
Cyber-Physical
Systems:
A Model-Based
Approach

Walid M. Taha · Abd-Elhamid M. Taha
Johan Thunberg

Cyber-Physical Systems: A Model-Based Approach

Walid M. Taha • Abd-Elhamid M. Taha
Johan Thunberg

Cyber-Physical Systems:
A Model-Based Approach

Walid M. Taha
School of Information Technology
Halmstad University
Halmstad
Hallands Län, Sweden

Abd-Elhamid M. Taha
Alfaisal University
Riyadh, Saudi Arabia

Johan Thunberg
Halmstad University
Halmstad
Hallands Län, Sweden

ISBN 978-3-030-36070-2 ISBN 978-3-030-36071-9 (eBook)
https://doi.org/10.1007/978-3-030-36071-9

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover Image Credit: © N.R. Fuller, National Science Foundation

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3160-9188
https://orcid.org/0000-0002-5460-2248
https://orcid.org/0000-0002-9738-4148
https://doi.org/10.1007/978-3-030-36071-9
http://creativecommons.org/licenses/by/4.0/

To the future

Preface

This book is aimed at anyone who would like to be an inventor or an innovator
of cyber-physical systems, that is, machines, manufactured products, methods, or
combinations of such things. The goal of such invention or innovation is to fill
concrete needs in society. Modern examples of such creations include autonomous
and electric vehicles, quadcopters, smartphones, and robots. More than ever before,
it is useful to describe such systems as cyber-physical because they combine aspects
that have previously been confined within the realm of relatively separate disciplines,
and in particular, within computer science and within physical sciences. We believe
that, increasingly, a more holistic and unified view of such systems is needed. This
book achieves this goal by taking a model-based approach, which allows the reader
to develop her mathematical modeling skills in a manner that allows her to combine
her knowledge from a diverse range of technical disciplines into the same model. At
the same time, we are guided by the fact that different types of activities go into the
process of creating and developing such systems, including three that this book is
concerned with: learning, teamwork, and design. We start by considering these three
points in more detail.

Learning

Learning is a lifelong activity that has become more important than ever in today’s
knowledge economy. Today, there is much more to learn. The very computing
and communication technologies that inspire this book are themselves accelerating
science and technology, and the pace with which we accumulate new knowledge.
To manage this changing learning landscape, you need to work smart. This book
aims to help you do that by starting from a high-level, systems perspective and
working down into key, representative subtopics. This way you are able to focus
on key concepts that are broadly applicable to almost all modern inventions. An
important tool that this book provides to help you with learning in the long term is

vii

viii Preface

the model-based approach, and especially the hybrid-systems modeling formalism,
which is introduced early in the book and used throughout to provide practice.

This book is also intended to encourage you to ask questions. To set an example,
the book itself motivates many topics and ideas by asking questions. Asking questions
is one of the most important skills for lifelong learning—it is an activity that involves
taking stock of what we know and identifying the gaps that we need to fill to achieve
a certain goal. The book is not about what you should do with these concepts, but
rather, what you could do. It is up to you and your understanding of the world and its
needs to put these concepts to work. We challenge you to show us how new systems
can be designed.

Teamwork

Teamwork and collaboration are essential because many modern inventions require
bringing together ideas from a wide range of disciplines, and to bring in knowledge
from a vast number of areas. As a skill, teamwork is at the top of what employers tell
us they need. Of course, teamwork and collaboration can be a tricky subject to learn
about from a book—we only experience collaboration when we work with others.
This book will help you do that in three ways. First, it introduces key concepts from
several areas that are often implicated in new inventions, including those that are
related to computing and some related to more physical science and engineering
disciplines. To talk about these concepts, some basic vocabulary is introduced. Both
the concepts and the vocabulary help us appreciate the type of expertise that experts
in different subjects have, and to build the beginnings of the vocabulary needed to
work with these experts.

Second, the book gently introduces the reader to three powerful mathematical
notions that formalize the similarities between a wide range of seemingly different
concepts. Seeing the similarities allows us to compress our knowledge and to be able
to think quickly of alternatives. The focus is less on the mathematical origin and
nature of these concepts and more on how to use them in modeling and simulation,
which is where their effects are more animated, and where you will need them the
most. These concepts can be seen as an example of a core mathematical formalism
that give us tremendous expressivity to express ideas and to animate them through
simulations. These concepts are:

1. Conditional laws: These are laws that only apply under certain conditions. Ex-
amples are laws such as “the temperature is higher than 25◦” and “the car started
moving.”

2. Discrete change laws: These are laws that specify a discrete change in one or
more quantities. Examples are laws such as “set the direction to 45◦ clockwise” or
“turn the tank valve ON.” Note here that the quantities do not need to be discrete,
but rather, it is the change that happens in a discrete instance in time.

Preface ix

3. Rate change laws: These are laws that relate to the rate of change of one or more
quantities. Examples are laws such as “the speed of the vehicle is 25 miles per
hour” or “the rate of change of speed is equal to −9.8 meters per second squared.”

These concepts will be used to model all the different types of phenomena covered
in the book. The point of this minimalism is to make it easier for you to see the
similarity between concepts that arise in different settings. It also means that you
only need to learn a small number of concepts and you will have a lot of opportunities
to practice them well. When you have mastered them and their use in modeling, they
will become a powerful communication tool for you both when collaborating with
others and when you are working on inventions of your own. Incidentally, if you are
surprised that we will be doing so much with these three seemingly simple concepts,
you are in good company. They are only intuitive and simple individually. When
combined, their expressive power and usefulness multiply.

Third, the first part of the book includes study problems, labs, and a project
that are intended to be carried out in collaboration with at least one partner. Study
problems help you check your understanding of the material covered in the chapter,
labs offer more hands on experience, and the project helps you connect the learnings
from different chapters together. In a classroom setting, the instructor will typically
organize project teams. If you are reading this book independently, we encourage
you to work on the labs, study problems, and project with a partner.

Design

Design is a process that involves creativity and experimentation, two things which are
closely intertwined—trying out things is an essential part of a process of developing
something new and establishing that it achieves the intended purpose. To help you
experiment and explore ideas efficiently, this book makes use of a modeling and
simulation environment called Acumen. Acumen was built specifically around the
three key mathematical notions mentioned above, and to make it easier for both
learners and researchers to study models that use these concepts. It has several
features that can support you in developing your core creativity skills:

• Specificity: Acumen is a modeling language and environment aimed at making it
easier to experiment and learn about the three key mathematical notions and the
type of systems they can model. It is not, for example, a programming or a scripting
language. It is not a real-time control language. The current implementation
is also not built for efficiency. Rather, the focus is on providing an integrated
development environment and on making sure that simulations provide results
that have a simple explanation and a simple relation to the mathematical meaning
of the three basic concepts.

• Time: In Acumen, all variables are functions of time. This allows us to reflect this
fundamental aspect of the world we live in: its dynamism. This notion is central to
two of the three concepts mentioned above. Interestingly, the two notions are often

x Preface

seen to imply different notions of time, one discrete and the other continuous.
Acumen has a notion of time that unifies both.

• Visualization: In Acumen, all variables are automatically plotted with respect
to time. This helps you visualize the dynamic nature of all variables. Plots have
no axis grids to encourage you to focus on the qualitative aspects first. If you
are interested in more information, you can point to the curve at a certain time
and the system will display more detailed information. Finally, Acumen provides
a mechanism to simplify the display of 3D scenes and animation to help you
visualize the behavior of more complex systems.

• Openness: All models and sub-models used in Acumen are expressed in the
source language, and can therefore be easily inspected by the reader. The tool
itself is open source and freely available online at http://acumen-language.org
and the manual is contained as an appendix to this book. In this book, it is used
to provide study problems that involve continuous dynamics, hybrid systems,
automata, and discretized and quantized systems.

Modeling is a critical skill for the upcoming generations of inventors, engineers, and
scientists, as it allows us to clearly formalize, reflect on, and communicate ideas. For
this reason, modeling is a central theme and tool in this book.

Using This book

This book is designed as the textbook for an introductory graduate or undergraduate
course to the subject. It can also be used independently. When used for a course, it is
typical that Part I is covered sequentially and then one or two topics from Part II are
covered. Part I (Core Concepts) contains the material expected to be covered by most
university-level courses on the subject and is intended to be covered in sequence.
Part II (Selected Topics) contains additional topics that have limited interdependence
among them. Thus, a course can include any one or more of them once the materials
in Part I (at least up to Chapter 5) have been covered.

When this book is used as the textbook material for a course that takes up 50% of
a student’s work week, one chapter can be covered each week. This is the case, for
example, in the Swedish higher education quarter system, where students take two
courses per quarter. In a US quarter system where one course is roughly a 30% of
a student’s work week, or in a UK semester system where it is closer to 20% of a
student’s work week, the pace should be adjusted accordingly.

At the end of each chapter in Part I, there are three different types of tasks; they are
referred to as Study Problems, Labs, and Projects and are numbered in accordance
with the chapters. Study problems are suitable as classwork or home assignments
done by students individually or in groups and are submitted to the teacher weekly.
These are, in comparison with the labs and projects, of a more theoretical nature
and train the students to understand the boundaries of what simulation can deliver.
Furthermore, the theory helps us appreciate how simulations can answer questions
not possible to answer by mathematical derivations.

http://acumen-language.org

Preface xi

The labs are tasks done in Acumen; typically in a classroom or in lab environment
under the supervision of a lab assistant. There is no recommendation to assess (grade)
the labs. They can be seen as an opportunity for students to become familiar with
Acumen and the specific concepts discussed in the chapter that the lab illustrates.

Each chapter’s project is a sub-project of a larger project that runs as a common
thread throughout the Part I. The end goal is to develop a model of a table tennis (ping
pong) playing robot. To succeed, we break down the task into sub-goals manifested
through project’s activities. The final model is based on incremental additions made
in the respective chapter’s project activity. Then the content of those ranges from
modeling of mechanical and physical phenomena, through hybrid phenomena such
as bouncing balls, modeling of sensors and actuators subject to discretization and
quantization, to control theoretic aspects such as the control of a robotic arm and
coordinate representations thereof. As a proposal for a final project, the different
models for the ping pong playing robots can compete against each other one by one
in a round-robin format in the simulation environment Acumen.

The three different tasks, namely, study problems, labs and projects, work in
symbiosis where study problems provide a theoretical understanding of the material,
the project provides a practical understanding of modeling and simulation, and the
labs act as a bridge between these two parts.

Summary of Content

Chapter 1 introduces the field of Cyber-Physical Systems (CPS), places it in the
broad context, and explains the importance of this interdisciplinary subject in to-
day’s connected society. Chapter 2 addresses modeling of mechanical and electric
systems. This includes conservation laws, statics, and dynamics. We model such
systems mathematically using linear equations and Ordinary Differential Equations.
The physical models addressed capture phenomena that evolve in continuous space
and time. In Chapter 3, the key question raised is how we model phenomena that
may contain not only continuous part but also discrete ones. The answer we provide
is to model these phenomena as hybrid systems. We illustrate this by modeling a
bouncing ball as a hybrid automaton and furthermore provide examples of physical
systems with computational parts that are both discrete and continuous. In Chapter 4,
we introduce basic concepts about control theory. This includes static control and
dynamic control including Proportional Integral Derivative (PID) control. Chapter 5
can be seen as a continuation of Chapter 4, where we consider the effects of digital
controllers, actuators, and sensors. Such devices give rise to effects such as quanti-
zation and discretization. The continuous evolution of a CPS device in the physical
world subject to control and sensory discretization and quantization effects can be
modeled as a hybrid system. Chapter 6 addresses coordinate transformations, which
is key to control are essential for the design of a CPS. As examples we consider
robotic arm manipulation and conversion between Euclidean and Polar coordinates.
Chapter 7 sheds light on challenges arising in multi-agent systems where agents may

xii Preface

have different, possibly conflicting, objectives. It provides understanding as well as
bridges the gap to systems involving multiple devices that, for example, compete or
collaborate for resources. Chapter 8 introduces Communication from a point of view
that is suitable for the needs of the CPS context, and Chapter 9 does the same for
basics of Sensing and Actuation. Appendix A includes a slightly revised edition of
the user manual for the Acumen language, as used in this book.

Expected Background

Our goal is to make the book as accessible as possible and to inspire the reader to
explore further in a wide range of technical topics far beyond those covered within
the book itself. That said, to make the best use of the book, it will greatly help that
the reader is familiar with—and not necessarily mastery of—the following:

1. Arithmetic, basic algebra, polynomials, geometry, and trigonometry.
2. Linear algebra and calculus. Again, here it is only familiarity and not mastery

that is required.
3. Computer basics. Students should be familiar with the basics of how computers

are built and how they work. No programming experience is required.

It is our intent that the book provides a gentle environment to further develop the
student’s familiarity with these topics. Thus, to the extent that it is possible, the book
is self-contained for any university freshman in a Science, Technology, Engineering,
or Mathematics (STEM) program.

After This Book

Invention, innovation, computing, physical systems, modeling, and simulation are
all vast topics that are impossible to cover in any single textbook. They are also all
evolving subjects that are a living part of our world. Even the overarching notion of
Cyber-Physical Systems (CPS) that you will learn about in this book is also far too
broad for one book. The goal of this book is to give you a sense of what is out there,
to help you get started, and—if we succeed—to inspire you. To do that, we must
repeatedly press the brakes in each chapter to avoid getting too deep and technical,
which is the role of the books and research papers that you will choose to read when
you decide that you wish to learn more about these specific topics. Our philosophy
in this respect seems to be well-aligned with the following thought articulated by
Benjamin Bloom in Evaluation to Improve learning, 1981:

In each subject field there are some basic ideas which summarize much of what scholars
have learned over the long history of the field. These ideas give meaning to much that has
been learned, and they provide the basic ideas for dealing with many new problems as they
are encountered by people who have learned what the field has to offer. We believe that it is

Preface xiii

a primary obligation of the scholars as well as teachers of the subject to search constantly for
these abstractions, to find ways of helping students learn them, and especially to help students
learn how to use them in a great variety of problem situations. To learn such principles and
generalizations adequately is to become a very different human being. Through them one
comes to appreciate the beauty and orderliness of the universe. Through them one learns to
appreciate the great power of the human mind. To learn to use such principles is to possess
a powerful way of dealing with the world. (p. 235)

To pursue this ideal, we have limited the scope of the book in several respects,
which are addressed by more specialized textbooks and courses that the reader can
easily find through an online search or by asking advisors in a university setting.
Thus, a natural step after this book is to pursue more specialization. Understand-
ing how a broad range of areas of science and engineering connect is a different
matter from understanding the specific areas or their specialties. The former type
of knowledge is called breadth, and that is what this book addresses thoroughly.
To do this, we have to leave out a lot of material that is covered in programs that
focus on specific subjects, including most aspects of modeling electrical circuits
(linear systems, electronics, power electronics), physical systems (statics, dynamics,
basic physics, classical mechanics), computer systems (digital logic, computer ar-
chitecture), communications (communication theory, information theory, networks,
wireless networks, real-time networks), control (linear systems, digital control, non-
linear control). Specific directions that are natural to seek deeper specialization in
this area are:

1. Embedded Systems. A deeper understanding of specific methodologies and
technologies is often needed to build actual physical systems. For example, we
do not address specific architectures, microprocessors, or popular embedded
technologies such as the Arduino or the Raspberry Pi. We also do not talk
about common values for resistors capacitors or other devices, nor do we talk
about device numbers (such as popular chips delivering transistors or operational
amplifiers). A notable textbook with a modern approach to design methodology
is:

Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-
Physical Systems Approach. MIT Press, 2011.
Available online at http://LeeSeshia.org.

Another focusing specifically on managing complexity in design is:

Hermann Kopetz. Simplicity is Complex - Foundations of Cyber-Physical System De-
sign. Springer, 2019.

http://LeeSeshia.org

xiv Preface

A now classic textbook with an engineering focus is:

Peter Marwedel. Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems. Second Edition. Springer, 2011.

2. Security, Safety, Human Factors, Market Analysis, Law. This book focuses
on topics that we expect to be inspiring and engaging to newcomers to this area.
At the same time, it is important to recognize that there are many different areas
of expertise that apply to invention and product design that cannot possibly be
covered in one textbook. Here we have listed a few, and there are probably others.
This is another example of how much knowledge there is today, and of why
teamwork and collaboration are so important.

3. Formal Verification. Our focus is on modeling and simulation as a basic method
for exploring new designs and learning core building concepts. We believe that
this is very important for beginning learners and for generalists. When building
high assurance systems, it can be invaluable to complement traditional design
methods with formal verification. This requires reasoning formally (and, when
possible, mechanically through the use of a computer) about the properties of the
systems that we design. Two notable textbooks covering this area are:

André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.
Lecture videos available online at http://video.lfcps.org/.

and

Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

4. Mathematical Foundations. Our focus is on mathematics as a language for
expressing ideas clearly, for analyzing ideas using mechanized tools such as
computer simulation, and for communication between individuals. We put little
emphasis on proof in general and on foundations (differential equations, calculus,
linear systems, topology, real analysis).

Thus, the purpose of this book is not to cover all these areas, but rather to give you
enough knowledge to appreciate the nature and significance of these different areas,
and to enable you to peruse the ones you choose to learn more about.

Our Experience Teaching with the Book

The lecture notes that served as the basis for this book have been used as the basis for
courses taught at Halmstad University for several years by Walid Taha and by Johan
Thunberg, at Rice University by Robert “Corky” Cartwright and by Mike Fagan,
and at Alfaisal University by Abd-Elhamid M. Taha. At Halmstad University, the
material was developed in the form of lecture notes starting in 2012. These lecture
notes were made available online at bit.ly/LNCS-yyyy where yyyy is any year
between 2012 and 2018, inclusive.

http://video.lfcps.org/

Preface xv

Experience with teaching this course at Halmstad University was reported in the
following publications:

Walid Taha, Robert Cartwright, Roland Philippsen, and Yingfu Zeng. “A first course on
cyber physical systems.” In Workshop on Cyber-Physical Systems Education (CPS-Ed).
2013.
Walid Taha, Yingfu Zeng, Adam Duracz, Xu Fei, Kevin Atkinson, Paul Brauner, Robert
Cartwright, and Roland Philippsen. “Developing a first course on cyber-physical systems.”
ACM SIGBED Review 14, no. 1 (2017): 44–52.
Walid Taha, Lars-Göran Hedstrom, Fei Xu, Adam Duracz, Ferenc A. Bartha, Yingfu Zeng,
Jennifer David, and Gaurav Gunjan. “Flipping a first course on cyber-physical systems: an
experience report.” In Proceedings of the 2016 Workshop on Embedded and Cyber-Physical
Systems Education, p. 8. ACM, 2016.

This course focused on Part I (Core Concepts) and typically covered material
from one chapter from Part II (Selected Topics). The course was initially an elective
(optional) course for senior undergraduates and Masters students and was then later
converted into a required introductory course for Masters students. The material was
also used as a basis for an introductory doctoral student course. At Rice University,
it was offered as an elective undergraduate course. At Alfaisal University, it was
offered as an elective undergraduate course.

Let Us Hear from You!

We would be very interested to hear from both students and teachers about their
experience with this book, both on positive experiences and on areas where
the book or Acumen can be improved. To contact us, please write us at cps–
book@effective-modeling.org.

Seattle, Washington Walid M. Taha
Riyadh, Saudi Arabia Abd-Elhamid M. Taha
Halmstad, Sweden Johan Thunberg

mailto:cps-book@effective-modeling.org?subject=CPS-Book

Acknowledgments

There are several people without whom this book would have not been possible.
The area of cyber-physical systems, which is the subject of the book, would have

not materialized if it were not for the efforts of many individuals that believed strongly
in the need for it. We are indebted to the whole community, especially the core group
of visionaries that include Helen Gill, Edward A. Lee, and Janos Sztipanovits, who
played a key role both in shaping the community and in supporting the efforts that
resulted in this book.

In recognizing the importance of cyber-physical systems and of modeling for-
malisms, we are greatly influenced by Paul Hudak and his work on both Functional
Reactive Programming and Domain-Specific Languages. We see Acumen as a con-
tinuation of this work. Paul’s interests spanned programming languages and building
RoboCup robots and gave us confidence that a project such as this book would be
possible.

Acumen itself would have never been possible without the enthusiasm, excitement,
and hard work of its core team of developers, including Adam Duracz, Paul Brauner,
Jan Duracz, Kevin Atkinson, Yingfu Zeng, and Xu Fei. The design of Acumen was
also influenced by discussions with several other colleagues, especially Aaron Ames,
Robert Cartwright, Michal Konečný, Eugenio Moggi, Marcia O’Malley, Roland
Philippsen, and André Platzer.

We thank the students and colleagues that took a course based on early versions
of this book with Walid at Halmstad University in Spring of 2012: Tantai Along,
Maytheewat Aramrattana, Amirfarzad Azidhak, Chen Da, Carlos de Cea Domínguez,
Adam Duracz, Carlos Fuentes, Pablo Herrero García, Veronica Gaspes, Nicolina
Månsson, Diego Leonardo Urban, Viktor Vasilev, Rui Wang, Fan Yuantao, Yingfu
Zeng, and Hequn Zhang. Their interest and enthusiasm provided critical support for
continued development of the lecture notes into the 2013 edition as well as several
editions that continue now in the form of this book. On the way, numerous other
students have contributed to its development.

The book would have not been possible if it were not for support from the National
Science Foundation, which funded a project that was initially managed by Helen Gill

xvii

xviii Acknowledgments

and later by Ralph Wachter and David Coreman. The project description included a
course outline that very closely matches the contents of this textbook.

The book would have also not been possible without the support of the Head
of Education at the School of Information Technology, Halmstad University, Jörgen
Carlsson, and the program coordinator for the Embedded and Intelligent Systems
(EIS) Master’s program at Halmstad University, Stefan Byttner, both of whom en-
couraged the introduction of the course and provided the academic environment that
enabled its development to full fruition.

The chapter on sensing and actuation benefited greatly from discussions and
feedback from Per-Erik Andreasson, Emil Nilsson, and Ross Friel.

Earlier versions of several chapters benefited from editing by Mark Stephens.
Staffan Skobgy kindly read a draft of the book and provided us with valuable
feedback. Several colleagues gave us valuable suggestions, including Maytheewat
Aramrattana, Jörgen Carlsson, John Garvin, Mohammad Reza Mousavi, Perdita
Stevens, Sotiris Tzamaras, and Kazunori Ueda.

The Acumen manual was at various points edited by Mark Stephens. Valuable
input relating to the core language and its intricacies was provided by Kevin Atkinson,
Adam Duracz, Veronica Gaspes, Viktor Vasilev, Fei Xu, and Yingfu Zeng. Roland
Philippsen and Jawad Masood suggested several suggestions from the point of view
of actual users with expertise in analytical dynamics.

Support for the development of Acumen and this textbook was provided by
the US National Science Foundation (NSF) Cyber-Physical Systems (CPS) project
#1136099, by the Swedish Knowledge Foundation (KK), by the ELLIIT Strate-
gic Network, and by Halmstad University. The development of Acumen was also
supported by several corporate and institutional sponsors, including National Instru-
ments, Schlumberger, Volvo Technology Group, and SP (now RISE).

We are enormously grateful to Roslyn Lindquist for developing the beautiful
illustrations for this book and for gracefully putting up with our last minute requests
for modifications, changes, and more illustrations.

Last, but not least, we would like to acknowledge at least part of the debt we owe
towards our parents, including a mother who painstakingly worked to ensure that we
know the difference between how the digits for 2 and 3 are written and a father for
answering endless questions. We are forever grateful.

Contents

Part I Core Concepts

1 What is a Cyber-Physical System? . 3
1.1 Our Planet. Our Knowledge. Our Destiny . 3
1.2 Observe. Understand. Innovate . 4

1.2.1 Cyber-Physical Systems and Hybrid Systems 5
1.2.2 Examples . 5
1.2.3 Computational vs. Physical Systems 7
1.2.4 Biological and Intelligent Systems 7

1.3 Developing New Products . 8
1.4 Is the Field of Cyber-Physical Systems New? 9
1.5 What You Will Learn from This Book, and How 12
1.6 A Writing Tip . 13
1.7 Chapter Highlights . 14
1.8 Study Problems . 15
1.9 Lab: Warm Up Exercises . 15
1.10 Project . 16
1.11 To Probe Further . 18

2 Modeling Physical Systems . 19
2.1 Reconnecting with the Physical World . 19
2.2 Conservation Laws . 20
2.3 Elements in Mechanical Systems . 20
2.4 Working in 2D and 3D . 24
2.5 Elements in Electrical Systems . 25
2.6 The Absence or Presence of Time in a Model 28
2.7 Arithmetic Equations, and Linear and Non-linear Systems of

Equations . 28
2.8 Where Different Numbers Come from . 29
2.9 Time-Dependent and Differential Equations 29

xix

xx Contents

2.10 Prototypes of Equations (That Will Recur Throughout
the Book) . 30

2.11 Remarks on the Basic Machinery for Solving Differential
Equations . 32

2.12 Chapter Highlights . 33
2.13 Study Problems . 33
2.14 Lab: Spring Bouncing and Object Creation . 36
2.15 Project: Mascot and Ping Pong Game . 38
2.16 To Probe Further . 40

3 Hybrid Systems . 41
3.1 Introduction . 41
3.2 Hybrid Automata . 43
3.3 Reset Maps . 45
3.4 Zero-Crossing . 46
3.5 Zeno Behavior . 46
3.6 Modeling Elastic Collision . 46
3.7 Chapter Highlights . 48
3.8 Avoid Common Mistakes . 49
3.9 Study Problems . 49
3.10 Lab: Discrete Bouncing . 53
3.11 Project: Speed-Based Player for Ping Pong Robot 55
3.12 To Probe Further . 56

4 Control Theory . 57
4.1 Introduction . 57
4.2 Feedback Control . 58
4.3 Proportional Feedback Control . 59
4.4 Operational Amplifiers . 61
4.5 Multi-Dimensional Error and Proportional/Integral/Differential

Feedback Control . 70
4.6 Chapter Highlights . 72
4.7 Study Problems . 72
4.8 Lab: Exploring Control . 74
4.9 Project: Acceleration-Based Player for Ping Pong Robot 77
4.10 To Probe Further . 78

5 Modeling Computational Systems . 79
5.1 Introduction . 79
5.2 Quantization . 80
5.3 Discretization: How Fast Can Your Circuit Go? 81
5.4 Detour: Boundedness of Digital Memory . 82
5.5 Detour: From Hardware to Software—Storing Executable

Commands in Memory . 83
5.6 The Effect of Quantization and Discretization on Stability 83
5.7 Abstract Modeling of Computational Effects 83

Contents xxi

5.8 Modeling Quantization . 85
5.9 Modeling Discretization . 86
5.10 Detour: Discretization, Sampling Rates, and Loss

of Information . 87
5.11 The Effects of Quantization and Discretization Easily

Compound . 88
5.12 Chapter Highlights . 89
5.13 Study Problems . 90
5.14 Lab: Stability Exercises . 91
5.15 Project: Quantization and Discretization . 95
5.16 To Probe Further . 95

6 Coordinate Transformation (Robot Arm) . 97
6.1 Introduction . 97
6.2 Coordinate Transformation . 98
6.3 Chapter Highlights . 101
6.4 Study Problems . 101
6.5 Lab: Coordinate Transformations . 105
6.6 Project: Spherical-Actuation for Ping Pong Robot 109
6.7 To Probe Further . 110

Part II Selected Topics

7 Game Theory . 113
7.1 The Role of Game Theory in CPS Design . 113
7.2 Games, Players, Strategies, Utilities, and Independent

Maximization . 114
7.3 Rationality, Independence and Strictly Dominant (or Dominated)

Strategies . 114
7.3.1 The Independence Pattern . 115
7.3.2 The Cost of Lacking Communication and Trust Can Be

Unbounded . 119
7.4 Coordination, Intelligence, and Nash Equilibrium 119

7.4.1 The Coordination Pattern . 120
7.4.2 Nash Equilibrium . 120
7.4.3 Determining the Nash Equilibrium 121
7.4.4 Eliminating Strictly Dominated Strategies Preserves

Nash Equilibria . 122
7.5 Competitiveness, Privacy, Mixed Strategies 123

7.5.1 Mixed Strategy Games . 123
7.5.2 Selecting a Mixed Strategy (or, Mixed Strategy Nash

Equilibria) . 124
7.6 Chapter Highlights . 126
7.7 Study Problems . 127
7.8 To Probe Further . 127

xxii Contents

8 Communications . 129
8.1 Communication, Certainty, Uncertainty, and Belief 129
8.2 Messages: From Information to Representation 130
8.3 Belief, Knowledge, and Truth . 131

8.3.1 Broader Implications . 133
8.4 Carrier Signal, Medium, and Link . 133
8.5 Link Characteristics . 135

8.5.1 Latency . 136
8.5.2 Bandwidth . 136
8.5.3 Reliability . 137

8.6 Fundamental Limits from Physics . 138
8.7 Limits Due to Component Dynamics . 138

8.7.1 Electrical Signal Transmission . 138
8.7.2 Variability in Component Parameters 140
8.7.3 Light and Radio Transmission . 141

8.8 Limits Due to Noise . 141
8.9 Limits Due to Energy Dissipation . 142
8.10 Other Sources of Limitations . 142
8.11 Chapter Highlights . 143
8.12 Study Problems . 143
8.13 To Probe Further . 144

9 Sensing and Actuation . 145
9.1 Everyday Input and Output . 145
9.2 Symmetry: LEDs and Photo-Voltaic Cells . 146

9.2.1 Diodes . 147
9.2.2 The Photo-Voltaic Effect . 149
9.2.3 Transistors and Amplifiers . 150

9.3 Analog-to-Digital Conversion (ADC) . 151
9.4 Digital-to-Analog Conversion (DAC) . 153
9.5 Sensing Temperature . 154
9.6 Sensing Position . 154
9.7 Actuating Mechanical Systems . 155
9.8 Chapter Highlights . 156
9.9 Study Problems . 156
9.10 To Probe Further . 156

A Acumen Reference Manual . 159
A.1 Background . 159
A.2 The Acumen Environment and Graphical User Interface 159
A.3 Basic Structure of An Acumen Model . 160
A.4 Model Parameters and the “Initially” and “Always” Sections 160
A.5 Model Instantiation . 161
A.6 Expressions . 161

A.6.1 Variable Names . 161
A.6.2 Literals . 162

Contents xxiii

A.6.3 Vector and Vector Generators . 162
A.6.4 Matrices . 162
A.6.5 Summations . 163

A.7 Formulae . 163
A.7.1 Continuous Formulae . 163
A.7.2 If Formulae . 164
A.7.3 Match Formulae . 164
A.7.4 Discrete Formulae . 165
A.7.5 Foreach Formulae . 165
A.7.6 Collections of Formulae . 166

A.8 How a Model Is Simulated: Order of Evaluation 166
A.9 Visualization Using the _3D Panel . 167

A.9.1 Colors . 167
A.9.2 Transparency . 168
A.9.3 Coordinate System . 169
A.9.4 Text . 169
A.9.5 Box . 170
A.9.6 Cylinders . 171
A.9.7 Cone . 172
A.9.8 Spheres . 172
A.9.9 OBJ Mesh Objects . 172
A.9.10 Default Values . 172
A.9.11 Composites . 173
A.9.12 Shapes, Their Parameters, and Their Default Values 174
A.9.13 Animation = Dynamic _3D Values 175
A.9.14 Manual Control of the View of the _3D Scene 175
A.9.15 In-model Control of the View of the _3D Scene 175
A.9.16 Camera View . 176

A.10 Built-In Functions . 177
A.11 Function Declarations . 177
A.12 Operator Precedence . 178
A.13 Simulator Settings . 178
A.14 Command Line Parameters . 178
A.15 Print to Standard Output (stdout) or Console 180
A.16 BNF of Acumen . 180

Index . 183

Part I
Core Concepts

Chapter 1
What is a Cyber-Physical System?

Our starting point is to reflect on our world today and to consider examples and
characteristics of what has come to be known as Cyber-Physical Systems (CPSs).
We then look at the innovation process and the associated workforce challenge. Next,
we explain how the field of CPS brings together several previously distinct fields
such as Embedded Systems, Control Theory, and Mechatronics. We conclude with
an overview of what you can expect to learn from this book.

1.1 Our Planet. Our Knowledge. Our Destiny

We live in a world that is changing at a much faster pace than ever before. More than
at any other time in our history, there is a pressing need for new ways of looking
at science, technology, and social phenomena—ways that can help us understand
our planet, ourselves, and how we can take control of our collective destiny. Our
population and our consumption of the Earth’s resources are soaring. Estimates put
the world’s population near eight billion1 and annual per capita energy consumption
at about 20MWh/year, that is about 2 tonnes of oil equivalent per year.2

Fortunately, with the development and availability of powerful communication
infrastructure, our awareness of the state of the world and our ability to influence
it are also improving. For example, it is remarkable that the number of smartphone
users on the planet has already topped three billion,3 which is close to half of the
world population. This means that our collective ability to share information and
cooperate has already reached a remarkable level.

1 United Nations’ World Population Prospects 2019.
2 The International Energy Agency (IEA)’s statistics reports about 2 Tonnes of Oil Equivalent
(TOE) for Total Primary Energy Supply (TPES) per capita. This amounts to 22 Mega-Watt hours
(MWh) for the conversion rate of 11 MWh per TOE.
3 Statista reports 3.3 billion smartphone users worldwide.

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_1&domain=pdf
https://population.un.org/wpp/
https://www.iea.org/statistics/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://doi.org/10.1007/978-3-030-36071-9_1

4 1 What is a Cyber-Physical System?

Without a doubt, our knowledge in the areas of science, technology, and social
sciences has played a key role in shaping the modern world. Of particular impor-
tance is knowledge in the areas of computing and communication. These are areas
that have recently witnessed exceptionally rapid development due to advances in
digital computing and communication. In the history of human knowledge, these are
relatively recent developments that are currently treated as separate disciplines. In
research and in education, topics relating to digital computing and communication
have been viewed as distinct areas of specialization.

The workforce marketplace has long prized specialized expertise. But in to-
day’s knowledge economy4 specialization also poses new challenges: The process
of innovation that leads to new breakthroughs relies critically on interdisciplinary
collaboration and insight. This is especially the case for digital products that have
a physical presence. While many successful Internet-based products benefit from
the relative ease of innovation in “pure information technology,” such ease is not
currently present for systems that sense the physical world or can interact with it. The
reasons for this problem are multifaceted. To develop a system with a physical pres-
ence or “embodiment” requires diverse expertise from many areas (e.g. Mechanical
Engineers, Computer Scientists, Electrical Engineers, Computer Architects), and
experts in these areas may not have a common language. What is more, in many
cases addressing this problem requires finding commonalities in the foundations of
these disciplines as well as ways to reflect them in the education of the experts in
these different domains.

We are not alone in holding this view. Given the extent to which digital tech-
nologies pervade modern life, a growing community of researchers and educators
believe that closer integration with many other disciplines will be needed in the
future.5 The development of numerous innovative products in the home, health, and
entertainment sectors all require close collaboration between several innovators with
different advanced training (such as Masters or Ph.D. degrees). The current orga-
nization of disciplines at university level appears to hamper the cross-disciplinary
communication needed to realize such collaboration. The organization of scientific
knowledge and its educational delivery may seem like distant problems, but they
have concrete implications for the workforce and, as a result, affect our collective
ability to contribute to the world we live in.

1.2 Observe. Understand. Innovate

One of the goals of this book is to help you learn skills that can make you become
a better observer of the world around us as well as new products and technologies.
This is one of the reasons that the book covers physical modeling. Doing so has
a secondary purpose of increasing your awareness of the mathematics that can be

4 See for example Powell and Snellman, the Knowledge Economy, 2004.
5 See for example Stankovic, Sturges, and Eisenberg, A 21st Century Cyber-Physical Systems
Education, 2017.

https://scholar.harvard.edu/files/kaisa/files/powell_snellman.pdf
https://engineering.virginia.edu/sites/default/files/common/Centers/linklab/files/Century-Cyber.pdf

1.2 Observe. Understand. Innovate 5

used to model our world, and creates opportunities for showing how this type of
mathematics can provide insights into this world. Mathematics gives us a way to test
our understanding of different phenomena, and as such provides us with a means to
improve this understanding. Our understanding of problems that need to be addressed
and components that can be used to fill these needs are prerequisites for successful
innovation.

1.2.1 Cyber-Physical Systems and Hybrid Systems

While several definitions are used in the literature, an early definition is simple and
intuitive enough: According to Lee and Seshia, the term Cyber-Physical Systems
(CPSs) was coined by Helen Gill around 2006, at the National Science Foundation
(NSF) in the U.S., to refer to the integration of computation with physical processes.6
Often, it also has a communicating or networked aspect.

If we consider this description from the point of view of the mathematics needed
to model them, we can begin to see some technical requirements: Computational
components give rise to a need for discrete modeling; physical components give rise
to a need for continuous modeling; and a communications/networking aspect gives
rise to a need for probabilistic and possibly also a game theoretic modeling. Many
fields of mathematical modeling will use either continuous or discrete mathematics,
and not mix them. And, in fact, combining these two can lead to some fundamental
technical problems. Adding probabilities on top requires an additional level of care.
But at a more practical level, simply expressing models that combine both discrete
and continuous components requires a modeling formalism that can express both.
That is precisely what hybrid (continuous/discrete) systems provide. In this book we
will make extensive use of continuous systems, discrete systems, and hybrid systems,
for modeling CPSs, and will make modest use of probabilities in introduction to basic
concepts in the treatment of game theory, communication, and sensing and actuation.

1.2.2 Examples

Many examples of CPSs surround us in everyday life. In the home we have cleaning
robots, smart lighting systems, and smart heating, ventilation, and air-conditioning
(or HVAC) systems.

For transportation we have cars, planes, motorized scooters, Segways, and electric
bicycles. Existing systems like these are representative of the areas where we can
expect to see significant innovation and development in the future. For instance,

6 Page xii of Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded Systems, A Cyber–
Physical Systems Approach, http://LeeSeshia.org, ISBN 978-0-557-70857-4, 2011.

https://en.wikipedia.org/wiki/Motorized_scooter
http://www.segway.com/
https://en.wikipedia.org/wiki/Electric_bicycle
http://leeseshia.org/index.html

6 1 What is a Cyber-Physical System?

while cars have been around for almost 350 years,7 new features like Lane Departure
Warning Systems (LDWS) are now available in vehicle product lines.

Medical solutions include pacemakers, insulin pumps, personal assistance robots,
and smart prosthetics. Many of these technologies did not exist until recently, and
have the potential both to save lives and to significantly improve health and well-
being. Wearable fitness and health-monitoring systems promise to have a hugely
positive impact on users, whether or not they are healthy or have a physical or a
cognitive disability. Health monitoring systems are just one example of the whole
area of sensor networks, which includes those made of tiny sensors used to observe
large land, marine, or aerial spaces.

Finally, examples from the energy sector include windmills, smart grids, and
various energy harvesting technologies. In fact, it is no exaggeration to think of our
entire planet as a single, massive CPS.

While the skills you will acquire in this book are centered primarily around
systems that you can construct, these same skills will also help you better understand
existing systems.

When we survey such examples we notice that some are more futuristic or more
spectacular than others. For example, the Segway may seem more critically depen-
dent on having a “cyber” (or computational) component than a car. A car can exist
and function without a computational part. But a Segway has just two wheels, and it
is not at all obvious whether it can even exist or function without the computational
component that keeps it upright.

Mechanically, the Segway is an unstable system that we can prove mathematically
ought to fall if the computational component that keeps it upright is switched off.
The Segway uses a real-time control system that runs on a dedicated, embedded
computer. Whereas, traditionally, many systems have been designed to be stable in
the absence of active control, the Segway and many generations of jet fighters (such
as the Saab JAS 39 Gripen) have designs whose stability depends critically on active
control.8 The idea in all of these cases is that pursuing this path leads to more efficient
designs that can realize functionality that would be impossible without the active
control. For a variety of technical reasons, the control itself would not be possible
without a computational component. One of the goals of this book is to help you
understand what makes a system more challenging to realize—this is often exactly
the same thing that makes it seem futuristic and spectacular.9

While powerful airborne vehicles can be very impressive, in the grand scheme
of things their applications are relatively limited, and their impact on daily life can
be minimal. In contrast, smart home technologies may have a bigger and more
direct impact. For example, significant energy is expended in heating and cooling
buildings, washing and drying clothes, and transporting people and commodities to

7 History of The Automobile provides an example that could be as old as 1672.
8 Aircraft functions of this type are sometimes referred to as supermaneuverability.
9 Clarke’s third law states that “Any sufficiently advanced technology is indistinguishable from
magic.” In a sense, we are saying here that what appears magical is often also what is at the edge
of our knowledge, and is therefore where we need to push further to increase our understanding of
the world.

http://en.wikipedia.org/wiki/Lane_departure_warning_system
https://en.wikipedia.org/wiki/Saab_JAS_39_Gripen
http://en.wikipedia.org/wiki/History_of_the_automobile
http://en.wikipedia.org/wiki/Supermaneuverability

1.2 Observe. Understand. Innovate 7

and from homes. This means that the optimization of HVAC systems can have a
significant impact on global energy consumption. Similarly, computation can enable
sophisticated hydroponic gardening right in the home to provide us with a local supply
of fresh nutrition. Combining the two may also enable more advanced management
of various parameters of comfort in the home (air moisture levels, CO2 levels) and
improve health and living conditions.

1.2.3 Computational vs. Physical Systems

It is common when we first hear the definition of Cyber-Physical Systems to assume
the computational and physical subsystems are distinct. Often this will be the case,
but not always. The key point is that when we use these designations we are making
an abstraction. Every physical system that we can think of, by definition, will have
physical components. At the same time, computation is an abstract notion that we
can identify when we recognize the presence of a mathematical function or relation.
Today, we often assume that computation is performed digitally. But this is not always
the case: Analog computers have long existed, and quantum computers are already
being built. Even when we limit ourselves to digital computation, the distinction is
still not clear: A modern microprocessor has aspects that simultaneously touch upon
essentially all computational and physical aspects discussed in this book. Especially
to microprocessor designers, it is simultaneously physical and computational in a
very real way, and both its physical and computational characteristics affect each
other directly.

1.2.4 Biological and Intelligent Systems

While the focus of much CPS research and education is on systems that we can con-
struct and develop into products, it is also instructive to reflect on one class of systems
that has many characteristics of CPSs—namely, living creatures including ourselves.
While we often view living creatures as purely biological systems, living systems
clearly have physical manifestations. These manifestations simultaneously exhibit
a range of physical phenomena, including mechanical, chemical, electromagnetic,
and optical. At the same time, they often seem perfectly capable of computation and
communicate on a regular basis. Living systems can be a great source of inspiration
for the design of new CPSs and, similarly, advances in CPSs could provide us with
better tools to improve understanding of life and ourselves. For example, living sys-
tems are the inspiration for the field of Artificial Intelligence, which aims to develop
computational methods for solving problems that are important in the real world,
but for which we may not even have a clear notion of what an acceptable solution
should be.

http://en.wikipedia.org/wiki/Hydroponics

8 1 What is a Cyber-Physical System?

No part of this book is dedicated to such systems, but the principles covered are
still applicable.

1.3 Developing New Products

To collaborate on developing new products, it is useful to have a shared concept of
product development. Different organizations, and even different individuals, have
different approaches. For this reason, it is important to consider features common to
all processes, and to use them as a starting point. We can at minimum distinguish four
artifacts in the process of product development: idea, model, prototype, and product.
This is by no means an exhaustive list, but is sufficient to allow us to describe key
aspects of any such process.

An idea is a mental notion of an object, function, or design. Ideas are the colorful
realm of inspiration. Good ideas are usually created in an environment where we
have a good understanding of the problem that needs to be solved, the context in
which the solution will be applied, and the space of feasible solutions. Generating
good ideas, therefore, requires awareness of the real needs as well as what science,
technology, and society makes possible.

A model is a formal description. In this context, the word formal means hav-
ing form, such as syntactic or geometric manifestation. Thus, a textual or graphical
description can be seen as formal. Mathematical descriptions are also excellent ex-
amples of formal models. Moving from an idea to a model makes it possible to apply
conceptual and computational tools to analyze the new function or design. Obviously,
mathematical descriptions have the advantage of being amenable to mathematical
analysis and reasoning, but other formal models can also enjoy similar properties.
Models written in plain language and including possibly a few drawings, as is com-
mon in patents, can be more accessible to a general audience than mathematical
models. Models can also be realized as computational codes, which can be used for
efficient early testing and design space exploration.

A prototype is a physical, operational instance of the model. This enables more
early testing, which allows qualitatively different validation than what can be achieved
analytically or computationally. Prototypes can be used to evaluate the safety as well
as the response of users to first-hand experience with the product concept. Today,
additive manufacturing technologies such as 3D printing are proving to be a powerful
tool for enabling the rapid construction of prototypes with minimal delays and costs.

A product is a manufactured commodity that can be sold commercially to end
users. While the public often identifies new technology with new products, building
products involves much more than technical innovation. Creating products involves
systematic analysis of the market, finding financing, recruitment, management, pro-
duction planning, logistics, marketing, sales, billing, customer support, and other
business operational activities. Even though this book does not cover these aspects,
it is important to be aware that these are significant parts of the effort to deliver a
finished product.

1.4 Is the Field of Cyber-Physical Systems New? 9

Fig. 1.1 A typical process for developing a new product

Figure 1.1 depicts the typical relation between such artifacts, and the basic iterative
cycle for moving from one to the next. As a rule of thumb, it is often the case that
moving from one stage of development to the next involves at least one order of
magnitude (that is, at least ten times) more effort than the previous stage. This
compounding of effort in moving from one stage to the next, combined with the
fact that the process often involves significant iteration and refinement, means that
maximizing the quality of the intermediate product before we move to the next stage
can significantly reduce the final cost. The high cost of iterating back from a late
stage in this pipeline is a big motivation for modeling and simulation. In the worst
case, such high costs can include production defects such as Boeing’s problems with
the 737 Max model, Toyota’s brake system problem, and the Intel Pentium bug.

These examples illustrate that the better equipped we are to produce better ideas,
models, and prototypes, the more successful we can be as innovators. This obser-
vation highlights the importance of techniques such as virtual prototyping (using
rigorous modeling and computational simulation), testing (of both computational
and physical components), formal verification (of discrete, continuous, and hybrid
systems), and model-based production and manufacturing.

1.4 Is the Field of Cyber-Physical Systems New?

While the term cyber-physical systems is relatively new, we should consider whether
the field or idea behind this way of studying systems also new. It is important that
inventors, innovators, leaders in a discipline reflect on and understand the nature and
the reasons for the existence of the field. When we do this for CPS, we must consider
a wide range of related disciplines and reflect on how they are connected. In the
following we consider several relevant concepts and discuss their relationships to
CPS.

A hybrid system is a mathematical model that features both continuous and
discrete behaviors (related areas are switching systems and impulsive differential
equations). While many CPSs can be modeled mathematically as hybrid systems, it
is important that we distinguish between the concept of the actual, physical system
and its mathematical models and the techniques used to study such.

The mathematical models are there to capture observed behavior, but as new
observations occur that cannot be explained by the model it has to be modified or even
replaced. It is a common mistake to think of models of physical systems as continuous
and models of computational systems as discrete. Models of physical systems can be
continuous, discrete, or a combination of both. For example, Bohr’s model introduced

https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings
https://en.wikipedia.org/wiki/Sudden_unintended_acceleration#Sudden_acceleration_in_Toyota_vehicles
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

10 1 What is a Cyber-Physical System?

in 1913 put forth the notion that electrons can only exist in discretely different orbits
around the nucleus of an atom, planting the seed for quantum mechanical models. In
this book, we study hybrid models of a simple bouncing ball (flying is a continuous
behavior, bouncing is a discrete event). Furthermore, at the quantum level, many
important phenomena cannot simply be viewed as continuous or discrete systems;
rather, as probabilistic systems. Computational systems cannot always be viewed as
purely discrete systems. Digital computers are generally implemented as continuous
electronic circuits designed to operate reliably only when viewed as discrete systems.
Also, there are systems known as analog computers that are continuous systems.
Some examples of such systems can be realized perfectly using digital computers.
Finally, quantum computing is an active research area that relies on probabilistic
models. CPSs are real-world objects, whereas hybrid systems are a mathematical
abstraction.

An embedded system is a computational system embedded in a physical system.
Any CPS contains an embedded system. The main distinction is that the term “em-
bedded system” reflects a primary focus on the computational component (that is
embedded in a larger, physical system). Traditionally, research on embedded systems
focused on problems such as formal verification of discrete systems (automata),
hardware design, minimization of energy consumption and production cost, as well
as embedded software development. The CPS view emphasizes the importance of
taking into account the physical context of the computational system which is often
necessary to design, test, and verify the functionality that we are developing.

A real-time system is one which must respond to external changes within certain
timing constraints. Many, but not all, real-time systems are embedded systems. For
example, an automated trading agent would not normally be viewed as an embedded
system, even though it must operate under strict timing constraints if it is to function
usefully in response to rapidly changing market conditions. Traditionally, research in
real-time systems has focused on scheduling or real-time tasks in systems that have
periodic or aperiodic request patterns, multiple (interchangeable) computational re-
sources, tasks of varying priorities, and real-time communication. Naturally, research
in this area often focuses on worst case run time requirements. A CPS may or may
not be a real-time system: The control system in a car has real-time constraints, but
the sound system does not necessarily have such.

Reliability is the ability of a system to continue to perform its function despite
the failure of some of its components. Reliability can be achieved in several ways,
starting from building components from stronger materials to adding redundancy
and error-checking to detect and try to compensate for errors and failures. In many
domains, including computational systems, probabilistic methods have been used
effectively to increase reliability, while keeping costs manageable.10 Probabilistic
methods, however, are only one tool for designing and constructing reliable sys-
tems. Mastery of other more fundamental concepts in systems design allows us to
become more effective users of probabilistic methods. Different CPSs have differing
reliability demands, and reliability need not feature prominently in the develop-

10 For some examples of how probabilities are used as a model of reliability, refer to Johan Rhodin’s
Wolfram Technology Conference talk.

http://www.wolfram.com/broadcast/video.php?channel=104&video=1395

1.4 Is the Field of Cyber-Physical Systems New? 11

ment of all individual CPSs. However, in general, as connectivity between different
CPSs increases, there is also an increasing need to consider system-wide reliability
implications for each type of individual cyber-physical subsystems.

Dependability is a more holistic notion that can encompass several related at-
tributes, such as availability, reliability, durability, safety, security, integrity, and
maintainability. In the context of the interdisciplinary field of systems engineering,
it is viewed as a measure of these combined attributes. Systems engineering is often
viewed as a field of both engineering and engineering management, reflecting its
unique point of view between what is traditionally engineering and traditionally
management. We see both systems engineering and dependability as of great im-
portance for inventors and innovators, and that the content covered in this book will
give the reader a solid foundation to pursue further studies in these disciplines.

A multi-agent system is a mathematical model consisting of interactive objects.11
It is often associated with the mathematical discipline of game theory. Multi-agent
systems and game theory provide useful techniques for modeling and reasoning
about concepts such as belief, knowledge, intent, competitiveness, and cooperation.
Notions of intelligence are often considered in relation to multi-agent systems and
mathematical models of both discrete and hybrid (continuous/discrete) games exist.
In contrast to the study of hybrid systems, the multi-agent systems and game theory
focus on the behavior of collections of agents rather than individual agents.

Finally, CPS is closely related to the disciplines of mechatronics, control theory,
robotics, and the Internet of Things (IoT). A common feature of these disciplines
is that they are highly interdisciplinary. CPS can be viewed as an attempt to take an
even more all-encompassing approach than the first three disciplines, and being quite
comparable to the last one (IoT). Texts on mechatronics may not necessarily dedicate
a large part to communications and networking, or to hybrid systems foundations.
Textbooks in control theory covering issues such as hybrid systems are still con-
sidered relatively advanced and specialized. Robots12 are obviously great examples
of CPSs, illustrating many of the challenges involved in designing innovative CPS
products. We will use a ping pong (table tennis) playing robot as a running case study
in a project that we will develop incrementally in different chapters. Both CPS and
IoT take the view that the world is becoming highly connected and computational,
and it is possible that the two approaches will converge. Historically, CPS is seen
by some as having emerged from the Control Theory community, whereas IoT as
having emerged from the Communications community.

11 The definition we use is inspired in part by the one used in the article Multi-agent Systems. More
information on the subject can be found in the online text of Shoham and Leyton-Brown.
12 The definition we use is more specific than the one used in the article Robot. We exclude
usage of the word when referring to purely computational (“virtual”) systems, which we view as
metaphorical use of the term.

http://en.wikipedia.org/wiki/Mechatronics
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Multi-agent_system
http://www.masfoundations.org/mas.pdf
http://en.wikipedia.org/wiki/Robot

12 1 What is a Cyber-Physical System?

1.5 What You Will Learn from This Book, and How

The specific goals of this book include:

• Helping you appreciate the value of several distinct disciplines to being an ef-
fective innovator. The disciplines we will consider include physical modeling,
control, hybrid systems, computational modeling, and game theory.

• Providing you with experience in model-based design. This experience will help
you be comfortable with the differences between actual physical systems and
phenomena on the one hand and mathematical models on the other. It will also
help you appreciate the importance of virtual prototyping for rapid product de-
velopment and rapid accumulation of knowledge about a domain or a product.

• Giving you a chance to review and sharpen your mathematical skills, includ-
ing mathematical modeling, differentiation and integration, and solving simple
algebraic and differential equations.

The book involves a simulation-based project. Simulation has many valuable uses,
including:

• Providing a well-motivated opportunity to be exposed to mathematical modeling.
• Avoiding the need for the existence of analytical solutions, that is, solutions in

the form of a formula that we can calculate with, because they usually exist only
for a smaller class of problems than what we can simulate.

• Enabling many more virtual experiments to be run than would be possible with
physical ones. Physical testing can be prohibitive for reasons including cost, safety,
and controllability.

• Enabling easier measurement and evaluation than may be possible with physical
experiments.

• Providing an opportunity to learn an important skill in CPS design, namely,
systematic experimentation.

• Increasing the chances of producing a successful CPS design.
• Producing many useful visualizations.
• Facilitating the creation of animations and computer games.

As mentioned earlier, the project will focus on studying a robotics problem,
namely, how to design a robot that can play ping pong. There are several reasons
why robotics is a useful example of a CPS domain, including:

• It involves intimate coupling between cyber and physical components.
• Even simple, rigid-body modeling of 3-D dynamics requires the use of hybrid,

non-linear Ordinary Differential Equations (ODEs).

Designing robots gives rise to:

• Significant embedded and real-time computation requirements.
• A need to consider issues of communication and belief.

1.6 A Writing Tip 13

Through these experiences, we can develop a sense of how designing systems be-
comes more challenging as certain characteristics/parameters of the system increase,
such as:

• Model complexity resulting from:

– Increasing the degrees of freedom (in models of physical systems).
– Increasing the size of state space (in models of computational systems).
– Reducing what can be sensed or actuated (in the control system view).
– Reducing the dependability of the components (across all aspects).

• Simple equations vs. time dependent equations, such as in going from:

– Linear to non-linear Ordinary Differential Equations (ODE)s.
– ODEs to Partial Differential Equations (PDE)s.
– ODEs to Integral/Differential Equations (IDE)s.

• Models of computation, such as in going from

– Boolean circuits to automata to Turing machines.
– Systems that are either discrete only or continuous only to systems that involve

both types of behavior (hybrid systems).

• Uncertainty about model parameters, structure, dimensionality, and determinism.

Complex systems are challenging for engineers developing state-of-the-art tools,
as well as for researchers conducting basic research. Developing a sense of what
today’s analytical and computational tools can handle will enable you to be a more
effective innovator by focusing on designs that are feasible to analyze and design.
It will also enable you to be a more effective researcher by understanding where
the frontiers of knowledge lie, which is knowledge that is prerequisite to making
fundamental research advances.

Congratulations on completing this introduction! Before we continue and sum-
marize the chapter, we suggest readers that are using this book as course material for
a course on CPSs to consult the Acumen manual, see Appendix A. Acumen will be
used as the simulation and modeling environment in the project.

1.6 A Writing Tip

We have noticed over the last 10 years significant confusion about how to use the
abbreviation CPS as a short hand for the term Cyber-Physical Systems in the plural
case in particular. This point is worth raising because abbreviation practice makes
reading easier and can help avoid confusion. The main tricky bit seems to be that the
abbreviation CPS is used both as the name of an area that studies a type of system
and a plural for a group of systems. In particular, if we want to abbreviate “The area
of Cyber-Physical Systems is new” we would replace the term by CPS. In contrast,
if we say “Both cars and robots are Cyber-Physical Systems” we would replace the

14 1 What is a Cyber-Physical System?

term by CPSs. When in doubt, think of the term Operating Systems (OS). If we want
to abbreviate “The area of Operating Systems is new” we would replace the term by
OS. In contrast, if we say “Both Linux and BSD are Operating Systems” we would
replace the term by OSs.

1.7 Chapter Highlights

1. Cyber-Physical Systems: Today and Tomorrow.

(a) Examples: autonomous vehicles, the smart grid, smart homes, smart cities.
(b) A smart planet.
(c) The challenges for mankind: innovation, safety, privacy, security, regulation,

and ethics.

2. Is CPS new?

(a) Relation to other fields.
(b) Workforce and educational challenge.

3. The innovation process.

(a) Distinct and easily recognizable stages: Idea, Model, Prototype, Product.
(b) Order of magnitude increase in cost with each transition between stages.
(c) The highly iterative nature of the process.
(d) The cost of failure. How “late” discovery of flaws can be exponentially costly.
(e) The role of virtual prototyping and verification.

4. Why this book?

(a) The goal is to introduce you to the field, so that you know where to look for
knowledge when you need it.

(b) Emphasis on modeling and simulation, which help you understand the math,
accelerates your ability to experiment and innovate, and is fun!

5. What you will learn from this book

(a) Recognizing the sources of technical complexity through learning about
hybrid systems, control, communication, and game theory. This includes
understanding the nature of the system dynamics (linear, non-linear, ODEs,
etc.) and the size of the systems studied (in the discrete and the continuous
domains).

(b) Experience through an in-depth case study (the project)

1.9 Lab: Warm Up Exercises 15

1.8 Study Problems

1. Explain, in your own words, how you imagine mathematics can help you become
a better innovator.

2. Consider a product that is expected to appear on the market in the near future.
For this product, describe the issues that should be addressed at the idea, model,
prototype, and product stages.

3. Explain, in your own words, and based on your own experience, all the possible
challenges that one may encounter if one wants to design and build a robot that
can play a game of ping pong with a human. Be as specific as you can about
the challenges that you identify. You may search online for results related to this
problem, and include ones that caught your attention. Limit your total answer to
600 words and use only one page.

4. Repeat Problem 3 for any other CPS of your choice. Discuss with a colleague.
5. Give an example of a problem that is important to each of these research areas.

Make sure that in each case this problem is central to the area: Embedded sys-
tems, Real-time systems, Reliability, Mechatronics, Control Theory, Multi-agent
systems, and Internet of Things.

1.9 Lab: Warm Up Exercises

The purpose of the lab activities is to bridge between the theory discussed in the
chapter and the more experimental activities of the project. The labs and the project
will use Acumen. Acumen is an open source modeling and simulation environment
specifically aimed at CPS design. The Appendix found at the end of this book
contains a manual for Acumen. The distribution contains a set of examples that will
be used in the Labs.

The purpose of this first lab is to connect to practical experience with modeling
and simulation. The activities of the lab are to:

• Get Acumen set up on your computer. To do that

– Download the 2016/8/30 Acumen distribution
– Uncompress it or unzip it
– Run the Jar file that you will find in the uncompressed folder
– If this does not work right away, then go to Java.com, download and install

Java 8, and restart your machine, run the Jar file again.

• Work through the first set of examples in Acumen. The purpose of these exercises
is to practice

– Geometry (in 3D, like our real world, and what we need to understand in order
to talk about robot arms)

– Dynamics, the basic differential equations needed for things like f = ma

https://bitbucket.org/effective/acumen-dev/downloads/2016_08_30_Acumen.zip
https://www.java.com/en/download/manual.jsp

16 1 What is a Cyber-Physical System?

– Animation, which is the simple combination of the above two things.
– Working through these problems during the lab will help familiarize you with

Acumen concepts and syntax, and will help you learn how to deal with simple
error messages (mostly relating to syntax)

The examples are in three folders in the 01_Introduction examples folder.
The first sequence (00–09) are examples of static 3D forms; the second sequence
(10–19) are examples of dynamic behaviors and their plots; the third sequence of
examples (20–29) are dynamic 3D forms.
Go through all the examples in the three sequences, one by one. For each exam-
ple, read the text model, read the model itself, write down how you expect the
model to behave, run the model, and then compare your expectations to what
you saw when you ran the model. Next, make small changes to the model to test
your understanding of how it work. You will notice that each example contains
questions and challenges to help you make sure that you fully understand each
model. Going through all three sequences is a really good way to brush up on the
mathematical concepts that will be used in the coming few chapters.
Feel free to play and experiment and come up with whatever shapes you would
like! The material introduced in these examples is enough to let you create a lot
of really interesting 3D shapes.

The third sequence of example will be particularly helpful preparation for the
coming chapters, as it introduces several basic concepts that illustrate how differen-
tial equations are used to model dynamics. Here is a brief summary of these concepts:
Simple dense-time models are introduced with the equation x′ = 1. Definite inte-
gration of constants and polynomials arises naturally in discussing such equations,
but such integrations are needed only when we calculate solutions by hand. A sim-
ulation environment that solves these differential equations (like Acumen) can also
calculate numerical solutions automatically. Higher derivatives are illustrated by the
equation x′′ = 1. Exponential functions are introduced by the equations x′ = x and
x′ = −x. Complex exponential functions (trigonometric functions) in the solution
forms are introduced by the equation x′′ = −x. These systems also exemplify lin-
ear differential equations. Physical systems that can be modeled by these types of
equations (falling ball, electric flows, AC current, etc.) are briefly touched upon. The
pendulum equation x′′ = − sin(x) is given as an example of the non-linearity that
arises naturally in mechanical models.

1.10 Project

The goal of the project is to provide you with a concrete case study for applying
what you learn in each chapter and to provide you with an opportunity for first-hand
experience of the challenges and rewards of designing CPSs. To achieve this goal,
the project will focus on an example of a CPS design task—namely, building a ma-
chine that can play ping pong. While building a robot can often require significant
time, space, and financial resources, we can use model-based design and simula-

1.10 Project 17

tion techniques to produce a comprehensive blueprint and significantly sharpen our
knowledge and skills with much less cost.

The first project activity will give you a sense of the overall way you will work
with models in the project. The Cannon Beach game is intended to help you apply
your knowledge of physics, control, differential equations, and other areas to solve a
challenging design problem. Your knowledge will be deeper in some areas than in
others. This variability in expertise is normal, and is typical in real-world situations.
It is an important engineering skill to be able to find ways to solve difficult problems
with the experience you already have, and to continue to develop your skills while
working on new challenges.

The picture above shows what the game visualization looks like. From left to right
you have a pile of cannonballs, the cannon, and the target. When the game is being
played, the target (bullseye) appears at different locations. When the cannonball is
fired, it travels with a given speed and the angle where the cannon is pointing. The
angle is measured from the ground to the cannon. The bullet is subject to the effect
of gravity and air resistance. You probably already know a lot about the effects of
gravity for this problem, but not so much about air resistance. This problem is a
chance for you to learn a bit about how air resistance is modeled, and how it affects
solving problems.

Your task is to design a player (or “controller”) that sets the direction of the
cannon so that you hit the target. The more accurately you hit the target, the more
points you get.

This controller takes the target position as input, and must compute a value for the
angle. You can assume for now the velocity is given (see model) and leave it as it is.
In terms of specific technical details, you can assume that gravity g = 10m/s2 and
air resistance coefficient k = 0.01m/s2. The target can appear at any point between
positions −6 and 6. You will need to read the model of the game to learn the full
details.

What you need to submit for this assignment is a modified version of the following
template. In this template, the model parameters position, target, velocity represent
the cannon’s position, the target’s position, and the bullet’s velocity, respectively.
The angle output should between 0 and π.

18 1 What is a Cyber-Physical System?

model ResponseExample (position ,target , velocity) =
initially

angle = 0, distance = 0
always

distance = target - position ,
angle = pi/4

1.11 To Probe Further

At the end of each chapter you will find a collection of pointers for further exploration.
Some will be more technical, others will be lighthearted. The idea is to help you
explore further beyond the material presented in the chapter.

• Background on CPS, mechatronics, innovation, and robotics
• Lawrence Lessig’s lecture on Threats to a Freedom to Innovate
• A US News article on the rise of open education
• Hans Rosling’s lecture on the world population: Religion and Babies
• Legal concerns about Space Oddity

– Chris Hadfield’s website
– Economist article about Copyright in Space

• Economist article on Open-Source Medical Devices
• Wired article on 3D printing, a technology that can revolutionize manufacturing.
• New York Times article on Why Innovators Get Better with Age
• A proposed mock Coursera course about Coursera, the leading MOOC provider
• A mathematician’s lament
• A humorous video illustrating problems this course cannot help solve
• The European Summer School on CPS
• Technical videos from the Halmstad Colloquium

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://en.wikipedia.org/wiki/Cyber-physical_system
http://en.wikipedia.org/wiki/Mechatronics
http://en.wikipedia.org/wiki/Innovation
http://en.wikipedia.org/wiki/Robotics
http://www.youtube.com/watch?v=EnxjCUNiQB8
http://creativecommons.org/weblog/entry/36366
http://www.gapminder.org/videos/religions-and-babies/
http://chrishadfield.ca/space-oddity/
http://chrishadfield.ca/space-oddity/
http://www.economist.com/node/21556098
http://www.wired.com/autopia/2013/02/3d-printed-car/
http://www.nytimes.com/2013/03/31/jobs/why-innovators-get-better-with-age.html?smid=tw-share&_r=0
http://cucfa.org/news/2013_may10.php
http://www.maa.org/devlin/lockhartslament.pdf
http://laughingsquid.com/the-expert-a-hilarious-sketch-about-the-pain-of-being-the-only-engineer-in-a-business-meeting/
http://www.cpsschool.eu/
http://www.halmstadcolloquium.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Modeling Physical Systems

How can we use math to predict the behavior of physical systems? In this chapter we
cover principles for modeling physical systems; differential equations, with a focus
on Ordinary Differential Equations (ODEs); systems of equations; vector calculus;
one-, two- and three-dimensional mechanical systems (statics and dynamics); and
resistive and linear electric circuits.

2.1 Reconnecting with the Physical World

In Chapter 1 we explained how CPSs are ubiquitous in modern society. The systems
are closely coupled with the physical world. To understand these systems and to build
the skills required to develop new innovations we need to have some experience with
modeling physical systems. Often, it is the physical nature of the problem that will
either drive the solution or affect the extent to which a new product solves the given
problem.

The physical phenomena that are useful to model depend on the problem. For
different problems, we may wish to model physical, chemical, biological, economic,
or even social phenomena. While working on our solution, it can be very helpful
to consult specialized textbooks or research papers about modeling any particular
phenomena that seem to have a significant effect on the behavior of our system.

Physics has a particularly important role in the design of CPSs. It encompasses
mechanics, electromagnetics, optics, and thermodynamics, all of which are often
present even in the realization of the cyber (computational) components of a CPS.
Fortunately, understanding the basic principles for such systems can help us both in
analyzing real-world problems and in developing the “mathematical muscles” that
can help us to learn more about modeling on our own when required.

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_2

20 2 Modeling Physical Systems

2.2 Conservation Laws

A theme in physical modeling is the presence of conservation laws. These laws are
the workhorse of the process of mathematical modeling, so, it is very useful to keep
an eye out for them. Examples from mechanical systems include:

• Conservation of energy.
• Conservation of momentum (translational and rotational).
• Conservation of mass.

The main example from electrical systems is:

• Conservation of current.

Deeper principles in physics allow us to connect some of the principles mentioned.
For example, the famous equation E = mc2 allows to connect energy and mass. For
us here, the importance of these principles stems from their utility in allowing us to
model and analyze physical systems.

2.3 Elements in Mechanical Systems

In addition to conservation laws, mechanical and physical systems will have standard
elements. Examples in a mechanical system include:

Mass The basic rule for a mass is F = ma, where F is force, m is mass, and a is
acceleration. Note that this is a second order differential equation, since a is really
x′′ (the second derivative of x), where x is the position. Note also that this equation
holds when we are in one, two, or three dimensions. In all cases, F and a are both
n-dimensional vectors where n is the dimension of the space we are working in, but
m always remains a scalar (single-dimensional) value.

Force (Including Gravity) Force is an element that can represent the basic
mechanical interaction between two objects. It is also involved in the basic rule
F = ma. For our purpose it can be through physical contact or the effect of gravity.

Lever This is an element that consists of a long rod balanced on a pivot, which
has two forces applied to it that would individually cause it to rotate in opposite
directions. The lever is in equilibrium if the torques around the pivot are equal. In
the case of the example shown in Figure 2.1, this means that

m1ga = m2gb. (2.1)

Interestingly, we can see gravity appears as a multiplier on both sides. This means
two things. First, in the rare situation where there is no gravity, and so, g = 0, the
equation holds for any masses and lengths. More practically, in non-zero gravity we
can divide both sides of the equation by g to get

m1a = m2b. (2.2)

2.3 Elements in Mechanical Systems 21

Fig. 2.1 Two masses m1 and m2 are placed on a rod balanced on a pivot. The distances to the
pivot, a and b, can be chosen so that the system is in equilibrium and does not move

Friction is a phenomena that generates a force that opposes the direction of
(potential) movement, and is usually proportional to a normal force that is normal
to the direction of the movement (often a surface along which another object is
moving). In the case of the example shown in Figure 2.2, the normal force would be
pointing upward.

Fig. 2.2 A box is pushed with a force FApplied to the right. A force Ffriction is acting in the opposite
direction. The gravitational force is negated by a normal force that points in the opposite direction

Spring The spring is a component that is modeled by Hooke’s law, which is
usually represented by the equation

F = −kx, (2.3)

where F is a force, x is a displacement relative to a neutral (natural) position for the
spring, and k is a (scalar) coefficient that relates these two values. Figure 2.3 illustrates
this behavior by presenting three instances of the same spring in equilibrium. In the
first case there is no mass attached; in the second, there is a single mass attached;

22 2 Modeling Physical Systems

in the third, there is a double-mass attached, leading to double the extension seen in
the middle example. It is important to note again that both the F and x quantities
can be n-dimensional, and that the k parameter is always a scalar.

Fig. 2.3 Illustration of Hooke’s law. If an object with mass 2m is attached to a spring, its length
increases twice as compared to when an object with mass m is attached to the spring

Damper A damper is a device that creates a force against the direction of move-
ment, and in proportion to the speed of the movement (compare this to friction
mentioned above). The rule for a damper therefore has the form

F = −kv, (2.4)

where F is a force, k is a constant, and v is a velocity. We use k for constants. Thus,
this is not the same constant as the one used in Hooke’s law, i.e., Equation (2.3).
The example shown in Figure 2.4 presents a combined example involving a mass, a
damper, a spring, and an external force. This example is one dimensional.

2.3 Elements in Mechanical Systems 23

Fig. 2.4 A system with both a damper and a spring. Dynamical behaviors of such systems will
attenuate over time and the system converges to a static configuration

Air Resistance This is a force created by air and applied to any object moving
through it. At slow speeds (much less than the speed of sound), we can view this
force as being proportional to the square of the speed. Thus, the formula can be
expressed in the one-dimensional case as

F = −kv · abs(v). (2.5)

We use the absolute value function abs in this manner to make sure that the resulting
value gives the force the right sign. Now, in the more general 3D-setting, the equation
would be expressed as follows:

F = −kv‖v‖, (2.6)

where ‖v‖ is the Euclidean norm of v. The reader can verify that (2.6) reduces to
(2.5) in the one-dimensional case.

Using these rules, we can model complex systems by writing the equations for
all of the individual components and solving (or simulating) them as a system of
equations.

A statics problem is one where the system components are not moving, and
nothing internal to the system can cause them to move. As an example, consider the
system shown in Figure 2.5. If we are told that this system is at rest, then we can write
an equation that relates m, g, k, x, and Fk. Given any three of these parameters, we
can determine the fourth. Also, given a relation between two of these parameters,
we can determine a relation between the other two.

The same system can become a dynamic system if we are told that at least one
part may be moving. For example, the mass m (at position x) may be moving, in
which case it would have speed x′ and acceleration x′′. The possibility of a non-zero
acceleration must now be factored into the equation, and it would involve g, k, x, x′,
and F . We will also generally need to know the position at some given time, such as
the position x(0) at time 0, in order to be able to solve the resulting equation.

A more involved example is the following configuration in Figure 2.6. For this
example, we can write a system of ODEs involving x1 and for x2, their derivatives

24 2 Modeling Physical Systems

Fig. 2.5 An object with mass m is attached to a spring. The gravitational force is acting on the
object but no air resistance is assumed

Fig. 2.6 A one-dimensional system involving two objects with masses m1 and m2, respectively.
The objects are connected via springs and dampers

and their second order derivatives. This system of equations provides a model which
we can analyze and simulate.

2.4 Working in 2D and 3D

For many physical systems, it is useful to reason about the mechanics in 3D. But
occasionally the problem can help us keep things simple, and we can work in 2D
or even 1D. When we need to work in 2D or 3D, the key insight required is how to
factor a single force or speed into multiple forces that are relevant to the equations for

2.5 Elements in Electrical Systems 25

the components. In general, for such a factorization, basic trigonometric identities
will be very helpful. Consider the example in Figure 2.7. In this example, the normal

Fig. 2.7 A box with mass m is placed on a slope. A friction force given as a function of the normal
force is stopping the box from sliding down. However, when the inclination, given by the angle α,
is large, the friction force is not large enough to stop the box from sliding

force Fnormal is a determined by the gravitational force mg and would have to be
computed using the angle α. The value of Ffriction, in turn, would be determined by
the friction laws. A good source of examples of this type of analysis can be found at
physicsclassroom.com.

2.5 Elements in Electrical Systems

Standard elements in electrical systems include:
Resistor This is one of the most basic elements of an electric circuit. The current

I passing through this element has a direct relation to the voltage V across the
resistor. This relation is known as Ohm’s law, and is expressed mathematically as

V = IR, (2.7)

http://www.physicsclassroom.com/class/vectors/Lesson-3/Equilibrium-and-Statics

26 2 Modeling Physical Systems

where R is the resistance. The diagram in Figure 2.8 illustrates schematically a
situation where this relation should hold.

Fig. 2.8 The current I is passing through a resistor with resistance R

Capacitor This is an element where the voltage across is proportional to the
integral of the current going through the element. The diagram in Figure 2.9 includes
the schematic symbol for this kind of device in a circuit diagram. Alternatively, we
can say that the current is proportional to the rate of change of the voltage across it,
that is, V ′ = dV (t)/dt. Mathematically, this means that

I = CV ′, (2.8)

where the ratio C is called the capacitance. The higher the capacitance, the greater
the current needed to correspond to a small change in voltage.

Inductor This is an element where the rate of change in current, that is, I ′ =
dI(t)/dt, is proportional to the voltage across it. That is

V = LI ′, (2.9)

where the ratio L is called the inductance. The higher the inductance, the higher the
voltage we need to get the same rate of change in current. Figure 2.10 illustrates a
circuit involving an inductor.

Voltage Source A voltage source simply provides a voltage that is either fixed
(a direct current or DC source) or variable, in which case it may be an alternating
current (AC) source.

Current Source Like a voltage source, a current source provides a current that
may be fixed or variable, depending on the type of source.

As can be seen from the remarks above, each of these elements comes with a set
of equations that describes its effect on the system that it is used in. To analyze a

2.5 Elements in Electrical Systems 27

Fig. 2.9 Circuit with a capacitor

Fig. 2.10 Circuit with an inductor

given circuit, these rules are applied, along with one or more instances of the basic
conservations laws for circuits, which are that:

• At any node (that is, region of the circuit that is connected and is not interrupted
by elements), the total in-going and outgoing current must be zero.

• Around any loop in the circuit (that is, any path through connected components
in the circuit) the total voltage differences experienced must be zero.

Several examples of this kind of analysis can be found online at this page by Erik
Cheevers (see also To Probe Further below).

http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA1.html

28 2 Modeling Physical Systems

2.6 The Absence or Presence of Time in a Model

In many important systems, it is possible to remove time out of the modeling process.
The study of mechanical systems where time is not involved is called “statics.”
Electrical systems that can be analyzed without need to consider time include circuits
made purely out of resistors and a constant source of voltage or current. Whether or
not we need to model time depends on

1. The type of components involved in the system,
2. The state of the system, and
3. The type of input that we are applying to the system.

For example, a mechanical system made of a lever, e.g., a teeter-totter, that is in
balance does not need a notion of time to be analyzed. Similarly, an electric circuit
made of resistors, capacitors, and inductors, and where all currents and voltages are
constant, can also be analyzed without reference to time. However, if the mechanical
system is not in balance or the circuit has a voltage changing over time, then time
needs to be taken into account.

2.7 Arithmetic Equations, and Linear and Non-linear Systems of
Equations

When we consider problems where there is no notion of time, we generally build
equations using arithmetic operations including addition, subtraction, multiplication,
and division. Equations that use only addition and subtraction (or multiplication/di-
vision by a constant) are called “linear equations,” and are generally relatively easy
to solve by hand when the number of variables involved is small.

Example 2.1 Consider the following set of equations:
x + y = 3
x − 3y = −1
Solve this equation for x and y.

Solution 2.1 This is a linear system of equation. A basic strategy for solving such
a system of equations is to convert one of the equations into a form where only one
of the variables appears on the left-hand side of the equal sign. Then substitute that
variable with the expression on the left-hand side in the remaining equation. The first
equation can be rewritten as x = 3−y when we subtract y from both sides. When we
substitute the right-hand side into the next equation we get (3−y)−3y = −1, which
simplifies to 3 − 4y = −1. By subtracting 3 from both sides we get −4y = −4.
Dividing both sides by −4 we get y = 1. Substituting that into x = 3 − y we get
x = 3 − 1 = 2.

2.9 Time-Dependent and Differential Equations 29

If we have equations where we multiply two different variables, or if we use
functions like exponentiation, logarithms, roots, or trigonometric functions for vari-
ables or values that depend on variables, then these equations are no longer linear.
Sometimes, it is possible to use a method similar to the one above to solve such
equations. In general, however, it is not possible. As a result, it is often necessary
to resort to iterative approximation methods to solve such equations, which can be
more computationally expensive (even when done by a computer).

2.8 Where Different Numbers Come from

It is helpful to note that the kinds of operations that we use in the equations actually
give rise to different classes of numbers. For example, the N (natural numbers),
Z (integer numbers), Q (rational numbers), A (algebraic numbers), and R (real
numbers) are the numbers that can express solutions to different kinds of problems.
In the order they were presented, these sets are larger and larger, and incorporate
more points. The set N = {1, 2, 3, . . .} is also referred to as the counting numbers.
The set Z contains N but also all numbers in N constructed by multiplied by −1 or
0, that is, besides N. The rational numbers are all numbers that can be written as a

b ,
where a ∈ Z and b ∈ N.

The algebraic numbers in the set A are solutions to equations like

xm = n (2.10)

and they require having inverse options like root(m, xm) = root(m, n) implies x =
root(m, n). The value computed by such a function is not in the set of natural
numbers N nor in the set of rational numbers Q, but is in a “new” set A.

2.9 Time-Dependent and Differential Equations

Because many components have time-dependent behavior, we will often need or-
dinary (as opposed to partial) differential equations to describe them. Ordinary
Differential Equations (ODEs) can be classified in several ways. One of the most im-
portant classifications is the distinction between linear and non-linear equations. In
the case of linear ODEs, the equations are linear in the variables and the derivatives
thereof. Linear ODEs usually have solutions only involving exponential or complex
exponential functions. By complex exponential functions we mean exponential func-
tions where the exponent has a complex number coefficient. According to Euler’s
identity, exponentials that have purely imaginary coefficients correspond to sine and
cosine functions. They are commonly used in connection with electrical circuits and
mechanical systems. It is very important to note that sine, cosine, and other functions
occur in the solutions but not in the equations themselves.

http://en.wikipedia.org/wiki/Euler%27s_formula

30 2 Modeling Physical Systems

Non-linear ODEs may have solutions that do not have a closed form (analytical)
representation. In such cases one usually has to rely on simulation and numerical
solutions, which is commonly done for mechanical systems and electronics circuits.
One could point out in this context that even though the solution is not expressible
in closed form, certain aspects of it could sometimes be deduced analytically. For
example one could prove that the solution will converge to a specific point as time
progresses (but not exactly how without simulation). This is something that goes
beyond the scope of this book.

Other types of differential equations exist apart from ODEs, such as Partial
Differential Equations (PDEs) and Integral Differential Equations (IDEs), but those
will also not be covered in this book. Our focus here is on ODEs with respect to time
and rigid body systems, with no flexible elements.

We will always use t as the variable for time, and we differentiate with respect
to time. We identify time with the real numbers R. For derivatives with respect to
time, we often see the notation dx/dt or dy/dt. Depending on the situation, we may
write the same equation as:

dx(t)/dt = 1 or
dx(t)

dt
= 1. (2.11)

Or more concisely as:

dx/dt = 1 or
dx

dt
= 1. (2.12)

Or even more concisely as:
x′ = 1. (2.13)

The notation in the last equation is the same as that in Acumen. Acumen is a small
modeling language and it is designed to be this way to let us learn a lot about
cyber-physical systems in this book.

2.10 Prototypes of Equations (That Will Recur Throughout
the Book)

The Acumen examples from Lab 1 are prototypes that represent important classes
of subproblems that can be used to solve a bigger problem. We will see examples of
these equations throughout the book.

In what follows, we discuss how these prototypes can be solved.
• x′ = 1, x(0) = x0.

Solved by taking definite integral from 0 to t to both sides: :
∫ t

0 x′ds =
∫ t

0 1ds
and this implies x(t) + k1 = t + k2 which in turn implies x(t) = t + k2 − k1.
Now we can use this equation and our initial assumption that x(0) = x0 to deduce
that k2 − k1 = x(0). Thus x(t) = t + x0.

https://en.wikipedia.org/wiki/Lyapunov_stability

2.10 Prototypes of Equations (That Will Recur Throughout the Book) 31

• x′′ = 1, x′(0) = v0, x(0) = x0.

Solved by applying the same procedure as the previous equation twice. In partic-
ular this is used in Newton’s law f = ma where a is the second derivative of x.
We assume that f is constant and consider the equation:

f

m
= x′′,

where f
m is chosen to be equal to 1 for simplicity.

∫ t

0 x′′ds =
∫ t

0 1ds and so
x′ = t + v0. We can now do the same trick to solve it:

∫ t

0 x′ds =
∫ t

0 (t + v0)ds,
which gives us x = t2/2 + v0t + x0. As an exercise, use this method to solve a
variation of this problem where x′′ = −9.8.

• x′ = x.

If we apply the same trick as in the previous examples and integrate both sides:∫ t

0 x′ds =
∫ t

0 xds, that is x(t)−x(0) =
∫ t

0 xds we cannot move forward because
we need to know x to be able to integrate it. The solution, if x(0) = 1, is the
exponential function x(t) = et, since its derivative is the function itself. The
function et describes exponential growth, present in applications such as bank in-
terest growth or bacteria population growth. The function e−t models exponential
decay, for example, radioactive isotope decay or capacity charge decay.

• x′′ = −x.

A solution, when x(0) = 0, is sin(t) (recall: sin′(t) = cos(t) and cos′(t) =
− sin(t)). Note that sin(t) is an exponential function with a complex coefficient.
An example modeled by this equation is a spring mass. Please see Harmonic
oscillator for a description. The equation arises from the description of the force
exercised by the spring: Remember that the force created by a spring is −kx
where x is the distance from the equilibrium part. The equation above would
arise if there is a mass m = 1 and a spring coefficient k = 1.

• x′′ = − sin(x).

sin(x) is a non-linear function, so this is an example of a non-linear ODE, where
we usually resort to simulation for evaluation of system behavior. This particular
equation is used to describe a pendulum pendulum.

http://en.wikipedia.org/wiki/Harmonic_oscillator
https://en.wikipedia.org/wiki/Pendulum_(mathematics)

32 2 Modeling Physical Systems

Key point from these examples is that x′ = 1 and x′′ = 1 have polynomial solu-
tions, whereas x′ = x and x′′ = −x have (real or complex) exponential solutions.

Example 2.2 Prove that the solution of x′ = x is NOT a polynomial of finite
order. Proof sketch: Assume that the solution is a polynomial of finite order, and the
highest nominal has power n. Derive a contradiction.

Exercise 2.2 Prove that the solution to x′′ = sin(x) is not an exponential function.

2.11 Remarks on the Basic Machinery for Solving Differential
Equations

In many cases we know how to solve a differential equation because we know what
function has that derivative. For example, consider the monomial tn+1. This is a
function of t that has the following derivative: d(t(n+1))/dt = (n + 1)tn.

Example 2.3 d(t2)/dt = 2t and d(t14)/dt = 14t13.
The linear property of differentiation states that if a and b are functions of time,

then d(a + b)/dt = d(a)/dt + d(b)/dt.
Example 2.4 The properties described above help us to compute derivatives by

hand. For example, we can use it to compute that d(t101 + t52)/dt = dt101/dt +
dt52/dt = 101t100 + 52t51.

Fundamental Theorem of Calculus
∫ B

A
f(t)dt = F (B) − F (A) where dF/dt

is f , (see Fundamental theorem of calculus).
Why Is the Fundamental Theorem of Calculus so Important for Us? There is

a common pattern in mathematics that is worth keeping in mind as we look at solving
differential equations. This pattern highlights the importance of inverse functions
in helping us solve equations. For example, if we are asked to solve for x in the
equation x + m = n, what do we do? Firstly we isolate x by applying the inverse
of +m, which is −m, to both sides of the equation. This means that we convert the
first equation to a new one: x + m − m = n − m. Then, we simplify it to get
x = n − m, and this last equation gives us the solution to this problem. A similar
thing happens with differential equations. Intuitively, the Fundamental Theorem of
Calculus is important because it tells us that there is a way in which integration is
essentially an inverse of differentiation. This means that it is often very useful to use
integration when solving differential equations.

Note on the Exponential Function Not only does it hold that (et)′ = et, but
also d(ket)/dt = kd(et)/dt = ket.

A generalization of x′ = x or x′ = −x is x′ = kx. This corresponds to the
generalization of the exponential function to ekt, for which we have d(ekt)/dt =
kekt.

http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

2.13 Study Problems 33

2.12 Chapter Highlights

1. Overview of Modeling

(a) Basic physical phenomena
• Physics
• Chemical process
• Biological processes

(b) Characteristics of models’ physical phenomena
• Quantities are often real-valued
• Change is often continuous
• Usually enjoy conservation laws that are the key to modeling them!
• The equations we get will be:

– Either linear or non-linear
– Either without time (statics) or involving time (dynamics)

2. Mechanical Systems (Statics)

(a) Conservation laws: Force, Energy, Momentum
(b) Components: Mass, gravity, surface, friction, spring, pulleys
(c) Static Examples:

• A single mass with gravity
• A single mass with gravity, friction, and a lateral force
• A pile of masses
• A lever (teeter-totter)

(d) Laws for different components (like springs and pulleys)
(e) Conservation of force generalizes naturally in 1, 2, 3 dimensions

3. Electrical Systems (“Statics”)

(a) Conservation laws: Current, Voltage
(b) Components: Resistors, capacitors, and inductances

2.13 Study Problems

1. Modify the pendulum equation x′′ = − sin(x) to model air resistance on the
point mass as it moves. Assume a coefficient of 1 for the term that you introduce
to model air resistance. Modify the Acumen pendulum model used in the first lab
(Sect. 1.9) to show the behavior resulting from this modification.

2. Consider the mechanism in Figure 2.11.

34 2 Modeling Physical Systems

Fig. 2.11 An object with mass m is attached to a spring, which, in turn, is attached to the ceiling

Assume that all objects are sufficiently far from each other. In other words, you
do not have to worry about impacts.
Assume that there is a gravitational force g pulling the mass down, and that the
normal length for the spring is l0.

(a) Assume the usual spring law, and a coefficient k. Write the equations for x′′

and z′′ for the system.
(b) Assume that air resistance has an effect on the object with mass m as a

result of its movement. Assume a coefficient r for the effect of air resistance
on this mass. Write an updated version of the equations you wrote above to
reflect this effect.

(c) Instead of the usual spring force law, use the following modified law:

force = k(length − l0)3.

Write the equations for x′ and z′ for the system above.
(d) Assume that air resistance has an effect on the masses m as a result of its

movement. Assume coefficient r for the effect of air resistance on this mass.
Instead of the usual air resistance law, use the following modified law:

force = r(speed)3.

Write a modified version of the equations you wrote above to reflect this
effect.

2.13 Study Problems 35

3. Consider the following simple system shown in Figure 2.12.

Fig. 2.12 An object with mass m is attached to two springs, which, in turn, is attached to the ceiling

The diagram depicts an 8 kg mass that is hanging from two springs. The mass
is subject to the effect of gravity. Assume g = 10 m/s2. The mass has no other
support than the springs (if they are removed, it falls). The springs are attached
to the ceiling. The distance between the box and the ceiling is 1 m. We denote
by kA and kB , the spring constants for spring A and spring B, respectively. The
system is static, meaning, it is stable and there is no movement. This means that
the springs are stretched, or extended so that they are each exerting a force.

(a) As expressions of the spring constants kA and kB , write the equations for
the x-component and the y-component of the forces acting on the mass.
Note the particular convention indicated above for axes.

(b) Determine the spring constants kA and kB .

4. Consider the impact of a ping pong ball with a flat floor.

(a) Assume that the ping pong ball is a point mass with position p = (x, y, z).
Assume that the floor has infinite mass, and is horizontal. Assume further a
coefficient of restitution of 0.8, meaning that the outgoing vertical speed is
0.8 of the incoming vertical speed. Write down an expression of p′ after the
impact in terms of p′ before the impact.

(b) Now assume that the floor can have any orientation, and that the normal unit
vector to the floor is N = (nx, ny, nz) that is orthogonal to the surface of
this floor. Note that a unit vector N has the property that ‖N‖ = 1. Write
down an expression for p′ after the impact in terms of p′ before impact.

(c) Now assume further that the floor has mass 5 kg and the ball has mass 2 kg,
and that the floor is not moving before impact. What is the speed p′ after
impact?

36 2 Modeling Physical Systems

5. Consider the following mechanism in Figure 2.13.

Fig. 2.13 A one-dimensional mechanism involving two objects and three springs

Let the normal (unstretched) length for the springs be zero. Let u1 and u2 be input
forces on each mass. Let x1 and x2 be the positions of the two masses labeled
m1 and m2 as measured from the left wall. Let the right wall be at position L
from the left wall. Assume the width of each mass is negligible (zero). Let k1, k2,
and k3 be the coefficients for the three springs. Assume that all objects remain
sufficiently far from each other and the two walls at all times (do not worry about
impacts).

(a) Write down an expression for the total force acting on each of the two
masses.

(b) Write the equations for x′′
1 and x′′

2 , taking into account the effects of the
external forces, the springs, and the inertia (mass).

(c) Assume u1 and u2 are zero. Write down an equation for x1 and x2 where the
system can be without any motion (that is, the system is in static equilibrium).

2.14 Lab: Spring Bouncing and Object Creation

The purpose of this lab is to introduce us to some key modeling challenges and
concepts that arise when we want to integrate both continuous and discrete dynamics.
This is a good preparation for the project work and for the coming chapter.

2.14 Lab: Spring Bouncing and Object Creation 37

A simple way to model a bouncing ball is that when it is away from the ground
it is in free fall, and when it is touching the ground it experiences a force that we
can view as the force of a spring with a high coefficient. We can call this the spring
bouncing model. The following idea can be expressed as follows:

model Main (simulator) =

initially
x = 10, x' = 0, x'' = 0

always
if (x > 0)
then x'' = -9.8

else x'' = -9.8 - 100 * x

Begin this lab by sketching out the expected plots for the variables x, x’, and x’’.
Then, run this simulation and compare it to the sketch that you had made.

An important Acumen construct used in the ping pong model is object creation.
Model definitions allow us to define a type of objects. For example, we can take out
parts of a model that relate to a ball from the model Main, which is a special model
representing the entire world that we are simulating, to a separate model. This would
lead to a model such as the following:

model ball (x0) =

initially
x = x0 , x' = 0, x'' = 0

always
if (x > 0)
then x'' = -9.8

else x'' = -9.8 - 100 * x

Now, we can easily create a world in which there are two different balls that start
at different heights as soon as the world that we are simulating starts. This is done
as follows:

model Main (simulator) =

initially
ball1 = create ball (10) ,
ball2 = create ball (20)

38 2 Modeling Physical Systems

For this lab, explore how to modify and test such a definition to: (1) how to model
the presence of a damping force during the process of bouncing (this is a force that
simply acts against the direction of movement), and (2) how we can introduce the
effect of air resistance to a model of a moving ball.

2.15 Project: Mascot and Ping Pong Game

There are two parts to this chapter’s project activities: Creating a mascot for your
ping pong player and familiarizing yourself with the ping pong model.
Part 1 Design a mascot for your player using Acumen. You should be able to do this
after you have finished going through all the examples in the 01_Introduction
directory of the Acumen distribution, and carrying out the exercises there. The
mascot should consist only of a Main class and should include a _3D statement that
creates the 3D form of your mascot. Once you have a good design you can consider
animating the mascot or making it act in a short animation (maximum 10 s). Some
examples of mascots and animations produced by past students can be found in the
following online video.
Part 2 The Acumen distribution comes with a default ping pong model that can
be used for the project. If you are using the book in the context of a course, your
instructor may provide a custom made version of that model. The ping pong model
is designed to illustrate:

1. Key modeling concepts that we need to know to develop almost any cyber-physical
system

2. Basic path planning (at an intuitive level)
3. Basics of control
4. Dealing with basic mechanical features of robots
5. Dealing with issues such as quantization and discretization
6. Basic game theory

If you are not already familiar with the game of ping pong, browse through the
article Table Tennis (ping pong) to familiarize yourself with it.

A good description of the model we will use for the project can be found in
Section 6.2 of Xu Fei’s Master’s Thesis. Characteristics of this model include:

1. Names of included files suggest their role
2. Names also suggest a relation between these components (in terms of data flow).

For example,

(a) Ball_Sensor processes Ball data going into Player
(b) Ball_Actuator processes signals going from Player to Bat

https://youtu.be/kkuJKhiT9sk
http://en.wikipedia.org/wiki/Table_tennis
http://hh.diva-portal.org/smash/get/diva2:815726/FULLTEXT02.pdf

2.15 Project: Mascot and Ping Pong Game 39

3. To learn the most from the physical modeling part of this model, it helps to do
some derivation yourself starting from a 1D model of a bouncing ball to build up
to a 3D. It is instructive to go over that model in detail to learn how vector and
vector calculus operations are supported in Acumen.
In the flying case, the aerodynamics part motivates the discussion of unit and
norm of vectors, and some identities between them (such as what is the value of
unit(p)*norm(p), for example).

4. Going over the Ball_Sensor model helps in understanding sampling and how
it can be modeled.

The initial model for ping pong that is used for the project can be found in the
following directory:

examples/01_CPS_Course/99_Ping_Pong/Tournament1
in the Acumen distribution. Read and make sure that you understand all the files in
this directory. The distribution also comes with default models for different stages
of the project (called tournaments in the implementation). If you are using this
textbook for a course, your instructor may also provide you with special editions
of these models more closely matching the goals of the course you are following.
Figure 2.14 depicts the way the ping pong model typically appears in Acumen.
Numbers associated with each players are scores, and the bars on the side indicate
remaining energy for the player. The white sphere is the ball itself, while the red and
cyan dots are values predictions/estimates made by each player about where the ball
will be at certain times. By modifying the default models provided you will both
develop the design of the robot player and control how different aspects of the design
are visualized in simulations.

Fig. 2.14 A typical view of ping pong model in Acumen

40 2 Modeling Physical Systems

2.16 To Probe Further

• The examples presented at physicsclassroom.com
• The page by Erik Cheevers
• Background on mathematics, and physics
• You are also encouraged to watch this lecture on Rigid Body Dynamics
• Khan Academy has a great collection on basic physics
• To dig deeper, consult as needed these basic technical references on differentiation

and integration, and on resistive circuit elements, analysis of resistive circuits,
and RLC circuit analysis

• Sections 6.1 and 6.2 of this draft of David Morin’s book on Classical Mechanics
• For fun, you may enjoy checking out this great illustration on the scale of the

universe
• Close et al.’s textbook on modeling and analysis of dynamic systems
• The Ethicist: A Heating Problem (Short article)
• Article about 17 Equations that Changed the World
• An example of a model that won a Nobel Prize: the Hodgkin-Huxkley model
• Check out Wolfram’s online Alpha tool
• Readers interested in more advanced methods for modeling mechanical systems

(beyond the scope of this book) may wish to consult the article Euler-Lagrange
Equation

• Much modeling and simulation aims at predicting the behavior of systems. NY
Review has an interesting article on three books on prediction

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.physicsclassroom.com/class/vectors/Lesson-3/Equilibrium-and-Statics
http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA1.html
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
https://oyc.yale.edu/physics/phys-200/lecture-9
https://www.khanacademy.org/science/physics
http://en.wikipedia.org/wiki/Differentiation_(mathematics)
http://en.wikipedia.org/wiki/Integral
http://en.wikibooks.org/wiki/Circuit_Theory/Resistive_Circuit_Analysis
http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA1.html
http://en.wikipedia.org/wiki/RLC_circuit
http://www.people.fas.harvard.edu/~djmorin/chap6.pdf
http://abcnews.go.com/Technology/page/scale-universe-cary-michael-huang-california-high-school-15573968
https://www.wiley.com/en-us/Modeling+and+Analysis+of+Dynamic+Systems%2C+3rd+Edition-p-9780471394426
http://www.nytimes.com/2009/04/19/magazine/19wwln-ethicist-t.html?ref=theethicist&_r=0
https://www.businessinsider.com/17-equations-that-changed-the-world-2014-3
http://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
http://www.wolframalpha.com/
http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
http://www.nybooks.com/articles/archives/2013/jan/10/how-he-got-it-right/?page=1
http://creativecommons.org/licenses/by/4.0/

Chapter 3
Hybrid Systems

What if our models are neither continuous nor discrete? In this chapter we cover
hybrid automata. Starting from a continuous setting, we introduce discrete events
and look at the issues that arise in making such a transition. We analyze the issues of
zero crossing and decidability; mode switching and its effect on derivatives; discrete
transitions; and Zeno behavior.

3.1 Introduction

We begin by considering a classic example that builds on concepts that we are
familiar with from modeling physical systems. Consider a ball that leaves the ground
with a certain speed and at a certain angle, and determine where it lands. In all such
high school and college physics questions, every story stops as soon as the ball hits
its target. But what happens to the ball after it hits the ground?

A bouncing ball is a system that can be described by two different modes of
behavior: falling; and bouncing or resting on the floor. How can we model a system
that includes such different modes of behavior?

When the ball is falling we have only the effect of gravity, which has a constant
g = 9.8N/kg. In that case, the ball is governed by the Newtonian law of F = ma
(force equals mass times acceleration). We should keep in mind that the net or “total”
force on any object is the sum of all the forces applied on the object. This summation
applies whether we are working in a one, two, or three dimensions. Since we have

Fgravity = ma, (3.1)

then if the only force acting on a mass is gravity, then we also know that

gm = ma. (3.2)

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_3

42 3 Hybrid Systems

By dividing both sides by m we obtain a = g. By substituting 9.8 for the value of g,
we get (in the dimensionless setting, where “m/s2” is ignored) that a = 9.8.

The position vector x is usually defined as the vector going from the floor level to
the position of the ball. In this setting the acceleration goes in the opposite direction.
Finally, as a differential equation in relation to the position x, the above equation
simply means

x′′ = −9.8. (3.3)

Now let us turn to modeling the process of bouncing. One solution could be to
imagine that, once the ball is in contact with the floor, it experiences another force
that we will model as a spring force arising from contact with the ground. The higher
the spring coefficient, the faster the bounce. To model this effect, we must return to
our original equation and consider the entire situation. The total force on the object
must still, as always, be equal to the mass times the acceleration. But the forces
acting on the ball are now slightly different:

Fgravity + Ffloor = ma. (3.4)

The gravity force and the acceleration are the same as above; but Ffloor will be
determined by Hooke’s law, generating a force −kx where we can take k to be a
large coefficient. Thus, Equation (3.4) can be expressed as

−gm + k(−x) = am.

Now, when solving for a we get

a = (−gm − kx)/m.

Now we notice that we need to specify the coefficient k. Interestingly, at this point
we may also need to specify the mass (why did we not need to worry about the
precise mass of the ball before?). However, we can avoid the need to specify both
separately, because the equation can be further simplified to

a = −gm/m − (k/m)x

which is can be written as
a = −g − (k/m)x.

We can simply consider a situation where the ratio between k and m is high (such
as 100); then we have all the information that we need for a model of a ball that can
undergo simple elastic bouncing when it hits the floor. With this, we can replace the
acceleration a with with x′′, and k/m with 100, to get the differential equation:

x′′ = −9.8 − 100x.

We can use Hooke’s law to model Ffloor, i.e., to model the floor as a spring.

3.2 Hybrid Automata 43

Now all that remains is the question of how to specify the switch between being
in flight and being in the bouncing state. This can be described as follows:

if (x > 0) x′′ = −9.8 else x′′ = −9.8 − 100x.

Once we introduce if-statements into our models we are no longer working with
simple differential equations. Rather, we have moved into a world where our models
are describing different behaviors when the system is under different modes. We can
think of a mode as the domain of validity of certain conditions (such as x ≥ 0 or
x ≤ 0 in the above example). More generally, we can choose to define the notion
of a mode as an explicitly named state (such as “Falling” or “Bouncing”), which we
treat as an explicit part of our model.

Exercise 3.1 Use Acumen to find out the effect of increasing the ratio k/m. For
example, try out the simulation with different values for the spring coefficient to
validate the model. What happens when you use 1000, 10,000, or 15,000 instead
100? What happens when you use 25,000 or 50,000?

3.2 Hybrid Automata

Hybrid systems are systems of mathematical equations that combine both continuous
and discrete dynamics. Often, they are formalized as a kind of extension to finite
state machines called hybrid automata. For our purposes in this book it suffices to
have an intuitive understanding of these notions. To get started, to remind ourselves
of finite state machines (or finite automata), let us take the example of a simple traffic
light.

Example 3.1 Mathematically speaking, we may want to model a traffic light as
being, at any point in time, in one of the three states. We can think of a state as simply
one of the three constants in the set {Red, Green, Yellow}. Further, we may want to
model the behavior of the traffic light machine by a set of rules that determine the
allowable ways in which the state of the traffic light can change from one instance to
another. Rules in the case of a finite state machine are simply pairs of states written
as “s1 ⇒ s2.” The first state is the one we are in and the second state is the one we
can go to next. So, a typical traffic light can be modeled with the following rules:

• Rule 1: Red ⇒ Green.
• Rule 2: Green ⇒ Yellow.
• Rule 3: Yellow ⇒ Red.

This is a purely discrete model. In a synchronous model of finite state machines,
we can require that transitions only happen at previously determined “clock ticks.”

The notion of a trace of a finite state machine is simply a sequence of allowable
state transitions that a finite state machine can undergo. For example, the following
sequences are valid traces for the machine we described above: Red ⇒ Green ⇒
Yellow, as well as the trace Green ⇒ Yellow ⇒ Red ⇒ Green. However, the sequence

44 3 Hybrid Systems

Green ⇒ Yellow ⇒ Green is not a valid trace because we have no rule that allows
the transition Yellow ⇒ Green. Similarly, it should also be noted that in this system
there are no transitions from one state to itself. So, Red ⇒ Green ⇒ Green is not a
valid trace either.

Now let us consider another example.
Example 3.2 Consider another finite state machine that represents whether an

air-conditioning system is either cooling or on standby. In this case, we can have two
simple states {Cool, Wait}. As you know, an air-conditioning system cools the room
for a while, then switches back to the waiting state, then reverts to cooling, and so
on. So, the rules for the possible transitions in such a system are quite simple:

• Rule 1: Cool ⇒ Wait.
• Rule 2: Wait ⇒ Cool.

During the cooling process, the system pumps heat out of a room at a constant
rate, and the temperature goes down. In addition to the standard finite state machine
model of this system, we may also want to build more details into our model. In
particular, we might want to specify something about the temperature of the room
explicitly; we might also want to specify the rate at which the room is gaining heat
from the outside environment, and the rate at which the air-conditioning system
is removing this heat when it is in the cooling state. Such information cannot be
included in a traditional finite state machine model. However, we can extend the
basic model and arrive at what is known as a hybrid automaton. This is where we
can add information to each state about some continuous variables that can evolve
according to certain rules over time (which itself is modeled as a dense time). For
this example, all we have to do is the following: introduce a real-valued variable T to
describe the current temperature of the room, and then add the following two rules
about what happens to this variable when the system is in each of the two states.

• While in state Cool: T ′ = −1◦/s.
• While in state Wait: T ′ = 0.1◦/s.

In each of the two states there is a dynamical equation describing the rate of change of
the temperature. Such equations can be much more involved than the ones considered
here, and could, for example, be non-linear. However, what is important here is that
this model specifies clearly what happens to the temperature in the room (in terms
of the rate at which it changes) when it is in each of these two states. In addition,
we may want to go back to our rules and specify how the thermostat (the controller
for the air-conditioning unit) determines when it should change from one state to
another. We can do this by creating an extended set of transition rules as follows:

• Rule 1: Cool ⇒ Wait is a transition that must occur when T < 20.
• Rule 2: Wait ⇒ Cool is a transition that must occur when T > 25.

Note that we use different temperatures to switch, to avoid alternating too quickly
and potentially damaging our air-conditioning system.

3.3 Reset Maps 45

Exercise 3.2 Use Acumen’s strings and case-statements to express the example
system above as an Acumen model. Simulate the system with a starting value for
Temperature as 23◦.

3.3 Reset Maps

Now we return to our bouncing ball example. In addition to specifying rules for how
continuous variables can evolve inside a state, we can also perform a discrete change
to a variable as we transition from one state to another. This allows us to perform
instantaneous changes in direction without having to use, for example, a spring with
a high stiffness coefficient. However it requires a further refinement to our notion
of hybrid automata, namely, the introduction of reset maps. This extension simply
allows us to specify that, as a transition occurs, we want to reset certain variables in
our system to new values that are better suited to model the state of our system. Now
we can model our bouncing ball example as follows:

• States = {Flying}.
• While in Flying: x′′ = −9.8.
• Transition 1: Flying ⇒ Flying, if x = 0 and x′ < 0 then x′ ⇐ −0.9 x′.

Note that in this system we only have a single state, “Flying.” The second bullet
specifies the dynamics while in this state, namely, falling with a constant, negative
acceleration. For this system, one state is actually enough because the work needed
to model bouncing can be done in the transition from this state to itself, and in
particular, in the reset map applied in the transition from this state to itself. The reset
map is what is described by the part that says x′ ⇐ −0.9x′, and it means that we
want the x′ value (which is the speed of the bouncing ball) to be reset to a new value
after the transition. That value will be the result of multiplying the value of x′ before
the transition by 0.9. Furthermore, we will switch the sign of the speed, thus changing
its direction, so that the ball that was falling down before the transition will be going
upwards after the transition. Note that, as a result of the sudden change to the speed
that occurs at that transition point, the acceleration will not be a well-defined notion
at that instance.1

Exercise 3.3 Write out such a model in Acumen, and simulate the system starting
from a height of 10 and an initial speed of 0. How well does your model work? Make
a note of any unexpected behavior that your simulation might exhibit.

A finite state machine or an automata is deterministic if its behavior is always
uniquely defined when it is in any given state. If this is not the case, then the system
is said to be non-deterministic. Most simulation tools only simulate deterministic
systems.

1 In situations like this it may be possible to use more advanced mathematical notions such as
impulse functions (or Dirac delta function), but this discussion is outside the scope of this book.

http://en.wikipedia.org/wiki/Dirac_delta_function

46 3 Hybrid Systems

3.4 Zero-Crossing

Using precise tests (such as x = 0) for transitioning from one state to another
is generally quite challenging for simulation tools built on traditional numerical
methods. This is because real numbers are generally represented in computers as
floating points, and functions that change over time are represented as a sequence of
floating point values defined at specific points in time, represented also by floating
point values. For our purposes in this book, and to keep things simple, we will try to
always express our models with more robust conditions such as x ≤ 0 even though
we really do not intend to model the possibility of x being less than 0.

3.5 Zeno Behavior

Zeno’s paradox is a phenomenon that can happen in a hybrid system (a system that
exhibits both continuous and discrete dynamic behavior). The hybrid automaton
model of the bouncing ball exhibits this phenomenon. In particular, the consecutive
bounces form a geometric series that can be shown to end in a finite time (which
we call the Zeno point), even if the number of bounces that takes place beyond that
point is unbounded.

To understand what is going on here for yourself, consider the situation where
the ball is at height zero but is moving up. Calculate the time (based on the initial
upward speed) until it hits the ground again. What is that ratio between the speed
and the time it takes to hit the ground? Now note that there is a well-defined ratio
between the upward speed at the start of this problem, and the upward speed of
the ball after the bounce. Convince yourself that this ratio also determines a ratio
between the current jump and the next jump. Convince yourself further that this ratio
will be the same between any two consecutive jumps. Write out the formula for the
time at which the ball will stop jumping, giving some initial parameters.

3.6 Modeling Elastic Collision

Note: While this topic is discussed here only briefly, it is an important example of
discontinuity in physical models (and therefore an example of why we need hybrid
systems to model physical systems). Also, it is important for understanding the ping
pong model.

Collisions in basic mechanics are a simple class of problems involving time.
Their characteristic is that there is a discontinuity in one of the derivatives. Consider
the situation in Figure 3.1, where we have two co-linear masses that experience a
collision where energy and momentum are conserved. How do we determine the
speeds after the collision?

http://en.wikipedia.org/wiki/Zeno%27s_paradoxes

3.6 Modeling Elastic Collision 47

Fig. 3.1 Two balls with masses m1 and m2 about to collide

Let the velocity of the two balls be u1 and u2 before the collision and v1 and v2
after the collision, respectively. Conservation of momentum means that

m1u1 + m2u2 = m1v1 + m2v2, (3.5)

whereas conservation of energy means that

m1u2
1

2 + m2u2
2

2 = m1v2
1

2 + m2v2
2

2 . (3.6)

By using (3.5) and (3.6) together we can solve for v1 and v2 in terms of u1 and
u2. The solution is

v1 = (m1 − m2)u1 + 2m2u2
m1 + m2

,

v2 = (m2 − m1)u2 + 2m1u1
m1 + m2

.

This tells us the speeds for both objects after the collision. When kinetic energy is
conserved, we says that the collision is elastic, and inelastic when it is not conserved.
The speed of each particle after an inelastic collision can be determined in the same
way as above, but with the energy equation modified appropriately. Often, energy
loss is specified in terms of a coefficient of restitution, which is the ratio between
relative speeds before and after the collision.

The relative speed between two objects is the speed of the first measured from the
second and vice versa. If two cars travel in the same direction at 100 and 120 km/h,
respectively, the relative speed will be 20 km/h; if the two cars travel at the same
speeds but at opposite directions, the relative speed will be 220 km/h.

48 3 Hybrid Systems

3.7 Chapter Highlights

1. Hybrid Systems

(a) Mix continuous and discrete systems
• Area of much of the research in formal analysis and verification of CPS

today
(b) Provide a natural model of cyber-physical system
(c) Are also a more natural model of purely physical systems

• Impacts and discontinuities are naturally modeled as discrete events
(d) Cyber systems have not only discrete but also continuous aspects

• Time, energy, time-to-failure, radiation, relativistic effects

2. Finite State Machines

(a) Traffic light
(b) States: Red, Green, and Yellow
(c) Transitions

• Untimed
• Adding a timer and a reset map

3. Thermostat Example

(a) States: Heating, Cooling
(b) Equations: Heat equations
(c) Guards: Leave a gap in between

4. Bouncing Ball Example

(a) States: Falling, and Bouncing?
(b) Equation: Falling
(c) Guards: Hitting Zero (with refinement)
(d) Zeno-behavior?

5. Computing the Zeno point for a Bouncing Ball

(a) Equation for flight
(b) Time in flight
(c) Flight in terms of max height
(d) Time in terms of coefficient
(e) The limit of a series

3.9 Study Problems 49

3.8 Avoid Common Mistakes

These are remarks intended to help you avoid some common points of confusion:

• A state in a finite state machine has no memory (or additional state) inside it.
When you are designing or specifying a finite state machine, if it looks like you
need one with “memory,” split it into multiple states.

• A hybrid system is not just a finite state machine. So, for example, the preceding
remark does not apply

• Non-deterministic is not the same as probabilistic. Probabilistic systems require
much stronger assumptions about frequency in the longer term (probabilities
or probability distributions). Non-determinism just means that you do not know
exactly what the behavior will be (although you know exactly what set of behaviors
is possible).

• Deterministic, non-deterministic, and probabilistic models are all mathematical
objects.

3.9 Study Problems

1. Model the example illustrated in Figure 11 in Branicky’s paper (also mentioned
below in the To Probe Further list) in Acumen. Include the following in your
completed assignment: (a) your complete Acumen model, (b) the plot figure, and
(c) an explanation of why Acumen cannot correctly simulate the system beyond
the 4-s point.

2. Model the two systems illustrated in Figure 15 in Branicky’s paper in Acumen.
Assume that f0(x) = 10 − x and f1(x) = 40 − x. A complete solution would
include: (a) your complete Acumen model, (b) the plot figures (for both systems),
and (c) an analysis in your own words of how well this simulation supports the
point made in the paper about hysteresis.

3. Consider the situation where you are designing a futuristic traffic light.

(a) Represent each move by an output of the name of the color (“Red,” “Orange,”
“Blue,” or “Green”). Draw a state machine that shows the number of states
needed for a traffic light that outputs a signal that carries red, then orange,
then red, and then goes to blue, then red, and repeats this process.

(b) Assume that the light stays in the red and green states for 60 s, and in all
the other states only for 10 s. Write an Acumen object class My_Light that
models this functionality. The only required field in this object is a signal
my_choice which can be “R,” “O,” “B,” or “G” depending on the first letter
of the color. Make sure that the object is self-contained and do not assume
any inputs from the outside.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3C585F8161AE27B727A30F103CCFE6B8?doi=10.1.1.67.3146&rep=rep1&type=pdf

50 3 Hybrid Systems

4. Compute the Zeno point for the basic bouncing ball example when the ball is
dropped from a height of 10 m, taking gravity at 9.8, and a coefficient of restitution
of 90%.

5. Consider the situation where you are designing a paper/rock/scissors player.

(a) Represent each move by an output of the first letter (“P,” “R,” or “S”). Draw
a state machine that shows the number of states needed for a simple player
that repeatedly outputs a signal that carries paper, then rock, then paper,
then scissors, and then repeats this sequence.

(b) Assume that the machine must output each move for 0.75 s. Write an Acumen
object class My_PRS that models this functionality. The only required field
in this object is a signal my_choice which can be “P,” “R,” or “S.” Make sure
the object is self-contained, and do not assume any inputs from the outside.

6. Consider the situation where two cars are about to collide, and their speeds and
masses are depicted in Figure 3.2.

Fig. 3.2 Two cars about to collide

(a) Assume a coefficient of restitution of C. Write a formula for w1 and w2, the
speeds after impact, measured in the same direction.

(b) If both masses are the same (m1 = m2) and m2 is static (v2 = 0), by what
fraction does the speed w2 increase if the speed v1 is increased by 10%? If
the answer is not a simple fraction, you may write a formula.

(c) If m1 is half the mass of m2 and m2 is static (v2 = 0), by what fraction does
the speed w2 increase if the speed v1 is increased by 10%?

7. Consider Figure 3.3 indicating the “before collision” (above) and “after collision”
(below) speeds for a collision between two masses (represented as cars).

3.9 Study Problems 51

Fig. 3.3 Two cars, before and after collision (Source: scienceblogs.com)

(a) Write down the equation for conservation of momentum. This is the equation
that relates the “before” and “after” speeds.

(b) Calculate the coefficient of restitution “c”’in this collision.
(c) Assume that m2 = 100. What is the energy lost in this collision?
(d) Assume that m2 = 100. How much is m1?

8. Consider the diagram in Figure 3.4 depicting the “before” and “after” situation
for a collision between two masses. The first object has mass m and the second
has twice that mass. The second object is static before collision, and both objects
are attached after the collision.

(a) Calculate the coefficient of restitution c in this collision.
(b) Write down the conservation of momentum equation relating “before” and

“after” speeds.
(c) What speed must v1 be in order to have v′ equal to 1000?
(d) Assume that m = 1000. What is the energy lost in the collision of part c?

9. Consider the diagram in Figure 3.5. This type of diagram is called a state diagram,
and is widely used to express finite state machine models in an intuitive manner.
According to this diagram, the initial state is S1 because it has an arrow that has
no explicit source, possible transitions are indicated by arrows going between
states (sometimes the same state), and whenever there is a transition the digit
indicated on the arrow is assigned to the variable Output.

52 3 Hybrid Systems

Fig. 3.4 Two spheres, before and after an inelastic collision (Source: scienceblogs.com)

Fig. 3.5 A finite state machine with two states, and initiated at state 1

(a) Starting from the initial state, what state is the machine in after it has assigned
to Output the values 0, 0, 1, 0 in that order? Write out the state of the machine
after each of these four outputs individually.

(b) Assume that the system has an input called Input, and that both states take
the 0 transition if Input is less than or equal to 5, and take the 1 transition if
Input is greater than five. Assume further that the system makes a transition
decisions and actions together, and does so every 1 s. Describe this situation
using the Acumen language in one model that has Input and Output as
parameters.

3.10 Lab: Discrete Bouncing 53

3.10 Lab: Discrete Bouncing

The purpose of this lab is to introduce you to hybrid-systems modeling constructs
and to connect the ideas discussed in this chapter to project activities.

Taking as a starting point the models you developed for the previous lab, compare
and relate those models to the following model sketch:

model ball (x0) =

initially
x = x0 , x' = 0, x'' = 0

always
if (x > 0)
then x'' = -9.8

// - 0.1 * x' * abs(x') // Drag

else if (x' < 0)
then x'' = -9.8 - 100 * x + 10

// Another state split to enable damping
// during bounce

else x'' = -9.8 - 100 * x - 10

model Main (simulator) =

initially
ball1 = create ball (10) ,
ball2 = create ball (20)

Next, note that bouncing in the original model worked by pretending there is a
spring that gets activated when the ball is below ground level. Consider the possibility
of creating a model where the bounce occurs instantaneously. Build and test a model
that works in this way.

Once you are done with this exercise, compare your model to the following one.

model BB ()= // Basic bouncing ball

initially
x = 5, x' = 0, x'' = 0

always
if (x <= 0) && (x' < 0)
then x'+ = - 0.5 * x'

else x'' = -9.8

54 3 Hybrid Systems

model Main(simulator)=

initially
b = create BB ()

The model above has a curious feature. After the ball “reaches zero height,” it starts
to slip down below level zero. That is because we are actually allowing gravity to be
in effect in the case that x< = 0 and x’ > 0. This creates a cycle of small computational
steps where the ball starts below the ground with a positive speed but is subjected
to gravity, at the end of the cycle it has a small negative speed and has lost height,
and impact condition is detected and the speed is set to positive half again, and the
process repeats, but the ball is still losing height.

A better model is the following one, where we ensure that when the ball is below
the ground but is on the rise it maintains this speed and is not subject to any additional
forces:

model BB ()= // Basic bouncing ball

initially
x = 5, x' = 0, x'' = 0

always
if (x > 0) then x'' = -9.8

else if x'<0
then x'+ = -0.5 * x'

else x'' = 0

model Main(simulator)=

initially
b = create BB ()

Compare your model to this one as well, and make note of the points that you
found required extra care to be able to model instantaneous bouncing when you tried
to build it yourself. While arriving at a simple and clear model of an instantaneously
bouncing ball is challenging, it is representative of the frequently occurring situations
where a dynamic within a continuous domain reaches a well-defined boundary that
it is being pushed against, and where the dynamic of the boundary is to push back
the object into the domain.

3.11 Project: Speed-Based Player for Ping Pong Robot 55

3.11 Project: Speed-Based Player for Ping Pong Robot

This chapter’s project activity is to develop a ping pong player that can outperform
the other player, and at the very least, the default player. In this activity, your model
controls the player by sending a speed signal to move the bat. Be careful, because the
larger the speed you use, the faster you will run out of energy! Basically, the default
player works by computing a bat speed and predicting two key points on the future
trajectory of the ball. The first point (p1) is where the ball will hit the table. This is
calculated by using the velocity of the ball. The second point (p2) is the highest point
in the air that the ball will reach after it bounces on the table. This is calculated from
the predicted speed after bouncing. Then, the bat moves to hit the ball at the highest
point (pH) of the ball after it has bounced. It is important to note that the bat loses
energy (maxE) whenever it moves and hits the ball, and that each player starts with a
fixed energy level. Your modified player must consume less energy than the default
player and also predict the second point better than the default player. You will need
to develop your own strategy to make the bat move less or improve the velocity of
the bat.

If you are using this textbook as part of a course, be sure to check with your
instructor about whether there is a special edition of the model you are expected to
use.

An important skill that good scientists and engineers need in order to complete
projects faster and better is debugging. In essence, you need this skill to determine
how to go from a system that is not quite doing what you want to one that is. The key
to successful debugging is to work systematically to isolate and localize problems.
Scientists and engineers that solve real problems seem to apply this skill extensively.
Check out this article on this topic.

Designing any interesting system also involves accumulation of a lot of knowledge.
Our memory is only one way of collecting knowledge, and it often does not work as
well as we think it does. Documenting the result of each of your project activities is
a good way to organize the knowledge that you accumulate. Therefore, think of them
not only as something you write for the instructor, but also for yourself, and review
them constantly during the process. Another very powerful way of accumulating
knowledge is test cases. Build your own test cases and use them to automatically test
your player as you are developing it. You can develop test cases by making alternative
players that play with different strategies.

In future project activities, make sure that your player avoids each of the pitfalls
that you discovered during this activity. We recommend that you share the players
that you have developed among yourselves, as this will help you improve player
development for the next activity, and increase your chances of winning at the finals.

http://blog.regehr.org/archives/199

56 3 Hybrid Systems

3.12 To Probe Further

• Articles on Momentum and Coefficient of Restitution.
• Background on engineering, finite state machines, hybrid systems, and theory of

computation.
• Online hybrid systems textbook by Lygeros, Tomlin, and Sastry.
• Branicky’s introduction to hybrid systems.
• Very cool video by VSause about Zeno behavior and other paradoxes.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://en.wikipedia.org/wiki/Momentum
http://en.wikipedia.org/wiki/Coefficient_of_restitution
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Hybrid_system
http://en.wikipedia.org/wiki/Theory_of_computation
http://www2.ece.ohio-state.edu/~zhang/HybridSystemsClass/docs/Lygerosbook.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3C585F8161AE27B727A30F103CCFE6B8?doi=10.1.1.67.3146&rep=rep1&type=pdf
https://www.youtube.com/watch?v=ffUnNaQTfZE&feature=youtu.be
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Control Theory

How can we get the output of a system to behave in a certain way if we only have direct
control on the input? In this chapter we cover error, feedback (negative and positive),
and stability. We look at recognizing these concepts in static systems (op-amp) and
in dynamic systems. We also cover PID controller design as a very basic example
of how controllers are designed. Finally, we discuss the effect of implementing a
controller on a digital computer and the effects of using finite representations of
values (N bits to represent values) and time (being able to sample or actuate only at
clock ticks).

4.1 Introduction

The function of virtually every cyber-physical system involves control in the sense
of bringing some variable quantity to have a certain desired value. For example, we
may want a car to maintain a certain speed, a ship to maintain a certain bearing, or a
plane to maintain a certain altitude. The theory of control concerns itself with such
problems.

Intuitively, a system is controlled by determining how certain inputs should be
varied to achieve a certain behavior in outputs. In the simple examples above we have
single-value and single-parameter goals. In practice, control problems can involve
achieving highly sophisticated dynamic behavior in several different dimensions
simultaneously. That said, many of the most fundamental principles of control can
be explained and illustrated with single-value, single-parameter examples.

When discussing control, it is customary to refer to the system being controlled as
the “Plant” and the system providing the inputs needed to achieve the desired output
as the “Controller.” Block diagrams such as the one in Figure 4.1 are typically used
to describe the relation between these two systems.

If our goal is simply to achieve a single-value output, and the operation of the
plant is fully understood to us, then we can achieve this result with a controller

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_4

58 4 Control Theory

Controller Plant

Controller
Output

Plant
Input

Plant
Output

Fig. 4.1 Block diagram illustrating relation between plant and controller

with no inputs (such as the one depicted in Figure 4.1). In general, however, we will
want to devise a controller that brings the plant to produce different output values
depending on the value of another input that we provide. For that purpose, we will
want to have a controller that is parameterized by our goal for the plant output. This
more general situation can be depicted as in Figure 4.2.

Controller Plant

Controller
Output

Plant
Input

Plant
Output

Controller
Input

= Desired
Input

Fig. 4.2 Block diagram with controller parameterized for control objective

It is instructive here to note the following: if the behavior of the plant can be viewed
as a mathematical function, then this problem can be solved by a controller that is the
inverse of the plant function. Of course, this also means that the problem can only be
solved if the behavior of the plant is itself an invertible function. A further and more
subtle difficulty is that, in order to construct the inverse, we would also have to know
the exact plant function in advance (meaning, at the time of designing the controller).
In general, we hardly ever have such knowledge. Most systems that we need to control
have parameters and components that vary slightly from one instance to the next due
to a variety of reasons. These can include production process, temperature effects,
age effects, environmental effects, as well as many others.

4.2 Feedback Control

In practice, almost any real controller will have imperfections. The degree of im-
perfection in the operation of the controller at any time instant can be quantified
by the difference between the desired plant output and the actual plant output. This
difference will be called the error. Note that by doing so we are thinking of the
controller input as telling us the desired output. This is a common viewpoint when
we think of a system as a control system.

Rather than simply trying to construct the inverse (which is difficult even in static
systems), the error can be used directly to construct a much simpler controller that
can be very effective in practice. This is achieved by the powerful idea of feedback,
whereby the output of the system is fed back as an input (either of the entire system
or, in the context of control, of just the controller). Once we allow ourselves to
use the output of the system as an input to the control process, the error is easily

4.3 Proportional Feedback Control 59

computed by a simple component that subtracts the value of the plant output from
the desired plant input. In general, we can imagine a situation such as the one shown
in Figure 4.3.

Search Strategy

Controller

Plant

Feedback

Plant
Output

Desired
Plant

Output

Fig. 4.3 Block diagram illustrating control with feedback and search strategy

A simple strategy can consist of the following: firstly we can “try” a value for
plant input; if the error is positive, we increase that value; if the error is negative, we
decrease that value; and we can stop when we get close enough.

While this control strategy is helpful to get a simple intuition for how feedback
can be useful for controlling a system, it is not necessarily the easiest to analyze
formally. For this reason, we will first look more closely at a simpler strategy for
designing a controller.

4.3 Proportional Feedback Control

A controller can simply consist of a unit that takes two inputs, computes the error,
and then multiplies this error by a certain factor to generate the input that is fed into
the plant. This situation can be depicted as shown in Figure 4.4.

Despite the seeming simplicity of a controller constructed like this, the idea of
using feedback in this manner is powerful, and has many useful theoretical and
practical benefits, in addition to being relatively easy to construct. First, however, we
need to be certain that such a controller would actually help us achieve our goal of
computing a plant input that would bring the plant output to have the desired value.

Example 4.1: Feedback Control of a Wire Plant Consider the situation where
our plant is simply a wire with no interesting behavior. It would be good to know
how well the idea feedback control works in this setting. Let us further consider a
multiplier gain of G. For brevity, let us also use the following variables to denote the
various values in the system as follows:

• e is error,
• x is plant input,
• y is plant output, and
• z is desired plant output.

The equations that govern the behavior of the system are:

60 4 Control Theory

Multiplier

Controller

Plant

Feedback

Plant
Output

Desired
Plant

Output +

-
= Error

Fig. 4.4 Block diagram illustrating control with feedback and gain (multiplication)

1. the error e is e = z − y,
2. the plant is a simple wire, so, y = x, and
3. the plant output is the controller output, so, x = Ge.

To understand the behavior of this type of controller we have to understand the
combined effect of the equations above. If we substitute e from 1 into 3 we get

x = G(z − y).

Similarly, substituting that value of x into Equation (4.2) we get

y = G(z − y).

Starting from this equation we can derive an expression for y in terms of z as
follows: first we note that the equation implies that

y = Gz − Gy,

by distributivity of multiplication across subtraction. From this we can derive that

y + Gy = Gz

by adding Gy to both sides. By distributivity of multiplication on addition we get

(1 + G)y = Gz.

If we assume that G is positive, then 1+G is non-zero, so, we can divide both sides
by (1 + G) to get

y = G

G + 1z. (4.1)

Now we can consider what happens to the relation in (4.1) as we change the value
of G. If G is 0, then we have y = 0. This is clearly a very poor controller. But if G is
1, then y = (1/2)z. This is by no means a perfect controller, as the output is always
only half what we want it to be. But it is interesting that this simple construction
causes y to behave in an interesting manner as z varies. The relation of the overall
gain with the gain G is depicted in Figure 4.5.

If G is 99, then y = 0.99z. This suggests that, as the gain gets larger, this controller
causes y to track z more closely. Obviously, 99% of a value is not the same as the

4.4 Operational Amplifiers 61

Fig. 4.5 Relation between the total gain G
1+G and gain G

value itself, but it is pretty close, and this is an impressive result to get from such a
simple controller. Finally, note that, as the gain is increased arbitrarily, this controller
can make the output value arbitrarily close to the desired value.

Exercise 4.1 Derive a formula for determining G given the desired overall gain
of the feedback system described in Example 4.1.

4.4 Operational Amplifiers

It is instructive to consider the effect of this controller on a completely passive plant
that consists entirely of a wire from its input directly to its output. But we may wonder
if we could ever need to control such a simple system in practice. In particular, why
is using such a construction better than just wiring the controller’s input directly to
the plant input? As it turns out, this is a common construction in electronics that is
known as the voltage follower circuit, and it is often depicted diagrammatically as in
Figure 4.6.

Fig. 4.6 Illustration of voltage follower circuit

62 4 Control Theory

The entity represented by the triangle is an operational amplifier, which consists
of a differencing unit followed by a multiplication unit. The gain is usually called
β (read “beta”) and is usually around hundreds of thousands. One of the biggest
benefits of this construction is that it allows us to create a (largely) directed relation
between the input and the output: the operational amplifier will force the value of
the output to follow the value of the input closely, but not the other way around. The
power that the operational amplifier consumes to achieve this comes from a power
source not explicitly represented on such diagrams. Because of their usefulness in
building controllers in various circuits, operational amplifiers are one of the most
commonly used components in electronic circuits.

Example 4.2: Constant Gain Plant Now consider the situation where our plant
is no longer simply a wire but rather an amplifier with a gain H . Again assume that
our multiplier has gain of G. We will use the same conventions:

• e is error,
• x is plant input,
• y is plant output, and
• z is desired plant output.

This new system is described by the following equations:

1. e = z − y is the error,
2. y = Hx is the behavior of the plant,
3. x = Ge is the behavior of the controller.

Substituting e from 1 into 3 yields

x = G(z − y).

Substituting x from this equation into Equation (4.2) yields

y = HG(z − y).

Following a similar set of steps, and assuming that 1+GH is not zero, we can arrive
at

y = HG

1 + HG
z. (4.2)

Note that the equation we derived in the first example is a special case of this
equation, where H is equal to 1. But it is more instructive here to consider carefully
how the overall gain factor (HG/(1 + HG)) changes as H changes. Assuming that
G is positive, then for a positive value of H , we get behavior similar to what we saw
before: the output will be close to the goal value. As H grows arbitrarily large, the
ratio HG/(1 + HG) also goes to 1, which means that this controller is effective at
getting the output to have the desired value. It is also interesting to note that if H
is negative and it goes to negative infinity, the ratio also goes to 1, although it does
so from above. This is an interesting observation because it shows that a feedback
controller can work effectively even when the gain of the system is negative.

4.4 Operational Amplifiers 63

However, neither of these observations imply that such a controller will work for
any combination of H and G. In particular, if the term 1 + HG is equal to zero, we
cannot derive the last equation. In fact, what we have in that situation degenerates to
0 = HG · goal, which contradicts the assumption that goal is any value other than
zero. This is a situation where our controller has a singularity. In fact, the overall
behavior of the system is problematic for values of H between −1/G and 0. The
singularity occurs exactly at the value −1/G, but the overall gain is negative up until
the point when H is 0. To get a sense of how H affects the overall gain, let us take
G as 1 and plot the term H/(1 + H) as H . The result is shown in Figure 4.7.

Fig. 4.7 The total gain HG
1+HG plotted against H

Thus, when we were just trying to find a G to control a system with known
(positive) gain, it was enough to take any positive G, and the higher the gain the
closer we were able to get to the goal. However, if the gain of the system that we are
controlling is not strictly positive, then we may need to do (significant) additional
work to make sure that our negative feedback control strategy does not lead to
singularities or undesired behavior.

While checking that H is positive can be relatively easy to do for certain kinds of
systems, it is not necessarily easy to do when the “gain” of the system itself depends
on the state of the plant. In that case, H can be viewed as the derivative of the output
with respect to the input for the system in that particular state. Ensuring that such a
controller is well-behaved requires the analysis of the system for all possible states.

Exercise 4.2 For the system in Example 4.2, take z to be 1 and G to be 1, and
plot e as it varies with H from -50 to 50. On the same graph (if possible), plot the
curves when G is equal to 10 and 100.

64 4 Control Theory

Example 4.3: Dynamical Systems Consider the situation where our plant is not
just a simple (constant) gain but, rather, a dynamical process that accumulates the
input variable. An example of such a system is an object whose position we can
observe and whose speed we can control. This is the case when we are driving a car.
Now the plant is no longer a simple function of input to output but, instead, a notion
of time must be factored in.

Following a convention similar to the one we used before, at any time instant t we
will say that:

• e(t) is error,
• x(t) is plant input,
• y(t) is plant output, and
• z(t) is desired plant output.

This new system is described by the following equations:

1. e(t) = z(t) − y(t) is the error
2. y(t) = y(0) +

∫ t

0 x(s)ds is the behavior of the plant
3. x(t) = Ge(t) is the behavior of the controller

Substituting equation e(t) from Equation (4.1) into Equation (4.4) we get x(t) =
G(z(t) − y(t)). Substituting x from this equation into Equation (4.2) we get

y(t) = y(0) +
∫ t

0
G(z(s) − y(s))ds (4.3)

If this is our first encounter with such an equation it may seem imposing. However,
there are many ways to make progress towards solving it. In fact, because it can be
viewed as a linear differential equation, there are techniques to transform it to the
frequency domain and proceed almost exactly in the same way we did with the two
previous examples, which are static in the sense that they do not have any notion of
time.

The reader interested in linear systems (such as students of electrical engineering)
can consult the ample literature available on linear circuits and linear control theory
to explore this path. Here, instead, we will explore a path that does not require the
elegant but somewhat specialized machinery used for linear differential equations.

Returning to our Equation (4.3), we can proceed by making several simplifications
that help us get a sense of how this equation behaves. Once we have a solution under
simplified assumptions, we will see how we can remove the assumptions. To get
started, let us assume that G is 1 and also that z(t) is the constant function 0. Now
we are left with the equation

y(t) = y(0) +
∫ t

0
−y(s) ds.

Because integration, as well as differentiation, is a linear operator, we can take
the minus sign outside the integration operator to get

4.4 Operational Amplifiers 65

y(t) = y(0) −
∫ t

0
y(s) ds.

We can further simplify this equation by differentiating both sides, which yields the
equation

y′ = −y.

This equation does not uniquely determine the solution of the previous equation,
because it loses the information about y(0). However, it is still a very useful equation
to arrive at. It tells us that, whatever the solution y(t) will be, it must have the
property that it is equal to the negative of its derivative. One function that has this
property is the exponential function y(t) = e−t. In fact, for any constant a, the
function y(t) = ae−t satisfies the last equation. We can pin down the value of a
by equating y(0) to ae−0 which is simply a. Thus, if y(0) = 2, the output of the
system is y(t) = 2e−t. The solution is shown in Figure 4.8.

Fig. 4.8 Solution of y′ = y, y(0) = 2

Judging from this example, our feedback strategy appears to provide us with the
controlling effect that we want. If the desired goal is the function that is 0 at all
times, our simple feedback controller with gain G of 1 seems to cause the system to
approach that goal. Furthermore, the system appears to approach this goal relatively
quickly. The graph in Figure 4.8 indicates that, within 5 time units, the output of the
system becomes quite close to zero.

Now let us consider the case when the output is not zero but instead some other
constant value Z. Here the equation for the system becomes

y(t) = y(0) +
∫ t

0
(Z − y(s)) ds. (4.4)

66 4 Control Theory

Differentiating both sides in (4.4) yields

y′ = Z − y.

Because we know that the derivative of a constant value is zero, we can consider
trying the function y(t) = Z + ae−t as a solution to this equation. Indeed, it works
as expected, because subtracting Z from Z also yields zero. The specific value
for a is determined in the same way as before: namely, using the initial condition
y(0) = Z + a, thus, a = y(0) − Z. Of course, we assume that Z is given. For
y(0) = 1 and Z = 5, a = −4, and y(t) = 5 − 4e−t, which has the form given in
Figure 4.9.

Fig. 4.9 y(t) = 5− 4e−t plotted against t

Here again we notice that the output value quickly goes to the desired value: in
this case 5.

It is also possible to analytically compute a closed form for some time-varying
functions. For example, we may wish to determine the output of the system when
z(t) = Z − t. In this case the equation becomes

y(t) = y(0) +
∫ t

0
(Z − t − y(s)) ds (4.5)

4.4 Operational Amplifiers 67

and differentiating both sides yields

y′ = Z − t − y.

By a similar process of inspection to the previous example we can see that the
solution is

y(t) = Z + 1 − t + ae−t,

which when substituted into both sides of the last equation yields

−1 − ae−t = Z − t − Z − 1 + t − ae−t.

This can be reduced to

−1 − ae−t = −1 − ae−t,

which is clearly satisfied.
For Z = 5, y(0) = 2, the solution equation at time 0 gives us 2 = 5 + 1 − 0 + a

which is 2 = 6 + a and so a = −4. Thus, y(t) = 6 − t − 4e−t, which is the black
curve in Figure 4.10.

The red curve here is the desired output function. Thus, this controller does
a reasonable job of tracking the desired output function. But it does not track it
as precisely as we might expect. This brings us naturally to the question of how
changing the gain G in our feedback controller can affect our system. To take into
account the gain G we would revise (4.5) to be

y(t) = y(0) +
∫ t

0
G(Z − t − y(s)) ds. (4.6)

Differentiating both sides we get

y′ = G(Z − t − y). (4.7)

A good trick to understand how we solve this analytical problem is to step back and
ignore for a moment z(t) (which shows up in the last equation as the term Z−t). Thus,
with z(t) = 0 the system would be governed by the equation dy(t)/dt = −Gy(t).
If we naively plug in the (incorrect) solution y(t) = ae−t, we get a good hint of
what needs to be done to get a correct solution. The left- hand side is −ae−t and the
right-hand side is −Gae−t. To fix this disparity we need to put G into the solution
form so that it “comes down” as a multiplicative factor when we differentiate, that is,
to use y(t) = ae−Gt. For this expression, both sides are −Gae−Gt, and the equation
is satisfied.

With this as the starting point for the solution with z(t) = 0, we can go back
to Equation (4.7) and try to construct the solution for this problem. Again, we can
substitute an educated guess for the solution and see what happens. For example, we
might consider

y(t) = Z + 1 − t + ae−Gt,

68 4 Control Theory

Fig. 4.10 The desired output, red, and output, black, are shown for the suggested controller

which is just a small tweak to the solution for the case of G = 1 that we had derived
above. Now the left-hand side is

−1 − Gae−Gt

and the right-hand side is

G(Z − t − Z − 1 + t − ae−Gt) = −G − Gae−Gt,

which means that we just need to find a way to get −1 instead of −G on the right-hand
side. This suggests a solution function

y(t) = Z + (1/G) − t + ae−Gt.

Plugging this term into the left- hand side yields

−1 − Gae−Gt

and into the right-hand side

G(Z − t − Z − (1/G) + t − ae−Gt),

which is −1−Gae−Gt and we confirm that this is the right form for the solution. For
Z = 5, y(0) = 2, G = 10, the solution equation at time 0 gives us 2 = 5+0.1−0+a

4.4 Operational Amplifiers 69

which is 2 = 5.1 + a and so a = −3.1. Thus, y(t) = 5.1 − t − 3.1e−10t, which is
the black curve in the following in Figure 4.11.

Fig. 4.11 The desired output, red, and output, black, are shown for the suggested controller

In this graph, it is clear that our new controller is tracking the target function
much more closely, both in terms of how quickly it intersects with the trajectory of
the target function and in the difference in amplitude between the two functions after
this intersection happens.

To summarize, we have seen that proportional feedback control can work for (a)
a do-nothing plant where the output is equal to the input, (b) a proportional plant
where the output is proportional to the input (and where some care is needed to avoid
singularities), and (c) for a simple dynamical system.

Exercise 4.3 Implement the last system discussed above in Example 4.3, using
Acumen. Run a simulation that confirms the analytical results that we derived for
the output function. Using your Acumen model, vary the value of G so that the error
between the desired output and actual output at time 1.6 is no more than 1/100.

70 4 Control Theory

4.5 Multi-Dimensional Error and
Proportional/Integral/Differential Feedback Control

We noticed above that by increasing the controller gain we can often get better
performance in terms of how close the output value tracks the desired output value.
However, simply increasing the gain is not always the most desirable approach to
improving the performance of a controller. For instance, using high gain can entail
using large amounts of energy. In addition, if the feedback reading is faulty or the
link is broken, the system would have high “open-loop” gain, which can lead to
feeding the plant inputs that can cause it damage.

Stepping back to look at the big-picture of proportional feedback control, we
can consider the possibility of performing different computations on the feedback;
then using them to compute different notions of error, and combining them into a
single error term that is used to drive the plant. This can be depicted as shown in
Figure 4.12.

Multiplier
Controller

Plant

Feedback

Plant
Output

Desired
Plant

Output +

-
= Error

+
Multiplier

Op Op
-

+

+

Fig. 4.12 A generalized block diagram for a controlled plant

Here Op could be, in principle, any operation. For example, in the case of the
car where we are controlling the speed, we can take the Op operator to be the dif-
ferentiation operation, thereby converting the position reading into a speed reading.
Alternatively, we can take Op to be integration, in which case we would have an
estimate of the distance traveled. There is also no reason to limit ourselves to one
or the other, and we can add another Op path and support both operations at the
same time. Each path that contributes to the error in this layout can be viewed as one
dimension of a tuple that together represents the error. Then, the input is computed
as a weighted linear sum of these individual components. The question then is what
type of behavior we get from the system by incorporating each of these paths.

Example 4.4: Throttle-Controlled Car Consider a system that consists of a car
that is controlled by means of a throttle parameter (assumed to be proportional to
acceleration), and where the output of the system is the car’s speed. The controller
has as input the desired speed. This example is instructive for getting a sense of
the effect of each of these two choices of operators (differentiation and integration),
which are used relatively frequently. But it is easier to imagine that we disable the
other path(s) when we try to understand the action of each one. Then we can consider

4.5 Multi-Dimensional Error and Proportional/Integral/Differential Feedback Control 71

the effect of adding the errors from each component at the end. Using differentiation
alone would give us a controller that tries to get the car to have the same acceleration
as the controller’s input appears to have. This could be a useful control strategy,
for example, when we want to satisfy certain comfort constraints (high acceleration
interferes with passenger comfort). Practically, some care is often needed with such
controllers, as derivatives can change much more suddenly than the actual value of
the desired speed signal. In addition, estimating acceleration from the speed signal
can be prone to noise and measurement artifacts. When we used simple proportional
feedback on a dynamical system that had an integrative effect, the key underlying
differential equation had the form y′ = −y. When the differentiation operator is
introduced, our system remains essentially of the same form. In a sense, we just have
more ways to achieve the same coefficient in such an equation.

Using integration alone would give us a controller that tries to get the car to have
the same position (up to some constant offset) as the controller’s input appears to
add up to. This method can be used to avoid constants such as the ones observed in
the last system studied in Example 4.3.

In general, it can be very helpful for realizing a controller that keeps some history
of its past behavior, as well as for getting a system to function properly in situations
where the entire past behavior can affect the current state (such as the way in which
a car’s entire speed history affects the position where it ends up).

However, with the use of the integration operator in the controller we have an
equation of the form y′′ = −y. An important characteristic of such equations is
that they can lead to oscillation. In particular, sin(t) can be a solution to such an
equation. This is one reason why it is often useful to combine different dimensions of
error to produce the final result. For example, discounting the acceleration signal in
proportion with the current speed generally produces a damping effect on such oscil-
lations. The essential equation underlying such combined (proportional-differential)
systems can be viewed as y′′ = −y − y′.

Exercise 4.4 Construct a system where there is a single-dimensional error using
the derivative of the feedback that has an output described by the equation y′ = −y.

Exercise 4.5 Construct a system where there is a single-dimensional error using
the integral of the feedback that has an output described by the equation y′′ = −y.

Exercise 4.6 Construct a system where there is a two-dimensional error that has
an output described by the equation y′′ = −y − y′.

The lab will provide some further experience with such systems. This experience
will help you develop a competitive project submission.

72 4 Control Theory

4.6 Chapter Highlights

1. Control Theory

(a) An almost inseparable part of CPS
• Examples: HVAC, cars, airplanes, Segways

(b) At the level of mathematical models, what does it mean?
• We want to find an input that gives us a certain output
• Basically, an inverse

– Example: Water tap with angle
(c) But is an inverse function really what we want?

2. Negative feedback in a proportional system

(a) A simple multiplicative system (H)
(b) Simple negative feedback gain (G)
(c) Careful deviation of composite gain
(d) Limit as G goes to +/− infinity
(e) What if H is + or −
(f) What about the singularity?

3. Negative feedback in an integrative system

(a) A simple integrative system
(b) Derivation of corresponding equation
(c) Form of response
(d) Effect of changing parameters
(e) Energy cost

4. Negative feedback in a doubly integrative system

(a) A double integrative system
(b) Derivation of corresponding equation
(c) Form of response
(d) Possibilities for stabilization

• Pick up feedback earlier on
• Estimate feedback

5. Negative feedback in 2D and 3D

(a) Equations in two dimensions
(b) Equations in three dimensions

4.7 Study Problems

1. Solve and submit Exercises 4.1, 4.2, 4.3, and 4.4 of this chapter.

4.7 Study Problems 73

2. Consider the operational amplifier (op-amp) in the configuration shown in Fig-
ure 4.13. Assume that the gain for this operational amplifier is G.

Fig. 4.13 A configuration with op-amp

(a) Write down the equation governing the relation between Vin and Vout, and
using the gain G.

(b) Use the equation you wrote above to derive an equation for the ratio Vout/Vin
in terms of G.

(c) Calculate the smallest value for the gain G that would ensure that Vout is
always within 10% of Vin, that is, Vout is always between 90% and 110% of
Vin.

(d) Insert a gain H between Vout and the negative (−) input of the op-amp.
Determine H to ensure that Vout equal exactly Vin for the gain you determined
in part (c) of this problem.

3. Consider the situation where you have been assigned the task of building a
controller for an elevator. The controller gets two signals: position_goal, and
speed_goal. It also gets two measurement signals, called current_position,
and current_speed. The controller must produce one signal called desired_
acceleration.

(a) Write down a mathematical expression for a simple proportional-integral-
differential (PID) controller that will compute the value at any given time for
output desired_acceleration in terms of the inputs available to the controller.
Assume constants K1, K2, K3 . . . for any gain coefficients that may be
needed in your expression.

(b) Write an Acumen model that captures the effects of quantization and dis-
cretization of all input signals and discretization of all output signals to
the controller. Assume all values are quantized by 0.01 sized steps and
discretization is for 0.1 time steps.

(c) Create a test scenario for your system, and use it to determine reasonable
parameters for each of these parameters. Justify your choice of test scenario
and the results that you have arrived at.

(d) What kind of damage can result from instability in this system, and what
methods would you use to manage any destabilization effects that could
result from any unexpected disturbances on the elevator system?

74 4 Control Theory

4. You are designing a control system that allows an object at point Q with mass 1
to follow another object at point P that is continually moving. Both points have
a two-dimensional coordinate. We will say that Q is at position q and P is at
position p. You are using a controller of the form:

q′′ = A(p − q) − Bq′.

You start your design process by making a reasonable initial guess for the con-
stants A and B.

(a) Should you select positive or negative values for A and for B? Explain your
choice.

(b) Suppose that you run a few tests (simulations) and find that Q either oscillates
around P or overshoots P when P moves. What change would you make to
the parameters A and/or B to address this problem, and why?

(c) After making this change, suppose you find that Q is following P but it
appears to be slow or constantly falling behind (lagging). What change
would you make to the parameters A and/or B to address this problem?

(d) Suppose your selection appears to work well except when the point P moves
faster the lag (the distance between the two points) gets bigger. Without
making any changes to A or to B, what changes can you make to your
controller to improve it?

(e) Identify some practical difficulties that one can encounter in realizing such
a controller.

4.8 Lab: Exploring Control

The purpose of this lab is to get some practice with the basic ideas of control in the
context of simulations of some simple but representative dynamical systems.

The following model describes a first order dynamical system with its initial
conditions:

model Main (simulator) =

initially
x = 1, x' = -1

always
x' = 5-x

Let us begin by considering an important technicality. In Acumen, one specifies
more than the initial conditions usually needed for differential equations. In the
above example, as a differential equation we would only need to specify the initial
value for x, but here we also specify one for x’. For this model, the extra initialization

4.8 Lab: Exploring Control 75

will have no significant effect, as the equation in the always section will update the
value of x’ as soon as the simulation starts.

Going back to this system itself, this simple differential equation can be seen as a
complete control system driving the value of x to 5 using a negative feedback scheme
where the speed with which x changes, that is x’ is proportional to the difference
between our target 5 and the current value of x.

This type of controller will bring the value of x relatively quickly to be quite close
to the target. If we want to speed up this process, we can multiply the term 5-x by a
factor greater than one.

Simulate the original model above. Next, add a gain factor as described above to
see its effect on how the value of x changes over time. Confirm that changing the gain
factor does not change the target value that the system seems to converge towards.
Change the target value to another value to confirm that the new controller (with the
higher gain) still seems to converge to the target value you specified.

A disadvantage of such a controller is that the value of x can get arbitrarily close
to the target, but will never really get there in any finite amount of time. This motives
investigating second order systems. The simplest way to get a second order system
is in fact to differentiate both side of the question above. This gives us the following
model:

model Main (simulator) =

initially
x = 0, x' = 1, x''= -1

always
x'' = -x'

If we give the derivative x’ the variable name y, then this equation is y’ = -y. This
helps us see that this itself can be seen as a control system where we are driving
the variable y to the target value 0. This is a good property for our original model
to have, where our explicit goal is to drive the value of x to five, but we implicitly
would also like to have the value of x to stop changing when it reaches that value.

Explore modifying the above model to drive the value of x’ not to zero but rather
to a non-zero speed, say 10. As a hint, you can look at our original model and how we
drove the value of x to 5 there. Run the simulation to verify that the model behaves
as you expect.

But as long as we have an equation which we can reduce to a first order equation,
we are not really exploring the full power of a second order equation. The following
model is a more representative example of a second order system:

model Main (simulator) =

initially
x = 1, x' = 0, x''= -1

always

76 4 Control Theory

x'' = -x

Again, we can view this system as control system. Here, the acceleration is being
used to actuate the system, and the value of the variable x is being driven via negative
feedback to the target value of zero. At the same time, we can view this system as
a spring mass system, where the acceleration, which is equal to the spring force, is
proportional to the length of the string. With this analogy, however, we can expect
the system will oscillate around the target rather than converge towards it. That said,
we are making a bit of progress, since we are now able to get the value of x to cross
the target value. In a sense, what we need to do now is to get rid of the oscillation,
or at least reduce it to an acceptable level.

Simulate the above system to verify this expectation.
Compared to the previous model above, we have lost the term that allowed us

to drive the speed to zero. In a sense, we can “mix” the two effects by having both
terms on the right-hand side of the equation, as in the following model:

model Main (simulator) =

initially
x = 1, x' = 0, x''= -1

always
x'' = -x -x'

This equation can also be seen as a control system where we are driving x to zero
and damping the actuation using the speed x’. The term x’ is considered to damp
the system because the higher the speed the lower the acceleration (as determined
by the equation) will be. A key benefit of working with such a system is that now
the variable x can actually reach the intended value, overshoot it, but still gradually
converge towards it.

Simulate the above to confirm these observations, and in particular, that the
damping diminishes with time.

We can generalize the above model with the following template, introducing
additional undefined variables A,B, a, b:

model Main (simulator) =

initially
x = 1, x' = 0, x''= -1

always
x'' = -A*(x-a) -B*(x'-b)

The capital letter variables are gains, and the small letter variables are offsets. These
variables remind us that we can tune the gain factor that we feedback to the actuation
of acceleration, and we can choose target values for both position and speed as we
see fit for our application.

4.9 Project: Acceleration-Based Player for Ping Pong Robot 77

Simulate instances of the above model template with different values assigned
to these variables to better understand their role and their interactions. Try values
such as 1 and 10 for A and B in alternation. Do you notice qualitative differences in
response? Try other values. Can you identify qualitatively different behaviors and
build a hypothesis about when (that is, based on what gains) they arise?

Next, go back to the value 1 for both of these variables, and explore different
values for the small letter variables. What can you say about how they work? Can
you imagine situations where the small letter variables come from another dynamical
system?

To conclude this lab, consider how you can define in your model a notion of
power for the amount of energy being put into the system. As a hint, consider that
in dynamical systems power is force times speed. Next, consider how you can use
this definition to define the total amount of energy being put into controlling the
system. Next, define a cost function that includes both energy and distance from
target integrated over time. What applications can you think of for this function?

4.9 Project: Acceleration-Based Player for Ping Pong Robot

This chapter’s project is still aimed at developing a ping pong player that can outper-
form the other player, and at the very least, the default player. The new challenge that
we consider this time is that the bat has mass. To capture this more realistic model
of the system, the new bat Actuator can only receive a signal for acceleration. The
force that you can apply is also limited. Your task is therefore to continue to develop
the player that you created for the last chapter’s project activity by determining what
forces must be exerted on the bat in order to realize the action that you were pre-
viously able to specify directly in terms of speeds. Note that the more acceleration
exerted, the more energy is consumed (maxE). For this activity, your modified player
must also consume less energy than the default player and predict the second point
better than the default player. You will need to develop your own strategy to make
the bat accelerate slowly.

Beyond this formal requirement you should feel free to enhance and improve your
player in other creative ways. You have a lot of freedom in how you approach this
task, and you have several issues that you can explore. Remember that your goal is
to make the best player, and that at the same time you do not know how the other
player will play. But you can imagine that your task is to build a player that can beat
as many players as possible. Issues you may choose to consider can include:

• Optimizing the parameters in the default controller (given to you as part of the
default player for this tournament)

• Developing an alternative controller (either as a continuous equation or as a hybrid
controller)

• Maximizing the accuracy of this player while reducing its energy consumption
• Improving the methods of estimation in your player, either by tuning parameters

or developing completely new methods

78 4 Control Theory

• Changing the playing strategy (path planning)
• Change parameters of the playing strategy

Feel free to explore any of or all these possibilities, as well as any others that you
may feel can give your player a competitive edge!

4.10 To Probe Further

• Article on Control Theory.
• Article on Operational Amplifiers.
• Video on TED talk about CPS with quadcopters
• Video on control of an under-actuated system, inverted triple pendulum
• Video on quadcopters playing racket
• Article on a complex control loop: Sleep and mood
• Robohub article about control with quadcopters and an inverted pendulum
• Article on Amazon developing quadcopters for delivery service.
• Video of TED talk about how a fly flies

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Operational_amplifier
http://www.ted.com/talks/raffaello_d_andrea_the_astounding_athletic_power_of_quadcopters.html?awesm=on.ted.com_eqlo&utm_content=ted-androidapp&utm_source=plus.url.google.com&utm_campaign=&utm_medium=on.ted.com-android-share
http://www.youtube.com/watch?v=cyN-CRNrb3E
http://www.youtube.com/watch?v=3CR5y8qZf0Y
http://www.nytimes.com/2013/11/19/health/treating-insomnia-to-heal-depression.html?ref=health&_r=1&
http://robohub.org/video-throwing-and-catching-an-inverted-pendulum-with-quadrocopters/
http://www.geekwire.com/2013/amazons-big-surprise-working-autonomous-flying-delivery-drones/
http://www.ted.com/talks/michael_dickinson_how_a_fly_flies.html?utm_medium=on.ted.com-static&utm_content=awesm-publisher&utm_campaign=&utm_source=facebook.com&awesm=on.ted.com_MichaelDickinson
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Modeling Computational Systems

How do we model digital computers operating in a physical context? This chapter
looks at the sense-compute-actuate model of implementing controllers. It addresses
the physical aspects of implementing computation, both for analog computers and
digital computers, and covers quantization (and quantization levels), discretization
(and sampling), the Nyquist–Shannon Theorem, embedded hardware and software,
and real-time systems and constraints.

5.1 Introduction

Now we want to implement control systems. How do we do that? We need to build
a machine! Often, such a machine includes a sensor, an embedded computer, and
an actuator. An embedded computer can be just a regular computer that has been
turned into a dedicated machine inside another device, such as a watch or a car. Such
systems often have demanding constraints in terms of size, energy utilization, unit
cost, reliability, and real-time responsiveness. Meanwhile, real-time responsiveness
typically means that the system must respond to some inputs (such as commands
from a user) within a certain time limit.

We can, in principle, implement a controller with an analog circuit consisting of
resistors, capacitors, and inductors. In fact, at one time people did just that. Nowadays,
however, it is more common to use digital circuits. Why did this change happen? It is
instructive to consider the general circumstances that created the right conditions for
this fundamental shift in computing technology to take place. For example, analog
computers can be quite fast and versatile. Why would they be phased out?

By and large, the biggest concern with analog computing was reproducibility.
Performing a computation precisely required precise parameters to components. Not
only that, but these components and their characteristics were sensitive to temperature
and surrounding electromagnetic fields, which themselves can be a function of the
ambient environment or how the components themselves are used and connected. To

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_5

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_5

80 5 Modeling Computational Systems

make matters worse, over time, most the characteristics of most components changed
as they aged.

Digital circuits use analog electronic components but, in contrast to analog cir-
cuits, their primary function is to connect them and build circuits out of them to
transmit, process, and output only two levels of voltage. These two levels represent
a binary digit. Any value outside those two levels is considered an indicator that the
system has not yet finished transitioning between those two levels.

Our first impression of such a system might be that it seems like a vast underuti-
lization of electronics: Instead of cherishing the continuum of possible values that
an electronic circuit produces, and viewing it as a distinct value, we are concerning
ourselves only with two levels (or, more precisely, two ranges of levels) that represent
a single binary digit.

This design choice of working with “two levels” also means that we compute
only with “quantized” values; that is, values that have been explicitly turned into
a finitary, discrete quantities or representations. The big advantage of this is that it
enables the transition from working with components that have uncertainties about
their characteristics, to circuits where an answer is clearly either right or wrong.
This has made it possible to understand and overcome the challenges of building
very fast, small, and energy-efficient systems that are nevertheless deterministic and
highly reliable. The broad success of this transition is witnessed by the pervasive
presence of digital computing technologies around us today.

5.2 Quantization

Quantization helps make computing with circuits robust. In essence, quantization is
the mapping of ranges from an infinite set to ones in a finite set, usually preserving
order. Digital circuits are quantized in their voltage ranges. In binary digital circuits,
there are just two main ranges, one below a certain level, and one above, with the
middle being viewed as an invalid, transient state. Quantization is one of the key
ideas that makes it possible to build highly reliable digital systems out of analog
components that may, individually, be much less reliable.

Conceptually, the basic building blocks for digital computers are gates that operate
on binary inputs to produce binary outputs, such as NOT, AND, and OR gates. The
following table introduces some standard textual and graphical notation, as well as
the relation that these gates impose between inputs and outputs:1

1 This table is derived from the article Logic Gate.

http://en.wikipedia.org/wiki/Logic_gates

5.3 Discretization: How Fast Can Your Circuit Go? 81

Type Symbol Expression Truth Table

AND A · B

A B A · B
0 0 0
0 1 0
1 0 0
1 1 1

OR A + B

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

NOT A
A A
0 1
1 0

In actual electronic circuits such as those on an integrated chip, gates are realized
(or “implemented”) using transistors, which are continuous systems. However, they
are designed to be “stable” only for certain “high” and “low” ranges of values that
correspond to a 0 or a 1 (not necessarily in that order). Then, entire circuits built
out of these gates are designed to operate in a reliable manner only for such special
values that correspond to 0s and 1s.

The exclusive use of only two ranges of values (one corresponding to 0, the other
to 1) immediately brings up a fundamental problem: If we need infinite precision,
then we need an infinite number of bits to represent the number. More often, builders
of digital computers adopt a finite representation for values. This is a challenge that
we must address whenever we use a digital computer.

5.3 Discretization: How Fast Can Your Circuit Go?

From the time that the inputs arrive, each gate needs a minimum amount of time
before it can produce the correct value on the output wire. Such propagation delays
can range from picoseconds to tens of nanoseconds, depending on the technology
used to create them. No matter how minor such delays may be, any combination of
gates will also have to take some time before the right answer is produced. When all
propagation of signals in a circuit is completed, it is said to be in a stable state. Any
well-designed circuit should have a clearly defined time after which we can guarantee
that it has had enough time to stabilize.2 Most digital circuits have this well-defined

2 Note that not all circuits can become stable. For example, some circuits are used to create periodic
signals (such as a clock signal) that are meant to oscillate indefinitely between 0 and 1.

82 5 Modeling Computational Systems

value, but this introduces another limitation of digital computers. In particular, it
determines the maximum rate at which the circuit can sample (and process) external
inputs.

To support memory and iteration, digital computer circuits generally contain
wiring “loops” that feed certain outputs back as inputs to the circuit. As a result,
determining the amount of time that a circuit needs to produce the final, stable output
can be challenging. Circuits that are created by freely combining gates are generally
called asynchronous circuits. An alternative strategy is to use certain wires as clock
wires to make groups of gates work in a lock-step manner. Such circuits are called
synchronous circuits and clocking tends to simplify and help organize their design.
Both circuit types have advantages and disadvantages for different applications, but
predominantly synchronous circuits are used in microprocessor design today.

The typical approach to modern circuit design involves having a single clock that
drives the operation of the whole circuit. The clock rate puts an absolute bound
on the maximum possible sampling rate. There are, however, other considerations
(such as available memory and the rate at which the information can be processed
by the rest of the circuit) that may lower the maximum possible sampling rate. This
means that any system implemented using a digital computer can only observe a
continuous signal at specific times, and with a minimal gap between such samplings.
The process of mapping continuous time to such a (countably infinite) notion of time
is called discretization.

5.4 Detour: Boundedness of Digital Memory

Binary gates can be used in a variety of ways to construct memory cells by using the
idea of feedback in a digital circuit. In particular, consider an AND gate with two
inputs A and B, and an output C. Now consider the situation where we connect the
output C back to the input B. The result is that we have a circuit with only one valid
input A (the B input is already “plugged” with the output C). However, C can still be
viewed as an output (as we are allowed to connect one output to several inputs). How
would such a circuit work? To answer this question, we must consider the behavior
of the system not only based on what the single input A is, but also on whatever the
current value for the output C happens to be. A careful analysis would show that if
we ever start with a situation where the input was 1 (or True), then it would stay that
way as long as the input A was also 1. Once the input A changes to a 0, the output
would be forced to switch to 0 and would stay that way forever, no matter what value
we input for A.

This is a simple circuit that exhibits a very basic type of memory. In a way, it is a
single-event memory: Assuming that we started it in a state where the output was 1,
it would “remember” any occurrence of a 0 input by immediately turning the output
to 0, and staying that way forever.

The exercises in the Study Problems section will show us, among other things,
that storing one bit of memory takes a few gates and a bit of wiring. Furthermore,

5.7 Abstract Modeling of Computational Effects 83

as long as our CPUs, external memory, and external storage devices are finite, our
digital computers can only store a finite amount of information, although the cost of
such storage seems to be perpetually decreasing.

5.5 Detour: From Hardware to Software—Storing Executable
Commands in Memory

So far, this chapter has focused on hardware. The reason for this is that the most
fundamental effects that arise when we connect an embedded digital computer to
a physical system, namely, quantization and discretization, are due to the nature of
hardware rather than software. Of course, software can contribute to the extent to
which these effects occur, and can certainly help to mitigate them. Furthermore, these
effects have a significant influence on the way embedded software is built, giving
rise to the need for responsiveness, real-time deadline, reliability, fault tolerance, and
many other features. But the goal of this chapter is to help the reader develop a sense
for the nature of the problems that arise and for how these problems can manifest
themselves in the overall behavior of basic Cyber-Physical Systems. After mastering
the material discussed in this chapter, the To Probe Further Section will introduce
the reader to some basic concepts relating to the development of embedded systems.

5.6 The Effect of Quantization and Discretization on Stability

It is clear that quantization and discretization are two new issues that must be
addressed in the process of implementing a controller. Both control theory and
embedded systems techniques provide conceptual methods for developing such im-
plementations. For the most part, these topics are beyond the scope of the current
chapter. What we want to do instead is to help the reader develop an intuitive un-
derstanding of the effect of quantization and discretization on the operation of a
controller.

5.7 Abstract Modeling of Computational Effects

Interestingly, there is no need to switch completely to a specific hardware and
software platform, and to model in detail what happens when we implement the
entire controller using a digital computer. Rather, we can get a pretty good idea of
the effect of these two transformations by making small modifications to a model of
a continuous controller.

We will consider the effect of quantization and discretization on a controller
attached to a point mass. Without any quantization or discretization, the idealized

84 5 Modeling Computational Systems

controller produces a force proportional to 10 times the distance of the mass from
the original:

1. error = 0 − position,
2. controllerforce = 10 ∗ error,
3. f = ma ⇒ a = f/m = controllerforce/1 .

In the first equation we are saying that we are taking the goal position as 0. Thus
the error will simply be the negative of the position. Equations 1, 2, and 3 together
imply that a = x′′ = −position = − 10x. Thus, the equation for the entire system
(mass and controller) is x′′ = −10x. This is an idealized, continuous system that
also happens to be critically stable, as the system continues to oscillate indefinitely.
In Acumen, this system can be modeled as follows:

model Main(simulator) =

initially
x = 1, x' = 0, x'' = 0

always
x'' = -10*x

Note that the equation above is a very compact representation of the system
we described above (proportional control). We can introduce extra intermediate
“dummy” variables to point to the places where an idealized “sensor” and an idealized
“actuator” would be carrying a signal of a certain value. It is enough for our purposes
here to identify a value representing what the sensor reads, and we can do it by
modifying the Acumen model above as follows:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0

always
sensor = x,

x'' = - 10* sensor

This model captures essentially the same behavior as the first model. It can be
seen as representing an idealized sensor that can read the exact position of the mass.
Naturally, in practice, converting a physical quantity (such as a process) into a signal
representing this value on a wire is a non-trivial process. In fact, it is generally
impossible to capture such a quantity exactly and without delay. So, both models
should be viewed as representing a highly idealized system.

5.8 Modeling Quantization 85

5.8 Modeling Quantization

Now we refine our model to reflect the reality that sensed values are generally
represented in a quantized manner. We can model the quantization process as a
continual process of trying to “track” the continuous value by means of a “sensor
value” that can only be changed by fixed “quanta.” The following model captures
this tracking process:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0

always
if ((sensor +0.03) <x)
then sensor + = sensor +0.3

else if ((sensor -0.3) >x)
then sensor + =sensor -0.3

noelse ,

x'' = -10* sensor

Here we have replaced the simple sensor = x relation with a more involved
relation that moves the sensor values in steps of 0.3 in such a way that they are never
more than 0.3 away from the actual value. This means that, while it is possible that
there is an error in sensing, in terms of the difference between the actual value of x
and our representation of the value of x, this error is bounded. This is representative
of what happens whenever we have to quantize a value. The result of this quantization
propagates throughout the system. First, the value of the sensor only changes when
the value of x has changed to be far enough from the current value of the sensor to
trigger a change. Second, it is worth noting that this also means that the value of x′′

will only change when the value of the sensor changes. Thus, there is no real need
for us to use a continuous assignment for the relation sensor = x, and we can convert
it into purely discrete assignments in the branches of the if-statements. This makes
it easier to see that what we have now has more quantization than may be evident
at first glance, but it is not strictly necessary. In fact, it is convenient to be able to
mix discrete and continuous assignments in the manner above, in order to analyze
the effect of quantization and/or discretization at very specific points in what would
otherwise be a continuous-time system.

86 5 Modeling Computational Systems

The signal for sensor and x′′ will therefore have discontinuities. However, the
resulting signal for x′ and x will not have such discontinuities, as the integration
relation that determines them based on the higher derivatives will smooth out such
jumps.

The most significant effect of the quantization can only be seen by simulating
the model and observing what happens to the variable x: with the addition of
quantization, the system is no longer stable. Intuitively, we can view quantization as
having introduced a type of delay, whereby the system does not really see the value
of the input until that input has sufficiently changed from the last reading. Of course,
that change itself takes time, and that is what leads to the delay. Thus, the instability
that we see here is very similar to that seen in systems where a delay is introduced.
In many situations, we can overcome this instability by improving the operation of
our controller to have a more stabilizing effect on the resulting system. For linear
systems, we can more precisely quantify the effects of discretization and incorporate
them accurately in the design of the entire system. For non-linear systems, more
specialized analysis is needed for different kinds of systems.

To quantify the “amount of instability” in this example, we can simply look at
the maximum height of the last wave at the end of the simulation. In this case, the
last wave has a height of last full peak of x that we see in the simulation. Its height
is about 3.4. This can be viewed as a “gain” of 3.4 times in the system’s oscillation,
because the original system (without quantization) had a signal with a maximum
height of only 1.0.

5.9 Modeling Discretization

We now turn to discretization. Discrete sampling of continuous signals can be seen
as a way of taking “still photographs” of a moving object. The key to being able to
take such samples is to have a mechanism for triggering the recording of such values.
This requires a variable (such as the sensor in our previous example) to record the
value, and an event to trigger the writing of the value of the external continuous
variable into the computational units representation of that variable. Sampling (and
discretization) can be periodic (occurring with equal gaps between samples) or, more
generally, event-driven. Periodic sampling can be viewed as event-driven sampling
that is triggered by a clock event that occurs periodically. All we need to model this
type of sampling is a “bucket” that increases at a fixed rate, and the ability to trigger
the sampling when the bucket reaches a certain threshold. The following model
represents such a situation, where the threshold (sampling period) is 0.05:

5.10 Detour: Discretization, Sampling Rates, and Loss of Information 87

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0,

bucket = 0, bucket ' = 1

always
bucket ' = 1,

if (bucket > 0.05)
then bucket + = 0, sensor + = x

noelse ,

x'' = -10* sensor

Just as with the previous example, the variable sensor now changes with discon-
tinuities, and so does x′′. The difference now is that the changes occur at a fixed
frequency.

To quantify the amount of “instability” introduced by discretization, we can take
note of the height of the last full peak in the simulation, which is 2.6. Again, we can
view this as a “gain” in the amount of oscillation in the system, because the original
system (without discretization or quantization) had a maximum height of 1.0.

5.10 Detour: Discretization, Sampling Rates, and Loss
of Information

It can be difficult to capture all the information in a dense-time signal by a finite
number of samples (which we can think of as a discrete-time signal). To convince
yourself of this fact, consider any discrete-time signal, and then construct two differ-
ent dense-time signals that pass through all the same points but are slightly different
between any two points of your choosing. Note that it is useful that this difficulty
only exists when we consider all possible functions; if we are willing to restrict
ourselves to certain classes of functions, the situation improves dramatically. For
example, we often only need to consider signals that have a maximum frequency
component. This restriction can be viewed intuitively as saying that the signal “does
not change faster than a certain rate.” More technically, it means that the frequency-
domain representation of the signal is zero beyond a certain frequency. In many
cases this is a very reasonable assumption, because many physical systems can be

88 5 Modeling Computational Systems

viewed as “low-pass” filters that essentially ensure that this requirement is true. For
such systems, the Nyquist–Shannon sampling theorem has good news for us: If the
maximum frequency component in a signal is B, sampling that signal at 2 ∗ B is
enough to capture all the information in that signal.

Two remarks are necessary in relation to this important and widely cited theorem.
The first is that, in the context of building control systems, it is only telling us that
no information is lost in the sampling. It is a different matter to ensure that the
computation performed on this signal does not introduce additional loss. The fact
that no information is lost in the signal does not mean that performing a naive analog
of the dense-time computation is the right thing to do to get corresponding behavior.
The second remark on the theorem is that it is certainly not the only situation where
a system can be reconstructed from bounded-rate samples. There are many instances
where, based on different kinds of assumptions about a signal, limited sampling can
lead to significant or complete information about the signal.

5.11 The Effects of Quantization and Discretization Easily
Compound

So far we have considered quantization and discretization separately, but in a setting
where we use a digital computer to implement a controller, we have both effects. It
is easy to model the effect of doing both things at the same time as follows:

model Main (simulator) =

initially
x = 1, x' = 0, x' '= 0,

sensor = 0,

bucket = 0, bucket ' = 1

always
bucket ' = 1,

if (bucket >0.05)
then if ((sensor +0.3) <x)
then sensor + = sensor +0.3

else if ((sensor -0.3) >x)
then sensor + =sensor -0.3

else bucket + = 0

5.12 Chapter Highlights 89

noelse ,

x'' = -10* sensor

It is highly instructive to note that the gain now becomes 7.8, which is noticeably
larger than it was for just the quantization or discretization effects taken separately.
This example reminds us of the importance of taking into account both quantization
and discretization in the design of a system. It also illustrates the importance of
ensuring that actual implementations of a control system on a digital computer are
able to realize the sampling rate (or rates) upon which the design of a particular
Cyber-Physical System is based.

5.12 Chapter Highlights

1. Modeling Computational Systems

(a) We started from a continuous substrate
(b) Introduced hybrid systems
(c) Most computational systems today are not “continuous”

• Discretized
• Quantized

2. Quantization

(a) To represent at zero’s and one’s
• How computers work

– Basic gates
– These components are really analog!

(b) Why do we work with zeros and ones?
• More reliable than analog computers
• Components can be much cheaper, much smaller
• Components can be composed more easily

3. Discretization

(a) To work at discrete time steps
(b) Why do we work at discrete time steps?

• Timing is easier to analyze
– Avoid race conditions
– Avoid complexities with feedback

4. Effect on stability of control systems

(a) Discretization
(b) Quantization

90 5 Modeling Computational Systems

(c) How can we manage this?
• Pick resolution
• Pick sampling rate
• Tune gains

5.13 Study Problems

1. Extend the circuit described in Section 5.4 with an extra input D that causes the
output C to become 1 when that input has the value of 1. You may choose up to
two additional gates to use.

2. Extend the circuit described in Section 5.4 with an extra input CLK that causes the
output C to take whatever value the input has when the input CLK is 1. You can
assume that the input A does not change during the time that the input CLK has
the value of 1. When the input CLK is 0, the output stays the same independently
of the behavior of input A.

3. Run the model of Section 5.7 in Acumen and confirm that it produces the os-
cillatory behavior described above. Determine the period of the signal based on
the Acumen simulation. Assuming that the signal is a cosine wave, confirm your
determination about the period by substituting it into the equation and checking
the result.

4. There is one difference between the sensor signal and the x signal in the last
model of Section 5.7. Can you spot it?

5. In Section 5.8 there is a claim that “the resulting signal for x′ and x will not have
such discontinuities, as the integration relation that determines them based on the
higher derivatives will smooth out such jumps.” Confirm these observations by
running the model appearing before this claim in Acumen. Modify the code to
determine the shortest time between two different changes of value to the variable
sensor. Hint: It is OK to introduce your own timer into the model to compute this.
Also, you only need to compute the shortest time for the transitions that actually
occur within the duration of the simulation.

6. Modify the last model in Section 5.9 to determine the size of the biggest jump in
the value of the sensor during the simulation.

7. Modify the controller in Section 5.11 to damp the system by taking into account
the speed of the mass in addition to its position. You can use the variable x′ on
the right-hand side of the equation for x′′ initially. However, keep in mind that
x′ cannot “magically” appear inside a digital computer. To address this problem,
your final model should include a method for computing an estimate of speed
based only on the value of the variable sensor.

5.14 Lab: Stability Exercises 91

5.14 Lab: Stability Exercises

The purpose of this lab is to review and expand on the discussions in this chapter on
quantization and discretization with an emphasis on connecting it to what we have
learned so far about dynamical systems and control. Working through the activities
of the lab will prepare us for the issues that need to be addressed by the upcoming
project activities, and more importantly, with how to have a basic appreciation of the
effects of quantization and discretization on cyber-physical systems.

In this chapter we have already seen the following model:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = -10,

always

x'' = -10 * x

This is a valuable model for us because it can be viewed as a classic example of a
control system with negative feedback, and where the resulting behavior is critically
stable, that is, just in between being stable and unstable.

Simulate this model to confirm that the result is that x is oscillating around zero.
We also noted that the following variant is essentially the same, but with a variable

sensor introduced to indicate what we view as the sensor input to the controller
expressed by the equation:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0

always

sensor = x,

x'' = -10 * sensor

This variant is a good starting point to explore how to represent what happens to a
signal as it is measured and passed on to the process that computes the control signal.
Note that by simply setting the sensor signal to the quantity we want to measure we
are making an assumption that the sensor is highly idealized. It will take additional
modeling and transformation of this mapping to have a more accurate representation
of what happens in reality when a signal is measured.

92 5 Modeling Computational Systems

Quantization results from the fact that we are using machines that use bits as
discrete representations of values. We need not worry about the details of how such
representations are realized to model quantization in a simple fashion, and to explore
its effect on a basic control system such as the one we are considering here. The
following model illustrates a basic method for modeling quantization:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0

always

if (sensor + 0.3) < x
then sensor + = sensor + 0.3

elseif (sensor - 0.3) >x
then sensor + = sensor - 0.3

noelse ,

x'' = -10 * sensor

Notice that we have removed the direct couple between sensor and x which was
provided by one equation in the previous model, and replace it by an if statement.
This statement compares the value of sensor to the value of x and corrects any
large difference by incrementing or decrementing sensor by discrete steps to get it
as close as possible to the value of x. This is not typically how sensors work, but it
illustrates the ease with which quantization can be modeled.

Before simulating this model, write down a description of what the sensor
will look like. Also, write down a description of the impact that you expect this
quantization will have on the overall system behavior. Then run the simulation. Were
your expectations accurate? Were there aspects of the simulation plot that you did
not expect or did not write down ahead of time?

If we consider the plots resulting from this simulation, we will notice that in 10 s
(that is, by the end of the default simulation time in Acumen) the amplitude of the
oscillation has grown significantly. Thus, this example illustrates that quantization
can have a destabilizing effect on a control system. Before investigating any tech-
niques for mitigating this effect, it is useful to make a mental note of the fact that
this is only an example. It is quite conceivable that quantization could also have a
stabilizing effect on systems.

Now let us go back to our template model (the one where we first introduced the
variable sensor) and consider how we can model quantization. There are several
ways in which this can be done, including updating sampled values based on changes

5.14 Lab: Stability Exercises 93

in the values being sampled, which can lead to an event-based model. Here we will
illustrate quantization based on a clock. The following model gives an example of
how this can be achieved:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0,
bucket = 0, bucket ' = 1

always

if bucket >0.005
then bucket += 0,

sensor += x

noelse ,

bucket ' = 1,

x'' = -10 * sensor

Here we have the variable bucket acting as a quantity that gets filled at a constant
rate. When the value of bucket passes 0.005, it is reset to zero (thus emptied) and
the value of x is sampled by copying it into sensor.

Notice that here we are quantizing only the sensing and not necessarily the
calculation of the control equation of the update of the control output. For simplicity,
they are modeled by a simple equation that holds all the time. However, since it is
a simple linear calculation that depends solely on the value of sensor, it also gets
revised whenever sensor is revised.

Before simulating the model, write down what you expect to see in the signals
for bucket and sensor, as well as a description of what you expect will be the
impact of discretization on the overall system. Simulate the model above, and then
make a note of whether all your expectations were met, and whether there were any
unexpected features in the result of the simulation.

If we consider the resulting plots from the last model we will notice that by the
end of the first 10 s the amplitude of the oscillation goes up significantly, which is
roughly the same as what we saw with quantization. The closeness in the magnitude
of both gains is a coincidence. The key point is that for this system, both quantization
and discretization have a destabilizing effect.

94 5 Modeling Computational Systems

Naturally, we may be interested in modeling both effects at the same time, which
is achieved by the following model:

model Main (simulator) =

initially
x = 1, x' = 0, x'' = 0,

sensor = 0,
bucket = 0, bucket ' = 1

always

if (bucket > 0.005)
then if ((sensor +0.3) <x)
then sensor + = sensor +0.3

elseif ((sensor -0.3) >x)
then sensor + = sensor - 0.3

else bucket = 0

noelse ,

bucket ' = 1,

x'' = -10 * sensor

As may be expected, combining both effects also leads to an increase in destabiliza-
tion of the system.

A natural way to reduce these effects is to increase precision and sampling
frequency. In general, however, these can be directly proportional to the cost of the
computational resources needed to perform the computation.

An alternative approach that can have lower costs is to introduce damping into
the system. If this can be done, it can stabilize the system, albeit possibly at the cost
of accumulating more delays into the overall system behavior.

To introduce damping, however, there is another important challenge: In the
examples we have seen before, this requires the use of speed. But we are in a
situation where we are modeling sensing and have no direct access to the quantity
itself, not to mention the rate at which it changes.

To estimate speed, extend the model with two variables, sensor_last and xp.
Extend the model so that sensor_last always keeps the last update to sensor.
Then, using the two sensor readings and the time-step for sampling, make an estimate
of the speed. Use this estimate to update the controller to introduce a damping effect.
Find an appropriate gain constant so that the system returns to being (approximately)
critically stable.

5.16 To Probe Further 95

Compare your estimate of speed to the actual speed variable x'. Are there con-
sistent differences between your estimate and the actual speed? Can this lead to
problems for the system? Are there well-motivated ways in which you can improve
your speed estimation method?

5.15 Project: Quantization and Discretization

The goal of this project’s activity is to help you understand the use of estimators to
improve the quality of data from the sensor. Your task is to take the player developed
from last week and observe how its behavior changes when you switch to a new
model that involves discretization and quantization effects for both actuation and
sensing signals. With this model, you should find that the controller that you had
previously developed under the assumption of more idealized sensing does not quite
work as well any more. You want to develop an improved player that is able to
handle this increased level of realism in the model. To address this, the new variable
estimate_ballv can be used to overcome the discretization and quantization effect
of the velocity of the ball. You will also need to estimate the ball’s velocity in a
discrete manner.

In the context of this project’s activity it will be useful to reflect on how you
have overcome this new challenge, paying particular attention to the design of your
controller and the various state estimation methods being used by the player.

As usual, feel free to continue to develop all the capabilities of your player in
creative ways. Neglecting any one aspect (such as the effects of quantization and
discretization) would put you at a disadvantage, but to really excel you need to take a
holistic approach to the development of your player, and to make sure that you learn
as much as possible from past experiences.

Incidentally, the approach that we have encouraged you take in developing this
project is to start with a high-level model that allows you to focus on some big picture
questions and then gradually go to lower level models that allow you to address the
lower level challenges as well. Reflect on whether this has been a helpful strategy
for you, and whether other approaches could have worked better, or at least equally
well. In particular, would it have been helpful to expose all of the problems that you
need to address from the outset?

5.16 To Probe Further

• General introduction on real-time systems and embedded systems.
• Article on Nyquist–Shannon Sampling Theorem.
• Washington Post article before software patents are revisited by US Supreme

Court.
• Watch Grace Hopper’s elegant explanation of what is a nanosecond.

http://en.wikipedia.org/wiki/Real-time_systems
http://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://www.washingtonpost.com/business/in-new-case-supreme-court-revisits-the-question-of-software-patents/2014/03/28/a3da1c52-ad3a-11e3-9627-c65021d6d572_story.html
https://www.youtube.com/watch?v=9eyFDBPk4Yw

96 5 Modeling Computational Systems

• Find out about the conference named after Grace Hopper, and think about what
you may be able to contribute there.

• Watch the video recording of Edward A. Lee’s lecture on Heterogeneous Actor
Models in the Halmstad Colloquium series. You may also want to checkout
Synchronous Data Flow after watching this lecture.

• Article on the Philosophy of Computer Science.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.youtube.com/watch?v=VvnPJQ4h1Lg
https://ptolemy.berkeley.edu/publications/papers/87/synchdataflow/
http://plato.stanford.edu/entries/computer-science/
http://creativecommons.org/licenses/by/4.0/

Chapter 6
Coordinate Transformation (Robot Arm)

What do we do if our physical system is not perfectly matched to our coordinate
system? This chapter takes a closer look at one aspect of modeling physical systems,
namely modeling the most basic robot that has rotational joints. A key concept
needed for approaching this and similar problems is coordinate transformation. We
focus in particular on mapping Cartesian to spherical coordinates, and vice versa. In
addition to refreshing our skills in computing derivatives, special attention must be
paid to singularities.

6.1 Introduction

Because the three dimensions are independent, it is convenient analytically to work
with forces in a Cartesian coordinate system. However, robots that actuate a mass in a
Cartesian manner would be bigger and more expensive than necessary. In particular,
to build a robot that can reach all points in a 1m× 1m× 1m model, we would need
machinery that is at least 3 m in length, and that would require substantial space
to move. A robot that can rotate and extend needs only to be about 1.73m long at
most; almost half the size. In situations where we have more complex requirements,
a multi-link robot can have significant advantages in terms of reach and flexibility,
since it can more effectively approximate the shortest feasible path between one
point and another. As such, robots with rotational joints and with multiple links have
important applications in practice.

To design such robots, we need to have the analytical tools required to model them
mathematically. The tools will allow us to determine the location of the links (and
joints) at different times, and will also help us to determine the rotational speeds and
angular accelerations needed at various joints. One complication to note about the
mapping from Cartesian to polar is that there is a singularity (or at least ambiguity)
when we are at the origin. This is a technical point that is not so easy to get around,
and will require constant attention when we are working with such mappings.

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_6

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_6

98 6 Coordinate Transformation (Robot Arm)

Another key complication to keep in mind is that mapping changes such as speed
or acceleration, from Cartesian to polar, depends not only on the magnitude of the
change itself but also on the absolute position. Fortunately, this is a complication that
can be managed pretty well by using analytical differentiation. In particular, by being
careful about independent and dependent variables, and using the chain rule, we can
compute closed-form representations of the mapping of changes (or derivatives)
from one coordinate system to the other. In doing so, the key analytical skill to keep
in mind is looking for patterns in the results of each differentiation step, and to replace
any repeating variable by a single variable that we have seen before. This technique
of avoiding duplicate expressions keeps derivations manageable and it is rather easy
to do. If we skip this step, however, things can easily become complicated.

6.2 Coordinate Transformation

Let us consider the following illustration, depicting the representation of a point in
both Cartesian and polar coordinates:

Using geometry, we know that we can compute the 2D Cartesian representation
from the polar one as follows:

x = l cos(θ), (6.1)
y = l sin(θ). (6.2)

This mapping is well-behaved, in that we have a unique value of the Cartesian co-
ordinates for any given value of the polar coordinates. Thus, there are no singularities
in this mapping. A singularity is a point where a function is not defined. In general,
it is easier to work with functions that have no singularities. A function defined for
all possible inputs (of its input type) is called a total function. For example,

f(x) = 2x

is a total function. A function that is not defined for some inputs (of its input type) is
called a partial function. For example, g(x) = 1/x is not defined when x = 0, so, it
is a partial function. Note that we refer to the two functions above as one mapping.
We can also think of them as one function from pairs to pairs.

We can now compute the derivatives in Cartesian coordinates by differentiating
both sides of the equation above. The key thing to note in this case is that we must
make extensive use of the chain rule of differentiation, but without being able to
simplify it fully.

6.2 Coordinate Transformation 99

The chain rule can be expressed in two ways. If we use f and g to represent
functions, then we can write it concisely as follows:

(f o g)′ = (f ′ o g)g′.

A more familiar form might be the following:

dv

dt
= dv

du

du

dt
,

or,
v′ = dv

du
u′.

Writing it this way helps us see that, if we cannot compute v′ directly, then we
can still write a useful expression for it if u′ is a meaningful quantity and we are able
to explicitly differentiate v with respect to u. For our example in (6.1) and (6.2), this
means that we can differentiate the expressions to obtain the following:

x′ = (−l · sin(θ)) · θ′ + l′ · cos(θ),
y′ = (l · cos(θ)) · θ′ + l′ · sin(θ).

Now we come to the rather important step of looking for patterns in this result, and
reducing duplication of expressions as much as possible. This process is important
both to help us understand the meaning of the expression that we just computed
and also to keep the expression itself small. The latter is especially important if we
need to differentiate it again, which is the case, for example, if we eventually want
to compute the mapping of accelerations. In our example here, we notice that there
are terms corresponding directly to the definition of y and x. Thus, we can simplify
the expression for derivatives as follows:

x′ = −y · θ′ + l′ · cos(θ),
y′ = x · θ′ + l′ · sin(θ).

Exercise 6.1 Compute the expression for the second derivative of x and y.
Now we can consider the conversion in the opposite direction, namely going from

2D Cartesian to 2D polar coordinates. We determine the polar coordinates in terms
of the Cartesian coordinates as follows:

l =
√

x2 + y2,

θ = sin−1(y/l).

The first point to note is that this transformation has a singularity. In particular, if
l = 0, then the result of the division is not defined.

100 6 Coordinate Transformation (Robot Arm)

The second point to note is that, unlike the first one, this transformation is not
unique. In particular, there are many other transformations that could give us a result
that can be mapped back (by the first transformation) to the same result. An example
would be

l = −
√

x2 + y2,

θ = sin−1(y/l) + π,

or

l =
√

x2 + y2,

θ = sin−1(y/l) + 2πK,

where K is any integer.
The difficulty introduced by these issues is that we have to carry around with us

the requirement that we cannot have l = 0. Other than that, working out how to map
the derivatives in Cartesian space back to polar is no different from doing it in the
other direction.

Exercise 6.2 Compute the expression for the first and second derivatives of l
and θ. The situation is very similar when we go to three dimensions as follows:

Fig. 6.1 3D projections between polar and Cartesian coordinates

The main activity of this chapter’s lab is to demonstrate mastery in deriving the
Cartesian to spherical (and vice versa) in a 3D setting, such as the one depicted in
Figure 6.1.

6.4 Study Problems 101

The study problems illustrate that the same techniques can be used to convert
the local (polar) coordinates of a two-link robot (in 2D) to the global (Cartesian)
coordinates.

6.3 Chapter Highlights

1. From Translational to Rotational Joints

(a) Throughout the project, we have progressed gradually
• First, we had to determine speeds—this gave us the planning level
• Second, we determined accelerations (with feedback)—this gave us a

simple model of actuation
• Third, we tuned things to deal with sensing and actuation details
• Now, we want to figure out how to build an actual robot

– and that will mean how to work with a single-link robot
We will focus on 2D, but 3D is the subject of the project

2. From Polar to Cartesian in 2D

(a) Basic equation
• Using geometry
• Note that there are no singularities
• First derivative in detail
• Second derivative

(b) Note about forces and torques

3. From Cartesian to Polar in 2D

(a) Basic equation
• Still using geometry
• Note the singularities
• Derivative of arcsin(x) is 1/

√
(1 − x2)

(b) Beyond a single-link
• A two-link example
• Defining positions equations using geometry
• Inversion gets more complicated
• Calculating derivatives

6.4 Study Problems

This study problem focuses on practicing basic analytical differentiation.

1. Assume that a, b, x, y are dependent variables that vary as a function of the
independent variable t. Consider further the following relations:

102 6 Coordinate Transformation (Robot Arm)

a =
√

x2 + sin(y/x),
b = a + x ∗ y/(sin(a)).
Assume further that the notation x′ means dx/dt. Compute the following values:

(a) da/dt in terms x, x′, y, and y′.
(b) db/dt in terms of a, a′, x, x′, y, y′.

Show all your intermediate work. You may use notation “del a/ del b” for the
partial derivative of “a” with respect to “b.”

2. Consider the simple two-link system shown in Figure 6.2.

Fig. 6.2 A simple two-link system

(a) Write the formula for (x, y) in terms of the other variables in the diagram.
(b) Assuming ALL variables can change with time, write down the formula for

the first derivative of x and the first derivative of y.
(c) Assuming that ONLY the length variables (not the angle variables) can

change, write down the equations for the second derivative of x and the
second derivative of y.

3. Consider the mechanism in Figure 6.3

(a) Assume that the length of the first link is L, and that the length of the second
link is L. Assume further that the end of the second arm is a point at (x, y)
with respect to the coordinate system (x0, y0). Write an expression for the
value of x and y in terms of L, θ1, and θ2.

6.4 Study Problems 103

Fig. 6.3 A two-link mechanism

(b) Write an expression for the derivative of x in terms of θ1 and θ2. Do the
same for y.

Fig. 6.4 A triple-pendulum mechanism

104 6 Coordinate Transformation (Robot Arm)

4. Consider the triple-pendulum mechanism shown in Figure 6.4

(a) Assume that the x axis points to the right, the y axis points up, and the
origin is at the bottom of the diagram (the exact position is irrelevant for
this problem). Assume the first point from the base is at (x1, y1), the second
is at (x2, y2), and the third is at (x3, y3). Write the expression for (x3, y3)
in terms of θ1, θ2, θ3, and l. Your answer should not expand x1, y1, x2, and
y2.

(b) Write an expression for the second derivative of y3 in terms of θ1, θ2, θ3,
and l.

5. Consider the mechanism shown in Figure 6.5:

Fig. 6.5 A two-link mechanism

The positive x axis points to the right, the positive y axis points up, and the
origin is at the bottom left of the diagram.

(a) Write the expression for x and y for point p(x, y, θ) in terms of θ1, θ2, l1,
and l2.

(b) Let l3 be the distance of point p(x, y, θ) from the origin. Write an expression
for the α and l3 in terms of x and y.

(c) Write an expression for the second derivative of both x and y in terms of the
other variables and their derivatives. Make sure that your answer provides
equations that clearly define these values in terms of θ1, θ2, l1, and l2 and/or
their derivatives.

6. Go back to the first assignment and consider your explanation of the challenges.
Write a single page containing the following:

(a) Your original submission from the first assignment, with title Original Sub-
mission. This part should be at most one page.

(b) A first revision of this submission is based on what you know now. In this
revision, your goal is to simply say what you were trying to say at the

6.5 Lab: Coordinate Transformations 105

beginning of the semester, but to say it more clearly using the concepts that
you now know. For example, do not add any new challenges. This revision
is also a good opportunity to use proper terminology that you may have not
been familiar with at the start of the book. This part should be at most one
page.

(c) Based on this first revision, make a second one that explains what you see
as the most important challenges from your point of view now. In addition,
it should explain how you would go about building such a robot. This part
can be up to two pages.

6.5 Lab: Coordinate Transformations

The purpose of this lab is to connect the theoretical discussion of coordinate trans-
formation already seen in this chapter with the concrete use in the context of a
simulation of a particular control problem.

Let us consider a situation where there is a ball being moved in a circular orbit
with a single-arm robot. There are only two degrees of freedom: The angle around
the center of motion and the length (extension of the arm). This can be represented
using the following model:

model Main(simulator) =
initially

// Red (r): The target ball
theta = 0, theta ' = 0,
l = 1, l' = 0,
x_r = 1, y_r = 0,// This is the target

_3D = ()
always

// Red(r): The target ball

theta ' = 1, l' = 0.5* sin(theta),

x_r = l * cos(theta), y_r = l * sin(theta),

_3D = (Sphere center = (x_r , 0, y_r)
size= 0.1
color = (1, 0, 0)
rotation = (0 ,0 ,0)).

106 6 Coordinate Transformation (Robot Arm)

To facilitate visualization in this example, we have also used the _3D mechanism for
generating animations. As we add more objects you should also extend that statement
to visualize those objects as well.

Note that here we chose to give the red ball the dynamics of having a constant
angular velocity theta’ but a fluctuating radial speed l’. This makes it move in an
almost-but-not-quite circular orbit.

Simulate the model to confirm that it behaves as described. Inspect the plots to
familiarize yourself with the behavior of the different variables involved.

Now imagine that we would like to build a controller for a robot arm that should
follow this path. There are in general many choices for how to do this, but imagine
that we have to build to separate controllers, one for the angle of the arm and one
for the extension of the arm. This means that the angular actuation can only depend
on angles and the extension actuation can only depend on extensions. For simplicity,
we decide to use PID control. The following controller can be modeled as follows:

model Main(simulator) =
initially

// Red (r): The target ball
theta = 0, theta ' = 0,
l = 1, l' = 0,
x_r = 1, y_r = 0,// This is the target

// Green (g): The spherically controlled ball

x_g = 0, y_g = 0,
theta_g = 0, theta_g ' = 0, theta_g '' = 0,

l_g = 1, l_g ' = 0, l_g '' = 0,

// Control gains
k_p = 5, k_d = 1,

_3D = ()
always

// Red(r): The target ball

theta ' = 1, l' = 0.5* sin(theta),

x_r = l * cos(theta), y_r = l * sin(theta),

// Green (g): The spherically - controlled ball

theta_g '' = k_p * (theta - theta_g) - k_d * theta_g ',

6.5 Lab: Coordinate Transformations 107

l_g '' = k_p * (l - l_g) - k_d * l_g ',

x_g = l_g * cos(theta_g),
y_g = l_g * sin(theta_g),

_3D = (Sphere center = (x_r , 0, y_r)
size= 0.1
color= (1, 0, 0)
rotation = (0,0,0),

Sphere center = (x_g , 0, y_g)
size= 0.1
color= (0, 1, 0)
rotation = (0 ,0 ,0)).

Simulate this model to confirm that it behaves as described. Note that the performance
of the controller can be improved by tuning the gains, but for our purposes smaller
gains make it easier to have a distance between the two balls, and to remember which
one is which.

Now imagine a situation where our robot was upgraded, and the new robot was
Cartesian rather that polar. That is, the new robot consisted of two orthogonal belts,
one moved an entire platform in the x direction, and another sitting on this platform
could be moved in the y direction. The new robot is also more computationally
powerful, so, it can calculate trigonometric functions quickly. Our new task is now
to calculate the control signals that the controller for the new robot needs to generate
so that it acts exactly as the old controller did. In other words, we have to transform
all of our signals from polar to Cartesian.

Use the methods that you have learned about in this chapter to convert the above
signals for the green ball to signals in polar coordinates. First do this using pen and
paper and then map it back to the model. To make room for it in the model, introduce
a new object consisting of a blue box as follows:

model Main(simulator) =
initially

// Red (r): The target ball
theta = 0, theta ' = 0,
l = 1, l' = 0,
x_r = 1, y_r = 0,// This is the target

// Green (g): The spherically controlled ball

x_g = 0, y_g = 0,
theta_g = 0, theta_g ' = 0, theta_g '' = 0,

l_g = 1, l_g ' = 0, l_g '' = 0,

108 6 Coordinate Transformation (Robot Arm)

// Blue (b): The Cartesian analog

k_p = 5, k_d = 1,
x_b = 1, x_b ' = 0, x_b '' = 0,
y_b = 0, y_b ' = 0, y_b '' = 0,

_3D = ()
always

// Red(r): The target ball

theta ' = 1, l' = 0.5* sin(theta),

x_r = l * cos(theta), y_r = l * sin(theta),

// Green (g): The spherically - controlled ball

theta_g '' = k_p * (theta - theta_g) - k_d * theta_g ',
l_g '' = k_p * (l - l_g) - k_d * l_g ',

x_g = l_g * cos(theta_g),
y_g = l_g * sin(theta_g),

// Blue(b): The Cartesian ball

x_b '' = 0, // Fix me

y_b '' = 0, // Fix me

_3D = (Sphere center = (x_r , 0, y_r)
size= 0.1
color= (1, 0, 0)
rotation = (0,0,0),

Sphere center = (x_g , 0, y_g)
size= 0.1
color= (0, 1, 0)
rotation = (0,0,0),

Box center = (x_b , 0, y_b)
size= (0.14 ,0.14 ,0.14)
color= (0, 0, 1)
rotation = (0 ,0 ,0)).

When you have calculated the new controller signals, insert in place of the zero on
the lines that say Fix me. The formulae that you insert may use all variables of the

6.6 Project: Spherical-Actuation for Ping Pong Robot 109

green ball and the blue cube, but should not make any direct reference to the red
ball.

When you are done, simulate your model. If your answer is correct, your blue
cube will coincide exactly at all times with the green ball. This should confirm to
you that you have successfully mapped the acceleration signals for the green ball
into equivalent acceleration signals for the blue ball.

6.6 Project: Spherical-Actuation for Ping Pong Robot

So far in the project we worked in Cartesian space rather than the space that is
most natural with respect to how the components of our robot player move. To
remove this simplifying assumption, your task in this project’s activity is to convert
the accelerations computed by the controller that you built in the previous activity
into forces and torques for the single-arm robot that we are working with. The
conventions for the coordinate transformation used for this stage of the tournament
are represented by the following diagram:

Develop the mathematical equations for this transformation so that you produce the
correct actuation signals to your robot. Your change should be made in the player
model, and specifically where it says:

// You need calculate the following equations according

// to correct coordinate transformation

//r’’ = 0 // Wrong value!!!

//Alpha’’ = 0 // Wrong value!!!

//theta’’ = 0 // Wrong value!!!

110 6 Coordinate Transformation (Robot Arm)

As part of this activity, you should reflect on how you derived the correct coordinate
transformation. Consider whether you think it was useful to ignore these effects
initially or if it would have been better to include them from the outset. You can use
your old path planning strategies developed for tournament 1 and 2. Also, since this
is a project, it is useful to reflect on how you developed your player and what you
learned from this experience.

6.7 To Probe Further

• Articles on Polar(2D) and Spherical coordinate (3D) systems
• Video about a boy that gets a 3D-printed prosthetic hand
• Video about a multi-link robot

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://en.wikipedia.org/wiki/Polar_coordinate_system
http://en.wikipedia.org/wiki/Spherical_coordinate_system
http://youtu.be/FGSo_I86_lQ
http://www.youtube.com/watch?v=IE-YBaYjbqY&feature=youtu.be
http://creativecommons.org/licenses/by/4.0/

Part II
Selected Topics

Chapter 7
Game Theory

Often we are interested in systems that can reason about the results of their actions,
and that act to maximize these results. Game theory allows us to predict how such
systems will act. This chapter starts by introducing basic concepts from game theory,
such as the notions of autonomous choice, utility, rationality, and intelligence. These
concepts give us a framework to rigorously identify conditions under which players
have incentives to act in manners that can be seen as independent, coordinated,
or competitive. Matched to these conditions, respectively, game theory provides us
analytical tools for predicting the behavior of players in these situations; namely,
strictly dominant (or dominated) strategies, Nash Equilibrium, mixed strategies, and
mixed strategy Nash Equilibrium.

7.1 The Role of Game Theory in CPS Design

With the increasing pace of CPS innovation, the number of interacting systems is also
increasing. At least two factors have contributed to this trend. First, as devices and
systems are endowed with more computational power, their functionality increases.
More computation implies more decision-making. Unless we delegate more control
to these devices—which means endowing them with more autonomy—we will sim-
ply be unable to process all the information needed to make such decisions. Second,
because networking of devices provides more opportunities for both controlling and
optimizing their performance, it is increasing and, as a result, the interaction between
systems is also increasing.

Predicting the behavior of interacting autonomous systems can be challenging,
and increasing the number of such systems only makes the situation more so. Game
theory is a discipline that provides important analytical and computational methods
that can help us in analyzing such systems and predicting their behavior.

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_7

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_7

114 7 Game Theory

7.2 Games, Players, Strategies, Utilities, and Independent
Maximization

For the purposes of this chapter, a game consists of two players, both having a finite
set of strategies (or plays) to choose from. It also consists of two utility function
(one for each player) that assign a utility to each outcome, where an outcome is
determined by the combined choices made by the two players. We assume that the
utilities possible for each player are ordered, that is, there is always a sense in which
one utility is greater than, or greater than or equal to, another utility. We then further
assume that both players are rational, in that they are trying to choose the play that
maximizes the payoff that will be determined by the utility of the combined play of
the two players.

The challenge is that each player can choose their own play, but they have no
control over the other player’s play. Thus we can see each player as trying to inde-
pendently maximize his or her utilities, in a setting where the other player’s choice
can influence the final utility. We further assume that the players are intelligent, in
the sense that they are aware of the other player’s utilities, and are able to reason
about their expected behavior, given the assumption of their rationality.

The general problem posed by a game is “what strategy will the players choose,
given the definition of the game?”

7.3 Rationality, Independence and Strictly Dominant (or
Dominated) Strategies

Since utility functions capture the quality that the players are trying to maximize,
they also induce a pattern of incentives for the players to act in a certain way. In
fact, when players are working strictly to find the choices that maximize their utility,
the utilities can be seen as forcing them to act in a certain way. This is not to say
that all systems in the real world are working to maximize a specific utility. Rather,
in a situation where we can justifiably identify a utility that players are working to
maximize, the utility function can be productively used to analyze their choices in
this manner.

In the rest of this chapter, we will consider three patterns of incentive induced by
the utilities. For each of these patterns, we will also introduce a powerful analytical
tool that can be used to predict the behavior of players in games that exhibit this
pattern. We will start with the simplest and work our way to more challenging ones.

7.3 Rationality, Independence and Strictly Dominant (or Dominated) Strategies 115

7.3.1 The Independence Pattern

The most elementary utility pattern is independence, which is the situation where
one player’s utility for a strategy is superior to the others and independent of the
other player’s choice. In more concrete terms, consider a two-player game where
each player can choose between two strategies, A and B. Both players are hungry
and can either (A) do nothing or (B) go to the store and buy lunch. If we assume that
the actions of the two players are independent, then it is reasonable to believe that
each one’s utility for (B) is higher than (A) no matter what choice the other player
makes. We will call this the “Independence Pattern.”

One of the most basic questions we can ask about games is “What would the
players do if they were to act rationally?” Here we can define a rational player as
one that chooses the strategy that maximizes his or her utility. In the case of lunch,
the independence of the two players’ actions makes it easy to see that choice (B) is
rational for both. But how can we answer this question for games where players are
not independent? Those cases are, in fact, the primary focus of game theory.

To analyze such games, it is often convenient to represent combined utilities
using a table. The rows will represent the first player’s choice, and the columns
will represent the second player’s choice. In each cell, there will be two values,
representing, respectively, the utilities of the first and second players. To represent
utility patterns, we will indicate lower utilities with the minus sign – and higher
utilities with the plus sign +. The lunch example would be represented as follows:

1\ 2 A B

A - - - +
B + - ++

The utility pair u1u2 such as + − in the cell at row (B) and column (A) represents,
respectively, the positive utility for Player 1 and the negative utility for Player 2, when
Player 1 chooses to get lunch (B) and Player 2 chooses to do nothing (A). Ignoring
for a moment that we already know the answer to the question, let us consider how
we can systematically use this table to determine the rational preference for each
player. The way to do this is to analyze the table from the point of view of each of
the two players, completely ignoring the utilities of the other player (but not their
choices). We can visualize this analysis using two tables, one from the point of view
of Player 1:

1\ 2 A B

A - * - *
B + * + *

and one from the point of view of Player 2:

116 7 Game Theory

1\ 2 A B

A * - * +
B * - * +

In both cases, we simply replaced the plus/minus signs by a star sign * to indicate
that we are ignoring the other player’s utility in that utility pair. Hiding the other
player’s (irrelevant) utility makes it clear for each player that strategy B is always
positive.

What this exercise illustrates is that we only need to know that, for all possible
choices that the other player could make, one of our choices will always have greater
utility than the other. Visually, this means that, for Player 1, the justification for (B)
is based solely on comparisons between utilities in the same column. Going “down”
in this table always leads to an improvement in utility, making (B) always a better
option for Player 1. Similarly, for Player 2, the justification for (B) is based solely
on comparisons between utilities in the same row. Going “right” in this table always
leads to an improvement in utility, making (B) always a better option for Player 2.

When an option has this kind of relation to another option, as is the case with
options B and A above, respectively, we say that the first strictly dominates the
second. Strict dominance is an important concept in game theory, as it captures
effectively a pattern of reasoning that can be correctly used by a rational system to
decide to exclude certain choices in favor of other ones that will always be more
effective at maximizing the utility of the strategy choice.

Because the rational choice for both players is (B), the “solution” to this game is
the play (BB), which represents the choice made by both players, respectively, when
we assume that they are rational.

When we get to more complex examples of the Independence Pattern the user
will find it helpful to remember two key observations. The first is represented by the
two last tables above: the right way to read utility tables from the point of view of
each player is to ignore the other player’s utilities when you are doing that.

The second observation is more subtle, and requires discerning from the analysis
above a pattern that is deeper than the Independence Pattern. In particular, in deciding
that (B) is better than (A) from both players’ point of view, we do not really need
to know that all the lower utilities are equally low, or that all the higher utilities
are equally high. The following series of examples will help us understand the
significance of this observation.

Example 7.1: A Basic Lunch Returning to our lunch example, we can imagine
that the players’ utility represents their need to get a meal, and that we will represent
one meal’s worth by the number 1. In this case, the Independence Pattern can be
instantiated to the following concrete game:

1\ 2 A B

A 0 0 0 1
B 1 0 1 1

7.3 Rationality, Independence and Strictly Dominant (or Dominated) Strategies 117

Here the solution is still (BB). Note that a + or − on the original table is a valuation
for the respective player’s utility for that choice and assuming unchanged choice by
the other player.

Example 7.2: An Asymmetric Lunch The way we determined that (BB) is the
solution in the case of the Independence Pattern also applies to other—possibly less
obvious—situations. For example, it applies in exactly the same way when the utility
of one player is greater for his or her lunch than the other player. The following table
represents such a situation:

1\ 2 A B

A 0 0 0 2
B 1 0 1 2

The utilities of Player 1 still always increase when we go down, and those of
Player 2 always increase when we go right. Thus, (BB) is still the solution to this
game.

Example 7.3: A Split Lunch The previous example may appear to suggest that
the Independence Pattern only applies in cases when the two players’ utilities are
independent. This would mean that it only applies when there is little or no “real”
interaction between the two players. This is not the case. This means that this rather
simple analysis can be useful in cases when there is a substantive interaction between
players. As a first example of such a situation, consider the case when the two players
go to the same supermarket, to buy the same type of lunch, and there is only enough
for one person. To avoid the use of fractions in utilities, we will now count getting
one lunch as a utility of 2, and half a lunch as a utility of 1. With this convention, we
can represent this situation using the following table:

1\ 2 A B

A 0 0 0 2
B 2 0 1 1

Does the above analysis still apply to this case? It may be a bit surprising to find
out at the answer is yes. One way to see why the analysis still applies is that the first
player’s utilities still improve when we go down, and the second player’s utilities
improve when we go right. To make it easier to see that this is the case, we will break
up the table into two, each one representing a player’s view. Player 1 sees:

1\ 2 A B

A 0 * 0 *
B 2 * 1 *

and Player 2 sees:

118 7 Game Theory

1\ 2 A B

A * 0 * 2
B * 0 * 1

So, the solution is again (BB). The outcome of (BB) does not change if there is
“waste” in sharing the lunch, which would be represented by a higher value in place
of the “2” in these tables.

Example 7.4: A Small-Auction Lunch Imagine a situation where both players
only have a penny, and when only one goes to buy lunch an auction will view this
as low demand, and make available for a penny a great meal with a utility of 5. But
when both go at the same time, the auction sees this has high demand, and makes a
modest meal with a utility of 1. In this case, our table looks like this:

1\ 2 A B

A 0 0 0 5
B 5 0 1 1

Seeing that (BB) is the solution to this game even when the “lunch alone” option
has significantly higher utility may lead us to be a bit suspicious of dominant strategy;
and it may even lead us to question the way in which we have been analyzing games
to determine how their constraints play out in terms of player choices. This is
healthy skepticism, because it prepares us for the next example, which pushes the
Independence Pattern to the limit.

Example 7.5: A Small-Auction vs. Fridge Lunch Imagine a slightly different
situation where both players actually have a readily available lunch in their fridge
that they could prepare only if they both chose to stay at home. Imagine further that
this lunch was so good that they would both give it a utility of 4. But the auction
lunch, which would have a utility of 5 if one of them goes alone, is still slightly
better. The following utility table illustrates this situation:

1\ 2 A B

A 4 4 0 5
B 5 0 1 1

This situation still fits the Independence Pattern, and the choice of (B) still
dominates that of (A) for each player, independent of what the other player chooses
to do. Thus, the rational solution to this game is the choice (BB). This is a peculiar
outcome, because the utility for both (AA) is higher for both players than (BB). So,
how can the rational choice for both lead them to (BB)?

We can confirm the pattern’s logic by checking that the first player’s utilities
always increase when we go down, and the second player’s utilities always increase
when we go right. To see why this down/right pattern really does force any two

7.4 Coordination, Intelligence, and Nash Equilibrium 119

rational players to choose (B), it helps to consider what happens if they make any
other choice. Making his or her choice independently, Player 1 can only pick one of
the two options. From the point of view of Player 1, picking (A) means he or she
could end up with a nice lunch if the other player stays in, but they could end up with
no lunch if the other player goes out. In contrast, picking (B) means they would get
the best lunch if the other stays in, and a passable lunch if the other goes out. So,
whichever choice the other player makes, choosing (B) improves Player 1’s lunch.

This example has the same features as The Prisoners’ Dilemma, a classic example
in game theory. More background about this game can be found in the article
Prisoner’s Dilemma.

7.3.2 The Cost of Lacking Communication and Trust Can Be
Unbounded

To convince ourselves of the soundness of the above analysis, it is important to
realize that each player must make his or her decision independently. This does
not mean that this is what any two people in this situation should do, rather, it is
clarifying how the formal notion of games that we are studying works. We said that
we are studying games where each player is trying to maximize utility, and that, for
this particular game, the utilities are as shown in the table. We did not say anything
about players’ ability to communicate or their ability to trust each other; as a result,
we have to exclude the possibility of the players coordinating, because the ability to
communicate and trust are strong assumptions that we cannot make without changing
our original problem statement. In fact, a profound lesson that can be drawn from this
example is that the costs of lacking communication and/or trust can be unbounded:
we can replace 4 and 5 in this example by any pair of arbitrarily large values, and
as long as the first is less than the second, rationality and self-interest forces both
players to choose (B). Lacking communication and trust can be arbitrarily costly for
everyone involved.

7.4 Coordination, Intelligence, and Nash Equilibrium

In the last section we saw the Independence Pattern, where utilities had this form:

1\ 2 A B

A - - - +
B + - ++

http://en.wikipedia.org/wiki/Prisoner%27s_dilemma

120 7 Game Theory

We also saw how strict dominance can be used to determine that the rational
behavior of two players in such a game has to be (BB). At the same time, we also
saw that (BB) may not be the highest possible payoff for both players, but it is the
highest payoff that they can guarantee independently.

The power of strict dominance lies in its usefulness in narrowing down the set
of possible rational strategy pairs to a smaller set. However, it will not always be
possible to find strictly dominant strategies (or more specifically, strictly dominated
strategies to exclude). It is therefore useful to consider how to interpret games where
there are no strictly dominated strategies, and where we have more than one possible
rational outcome.

7.4.1 The Coordination Pattern

Consider a two-player game where each player can choose between two strategies:
going to a movie (A) or going to a play (B). Both players only care about being
together. Let us call this the Coordination Pattern. The following table represents
this pattern:

1\ 2 A B

A ++ - -
B - - ++

It is clear that in this case there is no strictly dominant strategy: For each player,
(A) is better if, and only if, the other player chooses (A), and the same holds for (B).
We have two cases where there is a win-win choice, (AA) and (BB), but achieving
either depends critically on coordination.

When we considered our Small-Auction vs. Fridge Lunch example, we noted
that communication and mutual trust would have been needed to arrive at a better
outcome than that provided by the dominant strategy. Here, there is no dominant
strategy at all. The absence of a dominant strategy can be viewed as the absence of
a reward to always unilaterally select one strategy versus the other. In such cases,
communication is key. However, trust is no longer necessary: the utilities put both
players in a situation where (a) it is in their interest only to communicate their intent
truthfully and (b) once they have shared their intent, the other player is only motivated
to act in a manner that is optimal for both of them.

7.4.2 Nash Equilibrium

Note that this type of reasoning reflects intelligence on the part of the players, in the
sense that it takes into account that they are aware of the other player’s utilities and

7.4 Coordination, Intelligence, and Nash Equilibrium 121

decision-making process. The observation that we can predict the outcomes of games
more precisely when we take into account not only each player’s rationality but also
their ability to reason about the other player’s decision-making process is attributed
to John Nash. It is his name that is acknowledged in the term “Nash Equilibrium,”
which refers to the set of plays (strategy combinations) out of which no player has
an incentive to depart unilaterally. In the example above, the set { (AA), (BB) } is
the Nash Equilibrium for this game. The game motivates both players to only be in
one of these plays. And once they are in one of them, they would only be motivated
to move to another one in coordination with the other players.

7.4.3 Determining the Nash Equilibrium

With one additional condition, the Nash Equilibrium for a game pattern is simply
the set of all strategy combinations with (++) utilities. The extra condition is that
each player should only have a plus (+) option as the maximum utility for any one of
his strategies. This is the case for both the Lunch and Coordination Patterns. Thus,
in the Independence Pattern, the Nash Equilibrium is the set { (BB) }.

Example 7.6: An Asymmetric Four-Strategy Game To check our understanding
of this method of computing the Nash Equilibrium set, we will consider a game with
four strategies and asymmetric utilities:

1\ 2 A B C D

A 7 1 2 4 4 8 6 4
B 1 3 3 7 5 6 6 2
C 3 2 4 4 7 5 8 3
D 9 7 2 8 1 9 5 3

When we mark the highest utility in each choice for the first player, we get the
following table:

1\ 2 A B C D

A 7 1 2 4 4 8 6 4
B 1 3 3 7 5 6 6 2
C 3 2 + 4 + 5 + 3
D + 7 2 8 1 9 5 3

When we mark the highest utility in each choice for the second player, we get the
following table:

122 7 Game Theory

1\ 2 A B C D

A 7 1 2 4 4 + 6 4
B 1 3 3 + 5 6 6 2
C 3 2 4 4 7 + 8 3

1\ 2 A B C D

D 9 7 2 8 1 + 5 3

Combining all the marks into one table we get the following, where the cells that
have utility now marked (++) form the Nash Equilibrium set:

1\ 2 A B C D

A 7 1 2 4 4 + 6 4
B 1 3 3 + 5 6 6 2
C 3 2 + 4 + + + 3
D + 7 2 8 1 + 5 3

As this table shows, the Nash Equilibrium set is { (CC) }. Thus, if both players
reason rationally, taking into account the other player’s utilities as options, the first
player would choose (C) and the second would play (C). These are the choices that
each player can make independently and secure the maximum possible payoff, given
the utilities for the different choices for both players.

7.4.4 Eliminating Strictly Dominated Strategies Preserves Nash
Equilibria

In games where there are a large number of possible strategies, it is useful to remove
from consideration (or eliminate) strategies that a rational player would never choose.
Strict dominance gives us just the right tool for doing so, as any strictly dominated
strategy can be safely eliminated in this manner. What is more, eliminating one
choice for one play can reveal other dominated strategies for the other player (since
they are also intelligent, and can determine for themselves that the first player would
never play that strategy).

This technique is synergistic with the notion of Nash Equilibria: eliminating
strictly dominated choices does not remove any elements of the Nash Equilibrium
of a game.

Exercise 7.1 Remove strictly dominated strategies from the game presented in
this last example. Repeat this process until there are no more strictly dominated
strategies. Draw the table for the reduced game. Once you have done so, determine
the Nash Equilibrium for the reduced game.

7.5 Competitiveness, Privacy, Mixed Strategies 123

7.5 Competitiveness, Privacy, Mixed Strategies

So far, we have seen an example where strict dominance alone can be used to
determine how two rational players will behave (the Independence Pattern), and one
where it cannot be applied (the Coordination Pattern). In the latter case, we were
able to use the idea of the Nash Equilibrium to determine the set of plays (strategy
pairs) that the two players would be simultaneous motivated to choose. There are,
however, games where the Nash Equilibrium would have no elements. The following
table represents an example game pattern:

1\ 2 A B

A - + + -
B + - - +

We will call this the Competitive Pattern. In this pattern, there are no win-win
plays. In fact, every play is win-lose. In concrete instances of this pattern, if the values
of minus and plus in each cell are consistently equal in magnitude but opposite in
sign, this is what would be called a zero-sum-game.

7.5.1 Mixed Strategy Games

Whereas the Coordination Pattern incentivized both players to communicate truth-
fully, the Competition Pattern incentivizes them to keep their decisions as private as
possible. In fact, if anything, this utility pattern could give each player an incentive
to mislead the other player.

How would rational players act in such situations?
If we are looking at just a single round of the game, what we can say in this

situation is very limited. In fact, all we can do is advise both sides to work hard
on keeping their planned strategy secret. But in addition to the usual difficulties in
keeping secrets, this situation becomes harder if the game is played multiple times.
Then players can simply observe each other and infer the decision-making process
of the other side. If one side succeeds in doing this, they can ensure only desirable
utilities, and the other only undesirable ones.

This situation gives rise to the idea of a mixed strategy, in contrast to what we
have discussed so far, which was a pure strategy. To play with a pure strategy is
simply to select one of the possible strategies. To play with a mixed strategy is to
select a probability distribution and use it to select from among all the available
strategies. As long we are able to make random choices, this can be an effective
way to mitigate the risk of being subjugated by the other player. The key to doing so
effectively becomes the selection of the right distribution.

124 7 Game Theory

7.5.2 Selecting a Mixed Strategy (or, Mixed Strategy Nash
Equilibria)

In selecting the random distribution, each player’s goal will, in fact, have to be to
reduce the other player’s incentive to pick a particular strategy. To do this, we (and
each player) will have to analyze the other player’s expected payoff. We will illustrate
this concept in more detail when we consider a concrete example.

It is important to note that we cannot select a mixed strategy at the level of game
patterns, but rather, must do so within the concrete games. This is different from
strict dominance and pure strategy Nash Equilibria, which could be determined at
pattern level. The reason for this is that the expected payoff is sensitive to the concrete
value of the utility in each situation.

Example 7.7: Feud Consider the following concrete instance of the Competition
Pattern:

1\ 2 A B

A 1 6 5 5
B 2 7 3 8

If Player 1 is deciding on a mixed strategy, he or she must select a distribution
for choosing between (A) and (B). The distribution consists of two probabilities, p1A
and p1B, both of which must be values between 0 and 1, and together they must also
add up to 1. The two probabilities represent the relative frequency with which, in the
long term, Player 1 will choose A and B, respectively.

Now we need to focus on the payoff of the second player in the case of each play
by Player 1. If Player 1 plays A, then Player 2 will choose the A to maximize their
outcome (which will have value 6). If Player 1 plays B, then Player 2 will choose B
(which will have value 8). What Player 1 can do through its choice of distribution is
to equate the expected payoff for the second player so that it is equal in the cases of
Player 2’s playing (A) or (B). The expected value for each of Player 2’s options is
determined by summing the product of utilities and probabilities in each case. For
Player 2’s option (A), that would be

E(2A) = 6p1A + 7p1B,

and for Player 2’s option (B), that would be

E(2B) = 5p1A + 8p1B.

If we want these two expected values to be equal, then we want to solve for
E(2A) = E(2B), or substituting the right-hand side from the two equations above
we get

6p1A + 7p1B = 5p1A + 8p1B.

7.5 Competitiveness, Privacy, Mixed Strategies 125

This is one equation with two unknowns, which means we need another equation.
The equation we have is p1A + p1B = 1, from which we can determine that p1B =
1 − p1A. We can use that to replace all p1B’s in the above equation by a term that
only has p1A. This yields the following equation:

6p1A + 7(1 − p1A) = 5p1A + 8(1 − p1A).

By simplifying, we get

7 − p1A = 8 − 3p1A.

From which we can determine that 2p1A = 1, or p1A = 0.5, and so, p1B = 0.5 as
well. Here we got an even split between the two choices, but that is not always the
case. In fact, even in this game, Player 2’s optimal strategy will not be an even split.
But first, to check our answer, let us make sure that these probabilities do ensure that
the expected payoff for Player 2 is the same between the two choices. We do that
simply by substituting these values in the equations we wrote above

E(2A) = 6p1A + 7p1B = 6 · 0.5 + 7 · 0.5 = 3 + 3.5 = 6.5,

E(2B) = 5p1A + 8p1B = 5 · 0.5 + 8 · 0.5 = 2.5 + 4 = 6.5.

So, indeed, our calculations were correct. And if Player 2 knows (or sees) that
Player 1 will be making choices according to this distribution, there will be no
immediate incentive to choose between the two strategies.

Player 2 still has an incentive to make sure that Player 1 cannot benefit by choosing
one strategy over the other. To do so, he or she will make choices based on a random
distribution, and will determine two probabilities p2A and p2B analogous to the ones
Player 1 used. To make this determination, Player 2 analyzes Player 1’s expected
payoffs as follows:

When player 1 chooses (A), the payoff is

E(1A) = p2A + 5p2B.

For Player 1’s option (B), that would be

E(1B) = 2p2A + 3p2B.

Equating both expectations we get

p2A + 5p2B = 2p2A + 3p2B.

Using the substitution p2B = 1 − p2A we get

p2A + 5(1 − p2A) = 2p2A + 3(1 − p2A),

which simplifies to

p2A + 5(1 − p2A) = 2p2A + 3(1 − p2A),

126 7 Game Theory

which simplifies to 5 − 4p2A = 3 − p2A and then to 2 = 3p2A, which means that
p2A = 2/3, and p2B = 1/3.

The uneven split in probabilities in this case can be explained as follows: if Player
2 played an even split between (A) and (B), Player 1 would eventually notice, and
start playing (A) more often, because, on average, it gives a higher payoff than
playing (B). With Player 2 playing even split, Player 1’s expected payoff for (A) is
1 ·0.5+5 ·0.5 = 3, which is higher than that for (B), which is 2 ·0.5+3 ·0.5 = 2.5.
Even though this might seem like a small difference, if Player 1 notices, he or she
will start playing (A) consistently to maximize their expected payoff. In contrast, the
probabilities we calculated for Player 2 make Player 1’s payoffs be 1 ·2/3+5 ·1/3 =
7/3 and 2 · 2/3 + 3 · 1/3 = 7/3, giving Player 1 incentive to both maximize its
expected payoff and minimize the chance that the other player can predict the next
play.

The distributions (p1A, p1A) and (p2A, p2B), together, constitute the mixed strategy
Nash Equilibrium for this game.

7.6 Chapter Highlights

1. Game Theory and CPS

(a) Trends
• Networking is going up
• Automation is going up
• Result: More interaction

(b) Game theory gives us tools to
• model self-interest and awareness of others
• predict and encourage certain outcomes

(c) A game consists of
• Players (2)
• Choices/Strategies (2)
• Utilities (at least ordered)
• What choices are made to maximize each ones OWN utility

(d) Patterns of utilities direct us to different analysis tools

2. Independence Pattern and Dominance

(a) Basic pattern table (basic example: going out to lunch)
(b) How to read the table from each player’s point of view
(c) How to determine what’s the best decision

• The concept of a strictly dominant strategy
Each one can make that decision independent

(d) Warning: The pattern is not as simple as it may seem!

7.8 To Probe Further 127

3. Cooperation Pattern and Equilibria

(a) Basic pattern (example: going out)
• No dominance
• Coordination need
• Communication valuable
• Note that these are often sub-patterns

4. Competition Pattern and Mixed Strategies

(a) Basic pattern (example: two shops that cell lunch)
(b) No dominance
(c) No simple equilibrium
(d) Must not share information!
(e) Must mix
(f) Concrete values in utilities become critical!

7.7 Study Problems

1. Calculate the mixed strategy Nash Equilibrium for this concrete game:

1\ 2 A B

A 1 6 7 5
B 7 7 3 8

Be sure to include the four probabilities, and to check that your answer does
equalize the expected payoff for the other player.

7.8 To Probe Further

• Videos on topics covered in this chapter (and more) at Game Theory 101
• Video lectures from Summer School on Games and Contracts for CPS Design.
• A Harvard Business Review article on when is competition a good thing?
• The New York Times article mentioning cooperation in the Riddle of the Human

Species
• The related topics agent-based systems, agent-based modeling and simulation,

and cooperative games.
• Background on the more abstract idea of actors underlying agents
• Perspectives on what are multi-agent systems (MAS) by Sycara
• Business Insider article about Boston Dynamics being acquired by Google in

2013 and CCN article about later acquisition by SoftBank in 2017.
• Paper by Lavalle on Game Theory and Motion Planning

http://www.gametheory101.com/
http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-games-and-contracts-for-cyber-physical-security/?tab=schedule
http://blogs.hbr.org/cs/2013/02/a_more_productive_way_to_think_about_opponents.html
http://opinionator.blogs.nytimes.com/2013/02/24/the-riddle-of-the-human-species/?smid=fb-share
http://en.wikipedia.org/wiki/Multi-Agent_System
http://www.mcs.anl.gov/~leyffer/listn/slides-06/MacalNorth.pdf
https://en.wikipedia.org/wiki/Cooperative_game_theory
http://en.wikipedia.org/wiki/Actor_model
https://www.cs.cmu.edu/~softagents/papers/multiagentsystems.PDF
http://www.businessinsider.com/google-just-bought-boston-dynamics-2013-12
https://www.ccn.com/boston-dynamics-37-million-softbank-robot-sales-2019/
http://msl.cs.illinois.edu/~lavalle/papers/Lav00.pdf

128 7 Game Theory

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 8
Communications

At a time when we are surrounded by mobile phones and Internet-based services,
communication is a central component of virtually every aspect of our life. At the
same time, communication itself is a rich and multifaceted notion. For example,
we can consider why or how we communicate. We touch on the first question in
the Game Theory chapter. In this chapter, we turn to the second question, and in
particular, the fundamental concerns of what constitutes communication, what are
the hard limits on telecommunications, how such limits arise, and how we can model
their effects.

8.1 Communication, Certainty, Uncertainty, and Belief

We begin by defining some basic concepts in a manner that is as independent as
possible of the details of current technologies. There are two reasons for doing so.
The first is to clarify the terms used in this chapter and to reduce the chance of misun-
derstandings. For all the notions discussed here there are alternative interpretations,
and a comprehensive treatment of these alternatives is beyond the scope of this book.
The second is to settle on notions that we hope are simpler and may last a bit longer
than the rapidly changing current technologies, and that may be compatible with the
confluence of different technical disciplines.

To communicate is to share information. A speech by the leader of a nation shares
information with interested citizens who may be present in person or watching the
speech over modern telecommunication infrastructure. A server storing a digital
copy of this book shares information with a smartphone or a digital device where it
is downloaded over the Internet.

That communication involves sharing is straightforward. That it involves infor-
mation is more interesting. Information is an abstract notion related to attaining
certainty, which, in turn, is firm or absolute belief. For example, consider a value
drawn from the set of Booleans {True, False}. If we are uncertain about this value,

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_8

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_8

130 8 Communications

we hold no belief about it beyond its possible values (which can be viewed as its
“type”). When we are certain about the value, we either believe that it is True or
believe that it is False. This is a set-based notion of uncertainty, as illustrated in
Figure 8.1.

Fig. 8.1 Set-based uncertainty about a Boolean quantity

This is the notion of uncertainty, and in turn, the notion of information, typically
addressed by set-based and interval analysis methods, whether applied to numerical
computations or programs.

Other notions of uncertainty exist. For example, in cases where it is either im-
possible or unreasonable to hold absolute belief, we may associate probabilities to
different values. For example, we may believe that the value may have a probability
of 0.95 of being True. This is a distribution-based, probabilistic, or stochastic notion
of uncertainty (See Figure 8.2). It is this notion that we typically see being used in
information and coding theory and in probabilistic and statistical methods.

For cyber-physical systems we need to consider both notions because we are often
interested not only in stochastic guarantees (as is typical in communication theory)
but also in deterministic ones.

Fig. 8.2 Probabilistic uncertainty about a Boolean quantity

8.2 Messages: From Information to Representation

In contrast to information, which is a notion centered around the belief of an agent,
a message is data (a string) that is used to represent and realize the transfer of

8.3 Belief, Knowledge, and Truth 131

information. For example, the message “Tom and Jerry are here” carries information
for someone who is unaware of their presence. It also carries no information to
someone who is already believes they are here. Accordingly, whether a message
carries information is critically dependent on the receiver and, in particular, the
receiver’s prior beliefs. This is illustrated by the following table:

Message Belief before Belief after Information

Tom & Jerry are here φ Tom & Jerry are here Tom & Jerry are here
Tom & Jerry are here Tom & Jerry are here Tom & Jerry are here φ

They are here They are Tom & Jerry They are Tom & Jerry Tom & Jerry are here
Tom & Jerry are here

They are here They are Tom & Jerry They are Tom & Jerry φ

Tom & Jerry are here Tom & Jerry are here

The table also illustrates how correct transmission and message content are dif-
ferent from the information that the message carries. The message “they are here!”
also carries the same information for the first receiver if they know the context, but
the raw data (the sequence of letters) being transmitted is clearly different.

The following two exercises, one for each notion of uncertainty, provide more
examples that illustrate the difference between the message and the information it
carries.

Exercise 8.1 Consider an agent that believes that x + y = z where + is addition
on the real numbers and that x ∈ {1..2}, that is, x is in the set of all real numbers
between 1 and 2, inclusive.

1. If it receives a message that y ∈ {3..4}, what should it believe about z?
2. If it receives a message that z ∈ {3..4}, what should it believe about x?

Exercise 8.2 Consider an agent that believes that (x ∧ y) = z where ∧ is con-
junction (AND) on Booleans and that the probability of x being True is 0.5.

1. If it receives a message saying that the same probability holds for y, what should
it believe about z?

2. If it receives a message saying that the same probability holds for z, what should
it believe about x?

8.3 Belief, Knowledge, and Truth

Knowledge is belief that is true. This is consistent with our intuitive understanding of
these notions: In everyday life we would not use the term Knowledge to describe the
false belief that “The planet Earth was entirely pink on January 1st 2019.” Rather,
we would describe it as a misconception or simply a false belief. Similarly, we would
say that Jane knows that 1+1 = 2 when she believes that statement, since it is a true
statement. We may also say that Jane believes that a variable x has a value of 17.
When we say that we leave it open whether her belief is correct. In contrast, when

132 8 Communications

we say that Jane knows that x has a value of 17, we are also asserting that her belief
is true. Thus, even in everyday language we take knowledge to be the intersection of
belief and truth (Figure 8.3).

Fig. 8.3 Knowledge is the intersection of belief and truth

The distinctions are important for two reasons. The first is that they can often
guide us in comparing different ways to solving a problem. Consider the following
exercise:

Exercise 8.3 The length x of some rope is exactly 3.14 m.

1. A camera-based app on a smartphone estimates it to be 3.15. Can we say that the
phone has belief or knowledge about the device?

2. What if, instead, the phone estimates the value to be in {3..4}?

This exercise illustrates that awareness and tracking of the error in a measurement can
have a significant impact on the validity of calculations based on this measurement.
Now consider the following situation.

Exercise 8.4 The altitude (distance from sea level) x of a ship is varying over
time t according to the equation x(t) = sin(t). An aircraft trying to land on the ship
has a device the provides a measurement of the height of the ship. Explain for each
of the following cases if the aircraft has belief and/or knowledge:

1. The device provides a perfect and continuous measurement y where y(t) = x(t).
2. The device provides a delayed continuous measurement y(t) = sin(t − d) where

the amount of positive delay d is fixed but unknown.
3. The device provides a delayed continuous measurement y(t) = sin(t − d) and

the value of the delay d.
4. The device provides a delayed continuous measurement y(t) = sin(t − d), the

value of the delay constant d, and the aircraft knows that the value being measured
is a periodic signal.

5. The device provides two discrete measurements, y1 = sin(t1 −d), y2 = sin(t1+
1 − d) the value of the delay constant d, the measurement time t1 + 1, and the
aircraft knows that the value being measured is a periodic signal.

8.4 Carrier Signal, Medium, and Link 133

This example illustrates the value of not only of keeping track of measurement error
but also of keeping track of other effects that may arise with measurement, such as
delay, and of knowledge about the nature of the signal being measured.

8.3.1 Broader Implications

The above distinctions help us understand what constitutes correct communication
in cyber-physical systems. The distinctions are critical for two main reasons.

First, since truths in general are not affected by what we share or do not share
about them, information affects primarily belief, and only affects knowledge to the
extent that the change in belief overlaps with truth. Information is thus related to
belief but not necessarily to knowledge. Logic and its rules are generally based on
the assertion that truths need to be consistent and free of contradiction. This does
not apply to beliefs. We generally work to ensure their consistency, but such efforts
may well fail.

Second, whereas data processing systems are developed with some particular
intent in mind, computations themselves are generally oblivious to this intent. Today,
this dichotomy is touched upon quite often in the context of the so-called smart
contracts, which are digital contracts that execute automatically. Our intent when
writing a contract is based on our beliefs at one time, but smart contracts must run
correctly for a very long time. Even if we consider such instruments to be “only”
affecting money (money still has tremendous impact on people’s livelihood), with
increasingly more services that take orders online to perform real-world functions
(such as Amazon, Uber, or a wide range of other services), unintended actions from
such systems can have tremendous undesirable impact on our life, and at a very large
scale.

For these reasons, the importance of maintaining awareness of the real-world
meaning and real-world veracity of the information being communicated and ma-
nipulated by automated systems cannot be understated. As innovators we have sig-
nificant responsibility if not legally or socially then ethically towards the programs,
controllers, and cyber-physical systems that we develop.

8.4 Carrier Signal, Medium, and Link

Let us now turn our attention away from information back to sharing. In particular,
let us consider how sharing is carried out and the characteristics of such processes.
For a transmission to occur in the real world, a message needs to be represented
and physically transmitted. Transmission occurs using a carrier signal. Often, the
carrier is transmitted over a medium. For example, consider the process of handing
a cone of ice-cream to a friend (See Figure 8.4). Here, the carrier signal is ice-cream
cones, the medium is the space in which it travels between the first and the second

134 8 Communications

person. The message is whether or not we send a cone. As usual, the information
being transmitted depends on the beliefs of the receiver, but one can imagine in this
example the message is intended to communicate a positive sentiment. When we
consider the communication between you and your friend in this situation, we can
think of this entire process as a communication link.

Fig. 8.4 A simple communications channel

There is a wide variety of possible carrier types, and which we can call commu-
nication modes. The following table gives some examples.

Mode Medium Examples

Transportation Optional Postal service. Cell biology. Olfaction
Light Optional Lighthouses. Gestures. Sign language. LiFi.
Radio waves Optional Cellular. Bluetooth. WiFi.
Electric current Mostly Phone lines. Twisted pairs.
Electric potential Rarely Across capacitors
Vibration Necessary Sound (sonic). Ultrasonic.
Pressure Necessary Steering. Pressure modulation.
Temperature Necessary Covert communication.

The first three modes require no medium. While traditional treatments of commu-
nication will not typically include transportation as a mode of communication, in a
cyber-physical setting it can be very useful to consider it as such. It is also useful to
recognize that it happens both in man-made and natural systems. For example, the
transport of molecules within and between living cells is essential for regulating the
processes of a living organism.

8.5 Link Characteristics 135

Light and radio waves, which are both electromagnetic waves, can be viewed
as transportation of photons. Physically, electromagnetic signals are different from
what we consider as everyday transportation because photons have both wave and
particle properties.

The next three modes typically require a medium, but it is useful to note that it is
not always necessary. Electric signals involve the transportation of electrons, which
is generally more controlled through a medium. It is possible to move electrons
in free space, but managing them in this manner is quite different from designing
electric circuits. In addition, traditional electric circuits also involve components
such as capacitors and inductors, which involve a discontinuity in the conductive
medium. Such gaps can be a medium, in which case they are called dielectrics, or it
can be a vacuum. Dielectrics are more common as they would generally help avoid
physical contact between the components involved.

The last three modes require a physical medium and cannot exist without it
because they are, in effect, changes to the physical state of a given medium. Vibration
in general and sound in particular are interesting not only because we as humans
have used them since the beginning of time, but also in the cyber-physical setting,
they can be related to security. For example, it is known that a malicious agent can
implant a virus on computers with no traditional communication ports so as to use
cooling fans to export information from such devices.

The last two are examples of more rare modes of communication, but it is useful
to be aware of such examples for both cooperative and uncooperative situations.
Pressure modulation, for example, has been used by oil exploration companies to send
signals from deep in the ground to the surface during drilling, a situation which makes
other modes of communication difficult. We are not aware of uses of temperature for
communication in cooperative situations, but it is known that temperature can leak
significant information about encryption keys when, for example, the temperature of
a smart card chip is used to extract information that can be used to find the key.

8.5 Link Characteristics

The wealth of possibilities for communication modes is challenging and inspiring.
At the same time, when we want to design specific systems, it is useful to have ways
to compare different possible choices. The question of cost is of course always an
overarching one. The next question then is how to quantify what is being commu-
nicated so that we can compare costs between solutions of similar or comparable
performance.

In general, the performance of a communication link is not quantified as a single
quantity, but rather, as a composite of different characteristics. Commonly considered
characteristics are latency, bandwidth, and various notions of reliability. While ice-
cream, of course, is not the only means of communication, it can illustrate some
common physical characteristics of links. In the context of cyber-physical systems,
the mobility of the communicating entities makes the situation more interesting, as

136 8 Communications

all of these characteristics can depend on both the relative location of the entities as
well as their environment.

8.5.1 Latency

Latency is the time it takes from sending a signal to receiving it. If we imagine that the
two people are 50 cm apart and the ice-cream can be moved at a speed of 1 m/s, then
it will take 0.5 s to transmit the ice-cream. While for interpersonal communication
such delays may be acceptable, for applications such communicating a signal from
car brake pedals to wheels, much shorter delays are required.

Clearly, faster transport speeds can lead to shorter latencies. This is an important
reason why media such as electric current and electromagnetic waves (light and
radio) are popular. Light can move much faster than our ice-cream in this example,
in fact, almost 300 million times faster. But we should keep in mind that for any
non-zero distance and finite speed, transmission over this distance will experience
non-zero delay.

Physics limits the minimum latency more than we may realize at first. In particu-
lar, the theory of special relativity suggests that not only is there always a non-zero
delay, but there may be an absolute, minimum delay between two objects with a
non-zero distance between them. In particular, the theory suggests that it is impos-
sible to travel faster than the speed of light. This means that the shortest time any
transmission can take between the two people in our ice-cream example is about
1.67 ns (nanoseconds). Another way of looking at this is that no signal can travel
more than about 30 cm in a nanosecond. This constraint is significant in large-scale
systems such as communication via satellites or when communicating with someone
on the moon. Light takes about 1.3 s to travel between Earth and the moon.

As an aside, for a historic illustration of the significance of understanding these
basic constraints, and if you have not done so already, we recommend that you find
and watch the two-minute YouTube video entitled “Admiral Grace Hopper Explains
the Nanosecond.”

8.5.2 Bandwidth

Bandwidth is the number of messages that can be sent per unit time. Note that this
notion cannot be meaningful unless messages can only be split into a finite number
of indivisible messages. Thus, the notion of bandwidth requires that messages are
discrete entities. For uniformity, a message can be taken to be one of exactly two
possible values, that is, one bit. Note also that bandwidth is based on the data being
transmitted rather than the information it conveys, as the latter is always a function
of the beliefs of the receiver.

8.5 Link Characteristics 137

Considering our example above, if we assume that there are no verbal or visual
hints given by the first person, the “message” can be seen as being one of two things:
Either one ice-cream is handed over, or none are. If we further consider that this
event can occur only once per day, then the maximum transfer rate is one message
per day. Since there are only two possible events, let us consider the message to be
one bit.

Assuming that the information the receiver takes from getting the ice-cream is that
the sender likes them, this is a like/neutral signal. If the sender and/or the receiver
would like more detailed information, such as really-like/like/neutral, then more
bandwidth would be needed. This can be achieved, for example, through the use of
two ice-creams. So that the information mentioned can be represented by two-ice-
creams/one-ice-cream/no-ice-cream. Of course, such transmissions may cost more or
require more work, but the amount of information that can be transmitted increases.
As we will often see, physical resources can often limit the rate of transfer. For
example, there is only so many standard sized ice-cream cones and scoops on the
planet. But what is physically transmitted is only one source of limitation. In the
following exercise, we consider some others.

Exercise 8.5 In the above example, using twice as many ice-creams did not double
the levels of “like” that we have.

1. Are there ways in which a maximum of two ice-creams per day can be used to
communicate four like levels, such as like-a-lot/like/like-a-bit/neutral?

2. What is the key idea that you are using to achieve this higher level of information
transfer? In other words, is there a reason why this method can be expected to
generalize to other situations?

8.5.3 Reliability

Under idealized conditions, for example, the universe consists only of you, your
friend, and the ice-cream, the transmission of the ice-cream should be quite reliable:
Once you start the process of handing over the ice-cream to your friend, the expected
outcome for them should be that they receive it and recognize the message. But
idealized conditions may be hard or even too difficult to provide. Instead, you and
your friend could be standing outdoors on a windy day, they may be looking the
other way as you get the ice-cream that you wish to give to them, and a wind might
come and blow away the ice-cream before you are able to offer it to your friend.
Alas, the physical evidence of the ice-cream is now gone. This kind of situation
is a simplified example of the reliability issues that arise in almost all real-world
communications. In general, they can also become more challenging as we try to
transmit more information, over larger distances, in dynamic environments, and
between mobile entities.

138 8 Communications

8.6 Fundamental Limits from Physics

Nature poses fundamental limits on link characteristics. These limits tend to become
significant at extremes of transportation speeds or energy usage. For example, as we
approach extremes of low energy, the smallest possible unit of energy transmission
is one photon. If we also reduce our sampling period to a small enough period, to
correctly detect a photon as it arrives would mean that we would know its speed and
position, and that would lead up to other known limits posed by what is called the
Heisenberg uncertainty principle.

Another fundamental physical limitations on bandwidth is to consider that the
highest known frequencies for electromagnetic waves, gamma rays, are about 1025.
Even if we assume that we can pass one wave or skip it to encode a bit, this would
be the maximum bandwidth. In practice, there are numerous reasons why even this
assumption cannot be realized. But at least we have a relatively easy way to see that
there are some hard limits on a single-bit communication channel.

While we can see these physics-imposed limits on latency and bandwidth as
constraints on a space of possible solutions, they can also be seen as sources of
inspiration for further research and innovation.

8.7 Limits Due to Component Dynamics

While nature can limit latency and bandwidth at a fundamental level, dynamics of the
components used to build the communication link will generally pose significantly
greater effects that will lead to the dominant practical concerns. To illustrate this
concretely, we consider the common case of what happens when we use electric
circuits to communicate.

8.7.1 Electrical Signal Transmission

The simplest example of an electric circuit where a signal can be transmitted is
one where there is a constant current or voltage being transmitted from one entity
to another. Let us focus on the case when we are transmitting a voltage (a similar
analysis can be carried out if we transmit via current). As noted above, due to the
laws of physics, our ability to observe any physical phenomena is always limited
by some minimal quantity that can be measured. For this reason, we consider only
discrete levels of voltage difference. The simplest case is to have two levels. We
can after all use a series of such transmissions to represent any number of levels.
For the sender to build up the voltage to be transmitted, a sufficient number of
electrons must be moved from one side of the circuit to the other. Voltage difference
is proportional to the amount of electrons moved. The rate at which electrons move
is called current. Current generates heat and thus consumes energy, and so has to

8.7 Limits Due to Component Dynamics 139

be limited in any circuits otherwise it will overheat. Limiting current means that
building up the voltage takes time. This means that there is a minimum time needed
to change from one voltage level to the other. This, in turn, limits the rate for data
transfer (bandwidth) on this wire.

The situation described above can be modeled by a series RC circuit (shown in
Figure 8.5) where a voltage source Vi is connected in series to a resistance R and
then a capacitance C. We will call the current flowing the circuit I and the charge
across the capacitor Q. Using the principles introduced in the chapter on physical
modeling, this circuit’s dynamics is governed by the following two equations:

Fig. 8.5 A series RC circuit model of an electric signal transmission channel

Vi(t) = I(t)R + Q(t)/C, (8.1)

and
Q(t) =

∫ t

0
I(s) ds. (8.2)

The first equation reflects the fact that the input voltage must be equalized by the
voltage from the rest of the circuit. The second equation models the way the voltage
at the target of the signal (represented by the capacitor) is a function of the current
being transmitted and the time lapsed. This equation captures the effect of the physical
movement of electrons that is necessary to build up the voltage at the target, and that
will make it possible for the target to measure a change in the circuit.

To make these two equations easier to recognize we will note that since Q is the
integral of I (which is what the second equation states) then we also know that I is
the derivative of Q. That means

Q′(t) = I(t). (8.3)

140 8 Communications

With this observation we can rewrite the first equation as

Vi(t) = Q′(t)R + Q(t)/C. (8.4)

Using basic arithmetic we can turn this equation into

Q′(t) = Vi(t) − Q(t)/C

R
, (8.5)

which is an ODE. In Acumen, this would be written as

Q' = (Vi - Q/C)/R.

To have a full simulation model one only needs an initially section that provides
some example parameters such as

R=1, C=1, Q=0, Q'=1, Vi =1.

The constants are selected here only for illustration and not for resemblance to any
concrete circuit parameters. The key take away from running this simulation is that
it takes some time for the voltage at the target, Q/R, which is simply Q in this case,
to reach the value of the source.

This simulation suggests several observations that can be confirmed through
further mathematical analysis of the equations. For example, if we consider the start
of the simulation, we can see that for any non-zero sensitivity to detecting voltage
change there is a non-zero time needed to allow the voltage to grow to this level. But
it is also important to note that this simple experiment does not tell the full picture.
If Vi is to be changed to transmit both zeros and ones in sequence, then in general
it may not be easy to detect voltage changes, but rather, we may want to have the
voltage to reach certain specific values to consider this a reliable measurement. Such
a requirement would further increase the time that we must allow for the signal at the
target to reach a measurable level. The key take away here is that detecting signals
requires time.

8.7.2 Variability in Component Parameters

Bandwidth and latency also suffer due to both capacitive and inductive effects of
electrical wires. In addition, another important practical source of limitations is the
variability in individual components. With any manufacturing technology, it is hard
to create components that have identical characteristics, due to natural variations in
the environment, materials, processes, and other factors. In poorly designed systems,
the variability in individual components can be greatly magnified when we put them
together. Techniques such as feedback, discretization, and quantization all provide
important tools for managing this problem. For the purposes of this chapter it suffices
to be aware of this issue and the need for these methods to address it.

8.8 Limits Due to Noise 141

8.7.3 Light and Radio Transmission

In contrast to electrical signals, light and radio wave transmission can have an
advantage in terms of maximum bandwidth and latency. To give a concrete example,
whereas twisted pairs can have speeds of up to 10 GHz, fiber optics transmission
can go to 200 GHz and beyond. Electromagnetics in free space can have frequencies
in the THz, therefore, bandwidth can in principle also approach these frequencies.
However, by definition they are in general not directed, and therefore can be subjected
to large dissipation effects that can limit their range. In many cases, however, there
are physical obstacles on a transmission path, which stop or significantly reduce the
signal.

8.8 Limits Due to Noise

Noise is a term that is used to describe environmental factors that can make sensing
difficult. The simplest example is when we are talking to a friend in a busy gathering
and find it difficult to hear each other because others are talking in the background.
In this case, the medium you are using to communicate is also being used by other
messages in a way that makes it hard for you to receive your friends message correctly.

Noise arises in virtually all known modes of communication. Ambient vibration,
sound, light, heat, and radiation are all phenomena that can be considered to be types
of noise, and that can affect a communication channel. In transportation, a message
can be influenced by the many other messages that go through the system, as well as
the occasional failures in the process. Electrical signals can be influenced by cross
talk due to effects of varying electric potentials and electromagnetic effects from the
rest of the system and the surrounding environment. Especially at high altitudes and
in outer space, they can also be influenced by background radiation. Noise can also
arise from contention over shared resources, which can be seen, for example, in the
effect of nearby channels in radio transmission.

The inevitable presence of noise has several significant effect on signals. A
particularly significant issue is that for all practical purposes there is a minimal
precision for measurements. This is an important justification for why we thinking
of messages as having discrete values. In essence, this decision reflects the fact that
below a certain level it is impossible to make any measurement reliably. Another
effect is stochasticity: Noise can be unbounded and then all we can hope for is that it
follows a probabilistic distribution. Depending on this distribution and the possible
magnitudes of the noise, it may be that correct measurement cannot be guaranteed
with absolute certainty. This gives rise to the need for probabilistic methods in
communication. This is a highly significant concern since sufficiently large levels of
noise (or, alternatively, sufficiently low signal levels) lead to a situation where the
probability of a correct reception of a message is indistinguishable from a guess by
flipping a coin.

142 8 Communications

The situation in the last case deserves some attention, as it can be undesirable to
receive a random message believe that was the message intended by the sender. A
wide range of methods are used to allow the receiver to check the integrity of the
received message. At the very least it allows the receiver to ignore the message, but
more commonly it makes it possible to request a retransmission.

8.9 Limits Due to Energy Dissipation

While electrical transmission and light transmission are guided (for example, by
placement of the wire or optical fiber, respectively), electromagnetic transmission in
free space is unguided. Guiding is significant for preserving the energy in a signal,
thus facilitating its travel to greater distances. To illustrate, you may be familiar with
the experiment of creating a mechanical telephone. Such a device can be created by
piercing two metal cans or plastic cups and using them to stretch a plastic fishing
wire at a distance. As long as the wire is stretched, it can guide the transmission of
vibrations from one end to the other rather efficiently. This allows a person holding
one end to hear what the other person holding the other ends says into their side
of the device. This experiment offers a hint that a signal traveling along a wire (a
one-dimensional space) can be preserved quite well. The only limitations to the
transmission of such a signal are dissipation due to inelastic effects in the fishing
wire, which would transform the vibrations into heat, or the leakage of the mechanical
vibration into the surrounding environment. Ignoring these effects, this gives us a
good starting point for thinking about what happens to a wave when it is not guided.

For example, let us imagine that we have a signal propagating in two dimensions,
such as what we might see if we drop a marble into the middle of a still pool. For
simplicity, let us once more ignore secondary effects and assume that the energy of
the wave that starts right where the marble was dropped is preserved as the wave
spreads out. We know from basic geometry that the radius of the circle that represents
the center of the wave as it goes out is linearly proportional to its circumference.
Given the symmetry of the situation, it is reasonable to assume that the energy
will be spread equally around the circumference. This means that if we observe the
energy at any point on the circle (the wave), the energy of the signal at this point
will go down in inverse proportion with the distance from the center. Similarly, in a
three-dimensional setting where the wave is propagating spherically, the energy will
go down in proportion to the square of the inverse of the distance.

8.10 Other Sources of Limitations

Several other practical aspects can also lead to limitations on communication. One
is the clock speed of the sending and receiving systems, which occasionally need
to be shared with other components of the communication system. Clocking is a

8.12 Study Problems 143

discretization technique that facilitates the design and operation of large digital
circuits. However, clock speeds often have to fit with the timing need of the most
complex components on the system. In simple designs this may need to be matched
or aligned with the clock rate of the transmitting or receiving device.

8.11 Chapter Highlights

1. Communication as transfer of information

(a) Information and certainty/uncertainty
(b) Information and knowledge, belief, and truth

2. Widely applicable concepts relating to communication

(a) Latency, the time to get a message through the channel
(b) Bandwidth, the maximum rate of sending messages
(c) Reliability, knowing that the message will come through when you send it
(d) Possible connections between each of these different concepts

3. Fundamental limitations and their sources

(a) Effects from physics (nature)
(b) Effects from physical component dynamics
(c) Effects due to noise (and/or “disturbance”)
(d) Effects due to energy limitations

8.12 Study Problems

The problems in this section can be investigated individually or in groups. They are
larger than in the earlier chapters, so, expect them to require more time to solve.

1. Model a system for transmitting the bits of the binary representation for 42 on
the RC channel presented in this chapter. Your model should include a vector
representation of the binary representation for the message at the sender and the
receiver.

(a) Find the shortest clocking period that would allow the correct transmission
of the signal for this initial test message.

(b) Once this time has been determined, find another string that would not be
transmitted correctly using these settings.

(c) Explain why the evaluation using the first string was not sufficient.
(d) Find a way to determine the fastest clocking period.

144 8 Communications

2. Amplitude modulation (AM) transmits a signal using a carrier that is itself a fixed
frequency wave. It is the basis of AM radio. In essence, the signal and the carrier
are multiplied to generate the transmitted signal.

(a) Model a source and signal generation for such a communication, assuming
that the transmission channel is perfect. Assume that the carrier frequency
is 100 Hz.

(b) Assume that the target knows the exact transmission frequency but not the
phase. Model the target and explain the mechanism for determining the
phase for the carrier signal.

(c) Use the channel to transmit the 4 bit representation of the numbers from 0
to 8.

(d) Determine experimentally the fastest rate with which this transmission can
be done correctly using this channel.

8.13 To Probe Further

• Forbes article entitled The Real Reasons Quantum Entanglement Doesn’t Allow
Faster-Than-Light Communication.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.forbes.com/sites/chadorzel/2016/05/04/the-real-reasons-quantum-entanglement-doesnt-allow-faster-than-light-communication/#1047b7b93a1e
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Sensing and Actuation

The terms sensing and actuation are used to refer to getting information about the
world and to affecting physical objects, respectively. In cyber-physical systems, an
interesting aspect of exploring sensing and actuation is that it provides us with a
natural opportunity to learn more about how computational components work today,
and in particular, which ones can be realized directly using semiconductor based
circuits, and which ones require other intermediate steps to realize.

9.1 Everyday Input and Output

Sensing and actuation occur in simple forms in many computational systems such as
a desktop, laptop, or any device that we traditionally think of as a digital computer.
Electronically, the simplest way to get an input into a computer is through a switch,
such as the home button on a smartphone or a particular key on a keyboard. A switch
is a device that either allows or blocks a current depending on external input, such
as the physical position of a lever or button. A switch can, in principle, be used
directly to send a binary signal into a digital circuit. In principle, a keyboard button
or an OFF/ON switch can use such simple circuitry. In practice, and for a variety of
reasons, additional circuits may be useful to improve the quality of the signal and to
ensure the safety of various subsystems. The point is, having a device that provides
input to a computational system, in its simplest form, can be quite straightforward.
Maybe more importantly, every signal that we sense will need to go through such a
step to enter into the computational system.

Once this signal has reached the digital circuit, it can be processed in one of two
ways. Either the signal will be held by a latch so that changes in its value can only be
observed at a clock tick or it can be read by a signal that will use its value directly.

The question now is how do we turn a digital output into a physical action of
some sort. As it turns out, one of the simplest ways to observe the output physically
is to use one of the technologies that is most widely used today, namely, the Light

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9_9

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36071-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-36071-9_9

146 9 Sensing and Actuation

Emitting Diode (LED). For many microprocessors, all what would be required would
be to connect an LED followed (in series) with a small resistor to the wire carrying
the digital signal that we wish to observe. Then, when there is a high (voltage) signal
on the wire, the LED turns on, and it turns off when the signal is low. As an aside, it
should be noted that some microprocessors use HIGH to represent 0, whereas others
use it to represent 1.

9.2 Symmetry: LEDs and Photo-Voltaic Cells

It would have been elegant if we could somehow observe such an output by a change
in the position of a button. That would give us a nice symmetry that seems natural
when we are using actuation and sensing primarily for communication. Alas, whereas
an OFF/ON switch may be the easiest way to get an input into a computational
component, building the mechanism needed to get a switch to move is, relatively
speaking, non-trivial. LEDs, on the other hand, do give us an example of some of
the simplest ways to provide an input and to observe an output from a digital system:
An LED itself is photo-sensitive, and can therefore be used for sensing light as well
as emitting it. Isolated in a lit environment, an LED will have a voltage across two
connectors. This voltage can then be amplified to detect the presence or absence of
light.

The fact that LEDs can be used for both sensing and actuation makes them
particularly interesting devices, as they are highly flexible as input, output, and
communication devices. At some point, certain models of one of the predecessors
of the smart phone, the Personal Digital Assistant (PDA) supported communication
between such devices via infrared. Remote controls for many home appliances have
for a long time used infrared light for one-direction communication. More recently,
there has been growing discussion of light fidelity (LiFi, in analogy to WiFi) as a
communication medium. Fiber optics are currently one of the highest bandwidth
mechanisms for communicating between computer systems and over long distances.
In addition, fiber optic buses are used in high performance computing systems to
connect CPU cores. The ease with which light can be generated and processed by
semiconductor devices makes it possible, in principle, that future CPUs may use
light within chips. Media reports in 2019 included news that Intel is working on
a chip with optical interconnects for Neural Network applications (See To Probe
Further).

Another interesting aspect of LEDs is that the presence of light creates a voltage
potential that can be used to harvest energy. This is in fact what photo-voltaic cells
do—they can be viewed as a minor variation on the LED. A challenge with photo-
voltaic cells is that they must be grouped and connected electrically with care, so as to
support higher aggregate voltages as well as to enable buildup of higher currents. In
addition, being significantly exposed to an open environment, they must be packaged
in a way that allows them to operate effectively over a long period of time without

9.2 Symmetry: LEDs and Photo-Voltaic Cells 147

degradation in efficiency. In light of what we have just learned, the attentive reader
will understand that design of LED lighting is challenging for similar reasons.

9.2.1 Diodes

To understand why connecting computational and physical components is interesting,
it helps to know some basics of how modern computational components are realized.
Most of us have heard of Silicon, and that computer chips are made from it. Most
of us have probably also heard of semiconductors, and are also wondering why
something with such a curious name could be so important.

Conductors are materials where electricity can flow easily. Metals are a classic
example of a conductor. Whether or not a material can conduct electricity depends on
its atomic structure, and in particular, whether it facilitates or prevents the movement
of electrons. At the atomic level, conductors are characterized by having an overlap
between orbits called conduction bands and orbits called valence bands. Conduction
bands are where electrons can move freely. Insulators are materials where electricity
cannot flow. Plastics are a common example of an insulator. In terms of bands, these
are insulators that have a “big” gap between the energy level of conduction and
valence bands.

Fig. 9.1 A crystal of pure Silicon

Semiconductors are interesting not because they have a fixed conductivity some-
where between being a conductor or an insulator, but rather, because they can be
used to build devices that act as either conductors or insulators depending on an
external control signal. In the simplest case, this signal can be electrical. There are
many ways in which such effects can be materialized. Diodes are arguably one of the
simplest examples, because a diode can act as a conductor or an insulator depending
on the direction of the electrical potential we apply across this device itself. Thus,

148 9 Sensing and Actuation

the control signal is the voltage across the device, and the effect we observe is how
much current flows across the device as a result of this voltage. Unlike a resistor, the
current that will flow through the device will vary dramatically depending on the
direction of the voltage. To understand how this works let us take a closer look at
how they are built in a semiconductor.

For simplicity, we will consider Silicon as a starting point. Silicon atoms have
four electrons in their outer valence shell, and they form crystals by connecting
with four other surrounding atoms (Figure 9.1). As a result, this creates a situation
where in their outer valence shell each has eight electrons, which is a stable size
for that shell. This keeps the electrons in place and makes Silicon an insulator
at room temperature. Things become much more interesting when an impurity is
added to Silicon, disrupting this stable form slightly and, in the process, giving it
very attractive properties. This modification, which is made at the fabrication time,
is called doping, and can be used to introduce either one free or one missing electron
in the crystal lattice (Figure 9.2). Both types of doping, called n-type and p-type
semiconductors, respectively, change the conductivity characteristics of the original
crystal. But more importantly, when they are put next to each other, they create what
is called a junction. This type of junction is the basis for creating a wide range of
semiconductor devices, such as diodes, transistors, and photo-voltaic cells.

Fig. 9.2 How n- and p-type doping introduces free and missing electrons

One of the most interesting effects that arises at such a junction is the formation
of what is called a thin depletion region, which results from the natural migration of
the free electrons from one side to fill the hole created by the missing electrons on
the other side. The result is that this junction lacks free electrons and is therefore not
a conductor. This migration of electrons creates a voltage potential that any electron
wanting to travel against needs to overcome. What is more, the size of this depletion
region is sensitive to the voltage across the junction, and applied in one direction,

9.2 Symmetry: LEDs and Photo-Voltaic Cells 149

this region will grow (and the voltage), but in the other, it will shrink (and the voltage
buildup will be negligible). This effect is what gives junctions their ability to allow
the flow of current in one direction and not the other, thereby giving us the diode as
a device (Figure 9.3).

Fig. 9.3 An n/p junction creates a diode, the most elementary semiconductor device

Diodes by themselves can have a wide range of applications as electric circuit
components, including in demodulation of radio signals and building digital logic
circuits. For our purposes in this chapter, they help us get a basic appreciation of how
semiconductor technologies work, and will help us understand why light is possibly
the easiest non-electric physical media that we can connect to a digital circuit.

9.2.2 The Photo-Voltaic Effect

One of the most interesting aspects of what happens across depletion regions is the
involvement of light. When an electron moves from the n-type side to the p-type, it
is possible that an electron moves down from the conduction band to a valence band.
This is sometimes called a recombination, as it is when an electron meets a “missing”
electron in the valence band. The difference in energy between the conduction band
and the valence band results in the emission of a photon (Figure 9.4). Depending on
its energy, such a photon can form visible light.1 For traditional circuit applications,
such gaps are avoided for efficiency. For LEDs, the device is designed to maximize

1 It should be noted this simpler account is more applicable for semiconductors such as Germanium.
For Silicon, other physical effects play a more prominent role than photons.

150 9 Sensing and Actuation

the chance of the occurrence of such events, and to produce light at a particular
frequency.

Fig. 9.4 Light Emitting Diode (LED)

An even more interesting effect is that there is also a dual dynamic: In the
abundance of photons, such a junction can have electrons flowing in the opposite
direction, increasing the voltage potential across the junction. The voltage potential
can allow us to use this junction as a photo-voltaic cell that can be used to detect
the presence of light. In the abundance of light and with appropriately configured
circuitry, such cells can also be used to harvest electrical energy from this light. The
basic dynamic at the level of atomic physics is called the photo-voltaic effect, and is
closely related to the photo-electric effect, for which Einstein was awarded the Nobel
Prize.

9.2.3 Transistors and Amplifiers

Junctions therefore allow us to build devices such as diodes, LEDs, and photo-voltaic
cells. They also allow us to build another important semiconductor device, namely,
the transistor. In its simplest form, a transistor can be made by juxtaposing three
semiconductors segments with different doping, such as p-type followed by n-type
followed by p-type. This configuration creates two junctions and a device with three
terminals. Many useful effects can be realized using this device. For example, a
small change in the voltage (or current) provided by the middle terminal can have
a significant effect on the current that can flow across the two other terminals. This
effect can be employed to realize circuits that can amplify the amplitude of a signal
by several orders of magnitude. To perform this functional reliably, more than one
transistor is used to build an operational amplifier, which functions as explained in
the chapter on Control. In the context of generating and sensing light, operational
amplifiers can be used to boost a digital off/on signal to drive a light emitting diode
that delivers brighter light (and can therefore travel further) or amplify a low light

9.3 Analog-to-Digital Conversion (ADC) 151

signal coming in from a photo-voltaic cell to register clearly as a signal in a digital
circuit (Figure 9.5). Amplifiers similarly play an important role in the accuracy with
which we can sense external signals, and with which we can drive external devices.
They are also used in both analog-to-digital and digital-to- analog converters.

Fig. 9.5 Operational Amplifiers have numerous applications. In this circuit, one is used to drive an
LED

9.3 Analog-to-Digital Conversion (ADC)

To transfer an analog signal into a digital computational component we need an
analog-to-digital converter (ADC). To transfer a signal from a digital computational
component we need a digital-to-analog converter (DAC). Both circuits are best
understood as analog circuits and it is simplest to think of the digital value as being
represented by the minimum voltage and the highest voltage (such as 0 and 15 V)
and the analog signal as being able to have any value in between. For simplicity, we
will also assume that we have four bits to represent the signal. This means that we
can only represent 24 or 16 values.

A basic strategy for converting the analog signal to a digital one is to start with
a simple ladder circuit made of a series of equal resistors that goes from the high
voltage to the lowest voltage. In the case of our 16 level circuit, we would use 16
resistors. As long as the resistance on each is equal, the voltage drop across each of
them will be equal. This will give us a source for 16 different voltages going from
the lowest value of 0 V to the highest of 15 V. Starting from the 1 V point and going
up we can start building 15 circuits by feeding this signal into the negative input to

152 9 Sensing and Actuation

Fig. 9.6 A ladder circuit to convert from analog to digital

the operational amplifier, and the signal we want to measure to the positive one. This
way, the output of each such amplifier will give us a high signal as soon as the input
signal is higher that than this voltage, and will produce a very low signal otherwise.
We can then treat these output signals as digital signals and collect them in one of
several ways, including simply adding them or putting them through a simpler circuit
called a priority encoder, which identifies the “highest” of the 15 lines and converts
its number into a four-bit representation. Figure 9.6 depicts an example of such a
circuit. The following model illustrates the behavior of a ladder circuit:

initially
Vs = 1:16,input = 0,input’ = 1,output = 0
always
input’ = 2,
output = sum 1 for v in Vs if input > v

The effect of this circuit is essentially the same as computing the floor of the input
value, which is a more direct model of quantization. Rounding can be viewed as a

9.4 Digital-to-Analog Conversion (DAC) 153

model of basic analog-to-digital conversion. Depending on the application we can
choose to build circuits that realize other rounding operations such as those that
computing the ceiling or the closest integer value. Also, if we have more bits or if
we have a smaller range of input values, we can let each integer represent a fraction.
Again, the effect of such a circuit can be modeled more directly with a rounding
function, but we would have to multiply the input first by the denominator of the
fraction and then divide the resulting integer by that fraction to recover the value that
we are representing.

9.4 Digital-to-Analog Conversion (DAC)

A basic strategy for the dual process, namely, digital-to-analog conversion (DAC),
also makes use of an operational amplifier. In this case, a classic circuit called
the summing amplifier is used, whereby an operational amplifier’s positive end is
connected to ground and the negative end is connected to an input node.The input

Fig. 9.7 A summing amplifier to convert from digital to analog

node is connected via a (denominator) resistance to the output of the amplifier to
provide a feedback signal. In addition, the input node is connected to any number of
resistors that are connected to the bits encoding analog signal we want to generate.
This configuration provides a mechanism for making the output take the value of
the sum of (one over) all the other resistances connected to the negative input of the
amplifier for the bits set to a high voltage. Figure 9.7 depicts an example of such a
circuit.

154 9 Sensing and Actuation

9.5 Sensing Temperature

Now that we understand the basics of how an analog signal can be mapped to a
digital one, we can now turn to how the analog signals themselves can be generated.
Of course, we have already considered light. One of the most commonly measured
parameters is temperature. Applications include air-conditioning systems, almost
every battery inside a smart device such as a smartphone or a computer, and various
mechanical and chemical processes. Interestingly, it is now quite common to mea-
sure temperatures inside CPUs to avoid overheating and to respond by stabilizing
temperatures by varying workload distribution.

Temperature can generate an electrical effect in a number of ways. Thermocouples
are junctions of two different types of metal that produce a temperature-sensitive
voltage due to what is called the thermoelectric effect (Figure 9.8). An alternative
is a thermistor, which is a device that has a resistance that depends on temperature.
Virtually all materials change conductivity depending on temperatures, and materials
that have more variation are more suitable for this application. This contrasts to
materials chosen for building traditional components, which are chosen to minimize
variation with temperature.

Fig. 9.8 Example of a circuit design for a thermocouple

9.6 Sensing Position

Another type of measurement that is commonly needed in a cyber-physical system is
relative position. In the simplest case, a switch can be used to measure closed/open
positions, as done in refrigerators and laptops. A more continuous measurement can
be made using a device called a rheostat, which is a variable resistance device that
changes resistance as one of the electrical terminals of the device moves along the
resistive material, thereby changing the length that the current travels through the

9.7 Actuating Mechanical Systems 155

materials, and as a result, changing the total resistance (circuit element illustrated in
Figure 9.9). This is a simple and reliable way to measure relative position, and can
be used in both linear and angular configurations. However, it does require physical
connectivity to the point which we wish to track. Internally, it also has moving parts
that slide against each other, which over time can lead to significant wear and tear.
For this reason, light (sometimes infrared) is used instead to detect affinity, and
indirectly position. More commonly used in practice are rotary encoders that can
measure either relative or absolute position using a variety of physical phenomena.

A wide range of techniques can be used for measuring position remotely, that is,
without physical connectivity. Depending on the environment, one or more cameras
can be used for providing positional information. In indoor environments, ultrasonic
sensor can be used. In outdoor environments, systems such as the Global Positioning
System (GPS) or LIDAR may be used depending on the demands of the situation.

Fig. 9.9 Circuit notation for a rheostat, a basic device for sensing position

9.7 Actuating Mechanical Systems

When it comes to actuating mechanical systems, one of the most direct ways to
achieve this is by powering an electric motor. Specialized operational amplifier
designs may be used to generate the necessary electric power to drive a Direct
Current (DC) motor. Most motors require a particular voltage level to be operated
correctly. For this reason, typically, the main parameter that we control in actuating
such a motor is how much power is delivered by rapidly turning the power ON and
OFF according to a chosen ratio. For example, if we want to deliver no power the
signal is OFF 100% of the time. If we want to send full power the signal is ON 100%
of the time. If we want 50% power we mix OFF and ON signals in equal proportion.
In essence, this provides us with a mechanism for controlling speed. Using feedback
control and various mechanical gearing combinations, this approach can also be used
to control position.

156 9 Sensing and Actuation

9.8 Chapter Highlights

1. Sensing and Actuation

(a) Provide the link between computational and physical components in cyber-
physical systems

(b) Switches as one of the simplest input mechanisms
(c) Missing symmetry
(d) Why symmetry matters

2. Light as the medium closest to today’s implementation technology for the cyber-
part

(a) Can serve as both input and output
(b) Diodes, LEDs, and Photo-Voltaic cell

3. More on semiconductors

(a) How semiconductors work
(b) Transistors as the “next up” from diodes in terms of complexity
(c) Transistors as the building block for operational amplifiers
(d) Pervasive role of operational amplifiers in electronics

4. Building the interfaces

(a) Temperature affects everything
(b) Measuring relative positions
(c) Actuating motors

9.9 Study Problems

1. Modify the example of Section 9.3 to use 5 bits and increments of 0.5 to represent
the continuous input.

2. Simplify the result of the previous exercise by using the floor function.
3. Present a circuit for digital-to-analog conversion based on the strategy explained

in Section 9.4 for the example discussed in the previous section. Derive the
equation for the output as a function of the value of the input bits to show that
this circuit will indeed function as a digital-to-analog converter.

9.10 To Probe Further

• Tech Lapse’s article entitled Intel is working on optical chips for more efficient
AI.

https://techlapse.com/global/intel-is-working-on-optical-chips-for-more-efficient-ai/

9.10 To Probe Further 157

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Appendix A
Acumen Reference Manual

This edition revises and updates the Acumen 2016/8/30 Manual.

A.1 Background

Acumen is an experimental modeling language and integrated development environ-
ment (IDE) for model-based design of cyber-physical systems. It is built around a
small, textual hybrid-systems modeling language. This reference manual describes
key features of Acumen when the “Traditional” option is selected from the “Seman-
tics” pull-down menu. To report bugs with Acumen and/or issues with this manual,
please use the online form available at http://www.acumen-language.org/p/report-
bug.html. To continue to be updated about the development of Acumen, please
subscribe to the announcements mailing list at http://bit.ly/Acumen-list.

A.2 The Acumen Environment and Graphical User Interface

The standard mode for using the Acumen environment is through the graphical user
interface (GUI), which makes it possible to:

• Browse files in a given directory
• Load, edit, and save the text of a model
• Run models
• View a Plot, a Table, or a 3D visualization of variables over time
• Read error messages or textual outputs reported by the system

This book assumes that you are using Acumen through the GUI.

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9

159

http://www.acumen-language.org/p/report-bug.html
http://bit.ly/Acumen-list
https://doi.org/10.1007/978-3-030-36071-9

160 A Acumen Reference Manual

A.3 Basic Structure of An Acumen Model

A complete Acumen model consists of a series of model declarations. A complete
model must contain a declaration for a model called Main. The declaration of the
Main model must have exactly one parameter. By convention, that parameter is called
simulator. For example, a typical model would have this form:

model Ball (mass , size) =

// Body of declaration of a model for a Ball

model Main (simulator) =

// Body of declaration of the model Main

The remainder of any line after the keyword // is ignored and treated as a comment.
Similarly, any text that starts with /* and ends with */ is also a comment. Model
declarations may appear in any order.

A.4 Model Parameters and the “Initially” and “Always” Sections

Model declarations start with a name for the model and a list of formal parameters,
followed by the equals sign =. After the name and parameters, the model declaration
can contain an initially section. An example is as follows:

model Ball (mass , size) =

initially
x_position = 0, y_position = 0

always
// Rest of the body of declaration of model Ball

The initially section defines the initial value for the variables local to this model.
Parameter variables can be used in the definition of these initial values. Both param-
eter variables and model variables can be used in the rest of the body of the model.
Variables introduced in this section cannot be referenced in the section itself.

The always section contains a collection of formulae, usually consisting of simple
formulae and/or conditional formulae. It is very important to realize that all such
formulae are executed at the same time. This also means that the order of formulae
in the text of the model does not matter. It is still possible to model the continuous
change of value denoted by a variable, let us call it x, through the use of derivatives,
written x’. Similarly, it is possible to model the discrete change of a value through
the use of the next value, written x+.

A Acumen Reference Manual 161

A.5 Model Instantiation

It is possible to model the creation of instances of a model. This can be done in
either the initially or always sections. When done in the initially section,
the created instance is called a static instance, and when in the always section, it is
called a dynamic instance.

model Main (simulator) =

initially
b = create Ball (5, 14) // Static instance

always
// First part of model definition

create Ball (10, 42) // Dynamic instance

// Last part of model definition

New users will find it easier to work with static instances, since creating dynamic
instances requires more care as they should be active at exactly one instant of time
for each new object creation.

A.6 Expressions

Acumen expressions can be built out of variables, literals, built-in functions, vector
generators, and summations.

A.6.1 Variable Names

In Acumen, a variable name is a sequence of one or more characters starting with a
letter or an underscore, and thereafter possibly including digits. Examples of variable
names include a, A, red_robin, and marco42. As a convention, variable names used
by the language in a special way usually start with an underscore _. An example is the
special variable _3D. A variable has a name followed by zero or more apostrophes ’.
Such apostrophes indicate that this variable is the time derivative of a variable with
the apostrophe removed. Examples of such variables include x’, x’’, and x’’’.

162 A Acumen Reference Manual

A.6.2 Literals

Acumen supports literal values of different types, including Booleans (true and
false), integers (1, 2, 3, etc.), decimal values (1.2, 1.3, etc.), floating point numbers
(1.2E-17, 1.3E14, etc.), strings ("rabbit", "ringo", etc.), and vector values
((1,2,3), (true, false, false), ("a", "ab", "abc"), etc.). The special
constants, pi, children, and the names of basic colors (such as red, white, and
blue), are also literals.

A.6.3 Vector and Vector Generators

Vectors can be constructed by expressions like (1,2,3) and (1,1+1,2+1). In
addition, they can be generated by specifying a starting value, step size, and ending
value. This is written as start:step:end. For example, 4:2:8 generates (4,6,8).
We can omit the step if it is 1, and write start:end. For example, 4:8 generates
(4,5,6,7,8).

We can look up the first element in a vector x by writing x(0), the second element
by writing x(1), and so on. The length function can be used to determine the length
of a vector:

model Main(simulator) =

initially
list = (1,2,3,4,5), size = 0

always
size = length (list)

It is typical to use length(list) in a foreach formula.

A.6.4 Matrices

A matrix is represented as a vector of vectors. For example, the following is a
two dimensional identity matrix: ((1,0),(0,1)). The supported operations are
the arithmetic operators (+, -, *); the inverse inv, the transpose trans, and the
determinant det. A sub-matrix can be extracted from an existing matrix using index
slicing:

model Main(simulator) =

initially
I3 = ((1 ,0 ,0) ,(0 ,1 ,0) ,(0 ,0 ,1)) ,

A Acumen Reference Manual 163

I2 = ((0 ,0) ,(0 ,0))

always
I2 = I3 (0:1 ,0:1) // First two rows and columns of I3

A.6.5 Summations

It is possible to iterate over collections to compute the summation of a series of
values. The following example illustrates the syntax for this operation:

sum i*i for i in 1:10 if i%2 == 0

As this example illustrates, the sum construct allows us to indicate the iteration range
and to filter the values being added based on a condition. The if clause can be
omitted when there is not filtering, that is, when its condition is always true.

A.7 Formulae

There are five types of formulae in Acumen, namely: continuous formulae, condi-
tional (or guarded) formulae, discrete formulae, iteration, and collections of formu-
lae. We refer to continuous formulae and discrete formulae as simple formulae.

A.7.1 Continuous Formulae

A continuous formulae has a left-hand side that must be either a variable or the
derivative of a variable, and a right-hand side that can be any expression. Examples
include the following:

a = f/m

x'' = -9.8

Any such formulae in the same model are evaluated simultaneously. Thus:

x'' = -g, g = 9.8

is equivalent to:

x'' = -9.8

Continuous formulae are evaluated after all discrete formulae have been performed
until they have stopped causing further change to the state of the model.

164 A Acumen Reference Manual

A.7.2 If Formulae

The if formula is the first type of conditional formula. It allows us to express that
formulae take effect under different conditions. The following code illustrates how
an if formula is written:

if (x>0)
then x'' = -9.8

else x' = 0

In this example, as long as the value of the variable x is greater than zero then the
first continuous formula is in effect. The result will be that the x’ is decreasing.
Since it is decreasing, whether it is already negative or starts off as positive, x’ is
guaranteed to eventually become negative. Similarly, x will also decrease until the
condition is no longer true. Once that happens, the second equation will take effect,
which will cause x to remain constant. By surrounding multiple comma-separated
formulae in parentheses, they can be included in the else branch of an if formula:

if (x > 0)
then x'' = -9.8

else (x' = 0, stopped '=1)

A.7.3 Match Formulae

A match formula is the second type of conditional formula. It can be viewed as
a generalization of an if formula that enables different formulae under multiple
different cases depending on the value of a particular expression that we are matching
on. The following example illustrates this idea:

match myCommand with
["Fall" -> x'' = -9.8
| "Freeze" -> x' = 0
| "Reset" -> x = 0

]

Only one case can be enabled at any one point in time. Matching must be done
against an explicit, constant value (like "Fall" and "Freeze"). If multiple clauses
match the same value, only the first one will be enabled.

A Acumen Reference Manual 165

A.7.4 Discrete Formulae

A discrete formula has a left-hand side that must be the next value of either a variable
or the derivative of a variable, and a right-hand side that can be any expression.
Examples include the following formulae:

• t+ = 0
• t’+ = 1
• t’’+ = 0

A discrete formula models an instantaneous change in the value of a variable. For a
simulation to behave properly, any discrete formula in the body of a model definition
(that is, outside the “initially” section) should generally occur inside a conditional
formula (such as an if formula or a match formula) that will eventually stop being
true. Otherwise, we can go into a type of infinite loop because there is an infinite
chain of discrete changes in one time instance. The following example illustrates a
typical use of discrete formulae:

if (x >=0) || (x'>0)
then x'' = -9.8

else
x'+ = -0.5 * x'

Here, the value of x’ is reset to change direction (the negative sign) and reduce
magnitude (multiplication by 0.5) to model a “bounce” when a “ball” of height x
hits the ground at level 0. Note that as soon as the formula happens, the condition is
falsified, so the discrete formula is enabled for exactly one time instant. Furthermore,
because the condition requires that x’ is negative, the new x’ is guaranteed to be
positive; therefore, we can also expect that the condition on the first line will become
true, and the “ball” will again be subject to a downward acceleration (which can be
seen as modeling the effect of gravity).

A.7.5 Foreach Formulae

A foreach formula allows us to perform iteration. Examples include:

foreach i in 1:10 do x = 2*y

and

foreach c in children do c.x + = 15

The second type of iteration illustrates how a model can assign a value to the x field
of all its children.

166 A Acumen Reference Manual

A.7.6 Collections of Formulae

Multiple simultaneous formulae can be expressed in a collection by simply placing
a comma , between them. For example:

x'' = -9.8, y'' = 0

Order is irrelevant in such formulae, as they are always evaluated simultaneously.

A.8 How a Model Is Simulated: Order of Evaluation

Fig. A.1 Top level evaluation loop

Initially, the simulation of an Acumen model has only one model instance, namely
that of model Main. As model instances are created dynamically, a tree of instances
is formed. The first instance of Main is always the root of this tree. The children
of a model instance are, at least initially, the instances it creates. Every simulation
sub-step involves a traversal of the entire tree starting from the root. Two kinds of
sub-steps are performed, discrete and continuous (Figure A.1). During a discrete
step, discrete formulae and structural actions (create, terminate, and move) are
processed: the tree is traversed to perform active structural actions and collect active

A Acumen Reference Manual 167

discrete formulae. Once collected, the discrete formulae are performed in parallel.
So, for example, x+ = y, y+ = x is a swap operation. For every model instance,
first the structural actions of each parent are executed, and then the structural actions
of all children are executed. If there are active actions that also change the state, we
keep making discrete steps in this fashion. Otherwise, we make the continuous step.
During the continuous step, all continuous formulae and integrations are performed.

A.9 Visualization Using the _3D Panel

Acumen has a _3D panel that can be used to produce static or dynamic visualizations
in 3D. In the following we introduce the constructs needed to use this functionality.

Fig. A.2 Color panel

A.9.1 Colors

All 3D objects can have a color. Colors are described by a three-dimensional inten-
sity representing the red-green-blue (RGB) dimensions of the colors. The color is
represented by a vector of the form (r,g,b) where each of the values of r, g, and b
is called an intensity, and is a real number be between 0 and 1. Figure A.2 illustrates
some basic examples of RGB combinations. Here vectors indicate intensities, and
not coordinates. That both are represented as a triple (that is, a vector of size three)
is coincidental. To make it easier to put together _3D formulae, Acumen also defines

168 A Acumen Reference Manual

constants for the intensities of the basic colors: red, green, blue, white, black,
yellow, cyan, and magenta.

A.9.2 Transparency

Fig. A.3 One transparent box occluding another

A 3D object can also have a degree of transparency. To support this Acumen
provides a transparency parameter, which takes a floating point number ranging
from 0 to 1. With value 0 representing opaque and 1 for the maximal transparency.
The following model depicts a transparent box partially occluding another:

model Main(simulator) =
initially
_3D = (), _3DView = ()
always
_3D = ((Box center =(0 ,0 ,0) size =(0.2 ,1 ,3)

color=red rotation=(0,0,0) transparency = 1),
(Box center =(2 ,0,-0.5) size =(2 ,2 ,2)

color=blue rotation=(0,0,0) transparency = 1)),

_3DView = ((-8,5,2), (0, 0, 0))

The 3D image resulting from this model is depicted in Figure A.3.

A Acumen Reference Manual 169

A.9.3 Coordinate System

Fig. A.4 Right-hand rule

Acumen’s _3D panel display uses a right-hand coordinate system, which is illus-
trated in Figure A.4.

Figure A.5 illustrates the coordinate system and some examples of points in that
system. Each point is marked by a small cube, and next to it is text indicating the
(x, y, z) coordinate of that point. Note that, unlike in the case of the color illustration
above, the triples here are coordinates in three-dimensional space, and not color
intensities. Rotations are specified as a triple of angles (in radians) about the center
of the object, and are applied in the order described in Figure A.6.

A.9.4 Text

Text can be displayed in the _3D panel using a formula such as the following:

model Main(simulator) =
initially
_3D = (Text // Type of _3D object

center=(-2.2,0,0) // Starting point (x,y,z)
size =0.75 // Font size
color =(255 ,255 ,0) // Color in RGB
rotation=(pi/2,0,0) // Orientation (around x-axis)
content =" Hello !") // Text to display

170 A Acumen Reference Manual

Fig. A.5 Coordinate system

The value assigned to center in the case of Text is actually where the text starts
(the leftmost point of the displayed text) is not the true “center” of where the text is
displayed. Orientations are angles that indicate how the text should be rotated around
the x-, y-, and z-axes, respectively. Rotations are measured in radians, and specify an
anti-clockwise rotation. Orientation rotations can be interpreted as rotations around
the global frame of reference with the origin relocated to the reference point of
the object that we are rotating; they can also be interpreted as having the rotation
around the x-axis done first, then the y-axis, then the z-axis. Here are the characters
supported by the Text primitive:

• 26 English characters, both uppercase and lowercase (a~z, A~Z)
• 10 digit characters (0~9)
• 28 symbol characters (! @ # $ % ˆ & () - + = | { } [] : ; “ ‘ < > , . ? / *) and space

“ ”

A.9.5 Box

A box can be displayed in the _3D panel using a formula such as follows:

_3D = (Box // Type of _3D object
size = (0.2 ,1 ,3)) // Size in (x,y,z) form

A Acumen Reference Manual 171

Fig. A.6 Rotation order

Note that, unlike text, boxes and the other geometric objects use the point indicated
in the _3D formula to represent its center point rather than a corner point.

A.9.6 Cylinders

A cylinder can be displayed as follows:

_3D = (Cylinder // Type of _3D object
radius = 0.1 // Radius
length = 4) // Length

Unlike a box, a cylinder only has two parameters to specify its dimensions, namely
radius and length. The initial orientation is for its length to be along the y-axis.

172 A Acumen Reference Manual

A.9.7 Cone

A cone can be drawn as follows:

_3D = (Cone // Type of _3D object
radius = 0.4 // Radius
length = 1) // Length }

Note the similarity between the parameters for the cone and cylinder. The parameter
types are the same, but they have a different meaning depending on the shape. The
length is along the y-axis, and the pointy side is directed with the increase in the
y-axis.

A.9.8 Spheres

A sphere can be drawn as follows:

_3D = (Sphere // Type of _3D object
size = 0.55) // Size

Orientation on a sphere will not have a significant impact on the image.

A.9.9 OBJ Mesh Objects

Acumen supports loading 3D meshes saved as OBJ files as follows:

_3D = (Obj
color = cyan // Blended with texture of OBJ file
content = "Car.obj ") // OBJ file name

A.9.10 Default Values

To make things easier, a default value is provided for any missing parameters for the
various object types. Therefore, any of the following examples are acceptable ways
to produce a sphere:

_3D = (Sphere // Type of _3D object
center = (0 ,0 ,0) // Center point in (x,y,z) form
color = cyan // Color
rotation = (0 ,0 ,0)) // Orientation

http://en.wikipedia.org/wiki/Wavefront_.obj_file

A Acumen Reference Manual 173

or

_3D = (Sphere // Type of _3D object
center = (0 ,0 ,0) // Center point in (x,y,z) form
rotation = (0 ,0 ,0)) // Orientation

or
_3D = (Sphere // Type of _3D object

center = (0 ,0 ,0)) // Center point in (x,y,z) form

or even

_3D = (Sphere) // Type of _3D object

Similarly, defaults are provided for all other types of 3D objects.

A.9.11 Composites

All the display formulae illustrated above can be combined by adding a comma
separator and inserting multiple formulae inside the outer parentheses. For example,
the following formula illustrates the effect of the rotation parameter:

_3D =

(Text center =(-2 ,0 ,0) size =1 color =(1 ,0 ,0)
rotation =(-pi /2 ,0 ,0) content ="X",

Text center =(-2 ,0 ,0) size =1 color =(0 ,1 ,0)
rotation =(-pi /4 ,0 ,0) content ="2" ,

Text center =(-2 ,0 ,0) size =1 color =(0 ,0 ,1)
rotation =(0+t ,0 ,0) content ="3" ,

Text center =(0 ,0 ,0)
size =1 color =(1 ,0 ,0)
rotation =(0 ,0 ,0) content ="Y",

Text center =(0 ,0 ,0) size =1 color =(0 ,1 ,0)
rotation =(0, pi /4 ,0) content ="2" ,

Text center =(0 ,0 ,0) size =1 color =(0 ,0 ,1)
rotation =(0, pi /2+t ,0) content ="3" ,

Text center =(2 ,0 ,0) size =1 color =(1 ,0 ,0)
rotation =(0, pi /2 ,0) content ="Z",

174 A Acumen Reference Manual

Text center =(2 ,0 ,0) size =1 color =(0 ,1 ,0)
rotation =(0, pi/2,pi /4) content ="2" ,

Text center =(2 ,0 ,0) size =1 color =(0 ,0 ,1)
rotation =(0, pi/2,pi /2+t) content ="3"

)

Naturally, while this example contains only Text objects, composites can contain
multiple different object types.

A.9.12 Shapes, Their Parameters, and Their Default Values

The following table lists the _3D shapes recognized by Acumen, together with
supported parameters and the corresponding default values.

Shape Center Rotation Color Coordinate Transparency Content

Box (0,0,0) (0,0,0) (0,0,0) “global” 0 None
Cone (0,0,0) (0,0,0) (0,0,0) “global” 0 None
Cylinder (0,0,0) (0,0,0) (0,0,0) “global” 0 None
Sphere (0,0,0) (0,0,0) (0,0,0) “global” 0 None
Triangle (0,0,0) (0,0,0) (0,0,0) “global” 0 None
OBJ (0,0,0) (0,0,0) (0,0,0) “global” 0 String
Text (0,0,0) (0,0,0) (0,0,0) “global” 0 String

To specify the size of a 3D object, the following table lists the default values
supported for different shapes:

Shape Size parameter and its default value

Box Size =(0.4,0.4,0.4) or
length = 0.4 width = 0.4 height = 0.4

Cone Size =(0.4,0.2) or
length = 0.4 radius = 0.2

Cylinder Size =(0.4,0.2) or
length = 0.4 radius = 0.2

Triangle Points = ((0,0,0),(1,0,0),(0,1,0)) height = 0.4
OBJ Size = 0.2
Sphere Size = 0.2 or

radius = 0.2
Text Size = 0.2

A Acumen Reference Manual 175

A.9.13 Animation = Dynamic _3D Values

In the examples above we simply assigned an initial value to the _3D field in the
initially section of a model. In fact, it is also possible to continuously assign a
changing value to the _3D parameter by assigning it a value in the “always” section.
When this is done, the _3D panel animates the progress of this three-dimensional
scene, as observed through the simulation time.

A.9.14 Manual Control of the View of the _3D Scene

To rotate the view around the center of the current _3D view, click and hold the left
mouse button and move the mouse. To change the center of the _3D view, click and
hold the right mouse button (on Mac OS, tap touch-pad with two fingers) and move
the mouse. The mouse wheel can be used to zoom the view in and out (on Mac OS
you swipe up and down with two fingers).

A.9.15 In-model Control of the View of the _3D Scene

The camera that defines the _3D view can also be manipulated directly in the model.
This is done by adding the special variable _3DView to the model. Note that, as with
the _3D variable, to use the _3DView variable in the always section, it is necessary
to first declare it in the initially section. In the following model, the camera is
situated at (10,10,10) and is rotated by 0.5 radians along each axis, so that it
looks at the origin:

initially
_3D = (), _3DView = ()

always
_3D = (Box center=(0,0,0) size=(1,1,1)
color=red rotation =(0 ,0 ,0)) ,

_3DView = ((10,10,10), (0.5,0.5,0.5))

This configuration of the _3DView variable will yield the the _3D scene illustrated
in Figure A.7. Animations are creating simply by using arbitrary expressions instead
of literals in place of constants that set the various parameters of the 3D objects.

176 A Acumen Reference Manual

Fig. A.7 Scene with modified view point

A.9.16 Camera View

To make an object appear static with respect to the viewer, that is, to prevent it from
being affected by the position of camera or manual view rotation or zoom in/out, the
user can set the parameter coordinates to "camera." For example:

_3D = (Text
center =(-2.2 ,0 ,0)
color =(1 ,1 ,0)
coordinates = " camera "
content =" Hello Acumen !")

is a model that results in the visualization shown in Figure A.8. Note that although
the view has been manually rotated, as indicated by the axes, the text is still facing
the screen. This concept is a bit hard to visualize in a picture, so we suggest that the
reader runs the model above and modifies the view to see what this concept achieves.

A Acumen Reference Manual 177

Fig. A.8 Static object view

A.10 Built-In Functions

Acumen provides the following built-in functions:
• Unary operators on Booleans and Integers: not, abs, -
• Binary operators on Integers: +, -, *, <<, >>, &, |, %, xor
• Unary operators on Floats: sin, cos, tan, acos, asin, atan, toRadians,

toDegrees, exp, log, log10, sqrt, cbrt, ceil, floor, rint, round, sinh,
cosh, tanh, signum, abs, -

• Binary operators on Floats: +, -, *, ˆ, /, atan2
• Relational operators on Integers and Floats: <, >, <=, >=
• Binary operators on Vectors: .*, ./, .ˆ, +, -, dot, cross
• Unary operators on Vectors: norm, length
• Binary operators taking a Scalar and a Vector: +, *
• Binary operators taking a Vector and a Scalar: +, *, /, .ˆ
In most cases, operators that start with a letter are prefix operators that take explicit
arguments, such as the case with sin(x), while operators that start with a symbol
are infix operators, such as x+y. The only exceptions to this rule are xor, which is
an infix operator, and unary -, which is a prefix operator that has no parentheses.

A.11 Function Declarations

To define custom functions beyond the built-in ones, Acumen provides a top level
function definition construct. The structure of a typical function declaration is as
follows:
function f(x,y) = x + 2*y

Inlining, which substitutes the call to a function in the code with a copy of the
function body using the actually input arguments, is performed for every function
call before running the simulation. For example, the function call f(1,2) is replaced
with the expression 1 + 2 * 2.

178 A Acumen Reference Manual

A.12 Operator Precedence

The precedence ordering for built-in functions in Acumen is as follows:

1. Boolean disjunction ||
2. Boolean conjunction &&
3. Boolean equality == and then Boolean inequality ~=
4. Integer less than <, greater than >, less than or equal to <=, and then greater than

or equal to >=
5. Vector generation i:j:k
6. Numeric addition +, subtraction -, vector addition .+, vector subtraction .-
7. Numeric multiplication *, division /, vector multiplication .*, vector division

./, and integer modulus %
8. Numeric exponentiation ˆ and then vector exponentiation .ˆ
9. Numeric unary negation -

10. Field access .
11. Built-in prefix function applications and vector lookup
12. Field check ?

A.13 Simulator Settings

The simulator parameter passed to the declaration of model Main provides the
user with a mechanism to specify how the model should be simulated as part of the
model itself. There are two basic settings that the user can specify:

• The time when the simulation should terminate is endTime. The default value for
this setting is 10 s.

• The numerical integration step size is timeStep. The default value for this setting
is 2−6 = 0.015625.

It is generally recommended that any adjustments to these values are made using a
discrete formula at the very start the simulation time.

A.14 Command Line Parameters

For batch processing, it is often useful to pass parameters to a simulation from the
command line. For this purpose, Acumen provides a mechanism for passing such
information. It consists of two parts:

• From the command line, the directive --parameters can be used to specify the
name and value of parameters (each name followed by its value) and

• In the model, the creating model instance of type simulator.parameters ()
provides access to these variables.

A Acumen Reference Manual 179

The following example illustrates how the parameters can be passed from the com-
mand line, and how they can be used within the model. To start a simulation in offline
mode from the command line with certain parameter values, write:

java -jar acumen.jar --parameters abc 11

To use these values, the model itself can use the simulator.parameters type as
follows:

model myModel (a,b) =
initially
x = a, x' = b, x'' = 0

always
x'' = -x

model Main (simulator) =
initially
p = create simulator . parameters (),
// Get command line parameters and put in an model instance

init_phase = true

always
if init_phase

then if (p?a && p?b)
// Check to see if parameters were provided in the
// command line

then create myModel (p.a,p.b)
// Use command line parameters a and b

else create myModel (17, 42),
// Default values , useful for interactive mode

init_phase + = false

noelse

It is good practice to use the ? test on parameter names (as illustrated by the example
above) to make sure that they have been provided by the command line call, and then
to use default values in the case that they are not there. A side benefit of doing so is
that models can be easily run in both command line and interactive modes.

180 A Acumen Reference Manual

A.15 Print to Standard Output (stdout) or Console

For batch processing and also for the interactive mode, Acumen provides support
for printing textual outputs. In batch mode, printing sends output to stdout. In
interactive mode, it goes to the console. To see how the print annotation works,
consider the following model:

model Main (simulator) =

initially
x = 5
// print out the value x-1 and x
always
if x > 0 then

x+ = print("x-1=", print("x=",x)-1)

noelse

Running this model results in the value of x being repeatedly decremented by one
until it reaches zero. If we wish to observe this process on the console (or stdout),
then we would insert a print annotation around the value being assigned to x in the
if formula. The annotated version is as follows:

model Main (simulator) =

initially
x = 5

always
if x>0
then x+ = print(x-1)

noelse

Note that on the console the values are printed backwards (as are all messages).

A.16 BNF of Acumen

The following context free grammar defines the current syntax of the Acumen
language. The notations ? and * are used, respectively, for optional and repetition,
and text after // is a comment.

A Acumen Reference Manual 181

Set Possible values

digit ::= [0-9]
letter ::= [A-Za-z]
symbol ::= ! | @ | # | $ | % | ˆ | & | (|) | - | + | =| | {| } | [|] | : | ;

“| ‘ | < | >| , | . | ? | / | * |
id_character ::= letter | “_”
ident ::= id_character (int | id_character)*
int ::= “-” ? digit+
float ::= “-” ? digit+ “.” digit+
boolean ::= true | false
string ::= (symbol | id_character)*
gvalue ::= nlit | string | boolean | [nlit .. nlit] // interval
nlit ::= int | float
name ::= ident | name’
expr ::= | gvalue | name

| type (modelName)
| f(expr*) // function application
| expr op expr // binary operation
| expr’[expr] // partial derivative
| (expr)’ | (expr)” . . . // time derivative
| (expr*) // expression vector
| name(expr) // vector indexing
| (expr)
| expr . name // field access
| expr ? name // field check
| let name = expr * in expr // let notation
| sum expr in name = expr if expr // summation

op ::= | + | - | * | / | % | < | > | <= | >= | && | || |
| == | ~= | .* | ./ | // point-wise operator

action ::= | name+ = expr // discrete formula
| name = expr // continuous formula
| create modelName (name*)
| name:= create modelName (name*)
| terminate expr // eliminate model instance
| move expr expr // move model instance to new parent
| if expr then action* else action* // conditionals
| foreach name in expr do action* // foreach
| match expr with [clause | clause . . .]
| claim expr // claim predicate expr is true
| hypothesis expr | hypothesis string expr

clause ::= gvalue claim expr -> action* | case gvalue -> action*
modelDef ::= model modelName (name*) inits action*
inits ::= initially (name := expr | create modelName (expr*))*

always

182 A Acumen Reference Manual

Set Possible values

model ::= modelDef *
include ::= #include string
interpreter ::= “reference2015” | “optimized2015” | “reference2014” | “op-

timized2014” | “reference2013” | “optimized2013” | “refer-
ence2012” | “optimized2012” | “enclosure2015”

semantics ::= #semantics interpreter
function := function ident (ident +) = expr
fullMod ::= semantics? include? function* modelDef*

Index

A
Abstract Modeling of Computational Effects,

83
Acceleration-Based Player, 77
Acknowledgments, xvii
Actuating Mechanical Systems, 155
Actuation, 145
Acumen Environment, 159
Acumen Model, 160
Agent, 130
Along, Tantai, xvii
Alur, Rajeev, xiv
Always, 160
Amplifiers, 150
Analog-to-Digital Conversion (ADC),

151
Andreasson, Per-Erik, xviii
Animation, 175
Aramrattana, Maytheewat, xvii, xviii
Arithmetic Equations, 28
Arithmetic operators, 162
Atkinson, Kevin, xviii
Automobile, 6
Azidhak, Amirfarzad, xvii

B
Bandwidth, 136
Belief, 129–131
Binary gates, 82
Binary outputs, 80
BNF of Acumen, 180
Boeing, 9
Boolean, 129
Bouncing, 42
Bouncing ball, 41
Boundedness, 82
Box, 170, 174

Built-in functions, 177
Byttner, Stefan, xviii

C
Capacitance, 26
Capacitor, 26
Carlsson, Jörgen, xviii
Carrier, 133
Cartesian Coordinates, 97
Cartwright, Robert, xv, xvii
Certainty, 129
Chain rule, 98, 99
Collections of Formulae, 166
Colors, 167
Command Line Parameters, 178
Communication, 129
Communication modes, 134
Competitiveness, 123
Composites, 173
Conditional laws, viii
Conductor, 147
Cone, 172, 174
Conservation Laws, 20
Constant Gain Plant, 62
Continuous Formulae, 163
Continuous step, 167
Control, 57
Control system, 58
Control theory, 11
Controller, 58
Coordinate system, 97, 169
Coordinate transformation, 98
Coordination, 119
Coordination pattern, 120
Copyright in Space, 18
Coreman, David, xviii
Current Source, 26

© The Author(s) 2021
W. M. Taha et al., Cyber-Physical Systems: A Model-Based Approach,
https://doi.org/10.1007/978-3-030-36071-9

183

https://doi.org/10.1007/978-3-030-36071-9

184 Index

Cyber-Physical Systems (CPSs), 5, 18
Cylinders, 171, 174

D
Da, Chen, xvii
Damper, 22
Default Values, 174
Dense-time, 87
Dense-time models, 16
Dependability, 11
Derivative, 20
Design, vii
Determinant, 162
Determining the Nash Equilibrium, 121
Detour, 82, 83, 87
Differential Equations, 29
Digital Memory, 82
Digital-to-Analog Conversion (DAC), 153
Diodes, 147
Direct current (DC), 155
Discrete change laws, viii
Discrete Formulae, 165
Discrete step, 166
Discretization, 81–83, 87, 88
Distribution, 126
Diverse expertise, 4
Domínguez, Carlos de Cea, xvii
Domain-Specific Languages, xvii
Duracz, Adam, xvii, xviii
Dynamic, 23
Dynamical system, 64
Dynamic instance, 161

E
Edward A. Lee, xiii, xvii
Elastic Collision, 46
Electric bicycles, 5
Electrical Signal Transmission, 138
Electromagnetics, 141
Electron, 149
Elements in Electrical Systems, 25
Elements in Mechanical Systems, 20
Eliminating Strictly Dominated Strategies, 122
ELLIIT Strategic Network, xviii
Embedded system, 10
Embodiment, 4
Energy consumption, 3
Event-driven, 86
Expressions, 161

F
Feedback Control, 58
Filter, 163
Force, 20

Foreach Formulae, 165
Formal Verification, xiv
Formulae, 163
Friel, Ross, xviii
From Hardware to Software, 83
Fuentes, Carlos, xvii
Function Declarations, 177
Functional Reactive Programming, xvii
Fundamental theorem of calculus, 32

G
Gain, 59
Game theory, 113
Games, 114
García, Pablo Herrero, xvii
Garvin, John, xviii
Gaspes, Veronica, xvii, xviii
Gill, Helen, xvii, 5
Global Positioning System (GPS), 155
Grammar, 180
Graphical User Interface (GUI), 159

H
Hadfield, Chris, 18
Halmstad Colloquium, 18
Halmstad University, xviii
Harmonic oscillator, 31
How a Model Is Simulated, 166
Hudak, Paul, xvii
Human Factors, xiv
Hybrid (continuous/discrete) systems, 5
Hybrid Automata, 43
Hybrid systems, 9, 43
Hydroponic gardening, 7

I
Identity matrix, 162
If Formulae, 164
Impulsive differential equations, 9
Incentives, 114
Independence, 114
Independence Pattern, 115
Independent Maximization, 114
Inductance, 26
Inductor, 26
Information, 130
Initially, 160
Innovation, 18
Input, 145
Insulator, 147
Insulin pumps, 6
Integrated development environment (IDE),

159
Intel, 9

Index 185

Intelligence, 119
Intelligent, 114
Intensity, 167
Intent, 133
International Energy Agency (IEA), 3
Internet-based products, 4
Internet of Things (IoT), 11
Inverse, 162

K
Knowledge, 131
Knowledge economy, vii, 4
Knowledge Foundation (KK), xviii
Kopetz, Hermann, xiii

L
Ladder, 151
Lane Departure Warning System (LDWS), 6
Latency, 136
Law, xiv
Learning, vii
Lee, Edward A., 5, 96
Lessig III, Lester Lawrence, 18
LIDAR, 155
Light Emitting Diode (LED), 146
Light Transmission, 141
Limits Due to Component Dynamics, 138
Limits Due to Energy Dissipation, 142
Limits Due to Noise, 141
Lindquist, Roslyn, xviii
Linear equations, 28
Linear Systems of Equations, 28
Link, 133
Link Characteristics, 135
Literals, 162
Loss of Information, 87

M
Mailing list, 159
Market Analysis, xiv
Marwedel, Peter, xiv
Mascot, 38
Masood, Jawad, xviii
Mass, 20
Match Formulae, 164
Matrices, 162
Mechatronics, 11, 18
Medium, 133
Messages, 130
Mixed Strategy, 124
Mixed Strategy Games, 123
Model Instantiation, 161
Model Parameters, 160
Modeling Discretization, 86

Modeling Quantization, 85
Modes, 41, 43
Motorized scooters, 5
Mousavi, Mohammad Reza, xviii
Multi-agent Systems, 11
Månsson, Nicolina, xvii

N
Nash Equilibrium, 113, 119–121
National Science Foundation (NSF), xviii, 5
Nilsson, Emil, xviii
Non-linear Systems of Equations, 28
Notion of uncertainty, 130
Number of smartphone users, 3
Numbers, 29

O
OBJ, 174
OBJ Mesh Objects, 172
Object Creation, 36
Observe. Understand. Innovate, 4
Open-loop, 70
Open-Source Medical Devices, 18
Openness, x
Operational Amplifier, 61, 150
Operator Precedence, 178
Order of Evaluation, 166
Ordinary Differential Equations, 29
Other Sources of Limitations, 142
Our planet, 3
Output, 145

P
Pacemakers, 6
Parameters, 174
Pendulum, 31
Pentium, 9
Periodic sampling, 86
Personal assistance robots, 6
Philippsen, Roland, xviii
Photo-Voltaic Cells, 146
The Photo-Voltaic Effect, 149
Physical presence, 4
PID control, 57
Ping pong, 38
Platzer, André, xiv
Players, 114
Plays, 114
Polar coordinates, 98
Print to Standard Output (stdout), 180
Privacy, 123
Probabilistic, 130
Proportional Feedback Control, 59
Prototypes of Equations, 30

186 Index

Q
Quantization, 80, 88
Quantization and Discretization, 95

R
Radio Transmission, 141
Rate change laws, ix
Rationality, 114
Real-time system, 10
Red-green-blue (RGB), 167
Reliability, 10, 137
Religion and Babies, 18
Representation, 130
Reset Maps, 45
Resistor, 25
Rheostat, 154
the rise of open education, 18
Robotics, 11, 18
Rosling, Hans, 18

S
Saab JAS 39 Gripen, 6
Safety, xiv
Sampling Rates, 87
Security, xiv
Selecting a Mixed Strategy, 124
Semantics, 159
Semiconductor, 147
Sensing, 145
Sensing Position, 154
Sensing Temperature, 154
Seshia, Sanjit A., xiii, 5
Shapes, 174
Signal, 132, 145
Simulator Settings, 178
Singularity, 98
Skogby, Staffan, xviii
Slicing, 162
Smart prosthetics, 6
Solving Differential Equations, 32
Sotiris Tzamaras, xviii
Specificity, ix
Speed-Based Player, 55
Spheres, 172, 174
Spherical coordinates, 97
Spring, 21
Stability, 83
Stable state, 81
State diagram, 51
Statics, 23
Statista, 3
Stephens, Mark, xviii
Stevens, Perdita, xviii
Stochastic, 130

Storing Executable Commands in Memory, 83
Strictly Dominant, 114
Sub-matrix, 162
Sum, 163
Supermaneuverability, 6
Switching systems, 9
Symmetry, 146
Systems engineering, 11
Sztipanovits, Janos, xvii

T
Table Tennis, xi, 38
Teamwork, vii
Text, 169, 174
Threats to a Freedom to Innovate, 18
Time, ix, 28
To report bugs, 159
Total Primary Energy Supply (TPES), 3
Toyota, 9
Traditional, 159
Transformation, 100
Transistors, 150
Transparency, 168
Transpose, 162
Triangle, 174
True, 181
Truth, 131

U
Ueda, Kazunori, xviii
Uncertainty, 129
United Nations, 3
Urban, Diego Leonardo, xvii
Utility function, 114

V
Variable Names, 161
Vasilev, Viktor, xvii, xviii
Vector, 162
Vector Generators, 162
Vector of vectors, 162
View, 175
Visualization, x, 167
Voltage Source, 26

W
Wachter, Ralph, xviii
Wang, Rui, xvii
Where Different Numbers Come from, 29
Workforce marketplace, 4
Working in 2D and 3D, 24
World Population Prospects, 3
World’s population, 3

Index 187

X
Xu, Fei, xviii

Y
Yuantao, Fan, xvii

Z
Zeng, Yingfu, xvii, xviii
Zeno Behavior, 46
Zero-Crossing, 46
Zhang, Hequn, xvii

	Part I Core Concepts
	1 What is a Cyber-Physical System?
	1.1 Our Planet. Our Knowledge. Our Destiny
	1.2 Observe. Understand. Innovate
	1.2.1 Cyber-Physical Systems and Hybrid Systems
	1.2.2 Examples
	1.2.3 Computational vs. Physical Systems
	1.2.4 Biological and Intelligent Systems

	1.3 Developing New Products
	1.4 Is the Field of Cyber-Physical Systems New?
	1.5 What You Will Learn from This Book, and How
	1.6 A Writing Tip
	1.7 Chapter Highlights
	1.8 Study Problems
	1.9 Lab: Warm Up Exercises
	1.10 Project
	1.11 To Probe Further

	2 Modeling Physical Systems
	2.1 Reconnecting with the Physical World
	2.2 Conservation Laws
	2.3 Elements in Mechanical Systems
	2.4 Working in 2D and 3D
	2.5 Elements in Electrical Systems
	2.6 The Absence or Presence of Time in a Model
	2.7 Arithmetic Equations, and Linear and Non-linear Systems of Equations
	2.8 Where Different Numbers Come from
	2.9 Time-Dependent and Differential Equations
	2.10 Prototypes of Equations (That Will Recur Throughout the Book)
	2.11 Remarks on the Basic Machinery for Solving Differential Equations
	2.12 Chapter Highlights
	2.13 Study Problems
	2.14 Lab: Spring Bouncing and Object Creation
	2.15 Project: Mascot and Ping Pong Game
	2.16 To Probe Further

	3 Hybrid Systems
	3.1 Introduction
	3.2 Hybrid Automata
	3.3 Reset Maps
	3.4 Zero-Crossing
	3.5 Zeno Behavior
	3.6 Modeling Elastic Collision
	3.7 Chapter Highlights
	3.8 Avoid Common Mistakes
	3.9 Study Problems
	3.10 Lab: Discrete Bouncing
	3.11 Project: Speed-Based Player for Ping Pong Robot
	3.12 To Probe Further

	4 Control Theory
	4.1 Introduction
	4.2 Feedback Control
	4.3 Proportional Feedback Control
	4.4 Operational Amplifiers
	4.5 Multi-Dimensional Error and Proportional/Integral/Differential Feedback Control
	4.6 Chapter Highlights
	4.7 Study Problems
	4.8 Lab: Exploring Control
	4.9 Project: Acceleration-Based Player for Ping Pong Robot
	4.10 To Probe Further

	5 Modeling Computational Systems
	5.1 Introduction
	5.2 Quantization
	5.3 Discretization: How Fast Can Your Circuit Go?
	5.4 Detour: Boundedness of Digital Memory
	5.5 Detour: From Hardware to Software—Storing Executable Commands in Memory
	5.6 The Effect of Quantization and Discretization on Stability
	5.7 Abstract Modeling of Computational Effects
	5.8 Modeling Quantization
	5.9 Modeling Discretization
	5.10 Detour: Discretization, Sampling Rates, and Loss of Information
	5.11 The Effects of Quantization and Discretization Easily Compound
	5.12 Chapter Highlights
	5.13 Study Problems
	5.14 Lab: Stability Exercises
	5.15 Project: Quantization and Discretization
	5.16 To Probe Further

	6 Coordinate Transformation (Robot Arm)
	6.1 Introduction
	6.2 Coordinate Transformation
	6.3 Chapter Highlights
	6.4 Study Problems
	6.5 Lab: Coordinate Transformations
	6.6 Project: Spherical-Actuation for Ping Pong Robot
	6.7 To Probe Further

	Part II Selected Topics
	7 Game Theory
	7.1 The Role of Game Theory in CPS Design
	7.2 Games, Players, Strategies, Utilities, and Independent Maximization
	7.3 Rationality, Independence and Strictly Dominant (or Dominated) Strategies
	7.3.1 The Independence Pattern
	7.3.2 The Cost of Lacking Communication and Trust Can Be Unbounded

	7.4 Coordination, Intelligence, and Nash Equilibrium
	7.4.1 The Coordination Pattern
	7.4.2 Nash Equilibrium
	7.4.3 Determining the Nash Equilibrium
	7.4.4 Eliminating Strictly Dominated Strategies Preserves Nash Equilibria

	7.5 Competitiveness, Privacy, Mixed Strategies
	7.5.1 Mixed Strategy Games
	7.5.2 Selecting a Mixed Strategy (or, Mixed Strategy Nash Equilibria)

	7.6 Chapter Highlights
	7.7 Study Problems
	7.8 To Probe Further

	8 Communications
	8.1 Communication, Certainty, Uncertainty, and Belief
	8.2 Messages: From Information to Representation
	8.3 Belief, Knowledge, and Truth
	8.3.1 Broader Implications

	8.4 Carrier Signal, Medium, and Link
	8.5 Link Characteristics
	8.5.1 Latency
	8.5.2 Bandwidth
	8.5.3 Reliability

	8.6 Fundamental Limits from Physics
	8.7 Limits Due to Component Dynamics
	8.7.1 Electrical Signal Transmission
	8.7.2 Variability in Component Parameters
	8.7.3 Light and Radio Transmission

	8.8 Limits Due to Noise
	8.9 Limits Due to Energy Dissipation
	8.10 Other Sources of Limitations
	8.11 Chapter Highlights
	8.12 Study Problems
	8.13 To Probe Further

	9 Sensing and Actuation
	9.1 Everyday Input and Output
	9.2 Symmetry: LEDs and Photo-Voltaic Cells
	9.2.1 Diodes
	9.2.2 The Photo-Voltaic Effect
	9.2.3 Transistors and Amplifiers

	9.3 Analog-to-Digital Conversion (ADC)
	9.4 Digital-to-Analog Conversion (DAC)
	9.5 Sensing Temperature
	9.6 Sensing Position
	9.7 Actuating Mechanical Systems
	9.8 Chapter Highlights
	9.9 Study Problems
	9.10 To Probe Further

	A Acumen Reference Manual
	A.1 Background
	A.2 The Acumen Environment and Graphical User Interface
	A.3 Basic Structure of An Acumen Model
	A.4 Model Parameters and the ``Initially'' and ``Always'' Sections
	A.5 Model Instantiation
	A.6 Expressions
	A.6.1 Variable Names
	A.6.2 Literals
	A.6.3 Vector and Vector Generators
	A.6.4 Matrices
	A.6.5 Summations

	A.7 Formulae
	A.7.1 Continuous Formulae
	A.7.2 If Formulae
	A.7.3 Match Formulae
	A.7.4 Discrete Formulae
	A.7.5 Foreach Formulae
	A.7.6 Collections of Formulae

	A.8 How a Model Is Simulated: Order of Evaluation
	A.9 Visualization Using the _3D Panel
	A.9.1 Colors
	A.9.2 Transparency
	A.9.3 Coordinate System
	A.9.4 Text
	A.9.5 Box
	A.9.6 Cylinders
	A.9.7 Cone
	A.9.8 Spheres
	A.9.9 OBJ Mesh Objects
	A.9.10 Default Values
	A.9.11 Composites
	A.9.12 Shapes, Their Parameters, and Their Default Values
	A.9.13 Animation = Dynamic _3D Values
	A.9.14 Manual Control of the View of the _3D Scene
	A.9.15 In-model Control of the View of the _3D Scene
	A.9.16 Camera View

	A.10 Built-In Functions
	A.11 Function Declarations
	A.12 Operator Precedence
	A.13 Simulator Settings
	A.14 Command Line Parameters
	A.15 Print to Standard Output (stdout) or Console
	A.16 BNF of Acumen

	Index

