 13) we identify
the thermostatting multiplier as

(6.21)

In the original paper, (Evans, et.al., 1983), the thermostat was only applied to
the components of the velocity which were orthogonal to the colour field. It can
be shown that the linear response of these two systems is identical, provided
the systems are at the same state point (in particular if the systems have the same
temperature).

The algorithm is homogeneous since if we translate particle i and its interacting
neighbours, the total force on i remains unchanged. The algorithm is also
consistent with ordinary periodic boundary conditions (Figure 6.1). There is no
change in the colour charge of particles if they enter or leave the primitive cell.
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It may seem paradoxical that we can measure diffusion coefficients without the
presence of concentration gradients, however we have replaced the chemical
potential gradient which drives real diffusion with a fictitious colour field. A
gradient in chemical potential implies a composition gradient and a coupled
temperature gradient. Our colour field acts homogeneously and leads to no
temperature or density gradients. Linear response theory, when applied to our
fictitious colour field, tells us how the transport properties of our fictitious
mechanical system relate to the thermal transport process of diffusion.

By applying a sinusoidal colour field , we can calculate the entire
equilibrium velocity autocorrelation function. Noting the amplitude and the
relative phase of the colour current we can calculate the complex frequency
dependent susceptibility

(6.22)

An inverse Fourier-Laplace transform gives of “«l/) gives the velocity
autocorrelation function.

Figure 6.2 shows the results of computer simulations of the diffusion coefficient
for the 108 particle Lennard-Jones fluid at a reduced temperature of 1.08 and a
reduced density of 0.85. The open circles were obtained using the algorithm
outlined in this section (Evans et. al., 1983) which is based on equation (6.17).
We see the colour conductivity (left y-axis) and the diffusion coefficient (right
y-axis), plotted as a function of the colour current. The self diffusion coefficient
is obtained by extrapolating the current to zero. The arrow denoted ‘EMD’,
shows the results of equilibrium molecular dynamics where the diffusion
coefficient was obtained (Levesque and Verlet, 1970), by integrating the velocity
autocorrelation function (§4.1). The nonequilibrium and nonequilibrium
simulations are in statistical agreement with each other.

Also shown in Figure 6.2, are the results of simulations performed at constant
colour current, rather than constant applied colour field. We will return to this
matter when we describe Norton ensemble methods in §6.6.
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Figure 6.2.

The filled in squares are the results of nonequilibrium simulations which were performed at constant colour
current rather than constant applied colour field. The constant current methods will be described in more
detail in §6.8. Briefly, one treats the colour field F(t) as a Lagrange multiplier whose value is chosen in such
a way that the colour current is a constant of the motion. It is clear from the diagram that the constant
current and constant colour field simulations are also in statistical agreement with each other.

In terms of computational efficiency, the self diffusion coefficient, being a single
particle property, is far more efficiently computed from equilibrium simulations
rather than from the algorithm given above. The algorithm we have outlined
above is useful for pedagogical reasons. It is the simplest NEMD algorithm. It is
also the basis for developing algorithms for the mutual diffusion coefficients of
mixtures (Evans and MacGowan, 1987). The mutual diffusion coefficient, being
a collective transport property, is difficult to calculate using equilibrium
molecular dynamics (Erpenbeck, 1989). If the two coloured species are distinct
electrically charged species, the colour conductivity is actually the electrical
conductivity and the algorithm given above provides a simple means for its
calculation.

6.3 Couette Flow and Shear Viscosity

We now describe a homogeneous algorithm for calculating the shear viscosity.
Among the Navier-Stokes transport processes, shear viscosity is unique in that
a steady, homogeneous, algorithm is possible using only the periodic boundary
conditions to drive the system to a nonequilibrium state. Apart from the possible
presence of a thermostat, the equations of motion can be simple Newtonian
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equations of motion. We will begin by describing how to adapt periodic
boundary conditions for planar Couette flow. We will assume that the reader is
familiar with the use of fixed orthogonal periodic boundary conditions in
equilibrium molecular dynamics simulations (Allen and Tildesley, 1987). Because
shearing periodic boundaries alone can be used to drive shear flow, an
understanding of the so-called Lees and Edwards boundary conditions (Lees and
Edwards, 1972) is sufficient to define an algorithm for planar Couette flow. This
algorithm is called the Boundary Driven algorithm. As this algorithm is based
simply on the adaption of periodic boundary conditions to simulations of shear
flow, the algorithm is exact arbitrarily far from equilibrium.

From a theoretical point of view the Boundary Driven algorithm is difficult to
work with. Because there is no explicit external field appearing in the equations
of motion one cannot employ response theory to link the results obtained from
these simulations with say, the Green-Kubo relations for shear viscosity. From
a numerical point of view this algorithm also has some disadvantages. This will
lead us to a discussion of the so-called SLLOD algorithm. This algorithm still
employs Lees-Edwards boundary conditions but it eliminates all of the
disadvantages of the simple boundary driven method. The SLLOD algorithm is
also exact arbitrarily far from equilibrium.

Lees Edwards Shearing Periodic Boundaries

Figure 6.3 shows one way of representing planar Couette flow in a periodic
system. In the Figure we only employ 2 particles per unit cell. In an actual
computer simulation this number typically ranges from about one hundred to
possibly several tens of thousands. As the particles move under Newton's
equations of motion they feel the interatomic forces exerted by the particles
within the unit cell and by the image particles whose positions are determined
by the instantaneous lattice vectors of the periodic array of cells. The motion of

the image cells defines the strain rate, 1 = i, [ 3y for the flow. The motion of the
cell images is such that their individual origins move with an x-velocity which
is proportional to the ¥-coordinate of the particular cell origin.

uir.d)=iyv (6.23)
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Figure 6.3. Lees-Edwards periodic boundary conditions for planar Couette
flow

If the Reynolds number is sufficiently small and turbulence does not occur, we
expect that the motion of image particles above and below any given cell will,
in time, induce a linear streaming velocity u(r}, on each of the particles within
the cell.

If during the course of time, a given particle moves out of a cell it will be replaced
by its periodic image. If the particle moves through a ¥-face of a cell (that is,
through the planes ¥ =0 or ¥ = L) the replacing image particle will not have the
same laboratory velocity, nor necessarily the same x-coordinate. This movement
of particles into and out of the primitive cell promotes the generation of a stable
linear streaming velocity profile.

Although there are jump discontinuities in both the laboratory coordinates and
the laboratory velocities of particles between cells there is no way in which the
particles can actually sense the boundaries of any given cell. They are merely
bookkeeping devices. The system is spatially homogeneous. As we shall see
those components of particle velocity and position which are discontinuous have
NO thermodynamic meaning.

We have depicted the Lees Edwards boundary conditions in the so-called sliding
brick representation. There is a completely equivalent deforming cube
representation that one can use if one prefers (see Figure 6.4). We will mainly
use the language of the sliding brick representation - our choice is completely
arbitrary however.
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Figure 6.4. The sliding-brick and deforming-cube representations of
Lees-Edwards boundary conditions are equivalent.

We will now consider the motion of particles under Lees Edwards boundary
conditions in more detail. Consider a simulation cube of side [., located so that

the streaming velocity at the cube origin is zero (that is the cube .
The laboratory velocity of a particle i is then the sum of two parts; a peculiar

or thermal velocity €, and a streaming velocity U(F.}, so

(6.24)

Imagine that at r=0 we have the usual periodic replication of the simulation
cube where the boundary condition is

(6.25)
(with the modulus of a vector defined to be the vector of the moduli of the
elements). As the streaming velocity is a function of ¥ only, we need to consider
explicitly boundary crossings in the ¥ direction. At 7 =0, ' has images at '/ at
r,+JjL, and ¥/ at ¥, = JL. After time ¢ the positions of particle i and these two
images are given by
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(6.26)

where ¢ and Y: (and their images) are functions of time. Now by definition the

peculiar velocities of a particle and all of its periodic images are equal, € = ¢/ =€/,
so that

(6.27)

Similarly we can show that
(6.28)

If ©.11) moves out the bottom of the simulation cube, it is replaced by the image

particle at ¥.(!)

(6.29)

or if I/{/) moves out of the top of the simulation cube, it is replaced by the image

particle at T.l/)

(6.30)

The change in the laboratory velocity of a particle is given by the time derivative
of equations (6.29) and (6.30). These rules for imaging particles and their velocities
are shown schematically in Figure 6.4.

There is a major difficulty with the boundary driven algorithm. The way in
which the boundaries induce a shearing motion to the particles takes time to
occur, approximately given by the sound traversal time for the primitive cell.
This is the minimum time taken for the particles to realise that the shear is taking
place. The boundary driven method as described above, therefore cannot be
used to study time dependent flows. The most elegant solution to this problem
introduces the SLLOD algorithm. We will defer a discussion of thermostats and
the evaluation of thermodynamic properties until after we have discussed the
SLLOD algorithm.
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Figure 6.5. A particle moving out of the top of a cell is replaced by its image
from the cell below.

The SLLOD Algorithm

The Boundary Driven shear flow algorithm has a number of disadvantages, the
principle one being its lack of contact with response theory. We will now describe
two synthetic field algorithms for simulating any form of flow deformation.
Historically the first fictitious force method proposed for viscous flow calculations
was the DOLLS tensor method (Hoover et.al, 1980). This method can be derived
from the DOLLS tensor Hamiltonian,

(6.31)

It generates the following equations of motion

(6.32)

These equations of motion must be implemented with compatible periodic
boundary conditions. If the strain rate tensor has only one nonzero element and
it is off-diagonal, the deformation is planar Couette flow and Lees-Edwards
boundary conditions must be used. If the strain rate tensor is isotropic then the
flow is dilational and the appropriate variation of Lees-Edwards boundaries must
be used. Other flow geometries can also be simulated using these equations.

One can see from the first of the equations (6.32), that since q; is obviously a
laboratory velocity, the momenta Pi are peculiar with respect to the low Reynolds
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number streaming velocity u(r) =r-Vu. We call this streaming velocity profile
the zero wavevector profile. If the Reynolds number is sufficiently high for
turbulence to occur, the P: are peculiar only with respect to the zero wavevector
profile. They will not be peculiar with respect to any possible turbulent velocity
profiles.

From (6.32) the dissipation is easily shown to be

(6.33)

where P is the instantaneous pressure tensor (3.152), whose kinetic component
is given in terms of the peculiar momenta P:. Since the DOLLS tensor equations
of motion are derivable from a Hamiltonian, the AIT" condition is clearly satisfied
and we see immediately from equations (6.33) and (5.73), that in the linear regime,
close to equilibrium, the shear and bulk viscosities will be related to equilibrium
fluctuations via the Green-Kubo formula (T.6.3). This proves that the DOLLS
tensor algorithm is correct for the limiting linear regime. The linear response of
the pressure tensor is therefore,

(6.34)

The DOLLS tensor method has now been replaced by the SLLOD algorithm
(Evans and Morriss,1984b). The only difference between the SLLOD algorithm
and the DOLLS tensor equations of motion involves the equation of motion for
the momenta. The Cartesian components that couple to the strain rate tensor are
transposed. Unlike the DOLLS tensor equations, the SLLOD equations of motion
cannot be derived from a Hamiltonian.

(6.35)

It is easy to see that the dissipation function for the SLLOD algorithm is precisely
the same as for the DOLLS tensor equations of motion. In spite of the absence
of a generating Hamiltonian, the SLLOD equations also satisfy AIT". This means
that the linear response for both systems is identical and is given by (6.34). By
taking the limit ¥ — 0, followed by the limit r — ==, we see that the linear shear
viscosity can be calculated from a nonequilibrium simulation, evolving under

either the SLLOD or the DOLLS tensor equations of motion. With, ,
and calculating the ratio of stress to strain rate we calculate,

(6.36)

From (6.34) we see that the susceptibility is precisely the Green-Kubo expression
for the shear viscosity (Table 6.1). Because the linear response of the SLLOD and



Computer Simulation Algorithms

DOLLS tensor algorithms are related to equilibrium fluctuations by the
Green-Kubo relations, these algorithms can be used to calculate the reaction of
systems to time-varying strain rates. If the shear rate is a sinusoidal function of
time, then the Fourier transform of the susceptibility gives the complex,
frequency-dependent shear viscosity measured in viscoelasticity (§2.4 & §4.3).

If the strain rate tensor is isotropic then the equations of motion describe adiabatic
dilation of the system. If this dilation rate is sinusoidal then the limiting small
field bulk viscosity can be calculated by monitoring the amplitude and phase
of the pressure response and extrapolating both the amplitude and frequency
to zero (Hoover et.al.1980). It is again easy to see from (6.3.13) that the
susceptibility for the dilation induced pressure change, is precisely the
Green-Kubo transform of the time dependent equilibrium fluctuations in the
hydrostatic pressure (Table 6.1).

Although the DOLLS tensor and SLLOD algorithms have the same dissipation
and give the correct linear behaviour, the DOLLS tensor algorithm begins to
yield incorrect results at quadratic order in the strain rate. These errors show
up first as errors in the normal stress differences. For irrotational flows

( ) so the SLLOD and DOLLS tensor methods are identical, as can easily
be seen from their equations of motion.

We will now show that the SLLOD algorithm gives an exact description of shear
flow arbitrarily far from equilibrium. This method is also correct in the high
Reynolds number regime in which laminar flow is unstable. Consider
superimposing a linear velocity profile on a canonical ensemble of N-particle
systems. This will generate the local equilibrium distribution function for Couette

flow, /i

(6.37)

Macroscopically such an ensemble is described by a linear streaming velocity
profile,

uir.d)=iyv (6.38)

so that the second rank strain rate tensor, Vu, has only one nonzero element,

. The local equilibrium distribution function is not the same as the
steady state distribution. This is easily seen when we realise that the shear stress
evaluated for /i, is zero. The local distribution function is no more than a
canonical distribution with a superimposed linear velocity profile. No molecular
relaxation has yet taken place.
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If we allow this relaxation to take place by advancing time using Newton's
equations (possibly supplemented with a thermostat) the system will go on
shearing forever. This is because the linear velocity profile of the local
distribution generates a zero wavevector transverse momentum current. As we
saw in § 3.8, the zero wavevector momentum densities is conserved. The
transverse momentum current will persist forever, at least for an infinite system.

Now let us see what happens under the SLLOD equations of motion (6.34), when
the strain rate tensor is given by (6.38). Differentiating the first equation, then

substituting for P: using the second equation gives,

(6.39)

If the strain rate Y is switched on at time zero, and remains steady thereafter,
(6.40)

Thus Y is a delta function at 7 = 0. Now consider subjecting a canonical ensemble
to these transformed SLLOD equations of motion, (6.39). If we integrate the
velocity of particle i, over an infinitesimal time interval about zero. We see that,

(6.41)

So at time 0" the x-velocity of every particle is incremented by an amount
proportional to the product of the strain rate times its y coordinate. At time 0",
the other components of the velocity and positions of the particles are unaltered
because there are no delta function singularities in their equations of motion.
Applying (6.41) to a canonical ensemble of systems will clearly generate the local
equilibrium distribution for planar Couette flow.

The application of SLLOD dynamics to the canonical ensemble is thus seen to
be equivalent to applying Newton's equations to the local distribution function.
The SLLOD equations of motion have therefore succeeded in transforming the
boundary condition expressed in the form of the local distribution function into
the form of a smooth mechanical force which appears as a mechanical
perturbation in the equations of motion. This property is unique to SLLOD
dynamics. It is not satisfied by the DOLLS tensor equations of motion for example.
Since one cannot really call into question, the validity of the application of
Newtonian dynamics to the local distribution as a correct description of Couette
flow we are lead to the conclusion that the adiabatic application of SLLOD
dynamics to the canonical ensemble gives an exact description of Couette flow.
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Figure 6.6. SLLOD equations of motion give an exact representation of planar
Couette flow.

Knowing that the SLLOD equations are exact, and that they generate Green-Kubo
expressions for the shear and bulk viscosities, provides a proof of the validity
of the Green-Kubo expressions themselves. The SLLOD transformation of a
thermal transport process into a mechanical one, provides us with a direct route
to the Green-Kubo relations for the viscosity coefficients. From equation (6.35)
we see that we already have these relations for both the shear and bulk viscosity
coefficients. We also see that these expression are identical to those we derived
in Chapter 4, using the generalised Langevin equation. It is clear that the present
derivation is simpler and gives greater physical insight into the processes
involved.

Compared to the boundary driven methods, the advantages of using the SLLOD
algorithm in computer simulations are many. Under periodic boundaries the
SLLOD momenta which are peculiar with respect to the zero wavevector velocity
field, and are continuous functions of time and space. This is not so for the
laboratory velocities Vi. The internal energy and the pressure tensor of the
system are more simply expressed in terms of SLLOD momenta rather than
laboratory momenta. The internal energy E is given as,

(6.42)

while the ensemble averaged pressure tensor is,

(6.43)
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For simulations of viscoelasticity special measures have to be taken in the
boundary driven algorithm to ensure that the time varying strain rate is actually
what you expect it to be. In the SLLOD method no special techniques are required
for simulations of time dependent flows. One simply has to solve the equations
of motion with a time dependent strain rate and ensure that the periodic
boundary conditions are precisely consistent with the strain derived by

integrating the imposed strain rate ¥11).

Since the SLLOD momenta are peculiar with respect to the zero wavevector
velocity profile, the obvious way of thermostatting the algorithm is to use the
equations,

(6.44)

The thermostatting multiplier a, is calculated in the usual way by ensuring that

(6.45)

The temperature is assumed to be related to the peculiar kinetic energy. These
equations assume that a linear velocity profile is stable. However as we have
mentioned a number of times the linear velocity profile is only stable at low

Reynolds number, ( ).

In Figure 6.7 we show the shear viscosity of 2048 WCA particles as a function
of strain rate. The fluid is close to the Lennard-Jones triple point. The reduced
temperature and density are 0.722 and 0.8442 respectively. The simulations
were carried out using the Gaussian isokinetic SLLOD algorithm. We see that
there is a substantial change in the viscosity with shear rate. Evidently WCA
fluids are shear thinning in that the viscosity decreases with increasing strain
rate. It turns out that this is common to all simple fluids for all thermodynamic
state points. Shear thinning is also a widely observed phenomenon in the
rheology of complex molecular fluids.

The imposed shear causes a major change in the microscopic fluid structure.
This is manifest in all the thermodynamic properties of the system changing
with shear rate. In Figure 6.8 we see the internal energy of the fluid plotted as
a function of strain rate. For reduced strain rates in the range 0-1.5, we see that
both the shear viscosity and the internal energy change by approximately 50%
compared to their equilibrium values. Furthermore the viscosity coefficient
appears to vary as the square root of the strain rate while the energy appears to
change with the 1.5 power of the strain rate. Over the range of strain rates
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studied, the maximum deviation from the functional forms is 2.5% for the
viscosity, and 0.1% for the internal energy. There has been much recent
discussion of the relation of these apparently non-analytic dependences to
mode-coupling theory (see, Yamada and Kawasaki, 1973; Kawasaki and Gunton,
1973; Ernst et. al., 1978; Evans , 1983; Kirkpatrick, 1984, van Beijeren, 1984 and
deSchepper et. al., 1986). It is clear that the final resolution of this matter is still
a long way off.

Figure 6.7. Viscosity of the N = 2048 WCA fluid.

Figure 6.8. The internal energy of a fluid plotted as a function of the strain
rate.
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One of the most interesting and subtle rheological effects concerns the diagonal
elements of the pressure tensor. For Newtonian fluids (ie fluids characterised by
a strain rate independent and frequency independent viscosity) the diagonal
elements are equal to each other and to their equilibrium values. Far from
equilibrium, this is not true. We define normal stress coefficients, Mo, M-, (the
so-called out-of-plane and in-plane normal stress coefficients) as,

(6.46)

(6.47)

Figure 6.9 shows how these coefficients vary as a function of ¥ " for the wca
fluid.The out-of-plane coefficient is far larger than the in-plane coefficient,
except at very small strain rates where both coefficients go to zero (ie the fluid
becomes Newtonian). These coefficients are very difficult to compute accurately.
They require both larger and longer simulations to achieve an accuracy that is
comparable to that for the shear viscosity. In terms of the macroscopic
hydrodynamics of Non-Newtonian fluids, these normal stress differences are
responsible for a wide variety of interesting phenomena (eg the Weissenberg
effect see Rainwater et. al. (1985 a,b)).

If one allows the strain rate to be a sinusoidal function of time and one
extrapolates the system response to zero amplitude, one can calculate the linear
viscoelastic response of a fluid. Figure 6.10 shows complex frequency dependent
shear viscosity for the Lennard-Jones fluid (Evans, 1980), at its triple point.

Figure 6.9. Normal stress coefficients for the V = 2048 WCA fluid.
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If one compares Figure 6.10 with the Maxwell model for viscoelasticity, Figure
2.4, one sees a qualitative similarity with the low frequency response being
viscous and the high frequency response being elastic. The shape of the two
sets of curves is however quite different. This is particularly so at low
frequencies. An analysis of the low frequency data shows that it is consistent
with a nonanalytic square root dependence upon frequency.

(6.48)

where ﬁ«, n, , are the real and imaginary parts of the viscosity coefficient. Since
the frequency dependent viscosity is the Fourier-Laplace transform of the memory
function (2.76), we can use the Tauberian theorems (Doetsch, 1961), to show
that if (6.48) represents the asymptotic low frequency behaviour of the frequency
dependent viscosity, then the memory function must have the form,

(6.49)

This time dependence is again consistent with the time dependence predicted
by mode-coupling theory (Pomeau and Resibois, 1975). However as was the case
for the strain rate dependence the amplitude of the effect shown in Figure 6.10,
is orders of magnitude larger than theoretical predictions. This matter is also the
subject of much current research and investigation.

Figure 6.10. Frequency-dependent shear viscosity at the Lennard-Jones triple
point.
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Similar enhanced long time tails have been observed subsequently in Green-Kubo
calculations for the shear viscosity (Erpenbeck and Wood, 1981). Whatever the
final explanation for these enhanced long time tails, they are a ubiquitous feature
of viscous processes at high densities. They have been observed in the
wavevector dependent viscosity (Evans, 1982a) and in shear flow of 4-dimensional
fluids (Evans, 1984). The situation for two dimensional liquids is apparently
even more complex (Evans and Morriss 1983a and Morriss and Evans 1989).

6.4 Thermostatting Shear Flows

While performing NEMD simulations of thermostatted shear flow for hard-sphere
fluids, Erpenbeck (1984) observed that at very high shear rates, fluid particles
organised themselves into strings. This was an early observation of a
nonequilibrium phase transition. This organisation of particles into strings
reduces the rate at which entropy is produced in the system by the external
field. This effect is in competition with the kink instability of the strings
themselves. If the strings move too slowly across the simulation cell, thermal
fluctuations in the curvature of the strings lead to their destruction. A snapshot
of a string phase is shown in Figure 6.11. The velocity gradient is vertical and
the streaming velocity is horizontal. The system is 896 soft discs at a state point
close to freezing and a reduced shear rate of 17.

Figure 6.11. High shear rate string phase in soft discs.
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The string phase is in fact, stabilised by the use of a thermostat which assumes
that a linear velocity profile, (implicit in equation (6.44)), is stable. Thermostats
which make some assumption about the form of the streaming velocity profile
are called Profile Biased Thermostats (PBT). All the thermostats we have met so
far are Profile Biased. At equilibrium there can be little cause for worry, the
streaming velocity must be zero. Away from equilibrium we must be more
careful.

Any kink instability that might develop in Erpenbeck’s strings, leading to their
breakup, would necessarily lead to the formation of large scale eddies in the
streaming velocity of the fluid. The Profile Biased Thermostat would interpret
any incipient eddy motion as heat, and then thermostat would try to cool the
system by suppressing the eddy formation. This in effect stabilises the string
phase (Evans and Morriss, 1986).

Thermostats for streaming or convecting flows - PUT

Profile Biased Thermostats for shear flow assume that the kinetic temperature

Ty, for a system undergoing planar Couette flow can be defined from the
equation,

(6.50)

In this equation « is the number of dimensions and N is the number of particles.

The term i¥Y; is the presumed streaming velocity at the location of particle i.
Once the form of the streaming velocity profile is established it is a simple matter
to use peculiar velocity scaling, Gaussian isokinetic or Nosé methods to thermostat
the shearing system.

At small shear rates and low Reynolds number, the Lees-Edwards shearing
periodic boundary conditions do indeed lead to a planar velocity profile of the
form assumed in (6.50). In Erpenbeck’s (1984) simulations the Reynolds numbers,

( ). were very large (10°-10°). The assumption of a linear streaming
velocity profile under these conditions is extremely dubious. Suppose that at
high Reynolds number the linear velocity profile assumed in (6.50) is not stable.
In a freely shearing system with Lees-Edwards geometry, this might manifest
itself in an S-shaped kink developing in the velocity profile. If (6.44) is used to
maintain the temperature, the thermostat will interpret the development of this
secondary flow as a component of the temperature. This increase in temperature
will be continuously removed by the thermostat, leading to a damping of the
secondary flow.

If we rewrite the SLLOD equations in terms of laboratory momenta,
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(6.51)
then the momentum current, J,

(6.52)
satisfies the following continuity equation,

(6.53)

The derivation of this equation is carried out by a simple supplementation of
the Irving-Kirkwood procedure (§3.7,8). We have to add the contribution of the
thermostat to equations (3.115) and (3.123). Comparing equation 6.53) with the
momentum conservation equation (2.12) we see that the thermostat could exert

a stress on the system. The expected divergence terms (puu +P)  are present on
the right hand side of (6.53). However the term involving «, the thermostatting
term, is new and represents the force exerted on the fluid by the thermostat. It
will only vanish if a linear velocity profile is stable and,

(6.54)

At high Reynolds number this condition might not be true. For simulations at
high Reynolds numbers one needs a thermostat which makes no assumptions
whatever about the form of the streaming velocity profile. The thermostat should
not even assume that a stable profile exists. These ideas led to development
(Evans and Morriss, 1986), of Profile Unbiased Thermostats (PUT).

The PUT thermostat begins by letting the simulation itself define the local
streaming velocity ulr.f}. This is easily done by replacing the delta functions in
(6.52) by microscopically small cells in the simulation program. The temperature
of a particular cell at r, T(r.1), can be determined from the equation,

(6.55)

where 7(r,?) is the number density at ./ (the delta function has unit volume).
The number of degrees of freedom in the cell is dnir.f)=d, because d degrees
of freedom are used to determine the streaming velocity of the cell.

The PUT thermostatted SLLOD equations of motion can be written as,
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(6.56)

The streaming velocity, w(r.}, is not known in advanced but is computed as
time progresses from its definition, (6.52). The thermostat multiplier o, could
be a Gaussian multiplier chosen to fix the peculiar kinetic energy (6.55). Equally
well the multiplier could be a Nosé-Hoover multiplier. The momentum equation
for the PUT thermostatted system reads,

(6.57)

From the definition the streaming velocity of a cell we know that,

We also know that, . Thus the
thermostatting term in (6.57), vanishes for all values of r-.

In terms of practical implementation in computer programs, PUT thermostats
can only be used in simulations involving large numbers of particles. Thus far
their use has been restricted to simulations of two dimensional systems. At low
Reynolds numbers where no strings are observed in Profile Biased simulations,
it is found that Profile Unbiased simulations yield results for all properties which
are indistinguishable from those computed using PBT methods. However at high
strain rates the results obtained using the two different thermostatting methods
are quite different. No one has observed a string phase while using a PUT
thermostat.

6.5 Thermal Conductivity

Thermal conductivity has proven to be one of the most difficult transport
coefficients to calculate. Green-Kubo calculations are notoriously difficult to
perform. Natural NEMD where one might simulate heat flow between walls
maintained at different temperatures (Tenenbaum, Ciccotti & Gallico [1982]) is
also fraught with major difficulties. Molecules stack against the walls leading
to a major change in the microscopic fluid structure. This means that the results
can be quite different from those characteristic of the bulk fluid. In order to
measure a statistically significant heat flux, one must use enormously large
temperature gradients. These gradients are so large that the absolute temperature
of the system may change by 50% in a few tens of Angstroms. The thermal

145



146

Statistical Mechanics of Nonequilibrium Liquids

conductivity that one obtains from such simulations is an average over the wide
range of temperatures and densities present in the simulation cell.

We will now describe the most efficient presently known algorithm for
calculating the thermal conductivity, (Evans, 1982b). This technique is synthetic,
in that a fictitious field replaces the temperature gradient as the force driving
the heat flux. Unlike real heat flow, this technique is homogeneous with no
temperature or density gradients. We start with the Green-Kubo expression for
the thermal conductivity (§4.4),

(6.58)

where Ja , is the z component of the heat flux vector. It appears to be impossible
to construct a Hamiltonian algorithm for the calculation of thermal conductivity.
This is because the equations of motion so obtained are discontinuous when
used in conjunction with periodic boundary conditions. We shall instead invent
an external field and its coupling to the phase of the N-particle system so that
the heat flux generated by this external field is trivially related to the magnitude
of the heat flux induced by a real temperature gradient.

Aided by the realisation that the heat flux vector is the diffusive energy flux,
computed in a co-moving coordinate frame (see equation 3.151), we proposed
the following equations of motion,

(6.59)

(6.60)

where E; is the energy of particle i and,

(6.61)
the instantaneous average energy per particle.

There is no known Hamiltonian which generates these equations but they do
satisfy AIT. This means that linear response theory can be applied in a
straightforward fashion. The equations of motion are momentum preserving,
homogeneous and compatible with the usual periodic boundary conditions. It
is clear from the term (E; - E*) F(t) that these equations of motion will drive a
heat current. A particle whose energy is greater than the average energy will
experience a force in the direction of F, while a particle whose energy is lower
than the average will experience a force in the -F direction. Hotter particles are
driven with the field; colder particles are driven against the field.
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If the total momentum is zero it will be conserved and the dissipation is

(6.62)

Using linear response theory we have

(6.63)

Consider a field F=(0,0,F,), then taking the limit t— o« we find that the ratio of the
induced heat flux to the product of the absolute temperature and the magnitude
of the external field is in fact the thermal conductivity.

(6.64)

In the linear limit the effect the heat field has on the system is identical to that
of a logarithmic temperature gradient (F = 0InT/0z). The theoretical justification
for this algorithm is tied to linear response theory. No meaning is known for
the finite field susceptibility.

In 1983 Gillan and Dixon introduced a slightly different synthetic method for
computing the thermal conductivity (Gillan and Dixon, 1983). Although their
algorithm is considerably more complex to apply in computer simulations, their
equations of motion look quite similar to those given above. Gillan’s synthetic
algorithm is of some theoretical interest since it is the only known algorithm
which violates momentum conservation and AIT’, (MacGowan and Evans, 1986b).

Figure 6.12.Thermal conductivity: Lennard-Jones triple point.
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Figure 6.12 shows the thermal conductivity of the triple point Lennard-Jones
fluid computed as a function of the strength of the heat field. We also show the
experimental data for argon assuming that argon can be modelled by the standard
Lennard-Jones model (€/ky=119.8K, 0=3.405A). The experimental uncertainties
are so large that that if we used an accurate potential function, we could calculate
the thermal conductivity more accurately than it can be measured.

6.6 Norton Ensemble Methods

Norton and Thévenin's theorems are of fundamental importance in electrical
circuit theory (Brophy, 1966). They prove that any network of resistors and
power supplies can be analysed in terms of equivalent circuits which include
either ideal current or ideal voltage sources. These two theorems are an example
of the macroscopic duality that exists between what are generally recognised as
thermodynamic fluxes and thermodynamic forces - in the electrical circuit case,
electrical currents and the electromotive force. Indeed in our earlier introduction
to linear irreversible thermodynamics (Chapter 2), there was an apparent
arbitrariness with respect to our definition of forces and fluxes. At no stage did
we give a convincing macroscopic distinction between the two.

Microscopically one might think that there is a clear and unambiguous distinction
that can be drawn. For an arbitrary mechanical system subject to a perturbing
external field the dissipation can be written as, dH, */dt = -J(T')F.("). The
dissipative flux is the phase variable J(I') and the force is the time dependent

independent variable, F.(/) . This might seem to remove the arbitrariness.
However, suppose that we complicate matters a little and regard the external

field £.(1), as a Gaussian multiplier in a feedback scheme designed to stop the
flux J(I'), from changing. We might wish to perform a constant current

simulation. In this case the imposed external field F.A1) isin facta phase variable,

FAT). Even microscopically the distinction between forces and fluxes is more
complex than is often thought.

In this section we will explore the statistical mechanical consequences of this
duality. Until recently the Green-Kubo relations were only known for the
conventional Thévenin ensemble in which the forces are the independent state
defining variables. We will derive their Norton ensemble equivalents. We will
then show how these ideas have been applied to algorithms for isobaric molecular
dynamics simulations. This work will provide the necessary background for the
derivations, in Chapter 9, of fluctuation expressions for the derived properties
of nonequilibrium steady states including the nonlinear inverse Burnett
coefficients.
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Gaussian Constant Colour Current Algorithm

From the colour Hamiltonian (6.9) we see that the equations of motion for colour
conductivity in the Thévenin ensemble are,

(6.65)

These equations are the adiabatic version of (6.18 & 6.19). We will now treat
the colour field as a Gaussian multiplier chosen to fix the colour current and
introduce a thermostat.

Our first step is to redefine the momenta (Evans and Morriss, 1985), so that they
are measured with respect to the species current of the particles. Consider the
following set of equations of motion

(6.66)

where o is the thermostatting multiplier and A is the current multiplier. These
equations are easily seen to be equivalent to (6.18) and (6.19). We distinguish
two types of current, a canonical current J defined in terms of the canonical
momenta,

(6.67)

and a kinetic current I, where

(6.68)

We choose A so that the canonical current is always zero, and Q so that the
canonical (ie. peculiar) kinetic energy is fixed. Our constraint equations are
therefore,

(6.69)

and

(6.70)

The Gaussian multipliers may be evaluated in the usual way by summing
moments of the equations of motion and eliminating the accelerations using the
differential forms of the constraints. We find that

149



150

Statistical Mechanics of Nonequilibrium Liquids

(6.71)

and

(6.72)

If we compare the Gaussian equations of motion with the corresponding
Hamiltonian equations we see that the Gaussian multiplier A can be identified
as a fluctuating external colour field which maintains a constant colour current.
It is however, a phase variable. Gauss' principle has enabled us to go from a
constant field nonequilibrium ensemble to the conjugate ensemble where the
current is fixed. The Gaussian multiplier fluctuates in the precise manner required
to fix the current. The distinction drawn between canonical and kinetic currents
has allowed us to decouple the Lagrange multipliers appearing in the equations
of motion. Furthermore setting the canonical current to zero is equivalent to
setting the kinetic current to the required value I. This can be seen by taking
the charge moment of (6.66). If the canonical current is zero then,

(6.73)

In this equation the current, which was formerly a phase variable has now
become a possibly time dependent external force.

In order to be able to interpret the response of this system to the external current
field, we need to compare the system's equations of motion with a macroscopic
constitutive relation. Under adiabatic conditions the second order form of the
equations of motion is

(6.74)

We see that to maintain a constant current I(t) we must apply a fluctuating colour
field E effr

(6.75)

The adiabatic rate of change of internal energy H, is given by
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(6.76)

As the current, J =J(T') is fixed at the value zero, the dissipation is -I(t)*A(T"). As
expected the current is now an external time dependent field while the colour
field is a phase variable. Using linear response theory we have

(6.77)

which gives the linear response result for the phase variable component of the
effective field. Combining (6.77) with (6.75) the effective field is, therefore,

(6.78)

where the susceptibility X is the equilibrium A autocorrelation function,

(6.79)

By doing a Fourier-Laplace transform on (6.78) we obtain the frequency
dependent colour resistance, E = RI

(6.80)

To compare with the usual Green-Kubo relations which have always been derived
for conductivities rather than resistances we find,

(6.81)

This equation shows that the Fourier-Laplace transform of %li} is the memory
function of the complex frequency dependent conductivity. In the conjugate
constant force ensemble the frequency dependent conductivity is related to the
current autocorrelation function

(6.82)

From equations (6.79) - (6.82) we see that at zero frequency the colour
conductivity is given by the integral of the Thévenin ensemble current
correlation function while the resistance, which is the reciprocal of the
conductivity, is given by the integral of the colour field autocorrelation function
computed in the Norton ensemble. Thus at zero frequency the integral of the
Thévenin ensemble current correlation function is the reciprocal of the integral
of the Norton ensemble field correlation function. Figure 6.2 gave a comparison
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of Norton and Thévenin algorithms for computing the colour conductivity. The
results obtained for the conductivity are ensemble independent - even in the
nonlinear regime far from equilibrium.

Figure 6.13. The colour conductivity as a function of the Laplace transform
variable, s.

In Figure 6.13 we show the reduced colour conductivity plotted as a function
of frequency (Evans and Morriss, 1985). The system is identical to the
Lennard-Jones system studied in Figure 6.2. The curves were calculated by
taking the Laplace transforms of the appropriate equilibrium time correlation
functions computed in both the Thévenin and Norton ensembles. Within
statistical uncertainties, the results are in agreement. The arrow shows the zero
frequency colour conductivity computed using NEMD. The value is taken from
Figure 6.2.

6.7 Constant-Pressure Ensembles

For its first 30 years, molecular dynamics was limited to the microcanonical
ensemble. We have already seen how the development of thermostats has enabled
simulations to be performed in the isochoric, canonical and isokinetic ensembles.
We will now describe molecular dynamics algorithms for performing simulations
at constant pressure or constant enthalpy. The technique used to make the
pressure rather than the volume, the independent state defining variable, uses
essentially the same ideas as those employed in §6.6 to design Norton ensemble
algorithms. The methods we describe now are of use for both equilibrium and
nonequilibrium simulations.
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It is often advantageous, particularly in studies of phase transitions, to work
within the isobaric ensemble. It is possible to stabilise the pressure in a number
of ways: we will describe the Gaussian method (Evans and Morriss, 1983b) since
it was both the first deterministic isobaric technique to be developed and it is
conceptually simpler than the corresponding Nosé-Hoover (Hoover, 1985) and
Rahman-Parrinello (1980a,b, 1981) schemes. Although it may be slightly more
difficult to write the computer programs, once written they are certainly easier
to use. The Gaussian method has the distinct advantage that the pressure is a
rigorous constant of the motion whereas the Nosé based schemes (Nosé, 1984)
and those of Parrinello and Rahman allow fluctuations in both the pressure and
the volume.

If one makes a poor initial guess for the density, Nosé-Hoover isobaric algorithms
induce sharp density changes in an attempt to correct the density, to that
appropriate for the specified mean pressure. Because bulk oscillations damp
quite slowly, Nosé-Hoover methods can easily result in the system exploding -
a situation that cannot be reversed due to the finite range of the interaction
potentials. Gaussian isobaric algorithms are free of these instabilities.

Isothermal-lIsobaric molecular dynamics

Consider the SLLOD equations of motion where the strain rate tensor Vu is
isotropic . The equations of motion become

(6.83)
(6.84)

Now if the system was cold (P: =0 for all i), and non-interacting (¥ = 0 ), these
equations would reduce to
4, =€q, (6.85)

Since this equation is true for all particles i, it describes a uniform dilation or
contraction of the system. This dilation or contraction is the same in each
coordinate direction, so if the system initially occupied a cube of volume V,
then the volume would satisfy the following equation of motion.

V= 3VE (6.86)

For warm, interacting systems, the equation of motion for 4: shows that the
canonical momentum P: is in fact peculiar with respect to the streaming velocity

£4,. The dissipation for the system (6.83 & 6.84) is

(6.87)
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Since M is the internal energy of the system we can combine (6.87) with the
equation of motion for the volume to obtain the first law of thermodynamics for
adiabatic compression,

(6.88)
It is worth noting that these equations are true instantaneously. One does not
need to employ any ensemble averaging to obtain equation (6.88). By choosing
the dilation rate £ to be a sinusoidal function of time, these equations of motion
can be used to calculate the bulk viscosity. Our purposes are however to use the
dilation rate as a multiplier to maintain the system at a constant hydrostatic
pressure. Before we do this however, we will introduce a Gaussian thermostat
into the equations of motion;

(6.89)
(6.90)

The form for the thermostat multiplier is determined by the fact that the momenta
in (6.89 & 6.90) are peculiar with respect to the dilating coordinate frame. By
taking the moment of (6.90) with respect to P:, and setting the time derivative
of the peculiar kinetic energy to zero we observe that,

(6.91)

Differentiating the product PV, (6.87) with respect to time gives,

(6.92)

The first term on the LHS is zero because the pressure is constant, and the first
term on the RHS is zero because the peculiar kinetic energy is constant.

Substituting the equations of motion for 4; and V, and we can solve for the
dilation rate.

(6.93)

Combining this equation with (6.91) gives a closed expression for the thermostat
multiplier a .
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In summary our isothermal/isobaric molecular dynamics algorithm involves
solving 6N + | first order equations of motion (equations (6.86, 6.89 & 6.90)).
There are two subtleties to be aware of before implementing this method. Firstly
the pressure is sensitive to the long range tail of the interaction potential. In
order to obtain good pressure stability the long range truncation of the potential
needs to be handled carefully. Secondly, if a Gear predictor corrector scheme is
used to integrate the equations of motion then some care must be taken in
handling the higher order derivatives of the coordinates and momenta under
periodic boundary conditions. More details are given in Evans and Morriss
(1983b) and (1984a).

Isobaric-isoenthalpic molecular dynamics

For the adiabatic constant pressure equations of motion we have already shown
that the first law of thermodynamics for compression is satisfied

Hy=-pV (6.94)
It is now easy to construct equations of motion for which the enthalpy
I'= H, + pV  isa constant of the motion. The constraint we wish to impose is that

(6.95)

Combining these two equations we see that for our adiabatic constant pressure
equations of motion the rate of change of enthalpy is simply

(6.96)

This equation says that if our adiabatic equations preserve the pressure then the
enthalpy is automatically constant. The isobaric-isoenthalpic equations of motion
are simply obtained from the isothermal-isobaric equations by dropping the
constant temperature constraint. The isoenthalpic dilation rate can be shown to
be (Evans and Morriss, 1984a),

(6.97)

6.8 Constant Stress Ensemble

We will now give another example of the usefulness of the Norton ensemble.
Suppose we wish to calculate the yield stress of a Bingham plastic - a solid with
a yield stress. If we use the SLLOD method outlined above the Bingham plastic
will always yield simply because the strain rate is an input into the simulation.
It would not be easy to determine the yield stress from such a calculation. For
simulating yield phenomena one would prefer the shear stress as the input
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variable. If this were the case simulations could be run for a series of incremented
values of the shear stress. If the stress was less than the yield stress, the solid
would strain elastically under the stress. Once the yield stress was exceeded,
the material would shear.

Here we discuss a simple method for performing NEMD simulations in the stress
ensemble. We will use this as an opportunity to illustrate the use the Nosé-Hoover
feedback mechanism. We will also derive linear response expressions for the
viscosity within the context of the Norton ensemble. The equations of motion
for shear flow, thermostatted using the Nosé-Hoover thermostat are

(6.98)

(6.99)

(6.100)
Using the Nosé-Hoover feedback mechanism we relate the rate of change of the
strain rate, ¥, to the degree to which the instantaneous shear stress, ~F'x r)

differs from a specified mean value, . We therefore determine the strain
rate from the differential equation,

(6.101)

If the instantaneous stress is greater (ie more negative) than the specified value,
the strain rate will decrease in an attempt to make the two stresses more nearly

equal. The relaxation constant Q. should be chosen so that the timescale for
feedback fluctuations is roughly equal to the natural relaxation time of the
system.

From the equations of motion, the time derivative of the internal energy

, is easily seen to be,

(6.102)

The Nosé constant stress, constant temperature dynamics satisfy a Liouville
equation in which phase space behaves as a compressible 6N +2 dimensional
fluid. The equilibrium distribution function is a function of the 3N particle

coordinates, the 3N particle momenta, the thermostatting multiplier &, and

strain rate V, . The Liouville equation for this system is then

(6.103)
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Since

n
o
-

o

and
¥ =4(I)

then

(6.104)
the phase space compression factor /\(T') is easily seen to be -3Ng. If we consider
the time derivative of the extended internal energy we find
that

(6.105)

If we consider the situation at equilibrium when the set value of the shear stress,

, is zero and K, = 3N/ZB, the Liouville equation becomes

(6.106)

Integrating both sides with respect to time gives the equilibrium distribution
function for the constant stress Norton ensemble to be

(6.107)

The equilibrium distribution function is thus a generalised canonical distribution,
permitting strain rate fluctuations. Indeed the mean square strain rate is

(6.108)
so the amplitude of the strain rate fluctuations are controlled by the adjustable
constant < .

We wish to calculate the linear response of an equilibrium ensemble of systems
(characterised by the distribution £, at time t=0), to an externally imposed time

dependent shear stress, . For the Nosé-Hoover feedback mechanism the
external field is the mean shear stress, and it appears explicitly in the equations
of motion (Hood, Evans and Morriss, 1987). This is in contrast to the more

157



158

Statistical Mechanics of Nonequilibrium Liquids

difficult Gaussian case (Brown and Clarke, 1986). For the Gaussian feedback
mechanism the numerical value of the constraint variable does not usually appear
explicitly in the equations of motion. This is a natural consequence of the
differential nature of the Gaussian feedback scheme.

The linear response of an arbitrary phase variable B(T) to an applied time
dependent external field is given by

(6.109)

where iLq is the equilibrium (Nosé-Hoover thermostatted) f-Liouvillean and iAL(s)

= iL(s)-iLo where iL(s) is the full field dependent thermostatted f-Liouvillean.
It only remains to calculate iAL(s) f,. Using the equations of motion and the
equilibrium distribution function obtained previously we see that,

(6.110)
Here we make explicit reference to the phase dependence of ¥, and the explicit
time dependence of the external field S0 The quantity is the
adiabatic derivative of the extended internal energy,

Combining these results the linear response of the phase variable B is

(6.111)

In order to compute the shear viscosity of the system we need to calculate the
time dependence of the thermodynamic force and flux which appear in the
defining constitutive relation for shear viscosity. Because of the presence of the

Nosé-Hoover relaxation time, controlled by the parameter Q, , the actual shear
stress in the system ~ '« I'), does not match the externally imposed shear stress
S0, instantaneously. To compute the shear viscosity we need to know the

precise relation between P.. and ¥, not that between S+ and the strain rate. The
two quantities of interest are easily computed from (6.111).

(6.112)

(6.113)

Fourier-Laplace transforming we obtain the frequency dependent linear response
relations
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(6.114)

(6.115)

where the Fourier-Laplace transform of %l) is defined to be

(6.116)
The linear constitutive relation for the frequency dependent shear viscosity is
(52.4)

(6.117)

so that the frequency dependent viscosity is

(6.118)

This expression shows that the complex frequency dependent shear viscosity
is given by ratio of two susceptibilities. However, these two different time
correlation functions can be related by using the Nosé-Hoover equation of motion
(6.101),

(6.119)

In the frequency domain this relation becomes,

(6.120)

The frequency dependent shear viscosity in the constant stress ensemble can
be written as,

(6.121)

In a similar way it is possible to write the frequency dependent viscosity in
terms of either the Norton ensemble stress autocorrelation function, or the Norton
ensemble stress-strain cross correlation function. Using equation (4.10), the stress
autocorrelation function can be related to the strain autocorrelation function
using the relation,

(6.122)

In the frequency domain this becomes,
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(6.123)
Substituting this equation into (6.121) gives,

(6.124)

In terms of the cross correlation function, the frequency dependent viscosity is

(6.125)

In Figure 6.14 we show the results of a test of the theory given above. Hood,
Evans and Morriss (1987) computed the strain rate autocorrelation function in
the Norton ensemble and the stress autocorrelation function in the Thévenin
ensemble. They then used equation (6.121) to predict the strain rate
autocorrelation function on the basis of their Thévenin ensemble data. The
system studied was the Lennard-Jones triple point fluid. The smooth curves
denote the autocorrelation function computed in the Norton ensemble and the
points give the predictions from the Thévenin ensemble data. The two sets of
data are in statistical agreement. This analysis shows that in spite of the fact that

the damping constant O, has a profound influence on the time dependent
fluctuations in the system, the theory given above correctly relates the
Q, -dependent fluctuations of strain rate and stress to the Q -independent,
frequency dependent viscosity.

Figures 6.15-17 show the various Norton ensemble susceptibilities as a function
of frequency. The system is the Lennard-Jones triple point fluid.
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Figure 6.14. A test of equation (6.121), for the Lennard-Jones triple-point
fluid.
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Figure 6.15. The various Norton ensemble susceptibilities as a function of
frequency. The system is the Lennard-Jones triple-point fluid.
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Figure 6.15. Continued
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7. Nonlinear Response Theory

7.1 Kubo’s Form for the Nonlinear Response

In Chapter 6 we saw that nonequilibrium molecular dynamics leads inevitably
to questions regarding the nonlinear response of systems. In this chapter we
will begin a discussion of this subject.

It is not widely known that in Kubo's original 1957 paper (Kubo, 1957), he not
only presented results for adiabatic linear response theory, but that he also
included a formal treatment of the adiabatic nonlinear response. The reason why
this fact is not widely known is that, like many treatments of nonlinear response
theory that followed, his formal results were exceedingly difficult to translate
into a useful, experimentally verifiable forms. This difficulty can be traced to
three sources. Firstly, his results are not easily transformable into explicit
representations that involve the evaluation of time correlation functions of
explicit phase variables. Secondly, if one wants to study nonequilibrium steady
states, the treatment of thermostats is mandatory. His theory did not include
such effects. Thirdly, his treatment gave a power series representation of the
nonlinear response. We now believe that for most transport processes, such
expansions do not exist.

We will now give a presentation of Kubo's perturbation expansion for the

nonequilibrium distribution function, f(f}. Consider an N-particle system
evolving under the following dynamics,

(7.1)

The terms CAT') and DT} describe the coupling of the external field F. to the
system. In this discussion we will limit ourselves to the case where the field is
switched on at time zero, and thereafter remains at the same steady value. The

f-Liouvillean is given by

(7.2)

where iy is the equilibrium Liouvillean and iAL is the field dependent
perturbation which is a linear function of F.. The Liouville equation is,

(7.3)

To go beyond the linear response treated in §5.1, Kubo assumed that /() could
be expanded as a power series in the external field, r,
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(7.4)

where, [t} is i" order in the external field F. The assumption that /i) can be
expanded in a power series about F. =0 may seem innocent, but it is not. This
assumption rules out any functional form containing a term of the form, F;,
where o is not an integer. Substituting (7.4) for 11}, and the expression for il

into the Liouville equation (7.3), and equating terms of the same order in F., we
find an infinite sequence of partial differential equations to solve,

(7.5)

where i = 1. The solution to this series of equations can be written as,

(7.6)

To prove that this is correct, one differentiates both sides of the equation to
obtain (7.5). Recursively substituting (7.6), into equation (7.4), we obtain a power
series representation of the distribution function

(7.7)
Although this result is formally exact, there are a number of difficulties with
this approach. The expression for /() is a sum of convolutions of operators. In

general the operator iAl. does not commute with the propagator, ,and
no further simplifications of the general result are possible. Further, as we have
seen in Chapter 6, there is a strong likelihood that fluxes associated with
conserved quantities are non-analytic functions of the thermodynamic force,

F.. This would mean that the average response of the shear stress, for example,

cannot be expanded as a Taylor series about F.{=1)=0_In Chapter 6 we saw
evidence that the shear stress is of the form, (see §6.3). If
this is true then must be infinite.

7.2 Kawasaki Distribution Function

An alternative approach to nonlinear response theory was pioneered by Yamada
and Kawasaki (1967). Rather than developing power series expansions about
F. =0 they derived a closed expression for the perturbed distribution function.
The power of their method was demonstrated in a series of papers in which
Kawasaki first predicted the non-analyticity of the shear viscosity with respect
to strain rate (Kawasaki and Gunton, 1973, and Yamada and Kawasaki, 1975).
This work predates the first observation of these effects in computer simulations.
The simplest application of the Kawasaki method is to consider the adiabatic
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response of a canonical ensemble of N-particle systems to a steady applied field
F

The Liouville equation for this system is

(7.8)

The Liouvillean appearing in this equation is the field dependent Liouvillean
defined by the equations of motion, (7.1). Equation (7.8) has the formal solution,

(7.9)

For simplicity we take the initial distribution function f(0), to be canonical, so
that /(1) becomes

(7.10)

The adiabatic distribution function propagator is the Hermitian conjugate of
the phase variable propagator, so in this case ¢Xp[~ilt] is the negative-time phase
variable propagator, (¢xpliL{-i}]). It operates on the phase variable in the
numerator, moving time backwards in the presence of the applied field. This
implies that

(7.11)

Formally the [ -propagator leaves the denominator invariant since it is not a
phase variable. The phasedependence of the denominator has been integrated
out. However since the distribution function must be normalised, we can
obviously also write,

(7.12)

This equation is an explicitly normalised version of (7.11) and we will have more
to say concerning the relations between the so-called bare Kawasaki form, (7.11),
and the renormalized Kawasaki form, (7.12), for the distribution function in
§7.7. In Kawasaki’s original papers he referred only to the bare Kawasaki form,
(7.11).

Using the equations of motion (7.1) one can write the time derivative of % as
the product of a phase variable J(I') and the magnitude of the perturbing external
field, F..

(7.13)
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For the specific case of planar Couette flow, we saw in §6.2 that H," is the product

of the strain rate, the shear stress and the system volume, “YP.V and thus in
the absence of a thermostat we can write,

(7.14)

The bare form for the perturbed distribution function at time ¢ is then

(7.15)

P_(0)

It is important to remember that the generation of P 1=5) from is controlled

by the field-dependent equations of motion.

A major problem with this approach is that in an adiabatic system the applied
field will cause the system to heat up. This process continues indefinitely and
a steady state can never be reached. What is surprising is that when the effects
of a thermostat are included, the formal expression for the N -particle distribution
function remains unaltered, the only difference being that thermostatted,

field-dependent dynamics must be used to generate from H,(0), This is
the next result we shall derive.

Consider an isokinetic ensemble of N -particle systems subject to an applied field.
We will assume field dependent, Gaussian isokinetic equations of motion, (5.3.1).

The f-Liouvillean therefore contains an extra thermostatting term. It is
convenient to write the Liouville equation in operator form

(7.16)

The operator iL is the f-Liouvillean, and iL is the #-Liouvillean. The term A,
is

(7.17)
is the phase space compression factor (§3.3). The formal solution of the Liouville
equation is given by

(7.18)

In the thermostatted case the p-propagator is no longer the Hermitian conjugate
of the / -propagator.

We will use the Dyson decomposition derived §3.6, to relate thermostatted -

and f-propagators. We assume that the both P-Liouvilleans have no explicit
time dependence. We make a crucial observation, namely that the phase space
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compression factor A, is a phase variable rather than an operator. Taking the
reference Liouvillean, to be the adjoint of il. we find

(7.19)

Repeated application of the Dyson decomposition to €xp[—iLs—As] on the right
hand side gives

(7.20)
In deriving the second line of this equation we use the fact that for any phase
variable B, . Substituting (7.20) into (7.18) and
choosing, , we obtain

(7.21)

If we change variables in the integral of the phase space compression factor and

calculate (-1} from its value at time zero we obtain,

(7.22)

We know that for the isokinetic distribution, = 3N/2K (see §5.2). Since under
the isokinetic equations of motion, K is a constant of the motion, we can prove
from (5.3.1), that,

(7.23)

If AIT is satisfied the dissipative flux J is defined by equation (7.13). Substituting
(7.23) into (7.22) we find that the bare form of the thermostatted Kawasaki
distribution function can be written as,

(7.24)

Formally this equation is identical to the adiabatic response (7.15). This is in
spite of the fact that the thermostat changes the equations of motion. The
adiabatic and thermostatted forms are identical because the changes caused by
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the thermostat to the dissipation (Fh), are exactly cancelled by the changes
caused by the thermostat to the form of the Liouville equation. This observation
was first made by Morriss and Evans (1985). Clearly one can renormalize the
thermostatted form of the Kawasaki distribution function giving (7.25), as the
renormalized form of the isokinetic Kawasaki distribution function,

(7.25)

As we will see, the renormalized Kawasaki distribution function is very useful
for deriving relations between steady state fluctuations and derivatives of steady
state phase averages. However, it is not useful for computing nonequilibrium
averages themselves. This is because it involves averaging exponentials of
integrals which are extensive. We will now turn to an alternative approach to
this problem.

7.3 The Transient Time Correlation Function Formalism

The Transient Time Correlation Function formalism (TTCF), provides perhaps
the simplest nonlinear generalisation of the Green-Kubo relations. A number of
authors independently derived the TTCF expression for adiabatic phase averages,
(W. M. Visscher, 1974, Dufty and Lindenfeld, 1979 and Cohen, 1983). We will
illustrate the derivation for isokinetic planar Couette flow. However the formalism
is quite general and can easily be applied to other systems. The theory gives an
exact relation between the nonlinear steady state response and the so-called
transient time correlation functions. We will also describe the links between the
TTCF approach and the Kawasaki methods outlined in §7.2. Finally, we will
present some numerical results which were obtained as tests of the validity of
the TTCF formalism.

Following Morriss and Evans, (1987), we will give our derivation using the
Heisenberg, rather than the customary Schrodinger picture. The average of a
phase variable, B(I'), at time 1, is,

(7.26)

where the second equality is a consequence of the Schrodinger-Heisenberg
equivalence. For time independent external fields, differentiating the
Heisenberg form with respect to time yields,

(7.27)

In deriving (7.27) we have used the fact that,
This relies upon the time independence of the Liouvillean, /L. The corresponding
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equation for the time dependent case, is not true. Integrating (7.27) by parts we
see that,

(7.28)

The boundary term vanishes because: the distribution function f{%}, appoaches
zero when the magnitude of any component of any particle’s momentum becomes
infinite, and because the distribution function can be taken to be a periodic
function of the particle coordinates. We are explicitly using the periodic
boundary conditions used in computer simulations.

Integrating (7.28) with respect to time we see that the nonlinear nonequilibrium
response can be written as,

(7.29)

The dynamics implicit in B(s), is of course driven by the full field-dependent,
thermostatted equations of motion ((7.1) and (7.2)). For a system subject to the

thermostatted shearing deformation, I is given by the thermostatted SLLOD
equations of motion, (6.44).

If the initial distribution is Gaussian isokinetic it is straightforward to show that,
. If the initial ensemble is canonical then, to first order

in the number of particles, is BH'FP--J".“”. To show this one writes,
(following §5.3),

(7.30)

K
where ¥+ is the kinetic part of the pressure tensor evaluated at time zero
(compare this with the linear theory given in §5.3). Now we note that

. This means that equation (7.30) can be written as,

(7.31)
As in the linear response case (§5.3), we assume, without loss of generality, that
B(T') is extensive. The kinetic fluctuation term involves the average of three

zero mean, extensive quantities and because of the factor W{K(0)}, gives only
an order one contribution to the average. Thus for both the isokinetic and
canonical ensembles, we can write,
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(7.32)

This expression relates the non-equilibrium value of a phase variable B at time
t, to the integral of a transient time correlation function (the correlation between

P.. in the equilibrium starting state, P.(0) and B at time s after the field is
turned on). The time zero value of the transient correlation function is an

equilibrium property of the system. For example, if B=F., then the time zero

value is {P :'U}}_ Under some, but by no means all circumstances, the values of
B(s) and P+(0) will become uncorrelated at long times. If this is the case the
system is said to exhibit mixing. The transient correlation function will then
approach , which is zero because

The adiabatic systems treated by Visscher, Dufty, Lindenfeld and Cohen do not

exhibit mixing because in the absence of a thermostat, LB does not, in
general, go to zero at large times. Thus the integral of the associated transient
correlation function does not converge. This presumably means that the initial
fluctuations in adiabatic systems are remembered forever. Other systems which
are not expected to exhibit mixing are turbulent systems or systems which
execute quasi-periodic oscillations.

If AIT (§5.3) is satisfied, the result for the general case is,

(7.33)

We can use recursive substitution to derive the Kawasaki form for the nonlinear
response from the transient time correlation formula, equation (7.33). The first
step in the derivation of the Kawasaki representation is to rewrite the TTCF
relation using iL to denote the phase variable Liouvillean, and -iL to denote its

nonhermitian adjoint, the /-Liouvillean. Thus # = iL# and . Using
this notation equation (7.33) can be written as,

(7.34)

(7.35)

where we have unrolled the first ”-propagator onto the distribution function.
Equation (7.3.10) can be written more simply as,

(7.36)

Since this equation is true for all phase variables B, the TTCF representation for
the N-particle distribution function must be,
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(7.37)

We can now successively substitute the transient correlation function expression
for the nonequilibrium distribution function into the right hand side of (7.37).
This gives,

(7.38)

This is precisely the Kawasaki form of the thermostatted nonlinear response.
This expression is valid for both the canonical and isokinetic ensembles. It is
also valid for the canonical ensemble when the thermostatting is carried out
using the Nosé-Hoover thermostat.

One can of course also derive the TTCF expression for phase averages from the
Kawasaki expression. Following Morriss and Evans, (1985) we simply differentiate
the (7.38) with respect to time, and then reintegrate.

(7.39)

A simple integration of (7.39) with respect to time yields the TTCF relation (7.32).
We have thus proved the formal equivalence of the TTCF and Kawasaki
representations for the nonlinear thermostatted response.

Comparing the transient time correlation expression for the nonlinear response
with the Kawasaki representation, we see that the difference simply amounts to
a time shift. In the transient time correlation form, it is the dissipative flux .f,
which is evaluated at time zero whereas in the Kawasaki form, the response
variable B, is evaluated at time zero. For equilibrium or steady state time
correlation functions the stationarity of averages means that such time shifts are
essentially trivial. For transient response correlation functions there is of course
no such invariance principle, consequently the time translation transformation
is accordingly more complex.

The computation of the time dependent response using the Kawasaki form
directly, equation (7.38), is very difficult. The inevitable errors associated with
the inaccuracy of the trajectory, as well as those associated with the finite grid
size in the calculation of the extensive Kawasaki integrand, combine and are
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magnified by the exponential. This exponential is then multiplied by the phase
variable B(0), before the ensemble average preformed. In contrast the calculation
of the response using the transient correlation expression, equation (7.33), is as
we shall see, far easier.

It is trivial to see that in the linear regime both the TTCF and Kawasaki
expressions reduce to the usual Green-Kubo expressions. The equilibrium time
correlation functions that appear in Green-Kubo relations are generated by the
field free thermostatted equations. In the TTCF formulae the field is ‘turned on’
atr=0.

The coincidence at small fields, of the Green-Kubo and transient correlation
formulae means that unlike direct NEMD, the TTCF method can be used at small
fields. This is impossible for direct NEMD because in the small field limit the
signal to noise ratio goes to zero. The signal to noise ratio for the transient
correlation function method becomes equal to that of the equilibrium Green-Kubo
method. The transient correlation function method forms a bridge between the
Green-Kubo method which can only be used at equilibrium, and direct NEMD
which is the most efficient strong field method. Because a field is required to
generate TTCF correlation functions, their calculation using a molecular dynamics,
still requires a nonequilibrium computer simulation to be performed.

It is also easy to see that at short times there is no difference between the linear
and nonlinear stress response. It takes time for the nonlinearities to develop.
The way to see this is to expand the transient time correlation function in a

power series in Y. The coefficient of the first term in this series is just ,
the infinite frequency shear modulus, G.. Since this is an equilibrium property
its value is unaffected by the strain rate and is thus the same in both the linear
and nonlinear cases. If we look at the response of a quantity like the pressure
whose linear response is zero, the leading term in the short time expansion is
quadratic in the strain rate and in time. The linear response of course is the first
to appear.

7.4 Trajectory Mappings

In calculations of transient time correlation functions it is convenient to generate
the initial ensemble of starting states from a single field free, Gaussian isokinetic
trajectory. As Gaussian isokinetic dynamics ergodically generates the isokinetic
ensemble, a single field free trajectory is sufficient to sample the ensemble. At

equally spaced intervals along this single field free trajectory (every N.
timesteps), field dependent simulations are started and followed for V. timesteps.
The number N, should be greater than the characteristic time required for the

system to relax to a steady state and V. should be large enough to ensure that
the initial phases are uncorrelated. Each of these cycles gives one initial phase
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T", for the transient correlation function. This process can be made more efficient
if we use this single equilibrium starting state to provide more than one initial
phase for the nonequilibrium trajectories. To do this we use a group of phase
space mappings.

In this section we develop mappings of the phase, T which have useful
properties, for the theoretical interpretation and practical implementation of
nonlinear response theory. For convenience we shall write the phase, T, as

where each of the components ¥ ¥-%P..P.:P: s itself an
N -dimensional vector. The time evolution of an arbitrary phase variable B(I')

is governed by the phase variable propagator exp[ilt], so  that

. Note that the propagator is an operator which acts
on the initial phases T', so in order to calculate the action of the propagator on
a phase variable at a time other than zero, B(!) has to be expressed as a function
of the initial phases T and not the current phases I'(f). We assume that the
equations of motion have no explicit time dependence (by way of a time
dependent external field). The propagator is therefore a shift operator. In the
time dependent case, the propagator is not a simple shift operator and the results
which follow will need to be generalised. We leave this generalisation until
Chapter 8.

The phase variable B at time ¢, B(f) can be traced back to time zero by applying
the negative-time phase variable propagator exp[-ile],
(7.40)

Reversing the sign of the time in the propagator retraces the original trajectory.
It is possible to return to the original phase point I'(0) without changing the sign
of the time. This is achieved by mapping the phase point T'(f) so that a
combination of positive time evolution and mapping takes I'lt)=>T'(0}. This
mapping is called the time reversal mapping M”. For field free equations of
motion, this is straightforward as the mapping simply consists of reversing the
signs of all the momenta.

(7.41)

It is important to realise that this process does not lead to a retracing of the
original trajectory, as everywhere along the return path the momenta are the

ALl e

opposite sign to those of the forward path. Noting that &' =¢"'"*, this can be

summarised: . These results will
be derived in more detail later.
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Given an initial starting phase then four starting phases,
which occur within the equilibrium distribution with the same probability as

T, can be obtained using the mappings M', M", M" and mM* ;

(7.42)

Here M’ is the identity mapping; M" is the time reversal mapping introduced
above; M" is termed the y-reflection mapping; and M* is called the Kawasaki
mapping (it is the combined effect of time reversal and y-reflection mapping
M* =M'M"). For shear flow these four configurations give four different starting
states, and lead to four different field dependent trajectories from the single
equilibrium phase point T'. Each of the mappings consists of a pair of reflections
in a coordinate or momentum axis. In total there are 2° states that can be obtained
using the reflections of a 2-dimensional phase space however, only 2° of these
states will result in at most a sign change in the instantaneous shear stress PATY,
Only 2% of the remaining mappings lead to different shearing trajectories. The
shear stress obtained from trajectories starting from I't and =T’ for example, are
identical. The probability of each of these states occurring within the equilibrium
distribution, is identical because the Hamiltonian M, is invariant under these
mappings.

There is a second, more important, advantage of this procedure. If we examine
the transient response formula (7.32), we see that at long time the correlation

function approaches . The steady state average of B
is usually non-zero (in contrast to equilibrium time correlation functions). To
minimise the statistical uncertainties in calculating the transient correlation
integral, it is necessary to choose equilibrium starting states T' in such a way

that . The phase mapping procedure described above achieves this.
If the shear stress computed from the original starting phase is P.., then the

shear stress from T’ is also equal to Py , but the shear stresses from both T'" and

I'* are equal to ~P... This means that the sum of the shear stresses from these
four starting phases is exactly zero, so if each chosen T is mapped in this way
the average shear stress is exactly zero regardless of the number of samplings
of T'. The statistical difficulties at long time, associated with a small non-zero

value the average of P10}, are eliminated.
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There are two further operations on these mappings which we need to complete
the development of the mapping algebra. First we need to know how each of
the mappings affect phase variables. Second we must understand the effect of
the mapping on the phase variable Liouvillean iL{T), as it is also a function of
the initial phase point T'. To do this we need to know how the equations of
motion transform. First we will discuss the transformation of Hamiltonian
equations of motion under the mapping, and then consider the transformation
of the field dependent dynamics. This will require an extension of the mappings
to include the field itself.

To illustrate the development we will consider the time reversal mapping M”
in detail, and simply state the results for other mappings. In what follows the
mapping operator M” operates on all functions and operators (which depend

upon T" and ¥ ) to its right. A particular example is useful at this stage, so consider

the shear stress F-

(7.43)

P,

Here "+ is mapped to the same value. For thermodynamically interesting phase

variables the operation of the mappings involve simple parity changes
(7.44)

where P = #1_ In the following table we list the values of the parity operators
for shear stress, pressure and energy for each of the mappings.

Table 7.1 Mapping Parities

Parity Operators Mapping shear stress pressure energy
Mj Identity 1 1 1
M T Time reversal 1 1 1
m" y-reflection -1 1 1
M K Kawasaki -1 1 1

The operation of the mapping M" on the Hamiltonian equations of motion is

(7.45)

(7.46)

where the transformed coordinate and momenta are denoted by the superscript
(T). The vector character of the force F is determined by the coordinate vector
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4, so that under this mapping the force is invariant. Because 4 and P change
sign under the mapping M", the phase variable Liouvillean becomes

(7.47)
It is straightforward to use this result and the series expansion of the propagator

to show that

(7.48)

To see exactly how this combination of the M’ mapping,and forward time
propagation combine to give time reversal we consider the time evolution of T
itself,

(7.49)
This implies that

(7.50)

If we start with (07}, propagate forward to time ¢, map with M’ (changing the
signs of the momenta), propagate forward to time ¢, and map with M" (changing
the signs of the momenta again), we return to T'l0). An analogous identity can

be constructed by considering , that is

(7.51)
This says that we can complete a similar cycle using the backward time

propagator exp[=iLt] first. These to results demonstrate the various uses of this
time reversal mapping.

When the equations of motion for the system involve an external field the time
reversal mapping can be generalised to include the field. This is necessary if we
wish to determine whether a particular mapping leads to different field dependent
dynamics. Here we limit consideration to the isothermal SLLOD algorithm for
shear flow. It is clear that all the momenta must change sign so a suitable choice
for the mapping is



Nonlinear Response Theory

(7.52)

As the field has units of inverse time the field changes sign together with the
momenta. The equations of motion for the mapped variables become

(7.53)
and

(7.54)
Notice also that for the thermostatting variable a

(7.55)

as the numerator changes sign and the denominator is invariant under the time
reversal mapping. The mapping of the Liouvillean is similar to the field free case
and it can be shown that

(7.56)
In the field dependent case the two operators, equations (7.50, 7.51) generalise
to

(7.57)

(7.58)

As a phase variable by definition is not a function of the field, the parity
operators associated with mapping phase variables are unchanged.

The second mapping we consider is the y-reflection mapping M", as it acts to
change the sign of the shear rate but not the time or the Liouvillean. This
mapping is defined by

(7.59)

This mapping consists of a coordinate reflection in the X.Z-plane, and momenta
reflection in the P.+P. -plane. Substituting this mapping into the SLLOD equations
of motion shows that the time derivatives of both ¥ and P change sign, while
the thermostatting variable remains unchanged. The y-reflection Liouvillean is
related to the standard Liouvillean by

(7.60)
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We now define the combination Kawasaki mapping M* * which consists of the
time reversal mapping followed by the y reflection mapping, so that

(7.61)
Under the Kawasaki mapping the Liouvillean is transformed to

(7.62)
Table 7.2 Summary of Phase Space Mappings

Time Reversal

y-Reflection

Kawasaki

Using the results obtained in this section it easy to show that the following four
time evolutions of the phase variable B yield identical values. That is

(7.63)

Notice that these four time evolutions involve changing the sign of the time
and/or the sign of the field. If we consider the phase variable - ['), the time
evolution leads to a negative average value at long time, and where a single sign
change is made in the propagator, the parity operator is -1. The third equality
has been used to interpret the propagation of the dissipative flux in the Kawasaki
exponent; negative time evolution with a positive external field from T, is
equivalent to positive time evolution with a positive field from I'*. As each of
the time evolutions in equation (7.63) represent different mathematical forms
for the same trajectory, the stabilities are also the same.

The Kawasaki mapping is useful as an aid to understanding the formal expression
for the Kawasaki distribution function. The particular term we consider is the
time integral of the dissipative flux in the Kawasaki exponent

using the Kawasaki mapping the negative time evolution can be transformed to
an equivalent positive time evolution. To do this consider
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(7.64)

The last equality follows from the fact that ¥ "=y . sowe may think of P (-3y.)

as equivalent (apart from the sign of the parity operator) to the propagation of
P.. forward in time, with the same Y, but starting from a different phase point
I'". The probability of this new phase point I'* in the canonical (or isothermal)
distributionis the same as the original T', as the equilibrium Hamiltonian H, is
invariant under time reversal and reflection. Therefore the Kawasaki distribution
function can be written as

(7.65)

In this form the sign of the exponent itself changes as well as the sign of the
time evolution. At sufficiently large time approaches the steady state

value , regardless of the initial phase point I'*.

7.5. Numerical Results for the Transient Time-Correlation
Function

Computer simulations have been carried out for two different systems (Evans
and Morriss, 1988). Two statistical mechanical systems were studied. The first
was a system of 72 soft disks, (¢p=4€(0/r)"?), in two dimensions at a reduced
density, p*: 0% = 0.6928, a reduced temperature, T = kT/e = 1, and for a range
of reduced strain rates, ¥ '= ¥(m/€)"’0 = Ou, /0y (m£)"’0. The second system was
studied more extensively. It consisted of 256 WCA particles. The system was
three dimensional and the density was set to p=p0’ = 0.8442 while the
temperature was T = kT/€ = 0.722 (ie the Lennard-Jones triple point state).

In each simulation the direct NEMD average of the shear stress, pressure, normal
stress difference and thermostat multiplier , were calculated along with their
associated transient correlation functions using typically 60,000 nonequilibrium
starting states. For the three dimensional system each nonequilibrium trajectory
was run for a reduced time of 1.5 (600 timesteps). Each 60,000 starting state
simulation consisted of a total of 54 million timesteps made up of 2 x 15,000 x
600 timesteps at equilibrium and 4 x 15,000 x 600 perturbed nonequilibrium
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timesteps. The trajectory mappings described in §7.4 were used to generate the
4 starting states for the nonequilibrium trajectories.

In Figure 7.1 we present the results obtained for the reduced shear stress

P, *:ny(dz/s), in the 2 dimensional soft disk system. The imposed reduced strain
rate is unity. The values of the shear stress calculated from the transient

correlation function expression, (P «(T)), agree within error bars, with those

calculated directly, (P #(D)). The errors associated with the direct average are
less than the size of the plotting symbols whereas the error in the integral of the
transient correlation function is approximately £2.5% at the longest times.
Although the agreement between the direct simulation results and the TTCF
prediction is very good it must be remembered that the total response for the
shear stress is the sum of a large linear effect which could be correctly predicted
by the Green-Kubo formula and a smaller (~25%) nonlinear effect. Thus the
statistical agreement regarding the TTCF prediction of the intrinsically nonlinear
component of the total response is therefore approximately 10%.

Figure 7.1 Reduced shear stress, , in the two-dimensional

soft-disc system. P.AT), calculated from the transient correlation function;

F.(D), calculated directly.

The shear-induced increase in pressure with increasing strain rate (shear
dilatancy) is an intrinsically nonlinear effect and is not observed in Newtonian
fluids. The Green-Kubo formulae predict that there is no coupling of the pressure

and the shear stress because the equilibrium correlation function, <Ap(t) Py (0)>,
is exactly zero at all times. In Figure 7.2 we present the direct and transient
correlation function values of the difference between the pressure p*:p(OZ/e]
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and its equilibrium value, p, , (Ap =p-po ). The agreement between the direct
average, and the value obtained from the transient correlation function expression
at ¥ " = 1.0 is impressive. It is important to note that the agreement between
theory and simulation shown in Figure 7.2, is a test of the predictions of the
theory for an entirely nonlinear effect. It is a more convincing check on the
validity of the TTCF formalism than are the results for the shear stress because
there is no underlying linear effect.

Figure 7.2 Direct (D) and transient (T) correlation function values of

The results for the x-y element of the pressure tensor in the three dimensional
WCA system are given in Figure 7.3. Again the agreement between the TTCF
prediction (T), and the Direct simulation (D), is excellent. We also show the long
time steady state stress computed by conventional NEMD (denoted, SS). It is
clear that our time limit for the integration of the Transient Time Correlation
Functions is sufficient to obtain convergence of the integrals (i.e. to ensure
relaxation to the nonequilibrium steady state). We also show the Green-Kubo
prediction for the stress (GK). A comparison of the linear and nonlinear responses
shows that the intrinsically nonlinear response is only generated at comparatively
late times. The response is essentially linear until the stress overshoot time
(t ~0.3). The figure also shows that the total nonlinear response converges far
more rapidly than does the linear GK response. The linear GK response has
obviously not relaxed to its steady state limiting value at a t value of 1.5. This
is presumably because of long time tail effects which predict that the linear

response relaxes very slowly as t'?, at long times.
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Figure 7.3 The x-y element of the pressure tensor in the three-dimensional
WCA system. T, TTCF prediction; D, direct simulation; GK, Green-Kubo
prediction. SS, long-time steady-state stress computer using conventional
NEMD.

In Figure 7.4 we show the corresponding results for shear dilatancy in three
dimensions. Again the TTCF predictions are in statistical agreement with the
results from direct simulation. We also show the steady state pressure shift
obtained using conventional NEMD. Again it is apparent that t = 1.5 is sufficient
to obtain convergence of the TTCF integral. Although it is not easy to see in the
figure, the initial slope of the pressure response is zero.

Figure 7.4 Shear dilatancy in three dimensions. For abbreviations see Fig 7.3
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This contrasts with the initial slope of the shear stress response which is G..
This is in agreement with the predictions of the transient time correlation
formalism made in §7.3. Figures 7.1, 7.3 clearly show that at short time the stress
is controlled by linear response mechanisms. It takes time for the nonlinearities
to develop but paradoxically perhaps, convergence to the steady state asymptotic
values is ultimately much faster in the nonlinear, large field regime.

Comparing the statistical uncertainties of the transient correlation and direct
NEMD results shows that at reduced strain rates of unity conventional NEMD
is clearly the most efficient means of establishing the steady state response. For
example under precisely the same conditions: after 54 million timesteps the TTCF
expression for P. is accurate to * 0.05, but the directly averaged transient
response is accurate to +0.001. Because time is not wasted in establishing the
steady state from each of 60,000 time origins, conventional steady state NEMD
needs only 120 thousand timesteps to obtain an uncertainty of * 0.0017. If we
assume that errors are inversely proportional to the square root of the run length,
then the relative uncertainties for a 54 million timestep run would be * 0.05,
0.001 and 0.00008 for the TTCF, the directly averaged transient response and
for conventional NEMD, respectively. Steady state NEMD is about 600 times
more accurate than TTCF for the same number of timesteps. On the other hand,
the transient correlation method has a computational efficiency which is similar
to that of the equilibrium Green-Kubo method. For TTCFs time origins cannot
be taken more frequently than the time interval over which the TTCFs are
calculated. An advantage of the TTCF formalism is that it models the rheological
problem of stress growth(Bird et. al., 1977), not simply steady shear flow, and
we can observe the associated effects such as stress overshoot, and the time
development of normal stress differences.

Figure 7.5 shows the transient responses for the normal stress differences, Pyy-Py,
and Py -Pyy,
unity. The normal stress differences are clearly more subtle than either the shear
stress or the hydrostatic pressure. Whereas the latter two functions seem to
exhibit a simple overshoot before relaxing to their final steady state values, the
normal stress differences show two maxima before achieving their steady state
values (indicated SS, in the figure). As before it is apparent that t = 1.5, is

for the three dimensional WCA system at a reduced strain rate of

sufficient time for an essentially complete relaxation to the steady state.
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Figure 7.5 Transient responses for the normal stress differences P.-P. and

F.. = F. for the three dimensional WCA system at a reduced strain rate of
unity.

Over the years a number of numerical comparisons have been made between
the Green-Kubo expressions and the results of NEMD simulations. The work we
have just described takes this comparison one step further. It compares NEMD
simulation results with the thermostatted, nonlinear generalisation of the
Green-Kubo formulae. It provides convincing numerical evidence for the
usefulness and correctness of the Transient Time Correlation Function formalism.
The TTCF formalism is the natural thermostatted, nonlinear generalisation of
the Green-Kubo relations.

7.6. Differential Response Functions

Surprisingly often we are interested in the intermediate regime where the
Green-Kubo method cannot be applied and where, because of noise, direct NEMD
is very inefficient. We have just seen how the TTCF method may be applied to
strong fields. It is also the most efficient known method for treating fields of
intermediate strength. Before we demonstrate the application of TTCFs to the
small field response, we will describe an early method that was used to calculate
the intermediate field response.

Prior to the development of Transient Time Correlation Function method, the
only way of computing the small but finite field response of many-body systems
was to use the Subtraction or Differential response method. The idea behind this
method is extremely simple. By considering a sufficiently small field, the
systematic response (ie the field induced response) will be swamped by the
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natural (essentially equilibrium) fluctuations in the system. However it is clear
that for short times and small applied fields, there will be a high degree of
correlation in the transient response computed with, and without, the external
field, (see Fig. 7.6).

Figure 7.6 We depict the systematic nonequilibrium response (the shaded
curve) as the difference of the nonequilibrium response from the equilibrium
response. By taking this difference we can dramatically reduce the noise in
the computed systematic nonequilibrium response. To complete this calculation
one averages this differenc over an ensemble of starting states.

If we compute A(t) for two trajectories which start at the same phase, T, one
with the field on and the other with the field off, we might see what is depicted
in Figure 7.6. Ciccotti et. al. (1975, 1976, 1979), realised that, for short times, the
noise in A(t) computed for the two trajectories, will be highly correlated. They
used this idea to reduce the noise in the response computed at small applied
fields.

To use their Subtraction Method one performs an equilibrium simulation (F.=0),
from which one periodically initiates nonequilibrium calculations (F.#0). The
general idea is shown in Figure 7.7. The phases {I" ;}, are taken as time origins
from which one calculates the differences of the response in a phase variable
with and without the applied field. The systematic or nonequilibrium response
is calculated from the equation,

(7.66)
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Figure 7.7 lllustration of the subtraction method.

For many years this was the only method of calculating the small field
nonequilibrium response. It suffers from a major problem however. For the
method to work, the noise in the the value of A(t) computed with and without
the field, must be highly correlated. Otherwise the equilibrium fluctuations will
completely swamp the desired response. Now the noise in the two responses
will only be correlated if the two systems remain sufficiently close in phase
space. The Lyapunov instability (§3.4) will work against this. The Lyapunov
instability will try to drive the two systems apart exponentially fast. This can
be expected to lead to an exponential growth of noise with respect to time. This
is illustrated in Figures 7.8,9 in which the TTCFE, denoted (T), and Subtraction
techniques, denoted (sub), are compared for the 256 particle WCA system
considered in §7.5.

Figure 7.8 shows the shear stress for the three dimensional WCA system at the
comparatively small strain rate of ¥~ = 10”. At this field strength conventional
steady state NEMD is swamped by noise. However the Subtraction technique
can be used to substantially improve the statistics. It is important to note that
both the Subtraction and TTCF technique are based on an analysis of the transient
response of systems. The results compared in Figure 7.8 were computed for
exactly the same system using exactly the same data. The only difference
between the two sets of results is how the data were analysed. Lyapunov noise

is clearly evident in the Subtraction results labelled in Figure 7.8 as P--(sub).
For longer times, during which we expect the slow nonlinearities to complete
the relaxation to the steady state, the Subtraction technique becomes very noisy.
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Figure 7.8 Shear stress for the three-dimensional WCA system at a strain
rate of ¥ =10"_ sub, subtraction technique; T, TTCF.

Figure 7.9 shows the corresponding results for shear dilatancy. Here the
Subtraction technique (labelled ‘sub’), is essentially useless. Even the TTCF
method becomes somewhat noisy at long times. The TTCF results clearly show
the existence of a measurable, intrinsically nonlinear effect even at this small
strain rate.

Although the TTCF method allows us to compute the response of systems to
fields of arbitrary, even zero, strength, we often require more information about
the small field response than it is capable of providing. For example at small
fields the response is essentially linear. Nonlinear effects that we may be
interested in are completely swamped by the linear response terms. The
Differential Transient Time Correlation Function (DTTCEF) is an attempt to provide
an answer to this problem. It uses a subtraction technique on the TTCFs
themselves to formally subtract the linear response.
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Figure 7.9 Shear dilatancy for the three-dimensional WCA system at a strain
rate of ¥ =10 sub, subtraction technique; T, TTCF.

In the DTTCF method we consider the difference between B(s) evaluated with
and without the external field, starting from the same initial phase point. From
the transient correlation function expression this gives

(7.67)

In this equation B(s.v) is generated from B(0) by the thermostatted field
dependent propagator. B(s.0), on the other hand is generated by the zero-field
thermostatted propagator. The last term is the integral of an equilibrium time
correlation function. This integral is easily recognised as the linear, Green-Kubo
response. The first term on the RHS is the integral of a differential transient time
correlation function (DTTCF), and is the intrinsically nonlinear response. The
LHS is termed the direct differential, or subtraction average.

There are two possible cases; the first in which B has a non-zero linear response
term, and the second where the linear response is identically zero. If B is chosen

to be P the third term in (7.6.2) is the Green-Kubo expression for the response
of the shear stress 10}y , where 1(0} is the zero shear rate shear viscosity. The

definition of the shear rate dependent viscosity, gives

(7.68)
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as the intrinsically nonlinear part of the shear viscosity. As s—a the differential
transient time correlation function (using the mixing assumption) becomes

<("'J (8, ¥)-Pyy(s,0))> <Pyy> = <Pyy(s,¥)> <Py,> . This is zero because < P =(0)>

is zero. On the other hand <( P w(s,¥)> is clearly non-zero which means that the
use of our trajectory mappings will improve the statistics as s—soc.

To apply the phase space mappings in the differential response method we
consider the identity (7.63). We can obtain four different time evolutions of B(T)
by simply removing the minus signs and parity operators from each of the
equivalent forms in equation (7.63). If we use the index a to denote the 4
mappings {I,T,YK}, then

(7.69)

This is the direct response of the phase variable B(I') from one sampling of T,
where the mappings are used to generate four starting phase points. To calculate
the differential response of B we need to subtract the field free time evolution
of B(I') from each of these four starting states. The four field free time evolutions
are found by setting ¥ “=0 in equation (7.69). That is

(7.70)

Clearly there are only two different field free time evolutions; the remaining
two can be obtained from these by the sign changes of the parity operators. In
practice, a single cycle of the numerical evaluation of a differential transient
time correlation function will involve the calculation of four field dependent
trajectories and two field free trajectories, yielding four starting states.

The use of the symmetry mappings implies some redundancies in the various

methods of calculating the response. In particular the direct response of Py (t)is
exactly equal to the direct differential response for all values of the time. This
means that the contribution from the field free time evolutions is exactly equal
to zero. This is easy to see from equation (7.69) as there are only two different

time evolutions; those corresponding to expliLt] and expl -iLt] respectively, and
for Pi each comes with a positive and negative parity operator. Therefore these

two responses exactly cancel for all values of time.
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The second redundancy of interest is that the transient response of the pressure
p(t) is exactly equal to the differential transient response for all values of time.
This implies that the contribution to the equilibrium time correlation function

from a single sampling of T" is exactly zero. Clearly this equilibrium
time correlation is zero when the full ensemble average is taken, but the result

we prove here is that the mappings ensure that 2 p(t) P.. is zero for each starting
state T for all values of t. The contribution from the field free trajectories is

(7.71)
Again the product of parities ensures that the two field free time evolutions

'-‘-'"\P{”-f.l, and expl-iLt] occur in cancelling pairs. Therefore the field free
contribution to the differential time correlation function is exactly zero and the
differential transient results are identical the transient correlation function
results.

The DTTCF method suffers from the same Lyapunov noise characteristic of all
differential or subtraction methods. In spite of this problem Evans and Morriss
(1987) were able to show, using the DTTCF method, that the intrinsically
nonlinear response of 3-dimensional fluids undergoing shear flow is given by
the classical Burnett form (see §9.5). This is at variance with the nonclassical
behaviour predicted by mode coupling theory. However, nonclassical behaviour
can only be expected in the large system limit. The classical behaviour observed
by Morriss and Evans (1987), is presumably the small strain rate, asymptotic
response for finite periodic systems.

A much better approach to calculating and analysing the asymptotic nonlinear
response will be discussed in §9.5.

7.7 Numerical Results for the Kawasaki Representation

We now present results of a direct numerical test the Kawasaki representation
of the nonlinear isothermal response. We show that phase averages calculated
using the explicitly normalised Kawasaki distribution function agree with those
calculated directly from computer simulation.

The system we consider is the thermostatted NEMD simulation of planar Couette
flow using the isothermal SLLOD algorithm (§6.3). As remarked ealier, the
primary difficulty in using the Kawasaki expression in numerical calculations
arises because it involves calculating an extensive exponential. For a 100-particle
Lennard-Jones triple point system we would have to average quantities of the
order of, ¢, to determine the viscosity. Larger system sizes would involve
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proportionately larger exponents! The simulations presented here attempt to
reduce these difficulties by using two strategies: they use a comparatively small
number of particles, N=18 in two dimensions, and they were carried out at a
low density, p'=0.1, where the viscosity is ~50 times smaller than its triple point
value. For small systems it is necessary to take into consideration terms of order,
1/N, in the definition of the temperature, T = (X ; p; °/m )/(dN-d-1), and the shear

stress, P V=(dN-d)/(dN-d-1) ; pyi pyi/m -(1/2)Z iy,

The first order equations of motion were solved using the 4th order Runge-Kutta
method with a reduced timestep of 0.005. The reduced shear rate ¥ * = 1, and
the reduced temperature was also set to unity.

The simulation consisted of a single equilibrium trajectory. At regular intervals
(every 399 timesteps) the current configuration was used to construct four
different configurations using the trajectory mappings described in §7.4. Each
of these configurations was used as an initial starting point for a non-equilibrium
simulation of 400 timesteps, with a negative timestep and reduced shear rate ¥
= 1. Time dependent averages were calculated, with the time being measured
since the last equilibrium starting state. The aim was to produce the Kawasaki
averages by exactly programming the dynamics in the Kawasaki distribution
function (equation 7.24).

The phase space integral of the bare Kawasaki distribution function f{t), equation
(7.24), is

(7.72)

Z(0) is the phase integral of the equilibrium distribution function which is equal
to unity since f{0) is the normalised equilibrium distribution function. It is
interesting to consider the rate of change of Z(t) after the external field is switched
on. Using manipulations based on the reversible Liouville equation we can show
that,

(7.73)

The last equality is a consequence of the Schrédinger-Heisenberg equivalence
(§3.3). This implies that the bare Kawasaki distribution function is normalised
for all times t. This is a direct result of the reversibility of the classical equations
of motion. In Figure 7.10 we present the numerical results for Z(t). Figure 7.10
shows that equation (7.73) is clearly false. The normalisation is unity only for a
time of the order of the Lyapunov time for the system. After this time the
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normalisation decreases rapidly. The explanation of this apparent paradox is
that the analysis used to establish (7.73) is based on the reversible Liouville
equation. The simulation used to generate the results shown in Figure 7.10 is,
however, not time reversible. Trajectories which imply a long periods (compared
to the Lyapunov time) of entropy decrease are mechanically unstable both in
nature and in computer simulations. Because it is impossible to integrate the
equations of motion exactly, these entropy decreasing trajectories are not
observed for times longer than the Lyapunov time which characterises the
irreversible instability of the equations of motion.

The form of the function, Z(t), shown in Figure 7.10, is determined by the
accuracy with which the calculations are carried out. In principle by using ever
more powerful computers one could, by increasing the word length and by
decreasing the integration time step, ensure that the computed Z(t) stayed close
to unity for longer and longer times. The exact result is that Z(t)=1. For a hard
sphere system, the time over which the trajectory accuracy is better than a set
tolerance only grows like, -In(€'") where A is the largest Lyapunov exponent for
the system and € is the magnitude of the least significant digit representable on
the computer. However our ability to numerically extend the times over which
Z(t)~1, is much worse than this analysis implies. As we compute (7.72) for longer
times, the variance in <exp[-BF. Of‘ ds J(-s)]> grows exponentially in time,
regardless of the accuracy with which the trajectories are computed!

Figure 7.10 We show computer simulation results for the Kawasaki
normalization, Z(t). According to the Liouville equation this function should
be unity for all times, t. This is clearly not the case (see Evans, 1990, for
details).
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We have discussed the Kawasaki normalization in terms of numerical procedures.
However exactly the same arguments apply to the experimental observation of
the normalization. In nature, the problems in observing Z(t)~1 for long times
result from uncontrolled external perturbations on the system rather than from
numerical errors. However numerical error can be regarded as a particular form
of external perturbation (€ above, would then be a measure of the background
noise level). Of course the act of observation itself is a source of ‘external’ noise.

The results in Figure 7.10, show that the computed bare Kawasaki distribution
function is not be properly normalised. Thus we should not surprised to see that
the bare Kawasaki expression for the average shear stress is inconsistent with
the results of direct calculation as is shown in Figure 7.11.

The obvious way around this problem is to explicitly normalise the distribution
function (Morriss and Evans, 1987). The explicitly normalised form is

(7.74)

The renormalized average of the shear stress is then

(7.75)

We used computer simulation to compare the direct NEMD averages, and the
bare and renormalized Kawasaki expressions for the time dependent average
shear stress in a fluid. The results shown in Figure 7.11 are very encouraging.
The renormalized Kawasaki result (denoted 'Kawasaki') agrees with that calculated
directly and with the TTCF result. This is despite the fact that the normalisation
has decreased by nearly two orders of magnitude at t = 2.0. The results show
that the bare Kawasaki result is incorrect. It is two orders of magnitude smaller
than the correct results.

Incidentally Figure 7.11 shows extraoridinarily close agreement (~0.2% for
0<t <2) between the TTCF prediction and direct NEMD. The agreement between
direct NEMD and TTCEF results for both the hydrostatic pressure and the normal
stress difference is of a similar order. This indicates that one does not need to
take the thermodynamic limit for the TTCF or GK formulae to be valid. Provided
correct expressions are used for the temperature and the various thermodynamic
fluxes, 18 particles seems sufficient.

Clearly no one should plan to use the renormalized Kawasaki formalism as a
routine means of computing transport coefficients. It is probably the least efficient
known method for computing nonequilibrium averages. The Kawasaki formalism
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is however, a very important theoretical tool. It was of crucial importance to the
development of nonlinear response theory and it provides an extremely useful
basis for subsequent theoretical derivations. As we will see in Chapter 9, the
renormalized Kawasaki formalism, in contrast to the TTCF formalism, is very
useful in providing an understanding of fluctuations in nonequilibrium steady
states.

Figure 7.11 We compare four different methods of computing the nonlinear
nonequilibrium response of a system of 18 soft discs to a suddenly imposed
shear flow. The agreement between the Transient Time Correlation Function
method and direct nonequilibrium molecular dynamics is better than 2 parts

in 10" over the entire range of times studied. This is the most convincing
numerical verification yet made of the correctness of the Transient Time
Correlation Function method. The renormalized Kawasaki method (denoted
Kawasaki) is in statistical agreement with the direct calculations but the bare
Kawasaki method is clearly incorrect (see Evans, 1990, for details).

7.8 The Van Kampen Objection to Linear Response Theory

Having explored some of the fundamentals of nonlinear response theory, we are
now in a better position to comment on one of the early criticisms of linear
response theory. In an oft-cited paper van Kampen (1971), criticised linear
response theory on the basis that microscopic linearity which is assumed in
linear response theory, is quite different from the macroscopic linearity manifest
in linear constitutive relations. Van Kampen correctly noted that to observe
linear microscopic response (ie of individual particle trajectories) over
macroscopic time (seconds, minutes or even hours), requires external fields
which are orders of magnitude smaller than those for which linear macroscopic
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behaviour is actually observed. Therefore, so the argument goes, the theoretical
justification of, the Green-Kubo relations for linear transport coefficients, is
suspect.

In order to explain his assertion that linearity of microscopic motion is entirely
different from macroscopic linearity, van Kampen considered a system composed
of electrons which move, apart from occasional collisions with impurities, freely
through a conductor. An imposed external electric field, F,, accelerates the
particles between collisions. The distance an electron moves in a time t, under
the influence of the field, is 1/2t*(eF,/m). In order for the induced current to be
linear one requires that t’(eF./2m) << d, the mean spacing of the impurities.
Taking d~ 100A and t to be a macroscopic time, say 1 second, we see that the
field must be less than ~10"*Volts/cm!

As a criticism of the derivation of linear response theory, this calculation implies
that for linear response theory to be valid, trajectories must be subject to a linear
perturbation over macroscopic times - the time taken for experimentalists to
make sensible measurements of the conductivity. This however, is incorrect.

The linear response theory expression for the conductivity, 0 (=J/F,) is,

(7.76)

Now it happens that in three dimensional systems the integral of the equilibrium
current autocorrelation function converges rapidly. (In two dimensional systems
this is expected not to be so.) The integral in fact converges in microscopic time,
a few collision times in the above example. Indeed if this were not so one could
never use equilibrium molecular dynamics to compute transport coefficients
from the Green-Kubo formulae. Molecular dynamics is based on the assumption
that transport coefficients for simple fluids can be computed from simulations
which only follow the evolution systems for ~10"° seconds. These times are
sufficient to ensure convergence of the Green-Kubo correlation functions for all
the Navier-Stokes transport coefficients. If we require microscopic linearity over
10"’ seconds (rather than van Kampen's 1 second) then we see that the microscopic
response will be linear for fields less than about 100Volts/cm, not an unreasonable
number. It simply does not matter that for times longer than those characterising
the relaxation of the relevant GK correlation function, the motion is perturbed
in a nonlinear fashion. In order for linear response theory to yield correct results
for linear transport coefficients, linearity is only required for times characteristic
of the decay of the relevant correlation functions. These times are microscopic.

We used nonequilibrium molecular dynamics simulation of shear flow in an
atomic system to explore the matter in more detail (Morriss et. al., 1989). We
performed a series of simulations with and without an imposed strain rate, ¥
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(=0uy/0y), to measure the actual separation d, of phase space trajectories as a
function of the imposed strain rate. The phase space separation is defined to be,

(7.77)

where '=(q 1,9 2,-.- Q@ NP 1'P 2 -+ -P n) is the 6N-dimensional phase space
position for the system. In measuring the separation of phase space trajectories
we imposed the initial condition that at time zero the equilibrium and
nonequilibrium trajectories start from exactly the same point in phase space,
d(0,7)=0, V¥. We used the 'infinite checker board' convention for defining the
Cartesian coordinates of a particle in a periodic system. This eliminates trivial
discontinuities in these coordinates. We also reported the ensemble average of
the phase space separation, averaged over an equilibrium ensemble of initial

phases, T°(0,0).

The equations of motion employed were the SLLOD equations. As we have seen

the linear response computed from these equations is given precisely, by the

Green-Kubo expression for the shear viscosity. The system studied in these

simulations was the Lennard-Jones fluid at its triple point

(0’ =p0°=0.8442,T'=kpT/€=0.722, t =t(€/m)""0""). A Lees-Edwards periodic system
of 256 particles with a potential truncated at, r =r/0=2.5, was employed.

Before we begin to analyse the phase separation data we need to review some
of the relevant features of Lennard-Jones triple point rheology. Firstly, as we
have seen (§6.3) this fluid is shear thinning. The strain rate dependent shear
viscosities of the Lennard-Jones triple point fluid are set out in the table below.

Table 7.3. Strain rate dependent shear viscosities for the Triple Point
Lennard-Jones fluid

reduced strain rate reduced viscosity percentage nonlinearity
1.0 2.17 + 0.038 37%
0.1 3.04+0.03 12%
0.01 3.31+0.08 ~4%
0.0 3.44+0.2 0" NEMD est

I NEMD estimated.

The most important relevant fact that should be noted from these results is that
for reduced strain rates, ¥ '<~107, the fluid is effectively Newtonian with a
viscosity which varies at most, by less than ~4% of its zero shear value. (Because
of the uncertainty surrounding the zero shear viscosity, we cannot be more
certain about the degree of nonlinearity present at ¥ '=0.01.)

The second relevant fact that we should remember is that the GK equilibrium
time correlation function whose integral gives the shear viscosity, has decayed
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below.
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Table 7.4. Green Kubo equilibrium stress correlation function for shear

viscosity
t correlation function Percentage of t=0 value
0.0 24.00 100
0.1 7.17 29
1.0 0.26 1
2.0 0.09 0.3

Of course the viscosity which is the time integral of this correlation function
converges relatively slowly due to the presence of the slowly decaying t*” long
time tail. Here again there is some uncertainty. If one believes that enhanced long
time tail phenomena (§6.3), are truly asymptotic and persist indefinitely then
one finds that the viscosity converges to within ~13% of its asymptotic value
at t=1.0 and to within ~5% of the asymptotic value at t =10.0. (If we map our
simulation onto the standard Lennard-Jones representation of argon, t=1.0
corresponds to a time of 21.6 picoseconds.) If enhanced long time tails are not
asymptotic then the GK integrand for the shear viscosity converges to within
~5% of its infinite time value by t' =2.

The only important observation that concerns us here is that the GK estimate
for the shear viscosity is determined in microscopic time, a few hundreds of
picoseconds at the very most, for argon. This observation was omitted from van
Kampen's argument. We call the range of times required to ensure say 5%,
convergence of the GK expression for the viscosity, the GK time window.

Figure 7.12 shows the common logarithm of the ensemble average of the phase
space separation plotted as a function of reduced time for various values of the
imposed shear rate. The shear rates employed were: ¥ =10, 10", 102 107, 107,
107. Note that for the standard Lennard-Jones argon representation, these strain
rates correspond to shear rates of 4.6*10" to 4.6*10° Hz. It will be clear from the
present results that no new phenomena would be revealed at strain rates less

than ¥ ~ 107",

201



202

Statistical Mechanics of Nonequilibrium Liquids

Figure 7.12 Logarithm of the ensemble average of the phase space separation
plotted as a function of reduced time for various values of the imposed shear

rate,

One can see from the figure that at a shear rate of 107, the phase space separation
increases very rapidly initially and then slows to an exponential increase with
time. The same pattern is followed at a strain rate of 10” except that the initial
rise is even more rapid than for a strain rate of 10”. Remember that at t=0 the
phase space separations start from zero, and therefore the logarithm of the t=0
separations is -, for all strain rates.

For strain rates >107, we notice that at long times the phase separation is a
constant independent of time. We see an extremely rapid initial rise, followed
by an exponential increase with a slope which is independent of strain rate,
followed at later times by a plateau. The plateau is easily understood.

The simulations shown in Figures 7.12,13 are carried out at constant peculiar
kinetic energy Zp; °/2m = 3NkyT. The 3N components of the phase space
momenta therefore lie on the surface of a 3N-dimensional sphere of radius, rp =
N (3NmkgT). Once the phase space separation exceeds this radius, the curved
nature of accessible momentum space will be apparent in our phase space
separation plots. The arrow marked on Figure 7.12 shows when the logarithm
of the separation is equal to this radius. The maximum separation of phase points
within the momentum sub-space is of course 2r. It is clear therefore that the
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exponential separation must end at approximately, d(t,I') = ry. This is exactly
what is observed in Figure 7.12.

Between the plateau and the initial (almost vertical) rise is an exponential region.
As can be see from the graph the slope of this rise is virtually independent of
strain rate. The slope is related to the largest positive Lyapunov exponent for
the system at equilibrium. The Lyapunov exponent measures the rate of
separation of phase trajectories that start a small distance apart, but which are
governed by identical dynamics. After initially being separated by the external
field, the rate of phase space separation thereafter is governed by the usual
Lyapunov instability. The fact that the two trajectories employ slightly different
dynamics is a second order consideration. The Lyapunov exponents are known
to be insensitive to the magnitude of the perturbing external field for field
strengths less than 107

This conjecture regarding the role played by the Lyapunov exponent in the
separation of equilibrium and nonequilibrium trajectories which start from a
common phase origin is easily verified numerically. Instead of measuring the
separation, d, induced by the strain rate, we ran a simulation in which two
trajectories started at slightly different phases and which evolved under
(identical) zero strain rate equations of motion. The resulting displacement is
shown in Figure 7.12 and labelled as ‘lyap’ in the legend. One can see that the
slope of this Lyapunov curve is essentially identical to the exponential portions
of the strain rate driven curves. The time constants for the exponential portions
of the curves are given in Table 7.5.

At this stage we see that even at our smallest strain rate, the trajectory separation
is exponential in time. It may be thought that this exponential separation in time
supports van Kampen's objection to linear response theory. Surely exponentially
diverging trajectories imply nonlinearity? The assertion turns out to be false.

Table 7.5. Exponential time Constants for phase separation in the Triple Point
Lennard-Jones fluid under shear

Time constant reduced strain rate

1.715+£0.002 0.0 Lyapunov
1.730+0.002 107 Shear induced
1.717 +0.002 10° Shear induced
1.708 £0.012 10° Shear induced
1.689+0.03 107 Shear induced

In Figure 7.13 we examine the field dependence of the phase separations in more
detail. In this figure we plot the ratio of the separations to the separation observed

for a field, ¥ =10 T

If the ensemble averaged trajectory response is linear then each of the curves in
Figure 7.13 will be equispaced horizontal lines. The curves denoted 'av' refer to
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the ensemble averaged separations shown in Figure 7.12. One can see immediately
that within the GK time window, t < 2.0, all the separations are linear in the

field except for the largest two strain rates ¥ =1.0.0.1, We should expect that all
strain rates exhibiting linearity within the GK time window should correspond
to those systems exhibiting macroscopic linear behaviour (ie. those which are
Newtonian). Those exhibiting microscopic nonlinearity within the GK time
window should display non-Newtonian macroscopic behaviour. Comparing
table 7.3 with Figure 7.12, this is exactly what is seen.

Although systems at a shear rate ¥ =107 & 10, do exhibit a nonlinear growth
in the phase space separation, it occurs at times which are so late, that it cannot
possibly effect the numerical values of the shear viscosity. These nonlinearities
occur outside the GK time window.

A possible objection to these conclusions might be: since we are computing
ensemble averages of the phase space separations, it might be the averaging
process which ensures the observed microscopic linearity. Individual trajectories
might still be perturbed nonlinearly with respect to the strain rate. This however,
is not the case. In Figure 7.13 the symbols plotted represent the phase space
separation induced in single trajectories. For all strain rates a common phase
origin is used. We did not average over the time zero phase origins of the systems.

What we see is a slightly noisier version of the ensemble averaged results.
Detailed analysis of the un-averaged results reveals that:

L for ¥ <107 linearity in strain rate is observed for individual

trajectories; and

the exponential behaviour in time is only observed when #(¥.1] is
averaged over some finite but small, time interval.

The exponential Lyapunov separation is of course only expected to be observed
'on average' either by employing time or ensemble averages. The main point we
make here is that even for individual trajectories where phase separation is not
exactly exponential in time, trajectory separation is to 4 significant figure
accuracy, linear in the field. The linearity of the response is not produced by
ensemble averaging.
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Figure 7.13 We plot the ratio of the phase space separations as a function
of strain rate and time. The ratios are computed relative to the separation at

a reduced strain rate of 10 7. Curves denoted by 'av' are ensemble averages.
Those not so denoted give the results for individual phase trajectories. Since
the integrals of the Green-Kubo correlation functions converge to within a
few percent by a reduced time of ~ 1.5, we see that the trajectory separation
is varying linearly with respect to strain rate for reduced strain rates less than
~ 2. This is precisely the strain rate at which direct nonequilibrium molecular
dynamics shows a departure of the computed shear viscosity from linear
behaviour.

We conclude from these studies that within the GK time window, macroscopic
and microscopic linearity are observed for identical ranges of strain rates. For
times shorter than those required for convergence of the linear response theory
expressions for transport coefficients, the individual phase space trajectories are
perturbed linearly with respect to the strain rate for those values of the strain
rate for which the fluid exhibits linear macroscopic behaviour. This is in spite
of the fact that within this domain the strain rate induces an exponential
separation of trajectories with respect to time. We believe that many people have
assumed an exponential trajectory separation in time implies an exponential
separation with respect to the magnitude of the external field. This work shows
that within the GK time window, the dominant microscopic behaviour in fluids
which exhibit linear macroscopic behaviour, is linear in the external field but
exponential in time.
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We have seen in Figure 7.12 that for intermediate times the phase separation
takes the form,

(7.78)

where the Lyapunov time, Ty, is the inverse of the largest Lyapunov exponent
for the system at equilibrium. We can explain why the phase separation exhibits
this functional form and moreover, we can make a rough calculation of the
absolute magnitude of the coefficient, A. We know that the exponential
separation of trajectories only begins after a time which is roughly the Maxwell
relaxation time Ty, for the fluid. Before the particles sense their mutual
interactions, the particles are freely streaming with trajectories determined by
the initial values of (6.B). After this initial motion the particles will have
coordinates and momenta as follows,

(7.79)

When this approximation breaks down, approximately at the Maxwell relaxation
time, Ty; N/G, the phase separation d(Ty,, ) will be,

(7.80)

For our system this distance is,

(7.81)

We have used the fact that the reduced Maxwell time is 0.137. After this time
the phase separation can be expected to grow as,

(7.82)

where, as before Ty is the inverse of the largest zero-strain rate Lyapunov
exponent. For fields less than ¥ =107, the equilibrium Lyapunov time dominates
the denominator of the above expression. This explains why the slopes of the
curves in Figure 7.12 are independent of strain rate. Furthermore by combining
equations (7.70), (7.81) and (7.82) we see that in the regime where the strain rate
corrections to the Lyapunov exponents are small, the phase separation takes the
form given by equation (7.78) with the coefficient, A~8.7. Equation (7.82) is
plotted, for a reduced strain rate of 107, as a dashed line in Figure 7.12. It is in
reasonable agreement with the results. The results for other strain rates are
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similar. The greatest uncertainty in the prediction is the estimation of the precise
time at with Lyapunov behaviour begins.
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8. Time Dependent Response Theory

8.1 Introduction

In this chapter we extend the nonlinear response theory discussed in Chapter 7
to describe the response of classical, many-body systems to time dependent
external fields. The resulting formalism is applicable to both adiabatic and
thermostatted systems. The results are then related to a number of known special
cases: time dependent linear response theory, and time independent nonlinear
response theory as described by the transient time correlation approach and the
Kawasaki response formula.

We begin by developing a formal operator algebra for manipulating distribution
functions and mechanical phase variables in a thermostatted system subject to
a time dependent applied field. The analysis parallels perturbation treatments
of quantum field theory (Raimes, 1972 and Parry, 1973). The mathematical
techniques required for the time dependent case are sufficiently different from,
and more complex than, those required in the time independent case that we
have reserved their discussion until now. One of the main differences between
the two types of nonequilibrium system is that time-ordered exponentials are
required for the definition of propagators in the time dependent case. New
commutivity constraints which have no counterparts in the time independent
case, place severe limitations on the mathematical forms allowed to express the
nonlinear time dependent response. In the time independent case two forms
have already been met in Chapter 7: the Kawasaki and the Transient Time
Correlation Function forms. In this chapter we will meet yet another. Of these
three forms only one is applicable in the time dependent case.

8.2 Time Evolution of Phase Variables

When a system is subject to time dependent external fields the equations of
motion for both the distribution function and phase variables, become quite
complex. There are two time dependences in such a system. One is associated
with the time at which you wish to know the phase position I'(t) and the other
is associated with the explicit time dependence of the field, F(t). In order to deal
with this complexity in a convenient way we introduce a more compact notation
for the propagator. Apart from some important notational differences the initial
development parallels that of Holian and Evans (1985). We define the
p-propagator Ug(0,t) to be the operator which advances a function of T" only,
forward in time from O to t (the meaning of the subscript will emerge later). That
is

(8.1)
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The operator Ug(0,t) operates on all functions of phase located to its right. The
equations of motion for the system at time t, which are themselves a function of
phase T, are given by

(8.2)

The notation dI'(T'(t),t)/dt implies that the derivative should be calculated on the
current phase T'(t), using the current field F,(t). On the other hand dTI(T'(0),t)/dt
implies that the derivative should be calculated on the initial phase T'(0), using
the current field F,(t). The p-propagator Ug(0,t) has no effect on explicit time.
Its only action is to advance the implicit time dependence of the phase, T.

The total time derivative of a phase function B(I') with no explicit time
dependence (by definition a phase function cannot have an explicit time
dependence) is

(8.3)

where we have introduced the time dependent p-Liouvillean, iL(t) =iL(T,t) which
acts on functions of the initial phase T', but contains the external field at the
current time. The partial derivative of B with respect to initial phase T is simply
another phase function, so that the propagator Uy(0,t) advances this phase
function to time t (that is the partial derivative of B with respect to phase
evaluated at time t). In writing the last line of (8.3) we have used the fact that
the p-propagator is an explicit function of time (as well as phase), and that when
written in terms of the p-propagator, dB(T(t))/dt, must only involve the partial
time derivative of the p-propagator. Equation (8.3) implies that the p-propagator
Ug(0,t) satisfies an operator equation of the form

(8.4)
where the order of the two operators on the right-hand side is crucial. As we
shall see shortly, Ug(0,t) and iL(t) do not commute since the propagator Ug(0,t)
contains sums of products of iL(s;) at different times s;, and iL(s;) and iL(s;) , do
not commute unless s;= s;. The formal solution of this operator equation is
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(8.5)

Notice that the p-Liouvilleans are right ordered in time (latest time to the right).
As Liouvilleans do not commute this time ordering is fixed. The integration
limits imply that t > s; > s, > .... > s, so that the time arguments of the
p-Liouvilleans in the expression for Ug(0,t) increase as we move from the left to
the right. It is very important to remember that in generating B(t) from B(0) using
(8.5), if we write the integrals as say, a trapezoidal approximation it is the
Liouvillean at the latest time iL(t), which attacks B(0) first. The Liouvilleans
attack B in an anti-causal order. We will have more to say on this issue in §8.4.

We can check that (8.5) is the solution to (8.4) by differentiating with respect
to time. We see that, ¢ f “ds, disappears and the argument iL(s;), changes to
iL(t). This term appears on the right hand side, as it must to satisfy the differential
operator equation. It is easy to derive an equation for the incremental
p-propagator Ug(T,t) which advances a phase function from time T to t,

(8.6)

Our convention for the time arguments of the U-propagators is that the first
argument (in this case T), is the lower limit of all the integrals. The second
argument (in this case t), is the upper limit of the first integral.

8.3 The Inverse Theorem

We will assume that t > 0. Intuitively it is obvious that the inverse of Ug(0,t),
which we write as Ug(0,t) ", should be the propagator that propagates backwards
in time from t to 0. From (8.6) we can write down

(8.7)

Before proceeding further we will introduce an identity which is useful for
manipulating these types of integrals. Often we will have a pair of integrals
which we want to exchange. The limits of the inner most integral depend on
the integration variable for the outer integral. The result we shall use is the
following, that
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Figure 8.1 We give a diagrammatic representation of the exchange of order
of integrations in equation (8.8).

As can be seen from Figure 8.1, the range of integration for both integrals is the
same. If we approximate the integral as a sum we see that the difference is in
the order in which the contributions are summed. As long as the original integral
is absolutely convergent the result is true. We will assume that all integrals are
absolutely convergent.

It is illustrative to develop other representations of Ug(0,t)" so we consider the
expression (8.7) term by term,

+o (8.9)

Interchanging the integration limits in every integral gives a factor of minus one
for each interchange.

SR (8.10)

We can use the integral interchange result (8.8) on the third term on the RHS
(note that the integrand is unchanged by this operation). In the fourth term we
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can use the interchange result three times to completely reverse the order of the
integrations giving,

+ o (8.11)

The final step is to relabel the dummy integration variables to give

(8.12)

As t > 0, an examination of the integration limits reveals that the Liouvilleans
in this expression are left-ordered. Comparing this expression with the definition
of Ug(0,t) there are two differences, the time ordering and the factor of (-)". We
now define the operator U(0,t) to be equal to the RHS of (8.12), so we have

(8.13)

and

(8.14)

From this definition of Uy(0,t), it can be shown that Uy (0,t) satisfies the operator
equation

(8.15)

This result can be obtained by differentiating the definition of U(0,t), (8.13),
or by differentiating Ug(0,t)", (8.7), directly. Equation (8.3.9) allows us to verify
that Uy(0,t) is the inverse of Ug(0,t) in a new way. First we note that U(0,t)
Ug(0,t) = 1 is true for t=0. Then differentiating with respect to time we find
that,
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=0, Vt. (8.16)

As the result is true at t=0, and the time derivative of each side of the equation
is true for all time, the result is true for all time.

8.4 The Associative Law and Composition Theorem

The action of the p-propagator Ug(0,t) is to advance the phase T, or a phase
variable, forward in time from 0 to t. This must be equivalent to advancing time
from 0 to s, then advancing time from s to t, whenever 0 < s < t. This implies
that

(8.17)

The right hand side of (8.4.1) is a physical rather than mathematical statement.
It is a statement of causality. If we wish to understand how we can generate
B(t) from B(0) through an intermediate time s, we find that we will have to attack
B first with the operator Ug(s,t) and then attack the resultant expression with
Ug(0,s). The operator expression Ug(s,t)Ug(0,s)B cannot be equal to Ug(0,t),
because its time arguments are not ordered from left to right. The correct operator
equation is

(8.18)

To prove (8.18) we consider the product on the right-hand side and show that
it is equal to Ug(0,t).

(8.19)

The first two terms are straightforward so we will consider in detail the three
second order terms. In the second of these three terms the integration limits
imply that
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so that the time arguments of the operator product are correctly ordered, and
we relabel them as follows:

The integration limits are independent, so we can interchange the order of
integration, (8.8). After dropping the primes in the third term, all three terms
have the same integrand so we need only consider the integration limits. The
three second order terms are

In the second and third terms, the s, integrals are the same and the s, integrals
add together to give

Now the s, integrals are identical and the s, integrals add together to give the
required result

This is exactly the second order term in Ug(0,t). It may seem that we have
laboured through the detail of the second order term, but it is now
straightforward to apply the same steps to all the higher order terms and see
that the result is true to all orders. Indeed it is a useful exercise for the reader
to examine the third order term, as there are four integrals to consider, and after
the same relabelling process is applied to the second and third terms, the four
integrals obtained collapse from the right-hand side.

Combining equations (8.17) and (8.18) we see that the p-propagator Uy obeys an
anti-causal associative law, (8.17). The fundamental reason for its anti-causal
form is implicit in the form of the p-propagator itself, Ug. In applying the
p-propagator to a phase variable it is, as we have seen, the latest times that attack
the phase variable first.

Apart from the present discussion we will always write operators in a form
which reflects the mathematical rather than the causal ordering. As we will see
any confusion that arises from the anti-causal ordering of p-propagators can
always be removed by considering the f-propagator form and then unrolling

215



216

Statistical Mechanics of Nonequilibrium Liquids

the operators in sequence to attack the phase variables. The f-propagators are
causally ordered.

8.5 Time Evolution of the Distribution Function

The Liouville equation for a system subject to a time dependent external field
is given by

(8.20)

where we have defined the time dependent f-Liouvillean, iL(t). This equation
tells you that if you sit at a fixed point in phase space denoted by the dummy
variable T, the density of phase points near T', changes with time in accord with
(8.20). In the derivation of this equation we related the partial derivative of f{t)
to various fluxes in phase space at the same value of the explicit time.

We define the distribution function propagator which advances the time
dependence of the distribution function from 0 to t, by

(8.21)

In this equation Uy T(O,t) is the adjoint of Ug(0,t). It is therefore closely related
to Ur(0,t) except that the Liouvilleans appearing in equation (8.3.7) are replaced
by their adjoints iL(s;). Combining equation (8.5.2) with the Liouville equation
(8.5.1) we find that Uy '(0,t) satisfies the following equation of motion

(8.22)

The formal solution to this operator equation is

(8.23)

In distinction to the propagator for phase variables, the integration limits imply
thatt > s) > s, > .... > s, so that the f-Liouvilleans are left time ordered. The
time arguments increase as we go from the right to the left. This is opposite to
the time ordering in the p-propagator Ug(0,t) but the definition of Uy (0,t) is
consistent with the definition of Ui (0,t).

For the f-propagator Ur(0,t), the usual associative law is satisfied as the time
arguments are ordered right to left,

(8.24)
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This equation can be verified directly using similar arguments to those used in
§8.4.

8.6 Time Ordered Exponentials

A notation which is common in quantum mechanics is to refer to the phase and
distribution function propagators as right and left ordered exponentials (expg and
expy) respectively. To exploit this notational simplification we introduce the
time ordering operators Ty and Ty. The operator Ty simply reorders a product
of operators so that the time arguments increase from left to right. In this notation
we write the p-propagator Ug(0,t) as

(8.25)

Using the series expansion for the exponential this becomes

(8.26)

Taking this series term by term the first two terms are trivial. We will consider
the second order term in some detail.

(8.27)

The time arguments in the first integral are time ordered from left to right so
the operator will have no effect. In the second integral the order of the
integrations can be interchanged to give

(8.28)

The second form is obtained by relabelling the dummy variables s; and s,. Now
both integrals have the same integration limits, and after the operation of Ty
both integrands are the same, so the second order term is
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Using exactly the same steps we can show that each of the higher order terms
are the same as those in the original representation of Ug(0,t). After manipulating
the integrals to obtain the same range of integration for each term of a particular
order, the integrand is the sum of all permutations of the time arguments. At
the n" order there are n! permutations, which after the operation of Ty are all
identical. This n! then cancels the (n!)" from the expansion of the exponential,
and the result follows. Using the same arguments, the f-propagator Uy (0,t) also
be written in this form

(8.29)

The use of the time ordering operator can realise considerable simplifications in
many of the proofs that we have given.

Using time ordered exponentials, the composition theorem can be derived quite
easily.

(8.30)

Because the exponentials are already right ordered we can write them as,

(8.31)

8.7 Schrodinger and Heisenberg Representations

In this section we will derive some of the more important properties of the
Liouville operators. These will lead us naturally to the discussion of the various
representations for the properties of classical systems. The first property we
shall discuss relates the p-Liouvillean to the f-Liouvillean as follows;

(8.32)
The proof is a straightforward application of integration by parts.
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(8.33)
Equation (8.32) shows that iL(t) and -iL(t) are adjoints.

We can compute the average of a phase variable B at time t by following the
value of B(t) as it changes along single trajectories in phase space. The average
is taken by summing over the values of B for trajectories starting from each
possible initial phase point T, but weighting each B(t) with the probability of
that starting phase. These probabilities are chosen from an initial distribution
function {{T,0). This is the so-called Heisenberg picture.

(8.34)

The Heisenberg picture is exactly analogous to the Lagrangian formulation of
fluid mechanics, we can imagine that the phase space mass point has a differential
box dI' surrounding it which changes shape (and volume for a compressible
fluid) with time as the phase point follows its trajectory. The probability of the
differential element, or mass f(I') dI" remains constant, but the value of the
observable changes implicitly in time.

The second view is the Schrodinger, or distribution based picture, where the T’
refers not to the initial value of the phase point, but to a stationary point (fixed
for all time) inside a stationary differential box dI'. Just as in the Eulerian
formulation of fluid mechanics, the observable takes on a fixed value for all time
B(T), while mass points with different probability flow through the box.

(8.35)

The average value of B changes with time as the distribution function changes.
The average of B is computed by multiplying the value of B at T', by the
probability of find the phase point T" at time t, that is f{T’,t).

The average value of a phase variable B at time t can be evaluated in the two
ways. The mathematical proof of the equivalence of the Schrédinger and
Heisenberg pictures can be obtained by successive integrations by parts. Consider

(8.36)
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One can unroll each Liouvillean in turn from the phase variable onto the
distribution function using equation (8.32). For the first transfer we consider
iL(sp.1)...iL(s1)B to be the composite phase variable, so that the right hand side
becomes,

We can then repeat this operator unrolling,

Repeated unrolling leads to

(8.37)

We have obtained this result where the Liouvilleans explicitly depend on time.
The derivation we have used has not made any reference to the details of either
the initial distribution function or the first order equations of motion of the
system. That means that these results are valid for arbitrary equations of motion,
in particular the equations of motion can contain a time dependent external
field. The initial distribution function is also arbitrary, the only constraint is
that the distribution function at time ¢ must have evolved from the initial
distribution function under the influence of the perturbed equations of motion.
They are also valid regardless of whether the equations of motion can be derived
from a Hamiltonian or whether they satisfy AIT" (§5.3).

8.8 The Dyson Equation

The Dyson equation is useful for deriving relationships between propagators.
We first met a restricted form of this equation in §3.6 when we were dealing
with time independent propagators. We will now give a general derivation of
the Dyson equation.
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For two arbitrary p-Liouvilleans, the most general form of the Dyson equation
is

(8.38)

and

(8.39)

Both Liouvilleans iL(t) and iL, (t) may be time dependent. One can prove the
correctness of these equations by showing that the left and right hand sides of
(8.38) and (8.39) satisfy the same differential equations with identical initial
conditions. The corresponding equations for left ordered propagators are:

(8.40)

(8.41)

We will give a proof for one of these equations, equation (8.39). Proofs for the
other equations are very similar. If we let LHS denote Ug(0,t), the left hand side
of (8.39), we know that,

(8.42)
On the other hand we see that,

(8.43)

Thus since both sides of equation (8.38) satisfy the same differential equation
with the same initial condition, both sides must be the same for all time.

8.9 Relation Between p- and f- Propagators

In order to be able to manipulate propagators for thermostatted systems it is
useful to be able to relate p-propagators and f-propagators. The relation we shall
derive is a time dependent generalisation of equation (7.24). It is a relatively
straightforward application of the Dyson equation. We let Ug(0,t) = expg j 0
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iL(s)ds, be the test propagator and Ug((0,t) = expg j o iL(s) ds, be the reference
propagator. iL(s)A(T") = O(A(T) dT'/dt)*/Or and iL(s)A(T) = dI'/dt * O( A(T))/or.

Substitution into the Dyson equation gives,

(8.44)
We define,

(8.45)

It is important to realise that A is a phase variable not an operator. A is known
as the phase space compression factor since dInf{t)/dt = - A = 3NQ(t) + O(1) (see
(7.17)).

One can recursively substitute for Uy in equation (8.44) to eliminate Ug from the
right hand side. This gives,

(8.46)

Using the fact that A is a phase variable rather than an operator we see that,

(8.47)
So that,

(8.48)
or,

(8.49)
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This result is fundamental to our understanding of the dynamic behaviour of
thermostatted systems. Its correctness can easily be checked by verifying that
the left and right hand sides satisfy the same differential equation with the same
initial condition. At zero time both sides are equal to unity. The derivative of
the left hand side is,

(8.50)
While the derivative of the right hand side is,

(8.51)
Thus the right hand side and the left hand sides are identical.

8.10 Time Dependent Response Theory

Consider an equilibrium ensemble of systems, characterised by a distribution
function, fj,, subject at t=0, to an external time dependent field F,(t). We assume
that the equilibrium system (t<0), has evolved under the influence of the
Gaussian isokinetic Liouvillean iL,. This Liouvillean has no explicit time
dependence. The equilibrium distribution could be the canonical or the isokinetic
distribution. These assumptions are summarised by the equation,

(8.52)

The equations of motion for the system can be written as,

(8.53)

Provided that the temperature can be obtained from the expression, 3NkpT/2 =
Zp ; °/2m, the term Op ; represents the Gaussian thermostat. a is chosen so that

2p;’/2mis a constant of the motion.

(8.54)
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The terms C,D couple the external field F.(t) to the system. The adiabatic,
unthermostatted equations of motion need not be derivable from a Hamiltonian
(i.e. C,D do not have to be perfect differentials). We assume that the AIT holds,

(8.55)
The dissipative flux is defined in the usual way,

(8.56)
where,

(8.57)

The response of an arbitrary phase variable B(T") can obviously be written as,

(8.58)

In this equation iL(t) is the p-Liouvillean for the field-dependent Gaussian
thermostatted dynamics, t>0. If we use the Dyson decomposition of the
field-dependent p-propagator in terms of the equilibrium thermostatted
propagator we find that,

(8.59)

By successive integrations we unroll Ui, propagator onto the distribution
function.

(8.60)

However U' g is the equilibrium f-propagator and by equation (8.10.1) it has
no effect on the equilibrium distribution f;,.

(8.61)

We can now unroll the Liouvilleans to attack the distribution function rather
than the phase variables. The result is,
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(8.62)

From equation (8.52) it is obvious that it is only the operation of the
field-dependent Liouvillean which needs to be considered. Provided AIT is
satisfied, we know from (7.29, et. seq.) that,

(8.63)

For either the canonical or Gaussian isokinetic ensembles therefore,

(8.64)

Thus far the derivation has followed the same procedures used for the time
dependent linear response and time independent nonlinear response. The
operation of Ug(s,t) on B however, presents certain difficulties. No simple meaning
can be attached to Ug(s,t) B. We can now use the Composition and the Inverse
theorems to break up the incremental p-propagator Ug(s,t). Using equations
(8.18),

(8.65)
Substituting this result into (8.64) we find

(8.66)
Using the Inverse theorem (8.3.1), and integrating by parts we find,

(8.67)

where after unrolling Uy 7(0,s) we attack B with U(0,t) giving B(t). As it stands
the exponential in this equation has the right time ordering of a p-propagator
but the argument of the exponential contains an f-Liouvillean. We obviously
have some choices here. We choose to use (8.48) to rewrite the exponential in
terms of a p-propagator. This equation gives

(8.68)

where

(8.69)
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Q(T,s) is the Gaussian isokinetic multiplier required to maintain a fixed kinetic
energy. Substituting these results into equation (8.67), using the fact that,

(8.70)
gives,

(8.71)
or,

(8.72)

This equation is the fundamental result of this chapter. It must be remembered
that all time evolution is governed by the field-dependent thermostatted
equations of motion implicit in the Liouvillean, iL(t).

8.11 Renormalisation

We can apply our fundamental result, equation (8.72), to a number of known
special cases. In the linear regime our equation obviously becomes,

(8.73)

The notation '< .. >;' denotes an equilibrium average over the field-free
thermostatted dynamics implicit in the Liouvillean, iLy. This equation is the
well-known result of time dependent linear response theory, (see §5.3).

Another special case that can be examined is the time independent nonlinear
response. In this circumstance the Liouvillean iL(t) is independent of time, iL,
and the propagator, Ug(0,t) becomes much simpler,

(8.74)

One does not need to use time ordered exponentials. In this case the response
is,

(8.75)
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Again all time propagation is generated by the field-dependent thermostatted
Liouvillean, iL. This equation is new. As was the case for the Kawasaki form of
the nonequilibrium distribution function, explicit normalisation can be easily
achieved.

Comparing equation (8.75) with the following identity that can be obtained using
the equivalence of the Schrodinger and Heisenberg representations, (§8.7),

(8.76)
implies that,

(8.77)

The integral (0,t), on the right hand side of the equation can be performed
yielding,

(8.78)

The correctness of this equation can easily be checked by differentiation.
Furthermore it is clear that this expression is just the unnormalised form of the
Kawasaki distribution function (7.25).

This equation can be used to renormalize our expression for the time independent
nonlinear response. Clearly

(8.79)

is an explicitly normalised distribution function. By differentiating this
distribution in time and then reintegrating we find that,
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(8.80)

To simplify the notation we define the brace { }; as

(8.81)

Using this definition our renormalised expression for the response is (Evans and
Morriss, 1988)

(8.82)

8.12 Discussion

We have described a consistent formalism for the nonlinear response of
many-body systems to time dependent external perturbations. This theory
reduces to the standard results of linear response theory in the linear regime
and can be used to derive the Kawasaki form of the time-independent nonlinear
response. It also is easy to show that our results lead to the transient time
correlation function expressions for the time-independent nonlinear case.

If we consider equation (8.64) in the time-independent case and remember that,

(8.83)

then we can see immediately,

(8.84)

This is the standard transient time correlation function expression for the
nonlinear response, (7.33).
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It may be thought that we have complete freedom to move between the various
forms for the nonlinear response: the Kawasaki form equation (8.78), the transient
correlation function expression equation (8.84) and the new formulation
developed in this chapter, equation (8.82). These various formulations can be
characterised by noting the times at which the test variable B and the dissipative
flux J, are evaluated. In the Kawasaki form B is evaluated at time zero, in the
transient correlation approach J is evaluated at time zero, and in the new form
developed in this paper, B is evaluated at time t. These manipulations are
essentially trivial for the linear response.

As we have shown, these forms are all equivalent for the nonlinear response to
time-independent external fields. However for the time-dependent nonlinear
case only our new form equation (8.82), seems to be valid. One can develop a
Kawasaki version of the nonlinear response to time-dependent fields but it is
found that the resulting expression is not very useful. It, like the corresponding
transient correlation form, involves convolutions of incremental propagators,
Liouvilleans and phase variables which have no directly interpretable meaning.
None of the operators in the convolution chains commute with one another and
the resulting expressions are intractable and formal.
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9. Steady State Fluctuations

9.1 Introduction

Nonequilibrium steady states are fascinating systems to study. Although there
are many parallels between these states and equilibrium states, a convincing
theoretical description of steady states, particularly far from equilibrium, has
yet to be found. Close to equilibrium, linear response theory and linear
irreversible thermodynamics provide a relatively complete treatment, (§2.1 -
2.3). However, in systems where local thermodynamic equilibrium has broken
down, and thermodynamic properties are not the same local functions of
thermodynamic state variables that they are at equilibrium, our understanding
is very primitive indeed.

In §7.3 we gave a statistical mechanical description of thermostatted,
nonequilibrium steady states far from equilibrium - the transient time correlation
function (TTCF) and Kawasaki formalisms. The Transient Time Correlation
Function is the nonlinear analogue of the Green-Kubo correlation functions. For
linear transport processes the Green-Kubo relations play a role which is analogous
to that of the partition function at equilibrium. Like the partition function,
Green-Kubo relations are highly nontrivial to evaluate. They do however provide
an exact starting point from which one can derive exact interrelations between
thermodynamic quantities. The Green-Kubo relations also provide a basis for
approximate theoretical treatments as well as being used directly in equilibrium
molecular dynamics simulations.

The TTCF and Kawasaki expressions may be used as nonlinear, nonequilibrium
partition functions. For example if a particular derivative commutes with the
thermostatted, field-dependent propagator then one can formally differentiate
the TTCF and Kawasaki expressions for steady state phase averages, yielding
fluctuation expressions for the so-called derived properties. The key point in such
derivations is that the particular derivative should commute with the relevant
propagators. If this is not so one cannot derive tractable or useful results.

In order to constrain thermodynamic variables two basic feedback mechanisms
can be employed: the integral feedback mechanism employed for example in
the Nose-Hoover thermostat, (§5.2) and the differential mechanism employed in
the Gaussian thermostat. A third mechanism, the proportional mechanism has
not found much use either in simulations or in theory because it necessarily
employs irreversible equations of motion.

In this chapter we will derive fluctuation expressions for the derivatives of
steady state phase averages. We will derive expressions for derivatives with
respect to temperature, pressure and the mean value of the dissipative flux.
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Applying these derivatives in turn to averages of the internal energy, the volume
and the thermodynamic driving force yields expressions for the specific heats,
the compressibility and the inverse Burnett coefficients respectively. In order
to ensure the commutivity of the respective derivatives and propagators, we
will employ the Gaussian feedback mechanism exclusively. Corresponding
derivations using Nose-Hoover feedback are presently unknown.

Rather than giving a general but necessarily formal derivation of the fluctuation
formulae, we will instead concentrate on two specific systems: planar Couette
flow and colour conductivity. By concentrating on specific systems we hope to
make the discussion more concrete and simultaneously illustrate particular
applications of the theory of nonequilibrium steady states discussed in Chapter
7.

9.2 The Specific Heat

In this section we illustrate the use of the Kawasaki distribution function and
the Transient Time Correlation Function formalism by deriving formally exact
expressions for the temperature derivative of nonequilibrium averages. Applying
these expressions to the internal energy, we obtain two formulae (Evans and
Morriss, 1987), for the isochoric specific heat. One of these shows that the specific
heat can be calculated by analysing fluctuations in the steady state. The second
formula relates the steady state specific heat to the transient response observed
when an ensemble of equilibrium systems is perturbed by the field.

Transient Time Correlation Function Approach

For a system undergoing planar Couette flow the transient correlation function
expression for the canonical ensemble average of a phase variable B is,

(9.1)

This expression relates the nonequilibrium value of a phase variable B at time
t, to the integral of a transient time correlation function (the correlation between
P,y in the equilibrium starting state, Py(0), and B at time s after the field is
turned on). The temperature implied by the B is the temperature of the initial
ensemble. The steady state is tied to the initial ensemble by the constraint of
constant peculiar kinetic energy. For systems that exhibit mixing, equation (9.1)

can therefore be rewritten as,

(9.2)

where the difference variable AB(s) is defined as the difference between the phase
variable at s and its average value at s,

9.3)
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Systems which are not expected to exhibit mixing are turbulent systems or
systems which execute quasi-periodic oscillations.

An important property of the Gaussian thermostat is that although it fixes the
kinetic energy of a system, the Gaussian isokinetic Liouville operator is
independent of the temperature of the initial distribution. For each member of
the ensemble, the Gaussian thermostat simply constrains the peculiar kinetic
energy to be constant. As the Liouvillian, and the propagator in (9.2), are
independent of the value of the temperature we can calculate the temperature
derivative very easily. The result is,

(9.4)

The first term on the right hand side of (9.4) is the equilibrium contribution.
This is easily seen by setting t=0. The second and third terms are nonequilibrium
terms. In deriving the second term on the right hand side of (9.4) we use equation
(9.3) to simplify a number of terms. It is worth noting that equation (9.4) is not
only valid in the steady state limit t—, but is also correct for all intermediate
times t, which correspond to the transients which take the system from the initial
equilibrium state to the final nonequilibrium steady state.

If we choose to evaluate the temperature derivative of the internal energy Hy,
we can calculate the specific heat at constant volume and external field, C, g.
The result is (Evans and Morriss, 1987),

9.5)

Again the first term on the right hand side is easily recognised as the equilibrium
specific heat. The second and third terms are nonlinear nonequilibrium terms.

They signal the breakdown of local thermodynamic equilibrium. In the linear
regime for which linear response theory is valid, they are of course both zero.

The third term takes the form of a transient time correlation function. It measures
the correlations of equilibrium energy fluctuations, AHy(0), with the transient
fluctuations in the composite-time variable, A( Hy(s) J(0) ). The second term can
of course be rewritten as the integral of a transient time correlation function
using (9.1).

Kawasaki representation

Consider the Schrodinger form,

(9.6)
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The thermostatted Kawasaki form for the N-particle distribution function is,

9.7)

Since f{t) is a distribution function it must be normalised. We guarantee this by
dividing the right hand side of equation (9.7) by its phase integral. If we take
the initial ensemble to be canonical, we find,

(9.8)
The exponents contains a divergences due to the fact that the time average of
J(-s) is nonzero. This secular divergence can be removed by multiplying the
numerator and the denominator of the explicitly normalised form by exp[+BF,
Oj‘ds <J(-s)>]. This has the effect of changing the dissipative flux that normally
appears in the Kawasaki exponent from J(-s) to AJ(-s), in both the numerator and
denominator. The removal of the secular divergence has no effect on the results
computed in this chapter and is included here for largely aesthetic reasons.

(9.9)

The average of an arbitrary phase variable B(T) in the renormalized Kawasaki
representation is,

(9.10)

To obtain the temperature derivative of equation (9.10) we differentiate with
respect to . This gives

(9.11)

Using the Schrodinger-Heisenberg equivalence we transfer the time dependence
from the distribution function to the phase variable in each of the terms in
equation (9.11). This gives

(9.12)
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Substituting the internal energy for B in equation (9.12) and making a trivial
change of variable in the differentiation (3—T) and integration (t-s—s), we find
that the specific heat can be written as,

(9.13)

The first term gives the steady state energy fluctuations and the second term is
a steady state time correlation function. As t — «, the only times s, which
contribute to the integral are times within a relaxation time of t, so that in this
limit the time correlation function has no memory of the time at which the field
was turned on.

These theoretical results for the specific heat of nonequilibrium steady states
have been tested in nonequilibrium molecular dynamics simulations of isothermal
planar Couette flow (Evans, 1986 and Evans and Morriss, 1987). The system
studied was the Lennard-Jones fluid at its triple point, (kgT/€=0.722,p0°=0.8442).

108 particles were employed with a cutoff of 2.50.
Table 9.1. Lennard-Jones Specific Heat Data.’
Potential: @(r) = 4€[(r/0)"*- (r/O)°].

State point: T* = 0.722, p* = 0.8442, ¥* = 1.0, N = 108, r, * = 2.5.

Transient Correlation Results: 200K timesteps
" ' 2.662 + 0.004
C, [N
0.287 + 0.0014
-0.02+ 0.05
L . 2.395+ 0.06
C,. [N
Kawasaki Correlation results: 300K timesteps
3.307+0.02
-1.050 +0.07
nt ' 2.257+0.09
C,. [N
Direct NEMD calculation: 100K timesteps
n* ' 2.35+0.05
C,. [N

T Reduced units are denoted by *. Units are reduced to dimensionless form in
terms of the Lennard-Jones parameters, m,0,€; ¥ '=0u,/ y O(m/€)"’.

< >4 denotes nonequilibrium steady state average.

The steady state specific heat was calculated in three ways: from the transient
correlation function expression equation (9.5), from the Kawasaki expression
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equation (9.13) and by direct numerical differentiation of the internal energy
with respect to the initial temperature. The results are shown in the Table 9.1
below. Although we have been unable to prove the result theoretically, the
numerical results suggest that the integral appearing on the right hand side of
(9.5) is zero. All of our simulation results, within error bars, are consistent with
this. As can be seen in the Table 9.1 the transient correlation expression for the
specific heat predicts that it decreases as we go away from equilibrium. The
predicted specific heat at a reduced strain rate (¥O(m/€)"*) = 1 is some 11%
smaller than the equilibrium value. This behaviour of the specific heat was first
observed in 1983 by Evans (Evans, 1983).

Table 9.2. Comparison of Soft Sphere Specific Heats as a function of Strain
Rate’

Potential: @(r) = €(r/0)"* . State point: T* = 1.0877, p* = 0.7, N = 108, r.* = 1.5.

v E c. c.
NT N direct N transient
0.0 4.400 2.61 2.61
0.4 4.441 2.56 2.57
0.6 4.471 2.53 2.53
0.8 4.510 2.48 2.49
1.0+£0.01 4.550+0.001 2.43 2.46+£0.002

¥ Note: In these calculations, the transient time correlation function integral, (9.5), was assumed to be zero.
Data from (Evans, 1983, Evans, 1986, Evans and Morriss, 1987).

The results obtained from the Kawasaki formula show that although the internal
energy fluctuations are greater than at equilibrium, the specific heat decreases
as the strain rate is increased. The integral of the steady state energy-stress
fluctuations more than compensates for increase in internal energy fluctuations.
The Kawasaki prediction for the specific heat is in statistical agreement with the
transient correlation results. Both sets of results also agree with the specific heat
obtained by direct numerical differentiation of the internal energy. Table 9.2
shows a similar set of comparisons based on published data (Evans, 1983). Once
again there is good agreement between results predicted on the basis of the
transient correlation formalism and the direct NEMD method.

As a final comment of this section we should stress that the specific heat as we
have defined it, refers only to the derivative of the internal energy with respect
to the temperature of the initial ensemble (or equivalently, with respect to the
nonequilibrium kinetic temperature). Thus far, our derivations say nothing about
the thermodynamic temperature ( = OE/0S ) of the steady state. We will return
to this subject in Chapter 10.
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9.3 The Compressibility and Isobaric Specific Heat

In this section we calculate formally exact fluctuation expressions for other
derived properties including the specific heat at constant pressure and external
field, Cp g, and the compressibility, Xt re = -0InV/0p)r ge- The expressions are
derived using the isothermal Kawasaki representation for the distribution
function of an isothermal isobaric steady state.

The results indicate that the compressibility is related to nonequilibrium volume
fluctuations in exactly the same way that it is at equilibrium. The isobaric specific
heat, C,, g, on the other hand, is not simply related to the mean square of the
enthalpy fluctuations as it is at equilibrium. In a nonequilibrium steady state,
these enthalpy fluctuations must be supplemented by the integral of the steady
state time cross correlation function of the dissipative flux and the enthalpy.

We begin by considering the isothermal-isobaric equations of motion considered
in §6.7. The obvious nonequilibrium generalisation of these equations is,

(9.14)

In the equations dg/dt is the dilation rate required to precisely fix the value of
the hydrostatic pressure, p =2 (p’/m + q.F)/3V. a is the usual Gaussian thermostat
multiplier used to fix the peculiar kinetic energy, K. Simultaneous equations
must be solved to yield explicit expressions for both multipliers. We do not give
these expressions here since they are straightforward generalisations of the
field-free (F.=0), equations given in §6.7.

The external field terms are assumed to be such as to satisfy the usual Adiabatic
Incompressibility of Phase Space (AIT) condition. We define the dissipative flux,
J, as the obvious generalisation of the usual isochoric case.

(9.15)

This definition is consistent with the fact that in the field-free adiabatic case the
enthalpy Iy = Hy +pV, is a constant of the equations of motion given in (9.14).
It is easy to see that the isothermal isobaric distribution, fj, is preserved by the
field-free thermostatted equations of motion.

(9.16)
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It is a straightforward matter to derive the Kawasaki form of the N-particle
distribution for the isothermal-isobaric steady state. The normalised version of
the distribution function is,

(9.17)

The calculation of derived quantities is a simple matter of differentiation with
respect to the variables of interest. As was the case for the isochoric specific
heat, the crucial point is that the field-dependent isothermal-isobaric propagator
implicit in the notation f(t), is independent of the pressure and the temperature
of the entire ensemble. This means that the differential operators /0T and 0/0p,
commute with the propagator.

The pressure derivative is easily calculated as,

(9.18)

If we choose B to be the phase variable corresponding to the volume then the
expression for the isothermal, fixed field compressibility takes on a form which
is formally identical to its equilibrium counterpart.

(9.19)

The limit appearing in (9.19) implies that a steady state average should be taken.
This follows from the fact that the external field was 'turned on' at t=0.

The isobaric temperature derivative of the average of a phase variable can again
be calculated from (9.17).

(9.20)

In deriving (9.20) we have used the fact that jdedF f(t) B(0) = < B(t) >. Equation
(9.20) can clearly be used to derive expressions for the expansion coefficient.
However setting the test variable B to be the enthalpy and remembering that

(9.21)

leads to the isobaric specific heat,

(9.22)
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This expression is of course very similar to the expression derived for the
isochoric specific heat in §9.2.

In contrast to the situation for the compressibility, the expressions for the specific
heats are not simple generalisations of the corresponding equilibrium fluctuation
formulae. Both specific heats also involve integrals of steady state time correlation
functions involving cross correlations of the appropriate energy with the
dissipative flux. Although the time integrals in (9.13) & (9.22) extend back to
t=0 when the system was at equilibrium, for systems which exhibit mixing,
only the steady state portion of the integral contributes. This is because in such
systems, lim(t— =) <AB(t)AJ(0)> = <AB(t)> <AJ(0)> =0. These correlation

functions are therefore comparatively easy to calculate in computer simulations.

9.4 Differential Susceptibility

In §2.3 we introduced the linear transport coefficients as the first term in an
expansion, about equilibrium, of the thermodynamic flux in terms of the driving
thermodynamic forces. The nonlinear Burnett coefficients are the coefficients
of this Taylor expansion. Before we address the question of the nonlinear Burnett
coefficients we will consider the differential susceptibility of a nonequilibrium
steady state. Suppose we expand the irreversible fluxes in powers of the forces,
about a nonequilibrium steady state. The leading term in such an expansion is
called the differential susceptibility. As we will see, difficulties with commutation
relations force us to work in the Norton rather than the Thévenin ensemble.
This means that we will always be considering the variation of the
thermodynamic forces which result from possible changes in the thermodynamic
fluxes.

Consider an ensemble of N-particle systems satisfying the following equations
of motion. For simplicity we assume that each member of the ensemble is
electrostatically neutral and consists only of univalent ions of charge, fe = *1.
This system is formally identical to the colour conductivity system which we
considered in §6.2.

(9.23)
(9.24)

In these equations, A and O are Gaussian multipliers chosen so that the
x-component of the current per particle, J= e;v,;/N and the temperature T =
2 m(v ;- i e)J)?/3Nkgare constants of the motion. This will be the case provided
that,

(9.25)
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and

(9.26)

In more physical terms A can be thought of as an external electric/colour field
which takes on precisely those values required to ensure that the current J is
constant. Because it precisely fixes the current, it is a phase variable. It is clear
from (9.4.3) that the form of the phase variable A is independent of the value of
the current. Of course the ensemble average of A will depend on the average
value of the current. It is also clear that the expression for a is similarly
independent of the average value of the current for an ensemble of such systems.

These points can be clarified by considering an initial ensemble characterised
by the canonical distribution function, f{0),

(9.27)

In this equation J ( is a constant which is equal to the canonical average of the
current,

(9.28)

If we now subject this ensemble of systems which we will refer to as the
J-ensemble, to the equations of motion (9.23 and 9.24), the electrical current and
the temperature will remain fixed at their initial values and the mean value of
the field multiplier A, will be determined by the electrical conductivity of the
system.

It is relatively straightforward to apply the theory of nonequilibrium steady
states to this system. It is easily seen from the equations of motion that the
condition known as the Adiabatic Incompressibility of Phase Space (AIT") holds.
Using equation (9.23) to (9.27), the adiabatic time derivative of the energy
functional is easily seen to be,

(9.29)

This equation is unusual in that the adiabatic derivative does not factorise into
the product of a dissipative flux and the magnitude of a perturbing external
field. This is because in the J-ensemble the obvious external field, A, is in fact
a phase variable and the current, J, is a constant of the motion. As we shall see
this causes us no particular problems. The last equation that we need for the
application of nonlinear response theory is the derivative,
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(9.30)

Kawasaki Representation

If we use the isothermal generalisation of the Kawasaki expression for the average
of an arbitrary phase variable, B, we find,

(9.31)

In distinction to the usual case we considered in §7.2, the Kawasaki exponent
involves a product of two phase variables J and A, rather than the usual product
of a dissipative flux (ie. a phase variable), and a time-dependent external field.
The propagator used in (9.31) is the field-dependent thermostatted propagator
implicit in the equations of motion (9.23) to (9.26). The only place that the
ensemble averaged current appears in (9.31) is in the initial ensemble averages.
We can therefore easily differentiate (9.31) with respect to Jo to find that (Evans
and Lynden-Bell, 1988),

(9.32)

where A(B(t))=B(t) - <B(t)> and A(J(t))= J(t) - <J(t)> = J(0) - Jo. This is an exact
canonical ensemble expression for the J-derivative of the average of an arbitrary
phase variable. If we let t tend toward infinity we obtain a steady state fluctuation
formula which complements the ones we derived earlier for the temperature and
pressure derivatives. Equation (9.32) gives a steady state fluctuation relation for
the differential susceptibility of, B.

One can check that this expression is correct by rewriting the right hand side
of (9.32) as an integral of responses over a set of Norton ensembles in which the
current takes on specific values. Using equation (9.27) we can write the average
of B(t) as,

(9.33)

We use the notation < B(t) ; J > to denote that subset of the canonical ensemble,
(9.27), in which the current takes on the exact value of J. The probability of the
J-ensemble taking on an initial x-current of J is easily calculated from (9.27) to
be proportional to, exp[-BmNAJ?/2]. Since the current is a constant of the motion
we do not need to specify a time at which the current takes on the specified
value.
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Differentiating (9.33) we can write the derivative with respect to the average
current as a superposition of AJ-ensemble contributions,

(9.34)

This expression is of course identical to equation (9.32) which was derived using
the Kawasaki distribution. (9.34) was derived however, without the use of
perturbative mechanical considerations such as those implicit in the use of the
Kawasaki distribution. This second derivation is based on two points: the initial
distribution is a normal distribution of currents about Jo, and; the dynamics
preserves the value of the current for each member of the ensemble. Of course
the result is still valid even when J is not exactly conserved provided that the
time-scale over which it changes is much longer than the time-scale for the decay
of steady state fluctuations. This derivation provides independent support for
the validity of the renormalized Kawasaki distribution function.

We will now derive relations between the J-derivatives in the J-ensemble and
in the constrained ensemble in which J takes on a precisely fixed value (the
AJ-ensemble). In the thermodynamic limit, the spread of possible values of AJ will
become infinitely narrow suggesting that we can write a Taylor expansion of

<B(t);J> in powers of AJ about I,

(9.35)

Substituting (9.35) into (9.34) and performing the Gaussian integrals over J, we
find that,

(9.36)

This is a very interesting equation. It shows the relationship between the
derivative computed in a canonical ensemble and a AJ-ensemble. It shows that
differences between the two ensembles arise from non-linearities in the local
variation of the phase variable with respect to the current. It is clear that these
ensemble corrections are of order 1/N compared to the leading terms.

9.5 The Inverse Burnett Coefficients

We will now use the TTCF formalism in the Norton ensemble, to derive
expressions for the inverse Burnett coefficients. The Burnett coefficients, L;,
give a Taylor series representation of a nonlinear transport coefficient L(X),
defined by a constitutive relation between a thermodynamic force X, and a
thermodynamic flux J(T),
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(9.37)

It is clear from this equation the Burnett coefficients are given by the appropriate
partial derivatives of < J >, evaluated at X=0. As mentioned in §9.4 we will
actually be working in the Norton ensemble in which the thermodynamic force
X, is the dependent rather than the independent variable. So we will in fact

. . . . . -1
derive expressions for the inverse Burnett coefficients, L

(9.38)

The TTCF representation for a steady state phase average for our electrical/colour
diffusion problem is easily seen to be.

(9.39)

We expect that the initial values of the current will be clustered about Jo. If we
write,
(9.40)

it is easy to see that if B is extensive then the two terms on the right hand side
of (9.40) are O(1) and O(1/N) respectively. For large systems we can therefore
write,

(9.41)

It is now a simple matter to calculate the appropriate J-derivatives.

(9.42)

This equation relates the J-derivative of phase variables to TTCFs. If we apply
these formulae to the calculation of the leading Burnett coefficient we of course

evaluate the derivatives at Jo=0. In this case the TTCFs become equilibrium time
correlation functions. The results for the leading Burnett coefficients are (Evans
and Lynden-Bell, 1988):

(9.43)

(9.44)
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(9.45)

Surprisingly, the expressions for the Burnett coefficients only involve
equilibrium, two-time correlation functions. At long times assuming that the
system exhibits mixing they each factor into a triple product
<B(s—o)><A(0)><cum(J(0))>. The terms involving A(0) and the cumulants of
J(0) factor because at time zero the distribution function (9.27), factors into
kinetic and configurational parts. Of course these results for the Burnett
coefficients could have been derived using the AJ-ensemble methods discussed
in §9.4.

It is apparent that our discussion of the differential susceptibility and the inverse
Burnett coefficients has relied heavily on features unique to the colour
conductivity problem. It is not obvious how one should carry out the analogous
derivations for other transport coefficients. General fluctuation expressions for
the inverse Burnett coefficients have recently been derived by Standish and
Evans (1989). The general results are of the same form as the corresponding
colour conductivity expressions. We refer the reader to the above reference for
details.
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10. Towards a Thermodynamics of
Steady States

10.1 Introduction

In the previous three chapters we have developed a theory which can be applied
to calculate the nonlinear response of an arbitrary phase variable to an applied
external field. We have described several different representations for the
N -particle, nonequilibrium distribution function, /{I'.t): the Kubo representation
(§7.1) which is only useful from a formal point of view; and two related
representations, the Transient Time Correlation Function formalism (§7.3) and
the Kawasaki representation (§7.2), both of which can be applied to obtain useful
results. We now turn our interest towards thermodynamic properties which are
not simple phase averages but rather are functionals of the distribution function
itself. We will consider the entropy and free energy of nonequilibrium steady
states. At this point it is useful to recall the connections between equilibrium
statistical mechanics, the thermodynamic entropy (Gibbs, 1902), and Boltzmann's
famous H theorem (1872). Gibbs pointed out that at equilibrium, the entropy of
a classical N-particle system can be calculated from the relation,

(10.1)

where f(I'} is a time independent equilibrium distribution function. Using the
same equation, Boltzmann calculated the nonequilibrium entropy of gases in the
low density limit. He showed that if one uses the single particle distribution of
velocities obtained from the irreversible Boltzmann equation, the entropy of a
gas at equilibrium is greater than that of any nonequilibrium gas with the same
number of particles, volume and energy. Furthermore he showed that the
Boltzmann equation predicts a monotonic increase in the entropy of an isolated
gas as it relaxes towards equilibrium. These results are the content of his famous
H -theorem (Huang, 1963). They are in accord with our intuition that the increase
in entropy is the driving force behind the relaxation to equilibrium.

One can use the reversible Liouville equation to calculate the change in the
entropy of a dense many body system. Suppose we consider a Gaussian isokinetic
system subject to a time independent external field F., (8.53). We expect that
the entropy of a nonequilibrium steady state will be finite and less than that of
the corresponding equilibrium system with the same energy. From (10.1) we see
that,

(10.2)
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Using successive integrations by parts one finds for an N-particle system in 3
dimensions,

(10.3)

Now for any nonequilibrium steady state, the average of the Gaussian multiplier
q, is positive. The external field does work on the system which must be removed
by the thermostat. This means that the Liouville equation predicts that the Gibbs
entropy (10.1), diverges to negative infinity! After the decay of initial transients
(10.3) shows the rate of decrease of the entropy is constant. This paradoxical
result was first derived by Evans (1985). If there is no thermostat, the Liouville
equation predicts that the Gibbs entropy of an arbitrary system, satisfying AIT
and subject to an external dissipative field, is constant! This result was known
to Gibbs (1902).

Gibbs went on to show that if one computes a coarse grained entropy, by limiting
the resolution with which we compute the distribution function, then the coarse
grained entropy based on (10.1), obeys a generalized H-theorem. He showed
that the coarse grained entropy cannot decrease (Gibbs, 1902). We shall return
to the question of coarse graining in §10.5.

The reason for the divergence in (10.3) is not difficult to find. Consider a small
region of phase space, dI', at t =0, when the field is turned on. If we follow the
phase trajectory of a point originally within ¢I', the local relative density of
ensemble points in phase space about I'(t) can be calculated from the Liouville
equation,

(10.4)

If the external field is sufficiently large we know that there will be some
trajectories along which the multiplier, (!, is positive for all time. For such
trajectories equation (10.4) predicts that the local density of the phase space
distribution function must diverge in time, towards positive infinity. The
distribution function of a steady state will be singular at long times. One way
in which this could happen would be for the distribution function to evolve
into a space of lower dimension that the ostensible 6N dimensions of phase space.
If the dimension of the phase space which is accessible to nonequilibrium steady
states is lower than the ostensible dimension, the volume of accessible phase
space (as computed from within the ostensible phase space), will be zero. If this
were so, the Gibbs entropy of the system (which occupies zero volume in
ostensible phase space) would be minus infinity.
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At this stage these arguments are not at all rigorous. We have yet to define what
we mean by a continuous change in the dimension. In the following sections we
will show that a reduction in the dimension of accessible phase space is a
universal feature of nonequilibrium steady states. The phase space trajectories
are chaotic and separate exponentially with time, and for nonequilibrium systems,
the accessible steady state phase space is a strange attractor whose dimension is
less than that of the initial equilibrium phase space. These ideas are new and
the relations between them and nonlinear response theory are yet to develop.
We feel however, that the ideas and insights already gleaned are sufficiently
important to present here.

Before we start a detailed analysis it is instructive to consider two classic problems
from the new science of dynamical systems - the quadratic map and the Lorenz
model. This will introduce many of the concepts needed later to quantitatively
characterize nonequilibrium steady states.

10.2 Chaotic Dynamical Systems

The study of low dimensional dynamical systems which exhibit chaos is a very
active area of current research. A very useful introductory account can be found
in Schuster (1988). It was long thought that the complex behavior of systems of
many degrees of freedom was inherently different to that of simple mechanical
systems. It is now known that simple one dimensional nonlinear systems can
indeed show very complex behavior. For example the family of quadratic maps

demonstrates many of these features. This is very well described
in a recent book by Devaney (1986). The connection between a discrete mapping,
and the solution of a system of ordinary differential equations in a molecular
dynamics simulation is clear when we realise that the numerical solution of the
equations of motion for a system involves an iterative mapping of points in phase
space. Although we are solving a problem which is continuous in time, the
differential equation solver transforms this into a discrete time problem. The
result is that if the mapping / takes I'(0) to T'(A) where A is the time step, then

.Here /" means the composite mapping consisting of n repeated
operations of /.,

An important difference exists between difference equations and similar
differential equations, for example if consider the differential equation

(10.5)

the solution can easily be obtained

(10.6)
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where % =t{7 =0} The trajectory for this system is now quite straightforward
to understand. The solution of the quadratic map difference equation is a much
more difficult problem which is still not completely understood.

The Quadratic Map
The quadratic map is defined by the equation

(10.7)

If we iterate this mapping for W =4, starting with a random number in the
interval between 0 and 1, then we obtain dramatically different behavior
depending upon the initial value of x. Sometimes the values repeat; other times
they do not; and usually they wander aimlessly about in the range O to 1. Initial
values of x which are quite close together can have dramatically different iterates.
This unpredictability or sensitive dependence on initial conditions is a property
familiar in statistical mechanical simulations of higher dimensional systems. If
we change the map to then a random initial value of x leads
to a repeating cycle of three numbers (0.149888..,0.489172..,0.959299..). This
mapping includes a set of initial values which behave just as unpredictably as
those in the W =4 example but due to round-off error we don't see this
randomness.

Before we look at the more complicated behavior we consider some of the simpler
properties of the family of quadratic maps. First we require some definitions; X

is called a fixed point of the map / if /() =% X is a periodic point, of period
n, if £ (x)=x where /" represents n applications of the mapping I Clearly
a fixed point is a periodic point of period one. The fixed point at X is stable if

7051 <1, We will consider the quadratic map on the interval , as
a function of the parameter M.

Region 1 : O=n=l
The mapping has only one fixed point x =0. so that in this
region the fixed point at x =0 is attracting (or stable).

Region 2 : lep=3

has two fixed points x=0 and . The fixed point x=0 is

repelling (or unstable) while , so that ¥» is an attracting (or
stable) fixed point.
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Region 3 :

In this region both the fixed points of (%) are unstable so we consider the

composite mapping . /. has the fixed
points of the original mapping fu%) at x =0 and *», but as before both of these

are unstable. /» also has two new fixed points at

These two fixed points *. of / \ are points of period two in the original mapping

Fu(X) | (referred to as a 2-cycle). so the 2-cycle is stable for
If we consider finding solutions of the equation

, then we see that we have to find the zeros of
a polynomial of order 4. This has 4 solutions; the two fixed points and *.. The
2-cycle solution *. is real for # >3 and a complex conjugate pair for # <3. Note
however, that the two solutions *. appear at the same parameter value 1 .

Region 4,5, etc :

The period doubling cascade where the stable 2-cycle loses its stability, and a
stable 4-cycle appears; increasing " the 4-cycle loses stability and is replaced
by a stable 8-cycle; increasing " again leads to the breakdown of the 2" '-cycle
and the emergence of a stable 2"-cycle. The " bifurcation values get closer and
closer together, and the limit as n —+ % the bifurcation value is approximately

The Chaotic Region : M, =m=4

Here stable periodic and chaotic regions are densely interwoven. Chaos here is
characterized by sensitive dependence on the initial value 4. Close to every
value of U where there is chaos, there is a value of 4 which corresponds to a
stable periodic orbit, that is, the mapping also displays sensitive dependence on
the parameter ! . The windows of period three, five and six are examples. From
the mathematical perspective the sequence of cycles in a unimodal map is
completely determined by the Sarkovskii theorem (1964). If f{x) has a point x
which leads to a cycle of period P then it must have a point x" which leads to
a 4 -cycle for every 4 <= I* where P and ¢ are elements of the following sequence
(here we read « as precedes)
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This theorem applies to values of x at a fixed parameter 4, but says nothing
about the stability of the cycle or the range of parameter values for which it is
observed.

Figure 10.1 The iterates of the quadratic map for some particular values of
the parameter y. The horizontal axis is x,, and the vertical axis is x,,, . For
p=2 and 2.9 there is a single stable fixed point. For y= 3.3 there is a stable
2-cycle; for p=3.5 a stable 4-cycle and for y=3.561 a stable 8-cycle. The
value y=3.83 is in the period three window.

250



Towards a Thermodynamics of Steady States

Figure 10.2 The iterates of the quadratic map as a function of the parameter
M. The horizontal axis is the parameter 1 <y <4, and the vertical axis is the
iterate 0<x,<1.
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Figure 10.3 The iterates of the quadratic map as a function of the parameter
M. This is an expanded version of Figure 10.2 to include more detail in the
chaotic region. The horizontal axis is the parameter 3.5 < <4, and the vertical
axis is the iterate 0 <x,<1. The windows of period three (at about u=3.83),
period five (at about p=3.74), and period six (at about 3.63) are clearly
visible.

Region oo™ : M =4
Surprisingly for this special value of ! it is possible to solve the mapping exactly

(Kadanoff, 1983). Making the substitution

(10.8)

A solution is , or Since ¥, is related to vos(2nf )
adding an integer to 0, leads to the same value of *.. Only the fractional part

of 0, has significance. If 0, is written in binary (base 2) notation
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(10.9)
then the mapping is simply shifting the decimal point one place to the right and

removing the integer part of f.... The equivalent mapping is

(10.10)

It is easy to see that any finite precision approximation to the initial starting

value 9o consisting of N digits will lose all of its significant digits in N iterations.

If % evolves to J (%) after one iteration then the distribution 8(x =x,} evolves

to after one iteration. This can be written as

(10.11)

An arbitrary density P.Lx) constructed from a normalized sum of (perhaps
infinitely many) delta functions, satisfies an equation of the form

(10.12)
The invariant measure PL), or steady state distribution, is independent of time
(or iteration number ) so

(10.13)
There is no unique solution to this equation as where x is an

unstable fixed point of the map, is always a solution. However, in general there
is a physically relevant solution and it corresponds to the one that is obtained
numerically. This is because the set of unstable fixed points is measure zero in

the interval [0.1] so the probability of choosing to start a numerical calculation
from an unstable fixed point x', and remaining on x", is zero due to round off
and truncation errors.

Figures 10.2 and 10.3 show the iterates of the quadratic map. In Fig. 10.4 we
present the invariant measure of the quadratic map in the chaotic region. The

parameter value is 1 = 3.65, The distribution contains a number of dominant
peaks which are in fact fractional power law singularities.
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Figure 10.4 The distribution function for the iterates of the quadratic map in
the chaotic region, at y=3.65. The horizontal axis is the value of the iterate,
and the vertical axis is the probability. Notice the distribution of narrow peaks
which dominate the probability distribution.

For the transformed mapping ,itis easy to see that the continuous
loss of information about the initial starting point with each iteration of the map,
means that the invariant measure as a function of 6 is uniform on [0.1] (that is

x(8)= ). From the change of variable it is easy to see that x is
a function of 6, x =¢(f) (but not the reverse). If = ¢t f,), then the number of
counts in the distribution function histogram bin centered at *i with width dx,
is equal to the number of counts in the bins centered at 9 and ! -8, with widths
dB, That is

(10.14)

It is then straightforward to show that the invariant measure as a function of x
is given by

(10.15)

This has inverse square root singularities at x =0 and x =1. In Figure 10.5 we
present the invariant measure for the quadratic map at " =4. The two

singularities of type at % =0 and % =1 are clearly shown.
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Figure 10.5 The distribution of iterates for the quadratic map at u=4. The
horizontal axis is the iterate, and the vertical axis is the probability. When
correctly normalized, this agrees well will equation (10.15).

Region = : w4
Here the maximum of is greater than one. Once the iterate leaves the
interval it does not return. The mapping has two maxima, both

of which are greater than one. If T is the interval [0.1], and A is the region of T

mapped out of I' by the mapping , A, the region of I mapped out of T by

, etc., then the trajectory wanders the interval defined by
It can be shown that this set is a Cantor set.

This example of a seemingly very simple iterative equation has very complex
behaviour as a function of the parameter . As U is increased the stable fixed
point becomes unstable and is replaced by stable 2”—cycles (for m = 1.2.3K ), until

chaotic behaviour develops at M= (about 3.5699456). For the
behaviour of the quadratic map shows sensitive dependence upon the parameter
W, with an infinite number of islands of periodic behaviour immersed is a sea
of chaos. This system is not atypical, and a wide variety of nonlinear problems
show this same behaviour. We will now consider a simple model from
hydrodynamics which has had a dramatic impact in the practical limitations of
weather forecasting.
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The Lorenz Model

Consider two flat plates, separated by a liquid layer. The lower plate is heated
and the fluid is assumed to be two-dimensional and incompressible. A coupled
set of nonlinear field equations must be solved in order to determine the motion
of the fluid between the plates (the continuity equation, the Navier-Stokes
equation and the energy equation). These equations are simplified by introducing
the stream function in place of the two velocity components. Saltzman (1961)
and Lorenz (1963) proceed by making the field equations dimensionless and
then representing the dimensionless stream function and temperature by a spatial
Fourier series (with time dependent coefficients). The resulting equations obtained
by Lorenz are a three parameter family of three-dimensional ordinary differential
equations which have extremely complicated numerical solutions. The equations
are

(10.16)

where G, r and b are three real positive parameters. The properties of the Lorenz
equations have been reviewed by Sparrow (1982) and below we summarize the
principle results.

Simple Properties

1. Symmetry - The Lorenz equations are symmetric with respect to the
mapping .

2. The z-axis is invariant. All trajectories which start on the z-axis remain
there and move toward the origin. All trajectories which rotate around the
=-axis do so in a clockwise direction (when viewed from above the z=10
plane). This can be seen from the fact that if x =0, then &= 0 when ¥=> 0,
and i<0 when y=<0,

3. Existence of a bounded attracting set of zero volume, that is the existence
of an attractor. The divergence of the flow, is given by

(10.17)
The volume element V is contracted by the flow into a volume element

in time 1. We can show that there is a bounded region E, such
that every trajectory eventually enters E and remains there forever. There are
many possible choices of Lyapunov function which describe the surface of the

region E. One simple choice is . Differentiating with
respect to time and substituting the equations of motion gives
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(10.18)

Another choice of Lyapunov function is forb=r+l.
This shows that there exists a bounded ellipsoid, and together with the negative
divergence shows that there is a bounded set of zero volume within E towards
which all trajectories tend.

4. Fixed points. The Lorenz equations have three fixed points; one at the

origin, the other two are at and

5. Eigenvalues for linearized flow about the origin are

b, ==h

6. Stability

0<r<l The origin is stable

r The origin is non-stable. Linearized flow about the origin has two
negative and one positive, real eigenvalues.

C, and G, are stable. All three eigenvalues of the linearized flow

about Ci and C;, have negative real part. For r = L.346 (0 =10, b= Es)
there is a complex conjugate pair of eigenvalues.

Ci and G are non-stable. Linearized flow about Ci and C: has one
negative real eigenvalue and a complex conjugate pair of eigenvalues
with positive real part.

Again we have a nonlinear system which is well behaved for small values of the

parameter r, but for chaotic behaviour begins. Typical iterates of the
Lorenz model are shown in Fig. 10.6.
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Figure 10.6 The iterates of the Lorenz Model for a typical set of parameters
which leads to chaotic behaviour. The iterates are the values obtained at the
end of each 4th order Runge-Kutta step.

10.3 The Characterization of Chaos

The experimental measurement of the onset and development of chaos in
dissipative physical systems is often accompanied by some arbitrariness in the
choice of the measured dynamical variable. Taking fluid systems as an example,
one can measure the fluid velocity, its temperature, heat flux etc. Rarely does
one measure more than one variable simultaneously. Moreover, one rarely knows
what is the correct, or complete, phase space in which the dissipative dynamics
takes place. Thus the extraction of relevant information calls for measurement
of quantities that remain invariant under a smooth change of coordinates and
which can be used for a valid characterization of the dynamical system. There
are two classes of these invariants. The static ones, dependent primarily on the
invariant measure (the underlying distribution function for the attractor) and
appear as the dimension of the attractor (either fractal, information, correlation)
and as other mass exponents which have to do with various static correlation
functions. The dynamic ones depend on properties of trajectories and include
various entropies (topological, metric etc), the Lyapunov exponents, and moments
of the fluctuations in the Lyapunov exponents. Here we present a short review
of the theory of these invariants and the interrelations between them.

Studies of simple dissipative systems have shown that if we begin with a
Euclidian space of initial phase positions, then as time passes, transients relax,
some modes may damp out, and the point in phase space that describes the state
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of the system approaches an attractor. In this process it is common for the number
of degrees of freedom to be reduced, and hence the dimension of the system is
lowered. This change in dimension is a continuous process and to describe such
systems we have to generalize the concept of dimension (Farmer, 1982 and
Farmer, Ott and Yorke, 1983). We distinguish three intuitive notions of
dimension; direction, capacity and measurement. These lead to the definition
of; topological dimension (Hurewicz and Wallman, 1948), fractal dimension
(Mandelbrot, 1983) and information dimension (Balatoni and Renyi, 1976). As
we will see the fractal and information dimensions allow the dimension to be a
continuous positive variable.

The Fractal and Information Dimensions

The fractal dimension of an attractor can be defined by the following
construction. Let #(#} be the minimum number of balls of diameter ¢ needed
to cover the attractor. The fractal dimension is defined by the limit,

(10.19)

As the length scale ¢ is reduced, the number of balls required to cover the
attractor increases. As €} is a positive integer, its logarithm is positive. The
term Ine is negative as soon as the length scale ¢ is less than one (in the
appropriate units), the dimension is a positive real quantity.

To obtain the information dimension we suppose an observer makes an isolated
measurement of the coarse grained probability distribution function 7:. Coarse
graining implies a length scale ¢ for the observation, and an associated number
of cells Ni&). The discrete entropy S(&) as a function of the length scale is given

by

(10.20)

Notice that $(£) is positive as for each i, = Inp is positive. The information

dimension D is then defined by

(10.21)

This dimension is a property of any distribution function as nothing in the
definition is specific to attractors, or to some underlying dynamics.

If all the Ni&) elements have the same probability then . Further if
b€) is a minimal covering, then a smaller covering can be formed by removing
the overlapping parts of circles so that . It is then
straightforward to see that the fractal dimension is an upper bound on the
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information dimension. (We will generalize this result later.) From a
computational point of view it is easier to tabulate the steady state distribution

function and calculate Di, rather than to attempt to identify the attractor and

construct a covering to calculate D,

Correlation Dimension

The correlation dimension Dc introduced by Grassberger and Procaccia (1983)
is a scaling relation on the correlation function Cl(£) where

(10.22)

Here 0(x) is the Heavyside step function. C(£) is the correlation integral which

counts the number of pairs of points whose distance of separation || i !'-| is less
than ¢ . The correlation dimension is

(10.23)

It has been argued that the correlation dimension can be calculated numerically,
more easily and more reliably than either the information dimension or the fractal
dimension.

Generalized Dimensions

In a series of papers by Grassberger, Hentschel, Procaccia and Halsey et. al. have
been shown that the concept of dimension can be generalized further. They

introduce a generating function D, which provides an infinite spectrum of

dimensions depending upon the value of a parameter 4. We will show that all
previous dimensions are related to special values of #. Again we begin with a
discrete probability distribution 7: taken at a course graining length ¢. By

averaging powers of the Pis over all boxes, the generalized dimension D, s

obtained

(10.24)

There are formal similarities between the s and the free energy per particle Fy
in the thermodynamic limit,

(10.25)
where E; are the energy levels in the system, N is the number of particles and

is the inverse temperature. The analogy is not a strict one as the
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probability of state i is €P(-BE) rather than simply xp(-E ) as implied above.
Also the probabilities 7: are normalized, while neither *‘IP(—I!'E.) nor *"-“P{—E.)

are normalized. This is crucial in statistical mechanics as if normalized

probabilities are inserted into equation (10.25) in place of exp(-PE), the free

energy Fy i trivially zero.

It straightforward to see that D, gives each of the previously defined dimensions.

For =0, p' =1 for all values of i, so that

(10.26)
This is the fractal or Hausdorff dimension equation (10.19).
For « =1 consider the limit

(10.27)
Substituting this limit into the expression for D, gives

(10.28)

This is simply the information dimension. For @ =2 it is easy to show that the
generalized dimension is the correlation dimension.

The generalized dimension D, is a non-increasing function of 4. To show this

we consider the generalized mean M(1) of the set of positive quantities ,
where P: is the probability of observing @ . The generalized mean is defined to
be

(10.29)

This reduces to the familiar special cases; M(1) is the arithmetic mean and the
limit as 1 — 0 is the geometric mean. It is not difficult to show that if « = p(£),

where the 7:¢) are a set of discrete probabilities calculated using a length scale
of ¢, then the generalized dimension in equation (10.24) is related to the
generalized mean by

(10.30)
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Using a theorem concerning generalized means, namely if 1 <s then M(1) s M(s)
(Hardy, Littlewood and Pélya (1934), page 26) it follows that if s > then D.s D,

The Probability Distribution on the Attractor

If we consider the quadratic map for U =4, the distribution of the iterates shown
in Figure 10.5, is characterized by the two singularities at x =0 and x =1. For
w =365, the distribution of iterates, shown in Figure 10.4, has approximately
ten peaks which also appear to be singularities. It is common to find a probability
distribution on the attractor which consist of sets of singularities with differing
fractional power law strengths. This distribution of singularities can be calculated

D,

from the generalized dimension “v. To illustrate the connection between the

generalized dimensions D, and the singularities of the distribution function, we

consider a one-dimensional system whose underlying distribution function is

for . (10.31)

First note that, despite the fact that P(+) is singular, P(X) is integrable on the

interval and it is correctly normalized. The generalized dimension D,

is defined in terms of discrete probabilities so we divide the interval into bins
of length ¢ - [0.e) is bin 0, [£.22) is bin 1, etc.. The probability of bin 0 is given

by

(10.32)
and in general the probability of bin i is given by

(10.33)

. ‘ 2
where & =it As |y +¢ t' is analytic for i = 0, we can expand this term to obtain

(10.34)

iz
So for i =0, M ~t  but for all nonzero values of i, = €. To construct D, e
need to calculate

(10.35)

We can replace the last sum in this equation by an integral,
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(10.36)

where . Combining this result with that for i =0 we obtain

(10.37)

The distribution function P(+) in equation (10.31) gives rise to singularities in
the discrete probabilities 7

If the discrete probabilities scale with exponent @, so that # = £" and

q g

pl ~e" (10.38)

then @ can take on a range of values corresponding to different regions of the
underlying probability distribution. In particular, if the system is divided into
pieces of size ¢, then the number of times @ takes on a value between a’ and
i’ +dn’ will be of the form

(10.39)

where /(@) is a continuous function. The exponent /(') reflects the differing
dimensions of the sets whose singularity strength is o’ . Thus fractal probability
distributions can be modeled by interwoven set of singularities of strength «a,

each characterized by its own dimension f{).

In order to determine the function f{e) for a given distribution function, we
must relate it to observable properties, in particular we relate /(%) to the

generalized dimensions D, As q is varied, different subsets associated with

different scaling indices become dominant. Using equation (10.39) we obtain

(10.40)

Since ¢ is very small, the integral will be dominated by the value of a’ which

makes the exponent smallest, provided that P(¢") is nonzero. The
condition for an extremum is

and (10.41)

If wig) is the value of o’ which minimizes then flelgll =g and

. If we approximate the integral in equation (10.40) by its maximum
value, and substitute this into equation (10.24) then
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(10.42)
so that

(10.43)

Thus if we know f{t), and the spectrum of o values we can find D,

Alternatively, given P we can find @(4), since f'(tt) = ¢ implies that

(10.44)

and knowing (g4}, can be obtained.

Dynamic Invariants

Grassberger and Procaccia (1983) and Eckmann and Procaccia (1986) have shown
that it is possible to define a range of scaling indices for the dynamical properties
of chaotic systems. Suppose that phase space is partitioned into boxes of size ¢,
and that a measured trajectory X(f) is in the basin of attraction. The state of the
system is measured at intervals of time t . Let p(ii+f+-++i. ) be the joint probability
that X(f =1) is in box 4, X{f =2t} is in box f,..., and X(! = nt) is in box i,. The

generalized entropies K, are defined by

(10.45)

where the sum is over all possible sequences f:f:+-+iu. As before the most
interesting K, for experimental applications are the low order ones. The limit

a—=0, K =K is the Kolmogorov or metric entropy, whereas K: has been
suggested as a useful lower bound on the metric entropy. For a regular dynamical
system K =0, and for a random signal K = =. In general for a chaotic system K
is finite, and related to the inverse predictability time and to the sum of the

positive Lyapunov exponents. The Legendre transform of 19 — DK, that is &(A),

is the analogue of singularity structure quantities /() introduced in the last
section (see Jensen, Kadanoff and Procaccia, 1987 for more details).

Lyapunov Exponents

In §3.4 we introduced the concept of Lyapunov exponents as a quantitative
measure of the mixing properties of a system. Here we will develop these ideas
further, but first we review the methods which can be used to calculate the
Lyapunov exponents. The standard method of calculating Lyapunov exponents
for dynamical systems is due to Benettin et. al. (1976) and Shimada and Hagashima
(1979). They linearize the equations of motion and study the time evolution of
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a set of orthogonal vectors. To avoid problems with rapidly growing vector
lengths they periodically renormalize the vectors using a Gram-Schmidt
procedure. This allows one vector to follow the fastest growing direction in
phase space, and the second to follow the next fastest direction, while remaining
orthogonal first vector, etc. The Lyapunov exponents are given by the average
rates of growth of each of the vectors.

A new method of calculating Lyapunov exponents has been developed by Hoover
and Posch (1985) and extended to multiple exponents by Morriss (1988) and
Posch and Hoover (1988). It uses Gauss' principle of least constraint to fix the
length of each tangent vector, and to maintain the orthogonality of the set of
tangent vectors. The two extensions of the method differ in the vector character
of the constraint forces - the Posch-Hoover method uses orthogonal forces, while
the Morriss method uses non-orthogonal constraint forces. In earlier chapters
we have used Gauss' principle to change from one ensemble to another. This
application of Gauss' principle to the calculation of Lyapunov exponents exactly
parallels this situation. In the Benettin method one monitors the divergence of
a pair of trajectories, with periodic rescaling. In the Gaussian scheme we monitor
the force required to keep two trajectories a fixed distance apart in phase space.

Lyapunov Dimension

The rate of exponential growth of a vector &() is given by the largest Lyapunov

exponent. The rate of growth of a surface element is given
by the sum of the two largest Lyapunov exponents. In general the exponential
rate of growth of a k -volume element is determined by the sum of the largest &

Lyapunov exponents *+--+h;. This sum may be positive implying growth of
the & -volume element, or negative implying shrinkage of the k -volume element.

A calculation of the Lyapunov spectrum gives as many Lyapunov exponents as
phase space dimensions. All of the previous characterizations of chaos that we
have considered, have led to a single scalar measure of the dimension of the
attractor. From a knowledge of the complete spectrum of Lyapunov exponents
Kaplan and Yorke (1979) have conjectured that the effective dimension of an
attractor is given by that value of k for which the k-volume element neither
grows nor decays. This requires some generalization of the idea of a
k -dimensional volume element as the result is almost always non-integer. The
Kaplan and Yorke conjecture is that the Lyapunov dimension can be calculated
from
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Figure 10.7 We show the sum of the largest n exponents, plotted as a function
of n, for three-dimensional 8-particle Couette flow at three different shear
rates ' = 0, 1, and 2. The Kaplan-Yorke dimension is the n-axis intercept.

(10.46)

where n is the largest integer for which

Essentially the Kaplan-Yorke conjecture corresponds to plotting the sum of

Lyapunov exponents 2 ™ versus n, and the dimension is estimated by finding
where the curve intercepts the n-axis by linear interpolation.

There is a second postulated relation between Lyapunov exponents and
dimension due to Mori (1980).

(10.47)

where o and m" are the number of zero and positive exponents respectively,
and A" is the mean value of the positive or negative exponents (depending upon
the superscript). Farmer (1982) gives a modified form of the Mori dimension
which is found to give integer dimensions for systems of an infinite number of
degrees of freedom.
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10.4 Chaos in Planar Couette Flow

We have seen in §10.2 that in apparently simple dynamical systems such as the
quadratic map and the Lorenz model, a single trajectory or sequence of iterates
can have quite unusual behavior. In §10.3 we introduced a number of techniques
to characterize the dynamical behavior of a system with a strange attractor. Here
we will apply those techniques to the SLLOD planar Couette flow algorithm that
was introduced in Chapter 6. The first difficulty is that to apply the various
techniques that determine the dimension of an attractor, the dimension of the

initial phase space must be small enough to make the numerical calculations

feasible. To calculate the static dimensions P¢ we need to calculate the discrete
probability distribution function. To do this we divide phase space up into boxes

of size ¢ . The number of boxes needed varies as (%), for a 6N dimensional
phase space. Such a calculation quickly becomes impractical as the phase space
dimension increases. A typical statistical mechanical system has a phase space
of 24N dimensions (where # is the dimension of the translational coordinate
space of a single particle) so clearly N must be small, but also N must be large
enough to give nontrivial behavior. Surprisingly enough both of these
considerations can be satisfied with # =2 and N=2 (Ladd and Hoover, 1985,
Morriss et.al., 1985,1986).

The SLLOD equations of motion for Gaussian thermostatted planar Couette flow
are;

(10.48)

(10.49)
i is the unit vector in the x-direction, and Y is the strain rate. The dissipative
flux /(I') due to the applied field is found from the adiabatic time derivative of

the internal energy . Here /I I') is the shear stress £+{T) times the volume V;

(10.50)
and the shear rate dependent viscosity "{¥ ) is related to the shear stress in the

usual way

If we consider a two-dimensional, two-body, planar Couette flow system we
find that the total phase space has eight degrees of freedom -

We then construct an infinite system made up of
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periodic replications of the central two-particle square, using the usual sliding
brick periodic boundary conditions (see §6.3). We choose an origin for the
coordinate axis where 2 ; p;=0and X ; y; = 0. In this case both the centre of
mass and the total momentum are constants of the motion. If the total kinetic
energy (kinetic temperature) is also fixed, the accessible phase space has three
dimensions. A convenient choice for these three variables is; the relative

separation of the two particles and the direction of the

momentum vector of particle one (Por-Pu ) with respect to the r-axis, which we
call 8. The magnitude of the momentum is fixed by the total kinetic energy
constraint and the fact that P +P: =0 For N >2 we find the total phase space
reduces from 4N degrees of freedom to 4N -5, when the fixed centre of mass,
fixed linear momentum and the constant value of kinetic energy are taken into
account. The sliding brick periodic boundary conditions in the Couette flow
algorithm induce an explicit time dependence into the equations of motion for
Couette flow. This is most easily seen by removing the potential cutoff. The
force on particle i due to particle j is then given by a lattice sum where the
positions of the lattice points are explicit functions of time. The equations of
motion are then nonautonomous and hence do not have a zero Lyapunov
exponent. These 4N -5 equations can be transformed into 4N -4 autonomous
equations by the introduction of a trivial extra variable whose time derivative
is the relative velocity of the lattice points one layer above the central cell. In
this form there is a zero Lyapunov exponent associated with this extra variable
(see Haken, 1983). Here we work with the 4N -5 nonautonomous equations of
motion and we ignore this extra zero Lyapunov exponent.

Information Dimension

The first evidence for the existence of a strange attractor in the phase space of
the two-dimensional, two-body planar Couette flow system was obtained by
Morriss (1987). He showed numerically that the information dimension of
two-body planar Couette flow is a decreasing function of the strain rate, dropping
steadily from three towards a value near two, before dropping dramatically at
a critical value of the strain rate to become asymptotic to one. These results are
for the WCA potential (equation 6.5) at a reduced temperature of 1 and a reduced
density of P =0.4 The sudden change in dimension, from a little greater than
two to near one, is associated with the onset of the string-phase for this system
(see §6.4). A change in effective dimensionality for shearing systems of 896
particles, under large shear rates, has been observed. In this case the vector

separation between two atoms has components whose sign is
independent of time. This arises because within strings the atoms are ordered,
and the strings themselves once formed remain forever intact, (and in the same
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order). It has been shown that the string phase is an artifact of the definition of
the temperature with respect to an assumed streaming velocity profile (§6.4), so
it is likely that this decrease in dimensionality is pathological, and not associated
with the attractor which is found at intermediate strain rates.

Generalized Dimensions

Morriss (1989) has calculated the generalized dimension D, and the spectrum of

singularities f(Q) for the steady state phase space distribution function of two
dimensional two-body planar Couette flow using the WCA potential at a reduced
temperature of 1 and a reduced density of 0.4. This system is identical to that
considered in the information dimension calculations referred to above. The
maximum resolution of the distribution function was 3x2° bins in each of the
three degrees of freedom, leading to more accurate results than the previous
information dimension calculations. He found that at equilibrium the discrete
probabilities p;(€) scale with the dimension of the initial phase space. Away from
equilibrium the p;(€) scale with a range of indices, extending from the full
accessible phase space dimension to a lower limit which is controlled by the
value of the shear rate Y.

In Figure 10.8 we present the singularity distribution /(&) for a number of
values of the strain rate Y. The results near ¥ =0 depend significantly on the
values of grid size used, and could be improved by considering finer meshes
(the minimum grid size is limited by computer memory size). At higher values
of ¥ (say ¥ =1) the values of f(&) above the shoulder in Figure 10.8, are
insensitive to grid size. However, the position of the shoulder does change with
grid size. In the limit ¢ = *, the value of D, and hence the value of @ =, for
which fl@) =0, is controlled by the scaling of the most probable p; in the
histogram pp,,. It is easy to identify p.,, and determine its scaling as an
independent check on the value of “min. Just as large positive values of 4 weight
the most probable p; most strongly, large negative values of ¢ weight the least
probable p; most strongly. The accuracy with which the least probable p; can

be determined limits the minimum value of @ for which the calculation of P is

accurate. This is reflected in poor values of D, for 4 =0.5 , and we believe is a

contributing factor in obtaining inconsistent values of the fractal dimension D,.
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Figure 10.8 The spectrum of phase space singularities for two dimensional
2 particle planar Couette flow at T =1 and p" = 0.4 as a function of V. The
function f(a) is the dimension of the set of points on the attractor that scale
with exponent a. The range of singularities extends from 3 to q,,;, where the
value of a,,,;, decreases with increasing strain rate.

We interpret the results shown in Figure 10.8 as follows. The value of f{@) is
the dimension of the set of points on the attractor which scale as €° in the discrete
phase space distribution function {p;}. For this system it implies singularities
of the form |T-T ;|*’ in the underlying (continuous) phase space distribution
function /(I'.v). At equilibrium most p;'s scale as €, with a very narrow spread
of lower a values. Indeed with finer grid sizes this distribution may narrow
still further. Away from equilibrium two effects are clearly discernible. First the
dimension of the set of p;'s which scale as €’ drops with increasing Y. Second the
distribution of values of a increases downwards with the lower limit ®uwin
controlled by the value of Y. This distribution is monotonic with the appearance
of a shoulder at an intermediate value of .
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Figure 10.9 The coordinate space distribution function for the relative position
coordinate (xq5,y15) at '=1.25. The centre of the plot is the position of
particle 1 (x4,y4), that is x45=y1,=0. Notice that there is a preference for
collisions to occur in the top right-hand side and lower left-hand side, and a
significant depletion of counts near x,,=0. p" =0.4,e" =0.25.

Having calculated the full phase space distribution function on a resolution ¢
we can investigate the behavior of the various reduced distributions, for example

we may consider the coordinate space distribution function f2(r.#), or the
distribution of the momentum angle 8. Each of these reduced distributions is
obtained by integrating (or summing) over the redundant coordinates or
momenta. Perhaps the most interesting of these reduced distribution functions

is the coordinate space distribution J2(::12}, shown in Figure 10.9.

If the underlying continuous distribution function has a singularity of the form
|T-T' |, then /2 can have singularities of the form |T-T" | **. However, if 2<a<3
then these points are no longer singularities, and the reduced distribution 5

has a different character to the full phase space distribution. If the exponent a-2

is positive, then / is zero at T g and the discrete probability p;(€) which includes

T o will scale as €?, whereas if 0-2 is negative then fais singular.
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In this study all the two variable distribution functions, although being highly
structured in many cases, did not show any evidence of singularity sets of
non-zero measure. This observation has important ramifications for the Green
entropy which we will meet in §10.5.

Lyapunov Exponents

The complete set of Lyapunov exponents for two and three-dimensional planar
Couette flow have been calculated for 2, 4 and 8 particle systems by Morriss
(1988,1989). For the two particle system the Lyapunov dimension 2. has been
calculated using both the Mori and Kaplan-Yorke conjectures (equations 10.46
and 10.47). This requires the complete set of Lyapunov exponents (that is 3
exponents for N =2) and has the advantage over static dimensions that no
subsequent extrapolation procedure is needed. The following table contains the
results for the two-body, two-dimensional Couette flow system at the same state
point as that used in the information and generalized dimension calculations.

For both the Kaplan-Yorke and Mori forms, the Lyapunov dimension is found
to be a decreasing function of the shear rate. This is consistent with the

contraction of phase space dimension that we have already seen from the

numerical evaluated static dimensions . Tt confirms that the nonequilibrium

distribution function is a fractal attractor whose dimension is less than that of
the equilibrium phase space. When the shear rate ¥ is zero, both methods of
calculating the Lyapunov dimension agree. However, as soon as the shear rate
changes from zero, differences appear. In the Kaplan-Yorke formula (equation

10.47), the value of n is 2 from ¥ = 0 until the magnitude of %, exceeds that of

A (somewhere between ¥ =2 and 2.25). This means that in this range.

For ¥ > 2, as long as M, remains positive. The value of A; is irrelevant

as soon as |-’~:|3" ;. Then as M becomes negative the dimension is equal to zero.
The Kaplan-Yorke formula can never give fractional values between zero and
one. In the Mori formula the value of s always contributes to the dimension,
L
and its large negative value tends to dominate the denominator, reducing & .

. W, a LI T .
The transition from & =2 to 43 <2 is somewhere between ¥ =1 and 1.25.
Indeed the Mori dimension is systematically less than the Kaplan-Yorke
dimension.



Table 10.1: Lyapunov exponents for two-body, two-dimensional Couette

flow system.
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Lyapunov exponents for N = 2 Dimension

¥ A, A, Ay U.:“ .[]..”

0 2.047(2) 0.002(2) -2.043(2) 3.003 3.00
0.25 2.063(3) -0.046(2) -2.1192(3) 2.952 2.90
0.5 1.995(3) -0.187(4) -2.242(3) 2.81 2.64
0.75 1.922(4) -0.388(3) -2.442(3) 2.62 2.36
1.0 1.849(5) -0.63(1) -2.74(1) 2.445 2.10
1.25 1.807(4) -0.873(b) -3.17(1) 2.295 1.89
1.5 1.800(5) -1.121(2) -4.12(5) 2.14 1.68
1.75 1.733(4) -1.424(3) -5.63(6) 2.058 1.49
2.0 1.649(9) -1.54(1) -7.36(8) 2.0156 1.37
2.25 1.575(3) -1.60(1) -9.25(9) 1.981 1.29
2.5 1.61(2) -2.14(1) -11.5(1) 1.75 1.24
2.75 0.2616(8) -2.12(1) -19.84(3) 1.123 1.02
3.0 0.678(5) -2.69(1) -19.85(2) 1.252 1.06
3.5 -0.111(4) -2.62(1) -17.49(4) 0 (0]
4.0 0.427(4) -4.25(1) -14.43(5) 1.10 1.05
4.5 -0.674(5) -2.96(1) -10.78(3) 0 (]
5.0 -0.132(2) -1.97(1) -8.152(3) 0 (0]

In Table 10.2 we compare the values of D, for 2 particle two-dimensional planar
Couette flow for several values of 4, with the Kaplan-Yorke Lyapunov dimension
for this system obtained from the full spectrum of Lyapunov exponents. Of the
two routes to the Lyapunov dimension the Kaplan-Yorke method agrees best
with the information dimension results of Table 10.2, whereas the Mori method
does not. In particular the Kaplan-Yorke method and the information dimension
both give a change from values greater than two, to values less than two at about

y = 2.2

Y 3. There are a number of points to note about the results in this table.
First, it can be shown that D\ is a lower bound for Do, however the numerical
results for Do and D, are inconsistent with this requirement as & < I}, As we
remarked previously, the results for D, when < 0.5 are poor. It has been argued
that the fractal (Hausdorff) dimension and Kaplan-Yorke Lyapunov dimension
should yield the same result, at least for homogeneous attractors. In this work

we find that -'—J'fh r is significantly lower than D (which is itself a lower bound

Kt
on D{:) for all values of the strain rate. Indeed & is approximately equal to Df;,
where 4 somewhat greater than 3.
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Table 10.2 Generalized dimensions for the two-body, two-dimensional Couette
flow systems.

Generalized dimensions

¥ D{: DI Dz D3 D.u
0.0 2.90(1) 2.98(2) 2.98(2) 2.98(2) 3.003
0.1 2.91 2.98 2.98 2.98 -
0.25 2.91 2.98 2.98 2.97 2.95
0.5 2.91 2.97 2.95 2.91 2.81
1.0 2.89(1) 2.90(3) 2.67(3) 2.49(3) 2.445
1.5 2.87 2.75 2.290 2.15 2.14
2.0 2.80(3) 2.65(3) 2.20(2) 2.10(3) 2.015

It is possible to calculate the Lyapunov exponents of systems with more than
two particles, whereas extending the distribution function histograming
algorithms for the information dimension or generalized dimension is much more
difficult. The full Lyapunov spectrum has been calculated for 4 and 8 particle
planar Couette flow systems in both two and three dimensions.

In Figure 10.10 we show the Lyapunov spectra for the 4 particle system at P = 0. 4
for a range of values of the shear rate. For the equilibrium spectrum (¥ = '3') one

exponent is zero, while the others occur in conjugate pairs '{}‘ -"""-}, where

k. =-h. This symmetry is a consequence of the time reversibility of the
equations of motion and the conservation of phase space volume from the
Liouville theorem. For the two-dimensional system the exponents appear to be
essentially linear in exponent number, but a linear fit to the positive exponents
is not consistent with an exponent of zero for exponent number zero. As the
external field is increased systematic changes in the Lyapunov spectrum occur.

The positive branch decreases, with the smallest positive exponent decreasing
most. The largest positive exponent seems almost independent of the external
field. We expect that the most vigorous mixing in phase space, which is controlled
by the positive exponents, is first a function of the curvature of the particles
themselves (the higher the curvature, the more defocusing is each collision), and
second depends on the collision frequency (and hence the density). It could be
argued that the insensitivity of the largest exponent is associated with only a
small change in collision frequency with strain rate, at this density. The zero
exponent becomes more negative with increasing field, as does the negative
branch of the Lyapunov spectrum. The change in the negative branch is larger
than the change in the positive branch. The change in the sum of each exponent

pair is the same, that is b +h, = ¢, where ¢ is constant independent of i and
related directly to the dissipation. The change in the exponent which is zero at

equilibrium is rc,
The idea of being able to characterize the Lyapunov spectrum without having
to calculate all of the exponents is very attractive, as the computation time for
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the Gaussian constraint method depends on the fourth power of the number of
particles N. We decided to compare the Lyapunov spectra as a function of system
size, at the same state point. It is well known that the bulk properties will have
some system size dependence, but the trends as a function of density and
temperature should be reliable. In Figure 10.11 we present the Lyapunov spectra
for an equilibrium system at P = 0.4 for a range of system sizes N =2.4 and 8.
Each spectra is scaled so that the largest positive and negative exponents have
the same exponent number regardless of system size. These results look very
encouraging as the spectra of all three systems are very similar. The linear fit to
the positive branch for ¥ =4 and N =8 have slightly different slopes but the
qualitative features are the same.

Figure 10.10 The Lyapunov spectra for two-dimensional 4 particle planar
Couette flow at T'=1 and p" = 0.4. The open squares are for ¥ =0, the filled
triangles are for ¥ =1 and the open circles are for ¥ =2. The Lyapunov spectra
shifts downwards with increasing strain rate with the largest exponent shifting
least. The sum of the exponents is zero at equilibrium and become more
negative with increasing strain rate.
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Figure 10.11 The Lyapunov spectra for two-dimensional 2,4 and 8 particle
equilibrium simulations at T'=1 and p" = 0.4. The spectra are scaled so that
the largest positive exponent occurs at the same exponent number regardless
of system size. The open squares are for N =2, the filled circles for N=4 and
the open circles for N=8.
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Figure 10.12 The Lyapunov spectra for two-dimensional 2,4 and 8 particle
planar Couette flow at T'=1, p'=0.4, and ¥=1.0. The spectra are scaled

so that the largest positive exponent occurs at the same exponent number

regardless of system size. The open squares are for N =2, the filled circles

for N=4 and the open circles for N=8. The open squares are for N=2, the
filled circles for N=4 and the open circles for N=8.
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Figure 10.13 The Lyapunov dimension for two-dimensional 2, 4 and 8-particle
Couette flow at T'=1, p =0.4, as a function of strain rate. The values of
dimension are scaled with respect to the equilibrium dimension so that the
y-axis represents the proportional change in dimension. The open squares
are for N= 2, the filled circles for N =4 and the open circles for N=8.

In Figure 10.12 we present the Lyapunov spectra for a strain rate of ¥ =10 at
p=04 for system sizes of N =2.4 and 8. This shows that there is also a close
correspondence between the results at different system sizes away from
equilibrium.

In Figure 10.13 we show the Lyapunov dimension of the planar Couette flow
system at P = 0.4 as a function of strain rate, for a range of system sizes. For each
system size the Lyapunov dimension is scaled by the equilibrium value, so that
the plotted results represent the proportional reduction in dimension. The
qualitative trends are the same. There is a decrease in dimension with increasing
strain rate. The proportional change in dimension is greatest for the two particle
system and smallest for the eight particle system, whereas the absolute changes
are in the opposite order.

In summary, the results confirm the dimensional contraction observed previously
in two body, two-dimensional planar Couette flow simulations. The initial phase
space dimension of I} = 24N - 24 - 1, contracts with increasing external field, and
the distribution function is only nonzero on a fractal attractor of dimension less
than 24N -2d - 1. Although the results for these systems differ in detail from
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the generalized dimension results, the observation of significant dimensional
contraction is universal. An approach which may help reduce the magnitude of
the numerical calculations is the observation that the qualitative features of the
spectra are essentially independent of system size.

If we consider the volume element Vi where 24N is the phase space dimension
of the initial system (« is the spatial dimension and N is the number of particles),
then we have that the phase space compression factor gives the rate of change
of phase space volume (see equation 3.78), so that the average of the divergence
is equal to the sum of the Lyapunov exponents. A careful calculation of the
divergence for the SLLOD algorithm, taking into account the precise number of
degrees of freedom gives

(10.51)

K
where {‘P } is the kinetic contribution to the shear stress and V is the volume.

The term involving ':P ﬂ} is order one whereas the first term is order N, so for
many particle systems the second term can be ignored. For the systems considered
here both terms must be included. This is a valuable consistency check on the
accuracy of the numerical calculation of Lyapunov exponents.

We have now identified two effects associated with the phase space distribution
functions of nonequilibrium systems; the first was dimensional contraction, and
the second is a range of sets of fractional power law singularities. The two results
are consistent in the sense that as each distribution function is normalized, the
loss of probability due to dimensional contraction, is compensated for by the
appearance of singularities in the distribution function.

Studies of two and three-dimensional colour diffusion systems by Posch and
Hoover (1988) have produced an impressive calculation - the full Lyapunov
spectrum for a three dimensional system of 32 repulsive Lennard-Jones atoms
(185 Lyapunov exponents) - as well as results for the same system with 8 atoms.
Lyapunov spectra are insensitive to ensemble, both at and away from equilibrium.
All indications are that nonequilibrium systems are also insensitive to the details
of the ensemble or thermostatting mechanism. On the other hand boundary
effects do have a significant influence on the shape of spectra for small system.
In particular, the homogeneous algorithms for shear flow (such as SLLOD) give
different Lyapunov exponents to boundary reservoir methods (Posch and Hoover,
1989).

As small NEMD simulations of planar Couette flow and colour diffusion are
dominated by a fractal attractor whose dimension is determined by the strength
of the applied field, this behaviour can be expected for all nonequilibrium steady
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state simulations. The existence of a fractal attractor is a vital clue to
understanding the nonequilibrium entropy, but as yet we only have information
concerning the rate of approach of a trajectory to the attractor, and measures of
its effective dimension. We know a good deal about the structure of the attractor,
and the singularities of the nonequilibrium distribution function. Some recent
work in the study of dynamical systems (Takahashi and Oono, 1984) shows that
modeling chaotic behaviour with statistical mechanical analogues is a useful
approach however, but to date the approach parallels irreversible
thermodynamics with a continuous production of entropy. For a theory of
nonequilibrium steady states, we need to be able to calculate an entropy shift
from equilibrium to the steady state which is finite. The appearance of an
attractor, and the relative stability of entropy producing trajectories provides a
plausible explanation for the observation of irreversibility and a mechanism for
the resolution of Loschmidt's paradox (Holian, Hoover and Posch, 1987).

It is interesting to make a connection between the results given here and the
numerical calculations based on the Kawasaki distribution function. In §7.7 we
described some very recent numerical studies of the Kawasaki form for the full
nonlinear response of an equilibrium system subject to the sudden application
of a fixed shear rate. From a theoretical point of view there are two points of
interest in this stress growth experiment. First, is the renormalized Kawasaki
shear stress equal to that observed directly? Second, how does the Kawasaki
normalization behave as a function of time? The results show that the
renormalized Kawasaki shear stress is in quite good agreement with the direct
result, and that the Kawasaki normalization which is one initially, decreases
with time. The results obtained here for the 2-body system suggest that the
Kawasaki distribution function may have singularities which compensate for
the observed decrease in both the individual probabilities and the normalization,
and that these singularities are not adequately represented in the phase space
sampling used.

Equation (10.4) implies that if we consider a comoving phase space volume
element containing a fixed number of trajectories, then the local density of phase
space increases indefinitely because the associated Lagrangian volume is
constantly decreasing (because the sum of the Lyapunov exponents is negative).
Since the contraction of the accessible phase space is continuous there is in a
sense, no possibility of generating a steady state distribution function. Computed
from the ostensible phase space the volume of accessible phase space shrinks at
a constant rate becoming zero at infinite time. A steady state is in fact
characterized by a constant rate of decrease in the relative volume occupied by
accessible phase space. This is in spite of the fact that in a steady state averages
of phase variables are constant. This apparent contradiction can be understood
by considering the following example.
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Suppose we consider a system which at t=0 occupies a 2-dimensional phase
space 0<x,y<L. Suppose that by some means this thermostatted system is subject
to a dissipative external field which, after initial transients, causes the distribution
function, f(x,y), to collapse towards a one dimensional attractor, x’+y’=r". At
some time t, the distribution function is given by the equation,

(10.52)

Further, we suppose that the width of the annulus which forms the distribution
function satisfies an equation of motion,

(10.53)

for some positive constant value of Q. It is easy to see that in the steady state ,
df/dt = af, which is the analog of (10.4). The phase space distribution function
diverges at a constant rate, 0. In spite of this, if we compute the phase average
of a nonsingular phase variable B(x,y), time averages will converge exponentially
fast towards their steady state values, <B(t)> - <B(«)> ~ ¢*. This example points
out that although the distribution function, as computed from the ostensible
phase space, may be diverging at a constant rate, steady state phase averages
may still be well defined and convergent. The distribution function computed
from within the accessible phase space has no singularities, f,..(x,yt)
f(x,y,t)/(2TTrA(t)) = 1,Vt, provided, r* < x’+y’< (r+A(t))’. In our example it is
always uniform and constant in time. Phase averages are fundamentally functions
of phase space distances not of volumes. Indeed the notion of a phase space
volume is somewhat arbitrary.

10.5 Green's Expansion for the Entropy

Since the dimension of the accessible phase space decreases to less than the
ostensible 2dN dimensions, the volume of the accessible phase space, as measured
from the ostensible space is zero. The entropy of a system is proportional to the
logarithm of the accessible phase volume. Since that volume as determined from
the ostensible phase space, is zero, the entropy will diverge to negative infinity.
These simple observations explain the divergence of entropy as computed in
the ostensible space. Presumably the thermodynamic entropy should be arrived
at by integrating over the accessible phase space only. This would remove the
apparent divergence. However the determination of the topology of the phase
space which is accessible to nonequilibrium steady states is exceedingly complex.
Even the dimension of the accessible space is only known approximately. Such
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a program for the calculation of the nonequilibrium entropy would therefore
appear quite hopeless.

The fine grained entropy as computed from the ostensible phase space dimension
has a number of further difficulties. From a quantum mechanical point of view,
if a system such as the one depicted in Figure 10.9 is meant to represent argon,
it is in violation of the Heisenberg uncertainty principle. The uncertainty
principle puts an absolute limit on the degree to which a distribution function
can be fractal. There is a lower limit imposed by Planck's constant, to the scale
of features in that can be found in phase space. The extreme fineness of the
filaments depicted in Figure 10.9 implies extreme sensitivity to external
perturbations. The finer the length scale of the phase space structures, the more
sensitive those structures will be to external perturbations. If the distribution
function is fractal, there is no limit to the smallness of the phase space structures
and therefore no limit to the sensitivity of the full distribution function to
uncontrolled external perturbations. In an experiment, averaging over an
ensemble of possible external fluctuations would of course wash out the fine
structure below a critical length scale. The precise cut-off value would be
determined by the amplitude and spectrum of the external fluctuations. This
washing out of fine structure provides an ansatz for the computation of the
entropy of nonequilibrium steady states.

Evans (1989) described a systematic method for computing the coarse grained
entropy of nonequilibrium steady states. The coarse graining is introduced by
decomposing the Gibbs (1902) entropy, into terms arising from the partial
distribution functions involving correlations of successive numbers of particles.
If the expansion is carried out to order N, the total number of particles in the
system, the results will of course be identical to the fine-grained Gibbs entropy.
The expansion has been tested at equilibrium and it has been found that for
densities less than ~75% of the freezing density, the singlet and pair
contributions to the entropy appear to be accurate to more than ~90%. At
equilibrium, the expansion therefore appears to converge rapidly. Away from
equilibrium the expansion will consist of a series of finite terms until the
dimension of the partial distribution function exceeds the dimension of the
accessible phase space. Once this occurs all succeeding terms will be infinite.
The method yields finite terms below this dimension because all the lower
dimensional integrals are carried out in the accessible phase space.

Green (1952) used Kirkwood's factorization of the N-particle distribution function
to write an expansion for the entropy. If we define z-functions in an infinite
hierarchy, as
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(10.54)

where the various f-functions are the partial 1,2,3, .. -body distribution functions,
then Green showed that Gibbs' fine grained entropy (equation 10.1.1) can be
written as an infinite series,

(10.55)

Using equation (10.5.1) one can easily show that the entropy per particle is given
by the following series.

(10.56)

In deriving this equation we have assumed that the fluid is homogeneous. This
enables a spatial integration to be performed in the first term. This equation is
valid away from equilibrium. Using the fact that at equilibrium the two body
distribution function factors into a product of kinetic and configurational parts
equation (10.5.3) for two dimensional fluids, reduces to,

(10.57)

where g(r1,) is the equilibrium radial distribution function. Equation (10.57) has
been tested using experimental radial distribution function data by Mountain
and Raveché (1971) and by Wallace (1987). They found that the Green expansion
for the entropy, terminated at the pair level, gives a surprisingly accurate estimate
of the entropy from the dilute gas to the freezing density. As far as we know
prior to Evans’” work in 1989, the Green expansion had never been used in
computer simulations. This was because, in the canonical ensemble, Green’s
entropy expansion is non-local. In Evans’ calculations the entropy was calculated
by integrating the relevant distribution functions over the entire simulation
volume. A recent reformulation of (10.5.4) by Baranyai and Evans, (1989),
succeeds in developing a local expression for the entropy of a canonical ensemble
of systems. Furthermore the Baranyai-Evans expression for the entropy is
ensemble independent.
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Evans (1989) used a simulation of 32 soft discs (¢(r) =€ (0/r)" truncated at r/0=1.5)
to test equation (10.57) truncated at the pair level. All units were expressed in
dimensionless form by expressing all quantities in terms of the potential
parameters 0,€ and the particle mass m. Table 10.3, below shows some of the
equilibrium data gathered for the soft disc fluid. All units are expressed in
reduced form. Each state point was generated from a ten million timestep
simulation run using a reduced timestep of 0.002. The energy per particle is
denoted e, and the total 1 and 2-body entropy per particle is denoted by s. The
entropy was calculated by forming histograms for both g(r) and f{p). These
numerical approximations to the distribution functions were then integrated
numerically. The radial distribution function was calculated over the minimum
image cell to include exactly the long ranged, nonlocal, contributions arising
from the fact that at long range, g(r) = (N-1)/N. The equipartition, or kinetic,
temperature corrected for O(1/N) factors, is denoted by Ty. The thermodynamic
temperature Ty, was calculated from equation (10.57) using the thermodynamic
relation, Ty,=0e/0s)y. For each density the three state points were used to form
a simple finite difference approximation for the derivative.

The analytical expression for the kinetic contribution to the entropy was not
used, but rather this contribution was calculated from simulation data by
histograming the observed particle velocities and numerically integrating the
single particle contribution. The numerical estimate for the kinetic contribution
to the entropy was then compared to the theoretical expression (basically the
Boltzmann H-function) and agreement was observed within the estimated
statistical uncertainties.

By using the entropies calculated at p = 0.6, 0.7 to form a finite difference
approximation to the derivative 0s/0p™ one can compare the pressure calculated
from the relation p=T0S/0V)g, with the virial expression calculated directly from
the simulation. The virial pressure at e=2.134, p=0.65, is 3.85 whereas the
pressure calculated exclusively by numerical differentiation of the entropy is
3.72 * 0.15. The largest source of error in these calculations is likely to be in
the finite difference approximation for the various partial derivatives.
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Table 10.3. Equilibrium moderate density data’*

P e s Tk Tin
0.6 1.921 3.200

0.6 2.134 3.341 1.552 1.614
0.6 2.347 3.464

0.625 1.921 3.034

0.625 2.134 3.176 1.499 1.500
0.625 2.347 3.318

0.65 1.921 2.889

0.65 2.134 3.044 1.445 1.454
0.65 2.347 3.182

0.675 1.921 2.754

0.675 2.134 2.919 1.306 1.374
0.675 2.347 3.064

0.7 1.921 2.889

0.7 2.134 3.044 1.326 1.291
0.7 2.347 3.182

T The uncertainties in the entropies are £0.005.

Away from equilibrium the main difficulty in using even the first two terms in
equation (10.5.3) is the dimensionality of the required histograms. The
nonequilibrium pair distribution function does not factorize into a product of
kinetic and configurational parts. One has to deal with the full function of 6
variables for translationally invariant two dimensional fluid. In his work, Evans
reduced the density to p~0.1 where the configurational contributions to the
entropy should be unimportant. He evaluated the entropy of the same system
of 32 soft discs, but now the system was subject to isoenergetic planar Couette
flow, using the SLLOD equations of motion. In this simulation a constant
thermodynamic internal energy Hy 2p°/2m + ® was maintained. The

thermostatting multiplier q, takes the form (see equation 5.2.3),

(10.58)
where Pyy is the xy-element of the pressure tensor.

To check the validity of our assumption that at these low densities, the
configurational parts of the entropy may be ignored, he performed some checks
on the equilibrium thermodynamic properties of this system. Table 10.4 shows
the thermodynamic temperature computed using a finite difference approximation
to the derivative, Oe/0s, (e=<Hy>/N, s=S/N). It also shows the kinetic temperature
computed using the equipartition expression. At equilibrium, the data at a
reduced density of 0.1 predicts a thermodynamic temperature which is in
statistical agreement with the kinetic temperature, 2.12+0.04 as against 2.17,
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respectively. The equilibrium data at e=2.134, p=0.1, gives a thermodynamic
pressure of 0.22, in reasonably good agreement with the virial pressure (including
both kinetic and configurational components) of 0.24. The disagreement between
the thermodynamic and the kinetic expressions for both the temperature and
the pressure arise from two causes; the absence of the configurational
contributions, and the finite difference approximations for the partial derivatives.

Figure 10.14 shows the analogue of Figure 10.9 for a 32 particle system under
shear. The nonequilibrium pair distribution function is free of the singularities
apparent in the 2-particle system. The reason why it is smooth is that for 1 and
2-particle distributions in systems of many particles, one averages over all
possible positions and momenta for the other N-2 particles. This averaging washes
out the fine structure. These distributions even at very high strain rates, are not
fractal. If the Green expansion converges rapidly we will clearly arrive at a finite
value for the entropy:.

Table 10.4 gives the computed kinetic contribution to the entropy as a function
of energy, density and strain rate. At low densities the increased mean free paths
of particles relative to the corresponding situation in dense fluids means that
considerably longer simulation runs are required to achieve an accuracy
comparable to that for dense fluids. The data given in table 10.4 is taken from
15 million timestep simulation runs. Away from equilibrium the strain rate tends
to increase the mixing of trajectories in phase space so that the errors actually
decrease as the strain rate is increased.

For a given energy and density, the entropy is observed to be a monotonically
decreasing function of the strain rate. As expected from thermodynamics, the
equilibrium state has the maximum entropy. Although there is no generally
agreed upon framework for thermodynamics far from equilibrium, it is clear
that the entropy can be written as a function, S = S(N,V,E,¥). Defining Ty, as

OE/0S)y ¥, pwn as TOS/OV)g ¥ and (y, as -TOS/0Y)g v, we can write,

(10.59)

Some years ago Evans and Hanley (1980) proposed equation (10.59) as a
generalized Gibbs relation, however, at that time there was no way of directly
computing the entropy or any of the free energies. This forced Evans and Hanley
to postulate that the thermodynamic temperature was equal to the equipartition
or kinetic temperature, T = 2K/(dNkg), for systems in d dimensions. Evans and
Hanley observed that away from equilibrium, although the pressure tensor is
anisotropic, the thermodynamic pressure must be independent of the manner
in which a virtual volume change is performed. The thermodynamic pressure
must therefore be a scalar. They assumed that the thermodynamic pressure
would be equal to the simplest scalar invariant of the pressure tensor that was
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also consistent with equilibrium thermodynamics. In two dimensional systems
they assumed that p=(P,+Pyy)/2.

Since we can now calculate the coarse grained Gibbs entropy directly, we can
check the correctness of these postulates. We assume, that the internal energy
is given by the sum of the peculiar kinetic energy and the potential energy, that
we know the system volume and strain rate and that the thermodynamic entropy
is equal to the coarse grained Gibbs entropy which at low densities can be
approximated by the first term of equation (10.56). Table 10.4 below shows a
comparison of kinetic and thermodynamic temperatures for the 32-particle
soft-disc system.

As has been known for some time (Evans, 1983), 0T /0¥)yy, is negative leading
to a decrease in the kinetic temperature with increasing strain rate. For this low
density system the effect is far smaller than has been seen for moderately dense
systems. At a density of 0.1 the kinetic temperature drops by 0.3% as the shear
rate is increased to unity. The precision of the kinetic temperature for these runs
is about 0.01%. The thermodynamic temperature also decreases as the strain
rate is increased but in a far more dramatic fashion. It decreases by 10% over
the same range of strain rates. The results clearly show that away from
equilibrium the thermodynamic temperature is smaller than the kinetic or
equipartition temperature. As the strain rate increases the discrepancy grows
larger.

Using the simulation data at e=2.134, one can estimate the thermodynamic
pressure as a function of strain rate. Table 10.5 shows the finite difference
approximation for the thermodynamic pressure, py,, the hydrostatic pressure,
Pu= (PxxtPyy)/2 and the largest and smallest eigenvalues of the pressure tensor
p1.P2 respectively. As expected the hydrostatic pressure increases with shear
rate. This effect, known as shear dilatancy, is very slight at these low densities.
The thermodynamic pressure shows a much larger effect but it decreases as the
strain rate is increased. In an effort to give a mechanical interpretation to the
thermodynamic pressure we calculated the two eigenvalues of the pressure
tensor. Away from equilibrium, the diagonal elements of the pressure tensor
differ from one another and from their equilibrium values, these are termed
normal stress effects. The eigenvalues are influenced by all the elements of the
pressure tensor including the shear stress. One of the eigenvalues increases with
strain rate while the other decreases and within statistical uncertainties the latter
is equal to the thermodynamic pressure.
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Table 10.4. Low density data *

P T e s Ty Tin
0.075 0.0 2.134 6.213

0.1 0.0 1.921 5.812

0.1 0.0 2.134 5.917(27) 2.175 2.12(6)
0.1 0.0 2.346 6.013

0.125 0.0 2.134 5.686

0.075 0.5 1.921 5.744

0.075 0.5 2.134 5.852 2.190 2.088
0.075 0.5 2.347 5.948

0.1 0.5 1.921 5.539

0.1 0.5 2.134 5.653 2.171 2.048
0.1 0.5 2.346 5.747

0.125 0.5 1.921 5.369

0.125 0.5 2.134 5.478 2.153 2.088
0.125 0.5 2.347 5.573

0.075 1.0 1.921 5.380

0.075 1.0 2.134 5.499 2.188 1.902
0.075 1.0 2.347 5.604

0.1 1.0 1.921 5.275

0.1 1.0 2.134 5.392 2.169 1.963
0.1 1.0 2.346 5.492

0.125 1.0 1.921 5.157

0.125 1.0 2.134 5.267 2.149 2.019
0.125 1.0 2.347 5.368

T Away from equilibrium the uncertainties in the entropy are £0.005.
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Figure 10.14 Shows the pair distribution function for the 32-particle soft disc
fluid at a relatively high reduced strain rate of 2.0. The reduced density and
total energy per particle is 0.1, 1.921, respectively. The run length is 24
million timesteps. The distribution is, as far as can be told from the simulation
data, completely smooth. In spite of the high anisotropy of this distribution,
the configurational contribution to the system entropy is only about 0.4%.

Evans (1989) conjectured that the thermodynamic pressure is equal to the
minimum eigenvalue of the pressure tensor, that is py,= p,. This relation is exact
at equilibrium and is in accord with our numerical results. It is also clear that if
the entropy is related to the minimum reversible work required to accomplish
a virtual volume change in a nonequilibrium steady state system, then p,dV is
the minimum pV work that is possible. If one imagines carrying out a virtual
volume change by moving walls inclined at arbitrary angles with respect to the
shear plane then the minimum virtual pV work (minimized over all possible
inclinations of the walls) will be p,dV.

Table 10.5. Nonequilibrium pressure: e=2.134, p=0.1

il Pth Ptr P1 P2

0.0 0.215(7) 0.244 0.244 0.244
0.5 0.145 0.245 0.361 0.130
1.0 0.085 0.247 0.397 0.096

Figure 10.15 shows the kinetic contribution to the entropy as a function of strain
rate for the 32-particle system at an energy e=2.134 and a density =0.1. The
entropy seems to be a linear function of strain rate for the range of strain rates
covered by the simulations. Combining these results with those from Table 10.4
allows us to compute (y, as a function of strain rate. For ¥=0.0, 0.5, 1.0 we find
that (/N = 1.22, 1.08, and 0.91 respectively. Most of the decrease in ( is due
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to the decrease in the thermodynamic temperature with increasing strain rate.
We have assumed that asymptotically s is linear in strain rate as the strain rate
tends to zero. It is always possible that at strain rates which are too small for us
to simulate, that this linear dependence gives way to a quadratic variation.

Although these calculations are restricted to the low density gas regime, the
results suggest that a sensible definition for the nonequilibrium entropy can be
given. A definition, based on equation (10.56), avoids the divergences inherent
in the fine grained entropy due to the contraction of the nonequilibrium phase
space. At low densities this entropy reduces to the Boltzmann entropy implicit
in the Boltzmann H-function. Our entropy is, for states of a specified energy and
density, a maximum at equilibrium.

Defining a temperature on the basis of this entropy, indicates that far from
equilibrium there is no reason to expect that the equipartition, or kinetic
temperature is equal to the thermodynamic temperature. Similarly there seems
to be no reason to expect that the average of the diagonal elements of the pressure
tensor will be equal to the thermodynamic pressure far from equilibrium. The
concept of minimum reversible virtual work, together with our numerical results
suggests that the thermodynamic pressure is instead equal to the minimum
eigenvalue of the pressure tensor.

Figure 10.15 Shows the kinetic contribution to the system entropy as a
function of strain rate. The system density is 0.1 and the energy per particle
is 2.134. Within the accuracy of the data the entropy is essentially a linear
function of strain rate. The derivative of the entropy with respect to strain
rate gives (/T. ( is positive but decreases with strain rate, mostly due to the
decrease in the thermodynamic temperature with increasing strain rate.
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It remains to be seen whether the entropy so defined, is a local maximum in
nonequilibrium steady states. If this can be satisfactorily demonstrated then we
will have for the first time a fundamental basis for a generalized thermodynamics
of steady states far from equilibrium.
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