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Preface

For many years the Landolt-Börnstein—Group I Elementary Particles, Nuclei and
Atoms: Vol. 21A (Physics and Methods Theory and Experiments, 2008), Vol. 21B1
(Elementary Particles Detectors for Particles and Radiation. Part 1: Principles
and Methods, 2011), Vol. 21B2 (Elementary Particles Detectors for Particles and
Radiation. Part 2: Systems and Applications), and Vol. 21C (Elementary Particles
Accelerators and Colliders, 2013) has served as a major reference work in the field
of high-energy physics.

When, not long after the publication of the last volume, open access (OA)
became a reality for HEP journals in 2014, discussions between Springer and CERN
intensified to find a solution for the “Labö” which would make the content available
in the same spirit to readers worldwide. This was helped by the fact that many
researchers in the field expressed similar views and their readiness to contribute.

Eventually, in 2016, on the initiative of Springer, CERN and the original Labö
volume editors agreed in tackling the issue by proposing to the contributing authors
a new OA edition of their work. From these discussions, a compromise emerged
along the following lines: transfer as much as possible of the original material into
open access; add some new material reflecting new developments and important
discoveries, such as the Higgs boson; and adapt to the conditions due to the change
from copyright to a CC BY 4.0 license.

Some authors were no longer available for making such changes, having either
retired or, in some cases, deceased. In most such cases, it was possible to find
colleagues willing to take care of the necessary revisions. A few manuscripts could
not be updated and are therefore not included in this edition.

We consider that this new edition essentially fulfills the main goal that motivated
us in the first place—there are some gaps compared to the original edition, as
explained, as there are some entirely new contributions. Many contributions have
been only minimally revised in order to make the original status of the field available
as historical testimony. Others are in the form of the original contribution being
supplemented with a detailed appendix relating to recent developments in the field.
However, a substantial fraction of contributions has been thoroughly revisited by
their authors resulting in true new editions of their original material.
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We would like to express our appreciation and gratitude to the contributing
authors, to the colleagues at CERN involved in the project, and to the publisher,
who has helped making this very special endeavor possible.

Vienna, Austria Christian Fabjan
Geneva, Switzerland Stephen Myers
Geneva, Switzerland Herwig Schopper
July 2020
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Chapter 1
Introduction

Herwig Schopper

Since old ages it has been one of the noble aspirations of humankind to understand
the world in which we are living. In addition to our immediate environment, planet
earth, two more remote frontiers have attracted interest: the infinitely small and
the infinitely large. A flood of new experimental and theoretical results obtained
during the past decades has provided a completely new picture of the micro- and
macrocosm and surprisingly intimate relations have been discovered between the
two. It turned out that the understanding of elementary particles and the forces
acting between them is extremely relevant for our perception of the cosmological
development. Quite often scientific research is supported because it is the basis
for technical progress and for the material well-being of humans. The exploration
of the microcosm and the universe contributes to this goal only indirectly by the
development of better instruments and new techniques. However, it tries to answer
some fundamental questions which are essential to understand the origins, the
environment and the conditions for the existence of humankind and thus is an
essential part of the cultural heritage.

One of the fundamental questions concerns the nature of matter, the substance
of which the stars, the planets and living creatures are made, or to put it in another
way—can the many phenomena which we observe in nature be explained on the
basis of a few elementary building blocks and forces which act between them. The
first attempts go back 2000 years when the Greek philosophers speculated about
indestructible atoms, like Democritus, or the four elements and the regular bodies
of Plato.

H. Schopper (�)
CERN, Geneva, Switzerland
e-mail: Herwig.Schopper@cern.ch
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2 H. Schopper

Since Newton who introduced infinitely hard smooth balls as constituents of
matter1 and who described gravitation as the first force acting between them, the
concept of understanding nature in terms of ‘eternal’ building blocks hold together
by forces has not changed during the past 200 years. What has changed was the
nature of the elementary building blocks and new forces were discovered. The
chemists discovered the atoms of the 92 elements which, however, contrary to their
name, were found to be divisible consisting of a nucleus surrounded by an electron
cloud. Then it was found that the atomic nuclei contain protons and neutrons.
Around 1930 the world appeared simple with everything consisting of these three
particles: protons, neutrons and electrons.

Then came the ‘annus mirabilis’ 1931 with the discovery of the positron as the
first representative of antimatter and the mysterious neutrino in nuclear beta-decay
indicating a new force, the weak interaction. In the following decades the ‘particle
zoo’ with all its newly discovered mesons, pions and ‘strange’ particles was leading
to great confusion. Simplicity was restored when all these hundreds of ‘elementary
‘particles could be understood in terms of a new kind of elementary particles, the
quarks and their antiquarks. The systematics of these particles is mainly determined
by the strong nuclear force, well described today by the quantum chromodynamics
QCD. Whether quarks and gluons (the binding particles of the strong interaction)
exist only inside the atomic nuclei or whether a phase transition into a quark-gluon
plasma is possible, is one the intriguing questions which still needs an answer.

Impressive progress was made in another domain, in the understanding of the
weak nuclear force responsible for radioactive beta-decay and the energy production
in the sun. Three kinds of neutrinos (with their associated antiparticles) were
found and recently it could be shown that the neutrinos are not massless as
had been originally assumed. The mechanism of the weak interaction could be
clarified to a large extent by the discovery of its carriers, the W- and Z-particles.
All the experimental results obtained so far will be summarized in this volume
and the beautiful theoretical developments will be presented. The climax is the
establishment of the ‘Standard Model of Particle Physics’ SM which has been shown
to be a renormalizable gauge theory mainly by the LEP precision experiments.
The LEP experiments have also shown that there are only three families of quarks
and leptons (electron, muon, tau-particle and associated neutrinos), a fact not yet
understood.

All the attempts to find experimental deviations from the SM have failed so far.
However, the SM cannot be the final theory for the understanding of the microcosm.
Its main fault is that it has too many arbitrary parameters (e.g. masses of the
particles, values of the coupling constants of the forces, number of quark and lepton
families) which have to be determined empirically by experiment. An underlying
theory based on first principles is still missing and possible ways into the future will
be discussed below.

1Isaac Newton, Optics, Query 31, London 1718.
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Returning to the ‘naïve’ point of ultimate building blocks one might ask whether
the quarks and leptons are fundamental indivisible particles or whether they have a
substructure. Here we are running into a dilemma which was recognised already by
the philosopher Immanuel Kant.2 Either ultimate building blocks are mathematical
points and cannot be divided, but then it is difficult to understand how they can have
a mass and carry charges and spin. Alternatively, the building blocks might have
spatial extension, but then it is hard to understand why they could not be divided into
smaller parts. Whenever one meets such a paradox in science it is usually resolved
by recognising that a wrong question was asked.

Indeed the recent developments of particle physics indicate that the naïve concept
of ultimate building blocks of matter has to be abandoned. The smaller the ‘building
blocks’ are, the higher energies are necessary to break them up. This is simply a
consequence of the Heisenberg uncertainty principle of quantum mechanics. In the
case of quarks their binding energies become so strong that any energy applied
to break them apart is used to produce new quark-antiquark pairs.3 The existence
of antimatter implies also that matter does not have an ‘eternal’ existence. When
matter meets antimatter the two annihilate by being converted into ‘pure’ energy and
in the reverse mode matter can be produced4 from energy in the form of particle-
antiparticle pairs.

One of the most exciting development of physics or in science in general is a
change of paradigms. Instead of using building blocks and forces acting between
them, it was progressively recognised that symmetry principles are at the basis of
our understanding of nature. It seems obvious that laws of nature should be invariant
against certain transformations since ‘nature does not know’ how we observe it.
When we make experiments we have to choose the origin of the coordinate system,
its orientation in space and the moment in time when we start the observation. These
choices are arbitrary and the laws deduced from the observations should not depend
on them. It is known since a long time that the invariance of laws of nature against
the continuous transformations, i.e. translations and rotations in space and time,
give rise to the conservation of momentum, angular momentum and energy, the
most basic laws of classical physics.5 The mirror transitions (i.e. spatial reflection,
particle-antiparticle exchange and time reversal) lead to the conservation of parity
P, charge parity C and detailed balance rules in reactions, all of which are essential
ingredients of quantum mechanics.

The detection of complete parity violation in weak interactions in 1957 was one
of the most surprising observations. Many eminent physicists, including Wolfgang

2Immanuel Kant, Kritik der reinen Vernunft, 1781, see, e.g., Meiner Verlag, Hamburg 1998, or
translation by N.K. Smith, London, MacMillan 1929.
3The binding energies are comparable to mc2, where m is the rest mass of a quark and c is the
velocity of light.
4When Pope Paul John II visited CERN and I explained to him that we can ‘create’ matter his
response was: you can ‘produce’ matter, but ‘creation’ is my business.
5Emmy Noether, Nachr. d. königl. Gesellschaft d. Wissenschaften zu Göttingen, 1918, page 235.
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Pauli, thought that this symmetry could not be violated. Such a believe indeed goes
back to Emanuel Kant2 who claimed that certain ‘a priori’ concepts have to be valid
so that we would be able to explore nature. Since it seemed obvious that nature does
not know whether we observe it directly or through a mirror a violation of mirror
symmetry seemed unacceptable. This phenomenon is still not understood, although
the fact that also C conservation is completely violated and the combined symmetry
PC seemed to hold has reduced somewhat the original surprise. The whole situation
has become more complicated by the detection that PC is also violated, although
very little. A deep understanding of the violation of these ‘classical’ symmetries is
still missing. So far experiments show that the combined symmetry PCT still holds
as is required by a very general theorem.

In field theories another class of more abstract symmetries has become
important—the gauge symmetries. As is well known from Maxwell’s equations the
electrodynamic fields are fully determined by the condition that gauge symmetry
holds, which means that the electric and magnetic fields are independent against
gauge transformations of their potentials. It was discovered that analogous gauge
symmetries determine the fields of the strong and weak interactions in which case
the (spontaneous) breaking of the symmetries plays a crucial role.

In summary, we have abandoned the description of nature in terms of hard
indestructible spheres in favour of abstract ideas—the symmetries and there break-
ing. From a philosophical point of view one might, in an over-simplistic way,
characterize the development as moving away from Democritus to Plato.

Finally, it should be mentioned that in particle physics progress was only possible
by an intimate cooperation between theory and experiments. The field has become
so complex that by chance discoveries are extremely rare. The guidance by theory
is necessary to be able to put reasonable questions to nature. This does not exclude
great surprises since many theoretical predictions turned out to be wrong. Indeed
most progress could be made by verifying or disproving theories.

Although the Standard Model of Particle Physics SM (with some extensions, e.g.
allowing for masses of neutrinos) has achieved a certain maturity by being able to
reproduce all experimental results obtained so far, it leaves open many fundamental
questions. One particular problem one has gotten accustomed to, concerns P and C
violations which are put into the SM ‘by hand’. And as has been mentioned above
the SM leaves open many other questions which indicate that it cannot be a final
theory.

In 2008 I wrote the concluding paragraph of this introduction as “Many
arguments indicate that a breakthrough in the understanding of the microcosm will
happen when the results of LHC at CERN will become available. LHC will start
operation in 2008, but it will probably take several years before the experiments
will have sufficient data and one will be able to analyse the complicated events
before a major change of our picture will occur, although surprises are not excluded.
Hence it seems to be an appropriate time to review the present situation of our
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understanding of the microcosm”. Meanwhile, more than 10 years later, and with the
Higgs boson discovered in 2014 at the LHC, the extended SM has been confirmed
with unprecedented precision yet the outstanding questions, in particular which path
to follow beyond the SM, have remained with us.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 2
Gauge Theories and the Standard Model

Guido Altarelli and Stefano Forte

2.1 Introduction to Chaps. 2, 3 and 4

Stefano Forte

The presentation of the Standard Model in Chap. 2, Chaps. 3 and 4 was originally
written by Guido Altarelli in 2007. In this introduction we provide a brief update
(with references), and a discussion of the main developments which have taken place
since the time of the writing.

Chapter 2 presents the architecture of the Standard Model, the way symmetries
are realized and the way this can is described at the quantum level. The structure
of the Standard Model is now well-established since half a century or so. The
presentation in this chapter highlights the experimental (and thus, to a certain
extent, historical Chap. 2) origin of the main structural aspects of the theory. The
only aspects of the presentation which require (minimal) updating are the numerical
values given for parameters, such as the Fermi coupling constant GF , see Eq. (2.3).
All of these parameters have been known quite accurately since the early 2000s
(with the exception of neutrino masses, see Sect. 3.7 of Chap. 3), and thus their
values are quite stable. The numbers given below are taken from the then-current
edition of the Particle Data Book (PDG) [7]. At any given time, in order to have the
most recent and accurate values, the reader should consult the most recent edition

The author “G. Altarelli” is deceased at the time of publication.

G. Altarelli
University of Rome 3, Rome, Italy

S. Forte (�)
Dipartimento di Fisica, Università di Milano, Milano, Italy
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8 G. Altarelli and S. Forte

of the PDG [25], preferably using the web-based version [26], which is constantly
updated.

Chapter 3 presents the Electroweak sector of the Standard Model, which was
established as a successful theory by extensive experimentation at the LEP electron-
positron collider of CERN in the last decade of the past century, including some
aspects of the theory, such as the CKM mechanism for mass mixing (see Sect. 3.6)
which were originally often considered to be only approximate. The discovery, at
the turn of the century, of neutrino mixing, and thus non-vanishing neutrino masses
(see Sect. 3.7) has been the only significant addition to the minimal version of the
electroweak theory as formulated in the sixties and seventies of the past century.
The general understanding of electroweak interactions was thus essentially settled
at the time of the writing of this chapter.

From the experimental point of view, the main development since then is the
successful completion of the first two runs of the LHC, which have provided further
confirmation of the standard Electroweak theory (see Ref. [27] for a recent review).
From a theoretical point of view, the main surprise (from the LHC, but also a number
of other experiments) is that there have been no surprises.

First and foremost, the Higgs sector of the Standard Model: after discovery of
the Higgs boson in 2012 [28, 29] the Higgs sector has turned out so far to be
in agreement with the minimal one-doublet structure presented in Sect. 3.5. The
discussion presented there, as well as the phenomenology of the Standard Model
Higgs of Sect. 3.13, remain thus essentially unchanged by the Higgs discovery. A
theoretical introduction with more specific reference to the LHC can be found in
Ref. [30], while the current experimental status of Higgs properties can be found in
the continually updated pages of the CERN Higgs cross-section working group [31].
Perhaps, the only real surprise in the Higgs sector of the Standard Model is the
extreme closeness of the measured Higgs mass to the critical value required for
vacuum stability (see Sect. 3.13.1 below)—a fact with interesting cosmological
implications [32]. The discovery of the Higgs has changed somewhat the nature of
global fits of Standard Model parameters discussed in Sect. 3.12: with the value of
the Higgs mass known, the fit is over-constrained—though the conclusion of global
consistency remains unchanged. An updated discussion is given in Ref. [27], as well
as in the review on the Electroweak Model by Erler and Freitas in the PDG [26].

Besides Higgs discovery, the general trend of the last several years has been that
of the gradual disappearance of all anomalies—instances of discrepancy between
Standard Model predictions and the data—either due to more accurate theory
calculations (or even the correction of errors: see Sect. 3.9), or to more precise
measurements. A case in point is that of the measurements of the electroweak
mixing angle, discussed in Sect. 3.12: the tensions or signals of disagreement
which are discussed there have all but disappeared, mostly thanks to more accurate
theoretical calculations. Another case in which the agreement between Standard
Model and experiment is improving (albeit perhaps more slowly) is that of lepton
anomalous magnetic moments, discussed in Sect. 3.9. In both cases, updates on the
current situation can again been found in Ref. [27], and in the aforementioned PDG
review by Erler and Freitas.
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Finally, there is a number of cases in which data from LHC experiments (as
well as other experiments, specifically in the fields of flavor physics and neutrino
physics) have brought more accuracy and more stringent tests, without changing the
overall picture. These include gauge boson couplings, discussed in Sects. 3.3–3.4,
for which we refer to Ref. [27]; the CKM matrix and flavor physics, discussed in
Sect. 3.6, for which we refer to the review by Ceccucci, Ligeti and Sakai in the
PDG [26]; neutrino masses and mixings, discussed in Sect. 3.7, for which we refer
to the PDG review by Gonzalez-Garcia and Yokohama [26].

This perhaps unexpected success of the Standard Model, and the failure to find
any evidence so far of new physics (and in particular supersymmetry) at the LHC
has somewhat modified the perspective on the limitations of the Standard Model
discussed in Sect. 3.14. Specifically, the significance of the hierarchy problem—the
so-called “naturalness” issue—must be questioned, given that it entails new physics
which has not be found: a suggestive discussion of this shift in perspective is in
Ref. [33]. Yet, the classification of possible new physics scenarios of Sect. 3.14
remains essentially valid: recent updates are in Ref. [34] for supersymmetric models,
and in Ref. [35] for non-supersymmetric ones. Consequently, looking for new
physics has now become a precision exercise, and this has provided a formidable
stimulus to the study of Electroweak radiative corrections, which has been the
subject of very intense activity beyond the classic results discussed in Sect. 3.10:
a recent detailed review is in Ref. [36].

Chapter 4 is devoted to the theory of strong interactions, Quantum Chromody-
namics (QCD). This theory has not changed since its original formulation in the
second half of the past century. Specifically, its application to hard processes, which
allows for the use of perturbative methods, is firmly rooted in the set of classic
results and techniques discussed in Sect. 4.5 below. What did slowly change over
the years is the experimental status of QCD. What used to be, in the past century, a
theory established qualitatively, has gradually turned into a theory firmly established
experimentally—though, at the time this chapter was written, not quite tested to the
same precision as the electroweak theory (see Sect. 4.7). Now, after the first two
runs of the LHC, it can be stated that the whole of the Standard Model, QCD and the
Electroweak theory, are tested to the same very high level of accuracy and precision,
typically at the percent or sub-percent level.

Turning QCD into a precision theory has been a pre-requisite for successful
physics at the LHC, a hadron collider in which every physical process necessarily
involves the strong interaction, since the colliding objects are protons (or nuclei).
This has grown into a pressing need as the lack of discovery of new particles or
major deviations from Standard Model predictions has turned the search for new
physics signals into a precision exercise: it has turned the LHC from an “energy
frontier” to a “rarity/accuracy frontier” machine—something that was deemed
inconceivable just before the start of its operation [37].

This rapid progress has happened thanks to an ever-increasing set of computa-
tional techniques, which, building upon the classic results presented in this chapter,
has allowed for an enormous expansion of the set of perturbative computations of
processes at colliders which are introduced in Sect. 4.5.4, and discussed in more
detail in the context of LHC (and specifically Higgs) physics in Ref. [30].
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To begin with, basic quantities such as the running of the coupling, discussed in
Sect. 4.4, and Re+e− , discussed in Sect. 4.5.1 are now know to one extra perturbative
order (see the QCD review of the PDG [26] for the current state of the art and
full references). These are five-loop perturbative calculations, now made possible
thanks to the availability of powerful computing resources. Furthermore, the set
of processes discussed in Sect. 4.5.4 has now been extended to include essentially
all relevant hadron collider processes, which have been routinely computed to
third perturbative order, while the first fourth-order calculations have just started
appearing. Again, the QCD review of the PDG [26] provides a useful status update,
including comparison between computation and experiment, which refer to cross-
sections which span about ten orders of magnitude in size.

This progress has been happening thanks to the development of a vast new
set of computational techniques, which, rooted in perturbative QCD, have now
spawned a dedicated research field: that of amplitudes [38], which relates phe-
nomenology, quantum field theory, and mathematics. The classic set of methods for
“resummation”—the sum of infinite classes of perturbative contributions, discussed
specifically in Sect. 4.5.3.1 for deep-inelastic scattering, has been extended well
beyond the processes and accuracy discussed in Sect. 4.5.4—an up-to-date list is
in the QCD review of the PDG [26]. Moreover, an entirely new set of resummation
techniques has been developed, using the methodology of effective field theories: the
so-called soft-collinear effective theory (SCET) which provides an extra tool in the
resummation box [39]. One remarkable consequence of all these developments is
that it is now possible to understand in detail the structure of pure strong interaction
events, in which jets of hadrons are produced in the final state, by looking inside
these events and tracing their structure in terms of the fundamental fields of QCD—
quarks and gluons [40].

One topic in which things have changed rather less is the determination of the
strong coupling, discussed in Sect. 4.7. Whereas the agreement between predicted
and observed scaling violations discussed in Sect. 4.6.3 is ever more impressive (see
the review on structure functions of the PDG [26]) the accuracy on the determination
of the strong coupling itself has not improved much. Updated discussions can be
found in the QCD review of the PDG, as well as in Ref. [41]. Progress is likely
to come from future, more accurate LHC data, as well as from non-perturbative
calculations [42] (not discussed here) soon expected to become competitive.

All in all, the dozen or so years since the original writing of these chapter have
seen a full vindication of the Standard Model as a correct and accurate theory, and
have stimulated a vast number of highly sophisticated experimental and theoretical
results which build upon the treatment presented below.

2.2 Introduction

The ultimate goal of fundamental physics is to reduce all natural phenomena to a set
of basic laws and theories that, at least in principle, can quantitatively reproduce and
predict the experimental observations. At microscopic level all the phenomenology
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of matter and radiation, including molecular, atomic, nuclear and subnuclear
physics, can be understood in terms of three classes of fundamental interactions:
strong, electromagnetic and weak interactions. In atoms the electrons are bound to
nuclei by electromagnetic forces and the properties of electron clouds explain the
complex phenomenology of atoms and molecules. Light is a particular vibration
of electric and magnetic fields (an electromagnetic wave). Strong interactions bind
the protons and neutrons together in nuclei, being so intensively attractive at short
distances that they prevail over the electric repulsion due to the equal sign charges of
protons. Protons and neutrons, in turn, are composites of three quarks held together
by strong interactions to which quarks and gluons are subject (hence these particles
are called “hadrons” from the Greek word for “strong”). To the weak interactions
are due the beta radioactivity that makes some nuclei unstable as well as the nuclear
reactions that produce the enormous energy radiated by the stars and by our Sun
in particular. The weak interactions also cause the disintegration of the neutron, the
charged pions, the lightest hadronic particles with strangeness, charm, and beauty
(which are “flavour” quantum numbers) as well as the decay of the quark top and of
the heavy charged leptons (the muon μ− and the tau τ−). In addition all observed
neutrino interactions are due to weak forces.

All these interactions are described within the framework of quantum mechanics
and relativity, more precisely by a local relativistic quantum field theory. To each
particle, described as pointlike, is associated a field with suitable (depending on
the particle spin) transformation properties under the Lorentz group (the relativistic
space-time coordinate transformations). It is remarkable that the description of all
these particle interactions is based on a common principle: “gauge” invariance. A
“gauge” symmetry is invariance under transformations that rotate the basic internal
degrees of freedom but with rotation angles that depend on the space-time point.
At the classical level gauge invariance is a property of the Maxwell equations of
electrodynamics and it is in this context that the notion and the name of gauge
invariance were introduced. The prototype of all quantum gauge field theories,
with a single gauged charge, is QED, Quantum Electro-Dynamics, developed in
the years from 1926 until about 1950, which indeed is the quantum version of
Maxwell theory. Theories with gauge symmetry, at the renormalizable level, are
completely determined given the symmetry group and the representations of the
interacting fields. The whole set of strong, electromagnetic and weak interactions
is described by a gauge theory, with 12 gauged non-commuting charges, which is
called “the Standard Model” of particle interactions (SM). Actually only a subgroup
of the SM symmetry is directly reflected in the spectrum of physical states. A part of
the electroweak symmetry is hidden by the Higgs mechanism for the spontaneous
symmetry breaking of a gauge symmetry.

For all material bodies on the Earth and in all geological, astrophysical and cos-
mological phenomena a fourth interaction, the gravitational force, plays a dominant
role, while it is instead negligible in atomic and nuclear physics. The theory of
general relativity is a classic (in the sense of non quantum mechanical) description
of gravitation that goes beyond the static approximation described by Newton law
and includes dynamical phenomena like, for example, gravitational waves. The
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problem of the formulation of a quantum theory of gravitational interactions is
one of the central problems of contemporary theoretical physics. But quantum
effects in gravity become only important for energy concentrations in space-time
which are not in practice accessible to experimentation in the laboratory. Thus the
search for the correct theory can only be done by a purely speculative approach.
All attempts at a description of quantum gravity in terms of a well defined and
computable local field theory along similar lines as for the SM have so far failed to
lead to a satisfactory framework. Rather, at present the most complete and plausible
description of quantum gravity is a theory formulated in terms of non pointlike
basic objects, the so called “strings”, extended over distances much shorter than
those experimentally accessible, that live in a space-time with 10 or 11 dimensions.
The additional dimensions beyond the familiar 4 are, typically, compactified which
means that they are curled up with a curvature radius of the order of the string
dimensions. Present string theory is an all-comprehensive framework that suggests
a unified description of all interactions together with gravity of which the SM would
be only a low energy or large distance approximation.

A fundamental principle of quantum mechanics, the Heisenberg indetermination
principle, implies that, for studying particles with spatial dimensions of order �x or
interactions taking place at distances of order �x, one needs as a probe a beam of
particles (typically produced by an accelerator) with impulse p � h̄/�x, where h̄

is the reduced Planck constant (h̄ = h/2π). Accelerators presently in operation or
available in the near future, like the Large Hadron Collider at CERN near Geneva,
allow to study collisions between two particles with total center of mass energy up
to 2E ∼ 2pc � 14 TeV. These machines, in principle, can allow to study physics
down to distances �x � 10−18 cm. Thus, on the basis of results from experiments
at existing accelerators, we can confirm that, down to distances of that order of
magnitude, indeed electrons, quarks and all the fundamental SM particles do not
show an appreciable internal structure and look elementary and pointlike. We expect
that quantum effects in gravity will certainly become important at distances �x �
10−33 cm corresponding to energies up to E ∼ MPlc

2 ∼ 1019 GeV, where MPl

is the Planck mass, related to Newton constant by GN = h̄c/M2
P l . At such short

distances the particles that so far appeared as pointlike could well reveal an extended
structure, like for strings, and be described by a more detailed theoretical framework
of which the local quantum field theory description of the SM would be just a low
energy/large distance limit.

From the first few moments of the Universe, after the Big Bang, the temperature
of the cosmic background went down gradually, starting from kT ∼ MPlc

2, where
k = 8.617 . . .10−5 eV K−1 is the Boltzmann constant, down to the present situation
where T ∼ 2.725 K. Then all stages of high energy physics from string theory,
which is a purely speculative framework, down to the SM phenomenology, which is
directly accessible to experiment and well tested, are essential for the reconstruction
of the evolution of the Universe starting from the Big Bang. This is the basis for the
ever increasing relation between high energy physics and cosmology.
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2.3 Overview of the Standard Model

The SM is a gauge field theory based on the symmetry groupSU(3)⊗SU(2)⊗U(1).
The transformations of the group act on the basic fields. This group has 8+3+1=
12 generators with a non trivial commutator algebra (if all generators commute
the gauge theory is said to be “abelian”, while the SM is a “non abelian” gauge
theory). SU(3) is the “colour” group of the theory of strong interactions (QCD:
Quantum Chromo-Dynamics [1–3]). SU(2)⊗U(1) describes the electroweak (EW)
interactions [4–6] and the electric charge Q, the generator of the QED gauge group
U(1)Q, is the sum of T3, one of the SU(2) generators and of Y/2, where Y is the
U(1) generator: Q = T3 + Y/2.

In a gauge theory to each generator T is associated a vector boson (also said
gauge boson) with the same quantum numbers as T , and, if the gauge symmetry is
unbroken, this boson is of vanishing mass. These vector (i.e. of spin 1) bosons act as
mediators of the corresponding interactions. For example, in QED the vector boson
associated to the generator Q is the photon γ . The interaction between two charged
particles in QED, for example two electrons, is mediated by the exchange of one
(or seldom more than one) photon emitted by one electron and reabsorbed by the
other one. Similarly in the SM there are 8 massless gluons associated to the SU(3)
colour generators, while for SU(2) ⊗ U(1) there are 4 gauge bosons W+, W−, Z0

and γ . Of these, only the photon γ is massless because the symmetry induced by
the other 3 generators is actually spontaneously broken. The masses of W+, W−
and Z0 are quite large indeed on the scale of elementary particles: mW ∼ 80.4 GeV,
mZ ∼ 91.2 GeV are as heavy as atoms of intermediate size like rubidium and
molibdenum, respectively. In the electroweak theory the breaking of the symmetry is
of a particular type, denoted as spontaneous symmetry breaking. In this case charges
and currents are as dictated by the symmetry but the fundamental state of minimum
energy, the vacuum, is not unique and there is a continuum of degenerate states
that all together respect the symmetry (in the sense that the whole vacuum orbit is
spanned by applying the symmetry transformations). The symmetry breaking is due
to the fact that the system (with infinite volume and infinite number of degrees of
freedom) is found in one particular vacuum state, and this choice, which for the SM
occurred in the first instants of the Universe life, makes the symmetry violated in
the spectrum of states. In a gauge theory like the SM the spontaneous symmetry
breaking is realized by the Higgs mechanism (described in detail in Sect. (2.7)):
there are a number of scalar (i.e. of zero spin) Higgs bosons with a potential that
produces an orbit of degenerate vacuum states. One or more of these scalar Higgs
particles must necessarily be present in the spectrum of physical states with masses
very close to the range so far explored. It is expected that the Higgs particle(s) will
be found at the LHC thus completing the experimental verification of the SM.

The fermionic (all of spin 1/2) matter fields of the SM are quarks and leptons.
Each type of quark is a colour triplet (i.e. each quark flavour comes in three colours)
and also carries electroweak charges, in particular electric charges +2/3 for up-type
quarks and −1/3 for down-type quarks. So quarks are subject to all SM interactions.
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Leptons are colourless and thus do not interact strongly (they are not hadrons) but
have electroweak charges, in particular electric charges −1 for charged leptons (e−,
μ− and τ−) while it is 0 for neutrinos (νe, νμ and ντ ). Quarks and leptons are
grouped in 3 “families” or “generations” with equal quantum numbers but different
masses. At present we do not have an explanation for this triple repetition of fermion
families:

[
u u u νe

d d d e

]
,

[
c c c νμ

s s s μ

]
,

[
t t t ντ

b b b τ

]
. (2.1)

The QCD sector of the SM has a simple structure but a very rich dynamical
content, including the observed complex spectroscopy with a large number of
hadrons. The most prominent properties of QCD are asymptotic freedom and
confinement. In field theory the effective coupling of a given interaction vertex is
modified by the interaction. As a result, the measured intensity of the force depends
on the transferred (four)momentum squared, Q2, among the participants. In QCD
the relevant coupling parameter that appears in physical processes is αs = e2

s /4π
where es is the coupling constant of the basic interaction vertices of quark and
gluons: qqg or ggg (see Eq. (2.30)). Asymptotic freedom means that the effective
coupling becomes a function of Q2: αs(Q

2) decreases for increasing Q2 and
vanishes asymptotically. Thus, the QCD interaction becomes very weak in processes
with largeQ2, called hard processes or deep inelastic processes (i.e. with a final state
distribution of momenta and a particle content very different than those in the initial
state). One can prove that in 4 space-time dimensions all pure-gauge theories based
on a non commuting group of symmetry are asymptotically free and conversely.
The effective coupling decreases very slowly at large momenta with the inverse
logarithm of Q2: αs(Q2) = 1/b logQ2/�2 where b is a known constant and � is
an energy of order a few hundred MeV. Since in quantum mechanics large momenta
imply short wavelengths, the result is that at short distances the potential between
two colour charges is similar to the Coulomb potential, i.e. proportional to αs(r)/r ,
with an effective colour charge which is small at short distances. On the contrary the
interaction strength becomes large at large distances or small transferred momenta,
of order Q � �. In fact all observed hadrons are tightly bound composite states
of quarks (baryons are made of qqq and mesons of qq̄), with compensating colour
charges so that they are overall neutral in colour. In fact, the property of confinement
is the impossibility of separating colour charges, like individual quarks and gluons
or any other coloured state. This is because in QCD the interaction potential between
colour charges increases at long distances linearly in r. When we try to separate the
quark and the antiquark that form a colour neutral meson the interaction energy
grows until pairs of quarks and antiquarks are created from the vacuum and new
neutral mesons are coalesced and observed in the final state instead of free quarks.
For example, consider the process e+e− → qq̄ at large center of mass energies.
The final state quark and antiquark have large energies, so they separate in opposite
directions very fast. But the colour confinement forces create new pairs in between
them. What is observed is two back-to-back jets of colourless hadrons with a number
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of slow pions that make the exact separation of the two jets impossible. In some
cases a third well separated jet of hadrons is also observed: these events correspond
to the radiation of an energetic gluon from the parent quark-antiquark pair.

In the EW sector the SM inherits the phenomenological successes of the old
(V − A)⊗ (V − A) four-fermion low-energy description of weak interactions, and
provides a well-defined and consistent theoretical framework including weak inter-
actions and quantum electrodynamics in a unified picture. The weak interactions
derive their name from their intensity. At low energy the strength of the effective
four-fermion interaction of charged currents is determined by the Fermi coupling
constant GF . For example, the effective interaction for muon decay is given by

Leff = (GF/
√

2)
[
ν̄μγα(1 − γ5)μ

] [
ēγ α(1 − γ5)νe

]
, (2.2)

with [7]

GF = 1.16639(1)× 10−5 GeV−2 . (2.3)

In natural units h̄ = c = 1, GF has dimensions of (mass)−2. As a result, the intensity
of weak interactions at low energy is characterized by GFE

2, where E is the energy
scale for a given process (E ≈ mμ for muon decay). Since

GFE
2 = GFm

2
p(E/mp)

2 � 10−5(E/mp)
2 , (2.4)

where mp is the proton mass, the weak interactions are indeed weak at low energies
(up to energies of order a few ten’s of GeV). Effective four fermion couplings for
neutral current interactions have comparable intensity and energy behaviour. The
quadratic increase with energy cannot continue for ever, because it would lead to a
violation of unitarity. In fact, at large energies the propagator effects can no longer
be neglected, and the current–current interaction is resolved into current–W gauge
boson vertices connected by a W propagator. The strength of the weak interactions
at high energies is then measured by gW , the W − −μ–νμ coupling, or, even better,
by αW = g2

W/4π analogous to the fine-structure constant α of QED (in Chap. 3,
gW is simply denoted by g or g2). In the standard EW theory, we have

αW = √
2 GF m2

W/π ∼= 1/30 . (2.5)

That is, at high energies the weak interactions are no longer so weak.
The range rW of weak interactions is very short: it is only with the experimental

discovery of the W and Z gauge bosons that it could be demonstrated that rW is
non-vanishing. Now we know that

rW = h̄

mWc
� 2.5 × 10−16 cm, (2.6)
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corresponding to mW � 80.4 GeV. This very large value for the W (or the Z)
mass makes a drastic difference, compared with the massless photon and the infinite
range of the QED force. The direct experimental limit on the photon mass is [7]
mγ < 6 10−17 eV. Thus, on the one hand, there is very good evidence that the
photon is massless. On the other hand, the weak bosons are very heavy. A unified
theory of EW interactions has to face this striking difference.

Another apparent obstacle in the way of EW unification is the chiral structure
of weak interactions: in the massless limit for fermions, only left-handed quarks
and leptons (and right-handed antiquarks and antileptons) are coupled to W ’s. This
clearly implies parity and charge-conjugation violation in weak interactions.

The universality of weak interactions and the algebraic properties of the electro-
magnetic and weak currents [the conservation of vector currents (CVC), the partial
conservation of axial currents (PCAC), the algebra of currents, etc.] have been
crucial in pointing to a symmetric role of electromagnetism and weak interactions
at a more fundamental level. The old Cabibbo universality [8] for the weak charged
current:

Jweak
α = ν̄μγα(1 − γ5)μ + ν̄eγα(1 − γ5)e + cos θc ūγα(1 − γ5)d +

+ sin θc ūγα(1 − γ5)s + . . . , (2.7)

suitably extended, is naturally implied by the standard EW theory. In this theory
the weak gauge bosons couple to all particles with couplings that are proportional
to their weak charges, in the same way as the photon couples to all particles in
proportion to their electric charges [in Eq. (2.7), d ′ = cos θc d + sin θc s is the
weak-isospin partner of u in a doublet. The (u, d ′) doublet has the same couplings
as the (νe, 
) and (νμ,μ) doublets].

Another crucial feature is that the charged weak interactions are the only known
interactions that can change flavour: charged leptons into neutrinos or up-type
quarks into down-type quarks. On the contrary, there are no flavour-changing neutral
currents at tree level. This is a remarkable property of the weak neutral current,
which is explained by the introduction of the Glashow-Iliopoulos-Maiani (GIM)
mechanism [9] and has led to the successful prediction of charm.

The natural suppression of flavour-changing neutral currents, the separate con-
servation of e, μ and τ leptonic flavours that is only broken by the small neutrino
masses, the mechanism of CP violation through the phase in the quark-mixing
matrix [10], are all crucial features of the SM. Many examples of new physics tend
to break the selection rules of the standard theory. Thus the experimental study of
rare flavour-changing transitions is an important window on possible new physics.

The SM is a renormalizable field theory which means that the ultra-violet
divergences that appear in loop diagrams can be eliminated by a suitable redefinition
of the parameters already appearing in the bare lagrangian: masses, couplings and
field normalizations. As it will be discussed later, a necessary condition for a theory
to be renormalizable is that only operator vertices of dimension not larger than 4
(that is m4 where m is some mass scale) appear in the lagrangian density L (itself
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of dimension 4, because the action S is given by the integral of L over d4x and
is dimensionless in natural units: h̄ = c = 1). Once this condition is added to
the specification of a gauge group and of the matter field content the gauge theory
lagrangian density is completely specified. We shall see the precise rules to write
down the lagrangian of a gauge theory in the next Section.

2.4 The Formalism of Gauge Theories

In this Section we summarize the definition and the structure of a gauge Yang–Mills
theory [11]. We will list here the general rules for constructing such a theory. Then
these results will be applied to the SM.

Consider a lagrangian density L[φ, ∂μφ] which is invariant under a D dimen-
sional continuous group of transformations:

φ′(x) = U(θA)φ(x) (A = 1, 2, . . . ,D) . (2.8)

with:

U(θA) = exp [ig
∑
A

θAT A] ∼ 1 + ig
∑
A

θAT A + . . . , (2.9)

The quantities θA are numerical parameters, like angles in the particular case of a
rotation group in some internal space. The approximate expression on the right is
valid for θA infinitesimal. Then, g is the coupling constant and T A are the generators
of the group  of transformations (2.8) in the (in general reducible) representation of
the fields φ. Here we restrict ourselves to the case of internal symmetries, so that T A

are matrices that are independent of the space-time coordinates and the arguments
of the fields φ and φ′ in Eq. (2.8) is the same. If U is unitary, then the generators T A

are Hermitian, but this need not be the case in general (though it is true for the SM).
Similarly if U is a group of matrices with unit determinant, then the traces of T A

vanish: tr(T A) = 0. The generators T A are normalized in such a way that for the
lowest dimensional non-trivial representation of the group  (we use tA to denote
the generators in this particular representation) we have

tr(tAtB) = 1

2
δAB . (2.10)

The generators satisfy the commutation relations

[T A, T B] = iCABCT
C . (2.11)
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ForA,B,C . . . . up or down indices make no difference:T A = TA etc. The structure
constants CABC are completely antisymmetric in their indices, as can be easily seen.
In the following, for each quantity fA we define

f =
∑
A

T Af A . (2.12)

For example, we can rewrite Eq. (2.9) in the form:

U(θA) = exp [igθ ] ∼ 1 + igθ + . . . , (2.13)

If we now make the parameters θA depend on the space–time coordinates θA =
θA(xμ),L[φ, ∂μφ] is in general no longer invariant under the gauge transformations
U [θA(xμ)], because of the derivative terms: indeed ∂μφ

′ = ∂μ(Uφ) 	= U∂μφ.
Gauge invariance is recovered if the ordinary derivative is replaced by the covariant
derivative:

Dμ = ∂μ + igVμ , (2.14)

where V A
μ are a set of D gauge vector fields (in one-to-one correspondence with the

group generators) with the transformation law

V′
μ = UVμU

−1 − (1/ig)(∂μU)U−1 . (2.15)

For constant θA, V reduces to a tensor of the adjoint (or regular) representation of
the group:

V′
μ = UVμU

−1 � Vμ + ig[θ ,Vμ] . . . , (2.16)

which implies that

V ′C
μ = V C

μ − gCABCθ
AV B

μ . . . , (2.17)

where repeated indices are summed up.
As a consequence of Eqs. (2.14) and (2.15), Dμφ has the same transformation

properties as φ:

(Dμφ)
′ = U(Dμφ) . (2.18)

In fact

(Dμφ)
′ = (∂μ + igV′

μ)φ
′ = (∂μU)φ + U∂μφ + igUVμφ − (∂μU)

φ = U(Dμφ) . (2.19)
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Thus L[φ,Dμφ] is indeed invariant under gauge transformations. But, at this
stage, the gauge fields VA

μ appear as external fields that do not propagate. In order to
construct a gauge-invariant kinetic energy term for the gauge fields V A

μ , we consider

[Dμ,Dν]φ = ig{∂μVν − ∂νVμ + ig[Vμ,Vν]}φ ≡ igFμνφ , (2.20)

which is equivalent to

FA
μν = ∂μV

A
ν − ∂νV

A
μ − gCABCV

B
μ V C

ν . (2.21)

From Eqs. (2.8), (2.18) and (2.20) it follows that the transformation properties of
FA
μν are those of a tensor of the adjoint representation

F′
μν = UFμνU

−1 . (2.22)

The complete Yang–Mills lagrangian, which is invariant under gauge transforma-
tions, can be written in the form

LYM = −1

2
T rFμνFμν + L[φ,Dμφ] = −1

4

∑
A

FA
μνF

Aμν + L[φ,Dμφ] .
(2.23)

Note that the kinetic energy term is an operator of dimension 4. Thus if L is
renormalizable, also LYM is renormalizable. In fact it is the most general gauge
invariant and renormalizable lagrangian density. If we give up renormalizability then
more gauge invariant higher dimension terms could be added. It is already clear at
this stage that no mass term for gauge bosons of the form m2VμV

μ is allowed by
gauge invariance.

For an abelian theory, as for example QED, the gauge transformation reduces to
U [θ(x)] = exp[ieQθ(x)], where Q is the charge generator. The associated gauge
field (the photon), according to Eq. (2.15), transforms as

V ′
μ = Vμ − ∂μθ(x) . (2.24)

and the familiar gauge transformation by addition of a 4-gradient of a scalar function
is recovered. The QED lagrangian density is given by:

L = − 1

4
FμνFμν +

∑
ψ

ψ̄(iD/ − mψ)ψ . (2.25)

Here D/ = Dμγ
μ, where γ μ are the Dirac matrices and the covariant derivative is

given in terms of the photon field Aμ and the charge operator Q by:

Dμ = ∂μ + ieAμQ (2.26)
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and

Fμν = ∂μAν − ∂νAμ (2.27)

Note that in QED one usually takes the e− to be the particle, so that Q = −1 and
the covariant derivative is Dμ = ∂μ− ieAμ when acting on the electron field. In this
case, the Fμν tensor is linear in the gauge field Vμ so that in the absence of matter
fields the theory is free. On the other hand, in the non abelian case the FA

μν tensor
contains both linear and quadratic terms in V A

μ , so that the theory is non-trivial even
in the absence of matter fields.

2.5 Application to QCD

According to the formalism of the previous section, the statement that QCD is a
renormalizable gauge theory based on the group SU(3) with colour triplet quark
matter fields fixes the QCD lagrangian density to be

L = − 1

4

8∑
A=1

FAμνFA
μν +

nf∑
j=1

q̄j (iD/ − mj )qj (2.28)

Here qj are the quark fields (of nf different flavours) with mass mj and Dμ is the
covariant derivative:

Dμ = ∂μ + iesgμ; (2.29)

es is the gauge coupling and later we will mostly use, in analogy with QED

αs = e2
s

4π
. (2.30)

Also, gμ = ∑
A tAgAμ where gAμ , A = 1, 8, are the gluon fields and tA are the

SU(3) group generators in the triplet representation of quarks (i.e. tA are 3 × 3
matrices acting on q); the generators obey the commutation relations [tA, tB ] =
iCABCt

C where CABC are the complete antisymmetric structure constants of SU(3)
(the normalisation of CABC and of es is specified by T r[tAtB ] = δAB/2);

FA
μν = ∂μg

A
ν − ∂νg

A
μ − esCABCg

B
μg

C
ν (2.31)

Chapter 4 is devoted to a detailed description of the QCD as the theory of
strong interactions. The physical vertices in QCD include the gluon-quark-antiquark
vertex, analogous to the QED photon-fermion-antifermion coupling, but also the 3-
gluon and 4-gluon vertices, of order es and e2

s respectively, which have no analogue
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in an abelian theory like QED. In QED the photon is coupled to all electrically
charged particles but itself is neutral. In QCD the gluons are coloured hence self-
coupled. This is reflected in the fact that in QED Fμν is linear in the gauge field,
so that the term F 2

μν in the lagrangian is a pure kinetic term, while in QCD FA
μν is

quadratic in the gauge field so that in FA2
μν we find cubic and quartic vertices beyond

the kinetic term. Also instructive is to consider the case of scalar QED:

L = − 1

4
FμνFμν + (Dμφ)

†(Dμφ) − m2(φ†φ) (2.32)

For Q = 1 we have:

(Dμφ)
†(Dμφ) = (∂μφ)

†(∂μφ) + ieAμ[(∂μφ)†φ − φ†(∂μφ)] + e2AμA
μφ†φ

(2.33)

We see that for a charged boson in QED, given that the kinetic term for bosons is
quadratic in the derivative, there is a two-gauge vertex of order e2. Thus in QCD the
3-gluon vertex is there because the gluon is coloured and the 4-gluon vertex because
the gluon is a boson.

2.6 Quantization of a Gauge Theory

The lagrangian density LYM in Eq. (2.23) fully describes the theory at the classical
level. The formulation of the theory at the quantum level requires that a procedure of
quantization, of regularization and, finally, of renormalization is also specified. To
start with, the formulation of Feynman rules is not straightforward. A first problem,
common to all gauge theories, including the abelian case of QED, can be realized
by observing that the free equation of motion for V A

μ , as obtained from Eqs. ((2.21),
(2.23)), is given by

[∂2gμν − ∂μ∂ν]V Aν = 0 (2.34)

Normally the propagator of the gauge field should be determined by the inverse of
the operator [∂2gμν − ∂μ∂ν] which, however, has no inverse, being a projector over
the transverse gauge vector states. This difficulty is removed by fixing a particular
gauge. If one chooses a covariant gauge condition ∂μV A

μ = 0 then a gauge fixing
term of the form

�LGF = − 1

2λ

∑
A

|∂μV A
μ |2 (2.35)



22 G. Altarelli and S. Forte

has to be added to the lagrangian (1/λ acts as a lagrangian multiplier). The free
equations of motion are now modified as follows:

[∂2gμν − (1 − 1/λ)∂μ∂ν]VAν = 0. (2.36)

This operator now has an inverse whose Fourier transform is given by:

DAB
μν (q) = i

q2 + iε
[−gμν + (1 − λ)

qμqν

q2 + iε
] δAB (2.37)

which is the propagator in this class of gauges. The parameter λ can take any value
and it disappears from the final expression of any gauge invariant, physical quantity.
Commonly used particular cases are λ = 1 (Feynman gauge) and λ = 0 (Landau
gauge).

While in an abelian theory the gauge fixing term is all that is needed for a
correct quantization, in a non abelian theory the formulation of complete Feynman
rules involves a further subtlety. This is formally taken into account by introducing
a set of D fictitious ghost fields that must be included as internal lines in
closed loops (Faddeev-Popov ghosts [12]). Given that gauge fields connected by
a gauge transformation describe the same physics, clearly there are less physical
degrees of freedom than gauge field components. Ghosts appear, in the form of
a transformation Jacobian in the functional integral, in the process of elimination
of the redundant variables associated with fields on the same gauge orbit [13].
The correct ghost contributions can be obtained from an additional term in the
lagrangian density. For each choice of the gauge fixing term the ghost langrangian
is obtained by considering the effect of an infinitesimal gauge transformation
V

′C
μ = V C

μ − gCABCθ
AV B

μ − ∂μθ
C on the gauge fixing condition. For ∂μV C

μ = 0
one obtains:

∂μV
′C
μ = ∂μV C

μ − gCABC∂
μ(θAV B

μ ) − ∂2θC = − [∂2δAC + gCABCV
B
μ ∂μ]θA

(2.38)

where the gauge condition ∂μV C
μ = 0 has been taken into account in the last step.

The ghost lagrangian is then given by:

�LGhost = η̄C[∂2δAC + gCABCV
B
μ ∂μ]ηA (2.39)

where ηA is the ghost field (one for each index A) which has to be treated as a scalar
field except that a factor (−1) for each closed loop has to be included as for fermion
fields.

Starting from non covariant gauges one can construct ghost-free gauges. An
example, also important in other respects, is provided by the set of “axial” gauges:
nμV A

μ = 0 where nμ is a fixed reference 4-vector (actually for nμ spacelike one
has an axial gauge proper, for n2 = 0 one speaks of a light-like gauge and for nμ
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timelike one has a Coulomb or temporal gauge). The gauge fixing term is of the
form:

�LGF = − 1

2λ

∑
A

|nμV A
μ |2 (2.40)

With a procedure that can be found in QED textbooks [14] the corresponding
propagator, in Fourier space, is found to be:

DAB
μν (q) = i

q2 + iε
[−gμν + nμq+nνqμ

(nq)
− n2qμqν

(nq)2 ] δAB (2.41)

In this case there are no ghost interactions because nμV
′A
μ , obtained by a gauge

transformation from nμV A
μ , contains no gauge fields, once the gauge condition

nμV A
μ = 0 has been taken into account. Thus the ghosts are decoupled and can

be ignored.
The introduction of a suitable regularization method that preserves gauge

invariance is essential for the definition and the calculation of loop diagrams and for
the renormalization programme of the theory. The method that is by now currently
adopted is dimensional regularization [15] which consists in the formulation of the
theory in n dimensions. All loop integrals have an analytic expression that is actually
valid also for non integer values of n. Writing the results for n = 4 − ε the loops
are ultraviolet finite for ε > 0 and the divergences reappear in the form of poles at
ε = 0.

2.7 Spontaneous Symmetry Breaking in Gauge Theories

The gauge symmetry of the SM was difficult to discover because it is well hidden
in nature. The only observed gauge boson that is massless is the photon. The gluons
are presumed massless but cannot be directly observed because of confinement, and
the W and Z weak bosons carry a heavy mass. Indeed a major difficulty in unifying
the weak and electromagnetic interactions was the fact that e.m. interactions have
infinite range (mγ = 0), whilst the weak forces have a very short range, owing to
mW,Z 	= 0.

The solution of this problem is in the concept of spontaneous symmetry breaking,
which was borrowed from statistical mechanics.

Consider a ferromagnet at zero magnetic field in the Landau–Ginzburg approxi-
mation. The free energy in terms of the temperature T and the magnetization M can
be written as

F(M, T ) � F0(T ) + 1/2 μ2(T )M2 + 1/4 λ(T )(M2)2 + . . . . (2.42)
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Fig. 2.1 The potential V = 1/2 μ2M2 + 1/4 λ(M2)2 for positive (a) or negative μ2 (b) (for
simplicity, M is a 2-dimensional vector). The small sphere indicates a possible choice for the
direction of M

This is an expansion which is valid at small magnetization. The neglect of terms of
higher order in �M2 is the analogue in this context of the renormalizability criterion.
Also, λ(T ) > 0 is assumed for stability; F is invariant under rotations, i.e. all
directions of M in space are equivalent. The minimum condition for F reads

∂F/∂Mi = 0, [μ2(T ) + λ(T )M2]M = 0 . (2.43)

There are two cases, shown in Fig. 2.1. If μ2 � 0, then the only solution is M = 0,
there is no magnetization, and the rotation symmetry is respected. In this case the
lowest energy state (in a quantum theory the vacuum) is unique and invariant under
rotations. If μ2 < 0, then another solution appears, which is

|M0|2 = −μ2/λ . (2.44)

In this case there is a continuous orbit of lowest energy states, all with the same
value of |M| but different orientations. A particular direction chosen by the vector
M0 leads to a breaking of the rotation symmetry.

For a piece of iron we can imagine to bring it to high temperature and let it melt
in an external magnetic field B. The presence of B is an explicit breaking of the
rotational symmetry and it induces a non zero magnetization M along its direction.
Now we lower the temperature while keeping B fixed. The critical temperature Tcrit
(Curie temperature) is where μ2(T ) changes sign: μ2(Tcrit) = 0. For pure iron
Tcrit is below the melting temperature. So at T = Tcrit iron is a solid. Below Tcrit we
remove the magnetic field. In a solid the mobility of the magnetic domains is limited
and a non vanishing M0 remains. The form of the free energy becomes rotationally
invariant as in Eq. (2.43). But now the system allows a minimum energy state with
non vanishing M in the direction where B was. As a consequence the symmetry is
broken by this choice of one particular vacuum state out of a continuum of them.

We now prove the Goldstone theorem [16]. It states that when spontaneous
symmetry breaking takes place, there is always a zero-mass mode in the spectrum.
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In a classical context this can be proven as follows. Consider a lagrangian

L = 1

2
|∂μφ|2 − V (φ). (2.45)

The potential V (φ) can be kept generic at this stage but, in the following, we will
be mostly interested in a renormalizable potential of the form (with no more than
quartic terms):

V (φ) = −1

2
μ2 φ2 + 1

4
λ φ4. (2.46)

Here by φ we mean a column vector with real components φi (1=1,2. . . N) (complex
fields can always be decomposed into a pair of real fields), so that, for example,
φ2 = ∑

i φ
2
i . This particular potential is symmetric under a NxN orthogonal matrix

rotation φ′ = Oφ, where O is a SO(N) transformation. For simplicity, we have
omitted odd powers of φ, which means that we assumed an extra discrete symmetry
under φ ↔ −φ. Note that, for positive μ2, the mass term in the potential has the
“wrong” sign: according to the previous discussion this is the condition for the
existence of a non unique lowest energy state. More in general, we only assume
here that the potential is symmetric under the infinitesimal transformations

φ → φ′ = φ + δφ, δφi = iδθAtAij φj . (2.47)

where δθA are infinitesimal parameters and tAij are the matrices that represent the
symmetry group on the representation of the fields φi (a sum over A is understood).
The minimum condition on V that identifies the equilibrium position (or the vacuum
state in quantum field theory language) is

(∂V /∂φi)(φi = φ0
i ) = 0 . (2.48)

The symmetry of V implies that

δV = (∂V /∂φi)δφi = iδθA(∂V/∂φi)t
A
ij φj = 0 . (2.49)

By taking a second derivative at the minimum φi = φ0
i , given by the previous

equation, we obtain that, for each A:

∂2V

∂φk∂φi
(φi = φ0

i )t
A
ij φ

0
j + ∂V

∂φi
(φi = φ0

i )t
A
ik = 0 . (2.50)

The second term vanishes owing to the minimum condition, Eq. (2.48). We then find

∂2V

∂φk∂φi
(φi = φ0

i )t
A
ij φ

0
j = 0 . (2.51)
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The second derivatives M2
ki = (∂2V/∂φk∂φi)(φi = φ0

i ) define the squared mass
matrix. Thus the above equation in matrix notation can be written as

M2tAφ0 = 0 . (2.52)

In the case of no spontaneous symmetry breaking the ground state is unique, all
symmetry transformations leave it invariant, so that, for all A, tAφ0 = 0. On the
contrary, if, for some values of A, the vectors (tAφ0) are non-vanishing, i.e. there
is some generator that shifts the ground state into some other state with the same
energy (hence the vacuum is not unique), then each tAφ0 	= 0 is an eigenstate
of the squared mass matrix with zero eigenvalue. Therefore, a massless mode is
associated with each broken generator. The charges of the massless modes (their
quantum numbers in quantum language) differ from those of the vacuum (usually
taken as all zero) by the values of the tA charges: one says that the massless modes
have the same quantum numbers of the broken generators, i.e. those that do not
annihilate the vacuum.

The previous proof of the Goldstone theorem has been given in the classical case.
In the quantum case the classical potential corresponds to tree level approximation
of the quantum potential. Higher order diagrams with loops introduce quantum
corrections. The functional integral formulation of quantum field theory [13, 17]
is the most appropriate framework to define and compute, in a loop expansion,
the quantum potential which specifies, exactly as described above, the vacuum
properties of the quantum theory. If the theory is weakly coupled, e.g. if λ is small,
the tree level expression for the potential is not too far from the truth, and the
classical situation is a good approximation. We shall see that this is the situation
that occurs in the electroweak theory if the Higgs is moderately light (see Chap. 3,
Sect. 3.13.1).

We note that for a quantum system with a finite number of degrees of freedom, for
example one described by the Schrödinger equation, there are no degenerate vacua:
the vacuum is always unique. For example, in the one dimensional Schrödinger
problem with a potential:

V (x) = −μ2/2 x2 + λ x4/4 , (2.53)

there are two degenerate minima at x = ±x0 = √
(μ2/λ) which we denote by

|+〉 and |−〉. But the potential is not diagonal in this basis: the off diagonal matrix
elements:

〈+|V |−〉 = 〈−|V |+〉 ∼ exp (−khd) = δ (2.54)

are different from zero due to the non vanishing amplitude for a tunnel effect
between the two vacua, proportional to the exponential of the product of the distance
d between the vacua and the height h of the barrier with k a constant (see Fig. 2.2).
After diagonalization the eigenvectors are (|+〉 + |−〉)/√2 and (|+〉 − |−〉)/√2,
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Fig. 2.2 A Schrödinger
potential V (x) analogous to
the Higgs potential

+

x

V x( )

d

h

with different energies (the difference being proportional to δ). Suppose now that
you have a sum of n equal terms in the potential, V = ∑

i V (xi). Then the
transition amplitude would be proportional to δn and would vanish for infinite n: the
probability that all degrees of freedom together jump over the barrier vanishes. In
this example there is a discrete number of minimum points. The case of a continuum
of minima is obtained, always in the Schrödinger context, if we take

V = 1/2 μ2r2 + 1/4 λ(r2)2 , (2.55)

with r = (x, y, z). Also in this case the ground state is unique: it is given by
a state with total orbital angular momentum zero, an s-wave state, whose wave
function only depends on |r|, independent of all angles. This is a superposition of
all directions with the same weight, analogous to what happened in the discrete
case. But again, if we replace a single vector r, with a vector field M(x), that is a
different vector at each point in space, the amplitude to go from a minimum state in
one direction to another in a different direction goes to zero in the limit of infinite
volume. In simple words, the vectors at all points in space have a vanishing small
amplitude to make a common rotation, all together at the same time. In the infinite
volume limit all vacua along each direction have the same energy and spontaneous
symmetry breaking can occur.

The massless Goldstone bosons correspond to a long range force. Unless the
massless particles are confined, as for the gluons in QCD, these long range forces
would be easily detectable. Thus, in the construction of the EW theory we cannot
accept massless physical scalar bosons. Fortunately, when spontaneous symmetry
breaking takes place in a gauge theory, the massless Goldstone modes exist, but they
are unphysical and disappear from the spectrum. Each of them becomes, in fact, the
third helicity state of a gauge boson that takes mass. This is the Higgs mechanism
(it should be called Englert-Brout-Higgs mechanism [18], because an equal merit
should be credited to the simultaneous paper by Englert and Brout). Consider, for
example, the simplest Higgs model described by the lagrangian

L = −1

4
F 2
μν + |(∂μ + ieAμQ)φ|2 + μ2φ∗φ − λ

2
(φ∗φ)2 . (2.56)
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Note the ‘wrong’ sign in front of the mass term for the scalar field φ, which
is necessary for the spontaneous symmetry breaking to take place. The above
lagrangian is invariant under the U(1) gauge symmetry

Aμ → A′
μ = Aμ − ∂μθ(x), φ → φ′ = exp[ieQθ(x)] φ. (2.57)

For the U(1) charge Q we take Qφ = −φ, like in QED, where the particle is e−.
Let φ0 = v 	= 0, with v real, be the ground state that minimizes the potential and
induces the spontaneous symmetry breaking. In our case v is given by v2 = μ2/λ.
Making use of gauge invariance, we can do the change of variables

φ(x) → [v + h(x)/
√

2] exp[−iζ(x)/v
√

2] ,
Aμ(x) → Aμ − ∂μζ(x)/ev

√
2. (2.58)

Then h = 0 is the position of the minimum, and the lagrangian becomes

L = −1

4
F 2
μν + e2v2A2

μ + 1

2
e2h2A2

μ + √
2e2hvA2

μ + L(h) . (2.59)

The field ζ(x) is the would-be Goldstone boson, as can be seen by considering only
the φ terms in the lagrangian, i.e. setting Aμ = 0 in Eq. (2.56). In fact in this limit the
kinetic term ∂μζ∂

μζ remains but with no ζ 2 mass term. Instead, in the gauge case
of Eq. (2.56), after changing variables in the lagrangian, the field ζ(x) completely
disappears (not even the kinetic term remains), whilst the mass term e2v2A2

μ for

Aμ is now present: the gauge boson mass is M = √
2ev. The field h describes the

massive Higgs particle. Leaving a constant term aside, the last term in Eq. (2.59) is
given by:

L(h) = 1

2
∂μh∂

μh − h2μ2 + . . . . (2.60)

where the dots stand for cubic and quartic terms in h. We see that the h mass term
has the “right” sign, due to the combination of the quadratic terms in h that, after
the shift, arise from the quadratic and quartic terms in φ. The h mass is given by
m2

h = 2μ2.
The Higgs mechanism is realized in well-known physical situations. It was actu-

ally discovered in condensed matter physics by Anderson [19]. For a superconductor
in the Landau–Ginzburg approximation the free energy can be written as

F = F0 + 1

2
B2 + |(∇ − 2ieA)φ|2/4m − α|φ|2 + β|φ|4 . (2.61)

Here B is the magnetic field, |φ|2 is the Cooper pair (e−e−) density, 2e and 2m
are the charge and mass of the Cooper pair. The ‘wrong’ sign of α leads to φ 	= 0
at the minimum. This is precisely the non-relativistic analogue of the Higgs model
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of the previous example. The Higgs mechanism implies the absence of propagation
of massless phonons (states with dispersion relation ω = kv with constant v).
Also the mass term for A is manifested by the exponential decrease of B inside the
superconductor (Meissner effect).

2.8 Quantization of Spontaneously Broken Gauge Theories:
Rξ Gauges

We have discussed in Sect. 2.6 the problems arising in the quantization of a
gauge theory and in the formulation of the correct Feynman rules (gauge fixing
terms, ghosts etc.). Here we give a concise account of the corresponding results
for spontaneously broken gauge theories. In particular we describe the Rξ gauge
formalism [13, 17, 20]: in this formalism the interplay of transverse and longitudinal
gauge boson degrees of freedom is made explicit and their combination leads to the
cancellation from physical quantities of the gauge parameter ξ . We work out in
detail an abelian example that later will be easy to generalize to the non abelian
case.

We restart from the abelian model of Eq. (2.56) (with Q = −1). In the treatment
presented there the would be Goldstone boson ζ(x) was completely eliminated
from the lagrangian by a non linear field transformation formally identical to a
gauge transformation corresponding to the U(1) symmetry of the lagrangian. In that
description, in the new variables we eventually obtain a theory with only physical
fields: a massive gauge boson Aμ with mass M = √

2ev and a Higgs particle h with
mass mh = √

2μ. This is called a “unitary” gauge, because only physical fields
appear. But for a massive gauge boson the propagator:

iDμν(k) = −i
gμν − kμkν/M

2

k2 − M2 + iε
, (2.62)

has a bad ultraviolet behaviour due to the second term in the numerator. This
choice does not prove to be the most convenient for a discussion of the ultraviolet
behaviour of the theory. Alternatively one can go to an alternative formulation where
the would be Goldstone boson remains in the lagrangian but the complication of
keeping spurious degrees of freedom is compensated by having all propagators with
good ultraviolet behaviour (“renormalizable” gauges). To this end we replace the
non linear transformation for φ in Eq. (2.58) with its linear equivalent (after all
perturbation theory deals with the small oscillations around the minimum):

φ(x) → [v + h(x)/
√

2] exp[−iζ(x)/v
√

2] ∼ [v + h(x)/
√

2 − iζ(x)/
√

2] .
(2.63)

Here we have only applied a shift by the amount v and separated the real and
imaginary components of the resulting field with vanishing vacuum expectation
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value. If we leave Aμ as it is and simply replace the linearized expression for φ,
we obtain the following quadratic terms (those important for propagators):

Lquad = −1

4

∑
A

FA
μνF

Aμν + 1

2
M2AμA

μ +

+ 1

2
(∂μζ )

2 + MAμ∂
μζ + 1

2
(∂μh)

2 − h2μ2 (2.64)

The mixing term between Aμ and ∂μζ does not allow to directly write diagonal mass
matrices. But this mixing term can be eliminated by an appropriate modification of
the covariant gauge fixing term given in Eq. (2.35) for the unbroken theory. We now
take:

�LGF = − 1

2ξ
(∂μAμ − ξMζ)2 . (2.65)

By adding �LGF to the quadratic terms in Eq. (2.64) the mixing term cancels (apart
from a total derivative that can be omitted) and we have:

Lquad = −1

4

∑
A

FA
μνF

Aμν + 1

2
M2AμA

μ − 1

2ξ
(∂μAμ)

2 +

+ 1

2
(∂μζ )

2 − ξ

2
M2ζ 2 + 1

2
(∂μh)

2 − h2μ2 (2.66)

We see that the ζ field appears with a mass
√
ξM and its propagator is:

iDζ = i

k2 − ξM2 + iε
. (2.67)

The propagators of the Higgs field h and of gauge field Aμ are:

iDh = i

k2 − 2μ2 + iε
, (2.68)

iDμν(k) = −i

k2 − M2 + iε
(gμν − (1 − ξ)

kμkν

k2 − ξM2 ) . (2.69)

As anticipated, all propagators have a good behaviour at large k2. This class of
gauges are called “Rξ gauges” [20]. Note that for ξ = 1 we have a sort of
generalization of the Feynman gauge with a Goldstone of mass M and a gauge
propagator:

iDμν(k) = −igμν

k2 − M2 + iε
. (2.70)
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Also for ξ → ∞ the unitary gauge description is recovered in that the Goldstone
propagator vanishes and the gauge propagator reproduces that of the unitary gauge
in Eq. (2.62). All ξ dependence, including the unphysical singularities of the ζ and
Aμ propagators at k2 = ξM2, present in individual Feynman diagrams, must cancel
in the sum of all contributions to any physical quantity.

An additional complication is that a Faddeev-Popov ghost is also present in Rξ

gauges (while it is absent in an unbroken abelian gauge theory). In fact under an
infinitesimal gauge transformation with parameter θ(x):

Aμ → Aμ − ∂μθ

φ → (1 − ieθ)[v + h(x)/
√

2 − iζ(x)/
√

2] , (2.71)

so that:

δAμ = −∂μθ, δh = −eζ θ, δζ = eθ
√

2(v + h/
√

2) . (2.72)

The gauge fixing condition ∂μA
μ − ξMζ = 0 undergoes the variation:

∂μA
μ − ξMζ → ∂μA

μ − ξMζ − [∂2 + ξM2(1 + h/v
√

2)]θ , (2.73)

where we used M = √
2ev. From this, recalling the discussion in Sect. 2.6, we

see that the ghost is not coupled to the gauge boson (as usual for an abelian gauge
theory) but has a coupling to the Higgs field h. The ghost lagrangian is:

�LGhost = η̄[∂2 + ξM2(1 + h/v
√

2)]η . (2.74)

The ghost mass is seen to be mgh = √
ξM and its propagator is:

iDgh = i

k2 − ξM2 + iε
. (2.75)

The detailed Feynman rules follow from all the basic vertices involving the gauge
boson, the Higgs, the would be Goldstone boson and the ghost and can be easily
derived, with some algebra, from the total lagrangian including the gauge fixing
and ghost additions. The generalization to the non abelian case is in principle
straightforward, with some formal complications involving the projectors over the
space of the would be Goldstone bosons and over the orthogonal space of the Higgs
particles. But for each gauge boson that takes mass Ma we still have a corresponding
would be Goldstone boson and a ghost with mass

√
ξMa . The Feynman diagrams,

both for the abelian and the non abelian case, are listed explicitly, for example, in
the Cheng and Li textbook in ref.[17].

We conclude that the renormalizability of non abelian gauge theories, also in
presence of spontaneous symmetry breaking, was proven in the fundamental works
of t’Hooft and Veltman [21] and discussed in detail in [22].



32 G. Altarelli and S. Forte

References

1. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365 (1973)
2. D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973), Phys. Rev. D 8, 3633 (1973); H.D.

Politzer, Phys. Rev. Lett. 30, 1346 (1973)
3. S. Weinberg, Phys. Rev. Lett. 31, 494 (1973)
4. S.L. Glashow, Nucl. Phys. 22, 579 (1961)
5. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)
6. A. Salam, in Elementary Particle Theory, ed. N. Svartholm (Almquist and Wiksells, Stock-

holm, 1969), p. 367
7. Particle Data Group, J. Phys. G 33, 1 (2006)
8. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)
9. S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. 96, 1285 (1970)

10. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)
11. C.N. Yang and R. Mills, Phys. Rev. 96, 191 (1954)
12. R. Feynman, Acta Phys. Pol. 24, 697 (1963); B. De Witt, Phys. Rev. 162, 1195, 1239 (1967);

L.D. Faddeev and V.N. Popov, Phys. Lett. B 25, 29 (1967)
13. E.S. Abers and B.W. Lee, Phys. Rep. 9, 1 (1973)
14. J.D. Bjorken and S. Drell, Relativistic Quantum Mechanics/Fields, Vols. I, II, McGraw-Hill,

New York, (1965)
15. G.’t Hooft and M. Veltman, Nucl. Phys. B 44, 189 (1972); C.G. Bollini and J.J. Giambiagi,

Phys. Lett. B 40, 566 (1972); J.F. Ashmore, Nuovo Cim. Lett. 4, 289 (1972); G.M. Cicuta and
E. Montaldi, Nuovo Cim. Lett. 4, 329 (1972)

16. J. Goldstone, Nuovo Cim. 19, 154 (1961)
17. C. Itzykson and J. Zuber, Introduction to Quantum Field Theory, McGraw-Hill, New York,

(1980); T.P. Cheng and L.F. Li, Gauge Theory of Elementary Particle Physics, Oxford Univ.
Press, New York (1984); M.E. Peskin and D.V. Schroeder, An Introduction to Quantum
Field Theory, Perseus Books, Cambridge, Mass. (1995); S. Weinberg, The Quantum Theory
of Fields, Vols. I, II, Cambridge Univ. Press, Cambridge, Mass. (1996); A. Zee, Quantum
Field Theory in a Nutshell, Princeton Univ. Press, Princeton, N.J. (2003); C.M. Becchi and
G. Ridolfi, An Introduction to Relativistic Processes and the Standard Model of Electroweak
Interactions, Springer, (2006)

18. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964); P.W. Higgs, Phys. Lett. 12, 132 (1964)
19. P.W. Anderson, Phys. Rev. 112, 1900 (1958); Phys. Rev. 130, 439 (1963)
20. K. Fujikawa, B.W. Lee and A. Sanda, Phys. Rev. D 6, 2923 (1972); Y.P. Yao, Phys. Rev. D 7,

1647 (1973)
21. M. Veltman, Nucl. Phys. B 21, 288 (1970); G.’t Hooft, Nucl. Phys. B 33, 173 (1971); 35, 167

(1971)
22. B.W. Lee and J. Zinn-Justin, Phys. Rev. D 5, 3121; 3137 (1972); 7, 1049 (1973)
23. I. J. R. Aitchison and A. J. G. Hey, “Gauge theories in particle physics: A practical introduction.

Vol. 1: From relativistic quantum mechanics to QED,”
24. M. Maggiore, “A Modern introduction to quantum field theory,” Oxford University Press, 2005.

(Oxford Series in Physics, 12. ISBN 0 19 852073 5)
25. M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98 (2018) no.3, 030001.
26. http://pdg.web.cern.ch/pdg/
27. G. Hamel de Monchenault, “Electroweak measurements at the LHC,” Ann. Rev. Nucl. Part.

Sci. 67 (2017) 19.
28. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214 [hep-ex]].
29. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235 [hep-

ex]].
30. T. Plehn, “Lectures on LHC Physics,” Lect. Notes Phys. 886 (2015).
31. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

http://pdg.web.cern.ch/pdg/
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG


2 Gauge Theories and the Standard Model 33

32. J. R. Espinosa, “Cosmological implications of Higgs near-criticality,” Phil. Trans. Roy. Soc.
Lond. A 376 (2018) no.2114, 20170118.

33. G. F. Giudice, “The Dawn of the Post-Naturalness Era,” arXiv:1710.07663 [physics.hist-ph].
34. H. E. Haber and L. Stephenson Haskins, “Supersymmetric Theory and Models,”

arXiv:1712.05926 [hep-ph].
35. Csáki, Csaba, S. Lombardo and O. Telem, “TASI Lectures on Non-supersymmetric BSM

Models,” arXiv:1811.04279 [hep-ph].
36. Ansgar Denner and Stefan Dittmaier, “Electroweak Radiative Corrections for Collider Physics”

arXiv:1912.06823[hep-ph].
37. Freeman Dyson, “Leaping into the Grand Unknown”, New York Rev. Books 56 (2009)
38. J. M. Henn and J. C. Plefka, “Scattering Amplitudes in Gauge Theories,” Lect. Notes Phys.

883 (2014)
39. T. Becher, A. Broggio and A. Ferroglia, “Introduction to Soft-Collinear Effective Theory,”

Lect. Notes Phys. 896 (2015) [arXiv:1410.1892 [hep-ph]].
40. S. Marzani, G. Soyez and M. Spannowsky, “Looking inside jets: an introduction to jet substruc-

ture and boosted-object phenomenology,” Lect. Notes Phys. 958 (2019) [arXiv:1901.10342
[hep-ph]].

41. G. P. Salam, “The strong coupling: a theoretical perspective,” arXiv:1712.05165 [hep-ph].
42. S. Aoki et al. [Flavour Lattice Averaging Group], “FLAG Review 2019,” arXiv:1902.08191

[hep-lat].

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 3
The Standard Model of Electroweak
Interactions

Guido Altarelli and Stefano Forte

3.1 Introduction

In this chapter,1 we summarize the structure of the standard EW theory [1]
and specify the couplings of the intermediate vector bosons W±, Z and of the
Higgs particle with the fermions and among themselves, as dictated by the gauge
symmetry plus the observed matter content and the requirement of renormalizability.
We discuss the realization of spontaneous symmetry breaking and of the Higgs
mechanism [2]. We then review the phenomenological implications of the EW
theory for collider physics (that is we leave aside the classic low energy processes
that are well described by the “old” weak interaction theory (see, for example, [3])).
Moreover, a detailed description of experiments for precision tests of the EW theory
is presented in Chap. 6.

For this discussion we split the lagrangian into two parts by separating the terms
with the Higgs field:

L = Lgauge + LHiggs . (3.1)

Both terms are written down as prescribed by the SU(2) ⊗ U(1) gauge symmetry
and renormalizability, but the Higgs vacuum expectation value (VEV) induces the

The author “G. Altarelli” is deceased at the time of publication.
1See Chap. 2 for a general introduction to Chap. 2–4 with updated references.
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spontaneous symmetry breaking responsible for the non vanishing vector boson and
fermion masses.

3.2 The Gauge Sector

We start by specifying Lgauge, which involves only gauge bosons and fermions,
according to the general formalism of gauge theories discussed in Chap. 2:

Lgauge = −1

4

3∑
A=1

FA
μνF

Aμν − 1

4
BμνB

μν + ψ̄Liγ
μDμψL + ψ̄Riγ

μDμψR .

(3.2)

This is the Yang–Mills lagrangian for the gauge group SU(2)⊗ U(1) with fermion
matter fields. Here

Bμν = ∂μBν − ∂νBμ and FA
μν = ∂μW

A
ν − ∂νW

A
μ − gεABC WB

μ WC
ν (3.3)

are the gauge antisymmetric tensors constructed out of the gauge field Bμ associated
with U(1), and WA

μ corresponding to the three SU(2) generators; εABC are the
group structure constants (see Eqs. (3.8, 3.9)) which, for SU(2), coincide with the
totally antisymmetric Levi-Civita tensor (recall the familiar angular momentum
commutators). The normalization of the SU(2) gauge coupling g is therefore
specified by Eq. (3.3).

The fermion fields are described through their left-hand and right-hand compo-
nents:

ψL,R = [(1 ∓ γ5)/2]ψ, ψ̄L,R = ψ̄[(1 ± γ5)/2] , (3.4)

with γ5 and other Dirac matrices defined as in the book by Bjorken–Drell [4]. In
particular, γ 2

5 = 1, γ †
5 = γ5. Note that, as given in Eq. (3.4),

ψ̄L = ψ
†
Lγ0 = ψ†[(1 − γ5)/2]γ0 = ψ̄γ0[(1 − γ5)/2]γ0 = ψ̄[(1 + γ5)/2] .

The matrices P± = (1 ± γ5)/2 are projectors. They satisfy the relations P±P± =
P±, P±P∓ = 0, P+ + P− = 1.

The sixteen linearly independent Dirac matrices can be divided into γ5-even and
γ5-odd according to whether they commute or anticommute with γ5. For the γ5-
even, we have

ψ̄Eψ = ψ̄LEψR + ψ̄REψL (E ≡ 1, iγ5, σμν) , (3.5)
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whilst for the γ5-odd,

ψ̄Oψ = ψ̄LOψL + ψ̄ROψR (O ≡ γμ, γμγ5) . (3.6)

The standard EW theory is a chiral theory, in the sense that ψL and ψR behave
differently under the gauge group (so that parity and charge conjugation non
conservation are made possible in principle). Thus, mass terms for fermions (of
the form ψ̄LψR + h.c.) are forbidden in the symmetric limit. In particular, in the
Minimal Standard Model (MSM: i.e. the model that only includes all observed
particles plus a single Higgs doublet), all ψL are SU(2) doublets while all ψR

are singlets. But for the moment, by ψL,R we mean column vectors, including
all fermion types in the theory that span generic reducible representations of
SU(2) ⊗ U(1).

In the absence of mass terms, there are only vector and axial vector interactions
in the lagrangian and those have the property of not mixing ψL and ψR . Fermion
masses will be introduced, together with W± and Z masses, by the mechanism of
symmetry breaking. The covariant derivatives DμψL,R are explicitly given by

DμψL,R =
[
∂μ + ig

3∑
A=1

tAL,RW
A
μ + ig′ 1

2
YL,RBμ

]
ψL,R , (3.7)

where tAL,R and 1/2YL,R are the SU(2) and U(1) generators, respectively, in the
reducible representations ψL,R . The commutation relations of the SU(2) generators
are given by

[tAL , tBL ] = i εABCt
C
L and [tAR , tBR ] = iεABCt

C
R . (3.8)

We use the normalization (3.8) [in the fundamental representation of SU(2)]. The
electric charge generator Q (in units of e, the positron charge) is given by

Q = t3
L + 1/2 YL = t3

R + 1/2 YR . (3.9)

Note that the normalization of the U(1) gauge coupling g′ in (3.7) is now specified
as a consequence of (3.9). Note that t iRψR = 0, given that, for all known quark and
leptons, ψR is a singlet. But in the following, we keep t iRψR for generality, in case
1 day a non singlet right-handed fermion is discovered.

3.3 Couplings of Gauge Bosons to Fermions

All fermion couplings of the gauge bosons can be derived directly from Eqs. (3.2)
and (3.7). The charged Wμ fields are described by W 1,2

μ , while the photon Aμ and

weak neutral gauge boson Zμ are obtained from combinations of W 3
μ and Bμ. The
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charged-current (CC) couplings are the simplest. One starts from the W 1,2
μ terms in

Eqs. (3.2) and (3.7) which can be written as:

g(t1W 1
μ + t2W 2

μ) = g
{
[(t1 + it2)/

√
2](W 1

μ − iW 2
μ)/

√
2] + h.c.

}

= g
{
[(t+W−

μ )/
√

2] + h.c.
}
, (3.10)

where t± = t1 ± it2 and W± = (W 1 ± iW 2)/
√

2. By applying this generic relation
to L and R fermions separately, we obtain the vertex

Vψ̄ψW = gψ̄γμ

[
(t+L /

√
2)(1 − γ5)/2 + (t+R /

√
2)(1 + γ5)/2

]
ψW−

μ + h.c.

(3.11)

Given that tR = 0 for all fermions in the SM, the charged current is pure V − A.
In the neutral-current (NC) sector, the photon Aμ and the mediator Zμ of the weak
NC are orthogonal and normalized linear combinations of Bμ and W 3

μ:

Aμ = cos θWBμ + sin θWW 3
μ ,

Zμ = − sin θWBμ + cos θWW 3
μ . (3.12)

and conversely:

W 3
μ = sin θWAμ + cos θWZμ ,

Bμ = cos θWAμ − sin θWZμ . (3.13)

Equations (3.12) define the weak mixing angle θW . We can rewrite the W 3
μ and Bμ

terms in Eqs. (3.2) and (3.7) as follows:

gt3W 3
μ + g′Y/2Bμ = [gt3 sin θW + g′(Q − t3) cos θW ]Aμ +

+ [gt3 cos θW − g′(Q − t3) sin θW ]Zμ , (3.14)

where Eq. (3.9) for the charge matrix Q was also used. The photon is characterized
by equal couplings to left and right fermions with a strength equal to the electric
charge. Thus we immediately obtain

g sin θW = g′ cos θW = e , (3.15)

or equivalently,

tg θW = g′/g (3.16)
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Once θW has been fixed by the photon couplings, it is a simple matter of algebra to
derive the Z couplings, with the result

Vψ̄ψZ = g

2 cos θW
ψ̄γμ[t3

L(1 − γ5) + t3
R(1 + γ5) − 2Q sin2 θW ]ψZμ , (3.17)

where Vψ̄ψZ is a notation for the vertex. Once again, recall that in the MSM, t3
R = 0

and t3
L = ±1/2.

In order to derive the effective four-fermion interactions that are equivalent, at
low energies, to the CC and NC couplings given in Eqs. (3.11) and (3.17), we
anticipate that large masses, as experimentally observed, are provided for W± and
Z by LHiggs. For left–left CC couplings, when the momentum transfer squared can
be neglected, with respect to m2

W , in the propagator of Born diagrams with single
W exchange (see, for example, the diagram for μ decay in Fig. 3.1, from Eq. (3.11)
we can write

LCC
eff � g2

8m2
W

[ψ̄γμ(1 − γ5)t
+
L ψ][ψ̄γ μ(1 − γ5)t

−
L ψ] . (3.18)

By specializing further in the case of doublet fields such as νe − e− or νμ − μ−,
we obtain the tree-level relation of g with the Fermi coupling constant GF precisely
measured from μ decay (see Chap. 2, Eqs. (2), (3)):

GF/
√

2 = g2/8m2
W . (3.19)

By recalling that g sin θW = e, we can also cast this relation in the form

mW = μBorn/ sin θW , (3.20)

with

μBorn = (πα/
√

2GF)
1/2 � 37.2802 GeV , (3.21)

where α is the fine-structure constant of QED (α ≡ e2/4π = 1/137.036).
In the same way, for neutral currents we obtain in Born approximation from

Eq. (3.17) the effective four-fermion interaction given by

LNC
eff � √

2 GFρ0ψ̄γμ[. . .]ψψ̄γ μ[. . .]ψ , (3.22)

Fig. 3.1 The Born diagram
for μ decay

W e

e
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where

[. . .] ≡ t3
L(1 − γ5) + t3

R(1 + γ5) − 2Q sin2 θW (3.23)

and

ρ0 = m2
W

m2
Z cos2 θW

. (3.24)

All couplings given in this section are obtained at tree level and are modified in
higher orders of perturbation theory. In particular, the relations between mW and
sin θW (Eqs. (3.20) and (3.21)) and the observed values of ρ (ρ = ρ0 at tree level)
in different NC processes, are altered by computable EW radiative corrections, as
discussed in Sect. (3.11).

The partial width (W → f̄ f ′) is given in Born approximation by the simplest
diagram in Fig. 3.2 and one readily obtains from Eq. (3.11) with tR = 0, in the limit
of neglecting the fermion masses and summing over all possible f ′ for a given f :

(W → f̄ f ′) = NC

GFm
3
W

6π
√

2
= NC

αmW

12 sin2 θW
, (3.25)

where NC = 3 or 1 is the number of colours for quarks or leptons, respectively, and
the relations Eqs. (3.15, 3.19) have been used. Here and in the following expressions
for the Z widths the one loop QCD corrections for the quark channels can be
absorbed in a redefinition of NC : NC → 3[1 + αs(mZ)/π + . . .]. Note that the
widths are particularly large because the rate already occurs at order g2 or GF .
The experimental values of the W total width and the leptonic branching ratio (the
average of e, μ and τ modes) are [5, 8] (see Chap. 6):

W = 2.147 ± 0.060 GeV, B(W → lνl) = 10.80 ± 0.09. (3.26)

The branching ratio B is in very good agreement with the simple approximate
formula, derived from Eq. (3.25):

B(W → lνl) ∼ 1

2.3.(1 + αs(m
2
Z)/π) + 3

∼ 10.8%. (3.27)

Fig. 3.2 Diagrams for (a) the
W and (b) the Z widths in
Born approximation

Z

a

W

b

ff

f ’ f
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The denominator corresponds to the sum of the final states d ′ū, s′c̄, e−ν̄e, μ−ν̄μ,
τ−ν̄τ (for the definition of d ′ and s′ see Eq. (3.66)).

For tR = 0 the Z coupling to fermions in Eq. (3.17) can be cast into the form:

Vψ̄f ψf Z
= g

2 cos θW
ψ̄f γμ[gfV − g

f

Aγ5]ψfZ
μ , (3.28)

with:

g
f

A = t
3f
L , g

f

V /g
f

A = 1 − 4|Qf | sin2 θW . (3.29)

and t
3f
L = ±1/2 for up-type or down-type fermions. In terms of gA,V given in

Eqs. (3.29) (the widths are proportional to (g2
V +g2

A)), the partial width (Z → f̄ f )

in Born approximation (see the diagram in Fig. 3.2), for negligible fermion masses,
is given by:

(Z → f̄ f ) = NC

αmZ

12 sin2 2θW
[1 + (1 − 4|Qf | sin2 θW )2]

= NCρ0
GFm

3
Z

24π
√

2
[1 + (1 − 4|Qf | sin2 θW )2]. (3.30)

where ρ0 = m2
W/m2

Z cos2 θW is given in Eq. (3.55). The experimental values of the
Z total width and of the partial rates into charged leptons (average of e, μ and τ ),
into hadrons and into invisible channels are [5, 8] (see Chap. 6):

Z = 2.4952 ± 0.0023 GeV,

l+l− = 83.985 ± 0.086 MeV,

h = 1744.4 ± 2.0 MeV,

inv = 499.0 ± 1.5 MeV. (3.31)

The measured value of the Z invisible width, taking radiative corrections into
account, leads to the determination of the number of light active neutrinos (see
Chap. 6):

Nν = 2.9841 ± 0.0083, (3.32)

well compatible with the three known neutrinos νe, νμ and ντ ; hence there exist only
the three known sequential generations of fermions (with light neutrinos), a result
with important consequences also in astrophysics and cosmology.

At the Z peak, besides total cross sections, various types of asymmetries have
been measured. The results of all asymmetry measurements are quoted in terms of
the asymmetry parameter Af , defined in terms of the effective coupling constants,
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g
f
V and g

f
A , as:

Af = 2
g
f
V g

f
A

g
f 2
V + g

f 2
A

= 2
g
f
V /g

f
A

1 + (g
f
V /g

f
A)

2
, A

f
FB = 3

4
AeAf . (3.33)

The measurements are: the forward-backward asymmetry (Af
FB = (3/4)AeAf ), the

tau polarization (Aτ ) and its forward backward asymmetry (Ae) measured at LEP, as
well as the left-right and left-right forward-backward asymmetry measured at SLC
(Ae and Af , respectively). Hence the set of partial width and asymmetry results
allows the extraction of the effective coupling constants: widths measure (g2

V + g2
A)

and asymmetries measure gV /gA.
The top quark is heavy enough that it can decay into a real bW pair, which is by

far its dominant decay channel. The next mode, t → sW , is suppressed in rate by a
factor |Vts|2 ∼ 1.7.10−3, see Eqs. (3.71–3.73). The associated width, neglecting mb

effects but including 1-loop QCD corrections in the limit mW = 0, is given by (we
have omitted a factor |Vtb|2 that we set equal to 1):

(t → bW+) = GFm
3
t

8π
√

2
(1 − m2

W

m2
t

)2(1 + 2
m2

W

m2
t

)[1 − αs(mZ)

3π
(
2π2

3
− 5

2
) + . . .].

(3.34)

The top quark lifetime is so short, about 0.5.10−24 s, that it decays before hadroniz-
ing or forming toponium bound states.

3.4 Gauge Boson Self-interactions

The gauge boson self-interactions can be derived from the Fμν term in Lgauge, by
using Eq. (3.12) and W± = (W 1 ± iW 2)/

√
2.

Defining the three-gauge-boson vertex as in Fig. 3.3 (with all incoming lines), we
obtain (V ≡ γ,Z)

VW−W+V = igW−W+V [gμν(p − q)λ + gμλ(r − p)ν + gνλ(q − r)μ] , (3.35)

with

gW−W+γ = g sin θW = e and gW−W+Z = g cos θW . (3.36)

Note that the photon coupling to the W is fixed by the electric charge, as imposed
by QED gauge invariance. The ZWW coupling is larger by a tan θW factor. This
form of the triple gauge vertex is very special: in general, there could be departures
from the above SM expression, even restricting us to Lorentz invariant, em gauge
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Fig. 3.3 The three- and four-gauge boson vertices. The cubic coupling is of order g, while the
quartic one is of order g2

W + W +

W W

e+ e+

e
e

, Z

Fig. 3.4 The three- and four-gauge boson vertices. The cubic coupling is of order g, while the
quartic one is of order g2

symmetric and C and P conserving couplings. In fact some small corrections are
already induced by the radiative corrections. But, in principle, more important could
be the modifications induced by some new physics effect. The experimental testing
of the triple gauge vertices has been done mainly at LEP2 and at the Tevatron. At
LEP2 the crosssection and angular distributions for the process e+e− → W+W−
have been studied (see Chap. 6).

In Born approximation the Feynman diagrams for the LEP2 process are shown
in Fig. 3.4 [6]. Besides neutrino exchange which only involves the well established
charged current vertex, the triple weak gauge vertices VW−W+V appear in the γ and
Z exchange diagrams. The Higgs exchange is negligible because the electron mass is
very small. The analytic cross section formula in Born approximation can be found,
for example, in Ref. [5]. The experimental data are compared with the SM prediction
in Chap. 6 [7]. The agreement is very good. Note that the sum of all three exchange
amplitudes has a better high energy behaviour. This is due to cancellations among
the amplitudes implied by gauge invariance, connected to the fact that the theory is
renormalizable (the crosssection can be seen as a contribution to the imaginary part
of the e+e− → e+e− amplitude).

The quartic gauge coupling is proportional to g2εABCW
BWCεADEW

DWE .
Thus in the term with A = 3 we have four charged W’s. For A = 1 or two
we have two charged W’s and 2 W 3’s, each W3 being a combination of γ and Z

according to Eq. (3.13). With a little algebra the quartic vertex can be cast in the
form:

VWWVV = igWWV V [2gμνgλρ − gμλgνρ − gμρgνλ] , (3.37)
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where, μ and ν refer to W+W+ in the 4W vertex and to V V in the WWV V case
and:

gWWWW = g2, gWWγγ = −e2, gWWγZ = −eg cos θW , gWWZZ = −g2 cos2 θW .

(3.38)

In order to obtain these result for the vertex the reader must duly take into account
the factor of −1/4 in front of F 2

μν in the lagrangian and the statistical factors
which are equal to two for each pair of identical particles (like W+W+ or γ γ , for
example). The quartic coupling, being quadratic in g, hence small, could not be
directly tested so far.

3.5 The Higgs Sector

We now turn to the Higgs sector of the EW lagrangian. The Higgs lagrangian is
specified by the gauge principle and the requirement of renormalizability to be

LHiggs = (Dμφ)
†(Dμφ) − V (φ†φ) − ψ̄LψRφ − ψ̄R

†ψLφ
† , (3.39)

where φ is a column vector including all Higgs fields; it transforms as a reducible
representation of the gauge group. The quantities  (which include all coupling
constants) are matrices that make the Yukawa couplings invariant under the Lorentz
and gauge groups. Without loss of generality, here and in the following, we take 

to be γ5-free. The potential V (φ†φ), symmetric under SU(2) ⊗ U(1), contains, at
most, quartic terms in φ so that the theory is renormalizable:

V (φ†φ) = −μ2φ†φ + 1

2
λ(φ†φ)2 (3.40)

As discussed in Chap. 2, spontaneous symmetry breaking is induced if the
minimum of V, which is the classical analogue of the quantum mechanical vacuum
state (both are the states of minimum energy), is obtained for non-vanishing φ

values. Precisely, we denote the vacuum expectation value (VEV) of φ, i.e. the
position of the minimum, by v (which is a doublet):

〈0|φ(x)|0〉 = v =
(

0
v

)
	= 0 . (3.41)

The reader should be careful that the same symbol is used for the doublet and the
only non zero component of the same doublet. The fermion mass matrix is obtained
from the Yukawa couplings by replacing φ(x) by v:

M = ψ̄L MψR + ψ̄RM†ψL , (3.42)
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with

M =  · v . (3.43)

In the MSM, where all left fermions ψL are doublets and all right fermions ψR are
singlets, only Higgs doublets can contribute to fermion masses. There are enough
free couplings in , so that one single complex Higgs doublet is indeed sufficient to
generate the most general fermion mass matrix. It is important to observe that by a
suitable change of basis we can always make the matrix M Hermitian and diagonal.
In fact, we can make separate unitary transformations on ψL and ψR according to

ψ ′
L = UψL, ψ ′

R = WψR (3.44)

and consequently

M → M′ = U†MW . (3.45)

This transformation does not alter the structure of the fermion couplings in Lsymm
(because both the kinetic terms and the couplings to gauge bosons do not mix L
and R spinors) except that it leads to the phenomenon of mixing, as we shall see in
Sect. (3.6).

If only one Higgs doublet is present, the change of basis that makes M diagonal
will at the same time diagonalize the fermion–Higgs Yukawa couplings. Thus, in
this case, no flavour-changing neutral Higgs vertices are present. This is not true,
in general, when there are several Higgs doublets. But one Higgs doublet for each
electric charge sector i.e. one doublet coupled only to u-type quarks, one doublet to
d-type quarks, one doublet to charged leptons (and possibly one for neutrino Dirac
masses) would also be all right, because the mass matrices of fermions with different
charges are diagonalized separately. For several Higgs doublets in a given charge
sector it is also possible to generate CP violation by complex phases in the Higgs
couplings. In the presence of six quark flavours, this CP-violation mechanism is not
necessary. In fact, at the moment, the simplest model with only one Higgs doublet
seems adequate for describing all observed phenomena.

We now consider the gauge-boson masses and their couplings to the Higgs. These
effects are induced by the (Dμφ)

†(Dμφ) term in LHiggs (Eq. (3.39)), where

Dμφ =
[
∂μ + ig

3∑
A=1

tAWA
μ + ig′(Y/2)Bμ

]
φ . (3.46)

Here tA and Y/2 are the SU(2) ⊗ U(1) generators in the reducible representation
spanned by φ. Not only doublets but all non-singlet Higgs representations can
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contribute to gauge-boson masses. The condition that the photon remains massless
is equivalent to the condition that the vacuum is electrically neutral:

Q|v〉 = (t3 + 1

2
Y )|v〉 = 0 . (3.47)

We now explicitlly consider the case of a single Higgs doublet:

φ =
(
φ+
φ0

)
, v =

(
0
v

)
, (3.48)

The charged W mass is given by the quadratic terms in the W field arising from
LHiggs, when φ(x) is replaced by v in Eq. (3.41). By recalling Eq. (3.10), we obtain

m2
WW+

μ W−μ = g2|(t+v/√2)|2W+
μ W−μ , (3.49)

whilst for the Z mass we get [recalling Eqs. (3.12–3.14)]

1

2
m2

ZZμZ
μ = |[g cos θW t3 − g′ sin θW (Y/2)]v|2ZμZ

μ , (3.50)

where the factor of 1/2 on the left-hand side is the correct normalization for the
definition of the mass of a neutral field. By using Eq. (3.47), relating the action of t3

and Y/2 on the vacuum v, and Eqs. (3.16), we obtain

1

2
m2

Z = (g cos θW + g′ sin θW )2|t3v|2 = (g2/ cos2 θW )|t3v|2 . (3.51)

For a Higgs doublet, as in Eq. (3.48), we have

|t+v|2 = v2, |t3v|2 = 1/4v2 , (3.52)

so that

m2
W = 1/2g2v2, m2

Z = 1/2g2v2/ cos2 θW . (3.53)

Note that by using Eq. (3.19) we obtain

v = 2−3/4G
−1/2
F = 174.1 GeV . (3.54)
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It is also evident that for Higgs doublets

ρ0 = m2
W

m2
Z cos2 θW

= 1 . (3.55)

This relation is typical of one or more Higgs doublets and would be spoiled by the
existence of Higgs triplets etc. In general,

ρ0 =
∑

i ((ti )
2 − (t3

i )
2 + ti )v

2
i∑

i 2(t3
i )

2v2
i

(3.56)

for several Higgs bosons with VEVs vi , weak isospin ti , and z-component t3
i .

These results are valid at the tree level and are modified by calculable EW radiative
corrections, as discussed in Sect. (3.7).

The measured values of the W and Z masses are [5, 8] (see Chap. 6):

mW = 80.398 ± 0.025 GeV, mZ = 91.1875 ± 0.0021 GeV. (3.57)

In the minimal version of the SM only one Higgs doublet is present. Then
the fermion–Higgs couplings are in proportion to the fermion masses. In fact,
from the Yukawa couplings gφf̄ f (f̄LφfR + h.c.), the mass mf is obtained by
replacing φ by v, so that mf = gφf̄ f v. In the minimal SM three out of the four
Hermitian fields are removed from the physical spectrum by the Higgs mechanism
and become the longitudinal modes of W+,W−, and Z. The fourth neutral
Higgs is physical and should be found. If more doublets are present, two more
charged and two more neutral Higgs scalars should be around for each additional
doublet.

The couplings of the physical Higgs H can be simply obtained from LHiggs, by
the replacement (the remaining three hermitian fields correspond to the would be
Goldstone bosons that become the longitudinal modes of W± and Z):

φ(x) =
(
φ+(x)
φ0(x)

)
→

(
0

v + (H/
√

2)

)
, (3.58)

[so that (Dμφ)
†(Dμφ) = 1/2(∂μH)2 + . . .], with the results

L[H,W,Z] = g2 v√
2
W+

μ W−μH + g2

4
W+

μ W−μH 2 +

+ g2 v

2
√

2 cos2 θW
ZμZ

μH + g2

8 cos2 θW
ZμZ

μH 2 . (3.59)

Note that the trilinear couplings are nominally of order g2, but the adimensional
coupling constant is actually of order g if we express the couplings in terms of the
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masses according to Eqs. (3.53):

L[H,W,Z] = gmWW+
μ W−μH + g2

4
W+

μ W−μH 2 +

+ gmZ

2 cos2 θW
ZμZ

μH + g2

8 cos2 θW
ZμZ

μH 2 . (3.60)

Thus the trilinear couplings of the Higgs to the gauge bosons are also proportional
to the masses. The quadrilinear couplings are genuinely of order g2. Recall that to
go from the lagrangian to the Feynman rules for the vertices the statistical factors
must be taken into account: for example, the Feynman rule for the ZZHH vertex
is igμνg2/2 cos2 θW .

The generic coupling of H to a fermion of type f is given by (after diagonaliza-
tion):

L[H, ψ̄,ψ] = gf√
2
ψ̄ψH, (3.61)

with

gf√
2

= mf√
2v

= 21/4G
1/2
F mf . (3.62)

The Higgs self couplings are obtained from the potential in Eq. (3.40) by the
replacement in Eq. (3.58). Given that, from the minimum condition:

v =
√
μ2

λ
(3.63)

one obtains:

V = −μ2(v + H√
2
)2 + μ2

2v2 (v + H√
2
)4 = −μ2v2

2
+ μ2H 2 + μ2

√
2v

H 3 + μ2

8v2 H
4

(3.64)

The constant term can be omitted in our context. We see that the Higgs mass is
positive (compare with Eq. (3.40)) and is given by:

m2
H = 2μ2 = 2λv2 (3.65)

We see that for
√
λ ∼ o(1) the Higgs mass should be of the order of the weak scale.

The difficulty of the Higgs search is due to the fact that it is heavy and coupled
in proportion to mass: it is a heavy particle that must be radiated by another heavy
particle. So a lot of phase space and luminosity is needed. At LEP2 the main process
for Higgs production was the Higgs-strahlung process e+e− → ZH shown in
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Fig. 3.5 Higgs production
diagrams in Born
approximation: (a) The
Higgs-strahlung process
e+e− → ZH , (b) the WW
fusion process e+e− → Hνν̄

W

WH

e + e +

Z

Z

e -
e -

H

a b

Fig. 3.5 [9]. The alternative process e+e− → Hνν̄, via WW fusion, also shown
in Fig. 3.5 [10], has a smaller crosssection at LEP2 energies but would become
important, even dominant at higher energy e+e− colliders, like the ILC or CLIC
(the corresponding ZZ fusion process has a much smaller crosssection). The analytic
formulae for the crosssections of both processes can be found, for example, in [11].
The direct experimental limit on mH from LEP2 is mH � 114 GeV at 95% c.l. (see
Chap. 6).

3.6 The CKM Matrix

Weak charged currents are the only tree level interactions in the SM that change
flavour: for example, by emission of a W an up-type quark is turned into a down-
type quark, or a νl neutrino is turned into a l− charged lepton (all fermions are
letf-handed). If we start from an up quark that is a mass eigenstate, emission of a
W turns it into a down-type quark state d’ (the weak isospin partner of u) that in
general is not a mass eigenstate. The mass eigenstates and the weak eigenstates do
not coincide and a unitary transformation connects the two sets:

D′ =
⎛
⎝d ′
s′
b′

⎞
⎠ = V

⎛
⎝d

s

b

⎞
⎠ = VD (3.66)

V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [12] (and similarly we can
denote by U the column vector of the three up quark mass eigenstates). Thus in
terms of mass eigenstates the charged weak current of quarks is of the form:

J+
μ ∝ Ūγμ(1 − γ5)t

+VD (3.67)

where

V = U†
uUd (3.68)
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Here Uu and Ud are the unitary matrices that operate on left-handed doublets in
the diagonalization of the u and d quarks, respectively (see Eq. (3.44)). Since V
is unitary (i.e. VV † = V †V = 1) and commutes with T 2, T3 and Q (because
all d-type quarks have the same isospin and charge), the neutral current couplings
are diagonal both in the primed and unprimed basis (if the down-type quark terms
in the Z current are written in terms of weak isospin eigenvectors as D̄′D′,
then by changing basis we get D̄V †VD and V and  commute because, as
seen from Eq. (3.23),  is made of Dirac matrices and of T3 and Q generator
matrices). It follows that D̄′D′ = D̄D. This is the GIM mechanism [13] that
ensures natural flavour conservation of the neutral current couplings at the tree
level.

For N generations of quarks, V is a N×N unitary matrix that depends on N2

real numbers (N2 complex entries with N2 unitarity constraints). However, the 2N
phases of up- and down-type quarks are not observable. Note that an overall phase
drops away from the expression of the current in Eq. (3.67), so that only 2N − 1
phases can affect V. In total, V depends on N2 − 2N + 1 = (N − 1)2 real physical
parameters. A similar counting gives N(N − 1)/2 as the number of independent
parameters in an orthogonal N×N matrix. This implies that in V we have N(N −
1)/2 mixing angles and (N − 1)2 − N(N − 1)/2 = (N − 1)(N − 2)/2 phases: for
N = 2 one mixing angle (the Cabibbo angle θC) and no phases, for N = 3 three
angles (θ12, θ13 and θ23) and one phase ϕ etc.

Given the experimental near diagonal structure of V a convenient parametrisation
is the one proposed by Maiani [14]. It can be cast in the form of a product of
three independent 2 × 2 block matrices (sij and cij are shorthands for sin θij and
cos θij ):

V =
⎛
⎝1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠
⎛
⎝ c13 0 s13e

iϕ

0 1 0
−s13e

−iϕ 0 c13

⎞
⎠
⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ . (3.69)

The advantage of this parametrization is that the three mixing angles are of different
orders of magnitude. In fact, from experiment we know that s12 ≡ λ, s23 ∼ o(λ2)

and s13 ∼ o(λ3), where λ = sin θC is the sine of the Cabibbo angle, and, as order
of magnitude, sij can be expressed in terms of small powers of λ. More precisely,
following Wolfenstein [15] one can set:

s12 ≡ λ, s23 = Aλ2, s13e
−iφ = Aλ3(ρ − iη) (3.70)

As a result, by neglecting terms of higher order in λ one can write down:

V =
⎡
⎣Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎤
⎦ ∼

⎡
⎢⎣

1 − λ2

2 λ Aλ3(ρ − iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎤
⎥⎦ + o(λ4).

(3.71)
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It has become customary to make the replacement ρ, η → ρ̄, η̄ with:

ρ − iη = ρ̄ − iη̄√
1 − λ2

∼ (ρ̄ − iη̄)(1 + λ2/2 + . . . ). (3.72)

Present values of the CKM parameters as obtained from experiment are [16] [17] (a
survey of the current status of the CKM parameters can also be found in Ref. [5]):

λ = 0.2258 ± 0.0014

A = 0.818 ± 0.016

ρ̄ = 0.164 ± 0.029; η̄ = 0.340 ± 0.017 (3.73)

A more detailed discussion of the experimental data is given in Chap. 10.
In the SM the non vanishing of the η parameter (related to the phase ϕ in

Eqs. 3.69 and 3.70) is the only source of CP violation. Unitarity of the CKM matrix
V implies relations of the form

∑
a VbaV

∗
ca = δbc. In most cases these relations

do not imply particularly instructive constraints on the Wolfenstein parameters. But
when the three terms in the sum are of comparable magnitude we get interesting
information. The three numbers which must add to zero form a closed triangle in the
complex plane, with sides of comparable length. This is the case for the t-u triangle
(unitarity triangle) shown in Fig. 3.6 (or, what is equivalent in first approximation,
for the d-b triangle):

VtdV
∗
ud + VtsV

∗
us + VtbV

∗
ub = 0 (3.74)

All terms are of order λ3. For η = 0 the triangle would flatten down to vanishing
area. In fact the area of the triangle, J of order J ∼ ηA2λ6, is the Jarlskog invariant
[18] (its value is independent of the parametrization). In the SM all CP violating
observables must be proportional to J, hence to the area of the triangle or to η. A
direct and by now very solid evidence for J non vanishing is obtained from the
measurements of ε and ε′ in K decay. Additional direct evidence is being obtained
from the experiments on B decays at beauty factories and at the TeVatron where the
angles β (the most precisely measured), α and γ have been determined. Together
with the available information on the magnitude of the sides all the measurements

Fig. 3.6 The unitarity
triangle corresponding to
Eq. (3.74)

1-

V Vtb ub
* V Vtb ud

*

V Vtb us
*
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Fig. 3.7 Box diagrams
describing K0 − K̄0 mixing
at the quark level at 1-loop

d d

d

d

s s s

s

u, c, t
u, c, t

W

W

are in good agreement with the predictions from the SM unitary triangle [16, 17]
(see Chap. 10).

As we have discussed, due to the GIM mechanism, there are no flavour changing
neutral current (FCNC) transitions at tree level in the SM. Transitions with |�F | =
1, 2 are induced at one loop level. In particular, meson mixing, i.e. M → M̄ off
diagonal |�F | = 2 mass matrix elements (with M = K,D or B neutral mesons),
are obtained from box diagrams. For example, in the case of K0 − K̄0 mixing the
relevant transition is s̄d → sd̄ (see Fig. 3.7). In the internal quark lines all up-type
quarks are exchanged. In the amplitude, two vertices and the connecting propagator
(with virtual four momentum pμ) at one side contribute a factor (ui = u, c, t):

FGIM =
∑
i

V ∗
uis

1

p/ − mui

Vuid , (3.75)

which, in the limit of equal mui , is clearly vanishing due to the unitarity of the CKM
matrix V . Thus the result is proportional to mass differences. For K0 − K̄0 mixing
the contribution of virtual u quarks is negligible due to the small value of mu and the
contribution of the t quark is also small due to the mixing factors V ∗

t sVtd ∼ o(A2λ5).
The dominant c quark contribution to the real part of the box diagram quark-level
amplitude is approximately of the form (see, for example, [19]):

ReHbox = G2
F

16π2
m2

cRe(V
∗
csVcd)

2η1O
�s=2 , (3.76)

where η1 ∼ 0.85 is a QCD correction factor and O�s=2 = d̄LγμsL s̄LγμdL is the
4-quark dimension six relevant operator. To obtain the K0 − K̄0 mixing its matrix
element between meson states must be taken which is parametrized in terms of a
“BK parameter” which is defined in such a way that BK = 1 for vacuum state
insertion between the two currents:

〈K0|O�s=2|K̄0〉 = 16

3
fKm2

KBK , (3.77)

where fK ∼ 113MeV is the kaon pseudoscalar constant. Clearly to the charm
contribution in Eq. (3.76) non perturbative additional contributions must be added,
some of them of o(m2

K/m
2
c), because the smallness of mc makes a completely

partonic dominance inadequate. In particular, BK is best evaluated by QCD lattice
simulations. In Eq. (3.76) the factor o(m2

c/m
2
W) is the “GIM suppression” factor
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Z

d, s, b
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a
W

W W
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e e
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Fig. 3.8 Examples of |�F | = 1 transitions at the quark level at 1-loop: (a) Diagram for a Z → t c̄

vertex, (b) b → s γ , (c) a “penguin” diagram for b → s e+e−

(1/m2
W is hidden in GF according to Eq. (3.19)). For B mixing the dominant

contribution is from the t quark. In this case, the partonic dominance is more realistic
and the GIM factor o(m2

t /m
2
W) is actually larger than one.

All sorts of transitions with |�F | = 1 are also induced at loop level. For example,
an effective vertex Z → t c̄, which does not exist at tree level, is generated at 1-loop
(see Fig. 3.8). Similarly, transitions involving photons or gluons are also possible,
like t → c g or b → s γ (Fig. 3.8) or b → s g. For light fermion exchange
in the loop the GIM suppression is also effective in |�F | = 1 amplitudes. For
example, analogous leptonic transitions like μ → e γ or τ → μ γ also exist but
are extremely small in the SM because the tiny neutrino masses enter in the GIM
suppression factor. But new physics effects could well make these rare processes
accessible to experiments in the near future. The external Z, photon or gluon can be
attached to a pair of light fermions, giving rise to an effective four fermion operator,
as in “penguin diagrams” like the one shown in Fig. 3.8 for b → s l+l−. The
inclusive rate B → Xs γ with Xs a hadronic state containing a unit of strangeness
corresponding to an s-quark, has been precisely measured. The world average result
for the branching ratio with Eγ > 1.6 GeV is [5]:

B(B → Xs γ )exp = (3.55 ± 0.26).10−4 . (3.78)

The theoretical prediction for this inclusive process is to a large extent free of
uncertainties from hadronisation effects and is accessible to perturbation theory as
the b-quark is heavy enough. The most complete result at order α2

s is at present [20]
(and refs. therein):

B(B → Xs γ )th = (2.98 ± 0.26).10−4 . (3.79)

Note that the theoretical value has recently become smaller than the experimental
value. The fair agreement between theory and experiment imposes stringent con-
straints on possible new physics effects.
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3.7 Neutrino Masses

In the minimal version of the SM the right handed neutrinos νiR , which have no
gauge interactions, are not present at all. With no νR no Dirac mass is possible
for neutrinos. If lepton number conservation is also imposed, then no Majorana
mass is allowed either and, as a consequence, all neutrinos are massless. But, at
present, from neutrino oscillation experiments (see Chapter 11 of the present work),
we know that at least 2 out of the 3 known neutrinos have non vanishing masses:
the two mass squared differences measured from solar (�m2

12) and atmospheric
oscillations (�m2

23) are given by �m2
12 ∼ 8 10−5 eV 2 and �m2

23 ∼ 2.5 10−3

[21]. The absolute values of the masses are very small, with an upper limit of a
fraction of eV , obtained from laboratory experiments (tritium β decay near the end
point: mν � 2 eV [5], absence of visible neutrinoless double β decay : |mee| �
0.3−0.7 eV (mee is a combination of neutrino masses; for a review, see, for example
[22]) and from cosmological observations: mν � 0.1 − 0.7 eV (depending on the
cosmological model assumptions) [23]. If νiR are added to the minimal model and
lepton number is imposed by hand, then neutrino masses would in general appear as
Dirac masses, generated by the Higgs mechanism, like for any other fermion. But,
for Dirac neutrinos, to explain the extreme smallness of neutrino masses, one should
allow for very small Yukawa couplings. However, we stress that, in the SM, baryon
B and lepton L number conservation, which are not guaranteed by gauge symmetries
(as is the case for the electric charge Q), are understood as “accidental” symmetries,
due to the fact that, out of the SM fields, it is not possible to construct gauge invariant
operators which are renormalizable (i.e. of operator dimension d ≤ 4) and violate
B and/or L. In fact the SM lagrangian should contain all terms allowed by gauge
symmetry and renormalizability. The most general renormalizable lagrangian, built
from the SM fields, compatible with the SM gauge symmetry, in absence of νiR , is
automatically B and L conserving. But in presence of νiR , this is no more true and
the right handed Majorana mass term is allowed:

MRR = ν̄ciRMij νjR = νTiRCMij νjR , (3.80)

where νciR = Cν̄TiR is the charge conjugated neutrino field and C is the charge
conjugation matrix in Dirac spinor space. The Majorana mass term is an operator
of dimension d = 3 with �L = 2. Since the νiR are gauge singlets the Majorana
mass MRR is fully allowed by the gauge symmetry and a coupling with the Higgs is
not needed to generate this type of mass. As a consequence, the entries of the mass
matrix Mij do not need to be of the order of the EW symmetry breaking scale v and
could be much larger. If one starts from the Dirac and RR Majorana mass terms for
neutrinos, the resulting mass matrix, in the L,R space, has the form:

mν =
[

0 mD

mD M

]
(3.81)
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where mD and M are the Dirac and Majorana mass matrices (M is the matrix Mij

in Eq. (3.80)). The corresponding eigenvalues are three very heavy neutrinos with
masses of order M and three light neutrinos with masses

mν = −mT
DM

−1mD , (3.82)

which are possibly very small if M is large enough. This is the see-saw mechanism
for neutrino masses [24]. Note that if no νiR exist a Majorana mass term could
still be built out of νjL. But νjL have weak isospin 1/2, being part of the left
handed lepton doublet l. Thus, the left handed Majorana mass term has total weak
isospin equal to one and needs two Higgs fields to make a gauge invariant term. The
resulting mass term:

O5 = λlTi λij ljHH/M , (3.83)

with M a large scale (apriori comparable to the scale of MRR) and λ a dimensionless
coupling generically of o(1), is a non renormalizable operator of dimension 5. The
corresponding mass terms are of the order mν ∼ λv2/M , hence of the same generic
order of the light neutrino masses from Eq. (3.82).

In conclusion, neutrino masses are believed to be small because neutrinos are
Majorana particles with masses inversely proportional to the large scale M of energy
where L non conservation is induced. It is interesting that the observed magnitudes
of the mass squared splittings of neutrinos are well compatible with a scale M

remarkably close to the Grand Unification scale, where in fact L non conservation
is naturally expected.

In the previous Section we have discussed flavour mixing for quarks. But, clearly,
given that non vanishing neutrino masses have been established, a similar mixing
matrix is also introduced in the leptonic sector, but will not be discussed here (see
Chapter 11).

3.8 Renormalization of the Electroweak Theory

The Higgs mechanism gives masses to the Z, the W± and to fermions while the
lagrangian density is still symmetric. In particular the gauge Ward identities and the
symmetric form of the gauge currents are preserved. The validity of these relations
is an essential ingredient for renormalizability. In the previous Sections we have
specified the Feynman vertices in the “unitary” gauge where only physical particles
appear. However, as discussed in Chap. 2, in this gauge the massive gauge boson
propagator would have a bad ultraviolet behaviour:

Wμν =
−gμν + qμqν

m2
W

q2 − m2
W

. (3.84)
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A formulation of the standard EW theory with good apparent ultraviolet behaviour
can be obtained by introducing the renormalizable or Rξ gauges, in analogy with
the abelian case discussed in detail in Chap. 2. One parametrizes the Higgs doublet
as:

φ =
(
φ+
φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
=

(
−iw+

v + H+iz√
2

)
, (3.85)

and similarly for φ†, where w− appears. The scalar fields w± and z are the pseudo
Goldstone bosons associated with the longitudinal modes of the physical vector
bosons W± and Z. The Rξ gauge fixing lagrangian has the form:

�LGF = −1

ξ
|∂μWμ − ξmWw|2 − 1

2η
(∂μZμ−ηmZz)

2 − 1

2α
(∂μAμ)

2 . (3.86)

The W± and Z propagators, as well as those of the scalars w± and z, have exactly
the same general forms as for the abelian case in Eqs. (67)–(69) of Chap. 2, with
parameters ξ and η, respectively (and the pseudo Goldstone bosons w± and z have
masses ξmW and ηmZ). In general, a set of associated ghost fields must be added,
again in direct analogy with the treatment of Rξ gauges in the abelian case of
Chap. 2. The complete Feynman rules for the standard EW theory can be found
in a number of textbooks (see, for example, [25]).

The pseudo Goldstone bosons w± and z are directly related to the longitudinal
helicity states of the corresponding massive vector bosons W± and Z. This
correspondence materializes in a very interesting “equivalence theorem”: at high
energies of orderE the amplitude for the emission of one or more longitudinal gauge
bosons VL (with V = W,Z) becomes equal (apart from terms down by powers of
mV /E) to the amplitude where each longitudinal gauge boson is replaced by the
corresponding Goldstone field w± or z [26]. For example, consider top decay with
a longitudinal W in the final state: t → bW+

L . The equivalence theorem asserts that
we can compute the dominant contribution to this rate from the simpler t → bw+
matrix element:

(t → bW+
L ) = (t → bw+)[1 + o(m2

W/m2
t )] . (3.87)

In fact one finds:

(t → bw+) = h2
t

32π
mt = GFm

3
t

8π
√

2
, (3.88)

where ht = mt/v is the Yukawa coupling of the top quark (numerically very close
to 1), and we used 1/v2 = 2

√
2GF (see Eq. (3.54)). If we compare with Eq. (3.34),

we see that this expression coincides with the total top width (i.e. including all
polarizations for the W in the final state), computed at tree level, apart from terms
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down by powers of o(m2
W/m2

t ). In fact, the longitudinal W is dominant in the final
state because ht >> g2. Similarly the equivalence theorem can be applied to find
the dominant terms at large

√
s for the crosssection e+e− → W+

L W−
L , or the leading

contribution in the limit mH >> mV to the width for the decay (H → V V ).
The formalism of the Rξ gauges is also very useful in proving that spontaneously

broken gauge theories are renormalizable. In fact, the non singular behaviour of
propagators at large momenta is very suggestive of the result. Nevertheless to
prove it is by far not a simple matter. The fundamental theorem that in general a
gauge theory with spontaneous symmetry breaking and the Higgs mechanism is
renormalizable was proven by ’t Hooft and Veltman [27, 28].

For a chiral theory like the SM an additional complication arises from the
existence of chiral anomalies. But this problem is avoided in the SM because the
quantum numbers of the quarks and leptons in each generation imply a remarkable
(and, from the point of view of the SM, mysterious) cancellation of the anomaly,
as originally observed in Ref. [29]. In quantum field theory one encounters an
anomaly when a symmetry of the classical lagrangian is broken by the process of
quantization, regularization and renormalization of the theory. Of direct relevance
for the EW theory is the Adler-Bell-Jackiw (ABJ) chiral anomaly [30]. The classical
lagrangian of a theory with massless fermions is invariant under a U(1) chiral
transformations ψ′ = eiγ5θψ . The associated axial Noether current is conserved
at the classical level. But, at the quantum level, chiral symmetry is broken due to the
ABJ anomaly and the current is not conserved. The chiral breaking is produced by a
clash between chiral symmetry, gauge invariance and the regularization procedure.

The anomaly is generated by triangular fermion loops with one axial and two
vector vertices (Fig. 3.9). For example, for the Z the axial coupling is proportional
to the third component of weak isospin t3, while the vector coupling is proportional
to a linear combination of t3 and the electric charge Q. Thus in order for the chiral
anomaly to vanish all traces of the form tr{t3QQ}, tr{t3t3Q}, tr{t3t3t3} (and also
tr{t+t−t3} when charged currents are also included) must vanish, where the trace
is extended over all fermions in the theory that can circulate in the loop. Now all
these traces happen to vanish for each fermion family separately. For example take
tr{t3QQ}. In one family there are, with t3 = +1/2, three colours of up quarks with

Fig. 3.9 Triangle diagram
that generates the ABJ
anomaly

A

V V
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charge Q = +2/3 and one neutrino with Q = 0 and, with t3 = −1/2, three colours
of down quarks with charge Q = −1/3 and one l− with Q = −1. Thus we obtain
tr{t3QQ} = 1/2.3.4/9 − 1/2.3.1/9 − 1/2.1 = 0. This impressive cancellation
suggests an interplay among weak isospin, charge and colour quantum numbers
which appears as a miracle from the point of view of the low energy theory but is in
fact understandable from the point of view of the high energy theory. For example,
in Grand Unified Theories (GUTs) (for reviews, see, for example, [31]) there are
similar relations where charge quantization and colour are related: in the five of
SU(5) we have the content (d, d, d, e+, ν̄) and the charge generator has a vanishing
trace in each SU(5) representation (the condition of unit determinant, represented by
the letter S in the SU(5) group name, translates into zero trace for the generators).
Thus the charge of d quarks is −1/3 of the positron charge because there are three
colours. A whole family fits perfectly in one 16 of SO(10) which is anomaly free.
So GUTs can naturally explain the cancellation of the chiral anomaly.

An important implication of chiral anomalies together with the topological
properties of the vacuum in non abelian gauge theories is that the conservation of the
charges associated to baryon (B) and lepton (L) numbers is broken by the anomaly
[32], so that B and L conservation is actually violated in the standard electroweak
theory (but B-L remains conserved). B and L are conserved to all orders in the
perturbative expansion but the violation occurs via non perturbative instanton effects
[33] (the amplitude is proportional to the typical non perturbative factor exp −c/g2,
with c a constant and g the SU(2) gauge coupling). The corresponding effect is
totally negligible at zero temperature T , but becomes relevant at temperatures close
to the electroweak symmetry breaking scale, precisely at T ∼ o(T eV ). The non
conservation of B+L and the conservation of B−L near the weak scale plays a role
in the theory of baryogenesis that quantitatively aims at explaining the observed
matter antimatter asymmetry in the Universe (for a recent review, see, for example,
[34]; see also Chap. 9).

3.9 QED Tests: Lepton Anomalous Magnetic Moments

The most precise tests of the electroweak theory apply to the QED sector. Here
we discuss some recent developments. The anomalous magnetic moments of the
electron and of the muon are among the most precise measurements in the whole
of physics. The magnetic moment �μ and the spin �S are related by �μ = −ge �S/2m,
where g is the gyromagnetic ratio (g = 2 for a pointlike Dirac particle). The quantity
a = (g − 2)/2 measures the anomalous magnetic moment of the particle. Recently
there have been new precise measurements of ae and aμ for the electron [35] and
the muon [36]:

a
exp
e = 11596521808.5(7.6) .10−13, aexpμ = 11659208.0(6.3) .10−10.

(3.89)
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Fig. 3.10 The hadronic
contributions to the
anomalous magnetic moment:
vacuum polarization (left)
and light by light scattering
(right)

The theoretical calculations in general contain a pure QED part plus the sum of
hadronic and weak contribution terms:

a = aQED + ahadronic + aweak =
∑
i

Ci(
α

π
)i + ahadronic + aweak. (3.90)

The QED part has been computed analytically for i = 1, 2, 3, while for i = 4
there is a numerical calculation with an error (see, for example, [38] and refs
therein). Some terms for i = 5 have also been estimated for the muon case. The
hadronic contribution is from vacuum polarization insertions and from light by light
scattering diagrams (see Fig. 3.10). The weak contribution is fromW or Z exchange.

For the electron case the weak contribution is essentially negligible and the
hadronic term (ahadronice ∼ (16.71 ± 0.19).10−13) does not introduce an important
uncertainty. As a result this measurement can be used to obtain the most precise
determination of the fine structure constant [37]:

α−1 ∼ 137.035999710(96) , (3.91)

with an uncertainty about 10 times smaller than the previous determination.
However, very recently a theoretical error in the α4 terms was corrected [39]. As a
result the value of α−1 in Eq. (3.91) is shifted by −6.41180(73) 10−7 (about 7 σ ’s).
This change has a minor impact in the following discussion of the muon (g − 2).

In the muon case the experimental precision is less by about three orders of
magnitude, but the sensitivity to new physics effects is typically increased by a
factor (mμ/me)

2 ∼ 4.104 (one mass factor arises because the effective operator
needs a chirality flip and the second one is because, by definition, one must factor
out the Bohr magneton e/2m). From the theory side, the QED term (using the value
of α from ae in Eq. (3.91)), and the weak contribution are affected by small errors
and are given by (all theory number are taken here from the review [40])

aQED
μ = (116584718.09 ± 1.6).10−11, aweak

μ = (154 ± 2.2).10−11 (3.92)

The dominant ambiguities arise from the hadronic term. The lowest order (LO)
vacuum polarization contribution can be evaluated from the measured cross sections
in e+e− → hadrons at low energy via dispersion relations (the largest contribution
is from the ππ final state), with the result aLO.

μ 10−11 = 6909 ± 44. The higher
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order (HO) vacuum polarization contribution (from 2-loop diagrams containing an
hadronic insertion) is given by: aHO.

μ 10−11 = −98 ± 1. The contribution of the
light by light (LbL) scattering diagrams is estimated to be: aLbL.μ 10−11 = 120 ± 35.
Adding the above contributions up the total hadronic result is reported as:

ahadronicμ = (6931 ± 56).10−11. (3.93)

At face value this would lead to a 3.3σ deviation from the experimental value a
exp
μ

in Eq. (3.89):

aexpμ − ath(e
+e−)

μ = (275 ± 84).10−11. (3.94)

However, the error estimate on the LbL term, mainly a theoretical uncertainty, is
not compelling, and it could well be somewhat larger (although probably not by as
much as to make the discrepancy to completely disappear). Another puzzle is the
fact that, using the conservation of the vector current (CVC) and isospin invariance,
which are well established tools at low energy, aLOμ can also be evaluated from τ

decays. But the results on the hadronic contribution from e+e− and from τ decay,
nominally of comparable accuracy, do not match well, and the discrepancy would be
much attenuated if one takes the τ result [41]. Since it is difficult to find a theoretical
reason for the e+e− vs τ difference, one must conclude that there is something
which is not understood either in the data or in the assessment of theoretical errors.
The prevailing view is to take the e+e− determination as the most directly reliable,
which leads to Eq. (3.94), but doubts certainly remain. Finally, we note that, given
the great accuracy of the aμ measurement and the relative importance of the non
QED contributions, it is not unreasonable that a first signal of new physics can
appear in this quantity.

3.10 Large Radiative Corrections to Electroweak Processes

Since the SM theory is renormalizable higher order perturbative corrections can
be reliably computed. Radiative corrections are very important for precision EW
tests. The SM inherits all successes of the old V-A theory of charged currents
and of QED. Modern tests have focussed on neutral current processes, the W
mass and the measurement of triple gauge vertices. For Z physics and the W
mass the state of the art computation of radiative corrections include the complete
one loop diagrams and selected dominant two loop corrections. In addition some
resummation techniques are also implemented, like Dyson resummation of vacuum
polarization functions and important renormalization group improvements for large
QED and QCD logarithms. We now discuss in more detail sets of large radiative
corrections which are particularly significant (for reviews of radiative corrections
for LEP1 physics, see, for example: [42]).
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Even leaving aside QCD corrections, a set of important quantitative contributions
to the radiative corrections arise from large logarithms [e.g. terms of the form
(α/π ln (mZ/mfll))

n where fll is a light fermion]. The sequences of leading and
close-to-leading logarithms are fixed by well-known and consolidated techniques (β
functions, anomalous dimensions, penguin-like diagrams, etc.). For example, large
logarithms from pure QED effects dominate the running of α from me, the electron
mass, up to mZ . Similarly large logarithms of the form [α/π ln (mZ/μ)]n also
enter, for example, in the relation between sin2 θW at the scales mZ (LEP, SLC)
and μ (e.g. the scale of low-energy neutral-current experiments). Also, large logs
from initial state radiation dramatically distort the line shape of the Z resonance as
observed at LEP1 and SLC and this effect was accurately taken into account for
the measurement of the Z mass and total width. The experimental accuracy on mZ

obtained at LEP1 is δmZ = ±2.1 MeV (see Chap. 6). Similarly, a measurement of
the total width to an accuracy δ = ±2.3 MeV has been achieved. The prediction of
the Z line-shape in the SM to such an accuracy has posed a formidable challenge to
theory, which has been successfully met. For the inclusive process e+e− → f f̄X,
with f 	= e (for a concise discussion, we leave Bhabha scattering aside) and X

including γ ’s and gluons, the physical cross-section can be written in the form of a
convolution [42]:

σ(s) =
∫ 1

z0

dz σ̂ (zs)G(z, s) , (3.95)

where σ̂ is the reduced cross-section, and G(z, s) is the radiator function that
describes the effect of initial-state radiation; σ̂ includes the purely weak corrections,
the effect of final-state radiation (of both γ ’s and gluons), and also non-factorizable
terms (initial- and final-state radiation interferences, boxes, etc.) which, being small,
can be treated in lowest order and effectively absorbed in a modified σ̂ . The radiator
G(z, s) has an expansion of the form

G(z, s) = δ(1 − z) + α/π(a11L + a10) + (α/π)2(a22L
2 + a11L + a20) + . . . +

+ (α/π)n
n∑

i=0

aniL
i , (3.96)

where L = ln s/m2
e � 24.2 for

√
s � mZ. All first- and second-order terms

are known exactly. The sequence of leading and next-to-leading logs can be
exponentiated (closely following the formalism of structure functions in QCD). For
mZ ≈ 91 GeV, the convolution displaces the peak by +110 MeV, and reduces it
by a factor of about 0.74. The exponentiation is important in that it amounts to an
additional shift of about 14 MeV in the peak position with respect to the one loop
radiative correction.

Among the one loop EW radiative corrections, a very remarkable class of
contributions are those terms that increase quadratically with the top mass. The
sensitivity of radiative corrections tomt arises from the existence of these terms. The
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quadratic dependence on mt (and on other possible widely broken isospin multiplets
from new physics) arises because, in spontaneously broken gauge theories, heavy
virtual particles do not decouple. On the contrary, in QED or QCD, the running
of α and αs at a scale Q is not affected by heavy quarks with mass M � Q.
According to an intuitive decoupling theorem [43], diagrams with heavy virtual
particles of mass M can be ignored at Q � M provided that the couplings do not
grow with M and that the theory with no heavy particles is still renormalizable.
In the spontaneously broken EW gauge theories both requirements are violated.
First, one important difference with respect to unbroken gauge theories is in the
longitudinal modes of weak gauge bosons. These modes are generated by the Higgs
mechanism, and their couplings grow with masses (as is also the case for the
physical Higgs couplings). Second the theory without the top quark is no more
renormalizable because the gauge symmetry is broken as the (t,b) doublet would
not be complete (also the chiral anomaly would not be completely cancelled).
With the observed value of mt the quantitative importance of the terms of order
GFm

2
t /4π2

√
2 is substancial but not dominant (they are enhanced by a factor

m2
t /m

2
W ∼ 5 with respect to ordinary terms). Both the large logarithms and the

GFm
2
t terms have a simple structure and are to a large extent universal, i.e. common

to a wide class of processes. In particular the GFm
2
t terms appear in vacuum

polarization diagrams which are universal (virtual loops inserted in gauge boson
internal lines are independent of the nature of the vertices on each side of the
propagator) and in the Z → bb̄ vertex which is not. This vertex is specifically
sensitive to the top quark which, being the partner of the b quark in a doublet, runs in
the loop. Instead all types of heavy particles could in principle contribute to vacuum
polarization diagrams. The study of universal vacuum polarization contributions,
also called “oblique” corrections, and of top enhanced terms is important for
an understanding of the pattern of radiative corrections. More in general, the
important consequence of non decoupling is that precision tests of the electroweak
theory may apriori be sensitive to new physics even if the new particles are too
heavy for their direct production, but aposteriori no signal of deviation has clearly
emerged.

While radiative corrections are quite sensitive to the top mass, they are unfortu-
nately much less dependent on the Higgs mass. If they were sufficiently sensitive
by now we would precisely know the mass of the Higgs. But the dependence
of one loop diagrams on mH is only logarithmic: ∼ GFm

2
W log(m2

H/m2
W).

Quadratic terms ∼ G2
Fm

2
H only appear at two loops [44] and are too small to

be detectable. The difference with the top case is that the splitting m2
t − m2

b

is a direct breaking of the gauge symmetry that already affects the 1- loop
corrections, while the Higgs couplings are “custodial” SU(2) symmetric in lowest
order.
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3.11 Electroweak Precision Tests in the SM and Beyond

For the analysis of electroweak data in the SM one starts from the input parameters:
as is the case in any renormalizable theory, masses and couplings have to be
specified from outside. One can trade one parameter for another and this freedom is
used to select the best measured ones as input parameters. Some of them, α, GF and
mZ, are very precisely known, as we have seen, some other ones, mflight , mt and
αs(mZ) are less well determined while mH is largely unknown. Among the light
fermions, the quark masses are badly known, but fortunately, for the calculation
of radiative corrections, they can be replaced by α(mZ), the value of the QED
running coupling at the Z mass scale. The value of the hadronic contribution to
the running, embodied in the value of �α

(5)
had(m

2
Z) (see Table 3.1, [8] ) is obtained

through dispersion relations from the data on e+e− → hadrons at moderate centre-
of-mass energies. From the input parameters one computes the radiative corrections
to a sufficient precision to match the experimental accuracy. Then one compares the
theoretical predictions with the data for the numerous observables which have been
measured [45], checks the consistency of the theory and derives constraints on mt ,
αs(mZ) and mH . A detailed discussion of all experimental aspects of precision tests
of the EW theory is presented in Chap. 6.

The basic tree level relations:

g2

8m2
W

= GF√
2
, g2 sin2 θW = e2 = 4πα (3.97)

can be combined into

sin2 θW = πα√
2GFm

2
W

(3.98)

Always at tree level, a different definition of sin2 θW is from the gauge boson
masses:

m2
W

m2
Z cos2 θW

= ρ0 = 1 �⇒ sin2 θW = 1 − m2
W

m2
Z

(3.99)

where ρ0 = 1 assuming that there are only Higgs doublets. The last two relations
can be put into the convenient form

(1 − m2
W

m2
Z

)
m2

W

m2
Z

= πα√
2GFm

2
Z

(3.100)
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Beyond tree level, these relations are modified by radiative corrections:

(1 − m2
W

m2
Z

)
m2

W

m2
Z

= πα(mZ)√
2GFm

2
Z

1

1 − �rW

m2
W

m2
Z cos2 θW

= 1 + �ρm (3.101)

The Z and W masses are to be precisely defined in terms of the pole position in
the respective propagators. Then, in the first relation the replacement of α with the
running coupling at the Z mass α(mZ) makes �rW completely determined at 1-loop
by purely weak corrections (GF is protected from logarithmic running as an indirect
consequence of (V-A) current conservation in the massless theory). This relation
defines �rW unambigously, once the meaning of α(mZ) is specified (for example,
M̄S). On the contrary, in the second relation �ρm depends on the definition of
sin2 θW beyond the tree level. For LEP physics sin2 θW is usually defined from the
Z → μ+μ− effective vertex. At the tree level the vector and axial-vector couplings
g
μ
V and g

μ
A are given in Eqs. (3.29). Beyond the tree level a corrected vertex can be

written down in terms of modified effective couplings. Then sin2 θW ≡ sin2 θeff is
in general defined through the muon vertex:

g
μ
V /g

μ
A = 1 − 4 sin2 θeff

sin2 θeff = (1 + �k)s2
0 , s2

0c
2
0 = πα(mZ)√

2GFm
2
Z

g
μ2
A = 1

4
(1 + �ρ) (3.102)

We see that s2
0 and c2

0 are “improved” Born approximations (by including the
running of α) for sin2 θeff and cos2 θeff . Actually, since in the SM lepton
universality is only broken by masses and is in agreement with experiment within
the present accuracy, in practice the muon channel can be replaced with the average
over charged leptons.

We can write a symbolic equation that summarizes the status of what has been
computed up to now for the radiative corrections (we list some recent work on each
item from where older references can be retrieved) �rW [46], �ρ [47] and �k [48]:

�rW ,�ρ,�k = g2 m2
t

m2
W

(1 + αs + α2
s ) + g2(1 + αs+ ∼ α2

s ) + g4 m4
t

m4
W

+ g4 m2
t

m2
W

+ . . .

(3.103)

The meaning of this relation is that the one loop terms of order g2 are completely
known, together with their first order QCD corrections (the second order QCD
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corrections are only estimated for the g2 terms not enhanced by m2
t /m

2
W ), and the

terms of order g4 enhanced by the ratios m4
t /m

4
W or m2

t /m
2
W are also known.

In the SM the quantities �rW , �ρ, �k, for sufficiently large mt , are all
dominated by quadratic terms in mt of order GFm

2
t . The quantity �ρm is not

independent and can expressed in terms of them. As new physics can more easily be
disentangled if not masked by large conventional mt effects, it is convenient to keep
�ρ while trading �rW and �k for two quantities with no contributions of order
GFm

2
t . One thus introduces the following linear combinations (epsilon parameters)

[49]:

ε1 = �ρ,

ε2 = c2
0�ρ + s2

0�rW

c2
0 − s2

0

− 2s2
0�k,

ε3 = c2
0�ρ + (c2

0 − s2
0 )�k. (3.104)

The quantities ε2 and ε3 no longer contain terms of orderGFm
2
t but only logarithmic

terms in mt . The leading terms for large Higgs mass, which are logarithmic, are
contained in ε1 and ε3. To complete the set of top-enhanced radiative corrections
one adds εb defined from the loop corrections to the Zbb̄ vertex. One modifies gbV
and gbA as follows:

gbA = − 1

2
(1 + �ρ

2
)(1 + εb),

gbV

gbA

= 1 − 4/3 sin2 θeff + εb

1 + εb
. (3.105)

εb can be measured from Rb = (Z → bb̄)/(Z → hadrons) (see Table 3.1).
This is clearly not the most general deviation from the SM in the Z → bb̄ vertex
but εb is the quantity where the large mt corrections are located in the SM. Thus,
summarizing, in the SM one has the following “large” asymptotic contributions:

ε1 = 3GFm
2
t

8π2
√

2
− 3GFm

2
W

4π2
√

2
tan2 θW ln

mH

mZ

+ . . . .,

ε2 = − GFm
2
W

2π2
√

2
ln

mt

mZ

+ . . . .,

ε3 = GFm
2
W

12π2
√

2
ln

mH

mZ

− GFm
2
W

6π2
√

2
ln

mt

mZ

. . . .,

εb = − GFm
2
t

4π2
√

2
+ . . . . (3.106)
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The εi parameters vanish in the limit where only tree level SM effects are kept
plus pure QED and/or QCD corrections. So they describe the effects of quantum
corrections (i.e. loops) from weak interactions. A similar set of parameters are the
S, T, U parameters [50]: the shifts induced by new physics on S, T and U are
proportional to those induced on ε3, ε1 and ε2, respectively. In principle, with no
model dependence, one can measure the four εi from the basic observables of LEP
physics (Z → μ+μ−), Aμ

FB and Rb on the Z peak plus mW . With increasing
model dependence, one can include other measurements in the fit for the εi . For
example, use lepton universality to average the μ with the e and τ final states, or
include all lepton asymmetries and so on. The present experimental values of the εi ,
obtained from a fit of all LEP1-SLD measurements plus mW , are given by The LEP
Electroweak Working Group [8]:

ε1
.103 = 5.4 ± 1.0, ε2

.103 = −8.9 ± 1.2,

ε3
.103 = 5.34 ± 0.94, εb

.103 = −5.0 ± 1.6. (3.107)

Note that the ε parameters are of order a few in 10−3 and are known with an accuracy
in the range 15–30%. As discussed in the next Section, these values are in agreement
with the SM with a light Higgs. All models of new physics must be compared with
these findings and pass this difficult test.

3.12 Results of the SM Analysis of Precision Tests

The electroweak Z pole measurements, combining the results of all the experiments,
are summarised in Table 3.1. The various asymmetries determine the effective
electroweak mixing angle for leptons with highest sensitivity. The weighted average
of these results, including small correlations, is:

sin2 θeff = 0.23153 ± 0.00016, (3.108)

Note, however, that this average has a χ2 of 11.8 for 5 degrees of freedom,
corresponding to a probability of a few %. The χ2 is pushed up by the two most
precise measurements of sin2 θeff , namely those derived from the measurements
of Al by SLD, dominated by the left-right asymmetry A0

LR, and of the forward-

backward asymmetry measured in bb̄ production at LEP,A0,b
FB , which differ by about

3σ s.
We now discuss fitting the data in the SM. One can think of different types

of fit, depending on which experimental results are included or which answers
one wants to obtain. For example, in Table 3.2 we present in column 1 a fit of
all Z pole data plus mW and W (this is interesting as it shows the value of mt

obtained indirectly from radiative corrections, to be compared with the value of
mt measured in production experiments), in column 2 a fit of all Z pole data plus



3 The Standard Model of Electroweak Interactions 67

Table 3.1 Summary of
electroweak precision
measurements at high Q2 [8]

Observable Measurement SM fit

mZ [GeV] 91.1875 ± 0.0021 91.1875

Z [GeV] 2.4952 ± 0.0023 2.4957

σ 0
h [nb] 41.540 ± 0.037 41.477

R0
l 20.767 ± 0.025 20.744

AFB0,l 0.01714 ± 0.00095 0.01645

Al (SLD) 0.1513 ± 0.0021 0.1481

Al (Pτ ) 0.1465 ± 0.0032 0.1481

R0
b 0.21629 ± 0.00066 0.21586

R0
c 0.1721 ± 0.0030 0.1722

A
0,b
FB 0.0992 ± 0.0016 0.1038

A
0,c
FB 0.0707 ± 0.0035 0.0742

Ab 0.923 ± 0.020 0.935

Ac 0.670 ± 0.027 0.668

sin2 θeff (Qhad
FB ) 0.2324 ± 0.0012 0.2314

mW [GeV] 80.398 ± 0.025 80.374

W [GeV] 2.140 ± 0.060 2.091

mt [GeV (pp̄) 170.9 ± 1.8 171.3

�α
(5)
had (m

2
Z) 0.02758 ± 0.00035 0.02768

The first block shows the Z-pole measurements. The second
block shows additional results from other experiments: the
mass and the width of the W boson measured at the Tevatron
and at LEP-2, the mass of the top quark measured at the
Tevatron, and the contribution to α of the hadronic vacuum
polarization. The SM fit results are derived from the SM
analysis of these results

mt (here it is mW which is indirectly determined), and, finally, in column 3 a fit
of all the data listed in Table 3.1 (which is the most relevant fit for constraining
mH ). From the fit in column 1 of Table 3.2 we see that the extracted value of
mt is in good agreement with the direct measurement (see Table 3.1). Similarly
we see that the experimental measurement of mW in Table 3.1 is larger by about
one standard deviation with respect to the value from the fit in column 2. We
have seen that quantum corrections depend only logarithmically on mH . In spite
of this small sensitivity, the measurements are precise enough that one still obtains
a quantitative indication of the mass range. From the fit in column 3 we obtain:
log10 mH(GeV) = 1.88 ± 0.16 (or mH = 76+34

−24 GeV). This result on the Higgs
mass is particularly remarkable. The value of log10 mH(GeV) is compatible with
the small window between ∼2 and ∼3 which is allowed, on the one side, by the
direct search limit (mH > 114 GeV from LEP-2 [8]), and, on the other side, by the
theoretical upper limit on the Higgs mass in the minimal SM, mH � 600−800 GeV
[51].

Thus the whole picture of a perturbative theory with a fundamental Higgs is well
supported by the data on radiative corrections. It is important that there is a clear
indication for a particularly light Higgs: at 95% c.l. mH � 182 GeV (including
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Table 3.2 Standard Model fits of electroweak data [8]

Fit 1 2 3

Measurements mW mt mt , mW

mt (GeV) 178.9+12
−9 170.9 ± 1.8 171.3 ± 1.7

mH (GeV) 145+240
−81 99+52

−35 76+34
−24

log [mH (GeV)] 2.16 ± +0.39 2.00 ± 0.19 1.88 ± 0.16

αs(mZ) 0.1190 ± 0.0028 0.1189 ± 0.0027 0.1185 ± 0.0026

mW (MeV) 80385 ± 19 80360 ± 20 80374 ± 15

All fits use the Z pole results and �α
(5)
had (m

2
Z) as listed in Table 3.1. In addition, the measurements

listed on top of each column are included as well. The fitted W mass is also shown [8] (the directly
measured value is mW = 80398 ± 25 MeV)

the input from the direct search result). This is quite encouraging for the ongoing
search for the Higgs particle. More general, if the Higgs couplings are removed
from the Lagrangian the resulting theory is non renormalizable. A cutoff � must
be introduced. In the quantum corrections logmH is then replaced by log� plus
a constant. The precise determination of the associated finite terms would be lost
(that is, the value of the mass in the denominator in the argument of the logarithm).
A heavy Higgs would need some unfortunate accident: the finite terms, different in
the new theory from those of the SM, should by chance compensate for the heavy
Higgs in a few key parameters of the radiative corrections (mainly ε1 and ε3, see,
for example, [49]). Alternatively, additional new physics, for example in the form
of effective contact terms added to the minimal SM lagrangian, should accidentally
do the compensation, which again needs some sort of conspiracy.

To the list of precision tests of the SM one should add the results on low
energy tests obtained from neutrino and antineutrino deep inelastic scattering
(NuTeV [52]), parity violation in Cs atoms (APV [53]) and the recent measurement
of the parity-violating asymmetry in Moller scattering [54] (see Chap. 6). When
these experimental results are compared with the SM predictions the agreement
is good except for the NuTeV result that shows a deviation by three standard
deviations. The NuTeV measurement is quoted as a measurement of sin2 θW =
1 − m2

W/m2
Z from the ratio of neutral to charged current deep inelastic cross-

sections from νμ and ν̄μ using the Fermilab beams. But it has been argued and it
is now generally accepted that the NuTeV anomaly probably simply arises from an
underestimation of the theoretical uncertainty in the QCD analysis needed to extract
sin2 θW . In fact, the lowest order QCD parton formalism on which the analysis has
been based is too crude to match the experimental accuracy.

When confronted with these results, on the whole the SM performs rather well,
so that it is fair to say that no clear indication for new physics emerges from the
data. However, as already mentioned, one problem is that the two most precise
measurements of sin2 θeff from ALR and Ab

FB differ by about 3σ s. In general, there
appears to be a discrepancy between sin2 θeff measured from leptonic asymmetries
((sin2 θeff)l) and from hadronic asymmetries ((sin2 θeff)h). In fact, the result from
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Fig. 3.11 The data for
sin2 θ

lept
eff are plotted vs mH .

The theoretical prediction for
the measured value of mt is
also shown. For presentation
purposes the measured points
are shown each at the mH

value that would ideally
correspond to it given the
central value of mt (updated
from [55])

ALR is in good agreement with the leptonic asymmetries measured at LEP, while
all hadronic asymmetries, though their errors are large, are better compatible with
the result of Ab

FB . These two results for sin2 θeff are shown in Fig. 3.11 [55]. Each of
them is plotted at the mH value that would correspond to it given the central value
of mt . Of course, the value for mH indicated by each sin2 θeff has an horizontal
ambiguity determined by the measurement error and the width of the ±1σ band for
mt . Even taking this spread into account it is clear that the implications on mH are
sizably different. One might imagine that some new physics effect could be hidden
in the Zbb̄ vertex. Like for the top quark mass there could be other non decoupling
effects from new heavy states or a mixing of the b quark with some other heavy
quark. However, it is well known that this discrepancy is not easily explained in
terms of some new physics effect in the Zbb̄ vertex. A rather large change with
respect to the SM of the b-quark right handed coupling to the Z is needed in order to
reproduce the measured discrepancy (precisely a ∼30% change in the right-handed
coupling), an effect too large to be a loop effect but which could be produced at the
tree level, e.g., by mixing of the b quark with a new heavy vectorlike quark [56]),
or some mixing of the Z with ad hoc heavy states [57]. But then this effect should
normally also appear in the direct measurement of Ab performed at SLD using the
left-right polarized b asymmetry, even within the moderate precision of this result.
The measurements of neither Ab at SLD nor Rb confirm the need of a new effect.
Alternatively, the observed discrepancy could be simply due to a large statistical
fluctuation or an unknown experimental problem. As a consequence of this problem,
the ambiguity in the measured value of sin2 θeff is in practice larger than the nominal
error, reported in Eq. 3.108, obtained from averaging all the existing determinations,
and the interpretation of precision tests is less sharp than it would otherwise be.

We have already observed that the experimental value of mW (with good
agreement between LEP and the Tevatron) is a bit high compared to the SM
prediction (see Fig. 3.12). The value of mH indicated by mW is on the low side,
just in the same interval as for sin2 θ

lept
eff measured from leptonic asymmetries.
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Fig. 3.12 The data for mW

are plotted vs mH . The
theoretical prediction for the
measured value of mt is also
shown (updated from [55])

In conclusion, overall the validity of the SM has been confirmed to a level that we
can say was unexpected at the beginning. In the present data there is no significant
evidence for departures from the SM, no compelling evidence of new physics. The
impressive success of the SM poses strong limitations on the possible forms of new
physics.

3.13 Phenomenology of the SM Higgs

The Higgs problem is really central in particle physics today. On the one hand,
the experimental verification of the Standard Model (SM) cannot be considered
complete until the structure of the Higgs sector is not established by experiment.
On the other hand, the Higgs is also related to most of the major problems of
particle physics, like the flavour problem and the hierarchy problem, the latter
strongly suggesting the need for new physics near the weak scale. In turn the
discovery of new physics could clarify the dark matter identity. It is clear that the
fact that some sort of Higgs mechanism is at work has already been established.
The W or the Z with longitudinal polarization that we observe are not present in an
unbroken gauge theory (massless spin-1 particles, like the photon, are transversely
polarized). The longitudinal degree of freedom for the W or the Z is borrowed from
the Higgs sector and is an evidence for it. Also, it has been verified that the gauge
symmetry is unbroken in the vertices of the theory: all currents and charges are
indeed symmetric. Yet there is obvious evidence that the symmetry is instead badly
broken in the masses. Not only the W and the Z have large masses, but the large
splitting of, for example, the t-b doublet shows that even a global weak SU(2) is
not at all respected by the fermion spectrum. This is a clear signal of spontaneous
symmetry breaking and the implementation of spontaneous symmetry breaking in a
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gauge theory is via the Higgs mechanism. The big remaining questions are about
the nature and the properties of the Higgs particle(s). The present experimental
information on the Higgs sector, is surprisingly limited and can be summarized in
a few lines, as follows. First, the relation M2

W = M2
Z cos2 θW , Eq. (3.55), modified

by small, computable radiative corrections, has been experimentally proven. This
relation means that the effective Higgs (be it fundamental or composite) is indeed
a weak isospin doublet. The Higgs particle has not been found but, in the SM, its
mass can well be larger than the present direct lower limit mH � 114 GeV (at
95% c.l.) obtained from searches at LEP-2. The radiative corrections computed
in the SM when compared to the data on precision electroweak tests lead to a
clear indication for a light Higgs, not too far from the present lower bound. The
exact experimental upper limit for mH in the SM depends on the value of the top
quark mass mt . The CDF and D0 combined value after Run II is at present [8]
mt = 170.9 ± 1.8 GeV (it went down with respect to the value mt = 178 ±
4.3 GeV from Run I and also the experimental error is now sizably reduced). As
a consequence the present limit on mH is more stringent [8]: mH < 182 GeV (at
95% c.l., after including the information from the 114 GeV direct bound). On the
Higgs the LHC will address the following questions : one doublet, more doublets,
additional singlets? SM Higgs or SUSY Higgses? Fundamental or composite (of
fermions, of WW. . . )? Pseudo-Goldstone boson of an enlarged symmetry? A
manifestation of large extra dimensions (5th component of a gauge boson, an effect
of orbifolding or of boundary conditions. . . )? Or some combination of the above
or something so far unthought of? Here in the following we will summarize the
main properties of the SM Higgs that provide an essential basis for the planning
and the interpretation of the LHC Higgs programme. We start from the mass,
then the width and the branching ratios and, finally, the most important production
channels.

3.13.1 Theoretical Bounds on the SM Higgs Mass

It is well known [58–60] that in the SM with only one Higgs doublet a lower limit
on mH can be derived from the requirement of vacuum stability (or, in milder
form, of a moderate instability, compatible with the lifetime of the Universe [61]).
The limit is a function of mt and of the energy scale � where the model breaks
down and new physics appears. The Higgs mass enters because it fixes the initial
value of the quartic Higgs coupling λ for its running up to the large scale �.
Similarly an upper bound on mH (with mild dependence on mt ) is obtained, as
described in [62] and refs. therein, from the requirement that for λ no Landau pole
appears up to the scale �, or in simpler terms, that the perturbative description
of the theory remains valid up to �. We now briefly recall the derivation of these
limits.

The possible instability of the Higgs potential V [φ] is generated by the quantum
loop corrections to the classical expression of V [φ]. At large φ the derivative
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V ′[φ] could become negative and the potential would become unbound from below.
The one-loop corrections to V [φ] in the SM are well known and change the
dominant term at large φ according to λφ4 → (λ + γ log φ2/�2)φ4. This one-
loop approximation is not enough in this case, because it fails at large enough φ,
when γ log φ2/�2 becomes of order one. The renormalization group improved
version of the corrected potential leads to the replacement λφ4 → λ(�)φ′4(�)

where λ(�) is the running coupling and φ′(μ) = φ exp
∫ t

γ (t ′)dt ′, with γ (t) being
an anomalous dimension function and t = log�/v (v is the vacuum expectation
value v = (2

√
2GF )

−1/2). As a result, the positivity condition for the potential
amounts to the requirement that the running coupling λ(�) never becomes negative.
A more precise calculation, which also takes into account the quadratic term in the
potential, confirms that the requirements of positive λ(�) leads to the correct bound
down to scales � as low as ∼1 TeV. The running of λ(�) at one loop is given
by:

dλ

dt
= 3

4π2 [λ2 + 3λh2
t − 9h4

t + small gauge and Yukawa terms] , (3.109)

with the normalization such that at t = 0, λ = λ0 = m2
H/2v2 and the top Yukawa

coupling h0
t = mt/v. We see that, for mH small and mt fixed at its measured value,

λ decreases with t and can become negative. If one requires that λ remains positive
up to � = 1015–1019 GeV, then the resulting bound on mH in the SM with only one
Higgs doublet is given by, (also including the effect of the two-loop beta function
terms) [60] :

mH(GeV) > 128.4 + 2.1 [mt − 170.9] − 4.5
αs(mZ) − 0.118

0.006
. (3.110)

Note that this limit is evaded in models with more Higgs doublets. In this case the
limit applies to some average mass but the lightest Higgs particle can well be below,
as it is the case in the minimal SUSY extension of the SM (MSSM).

The upper limit on the Higgs mass in the SM is clearly important for assessing
the chances of success of the LHC as an accelerator designed to solve the Higgs
problem. The upper limit [62] arises from the requirement that the Landau pole
associated with the non asymptotically free behaviour of the λφ4 theory does not
occur below the scale �. The initial value of λ at the weak scale increases with
mH and the derivative is positive at large λ (because of the positive λ2 term—the
λϕ4 theory is not asymptotically free—which overwhelms the negative top-Yukawa
term). Thus, if mH is too large, the point where λ computed from the perturbative
beta function becomes infinite (the Landau pole) occurs at too low an energy. Of
course in the vicinity of the Landau pole the 2-loop evaluation of the beta function
is not reliable. Indeed the limit indicates the frontier of the domain where the theory
is well described by the perturbative expansion. Thus the quantitative evaluation
of the limit is only indicative, although it has been to some extent supported by
simulations of the Higgs sector of the EW theory on the lattice. For the upper limit
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on mH one finds [62]

mH � 180GeV for � ∼ MGUT − MPl

mH � 0.5 − 0.8 T eV for � ∼ 1 T eV. (3.111)

In conclusion, for mt ∼ 171 GeV, only a small range of values for mH is allowed,
130 < mH < ∼ 200 GeV, if the SM holds up to � ∼ MGUT or MPl .

An additional argument indicating that the solution of the Higgs problem cannot
be too far away is the fact that, in the absence of a Higgs particle or of an alternative
mechanism, violations of unitarity appear in some scattering amplitudes at energies
in the few TeV range [63]. In particular, amplitudes involving longitudinal gauge
bosons (those most directly related to the Higgs sector) are affected. For example,
at tree level in the absence of Higgs exchange, for s >> m2

Z one obtains:

A(W+
L W−

L → ZLZL)no Higgs ∼ i
s

v2 (3.112)

In the SM this unacceptable large energy behaviour is quenched by the Higgs
exchange diagram contribution:

A(W+
L W−

L → ZLZL)Higgs ∼ −i
s2

v2(s − m2
H)

(3.113)

Thus the total result in the SM is:

A(W+
L W−

L → ZLZL)SM ∼ −i
sm2

H

v2(s − m2
H)

(3.114)

which at large energies saturates at a constant value. To be compatible with unitarity
bounds one needs m2

H < 4π
√

2/GF or mH < 1.5 TeV. Both the Landau pole and
the unitarity argument show that, if the Higgs is too heavy, the SM becomes a non
perturbative theory at energies of o(1 TeV). In conclusion, these arguments imply
that the SM Higgs cannot escape detection at the LHC.

3.13.2 SM Higgs Decays

The total width and the branching ratios for the SM Higgs as function of mH are
given in Figs. 3.13 and 3.14, respectively [64].

Since the couplings of the Higgs particle are in proportion to masses, when mH

increases the Higgs becomes strongly coupled. This is reflected in the sharp rise of
the total width with mH . For mH near its present lower bound of 114 GeV, the width
is below 5 MeV, much less than for the W or the Z which have a comparable mass.
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Fig. 3.13 The total width of
the SM Higgs boson [64]
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The dominant channel for such a Higgs is H → bb̄. In Born approximation the
partial width into a fermion pair is given by Djouadi [64] and Haber [66]:

(H → f f̄ ) = NC
GF

4π
√

2
mHm2

f β
3
f (3.115)

where βf = (1 − 4m2
f /m

2
H)1/2. The factor of β3 appears because the fermion pair

must be in a p-state of orbital angular momentum for a Higgs with scalar coupling,
because of parity (this factor would be β for a pseudoscalar coupling). We see that
the width is suppressed by a factor m2

f /m
2
H with respect to the natural size GFm

3
H
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for the width of a particle of mass mH decaying through a diagram with only one
weak vertex.

A glance to the branching ratios shows that the branching ratio into τ pairs is
larger by more than a factor of two with respect to the cc̄ channel. This is at first
sight surprising because the colour factor NC favours the quark channels and the
masses of τ ’s and of D mesons are quite similar. This is due to the fact that the
QCD corrections replace the charm mass at the scale of charm with the charm
mass at the scale mH , which is lower by about a factor of 2.5. The masses run
logarithmically in QCD, similar to the coupling constant. The corresponding logs
are already present in the 1-loop QCD correction that amounts to the replacement
m2

q → m2
q [1 + 2αs/π(logm2

q/m
2
H + 3/2)] ∼ m2

q(m
2
H).

The Higgs width sharply increases as the WW threshold is approached. For decay
into a real pair of V ’s, with V = W,Z, one obtains in Born approximation [64, 66]:

(H → VV ) = GFm
3
H

16π
√

2
δV βW(1 − 4x + 12x2) (3.116)

where βW = √
1 − 4x with x = m2

V /m
2
H and δW = 2, δZ = 1. Much above

threshold the VV channels are dominant and the total width, given approximately
by:

H ∼ 0.5 TeV(
mH

1 TeV
)3 (3.117)

becomes very large, signalling that the Higgs sector is becoming strongly interacting
(recall the upper limit on the SM Higgs mass in Eq. (3.111)). The V V dominates
over the t t̄ because of the β threshold factors that disfavour the fermion channel
and, at large mH , by the cubic versus linear behaviour with mH of the partial widths
for V V versus t t̄ . Below the V V threshold the decays into virtual V particles is
important: VV ∗ and V ∗V ∗. Note in particular the dip of the ZZ branching ratio
just below the ZZ threshold: this is due to the fact that the W is lighter than the Z
and the opening of its threshold depletes all other branching ratios. When the ZZ

threshold is also passed then the ZZ branching fraction comes back to the ratio of
approximately 1:2 with the WW channel (just the number of degrees of freedom:
two hermitian fields for the W , one for the Z).

The decay channels into γ γ , Zγ and gg proceed through loop diagrams, with
the contributions from W (only for γ γ and Zγ ) and from fermion loops (for all)
(Fig. 3.15).

We reproduce here the results for (H → γ γ ) and (H → gg) [64, 66]:

(H → γ γ ) = GFα
2m3

H

128π3
√

2
|AW(τW) +

∑
f

NCQ
2
f Af (τf )|2 (3.118)

(H → gg) = GFα
2
s m

3
H

64π3
√

2
|
∑
f=Q

Af (τf )|2 (3.119)
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Fig. 3.15 One-loop diagrams
for Higgs decay into γγ , Zγ
and gg W

H H
f

where τi = m2
H/4m2

i and:

Af (τ) = 2

τ 2 [τ + (τ − 1)f (τ )]

AW(τ) = − 1

τ 2 [2τ 2 + 3τ + 3(2τ − 1)f (τ )] (3.120)

with:

f (τ) = arcsin2 √
τ for τ ≤ 1

f (τ) = −1

4
[log

1 + √
1 − τ−1

1 − √
1 − τ−1

− iπ]2 for τ > 1 (3.121)

For H → γ γ (as well as for H → Zγ ) the W loop is the dominant contribution at
small and moderate mH . We recall that the γ γ mode can be a possible channel for
Higgs discovery only for mH near its lower bound (i.e for 114 < mH < 150 GeV).
In this domain of mH we have (H → γ γ )∼6–23 KeV. For example, in the
limit mH << 4m2

i , or τ → 0, we have AW(0) = −7 and Af (0) = 4/3. The
two contributions become comparable only for mH ∼ 650 GeV where the two
amplitudes, still of opposite sign, nearly cancel. The top loop is dominant among
fermions (lighter fermions are suppressed by m2

f /m
2
H modulo logs) and, as we have

seen, it approaches a constant for large mt . Thus the fermion loop amplitude for
the Higgs would be sensitive to effects from very heavy fermions, in particular the
H → gg effective vertex would be sensitive to all possible very heavy coloured
quarks. As discussed in the QCD Chapter (Chap. 4) the gg → H vertex provides
one of the main production channels for the Higgs at hadron colliders.

3.14 Limitations of the Standard Model

No signal of new physics has been found neither in electroweak precision tests nor
in flavour physics. Given the success of the SM why are we not satisfied with this
theory? Why not just find the Higgs particle, for completeness, and declare that
particle physics is closed? The reason is that there are both conceptual problems
and phenomenological indications for physics beyond the SM. On the conceptual
side the most obvious problems are that quantum gravity is not included in the SM
and the related hierarchy problem. Among the main phenomenological hints for new
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physics we can list coupling unification, dark matter, neutrino masses (discussed in
Sect. (3.7)), baryogenesis and the cosmological vacuum energy.

The computed evolution with energy of the effective SM gauge couplings clearly
points towards the unification of the electro-weak and strong forces (GUT’s) at
scales of energy MGUT ∼ 1015 − 1016 GeV [31] which are close to the scale
of quantum gravity, MPl ∼ 1019 GeV. One is led to imagine a unified theory
of all interactions also including gravity (at present superstrings provide the best
attempt at such a theory). Thus GUT’s and the realm of quantum gravity set a
very distant energy horizon that modern particle theory cannot ignore. Can the SM
without new physics be valid up to such large energies? One can imagine that some
obvious problems could be postponed to the more fundamental theory at the Planck
mass. For example, the explanation of the three generations of fermions and the
understanding of fermion masses and mixing angles can be postponed. But other
problems must find their solution in the low energy theory. In particular, the structure
of the SM could not naturally explain the relative smallness of the weak scale of
mass, set by the Higgs mechanism at μ ∼ 1/

√
GF ∼ 250 GeV with GF being the

Fermi coupling constant. This so-called hierarchy problem is due to the instability
of the SM with respect to quantum corrections. This is related to the presence of
fundamental scalar fields in the theory with quadratic mass divergences and no
protective extra symmetry at μ = 0. For fermion masses, first, the divergences are
logarithmic and, second, they are forbidden by the SU(2) ⊗ U(1) gauge symmetry
plus the fact that at m = 0 an additional symmetry, i.e. chiral symmetry, is restored.
Here, when talking of divergences, we are not worried of actual infinities. The
theory is renormalizable and finite once the dependence on the cut off � is absorbed
in a redefinition of masses and couplings. Rather the hierarchy problem is one of
naturalness. We can look at the cut off as a parameterization of our ignorance on the
new physics that will modify the theory at large energy scales. Then it is relevant to
look at the dependence of physical quantities on the cut off and to demand that no
unexplained enormously accurate cancellations arise.

The hierarchy problem can be put in very practical terms (the “little hierarchy
problem”): loop corrections to the Higgs mass squared are quadratic in �. The most
pressing problem is from the top loop. With m2

h = m2
bare + δm2

h the top loop gives

δm2
h|top ∼ − 3GF

2
√

2π2
m2

t �
2 ∼ −(0.2�)2 (3.122)

If we demand that the correction does not exceed the light Higgs mass indicated
by the precision tests, � must be close, � ∼ o(1 T eV ). Similar constraints arise
from the quadratic � dependence of loops with gauge bosons and scalars, which,
however, lead to less pressing bounds. So the hierarchy problem demands new
physics to be very close (in particular the mechanism that quenches the top loop).
Actually, this new physics must be rather special, because it must be very close, yet
its effects are not clearly visible neither in precision electroweak tests (the “LEP
Paradox” [67]) nor in flavour changing processes and CP violation. Examples of
proposed classes of solutions for the hierarchy problem are: (1) Supersymmetry
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[68]. In the limit of exact boson-fermion symmetry the quadratic divergences
of bosons cancel so that only log divergences remain. However, exact SUSY is
clearly unrealistic. For approximate SUSY (with soft breaking terms), which is the
basis for all practical models, � is replaced by the splitting of SUSY multiplets,
�2 ∼ m2

SUSY −m2
ord . In particular, the top loop is quenched by partial cancellation

with s-top exchange, so the s-top cannot be too heavy. (2) Technicolor [69]. The
Higgs system is a condensate of new fermions. There is no fundamental scalar
Higgs sector, hence no quadratic divergences associated to the μ2 mass in the scalar
potential. This mechanism needs a very strong binding force, �TC ∼ 103 �QCD.
It is difficult to arrange that such nearby strong force is not showing up in precision
tests. Hence this class of models has been disfavoured by LEP, although some
special class of models have been devised aposteriori, like walking TC, top-color
assisted TC etc (for recent reviews, see, for example, [69]). (3) Extra dimensions (for
a recent review, see, for example, [70]). The idea is that MPl appears very large, or
equivalently that gravity appears very weak, because we are fooled by hidden extra
dimensions so that either the real gravity scale is reduced down to a lower scale,
even possibly down to o(1 T eV ) or the intensity of gravity is red shifted away by
an exponential warping factor [71]. This possibility is very exciting in itself and it
is really remarkable that it is compatible with experiment. It provides a very rich
framework with many different scenarios. (4) “Little Higgs” models [72]. In these
models the Higgs is a pseudo-Goldstone boson and extra symmetries allow mh 	= 0
only at two-loop level, so that � can be as large as o(10 TeV) with the Higgs within
present bounds (the top loop is quenched by exchange of heavy vectorlike new
quarks with charge 2/3). The physics beyond the SM will be discussed in Chap. 8.
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Chapter 4
QCD: The Theory of Strong Interactions

Guido Altarelli and Stefano Forte

4.1 Introduction

This Chapter1 is devoted to a concise introduction to Quantum Chromo-Dynamics
(QCD), the theory of strong interactions [1–3]. We start with a general introduction
where a broad overview of the strong interactions is presented. The basic principles
and the main applications of perturbative QCD will be discussed first (for reviews
of the subject, see, for example, [4–6]). Then the methods of non perturbative QCD
will be introduced, first the analytic approaches and then the simulations of the
theory on a discrete space-time lattice.The main emphasis will be on ideas with a
minimum of technicalities.

As discussed in Chap. 2 the QCD theory of strong interactions is an unbroken
gauge theory based on the group SU(3) of colour. The eight massless gauge bosons
are the gluons gAμ and matter fields are colour triplets of quarks qai (in different
flavours i). Quarks and gluons are the only fundamental fields of the Standard Model
(SM) with strong interactions (hadrons). As discussed in Chap. 2, the statement that
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QCD is a renormalisable gauge theory based on the group SU(3) with colour triplet
quark matter fields [7] fixes the QCD lagrangian density to be:

L = − 1

4

8∑
A=1

FAμνFA
μν +

nf∑
j=1

q̄j (iD/ − mj)qj (4.1)

Here: qj are the quark fields (of nf different flavours) with mass mj ; D/ = Dμγ
μ,

where γ μ are the Dirac matrices and Dμ is the covariant derivative:

Dμ = ∂μ + iesgμ; (4.2)

es is the gauge coupling, later we will mostly use, in analogy with QED

αs = e2
s

4π
; (4.3)

gμ = ∑
A tAgAμ where gAμ , A = 1, 8, are the gluon fields and tA are the SU(3)

group generators in the triplet representation of quarks (i.e. tA are 3 × 3 matrices
acting on q); the generators obey the commutation relations [tA, tB ] = iCABCt

C

where CABC are the complete antisymmetric structure constants of SU(3) (the
normalisation of CABC and of es is specified by T r[tAtB ] = δAB/2);

FA
μν = ∂μg

A
ν − ∂νg

A
μ − esCABCg

B
μg

C
ν (4.4)

For quantisation the classical Lagrangian in Eq. (4.1) must be enlarged to contain
gauge fixing and ghost terms, as described in Chap. 2. The Feynman rules of
QCD are listed in Fig. 4.1. The physical vertices in QCD include the gluon-quark-
antiquark vertex, analogous to the QED photon-fermion-antifermion coupling, but
also the 3-gluon and 4-gluon vertices, of order es and e2

s respectively, which have
no analogue in an abelian theory like QED.

The QCD lagrangian in Eq. (4.1) has a simple structure but a very rich dynamical
content. It gives rise to a complex spectrum of hadrons, it implies the striking
properties of confinement and asymptotic freedom, is endowed with an approximate
chiral symmetry which is spontaneously broken, has a highly non trivial topological
vacuum structure (instantons, U(1)A symmetry breaking, strong CP violation
(which is a problematic item in QCD possibly connected with new physics, like
axions), . . . ), an intriguing phase transition diagram (colour deconfinement, quark-
gluon plasma, chiral symmetry restoration, colour superconductivity, . . . ).

Confinement is the property that no isolated coloured charge can exist but only
colour singlet particles. For example, the potential between a quark and an antiquark
has been studied on the lattice. It has a Coulomb part at short distances and a linearly
rising term at long distances:

Vqq̄ ≈ CF [αs(r)
r

+ . . . . + σr] (4.5)
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Fig. 4.1 Feynman rules for QCD. The solid lines represent the fermions, the curly lines the gluons,
and the dotted lines represent the ghosts (see Chap. 2). The gauge parameter is denoted by λ. The
3-gluon vertex is written as if all gluon lines are outgoing

where

CF = 1

NC

∑
A

tAtA = N2
C − 1

2NC

(4.6)

with NC the number of colours (NC = 3 in QCD). The scale dependence of
αs (the distance r is Fourier-conjugate to momentum transfer) will be explained
in detail in the following. The understanding of the confinement mechanism has
much improved thanks to lattice simulations of QCD at finite temperatures and
densities. The slope decreases with increasing temperature until it vanishes at a
critical temperature TC . Above TC the slope remains zero. The phase transitions
of colour deconfinement and of chiral restauration appear to happen together on the
lattice. A rapid transition is observed in lattice simulations where the energy density
ε(T ) is seen to sharply increase near the critical temperature for deconfinement and
chiral restauration. The critical parameters and the nature of the phase transition
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depend on the number of quark flavours nf and on their masses. For example,
for nf = 2 or 2 + 1 (i.e. two light u and d quarks and one heavier s quark),
TC ∼ 175 MeV and ε(TC) ∼ 0.5 − 1.0 GeV/fm3. For realistic values of the masses
ms and mu,d the phase transition appears to be a second order one, while it becomes
first order for very small or very largemu,d,s . The hadronic phase and the deconfined
phase are separated by a crossover line at small densities and by a critical line at
high densities. Determining the exact location of the critical point in T and μB is
an important challenge for theory which is also important for the interpretation of
heavy ion collision experiments. At high densities the colour superconducting phase
is also present with bosonic diquarks acting as Cooper pairs.

A large investment is being done in experiments of heavy ion collisions with
the aim of finding some evidence of the quark gluon plasma phase. Many exciting
results have been found at the CERN SPS in the past years and more recently at
RHIC. The status of the experimental search for the quark-gluon plasma will be
reviewed in Chap. 7.

The linearly rising term in the potential makes it energetically impossible to
separate a q − q̄ pair. If the pair is created at one space-time point, for example
in e+e− annihilation, and then the quark and the antiquark start moving away from
each other in the center of mass frame, it soon becomes energetically favourable
to create additional pairs, smoothly distributed in rapidity between the two leading
charges, which neutralise colour and allow the final state to be reorganised into two
jets of colourless hadrons, that communicate in the central region by a number of
“wee” hadrons with small energy. It is just like the familiar example of the broken
magnet: if you try to isolate a magnetic pole by stretching a dipole, the magnet
breaks down and two new poles appear at the breaking point.

Confinement is essential to explain why nuclear forces have very short range
while massless gluon exchange would be long range. Nucleons are colour singlets
and they cannot exchange colour octet gluons but only colourless states. The lightest
colour singlet hadronic particles are pions. So the range of nuclear forces is fixed by
the pion mass r � m−1

π � 10−13 cm : V ≈ exp(−mπr)/r .
Why SU(NC = 3)colour? The selection of SU(3) as colour gauge group is

unique in view of a number of constraints. (a) The group must admit complex
representations because it must be able to distinguish a quark from an antiquark.
In fact there are meson states made up of qq̄ but not analogous qq bound states.
Among simple groups this restricts the choice to SU(N) with N ≥ 3, SO(4N + 2)
with N ≥ 2 (taking into account that SO(6) has the same algebra as SU(4)) and
E(6). (b) The group must admit a completely antisymmetric colour singlet baryon
made up of 3 quarks: qqq . In fact, from the study of hadron spectroscopy we
know that the low lying baryons, completing an octet and a decuplet of (flavour)
SU(3) (the approximate symmetry that rotate the three light quarks u, d and s), are
made up of three quarks and are colour singlets. The qqq wave function must be
completely antisymmetric in colour in order to agree with Fermi statistics. Indeed
if we consider, for example, a N∗++ with spin z-component +3/2, this is made
up of (u ⇑ u ⇑ u ⇑) in an s-state. Thus its wave function is totally symmetric in
space, spin and flavour so that complete antisymmetry in colour is required by Fermi
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statistics. In QCD this requirement is very simply satisfied by εabcq
aqbqc where a,

b, c are SU(3)colour indices. (c) The choice of SU(NC = 3)colour is confirmed by
many processes that directly measure NC . Some examples are listed here. The total
rate for hadronic production in e+e− annihilation is linear in NC . Precisely if we
consider R = σ(e+e− → hadrons)/σpoint (e

+e− → μ+μ−) above bb̄ threshold
and below mZ and we neglect small computable radiative corrections (that will be
discussed later in Sect. 4.5) we have a sum of individual contributions (proportional
to Q2, where Q is the electric charge in units of the proton charge) from qq̄ final
states with q = u, c, d, s, b:

R ≈ NC [2 · 4

9
+ 3 · 1

9
] ≈ NC

11

9
(4.7)

The data neatly indicate NC = 3 as seen from Fig. 4.2 [9]. The slight excess of
the data with respect to the value 11/3 is due to the QCD radiative corrections
(Sect. 4.5). Similarly we can consider the branching ratio B(W− → e−ν̄), again
in Born approximation. The possible fermion-antifermion (f f̄ ) final states are for
f = e−, μ−, τ−, d, s (there is no f = b because the top quark is too heavy for bt̄
to occur). Each channel gives the same contribution, except that for quarks we have
NC colours:

B(W− → e−ν̄) ≈ 1

3 + 2NC
(4.8)

Fig. 4.2 Comparison of the data on R = σ(e+e− → hadrons)/σpoint (e
+e− → μ+μ−) with

the QCD prediction [9]. NC = 3 is indicated
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For NC = 3 we obtain B = 11% and the experimental number is B = 10.7%.
Another analogous example is the branching ratio B(τ− → e−ν̄eντ ). From the final
state channels with f = e−, μ−, d we find

B(τ− → e−ν̄eντ ) ≈ 1

2 + NC

(4.9)

For NC = 3 we obtain B = 20% and the experimental number is B = 18% (the less
accuracy in this case is explained by the larger radiative and phase-space corrections
because the mass of τ− is much smaller than mW ). An important process that is
quadratic in NC is the rate (π0 → 2γ ). This rate can be reliably calculated from a
solid theorem in field theory which has to do with the chiral anomaly:

(π0 → 2γ ) ≈ (
NC

3
)2

α2m3
π0

32π3f 2
π

= (7.73 ± 0.04)(
NC

3
)2 eV (4.10)

where the prediction is obtained for fπ = (130.7 ± 0.37)MeV. The experimental
result is  = (7.7±0.5) eV in remarkable agreement with NC = 3. There are many
more experimental confirmations that NC = 3: for example the rate for Drell-Yan
processes (see Sect. 5.4) is inversely proportional to NC .

How do we get testable predictions from QCD? On the one hand there are non
perturbative methods. The most important at present is the technique of lattice
simulations: it is based on first principles, it has produced very valuable results on
confinement, phase transitions, bound states, hadronic matrix elements and so on,
and it is by now an established basic tool. The main limitation is from computing
power and therefore there is continuous progress and a lot of good perspectives
for the future. Another class of approaches is based on effective lagrangians which
provide simpler approximations than the full theory, valid in some definite domain
of physical conditions. Chiral lagrangians are based on soft pion theorems and are
valid for suitable processes at energies below 1 GeV. Heavy quark effective theories
are obtained from expanding in inverse powers of the heavy quark mass and are
mainly important for the study of b and, to less accuracy, c decays. The approach of
QCD sum rules has led to interesting results but appears to offer not much potential
for further development. Similarly specific potential models for quarkonium have a
limited range of application. On the other hand, the perturbative approach, based on
asymptotic freedom, still remains the main quantitative connection to experiment,
due to its wide range of applicability to all sorts of “hard” processes. To perturbative
QCD will be devoted the next sections.

4.2 Massless QCD and Scale Invariance

As discussed in Chap. 2, the QCD lagrangian in Eq. (4.1) only specifies the theory
at the classical level. The procedure for quantisation of gauge theories involves a
number of complications that arise from the fact that not all degrees of freedom of
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gauge fields are physical because of the constraints from gauge invariance which
can be used to eliminate the dependent variables. This is already true for abelian
theories and we are familiar with the QED case. One introduces a gauge fixing term
(an additional term in the lagrangian density that acts as a Lagrange multiplier in
the action extremisation). One can choose to preserve manifest Lorentz invariance.
In this case, one adopts a covariant gauge, like the Lorentz gauge, and in QED
one proceeds according to the formalism of Gupta-Bleuler. Or one can give up
explicit formal covariance and work in a non covariant gauge, like the Coulomb
or the axial gauges, and only quantise the physical degrees of freedom (in QED the
transverse components of the photon field). While this is all for an abelian gauge
theory, in the non-abelian case some additional complications arise, in particular
the necessity to introduce ghosts for the formulation of Feynman rules. As we
have seen, there are in general as many ghost fields as gauge bosons and they
appear in the form of a transformation Jacobian in the Feynman diagram functional
integral. Ghosts only propagate in closed loops and their vertices with gluons can be
included as additional terms in the lagrangian density which are fixed once the gauge
fixing terms and their infinitesimal gauge transformations are specified. Finally
the complete Feynman rules in a given gauge can be obtained and they appear in
Fig. 4.1.

Once the Feynman rules are derived we have a formal perturbative expansion
but loop diagrams generate infinities. First a regularisation must be introduced,
compatible with gauge symmetry and Lorentz invariance. This is possible in QCD.
In principle one can introduce a cut-off K (with dimensions of energy), for example,
a’ la Pauli-Villars. But at present the universally adopted regularisation procedure is
dimensional regularisation that we will briefly describe later on. After regularisation
the next step is renormalisation. In a renormalisable theory (like for all gauge
theories in four spacetime dimensions and for QCD in particular) the dependence
on the cutoff can be completely reabsorbed in a redefinition of particle masses,
of gauge coupling(s) and of wave function normalisations. After renormalisation
is achieved the perturbative definition of the quantum theory that corresponds to
a classical lagrangian like in Eq. (4.1) is completed. In the QCD Lagrangian of
Eq. (4.1) quark masses are the only parameters with physical dimensions (we work
in the natural system of units h̄ = c = 1). Naively we would expect that massless
QCD is scale invariant. This is actually true at the classical level. Scale invariance
implies that dimensionless observables should not depend on the absolute scale of
energy but only on ratios of energy-dimensional variables. The massless limit should
be relevant for the asymptotic large energy limit of processes which are non singular
for m → 0.

The naive expectation that massless QCD should be scale invariant is false in
the quantum theory. The scale symmetry of the classical theory is unavoidably
destroyed by the regularisation and renormalisation procedure which introduce a
dimensional parameter in the quantum version of the theory. When a symmetry
of the classical theory is necessarily destroyed by quantisation, regularisation and
renormalisation one talks of an “anomaly”. So, in this sense, scale invariance in
massless QCD is anomalous.
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While massless QCD is finally not scale invariant, the departures from scaling
are asymptotically small, logarithmic and computable. In massive QCD there are
additional mass corrections suppressed by powers of m/E, where E is the energy
scale (for non singular processes in the limit m → 0). At the parton level (q and
g) we can conceive to apply the asymptotics from massless QCD to processes and
observables (we use the word “processes” for both) with the following properties
(“hard processes”). (a) All relevant energy variables must be large:

Ei = ziQ, Q >> mj ; zi : scaling variables o(1) (4.11)

(b) There should be no infrared singularities (one talks of “infrared safe” processes).
(c) The processes concerned must be finite for m → 0 (no mass singularities).
To possibly satisfy these criteria processes must be as “inclusive” as possible:
one should include all final states with massless gluon emission and add all mass
degenerate final states (given that quarks are massless also q − q̄ pairs can be
massless if “collinear”, that is moving together in the same direction at the common
speed of light).

In perturbative QCD one computes inclusive rates for partons (the fields in the
lagrangian, that is, in QCD, quarks and gluons) and takes them as equal to rates
for hadrons. Partons and hadrons are considered as two equivalent sets of complete
states. This is called “global duality” and it is rather safe in the rare instance of a
totally inclusive final state. It is less so for distributions, like distributions in the
invariant mass M (“local duality”) where it can be reliable only if smeared over a
sufficiently wide bin in M.

Let us discuss more in detail infrared and collinear safety. Consider, for example,
a quark virtual line that ends up into a real quark plus a real gluon (Fig. 4.3).

For the propagator we have:

propagator = 1

(p + k)2 − m2
= 1

2(p · k) = 1

2EkEp

· 1

1 − βp cos θ
(4.12)

Since the gluon is massless, Ek can vanish and this corresponds to an infrared
singularity. Remember that we have to take the square of the amplitude and integrate
over the final state phase space, or, in this case, all together, dEk/Ek . Indeed we
get 1/E2

k from the squared amplitude and d3k/Ek ∼ EkdEk from the phase space.

Fig. 4.3 The splitting of a
virtual quark into a quark and
a gluon

k

pp + k 
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Fig. 4.4 The diagrams contributing to the total cross-section e+e− → hadrons at order αs . For
simplicity, only the final state quarks and (virtual or real) gluons are drawn

e+

e

�, Z

Fig. 4.5 The total cross-section e+e− → hadrons

Also, for m → 0, βp =
√

1 − m2/E2
p → 1 and (1−βp cos θ) vanishes at cos θ = 1.

This leads to a collinear mass singularity.
There are two very important theorems on infrared and mass singularities. The

first one is the Bloch-Nordsieck theorem [8]: infrared singularities cancel between
real and virtual diagrams (see Fig. 4.4) when all resolution indistinguishable final
states are added up. For example, for each real detector there is a minimum energy
of gluon radiation that can be detected. For the cancellation of infrared divergences,
one should add all possible gluon emission with a total energy below the detectable
minimum. The second one is the Kinoshita-Lee, Nauenberg theorem [10]: mass
singularities connected with an external particle of mass m are canceled if all
degenerate states (that is with the same mass) are summed up. That is for a final
state particle of mass m we should add all final states that in the limit m → 0 have
the same mass, also including gluons and massless pairs. If a completely inclusive
final state is taken, only the mass singularities from the initial state particles remain
(we shall see that they will be absorbed inside the non perturbative parton densities,
which are probability densities of finding the given parton in the initial hadron).

Hard processes to which the massless QCD asymptotics can possibly apply must
be infrared and collinear safe, that is they must satisfy the requirements from the
Bloch-Nordsieck and the Kinoshita-Lee-Nauenberg theorems. We give now some
examples of important hard processes. One of the simplest hard processes is the
totally inclusive cross section for hadron production in e+e− annihilation, Fig. 4.5,
parameterised in terms of the already mentioned dimensionless observable R =
σ(e+e− → hadrons)/σpoint (e

+e− → μ+μ−). The pointlike cross section in the
denominator is given by σpoint = 4πα2/3s, where s = Q2 = 4E2 is the squared
total center of mass energy and Q is the mass of the exchanged virtual gauge boson.
At parton level the final state is (qq̄ + n g + n′ q ′q̄ ′) and n and n’ are limited at
each order of perturbation theory. It is assumed that the conversion of partons into
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Fig. 4.6 Deep inelastic
lepto-production

 N

�

hadrons does not affect the rate (it happens with probability 1). We have already
mentioned that in order for this to be true within a given accuracy an averaging over
a sufficiently large bin of Q must be understood. The binning width is larger in the
vicinity of thresholds: for example when one goes across the charm cc̄ threshold
the physical cross-section shows resonance bumps which are absent in the smooth
partonic counterpart which however gives an average of the cross-section.

A very important class of hard processes is Deep Inelastic Scattering (DIS)

l + N → l′ + X l = e±, μ±, ν, ν̄ (4.13)

which has played and still plays a very important role for our understanding of QCD
and of nucleon structure. For the processes in Eq. (4.13), shown in Fig. 4.6, we have,
in the lab system where the nucleon of mass m is at rest:

Q2 = − q2 = − (k − k′)2 = 4EE′ sin2 θ/2; mν = (p.q); x = Q2

2mν
(4.14)

In this case the virtual momentum q of the gauge boson is spacelike. x is the
familiar Bjorken variable. The DIS processes in QCD will be extensively discussed
in Sect. 4.5

4.3 The Renormalisation Group and Asymptotic Freedom

In this section we aim at providing a reasonably detailed introduction to the
renormalisation group formalism and the concept of running coupling which leads
to the result that QCD has the property of asymptotic freedom. We start with a
summary on how renormalisation works.

In the simplest conceptual situation imagine that we implement regularisation of
divergent integrals by introducing a dimensional cut-off K that respects gauge and
Lorentz invariance. The dependence of renormalised quantities on K is eliminated
by absorbing it into a redefinition of m (the quark mass: for simplicity we assume
a single flavour here), the gauge coupling e (can be e in QED or es in QCD)
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and the wave function renormalisation factors Z
1/2
q,g for q and g, using suitable

renormalisation conditions (that is precise definitions of m, g and Z that can be
implemented order by order in perturbation theory). For example we can define
the renormalised mass m as the position of the pole in the quark propagator and,
similarly, the normalisation Zq as the residue at the pole:

Propagator = Zq

p2 − m2 + no − pole terms (4.15)

The renormalised coupling e can be defined in terms of a renormalised 3-point
vertex at some specified values of the external momenta. Precisely, we consider
a one particle irreducible vertex (1PI). We recall that a connected Green function
is the sum of all connected diagrams, while 1PI Green functions are the sum of all
diagrams that cannot be separated into two disconnected parts by cutting only one
line.

We now become more specific by concentrating on the case of massless QCD. If
we start from a vanishing mass at the classical (or “bare”) level, m0 = 0, the mass
is not renormalised because it is protected by a symmetry, chiral symmetry. The
conserved currents of chiral symmetry are axial currents: q̄γμγ5q . The divergence
of the axial current gives, by using the Dirac equation, ∂μ(q̄γμγ5q) = 2mq̄γ5q . So
the axial current and the corresponding axial charge are conserved in the massless
limit. Since QCD is a vector theory we have not to worry about chiral anomalies
in this respect. So one can choose a regularisation that preserves chiral symmetry
besides gauge and Lorentz symmetry. Then the renormalised mass remains zero.
The renormalised propagator has the form in Eq. (4.15) with m = 0.

The renormalised coupling es can be defined from the renormalised 1PI 3-gluon
vertex at a scale −μ2 (Fig. 4.7):

Vbare(p
2, q2, r2) = ZVren(p

2, q2, r2), Z = Z
−3/2
g , Vren(−μ2,−μ2,−μ2) → es

(4.16)

We could as well use the quark-gluon vertex or any other vertex which coincides
with e0 in lowest order (even the ghost-gluon vertex, if we want). With a regularisa-
tion and renormalisation that preserves gauge invariance we are guaranteed that all
these different definitions are equivalent.

Here Vbare is what is obtained from computing the Feynman diagrams including,
for example, the 1-loop corrections at the lowest non trivial order (Vbare is defined

Fig. 4.7 Diagrams
contributing to the 1PI
3-gluon vertex at the one-loop
approximation level + + +...

p 2

q 2r 2
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as the scalar function multiplying the vertex tensor, normalised in such a way that it
coincides with es0 in lowest order). Vbare contains the cut-off K but does not know
about μ. Z is a factor that depends both on the cut-off and on μ but not on momenta.
Because of infrared singularities the defining scale μ cannot vanish. The negative
value −μ2 < 0 is chosen to stay away from physical cuts (a gluon with negative
virtual mass cannot decay). Similarly, in the massless theory, we can define Z−1

g as

the inverse gluon propagator (the 1PI 2-point function) at the same scale −μ2 (the
vanishing mass of the gluon is guaranteed by gauge invariance).

After computing all 1-loop diagrams indicated in Fig. 4.7 we have:

Vbare(p
2, p2, p2) = e0s[1 + cα0s · log

K2

p2 + . . .] =

= [1 + cαs · log
K2

−μ2 + . . .]e0s[1 + cαs · log
−μ2

p2 + . . .]

= Z−1
V e0s[1 + cαs · log

−μ2

p2 + . . .]

= [1 + dαs · log
K2

−μ2 + . . .]es[1 + cαs · log
−μ2

p2 + . . .]

= Z
−3/2
g Vren (4.17)

Note the replacement of e0 with e in the second step, compensated by changing
c into d in the first bracket (corresponding to e0 = Z

−3/2
g ZV e). The definition

of es demands that one precisely specifies what is included in Z. For this, in a
given renormalisation scheme, a prescription is fixed to specify the finite terms
that go into Z (i.e. the terms of order αs that accompany logK2). Then Vren is
specified and the renormalised coupling is defined from it according to Eq. (4.16).
For example, in the momentum subtraction scheme we define Vren(p

2, p2, p2) =
es + Vbare(p

2, p2, p2) − Vbare(−μ2,−μ2,−μ2), which is equivalent to say, at
1-loop, that all finite terms that do not vanish at p2 = −μ2 are included in Z.

A crucial observation is that Vbare depends on K but not on μ, which is only
introduced when Z, Vren and hence αs are defined. (From here on, for shorthand,
we write α to indicate either the QED coupling or the QCD coupling αs ). More in
general for a generic Green function G, we similarly have:

Gbare(K
2, α0, p

2
i ) = ZGGren(μ

2, α, p2
i ) (4.18)

so that we have:

dGbare

d logμ2 = d

d logμ2 [ZGGren] = 0 (4.19)
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or

ZG[ ∂

∂ logμ2 + ∂α

∂ logμ2

∂

∂α
+ 1

ZG

∂ZG

∂ logμ2 ]Gren = 0 (4.20)

Finally the renormalisation group equation (RGE) can be written as:

[ ∂

∂ logμ2 + β(α)
∂

∂α
+ γG(α)]Gren = 0 (4.21)

where

β(α) = ∂α

∂ logμ2 (4.22)

and

γG(α) = ∂ logZG

∂ logμ2 (4.23)

Note that β(α) does not depend on which Green function G we are considering, but
it is a property of the theory and the renormalisation scheme adopted, while γG(α)

also depends on G. Strictly speaking the RGE as written above is only valid in the
Landau gauge (λ = 0). In other gauges an additional term that takes the variation
of the gauge fixing parameter λ should also be included. We omit this term, for
simplicity, as it is not relevant at the 1-loop level.

Assume that we want to apply the RGE to some hard process at a large scale
Q, related to a Green function G that we can always take as dimensionless (by
multiplication by a suitable power of Q). Since the interesting dependence on Q
will be logarithmic we introduce the variable t as :

t = log
Q2

μ2 (4.24)

Then we can write Gren ≡ F(t, α, xi) where xi are scaling variables (we often omit
to write them in the following). In the naive scaling limit F should be independent
of t . To find the actual dependence on t , we want to solve the RGE

[− ∂

∂t
+ β(α)

∂

∂α
+ γG(α)]Gren = 0 (4.25)

with a given boundary condition at t = 0 (or Q2 = μ2): F(0, α).
We first solve the RGE in the simplest case that γG(α) = 0. This is not an

unphysical case: for example, it applies to Re+e− where the vanishing of γ is related
to the non renormalisation of the electric charge in QCD (otherwise the proton and
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the electron charge would not exactly compensate: this will be better explained in
Sect. 4.5). So we consider the equation:

[− ∂

∂t
+ β(α)

∂

∂α
]Gren = 0 (4.26)

The solution is simply

F(t, α) = F [0, α(t)] (4.27)

where the “running coupling” α(t) is defined by:

t =
∫ α(t)

α

1

β(α′)
dα′ (4.28)

Note that from this definition it follows that α(0) = α, so that the boundary
condition is also satisfied. To prove that F [0, α(t)] is indeed the solution, we first
take derivatives with respect of t and α (the two independent variables) of both sides
of Eq. (4.28). By taking d/dt we obtain

1 = 1

β(α(t)

∂α(t)

∂t
(4.29)

We then take d/dα and obtain

0 = − 1

β(α)
+ 1

β(α(t)

∂α(t)

∂α
(4.30)

These two relations make explicit the dependence of the running coupling on t and
α:

∂α(t)

∂t
= β(α(t)) (4.31)

∂α(t)

∂α
= β(α(t))

β(α)
(4.32)

Using these two equations one immediately checks that F [0, α(t)] is indeed the
solution.

Similarly, one finds that the solution of the more general equation with γ 	= 0,
Eq. (4.25), is given by:

F(t, α) = F [0, α(t)] exp
∫ α(t)

α

γ (α′)
β(α′)

dα′ (4.33)
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In fact the sum of the two derivatives acting on the factorF [0, α(t)] vanishes and the
exponential is by itself a solution of the complete equation. Note that the boundary
condition is also satisfied.

The important point is the appearance of the running coupling that determines the
asymptotic departures from scaling. The next step is to study the functional form of
the running coupling. From Eq. (4.31) we see that the rate of change with t of the
running coupling is determined by the β function. In turn β(α) is determined by
the μ dependence of the renormalised coupling through Eq. (4.22). Clearly there
is no dependence on μ of the basic 3-gluon vertex in lowest order (order e). The
dependence starts at 1-loop, that is at order e3 (one extra gluon has to be emitted
and reabsorbed). Thus we obtain that in perturbation theory:

∂e

∂ logμ2 ∝ e3 (4.34)

Recalling that α = e2/4π , we have:

∂α

∂ logμ2 ∝ 2e
∂e

∂ logμ2 ∝ e4 ∝ α2 (4.35)

Thus the behaviour of β(α) in perturbation theory is as follows:

β(α) = ± bα2[1 + b′α + . . .] (4.36)

Since the sign of the leading term is crucial in the following discussion, we stipulate
that always b > 0 and we make the sign explicit in front.

Let us make the procedure for computing the 1-loop beta function in QCD (or,
similarly, in QED) more precise. The result of the 1loop 1PI diagrams for Vren can
be written down as (we denote es and αs by e and α, for shorthand):

Vren = e[1 + αB3g log
μ2

−p2
+ . . . ] (4.37)

Vren satisfies the RGE:

[ ∂

∂ logμ2 + β(α)
∂e

∂α

∂

∂e
− 3

2
γg(α)]Vren = 0 (4.38)

With respect to Eq. (4.21) the beta function term has been rewritten taking into
account that Vren starts with e and the anomalous dimension term arises from
a factor Z

−1/2
g for each gluon leg. In general for a n-leg 1PI Green function

Vn,bare = Z
−n/2
g Vn,ren, if all external legs are gluons. Note that in the particular case

of V = V3 that is used to define e other Z factors are absorbed in the replacement
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Z−1
V Z

3/2
g e0 = e. At 1-loop accuracy we replace β(α) = −bα2 and γg(α) = γ

(1)
g α.

All together one obtains:

b = 2(B3g − 3

2
γ (1)
g ) (4.39)

Similarly we can write the diagrammatic expression and the RGE for the 1PI 2-
gluon Green function which is the inverse gluon propagator � (a scalar function
after removing the gauge invariant tensor):

�ren = [1 + αB2g log
μ2

−p2 + . . . ] (4.40)

and

[ ∂

∂ logμ2 + β(α)
∂

∂α
− γg(α)]�ren = 0 (4.41)

Notice that the normalisation and the phase of � are specified by the lowest order
term being one. In this case the β function term is negligible being of order α2

(because � is a function of e only through α). and we obtain:

γ (1)
g = B2g (4.42)

Thus, finally:

b = 2(B3g − 3

2
B2g) (4.43)

By direct calculation at 1-loop one finds:

QED : β(α) ∼ + bα2 + . . . .. b =
∑
i

NCQ
2
i

3π
(4.44)

whereNC = 3 for quarks andNC = 1 for leptons and the sum runs over all fermions
of charge Qie that are coupled. Also, one finds:

QCD : β(α) ∼ − bα2 + . . . .. b = 11NC − 2nf
12π

(4.45)

where, as usual, nf is the number of coupled flavours of quarks (we assume here
that nf ≤ 16 so that b > 0 in QCD). If α(t) is small we can compute β(α(t)) in
perturbation theory. The sign in front of b then decides the slope of the coupling:
α(t) increases with t (or Q2) if β is positive at small α (QED), or α(t) decreases with
t (or Q2) if β is negative at small α (QCD). A theory like QCD where the running
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coupling vanishes asymptotically at large Q2 is called (ultraviolet) “asymptotically
free”. An important result that has been proven is that in four spacetime dimensions
all and only non-abelian gauge theories are asymptotically free.

Going back to Eq. (4.28) we replace β(α) ∼ ±bα2, do the integral and perform
a simple algebra. We find

QED : α(t) ∼ α

1 − bαt
(4.46)

and

QCD : α(t) ∼ α

1 + bαt
(4.47)

A slightly different form is often used in QCD. Defining 1/α = b logμ2/�2
QCD

we can write:

α(t) ∼ 1
1
α

+ bt
= 1

b log μ2

�2
QCD

+ b log Q2

μ2

= 1

b log Q2

�2
QCD

(4.48)

We see that α(t) decreases logarithmically with Q2 and that one can introduce a
dimensional parameter�QCD that replacesμ. Often in the following we will simply
write � for �QCD. Note that it is clear that � depends on the particular definition of
α, not only on the defining scale μ but also on the renormalisation scheme (see, for
example, the discussion in the next session). Through the parameter b, and in general
through the β function, it also depends on the number nf of coupled flavours. It is
very important to note that QED and QCD are theories with “decoupling”: up to the
scale Q only quarks with masses m << Q contribute to the running of α. This is
clearly very important, given that all applications of perturbative QCD so far apply
to energies below the top quark mass mt . For the validity of the decoupling theorem
[11] it is necessary that the theory where all the heavy particle internal lines are
eliminated is still renormalisable and that the coupling constants do not vary with
the mass. These requirements are true for the mass of heavy quarks in QED and
QCD, but are not true in the electroweak theory where the elimination of the top
would violate SU(2) symmetry (because the t and b left quarks are in a doublet) and
the quark couplings to the Higgs multiplet (hence to the longitudinal gauge bosons)
are proportional to the mass. In conclusion, in QED and QCD, quarks with m >> Q

do not contribute to nf in the coefficients of the relevant β function. The effects of
heavy quarks are power suppressed and can be taken separately into account. For
example, in e+e− annihilation for 2mc < Q < 2mb the relevant asymptotics is for
nf = 4, while for 2mb < Q < 2mt nf = 5. Going accross the b threshold the β

function coefficients change, so the α(t) slope changes. But α(t) is continuous, so
that � changes so as to keep constant α(t) at the matching point at Q ∼ o(2mb).
The effect on � is large: approximately �5 ∼ 0.65�4.
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Note the presence of a pole in Eqs. (4.46, 4.47) at ±bαt = 1, called the Landau
pole, who realised its existence in QED already in the ‘50’s. For μ ∼ me (in QED)
the pole occurs beyond the Planck mass. In QCD the Landau pole is located for
negative t or at Q < μ in the region of light hadron masses. Clearly the issue of the
definition and the behaviour of the physical coupling (which is always finite, when
defined in terms of some physical process) in the region around the perturbative
Landau pole is a problem that lies outside the domain of perturbative QCD.

The non leading terms in the asymptotic behaviour of the running coupling can in
principle be evaluated going back to Eq. (4.36) and computing b′ at 2-loops and so
on. But in general the perturbative coefficients of β(α) depend on the definition of
the renormalised coupling α (the renormalisation scheme), so one wonders whether
it is worthwhile to do a complicated calculation to get b′ if then it must be repeated
for a different definition or scheme. In this respect it is interesting to remark that
actually both b and b′ are independent of the definition of α, while higher order
coefficients do depend on that. Here is the simple proof. Two different perturbative
definitions of α are related by α′ ∼ α(1 + c1α + . . .). Then we have:

β(α′) = dα′

d logμ2 = dα

d logμ2 (1 + 2c1α + . . .)

= ±bα2(1 + b′α + . . .)(1 + 2c1α + . . .)

= ±bα′2(1 + b′α′ + . . .) (4.49)

which shows that, up to the first subleading order, β(α′) has the same form as β(α).
In QCD (NC = 3) one has calculated:

b′ = 153 − 19nf
2π(33 − 2nf )

(4.50)

By taking b′ into account one can write the expression of the running coupling at
next to the leading order (NLO):

α(Q2) = αLO(Q2)[1 − b′αLO(Q2) log log
Q2

�2
+ . . .] (4.51)

where α−1
LO = b logQ2/�2 is the LO result (actually at NLO the definition of � is

modified according to b logμ2/�2 = 1/α + b′ log bα).
Summarizing, we started from massless classical QCD which is scale invariant.

But we have seen that the procedure of quantisation, regularisation and renormal-
isation necessarily breaks scale invariance. In the quantum QCD theory there is
a scale of energy, �, which from experiment is of the order of a few hundred
MeV, its precise value depending on the definition, as we shall see in detail.
Dimensionless quantities depend on the energy scale through the running coupling
which is a logarithmic function of Q2/�2. In QCD the running coupling decreases
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logarithmically at large Q2 (asymptotic freedom), while in QED the coupling has
the opposite behaviour.

4.4 More on the Running Coupling

In the previous section we have introduced the renormalised coupling α in terms of
the 3-gluon vertex at p2 = −μ2 (momentum subtraction). The Ward identities of
QCD then ensure that the coupling defined from other vertices like the q̄qg vertex
are renormalised in the same way and the finite radiative corrections are related.
But at present the universally adopted definition of αs is in terms of dimensional
regularisation because of computational simplicity which is essential given the great
complexity of present day calculations. So we now briefly review the principles
of dimensional regularisation and the definition of Minimal Subtraction (MS) and
Modified Minimal Subtraction (MS). The MS definition of αs is the one most
commonly adopted in the literature and a value quoted for it is nomally referring
to this definition.

Dimensional Regularisation (DR) is a gauge and Lorentz invariant regularisation
that consists in formulating the theory in D < 4 spacetime dimensions in order to
make loop integrals ultraviolet finite. In DR one rewrites the theory in D dimensions
(D is integer at the beginning, but then we will see that the expression of diagrams
makes sense at all D except for isolated singularities). The metric tensor is extended
into a D × D matrix gμν = diag(1,−1,−1, . . . .,−1) and 4-vectors are given by
kμ = (k0, k1, . . . , kD−1). The Dirac γ μ are f (D) × f (D) matrices and it is not
important what is the precise form of the function f (D). It is sufficient to extend
the usual algebra in a straightforward way like {γμ, γν} = 2gμ,νI , with I the D-
dimensional identity matrix, γ μγ νγμ = − (D−2)γ ν or T r(γ μγ ν) = f (D)gμν .

The physical dimensions of fields change in D dimensions and, as a consequence,
the gauge couplings become dimensional eD = μεe, where e is dimensionless,
D = 4 − 2ε and μ is a scale of mass (this is how a scale of mass is introduced in
the DR of massless QCD!). The dimension of fields is determined by requiring that
the action S = ∫

dDxL is dimensionless. By inserting for L terms like m�̄� or
m2φ†φ or e�̄γ μ�Aμ the dimensions of the fields and coupling are determined as:
m,�, φ,Aμ, e = 1, (D − 1)/2, (D − 2)/2, (D − 2)/2, (4 − D)/2, respectively.
The formal expression of loop integrals can be written for any D. For example:

∫
dDk

(2π)D
1

(k2 − m2)2 = (2 − D/2)(−m2)D/2−2

(4π)D/2 (4.52)

For D = 4 − 2ε one can expand using:

(ε) = 1

ε
− γE + o(ε), γE = 0.5772 . . . .. (4.53)
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For some Green function G, normalised to one in lowest order, (like V/e with V the
3-g vertex function at the symmetric point p2 = q2 = r2, considered in the previous
section) we typically find at 1-loop:

Gbare = 1 + α0(
−μ2

p2 )ε [B(1

ε
+ log 4π − γE) + A + o(ε)] (4.54)

In MS one rewrites this at 1-loop accuracy (diagram by diagram: this is a virtue of
the method):

Gbare = ZGren

Z = 1 + α [B(1

ε
+ log 4π − γE)]

Gren = 1 + α [B log
−μ2

p2 + A] (4.55)

Here Z stands for the relevant product of renormalisation factors. In the originalMS

prescription only 1/ε was subtracted (that clearly plays the role of a cutoff) and not
also log 4π and γE . Later, since these constants always appear from the expansion
of  functions it was decided to modify MS into MS. Note that the MS definition
of α is different than that in the momentum subtraction scheme because the finite
terms (those beyond logs) are different. In particular here δGren does not vanish at
p2 = −μ2.

The third [12] and fourth [13] coefficients of the QCD β function are also
known in the MS prescription (recall that only the first two coefficients are scheme
independent). The calculation of the last term involved the evaluation of some
50,000 4-loop diagrams. Translated in numbers, for nf = 5 one obtains :

β(α) = − 0.610α2[1 + 1.261 . . .
α

π
+ 1.475 . . . (

α

π
)2 + 9.836 . . . (

α

π
)3 . . .]
(4.56)

It is interesting to remark that the expansion coefficients are all of order 1 or (10 for
the last one), so that the MS expansion looks reasonably well behaved.

It is important to keep in mind that the QED and QCD perturbative series,
after renormalisation, have all their coefficients finite, but the expansion does not
converge. Actually the perturbative series are not even Borel summable. After Borel
resummation for a given process one is left with a result which is ambiguous
by terms typically down by exp −n/(bα), with n an integer and b the first β

function coefficient. In QED these corrective terms are extremely small and not very
important in practice. On the contrary in QCD α = αs(Q

2) ∼ 1/(b logQ2/�2)

and the ambiguous terms are of order (1/Q2)n, that is are power suppressed. It is
interesting that, through this mechanism, the perturbative version of the theory is
able to somehow take into account the power suppressed corrections. A sequence
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of diagrams with factorial growth at large order n is made up by dressing gluon
propagators by any number of quark bubbles together with their gauge completions
(renormalons).The problem of the precise relation between the ambiguities of the
perturbative expansion and the higher twist corrections has been discussed in recent
years [14].

4.5 Application to Hard Processes

4.5.1 Re+e− and Related Processes

The simplest hard process is Re+e− that we have already started to discuss. R is
dimensionless and in perturbation theory is given by R = NC

∑
i Q

2
i F (t, αs),

where F = 1 + o(αS). We have already mentioned that for this process the
“anomalous dimension” function vanishes: γ (αs) = 0 because of electric charge
non renormalisation by strong interactions. Let us review how this happens in detail.
The diagrams that are relevant for charge renormalisation in QED at 1-loop are
shown in Fig. 4.8. The Ward identity that follows from gauge invariance in QED
imposes that the vertex (ZV ) and the self-energy (Zf ) renormalisation factors cancel
and the only divergence remains in Zγ , the vacuum polarization of the photon. So
the charge is only renormalised by the photon blob, hence it is universal (the same
factor for all fermions, independent of their charge) and is not affected by QCD
at 1-loop. It is true that at higher orders the photon vacuum polarization diagram
is affected by QCD (for example, at 2-loops we can exchange a gluon between
the quarks in the photon loop) but the renormalisation induced by the vacuum
polarisation diagram remains independent of the nature of the fermion to which
the photon line is attached. The gluon contributions to the vertex (ZV ) and to the
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Fig. 4.8 Diagrams for charge renormalisation in QED at 1-loop
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Fig. 4.9 Real and virtual diagrams relevant for the computation of R at 1-loop accuracy

self-energy (Zf ) cancel because they have exactly the same structure as in QED, so
that γ (αs) = 0.

At 1-loop the diagrams relevant for the computation of R are shown in Fig. 4.9.
There are virtual diagrams and real diagrams with one additional gluon in the
final state. Infrared divergences cancel between the interference term of the virtual
diagrams and the absolute square of the real diagrams, according to the Bloch-
Nordsieck theorem. Similarly there are no mass singularities, in agreement with
the Kinoshita-Lee-Nauenberg theorem, because the initial state is purely leptonic
and all degenerate states that can appear at the given order are included in the final
state. Given that γ (αs) = 0 the RGE prediction is simply given, as we have already
seen, by F(t, αs) = F [0, αs(t)]. This means that if we do, for example, a 2-loop
calculation, we must obtain a result of the form:

F(t, αs) = 1 + c1αs(1 − bαst) + c2α
2
s + o(α3

s ) (4.57)

In fact we see that this form, taking into account that from Eq. (4.47) we have:

αs(t) ∼ αs

1 + bαst
∼ αs(1 − bαst + . . . .) (4.58)

can be rewritten as

F(t, αs) = 1 + c1αs(t) + c2α
2
s (t) + o(α3

s (t)) = F [0, αs(t)] (4.59)

The content of the RGE prediction is, at this order, that there are no αst and (αst)
2

terms (the leading log sequence must be absent) and the term of order α2
s t has the

coefficient that allows to reabsorb it in the transformation of αs into αs(t).
At present the first three coefficients have been computed in the MS scheme

[15]. Clearly c1 = 1/π does not depend on the definition of αs but c2 and c3 do.
The subleading coefficients also depend on the scale choice: if instead of expanding
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in αs(Q) we decide to choose αs(Q/2) the coefficients c2 and c3 change. In the MS

scheme, for γ -exchange and nf = 5, which are good approximations for 2mb <<

Q << mZ, one has:

F [0, αs(t)] = 1 + αs(t)

π
+ 1.409 . . . (

αs(t)

π
)2 − 12.8 . . . (

αs(t)

π
)3 +. . . (4.60)

Similar perturbative results at 3-loop accuracy also exist for RZ = (Z →
hadrons)/(Z → leptons), Rτ = (τ → ντ +hadrons)/(τ → ντ +leptons),
etc. We will discuss these results later when we deal with measurements of αs .

The perturbative expansion in powers of αs(t) takes into account all contributions
that are suppressed by powers of logarithms of the large scale Q2 (“leading twist”
terms). In addition there are corrections suppressed by powers of the large scale
Q2 (“higher twist” terms). The pattern of power corrections is controlled by the
light-cone Operator Product Expansion (OPE) [16] which (schematically) leads to:

F = pert. + r2
m2

Q2 + r4
< 0|T r[FμνFμν ]|0 >

Q4 + . . . + r6
< 0|O6|0 >

Q6 + . . .

(4.61)

Here m2 generically indicates mass corrections, notably from b quarks, for example
(t quark mass corrections only arise from loops, vanish in the limit mt → ∞ and
are included in the coefficients as those in Eq. (4.60) and the analogous ones for
higher twist terms), Fμν = ∑

A FA
μνt

A, O6 is typically a 4-fermion operator, etc.
For each possible gauge invariant operator the corresponding power of Q2 is fixed
by dimensions.

We now consider the light-cone OPE in some more detail. Re+e− ∼ �(Q2)

where �(Q2) is the scalar spectral function related to the hadronic contribution to
the imaginary part of the photon vacuum polarization Tμν :

Tμν = (−gμνQ
2 + qμqν)�(Q2) =

∫
exp iqx < 0|J †

μ(x)Jν(0)|0 > dx =

=
∑
n

< 0|J †
μ(0)|n >< n|Jν(0)|0 > (2π)4δ4(q − pn) (4.62)

For Q2 → ∞ the x2 → 0 region is dominant. To all orders in perturbation theory
the OPE can be proven. Schematically, dropping Lorentz indices, for simplicity,
near x2 ∼ 0 we have:

J †(x)J (0) = I (x2) + E(x2)

∞∑
n=0

cn(x
2)xμ1 . . . xμn · On

μ1...μn
(0)

+ less sing. terms (4.63)



106 G. Altarelli and S. Forte

Here I (x2), E(x2),. . . , cn(x2) are c-number singular functions, On is a string of
local operators. E(x2) is the singularity of free field theory, I (x2) and cn(x

2)

contain powers of logμ2x2 in interaction. Some On are already present in free field
theory, other ones appear when interactions are switched on. Given that �(Q2) is
related to the Fourier transform of the vacuum expectation value of the product
of currents, less singular terms in x2 lead to power suppressed terms in 1/Q2. The
perturbative terms come from I (x2) which is the leading twist term. The logarithmic
scaling violations induced by the running coupling are the logs in I (x2).

4.5.2 The Final State in e+e− Annihilation

Experiments on e+e− annihilation at high energy provide a remarkable possibility
of systematically testing the distinct signatures predicted by QCD for the structure of
the final state averaged over a large number of events. Typical of asymptotic freedom
is the hierarchy of configurations emerging as a consequence of the smallness of
αs(Q

2). When all corrections of order αs(Q2) are neglected one recovers the naive
parton model prediction for the final state: almost collinear events with two back-
to-back jets with limited transverse momentum and an angular distribution as (1 +
cos2 θ) with respect to the beam axis (typical of spin 1/2 parton quarks: scalar quarks
would lead to a sin2 θ distribution). At order αs(Q2) a tail of events is predicted
to appear with large transverse momentum pT ∼ Q/2 with respect to the thrust
axis (the axis that maximizes the sum of the absolute values of the longitudinal
momenta of the final state particles). This small fraction of events with large pT

mostly consists of three-jet events with an almost planar topology. The skeleton of a
three-jet event, at leading order in αs(Q

2), is formed by three hard partons qq̄g, the
third being a gluon emitted by a quark or antiquark line. The distribution of three-jet
events is given by:

1

σ

dσ

dx1dx2
= 2αs

3π

x2
1 + x2

2

(1 − x1)(1 − x2)
(4.64)

here x1,2 refer to energy fractions of massless quarks: xi = 2Ei/
√
s with x1 + x2 +

x3 = 2. At order α2
s (Q

2) a hard perturbative non planar component starts to build
up and a small fraction of four-jet events qq̄gg or qq̄qq̄ appear, and so on.

A quantitatively specified definition of jet counting must be introduced for
precise QCD tests and for measuring αs , which must be infrared safe (i.e. not altered
by soft particle emission or collinear splittings of massless particles) in order to be
computable at parton level and as much as possible insensitive to the transformation
of partons into hadrons. One introduces a resolution parameter ycut and a suitable
pair variable; for example [17]:

yij = min(E2
i , E

2
j )(1 − cos θij )

s
(4.65)
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The particles i,j belong to different jets for yij > ycut . Clearly the number of jets
becomes a function of ycut : there are more jets for smaller ycut . Measurements of
αs(Q

2) have been performed starting from jet multiplicities, the largest error coming
from the necessity of correcting for non-perturbative hadronisation effects.

4.5.3 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) processes have played and still play a very important
role for our understanding of QCD and of nucleon structure. This set of processes
actually provides us with a rich laboratory for theory and experiment. There are
several structure functions that can be studied, Fi(x,Q

2), each a function of two
variables. This is true separately for different beams and targets and different
polarizations. Depending on the charges of l and l’ (see Eq. (4.13)) we can have
neutral currents (γ ,Z) or charged currents in the l-l’ channel (Fig. 4.6). In the past
DIS processes were crucial for establishing QCD as the theory of strong interactions
and quarks and gluons as the QCD partons. At present DIS remains very important
for quantitative studies and tests of QCD. The theory of scaling violations for totally
inclusive DIS structure functions, based on operator expansion or diagrammatic
techniques and renormalisation group methods, is crystal clear and the predicted
Q2 dependence can be tested at each value of x. The measurement of quark and
gluon densities in the nucleon, as functions of x at some reference value of Q2,
which is an essential starting point for the calculation of all relevant hadronic hard
processes, is performed in DIS processes. At the same time one measures αs(Q

2)

and the DIS values of the running coupling can be compared with those obtained
from other processes. At all times new theoretical challenges arise from the study of
DIS processes. Recent examples are the so-called “spin crisis” in polarized DIS and
the behaviour of singlet structure functions at small x as revealed by HERA data. In
the following we will review the past successes and the present open problems in
the physics of DIS.

The cross-section σ ∼ LμνWμν is given in terms of the product of a leptonic
(Lμν) and a hadronic (Wμν) tensor. While Lμν is simple and easily obtained
from the lowest order electroweak (EW) vertex plus QED radiative corrections,
the complicated strong interaction dynamics is contained in Wμν . The latter is
proportional to the Fourier transform of the forward matrix element between the
nucleon target states of the product of two EW currents:

Wμν =
∫

dx exp iqx < p|J †
μ(x)Jν(0)|p > (4.66)



108 G. Altarelli and S. Forte

Structure functions are defined starting from the general form of Wμν given
Lorentz invariance and current conservation. For example, for EW currents between
unpolarized nucleons we have:

Wμν = (−gμν + qμqν

q2
) W1(ν,Q

2) + (pμ − mν

q2
qμ)(pν − mν

q2
qν)

W2(ν,Q
2)

m2
−

− i

2m2 εμνλρp
λqρ W3(ν,Q

2)

W3 arises from VA interference and is absent for pure vector currents. In the limit
Q2 >> m2, x fixed, the structure functions obey approximate Bjorken scaling
which in reality is broken by logarithmic corrections that can be computed in QCD:

mW1(ν,Q
2) → F1(x)

νW2,3(ν,Q
2) → F2,3(x) (4.67)

The γ − N cross-section is given by (Wi = Wi(Q
2, ν)):

dσγ

dQ2dν
= 4πα2E′

Q4E
· [2 sin2 θ

2
W1 + cos2 θ

2
W2] (4.68)

while for the ν − N or ν̄ − N cross-section one has:

dσν,ν̄

dQ2dν
= G2

FE
′

2πE
(

m2
W

Q2 + m2
W

)2 · [2 sin2 θ

2
W1 + cos2 θ

2
W2 ± E + E′

m
sin2 θ

2
W3]

(4.69)

(Wi for photons, ν and ν̄ are all different, as we shall see in a moment).
In the scaling limit the longitudinal and transverse cross sections are given by:

σL ∼ 1

s
[F2(x)

2x
− F1(x)]

σRH,LH ∼ 1

s
[F1(x) ± F3(x)]

σT = σRH + σLH (4.70)

where L, RH, LH refer to the helicity 0, 1,−1, respectively, of the exchanged gauge
vector boson.

In the ‘60’s the demise of hadrons from the status of fundamental particles to that
of bound states of constituent quarks was the breakthrough that made possible the
construction of a renormalisable field theory for strong interactions. The presence
of an unlimited number of hadrons species, many of them with large spin values,
presented an obvious dead-end for a manageable field theory. The evidence for
constituent quarks emerged clearly from the systematics of hadron spectroscopy.
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The complications of the hadron spectrum could be explained in terms of the
quantum numbers of spin 1/2, fractionally charged, u, d and s quarks. The notion
of colour was introduced to reconcile the observed spectrum with Fermi statistics.
But confinement that forbids the observation of free quarks was a clear obstacle
towards the acceptance of quarks as real constituents and not just as fictitious
entities describing some mathematical pattern (a doubt expressed even by Gell-
Mann at the time). The early measurements at SLAC of DIS dissipated all doubts:
the observation of Bjorken scaling and the success of the “naive” (not so much after
all) parton model of Feynman imposed quarks as the basic fields for describing the
nucleon structure (parton quarks).

In the language of Bjorken and Feynman the virtual γ (or, in general, any
gauge boson) sees the quark partons inside the nucleon target as quasi-free, because
their (Lorentz dilated) QCD interaction time is much longer than τγ ∼ 1/Q, the
duration of the virtual photon interaction. Since the virtual photon 4-momentum
is spacelike, we can go to a Lorentz frame where Eγ = 0 (Breit frame). In this
frame q = (Eγ = 0; 0, 0,Q) and the nucleon momentum, neglecting the mass
m << Q, is p = (Q/2x; 0, 0,−Q/2x) (note that this correctly gives q2 = −Q2

and x = Q2/2(p·q)). Consider (Fig. 4.10) the interaction of the photon with a quark
carrying a fraction y of the nucleon 4-momentum: pq = yp (we are neglecting
the transverse components of pq which are of order m). The incoming parton with
pq = yp absorbs the photon and the final parton has 4-momentum p′

q . Since in the
Breit frame the photon carries no energy but only a longitudinal momentum Q, the
photon can only be absorbed by those partons with y = x: then the longitudinal
component of pq = yp is −yQ/2x = −Q/2 and can be flipped into +Q/2 by
the photon. As a result, the photon longitudinal momentum +Q disappears, the
parton quark momentum changes of sign from −Q/2 into +Q/2 and the energy is
not changed. So the structure functions are proportional to the density of partons
with fraction x of the nucleon momentum, weighted with the squared charge. Also,
recall that the helicity of a massless quark is conserved in a vector (or axial vector)
interaction. So when the momentum is reversed also the spin must flip. Since the
process is collinear there is no orbital contribution and only a photon with helicity
±1 (transverse photon) can be absorbed. Alternatively, if partons were spin zero
only longitudinal photons would instead contribute.

Using these results, which are maintained in QCD at leading order, the quantum
numbers of the quarks were confirmed by early experiments. The observation that
R = σL/σT → 0 implies that the charged partons have spin 1/2. The quark charges

Fig. 4.10 Schematic diagram
for the interaction of the
virtual photon with a parton
quark in the Breit frame

–Q/2

+Q/2

Q

spin
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were derived from the data on the electron and neutrino structure functions:

Fep = 4/9u(x) + 1/9d(x) + . . . .. ; Fen = 4/9d(x) + 1/9u(x) + . . . .

Fνp = Fν̄n = 2d(x) + . . . .. ; Fνn = Fν̄p = 2u(x) + . . . .. (4.71)

where F ∼ 2F1 ∼ F2/x and u(x), d(x) are the parton number densities in the
proton (with fraction x of the proton longitudinal momentum), which, in the scaling
limit, do not depend on Q2. The normalisation of the structure functions and the
parton densities are such that the charge relations hold:

∫ 1

0
[u(x)− ū(x)]dx = 2,

∫ 1

0
[d(x)− d̄(x)]dx = 1,

∫ 1

0
[s(x) − s̄(x)]dx = 0

(4.72)

Also it was proven by experiment that at values of Q2 of a few GeV2, in the scaling
region, about half of the nucleon momentum, given by the momentum sum rule:

∫ 1

0
[
∑
i

(qi(x)+ q̄i(x)) + g(x)]xdx = 1 (4.73)

is carried by neutral partons (gluons).
In QCD there are calculable log scaling violations induced by αs(t). The parton

rules just introduced can be summarised in the formula:

F(x, t) =
∫ 1

x

dy
q0(y)

y
σpoint (

x

y
, αs(t)) + o(

1

Q2 ) (4.74)

Before QCD corrections σpoint = e2δ(x/y − 1) and F = e2q0(x) (here we denote
by e the charge of the quark in units of the positron charge, i.e. e = 2/3 for the
u quark). QCD modifies σpoint at order αs via the diagrams of Fig. 4.11. Note that
the integral is from x to 1, because the energy can only be lost by radiation before
interacting with the photon (which eventually wants to find a fraction x, as we have

Fig. 4.11 First order QCD corrections to the virtual photon-quark cross-section: (a) leading order
with (b) one-loop virtual correction; (c-d) next-to-leading order real emission
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explained). From a direct computation of the diagrams one obtains a result of the
following form:

σpoint (z, αs(t)) � e2[δ(z − 1) + αs

2π
(t · P(z) + f (z))] (4.75)

For y > x the correction arises from diagrams with real gluon emission. Only the
sum of the two real diagrams in Fig. 4.11 is gauge invariant, so that the contribution
of one given diagram is gauge dependent. There is a special form of axial gauge,
called physical gauge, where, among real diagrams, the diagram of Fig. 4.11c gives
the whole t-proportional term. It is obviously not essential to go to this gauge, but
this diagram has a direct physical interpretation: a quark in the proton has a fraction
y > x of the parent 4-momentum; it then radiates a gluon and looses energy down to
a fraction x before interacting with the photon. The log arises from the virtual quark
propagator, according to the discussion of collinear mass singularities in Eq. (4.12).
In fact in the massless limit one has:

propagator = 1

r2 = 1

(k − h)2 = −1

2EkEh

· 1

1 − cos θ

= −1

4EkEh

· 1

sin2 θ/2
∝ −1

p2
T

(4.76)

where pT is the transverse momentum of the virtual quark. So the square of the
propagator goes like 1/p4

T . But there is a p2
T factor in the numerator, because in the

collinear limit, when θ = 0 and the initial and final quarks and the emitted gluon are
all aligned, the quark helicity cannot flip (vector interaction) so that the gluon should
carry helicity zero but a real gluon can only have ±1 helicity. Thus the numerator
vanishes as p2

T in the forward direction and the cross-section behaves as:

σ ∼
∫ Q2

1

p2
T

dp2
T ∼ logQ2 (4.77)

Actually the log should be read as logQ2/m2 because in the massless limit a
genuine mass singularity appears. In fact the mass singularity connected with the
initial quark line is not cancelled because we do not have the sum of all degenerate
initial states, but only a single quark. But in correspondence to the initial quark we
have the (bare) quark density q0(y) that appear in the convolution integral. This is
a non perturbative quantity that is determined by the nucleon wave function. So we
can factorize the mass singularity in a redefinition of the quark density: we replace
q0(y) → q(y, t) = q0(y) + �q(y, t) with:

�q(x, t) = αs

2π
t

∫ 1

x

dy
q0(y)

y
· P(

x

y
) (4.78)
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Here the factor of t is a bit symbolic: it stands for logQ2/km2 and what we exactly
put below Q2 depends on the definition of the renormalised quark density, which
also fixes the exact form of the finite term f (z) in Eq. (4.75).

The effective parton density q(y, t) that we have defined is now scale dependent.
In terms of this scale dependent density we have the following relations, where we
have also replaced the fixed coupling with the running coupling according to the
prescription derived from the RGE:

F(x, t) =
∫ 1

x

dy
q(y, t)

y
e2[δ(x

y
− 1) + αs(t)

2π
f (

x

y
))] = e2q(x, t) + o(αs(t))

d

dt
q(x, t) = αs(t)

2π

∫ 1

x

dy
q(y, t)

y
· P(

x

y
) + o(αs(t)

2) (4.79)

We see that in lowest order we reproduce the naive parton model formulae for the
structure functions in terms of effective parton densities that are scale dependent.
The evolution equations for the parton densities are written down in terms of kernels
(the “splitting functions”) that can be expanded in powers of the running coupling.
At leading order, we can interpret the evolution equation by saying that the variation
of the quark density at x is given by the convolution of the quark density at y times
the probability of emitting a gluon with fraction x/y of the quark momentum.

It is interesting that the integro-differential QCD evolution equation for densities
can be transformed into an infinite set of ordinary differential equations for Mellin
moments [2]. The moment fn of a density f (x) is defined as:

fn =
∫ 1

0
dxxn−1f (x) (4.80)

By taking moments of both sides of the second of Eqs. (4.79) one finds, with
a simple interchange of the integration order, the simpler equation for the n-th
moment:

d

dt
qn(t) = αs(t)

2π
· Pn · qn(t) (4.81)

To solve this equation we observe that:

log
qn(t)

qn(0)
= Pn

2π

∫ t

0
αs(t)dt = Pn

2π

∫ αs(t)

αs

dα′

−bα′ (4.82)

where we used Eq. (4.31) to change the integration variable from dt to dα(t)

(denoted as dα′) and β(α) � −bα2 + . . .. Finally the solution is:

qn(t) = [ αs

αs(t)
] Pn

2πb · qn(0) (4.83)
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The connection of these results with the RGE general formalism occurs via
the light cone OPE (recall Eq. (4.66) for Wμν and Eq. (4.63) for the OPE of two
currents). In the case of DIS the c-number term I (x2) does not contribute, because
we are interested in the connected part < p| . . . |p > − < 0| . . . |0 >. The relevant
terms are:

J †(x)J (0) = E(x2)

∞∑
n=0

cn(x
2)xμ1 . . . xμn · On

μ1...μn
(0) + less sing. terms

(4.84)

A formally intricate but conceptually simple argument (Ref. [6], page 28) based on
the analiticity properties of the forward virtual Compton amplitude shows that the
Mellin moments Mn of structure functions are related to the individual terms in
the OPE, precisely to the Fourier transform cn(Q

2) (we will write it as cn(t, α)) of
the coefficient cn(x2) times a reduced matrix element hn from the operators On:
< p|On

μ1...μn
(0)|p >= hnpμ1 . . . pμn :

cn < p|On|p >→ Mn =
∫ 1

0
dxxn−1F(x) (4.85)

Since the matrix element of the products of currents satisfy the RGE so do the
moments Mn. Hence the general form of the Q2 dependence is given by the RGE
solution (see Eq. (4.33)):

Mn(t, α) = cn[0, α(t)] exp
∫ α(t)

α

γn(α
′)

β(α′)
dα′ · hn(α) (4.86)

In lowest order, identifying in the simplest case Mn with qn, we have:

γn(α) = Pn

2π
α + . . . , β(α) = − bα2 + . . . (4.87)

and

qn(t) = qn(0) exp
∫ α(t)

α

γn(α
′)

β(α′)
dα′ = [ αs

αs(t)
] Pn

2πb · qn(0) (4.88)

which exactly coincides with Eq. (4.83).
Up to this point we have implicitly restricted our attention to non-singlet (under

the flavour group) structure functions. The Q2 evolution equations become non
diagonal as soon as we take into account the presence of gluons in the target. In
fact the quark which is seen by the photon can be generated by a gluon in the target
(Fig. 4.12).
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Fig. 4.12 Lowest order
diagram for the interaction of
the virtual photon with a
parton gluon q

q

g

�

 N

*

The quark evolution equation becomes:

d

dt
qi(x, t) = αs(t)

2π
[qi ⊗ Pqq ] + αs(t)

2π
[g ⊗ Pqg] (4.89)

where we introduced the shorthand notation:

[q ⊗ P ] = [P ⊗ q] =
∫ 1

x

dy
q(y, t)

y
· P(

x

y
) (4.90)

(it is easy to check that the convolution, like an ordinary product, is commutative).
At leading order, the interpretation of Eq. (4.89) is simply that the variation of the
quark density is due to the convolution of the quark density at a higher energy times
the probability of finding a quark in a quark (with the right energy fraction) plus
the gluon density at a higher energy times the probability of finding a quark (of the
given flavour i) in a gluon. The evolution equation for the gluon density, needed to
close the system, can be obtained by suitably extending the same line of reasoning
to a gedanken probe sensitive to colour charges, for example a virtual gluon. The
resulting equation is of the form:

d

dt
g(x, t) = αs(t)

2π
[
∑
i

(qi + q̄i) ⊗ Pgq ] + αs(t)

2π
[g ⊗ Pgg] (4.91)

The explicit form of the splitting functions in lowest order [18, 19] can be directly
derived from the QCD vertices [19]. They are a property of the theory and do not
depend on the particular process the parton density is taking part in. The results are:

Pqq = 4

3
[ 1 + x2

(1 − x)+
+ 3

2
δ(1 − x)] + o(αs)

Pgq = 4

3

1 + (1 − x)2

x
+ o(αs)
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Pqg = 1

2
[x2 + (1 − x)2] + o(αs)

Pgg = 6[ x

(1 − x)+
+ 1 − x

x
+ x(1 − x)] + 33 − 2nf

6
δ(1 − x) + o(αs) (4.92)

For a generic non singular weight function f (x), the “+” distribution is defined as:

∫ 1

0

f (x)

(1 − x)+
dx =

∫ 1

0

f (x) − f (1)

1 − x
dx (4.93)

The δ(1 − x) terms arise from the virtual corrections to the lowest order tree
diagrams. Their coefficient can be simply obtained by imposing the validity of
charge and momentum sum rules. In fact, from the request that the charge sum
rules in Eq. (4.72) are not affected by the Q2 dependence one derives that

∫ 1

0
Pqq(x)dx = 0 (4.94)

which can be used to fix the coefficient of the δ(1 − x) terms of Pqq . Similarly,
by taking the t-derivative of the momentum sum rule in Eq. (4.73) and imposing its
vanishing for generic qi and g, one obtains:

∫ 1

0
[Pqq(x) + Pgq(x)]xdx = 0,

∫ 1

0
[2nf Pqg(x) + Pgg(x)]xdx = 0.

(4.95)

At higher orders the evolution equations are easily generalised but the cal-
culation of the splitting functions rapidly becomes very complicated. For many
years the splitting functions were only completely known at NLO accuracy [20]:
αsP ∼ αsP1 + α2

s P2 + . . .. Then in recent years the NNLO results P3 have been
first derived in analytic form for the first few moments and, then the full NNLO
analytic calculation, a really monumental work, was completed in 2004 by Moch,
Vermaseren and Vogt [21]. Beyond leading order a precise definition of parton
densities should be specified. One can take a physical definition (for example, quark
densities can be defined as to keep the LO expression for the structure function F2
valid at all orders, the so called DIS definition [22], and the gluon density could
be defined starting from FL, the longitudinal structure function, or a more abstract
specification (for example, in terms of the MS prescription). Once the definition of
parton densities is fixed, the coefficients that relate the different structure functions
to the parton densities at each fixed order can be computed. Similarly the higher
order splitting functions also depend, to some extent, from the definition of parton
densities, and a consistent set of coefficients and splitting functions must be used at
each order.

The scaling violations are clearly observed by experiment and their pattern is
very well reproduced by QCD fits at NLO. Examples are seen in Fig. 4.13a–d [23].
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Fig. 4.13 A recent NLO fit of scaling violations from Ref. [23], for different x ranges, as functions
of Q2
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These fits provide an impressive confirmation of a quantitative QCD prediction, a
measurement of qi(x,Q2

0) and g(x,Q2
0) at some reference value Q2

0 of Q2 and a
precise measurement of αs(m2

Z).

4.5.3.1 Resummation for Deep Inelastic Structure Functions

At small or at large values of x (with Q2 large) those terms of higher order in αs
in either the coefficients or the splitting functions which are multiplied by powers
of log 1/x or log (1 − x) eventually become important and should be taken into
account. Fortunately the sequences of leading and subleading logs can be evaluated
at all orders by special techniques and resummed to all orders.

For large x resummation [24] I refer to the recent papers [25, 26] (the latter also
involving higher twist corrections, which are important at large x) where a list of
references to previous work can be found.

Here we will briefly summarise the small-x case for the singlet structure function
which is the dominant channel at HERA, dominated by the sharp rise of the gluon
and sea parton densities at small x. The small x data collected by HERA can
be fitted reasonably well even at the smallest measured values of x by the NLO
QCD evolution equations, so that there is no dramatic evidence in the data for
departures. This is surprising also in view of the fact that the NNLO effects in
the evolution have recently become available and are quite large. Resummation
effects have been shown to resolve this apparent paradox. For the singlet splitting
function the coefficients of all LO and NLO corrections of order [αs(Q2) log 1/x]n
and αs(Q

2)[αs(Q2) log 1/x]n, respectively, are explicitly known from the BFKL
analysis of virtual gluon-virtual gluon scattering [27, 28]. But the simple addition of
these higher order terms to the perturbative result (with subtraction of all double
counting) does not lead to a converging expansion (the NLO logs completely
overrule the LO logs in the relevant domain of x and Q2). A sensible expansion
is only obtained by a proper treatment of momentum conservation constraints,
also using the underlying symmetry of the BFKL kernel under exchange of the
two external gluons, and especially, of the running coupling effects (see the recent
papers [29, 30] and refs. therein). In Fig. 4.14 we present the results for the dominant
singlet splitting function xP(x, αs(Q

2)) for αs(Q2) ∼ 0.2. We see that while the
NNLO perturbative splitting function sharply deviates from the NLO approximation
at small x, the resummed result only shows a moderate dip with respect to the NLO
perturbative splitting function in the region of HERA data, and the full effect of the
true small x asymptotics is only felt at much smaller values of x. The related effects
are not very important for processes at the LHC but could become relevant for next
generation hadron colliders.
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Fig. 4.14 The dominant
singlet splitting function
xP (x, αs (Q

2)) for
αs(Q

2) ∼ 0.2. The
resummed result from
Ref. [29] is compared with
the LO, NLO and NNLO
perturbative results
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4.5.3.2 Polarized Deep Inelastic Scattering

In polarized DIS one main question is how the proton helicity is distributed among
quarks, gluons and orbital angular momentum: 1/2�� + �g + Lz = 1/2 (for a
recent review, see, for example, [31]). For a parton density p (either a quark or a
gluon) �p indicates the first moment of the net helicity difference p+ − p− in a
polarized proton with helicity +1/2 or:

�p(Q2) =
∫ 1

0
dx[p+(x,Q2) − p−(x,Q2)] (4.96)

Experiments have shown that the quark moment �� is small (the “spin crisis”):
values from a recent fit [32] are ��exp ∼ 0.21 ± 0.14 and �gexp ∼ 0.50 ± 1.27
at Q2 = 1 GeV2 (see also [33]). This is surprising because �� is conserved in
perturbation theory at LO (i.e. it does not evolve in Q2). For conserved quantities
we would expect that they are the same for constituent and for parton quarks. But
actually the conservation of �� is broken by the axial anomaly. In perturbation
theory the conserved density is actually ��′ = �� + nf /2παs �g [34]. Note
that also αs�g is conserved in LO, that is �g ∼ logQ2. This behaviour is not
controversial but it will take long before the log growth of �g will be confirmed by
experiment! But to establish this behaviour would show that the extraction of �g

from the data is correct and that the QCD evolution works as expected. If �g is large
enough it could account for the difference between partons (��) and constituents (
��′). From the spin sum rule it is clear that the log increase should cancel between
�g and Lz. This cancelation is automatic as a consequence of helicity conservation
in the basic QCD vertices. From the spin sum rule one obtains that either �g+Lz is
large or there are contributions to �� at very small x outside of the measured region.
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�g can be measured indirectly by scaling violations and directly from asymmetries,
e.g. in cc̄ production. Existing measurements by Hermes, Compass, and at RHIC are
still crude but show no hint of a large �g at accessible value of x and Q2. Present
data are consistent with �g large enough to sizeably contribute to the spin sum rule
but there is no indication that αs�g can explain the difference between constituents
and parton quarks. The perspectives of better measurements are good at Compass
and RHIC in the near future.

4.5.4 Factorisation and the QCD Improved Parton Model

The parton densities defined and measured in DIS are instrumental to compute
hard processes initiated by hadronic collisions via the Factorisation Theorem (FT).
Suppose you have a hadronic process of the form h1 + h2 → X + all where hi are
hadrons and X is some triggering particle or pair of particles which specify the large
scale Q2 relevant for the process, in general somewhat, but not much, smaller than
s, the total c.o.m. squared mass. For example, in pp or pp̄ collisions, X can be a W

or a Z or a virtual photon with large Q2, or a jet at large transverse momentum pT ,
or a pair of heavy quark-antiquark of mass M. By “all” we mean a totally inclusive
collection of gluons and light quark pairs. The FT states that for the total cross-
section or some other sufficiently inclusive distribution we can write, apart from
power suppressed corrections, the expression:

σ(s, τ ) =
∑
AB

∫
dx1dx2p1A(x1,Q

2)p2B(x2,Q
2)σAB(x1x2s, τ ) (4.97)

Here τ = Q2/s is a scaling variable, piC are the densities for a parton of type
C inside the hadron hi , σAB is the partonic cross-section for parton-A + parton-
B→ X + all′. This result is based on the fact that the mass singularities that are
associated with the initial legs are of universal nature, so that one can reproduce
the same modified parton densities, by absorbing these singularities into the bare
parton densities, as in deep inelastic scattering. Once the parton densities and αs are
known from other measurements, the prediction of the rate for a given hard process
is obtained with not much ambiguity (e.g from scale dependence or hadronisation
effects). The NLO calculation of the reduced partonic cross-section is needed in
order to correctly specify the scale and in general the definition of the parton
densities and of the running coupling in the leading term. The residual scale and
scheme dependence is often the most important source of theoretical error. In the
following we consider a few examples.

A comparison of data and predictions on the production of jets at large
√
s and

pT in pp or pp̄ collisions is shown in Fig. 4.15 [9, 35].
This is a particularly significant test because the rates at different c.o.m. energies

and, for each energy, at different values of pT span over many orders of magnitude.
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Fig. 4.15 Jet production
cross-section at pp or pp̄
colliders, as function of
pT [9]

This steep behaviour is determined by the sharp falling of the parton densities
at large x. Also the corresponding values of

√
s and pT are large enough to be

well inside the perturbative region. The overall agreement of the data from ISR,
UA1,2 and CDF and D0 is spectacular. Similar results also hold for the production
of photons at large pT . The collider data [36], shown in Fig. 4.16 [9], are in
fair agreement with the theoretical predictions. For the same process less clear a
situation is found with fixed target data. Here, first of all, the experimental results
show some internal discrepancies. Also, the pT accessible values being smaller, the
theoretical uncertainties are larger. But it is true that the agreement is poor, so that
the necessity of an “intrinsic” transverse momentum of partons inside the hadron
of over 1 GeV has been claimed, which theoretically is not justified (rather, given
the sharp falling down at large pT , it could be interpreted as a correction for pT

calibration errors).
For heavy quark production at colliders [42] the agreement is very good for the

top crosssection at the Tevatron (Fig. 4.17) [43, 44]. The bottom production at the
Tevatron has for some time represented a problem [45]. The total rate and the pT

distribution of b quarks observed at CDF appeared in excess of the prediction, up
to the largest measured values of pT . But this is a complicated case, with different
scales being present at the same time:

√
s, pT , mb. Finally the problem has been

solved (Fig. 4.18) by better taking into account a number of small effects from
resummation of large logarithms, the difference between b hadrons and b partons,
the inclusion of better fragmentation functions etc. [46].
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Fig. 4.16 Single photon
production in pp̄ colliders as
function of pT [9]

Fig. 4.17 The t production
cross-section at the Tevatron
pp̄ collider [44]

Drell-Yan processes, including lepton pair production via virtual γ , W or Z
exchange, offer a particularly good opportunity to test QCD. The process is
quadratic in parton densities, and the final state is totally inclusive, while the large
scale is specified and measured by the invariant mass squared Q2 of the lepton pair
which itself is not strongly interacting (so there no dangerous hadronisation effects).
The QCD improved parton model leads directly to a prediction for the total rate as
a function of Q2. The value of the LO cross-section is inversely proportional to the
number of colours NC because a quark of given colour can only annihilate with an
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Fig. 4.18 The b production
pT distribution at the
Tevatron pp̄ collider [47].
The data from CDF also
include systematics and
correlations. The theoretical
curve with the uncertainty
range is from Ref. [46]

antiquark of the same colour to produce a colourless lepton pair. The order αs(Q2)

corrections to the total rate were computed long ago and found to be particularly
large [22, 38], when the quark densities are defined from the structure function
F2 measured in DIS at q2 = −Q2. The ratio σcorr/σLO of the corrected and the
Born cross-sections, was called K-factor, because it is almost a constant in rapidity.
In recent years also the NLO full calculation of the K-factor was completed, a
very remarkable calculation [37]. The QCD predictions have been best tested for
W and Z production at CERN Spp̄S and Tevatron energies. Q ∼ mW,Z is large
enough to make the prediction reliable (with a not too large K-factor) and the ratio√
τ = Q/

√
s is not too small. Recall that in lowest order x1x2s = Q2 so that the

parton densities are probed at x values around
√
τ . We have

√
τ = 0.13 − 0.15 (for

W and Z production, respectively) at
√
s = 630 GeV (CERN Spp̄S Collider) and√

τ = 0.04 − 0.05 at the Tevatron. In this respect the prediction is more delicate at
the LHC, where

√
τ ∼ 5.7 − 6.5 · 10−3. One comparison of the experimental total

rates at the Tevatron [48] with the QCD predictions is shown in Fig. 4.19, together
with the expected rates at the LHC (based on the structure functions obtained in
[23]).

The calculation of the W/Z pT distribution has been a classic problem in
QCD. For large pT , for example pT ∼ o(mW), the pT distribution can be
reliably computed in perturbation theory, which was done up to NLO in the late
‘70’s and early ‘80’s. A problem arises in the intermediate range �QCD <<

pT << mW , where the bulk of the data is concentrated, because terms of order
αs(p

2
T ) logm2

W/p2
T become of order one and should included to all orders [39]. At

order αs we have:

1

σ0

dσ0

dp2
T

= (1 + A)δ(p2
T ) + B

p2
T

log
m2

W

p2
T +

+ C

(p2
T )+

+ D(p2
T ) (4.98)
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Fig. 4.19 Data vs. theory for W and Z production at the Tevatron (
√
s = 1.8 TeV) together with

the corresponding predictions for the LHC (
√
s= 1.4 TeV) [48]

where A, B, C, D are coefficients of order αs . The “+” distribution is defined in
complete analogy with Eq. (4.93):

∫ p2
TMAX

0
g(z)f (z)+dz =

∫ p2
TMAX

0
[g(z) − g(0)]f (z)dz (4.99)

The content of this, at first sight mysterious, definition is that the singular “+” terms
do not contribute to the total cross-section. In fact for the cross-section the weight
function g(z) = 1 and we obtain:

σ = σ0[(1 + A) +
∫ p2

TMAX

0
D(z)dz] (4.100)

The singular terms, of infrared origin, are present at the non completely inclusive
level but disappear in the total cross-section. Arguments have been given that these
singularities are expected to exponentiate. Explicit calculations in low order support
the exponentiation which leads to the following expression:

1

σ0

dσ0

dp2
T

=
∫

d2b

4π
exp (−ib · pT )(1 + A) expS(b) (4.101)

with:

S(b) =
∫ pTMAX

0

d2kT

2π
[exp ikT · b − 1][ B

k2
T

log
m2

W

k2
T

+ C

k2
T

] (4.102)

At large pT the LO perturbative expansion is recovered. At intermediate pT

the infrared pT singularities are resummed (the Sudakov log terms, which are
typical of vector gluons, are related to the fact that for a charged particle in
acceleration it is impossible not to radiate, so that the amplitude for no soft
gluon emission is exponentially suppressed). However this formula has problems
at small pT , for example, because of the presence of αs under the integral for S(b):
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Fig. 4.20 QCD predictions for the W pT distribution compared with recent D0 data at the
Tevatron (

√
s = 1.8 TeV)[49] [40]

presumably the relevant scale is of order k2
T . So it must be completed by some non

perturbative ansatz or an extrapolation into the soft region. All the formalism has
been extended to NLO accuracy, where one starts from the perturbative expansion
at order α2

s , and generalises the resummation to also include NLO terms of order
αs(p

2
T )

2 logm2
W/p2

T (see, for example, [40]). The comparison with the data is very
impressive. In Fig. 4.20 we see the pT distribution as predicted in QCD (with a
number of variants that mainly differ in the approach to the soft region) compared
with some recent data at the Tevatron [49].

A great effort is being devoted to the preparation to the LHC. Calculations
for specific processes are being completed. A very important example is Higgs
production via g + g → H . The amplitude is dominated by the top quark loop, as
discussed in Chap. 3 [51]. The NLO corrections turn out to be particularly large [52],
as seen in Fig. 4.21. Higher order corrections can be computed either in the effective
lagrangian approach, where the heavy top is integrated away and the loop is shrunk
down to a point [53] [the coefficient of the effective vertex is known to α4

s accuracy
[54]], or in the full theory. At the NLO the two approaches agree very well for the
rate as a function of mH [55]. The NNLO corrections have been computed in the
effective vertex approximation [56] (see Fig. 4.21). Beyond fixed order resummation
of large logs were carried out [57]. Also the NLO EW contributions have been
computed [58]. Rapidity (at NNLO) [59] and pT distributions (at NLO) [60] have
also been evaluated. At smaller pT the large logarithms [log(pT /mH)]n have been
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Fig. 4.21 The Higgs gluon
fusion cross section in LO,
NLO and NLLO
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resummed in analogy with what was done long ago for W and Z production [61].
For additional recent works on Higgs physics at colliders see, for example, [62].

The activity on event simulation also received a big boost from the LHC prepa-
ration (see, for example, the review [50]). General algorithms for performing NLO
calculations numerically (requiring techniques for the cancellation of singularities
between real and virtual diagrams) have been developed (see, for example, [65]).
The matching of matrix element calculation of rates together with the modeling of
parton showers has been realised in packages, as for example in the MC@NLO [63]
or POWHEG [64] based on HERWIG. The matrix element calculation, improved by
resummation of large logs, provides the hard skeleton (with large pT branchings)
while the parton shower is constructed by a sequence of factorized collinear
emissions fixed by the QCD splitting functions. In addition, at low scales a model
of hadronisation completes the simulation. The importance of all the components,
matrix element, parton shower and hadronisation can be appreciated in simulations
of hard events compared with the Tevatron data.

At different places in the previous pages we have seen examples of resummation
of large logs. This is a very important chapter of modern QCD. The resummation
of soft gluon logs enter in different problems and the related theory is subtle. I refer
the reader here to some recent papers where additional references can be found
[66]. A particularly interesting related development has to do with the so called non
global logs (see, for example, [67]). If in the measurement of an observable some
experimental cuts are introduced, which is a very frequent case, then a number
of large logs can arise from the corresponding breaking of inclusiveness. The
discussion of this problem has led to rethinking the theory of final state observables.
It is also important to mention the development of software for the automated
implementation of resummation (see, for example, [68]).
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Before closing this section I would like to mention some very interesting
developments at the interface between string theory and QCD, twistor calculus. A
precursor work was the Parke-Taylor result in 1986 [69] on the amplitudes for n
incoming gluons with given helicities [70]. Inspired by dual models, they derived a
compact formula for the maximum non vanishing helicity violating amplitude (with
n−2 plus and 2 minus helicities) in terms of spinor products. Using the relation
between strings and gauge theories in twistor space Witten developed in ’03 [71]
a formalism in terms of effective vertices and propagators that allows to compute
all helicity amplitudes. The method, alternative to other modern techniques for the
evaluation of Feynman diagrams [73], leads to very compact results. Since then
rapid progress followed (for reviews, see [72]): for tree level processes powerful
recurrence relations were established [74], the method was extended to include
massless external fermions [75] and also external EW vector bosons [76] and Higgs
particles [77]. The level already attained is already important for multijet events at
the LHC. And the study of loop diagrams has been started. In summary, this road
looks new and promising.

4.6 Measurements of αs

Very precise and reliable measurements of αs(m2
Z) are obtained from e+e− colliders

(in particular LEP) and from deep inelastic scattering.

4.6.1 αs from e+e− Colliders

The main methods at e+e− colliders are: (a) Inclusive hadronic Z decay, Rl , σh, σl ,
Z . (b) Inclusive hadronic τ decay. (c) Event shapes and jet rates.

As we have seen, for a quantity like Rl we can write a general expression of the
form:

Rl = (Z, τ → hadrons)

(Z, τ → leptons)
∼ REW (1 + δQCD + δNP ) + . . . (4.103)

where REW is the electroweak-corrected Born approximation, δQCD, δNP are the
perturbative (logarithmic) and non perturbative (power suppressed) QCD correc-
tions. For a measurement of αs at the Z (in the following we always refer to the
MS definition of αs) one can use all info from Rl , Z = 3l + h and (f=h or
l) σf = 12πlf /(m

2
Z

2
Z). In the past the measurement from Rl was preferred

(by itself it leads to αs(mZ) = 0.1226 + 0.0058 − 0.0036) but at LEP there is no
reason for that. In all these quantities αs enters through h, but the measurements
of, say, Z , Rl and σl are really independent (they are affected by entirely different
systematics: Z is extracted from the line shape, Rl and σl are measured at the peak
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but Rl does not depend on the absolute luminosity while σl does).The most sensitive
single quantity is σl . The combined value from the measurements at the Z (assuming
the validity of the SM and a light Higgs mass) is [78]:

αs(mZ) = 0.119 ± 0.003 (4.104)

For a relatively light Higgs (even if not as light as from the fit to EW observables) the
final error is mainly experimental with a theoretical component from our ignorance
of mH , of higher orders in the QCD expansion [79] and also from uncertainties on
the Bhabha luminometer (which affect σh,l) [80]. By adding all other electroweak
precision electroweak tests (in particular mW ) one similarly finds [41]:

αs(mZ) = 0.1185 ± 0.003 (4.105)

We now consider the measurement of αs(mZ) from τ decay. Rτ has a number
of advantages that, at least in part, tend to compensate for the smallness of mτ =
1.777 GeV. First, Rτ is maximally inclusive, more than Re+e−(s), because one also
integrates over all values of the invariant hadronic squared mass:

Rτ = 1

π

∫ m2
τ

0

ds

m2
τ

(1 − s

m2
τ

)2Im�τ (s) (4.106)

The perturbative contribution is known at NNLO. Analyticity can be used to
transform the integral into one on the circle at |s| = m2

τ :

Rτ = 1

2πi

∮
|s|=m2

τ

ds

m2
τ

(1 − s

m2
τ

)2�τ(s) (4.107)

Also, the factor (1 − s
m2
τ
)2 is important to kill the sensitivity the region Re[s] = m2

τ

where the physical cut and the associated thresholds are located. Still the quoted
result [81] looks a bit too precise:

αs(mτ ) = 0.345 ± 0.010 (4.108)

or

αs(mZ) = 0.1215 ± 0.0012 (4.109)

This precision is obtained by taking for granted that corrections suppressed by 1/m2
τ

are negligible. This is because, in the massless theory, the light cone expansion is
given by:

δNP = ZERO

m2
τ

+ c4 · < O4 >

m4
τ

+ c6 · < O6 >

m6
τ

+ · · · (4.110)
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In fact there are no dim-2 Lorentz and gauge invariant operators. For example, gμgμ

is not gauge invariant. In the massive theory, the ZERO is replaced by light quark
mass-squared m2. This is still negligible if m is taken as a lagrangian mass of a
few MeV. If on the other hand the mass were taken to be the constituent mass of
order �QCD, this term would not be at all negligible and would substantially affect
the result (note that αs(mτ )/π ∼ 0.1 ∼ (0.6 GeV/mτ )

2 and that �QCD for three
flavours is large). For example, the PDG value and estimate of the error is [9]:

αs(mZ) = 0.120 ± 0.003. (4.111)

Most people believe the optimistic version. I am not convinced that the gap is
not filled up by ambiguities of 0(�2

QCD/m
2
τ ) from δpert [82]. In any case, one

can discuss the error, but it is true and remarkable, that the central value from
τ decay, obtained at very small Q2, is in good agreement with all other precise
determinations of αs at more typical LEP values of Q2.

Important determinations of αs(mZ) are obtained from different infrared safe
observables related to event rates and jet shapes in e+e− annihilation. The main
problem of these measurements is the large impact of non perturbative hadronization
effects on the result and therefore on the theoretical error. The perturbative part is
known at NLO. One advantage is that the same measurements can be repeated at
different

√
s values (e.g. with the same detectors at LEP1 or LEP2) allowing for a

direct observation of the energy dependence. A typical result, from jets and event
shapes at LEP, quoted in Ref. [83], is given by:

αs(mZ) = 0.121 ± 0.005. (4.112)

Recently the rate of 4-jet events (proportional to α2
s ) at LEP as function of ycut has

been used [84], for which a NLO theoretical calculation exists [85]. The quoted
result is αs(mZ) = 0.1176 ± 0.0022 (the actual error could be somewhat larger
because the ambiguity from hadronisation modeling is always debatable).

4.6.2 αs from Deep Inelastic Scattering

QCD predicts the Q2 dependence of F(x,Q2) at each fixed x, not the x shape. But
the Q2 dependence is related to the x shape by the QCD evolution equations. For
each x-bin the data allow to extract the slope of an approximately straight line in
dlogF(x,Q2)/dlogQ2: the log slope. The Q2 span and the precision of the data
are not much sensitive to the curvature, for most x values. A single value of �QCD

must be fitted to reproduce the collection of the log slopes. For the determination of
αs the scaling violations of non-singlet structure functions would be ideal, because
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of the minimal impact of the choice of input parton densities. We can write the
non-singlet evolution equations in the form:

d

dt
logF (x, t) = αs(t)

2π

∫ 1

x

dy

y

F(y, t)

F (x, t)
Pqq(

x

y
, αs(t)) (4.113)

where Pqq is the splitting function. At present NLO and NNLO corrections are
known. It is clear from this form that, for example, the normalisation error on the
input density drops away, and the dependence on the input is reduced to a minimum
(indeed, only a single density appears here, while in general there are quark and
gluon densities). Unfortunately the data on non-singlet structure functions are not
very accurate. If we take the difference of data on protons and neutrons, Fp − Fn,
experimental errors add up in the difference and finally are large. The F3νN data are
directly non-singlet but are not very precise. A determination of αs from the CCFR
data on F3νN has led to [86]:

αs(mZ) = 0.119 ± 0.006 (4.114)

A recent analysis of the same data leads to αs(mZ) = 0.119 ± 0.002 [87], but
the theoretical error associated with the method and with the choice adopted for the
scale ambiguities is not considered. A fit to non singlet structure functions in electro-
or muon-production extracted from proton and deuterium data at the NNLO level
was performed in Ref. [88] with the result:

αs(mZ) = 0.114 ± 0.002 (4.115)

When one measures αs from scaling violations on F2 from e or μ beams, the data
are abundant, the errors small but there is an increased dependence on input parton
densities and especially a strong correlation between the result on αs and the input
on the gluon density. There are complete and accurate derivations of αs from scaling
violations in F2. In a well known analysis by Santiago and Yndurain [89], the data
on protons from SLAC, BCDMS, E665 and HERA are used with NLO kernels plus
the NNLO first few moments. The analysis is based on an original method that uses
projections on a specially selected orthogonal basis, the Bernstein polynomials. The
quoted result is given by:

αs(mZ) = 0.1163 ± 0.0014 (4.116)

(these authors also quote αs(mZ) = 0.115 ± 0.006 for F3 data in νN scattering). A
different analysis by Alekhin [90] of existing data off proton and deuterium targets
with NNLO kernels and a more conventional method leads to

αs(mZ) = 0.114 ± 0.002 (4.117)
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In both analyses the dominant error is theoretical and, in my opinion, should be
somewhat larger than quoted. An interesting perspective on theoretical errors can
be obtained by comparing analyses with different methods. We add the following
examples. From truncated moments (but with a limited set of proton data and NLO
kernels) [91]: αs(mZ) = 0.122±0.006, from Nachtmann moments (which take into
account some higher twist terms) and proton data [92]: αs(mZ) = 0.1188 ± 0.0017.
A combination of measurements at HERA by H1 and Zeus, also including final state
jet observables, leads to αs(mZ) = 0.1186 ± 0.0051 [93], most of the error being
theoretical. Finally, to quote a number that appears to me as a good summary of
the situation of αs(mZ) from DIS one can take the result from a NNLO analysis of
available data by the MRST group [94] as quoted by Particle Data Group, W.-M.
Yao et al. [9]:

αs(mZ) = 0.1167 ± 0.0036 (4.118)

If we compare these results on αs from DIS with the findings at the Z, given by
Eq. (4.105), we see that the agreement is good, with the value of αs from the most
precise DIS measurements a bit on the low side with respect to e+e−.

4.6.3 Summary on αs

There are a number of other determinations of αs which are important because they
arise from qualitatively different observables and methods. For example [9, 83],
some are obtained from the Bjorken sum rule and the scaling violations in polarized
DIS, from ϒ decays, from the 4-jet rate in e+e−. A special mention deserves the
“measurement” of αs from lattice QCD [95]. A number of hadronic observables,
in particular ϒ ′ − ϒ splitting, pion and kaon decay constants, the Bs mass and the
� baryon mass are used to fix the lattice spacing and to accurately tune the QCD
simulation. The value of αs is then obtained by computing non perturbatively a
number of quantities related to Wilson loops that can also be given in perturbation
theory. The result is then evolved with state of the art beta functions to obtain
αs(mZ) = 0.1170 ± 0.0012. This result is interesting for its really special nature
but it is not clear that the systematics due to the lattice technology is as small as
claimed.

Summarising: there is very good agreement among many different measurements
of αs . In Fig. 4.22 [83], a compilation of the data is reported with each measurement
plotted at the scale of the experiment, which shows the consistency of the measure-
ments and the running of αs . This is a very convincing, quantitative test of QCD.
If I take the values of αs(mZ) from precision electroweak data, Eq. (4.105), from τ

decay with the central value as in Eq. (4.109) but the larger error as in Eq. (4.111),
from jets in e+e−, Eq. (4.112), and from DIS, Eq. (4.118), the average is :

αs(mZ) = 0.119 ± 0.002 (4.119)
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Fig. 4.22 The running of αs
as determined from present
data [83]
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For comparison, the average value quoted by PDG 2006 is αs(mZ) = 0.1176 ±
0.0020 while Ref. [83] gives αs(mZ) = 0.1189 ± 0.0010.

The value of � (for nf = 5) which corresponds to Eq. (4.119) is:

�5 = 221 ± 25 MeV (4.120)

� is the scale of mass that finally appears in massless QCD. It is the scale where
αs(�) is of order one. Hadron masses are determined by �. Actually the ρ mass
or the nucleon mass receive little contribution from the quark masses (the case of
pseudoscalar mesons is special, as they are the pseudo Goldstone bosons of broken
chiral invariance). Hadron masses would be almost the same in massless QCD.

4.7 Conclusion

We have seen that perturbative QCD based on asymptotic freedom offers a rich
variety of tests and we have described some examples in detail. QCD tests are not
as precise as for the electroweak sector. But the number and diversity of such tests
has established a very firm experimental foundation for QCD as a theory of strong
interactions. The field of QCD appears as one of great maturity but also of robust
vitality with many rich branches and plenty of new blossoms. The physics content of
QCD is very large and our knowledge, especially in the non perturbative domain, is
still very limited but progress both from experiment (Tevatron, RHIC, LHC. . . . . . )
and from theory is continuing at a healthy rate. And all the QCD predictions that
we were able to formulate and to test appear to be in very good agreement with
experiment.
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Chapter 5
QCD on the Lattice

Hartmut Wittig

5.1 Introduction and Outline

Since Wilson’s seminal papers of the mid-1970s, the lattice approach to Quantum
Chromodynamics has become increasingly important for the study of the strong
interaction at low energies, and has now turned into a mature and established
technique. In spite of the fact that the lattice formulation of Quantum Field Theory
has been applied to virtually all fundamental interactions, it is appropriate to discuss
this topic in a chapter devoted to QCD, since by far the largest part of activity is
focused on the strong interaction. Lattice QCD is, in fact, the only known method
which allows ab initio investigations of hadronic properties, starting from the QCD
Lagrangian formulated in terms of quarks and gluons.

5.1.1 Historical Perspective

In order to illustrate the wide range of applications of the lattice formulation, we
give a brief historical account below.

First applications of the lattice approach in the late 1970s employed analytic
techniques, predominantly the strong coupling expansion, in order to investigate
colour confinement and also the spectrum of glueballs. While these attempts gave
valuable insights, it soon became clear that in the case of non-Abelian gauge theories
such expansions were not sufficient to produce quantitative results.
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First numerical investigations via Monte Carlo simulations, focusing in particular
on the confinement mechanism in pure Yang–Mills theory, were carried out around
1980. The following years saw already several valiant attempts to study QCD
numerically, yet it was realized that the available computer power was grossly
inadequate to incorporate the effects of dynamical quarks. It was then that the so-
called “quenched approximation” of QCD was proposed as a first step to solving
full QCD numerically. This approximation rests on the ad hoc assumption that
the dominant non-perturbative effects are mediated by the gluon field. Hadronic
observables can then be computed on a pure gauge background with far less
numerical effort compared to the real situation where quarks have a feedback on the
gluon field. The main focus of activity during the 1980s was on bosonic theories:
numerical simulations were used to compute the glueball spectrum in pure Yang–
Mills theory. Another important result during this period concerned φ4-theory and
the implications of its supposed “triviality” for the Higgs-Yukawa sector of the
Standard Model. Using a combination of analytic and numerical techniques, the
triviality of φ4 theory could be rigorously established.

Except for a brief spell of activity around the turn of the decade to simulate
QCD with dynamical fermions, most projects in the 1990s were devoted to explore
quenched QCD. Having recognized that the available computers and the efficiency
of known algorithms were by far not sufficient to perform “realistic” simulations
of QCD with controlled errors, lattice physicists resorted to exploring the quenched
approximation and its limitations for a number of phenomenologically interesting
quantities. Although the systematic error that arises by neglecting dynamical quarks
could not be quantified reliably, many important quantities, such as quark and
hadron masses, the strong coupling constant and weak hadronic matrix elements,
were computed for the first time. One of the icons of that period was surely a
plot of the masses of the lightest hadrons in the continuum limit of quenched
QCD, produced by the CP-PACS Collaboration: their results indicated that the
quenched approximation works surprisingly well (at least for these quantities), since
the computed spectrum agreed with experimental determinations at the level of
10%. Simultaneously, a number of sophisticated techniques have been developed
during the 1990s, thereby helping to control systematic effects, mainly pertaining
to the influence of lattice artefacts, as well as the renormalization of local operators
in the lattice regularized theory and their relation to continuum schemes such as
MS. Perhaps the most significant development at the end of the 1990s was the
clarification of the issue of chiral symmetry and lattice regularization. Following
this work it is now understood under which conditions the lattice formulation is
compatible with chiral symmetry. The importance of this development extends far
beyond QCD and implies new prospects for the non-perturbative study of chiral
gauge theories.

Since 2000 the focus has decidedly shifted from the quenched approximation
to serious attempts to simulate QCD with dynamical quarks, thereby tackling the
biggest remaining systematic uncertainty. Progress in this area has not just been
determined by the vast increase in computer power since the very first Monte Carlo
simulations, but rather by the development of new algorithmic ideas, combined
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with the use of alternative discretizations that are numerically more efficient. At
the time of writing this contribution (2007), the whole field is actually in a state
of transition: although the quenched approximation is being abandoned, the latest
results from simulations with dynamical quarks have not yet reached the same level
of accuracy in regard to controlling systematic errors due to lattice artefacts and
effects from renormalization, as compared to earlier quenched calculations. It can
thus be expected that many of the results discussed later in this chapter will soon
be superseded by more accurate numbers. In turn, the quenched approximation will
be completely obsolete in a few years time, except perhaps to test new ideas or for
exploratory studies of more complex quantities.

5.1.2 Outline

We begin with an introduction of the basic concepts of the lattice formulation of
QCD. This shall include the field theoretical foundations, discretizations of the QCD
Lagrangian, as well as simulation algorithms and other technical aspects related to
the actual calculation of physical observables from suitable correlation functions.
The following sections deal with various applications. Lattice calculations of
the hadron spectrum are described in Sect. 5.3. Section 5.4 is devoted to lattice
investigations of the confinement phenomenon. Determinations of the fundamental
parameters of QCD, namely the strong coupling constant and quark masses are
a major focus of this article, and are presented in Sect. 5.5. Another important
property of QCD, namely the spontaneously broken chiral symmetry, is discussed in
some detail in Sect. 5.6, which also includes a brief introduction into analytical non-
perturbative approaches to the strong interaction, based on effective field theories.
Lattice calculations of weak hadronic matrix elements, which serve to pin down the
elements of the Cabibbo–Kobayashi–Maskawa matrix, are covered in Sect. 5.7. We
end this contribution with a few concluding remarks.

In addition to the topics listed above, lattice simulations of QCD have also
made important contributions to the determination of the phase structure of QCD,
including results for the critical temperature of the deconfinement phase transition.
Nevertheless, in this chapter we restrict the discussion to QCD at zero temperature
and refer the reader to other parts of this volume.

5.2 The Lattice Approach to QCD

The essential features of the lattice formulation can be summarized by the following
statement:

Lattice QCD is the non-perturbative approach to the gauge theory of the strong interaction
through regularized, Euclidean functional integrals. The regularization is based on a
discretization of the QCD action which preserves gauge invariance at all stages.
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This definition includes all basic ingredients: starting from the functional integral
itself avoids any particular reference to perturbation theory. This is what we mean
when we call lattice QCD an ab initio method. The Euclidean formulation, which is
obtained by rotating to imaginary time, reveals the close relation between Quantum
Field Theory and Statistical Mechanics. In particular, the Euclidean functional
integral is equivalent to the partition function of the corresponding statistical system.
This equivalence is particularly transparent if the field theory is formulated on a
discrete space-time lattice. Via this relation, the whole toolkit of condensed matter
physics, including high-temperature expansions, and, perhaps most importantly,
Monte Carlo simulations, are at the disposal of the field theorist.

Many of the basic concepts introduced in this section are discussed in several
common textbooks on the subject [1–4], which can be consulted for further details.

5.2.1 Euclidean Quantization

The generic steps in the Euclidean quantization procedure of a lattice field theory
are the following:

1. Define the classical, Euclidean field theory in the continuum;
2. Discretize the corresponding Lagrangian;
3. Quantize the theory by defining the functional integral;
4. Determine the particle spectrum from Euclidean correlation functions.

We shall now illustrate this procedure for a simple example, namely the theory for
a neutral scalar field.

Step 1 Consider a real, classical field φ(x), with x = (x0, x1, x2, x3), whose time
variable x0 is obtained by analytically continuing t to −ix0. The Euclidean action
SE[φ] is defined as

SE[φ] =
∫

d4x

{
1

2
∂μφ(x)∂μφ(x) + V (φ)

}
, ∂μ ≡ ∂

∂xμ
, (5.1)

where

V (φ) = 1

2
m2φ(x)2 + λ

4!φ(x)
4. (5.2)

Step 2 In order to discretize the theory, a hyper-cubic lattice, �E, is introduced as
the set of discrete space-time points, i.e.

�E =
{
x ∈ R4

∣∣∣x0/a = 1, . . . , Nt; xj/a = 1, . . . , Ns , j = 1, 2, 3
}
,

T = Nta, L = Nsa. (5.3)
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Thus, any space-time point is an integer multiple of the lattice spacing a. The total
number of lattice sites is Nt ×N3

s , while the physical space-time volume is T ×L3.
The discretized action is then given by

SE[φ] = a4
∑
x∈�E

{
1

2
dμφ(x)dμφ(x) + 1

2
m2φ(x)2 + λ

4!φ(x)
4
}
, (5.4)

where the lattice derivatives can be defined as

dμφ(x) := 1

a

(
φ(x + aμ̂) − φ(x)

)
“forward” derivative, (5.5)

d∗
μφ(x) := 1

a

(
φ(x) − φ(x − aμ̂)

)
“backward” derivative. (5.6)

Here and below μ̂ denotes a unit vector in direction of μ. Via a Fourier transform,
the Euclidean lattice �E is related to the dual lattice, �∗

E, defined by

�∗
E =

{
p ∈ R4

∣∣∣∣p0 = 2π

T
n0, pj = 2π

L
nj

}

n0 = −Nt

2
,−Nt

2
+ 1, . . . ,

Nt

2
− 1, nj = −Ns

2
,−Ns

2
+ 1, . . . ,

Ns

2
− 1. (5.7)

This not only implies that the momenta p0 and pj are quantized in units of 2π/T
and 2π/L, respectively, but also that a momentum cutoff has been introduced, since

− π

a
≤ pμ ≤ π

a
. (5.8)

As we shall see below, this way of introducing a momentum cutoff can be extended
to gauge theories in such a way that gauge invariance is respected. An important
point to realize is that the lattice action is not unique: it is only required that the
discretized expression for SE reproduces the continuum result as the lattice spacing
a is taken to zero.

Step 3 The theory is quantized via the Euclidean functional integral

ZE :=
∫

D[φ] e−SE[φ], D[φ] =
∏
x∈�E

dφ(x). (5.9)

Here one sees explicitly that the discretization procedure has given a mathematical
meaning to the integration measure, which reduces to that of an ordinary, multiple-
dimensional integration.
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One can now define Euclidean correlation functions of local fields through

〈φ(x1) · · ·φ(xn)〉 = 1

ZE

∫
D[φ]φ(x1) · · ·φ(xn)e−SE[φ]. (5.10)

In the continuum limit, these correlation functions approach the Schwinger func-
tions, which encode the physical information about the spectrum within the
Euclidean formulation. Osterwalder and Schrader [5] have laid down the general
criteria which must be satisfied such that the information in Minkowskian space-
time can be reconstructed from the Schwinger functions.

Step 4 The particle spectrum is extracted from the exponential fall-off of the
Euclidean two-point correlation function. To this end, one must define the Euclidean
time evolution operator. The transfer matrix T describes time propagation by a finite
Euclidean time interval a. The functional integral can be expressed in terms of the
transfer matrix as

ZE = Tr TNt, (5.11)

where the trace is taken over the basis |α〉 of the Hilbert space of physical states.
In order to obtain expressions which are more reminiscent of those in Minkowski
space-time, one can define a Hamiltonian HE by

T =: e−aHE . (5.12)

If |α〉 denotes an eigenstate of the transfer matrix with eigenvalue λα , i.e.

T|α〉 = λα |α〉 = e−aEα |α〉, (5.13)

then one can work out the spectral decomposition of the two-point correlation
function, viz.

〈φ(x)φ(y)〉 = 1

ZE

∫
D[φ]φ(x)φ(y)e−SE[φ] (5.14)

=
∑
α

e−(Eα−E0)(x0−y0)
〈
α
∣∣φ̂(0, �y)∣∣0〉〈0∣∣φ̂(0, �x)∣∣α〉. (5.15)

Here, the quantity (Eα − E0) is the so-called mass gap, i.e. the energy of the state
|α〉 above the vacuum. For large Euclidean time separations (x0 − y0) the lowest
state dominates the two-point function, i.e. all higher states die out exponentially.
The spectral decomposition of the two-point function forms the basis for numerical
simulations of lattice field theories, as the mass (or energy) of a given state is given
by the dominant exponential fall-off at large Euclidean times (see Sect. 5.2.3).
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5.2.2 Lattice Actions for QCD

Our goal now is to find a lattice transcription of the Euclidean QCD action in the
continuum, i.e.

SQCD =
∫

d4x

{
− 1

2g2
0

Tr (FμνFμν)+
∑

f=u,d,s...

ψ̄f

(
γμDμ + mf

)
ψf

}
, (5.16)

where g0 denotes the gauge coupling, and our conventions are chosen such that the
covariant derivative is defined through

Dμ = ∂μ + Aμ, (5.17)

while the field tensor reads

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν], A†
μ = −Aμ. (5.18)

Before attempting to write down a discretized version, we must first elucidate the
notion of a lattice gauge field in a non-Abelian theory. In fact, in this case it turns
out that the gauge potential Aμ must be abandoned when the theory is discretized.
The reason is that the familiar non-Abelian transformation law, i.e.

Aμ(x) → g(x)Aμ(x)g(x)
−1 + g(x)∂μ(x)g(x)

−1, g(x) ∈ SU(3), (5.19)

no longer holds exactly when ∂μ is replaced by its discrete counterpart dμ of
Eq. (5.5). Strict gauge invariance at the level of the regularized theory cannot be
maintained in this fashion.

The definition of a lattice gauge field relies on the concept of the parallel
transporter. If a quark moves in the presence of a background gauge field from y

to x, it picks up a non-Abelian phase factor, given by

U(x, y) = P.O. exp

{
−
∫ x

y

dzμ Aμ(z)

}
, (5.20)

where “P.O.” denotes path ordering, as a consequence of the non-Abelian nature of
the gauge field. By contrast to the gauge potential Aμ, which is an element of the Lie
algebra of SU(3), the parallel transporter U(x, y) is an element of the gauge group
itself. On the lattice, the parallel transporter between neighbouring lattice sites x

and x + aμ̂ is called link variable:

U(x, x + aμ̂) ≡ Uμ(x), U(x + aμ̂, x) = U(x, x + aμ̂)−1 = Uμ(x)
−1.

(5.21)
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A consistent and manifestly gauge invariant discretization of QCD is obtained by
identifying the gauge degrees of freedom with the link variables Uμ(x), which
transform under the gauge group as

Uμ(x) → g(x)Uμ(x) g(x + aμ̂)−1, g(x), g(x + aμ̂) ∈ SU(3). (5.22)

The connection with the gauge potential Aμ(x) is somewhat subtle: if Uμ(x)

denotes a given link variable in the discretized theory, it can be used to define a
vector field Aμ(x) as an element of the Lie algebra of SU(3) via

eaAμ(x) ≡ Uμ(x). (5.23)

In turn, if Ac
μ is a given gauge potential in the continuum theory, one can always

find a link variable which approximates Ac
μ up to cutoff effects.

Now we turn to the problem of defining a discretized version of the Yang–Mills
action. To this end we define the plaquette Pμν(x) as the product of link variables
around an elementary square of the lattice:

Pμν(x) ≡ Uμ(x)Uν(x + aμ̂)Uμ(x + aν̂)−1Uν(x)
−1. (5.24)

A graphical representation is shown in Fig. 5.1. Using the transformation property
in Eq. (5.22), it is easy to convince oneself that this object is manifestly gauge
invariant. Moreover, it serves to define the simplest discretization of the Yang–Mills
action, the Wilson plaquette action [6]

SG[U ] = β
∑
x∈�E

∑
μ<ν

(
1 − 1

3
Re Tr Pμν(x)

)
. (5.25)

It has become a standard textbook exercise to verify that for small lattice spacings

SG[U ] −→ − 1

2g2
0

∫
d4x Tr (FμνFμν) + O(a), (5.26)

provided that one relates the parameter β to the bare gauge coupling via β = 6/g2
0 in

Eq. (5.25). We have remarked already that the discretization of a field theory is not

Fig. 5.1 Graphical
representation of the
plaquette Pμν(x) in the
(μ, ν)-plane. The arrow
between sites x + aμ̂ and x

denotes the link variable
Uμ(x)

x+a x+a +a

x x+a
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unique, and hence one is free to add further gauge invariant terms to the plaquette
action which formally vanish as a → 0, but which produce a discretization with
an accelerated rate of convergence to the continuum limit. The most widely chosen
alternatives are the Symanzik [7] and Iwasaki [8] actions.

Quark and antiquark fields, ψ(x) and ψ̄(x), are associated with the lattice sites
and transform under the gauge group as

ψ(x) → g(x)ψ(x), ψ̄(x) → ψ̄(x)g(x)−1. (5.27)

Using the transformation property of the link variables, it is straightforward to write
down a discretized version of the covariant derivative, i.e.

∇μψ(x) := 1

a

(
Uμ(x)ψ(x + aμ̂) − ψ(x)

)

∇∗
μψ(x) := 1

a

(
ψ(x) − Uμ(x − aμ̂)−1ψ(x − aμ̂)

)
, (5.28)

where ∇μ and ∇∗
μ denote the “forward” and “backward” derivatives, respectively.

Finally, we note that in Euclidean space-time, the Dirac matrices can be defined to
satisfy

{
γμ, γν

} = 2δμν .
Before we attempt to construct the fermionic part of the action of lattice QCD, it

is useful to identify the basic properties that the discretized, massless Dirac operator,
D, should satisfy:

(a) D is local;
(b) D̃(p) = iγμpμ + O(ap2);
(c) D̃(p) is invertible for p 	= 0;
(d) γ5 D + D γ5 = 0.

Locality, i.e. the absence of long-ranged interactions, is a basic property of any
quantum field theory describing elementary particles. Property (b) implies that
the correct continuum behaviour of the quark-gluon interaction is reproduced.
Furthermore, condition (c) ensures that the correct fermion spectrum is obtained:
fermion masses are associated with poles of {D̃(p)}−1, which, in the continuum
theory, only occur at vanishing four-momentum. Finally, property (d) ensures that
the massless theory respects chiral symmetry.

Using the definition of the covariant derivative and the conventions for the Dirac
matrices in Euclidean space-time, we can now write down the simplest discretized
version of the massless lattice Dirac operator:

Ddisc = 1
2γμ(∇μ + ∇∗

μ). (5.29)

It turns out, however, that this “naïve” discretization violates condition (c) and
therefore produces spurious fermionic degrees of freedom. This is the so-called
fermion doubling problem, which is most easily explained by considering Ddisc in
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momentum space for the free theory. The Fourier transform yields

D̃disc(p) = iγμ
1

a
sin(apμ) = iγμpμ + O(a2). (5.30)

The discretization procedure has thus replaced pμ by a sine function. While
the Taylor expansion guarantees that condition (b) is satisfied, the occurrence of
sin(apμ) implies that D̃disc(p) vanishes not only at pμ = 0, but also at π/a for
μ = 0, . . . , 3 in the permitted range of momenta, thereby violating condition (c).
The massless propagator {D̃disc(p)}−1 therefore has 24 = 16 poles, and thus there
is a 16-fold degeneracy of the fermion spectrum.

As we shall see below, the fermion doubling problem is closely linked with the
issue of chiral symmetry on the lattice. For now we simply list the various methods
that have been devised to address fermion doubling. Historically the first was due to
Wilson (“Wilson fermions”) [6]. Here, the degeneracy is lifted completely, but the
price to pay is the explicit breaking of chiral symmetry at the level of the regularized
theory. Another method, due to Kogut and Susskind (“staggered fermions”) [9],
is based on the idea of spreading individual spinor components over the corners
of an elementary hypercube of the lattice. Although the degeneracy is only lifted
partially (from 16 to 4), this formulation has the advantage of leaving a subgroup
of chiral symmetry unbroken. More recent developments include the use of so-
called “domain wall” [10, 11] or “overlap” [12] fermions. These formulations leave
chiral symmetry unbroken in principle, and also succeed in lifting the degeneracy
completely. Finally, there are the so-called “perfect” actions [13], which are based
on a renormalization group approach and which are in principle completely free
of lattice artefacts. An exact realization of the perfect action which can be used in
simulations is, however, difficult to obtain. In practice, one typically uses a so-called
truncated fixed point action. Domain wall and overlap fermions, as well as perfect
actions are particular realizations of a class of discretizations dubbed “Ginsparg-
Wilson fermions”. They have the remarkable feature that chiral symmetry is
preserved, while the fermion doubling problem is completely avoided. We shall
come back to this issue in more detail below.

For now we turn specifically to Wilson’s treatment of the fermion doubling
problem. It exploits the fact that the discretization is not unique. Thus, one can add
a term to Ddisc, which formally vanishes as a → 0, but which pushes the masses of
the unwanted doubler states to the cutoff scale at any non-zero value of the lattice
spacing. Explicitly, the massless Wilson-Dirac operator Dw reads

Dw = 1
2γμ(∇μ + ∇∗

μ) + ar∇∗
μ∇μ, (5.31)

where r is the so-called Wilson parameter, which is usually set to one. The Fourier
transform of Dw for a trivial gauge field reads

D̃w(p) = iγμ
1

a
sin(apμ) + 2r

a
sin2

(apμ

2

)
, (5.32)
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which explicitly demonstrates (for the free theory, at least) that the poles at pμ =
π/a receive additional contributions proportional to r/a, which is of order of the
cutoff for r = O(1). Although this procedure leads to a complete lifting of the
degeneracy,1 it has a number of unwanted features: first, it should be noted that the
Wilson fermion action differs from the classical action in the continuum by terms
of order a, as a result of adding the counterterm proportional to r . By contrast, the
leading discretization effects of the Wilson plaquette action for Yang–Mills theory
are only O(a2). The Wilson fermion formulation will thus have a reduced rate of
convergence towards the continuum limit. Secondly, the addition of the Wilson term
results in an explicit breaking of chiral symmetry, since the massless theory is no
longer invariant under global axial rotations, such as

ψ(x) → eiαγ5ψ(x), ψ̄(x) → ψ̄(x)eiαγ5, (5.33)

which implies that property (d) is violated. While the rate of convergence to the
continuum limit can be accelerated by employing what is known as “O(a) improve-
ment” (see below), the explicit breaking of chiral symmetry cannot be cured within
the Wilson theory. Thus, quantities like the quark condensate, which arises from
the spontaneous breaking of chiral symmetry, cannot be studied in a conceptually
“clean” manner using Wilson fermions. A detailed discussion how this can be
achieved with the help of a more sophisticated fermionic discretization (“Ginsparg-
Wilson fermions”) is presented in Sect. 5.6. However, for most applications of lattice
QCD, explicit chiral symmetry breaking is merely an inconvenience, but no serious
obstacle.

We have already remarked when discussing the discretized Yang–Mills part of
the QCD action that the non-uniqueness of the discretization opens the possibility
to construct lattice actions with an accelerated rate of convergence towards the
continuum limit. A systematic way how to do this is the so-called Symanzik
improvement programme [14], in which lattice artefacts can be removed order by
order in the lattice spacing. In a nutshell, the improvement programme amounts to
extending the renormalization procedure of a field theory to the level of irrelevant
operators, i.e. operators that formally vanish as a → 0. In this sense one adds
suitable counterterms, which for any non-zero value of a produce a cancellation
of the cutoff effects at a given order, provided that their coefficients are tuned
appropriately. For QCD with Wilson fermions, Sheikholeslami and Wohlert [15]
have shown that the Symanzik improvement programme to lowest order is realized
by adding one O(a) counterterm to the Wilson-Dirac operator Dw. The resulting
expression in the massless case reads

Dsw = Dw + ia

4
cswσμνF̂μν, (5.34)

1That the degeneracy is indeed completely lifted in the presence of a non-trivial gauge field can be
verified in numerical simulations.
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Fig. 5.2 Four plaquettes that
must be summed over to yield
the quantity Qμν(x) in the
lattice definition of the field
strength tensor. The site x is
at the center of the “clover”
leaf

where σμν = i
2 [γμ, γν], and F̂μν is a lattice transcription of the gluon field strength

tensor Fμν . A suitable representation of F̂μν in terms of plaquette variables is given
by

F̂μν(x) = 1

8a2

(
Qμν(x) − Qνμ(x)

)
, (5.35)

where Qμν(x) is the sum of the four plaquettes emanating from the site x, as
depicted in Fig. 5.2. The object Qμν(x) is aptly called “clover” leaf. In order
to remove all lattice artefacts of order a in hadron masses, the improvement
coefficient csw must be fixed by imposing a suitable improvement condition.
Without going into details here, we note that it is possible to find such a condition,
which can also be evaluated at the non-perturbative level [16, 17]. The resulting,
non-perturbatively O(a) improved Wilson action can then be used to compute, say,
hadron masses whose values differ from the continuum result by terms of only
O(a2).

The Wilson-Dirac operator for a quark with bare mass m0 is simply (Dw + m0).
However, the form of the Wilson fermion action, SW

F [U, ψ̄,ψ], which is found in
the literature is usually expressed in terms of the “hopping parameter” κ rather than
m0. By rescaling the fermion fields according to

ψ(x) → √
2κ ψ(x), ψ̄(x) → ψ̄(x)

√
2κ, (5.36)

one obtains

SW
F [U, ψ̄,ψ] ≡ a4

∑
x∈�E

ψ̄(x)(Dw + m0)ψ(x)

= a4
∑
x∈�E

{
− κ

3∑
μ=0

1

a

[
ψ̄(x)(r − γμ)Uμ(x)ψ(x + aμ̂)

+ψ̄(x + aμ̂)(r + γμ)Uμ(x)
−1ψ(x)

]

+ ψ̄(x)ψ(x)

}
. (5.37)
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The hopping parameter κ is related to the bare mass m0 via

κ = 1

2am0 + 8r
, (5.38)

while the dimensionless parameter r is usually set to one. Taken together with
the plaquette action of Eq. (5.25), the Wilson action for QCD is thus conveniently
parameterized in terms of the bare parameters (β, κ), with β = 6/g2

0 and κ as above,
instead of the bare gauge coupling and quark mass (g0,m0).

Another consequence of adding the Wilson term to the naïve lattice action is the
resulting additive renormalization of the quark mass. In other words, the point where
the quark mass vanishes is a priori unknown. The value that must be subtracted is
called the critical quark mass, which corresponds to the critical value of the hopping
parameter, κc. The bare subtracted quark mass is then given by

m = 1

2a

(
1

κ
− 1

κc

)
. (5.39)

From Eq. (5.38) one easily infers that the critical value of κ in the free theory occurs
at

κc = 1

8
, r = 1, (5.40)

while for non-zero g0 the value of κc must be determined, for instance, by adjusting
κ to the point where the pion mass vanishes.

We now turn to discussing one alternative to using Wilson’s solution to the
fermion doubling problem, namely the so-called “staggered” (or Kogut-Susskind)
fermions. One might think that the doubling problem arises since there are too
many fermion degrees of freedom in the discretized theory, if one associates
a four-component Dirac spinor with each individual lattice site. Pictorially, the
main idea of Kogut and Susskind was to “thin out” the degrees of freedom by
distributing single spinor components over different lattice sites. In their particular
formulation, the 16 corners of a four-dimensional hypercube serve to accommodate
the individual components of four Dirac spinors. Therefore, if these hypercubes
are regarded as the main building blocks for the fermionic discretization, rather
than the lattice sites themselves, this procedure will result in a partial lifting of
the degeneracy from 16 fermion species down to four. It is clear, though, that a
simple distribution of spinor components is not sufficient to define the action, since
the Dirac matrices mix different spinor components. Thus, the staggered fermion
action is only obtained after performing a diagonalization in spinor space, which
then decouples the individual components.

Rather than describing the details of this procedure, which can be found in most
textbooks, we simply state the result. Starting from the usual four-component spinor
and performing a spin-diagonalization, the lattice action for staggered fermions with
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bare mass m0 coupled to the gauge field is derived as

S
stagg
F [U, χ̄ , χ] = a4

∑
x∈�E

4∑
α=1

{
m0χ̄α(x)χα(x)

+ 1

2a

3∑
μ=0

ημ(x)
[
χ̄α(x)Uμ(x)χα(x + aμ̂) − χ̄α(x + aμ̂)Uμ(x)

−1χα(x)
]}

, (5.41)

where χα denotes a one-component Grassmann variables. The spin-diagonalization
has thus replaced the Dirac matrices γμ by real, position-dependent phase factors
ημ(x), which are given by

η0(x) = 1, ηj (x) = (−1)n0+...+nj−1 , nj = xj/a. (5.42)

At the level of the classical action, the spinor components are completely decoupled,
and the action is decomposed into four identical pieces. In order to occupy all 16
corners of a four-dimensional hypercube with one-component Grassmann variables,
one needs four Dirac spinors, each of which contributes a term like Eq. (5.41) to the
overall action. This produces the fourfold degeneracy of staggered fermions, with
the remnant doubler states being referred to as “tastes”, in order to distinguish them
from physical flavours. The formulation using the one-component fields within a
hypercube can be re-expressed in terms of the spin-taste basis [18], from which one
can infer directly that the taste symmetry is broken. However, one axial generator of
the taste symmetry remains unbroken. The fermion mass in the staggered approach
is therefore protected against any additive renormalization through the associated
global axial U(1) symmetry, unlike the case of the Wilson action. While the various
tastes decouple in the continuum limit, non-vanishing interactions between the tastes
at O(a2) in the lattice spacing are induced, leading to large lattice artefacts. The
Symanzik improvement programme can be employed to reduce these taste-changing
interactions [19], and the resulting “improved staggered fermions” (the so-called
“Asqtad”-action being one particular example [20]) have been widely used in a
series of simulations.

For a long time lattice physicists have struggled to find a fermionic discretization
which would both solve the doubling problem and be compatible with chiral
symmetry. In fact, physicists grew increasingly doubtful that this could be achieved,
following the proof of a “No-Go theorem” by Nielsen and Ninomiya [21], which
stated that the conditions (a)–(d) mentioned above could not be satisfied simul-
taneously. Since one does not want to give up locality and property (b), this
would imply that either (c) or (d) must be violated. Indeed, the Wilson and
staggered discretizations seem to confirm this expectation: while the Wilson fermion
action removes all doublers, it breaks chiral symmetry, leading to an additive
renormalization of the quark mass, as well as several other consequences. By
contrast, the staggered formulation preserves a U(1) subgroup of chiral symmetry at
the price of only partially removing the spurious degrees of freedom.
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A way to circumvent the Nielsen–Ninomiya theorem was already pointed out by
Ginsparg and Wilson in 1982 [22], when they suggested to relax condition (d) in
favour of

γ5D + Dγ5 = aDγ5D. (5.43)

However, it was not before 1997 that this condition—now commonly referred to
as the Ginsparg-Wilson relation—was confronted with a non-trivial solution. It was
shown [23] that the so-called “perfect action” constructed from a renormalization
group approach satisfied equation (5.43). It was also realized that any lattice Dirac
operator, which is a solution to the Ginsparg-Wilson relation, also satisfies the
Atiyah–Singer index theorem, i.e.

{γ5,D} = aDγ5D ⇔ index(D) = a5
∑
x∈�E

1
2 Tr (γ5D) = n−−n+, (5.44)

such that the operator D exhibits |n− − n+| exact chiral zero modes. Finally, it
was shown [24] that the Ginsparg-Wilson relation implies an exact symmetry of the
associated action, with infinitesimal variations proportional to

δψ = γ5(1 − aD)ψ, δψ̄ = ψ̄γ5. (5.45)

Moreover, this symmetry reproduces the correct chiral anomaly in the flavour singlet
case, and therefore all the hallmarks of the correct chiral behaviour are present in
the lattice theory: chiral zero modes, an exact index theorem and the chiral anomaly
derived from the Ward identities associated with the exact symmetry.

Another line in the development of lattice fermion actions that preserve chiral
symmetry goes back to Kaplan’s domain wall fermion approach [10], which was
subsequently applied to QCD by Furman and Shamir [11]. Without going into detail,
we state that the basic idea is to introduce an extra, fifth dimension and to couple
the fermions to a mass defect (the so-called “domain wall height”) in that extra
dimension. To make this more explicit, let x, y denote the coordinates in the four-
dimensional bulk, and s, t the coordinates in the 5th dimension, which has finite
length N5. The gauge fields are trivial in the 5th direction, and the Dirac operator
then has the general structure

Ddwf(x, s; y, t) = D‖(x, y)δst + δ(x − y)D⊥
st (5.46)

where D‖(x, y) is the usual Wilson-Dirac operator with a negative mass term, −M ,
which represents the domain wall height. The operator D⊥

st couples fermions in the
5th dimension and contains the physical bare quark mass m0. It can then be shown
that for m0 = 0 and in the limit N5 → ∞ there are no fermion doublers and, more
importantly, chiral modes of opposite chirality are trapped in the four-dimensional
domain walls at s = 1, N5.
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However, in a real lattice simulation of domain wall fermions, one has to work
with a finite value of N5, so that the decoupling of chiral modes is not exact.
One expects, though, an exponential suppression of the remnant chiral symmetry
breaking effects, and this has been confirmed in several simulations. Furthermore,
the rate of suppression may be accelerated by optimizing the choice of lattice action
for the gauge fields. Hence, the domain wall formulation of QCD offers a method
to realize almost exact chiral symmetry at non-zero lattice spacing at the expense of
simulating a five-dimensional theory.

Another operator which correctly reproduces the chiral properties of QCD at
non-zero lattice spacing was constructed by Neuberger [12]. Its definition is

DN = 1

a

(
1 − A√

A†A

)
, A = 1 + s − aDw, a = a

1 + s
, (5.47)

where Dw is the massless Wilson-Dirac operator, and |s| < 1 is a tunable parameter.
By defining Q = −γ5A, one can rewrite Eq. (5.47) as

DN = 1

a
(1 + γ5sign(Q)) . (5.48)

The Neuberger-Dirac operator DN removes all doublers from the spectrum, and can
easily be shown to satisfy the Ginsparg-Wilson relation [12]. The occurrence of an
inverse square root in DN raises two issues. First, it is a priori not clear whether or
not DN is local. Second, the application of DN in a computer program is potentially
very costly, since the sign-function of the matrix Q must be implemented using, for
instance, a polynomial approximation.

In order to qualify as a viable discretization of the quark action, “strict” locality,
meaning that only fields in a local neighbourhood of a given lattice site are coupled,
is not actually required. If D(x, y) denotes a generic lattice Dirac operator which
couples fields at sites x and y, then a sufficient condition for locality of D is the
exponential suppression of non-local interactions, i.e.

‖D(x, y)‖ ≤ e−γ |x−y|/a, (5.49)

where |x − y| is the distance between sites and ‖ · ‖ denotes a suitably defined
matrix norm. In Ref. [25] it was shown that the Neuberger-Dirac operator DN is
local in the sense of Eq. (5.49), provided that the lattice spacing in physical units2

is not larger than about 0.13 fm. As far as the issue of numerical efficiency is
concerned, we note that the most widely used approximations of sign(Q) with good
convergence properties include Chebysheff or Zolotarev polynomials, as well as
rational fractions.

2So far we have not discussed how to assign physical units to the lattice spacing a. This is described
in Sect. 5.2.4.
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The last fermionic discretization we wish to mention here was originally
constructed to address another problem of Wilson’s discretization, namely the fact
that they are not protected against the occurrence of zero modes for any non-zero
value of the bare quark mass. These unphysical zero modes manifest themselves
as “exceptional” configurations, which occur with a certain frequency in numerical
simulations with Wilson quarks and which can lead to strong statistical fluctuations.
The problem can be cured by introducing a so-called “chirally twisted” mass term,
after which the fermionic part of the QCD action in the continuum assumes the form

S
tm; cont
F =

∫
d4x ψ̄(x)(γμDμ + m + iμqγ5τ

3)ψ(x). (5.50)

Here, μq is the twisted mass parameter, and τ 3 is a Pauli matrix. The standard action
in the continuum can be recovered via a global chiral field rotation:

ψ ′(x) = eiαγ5τ
3/2ψ(x), ψ̄ ′(x) = ψ̄(x)eiαγ5τ

3/2. (5.51)

Fixing the twist angle α by requiring that tanα = μq/m one finds

S′
F =

∫
d4x ψ̄ ′(x)(γμDμ + M)ψ ′(x), M =

√
m2 + μ2

q, (5.52)

which demonstrates the complete equivalence of the twisted formulation with
“ordinary” QCD. The lattice action of twisted mass QCD for Nf = 2 flavours is
defined as [26]

Stm
F [U, ψ̄,ψ] = a4

∑
x∈�E

ψ̄(x)(Dw + m0 + iμqγ5τ
3)ψ(x). (5.53)

Although this formulation breaks physical parity and flavour symmetries, is has a
number of advantages over standard Wilson fermions. In particular, the presence of
the twisted mass parameter μq protects the discretized theory against unphysical
zero modes. Another attractive feature of twisted mass lattice QCD is the fact
that the leading lattice artefacts are of order a2 without the need to add the
Sheikholeslami-Wohlert term [27], even though the Wilson-Dirac operator is used
in Eq. (5.53). Although the problem of explicit chiral symmetry breaking remains,
the twisted formulation is particularly useful to circumvent some of the problems
that are encountered in connection with the renormalization of local operators on
the lattice. Recent review of twisted mass lattice QCD can be found in [28, 29].

We wish to end this part with a few general remarks. Although we have
discussed discretizations of the QCD action in some detail, including the most
recent developments, many more variants of the basic types of action—including
several different combinations of fermionic and pure gauge parts—can be found in
the literature. This reflects the fact that the discretization is not unique. The actual
choice of lattice action in a particular simulation will influence the convergence rate
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to the continuum limit, the algorithmic efficiency, the renormalization properties of
local operators, or—in the case of domain wall fermions—the extent to which chiral
symmetry is realized. Depending on the properties of a particular discretization, the
choice of lattice action can be optimized for the physics one wishes to study.

5.2.3 Functional Integral and Observables

The lattice formulation provides a regularization of non-Abelian gauge theories
whilst preserving the gauge invariance at all stages of the calculation. This comes
at a price, since all continuous space-time symmetries are broken explicitly and
must be recovered in the continuum limit. Nevertheless, the lattice regularized
theory inherits all consequences of gauge invariance, including renormalizability.
Moreover, the lattice regularizes the theory without any reference to perturbation
theory. By contrast, in continuum schemes like the MS scheme of dimensional
regularization the cutoff is only defined after fixing the order of the perturbative
expansion. As we shall see below, observables in lattice QCD are directly given
in terms of functional integrals, which can be evaluated stochastically using Monte
Carlo integration. In this way, any use of perturbation theory is completely avoided.

For concreteness, let us assume that we have made a particular choice for
the Yang–Mills part SG[U ] and the fermionic part SF[U, ψ̄,ψ], for instance, the
Wilson plaquette action and Wilson fermions. Let � denote an observable, which is
represented by a polynomial in the quark and antiquark fields and the link variables.
The expectation value, 〈�〉, is defined through the Euclidean functional integral3

〈�〉 = 1

Z

∫
D[U ]D[ψ̄ , ψ]� e−SG[U ]−SF[U,ψ̄,ψ], (5.54)

where Z is fixed by the condition〈1〉 = 1. The functional integral involves an
integration over the gauge group and over all fermionic degrees of freedom, the latter
being represented by anti-commuting (Grassmann) variables. Since the fermionic
action, SF[U, ψ̄,ψ] is bilinear in the quark and antiquark fields, the integration over
the Grassmann variables is Gaussian and can be performed analytically. This yields

〈�〉 = 1

Z

∫ ∏
x∈�E

3∏
μ=0

dUμ(x) �̃ {detDlat}Nf e−SG[U ]. (5.55)

3Here and in the following we drop the subscript “E” on the partition function Z.
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Equation (5.55) requires some further explanation:

• �̃ denotes the representation of � in the (effective) theory, where the quark fields
have been integrated out and only the link variables remain in the functional
integral measure;

• Dlat denotes a generic, massive lattice Dirac operator. For instance, for Wilson
quarks one has Dlat = Dw +m0. For simplicity we have displayed the expression
for QCD with Nf flavours of equal mass m0, which accounts for the power Nf.
In the case of non-degenerate quarks {detDlat}Nf must be replaced by a product
of determinants, in which each factor represents the contribution from a single
flavour:

• The lattice formulation has given a well-defined meaning to the measure D[U ].
The integration over the gauge degrees of freedom reduces to a finite-dimensional
integration over the gauge group, based on the invariant group (Haar) measure.

The numerical evaluation of 〈�〉 via Monte Carlo integration proceeds as follows.
One starts by generating a set of gauge configurations using a computer program.
One configuration in the set represents the collection of all link variables on a given
lattice, i.e.

{
Uμ(x) |x ∈ �E, μ = 0, . . . , 3

}
, (5.56)

for which we shall use the shorthand {Uμ(x)} below. A collection of an infinite
number of configurations is called an ensemble. The statistical weight, W , of an
individual configuration is given by

W = {detDlat}Nf e−SG[U ]. (5.57)

In other words, the composition of the ensemble is determined by a probability
distribution, which is given by the negative exponentiated classical action in the inte-
grand of the Euclidean functional integral. Owing to the weight factor, the integrand
of the functional integral will be strongly peaked around those configurations for
which W is large. This particular feature makes the expectation value amenable to a
Monte Carlo treatment. The key idea is to replace the ensemble by a finite sample of
Ncfg gauge configurations, which is dominated by those configurations for which W

is large. Provided that one can construct a suitable algorithm, the sample will then
consist predominantly of those configurations which give a large contribution to the
Euclidean functional integral and thus 〈�〉. Such a procedure is called importance
sampling.

Technically, the sample is produced by generating a sequence of configurations
via a Markov process:

{
Uμ(x)

}
1 −→ {

Uμ(x)
}

2 −→ . . . −→ {
Uμ(x)

}
Ncfg

. (5.58)
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One assigns a probability for the transition from
{
Uμ(x)

}
i

to
{
Uμ(x)

}
i+1, which is

usually a function of the statistical weights of the two configurations, Wi and Wi+1,
respectively. For each individual configuration in the sequence one then evaluates
the observable, which yields the estimates �i, i = 1, . . . , Ncfg. The expectation
value 〈�〉 is related to the mean value � via

〈�〉 = lim
Ncfg→∞�, � = 1

Ncfg

Ncfg∑
i=1

�i. (5.59)

In other words, in the limit of infinite statistics the mean value converges to
the ensemble average which is identical to the expectation value. An important
consequence of approximating the ensemble average by the sample average is a
non-zero value of the variance. Hence, in order to specify the results from a Monte
Carlo integration completely, one must also quote the statistical error which is given
by the square root of the variance.

In the standard algorithms that implement Markov processes (such as the
Metropolis algorithm [30]), the transition probabilities for going from one con-
figuration to another are determined by comparing the statistical weights for local
variations in the field variables. This guarantees computational efficiency, since the
variation of individual link variables does not involve global information from the
entire lattice. In Eq. (5.55) the dynamical effects of the quark fields are incorporated
via the determinant of the lattice Dirac operator. The determinant, however, is a
non-local object, which is expensive to compute. When the first efforts were made
to compute observables in QCD in the 1980s, the available computer power did
not allow for the inclusion of the quark determinant. Instead, lattice physicists
resorted to what is known as the “quenched approximation”, which is based on the
assumption that the bulk of non-perturbative contributions is carried by the gauge
field, so that the determinant is set to a constant:

Quenched approximation: detDlat = 1 ⇔ Nf = 0. (5.60)

The resulting gain in computer time amounts to several orders of magnitude. In the
quenched approximation the effects of virtual quark loops are entirely suppressed.
As a consequence, results for observables are afflicted with an unknown systematic
error. As we shall see later, there are several quantities (for instance, the masses
of the lightest hadrons) for which the quenching error amounts to just 10–15%.
Although this justifies the use of the quenched approximation to some extent, it is
clear that dynamical quark effects must be taken into account, in order to arrive at
reliable, non-perturbative predictions with a total accuracy at the percent level.

Modern algorithms for dynamical quarks, such as the Hybrid Monte Carlo algo-
rithm [31], do not evaluate the quark determinant directly. Rather, one exploits the
property that the determinant can be rewritten as a functional integral over bosonic
fields, which is then evaluated stochastically. Thereby one avoids computing a
global object, but the computational effort involved in the stochastic estimation
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of the quark determinant is still large compared with the quenched approximation.
More details can be found in Sect. 5.2.6 below.

Correlation functions, i.e. the expectation values of polynomials in the quark and
gluon fields, are the most important quantities, since they determine implicitly the
particle spectrum of the theory. As was discussed already in Sect. 5.2.1, the link
between correlation functions and the particle spectrum is provided by the transfer
matrix T. For lattice QCD with Wilson fermions, the existence of a positive transfer
matrix was rigorously established [32].

As a concrete example we shall discuss the two-point correlation function of a
charged kaon. A polynomial of quark fields with the quantum numbers of the kaon
is given by

φK(x) = (ūγ5s) (x), (5.61)

where the parentheses indicate summation over spinor and colour components of the
fields. Mostly one is interested in correlation functions in which all spatial points
have been summed over and which therefore only depend on the Euclidean time
separation. We define

CK(x0; �p) =
∑

�x
ei �p·�x 〈φK(x)φ

†
K(0)

〉
. (5.62)

The inclusion of the phase factor in conjunction with the summation over �x amounts
to a projection onto spatial momentum �p. On a finite lattice with periodic boundary
conditionsCK(x0; �p) must be symmetric under x0 ↔ T −x0. Therefore, the spectral
decomposition of CK(x0; �p) reads

CK(x0; �p) =
∑
α

∣∣〈0∣∣φK(0)
∣∣α〉∣∣2

2εα( �p)
{

e−εα( �p)x0 + e−εα( �p)(T−x0)
}
, (5.63)

where the sum runs over all states in the kaon channel with fixed momentum �p, and
εα( �p) is the mass gap (see Sect. 5.2.1).4 For large Euclidean times x0 the ground
state dominates. If we further set �p = 0, then the asymptotic form of the two-point
function reads

lim
x0→∞CK(x0; �p) =

∣∣〈0∣∣φK(0)
∣∣K 〉∣∣2

mK
e−mKT/2 cosh (mK(T /2 − x0)) , (5.64)

where mK = ε0( �p)| �p=0 is the mass of the kaon, and the sum of the two exponentials
has been re-expressed using the cosh function. Owing to the ordering ε0( �p) <

ε1( �p) < . . ., the higher excited states are exponentially suppressed. The functional

4In the commonly normalization of hadron states one includes a factor 2εα( �p) in the denominator.
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Fig. 5.3 Two-point
correlation function for a
pseudoscalar meson. The
curve denotes a fit to
Eq. (5.64) in the interval
6 ≤ x0/a ≤ 26 p
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form of Eq. (5.64) is nicely illustrated by the plot in Fig. 5.3, where simulation data
for CK(x0; �p = 0) are compared to its asymptotic form. The data show indeed the
expected cosh-behaviour. Furthermore, one observes how the contributions from
higher excited states, which are clearly visible at small values of x0/a, quickly die
out as the time separation increases. From the two-point function we can extract
two important quantities: the fall-off of CK(x0; �p = 0) is characteristic of the
kaon mass, i.e. the energy of the ground state. Moreover, the pre-factor of the cosh-
function yields the transition amplitude between a kaon state and the vacuum, and
thus contains information on the kaon’s decay properties.

5.2.4 Continuum Limit, Scale Setting and Renormalization

In Sect. 5.2.2 we have discussed how to discretize the QCD action. The main
principle for their construction was the condition that the corresponding expressions
reproduce the continuum action in the formal limit a → 0, regardless of the values
of the bare parameters (such as β and the hopping parameter κ in the case of QCD
with Wilson fermions). If one goes beyond the classical theory this is not possible
anymore: it is a general property of quantum field theory that the parameters of
the regularized theory (masses and couplings) must be adjusted as the regulator is
removed. In the context of lattice QCD this implies that the continuum limit, a → 0,
is reached by a suitable tuning of the bare parameters.

To make this statement more precise, we shall invoke the close connection
between Euclidean lattice field theory and a system in statistical mechanics. Models
in statistical physics (think of the Ising model as an example) usually have a phase
structure. Depending on the choice of parameters, the different phases may exhibit
entirely different physical properties. The analogy with lattice field theory then
implies that a particular discretization of QCD also possesses a phase structure in
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the space of bare parameters (β and κ , for example).5 We shall now explain that
the continuum limit of QCD is associated with a critical point in the phase diagram,
which corresponds to a second-order phase transition. In the previous section we
have considered hadronic two-point correlation functions, and how the mass in a
given channel can be extracted from the asymptotic behaviour at large Euclidean
times. Actually, this procedure yields the dimensionless combination (aM), i.e. the
hadron mass in lattice units. In order to take the continuum limit, one must take
a → 0, while the physical mass M must remain constant. This implies

1

(aM)
≡ ξ → 0. (5.65)

In other words, the correlation length ξ diverges in the continuum limit. In the
language of statistical physics, a divergent correlation length signals a second-
order phase transition. The existence of the continuum limit in lattice QCD is
therefore equivalent to the existence of a second-order transition in the space of
bare parameters.

For simplicity we shall now consider Yang–Mills theory on the lattice, which we
choose to describe by Wilson’s plaquette action and the bare coupling parameter
β ≡ 6/g2

0. The existence of a second-order phase transition corresponds to a critical
value of the bare gauge coupling, g0,c. Furthermore, it implies that the bare coupling
g0 and the lattice spacing a (or, equivalently, the correlation length ξ ) cannot be
varied independently when the continuum limit is approached.6 In this way we may
regard the bare coupling as a function of the lattice spacing, g0(a), such that

lim
a→0

g0(a) = g0,c. (5.66)

Let P be an observable, computed for a particular value of g0, i.e. P = P(g0, a).
Since P is a physical quantity it must stay constant as the continuum limit is taken,
i.e.

a
d

da
P(g0, a) = 0. (5.67)

This leads to the Callan–Symanzik equation

{
a
∂

∂a
+ a

∂g0

∂a

∂

∂g0

}
P(g0, a) = 0. (5.68)

5This phase diagram must not be confused with the physical phase diagram of QCD in the plane
defined by the temperature and the chemical potential, which is explored at heavy-ion colliders.
6Otherwise, an arbitrarily chosen value of g0 would always correspond the a critical point.
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We can define the renormalization group β-function βlat as

βlat(g0) := −a
∂g0

∂a
, (5.69)

which describes the change in g0 when a is varied. Note that βlat depends on the
choice of discretization. In perturbation theory, however, one recovers the familiar
universal coefficients at one- and two-loop order. For gauge group SU(N) one has

βlat(g0) = −b0g
3
0 − b1g

5
0 + O(g7

0), (5.70)

where

b0 = 1

(4π)2

{
11

3
N − 2

3
Nf

}
, b1 = 1

(4π)4

{
34

3
N2 − Nf

(
13

3
N − 1

N

)}
,

(5.71)

and Nf = 0 in pure Yang–Mills theory. Starting from the perturbative expansion of
βlat one can integrate the Callan–Symanzik equation, which gives

a�lat = (b0g0)
−b1/(2b2

0)e−1/(2b0g0)
{

1 + O(g2
0)
}
, (5.72)

where the integration constant �lat represents a characteristic scale of the theory.
The above expression establishes the connection between the lattice spacing and the
bare coupling in perturbation theory. One reads off that

a → 0 ⇔ g0 → 0, (5.73)

and hence the critical point occurs at g0,c = 0. These findings are a consequence
of asymptotic freedom. Taking Eq. (5.72) at face value one would conclude that
the relation between P(a, g0) and P(a′, g′

0), computed for two different values
of the bare coupling g0 and g′

0 near the critical point, was simply given by the
ratio of Eq. (5.72) evaluated for g0 and g′

0. However, actual simulations do not
confirm this expectation. The reason for the failure to observe “asymptotic scaling”,
i.e. a variation of P(a, g0) with g0 which is consistent with Eq. (5.72), is that the
accessible values of g0 in simulations are by far not near enough the critical point,
in order for perturbation theory to be a good approximation.

Let P and P ′ be two different observables that both satisfy Eq. (5.68). Then,
regardless of whether or not asymptotic scaling holds, one would expect the ratio
aP(a, g0)/aP

′(a, g0) to be equal to the physical ratio P/P ′ for all values of g0.
However, even this weaker scaling criterion is usually not observed, the reason being
that the right-hand side of Eq. (5.68) is not strictly zero. Rather one has

{
a
∂

∂a
− βlat(g0)

∂

∂g0

}
P(g0, a) = O(ap), (5.74)
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Table 5.1 Most widely used discretizations of the Dirac operator and some of their properties

Leading

Action Doublers artefacts Chiral symmetry

Wilson None O(a) Broken

Clover None O(a2) Broken

Staggered 4 O(a2) U(1) ⊗ U(1) subgroup unbroken

Neuberger None O(a2) Preserved

Domain Wall None O(a2) Remnant breaking exponentially suppressed

Twisted Mass Wilson None O(a2) Broken

where p is a positive integer. These so-called scaling violations on the right-
hand side depend both on the lattice action and the observable in question. As a
consequence, the ratio considered above behaves like

aP(a, g0)

aP ′(a, g0)
= O(ap). (5.75)

In other words, as g0 is tuned towards zero, dimensionless ratios of observables
converge to the continuum limit with a rate proportional to ap, where the power p is
characteristic of the particular discretization employed in the lattice calculation. In
Table 5.1 we have already listed the leading scaling violations (lattice artefacts) for
several widely used fermionic lattice actions. Discretizations of the Yang–Mills part,
such as the plaquette action, have leading lattice artefacts of O(a2). The Symanzik
improvement programme allows to construct lattice actions with an accelerated rate
of convergence to the continuum limit.

In actual lattice calculations, the continuum limit must be taken by performing
simulations at several different values of the lattice spacing and extrapolating the
results to a = 0. The functional form of the extrapolation is chosen such that it is
consistent with the leading discretization errors for a given lattice action. Such a
procedure is only viable if the relation between the lattice spacing in physical units
and the dimensionless coupling parameter g0 (which is an input parameter in the
simulation) is known with good accuracy. Since the perturbative formula Eq. (5.72)
is not of any practical use, the relation between the scale and the coupling must be
mapped out non-perturbatively. To this end one picks a value for g0 and computes
in a Monte Carlo simulation a dimensionful quantity Q, whose value is known from
experiment. Common choices for Q in the pure gauge theory are the string tension
or the hadronic radius r0 [33, 34], while in full QCD one may choose the mass of
the nucleon. The Monte Carlo procedure yields Q in lattice units, (aQ), and the
calibration of the lattice spacing is achieved via

a−1 [MeV] = Q|exp [MeV]
(aQ)|g0

. (5.76)
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Fig. 5.4 Continuum extrapolation of the dimensionless ratio of quark masses and the kaon decay
constant [35]

Knowledge of (aQ) over a range of bare couplings is a prerequisite for performing
the continuum extrapolation. In Fig. 5.4 we show a particular example, namely the
continuum extrapolation of the combination Ms + 1

2 (Mu + Md) of quark masses,
normalized by the kaon decay constant, computed using O(a) improved Wilson
fermions in the quenched approximation [35]. The expected linear convergence in
a2 is clearly exhibited by the lattice data.

So far we have restricted the discussion to the pure gauge theory which contains
only one bare parameter, the gauge coupling g0 (sometimes expressed in terms
of β = 6/g2

0). When quarks are incorporated, the set of parameters must be
enlarged by the values of the bare masses, one for each flavour. Lattice QCD is
thus parameterized by the set of bare parameters

{g0;mu,md,ms,mc,mb,mt }.

In order to be predictive, the theory must be renormalized, by expressing the bare
parameters in terms of renormalized ones.

A convenient and practical method for lattice QCD is based on so-called hadronic
renormalization schemes. Here the bare coupling and quark masses are eliminated
in favour of renormalized quantities such as hadron masses or decay constants. An
example how this works in the pure gauge theory was already given in the preceding
discussion on scale setting, where the bare coupling was eliminated by assigning a
value in physical units to the lattice spacing. In the process one has to choose a
quantity that sets the scale and which cannot be predicted anymore.

Replacing the values of the bare quark masses mu,md, . . . in favour of hadronic
quantities works as follows. Like the bare coupling, the bare quark mass is an input
parameter for the simulation and thus freely adjustable. Therefore, simulations yield
hadron masses (in lattice units) as a function of the input quark masses. For instance,
amPS(m1,m2) denotes the mass in lattice units of a generic pseudoscalar meson
composed of a quark and antiquark with bare masses m1 and m2, respectively. Let
us assume that the lattice spacing a has been calibrated using some input quantity
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Q. If we further assume exact isospin symmetry we can then determine the value of
the bare isospin-symmetrized light quark mass m̂ = 1

2 (mu + md), by requiring that

mPS(m1,m2)

Q
= mπ

Q

∣∣∣∣
exp

, m1 = m2, (5.77)

i.e. the value of m̂ is fixed by adjusting the input mass m1 until mPS(m1,m2)/Q

coincides with the experimental result. We can extend this procedure to include
more massive flavours. The bare strange quark mass is found by tuning m2 such that

mPS(m̂,m2)

Q
= mK

Q

∣∣∣∣
exp

. (5.78)

Alternatively one can fix ms via the condition mV(m̂,m2)/Q = m∗
K/Q|exp, where

mV denotes the mass in the vector channel. An example of a particular hadronic
renormalization scheme is shown below:

Parameter Quantity

g0 fπ
1
2 (mu + md) mπ

ms mK

mc mDs

mb mBs

All quantities in a lattice calculation are genuine predictions, except for those that
are listed in the right-hand column of the table, which are used to eliminate the bare
parameters.

Given the multitude of hadronic states, it is obvious that there is considerable
freedom in choosing hadronic renormalization schemes. Usually, masses or mass
splittings of hadrons that are stable in QCD are suitable to define a scheme.
Resonances, such as the ρ, should be avoided, since they do not have a sharply
defined energy, owing to their large width.

5.2.5 Limitations and Systematic Effects

The lattice formulation is the basis for an exact non-perturbative treatment of QCD.
The accuracy of lattice results is chiefly limited by the algorithmic performance and
the available computer power. In particular, the set of bare parameters that can be
simulated efficiently for a given number of lattice sites is restricted. This has the
important consequence that the quark masses at the very extremes of the physical
mass scale (i.e. the up/down quarks and the b-quark) cannot be simulated directly
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with currently available methods and machines. These technical limitations are
usually translated into a systematic error, which is quoted alongside the statistical
one. The most important systematic effects are due to

• lattice artefacts (cutoff effects),
• finite volume effects, and
• extrapolations in the quark mass.

In order to have sufficient control over these effects, the simulation parameters must
be chosen such that the following inequalities are satisfied:

1

amhad
� L

a
, mhad � a−1, (5.79)

where mhad is the mass of a generic hadron in physical units computed in the
simulation. The inequality on the left of (5.79) states that the hadron’s correlation
length must be much smaller than the linear extent of the spatial box (in lattice
units), as otherwise its value will be strongly distorted by finite volume effects. The
inequality on the right states that the hadron mass must be significantly smaller
than the inverse lattice spacing. If this is not the case, lattice artefacts will be
uncontrollably large, meaning that the presence of higher-order cutoff effects cannot
be excluded, so that a reliable extrapolation to the continuum limit as a linear
function of the leading power of lattice artefacts cannot be performed. With current
algorithms and machines, lattice sizes of up to L/a = 48 and lattice spacings down
to 0.05 fm are affordable, even if dynamical quarks are included. Since a = 0.05 fm
corresponds to a−1 ≈ 4 GeV, it is obvious that the b-quark mass is too large to be
simulated directly. Several techniques have been devised to address this problem,
and a brief account can be found in Sect. 5.7.2.

In the light quark sector, the primary limitation that forbids making direct
contact with the physical values of the up and down quarks is mostly due to
algorithmic performance, rather than finite size effects. A detailed discussion of
the algorithmic difficulties associated with the simulation of light dynamical quarks
is presented separately in the following section. Moreover, it is difficult even in
the quenched approximation to reach quark masses significantly smaller than half
the physical strange quark mass, in particular with Wilson fermions. This is related
to the occurrence of arbitrarily small eigenvalues in the spectrum of the Wilson-
Dirac operator, even for small but non-vanishing values of the bare mass. As a
result, observables computed on individual, so-called “exceptional” configurations
may differ from the Monte Carlo average by orders of magnitude, and thus a
reliable determination of the result and its error is virtually impossible. As already
mentioned in Sect. 5.2.2, the problem of exceptional configuration can be cured
by employing alternative discretizations such as twisted mass QCD or the overlap
operator. A related problem arising from the particular spectral properties of the
Wilson-Dirac operator is the bad performance of standard algorithms for dynamical
quarks, discussed in the next section.
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Due to these reasons, many simulations (quenched and unquenched) were
restricted to quark masses not much smaller than ms/2. This value translates
into a minimum mass of about 490 MeV in the pseudoscalar meson channel,
so that in these simulations the pion is as heavy as the physical kaon. In this
region of parameter space it is known empirically that a spatial lattice length
of 2–3 fm is sufficient to satisfy the first inequality in (5.79) and to rule out
significant finite volume effects. Moreover, an important analytic result derived by
Lüscher [36], implies that the asymptotic convergence to the result in infinite volume
is exponential.

In order to make contact with the chiral regime, lattice results must be extrapo-
lated to the physical values of the up and down quark masses. The functional form
for the dependence of observables on the quark mass is usually provided by Chiral
Perturbation Theory (ChPT). For instance, at lowest order the relation between the
mass of a pseudoscalar meson composed of quarks with masses m1 and m2 is

m2
PS = B0(m1 + m2) + . . . , (5.80)

where the ellipses represent higher orders in the chiral expansion. Similar expres-
sions are derived for vector meson and baryon masses, e.g.

mV = m0
V + CM2 + . . . , mN = m0

N + kM2 + . . . , (5.81)

and also for other quantities such as pseudoscalar decay constants. In the above
formulae, M2 ≡ B0(m1 + m2), and m0

V and m0
N denote the (non-vanishing) masses

in the chiral limit. A more formal introduction to the basic concepts of ChPT is
presented in Sect. 5.6.1.

It remains largely unknown whether or not the expressions of ChPT considered
at a given order in the expansion can be applied in the quark mass range that
is accessible in current simulations. Therefore, chiral extrapolations can lead to
substantial systematic uncertainties. For instance, lattice predictions for the ratio
of decay constants of the B and Bs mesons, fBs/fB, may differ by 10%, depending
on whether the LO or NLO expressions are used as an ansatz for the extrapolation
from quark masses around ms/2. Currently it is estimated that pseudoscalar meson
masses of 300 MeV and below must be reached in simulations, in order that ChPT
at one- or even two-loop order provides an accurate prediction for the quark mass
dependence of hadron masses and matrix elements.

In the quenched approximation, chiral extrapolations are particularly problem-
atic, since the chiral limit is intrinsically pathological, due to the appearance
of singularities in the quark mass dependence. This is illustrated by the NLO
expression for the ratio m2

PS/(m1 + m2), i.e.

m2
PS

m1 + m2
= B0

{
1 −

(
δ − 2

3α!y
)
(ln y + 1)+

[
(2α8 − α5) − 1

3α!

]
y
}
, (5.82)
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where B0, α5, α8, δ and α! are low-energy constants. For notational convenience
we have introduced

y = M2

(4πF0)2 , M2 = B0(m1 + m2), (5.83)

where F0 denotes the pion decay constant in the chiral limit. The low-energy
constants δ and α!, which multiply the so-called “quenched chiral logarithms”,
have no counterpart in the unquenched case. Since δ has a non-zero value [37],
the quenched chiral logarithm in Eq. (5.82) gives rise to a singularity in the chiral
limit. For many applications, the singularity can be ignored, since its effect is
numerically small even at the physical pion mass. However, it signals that the
quenched approximation suffers from fundamental conceptual problems.

5.2.6 Simulations with Dynamical Quarks

Although one may argue that the quenched approximation describes hadronic
properties fairly well, it is clearly unsatisfactory, both from a conceptual point of
view, and also because it introduces an unknown systematic error. Below we shall
discuss some general issues relating to simulations with dynamical quarks. It must
be stressed that several different techniques how to treat the quark determinant of
Eq. (5.57) efficiently are currently being explored. A preferred or clearly superior
method has not emerged so far, and it is likely that some of the approaches presented
below may become obsolete in the years to come.

In order to illustrate the main difficulties, we start by introducing the Hybrid
Monte Carlo (HMC) algorithm [31], which has been the standard algorithm for
simulations with dynamical quarks for many years. In order to produce one step
in the Markov chain, the algorithm evolves the link variables according to the
equations of motion of a classical Hamiltonian system. To this end one introduces
a conjugate momentum variable �μ(x) for every link Uμ(x). The Hamiltonian is
defined as

H [U,�] = 1
2

∑
x∈�E

3∑
μ=0

�μ(x)�μ(x) + SG[U ] + Seff
F [U,φ∗, φ], (5.84)

where SG[U ] is the lattice gauge action, and Seff
F [U,φ∗, φ] denotes an effective

lattice fermion action, which is obtained by rewriting the quark determinant as a
functional integral over complex bosonic fields φ(x) and φ∗(x). Explicitly, for Nf =
2 one has

(detDlat)
2 =

∫
D[φ∗, φ] exp

⎧⎨
⎩−

∑
x∈�E

φ∗(x)
[
(D

†
latDlat)

−1φ
]
(x)

⎫⎬
⎭ . (5.85)
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For each step in the Markov chain, the conjugate momenta are drawn randomly from
a Gaussian distribution (“momentum refreshment”). The Hamiltonian H [U,�]
governs the dynamics of the variables Uμ(x) and �μ(x) with respect to “simulation
time” τ , which parameterizes the evolution of Uμ(x) and �μ(x) as the simulation
algorithm progresses. The evolution is described by Hamilton’s equations, which
read

d

dτ
Uμ(x) = �μ(x)Uμ(x),

d

dτ
�μ(x) = −FG,μ(x) − FF,μ(x), (5.86)

where

FG,μ(x) = ∂SG[U ]
∂Uμ(x)

, FF,μ(x) = ∂

∂Uμ(x)

∑
x∈�E

φ∗(x)
[
(D

†
latDlat)

−1φ
]
(x)

(5.87)

are the forces associated with the gluon and quark fields, respectively. The algorithm
then proceeds by integrating the equations of motion numerically. As in any
numerical integration scheme, the total time interval is divided into a number of
sub-intervals of finite length �τ , which is called the step size. Starting from an
initial gauge configuration {Uμ(x)} and a set of conjugate momenta {�μ(x)}, one
obtains new sets {U ′

μ(x)}, {�′
μ(x)} after the integration. In the language of classical

mechanics, the variables Uμ(x) and �μ(x) evolve along a trajectory in phase
space which connects the initial and final configurations. However, since numerical
integration is not exact, owing to the finite step size, the energy is not conserved.
In the HMC algorithm this is rectified by introducing a global accept/reject step: if
�H denotes the energy difference between the initial and final configurations, i.e.

�H ≡ H [U ′,�′] − H [U,�], (5.88)

then the new configuration {U ′
μ(x)} is accepted with probability7

P {U → U ′} = min(1, e−�H). (5.89)

In other words, a configuration {U ′
μ(x)} associated with a large value for the energy

violation �H is less likely to be accepted. This final step completes the Monte
Carlo update. The name “Hybrid Monte Carlo” reflects the fact that one combines
a deterministic classical dynamics procedure with a pseudo-random accept/reject
step.

One major problem which has plagued simulations with dynamical quarks over
many years is the fact that the efficiency of the conventional HMC algorithm

7In practice this is achieved by drawing a random number r , with 0 < r ≤ 1. If r < e−�H the new
configuration is rejected.
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deteriorates sharply when the lattice spacing is decreased and the masses of the
light (up and down) quarks are tuned to their physical values. The poor scaling
behaviour is driven by the condition number of the lattice Dirac operator Dlat,
i.e. the ratio of the largest to the smallest eigenvalue. This quantity is known to
grow inversely proportional to the lattice spacing and the quark mass. In particular,
the HMC algorithm scales with the second, perhaps the third power of the light
quark mass. Thus, simulations based on the Wilson-Dirac operator were found to be
unpractical for lattice spacings below 0.1 fm and quark masses significantly smaller
than half of the strange quark mass.8 This is related to the afore-mentioned fact that
even the massive Wilson-Dirac operator is not protected against arbitrarily small
eigenvalues. Its condition number may thus fluctuate strongly in the course of the
simulation, leading not only to numerical instabilities, but also to large fluctuations
in the quark force term FF,μ(x), and, in turn,�H . In order to keep a reasonably large
acceptance rate of well over 75%, one must reduce the step size �τ accordingly,
and thus the numerical effort to integrate the equations of motion for an interval τ
of fixed length, increases.

Two basic strategies to address this problems have been followed: the first is
based on using fermionic discretizations that avoid the problem of arbitrarily small
eigenvalues, while the aim of the second approach is to improve the simulation
algorithms.

Staggered fermions have been advocated as a numerically more efficient alter-
native to the Wilson-Dirac formulation: since the staggered Dirac operator couples
one-component Grassmann fields rather than four-component spinors, fewer float-
ing point operations are required for one application of the operator. Moreover, the
residual U(1) ⊗ U(1) symmetry protects the quark mass against additive renor-
malization and thus prevents the occurrence of very small eigenvalues. However,
the fact that the staggered formulation describes four “tastes” per quark flavour
makes a physical interpretation difficult. Technically, the degeneracy implies that
the statistical weight of the quark determinant is too large compared with that of
one physical flavour. An ad hoc method to compensate for this is to take fractional
powers of the staggered quark determinant. For instance, to simulate QCD with
a doublet of degenerate up and down quarks with mass m̂, and a single heavier
(strange) quark with mass ms , the probability measure is taken as

P = 1

Z

{
det

(
Dstagg + m̂

)}1/2 {det
(
Dstagg + ms

)}1/4 e−SG[U ], (5.90)

where Dstagg is the massless staggered Dirac operator. This procedure is known as
the “fourth root trick”. The main question, which has been hotly debated, is whether
or not the rooted staggered operator corresponds to a local field theory, or whether it
induces spurious interactions among the fermionic degrees of freedom, which might
lead to a violation of the universality of the continuum limit. A thorough analysis

8This should be compared to the physical mass ratio of m̂ ≈ ms/24 [38].
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of this problem was given in [39], but so far no firm conclusion has been reached.
Nevertheless, the probability measure Eq. (5.90) and the “rooting trick” it is based
on, have been employed in large-scale simulations (see, e.g. Ref. [40]).

Discretizations based on twisted mass QCD have also been proposed as a
numerically more efficient quark action. Here, the twisted mass parameter μq
protects the operator against arbitrarily small eigenvalues. The smallest mass in the
pion channel that has been reached with this formulation was as low as 300 MeV
[41]. This corresponds to a physical quark mass of about ms/5, which may be
sufficient to enter the regime where the quark mass behaviour of observables can
be described analytically using Chiral Perturbation Theory.

Owing to several major algorithmic improvements, simulations based on the
Wilson-Dirac operator can now be performed much more efficiently. Without going
into much detail, we simply state that most of the gain is due to the use of suitably
chosen factorizations of the Wilson-Dirac operator into its low- and high-frequency
parts. The various factors are then “better conditioned”. In particular, fluctuations in
the condition number can be controlled via a separate and optimized treatment of
the low-energy part. In this way the step size �τ can be increased whilst keeping
a reasonably high acceptance rate for fixed total trajectory length τ . Algorithmic
implementations of factorization range from Hasenbusch’s “mass precondition-
ing” [42, 43], Lüscher’s domain decomposition technique based on the Schwarz
Alternating Procedure (DD-HMC algorithm) [44], to factorizations based on mass
preconditioning combined with rational approximations of the contributions from
multiple pseudo-fermion fields [45]. Thanks to these developments, it appears that
the spectral properties of the Wilson-Dirac operator are no longer an obstacle to
the efficient simulation of lattice QCD with light dynamical quarks. At the same
time, large-scale simulations employing the recent algorithmic improvements are
only just starting.

5.3 Hadron Spectroscopy

The determination of the spectrum of hadrons, i.e. mesons, baryons, glueballs,
and possibly “exotic” hadronic states, starting from the underlying gauge theory
of quarks and gluons has traditionally been one of the main applications of
lattice QCD. The rôle of lattice calculations in this context is twofold: first, the
determination of the experimentally known values of hadron masses from first
principles represents a stringent test of QCD. Second, lattice calculations can make
predictions for the masses of undiscovered or poorly established states. For instance,
lattice results have been instrumental in the search for glueball candidates, and have
also contributed significantly to the debate on the existence of pentaquarks.

The principles of hadronic mass calculations have already been outlined at the
end of Sect. 5.2.3: After defining a suitable interpolating operator with the quantum
numbers of the desired hadronic channel, one computes its Euclidean two-point
function. The mass (energy) of the ground state in that channel is then extracted
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from the exponential fall-off of the correlation function at large Euclidean times.
The detailed functional form of the asymptotic behaviour depends on the choice of
boundary conditions. Thus, it is not always described by a cosh function, as in the
example of a pseudoscalar meson on a lattice with periodic boundary conditions
in time, c.f. Eq. (5.64). In the limit of infinite temporal lattice size T , the effect
of the boundary conditions is sufficiently weak, so that one may approximate the
functional form of the correlation function for a generic interpolating operator
φhad(x) by

Chad(x0; �p) =
∑

�x
ei �p·�x 〈φhad(x)φ

†
had(0)

〉
T→∞=

∑
α

wα( �p)e−εα( �p)x0 . (5.91)

Here, the quantity wα( �p) is referred to as the spectral weight of the state |α〉. A
large value for the spectral weight of the ground state, w1( �p), will lead to an early
domination of the correlation function by the ground state energy. The choice of
φhad in a given channel can be optimized such that

w1( �p) � wi( �p), i = 2, 3, . . . . (5.92)

An optimal choice of interpolating operator is not only important to ensure a reliable
determination of the ground state energy: In order to determine the energies in
the excitation spectrum, the associated spectral weights must be maximized by
specifying appropriate operators.

Below we provide examples for interpolating operators in several mesonic and
baryonic channels:

K-meson : φK = (sγ5ū), (sγ0γ5ū)

K∗-meson : φK∗ = (sγj ū), j = 1, 2, 3

nucleon : φN = εabc{uaT Cγ5 d
b}uc

� : φ� = εabc{uaT Cγμ db}uc

(5.93)

Here, parentheses indicate summation over spinor and colour indices, while curly
brackets denote that only spinor indices are summed over.

5.3.1 Light Hadron Spectrum

The determination of the spectrum of light hadrons was historically one of the first
attempts to compute hadronic properties on the lattice. Since the masses of the low-
lying hadrons are known from experiment, such calculations serve as benchmarks
to test the intrinsic accuracy of the lattice approach.
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The quenched approximation has been widely used to compute a number of
quantities that are of great phenomenological interest. However, these results
are of limited value, since the inherent quenching error is left undetermined. A
precise calculation of the masses of the lowest lying hadrons in quenched QCD
will expose the typical magnitude of the systematic error incurred by neglecting
dynamical quark effects. To this end, several calculations of the quenched light
hadron spectrum, using different lattice actions, have been performed [46–51].

In Ref. [47], the CP-PACS Collaboration presented a comprehensive study of
the masses of the lowest pseudoscalar and vector mesons, as well as octet and
decuplet baryons. The Wilson fermion action without O(a) improvement was
used at four different values of the lattice spacing, and a continuum extrapolation
linear in a has been performed for all quantities. CP-PACS adopted a hadronic
renormalization scheme in which the lattice scale was fixed using the mass of
the ρ-meson. The average up and down quark mass was set using mπ . In order
to fix ms , either the kaon mass (“K”-input) or the mass of the φ-meson (“φ”-
input) was used. Chiral extrapolations were either based on the form expected from
quenched Chiral Perturbation Theory at NLO (see Eq. (5.82)), or on the leading-
order formula supplemented by a quadratic term in the quark mass. The resulting
(small) differences in the extrapolated values were added as systematic errors in the
final results, which are summarily displayed in Fig. 5.5. Although the lattice results
are in remarkable overall agreement with the experimentally observed spectrum, one
finds significant deviations. For instance, the ratio of the nucleon and the ρ-meson
masses is determined as

mN

mρ

= 1.143 ± 0.033 ± 0.018, (5.94)

where the first error is statistical, and the second is an estimate of systematic
uncertainties other than quenching. The above value is 6.7% (2.5 standard devia-
tions) below the experimental value of 1.218. Similarly, vector-pseudoscalar mass

Fig. 5.5 Quenched light
hadron spectrum computed in
[47], compared with
experiment. The statistical
error and the sum of the
statistical and systematic
errors are indicated
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splittings, such as mK∗ −mK, are underestimated by 10–15% (4–6σ ), depending on
whether mK or mφ was used to fix the strange quark mass.

The findings reported by CP-PACS, which were based on unimproved Wilson
fermions, have been broadly confirmed by other collaborations employing differ-
ent lattice actions [48–51]. Thereby, the universality of the continuum limit of
quenched QCD has been established: although different discretizations may yield
statistically inconsistent results at non-zero lattice spacing, they converge to a
common continuum limit, provided that the same hadronic renormalization scheme
has been employed. The latter requirement is important, as there is considerable
freedom in choosing a particular scheme. This leads to ambiguities in the quenched
approximation, since different quantities are affected in different way by quark
loops. In Ref. [51] it was found that, by using only stable or narrow states to define
the hadronic renormalization scheme, the discrepancies between the quenched and
experimental spectra could be shifted to the broad resonances, ρ, �, N∗, while the
agreement for states like K,φ,N,� could be improved. Yet this observation does
not alter the conclusion that the quenched approximation is unable to reproduce the
spectrum of light hadrons with an accuracy better than 10%.

The obvious question is whether sea quark effects can account for the observed
deviation between the quenched and experimental spectra. Owing to the larger
numerical effort required to simulate QCD with dynamical quarks, unquenched
studies have not yet reached the same level of control over systematic effects—
notably lattice artefacts and chiral extrapolations—compared with the quenched
benchmark [47]. Thus, a “definitive” unquenched calculation of the light hadron
spectrum is still lacking, and thus we refrain from presenting an overview of recent
results.

Nevertheless, the observed tendency in all simulations performed to date is
that dynamical quarks “do the right thing”, i.e. the deviation from experiment is
decreased. An example is shown in Fig. 5.6, where continuum extrapolations of
meson masses in the quenched and unquenched theories are compared. The plot

Fig. 5.6 Continuum
extrapolations of the masses
of the K∗ and φ mesons in
full (Nf = 2, full symbols)
and quenched QCD (open
symbols), compared with
experiment (diamonds) [52]
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shows that the data obtained for Nf = 2 are closer to the experimental results in
the continuum limit in comparison with their quenched counterparts. However, the
figure also shows that the extrapolation of unquenched data is not well constrained,
since only three data points are available. Clearly, additional simulations at smaller
lattice spacings and quark masses are required for a solid determination of the total
error in unquenched calculations of the light hadron spectrum.

It should also be noted that the various discretizations of the quark action
have complementary advantages and shortcomings. While simulations with Wilson
quarks have in the past been restricted to quark masses not much smaller than half
the strange quark mass for algorithmic reasons, the use of staggered fermions in
conjunction with the rooting procedure may be afflicted with conceptual problems
(see the discussion in Sect. 5.2.6). Domain wall and overlap fermions are per se
more expensive to simulate. In simulations based on tmQCD the incorporation of a
third, heavier quark flavour is quite complicated. Thus, progress in this area is likely
to be made through the combined information from different discretizations.

5.3.2 Glueballs

In addition to bound states composed of a quark-antiquark pair or, alternatively,
three quarks, QCD is also widely believed to support the existence of glueballs, i.e.
bound states consisting mainly of gluonic degrees of freedom. Although several
candidates for such states have been proposed (e.g. the f0(1370), f0(1500) and
f0(1710)), the experimental difficulty consists in their unambiguous identification
as glueballs. To this end, they need to be distinguished from “conventional” flavour-
singlet meson resonances in the scalar channel. Predictions for the masses and
widths of glueballs from lattice QCD provide crucial input for this task.

The basic principles of mass calculations for glueballs in lattice QCD are the
same as for bound states composed of quark degrees of freedom: first one must
define an interpolating operator with the appropriate quantum numbers of the
glueball state in question. That is, the operator must transform correctly under
spin, parity and charge conjugation. At this point a complication arises: the lattice
breaks all continuous space-time symmetries, such that Lorentz-invariance or—in
the language of Euclidean field theory—rotational invariance is only recovered in
the continuum limit. At non-zero lattice spacing the spin assignment is therefore
ambiguous. Since the gluon field is represented by link variables, any glueball
operator must be constructed from particular combinations of Wilson loops, i.e.
products of link variables along closed paths on a hypercubic lattice (see Fig. 5.7).

Operators constructed in this way transform under irreducible representations
(IRs) of the octahedral group Oh, which are conventionally labelled A1, A2, E, T1
and T2. By computing the relations between the IRs of Oh and SU(2) one finds
that each IR in the set {A1, A2, E, T1, T2} corresponds to infinitely many spins in
the continuum. For instance, A1 transforms not only like a scalar (spin 0) state, but
also contributes to spin 4 and yet higher spin states. Similarly, the lowest states to
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Fig. 5.7 Wilson loops used in the construction of glueball operators (from Ref. [53])

which T1 makes a contribution are spin 1 and spin 3, while E corresponds to spins
2, 4, 5,. . . . In order to fully classify lattice glueball operators, the representations
of Oh are supplemented by the transformation properties under parity and charge
conjugation, in full analogy with the usual JPC -assignment in the continuum. For
example, an operator labelled A++

1 corresponds to the scalar channel 0++ in the
continuum.

The above discussion implies that the two-point correlation function of an
operator transforming under A++

1 , which is used to describe the scalar glueball,
will be contaminated by contributions from a spin 4 state. However, in accordance
with Regge theory one may expect that the latter dies out quickly, since higher spin
states are more massive.

Another technical complication arises from the empirical observation that the
spectral weight, w1( �p), of the ground state in Eq. (5.91) is usually quite small.
This implies that the asymptotic behaviour of the two-point correlation function is
only isolated at large Euclidean times. However, the statistical accuracy deteriorates
quickly as x0 is increased, and in the asymptotic regime the correlation function is
numerically comparable to the statistical noise. This precludes a precise determina-
tion of the mass of the ground state. A heuristic explanation for the small spectral
weight can be given by noting that the operators constructed from the usual link
variables are point-like and thus have little projection onto an extended object such
as a glueball. The situation can be much improved if the links in the Wilson loops of
Fig. 5.7 are replaced by so-called “smeared” or “fuzzed” links [54, 55]. For instance,
the approach of [54] replaces the spatial link Uj (x) by the combination

Uj (x) ≡ U 0
j (x) −→ P

⎧⎨
⎩U 0

j (x) + α

3∑
±k=1,k 	=j

Uk(x)Uj(x + ak̂)Uk(x + a ĵ)−1

⎫⎬
⎭ , j = 1, 2, 3,

(5.95)

where α is a real, tunable parameter, and the symbol P denotes the projection back
into the group manifold of SU(3). The procedure can be iterated, so that links at
smearing level s, i.e. Us

j (x), are constructed from those at level s − 1 via Eq. (5.95).
One may say that smearing reduces the UV fluctuations of the gauge field, so that
the smeared, extended link variables are better suited to project onto the IR regime,
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i.e. the long-distance properties. It should be stressed that the links in the temporal
direction do not undergo the fuzzing procedure: Fuzzed temporal links will alter the
transfer matrix and the spectral information it contains.

In order to obtain detailed information on the glueball spectrum one also seeks to
determine the masses of the excited states in a given channel. This requires another
level of refinement, since one normally hopes that excited state contributions die out
quickly, while they now become the very focus of interest. A widely used method to
gain information on the higher excitations is to construct a whole set of interpolating
operators {O1, . . . ,Or } in a given channel, say, A++

1 . This is achieved either by
considering different shapes of Wilson loops that share the same transformation
properties, or by applying several different smearing levels to one particular Wilson
loop. Thus, each individual member of the set {O1, . . . ,Or } is a perfectly valid
operator in a given channel, but the projection properties, i.e. the associated spectral
weights w(i)

α for a particular state α in the spectral sum will in general be different
for each member i = 1, . . . , r . One then computes the matrix

Cij (x0) :=
∑

�x

〈
Oi(x)O

†
j (0)

〉
, i, j = 1, . . . , r, (5.96)

whose elements consist of the correlations of all combinations of operators in the
set. The diagonalization of the matrix correlator then yields the appropriate linear
combination of operators which correspond to the states α = 1, 2, . . . in the spectral
decomposition. Diagonalization is achieved by solving the generalized eigenvalue
problem

Cij (x0)φj = λi(x0, x
′
0)Cik(x

′
0)φk, x ′

0 < x0, (5.97)

where φ denotes a vector, x ′
0 is fixed, and C(x0), C(x ′

0) denote the matrix correlators
taken at Euclidean times x0 and x ′

0, respectively. As shown in [56], the set of
eigenvalues λ(x0, x

′
0) converges rapidly towards

λα(x0, x
′
0) = e−(x0−x ′

0)εα , α = 1, . . . , r, (5.98)

where εα is the mass (energy) of the state α in the spectral sum.
After all these technicalities, we now report on the status of glueball calculations.

Recent results obtained in the quenched approximation were published in [53, 57–
60]. In Fig. 5.8 we show the results from Ref. [57]. The three lowest-lying states are
the scalar (0++), tensor (2++) and the 0−+ glueballs, whose masses are determined
as

m0++ = 1710(50)(80)MeV, m2++ = 2390(30)(120)MeV,

m0−+ = 2560(35)(120)MeV. (5.99)
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Fig. 5.8 Glueball spectrum
in quenched QCD (from
Ref. [57])
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Here, the first error is statistical, while the second is an estimate of systematic
uncertainties, which is dominated by the ambiguity in the scale setting in the
quenched approximation.

While it is tempting to identify the experimentally established resonance
f0(1710) as a scalar glueball in the light of the above results, the situation is
more complicated. Since lattice predictions for the mass of the lightest glueballs
fall into the mass range of conventional scalar mesons, mixing of glueballs with
conventional qq̄ states in conjunction with the observed decay patterns must be
considered before drawing any definite conclusions. More details on the current
phenomenological and experimental situation can be found in [61, 62]. So far, there
have been only exploratory attempts to study glueball-meson mixing directly on
the lattice. Any meaningful investigation must inevitably include dynamical quark
effects, whose influence on the glueball spectrum have so far only been poorly
understood.

5.4 Confinement and String Breaking

The empirical fact that quarks and gluons are not observed as free particles is
commonly referred to as confinement. Since all experimentally observed states
are singlets under SU(3)colour, confinement is tantamount to saying that isolated
colour charges are not allowed. A theoretical understanding of this phenomenon
must inevitably go beyond the perturbative level, since QCD is a strongly coupled
theory.

In Ref. [6], Wilson formulated a criterion for the confinement of colour charges
known as the “area law”. Let U(C) denote the product of link variables around a
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Fig. 5.9 Oriented product of link variables around a rectangle of area r · t

closed loop C on a hyper-cubic lattice. The trace over colour indices is called the
“Wilson loop”, i.e.

W(C) = tr {U(C)}. (5.100)

The area law then states that colour charges are confined if the expectation value of
W(C) decays exponentially with a rate proportional to the area A(C) enclosed by
the curve C, i.e.

〈W(C)〉 ≡ 〈tr {U(C)}〉 ∝ e−σA(C), (5.101)

where σ is a constant. An example for a rectangular Wilson loop is shown in Fig. 5.9.
The interpretation of the area law rests on the observation that a Wilson loop

of area r·t is equal to the Euclidean correlator which describes the propagation of
a static, i.e. infinitely heavy, quark-antiquark pair separated by a distance r over a
Euclidean time interval t . If t is taken to infinity at fixed r , the correlator yields the
energy of the quark-antiquark pair:

〈W(C)〉 t�0∼ e−V (r)t . (5.102)

The area law then implies σA(C) = V (r)t , and for a rectangular loop one obtains

V (r) ∼ σr. (5.103)

Hence the energy of a static quark-antiquark pair increases linearly with the
distance r . To achieve a full separation of static colour sources would therefore
require an infinite amount of energy.

It has long been believed that SU(3) gauge theory is related to some kind of
string theory. Heuristically, confinement may be viewed as due to the formation of
a narrow tube of chromo-electric and -magnetic flux between static colour charges,
the dynamics of which can be described by a string theory. The bosonic string model
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yields an asymptotic expansion for the static quark potential

V (r) = σr + V0 + c

r
+ O(1/r2), (5.104)

where V0 = const, and the universal coefficient c has been computed as [63]

c = − π

12
(5.105)

in the four-dimensional theory. The proportionality factor σ is called the “string
tension”. Instead of the potential one often considers the force, F(r) ≡ dV (r)/dr .
The ansatz Eq. (5.104) yields

F(r) = σ − c

r2 + O(1/r3), (5.106)

so that the string tension is obtained as the limiting value of the force, as r → ∞,

σ = lim
r→∞F(r). (5.107)

String models of hadrons have been known since the late 1960s, and a phenomeno-
logical value for σ has been determined from Regge theory,

√
σ = 440 MeV.

In QCD with light sea quarks the linear rise of the potential cannot persist for
arbitrarily large distances. Instead, the creation of a light quark-antiquark pair from
the vacuum will cause the hadronization of the static colour charges, leading to
the formation of two static-light mesonic states. Thus, the string or flux-tube is
expected to “break” when the two-meson state is energetically favoured over the
linearly rising potential. The breaking of the string should set in at a characteristic
value for the separation distance, rb, causing the potential to flatten off for r >∼ rb,
since the energy of a state of two mesons is independent of their separation.

Lattice simulations have been instrumental for establishing that the area law, the
string picture of confinement, as well as string breaking (i.e. hadronization) are
indeed properties of SU(3) gauge theory and/or QCD. However, computations of
large Wilson loops in lattice simulations suffer from the same problem encountered
in glueball mass calculations: due to the strong exponential fall-off, the correlator
in the asymptotic region, r, t → ∞, is of the same order of magnitude than the
statistical noise. Consequently, the same techniques have been applied, namely
the smearing of link variables and the variational approach, which is based on
the diagonalization of a matrix correlator. By combining these techniques with
procedures designed to reduce statistical fluctuations [64] in the computation of
large Wilson loops, one could verify the linear rise of the potential up to distances
of r � 1.5 fm [65, 66] (See Fig. 5.10).

Since a phenomenological value for
√
σ could be inferred from Regge theory, the

string tension used to be a popular quantity to set the lattice scale. However, as lattice
calculations became increasingly precise, it was realized that the extrapolation
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Fig. 5.10 Left panel: static quark potential in SU(3) gauge theory (from Ref. [66]). Right panel:
force (from Ref. [65]) compared to the bosonic string model (dashed curve) and perturbation theory
(solid curve). To compare results at different lattice spacings, all dimensionful quantities have been
expressed in units of the hadronic radius r0 = 0.5 fm (see text)

r → ∞ is not easy to perform on the basis of lattice data restricted to r � 1.5 fm.
An alternative, conceptually much more reliable scale is obtained from the force
between static colour charges [33]. The hadronic radius r0 is defined by requiring
that the force F(r) evaluated at r = r0 assumes a given reference value. The latter
is fixed by matching F(r) to phenomenological, non-relativistic potential models
for heavy quarkonia. The scale r0 is defined as the solution of

F(r)r2
∣∣∣
r=r0

= 1.65, (5.108)

where the constant on the right-hand side is chosen such that r0 has a value of
r = 0.5 fm in QCD. Choosing r0 to set the scale avoids the systematic uncertainty
associated with the extrapolation of the force to infinite distance. Furthermore, r0
remains well-defined in QCD with dynamical quarks, where string breaking must
occur and the concept of a string tension as the limiting value of the force is
intrinsically flawed. The quantity r0/a has been determined numerically with good
statistical accuracy over a wide range of bare couplings, corresponding to lattice
spacings between 0.026 − 0.17 fm [34, 65].

To test whether the bosonic string model for confinement is consistent with lattice
data, one must confront the value of the Coulombic coefficient c in Eq. (5.104) with
the predicted value of c = −π/12. As in the case for the string tension, such a
comparison is difficult to perform reliably, since −π/12 represents the asymptotic
value at infinite distance, which must be determined from data computed over a
narrow range of accessible distances. Using highly accurate data for the potential
V (r), generated by an algorithm which allows for an exponential suppression of
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statistical fluctuations at large r and t , it could be shown [67] that the quantity

ceff(r) = 1

2
r3 d2V (r)

dr2 (5.109)

indeed converges towards the predicted value of −π/12. This result confirms the
string picture of confinement and suggests that string-like behaviour already sets in
at rather small distances of r >∼ 0.5 fm.

The incorporation of dynamical quarks should drastically change the string
picture beyond a characteristic scale rb, where due to qq̄ pair creation string break-
ing occurs, since a two-meson state is energetically favoured over the flux-tube.
However, the static quark potential determined from Wilson loops on dynamical
configurations typically does not show any clear signs of flattening off, even at
distances as large as 1 fm, where one expects hadronization to set in. This is
attributed to the Wilson loop having little overlap onto the state of a broken
string, such that the spectral weight associated with the broken string is extremely
small. Therefore, extracting its energy reliably would require large Euclidean time
separations, for which the statistical signal is usually lost.

It was thus proposed to address this problem by constructing a matrix correlator
of Wilson loops supplemented by operators that directly project onto a two-meson
state, and to consider their cross-correlations with the unbroken flux-tube. This
strategy was first applied to Higgs models, i.e. non-Abelian gauge theory coupled
to bosonic matter fields (“scalar QCD”), which are computationally much more
efficient, whilst preserving the mechanism for string breaking to occur [68, 69]. The
method was later extended to QCD with two flavours of dynamical quarks [70].
The plots in Fig. 5.11 clearly show that the ground state energy at short distances is
linearly rising, while the first excited state (i.e. the two-meson state) is constant in r .
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Fig. 5.11 Ground state and first excited state of the static quark potential computed using matrix
correlators in the SU(2) Higgs model [68] (left panel) and QCD with Nf = 2 flavours of dynamical
quarks [70] (right panel)
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At a certain separation rb one observes a crossing of energy levels and a continuing
flat behaviour of the ground state energy. Near the crossing point one actually
observes a repulsion of the energy levels, which is characteristic for the breaking
phenomenon. The diagonalization of the matrix correlator also yields information
on the composition of the states in the spectral decomposition. Indeed, for distances
r < rb the combination of operators describing the ground state is dominated by
Wilson loops, whereas for r > rb, two-meson operators are the most relevant.

5.5 Fundamental Parameters of QCD

We have noted already that QCD is parameterized in terms of the gauge coupling
and the masses of the quarks. In order to make predictions for cross sections, decay
rates and other observables, their values must be fixed from experiment. As was
discussed in detail in Sect. 4.3 , the renormalization of QCD leads to the concept of
a “running” coupling constant, which depends on some momentum (energy) scale
μ, and the same applies to the quark masses9:

αs(μ) ≡ ḡ2(μ)

4π
, m̄u(μ), m̄d(μ), m̄s(μ), m̄c(μ), m̄b(μ), m̄t (μ). (5.110)

The property of asymptotic freedom implies that the coupling becomes weaker as
the energy scale μ is increased. This explains why the perturbative expansion of
cross sections in the high-energy domain allows for an accurate determination of αs
from experimental data.

The scale dependence of the coupling and the quark masses is encoded in the
renormalization group (RG) equations, which are formulated in terms of the β-
function and the anomalous dimension τ ,

μ
∂ḡ(μ)

∂μ
= β(ḡ), μ

∂m̄(μ)

∂μ
= m̄τ (ḡ). (5.111)

At high enough energy the RG functions β and τ admit perturbative expansions
according to

β(ḡ) = −b0ḡ
3 − b1ḡ

5 + . . . , τ (ḡ) = −d0ḡ
2 − d1ḡ

4 + . . . . (5.112)

Here, b0, b1 and d0 = 8/(4π)2 are universal, while the higher coefficients depend
on the adopted renormalization scheme.

9As usual we denote the running parameters by a bar across the symbol.
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From the asymptotic scaling behaviour at high energies one can extract the
fundamental scale parameter of QCD via

� = lim
μ→∞

{
μ(b0ḡ

2)−b1/2b2
0 e−1/2b0ḡ

2
}
, ḡ ≡ ḡ(μ). (5.113)

Like the running coupling itself, the �-parameter depends on the chosen renormal-
ization scheme.10 A related, but less commonly used variable is the renormalization
group invariant (RGI) quark mass

Mf = lim
μ→∞

{
m̄f(2b0ḡ

2)−d0/2b0
}
, f = u, d, s, . . . , m̄ ≡ m̄(μ). (5.114)

Unlike �, the RGI quark masses are scheme-independent quantities. Instead of
using the running coupling and quark masses of Eq. (5.110), one can parameterize
QCD in an entirely equivalent way through the set

�, Mu, Md, Ms, Mc, Mb, Mt . (5.115)

At the non-perturbative level these quantities represent the most appropriate param-
eterization of QCD, since their values are defined without any truncation of
perturbation theory.

The perturbative renormalization of QCD is accomplished by replacing the bare
parameters with renormalized ones, whose values are fixed by considering the high-
energy behaviour of Green’s functions, usually computed in the MS-scheme of
dimensional regularization. However, at low energies it is convenient to adopt a
hadronic renormalization scheme, in which the bare parameters are eliminated in
favour of quantities such as hadron masses and decay constants (see Sect. 5.2.4).
Since QCD is expected to describe both the low- and high-energy regimes of the
strong interaction, one should be able to express the quantities of Eq. (5.115), which
are determined from the high-energy behaviour, in terms of hadronic quantities.
In other words, by matching a hadronic renormalization scheme to a perturbative
scheme like MS one achieves the non-perturbative renormalization of QCD at all
scales. In particular, one can express the fundamental parameters of QCD (running
coupling and masses, or, equivalently, the �-parameter and RGI quark masses) in
terms of low-energy, hadronic quantities. This amounts to predicting the values of
these fundamental parameters from first principles.

10The expressions for b0 and b1, as well as the �-parameter have already been shown in Sect. 5.2.4.



5 QCD on the Lattice 183

5.5.1 Non-perturbative Renormalization

To illustrate the problem of matching hadronic and perturbative schemes like MS,
it is instructive to discuss the determination of the light quark masses. A convenient
starting point is the PCAC relation, which for a charged kaon can be written as

fKm
2
K = (m̄u + m̄s)

〈
0|(ūγ5s)|K+〉 . (5.116)

In order to determine the sum of quark masses (m̄u + m̄s), using the experimentally
determined values of fK and mK, it suffices to compute the matrix element〈
0|ūγ5s|K+〉 in a lattice simulation, as outlined in Sect. 5.2.3 (see Eq. (5.64)). The

dependence on the renormalization scale and scheme cancels in Eq. (5.116), since
the quantities on the left hand side are physical observables. Thus, in order to
determine the combination (m̄u + m̄s) in the MS-scheme, one must compute the
relation between the bare matrix element of the pseudoscalar density evaluated on
the lattice and its counterpart in the MS-scheme:

(ūγ5s)MS = ZP(g0, aμ)(ūγ5s)lat. (5.117)

Here, μ is the subtraction point (renormalization scale) in the MS-scheme. Provided
that ZP and the matrix element of (ūγ5s)lat are known, one can use Eq. (5.116)
to compute (m̄u + m̄s)/fK, which is just the ratio of a renormalized fundamental
parameter expressed in terms of a hadronic quantity, up to lattice artefacts. In
Fig. 5.4 we have already shown the continuum extrapolation of this ratio.11

The factor ZP is obtained by imposing a suitable renormalization condition
involving Green’s functions of the pseudoscalar densities in the MS as well as the
hadronic scheme. Since the MS-scheme is intrinsically perturbative, in the sense that
masses and couplings are only defined at a given order in the perturbative expansion,
it is actually impossible to formulate such a condition at the non-perturbative level.
In perturbation theory at one loop one finds

ZP(g0, aμ) = 1 + g2
0

4π

{
2

π
ln(aμ) + C

}
+ O(g4

0), (5.118)

where C is a constant that depends on the chosen discretization of the QCD
action. Expressions like these are actually not very useful, since perturbation
theory formulated in terms of the bare coupling g0 converges rather slowly, so
that reliable estimates of renormalization factors at one- or even two-loop order
in the expansion cannot be obtained. Thus it seems that the problem of non-
perturbative renormalization is severely hampered by the intrinsically perturbative

11The figure actually shows the ratio for the RGI quark masses, instead of those renormalized in
the MS-scheme.
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Fig. 5.12 Sketch of the matching of quark masses computed in lattice regularization and the MS-
scheme, via an intermediate renormalization scheme X

nature of the MS scheme in conjunction with the bad convergence properties of
lattice perturbation theory.

This problem can, in fact, be resolved by introducing an intermediate renormal-
ization scheme. Schematically, the matching procedure for the pseudoscalar density
(or, equivalently, the quark mass) via such a scheme is sketched in Fig. 5.12. At
low energies, corresponding to typical hadronic scales, it involves computing a non-
perturbative matching relation between the hadronic and the intermediate scheme X
at some scale μ0. This matching step can be performed reliably if μ0 is much smaller
than the regularization scale a−1. In the following step one computes the scale
dependence within the intermediate scheme non-perturbatively fromμ0 up to a scale
μ̄ � μ0, which is large enough so that perturbation theory can be safely applied.
At that point one may then determine the matching relation to the MS-scheme
perturbatively. Alternatively, one can continue to compute the scale dependence
within the intermediate scheme to infinite energy via a numerical integration of
the perturbative RG functions. According to Eq. (5.114) this yields the relation to
the RGI quark mass. Since the latter is scale- and scheme-independent, one can
use directly the perturbative RG functions, which in the MS-scheme are known to
four-loop order [71], to compute the relation to m̄MS at some chosen reference scale.
By applying this procedure, the direct perturbative matching between between the
hadronic and MS-schemes (upper two boxes in Fig. 5.12), using the expression in
Eq. (5.118) is thus completely avoided.

Decay constants of pseudoscalar mesons provide another example for which the
renormalization of local operators is a relevant issue. For instance, the kaon decay
constant is defined by the matrix element of the axial current, i.e.

fKmK = 〈
0 |(ūγ0γ5s)(0)|K+〉 . (5.119)

If the matrix element on the right hand side is evaluated in a lattice simulation, then
the axial current in the discretized theory must be related to its counterpart in the
continuum via a renormalization factor ZA:

(ūγ0γ5s) = ZA(g0)(ūγ0γ5s)lat. (5.120)
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Normally one would expect that the chiral Ward identities ensure that the axial
current does not get renormalized. However, this no longer applies if the discretiza-
tion conflicts with the symmetries of the classical action. This is clearly the case
for Wilson fermions, which break chiral symmetry, such that the resulting short-
distance corrections must be absorbed into a renormalization factor ZA. Similar
considerations apply to the vector current: if the discretization does not preserve
chiral symmetry, current conservation is only guaranteed if the vector current is
suitably renormalized by a factorZV, which must be considered even in the massless
theory. Unlike the case of the renormalization factor of the pseudoscalar density, ZA
and ZV are scale-independent, i.e. they only depend on the bare coupling g0. From
the above discussion it is obvious that perturbative estimates of ZA and ZV are
inadequate in order to compute hadronic matrix elements of the axial and vectors
currents with controlled errors. A non-perturbative determination of ZA and ZV can
be achieved by imposing the chiral Ward identities as a renormalization condition.

Two widely used intermediate schemes, namely the Schrödinger functional (SF)
and the Regularization independent momentum subtraction (RI/MOM) schemes are
briefly reviewed in the following. We strongly recommend that the reader consult
the original articles (Refs. [72–75] for the SF, and [76] for RI/MOM) for further
details.

5.5.2 Finite Volume Scheme: The Schrödinger Functional

The Schrödinger functional is based on the formulation of QCD in a finite volume
of size L3 ·T —regardless of whether space-time is discretized or not—with suitable
boundary conditions. Assuming that lattice regularization is employed, one imposes
periodic boundary conditions on the fields in all spatial directions, while Dirichlet
boundary conditions are imposed at Euclidean times x0 = 0 and x0 = T . In order
to make this more precise, let C and C′ denote classical configurations of the gauge
potential. For the link variables at the temporal boundaries one then imposes

Uk(x)|x0=0 = eaC, Uk(x)|x0=T = eaC
′
. (5.121)

In other words, the links assume prescribed values at the temporal boundaries, but
remain unconstrained in the bulk (see Fig. 5.13).

Quark fields are easily incorporated into the formalism. Since the Dirac equation
is first order, only two components of a full Dirac spinor can be fixed at the
boundaries. By defining the projection operator P± = 1

2 (1 ± γ0), one requires that
the quark fields at the boundaries satisfy

P+ψ(x)|x0=0 = ρ(�x), P−ψ(x)|x0=T = ρ′(�x),
ψ̄(x)P−

∣∣
x0=0 = ρ̄(�x), ψ̄(x)P+

∣∣
x0=T

= ρ̄′(�x), (5.122)



186 H. Wittig

TimeTime

SpaceSpace

L

0

C

C

( x x box with periodic b.c. )L L L

Fig. 5.13 Left panel: sketch of the SF geometry, indicating the classical gauge potentials at the
temporal boundaries. Middle panel: correlation function of boundary quark fields ζ, ζ̄ with a
fermionic bilinear operator in the bulk. Right panel: boundary-to-boundary correlation function

where ρ, . . . , ρ̄′ denote prescribed values of the fields. The functional integral over
all dynamical fields in a finite volume with the above boundary conditions is called
the Schrödinger functional of QCD:

Z[C′, ρ′, ρ̄′;C, ρ, ρ̄] =
∫

D[U ]D[ψ̄ , ψ] e−S. (5.123)

The classical field configurations at the boundaries are not integrated over. Using
the transfer matrix formalism, one can show that this expression is the quantum
mechanical amplitude for going from the classical field configuration {C, ρ, ρ̄} at
x0 = 0 to {C′, ρ′, ρ̄′} at x0 = T .

Functional derivatives with respect to ρ, . . . , ρ̄′ behave like quark fields located
at the temporal boundaries, and hence one may identify

ζ(�x) = δ

δρ̄(�x) , ζ̄ (�x) = − δ

δρ(�x), ζ ′(�x) = δ

δρ̄′(�x) , ζ̄ ′(�x) = − δ

δρ′(�x) .
(5.124)

The boundary fields ζ, ζ̄ , . . . can be combined with local composite operators
(such as the axial current or the pseudoscalar density) of fields in the bulk to
define correlation functions. Particular examples are the correlation function of the
pseudoscalar density, fP and the boundary-to-boundary correlation f1

fP(x0) = −a6

3

∑
�y,�z

〈
ψ̄(x)γ5

1
2τ

aψ(x)ζ̄ (�y)γ5
1
2τ

aζ(�z)
〉
,

f1 = − a12

3L6

∑
�u,�v,�y,�z

〈
ζ̄ ′(�u)γ5

1
2τ

aζ ′(�v)ζ̄ (�y)γ5
1
2τ

aζ(�z)
〉
, (5.125)
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which are shown schematically in the middle and right panels of Fig. 5.13. In the
above expressions, the Pauli matrices act on the first two flavour components of the
fields.

The specific boundary conditions of the Schrödinger functional ensure that the
Dirac operator has a minimum eigenvalue proportional to 1/T in the massless case
[73]. As a consequence, renormalization conditions can be imposed at vanishing
quark mass. If the aspect ratio T/L is set to some fixed value, the spatial length L is
the only scale in the theory, and thus the masses and couplings in the SF scheme run
with the box size. The recursive finite-size scaling study described below can then
be used to map out the scale dependence of running quantities non-perturbatively
from low to high energies. It is important to realize that in this way the relevant
scale for the RG running (the box size L) is decoupled from the regularization scale
(the lattice cutoff a). It is this features which ensures that the running of masses and
couplings can be obtained in the continuum limit.

Let us now return to our earlier example of the renormalization of quark masses.
The transition from lattice regularization and the associated hadronic scheme to the
SF scheme is achieved by computing the scale-dependent renormalization factor
which links the pseudoscalar density in the intermediate scheme to the bare one, i.e.

(s̄γ5u)SF(μ0) = ZP(g0, aμ0) (s̄γ5u)lat(a). (5.126)

A renormalization condition that defines ZP can be formulated in terms of SF
correlation functions:

ZP(g0, aμ0) = c

√
f1

fP(x0)

∣∣∣∣
x0=T/2

, μ0 = 1/Lmax, (5.127)

where the constant c must be chosen such that ZP = 1 in the free theory. In order
to determine the RG running of the quark mass non-perturbatively one can perform
a sequence of finite-size scaling steps, as illustrated in Fig. 5.14. To this end one
simulates pairs of lattices with box lengths L and 2L, at fixed lattice spacing a. The
ratio of ZP evaluated for each box size yields the ratio m̄SF(L)/m̄SF(2L) (upper
horizontal step in Fig. 5.14), which amounts to the change in the quark mass when
the volume is scaled by a factor 2. In a subsequent step, the physical volume can be
doubled once more, which gives m̄SF(2L)/m̄SF(4L). The important point to realize
is that the lattice spacing can be adjusted for a given physical box size. In this way
the number of lattice sites can be kept at a manageable level, while the physical
volume is gradually scaled over several orders of magnitude, as indicated by the
zig-zag pattern in Fig. 5.14. Furthermore, each horizontal step can be performed for
several lattice resolutions, so that the continuum limit can be taken. By contrast,
if one attempted to scale the physical volume for fixed lattice spacing, one would,
after only a few iterations, end up with systems so large that they would not fit into
any computer’s memory.
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Fig. 5.14 Illustration of the recursive finite-size scaling procedure to determine the running of
m̄(L) for L → 2L → 4L → 8L. In any horizontal step L is scaled by a factor 2 for fixed lattice
spacing a. In every diagonal shift one keeps the physical box size L fixed and increases a by an
appropriate tuning of the bare coupling g0

In an entirely analogous fashion one can set up the finite-size scaling procedure
for the running coupling constant in the SF scheme, ḡSF(L).12 Setting a value for
the coupling actually corresponds to fixing the box size L, since the renormalization
scale and the coupling in a particular scheme are in one-to-one correspondence. The
sequence of scaling steps begins at the matching scale μ0 = 1/Lmax between the
hadronic and SF schemes, and in order to express the scale evolution in physical
units, the maximum box size Lmax must be determined in terms of some hadronic
quantity, such as fπ or r0. In typical applications of the method, Lmax corresponds
to an energy scale of about 250 MeV. After n steps, the box size has decreased by a
factor 2n (typically n = 7−9), and at this point one is surely in the regime where the
perturbative approximations to the RG functions are reliable enough to extract the
�-parameter (in the SF scheme) and the RGI quark masses according to Eqs. (5.113)
and (5.114). The transition to the MS-scheme is easily performed, since the ratios
�SF/�MS, as well as m̄MS/M are computable in perturbation theory. At that point
one has completed the steps in Fig. 5.12, and all reference to the intermediate SF
scheme has dropped out in the final result.

As examples we show the running coupling and quark mass in the SF scheme
from actual simulations of lattice QCD for Nf = 2 flavours of dynamical quarks in
Fig. 5.15. The numerical data points in these plots originate from simulations with
two flavours of O(a)-improved Wilson fermions and have been extrapolated to the
continuum limit.

12The precise definition of ḡSF is specified in Sect. 5.5.5 below.
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Fig. 5.15 Running of αs (left panel) [77] and quark mass in units of the RGI mass M (right panel)
[78] in the SF scheme. The results from simulations (full circles) are compared to the integration
of the perturbative RG equations

5.5.3 Regularization-Independent Momentum Subtraction
Scheme

An alternative choice of intermediate renormalization scheme is based on imposing
renormalization conditions in terms of Green’s functions of external quark states in
momentum space, evaluated in a fixed gauge (e.g. Landau gauge) [76]. The external
quark fields are off-shell, and their virtualities are identified with the momentum
scale. Here we summarize the basic steps in this procedure by considering a quark
bilinear non-singlet operator O = ψ̄1ψ2, where  denotes a generic Dirac
structure, e.g.  = γ5 in the case of the pseudoscalar density. The corresponding
renormalization factor Z is fixed by requiring that a suitably chosen renormalized
vertex function �,R(p) be equal to its tree-level counterpart:

�,R(p)
∣∣
p2=μ2 = ZZ

−1
ψ �(p)

∣∣∣
p2=μ2

= �,0(p). (5.128)

This condition defines Z up to quark field renormalization. Such a prescription
can be formulated in any chosen regularization, which is why the method is said
to define a regularization-independent momentum subtraction (RI/MOM) scheme.
However, Z does depend on the external states and the gauge.

In order to connect to our previous example of the renormalization of quark
fields, we consider the pseudoscalar density for concreteness:  = γ5 = “P ”. In
this case, �P,0 = γ5 ⊗ 1colour, and Eq. (5.128) can be cast into the form

ZMOM
P (g0, aμ)Z

−1
ψ (g0, ap)

1

12
Tr {�P(p)γ5}

∣∣∣∣
p2=μ2

= 1, (5.129)

where the trace is taken over Dirac and colour indices.
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In practice, the unrenormalized vertex function �P(p) is obtained by computing
the quark propagator in a fixed gauge in momentum space and using it to amputate
the external legs of the Green’s function of the operator in question, evaluated
between quark states, i.e.

�P(p) = S(p)−1 GP(p) S(p)
−1, S(p) =

∫
d4x e−ipx 〈S(x, 0)〉 ,

GP(p) =
∫

d4x d4ye−ip(x−y)
〈
ψ1(x)

(
ψ̄1(0)γ5ψ2(0)

)
ψ̄2(y)

〉
. (5.130)

The quark field renormalization constant Z
1/2
ψ can be fixed, e.g. via the vertex

function of the vector current13:

Zψ = 1

48
Tr

{
�VC

μ
(p)γμ

}∣∣∣∣
p2=μ2

. (5.131)

The numerical evaluation of the Green’s function and quark propagators in momen-
tum space is performed on a finite lattice with periodic boundary conditions. Unlike
the situation encountered in the Schrödinger functional, there is thus no additional
infrared scale, so that the renormalization conditions cannot be evaluated directly
at vanishing bare quark mass. A chiral extrapolation is then required to determine
mass-independent renormalization factors.

Equation (5.128) is also imposed to define the subsequent matching of the
RI/MOM and MS schemes. In this case, the unrenormalized vertex function on the
left-hand side is evaluated to a given oder in perturbation theory, using the MS-
scheme of dimensional regularization. For a generic quark bilinear this yields the
factor ZMS

 (ḡMS(μ)). In our specific example of the pseudoscalar density operator
in the PCAC relation, Eq. (5.116), the transition between the RI/MOM and MS
schemes is provided by

(ūγ5s)MS(μ̄) = RP(μ̄/μ)Z
MOM
P (g0, aμ)(ūγ5s)lat(a). (5.132)

The ratio RP admits a perturbative expansion in terms of the coupling in the MS-
scheme, i.e.

RP(μ̄/μ) ≡ ZMS
P (ḡMS(μ̄))

ZMOM
P (g0, aμ)

= 1 + R
(1)
P ḡ2

MS
+ O(ḡ4

MS
), (5.133)

13In this expression V C
μ denotes the conserved lattice vector current, which involves quark fields at

neighbouring lattice sites, and which is known not to undergo any finite renormalization, such that
ZV ≡ 1.
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which is not afflicted with the bad convergence properties encountered in the direct
matching of hadronic and MS-schemes. Finally, for the whole method to work, one
must be able to fix the virtualities μ of the external fields such that

�QCD � μ � 1/a. (5.134)

In other words, the method relies on the existence of a “window” of scales in which
lattice artefacts in the numerical evaluation are controlled, μ � 1/a, and where
μ is also large enough such that the perturbative matching to the MS scheme can
be performed reliably. In the ideal situation one expects that the dependence of
ZMOM
 (g0, aμ) on the virtuality μ inside the “window” is well described by the

perturbative RG function.
The RI/MOM prescription is a flexible method to introduce an intermediate

renormalization scheme and can easily be adapted to a range of operators and
lattice actions. In particular, the extension to discretizations of the quark action
based on the Ginsparg-Wilson relation is straightforward. This contrasts with the
situation encountered in the Schrödinger functional, where extra care must be taken
to ensure that imposing Schrödinger functional boundary conditions is compatible
with the Ginsparg-Wilson relation [79–81]. On the other hand, the non-perturbative
scale evolution, for which the Schrödinger functional is tailored, is not so easy to
incorporate into the RI/MOM framework. Hence, the matching between RI/MOM
and MS schemes is usually performed at fairly low scales, i.e. μ̄ = μ0 in the
notation of Fig. 5.12. Furthermore, the accessible momentum scales in the matching
of hadronic and RI/MOM schemes are typically quite narrow, i.e. aμ0 ≈ 1. Special
care must also be taken when one considers operators that couple to the pion, such as
the pseudoscalar density. In this case the vertex function receives a contribution from
the Goldstone pole, which for p ≡ μ = 0 diverges in the limit of vanishing quark
mass. The fact that the chiral limit is ill-defined may spoil a reliable determination
of the renormalization factor, in particular when the accessible “window” is narrow
such that μ cannot be set to large values.

5.5.4 Mean-Field Improved Perturbation Theory

Another widely used strategy is to avoid the introduction of an intermediate
renormalization scheme altogether and attempt the direct, perturbative matching
between hadronic and MS schemes via an effective resummation of higher orders in
the expansion. In this sense one regards the bare coupling and masses as parameters
that run with the cutoff scale a−1.

The bad convergence properties of perturbative expansions such as Eq. (5.118)
has been attributed to the presence of large gluonic tadpole contributions in the
relation between the link variable Uμ(x) and the continuum gauge potential Aμ(x).
It was already suggested by Parisi [82] that the convergence of lattice perturbation
theory could be accelerated by replacing the bare coupling g2

0 by an “improved”
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coupling g̃2 ≡ g2
0/u

4
0, where u4

0 denotes the average plaquette:

u4
0 = 1

3 Re 〈trP 〉, P ≡ 1

6

∑
μ,ν,ν<μ

Pμν. (5.135)

A more systematic extension of the idea of setting up such a “tadpole” or “mean-
field” improved version of lattice perturbation theory was presented in Ref. [83].
The main strategy is to factor out tadpole contributions through a redefinition of the
link variable:

Uμ(x) → Ũμ(x) ≡ Uμ(x)/u0, (5.136)

where u0 is the average link, defined e.g. via the average plaquette. A factor of u0
is then absorbed into the normalization of the quark fields. According to [83], the
mismatch between non-perturbative estimates for u0 and its expression in lattice
perturbation theory can be used to improve the convergence properties of lattice
perturbation theory via a relative rescaling of quark fields in the continuum and
lattice formulations. To make this more explicit, we consider Wilson fermions (see
Sect. 5.2.2). Factoring out the average link u0 modifies the quark field normalization
of Eq. (5.36) according to

ψcont(x) = √
2κu0 ψ(x), ψ̄cont(x) = ψ̄(x)

√
2κu0. (5.137)

The general expression for the perturbative expansion of ZP in powers of the bare
coupling reads

ZP(g0, aμ) = 1 + g2
0Z

(1)
P (aμ)+ O(g4

0), (5.138)

where Z
(1)
P (aμ) denotes the one-loop expansion coefficient. The convergence of

Eq. (5.138) can be accelerated by dividing out u0 in the rescaling factors of the quark
and antiquark fields using its perturbative expansion and replacing it by its non-
perturbative estimate computed in simulations. In other words, the rescaling of the
quark fields is exploited to divide out the relative mismatch between the perturbative
and non-perturbative estimates for the average link in expressions like Eq. (5.138):

1 = u0(u0)
−1 � u0

{
1 − u

(1)
0 g2

0 + O(g4
0)
}
, (5.139)

where the one-loop coefficient u(1)0 = −1/12 for the average plaquette. In this way,
i.e. by combining non-perturbatively determined values for u0 with its perturbative
expansion, and after replacing the bare coupling by g̃2, one arrives at the mean-field
improved version of Eq. (5.138), viz.

Zmf
P = u0

{
1 +

[
Z
(1)
P (aμ) − u

(1)
0

]
g̃2
}
. (5.140)
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Instead of Parisi’s “boosted” coupling g̃ other expansion parameters have been
suggested, which are expected to accelerate the convergence of the perturbative
series [83]. While mean-field improvement is a general procedure, which is easily
adapted to a wide range of actions and operators, it is difficult to estimate the
effectiveness of the resummation and, in turn, the size of higher-order corrections.
Also, a principal problem is the identification of the running scale with the cutoff,
since it is difficult to separate renormalization effects from lattice artefacts.

5.5.5 The Running Coupling from the Lattice

Having discussed the non-perturbative renormalization of QCD in detail, we shall
now present results for the running coupling constant, αs , from two different
approaches. This complements the discussion in Sect. 4.6, where determination of
αs from experimental data has been described in detail. Any lattice calculation of
αs proceeds along the following steps:

1. A non-perturbative definition of the coupling must be provided in terms of
some quantity which can be evaluated in lattice simulations with high precision.
This amounts to specifying the running coupling in a particular renormalization
scheme, αX(aμ0), which can be related to the MS scheme of dimensional
regularization.

2. Scale setting: the matching to a hadronic scheme is performed via the calibration
of the lattice spacing, which yields the scale μ0 at which αX is evaluated in units
of some physical quantity Q:

μ0 [MeV] = (aμ0) · a−1 [MeV] = (aμ0) · Q [MeV]
(aQ)

. (5.141)

3. Running and matching: provided that the energy scale at which αX has been
determined is large enough, one can use perturbation theory to relate αX to the
coupling in the MS scheme, e.g.

αMS(μ̄) = αX(μ) + c
(1)
X (μ̄/μ)αX(μ)

2 + . . . . (5.142)

4. The �-parameter can be determined from the asymptotic behaviour of αX via
Eq. (5.113).

The attentive reader has surely noticed that the above steps follow closely the
general strategy for non-perturbative renormalization via an intermediate renormal-
ization scheme outlined in Sect. 5.5.1 and Fig. 5.12.
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First we discuss the determination of αs from the Schrödinger functional. The
definition of the running coupling is somewhat technical in this case. The starting
point is the effective action of Eq. (5.123); the classical field configurations at the
boundaries at x0 = 0, T can be parameterized in terms of a real variable η:

C = C(η), C′ = C′(η). (5.143)

For explicit expressions we refer the reader to the original article [84]. The
associated effective action is defined by

(η) = − lnZ[C′(η), 0, 0; C(η), 0, 0] (5.144)

and admits a perturbative expansion in terms of the bare coupling g0, viz.

(η) = 1

g2
0

0 + 1 + g2
02 + . . . . (5.145)

A renormalized coupling can then be defined in terms of the effective action via

1

ḡ2
SF(L)

=
{

∂

∂η
(η)

/
∂

∂η
0(η)

}
η=0, m=0

. (5.146)

This definition is imposed at vanishing quark mass, m = 0, and provided that the
aspect ratio T/L has been fixed, the spatial dimension is the only scale in the theory,
such that ḡSF(L) runs with the box size L. From the perturbative expansion of (η)
one easily infers that ḡ2

SF(L) = g2
0 at tree level. The quantity on the right-hand side

is given in terms of plaquettes attached to the SF boundaries and can be computed
with good statistical precision.

If Lmax denotes the largest box size for which ḡSF is computed, then the scale
is set by expressing Lmax in terms of some known dimensionful quantity, for
instance, by computing the combination Lmax/r0 in the continuum limit and using
r0 = 0.5 fm.

The finite-size scaling procedure described earlier in Sect. 5.5.1 allows to
compute the scale evolution of ḡSF over several orders of magnitude. In particular,
each of the horizontal steps in Fig. 5.14 can be repeated for several values of the
lattice spacing, so that the continuum limit is reached by taking a/L → 0 for
fixed physical box size L. The resulting scale evolution of αSF ≡ ḡ2

SF/4π is
shown in Fig. 5.15 and compared to the perturbative evolution. Although the non-
perturbatively determined points are described very well by perturbation theory,
using the three-loop expression for the RG function, one should realize that this
behaviour may be specific to the SF scheme and should not be generalized to other
schemes.
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Starting from μ0 = 1/Lmax one obtains the coupling at μ = 29/Lmax after nine
steps in the scaling procedure. At that point one can extract the �-parameter by
evaluating the exact expression

�SF = μ
(
b0ḡ

2(μ)
)−b1/(2b2

0) e −1/(2b0ḡ
2(μ)) exp

{
−
∫ ḡ(μ)

0
dx

[
1

β(x)
+ 1

b0x
3

− b1

b2
0x

]}
,

(5.147)

where μ = 29/Lmax. The integral can be computed using the three-loop approxima-
tion to the RG β-function in the SF scheme. Equation (5.147) yields the combination
�SFLmax, and knowledge of Lmax in physical units allows to express the �-
parameter in MeV. Conversion to the MS scheme is easily achieved, since the ratio
of �-parameters in two different schemes is computable via a one-loop calculation
in which ḡ2

MS
is expanded in powers of ḡ2

SF. This gives

�MS = �SF · c�. (5.148)

The entire procedure of determining the �-parameter via the Schrödinger functional
has so far been carried out for the pure SU(3) gauge theory (Nf = 0) and for
QCD with two flavours of dynamical quarks. The values of the coefficient c� are
2.04872(4) for Nf = 0 [84] and c� = 2.382035(3) for Nf = 2 [85], and the
resulting values for �MS are [75, 77]

�
(0)
MS

r0 = 0.602 ± 0.048 ⇔ �
(0)
MS

= 238 ± 19 MeV

�
(2)
MS

r0 = 0.62 ± 0.04 ± 0.04 ⇔ �
(2)
MS

= 245 ± 16 ± 16 MeV,

(5.149)

where r0 = 0.5 fm is used to convert into physical units. There is room for
improvement in several respects: for Nf = 2 the extrapolation to the continuum
limit can be made more reliable by including simulations at smaller lattice spacings,
which should reduce the first of the two quoted errors. Also, the conversion into
physical units should be performed in terms of a quantity such as fπ , which is
directly accessible in experiment. Finally, the calculation must be repeated with
more dynamical quark flavours, in order to allow for a direct comparison with
phenomenology, since all experimental determinations yield the �-parameter for
Nf = 4 or 5 quark flavours.

The determination of αs and �MS via the Schrödinger functional is quite
involved. However, it is the only method so far, which allows to map out the running
of αs in a completely non-perturbative manner, including the systematic elimination
of lattice artefacts. In particular, perturbation theory is used only for energy scales
well above 50 GeV.

The second method that we will discussed here in some detail is the determi-
nation of αs via heavy quarkonia. Below we present an account of the calculation
published in [86]. Here, the dynamical quark effects of the light (u, d, s) quarks have
been accounted for in simulations with improved staggered quarks employing the
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fourth-root trick (see Sect. 5.2.6). In this approach, the coupling constant is defined
in the so-called “V -scheme” via the heavy quark potential in momentum space:

V (q) = −CF
4π

q2 αV(q). (5.150)

Small Wilson loops such as the plaquette can be expanded in powers of αV

− ln 1
3 〈Re trP 〉 = c

(1)
P αV(sP/a) + c

(2)
P [αV(sP/a)]2 + . . . , (5.151)

where sP is a real dimensionless variable which can be chosen to optimize the
convergence properties of the expansion [83]. Equation (5.151) thus provides
the link between the coupling and a quantity that is easily computed in lattice
simulations. The above expression can be generalized to (small) rectangular Wilson
loops Wrt with area r · t:

− ln 1
3 〈Wrt 〉 =

∞∑
k=0

c
(k)
rt [αV(srt/a)]

k . (5.152)

Knowledge of the expansion coefficients in conjunction with lattice data for the
quantity on the left hand side allows for the determination of αV.

The second step, namely the calibration of the momentum scale which appears in
the argument of αV, is done by determining the lattice spacing from mass splittings
in the bottomonium system. Here one typically considers the mass differences
between the ϒ and ϒ ′, or alternatively, between the χb and ϒ states. Of course, any
other low-energy quantity like fπ or r0 could be used. It can be argued, however, that
mass splittings in heavy quarkonia are a natural choice for setting the scale in this
particular approach, chiefly because of their relative insensitivity to the exact value
of the heavy quark mass. Since the b-quark mass of mb ≈ 4 GeV is greater than
typical values of the inverse lattice spacing, a−1 one must employ special techniques
to deal with heavy quarks on the lattice. In [86] this is done via an approach based
on non-relativistic QCD. A detailed discussion of the specific treatment of heavy
quarks in lattice simulations is deferred to Sect. 5.7.2.

After setting the scale, the Wilson loops 〈Wrt 〉 computed on ensembles with
Nf = 3 flavours of rooted staggered quarks are used to determine αV via a global fit
involving data at three different values of the lattice spacing. This yields

α
(3)
V (7.5 GeV) = 0.2082 ± 0.0040, (5.153)

where the superscript on the coupling reminds us that the result is valid in the
three-flavour theory. The relation to the coupling in the MS-scheme at the Z-pole is
determined in perturbation theory, by employing the third-order expansion of αMS
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in terms of αV [87]:

α
(3)
MS

(e−5/6q) = α
(3)
V (q)+ 2

π

[
α
(3)
V (q)

]2 − (0.3111 . . .)
[
α
(3)
V (q)

]3
, (5.154)

which yields α(3)
MS

(3.26 GeV). This coupling is then translated to α
(5)
MS

(MZ) via the
numerical integration of the four-loop RG β-function, including the effects from
quark mass thresholds at mc and mb, which finally yields

α
(5)
MS

(MZ) = 0.1170 ± 0.0012. (5.155)

This result is included in the world average of α
(5)
MS

(MZ) = 0.1176 ± 0.002 in
Ref. [61]. It is also in very good agreement with the non-lattice global estimate of
α
(5)
MS

(MZ) = 0.1182 ± 0.0027 [88].
The running and matching in this approach is done perturbatively, involving

energy scales from MZ down to mc. In this sense the method may be regarded
as similar in spirit to, say, the determination of αs from the semi-leptonic branching
ratio of τ decays, as in both cases the coupling is extracted from the perturbative
expansion of a particular observable. While for τ -lepton decays an experimentally
measured quantity is considered, it is the non-perturbatively computed data for the
Wilson loops in the lattice approach which are expressed in terms of the running
coupling. This contrasts with the Schrödinger functional approach, where also the
running is computed non-perturbatively, albeit with considerable numerical effort.

The error on the result in Eq. (5.155) is rather small. It is left for future studies
to confirm this level of precision, which must entail further investigations into the
influence of lattice artefacts, as well as the validity of the fourth root trick.

5.5.6 Light Quark Masses

We shall now apply the general framework of non-perturbative renormalization
to the determination of quark masses. Typically one distinguishes the “light”
u, d, s quarks from the “heavy” c, b, t quarks. At first, this distinction may seem
rather arbitrary. It is actually based on the relative magnitude of the quark masses
compared with the chiral symmetry breaking scale �χ , which separates “soft”
from “hard” momentum scales. Masses and momenta well below �χ break chiral
symmetry only softly, so that spontaneous chiral symmetry breaking still dominates
over the explicit breaking generated by non-zero values of the quark masses. Gasser
and Leutwyler [89, 90] have demonstrated that QCD with u, d, s flavours can be
studied via an “effective” theory of Goldstone boson fields. This approach, called
Chiral Perturbation Theory (ChPT), has an SU(3)L ⊗ SU(3)R chiral symmetry,
which is spontaneously broken to the SU(3) vector subgroup. The associated
Goldstone bosons are then identified with the pions, kaons and η-mesons, whose
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masses are indeed small compared to typical hadronic scales, such as the mass of
the nucleon, for instance. Thus, the magnitude of �χ is identified with a value close
to 1 GeV. In ChPT, quantities like hadron masses, decay rates or cross sections
are computed through an expansion in powers of quark masses (and 4-momenta)
about the chiral limit. The inclusion of the charm quark into the formalism is rather
useless, since the masses if the lightest charmed pseudoscalar mesons are far greater
than �χ ≈ 1 GeV.

The top quark can be safely ignored in this context, since its lifetime is an order
of magnitude shorter than typical QCD processes. As a consequence, the top quark
does not undergo any hadronization effects (for instance, “toponium”, i.e. t t̄ bound
states have never been observed), but rather decays weakly into a W -boson and a
b-quark.

The mass of the b-quark is rather large (and to some extent this is also true
for the charm quark), so that one may attempt to determine their values from
perturbative expansions in αs of some mass-dependent quantity. By contrast, in
the light quark sector non-perturbative effects such as spontaneous chiral symmetry
breaking dominate. As far as the determination of the masses of the u, d, s quarks
is concerned, ChPT is of limited value, since only ratios of quark masses can
be predicted, but not their absolute values. The reason is that although the light
quark masses appear as parameters of ChPT, their values cannot be fixed by
chiral symmetry (see Sect. 5.6.1 for more details). The absolute normalization must
therefore be provided by non-perturbative methods such as lattice simulations or
QCD sum rules.

Below we will focus on attempts to compute the values of the light quark
masses in units of some hadronic quantity. As indicated in Sect. 5.5.1, this entails
the knowledge of the renormalization factor that links lattice regularization to the
chosen continuum scheme. Lattice simulations have maximum impact in the light
quark sector, owing to the dominance of non-perturbative effects, which is in fact
signified by the large uncertainties quoted for the values of the u, d and s quark
masses in the particle data book [61].

The general procedure for the determination of light quark masses in lattice QCD
starts from the PCAC relation, Eq. (5.116). Assuming exact isospin symmetry,mu =
md , one can consider a generic light flavour 
 with mass m
 ≡ m̂ = 1

2 (mu + md).
In order to determine, say, the combination m̂ + ms , one must define a particular
hadronic renormalization scheme, by specifying the lattice scale and the hadronic
quantity that fixes the value of m̂ + ms . Furthermore, the renormalization factor
which connects hadronic and continuum schemes must be known. Equation (5.116)
can then be rewritten such that it yields the sum of RG-invariant quark masses M̂ +
Ms in units of the quantity Q which sets the lattice spacing:

M̂ + Ms

Q
= ZM ×

(
f bare

PS Q

Gbare
PS

)∣∣∣∣∣
mPS=mK

×
(
m2

K

Q2

)∣∣∣∣∣
exp

+ O(ap). (5.156)
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In this expression, the subscript “exp” denotes the experimental values for the
respective quantities, while the matrix element Gbare

PS is given by

Gbare
PS

∣∣∣
mPS=mK

≡ Gbare
K = 〈

0
∣∣(
̄γ5s)lat

∣∣K 〉
. (5.157)

The pseudoscalar decay constant f bare
PS parameterizes the matrix element of the

unrenormalized axial current, i.e.

f bare
PS mPS

∣∣∣
mPS=mK

≡ f bare
K mK = 〈

0
∣∣(
̄γ0γ5s)lat

∣∣K 〉
. (5.158)

The renormalization factor ZM relates the bare current quark mass to the RG-
invariant mass. Thus, the task for lattice calculations is to compute the ratio
f bare

PS Q/Gbare
PS for a generic pseudoscalar state and tune the bare quark mass such

that mPS = mK. By combining the result with the renormalization factor ZM
and the experimental value of m2

K/Q
2, the RGI quark masses in units of Q

are obtained up to lattice artefacts of order ap, where p is characteristic of the
details of the discretization. Since the RGI quark masses are scale- and scheme-
independent quantities, the factor ZM depends only on the bare coupling g0.
Using the Schrödinger functional as the intermediate renormalization scheme, non-
perturbative estimates of ZM computed for O(a) improved Wilson fermions within
a wide range of bare couplings, have been published in Refs. [75] and [78]. In this
case, ZM is given by

ZM(g0) = M

m̄SF(μ0)

ZA(g0)

ZP(g0, aμ0)
, (5.159)

where the ratio M/m̄SF(μ0) is computed via the finite-size scaling procedure. The
transition between lattice regularization and the SF-scheme is accomplished by
determining ZP and the renormalization factor ZA of the axial current.14 Note that
the dependence on the intermediate matching scale μ0 drops out completely in this
expression. Finally, the conversion to the MS-scheme is performed by considering

Zm(g0, aμ) ≡ m̄MS(μ)

M
ZM(g0), (5.160)

where the ratio m̄MS(μ)/M can be computed through the numerical integration of
the perturbative approximation of the anomalous dimension τ and the β-function at
four loops. This yields [35, 78]

m̄MS(2 GeV)

M
=

{
0.7208, Nf = 0
0.7013, Nf = 2 .

(5.161)

14If the fermionic discretization preserves chiral symmetry ZA = 1, while for Wilson fermions ZA
should be computed non-perturbatively. For the SF this was performed in Refs. [91, 92].
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Table 5.2 Results for the strange quark mass in the MS-scheme at μ = 2 GeV and for the ratio
ms/m̂, in the continuum limit of the quenched approximation

Collaboration Action Q Renorm. m
(Q)
s [MeV] ms/m̂ m

(r0)
s [MeV]

SPQcdR [93] Wilson mK∗ RI 105(9)(6) 24.3(2)(6) 95(9)(5)

CP-PACS [47] Wilson mρ pert. 114(2)(6
3) 26.5(5.1

3.4) 98(2)(6
3)

ALPHA/UKQCD [35] Clover fK SF 97(4) 99(4)

JLQCD [94] Stagg. mρ RI 106(7) 25.1(2.4) 95(6)

The table includes information on the fermionic action employed in the simulations, the quantity
Q that sets the scale, and the type of renormalization (RI/MOM, SF or tadpole improved
perturbation theory. The right-most column contains the results for the strange quark mass when
converted into a common hadronic scheme, in which the scale is set by Q′ = 1/r0, assuming that
r0 = 0.5 fm

Estimates for the strange quark mass itself can be obtained in two ways: first, one
combines M̂ + Ms with the ratio Ms/M̂ = 24.4 ± 1.4 estimated in ChPT [38].
Alternatively, one might attempt to compute M̂ directly from lattice data, by
considering Eq. (5.116) for a pion. In this case, however, one relies on chiral
extrapolations, because of the difficulties involved when tuning the masses of the
light quarks towards the values of the physical up- and down-quark masses.

In Table 5.2 we present a selection of results for the mass of the strange quark
in the quenched approximation, normalized in the MS-scheme at μ = 2 GeV,
as well as the ratio Ms/M̂ . Two observations are worth mentioning: first, direct
determinations of Ms/M̂ via chiral extrapolations agree well with the estimate from
ChPT, even though the chiral limit is ill-defined in the quenched approximation.
Second, the different systematics in the simulations (lattice actions, renormalization
of local operators) generate a spread of seemingly incompatible results for the mass
of the strange quark. However, the spread can be traced to the particular choice of
hadronic renormalization scheme. To this end one can compute the relation between
quark masses computed for two different lattice scales, Q and Q′. From Eq. (5.156)

one easily infers that the strange quark mass m(Q′)
s estimated using Q′, is related to

its counterpart m(Q)
s via [37]

m(Q′)
s [MeV] =

(
Q′

Q

)
lat

(
Q

Q′

)
exp

m(Q)
s [MeV]. (5.162)

Here, the subscripts “lat” and “exp” refer to lattice and experimental estimates of
the scale ratios. The ratio (Q′/Q)lat can be determined in the continuum limit using
published lattice data, and the deviation of the proportionality factor from unity is a
measure of the relative quenching effects, when either Q or Q′ is chosen to set the
scale. Once the results have been converted to the common scale r0, the estimates for
ms in the continuum limit show remarkable consistency, despite the very different
systematic effects among the simulations included in this analysis (c.f. Table 5.2).
This demonstrates that lattice artefacts and renormalization effects can be controlled
at the level of a few percent with the available techniques.
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Table 5.3 Selection of recent unquenched results for the light quark masses

Collaboration Nf Action Q Ren. ms [MeV] ms/m̂ m̂ [MeV]
CPPACS/

JLQCD
[95] 2+1 Clover mρ pert. 91.1(14.6

6.2 ) 3.54(0.64
0.35)

HPQCD [96] 2+1 Stagg. �ϒ ′−ϒ pert. 87(8) 27.4(4) 3.2(3)

QCDSF/

UKQCD
[97] 2 Clover mN, r0 RI 111(9) 27(3) 4.1(4)

SPQcdR [98] 2 Wilson mK∗ RI 101(26
8) 4.3(4)

ALPHA [78] 2 Clover r0 SF 97(22)

CPPACS [99] 2 Clover mρ pert. 88(4
6) 26(2) 3.44(14

22)

ETM [100] 2 tmQCD fπ RI 105(3)(9) 27.3(3)(1.2) 3.85(12)(40)

The challenge for current and future simulations is to eliminate the remaining
uncertainty due to quenching. Several simulations with Nf = 2 or 2 + 1 flavours
of dynamical quarks15 based on different fermionic discretizations have produced
results for the light quark masses, which are shown in Table 5.3. Despite the
enormous progress that has been made in simulating light dynamical quarks,
it is important to realize that systematic effects such as lattice artefacts and/or
renormalization effects are currently not as well controlled as in the quenched
theory. The fact that affordable lattice spacings are still relatively large implies that
extrapolations to the continuum limit are in general longer than in the quenched
approximation, thereby leading to larger errors. In some cases it is not even clear
whether the leading lattice artefacts in dynamical simulations have been isolated.
Also, the quantity Q that sets the scale must be known at least as accurately as the
quark mass itself, and hence the determination of these observables may prove just
as costly. Finally, dynamical quark masses are still fairly large, especially in many
simulations using Wilson fermions, and thus the long and potentially uncontrolled
chiral extrapolations significantly affect estimates for the isospin-averaged light
quark mass m̂.

5.6 Spontaneous Chiral Symmetry Breaking

Chiral symmetry has already been mentioned in connection with the masses of the
light quarks. Here we will extend the general framework and elaborate on effective
descriptions of QCD at low energies, which can be treated analytically. As we
shall see, much can be learnt via the interplay of such effective theories and lattice
simulations of QCD.

15Nf = 2 usually denotes a degenerate doublet of light (u, d) quarks, while Nf = 2 + 1 denotes a
degenerate doublet together with a heavier third flavour, i.e. the strange quark.
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Massless QCD with Nf flavours is invariant under independent rotations of the
left- and right-handed components of the quarks fields. If one defines the field � as
the vector of Nf Dirac spinors ψi via

� = (
ψ1, . . . , ψNf

)T
, (5.163)

its left- and right-handed components are given by

�L := (
1Nf⊗P−

)
�, �R := (

1Nf⊗P+
)
�, P± = 1

2 (1 ± γ5) . (5.164)

The action of the massless theory is then invariant under transformations like

� → � ′ = exp {iP−(ωL·T ) + iP+(ωR·T )}�, (5.165)

where ωL, ωR are real vectors, and T denotes the generators of SU(Nf), which
satisfy

[
T a, T b

]
= if abcT c, Tr (T aT b) = 1

2δ
ab. (5.166)

The above transformation can be rewritten in terms of vector and axial rotations, i.e.

� → � ′ = exp {iαV ·T + iαA·T γ5}�, (5.167)

where αV ≡ 1
2 (ωR + ωL) and αA ≡ 1

2 (ωR − ωL). Invariance under these
transformation laws is what one usually means when one says that (massless) QCD
is invariant under a global SU(Nf)L ⊗ SU(Nf)R symmetry.

Actually, QCD has even more global symmetries, namely a U(1)V symmetry,
which corresponds to a common rotation of all quark flavours. The conserved charge
derived from the Noether current, which is associated with this unbroken symmetry,
is the quark number. The conservation of the axial current associated with the
remaining axial U(1) symmetry is, however, severely broken by an anomalous term,
which gives rise to strong non-perturbative effects generated by instantons. Without
going into further detail here, we refer to common textbooks.

Returning now to SU(Nf)L ⊗ SU(Nf)R, we note that symmetries in sub-nuclear
physics are usually deduced from the particle spectrum. That is, symmetries man-
ifest themselves through the occurrence of mass-degenerate (or nearly degenerate)
particle multiplets that can be grouped according to the irreducible representations
of the symmetry group. Indeed, for Nf = 3 one finds that the light pseudoscalar
mesons, i.e. the pions, kaons and η-mesons form an octet. The mass splittings
among the members of the octet are small when viewed on typical hadronic scales,
and arise due to the unequal, non-zero masses of the light quarks. However, if
the pseudoscalar octet were interpreted as a manifestation of an (approximate)
SU(3)L⊗SU(3)R chiral symmetry, one would expect that each member of the octet
is accompanied by a parity partner, i.e. a scalar meson, whose mass is of the same
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order of magnitude. This is not observed in experiment, where the lightest scalar
mesons are found to lie 600–700 MeV above the pseudoscalar octet. One therefore
concludes that the symmetry must be spontaneously broken. The term “spontaneous
breaking” refers to the fact that theories like QCD possess more internal symmetries
than those that can be inferred from the particle spectrum. In general, spontaneously
broken symmetries are not realized as symmetry transformations involving the
physical states of the theory. In particular, the ground state, i.e. the vacuum, is not
invariant under the transformation. As discussed in many textbooks, it is precisely
the invariance of the vacuum under the symmetry transformation that is required
to ensure the degeneracy of the particle spectrum. If the vacuum is not invariant,
certain operators may acquire a non-vanishing expectation value. In fact, a sufficient
condition for the spontaneous breaking of the physical SU(3)L ⊗ SU(3)R chiral
symmetry is fulfilled if the expectation value of the scalar density, �̄� , is non-zero,
i.e.

〈
�̄�

〉 ≡ 〈
ūu + d̄d + s̄s

〉 	= 0. (5.168)

Furthermore, according to Goldstone’s theorem [101], the generator of each broken
symmetry is associated with a massless particle. Since the masses of the members
of the pseudoscalar octet are rather small in comparison with the proton mass, they
are identified as the Goldstone bosons of the spontaneously broken chiral symmetry.

Spontaneous chiral symmetry breaking is an entirely non-perturbative phe-
nomenon. The task is then to explore the breaking mechanism and compute the
value of the quark condensate

〈
�̄�

〉
. As shall be outlined below, this can be achieved

through the interplay of lattice simulations and effective low-energy descriptions of
QCD.

5.6.1 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) has already been mentioned in connection with
extrapolations of lattice data to the physical values of the up- and down-quark
masses, and also in the context of lattice determinations of the strange quark mass.
Here we present a brief introduction into the general formalism. More thorough
reviews can be found in Refs. [102, 103].

Chiral Perturbation Theory is an effective theory, based on a systematic expan-
sion of the low-energy dynamics of QCD in powers of the 4-momentum and the
quark mass about the chiral limit [89, 90], i.e.

Leff = L(2)
eff + L(4)

eff + . . . , (5.169)

where the superscripts label the order of the expansion in powers of p. In contrast to
QCD, the basic degrees of freedom which appear in Leff are the Goldstone bosons,
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rather than the fundamental quarks and gluons. ChPT is parameterized in terms of a
set of empirical couplings, usually called “low-energy constants” (LECs). At lowest
order, the effective chiral Lagrangian (in Euclidean space-time) reads

L(2)
eff = 1

2F
2
0

{
1
2 Tr

(
∂μU

†∂μU
) − B0Tr

(
M(U + U†)

) }
, (5.170)

where M = diag(mu, md, ms) is the quark mass matrix, and U(x) collects the
Goldstone boson fields, i.e.

U(x) = exp

(
i

F0
λ · φ(x)

)
; λ · φ ≡

8∑
a=1

λaφa =

⎛
⎜⎜⎝
π0 + 1√

3
η

√
2π+ √

2K+
√

2π− −π0 + 1√
3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η

⎞
⎟⎟⎠ .

(5.171)

The λa’s denote the Gell-Mann matrices which are normalized as Tr (λaλb) = 2δab.
The LECs at leading order are B0 and F0, where the latter corresponds to the pion
decay constant in the chiral limit.16 The expression forL(4)

eff , i.e. the interaction terms
at next-to-leading order in the chiral expansion, contains 12 additional interaction
terms, multiplied by the LECs L1, . . . , L10, H1, H2. The values of the LECs are
usually determined by matching the expressions of ChPT for physical observables
to experimental data. However, it turns out that the complete set of LECs cannot
be obtained in this way. Rather, in order to fix the values of some LECs, one must
resort to additional theoretical assumptions. One particular example is the value of
B0, which appears in the chiral expansion of the pion mass at lowest order (see also
Eq. (5.80)):

m2
π = B0(mu + md). (5.172)

From this expressions it is clear that B0 can only be determined using mπ as input
if the physical values of the quark masses are known in the first place. By the same
token, the value of m̂ = 1

2 (mu + md) can only be inferred if an estimate for B0
is available. However, the a priori unknown parameter B0 drops out in suitably
chosen ratios of m2

π ,m
2
K, . . .. This explains why ChPT can be used to predict the

ratios of the light quark masses but fails to provide an absolute mass scale. Another
reason why the complete set LECs cannot be determined from chiral symmetry
considerations alone is the fact that the effective Lagrangian beyond leading order is
invariant under a symmetry transformation which involves the LECs and the mass
matrix M, but which is absent in QCD. This is the so-called “Kaplan-Manohar
ambiguity” [104]. At this point it is clear that lattice simulations of QCD can provide
valuable input for the determination of LECs. For instance, since the values of the

16We use capital symbols for decay constants whenever we refer to a normalization in which
Fπ � 93 MeV.
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quark masses are input parameters in the simulations, lattice QCD allows to map out
the quark mass dependence of the masses of Goldstone bosons and thus determine
the LEC B0. We shall see below that B0 is related to the quark condensate 〈�̄�〉
which can be considered as the order parameter for spontaneous chiral symmetry
breaking. Furthermore, as we have already discussed in Sect. 5.5.6, absolute values
of quark masses are accessible via lattice QCD.

We end our brief introduction to ChPT with the derivation of a few relations
which will be useful for our discussion of chiral symmetry breaking below. In
particular, we shall derive the leading-order mass formulae such as Eq. (5.80) and
establish a link between the quark condensate and B0. To this end we expand the
field U in the chiral Lagrangian L(2)

eff in powers of the Goldstone boson fields.
Assuming exact isospin symmetry, mu = md , one finds at lowest order in φa :

L(2)
eff = 1

2

8∑
a=1

∂μφa∂μφa + . . .

+1

2
(mu + md)B0

3∑
a=1

φ2
a + 1

2
(m̂ + ms)B0

7∑
a=4

φ2
a

+1

3
(m̂ + 2ms)B0φ

2
8 + . . . . (5.173)

After identifying φ1, φ2, φ3 with the pions, φ4, . . . , φ7 with the kaons, and φ8 ≡ η,
one derives the leading-order relations between the quark masses and the masses of
the Goldstone bosons, viz.

m2
π = 2B0m̂, m2

K = B0(m̂ + ms), m2
η = 2

3B0(m̂ + 2ms). (5.174)

Thus, the relation for a generic pseudoscalar Goldstone boson made up of quarks
with masses m1 and m2 is precisely what was already shown in Eq. (5.80). We note
that from Eq. (5.174) one easily derives the Gell-Mann–Okubo mass relation, i.e.

3m2
η + m2

π − 4m2
K = 0, (5.175)

which is satisfied experimentally within a few percent. Furthermore, Eq. (5.174)
yields the ratio ms/m̂ at lowest order, viz.

ms

m̂
= 2m2

K − m2
π

m2
π

� 24, (5.176)

which is already close to the estimate at next-to-leading order of ms/m̂ = 24.4 ±
1.5 [38], quoted in Sect. 5.5.6.

For the discussion of spontaneous symmetry breaking, it is useful to establish
a connection between the quark condensate in QCD,

〈
�̄�

〉
, and the LECs which
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parameterize the effective chiral Lagrangian. This link is provided by the so-called
Gell-Mann–Oakes–Renner relation [105], which we are going to derive below. To
this end we consider the QCD Lagrangian in the continuum:

LQCD = −1

4
Fa
μν(x)F

a
μν(x)+

∑
f

ψ̄f (x)
(
γμDμ + mf

)
ψf (x). (5.177)

The path integral is defined as

ZQCD =
∫

D[Aμ]D[ψ̄, ψ] exp

{
−
∫

d4x LQCD

}
, (5.178)

and the expression for the quark condensate can be formally derived by taking
derivatives with respect to the light quark masses, i.e.

∑
f=u,d,s

∂ lnZQCD

∂mf

∣∣∣∣
mf =0

= − 〈
ūu + d̄d + s̄s

〉∣∣
mf =0 ≡ − 〈

�̄�
〉
. (5.179)

What is the analogue of this expression in the effective chiral theory? To answer this
question one takes the lowest-order chiral Lagrangian of Eq. (5.170) and defines the
corresponding path integral17

ZChPT =
∫

D[U ] exp

{
−
∫

d4x L(2)
eff

}
. (5.180)

Since L(2)
eff contains the quark mass matrix one can consider similar derivatives, i.e.

∑
f=u,d,s

∂ lnZChPT

∂mf

∣∣∣∣
mf =0

= F 2
0 B0

2

∑
f=u,d,s

∂

∂mf

〈
TrM(U + U†)

〉∣∣∣
mf =0

= 3 · F 2
0 B0 + . . . ,

(5.181)

and comparison with Eq. (5.179) yields

− 1

3

〈
ūu + d̄d + s̄s

〉 ≡ Σ = F 2
0 B0. (5.182)

In other words, the quark condensate is related to the slope parameter in the lowest-
order mass formulae and the pion decay constant in the chiral limit, F0. This result
is known as the Gell-Mann–Oakes–Renner relation.

17It should be obvious that the field U must not be confused with the link variable considered in
previous sections.
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5.6.2 Lattice Calculations of the Quark Condensate

The Gell-Mann–Oakes–Renner relation is the starting point for many lattice deter-
minations of the quark condensate. For a generic pseudoscalar meson consisting of
a mass-degenerate quark and antiquark, i.e. m1 = m2 ≡ m, the LEC Σ is given by

Σ = lim
m→0

(
m2

PSF
2
PS

2m

)
. (5.183)

The technical drawback of this straightforward approach is that the chiral limit in
the above expression is difficult to take in practice, as we have mentioned several
times already. In the quenched approximation the situation is even worse: due to the
appearance of quenched chiral logarithms (c.f. Eq. (5.82)) the ratio m2

PS/m becomes
singular at vanishing quark mass, and hence the chiral limit does not exist. Since
the quenched approximation is being abandoned, this issue will gradually become
irrelevant.

However, a more serious obstacle remains in the case of dynamical simulations
with Wilson fermions: since this particular type of regularization breaks chiral
symmetry explicitly, the matching of simulation data at non-zero lattice spacing to
the expressions of ChPT is—strictly speaking—not permitted. Matching is certainly
justified if a fermionic discretization is employed which preserves chiral symmetry,
such as overlap or domain wall fermions, or if results obtained using Wilson
fermions are extrapolated to the continuum limit before a comparison to ChPT is
performed.

A complementary approach for determining the condensate on the lattice is based
on the Banks–Casher relation [106]. It provides a link between the LEC Σ and the
spectral properties of the Dirac operator, viz.

Σ = lim
λ→0

lim
m→0

lim
V→∞

π

V
ρ(λ), (5.184)

where V is the space-time volume. The spectral density ρ(λ) is defined as follows:
Let D denote the massless Dirac operator in the continuum, satisfying {γ5,D} = 0.
Its eigenvalue equation reads

Dψn = iλnψn, λn ∈ R, (5.185)

where the eigenvalues and eigenfunctions depend on the gauge field. A suitable
definition of the spectral density is then represented by

ρ(λ) :=
∑
n

〈
δ(λ − λn)

〉
, (5.186)
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where the expectation value is taken with respect to the QCD functional integral.18

Note that in Eq. (5.184) the ordering of limits must be obeyed. In particular, since
the spontaneous breaking of a continuous symmetry cannot occur in finite volume,
the limit V → ∞ must be taken before the chiral limit and the spectrum in the deep
infrared are considered.

The Banks–Casher relation provides not only a method to determine the conden-
sate, but also suggests a mechanism how spontaneous chiral symmetry breaking
comes about. Indeed, Eq. (5.184) implies that a non-zero value of the quark
condensate is generated through a non-vanishing value of the spectral density in
the deep infrared. In other words, spontaneous chiral symmetry breaking is driven
by an accumulation of small eigenvalues. An immediate consequence of the Banks–
Casher relation is that the level spacing �λ between the small eigenvalues is given
by

�λ ≡ 1

ρ(λ)
= π

VΣ
. (5.187)

Hence, as V → ∞ the level spacing becomes arbitrarily small. In the free theory,
i.e. in the absence of a non-trivial gauge field one finds that ρ(λ) ∝ λ3, which
vanishes as λ → 0. The accumulation of eigenvalues near zero with a rate predicted
by Eq. (5.187) must therefore arise through the interaction with the gauge field.

In order to test the Banks–Casher scenario, a possible strategy is to compute
the spectral density and check whether it actually produces an arbitrarily dense
spectrum near the origin. Analytic predictions for ρ(λ) can be derived in the
framework of effective theories of QCD at low energies, namely ChPT, as well
as chiral Random Matrix Theory (RMT). The latter also yields predictions for the
distributions of individual eigenvalues, in addition to the spectral density.

Chiral Random Matrix Theory goes back to an idea of Wigner who tried to utilize
statistical properties for the theoretical description of systems with many degrees
of freedom and complicated dynamics, such as nuclear resonances. Rather than
trying to model the local interactions within such a system explicitly, all possible
interactions that are consistent with the symmetries of the theory are equally likely.
The Hamiltonian is then approximated by a matrix whose elements are uncorrelated
but obey a particular probability distribution. The main guiding principle for the
RMT description of QCD is the requirement that all global symmetries must be
respected. The massless Dirac operator can then be represented by an N ×N matrix
D̂ with an off-diagonal block structure which is characteristic for systems with
chiral symmetry:

D̂ =
(

0 W

−W † 0

) }N+
}N−

. (5.188)

18A normalization factor of V−1 must be included in Eq. (5.184) since ρ(λ) is proportional to the
volume.
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As illustrated by the above expression, the matrix W is, in general, rectangular with
N+ rows and N− columns, such that N = N+ + N−. For N+ 	= N− the matrix D̂

has |N+ −N−| zero modes, and the index ν ≡ N+ −N− may be identified with the
topological charge in QCD. With this definition, D̂ is anti-hermitian and has purely
imaginary eigenvalues which come in complex conjugate pairs:

D̂φn = iμnφn, μn ∈ R. (5.189)

One can define the system’s partition function in a sector of fixed topological charge
ν via

Zν =
∫

D[W ] det
(
D̂ + m

)Nf e− 1
2NTr (W †W)

, (5.190)

where Nf is—as usual—the number of dynamical quark flavours. It makes sense to
identify the matrix size N with the physical volume V of the theory (up to some
proportionality constant).

In order to study the spectral properties of D̂ in the deep infrared, it is useful to
rescale the eigenvalues by the system size

z ≡ μnN, N ∝ V (5.191)

since, according to Eq. (5.187), the level spacing of the scaled eigenvalues z is of
order one. The so-called microscopic spectral density in the sector of topological
charge ν is then defined as

ρ(ν)
s (z) := lim

N→∞
∑
n

〈δ(z − μnN)〉ν , (5.192)

where the expectation value 〈· · · 〉ν is taken with respect to the partition function Zν .
An explicit expression for ρ(ν)

s (z) in terms of Bessel functions has been worked out
by Verbaarschot and Zahed [107]

ρ(ν)
s (z) = z

2

{[
Jν+Nf(z)

]2 − JNf+ν+1(z) JNf+ν−1(z)
}
. (5.193)

The microscopic spectral density is the convolution of the distribution functionsp(ν)
k

of the individual scaled eigenvalues, i.e.

ρ(ν)
s (z) =

∞∑
k=1

p
(ν)
k (z),

∫ ∞

0
dz p(ν)

k (z) = 1. (5.194)
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Fig. 5.16 RMT predictions
for the microscopic spectral
density and distributions for
individual eigenvalues in the
sector with topological charge
ν = 0
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Chiral RMT yields predictions for these distributions. For instance, for the lowest
eigenvalue in the sector with ν = 0 one obtains for Nf = 0

p
(0)
1 (z) = 1

2
z e−z2/4. (5.195)

For further illustration the microscopic spectral density and the distribution func-
tions for a few of the lowest eigenvalues are plotted in Fig. 5.16. The result for
ρ
(ν)
s (z) indicates that an accumulation of small eigenvalues does indeed take place.

Since one considers the simultaneous limits μ → 0 and N → ∞ for fixed z, a
non-zero value of ρ(ν)

s (z) for finite z signals that the spectrum is packed more and
more densely near the origin.

Can the predictions of RMT be verified from first principles in simulations of
lattice QCD? The answer is ‘yes’, provided one considers a particular kinematical
situation, commonly referred to as the “ε-regime” of QCD. It is based on the
formulation of QCD in a large but finite volume of spatial size L and for arbitrarily
small quark mass. The Compton wavelength of the pion then exceeds the spatial
size, and thus the ε-regime is characterized by

mπL � 1, FπL � 1. (5.196)

In this particular situation the path integral of the theory is dominated by zero
momentum modes. In a symmetric finite box with volume V = L4, the minimum
non-zero momentum is given by pmin ∝ 1/L. Let us recall the expression for the
lowest-order effective chiral Lagrangian, i.e.

L(2)
eff = 1

2F
2
0

{
1
2 Tr

(
∂μU

†∂μU
) − mΣ Tr

(
eiθ/NfU + h.c.

) }
, (5.197)
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where we have included the vacuum angle θ and assumed that M ≡ m1. If the
quark mass m is tuned so that

mΣ � F 2
0 p

2
min ∼ F 2

0 /L
2, (5.198)

the statistical weight of fields with ∂μU 	= 0 will be strongly suppressed in the path
integral. In other words, the mass term will dominate over the kinetic term, except
for fields U with ∂μU = 0. Since 2mΣ/F 2

0 = m2
PS, the conditions in Eq. (5.196),

which define the kinematical situation of the ε-regime, are equivalent to

mΣV � 1. (5.199)

The zero-momentum part can be represented by a constant SU(3) matrix U0 such
that

U(x) = U0 e2iξ(x)/F0, U0 ∈ SU(3), (5.200)

where the field ξ incorporates the fluctuations about the zero momentum mode.
According to Leutwyler and Smilga [108], the path integral of the theory in
topological sector ν can be written in the form

Z(0)
ν =

∫
D[U0] (detU0)

ν exp (mΣV ReTrU0) . (5.201)

After this somewhat lengthy preparatory discussion, the connection between QCD
in the ε-regime and chiral RMT can finally be established. An important result
derived by Shuryak and Verbaarschot [109] states that the path integral Z(0)

ν can be
mapped exactly onto the partition function Zν of RMT. One therefore expects that
the low-lying eigenvalues of QCD in the ε-regime are distributed in the same way
as those in RMT. By computing the former in a lattice simulation and performing
a comparison to the analytically known distributions in RMT, one may verify the
Banks–Casher scenario of spontaneous chiral symmetry breaking.

The Neuberger-Dirac operator DN of Eq. (5.47) is ideally suited for this task.
Since it satisfies the Ginsparg-Wilson relation, chiral symmetry is preserved at the
level of the discretized theory. Furthermore, DN can be shown to satisfy an exact
index theorem, so that it sustains |ν| exact zero modes on gauge configurations
with topological charge ν. This allows for an unambiguous identification of
topological sectors to which the path integral Z(0)

ν is restricted [110]. Therefore, the
investigation of spontaneous chiral symmetry breaking is a prime example where it
is absolutely vital that the lattice-regularized theory obeys the same symmetries that
are present in the continuum.

Before we proceed we must elucidate the relation of the spectra of the random
matrix D̂ and the Neuberger-Dirac operator. While the eigenvalues of D̂ are purely
imaginary, the operator DN is unitary, and hence its eigenvalues lie on a circle with
radius 1/a in the complex plane, centered around the point 1/a on the real axis.
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Fig. 5.17 Comparison of
simulation results for ratios of
eigenvalues with Random
Matrix Theory (horizontal
bars) in the sectors with
topological charge
ν = 0, 1, 2 [111]
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Thus, if γ denotes an eigenvalues of DN, it can be parameterized as

γ = 1

a

(
1 − eiφ), a = a

1 + s
. (5.202)

Since the radius of the circle diverges in the continuum limit, the low-lying part of
the spectrum satisfies |γ | � 1/a, and hence Reγ � 0. One can then identify an
eigenvalue μ of D̂ with Imγ , i.e.

μ ↔ Imγ � |γ | = 1

a
[2(1 − cosφ)] . (5.203)

A simple but effective check of the RMT description of the low-lying spectrum can
be performed by comparing ratios of scaled eigenvalues. The combination |γk|ΣV

of the kth eigenvalue in QCD corresponds to μkN in RMT. If the low-lying spectra
in the two theories indeed coincide one expects the following equalities in a given
topological sector ν

〈|γk|〉ν
〈|γj |〉ν

!= 〈μk〉ν
〈μj 〉ν ≡

∫ ∞

0
dz z p(ν)

k (z)

/∫ ∞

0
dz z p(ν)

j (z). (5.204)

While the ratio 〈|γk|〉ν/〈|γj |〉ν is determined in the simulation, the two integrals on
the right-hand side can be evaluated analytically for the first few eigenvalues.19

In Refs. [111, 112] ratios for some of the lowest eigenvalues have been computed
in the quenched approximation. The results from [111] are shown in Fig. 5.17 for a
box size L = 1.49 fm. The agreement between lattice results and RMT is excellent.
By contrast, a smaller box size of about 1 fm yields significant discrepancies
between QCD and RMT, which can be as large as 10 standard deviations. This
is a reflection of the fact that the large volume limit must be taken before the RMT

19The expressions for the distributions p
(ν)
k (z) become rapidly more complicated as k increases,

so that one may have to resort to numerical evaluations of the integrals.
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behaviour sets in. Similar findings have been reported for QCD with Nf = 2 flavours
of dynamical overlap quarks [113].

The confirmation of the RMT prediction for the distribution of the low-lying
eigenvalues supports the Banks–Casher scenario of spontaneous chiral symmetry
breaking. In a subsequent step one may therefore extract the LEC Σ via the relation

〈|γk|〉νΣV = 〈μkN〉ν ≡
∫ ∞

0
dz z p(ν)

k (z). (5.205)

If Σ is identified with the expectation value of the scalar density, as suggested
by the effective low-energy description of QCD, it must be related to a particular
continuum scheme, like the MS-scheme of dimensional regularization. If the reg-
ularization prescription obeys chiral symmetry, the corresponding renormalization
factor, ZS, satisfies

ZS = ZP = 1/Zm. (5.206)

whereZm relates the bare quark mass to the chosen continuum scheme (for instance,
MS). Provided that ZS, or equivalently, Zm has been computed for a range of bare
couplings, the lattice estimates for Σ can be used to determine the renormalized
condensate in units of some scale, e.g.

r3
0ΣMS(μ) = ZS(g0, aμ)r

3
0Σ + O(a2). (5.207)

For the Neuberger-Dirac operator, ZS has been computed non-perturbatively in the
quenched approximation [114], employing the technique outlined in Ref. [115]. The
resulting values for ZS could then be combined with the results for Σ extracted from
the matching to RMT from [111]. A subsequent extrapolation to vanishing lattice
spacing yields the results for the renormalized condensate in the continuum limit:

ΣMS(2 GeV) = (285 ± 9 MeV)3, (scale set by fK). (5.208)

The quoted error represents the total uncertainty arising from statistics, the uncer-
tainty in the renormalization factor, and the continuum extrapolation. If the nucleon
mass is used to set the scale the central value drops to 261 MeV, as a consequence
of the scale ambiguity encountered in the quenched approximation. We stress once
more that the chiral condensate is ill-defined in the quenched theory, and thus great
care must be taken when the results are interpreted in the context of the full theory.
Nevertheless, it is encouraging that for Nf = 2 flavours of dynamical quarks, a
similar calculation [113] finds ΣMS(2 GeV) = (251±7±11 MeV)3 at a � 0.11 fm,
in good agreement with the quenched result, given the inherent ambiguities and
inconsistencies of the latter.

Lattice results for the condensate have been reported by many other authors (e.g.
[116–125]), employing a variety of approaches. Although the various calculations
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are subject to different systematics, the overall picture is rather consistent, with val-
ues for the condensate centering around (250 MeV)3. As for many other quantities,
the influence of lattice artefacts and renormalization effects must be studied in more
detail, especially in the case of fully dynamical calculations. It is also important
to mention that analytic non-perturbative approaches to the strong interaction, such
QCD sum rules, also give broadly consistent results with lattice simulations within
the quoted uncertainties (see e.g. [126–128] and references therein). This completes
the consistent picture of chiral symmetry and its spontaneous breaking in QCD.

5.7 Hadronic Weak Matrix Elements

The experimental programme at the B-factories BaBar and Belle, as well as many
other experiments at high-energy colliders, such as the Tevatron and LEP, have
greatly enhanced the accuracy of many observables related to flavour physics and the
Cabibbo–Kobayashi–Maskawa (CKM) matrix. The main motivation for studying
flavour physics is to gain a proper understanding of CP violation and, in turn,
the matter-antimatter asymmetry which is apparently manifest in the universe. CP
violation is incorporated into the Standard Model via a complex phase in the CKM
matrix, and therefore a precise knowledge of its elements is required to decide
whether or not additional sources of CP violation must be considered.

In order to make these statements more precise we recall some basic definitions.
As is well known, the CKM matrix VCKM relates flavour to mass eigenstates. For
flavour-changing charged current transitions between up- and down-type quarks this
implies that, in addition to the dominant transitions like u ↔ d , c ↔ s and t ↔ b,
there are further transitions of lesser strength. The CKM matrix is therefore expected
to possess a hierarchical structure, with the diagonal elements Vud, Vcs and Vtb

being of order one. An approximate parameterization that takes this into account
is due to Wolfenstein [129]. By expanding VCKM in powers of the Cabibbo-angle
|Vus | ≡ λ � 0.22 one obtains

VCKM ≡
⎛
⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠ �

⎛
⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ − iη)

−λ − iA2λ5η 1 − λ2/2 Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 − iAλ4η 1

⎞
⎟⎟⎠ ,

(5.209)

with the remaining parameters A, ρ̄ and η̄ of order one.20 In the standard model,
VCKM is unitary, and, provided that one can determine its elements with sufficient
precision, any deviation from unitarity would be a signature of “new physics”.

20The relation of rescaled parameter ρ̄ to ρ is given by ρ̄ = ρ(1 − λ2/2 + O(λ4)), and a similar
relation holds for η̄ and η.
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Fig. 5.18 Constraints on the
apex of the unitarity
triangle [130]

Unitarity gives rise to relations such as

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (5.210)

which can be represented by a triangle. The strategy that has been adopted in order
to search for hints of new physics, is to use experimental and theoretical input to
over-constrain the unitarity relations like those in Eq. (5.210). The current status is
depicted in Fig. 5.18, where the unitarity triangle is plotted in the (ρ̄, η̄)-plane [130].

The experimentally measured quantities, i.e. the mass differences �Ms,�Md

and εK, the latter of which parameterizes indirect CP violation in the kaon system,
serve to constrain the apex of the unitarity triangle. They are proportional to the
relevant CKM matrix elements, i.e.

�Md = G2
FM

2
W

6π2 ηBS
( mt

MW

)
f 2

BB̂B
∣∣VtdV

∗
tb

∣∣2, �Ms

�Md

= f 2
Bs
B̂Bs

f 2
BB̂B

mBs

mB

|Vts|2
|Vtd |2 ,

εK ∝ B̂K Im(VtdV
∗
t s), (5.211)

where GF is the Fermi constant, and MW,mt denote the masses of the W -boson and
top quark, respectively. The proportionality factors in the above expressions involve
the leptonic B-meson decay constants fB and fBs , as well as the B-parameters B̂B,
B̂Bs and B̂K, which in turn parameterize the transition amplitudes for B0 − B̄0,
B0
s − B̄0

s , and K0 − K̄0 mixing. While the decay constants are difficult to measure
with sufficient accuracy, due to the fact that the leptonic decay rates are suppressed,
the B-parameters are not at all accessible in experiment. One must therefore resort
to theoretical estimates of these quantities. Since non-perturbative effects must
inevitably be included, lattice simulations of QCD are ideally suited for this task.
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Lattice calculations of weak hadronic matrix elements is a major activity within
the lattice community, and a thorough coverage of all aspects would easily fill
an entire chapter. We shall therefore concentrate on some of the most important
quantities, and point out the main conceptual issues. It is strongly recommended that
the reader consult the regular reviews of the topic at the annual lattice conferences,
e.g. [131–135].

5.7.1 Weak Matrix Elements in the Kaon Sector

In the kaon sector, K0 − K̄0 mixing is one of the most important processes. The
B-parameter BK parameterizes the non-perturbative contribution to indirect CP
violation. It is defined by the ratio of the relevant operator matrix element to its
value in the so-called “vacuum saturation approximation”:

BK(μ) =
〈
K̄0

∣∣Q�S=2(μ)
∣∣K0

〉
8
3f

2
Km

2
K

. (5.212)

Here, μ denotes the renormalization scale at which the �S = 2 four-quark operator
Q�S=2, defined by

Q�S=2 = [
s̄γμ(1 − γ5)d

] [
s̄γμ(1 − γ5)d

] ≡ OVV+AA − OVA+AV, (5.213)

is considered. The relation between εK and the CKM matrix elements is provided
by the RG-invariant B-parameter B̂K. In NLO perturbation theory B̂K is related to
BK(μ) via

B̂K =
(
ḡ(μ)2

4π

)γ0/2b0
{

1 + ḡ(μ)2

[
b0γ1 − b1γ0

2b2
0

]}
BK(μ), (5.214)

where γ0, γ1 denote the coefficients in the perturbative expansion of the anomalous
dimension of Q�S=2. Since QCD is parity-conserving, the physically relevant
operator in the above expression is the parity-even combination OVV+AA. The
typical left-handed chiral structure of this operator, which is characteristic for
weak transitions, poses a problem for lattice calculations if Wilson fermions are
employed. In this case the discretization breaks chiral symmetry explicitly, and
thus OVV+AA mixes under renormalization with operators involving the opposite
chirality. Therefore, the general renormalization pattern is

OR
VV+AA(μ) = Z(g0, aμ)

{
Obare

VV+AA +
4∑

i=1

�i(g0)O
bare
i

}
(5.215)
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Thus, in order to determine the physical matrix element, one must not only
determine the overall renormalization factor Z, but also the mixing coefficients
�i . Several techniques have been developed [136–138] to address this problem,
which is merely an inconvenience rather than a serious obstacle. In a formulation
based on staggered fermions the problem is absent, since the remnant U(1) ⊗ U(1)
symmetry protects the operator from mixing with other chiralities. However, a
drawback of the staggered formulation is the broken flavour (“taste”) symmetry,
which may lead to significant complications [139]. Fermionic discretizations based
on the Ginsparg-Wilson relation, such as domain wall or overlap fermions do not
suffer from the mixing problem, whilst preserving all flavour symmetries. Finally,
the mixing problem can also be circumvented for Wilson-like discretizations in the
context of twisted-mass QCD [140, 141]. With the help of a suitably chosen flavour
rotation (see Eq. (5.51)), the matrix element of OVV+AA in QCD can be mapped
exactly onto that of the parity-odd operator OVA+AV in the chirally twisted theory,
viz.

〈
K̄0

∣∣∣Obare
VA+AV

∣∣∣K0
〉
tmQCD

= i
〈
K̄0

∣∣∣Obare
VV+AA

∣∣∣K0
〉
QCD

. (5.216)

It has been shown that OVA+AV renormalizes purely multiplicatively [142], i.e.
all mixing coefficients vanish. The overall multiplicative, scale-dependent renor-
malization factor of OVA+AV which yields the physical matrix element has been
determined non-perturbatively [143], using the finite-size scaling procedure based
on the Schrödinger functional formalism described in Sect. 5.5.2.

We now give a summary of the current status of BK. Here, the calculation
by the JLQCD Collaboration [154], based on staggered quarks in the quenched
approximation, has served as a benchmark result for a long time. Their result,
for which the perturbatively renormalized matrix element was extrapolated to the
continuum limit, has since been confirmed by many other calculations employing
different fermionic discretizations and different renormalization techniques. These
include domain wall [148, 149] and overlap quarks [150, 151], as well as the
Wilson formulation [153, 155]. Moreover, a calculation employing twisted mass
QCD has been completed [152], which includes non-perturbative renormalization
and a thorough investigation of the continuum limit.

Recently, results for BK from simulations with dynamical quarks have become
available, both for Nf = 2 [146, 147] and Nf = 2 + 1 flavours [144, 145]. A
compilation of quenched and unquenched results is shown in Fig. 5.19. Although
the figure suggests a trend in the data which points to slightly lower estimates for
B̂K if dynamical quarks are switched on (see Fig. 5.19), the quoted uncertainties are
still too large to point to a significant deviation. In particular, a systematic study
of the continuum limit in the unquenched case is not yet available. It is interesting
to compare the results for B̂K to the non-lattice determination in Ref. [130]. Here,
the determinations of the angles of the unitarity triangle from experimental data
in conjunction with direct measurements of �Md,�Ms and εK allow to fit the
values of several of the quantities in Eq. (5.211), which incorporate the hadronic
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RBC 2006, DWF, RI/MOM

UKQCD 2004, SW/Wilson, pert.,

RBC/UKQCD 2007, DWF, RI/MOM

HPQCD/UKQCD 2006, stagg., pert.

SPQcdR 2004, SW/Wilson, RI/MOM

Fig. 5.19 Recent lattice results for the RGI kaon B-parameter B̂K. From top to bottom, the
plotted values are taken from Refs. [144–154]. Dotted error bars (where shown) indicate the
quoted systematic error. The labels include information on the fermionic discretization and the
intermediate renormalization scheme, if non-perturbative renormalization was used. We also
indicate whether or not the results have been extrapolated to the continuum limit. The vertical
lines represent the (non-lattice) result from [130], with the quoted uncertainty (see text)

uncertainties. In this way one obtains B̂non − lattice
K = 0.94 ± 0.17, which is shown

as the vertical band in Fig. 5.19. Clearly, within the rather large error margins, this
result is compatible with all lattice determinations, quenched or unquenched.

First Row Unitarity and the Value of |Vus | In addition to Eq. (5.210), the unitarity
of the CKM matrix implies many other constraints on its elements, such as those
which appear in the first row:

|Vud |2 + |Vus |2 + |Vub|2 = 1. (5.217)

Owing to the smallness of |Vub|, i.e. |Vub|2 � 2 ·10−5, the direct verification of first
row unitarity with the current experimental and theoretical accuracy rests on the
precise knowledge of |Vud | and |Vus|. The value of |Vud | can be determined with
high accuracy from super-allowed nuclear β-decays (0+ → 0+ transitions), and in
the current edition of the particle data book the best estimate is quoted as [61]

|Vud | = 0.97377 ± 0.00027. (5.218)
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The value of |Vus | can be extracted from the decay rate of K
3 transitions, i.e.

(K → π
ν
) ∝ G2
Fm

5
K

192π3 |Vus |2
∣∣∣f Kπ+ (0)

∣∣∣2 , (5.219)

where f Kπ+ is one of the two form factors which parameterize the hadronic matrix
element for semi-leptonic K → π
ν
 transitions, i.e.

〈
π( �pπ)

∣∣(s̄γμu)(0)∣∣K( �pK)
〉 = f Kπ+ (q2)(pK + pπ)μ + f Kπ− (q2)(pK − pπ)μ,

qμ = (pK − pπ)μ. (5.220)

In order to arrive at a precise estimate for |Vus |, f Kπ+ (q2) must be determined with
an accuracy at the level of 1%, since the decay rate and hence the combination
|Vus |2 [fKπ+ ]2 can be measured rather precisely. The form factor f Kπ+ admits a
chiral expansion; At zero momentum transfer it reads

f Kπ+ (0) = 1 + f2 + f4 + . . . . (5.221)

While the leading chiral correction, f2 = −0.023, has been computed long ago
[156], knowledge on f4 and the higher corrections is still fairly limited. The strategy
pursued in lattice calculations [157] is based on computing the quantity

�f ≡ f Kπ+ (0) − (1 + f2), (5.222)

which is a measure of the contributions beyond leading order. An old phenomeno-
logical estimate by Leutwyler and Roos [158] yields the value �f = −0.016(8).
It is clearly desirable to check this result and ultimately replace it by a model-
independent estimate based on QCD.

Semi-leptonic form factors can be determined in lattice simulations by comput-
ing suitable three-point correlation functions, in which the initial and final hadronic
states are projected onto non-vanishing momentum. The main issues that must be
addressed in order to judge the accuracy of the form factor determination are listed
in the following:

• The dependence of the form factors on the momentum transfer q2 must be
modelled, in order to interpolate their values to q2 = 0. Typical ansätze
for the interpolation include linear or quadratic functions of q2, as well as
formulae based on pole dominance [159]. The freedom of choosing a particular
ansatz introduces a certain ambiguity, since different model functions yield
slightly different results. Via the introduction of so-called twisted boundary
conditions [159–164], the q2 resolution of form factors can be significantly
improved;

• As for all quantities involving pions, a chiral extrapolation of lattice results
must be performed. Clearly, in order to obtain f Kπ+ (0) and hence �f with
small controlled errors, a reliable chiral extrapolation is perhaps the single most
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Table 5.4 Recently published lattice results for the quantity �f

Collaboration Nf Action fKπ+ (0) �f mmin
π [MeV]

Bećirević et al. [157] 0 Clover 0.960(5)(6) −0.017(5)(7) 490

RBC [165] 2 DWF 0.968(9)(6) −0.009(9)(6) 490

UKQCD/RBC [166] 2 + 1 DWF 0.964(5) −0.013(5) 330

Leutwyler and Roos [158] ./. ./. 0.961(8) −0.016(8) ./.

Bijnens and Talavera [167] ./. ./. 0.976(10) −0.001(10) ./.

Jamin et al. [168] ./. ./. 0.974(11) −0.003(11) ./.

Cirigliano et al. [169] ./. ./. 0.984(12) 0.007(12) ./.

The minimum value of the pion mass used in the simulations is listed in the right-most column.
The lower part of the table contains analytical estimates

important issue. Thus, the ability to simulate as deeply as possible in the chiral
regime will be decisive for the final accuracy;

• Other systematic uncertainties include control over lattice artefacts, which is
closely related to the renormalization of local operators, such as the vector
current, which appears in Eq. (5.220). If chiral symmetry is broken explicitly,
the (local) vector current is not conserved, and in order to guarantee a smooth
approach to the continuum limit, its renormalization factor,ZV, must be included.
However, in all recent simulations the form factor has been extracted from
suitably chosen ratios in which ZV drops out.

A compilation of recent results for the form factor fKπ+ (0) and the quantity �f

are presented in Table 5.4, where they are compared to analytical estimates. The
agreement with the old result by Leutwyler and Roos is quite striking. Despite a
tendency among the more recent analytical calculations to produce slightly larger
estimates for �f , all results are in good agreement within the quoted uncertainties.

An alternative method to determine |Vus| from experimental data was proposed
by Marciano [170]. Instead of considering semi-leptonic decays, it is based on the
leptonic decay rates, i.e.

(K → μν̄μ(γ ))

(π→eν̄e(γ ))
∝ |Vus |2

|Vud |2
f 2

KmK

f 2
πmπ

. (5.223)

Hence, the task is to provide an input value for the ratio of decay constants, fK/fπ .
This quantity is well-suited for lattice calculations in several respects: first, ratios
of quantities can be computed with high statistical accuracy, owing to the fact
that the fluctuations in the numerator and denominator are correlated. Second,
the renormalization factor of the axial current, ZA, drops out in the ratio fK/fπ .
However, since the quantity of interest involves a chiral extrapolation, the same
caveats as in the case of the pion form factor, apply in this case. In particular,
it is mandatory to go as close as possible to the physical mass of the pion. The
quenched approximation is clearly of very limited value in this context, since the
chiral behaviour and hence the actual value of fK/fπ may strongly depend on the
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Table 5.5 Recently published results for fK/fπ in lattice QCD with dynamical quarks

Collaboration Nf Action fK/fπ mmin
π [MeV]

CP-PACS [52] 2 Clover 1.19(3) 500

JLQCD [172] 2 Clover 1.148(11)(12
5 )(

2
3) 500

ETM [100] 2 tmQCD 1.227(9)(24) 290

MILC [173] 2 + 1 Stagg. 1.208(2)( 7
14) 290

NPLQCD [174] 2 + 1 Stagg./DWF 1.218(2)(11
24) 290

RBC/UKQCD [175] 2 + 1 DWF 1.24(2) 330

HPQCD [176] 2 + 1 Stagg. 1.189(7) 250

number of active sea quarks. Furthermore, it is known that in the continuum limit of
the quenched approximation the value fK/fπ is underestimated by about 10% [171].

Recent results for fK/fπ in lattice QCD with dynamical quarks are listed in
Table 5.5. A caveat that applies to all such compilations is that systematic errors
are not estimated in a uniform manner. For instance, none of the listed results (with
the exception of [52]) is based on a systematic scaling study aimed at separating
cutoff effects from the actual mass dependence, although the influence of lattice
artefacts has been included in some error estimates by including cutoff effects into
a generalized chiral fit. Moreover, not all of the listed values of fK/fπ include
finite-volume corrections, which can be computed in ChPT and incorporated into
the ansatz for the chiral fit [177, 178]. Despite these caveats it appears, though, that
the estimates for fK/fπ based on fits including pion masses well below 500 MeV
are compatible with each other.

5.7.2 Weak Matrix Elements in the Heavy Quark Sector

The main obstacle for calculations of weak matrix elements involving heavy quarks,
and in particular the b-quark, is that one is faced with a multi-scale problem. In
Sect. 5.2.5 we have already discussed systematic effects in lattice calculations that
arise from finite-size effects and lattice artefacts. Translating the relations in (5.79)
directly to the b-quark sector, one finds that the following inequalities cannot be
satisfied simultaneously, at least not with the currently available computer power:

amb � 1, mπL � 1, L/a � 50. (5.224)

Violation of the first relation implies the presence of large lattice artefacts, the
second inequality must be satisfied if one wants to avoid uncontrolled finite-volume
effects, and the third is dictated by memory capacities of current computers. With
a b-quark mass of mb ≈ 4 GeV and typical inverse lattice spacings of a−1 �
4.5 GeV, it is evident that the b-quark cannot be studied directly, since its Compton
wavelength is smaller or of the same order of magnitude than the lattice spacing
itself.
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Several strategies to deal with this problem have been applied over many years,
among them the “static approximation” [179], the non-relativistic formulation
(NRQCD) [180], the so-called “Fermilab-approach” [181] and finite-size scaling
techniques [182, 183].

Since the charm quark is lighter than the b-quark by roughly a factor three, one
may attempt to treat charm as a fully relativistic, propagating quark in simulations.
Still, one can incur large lattice artefacts in this way, and a careful extrapolation
to the continuum limit is then required. However, such an extrapolation may be
spoilt if the leading lattice artefacts cannot be isolated in the results, due to the
relatively large mass of the charm quark. Still, if one has reason to trust the results
obtained for relativistic charm quarks, one may extrapolate them to the mass of b-
quark, which is yet another way of circumventing the problem that the b-quark is
too heavy to be treated relativistically. Typically, the ansatz for the extrapolation of
a particular quantity to the mass of the b-quark is motivated by its expected quark
mass dependence in Heavy Quark Effective Theory (HQET).

In the static approximation the b-quark is assumed to be infinitely heavy [179].
In this formalism it is convenient to represent the b-quark by a pair of spinors,
(ψh,ψh̄), which propagate forward and backward in time, respectively, and which
satisfy

P+ψh = ψh, P−ψh̄ = ψh̄, P± = 1
2 (1 ± γ0). (5.225)

While the field ψh annihilates a heavy quark, ψh̄ creates a heavy antiquark. The
dynamics of these fields in the discretized version of the theory is described by the
Eichten-Hill action [184]

Sstat = a4
∑
x

{
Lstat
h + Lstat

h̄

}
, Lstat

h = ψ̄h(x)∇∗
0ψh(x), Lstat

h̄
= −ψ̄h̄(x)∇0ψh̄(x),

(5.226)

where ∇0, ∇∗
0 denote the forward and backward covariant lattice derivatives in the

temporal direction. Although the numerical computation of the quark propagator
based on the Eichten-Hill action is relatively “cheap”, simulation results in the static
approximation typically suffer from relatively large statistical noise. Without going
into detail we note that the signal-to-noise ratio can be significantly improved if one
replaces the temporal link variables in ∇0 and ∇∗

0 by suitably chosen generalized
parallel transporters. A full account can be found in Ref. [185].

Obviously, the static approximation represents only the leading term in an
expansion of the quark action in inverse powers of the heavy quark mass, and thus
one expects corrections in powers of 1/mh. As described in Ref. [182], one can
set up a formalism in which the leading corrections to physical observables can be
systematically computed as operator insertions in correlation functions defined with
respect to the static action Sstat. Again, we refrain from describing any further details
and refer the reader to the original literature [182, 186].
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Higher-order corrections to the static approximation can also be incorporated into
the theory by adding the appropriate 1/mh terms to the action itself. In this way one
obtains a non-relativistic version of QCD (NRQCD) [180], in which the mass of the
heavy quark is imposed as a cutoff on relativistic momentum modes, i.e.

p ∼ mhv � mh, (5.227)

where v denotes the four-velocity of the heavy quark. Heuristically, the introduction
of the cutoff is justified since the internal typical momentum modes of hadrons
containing a heavy quark are much smaller than the mass of the latter. The loss of
relativistic states can be compensated by adding new local interaction terms order
by order in p/mh ∼ v to Lstat

h and Lstat
h̄

. In general, these additional interaction
terms will generate mixing between quark and antiquark. However, by applying a
Foldy-Wouthuysen transformation, the fields can be decoupled. At the level of the
classical theory, the 1/mh correction to the NRQCD Lagrangian for the forward
propagating field reads

L(1); class
h = − 1

2mh

{
ψ̄hD·Dψh + ψ̄hσ ·Bψh

}
, (5.228)

and D is the vector of the covariant derivatives in the spatial directions.
In the quantized version of the theory, the coefficients which multiply the fields

in the above expression become dependent on the gauge coupling and must be
appropriately tuned to guarantee the correct matching of the non-relativistic theory
to standard QCD at order in 1/mh. Thus, the lattice-regularized version of the 1/mh

correction reads

L(1)
h = −

{
ω1ψ̄h∇ · ∇ψh + ω2ψ̄hσ · B̂ψh

}
, (5.229)

where B̂ denotes a lattice representation of the magnetic field. The coefficients ω1
and ω2 are formally of order 1/mh and are found to be linearly divergent in the
lattice spacing a. Therefore, at a given order in the non-relativistic expansion of
the action, a finite cutoff must be kept, and in this sense the effective theory is non-
renormalizable. All this implies that in NRQCD the continuum limit, a → 0, cannot
be taken. Instead, one must argue that lattice artefacts are small in the range of lattice
spacings where the calculations are performed.

Another approach can be based on the idea that the Wilson fermion action is
suitably adapted for heavy quarks, such that the Wilson quark propagator does not
deviate from the continuum behaviour even for quark masses am >∼ 1, i.e. for quark
masses near or above the cutoff [181]. According to Ref. [181] this can be achieved
by modifying the normalization of the quark fields (see Eq. (5.36)) in the discretized
lattice theory, i.e.

ψ(x) → √
2κ eamP/2ψ(x), ψ̄(x) → ψ̄(x) eamP/2

√
2κ, (5.230)
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where the “pole mass” amP of the Wilson propagator is given by

amP = ln(1 + am), (5.231)

and am denotes the bare subtracted quark mass in the Wilson theory (see Eq. (5.39)).
The factor

√
2κ eamP/2 is designed to interpolate smoothly between the relativistic

and non-relativistic regimes. As a consequence, in order to cancel the effects of large
quark masses in hadronic matrix elements involving b-quarks, the normalization of
quark fields is modified according to the above prescription. The so-called “Fermi-
lab approach” to heavy quark physics on the lattice is based on the normalization
in Eq. (5.230). Essentially it amounts to formulating an effective theory for quarks,
whose spatial momenta are small, |a �p| � 1, with mass-dependent coefficients.
Like in the case of the static approximation, the formalism allows to take the
continuum limit. Related approaches to the Fermilab method have been presented
in Refs. [187, 188].

Finally, we briefly introduce another strategy to deal with heavy quarks on the
lattice and the related multi-scale problem [182, 183]. Here the condition mπL � 1
in Eq. (5.224) is sacrificed in favour of amb � 1. In this way one is able to
accommodate a fully relativistic b-quark at the expense of having to deal with
strong finite-volume effects. The key observation is that the “distortion” due to
unphysically small volumes can be computed in a series of finite-size scaling steps,
which relate the results obtained on a sequence of lattice sizes L0, L1, . . . . Like in
the case of the non-perturbative determination of the RG running of the coupling
and the quark mass discussed in Sect. 5.5.2, one can set up a recursive finite-size
scaling procedure, which traces the volume dependence of observables. Here it is
mostly sufficient to apply two or three steps in the scaling sequence.

In the remainder of this section we shall discuss some selected results. Regarding
the vast number of individual results, we do not attempt to provide a complete
review of the current status of lattice calculations of weak matrix elements in the
heavy quark sector. Regular appraisals of the progress made in studying these
systems can be found in the rapporteur talks on the subject at the annual conferences
on lattice field theory [132, 133, 135]. Instead we shall discuss the relation between
CKM matrix elements and the quantities that must be computed in order to extract
the former from experimental data without resorting to model assumptions.

Heavy-Light Decay Constants From Eq. (5.211) and Fig. 5.18 one infers that

the ratio ξ ≡ fBs

√
B̂Bs/fB

√
B̂B of decay constants and B-parameters is a key

quantity, since it links �Ms/�Md to the ratio |Vts|2/|Vtd |2 of CKM matrix
elements. Typically, one determines decay constants and B-parameters separately,
since the former can be easily extracted from hadronic two-point functions, while
the latter may undergo complicated mixing patterns, depending on the fermionic
discretization. The decay constant of, say, a B+ meson, is defined via the matrix
element of the heavy-light axial current, i.e.

fBmB = 〈
0 |(ūγ0γ5b)|B+〉 . (5.232)
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If the matrix element on the right-hand side is computed in a lattice simulation, then
the axial current defined in the discretized theory must be matched to its counterpart
in the continuum formulation. The details of the matching procedure depend on the
type of fermionic discretization and the chosen treatment to represent the heavy-
light axial current on the lattice (e.g. static approximation, NRQCD, etc.). If the
b-quark is treated in the static approximation, the axial current has a non-vanishing
anomalous dimension, and hence its running must be determined as well. Therefore,
the various techniques which have been developed to compute the renormalization
factors of local operators non-perturbatively, are of particular relevance also in the
study of heavy-light decay constants [189]. In particular, non-perturbative estimates
for the renormalization factor of the axial current, ZA, are required to ensure a
smooth convergence towards the continuum limit.

We now present results for fB and fBs . From Chiral Perturbation Theory one
expects that the bulk of the SU(3)-flavour breaking effect in ξ (i.e. the deviation
of ξ from unity) is carried by the decay constants. The full expression at NLO for
fBs/fB reads [190]

fBs

fB
− 1 = (m2

K − m2
π)f2(μ) − 1 + 3g2

(4πfπ )2

[
1

2
IP(mK) + 1

4
IP(mη) − 3

4
IP(mπ)

]
,

(5.233)

where IP(mPS) = m2
PS ln(m2

PS/μ
2) and f2 is a low-energy constant, and g2 is the

strength of the B∗Bπ vertex. As was pointed out by Kronfeld and Ryan [191],
the contribution from the chiral logarithms can be sizeable, so that a naïve linear
extrapolation of lattice data from the region of the strange quark mass tends to
underestimate fBs/fB. By contrast, the corresponding ratio BBs/BB is expected to
be close to one, since the coefficient of the chiral logarithm nearly vanishes. Since
fBs/fB enters directly into fits to the CKM parameters, many attempts were made
to pin down its value precisely. As in the case of fK/fπ discussed earlier, the main
issue for lattice calculations is whether the quark masses employed in simulations
are small enough to allow for a controlled chiral extrapolation based on the NLO
formulae. The influence of the chiral logarithms has so far been detected only in
simulations based on Nf = 2+1 flavours of rooted staggered quarks. Using NRQCD
to treat the b-quark, the authors of [192] find

fBs

fB
= 1.20 ± 0.03 ± 0.01, Nf = 2 + 1, (5.234)

where the first error is statistical, while the second is an estimate of the systematic
uncertainty. This result awaits confirmation from simulations with sea quark masses
as small as those used in [192], but employing different fermionic discretizations,
both in the sea and valence quark sectors. This is of particular relevance, since the
typical spread among the recently published results is of the same order or even
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larger than the uncertainty quoted above. Further discussions and compilations of
lattice data for fBs/fB can be found in [133, 193].

Estimates for absolute values of heavy-light decay constants are also highly
desirable, especially since fB is hard to determine experimentally, even at the B-
factories, since the B → τντ decay rate is suppressed. For fBs the suppression
is even stronger, and thus the prospects for an experimental determination of this
quantity are extremely uncertain. The main issues facing lattice calculations are the
influence of lattice artefacts in conjunction with the renormalization of the axial
current, and the dependence of results on the number of dynamical quark flavours.

As an example for one of the most advanced quenched calculations for fBs

we shall briefly discuss the result by the ALPHA collaboration [198], which also
illustrates the interplay between various methods to treat the b-quark. In Ref. [198]
the results obtained in the static approximation were combined with data computed
around the mass of the charm quark. Provided that estimates for the decay constants
in both datasets have been extrapolated to the continuum limit, a subsequent
interpolation in the heavy quark mass yields the desired result for fBs . The ansatz
for the interpolation is based on the expression

fPS
√
mPS = CPS(M/�MS) γ

(
1 + δ

mPS

)
, (5.235)

where fPS is a generic heavy-light decay constant, γ, δ are real constants, and the
factor CPS arises from the matching between the static approximation and QCD
with fully relativistic quarks. Thus, using the static approximation as the limiting
case removes the systematic error due to the uncontrolled extrapolation to the mass
of the b-quark. The resulting estimate for fBs is [198]

fBs = 193 ± 6 MeV, Nf = 0. (5.236)

Non-perturbative renormalization has been employed in both the static approxima-
tion and the relativistic formulation. Except for the unknown systematic error due
to quenching, the quoted error contains all uncertainties. The above result has been
confirmed by the approach based on the finite-size scaling method [199].

Turning now to unquenched simulations, we compare the above value to the
result by the HPQCD Collaboration [192], which was obtained using NRQCD for
the b-quark, while Nf = 2 + 1 rooted staggered quarks were used as sea quarks.
Here, the estimate for fBs results from a combination of the value for fB and the
ratio fBs/fB already quoted in Eq. (5.234). In this way one obtains

fBs = 259 ± 32 MeV. (5.237)

Thus, in spite of the large error, it appears that the inclusion of dynamical quark
effects increases the estimate for heavy-light decay constants. This is also supported
by other simulations. For instance, using their simulation results in quenched QCD
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Fig. 5.20 Recent lattice results for fBs . From left to right the results are taken from the following
papers. Nf = 0 : [194–207]; Nf = 2 : [203, 204, 207, 208], [209]; Nf = 2 + 1 : [192, 210].
The labels indicate the method used to treat the b-quark in the simulation (“ext” and “int” stand
for extrapolations and interpolations to the mass of the b-quark, respectively. The horizontal lines
represent the (non-lattice) result from [130], with the quoted uncertainty

and with Nf = 2 flavour of dynamical Wilson quarks, the CP-PACS Collaboration
find [203]

f
Nf=2
Bs

f
Nf=0
Bs

= 1.14 ± 0.05. (5.238)

The “non-lattice” determination of fBs via fits using the experimental results for the
angles of the unitarity triangle as input [130] also point to a larger value compared
to the quenched theory, as can be seen from the horizontal band in the compilation
in Fig. 5.20.

In current unquenched simulations, systematic effects such as lattice artefacts
and the renormalization of local operators are not yet controlled at a similar
level compared to the quenched approximation. Thus, despite the fact that these
calculations are much more “realistic” in that they include sea quarks, the quoted
overall uncertainties are still relatively large.

B-Parameters B̂Bd and B̂Bs Following the recent experimental determination
of the mass difference �Ms at the Tevatron [211, 212], lattice determinations of
the B-parameters B̂Bd and B̂Bs have received much attention. Although the first
calculations date back to the 1990s, relatively few results are available, due to
several specific technical difficulties. First, the complicated renormalization and
mixing patterns of four-quark operators which afflict lattice calculations of the kaon
B-parameter B̂K are also encountered in the b-quark sector. Second, there is the
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Table 5.6 Published lattice results for the B-parameter BBd (mb) in the MS-scheme and the ratio
BBs/BBd

Collaboration Nf Action BBd(mb) BBs/BBd

Gadiyak et al. [213] 2 DWF 1.06(6)(3) static

JLQCD [209] 2 Clover 0.836(27)(56
62) 1.017(16)(56

17) NRQCD

Gimenez et al. [214, 215] 0 Clover 0.81(5)(4) 1.01(1) Static

UKQCD [215, 216] 0 Clover 0.79(4)(4) 1.02(2) Static

Christensen et al. [217] 0 Wilson 0.98(4) 0.99(1)(1) Static

SPQcdR [218, 219] 0 Clover 0.87(4)(5
4) 0.99(2) rel./ext.

UKQCD [195] 0 Clover 0.98(2)(0
2) rel./ext.

The method to treat the heavy quark is specified in the last column

added complication which arises from the fact that the b-quark cannot be simulated
directly.

In Table 5.6 we list published results for BBd(mb) and the ratio BBs/BBd from
a variety of methods to treat the heavy quark. The table shows that all results
are broadly consistent with each other at the level of 10%, despite the different
systematics. Moreover, none of the listed estimates is based on non-perturbative
renormalization factors, and furthermore all entries have been computed for a
fixed value of the lattice spacing, i.e. a systematic study of the continuum limit
is lacking even in the quenched approximation. As for the ratio BBs/BBd , it should
be mentioned that the quark masses in the simulations correspond to pion masses
not much smaller than 500 MeV. However, in view of the fact that the bulk of the
relevant SU(3)-flavour breaking effect in �Ms/�Md is expected to come from the
ratio of decay constants, fBs/fBd , this may not be such a serious limitation. Results
forBBd and BBd computed on dynamical gauge configurations with rooted staggered
quarks should be published soon.

Another recent development is the implementation of non-perturbative renormal-
ization for heavy-light four-quark operators in the static approximation [220, 221].
If the b-quark is treated in the static approximation, the �B = 2 four-quark operator
must be matched to its counterpart in the static theory, i.e.

Q�B=2(mb) = CL(mb,μ)Q̃1(μ) + CS(mb,μ)Q̃2(μ), (5.239)

where

Q̃1 = (
ψ̄hγμ(1 − γ5)


) (
ψ̄h̄γμ(1 − γ5)


) ≡ ÕVV+AA + ÕVA+AV

Q̃2 = (
ψ̄h(1 − γ5)


) (
ψ̄h̄(1 − γ5)


) ≡ ÕSS+PP + ÕSP+PS, (5.240)

with 
 denoting the light (d or s) flavour. For the physical matrix element only
the parity-even operators ÕVV+AA and ÕSS+PP are relevant. If chiral symmetry
is not preserved by the discretization, four-quark operators such as ÕVV+AA
undergo complicated mixing patterns under renormalization, which necessitate
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finite subtractions similar to those required for the operator OVV+AA in Eq. (5.215).
However, just as in the case of K0 − K̄0 mixing, the parity-even operators ÕVV+AA
and ÕSS+PP can be mapped onto their parity-odd counterparts ÕVA+AV and ÕSP+PS
by a flavour rotation, which realizes the transition to tmQCD at maximal twist angle.
Moreover, it can be shown [220] that the combinations

Õ ′
1 ≡ ÕVA+AV, Õ ′

2 ≡ ÕVA+AV + 4ÕSP+PS (5.241)

renormalize purely multiplicatively. The RG running of these operators, as well as
the matching to hadronic schemes based on tmQCD have been determined non-
perturbatively in the SF scheme for Nf = 0 [221] and Nf = 2 [222], which
will eventually allow for a determination of B̂Bs and B̂B with full control over
renormalization and discretization effects. Corrections of order 1/mb can be taken
into account through an interpolation between the results obtained in the static
approximation and for relativistic heavy quarks with masses in the region of that
of the charm quark.

Semi-Leptonic B-Decays The CKM elements |Vub| and |Vcb|, which appear in
the unitarity triangle relation equation (5.210), can be extracted from both inclusive
and exclusive B-meson decays. However, |Vub| is still one of the most poorly
constrained CKM elements. Its value can be determined by combining lattice
calculations of semi-leptonic form factors for exclusive decays such as B̄0 →
π+
−ν̄
 with the experimentally measured decay rate. If the leptons are assumed
to be massless, the latter yields the combination [|Vub| f+(q2)]2, while the form
factor f+(q2) can be extracted from the matrix element

〈
π( �pπ)

∣∣(b̄γμu)(0)∣∣B( �pB)
〉 =

[
(pB + pπ)μ − qμ

m2
B − m2

π

q2

]
f+(q2) + qμ

m2
B − m2

π

q2
f0(q

2).

(5.242)

Here, qμ ≡ (pB −pπ)μ denotes the momentum transfer. For a B-meson at rest one
has

q2 = m2
B + m2

π − 2mB

√
m2

π + �p2
π . (5.243)

In order to avoid large lattice artefacts, typical values of the pion momentum in
simulations are restricted to

| �pπ | � 1 GeV. (5.244)

Therefore, lattice calculations typically yield the form factors f+ and f0 near
q2 = q2

max. By contrast, the bulk of the experimental data is recorded in bins
with small values of q2, since the decay rate is suppressed near q2

max. Therefore,
an extrapolation to small values of q2 must be performed, which requires an
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Fig. 5.21 Form factors f+
(upper data set) and f0 for
B → π
ν decays (taken from
Ref. [224]). The data are
taken from Refs. [225]
(UKQCD), [226] (Abada et
al.), [227] (El-Khadra et al.),
[228] (JLQCD) and [229]
(FNAL04). The unquenched
results by HPQCD have been
updated [230]
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ansatz for the shape of the form factor. Although a parameterization of the q2-
dependence which goes beyond vector pole dominance and is also consistent with
the expected heavy-quark scaling laws has been proposed [223], the extrapolation
to small momentum transfers typically introduces some model dependence in the
result for |Vub|.

Figure 5.21 shows a compilation of lattice data for the form factors as a
function of q2 together with the curves which represent the extrapolations to
q2 = 0. The problem of the model dependence introduced by the extrapolation
to small momentum transfer can be avoided by combining form factors from lattice
simulations with the decay rate measured in restricted intervals of q2, which overlap
with the range of momentum transfers that are directly accessible in simulations.
Such a procedure has been performed by the CLEO Collaboration [231]. The result
for |Vub| obtained in this way is somewhat smaller compared to the standard method
based on form factor extrapolations, but the uncertainties are still quite large. For the
actual estimates of |Vub| obtained in this way, the reader may consult the original
papers.

Semi-leptonic heavy-to-heavy decays such as B̄ → (D,D∗)
ν̄
 offer a way
to determine |Vcb|. In this case it is convenient to use the four-velocities of the
two mesons as the kinematical variables instead of the four-momenta. The decay
amplitudes are then parameterized in terms of six form factors, i.e.

〈
D(v′)

∣∣(c̄γ μb)
∣∣B(v)〉√

mBmD
= (v + v′)μh+(ω) + (v − v′)μh−(ω)

〈
D∗(v′, ε)

∣∣(c̄γ μb)
∣∣B(v)〉√

mBm
∗
D

= iεμναβε∗
ν v

′
αvβhV(ω) (5.245)

〈
D∗(v′, ε)

∣∣(c̄γ μγ5b)
∣∣B(v)〉√

mBm
∗
D

= (ω + 1)ε∗μhA1(ω) − ε∗ · v [vμhA2(ω) + v′μhA3(ω)
]
,
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where ω = v·v′. In the limit of infinite heavy quark mass, four out of these six form
factors can be replaced by a single, universal form factor, ξ(ω), which is called the
Isgur-Wise function [232]

mb, mc → ∞ ⇒ h+(ω) = hA1(ω) = hA3(ω) = hV(ω) = ξ(ω), (5.246)

while h−(ω) and hA2(ω) vanish as mb, mc become infinitely heavy. Outside the
exact heavy-quark limit, the relation between the Isgur-Wise function and the form
factors is modified. For instance,

h+(ω) = (1 + β+(ω) + γ+(ω)) ξ(ω), (5.247)

where β+, γ+ parameterize radiative corrections and corrections arising from
operators of higher dimension, which are suppressed by additional inverse powers of
the heavy quark mass. Similar relations hold for hA1, hA3 and hV. Another important
result, known as Luke’s Theorem [233], states that at zero recoil, v = v′, i.e. ω = 1,
the leading corrections to the form factors h+ and hA1 are quadratic in the inverse
heavy quark mass.

With this setup one may devise a strategy to determine |Vcb| by combining the
experimentally determined decay rate with lattice calculations of the form factors.
The differential decay rate for B̄ → D∗
ν̄
 in the limit of zero recoil reads

lim
ω→1

1√
ω2 − 1

d(B → D∗
ν)
dω

= |Vcb|2 G2
F

4π3 (mB − mD∗)2m3
D∗ [hA1(1)]2,

(5.248)

which, owing to Luke’s Theorem, receives corrections of order 1/m2
c only. For

ω > 1 the single axial form factor hA1 must be replaced by a linear combination
of several form factors. Thus, the theoretical uncertainties appear to be controlled
best at zero recoil. Since the rate is suppressed near ω = 1, the measured decay
rate must be extrapolated to that value to determine |Vcb|. Most of the published
lattice calculations of the form factors and the Isgur-Wise function [234–238] are
therefore focused on the determination of the slope of ξ(ω) at ω = 1. The measured
decay rate can then be extrapolated to zero recoil using a particular parameterization
of ξ(ω), with its slope constrained via the lattice calculation. After taking radiative
and power corrections into account, a value for |Vcb| can be extracted.

A different but related strategy is to compute the form factors h+(1) and hA1(1)
directly via suitably chosen double ratios of hadronic matrix elements in which
many systematic effects can be expected to cancel [239, 240]. Using the “Fermilab
approach” for the heavy quarks in the quenched approximation, the authors of
Ref. [240] find

hA1(1) = 0.913+0.024 +0.017
−0.017 −0.030, (5.249)
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where the first error is statistical, while the second represents an estimate of various
systematic uncertainties added in quadrature. Again, this result can be combined
with the experimental decay rate to determine |Vcb|. More details can be found in
[240].

Most lattice studies of heavy-to-heavy semi-leptonic B-decays have been
restricted to the quenched approximation. However, results for the form factors
from dynamical simulations can be expected in the near future. Clearly, in order
to have maximum impact on the determination of |Vcb|, systematic effects arising
from lattice artefacts and the formulation used to treat the heavy quark must be
controlled to a high degree.

5.8 Concluding Remarks

In this article we have introduced the lattice approach to QCD and discussed
a variety of applications, which range from hadron spectroscopy, confinement,
quark masses and the running coupling, to spontaneous chiral symmetry breaking
and hadronic matrix elements for flavour physics. This illustrates not only the
versatility of the lattice method, but also indicates that lattice calculations have
become ever more important for making quantitative predictions in the notoriously
difficult sector of non-perturbative QCD. Still, a great number of other applications
have not even been covered here, including nucleon structure functions and form
factors, calculations at finite temperature and/or chemical potential, or detailed
investigations of the QCD vacuum structure.

That lattice calculations have reached this standing is owed to the enormous
progress which been made in developing more efficient algorithms for dynamical
fermions, better discretizations, as well as a number of new theoretical concepts
such as non-perturbative renormalization. These developments, in conjunction
with the availability of ever more powerful computers, shall allow for precise
computations of many phenomenologically relevant quantities, which previously
seemed virtually intractable.

5.9 Addendum: QCD on the Lattice

5.9.1 Introduction

Since the first edition of this article [241] the field of lattice QCD has undergone
a huge transformation. While the actual methodology was well established at
the time of writing (2007), few simulations employing dynamical quarks had
produced results with controlled errors, having a direct impact on phenomenology
and experiment. During the past ten years or so this has changed dramatically.
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Simulations with light dynamical quarks, whose masses correspond to the physical
value of the pion mass, have become the state of the art, and the effects of
dynamical strange and charm quarks are now routinely included as well. In fact,
lattice calculations of certain observables have reached (or are aiming for) a level
of precision where the effects of the breaking of isospin symmetry can no longer
be ignored. This necessitates that lattice QCD must account not only for the effects
of unequal u and d quark masses but also for corrections due to electromagnetism,
owing to the different electric charges of up- and down-type quarks.

In this context it is interesting to quote a remark by Ken Wilson, made at the
1989 International Conference on Lattice Field Theory [242]: “I still believe that an
extraordinary increase in computing power (108 is I think not enough) and equally
powerful algorithmic advances will be necessary before a full interaction with
experiment takes place.” Given that, in 1989, the most powerful supercomputers
could sustain 10 GFlops (i.e. 1010 floating point operations per second), Wilson’s
estimate was tantamount to requiring ExaFlops capabilities (1018 Flops) for lattice
QCD to make an impact, a performance figure that has only been reached very
recently by less than a handful of machines. The enormous progress that the field
of lattice QCD has already seen over the past decade proves that Wilson’s view was
far too pessimistic.21 For instance, results from lattice calculations for the decay
constants and form factors of mesons and baryons containing heavy quarks are vital
input for global analyses of observables in flavour physics, designed to constrain the
elements of the Cabibbo–Kobayashi–Maskawa matrix. Furthermore, lattice QCD
yields precise values for the masses of the light (u, d , s) quarks [244].

An impressive testimony to the importance of lattice QCD for the entire field
of particle physics is the regular report provided by the Flavour Lattice Averaging
Group (FLAG). Since its inception in 2007, FLAG has been charting the progress
in lattice QCD, by collecting results for a range of phenomenologically relevant
quantities. Taking inspiration from the Particle Data Group, FLAG assesses the
quality of individual calculations and produces world averages by combining those
results that satisfy a defined set of requirements regarding the overall control over
systematic effects. Three editions of the FLAG report, published in 2010 [245],
2013 [246] and 2016 [247], have appeared until now, and a fourth one has been
published in 2019 [248]. In fact, the current status of lattice calculations of many
observables that have been reviewed in the first edition of this article can be found
in these comprehensive reports.

This short review is organized as follows. In Sects. 5.9.2 and 5.9.3 we give
an update of lattice calculations applied to hadron spectroscopy, weak hadronic
matrix elements and the determination of Standard Model parameters such as quark
masses and the strong coupling constant. These quantities were covered extensively
in the original edition of [241]. Then, in Sect. 5.9.4 we extend the discussion to
the determination of quantities that describe structural and other properties of the
nucleon, such as form factors and the axial charge. Finally, in Sect. 5.9.5 we discuss
lattice calculations of the hadronic contributions to the muon anomalous magnetic

21Even Wilson himself acknowledged, at least partially, that this was the case [243].
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moment, which is a key quantity to study possible deviations from the Standard
Model. The review concludes with a few remarks on the progress achieved over the
past decade and an outlook for future calculations.

5.9.2 Hadron Spectroscopy

The calculation of the light hadron spectrum, i.e. the masses of the lowest-lying
mesons and baryons has long been regarded a benchmark for lattice QCD. In the
quenched approximation, i.e. in the absence of dynamical quarks, a significant
deviation between the calculated spectrum and experiment at the level of 10–15%
was observed. When the light hadron spectrum could eventually be accurately
reproduced within the overall uncertainty after the inclusion of light dynamical
quarks [249–252] (see Fig. 5.22), this was hailed as a major success of lattice QCD.
Thanks to these milestone results, the credibility of lattice calculations was firmly
established throughout the particle and hadron physics communities.

Calculations of the light hadron spectrum have since been further refined, by
taking the effects of isospin breaking into account. Strong isospin breaking arises
from the mass splitting between the u and d quarks, mu 	= md . Since the electric
charges of u and d quarks differ as well, electromagntic interactions are another
source of isospin breaking. The formulation of QED on a lattice of finite volume
poses considerable technical challenges since the photon is massless. There are
several strategies to address the problem of the associated zero mode, and we refer
the reader to recent reviews of the subject [253–255], which also serve as a guide to
the literature.

After the inclusion of strong and electromagnetic isospin breaking effects, it
became possible to perform another benchmark calculation, namely the accurate
determination of the neutron-proton mass difference, as well as the mass splittings of
other baryonic iso-multiplets [256–259]. The ability to determine isospin breaking
effects arising from QED was also instrumental for calculations of the electromag-
netic mass splittings of pions and kaons [260–265], which can be used to study
violations of Dashen’s theorem [266]. The latter states that the electromagnetic self-
energies of the charged pions and kaons are identical, while those of their neutral

Fig. 5.22 The spectrum of
the lowest-lying hadrons as
computed in Ref. [250], to be
compared to Fig. 5.5 of the
original review [241]
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counterparts vanish. More details are found in section 3.1.1 of the FLAG report
[247].

Another recent focus of lattice spectroscopy has been the determination of the
excitation spectrum and the properties of hadronic resonances. This is a major
refinement of previous calculations in which the masses of resonances (the simplest
being the ρ-meson) were extracted naively from the exponential decay of the vector
correlation function, thereby ignoring the fact that resonances are characterized
both by a mass and a width. The general framework for the study of resonance
properties in lattice QCD was developed by Lüscher already in the 1980s and
1990s [267–270], and it is only now that the potential of this elegant and powerful
formalism can be fully exploited. The key idea that underlies the Lüscher method
is the realization that computing the energy levels of multi-particle states in a finite
volume gives access to the scattering phase shifts in infinite volume, provided that
the spectrum (including excited states) can be determined sufficiently well for a
range of kinematical situations. The latter are typically determined by the lattice
volume and/or the total momentum of the multi-particle system in question.

To be more specific, let us consider the simplest resonance, the ρ-meson, whose
properties can be accessed in p-wave ππ scattering. For energies below the inelastic
threshold, the Lüscher condition reads

φ(q) + δ1(k) = 0 mod π, q = kL

2π
, (5.250)

where φ(q) is a known kinematic function of the scaled scattering momentum
in units of the box size, q = kL/2π and δ1 is the scattering phase shift. The
scattering momentum k is determined from the nth energy level ωn in a finite
volume, according to

ωn =
√
m2

π + k2, (5.251)

where mπ is the pion mass. Figure 5.23 shows an example of a calculation of the
p-wave scattering phase shift as a function of the centre-of-mass energy [271].

Fig. 5.23 The p-wave
scattering phase shift of the
ρ-meson, computed for
mπ = 280 MeV as a function
of the centre-of-mass energy
[271]. Data obtained for two
different values of the lattice
spacing (open and filled grey
symbols) are shown. The
solid line is obtained from a
fit to a Breit-Wigner ansatz
for the resonance
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A crucial ingredient for the reliable determination of not just the energy level of
the ground state but also the excitation spectrum is the use of correlator matrices
computed using a suitable basis of interpolating operators (see Section 5.3 in
Ref. [241]). The diagonalization of the correlator matrix can be achieved by solving
a generalized eigenvalue problem from which the energy levels in a given channel
can be determined [272–274]. The sometimes arduous task of constructing efficient
interpolators for multi-particle states has been helped enormously by practical
methods to compute “all-to-all” quark propagators [275] and, in particular, the
so-called “distillation” technique [276, 277]. With these new developments it has
been possible to perform lattice investigations of ππ scattering and the ρ resonance
[278–291], as well as determinations of Kπ[292, 293] and KK scattering lengths
[294, 295]. The formalism has also been used to study meson-baryon [296–300] and
baryon-baryon [301, 302] interactions.

While the original Lüscher formalism was derived for the case of elastic two-
particle scattering, it has now been generalized to coupled-channel systems [303–
307], including the treatment of three-particle thresholds [308–315]. It also opens
the possibility to study weak non-leptonic kaon decays [316] and compute form
factors for timelike momentum transfers [317–320].

Moreover, the experimental discovery of new charmonium-like resonances,
commonly referred to as the X,Y and Z states, has kindled a new interest in
hadron spectroscopy. A distinctive feature of the new resonances is their closeness to
particle thresholds, and efforts are underway to gain a detailed understanding of the
resonance structure in the charm sector. Using the formalism described above, there
have been many calculations of a variety of charmonium-like resonances in lattice
QCD. In view of the vast literature, we refer the reader to several recent reviews of
the subject [321–323].

5.9.3 Parameters of the Standard Model

The Standard Model (SM) contains 19 parameters (excluding the neutrino sector)
whose values are not predicted by the theory itself but must instead be fixed using
experimental input. In many cases the relations between experimentally accessible
observables and SM parameters involve quantities that encode the effects of the
strong interactions. A well-known example is the kaon B-parameter BK that
enters the relation between the quantity εK , which is a measure of indirect CP
violation, and a particular combination of Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements Vtd, Vts , i.e.

εK ∝ B̂K Im (Vtd V
∗
t s). (5.252)

While εK can be determined experimentally from a ratio of decay amplitudes
of long- and short-lived K-mesons, KL,S → (ππ)I=0, the parameter B̂K must
be extracted from the hadronic matrix element of a four-quark operator between
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K0 and K̄0 states. Obviously, such a calculation must be performed in the non-
perturbative regime of QCD since it involves typical hadronic scales.

Other CKM matrix elements, such as Vus, Vub and Vcb are related to weak
processes involving kaons, D- and B-mesons, which are described by a variety
of leptonic decay constants (and their ratios), form factors of semi-leptonic meson
and baryon decays, as well as the B-parameters that encode strong interaction
contributions to B0−B̄0 and B0

s −B̄0
s mixing. All these quantities have been studied

in lattice QCD for many years, and increasingly precise estimates with controlled
systematic errors have appeared over the past decade. They have been instrumental
for recent analyses of the unitarity of the CKM matrix [324–327].

Similar considerations apply to SM parameters such as the strong coupling
constant αs and the masses of the quarks. While the asymptotic scaling behaviour
of αs gives rise to the dimensionful �-parameter that encodes the intrinsic scale
of QCD, the quark masses are external parameters. Providing the link between
experimentally accessible quantities and quark masses, as well as expressing the
�-parameter in units of some measurable low-energy quantity has been a primary
task for lattice QCD. Lattice calculations have also be instrumental for determining
the coupling constants of effective descriptions of QCD, such as the low-energy
constants of Chiral Perturbation Theory.

The importance of accurate, model-independent determinations of SM parame-
ters and input quantities for flavour physics has led to the foundation of the Flavour
Lattive Averaging Group (FLAG). Updates of the FLAG report have appeared at
regular intervals since the publication of its first edition in 2010 [245]. As part of its
mission, FLAG issues global estimates and averages of lattice results, provided that
they satisfy a set of defined quality criteria. FLAG estimates are quoted separately
according to the sea quark content of the calculations that enter the global analyses,
i.e. whether they have been obtained with a degenerate doublet of u, d quarks
(Nf = 2) or with an additional dynamical strange (Nf = 2 + 1) and charm quark
(Nf = 2+1+1). The current status of lattice QCD calculations of quark masses, the
strong coupling, decay constants, form factors, mixing parameters and low-energy
constants is summarized in Tables 1 and 2 of the 2016 FLAG report [247]. The
FLAG webpage22 contains additional updates. Below we comment on the current
status of a few selected quantities.

Quark Masses According to FLAG, the strange quark mass is known to 1%
precision, while the accuracy in the determination of the average u and d quark
mass, m̂ ≡ 1

2 (mu + md), varies between 1–5 %, depending on the sea quark
content [328–332, 332–340]. Thanks to the recent progress in including the effects
of isospin breaking in lattice QCD calculations, estimates for the masses of the
individual u and d quarks could also be obtained, typically with 2 − 5 % precision
[261, 262, 264, 330]. Furthermore, the masses of the heavy quarks have been
determined with excellent precision [328, 330–332, 335, 337, 341–348].

22http://flag.unibe.ch/.

http://flag.unibe.ch/
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Running Coupling A milestone was achieved by the ALPHA collaboration, who
published [349] an estimate for αs(M

2
Z) obtained by tracing the scale evolution

of the strong coupling non-perturbatively over several orders of magnitude into an
energy range where the application of perturbation theory can be considered safe (at
least as far as the quoted precision is concerned). Their main result is the determina-
tion of the �-parameter in three-flavour QCD, i.e. �(3)

MS
= 341(12)MeV, which can

be matched to the �-parameter in the five-flavour theory using perturbation theory,
giving �

(5)
MS

= 215(10)(3)MeV. Finally, this is translated into the result for the
strong coupling [349]:

αMS
s (M2

Z) = 0.11852(84). (5.253)

The quoted error is 30% smaller than that of the 2016 PDG estimate of αs =
0.1181(11) [244]. The latter includes lattice results from Refs. [331, 335, 350–354].

Kaon Weak Matrix Elements The kaon B-parameter BK is now known with
an overall accuracy of 1.3% [336, 355–359]. Moreover, the calculations of matrix
elements relevant for K0 − K̄0 mixing have been extended to include operators that
arise in extensions of the Standard Model [355, 358–363].

Lattice QCD results for kaon leptonic decay constants (more precisely: the
ratio fK+/fπ+ ) and the form factor f+(0) describing semi-leptonic K → π
ν

decays have now reached a level of precision that enables a competitive and model-
independent determination of Vus (see Sect. 5.7.1 of the original review article).
Moreover, it is possible to test the unitarity of the first row in the CKM matrix, i.e.
the relation

|Vud |2 + |Vus |2 + |Vub|2 = 1, (5.254)

by combining experimental information with lattice results for f+(0) and fK+/fπ+ .
Neglecting the contribution from |Vub|2 ≈ 1.7 · 10−5, one finds that |Vud |2 + |Vus |2
can be determined with a total precision at the percent level, by combining the
FLAG estimates23 for f+(0) and fK+/fπ+ with the experimentally accessible
combinations |Vus |f+(0) = 0.2165(4) and |Vus/Vud |fK+/fπ+ = 0.2760(4)
[244, 364]. In QCD with dynamical light, strange and charm quarks (Nf = 2+1+1)
the result is |Vud |2 + |Vus |2 = 0.9797(74), which signals a slight tension of
2.7 standard deviations with the Standard Model. The precision of the unitarity test
can be sharpened considerably by replacing |Vud | with the value extracted from
neutron β-decay, i.e. |Vud | = 0.97417(21) [365]. It is then sufficient to provide
one additional constraint from lattice QCD, either in the form of f+(0) or the
ratio fK+/fπ+ . Inserting the lattice result for f+(0) yields |Vud |2 + |Vus |2 =
0.99884(53), which again differs from unitarity by about 2σ . Using instead the

23See the web update at http://flag.unibe.ch/.

http://flag.unibe.ch/
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lattice result for fK+/fπ+ implies |Vud |2 + |Vus |2 = 0.99986(46). Thus, first-row
unitarity can be probed with permil-level precision [247].

Heavy-Light Decay Constants and Form Factors The treatment of heavy quarks
on the lattice presents additional significant challenges: since the mass of the charm
quark is close to typical values of the inverse lattice spacing, which acts as the
ultraviolet cutoff, lattice results are prone to suffering from large discretisation
errors. Moreover, the mass of the bottom quark exceeds currently accessible values
of a−1, and specially designed methods are required for a consistent treatment. This
has been discussed extensively in Sect. 5.7.2 of the original review.

The overall precision of lattice estimates for weak hadronic matrix elements
involving charm and bottom quarks has vastly improved over the past decade. As
shown in Table 2 of FLAG 2016 [247], the leptonic decay constants of the B and Bs

mesons are now known at the level of 2%, while ratios such as fBs /fB have been
determined with even better accuracy [347, 366–373]. Since the 2016 edition of the
FLAG report, new results obtained with Nf = 2+1+1 flavours of dynamical quarks
[343, 374, 375] have pushed the overall precision to the sub-percent level, which is
an impressive achievement. Also the estimates of the individual B-parameters B̂B

and B̂Bs , their ratios and combinations with the leptonic decay constants are now
known with overall errors at the percent level [347, 370, 376, 377].

Results for form factors describing semi-leptonic decays of hadrons containing
b-quarks, such as B → (D,D∗)
ν, or even �b → p
ν have reached a
level of precision that is sufficient for competitive determinations of the CKM
matrix elements Vcb and Vub from exclusive processes. An extensive discussion
is presented in the web update of the FLAG report.

5.9.4 Nucleon Matrix Elements

The understanding of the internal structure of the nucleon in terms of the funda-
mental interactions between its constituents, the quarks and gluons, has become a
major activity within the field of lattice QCD. Structural information is encoded
in quantities such as form factors, structure functions and (generalized) parton
distribution functions (PDFs). An open problem in this context is the decomposition
of the proton’s spin in terms of the spins of quarks and gluons, as well as their
angular momentum [378, 379]. Another important issue is the so-called “proton
radius puzzle” [380], which arises due to the observed discrepancy between the
proton radius extracted from the Lamb shift in muonic hydrogen [381, 382]
compared to the more traditional determinations from electron-proton scattering
[383] or the Lamb shift in electronic hydrogen [384]. Accurate knowledge of the
electromagnetic form factors of the proton are indispensable in order to resolve—or
corroborate—this puzzle.

The determination of quantities such as nucleon form factors in lattice QCD pro-
ceeds by calculating the corresponding hadronic matrix elements between nucleon
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initial and final states. A strong motivation for computing such quantities is provided
by the fact that fundamental interactions are often probed in scattering experiments
involving nuclear targets. For instance, probing the neutrino sector requires accurate
knowledge of the scattering cross sections of neutrinos with nuclear targets. Similar
considerations apply to the search for dark matter candidates. Therefore, precise
determinations of the corresponding nucleon matrix elements are indispensable for
exploring the limits of the SM.

The past decade has seen a huge rise in the number of publications describing
lattice calculations of nucleon matrix elements. Quantities that have been studied
include

• the electromagnetic form factors of the nucleon, GE(Q
2) and GM(Q2), which

give access to the electric and magnetic charge radii of the nucleon and its
magnetic moment [385–397];

• the iso-vector axial charge of the nucleon, gA, which is a measure of the strength
of weak interaction in neutron β-decay [386, 387, 389, 392, 397–414], as well as
the scalar and tensor charges, gS and gT [386, 393, 404–406, 411, 412, 414–419];

• axial and induced pseudoscalar form factors of the nucleon [397, 407, 409, 420,
421], as well as the strange electromagnetic and axial form factors [421–426,
529] which probe the quark sea inside the nucleon;

• the pion-nucleon σ -term σπN [412, 427–438] and the strange content of the
nucleon σs [412, 429–431, 435–444]. These σ -terms are proportional to nucleon
matrix element of the flavour-diagonal scalar density, qq , which parameterizes
the rate of change in the nucleon mass due to a non-zero value of the correspond-
ing quark mass.

Recent reviews, presented at the annual conference on lattice field theory, can be
found in Refs. [445–447]. Some results on nucleon form factors and other matrix
elements are reviewed in section 3.2.5 of [448], and a dedicated chapter has been
prepared for the 2019 edition of the FLAG report. In addition, there has been a
community effort in the form of a white paper [449] in which lattice results are used
to reduce the overall uncertainties in polarized and unpolarized proton PDFs and
their moments.

The relevant nucleon hadronic matrix elements are extracted from suitable
three-point correlation functions of quark bilinears between interpolating operators
representing the initial and final-state nucleons. Examples of the corresponding
diagrams, with the initial-state nucleon placed at Euclidean time t = 0 (the source),
the final-state nucleon at time ts (the sink) and the operator insertion at time t ,
are shown in Fig. 5.24. In addition to the quark-connected diagram, in which the
operator is inserted on a valence quark line, there are also quark-disconnected
diagrams in which the operator probes the quark sea. The latter class of diagrams
must be computed to determine, for instance, iso-scalar quantities, the strangeness
form factors and the σ -terms.

Precise determinations of nucleon matrix elements with controlled statistical and
systematic errors are particularly challenging. This is a consequence of the fact that
the noise-to-signal ratio in three-point correlation functions corresponding to the
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Fig. 5.24 Quark-connected (left) and disconnected (right) diagrams representing the interaction
of the vector current with the nucleon

diagrams in Fig. 5.24 grows exponentially with a rate proportional to exp{(mN −
3
2mπ)ts}, where mN and mπ denote the nucleon and pion masses, respectively,
and ts is the source-sink separation. Techniques designed to enhance the statistical
signal at affordable numerical cost have been developed and applied, including
the truncated solver method [450] and “all-mode-averaging” [451]. Furthermore, a
technique to achieve an exponential error reduction via domain decomposition and
multi-level integration has been proposed and tested in [452, 453]. So far, it has not
been employed in actual calculations of nucleon matrix elements with dynamical
quarks.

Quark-disconnected diagrams of the type shown on the right of Fig. 5.24 are
intrinsically even noisier than their quark-connected counterparts and require special
techniques that balance statistical accuracy against numerical cost. Commonly
applied variance reduction techniques for quark-disconnected diagrams include
hierarchical probing [454, 455], the coherent source sequential propagator method
[389, 456] low-mode averaging [457, 458], the hopping parameter expansion [450,
459–461] and partitioning/dilution [275, 462]).

Despite these improvements, typical values of the source-sink separation ts for
which the signal has not yet disappeared into the noise are limited to ts � 1.5 fm.
Since the correlation function is dominated by the ground state for t, (ts − t) →
∞, it is then not guaranteed that the matrix element of interest can be extracted
without incurring a bias from unsuppressed excited state contributions, as long as
one cannot probe the region ts > 1.5 fm. Hence, in addition to “standard” systematic
effects such as lattice artefacts or finite-volume effects, one must also ensure that
the asymptotic regime of nucleon correlation functions has been correctly isolated.
Indeed, controlling excited state effects has become perhaps the most important
issue in current lattice calculations of nucleon matrix elements. The commonly used
strategies include

• fits to three-point correlation functions or suitably defined ratios of correlators
including sub-leading contributions from excited states [393, 394];

• calculations of three-point correlators summed over the operator insertion time t

[463–467]. Contributions from excited states can be shown to be parametrically
more strongly suppressed than in the standard case [468];
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• increasing the projection of nucleon interpolators onto the ground state [404,
469], as well as the construction of an operator basis for the variational method,
which allows for the projection onto the approximate ground state [456, 469,
470].

The first two approaches proceed by fitting data obtained in a finite interval of
source-sink separations ts to a function that describes the approach to the asymptotic
behaviour. To be able to resolve the sub-leading contributions from excited states in
such a fit obviously requires sufficiently precise input data.

Another challenge for lattice calculations of nucleon matrix elements is the
accurate description of the pion mass dependence. Although simulations at or near
the physical pion mass are now routinely performed, the result at the physical
point is often obtained via an extrapolation in the pion mass. The fit ansatz for
the pion mass dependence is usually derived from chiral effective theory. However,
the convergence properties of baryonic chiral perturbation theory are not as well
understood as in the mesonic sector, and it is still unclear whether the predicted
functional form provides a good description in the pion mass range over which it is
applied. It is thus mandatory to gather sufficiently precise results at small enough
pion mass, in order to control the systematic uncertainty associated with the chiral
extrapolation.

Instead of performing a detailed survey of a variety of nucleon observables, we
single out one particular quantity—the iso-vector axial charge of the nucleon, gA,
which is perhaps the most widely studied of nucleon matrix elements in lattice QCD
and serves to illustrate the current state of the art. The axial charge describes the
coupling of the W boson to the nucleon. In Minkowski space notation it is defined
by

〈
p(k, s′)

∣∣ uγ μγ5d |n(k, s)〉 = gA up(k, s
′) γ μγ5 un(k, s), (5.255)

where un(k, s) and up(k, s
′) denote the Dirac spinors of the neutron and proton

with four-momentum k and spins s and s′, respectively. The axial charge has
been measured experimentally in neutron β-decay, and the current world average
quoted in the PDG is gA = 1.2724 ± 0.0023 [471]. Provided that the experimental
sensitivity is sufficient, it may be possible to probe for scalar and tensor interactions
that are generated by loop effects or arise due to new forces in extensions of the SM.
The definitions of the associated scalar and tensor charges, gS and gT are derived
from Eq. (5.255) by replacing the axial current uγ μγ5d by the scalar density ud and
the tensor current uσμνd , respectively.

The calculation of gA is facilitated by the fact that it is derived from a forward
matrix element without any momentum transfer and, secondly, since the contri-
butions from quark-disconnected diagrams cancel in the iso-vector combination,
for mass-degenerate up and down quarks. Coupled with the fact that a precise
experimental value is known, the iso-vector axial charge is a benchmark quantity
for lattice calculations of nucleon matrix elements. Obviously, the ability of state-
of-the-art lattice calculations to reproduce the experimental result will enhance the
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Fig. 5.25 Compilation of recent results for the isovector axial charge. The vertical red band
indicates the PDG average [471]. Lattice results are labelled by PNDME 18 [411], CalLat 18
[410], PNDME 16 [406], Mainz/CLS 19 [414], PACS 18 [397], χQCD 18 [413], JLQCD 18 [412],
LHPC 12 [392], LHPC 10 [389], Mainz/CLS 17 [409], ETMC 17 [407], ETMC 15 [405], RQCD 14
[404], QCDSF 13 [403] and Mainz/CLS 12 [402]

credibility of lattice predictions for the unmeasured charges gS and gT . Figure 5.25
shows a compilation of recent results for gA, obtained in lattice QCD with Nf =
2, 2+1 and 2+1+1 flavours of dynamical quarks. While most estimates agree with
the experimental result within errors, it is clear that the overall precision of current
lattice calculations does not match that of the experiments. To state this observation
more precisely, we note that the typical total error of current lattice results is at the
level of 1–3% while experiment is an order of magnitude more precise. It should
also be mentioned that, more often than not, lattice results tend to be slightly lower
that the PDG average. Whether this is due to a remnant bias from excited state
contributions or indeed to any other systematic effect, must be investigated in future
calculations able to realize larger source-sink separations.

The tendency to underestimate gA in early lattice calculations of gA has been
attributed to unsuppressed excited state effects. In this context it is interesting to
note that recent analyses of the contributions from Nπ states to nucleon matrix
elements based on chiral effective theory [472, 473] suggest that the asymptotic
(physical) value of gA is approached from above. The different conclusions drawn
from numerical and analytic studies can only be reconciled if one succeeds in
simulating significantly larger source-sink separations at affordable cost.



244 H. Wittig

Given that lattice QCD calculations reproduce the experimental value of bench-
mark quantities such as the axial charge at the level of a few percent, it is interesting
to look at quantities that have not been measured so far. Results for the (iso-vector)
scalar and tensor charges have been reported in [386, 393, 404–406, 411, 412, 414–
419]. For both quantities one obtains gS, gT ≈ 1, and while the typical overall
uncertainty in gS is at the level of 10%, the tensor charge is determined with 3%
precision, similar to that of gA. The 2019 edition of the FLAG report contains
a detailed compilation and comparison of results for the axial, scalar and tensor
charges, as well as flavour-singlet charges and σ -terms. Calculations of these
quantities have matured to a level which allows for global averages to be determined.

Lattice calculations of nucleon matrix elements is a rich subject, and while a
comprehensive discussion of other quantities such as form factors and moments of
PDFs is beyond the scope of this short review, we refer the reader to recent reviews
[445–447], specific sections of [448] and the white paper on PDFs [449].

5.9.5 Hadronic Contributions to the Muon Anomalous
Magnetic Moment

The SM describes with great accuracy and precision the properties of the con-
stituents of the visible matter in the universe but leaves several profound questions
unanswered. For instance, it cannot account for the matter-antimatter asymmetry
and does not explain the vast hierarchy between the electroweak scale and the Planck
mass. Most prominently, the SM cannot account for the presence of dark matter in
the universe for which there is overwhelming observational evidence. Against this
backdrop, the exploration of the limits of the SM and the search for “new physics”
has become a major activity in particle physics. Traditionally, high-energy particle
colliders have had the highest discovery potential. However, despite the fact that
the LHC is the most powerful accelerator in the world, new particles that can, for
instance, explain the dark matter puzzle have not been observed in the expected
region. Therefore, additional search strategies must be pursued to detect evidence
for physics beyond the SM.

Observables that can be measured with very high precision and for which
similarly accurate theoretical predictions exist at the same time, play an increasingly
important rôle for exploring the limits of the SM. One such quantity is the
anomalous magnetic moment of the muon, aμ ≡ 1

2 (gμ − 2), where gμ denotes
the muon’s gyromagnetic ratio. There has been a persistent tension of about 3.5
standard deviations between the measured value and the SM prediction [244]:

a
exp
μ − aSM

μ = (266 ± 76) · 10−11. (5.256)

As described in detail in the extensive reviews in Refs. [474] and [475], the SM
estimate of the anomalous magnetic moment receives contributions from QED, the
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weak and the strong interactions, i.e.

aSM
μ = aQED

μ + aweak
μ + a

strong
μ . (5.257)

While QED effects account for about 99.994% of the absolute value of aSM
μ , its

total uncertainty is completely dominated by the contribution from a
strong
μ . Since the

latter is mostly due to hadronic effects that are intrinsically non-perturbative, it is
clear that special attention must be paid to their reliable evaluation.

The most important quantum corrections to aSM
μ arising from strong interaction

physics are the leading hadronic vacuum polarization (HVP) and hadronic light-by-
light scattering (HLbL) contributions. The HVP contribution, ahvp

μ , which arises at
order α2 (where α is the fine structure constant), can be expressed in terms of a dis-
persion integral of the cross section ratio R(s) = σ(e+e− → hadrons)/σ (e+e− →
μ+μ−), multiplied by a known kernel function. At small values of the centre-of-
mass energy s, the dispersion integral is evaluated using experimental data for the
R-ratio R(s) as input [476–480]. For instance, the recent analysis of Ref. [479],
which is based on the available data for e+e− → hadrons, produced an estimate of
a

hvp
μ = (693.1 ± 3.4) · 10−10. While the total error is at the level of 0.5%, it is clear

that experimental uncertainties enter the SM prediction for aμ in this approach.
The HLbL contribution has been quantified mostly using hadronic models,

although efforts are under way to formulate and apply a dispersive or data-driven
framework to treat some of the dominant sub-processes [481–491]. The current SM
estimate aSM

μ is based on model calculations such as the “Glasgow consensus”, i.e.
ahlbl
μ = (105 ± 26) · 10−11 [492]. Other studies, which have produced consistent

results, can be found in Refs. [474, 478, 493].
Given the importance of aμ for testing the limits of the SM, it is crucial to verify

the current estimates of ahvp
μ and ahlbl

μ and possibly reduce their overall errors using
an ab initio approach such as lattice QCD. Given that two new experiments (E989 at
Fermilab and E34 at J-PARC) are set to improve the precision of the measurement of
aμ by a factor four, the importance of reliably estimating the hadronic contributions
has become even higher. In order to make an impact, lattice QCD must be able to
constrain a

hvp
μ with sub-percent accuracy, while an estimate of ahlbl

μ at the level
of 10% would already be a major step forward. Both tasks, however, present a
considerable challenge to lattice QCD. The current status of lattice calculations of
a

hvp
μ and ahlbl

μ was reviewed extensively in Ref. [494], which can be consulted for
details. Here we present merely an overview of the main issues and a guide to the
literature.

The hadronic vacuum polarization contribution, ahvp
μ , is accessible in lattice QCD

via different integral representations involving the correlator of the electromagnetic
current. The first possibility is to consider a convolution integral over Euclidean
momenta Q2 of the subtracted vacuum polarization function [500, 501]. The second
possibility is the so-called time-momentum representation defined in Ref. [502], in
which the product of the spatially summed vector correlator G(x0) and a kernel
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function is integrated over the Euclidean time x0. A variant of the time-momentum
representation uses the time moments of G(x0) [503]. Finally, there also exists
a Lorentz-covariant formulation in coordinate space [504] involving the point-to-
point vector correlator G(x, y).

In order to meet the precision goal of sub-percent uncertainty, it is mandatory to
have good control over the infrared regime which makes a sizeable contribution to
a

hvp
μ . In the formulation of Refs. [500, 501] this implies that momenta corresponding

to Q2 � m2
μ must be included, since this is where the convolution integral

receives its dominant contribution. Instead, in the time-momentum representation
or the Lorentz-covariant formulation one must constrain the long-distance regime
of the correlator sufficiently well. The statistical accuracy that one can attain
for a

hvp
μ is affected by the well-known noise problem encountered for the vector

correlator, i.e. the fact that the signal-to-noise ratio increases exponentially at large
distances.24 Another limiting factor for the overall precision of a

hvp
μ in lattice

QCD is the knowledge of the lattice scale [499, 505]. At first sight this may seem
surprising, given that ahvp

μ is a dimensionless quantity. However, employing the
time-momentum representation, one easily sees that the lattice scale enters through
the combination (x0mμ)

2 in the kernel function. Similar arguments exist for the

other representations of ahvp
μ . Furthermore, at the level of sub-percent precision, it

is necessary to include the contributions from quark-disconnected diagrams and the
effects from isospin breaking (see Sect. 5.9.2). All of this is explained in great detail
in Ref. [494].

First exploratory calculations of ahvp
μ in full QCD were published in 2008 [506],

and in the following years several studies appeared [497, 507–509], employing a
range of different discretisations of the quark action, which were mostly aimed
at investigating systematic effects. The most recent calculations are focussed on
reducing the overall uncertainties [495, 496, 498, 499, 510–515, 530]. A comparison
of recent estimates for ahvp

μ from lattice QCD to results obtained via the dispersive
approach is shown in Fig. 5.26. As of now, current calculations cannot match
the accuracy of the dispersive approach, but efforts are under way to reduce the
uncertainties to a level that makes the lattice approach competitive with data-driven
methods [494, 516].

In order to determine the hadronic light-by-light scattering contribution, it is
necessary to formulate the problem in such a way that ahlbl

μ is expressed in terms
of quantities that can be computed on the lattice with affordable effort. Several
different strategies have been proposed and are currently being pursued:

In a first method, the matrix element of the electromagnetic current between
explicit muon initial and final states is computed is QCD+QED [517]. In order to
isolate the desired light-by-light scattering contribution, one has to perform a non-
perturbative subtraction. While the method has produced estimates in the expected

24This is similar to, but less severe, than the noise problem encountered in nucleon correlation
functions discussed in Sect. 5.9.4 of this review.
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Fig. 5.26 Compilation of recent results for the hadronic vacuum polarisation contribution in
units of 10−10. The three panels represent calculations with different numbers of sea quarks.
Lattice results are labelled by ETMC 18 [515], BMW 17 [495], HPQCD 16 [496], ETMC 13
[497], Mainz/CLS 19 [530], RBC/UKQCD 18 [498], and Mainz/CLS 17 [499]. The phenomeno-
logical determinations based on the R-ratio are labelled as HLMNT 11 [477], DHMZ 11 [476],
Jegerlehner 17 [478] and KNT 18 [480]. The red vertical band denotes the estimate from dispersion
theory quoted in KNT 18 [480]

range, statistical errors are large, as a result of the cancellation between two large
numbers [518].

In another method proposed by the RBC/UKQCD Collaboration [519, 520],
the light-by-light scattering diagram is evaluated by inserting three explicit photon
propagators. The positions of the insertion of these propagators are then sampled
stochastically. In this way, results for the quark-connected and the leading quark-
disconnected contributions have been obtained, i.e.

(ahlbl
μ )conn = (116.0±9.6)·10−11, (ahlbl

μ )disc = (−62.5±8.0)·10−11. (5.258)

The sum of the two contributions gives ahlbl
μ = (53.5 ± 13.5) · 10−11 which

differs from the Glasgow consensus by a factor two. However, before jumping to
conclusions one must take into account that systematic effects have not yet been
fully quantified in these calculations.

The Mainz group has proposed a method in which the QED kernel function is
computed semi-analytically in infinite volume [521–524]. This has the advantage
that large finite-volume effects arising from the massless photon mode are absent.
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The method has yet to produce explicit estimates for ahlbl
μ . A variant was proposed

by RBC/UKQCD in Ref. [525]. Another project of the Mainz group has focussed on
the forward light-by-light scattering amplitude, which can be linked via the optical
theorem and dispersive sum rules to models of the cross section for the process
γ ∗γ ∗ → hadrons [526, 527]. The results provide an important test for model
estimates of ahlbl

μ .
Finally, lattice QCD calculations can also be used to directly test model estimates

of the expected dominant contribution to ahlbl
μ from the pion pole, which requires

knowledge of the transition form factor for π0 → γ ∗γ ∗. The calculation of Ref.
[528], which was performed in two-flavour QCD, gives

(ahlbl
μ )π

0 = (65.0 ± 8.3) · 10−11 (5.259)

which is in very good agreement with model estimates [491]. It will be interesting
to extend this calculation by including the corresponding contributions of the η and
η′ mesons.

This brief survey demonstrates that lattice QCD contributes in many different
and complementary ways to constrain the hadronic contributions to the muon g − 2
more precisely.

5.9.6 Concluding Remarks

In this short review we have charted the progress of lattice QCD calculations over
more than a decade, i.e. since the publication of the original review article. Back in
2007, lattice QCD was on the verge of providing estimates for hadronic observables
from first principles, which were of immediate phenomenological relevance. In the
meantime, lattice QCD has become an indispensable tool in particle and hadron
physics: In addition to to providing accurate estimates of SM parameters and input
quantities for analyses in flavour physics, lattice QCD is now also making inroads
into field such as nucleon structure and precision observables. This underlines the
important role of lattice calculations for exploring the limits of the SM and searches
for new physics.

Furthermore, studying hadronic interactions, i.e. the physics of resonances and
multi-hadron systems, has become a major activity in lattice QCD and also serves
as a basis for the understanding of light nuclei from first principles. Other important
applications of the lattice formulation that have not been covered in this article
are studies of matter under extreme conditions. Indeed, many features of the
QCD phase diagram and properties of the quark-gluon plasma that are otherwise
inaccessible can nowadays be obtained reliably from lattice calculations. Perhaps
the most significant development since Ken Wilson’s 1989 remark, quoted in the
introduction, is the fact that there is now a vigorous interaction between lattice QCD
and experiment.
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153. D. Bećirević, P. Boucaud, V. Gimenez, V. Lubicz and M. Papinutto, Eur. Phys. J. C37 (2004)

315, hep-lat/0407004.
154. JLQCD Collaboration, S. Aoki et al., Phys. Rev. Lett. 80 (1998) 5271, hep-lat/9710073.
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Chapter 6
The Discovery of the Higgs Boson
at the LHC

Peter Jenni and Tejinder S. Virdee

6.1 Introduction and the Standard Model

The standard model of particle physics (SM) is a theory that is based upon principles
of great beauty and simplicity. The theory comprises the building blocks of visible
matter, the fundamental fermions: quarks and leptons, and the fundamental bosons
that mediate three of the four fundamental interactions; photons for electromag-
netism, the W and Z bosons for the weak interaction and gluons for the strong
interaction (Fig. 6.1).

The SM provides a very successful description of the visible universe and has
been verified in many experiments to a very high precision. It has an enormous range
of applicability and validity. So far no significant deviations have been observed
experimentally.

The possibility of installing a proton-proton accelerator in the LEP tunnel, after
the e+e− programme, was being discussed in the 1980’s. At the time there were
many profound open questions in particle physics, and several are still present. In
simple terms these are: what is the origin of mass i.e. how do fundamental particles
acquire mass, and why do they have the masses that they have? Why is there more
matter than anti-matter? What is dark matter? What is the path towards unification of
all forces? Do we live in a world with more space-time dimensions than the familiar
four? The LHC [1, 2] was conceived to address or shed light on these questions.
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Fig. 6.1 Particle content of the SM, including the Higgs boson considered to be the keystone of
the SM

The question of how fundamental particles acquire mass was first posed in the
following form: how does the photon remain massless, giving the electromagnetic
force an infinite range, whilst the W and Z bosons acquire a seemingly large mass,
explaining the short-range of the weak nuclear force.

In 1964 three groups of physicists, Englert and Brout; Higgs; and Guralnik,
Hagen, and Kibble [3–7], proposed that there exists an omnipresent field, pervading
the universe, and fundamental particles can acquire mass by interacting with this
field. At the heart of the mechanism endowing mass was spontaneous symmetry
breaking of a local gauge symmetry, through the field’s non-zero vacuum expecta-
tion value. The new field being a quantum field had an associated quantum, which
became known as the Higgs boson.

Today, it seems remarkable that not much attention was paid to the papers [3–7],
and even less to the associated Higgs boson. This was partly due to the fact that in
the early 1960’s most particle physicists were trying to make sense of a plethora of
new particles being discovered.

In 1967 Kibble [8] generalized his earlier work with Guralnik and Hagen and
brought the mechanism of spontaneous symmetry breaking closer to its application
to the description of the real world, one in which the photon remains massless and
the W and Z particles become massive [9]. This vein of work reached fruition in
the seminal papers of Weinberg [10] and Salam [11], which raised the prospect
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of the unification of electromagnetism and weak interactions, now labeled the
electro-weak theory. Earlier work on a similar model had been carried out by S.
Glashow [12]. Weinberg and Salam assumed that W and Z bosons acquired mass by
interacting with the field introduced in the earlier papers [3–7].

Both Weinberg and Salam conjectured that such a model would be renormaliz-
able i.e. calculations would give finite answers. The key prediction of their theory
was the existence of the Z0 boson, in addition to the long-known charged W bosons.
Again not much attention was paid to these papers.

The situation changed dramatically in 1971. t’Hooft in a tour de force, using
methods developed by Veltman, outlined the proof that, indeed, the electro-weak
theory would be renormalizable [13]. The electro-weak theory started being taken
very seriously, so much so that Weinberg’s paper [10] has now become the most
cited paper in physics.

Experimentally, the 1973 discovery of weak neutral currents [14], mediated by
the Z0 boson, provided strong evidence for the verity of the electro-weak theory.

In parallel much progress had been made in understanding the particles that were
being discovered in the 1950s and 1960s. Eventually, these were understood through
an underlying gauge field theory, where the “charge” of strong interactions was
labeled “colour”, and the interactions of coloured quarks are mediated by gluons.
The theory [15, 16] displayed two main properties: colour confinement, resulting in
the hadrons being colourless, and asymptotic freedom, leading to a steady decrease
in the strength of the interaction between quarks and gluons as the interaction energy
scale increases. The latter enabled the use of perturbation theory for calculating
strong interaction processes at high energies, which has been key to understanding
the physics at the LHC.

Further major discoveries included those of new quarks and the gluon meant that
the discovery, in 1983, of the W and Z bosons [17, 18] at CERN set the stage for the
search for the Higgs boson. The Higgs boson, that earlier had been considered to be
a minor and uninteresting feature of the spontaneous breaking mechanism, became
to assume a role of central importance as the still missing key particle of the SM.
The SM worked so well that the Higgs boson, or something else doing the same job,
more or less had to be present.

In 1984, one year after the discovery of the W and Z bosons, a workshop was held
in Lausanne where first ideas were discussed about a possible proton-proton collider
and associated experiments to make a search for such a particle. The aim was to
reuse the LEP tunnel after the end of the electron-positron programme. Amongst
the leading protagonists were the scientists from UA1 and UA2 experiments. An
exploratory machine was required to cover the wide range of mass values possible
for the SM Higgs boson, its diverse decay signatures and production mechanisms
and to discover any new high-mass particles at a centre-of-mass energy ten times
higher than previously probed. A hadron (proton-proton) collider is such a machine
as long as the proton energy is high enough and the instantaneous luminosity, L ,
measured in cm−2 s−1, is sufficiently large. The rate of production of a given particle
is determined by L × σ where σ is the cross section of the production reaction,
measured in units of cm2. The most interesting and easily detectable final states at a
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hadron collider involve charged leptons and photons and have a low σ × BR, where
BR is the branching ratio into the decay mode of interest.

A major goal of the LHC thus became the elucidation of the mechanism for
electroweak symmetry breaking. It also was clear that a search had to be made for
new physics at the TeV energy scale as the SM is logically incomplete; it does
not incorporate gravity. A promising avenue is the superstring theory, an attempt
towards a unified theory with dramatic predictions of extra space dimensions and
supersymmetry.

The LHC and its experiments were designed to find new particles, new forces
and new symmetries amongst which could be the Higgs boson(s), supersymmetric
particles, Z′ bosons, or evidence of extra space dimensions. An experiment that
could cover the detection of all these hypothesized but yet undiscovered particles
would provide the best opportunity to discover whatever else might be produced at
LHC energies.

In July 2012 the ATLAS and CMS collaborations discovered a Higgs boson [19,
20].

This paper is based on the previous articles [1, 21–23] written by the authors,
some with M. Della Negra, using the recently published results from the ATLAS
and CMS Collaborations on the measurements of the properties of the Higgs boson.

6.2 The SM Higgs Boson

In the early 1990’s the search for the SM Higgs boson played a pivotal role in the
design of the ATLAS and CMS experiments. The mass of the Higgs boson (mH)
is not predicted by theory, but from general considerations, mH < 1 TeV. At the
start of the LHC operation, direct searches for the Higgs boson carried out at the
LEP collider led to a lower bound of mH > 114.4 GeV at 95% CL [24], whilst
precision electroweak constraints, including LEP data, implied that mH < 152 GeV
at 95% confidence level (CL) [25]. At time of the discovery at CERN, CDF and D0
experiments operating the Tevatron proton antiproton collider, detected an excess of
events in the range 120–135 GeV [26].

It is known that quantum corrections make the mass of any fundamental scalar
particle, such as the SM Higgs boson, float up to the next highest mass scale
present in the theory, which in the absence of extensions to the SM, can be as
high as 1015 GeV. Hence finding the scalar Higgs boson would immediately raise a
more puzzling question: Why should it have a mass in the range between 100 GeV
and 1 TeV? One appealing hypothesis, much discussed at the time, and still being
investigated, predicts a new symmetry labeled supersymmetry. For every known SM
particle there would be a partner with spin differing by half a unit; fermions would
have boson superpartners and vice versa, thus doubling the number of fundamental
particles. The contributions from the boson and fermion superpartners, and vice a
versa, with amplitudes of opposite signs, would lead to their cancellation, and allow
a low mass for the Higgs boson. In supersymmetry five Higgs bosons are predicted
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to exist with one resembling the SM Higgs boson with a mass below about 140 GeV.
The lightest of this new species of superparticles could be the candidate for dark
matter whose presence, by mass, in the universe is around five times more abundant
than ordinary matter.

In 1975, physicists had already started to turn their attention to how a putative
Higgs boson would manifest itself in experiments [27].

The search for the SM Higgs boson provided a stringent benchmark for evaluat-
ing the physics performance of various experiment designs under consideration in
the early 1990s and heavily influenced the conceptual design of the general-purpose
experiments, ATLAS and CMS.

6.2.1 Higgs Boson: Production and Decay

Although the mass of the Higgs boson is not predicted by theory, at a given mass all
of its other properties are precisely predicted within the SM. The SM Higgs boson
is short-lived (10−23 s) and hence the experiments only detect the decay products.

The cross sections for differing production mechanisms and the branching
fractions for differing decay modes of the SM Higgs boson, as a function of
mass, are illustrated in Fig. 6.2a, b, respectively [28], and the principal ones for
mH = 125 GeV and at

√
s = 14 TeV are tabulated in Table 6.1. The uncertainties

on these numbers can be found in the twiki in Reference [28].
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Fig. 6.2 (a) SM Higgs boson production cross sections as a function of the centre-of-mass energy,√
s, for pp. collisions. The VBF process is indicated here as qqH [28]. The theoretical uncertainties

are indicated as bands. (b) Branching ratios for the main decays of the SM Higgs boson near
mH = 125GeV [28]. The theoretical uncertainties are indicated as bands
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Table 6.1 The Production cross sections and decay branching fractions at
√

s = 14 TeV

Production process Cross section (pb) Decay Mode H→ Branching fraction (%)

gg fusion (pp → H) 54.67 bb 58.24
qqH (VBF) 4.28 WW(∗) 21.37
WH (associated) 1.51 ττ 6.27
ZH (associated) 0.99 ZZ(∗) 2.62
ttH 0.61 γγ 2.27 × 10−1

μμ 2.18 × 10−2

The dominant Higgs-boson production mechanism, labeled pp. → H in Fig. 6.2a
(for masses up to ≈ 700 GeV) is gluon–gluon fusion.

The vector boson fusion (VBF) mechanism (WW(∗) or ZZ(∗)), labeled pp. → qqH
in Fig. 6.2a, becomes important for the production of higher-mass Higgs bosons.
Here, the quarks that emit the W or Z bosons have transverse momenta of the order
of W and Z masses. The detection of the resulting high-energy jets in the forward
pseudorapidity1 regions, 2.0 < |η| < 5.0, can be used to tag the reaction, improving
the signal-to-noise ratio. Tagging of forward jets from the VBF process has turned
out to be very important in the measurements of many of the properties of the Higgs
boson.

The production of the Higgs boson in association with W and Z boson, labeled
pp. → W or Z H in Fig. 6.2a, or the production via the t-tbar fusion, has a much
lower cross section, but nevertheless has been important for the final states with
large backgrounds such as b-bbar, τ+τ− or μ+μ−.

The Higgs boson decays in one of several ways (decay modes) into known SM
particles, the types depending on its mass. Hence a search had to be envisaged not
only over a large range of masses but also many possible decay modes: into pairs of
photons, Z bosons, W bosons, τ leptons, and b quarks.

In the mass interval 110 < mH < 150 GeV, early detailed studies indicated that
the two-photon decay would be the main channel likely to give a significant signal
[29]. Detailed studies of another mode, H → ZZ(∗) → 



, where 
 stands for
a charged electron or a muon, dubbed the “golden” mode, suggested that it could
be used to cleanly detect the Higgs boson over a wide range of masses starting
around mH = 130 GeV [30]. One or both of the Z bosons would be virtual for
mH < 180 GeV, and the upper end of the detection range was indicated to be about
mH < 600 GeV.

In the region 700 < mH < 1000 GeV the cross-section decreases so Higgs boson
decays via W and Z decays, where the W and Z decays are to channels with higher
branching fractions, have to be employed.

1The pseudorapidity η = −ln[tan(θ /2)] where and θ is the polar angle measured from the positive
z axis (along the beam direction).
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6.3 The Large Hadron Collider

6.3.1 The Road to the LHC

With the prospect of ground-breaking physics at the LHC, several workshops
and conferences followed, where the formidable experimental challenges started
to appear manageable, provided that enough R&D work on detectors could be
carried out. In 1987 the workshop in La Thuile of the so-called “Rubbia Long-
Range Planning Committee” resulted in the recommendation of a proton-proton
collider, labeled the Large Hadron Collider (LHC), as the next accelerator for
CERN. Meetings of note were the ECFA LHC Workshop in Aachen in 1990
[31], and “Towards the LHC Experimental Programme” [32] which took place
in Evian-les-Bains, France in March 1992. At Evian several proto-collaborations
presented their designs in “Expressions of Interest”. In addition, from the early
1990s, CERN’s LHC Detector R&D Committee (DRDC), which reviewed and
steered R&D groupings, greatly stimulated innovative developments in detector
technology.

Table 6.2 lists the major steps on the long road to the discovery of the Higgs
boson.

Table 6.2 The LHC Timeline

1984 Workshop on a Large Hadron Collider in the LEP tunnel, Lausanne, Switzerland.

1987 Workshop on the Physics at Future Accelerators, La Thuile, Italy. The Rubbia
“Long-Range Planning Committee” recommends the Large Hadron Collider as the
right choice for CERN’s future.

1990 LHC Workshop, Aachen, Germany (discussion of physics, technologies and detector
design concepts).

1992 General Meeting on LHC Physics and Detectors, Evian-les-Bains, France (with four
general-purpose experiment designs presented).

1993 Three Letters of Intent evaluated by the CERN peer review committee LHCC. ATLAS
and CMS selected to proceed to a detailed technical proposal.

1994 The LHC accelerator approved for construction, initially in two stages.
1996 ATLAS and CMS Technical Proposals approved.
1997 Formal approval for ATLAS and CMS to move to construction (materials cost ceiling

of 475 MCHF).
1997 Construction commences (after approval of detailed Technical Design Reports of

detector subsystems).
2000 Assembly of experiments commences, LEP accelerator is closed down to make way for

the LHC.
2008 LHC experiments ready for pp. collisions. LHC starts operation. An incident stops

LHC operation.
2009 LHC restarts operation, pp. collisions recorded by LHC detectors.
2010 LHC collides protons at high energy (centre of mass energy of 7 TeV).
2012 LHC operates at

√
s = 8 TeV: discovery of a Higgs boson.

2015 LHC operates at
√

s = 13 TeV.
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6.3.2 The Challenges of the LHC Accelerator

In this section we outline some of the features and the technological challenges of
the LHC [1].

Protons are accelerated by high electric fields generated in superconducting r.f.
cavities and are guided around the accelerator by powerful superconducting dipole
magnets. The dipole magnets are designed to operate at 8.3 Tesla, allowing the
proton beams to be accelerated to 7 TeV, with the current carrying conductor cooled
down to 1.9 K in a bath of superfluid helium. The beam pipe in which the protons
circulate is under a better vacuum, and at a lower temperature, than that found in
inter-planetary space.

The choices of two-in-one high-field superconducting dipole magnets operating
at a temperature of 1.9 K, cooled by super-fluid helium were critical to a competitive
and affordable design. The LHC could only be competitive with the Superconduct-
ing Super Collider (SSC), whose construction had started in the early 1990s in
Texas, U.S.A, if the instantaneous luminosity could be an order of magnitude higher
(at 1034 cm−2 s−1). However, the SSC was later cancelled in October 1993.

The main challenges for the accelerator were to build more than one thousand
two hundred 15 m long superconducting dipoles able to reach the required
magnetic field, the large distributed cryogenic plant to cool the magnets and other
superconducting accelerator structures, and the control of the beams, whose stored
energy will reach, in design operation, a value of 350 MJ. This magnitude requires
extraordinary precautions for beam handling, since if, for any reason this beam is
lost in an uncontrolled way, it can do considerable damage to the machine elements,
which would result in months of down time.

The counter-rotating LHC beams are organized in 2808 bunches, each of ~1011

protons per bunch separated by 25 ns, leading to a bunch crossing rate of ~40 MHz.
Proton beams were first circulated in the LHC in September 2008, and in the

days that followed, rapid progress was made in getting a beam to circulate with
very good lifetime. Soon after the start a technical incident occurred in the last of
the eight sectors to be tested as it was being ramped up to the pre-agreed start-
up energy of 5 TeV. The root cause was a failure of one of the 50,000 soldered
joints. Substantial damage was done to a large part of the sector involved. After
repairs lasting about a year, the LHC started operating again in November 2009.
Collisions took place at the injection energy (450 GeV per beam), followed in 2010
and 2011, by a very successful operation at a centre-of-mass energy of 7 TeV. In
2012 the centre-of-mass energy was increased to 8 TeV. The performance surpassed
expectations and an integrated luminosity of ~25 fb−1, corresponding to 2 × 1015

proton-proton interactions, was delivered. This is labeled Run 1.
During the period 2015–2018 the LHC operated at a proton-proton centre-

of-mass energy of 13 TeV and delivered a total of over 150 fb−1 of integrated
luminosity. The collider performed close to, or beyond, its design values in many
parameters, operating at 13 TeV and reaching peak luminosities of 2 × 1034
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Table 6.3 Some of the LHC
parameters of attained/design
performance for ATLAS and
CMS

Achieved Design

Energy 13 TeV 14 TeV
Max. no. of bunches 2556 2808
Bunch spacing (ns) 25 25
Protons/bunch (1011) 1.1 1.15
β∗ (cm) 30 55
Peak luminosity (1034 cm−2 s−1) 2.1 1.0
Total integrated luminosity (fb−1)√

s = 7 TeV (Run 1) 5√
s = 8 TeV (Run 1) 20√
s = 13 TeV (Run 2) 140

cm−2 s−1, twice the design value. This period of operation is labeled Run 2. The
achieved performance at the time of writing (2018) can be found in Table 6.3.

6.4 The ATLAS and CMS Experiments

Not only was the putative SM Higgs boson to be rarely produced in the proton
collisions, but also it decays into particles (isolated photons, electrons, and muons)
that are the best identifiable signatures of its production at the LHC also was
expected to be rare. The rarity is illustrated by the fact that Higgs boson production
and decay to one such distinguishable signature (H → ZZ(∗) → 4 l) happens roughly
once in 1013 proton-proton collisions. So a vast number of proton-proton collisions
per second have to be delivered by the accelerator and examined by the experiments.
At the end of 2018, the LHC was operating at a collision rate of around 109 per
second. The ATLAS and CMS detectors operate in the harsh environment created
by this huge rate of proton-proton collisions. The challenges posed are discussed in
reference [33, 34].

6.4.1 The Challenges for ATLAS and CMS Experiments

At the Aachen workshop the physics case for the LHC was thoroughly examined.
The experimental search for the Higgs boson across the entire possible range of
mass was fully explored for the first time. There was a prevalent prejudice of the
protagonists of supersymmetry that mH should be smaller than 135 GeV. As the
decay width of the SM Higgs boson is about 5.5 MeV at mH = 100 GeV, and
8.3 MeV at 150 GeV, the width of the reconstructed invariant (γγ or 4 l) mass
distribution, and hence the signal/background ratio, would be limited by the elec-
tron/photon energy resolution of the electromagnetic calorimeter, and the charged
particle momentum resolution of the inner tracker and the muon spectrometer. This
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lower end of the remaining open mass range was considered to be especially difficult
in hadron colliders. Hence the LHC experiments had to pay particular attention to
the performance requirements imposed by the search for the Higgs boson in this
low mass range. As a consequence much importance was placed on the tracking
(inner and muon), as well as the magnetic field strength, and the electromagnetic
calorimeters.

The search for the high-mass Higgs boson, particles predicted by SUSY, and
other exotic states mentioned above, required excellent resolution for jets and
missing transverse momentum (pT

miss), requiring full solid angle calorimeter
coverage.

A saying prevalent in the late 1980’s and early 1990’s captured the challenge:
‘We think we know how to build a high energy, high luminosity hadron collider—
but we don’t have the technology to build a detector for it’. Making discoveries in
the unprecedented high collision rate environment, generated by around one billion
proton-proton interactions per second, with several tens of simultaneous collisions
per bunch crossing, would require extraordinary detectors. Many technical, finan-
cial, industrial and human challenges lay ahead, which were all overcome, to yield
experiments of unprecedented complexity and power. A flavour can be attained from
articles in reference [35].

At the Evian meeting in 1992 four experiment designs were presented: two
deploying toroids (one with a superconducting magnet in the barrel) and two
deploying superconducting high-field solenoids. The choice of the magnetic field
configuration determined the overall design of the experiments.

The collaborations deploying toroids merged to form the ATLAS Collaboration.
The ATLAS design [35] was based on a very large superconducting air-core toroid
for the measurement of muons, and supplemented by a superconducting 2 Tesla
solenoid to provide the magnetic field for inner tracking and by a liquid-argon/lead
electromagnetic calorimeter with a novel “accordion” geometry. The CMS design
[36] was based on a single large-bore, long, high-field solenoid for analyzing muons,
together with powerful microstrip-based inner tracking and an electromagnetic
calorimeter comprising scintillating crystals.

On top of the selected event of interest, an average of up to around 40 other
proton-proton events are superimposed. These superposed events are referred to as
minimum-bias events, because no selection is made. Thus thousands of particles
emerge from the interaction region every 25 ns where one nanosecond (ns) = 10−9 s.
Hence the products of an interaction under study can be confused with those from
other interactions in the same bunch crossing. This problem, known as pileup,
clearly becomes more severe if the response time of a detector element and its
electronic signal is longer than 25 ns. The effect of pileup can be reduced by using
highly granular detectors with fast, short duration, signals, giving low occupancy
(i.e., a low probability that a detector element will give a signal) at the expense
of having large numbers of detector channels. The resulting millions of electronic
channels require very good time synchronization.

The large flux of particles emanating from the interaction region creates a high-
radiation environment requiring radiation-hard detectors and front-end electronics.
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Access for maintenance is very difficult, time consuming, and highly restricted.
Hence, a high degree of long-term operational reliability had to be attained,
comparable to that which is usually associated with instruments flying on space
missions.

The event selection process (called the trigger) must select among the billion
interactions that occur each second since no more than a thousand events per second
can be stored for subsequent analysis. The short time between bunch crossings,
25 ns, has major implications for the design of the readout and trigger systems. It
takes a long time to make a trigger decision, yet new events occur in every crossing
and a trigger decision must be made for every crossing; the selection process is split
in several levels. The first of these is the Level-1 trigger decision, which takes about
3 μs and selects, on average, one crossing out of 400. During this time the data
must be stored in pipelines integrated into the front-end electronics. In CMS, the
data from these selected events are then moved into a commercial farm of CPUs to
select and store about one thousand/s of the most interesting events for subsequent
analysis.

It cannot be stressed enough how important were the many years of R&D and
prototyping that preceded the start of detector construction. Technologies had to
be developed far beyond what was the state-of-the-art in early 1990s, in terms of
granularity, speed of readout, radiation tolerance, reliability, and very importantly
cost. For many detector subsystems, there were initially several technologies
considered, as it was far from certain which technologies would be able to attain the
required performance. In many cases several variants were developed, prototyped
and tested, before choosing the one best able to fulfill the stringent requirements.
This involved building and testing increasingly more realistic and larger prototypes,
in a process that involved industry from the outset. This took place over a number
of years before construction commenced in the second half of the 1990s.

In the 1990’s the two collaborations, ATLAS and CMS, grew rapidly in terms
of people and institutes. Today each comprises over 3500 scientists and engineers,
from over 150 institutions in more than 40 countries. The talents and resources of
all these scientists were needed to build the experiments, which are now performing
extraordinarily well at the LHC.

The single most important aspect of the experiment design and layout is the
magnetic field configuration for the identification of muons and the measurement
of their momentum. Large bending power is needed to measure precisely the
momentum of charged particles. This forces a choice of superconducting technology
for the magnets. The design configurations chosen by ATLAS and CMS are
discussed below.

6.4.2 The ATLAS Detector

The design of the ATLAS detector [35], shown in Fig. 6.3 (top), is based on
a novel superconducting air-core toroid magnet system, containing ~80 km of
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Fig. 6.3 Schematic longitudinal cut-away views of (top) the ATLAS and (bottom) the CMS
detectors, showing the different layers around the LHC beam axis, with the collision point in the
centre

superconductor cable, in eight separate barrel coils (each 25 × 5 m2 in a ‘racetrack’
shape) and two matching endcap toroid systems. A field of ~0.5 Tesla is generated
over a large volume. The toroids are complemented with a thin superconducting
central solenoid (2.4 m diameter, 5.3 m length) that provides an axial magnetic field
of 2 Tesla.
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The electromagnetic calorimeter consists of a lead/liquid-argon sampling
calorimeter in a novel ‘accordion’ geometry. A plastic scintillator—iron sampling
hadron calorimeter, also with a novel geometry, is used in the barrel part of
the experiment. Liquid-argon hadronic calorimeters are employed in the endcap
regions near the beam axis. The electromagnetic and hadronic calorimeters have
almost 200,000 and 20,000 cells, respectively, and are in an almost field-free region
between the toroids and the solenoid.

The momentum of the muons is precisely measured after traversing the calorime-
ters in the air-core toroid field over a distance of ~5 m. About 1200 large muon
chambers of various shapes, with a total area of 5000 m2, measure the impact
position with an accuracy of better than 0.1 mm. Another set of about 4200 fast
chambers is used to provide the “trigger”.

The reconstruction of all charged particles, and that of displaced vertices, is
achieved in the inner detector, which combines highly granular pixel (50 × 400 μm2

elements, leading to 80 million channels) and microstrip (13 cm × 80 μm elements,
leading to six million channels) silicon semiconductor sensors placed close to the
beam axis, and a ‘straw tube’ gaseous detector (350,000 channels) which provides
about 30–40 signal hits per track. The latter also helps in the identification of
electrons using information from the effects of transition radiation.

The air-core magnet system allows a relatively lightweight overall structure
leading to a detector weighing 7000 tons. The muon spectrometer defines the overall
diameter of 25 m and length of 44 m of the ATLAS detector.

6.4.3 The CMS Detector

The design of the CMS detector [36], shown in Fig. 6.3 (bottom), is based on a
state-of-the-art superconducting high-field solenoid, which first reached the design
field of 4 Tesla in 2006.

The solenoid generates a uniform magnetic field parallel to the direction of the
LHC beams. The field is produced by a current of 20 kA flowing through a rein-
forced Nb-Ti superconducting coil built in four layers. Economic and transportation
constraints limited the outer radius of the coil to 3 m and its length to 13 m. The
field is returned through a 1.5 m thick iron yoke, which houses four muon stations
to ensure robustness of identification and measurement and full geometric coverage.

The CMS design was first optimized to cleanly identify, trigger and measure
muons, e.g. arising from processes such as H → ZZ(∗) → 4 μ and few TeV mass
Z’ → 2 μ, over a wide range of momenta. The muons trace a spiral path in the
magnetic field and are identified and reconstructed in ~3000 m2 of gas chambers
interleaved with the iron plates in the return yoke. Another ~500 fast chambers are
used to provide a second system of detectors for the Level-1 muon trigger.

The next design priority was driven by the search for the decay of the SM Higgs
boson into two photons. A new type of scintillating crystal was selected: lead-
tungstate (PbWO4) crystal.
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The solution to charged particle tracking was to opt for a small number of precise
position measurements of each charged track (~13 each with a position resolution
of ~15 μm per measurement) leading to a large number of cells distributed inside a
cylindrical volume 5.8 m long and 2.5 m in diameter: 66 million 100 × 150 μm2

silicon pixels and 9.3 million silicon microstrips ranging from ~10 cm × 80 μm to
~20 cm × 180 μm. The 198 m2 area of active silicon of the CMS tracker is by far
the largest silicon tracker ever built.

Finally the hadron calorimeter, comprising ~3000 projective towers covering
almost the full solid angle, is built from alternate plates of ~5 cm brass absorber
and ~4 mm thick scintillator plates that sample the energy. The scintillation light
is detected by photodetectors (hybrid photodiodes) that can operate in the strong
magnetic field.

6.4.4 Installation and Commissioning

The two very different and complementary detector concepts, ATLAS and CMS,
resulted in two different strategies for the underground installation of these experi-
ments.

Given its size and its magnet structure, the ATLAS detector had to be assembled
directly in the underground cavern. The installation process began in summer 2003
(after the completion of civil engineering work that started in 1998) and ended in
summer 2008. Figure 6.4 (top) shows the completion of the barrel toroid magnet
system with the insertion of the barrel calorimeters. Figure 6.4 (bottom) shows one
end of the cylindrical barrel detector after 3.5 years of installation work, 1.5 years
before completion. The ends of four of the barrel toroid coils are visible, illustrating
the eightfold symmetry of the structure.

The iron yoke of the CMS detector is divided into five barrel-wheels and three
endcap disks at each end, giving a total weight of 12,500 tons. This structure
enabled the detector to be assembled and tested in a large surface hall while the
underground cavern was being prepared. The sections, weighing between 350 tons
and 2000 tons, were then lowered sequentially between October 2006 and January
2008, using a dedicated gantry system equipped with strand jacks: a pioneering
use of this technology to simplify the underground assembly of large experiments.
Figure 6.5 top shows the lowering of the heaviest and central section, supporting the
superconducting coil. Figure 6.5 bottom shows the transverse section of the barrel
part of CMS illustrating the successive layers of detection starting from the centre
where the collisions occur: the inner tracker, the crystal calorimeter, the hadron
calorimeter, the superconducting coil, and the iron yoke instrumented with the four
muon stations. The last muon station is at a radius of 7.4 m.

Individual detector components (e.g. chambers) of both experiments were
built and assembled in a distributed way all around the globe in the numerous
participating institutes and were typically first tested at their production sites, then
after delivery to CERN, and finally again after their installation in the underground
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Fig. 6.4 (top) Photograph of the barrel toroid magnet system after the completion of the the
installation of the eight coils, (bottom) Photograph of one end of the ATLAS detector barrel with
the calorimeter end-cap still retracted before its insertion into the barrel toroid magnet structure
(February 2007 during the installation phase)

caverns. The collaborations also invested enormous effort in testing representative
samples of the detectors in test beams at CERN and other accelerator laboratories
around the world. These test-beam campaigns not only verified that performance
criteria were met over the several years of production of detector components, but
also were used to prepare the calibration and alignment data for LHC operation. The
so-called large combined test-beam setups, which represented whole ‘slices’ of the
different detector layers of the final detectors, proved to be very important.
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Fig. 6.5 (top) Photograph showing the lowering of the central barrel part and solenoid of the CMS
detector during its installation in the cavern in 2007; (bottom) Photograph of transverse section of
the barrel part of CMS illustrating the successive layers of detection
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During the installation, the experiments made extensive use of the constant flow
of cosmic rays impinging on Earth providing a reasonable flux of muons even at
a depth of 100 m underground. Typically a few hundred per second traverse the
detectors. These muons were used to check the whole chain from sub-detector
hardware to analysis programs of the experiments, and to align the detector elements
and calibrate their response prior to the proton-proton collisions. In particular, after
the LHC incident on 19th September 2008 the experiments used the 15 months
LHC down time, before the first collisions on 23rd November 2009, to run the
full detectors in very extensive cosmic-ray campaigns, collecting many hundreds
of millions of muon events. These runs allowed both ATLAS and CMS to be ready
for physics operation, with pre-calibrated and pre-aligned detectors, by the time of
the first pp collisions.

6.5 Experiment Software and LHC Worldwide Computing
Grid

The experiment collaborations themselves develop the software that enables recon-
struction, from raw data, of analyzable objects such as electrons, photons, jets, b
jets, muons, and other charged tracks, and their energies or momenta. Algorithms
have to be run to calibrate the energy deposits; align the hits from charged particles;
and correct for changes in detector response arising from irradiation, variation
in environmental parameters such as temperature, or changes in the position of
detecting elements. The software packages must also simulate the response of
the detectors to the passage of particles generated in simulated events occurring
in bunch crossings that contain interesting physics processes, as well as simple
backgrounds. These include processes such as the production of W or Z bosons,
QCD jets, or Higgs bosons and their decays. Such simulations helped prepare, prior
to the first collisions, the experiments’ end-to-end processing and analysis chains,
which were crucial for the rapid delivery of physics results of outstanding quality
and quantity soon after the first collisions.

The LHC computing system, termed the LHC Worldwide Computing Grid
(WLCG) [1], was conceived to make effective use of distributed resources, work
on a large scale, and enable all the experiments’ scientists, wherever they were
based, to have access to LHC data, and without regard to the extent of the resources
they themselves could afford. The WLCG provided the backbone for the analysis
capabilities of the experiments. The global WLCG has continued to grow, now
encompassing around 170 computing centers in 42 countries, with an infrastructure
that provides access to some 600,000 computing cores, around 500 PB of storage
(50% on disk and 50% on tape), and a network that frequently runs at 100 Gb s−1

between larger sites and at 10 Gb s−1 between smaller sites. The security of access
have been instrumental for building a truly federated computing infrastructure for
science. Although the individual computing tasks described above were already
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familiar in particle physics, the scope, scale, and geographical spread of the LHC
computing and data analysis are unprecedented.

6.6 Operation of the LHC: The Start of Data Taking

On the tenth of September 2008 first beams circulated in the Large Hadron Collider.
Nine days later, during the powering test of the last octant, alarms reached the
LHC accelerator’s control room and safety systems were activated to protect the
accelerator. It turned out that one of the 50,000 soldered joints had malfunctioned.
This led to an electrical arc that pierced the vacuum enclosure of a superconducting
dipole bending magnet leading a massive escape of helium, the pressure wave
of which caused considerable damage. The accelerator went offline for repairs.
The ATLAS and CMS experiments continued to run round-the-clock for a few
months recording billions of traversals of muons from cosmic rays. These data
demonstrated that the experiments were in a good shape to take collision data. After
a few tweaks the ATLAS and CMS experiments were even better prepared for first
collisions, which came on 23rd November 2009. The first collision data were rapidly
distributed, analysed and physics results produced.

Following a preliminary low-energy run in the autumn of 2009, the ATLAS
and CMS experiments started recording high-energy proton-proton collisions in
March 2010 at

√
s = 7 TeV. Some 45 pb−1 of data were recorded, sufficient to

demonstrate that the experiments were working well, according to the ambitious
design specifications and the results they were producing were consistent with the
predictions from known SM physics. Many parameters were examined, including
the efficiency of identification and reconstruction of physics objects, the measured
energy and momentum resolutions, the resolution of peaks in invariant mass
distribution, and more. An example of the performance from the CMS experiment is
the comparison of the observed width of Y particle with the design mass resolution.
The width is expected to be dominated by instrumental resolution. Figure 6.6 shows
that the observed width is measured to be 70 MeV consistent with the design value.
Also observed in such di-muon invariant mass distributions is a history of decades of
particle physics indicating the excellent performance of the experiments. The next
step was to see if known physics could be measured as per the predictions of the
SM, extrapolated to the new energies.

6.6.1 Measurement of SM Processes to Verify Experiment
Performance

Observation and accurate measurement of the production of known SM particles
at the LHC collision energies is a pre-requisite for the exploration of new physics,
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Fig. 6.6 The distribution of the invariant mass for di-muon events, shown here from CMS,
displays the various well-known resonant states of the SM. The inset illustrates the excellent mass
resolution for the three states of the Y family. The mass resolutions in the central region are;
28 MeV (0.9%) for J/ψ, 69 MeV (0.7%) for Y(1S), both dominated by instrumental resolution and
 = 2.5 GeV for the Z dominated by its natural width, and are equal to the design values

including the search for the Higgs boson. The SM processes, such as W and Z
production, are often considered to be ‘standard candles’ for the experiments.

In the ATLAS and CMS experiments, SM physics can be studied with unprece-
dented precision, allowing comparison with the predictions of the SM with small
instrumental systematic errors. The data collected so far have enabled many precise
measurements of SM processes, including the production of light quarks and gluons,
bottom and top quarks, and W and Z bosons, singly and in pairs, and with varying
numbers of jets resulting from higher order processes. A summary of such studies
is shown in Fig. 6.7, where measurements of cross sections for various selected
electroweak and QCD processes are compared with predictions from the SM. These
very diverse measurements, probing cross-sections over a range of many orders
of magnitude, established that the experiments were “physics commissioned” and
ready for discoveries. The detector performance was well understood and known
SM processes were correctly observed, crucially important as they often constitute
large backgrounds to signatures of new physics, such as those expected for the Higgs
boson.

The speed with which these measurements verified the SM predictions for known
physics is a tribute to the large amount of work done by many groups, including
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Fig. 6.7 A comparison of cross-section measurements for electroweak and QCD processes with
theoretical predictions from the SM, shown here as example from the ATLAS experiment

theorists, other collider experiments at LEP, Tevatron, HERA, b-factories and to the
good preparation of the ATLAS and CMS experiments.

In what follows the production of b-bar, τ+τ−, W+W−, etc. will be denoted by
bb, ττ, WW(∗), etc.

Using all the data so far collected extensive searches for new physics, beyond
the standard model, have been performed. No new physics beyond the SM has yet
been discovered. Limits have been set on e.g. quark substructure, supersymmetric
particles (e.g. disfavouring gluino masses below 1.5 TeV in simple models of
supersymmetry), potential new bosons (e.g disfavouring new heavy SSM W′ and Z′
bosons with masses below 3 TeV for couplings similar to the ones for the known W
and Z bosons) and semi-classical black holes in the context of large extra dimensions
(with masses below 10 TeV).

6.7 The Discovery and Properties of a Higgs Boson

Undoubtedly, the most striking result to emerge from the ATLAS and CMS
experiments is the discovery of the Higgs boson at a mass of ~125 GeV [19] and
[20], respectively.
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The SM Higgs boson couples to the different pairs of particles in a set proportion
i.e. for fermions (f) proportional to mf

2, and for bosons (V) proportional mV
4/v2

where v is the vacuum expectation value of the scalar field (v = 246 GeV). Once
produced the Higgs boson disintegrates immediately into known SM particles. Both
the production modes and decay modes and rates are precisely predicted in the
SM. A search had to be made over a large range of masses and the many possible
decay modes with differing branching ratios as shown in Fig. 6.2 and Table 6.1. For
example, at mH = 125 GeV the SM boson is predicted to decay into pairs of photons
with branching fraction (BR) of 2.2 × 10−3, into Z bosons and then four electrons
or muons or two muons and two electrons with BR = 1.25 × 10−4, into a pair of W
bosons and then into llνν with BR ~1%, etc.

For a given Higgs boson mass hypothesis, the sensitivity of the search depends
on:

– the mass of the Higgs boson
– the Higgs boson production cross section (Fig. 6.2a and Table 6.1),
– the decay branching fraction into the selected final state (Fig. 6.2b and Table 6.1),
– the signal selection efficiency,
– the observed Higgs boson mass resolution, and
– the level of backgrounds with the same or a similar final state.

Comparisons with the expectations from the SM for the various combinations of
production and decay modes are usually cast in terms of modifiers such as signal
strength, μ, that is the ratio of the measured production × decay rate of the signal
and the SM expectation i.e. μ = σ.BR/(σ.BR)SM. Signal strength of one would be
indicative of the SM Higgs boson.

CMS and ATLAS increasingly use global event reconstruction algorithms,
labeled particle-flow reconstruction, that attempt to identify, reconstruct and provide
the measurement of the energy of particles by combining information from the inner
tracker, the calorimeters and the muon system in an optimized manner. Hadronic jets
are clustered from the reconstructed particles using the infrared- and collinear-safe
anti-kT algorithm with a distance parameter usually set at 0.4. The jet momenta
are measured by summing vectorially the momenta of all particles in the jet. Jets
originating from b-jets are identified by discriminants that include the presence of
particles originating from vertices displaced from the primary interaction vertex.
A typical b-jet efficiency of around 70% is attained for a 1% misidentification
probability for light quarks and gluons. The missing transverse momentum vector is
taken as the negative of the vector sum of the momenta of all reconstructed particles
in the event; its magnitude is labeled pT

miss.
By the end of 2012 (LHC Run 1) the total amount of data that had been examined

corresponded to an integrated luminosities of ~5 fb−1 at
√

s = 7 TeV and ~ 20
fb−1 at

√
s = 8 TeV, equating to the examination of some 2 × 1015 proton-proton

collisions.
By the end of the Run 2 (2018) the total amount of data that had been recorded

corresponded to an integrated luminosities ~150 fb−1 at
√

s = 13 TeV, equating to
some 1.5 × 1016 proton-proton collisions.
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6.7.1 Event and Physics Objects Reconstruction and Analysis
Techniques

It is convenient to subdivide the analysis of data relating to Higgs bosons according
to the decay channel, using datasets where the data have been selected to contain
a particular set of final state particles. To improve the sensitivity, the events in this
dataset are usually separated into categories that are intended to reflect the expected
signal-to-background ratio. Several multivariate methods are used in the analyses

– to improve event reconstruction, estimates of the energies/momenta of physics
objects (e.g. photons and electrons, etc.),

– to identify physics objects (such as electrons, photons, b-quarks, tau leptons, etc.)
– to categorize events according to particular production (e.g. ggH, VBF, VH, ttH

etc.), decay mode, or expected signal-to-background ratio.

The reader can find the exact description of the multivariate methods used within
the individual papers referenced in the sections below.

Charged leptons and photons originating from the fundamental partonic pro-
cesses tend to be “isolated” i.e. no other particles surround the one of interest.
A relative isolation condition is applied on such particles. The sum of transverse
momenta of accompanying particles, within an angular radius of approximately 0.3,
around the particle of interest, is divided by the transverse momentum of the particle
of interest. A cut on this ratio is made, the value of which is separately optimized for
electrons, muons or photons. A correction to the accompanying energy is applied
when the instantaneous luminosity is high and undesirable energy from pileup
interactions is accidentally captured in the region.

6.7.2 The Discovery: Results from the 2011 and Partial 2012
Datasets

In the 2011 data-taking run the ATLAS and CMS experiments recorded data at√
s = 7 TeV corresponding to an integrated luminosity of ~5 fb−1. In December

2011, the first “tantalizing hints” of a new particle from both the CMS and
ATLAS experiments were shown at CERN. The general conclusion was that both
experiments were seeing an excess of unusual events at roughly the same place in
mass (in the mass range 120–130 GeV) in two different decay channels. That set the
stage for data taking in 2012.

In January 2012 it was decided to slightly increase the energy of the protons
from 3.5 to 4 TeV, giving a centre of mass energy of 8 TeV. By June 2012 the
number of high-energy collisions examined had doubled and both CMS and ATLAS
had greatly improved their analyses so it was decided to look at the area which
had shown the excess of events but only after all the algorithms and selection
procedures had been agreed, in case a bias was inadvertently introduced. These data
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led to the discovery of a Higgs boson, independently in both the ATLAS and CMS
experiments in July 2012.

In this section we shall concentrate on the region of low mass (114.4 < mH < 150
GeV) where the two channels particularly suited for unambiguous discovery are the
decays to two photons and to two Z bosons, where one or both of the Z bosons could
be virtual, subsequently decaying into four electrons, four muons or two electrons
and two muons. These two decay modes are particularly suited for discovery as
the observed mass resolution (~1% of mH) is the best and the backgrounds are
manageable or small.

6.7.2.1 The H → γγ Decay Mode

In the H → γ γ analysis a search is made for a narrow peak in the diphoton invariant
mass distribution in the mass range 110–150 GeV, on a large irreducible background
from QCD production of two photons (via quark-antiquark annihilation and the
gluon-fusion or “box” diagrams). There is also a reducible background where one or
more of the reconstructed photon candidates originate from misidentification of jet
fragments, with the process of QCD Compton scattering dominating. The relative
fractions of these backgrounds in the selected events are illustrated in Fig. 6.9a.

The event selection requires two “isolated” photon candidates satisfying pT
and photon identification criteria. As an example, CMS applies a threshold of
pT = mγ γ /3 (mγ γ /4) to the leading (sub-leading) photon in pT, where mγ γ is the
diphoton invariant mass. Scaling the pT thresholds in this way avoids distortion of
the shape of the mγ γ distribution. The background is estimated from data, without
the use of MC simulation, by fitting the diphoton invariant mass distribution in a
range (100 < mγ γ < 180 GeV).

The results from the CMS experiments are shown in Fig. 6.8a [20]. A clear peak
at a diphoton mass of around 125 GeV is seen. A similar result was obtained in the
ATLAS experiment [19].

6.7.2.2 The H → ZZ(∗) → 4 l Decay Mode

In the H → ZZ(∗) → 4 l decay mode a search is made for a narrow four-charged
lepton mass peak in the presence of a small continuum background. The background
sources include an irreducible four-lepton contribution from direct ZZ(∗) production
via quark-antiquark and gluon–gluon processes. Reducible background contribu-
tions arise from Z + bb and tt production where the final states contain two isolated
leptons and two b-quark jets producing secondary leptons.

The event selection requires two pairs of same-flavour, oppositely charged
isolated leptons. Since there are differences in the reducible background rates and
mass resolutions between the sub-channels 4e, 4 μ, and 2e2μ, they are analysed
separately. Electrons are typically required to have pT > 7 GeV. The corresponding
requirements for muons are pT > 5 GeV. Both electrons and muons are required to
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Fig. 6.8 (a) The two-photon invariant mass distribution of selected candidates in the CMS
experiment, weighted by S/B of the category in which it falls. The lines represent the fitted
background and the expected signal contribution (mH = 125 GeV). (b) The four-lepton invariant
mass distribution in the ATLAS experiment for selected candidates relative to the background
expectation. The expected signal contribution (mH = 125 GeV) is also shown

be isolated. The pair with invariant mass closest to the Z boson mass is required to
have a mass in the range 40–120 GeV and the other pair is required to have a mass
in the range 12–120 GeV. The ZZ(∗) background, which is dominant, is evaluated
from Monte Carlo simulation studies.

The m4l distribution is shown in Fig. 6.8b for the ATLAS experiment [19]. A
clear peak is observed at ~125 GeV in addition to the one at the Z mass. The latter
is due to the conversion of an inner bremstrahlung photon emitted simultaneously
with the dilepton pair. A similar result was obtained by the CMS experiment [20].

6.7.2.3 Combinations

A search was also made in other decay modes of a possible Higgs boson and
combined to yield the final results published in August 2012 by ATLAS [19] and
CMS [20] experiments. Both ATLAS and CMS independently discovered a new
heavy boson at approximately the same mass, clearly evident in the two different
decay modes, γγ and ZZ(∗). The observed (expected) local significances were 6.0σ

(5.0σ) and 5.0σ (5.8σ) in ATLAS and CMS respectively, indicating that a new
particle had been discovered.

The decay into two bosons (two photons; two Z bosons or two W bosons) implied
that the new particle is a boson with spin different from one, and its decay into two
photons that it carries either spin-0 or spin-2.

The results presented by both ATLAS and CMS collaborations were consistent,
within uncertainties, with the expectations for a SM Higgs boson. Both noted that
collection of more data would enable a more rigorous test of this conclusion and an
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investigation of whether the properties of the new particle imply physics beyond the
SM.

6.7.3 Results from the Data Recorded Subsequent
to the Discovery

The combined results from the ATLAS and CMS experiment from Run 1 on the
Higgs boson production, decay rates and constraints on its couplings were published
in 2016 [37]. These results have been superseded by the ones presented below.
Results are presented from the most recently published papers (in journals or
submitted to the hep arXiv) from the two collaborations. The integrated luminosity
differs from one result to another and is indicated in the legends of the plots
presented.

The LHC centre of mass energy was increased from
√

s = 8 TeV to
√

s = 13 TeV
in 2015. At the higher value of

√
s the predicted cross-sections for the dominant

ggH production mode and the rare ttH production mode increased by factors of
~2.3 and ~ 3.8, respectively. This and the larger datasets from Run 2 allow a more
precise comparison of the properties of the Higgs boson with respect to those
predicted by the SM. In addition, since the discovery, the theoretical predictions
have become more accurate with the inclusion of further (higher) order corrections.
Details can be found below in the references included in the individual papers of the
two collaborations.

The two collaborations have also improved the reconstruction of physics objects
and the methods of analysis. Event categorization and machine learning methods are
deployed to study almost all the different production and decay modes. The analyses
described below divide events into multiple categories reflecting the different
Higgs boson production channels to improve the sensitivity of the measurements.
Associated production processes (WH and ZH), or the ttH production process, are
tagged by requiring the presence of additional leptons or jets. The VBF process is
tagged using distinctive kinematic properties such the presence of two jets with a
large separation in pseudorapidity and a large invariant jet-jet mass. In some cases
the kinematic characteristics of the whole event, such as large missing pT, are used
to preferentially select events e.g. arising from ZH production where the Z boson
decays to neutrinos.

6.7.3.1 The H → γγ

As the H → γ γ decay proceeds via W-boson and top-quark loops, it is especially
sensitive to the presence of any undiscovered heavy charged fermions and bosons.
Any significant deviation from the precise SM prediction for the cross section would
be indicative of new physics.
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The H → γ γ mode provides good sensitivity to almost all Higgs boson
production processes. The interference between W-loop and top-loops provides
sensitivity to the relative sign of the fermion and boson couplings.

It is common to use a dedicated boosted decision tree discriminator to select
and categorize events; it is constrained using the diphoton kinematic variables,
photon isolation and identification variables, and per-event estimated diphoton mass
resolution for the pair of photons in the event.

ATLAS has measured the properties of the H → γ γ mode using 79.8 fb−1 of
collision data recorded at

√
s = 13 TeV [38]. The properties measured include

the signal strength, the cross section measurements for the production of a Higgs
boson through gluon–gluon fusion, vector boson fusion, and in association with
a vector boson or a top-quark pair. They are found to be compatible with the
predictions of the SM. The signal strength is measured to be μ = 1.06 ± 0.08
(stat), +0.08

–0.07 (exp), +0.07
–0.06 (theo), improving on the precision of the previous

ATLAS measurement at
√

s = 7 and 8 TeV by over a factor of three. The cross
section for the production of the Higgs boson decaying to two isolated photons in the
fiducial region of the selection of photons is measured to be 60.4 ± 6.1 (stat) ± 6.0
(exp) ± 60.3 (theo) fb, in good agreement with the SM value of 63.5 ± 3.3 fb. The
differential cross section, sensitive to higher order QCD corrections and properties
of the Higgs boson, such as its spin and CP quantum numbers, is illustrated in Fig.
6.9b and no significant deviation from a wide array of SM predictions is observed.

CMS has reported results from the H → γγ decay channel based on data
collected at

√
s = 13 TeV corresponding to an integrated luminosity of 35.6 fb−1

[39]. The diphoton invariant mass distribution, observed in CMS, is shown in
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the background subtraction. (b) Cross section ratios measured for each process (black points)
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Fig. 6.10a. The measured signal strength is found to be 1.18 +0.17
–0.14, largely

insensitive to the precise mass value assigned to the Higgs boson. Signal strengths
associated with the different Higgs boson production mechanisms are shown in Fig.
6.10b and found to be compatible with the expectations from the SM.

6.7.3.2 H → ZZ(∗) → 4 l Decay Mode

The Higgs boson decay H → ZZ(∗) → 4 l is the most significant process in
constraining the HZZ coupling. To study the differing production mechanisms
involved, the events are categorized on the basis of the presence of jets, b-tagged
jets, leptons, pT

miss, and various matrix element discriminants that make use of
the information about the additional objects: VBF (1- and 2-jet), VH hadronic, VH
leptonic, ttH, VH pT

miss, and untagged categories.
ATLAS has studied the coupling properties of the Higgs boson in the four-

lepton (e,μ) decay channel using 36.1 fb−1 of pp. collision data recorded at√
s = 13TeV [40]. The four-lepton invariant mass distribution is illustrated in Fig.

6.11a. Cross sections are measured for the main production modes and the ratio of
sigma.BR/(sigma.BR)SM are plotted in Fig. 6.11b. The inclusive cross section times
branching fraction for H → ZZ(∗) decay and for a Higgs boson absolute rapidity
below 2.5 is measured to be 1.73+0.24

–0.23 pb, the statistical error dominating,
compared to the SM prediction of 1.34 ± 0.09 pb.
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CMS has studied the coupling properties using 77.4 fb−1 of pp. collision data
recorded at

√
s = 13TeV [41]. The four-lepton invariant mass distribution is

illustrated in Fig. 6.12a. The signal strength is measured to be μ = 1.06+0.15
–0.13

at mH = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs
boson mass [42]. The result of a 2D likelihood scan of the signal strengths for the
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individual Higgs boson production modes are also measured and are shown in Fig.
6.12b. All measurements are consistent with the expectations from the SM.

6.7.3.3 H → WW(∗) → 2 l 2ν Decay Mode

The H → WW(∗) decay mode has a large branching fraction (~20%) and a relatively
low-background final state. The study of this final state in which both W bosons
decay leptonically is based on the signature with two isolated, oppositely charged,
high pT leptons (electrons or muons) and large missing transverse momentum,
ET

miss, due to the undetected neutrinos. The signal sensitivity is improved by
separating events according to lepton flavor; into e+e−, μ+μ−, and eμ samples and
according to jet multiplicity into 0-jet and 1-jet samples. The dominant background
arises from irreducible non-resonant WW(∗) production, and the dominant uncer-
tainties arise from the estimation, using the data themselves, of the backgrounds
from top quark pair, WW(∗) and DY production.

The final states are categorized according to the number of associated jets, with
the 0-jet category dominating the overall sensitivity. Events are selected that contain
two leptons of either different or the same flavour. The large background from tt
production, the different and same flavour final states are further categorized with 0,
1 and 2 associated jets. In the different-flavour final state, dedicated 2-jet categories
are included to enhance the sensitivity to VBF and VH production mechanisms.

ATLAS has presented measurements of the inclusive cross section of Higgs
boson production via the gluon–gluon fusion (ggF) and vector-boson fusion (VBF)
modes [43], based on an integrated luminosity of 36.1 fb−1 recorded at

√
s = 13 TeV

in 2015–2016. The combined transverse mass distribution for Njet ≤ 1 is shown in
Fig. 6.13a. The ggF and VBF cross-sections times the H → WW(∗) branching ratio
are measured to be 12.6 ± 1.0(stat) +1.9

–1.8 (syst) pb and 0.50 ± 0.24 (stat) ±0.18
(syst) pb, respectively, in agreement with the SM predictions, as illustrated in Fig.
6.13b.

CMS has published results on the decay mode H → WW(∗) using data cor-
responding to an integrated luminosity of 35.9 fb−1, collected at

√
s = 13 TeV

during 2016 [44]. The expected relative fraction of different Higgs boson production
mechanisms in each category is shown in Fig. 6.14a, together with the expected
signal yield. Combining all channels, the observed cross section times branching
fraction is 1.28+0.18

–0.17 times the SM prediction for the Higgs boson with a mass
of 125.09 GeV. The ratio of the observed and the predicted cross sections for the
main Higgs boson production modes is shown in Fig. 6.14b. All are consistent with
the predictions from the SM.

6.7.3.4 The H → ττ Decay Mode

All of the decay modes discussed so far test the direct coupling of the Higgs boson to
bosons, and only indirectly probe, through quantum loops, its coupling to fermions.
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The H → ττ mode provides the best sensitivity for the direct measurement for Higgs
boson coupling to fermions. It benefits from a relatively large branching fraction, a
moderate mass resolution (~10–20%) and provides good sensitivity to both the ggH
and VBF production processes.
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The H → ττ mode is studied via tau decays to eμ, μμ, eτ h, μτ h, τ hτ h,
where electrons and muons arise from leptonic τ -decays and τ h denotes a τ

lepton decaying hadronically. Each of these categories is further divided into three
sub-categories labeled 0-jet, boosted and VBF. The 0-jet category helps constrain
background normalisation, identification efficiencies, and energy scales, and sys-
tematic uncertainties in the background model. The main irreducible background,
Z → ττ production, and the largest reducible backgrounds (W + jets, QCD multijet
production, and top quark pair) are evaluated from control samples in data.

CMS has observed the H → ττ mode using a data sample corresponding to an
integrated luminosity of 35.9fb−1 at

√
s = 13 TeV [45]. Figure 6.15a shows the

distribution of the decimal logarithm of the ratio of the expected signal and the sum
of expected signal and expected background in each bin of the mass distributions
used to extract the results, in all signal regions. The background contributions
are separated by decay channel. The inset shows the corresponding difference
between the observed data and expected background distributions divided by the
background expectation, as well as the signal expectation divided by the background
expectation. The best fit of the product of the observed H → ττ signal production
cross section and branching fraction is 1.09+0.27

–0.26 times the SM expectation. The
combination with the corresponding measurement performed with data collected by
the CMS experiment at center-of-mass energies of 7 and 8 TeV leads to an observed

CMS CMS
106 1.6

1.4
1.2

1
0.8
0.6
0.4
0.2

1.8

0
1

(Obs. - bkg.)/bkg.

0-jet
=0.84

+0.89
–0.89

Boosted
=1.17

+0.47
–0.40

VBF
=1.11

+0.34
–0.35

Combined

Best fit  = / SM

=1.09
+0.27
–0.26

(H )/bkg.

H ( =1.09)

e h

e

h

h h

Bkg. unc./bkg.

Bkg. unc.

Observed

–1.5 –0.5

105

104

103

102

10

1

107

E
ve

nt
s

10–1

–0.5

log10(S/(S+B))

log10(S/(S+B))

–1–1.5

(a) (b)

–2–2.5–3

2

0

1 30

35.9 fb–1 (13 TeV) 35.9 fb–1 (13 TeV)

Fig. 6.15 (a) Distribution of the decimal logarithm of the ratio between the expected signal and
the sum of expected signal and expected. The inset shows the corresponding difference between
the observed data and expected background distributions divided by the background expectation,
as well as the signal expectation divided by the background expectation. (b) Best fit signal strength
per category



294 P. Jenni and T. S. Virdee

significance of 5.9 standard deviations, equal to the expected significance. Figure
6.15b right plots the signal strength per category for mH = 125.09 GeV.

ATLAS has observed the H → ττ mode using 36.1 fb−1 of data recorded at√
s = 13 TeV [46]. All combinations of leptonic and hadronic tau decays were

considered. Combining all data taken at
√

s = 7, 8 and 13 TeV, the observed
(expected) significance is found to be 6.4 (5.4) standard deviations. Using the data
taken at

√
s = 13 TeV, the total cross section, in the H → ττ decay channel, is

measured to be 3.71 ± 0.59 (stat) +0.87
–0.74 (syst) pb, for mH = 125 GeV, assuming

the relative contributions of its production modes predicted by the SM. Total cross
sections are determined separately for vector boson fusion production and gluon–
gluon fusion production to be σ(VBF, H → ττ ) = 0.28 ± 0:09 (stat) +0.11

–0.09
(syst) pb and σ(ggF, H → ττ ) = 3.0 ± 1.0 (stat.) +1.6

–1.2 (syst) pb, respectively.
The measured values for σ(H → ττ ), when only the data of individual channels
are used, are shown in Fig. 6.16a, along with the result from the combined fit.
The theory uncertainty in the predicted signal cross section is shown by the yellow
band. Figure 6.16b shows the likelihood contours in the variables (ggF, H → ττ )
and (VBF, H → ττ ) for the combination of all channels. The 68% and 95% CL
contours are shown as dashed and solid lines, respectively, for mH = 125 GeV. The
SM expectation is indicated by a plus symbol and the best fit to the data is shown as
a star. All measurements are in agreement with SM expectations.

6.7.3.5 H→bb Decay Mode

In the SM, fermions couple directly to the Higgs boson via the Yukawa interaction.
A clear test of this hypothesis would be the measurement of the H→ bb coupling.

Fig. 6.16 (a) Measured values for σ(H → ττ ) when only the data of individual channels are used.
Also shown is the result from the combined fit. The total ± 1σ uncertainty in the measurement
is indicated in black, with the individual contribution from the statistical uncertainty in blue. (b)
Likelihood contours for the combination of all channels in the [(ggF, H → ττ ) v/s (VBF, H → ττ )]
plane. The SM expectation is indicated by a plus symbol and the best fit to the data is shown as a
star
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The H → bb decay mode has by far the largest branching ratio (~58%). However,
this is the most difficult decay channel to observe, since bottom quark pairs are
prolifically produced by QCD processes and give rise to a formidable background.
The cross section for b-quark pair production, σbb(QCD), is ~107 × σ(H → bb).
Therefore the search concentrates on Higgs boson production in association with a
W or Z boson using the following decay modes: W → eν/μν and Z → ee or μμ or
νν. The Z → νν decay is identified by the requirement of a large missing transverse
energy. The Higgs boson candidate is reconstructed by requiring two b-tagged jets.

Events are selected in 0-, 1- and 2-charged lepton (e or μ) channels, to explore the
ZH → ννbb, WH → lνbb, ZH → llbb signatures, respectively. Both experiments
introduced several improvements since the initial searches including more efficient
identification of b-jets, better dijet mass resolution and use of multivariate dis-
criminants that better separate signal from background. Multivariate discriminants,
built from variables that describe the kinematics of the selected events, are used to
maximise the sensitivity to the Higgs boson signal. The signal extraction method
is validated with, for example, the diboson analysis where the nominal multivariate
analysis is modified to extract the VZ, Z → bb diboson process.

ATLAS has observed the mode H → bb by analyzing the combined data from
Run 1 and Run 2 [47], corresponding to an integrated luminosity of 80fb−1 yielding
an observed (expected) significance of 5.4 (5.5) standard deviations, thus providing
direct observation of the Higgs boson decay into b-quarks. The signal strength is
measured to be 1.01 ± 0.12(stat) +0.16

–0.15(syst). Figure 6.17a shows the distribution
of mbb in data after subtraction of all backgrounds except for the WZ and ZZ(∗)

diboson processes using data taken at
√

s = 13 TeV. The contributions from
all lepton channels, pV

T regions, and number-of-jets categories are summed and

Fig. 6.17 (a) Distribution of mbb in data after subtraction of all backgrounds except for the WZ
and ZZ diboson processes, as obtained with the dijet-mass analysis. (b) Fitted values of the Higgs
boson signal strength, μ, for mH = 125 GeV for the WH and ZH processes and their combination,
using the 7 TeV, 8 TeV and 13 TeV data
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Fig. 6.18 (a) Dijet invariant mass distribution for events weighted by S/(S + B) in all channels
combined in the 2016 and 2017 data sets. The error bar for each bin represents the presubtraction 1σ

statistical uncertainty on the data, while the gray hatching indicates the 1σ total uncertainty on the
signal and all background components. (b) Best-fit value of the H → bb signal strength with its 1σ

systematic (red) and total (blue) uncertainties for the five individual production modes considered,
as well as the overall combined result. The vertical dashed line indicates the SM expectation

weighted by their respective S/B, with S being the total fitted signal and B the total
fitted background in each region. The expected contribution of the associated WH
and ZH production of a SM Higgs boson with mH = 125 GeV is shown, scaled
by the measured signal strength (μ =1.06). The size of the combined statistical
and systematic uncertainty for the fitted background is indicated by the hatched
band. Figure 6.17b shows the fitted values of the Higgs boson signal strength, where
μ(VHbb) = 0.98 +0.22

–0.21 for mH = 125 GeV for the WH and ZH processes and
their combination, using the 7 TeV, 8 TeV and 13 TeV data.

CMS has observed the mode H → bb. Figure 6.18a shows the weighted dijet
invariant mass distribution for events weighted by S/(S + B) in all channels
combined in the 2016 and 2017 data sets [48]. The data (points), the fitted VH
signal (red) and VZ background (grey) distributions, with all other fitted background
processes subtracted, except that from dibosons are shown in Fig. 6.18a. Figure
6.18b shows the best-fit value of the H → bb signal strength for the five individual
production modes considered, as well as the overall combined result. The vertical
dashed line indicates the SM expectation. All results are extracted from a single
fit with mH = 125.09 GeV. CMS has made measurements, using data collected at√

s = 7, 8, and 13 TeV, and observes an excess of events at mH = 125 GeV with
a significance of 5.6 standard deviations, where the expectation for the SM Higgs
boson is 5.5, and a signal strength of 1.04 ± 0.14 (stat.) ±0.14 (syst.).
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6.7.3.6 H → μμ Decay Mode

The H → μ+μ− decay mode extends the test of the Higgs boson’s coupling to the
second generation of fermions. Several scenarios beyond the SM predict a higher
branching fraction than the one predicted in the SM (2.2 × 10−4 at mH = 125 GeV).

The dominant and irreducible background arises from the Z/γ∗ → μμ process
that has a rate several orders of magnitude larger than that from the SM Higgs boson
signal. However, due to the precise muon momentum measurement achieved by
ATLAS and CMS, the dimuon mass resolution is excellent (≈ 2–3%). A search
is performed for a narrow peak over a large but smoothly falling background.
For optimal search sensitivity, events are divided into several categories. Taking
advantage of the superior muon momentum measurement in the central region
events can be subdivided by the pseudorapidity of the muons, or by selections
aiming at specific production processes. A category selecting the vector boson
fusion process with its distinctive signature and relatively large cross section is
particularly useful.

ATLAS has performed this search using data corresponding to an integrated
luminosity of 36.1 fb−1 collected at

√
s = 13 TeV [49]. No significant excess is

observed above the expected background. When combined with the data taken at√
s = 7 and 8 TeV, the observed (expected) cross-section upper limit is 2.8 (2.9)

times the SM prediction.
The search in CMS, using an integrated luminosity corresponding to 35.9 fb−1

recorded at
√

s = 13 TeV [50], and combining with data taken at
√

s = 7 and 8
TeV, yielded an observed (expected) cross-section upper limit is 2.92 (2.16) times
the Standard Model prediction.

6.7.3.7 ttbar H Production Mode

As mt > mH the Yukawa coupling of the Higgs boson to top quarks cannot be tested
directly. However, it can be measured through the measurement in the pp. → ttH
production process. The coupling of the Higgs boson to the top quark, the heaviest
particle in the SM, could be very sensitive to the effects of physics beyond the SM.

Although the pp. → ttH production process only contributes around 1% of the
total Higgs-boson production cross section, the top quarks in the final state offer
a distinctive signature and allow many Higgs-boson decay modes to be accessed.
Of these, the decay to two b-quarks, the Higgs boson decay mode with the largest
branching fraction, also is sensitive to the b-quark’s Yukawa coupling, the second
largest in the SM.

A top quark decays almost exclusively to a bottom quark and a W boson, with
the W boson subsequently decaying either to a quark and an antiquark or to a
charged lepton and its associated neutrino. The Higgs boson has a rich spectrum
of decay modes, and ttH production is studied using a wide variety of final state
event topologies, with the Higgs boson decaying into bb, WW(∗), ττ , γ γ , and ZZ(∗)

pairs.
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Fig. 6.19 (a) Observed event yields in all analysis categories in up to 79.8fb−1 of 13 TeV data.
The lower panel shows the ratio of the data to the background estimated from the fit with freely
floating signal, compared to the expected distribution including the signal assuming μ = 1.32
(full red) and μ = 1 (dashed orange). The error bars on the data are statistical. (b) Combined ttH
production cross section, as well as cross sections measured in the individual analyses, divided by
the SM prediction

ATLAS has observed this production mode using data taken at
√

s = 7 TeV,
8 TeV and 13 TeV corresponding to integrated luminosities up to 79.8 fb−1. The
Higgs boson decays included comprise bb, WW∗, τ + τ−, γ γ , and ZZ∗. The
observed significance is 6.3σ, compared to an expectation of 5.1σ [51]. Assuming
SM branching fractions, the total ttH production cross section at

√
s = 13 TeV

is measured to be 670 ± 90(stat.) +110−100(syst.) fb, in agreement with the SM
prediction. Figure 6.19a shows the observed event yields in all analysis categories.
The background yields correspond to the observed fit results, and the signal yields
are shown for both the observed results (μ = 1.32) and the SM prediction (μ = 1).
The ranking of the discriminant bins is carried out by log10(S/B), where S is the
extracted signal yield and B the extracted background yield. Figure 6.19b shows
the combined ttH production cross section, as well as cross sections measured in
the individual analyses, divided by the SM prediction. The black lines show the
total uncertainties, and the bands indicate the statistical and systematic uncertainties.
The red vertical line indicates the SM cross-section prediction, and the grey band
represents the PDF and αS uncertainties and the uncertainties due to missing higher-
order corrections.

CMS has observed ttH production in a combined analysis of data at
√

s = 7,
8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and
35.9 fb−1, respectively [52]. An excess of events is observed with an observed
(expected) significance of 5.2 (4.2) standard deviations, over the expectation from
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Fig. 6.20 (a) Distribution of events as a function of the decimal logarithm of S/B. The shaded
histogram shows the expected background distribution. The two hatched histograms, each stacked
on top of the background histogram, show the signal expectation for the SM (μttH = 1) and the
observed (μttH = 1.26) signal strengths. The lower panel shows the ratios of the expected signal
and observed results relative to the expected background. (b) Best fit value of the ttH signal strength
modifier μttH, with its 1σ and 2σ confidence intervals for upper section) the five individual decay
channels considered, middle section) the combined result for 7 + 8 TeV alone and for 13 TeV
alone, and lower section) the overall combined result. The SM expectation is shown as a dashed
vertical line

the background-only hypothesis for mH = 125.09. The combined best-fit signal
strength normalized to the standard model prediction is 1.26+0.31

–0.26. Figure 6.20a
shows the distribution of events as a function of the decimal logarithm of S/B, where
S and B are the expected postfit signal (with μttH = 1) and background yields,
respectively, in each bin of the distributions considered in this combination. The
shaded histogram shows the expected background distribution. The two hatched
histograms, each stacked on top of the background histogram, show the signal
expectation for the SM (μttH = 1) and the observed (μttH = 1.26) signal strengths.
The lower panel shows the ratios of the expected signal and observed results relative
to the expected background. Figure 6.20b plots the ttH signal strength modifiers,
μttH, for the various selections and the overall combined result. The SM expectation
is shown as a dashed vertical line.
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6.7.4 Combining the Results

6.7.4.1 Mass of the Observed State

The mass of the Higgs boson is measured using the two decay channels that give
the best mass resolutions namely H → γγ and H → ZZ(∗) → 4 l. ATLAS and
CMS have combined their results from Run 1 [53]. The results were obtained from
a simultaneous fit to the reconstructed invariant mass peaks in the two channels
and for the two experiments. The measured masses from the individual channels
and the two experiments were found to be consistent amongst themselves. The
combined measured mass of the Higgs boson was found to be mH = 125.09 ± 0.21
(stat.) ± 0.11 (syst.) GeV, a value subsequently used in many of the analyses
discussed above. The results of these measurements and more recent ones are shown
in Fig. 6.21 [54].

The mass of the Higgs boson, combined with the measured top quark mass, has
cosmological implications. The current measurement of mH, along with that of the
top quark mass [mt = 173.21 ± 0.51 (stat) ±0.71 (syst)] indicate that our universe
is in a metastable state, which eventually will tunnel through the potential barrier to
the true vacuum in which space collapses, albeit over a period of time that is many
orders of magnitude larger than the lifetime of the universe so far.

Fig. 6.21 Summary of the CMS and ATLAS mass measurements in the γγ and ZZ(∗) channels in
Run 1 and Run 2. Particle Data Group [54]
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6.7.4.2 Compatibility of the Observed State with the SM Higgs Boson
Hypothesis: Signal Strength

In the SM, the Higgs boson is a fundamental scalar particle with spin-parity
JP = 0+, and couples to fundamental fermions as mf

2/v2 and to fundamental
bosons as mV

4/v2 where v = 246 GeV. Several individual tests of compatibility
with expectations from the SM have been discussed above.

Here we discuss the signal strength, μ, as determined by the combination of
results from all channels. ATLAS and CMS combined their data from Run 1 [37]
from the analysis of five production processes, namely gluon fusion, vector boson
fusion, and associated production with a W or a Z boson or a pair of top quarks, and
of the five decay modes H → γγ, ZZ(∗), WW(∗), bb, and ττ. All results are reported
assuming a value of 125.09 GeV for the Higgs boson mass. The Higgs boson
production and decay rates measured by the two experiments are combined within
the context of three generic parameterisations: two based on cross sections and
branching fractions, and one on ratios of coupling modifiers. Several interpretations
of the measurements with more model-dependent parameterisations are also given.
The combined signal yield relative to the SM prediction is measured to be
1.09 ± 0.11. The error is broken down as ±0.07 (statistical), ±0.04 (experimental
systematic), ±0.03 (theoretical on background) and ± 0.07 (theoretical on signal).

The most recent measured values of μ, using the above-mentioned channels,
are:

• ATLAS: μ = 1.13 +0.09
–0.08, using 79.8 fb−1 at

√
s = 13 TeV [55],

• CMS: μ = 1.17 ± 0.1, using 35.9 fb−1 at
√

s = 13 TeV [56].

The error in the measurement from ATLAS has the following breakdown: ±0.05
(statistical), ±0.05 (experimental systematic), ±0.03 (theoretical on background)
and (+0.05, −0.04) (theoretical on signal). This should give a flavor of the
possibilities for extrapolation into the future.

6.7.4.3 Compatibility of the Observed State with the SM Higgs Boson
Hypothesis: Couplings

The 25 products, μi × μf , where i (f) is the production (decay) index can also
be considered as free parameters. This can be viewed as the measurements of
cross sections times branching fractions, sigma×BR, by production mechanism and
decay mode. The results from the ATLAS and CMS have been combined and are
illustrated in Fig. 6.22 from the Particle Data Group [54] showing compatibility with
the SM.

Figure 6.23a, from the ATLAS experiment [55], illustrates the dependence of
the Higgs boson couplings on mass of the decay particles (μ, τ, b-quark, W, Z
and t-quark). The plot is made for reduced coupling strength modifiers, κ, using
κF(mF/v) for fermions and (

√
κV)(mV/v) for vector bosons, where v = 246.22 GeV.

The couplings modifiers κF and κV are measured assuming no BSM contributions
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Fig. 6.22 Combined measurements of the products σ.BR for the five main production and five
main decay modes. The hatched combinations require more data for a meaningful confidence
interval to be provided

Fig. 6.23 (a) Reduced coupling strength modifiers κF(mF/v) for fermions (t, b, τ, μ) and
(
√

κV)(mV/v) for vector bosons (W, Z) as a function of their masses mF and mV, respectively.
The SM prediction for both cases is also shown (dotted line). (b) Likelihood scan in the M-ε plane.
The best-fit point and, 1σ, 2σ CL regions are shown, along with the SM prediction

to the Higgs boson decays, and the SM structure of loop processes. The line is the
expectation from the SM.

CMS has made a similar fit, shown in Fig. 6.23b [56], using a phenomenological
parameterization relating the masses of the fermions and vector bosons to the
corresponding κ modifiers using two parameters, denoted M and ε. In such a
model one can relate the coupling modifiers to M and ε as κF = v m∈

f /M
1+∈ for
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fermions, and κV = v m2∈
V /M1+2∈ for vector bosons. The SM expectation, κi = 1,

is recovered when (M, ε) = (v, 0).
Both Fig. 6.23a and b demonstrate good compatibility with the SM within the

errors on the measurements.

6.7.4.4 Compatibility of the Observed State with the SM Higgs Boson
Hypothesis: Quantum Numbers

Ascertaining the quantum numbers of the Higgs boson is essential to the understand-
ing of its nature and its coupling properties. According to the Landau-Yang theorem
the observations made in the diphoton channel excludes the spin-1 hypothesis and
restricts possibilities for the boson to have spin-0 or -2. The diphoton decay mode
also implies that the boson has charge conjugation has C-even.

To identify the spin-parity of the Higgs boson the production and decay processes
are examined in several analyses. The angular distributions of the decay particles
can be used to test various spin hypotheses.

Much can be gleaned from the decay mode H → ZZ(∗) → 4 l, where the full
final state is reconstructed, including the angular variables sensitive to the spin-
parity, along with a very favourable signal/background ratio. CMS has used the
information from the five angles (see Fig. 6.24a) and the two dilepton pair masses
combined to form a discriminant based on the 0+ nature of the Higgs boson [57].

ATLAS has also tested various JP hypotheses, and in particular 0+ and 0−.
In all scenarios investigated by both CMS [57] and ATLAS [58] experiments, the

data are compatible with the 0+ hypothesis, excluding a pseudoscalar nature at CLS
levels of 99.8% and 98.0%, respectively. The expected distribution in ATLAS of the
test statistic for the SM hypothesis (in blue) and several alternative spin and parity
hypotheses is compared in Fig. 6.24b. The combination of the three decay processes
allows the exclusion of all considered non-SM hypotheses at amore than 99.9% CL
in favour of the SM spin-0 hypothesis.

6.8 Conclusions and Outlook

In July 2012 the ATLAS and CMS experiments announced the discovery of a Higgs
boson, confirming the conjecture put forward in the 1960s. Further results from the
two experiments show that, within the current measurement precision, the Higgs
boson has the properties predicted by the SM. However, several theories of physics
beyond the SM (BSM) predict the existence of more than one Higgs boson, and
one of these would only be subtly different from that predicted in the SM one, with
signal strengths differing by between 0.5–5%, depending on the model in question,
indicative of the required level of sensitivity to distinguish it from a SM Higgs
boson.
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Fig. 6.24 (a) Illustration of the production and decay of a particle X → Z1Z2 → 4 l with the
two production angles θ∗ and !1 shown in the X rest frame and three decay angles θ1, θ2, and !

shown in the Zi and X rest frames, respectively. (b) Examples of distributions of the test statistic
(˜q) defined in for the combination of decay channels left) 0+ versus 0− right) 0+ versus the spin-2
model. The observed values are indicated by the vertical solid line and the expected medians by
the dashed lines. The shaded areas correspond to the integrals of the expected distributions used
for the rejection of each hypothesis

In Run 2 (2015–2018) the LHC provided proton-proton collisions at
√

s = 13
TeV with a peak instantaneous luminosity of 2 × 1034 cm−2 s−1, a factor of two
beyond the design value. It is intended to operate the accelerator at

√
s = 14 TeV

after the next long shutdown (2019–2020) and to integrate a luminosity correspond-
ing to some 300 fb−1 by the end of Run 3 (2021–2024). More precise measurements
of the properties of the new boson will be made, as well as a more extensive
exploration of physics beyond the SM, for which many possibilities are conjectured
including supersymmetry, extra dimensions, unified theories, superstrings etc.

The results presented in Chap. 6 are still mostly dominated by statistical errors.
The ATLAS and CMS experiments continually update their results that can be found

http://dx.doi.org/10.1007/978-3-030-38207-0_6
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through their websites quoted in references [36, 37]. Much more data need to be
collected to enable rigorous testing of the compatibility of the Higgs boson with
the SM and to get clues to physics lying beyond the SM in case of a significant
deviation. This is one of the main motivations for the high luminosity LHC project,
labeled the HL-LHC.

Europe’s topmost priority in particle physics calls for the exploitation of the full
potential of the LHC, including the high-luminosity upgrade of the accelerator and
detectors with a view to collecting ten times more data than in the initial design. It is
planned to increase the instantaneous luminosity of the LHC to 5 × 1034 cm−2 s−1,
and record, by around 2035, an integrated luminosity corresponding to ~3000 fb−1

(ten times larger than the original design value). Such an integrated luminosity also
requires substantial upgrades of the ATLAS and CMS experiments, now underway,
to allow a very precise measurement of the properties of the Higgs boson the study
of its rare decay modes and self-coupling, in addition to the search for physics
beyond the SM. Many theories beyond the SM make different predictions for the
properties of one or more Higgs bosons.

Based on the currently analysed data ATLAS and CMS experiments have
recently made projections of the attainable sensitivity for such measurements by
the end of the HL-LHC phase [59, 60]. As around 150 million Higgs bosons will
be produced a search can also be made for exotic and rare decays of the boson.
Figures 6.25 and 6.26 show two sets of projections; Scenario 1 (S1) using the
current theoretical errors or Scenario 2 (S2) where the theoretical errors are halved.
The extrapolations show the possibility of measuring the individual signal strengths
with a precision of between 5–10% for an integrated luminosity of 300 fb−1, and a
few percent for a dataset corresponding to 3000 fb−1 per experiment, dominated by
theoretical erros. The per-production mode signal strength parameters are projected
to be measurable with uncertainties of between 3–6% for a dataset corresponding to

Expected uncertainty
0 0.05 0.1 0.15 0.2

μκ

τκ

bκ

tκ

gκ
Zκ

Wκ

γκ

0.22 (Stat); 0.22 (S2); 0.22 (S1)

0.04 (Stat); 0.05 (S2); 0.06 (S1)

0.06 (Stat); 0.09 (S2); 0.11 (S1)

0.03 (Stat); 0.06 (S2); 0.08 (S1)

0.03 (Stat); 0.05 (S2); 0.06 (S1)

0.03 (Stat); 0.04 (S2); 0.05 (S1)

0.03 (Stat); 0.04 (S2); 0.05 (S1)

0.03 (Stat); 0.04 (S2); 0.06 (S1)

 (13 TeV)-1300 fb

CMS
Projection

 = 0BSMB

w/ Run 2 syst. uncert. (S1)

w/ YR18 syst. uncert. (S2)

w/ Stat. uncert. only

Expected uncertainty
0 0.05 0.1 0.15 0.2

μκ

τκ

bκ

tκ

gκ
Zκ

Wκ

γκ

0.05 (Stat); 0.05 (S2); 0.07 (S1)

0.01 (Stat); 0.02 (S2); 0.03 (S1)

0.02 (Stat); 0.04 (S2); 0.06 (S1)

0.01 (Stat); 0.03 (S2); 0.06 (S1)

0.01 (Stat); 0.02 (S2); 0.04 (S1)

0.01 (Stat); 0.02 (S2); 0.02 (S1)

0.01 (Stat); 0.02 (S2); 0.03 (S1)

0.01 (Stat); 0.02 (S2); 0.03 (S1)

 (13 TeV)-13000 fb

CMS
Projection

 = 0BSMB

w/ Run 2 syst. uncert. (S1)

w/ YR18 syst. uncert. (S2)

w/ Stat. uncert. only

Fig. 6.25 Summary plot from CMS showing the total expected ±1σ uncertainties in S1 and S2
on the per-decay mode signal strength parameters for 300 fb−1 (left) and 3000 fb−1 (centre).
The statistical-only component of the uncertainty is also shown. (right) Expected uncertainty on
the branching ratio measurements in ATLAS for the gg, ZZ(∗), WW(∗), tt, bb, μμ and Zγ decay
channels normalized to their SM predictions assuming SM production cross section for scenarios
S1 (red) and S2 (black)
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Fig. 6.26 (a) Expected uncertainty on the measurement of cross sections in ATLAS for the ggF,
VBF, WH, ZH and ttH production modes normalized to their SM predictions assuming SM
branching fractions for Scenarios S1 (red) and S2 (black). (b) Summary plot from CMS showing
the total expected ±1σ uncertainties in S1 and S2 on the cross section measurements for 300 fb−1

(left) and 3000 fb−1 (right). The statistical-only component of the uncertainty is also shown

3000 fb−1 per experiment. Of particular note, in view of a future electron-positron
collider, is the projection for the measurement of the ttH coupling with a precision
of ~5% per experiment.

The discovery of a Higgs boson implies the discovery of a fundamental scalar
field that pervades the universe. Astronomical and astrophysical measurements point
to the following composition of energy-matter in the universe: ~4% normal matter
that “shines”, ~23% dark matter, and the rest in the form of “dark energy.” Dark
matter is weakly and gravitationally interacting matter with no electromagnetic or
strong interactions. These are the properties carried by the lightest supersymmetic
particle. Hence the question: Is dark matter supersymmetric in nature? Fundamental
scalar fields could well have played a critical role in the conjectured inflation of our
universe immediately after the Big Bang, and in the recently observed accelerating
expansion of the universe that, among other measurements, signals the presence of
dark energy in our universe.

The discovery of the Higgs boson could turn out to be a portal to physics beyond
the SM. Physicists at the LHC are eagerly looking forward to further running
of the LHC, and the HL-LHC, and to establishing the true nature of the Higgs
boson, to find clues or answers to some of the other fundamental open questions
in particle physics and cosmology. The exploitation of the LHC is in its infancy,
having recorded a small fraction of the finally anticipated integrated luminosity, and
the expectations for other discoveries in the coming decades are high.
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Chapter 7
Relativistic Nucleus-Nucleus Collisions
and the QCD Matter Phase Diagram

Reinhard Stock

7.1 Introduction

7.1.1 Overview

This review will be concerned with our knowledge of extended matter under the
governance of strong interaction, in short: QCD matter. Strictly speaking, the
hadrons are representing the first layer of extended QCD architecture. In fact
we encounter the characteristic phenomena of confinement as distances grow to
the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the
elementary QCD Lagrangian via non-perturbative generation of “massive” quark
and gluon condensates, that replace the bare QCD vacuum [1]. However, given such
first experiences of transition from short range perturbative QCD phenomena (jet
physics etc.), toward extended, non perturbative QCD hadron structure, we shall
proceed here to systems with dimensions far exceeding the force range: matter
in the interior of heavy nuclei, or in neutron stars, and primordial matter in the
cosmological era from electro-weak decoupling (10−12 s) to hadron formation
(0.5·10−5 s). This primordial matter, prior to hadronization, should be deconfined in
its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons
[2]: the Quark Gluon Plasma (QGP).

In order to recreate matter at the corresponding high energy density in the
terrestrial laboratory one collides heavy nuclei (also called “heavy ions”) at ultrarel-
ativistic energies. Quantum Chromodynamics predicts [2–4] a phase transformation
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to occur between deconfined quarks and confined hadrons. At near-zero net
baryon density (corresponding to big bang conditions) non-perturbative Lattice-
QCD places this transition at an energy density of about 1 GeV/fm3, and at a
critical temperature, Tcrit ≈ 170 MeV [4–8] (see the article on Lattice QCD in
this Volume). The ultimate goal of the physics with ultrarelativistic heavy ions is
to locate this transition, elaborate its properties, and gain insight into the detailed
nature of the deconfined QGP phase that should exist above. What is meant by
the term “ultrarelativistic” is defined by the requirement that the reaction dynamics
reaches or exceeds the critical density ε ≈ 1 GeV/fm3. Required beam energies turn
out [8] to be

√
s ≥ 10 GeV, and various experimental programs have been carried

out or are being prepared at the CERN SPS (up to about 20 GeV), at the BNL RHIC
collider (up to 200 GeV) and finally reaching up to 5.5 TeV at the LHC of CERN.

QCD confinement-deconfinement is of course not limited to the domain that
is relevant to cosmological expansion dynamics, at very small excess of baryon
over anti-baryon number density and, thus, near zero baryo-chemical potential
μB. In fact, modern QCD suggests [9–11] a detailed phase diagram of QCD
matter and its states, in the plane of T and baryo-chemical potential μB. For a
map of the QCD matter phase diagram we are thus employing the terminology
of the grand canonical Gibbs ensemble that describes an extended volume V of
partonic or hadronic matter at temperature T . In it, total particle number is not
conserved at relativistic energy, due to particle production-annihilation processes
occurring at the microscopic level. However, the probability distributions (partition
functions) describing the relative particle species abundances have to respect the
presence of certain, to be conserved net quantum numbers (i), notably non-zero
net baryon number and zero net strangeness and charm. Their global conservation
is achieved by a thermodynamic trick, adding to the system Lagrangian a so-called
Lagrange multiplier term, for each of such quantum number conservation tasks. This
procedure enters a “chemical potential” μi that modifies the partition function via
an extra term exp (−μi/T ) occurring in the phase space integral (see Sect. 7.3 for
detail). It modifies the canonical “punishment factor” (exp (−E/T )), where E is the
total particle energy in vacuum, to arrive at an analogous grand canonical factor for
the extended medium, of exp (−E/T − μi/T ). This concept is of prime importance
for a description of the state of matter created in heavy ion collisions, where
net-baryon number (valence quarks) carrying objects are considered—extended
“fireballs” of QCD matter. The same applies to the matter in the interior of neutron
stars. The corresponding conservation of net baryon number is introduced into the
grand canonical statistical model of QCD matter via the “baryo-chemical potential”
μB.

We employ this terminology to draw a phase diagram of QCD matter in Fig. 7.1,
in the variables T and μB. Note that μB is high at low energies of collisions creating
a matter fireball. In a head-on collision of two mass 200 nuclei at

√
s = 15 GeV

the fireball contains about equal numbers of newly created quark-antiquark pairs
(of zero net baryon number), and of initial valence quarks. The accommodation of
the latter, into created hadronic species, thus requires a formidable redistribution
task of net baryon number, reflecting in a high value of μB. Conversely, at LHC
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Fig. 7.1 Sketch of the QCD
matter phase diagram in the
plane of temperature T and
baryo-chemical potential μB.
The parton-hadron phase
transition line from lattice
QCD [8–11] ends in a critical
point E. A cross-over
transition occurs at smaller
μB. Also shown are the
points of hadro-chemical
freeze-out from the grand
canonical statistical model
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energy (5.5 TeV for Pb+Pb collisions), the initial valence quarks constitute a mere
5% fraction of the total quark density, correspondingly requiring a small value of
μB. In the extreme, big bang matter evolves toward hadronization (at T =170 MeV)
featuring a quark over antiquark density excess of 10−9 only, resulting in μB ≈ 0.

Note that the limits of existence of the hadronic phase are not only reached by
temperature increase, to the so-called Hagedorn value TH (which coincides with
Tcrit at μB → 0), but also by density increase to $ > (5–10)$0: “cold compression”
beyond the nuclear matter ground state baryon density $0 of about 0.16 B/fm3.
We are talking about the deep interior sections of neutron stars or about neutron
star mergers [12–14]. A sketch of the present view of the QCD phase diagram
[9–11] is given in Fig. 7.1. It is dominated by the parton-hadron phase transition
line that interpolates smoothly between the extremes of predominant matter heating
(high T , low μB) and predominant matter compression (T → 0, μB > 1 GeV).
Onward from the latter conditions, the transition is expected to be of first order [15]
until the critical point of QCD matter is reached at 200 ≤ μB (E) ≤ 500 MeV.
The relatively large position uncertainty reflects the preliminary character of Lattice
QCD calculations at finite μB [9–11]. Onward from the critical point, E, the phase
transformation at lower μB is a cross-over[11].

We note, however, that these estimates represent a major recent advance of lattice
theory which was, for two decades, believed to be restricted to the μB = 0 situation.
Onward from the critical point, toward lower μB, the phase transformation should
acquire the properties of a rapid cross-over [16], thus also including the case of
primordial cosmological expansion. This would finally rule out former ideas, based
on the picture of a violent first order “explosive” cosmological hadronization phase
transition, that might have caused non-homogeneous conditions, prevailing during
early nucleo-synthesis [17], and fluctuations of global matter distribution density



314 R. Stock

that could have served as seedlings of galactic cluster formation [18]. However, it
needs to be stressed that the conjectured order of phase transformation, occurring
along the parton-hadron phase boundary line, has not been unambiguously con-
firmed by experiment, as of now.

On the other hand, the position of the QCD phase boundary at low μB has,
in fact, been located by the hadronization points in the T , μB plane that are also
illustrated in Fig. 7.1. They are obtained from statistical model analysis [19] of the
various hadron multiplicities created in nucleus-nucleus collisions, which results
in a [T , μB] determination at each incident energy, which ranges from SIS via
AGS and SPS to RHIC energies, i.e. 3 ≤ √

s ≤ 200 GeV. Toward low μB these
hadronic freeze-out points merge with the lattice QCD parton-hadron coexistence
line: hadron formation coincides with hadronic species freeze-out. These points
also indicate the μB domain of the phase diagram which is accessible to relativistic
nuclear collisions. The domain at μB ≥ 1.5 GeV which is predicted to be in a further
new phase of QCD featuring color-flavor locking and color superconductivity [20]
will probably be accessible only to astrophysical observation.

One may wonder how states and phases of matter in thermodynamical
equilibrium—as implied by a description in grand canonical variables—can be
sampled via the dynamical evolution of relativistic nuclear collisions. Employing
heavy nuclei, A ≈ 200, as projectiles/targets or in colliding beams (RHIC, LHC),
transverse dimensions of the primordial interaction volume do not exceed about
8 fm, and strong interaction ceases after about 20 fm/c. We shall devote an entire
later section to the aspects of equilibrium (Sect. 7.2.5) but note, for now, that
the time and dimension scale of primordial perturbative QCD interaction at the
microscopic partonic level amounts to subfractions of 1 fm/c, the latter scale,
however, being representative of non perturbative processes (confinement, “string”
formation etc.). The A+A fireball size thus exceeds, by far, the elementary non
perturbative scale. An equilibrium quark gluon plasma represents an extended
non-perturbative QCD object, and the question whether its relaxation time scale
can be provided by the expansion time scale of an A+A collision, needs careful
examination. Reassuringly, however, the hadrons that are supposedly created from
such a preceding non-perturbative QGP phase at top SPS and RHIC energy, do in
fact exhibit perfect hadrochemical equilibrium, the derived [T , μB] values [19] thus
legitimately appearing in the phase diagram, Fig. 7.1.

In the present review we will order the physics observables to be treated,
in sequence of their origin from successive stages that characterize the overall
dynamical evolution of a relativistic nucleus-nucleus collision. In rough outline
this evolution can be seen to proceed in three major steps. An initial period of
matter compression and heating occurs in the course of interpenetration of the
projectile and target baryon density distributions. Inelastic processes occurring at
the microscopic level convert initial beam longitudinal energy to new internal and
transverse degrees of freedom, by breaking up the initial baryon structure functions.
Their partons thus acquire virtual mass, populating transverse phase space in the
course of inelastic perturbative QCD shower multiplication. This stage should be
far from thermal equilibrium, initially. However, in step two, inelastic interaction
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between the two arising parton fields (opposing each other in longitudinal phase
space) should lead to a pile-up of partonic energy density centered at mid-rapidity
(the longitudinal coordinate of the overall center of mass). Due to this mutual
stopping down of the initial target and projectile parton fragmentation showers, and
from the concurrent decrease of parton virtuality (with decreasing average square
momentum transfer Q2) there results a slowdown of the time scales governing the
dynamical evolution. Equilibrium could be approached here, the system “lands”
on the T , μ plane of Fig. 7.1, at temperatures of about 300 and 200 MeV at
top RHIC and top SPS energy, respectively. The third step, system expansion and
decay, thus occurs from well above the QCD parton-hadron boundary line. Hadrons
and hadronic resonances then form, which decouple swiftly from further inelastic
transmutation so that their yield ratios become stationary (“frozen-out”). A final
expansion period dilutes the system to a degree such that strong interaction ceases
all together.

In order to verify in detail this qualitative overall model, and to ascertain the
existence (and to study the properties) of the different states of QCD that are popu-
lated in sequence, one seeks observable physics quantities that convey information
imprinted during distinct stages of the dynamical evolution, and “freezing-out”
without significant obliteration by subsequent stages. Ordered in sequence of their
formation in the course of the dynamics, the most relevant such observables are
briefly characterized below:

1. Suppression of J/� and Y production by Debye-screening in the QGP. These
vector mesons result from primordial, pQCD production of cc and bb pairs
that would hadronize unimpeded in elementary collisions but are broken up if
immersed into a npQCD deconfined QGP, at certain characteristic temperature
thresholds.

2. Suppression of dijets which arise from primordial qq pair production fragment-
ing into partonic showers (jets) in vacuum but being attenuated by QGP-medium
induced gluonic bremsstrahlung: Jet quenching in A+A collisions.

a. A variant of this: any primordial hard parton suffers a high, specific loss of
energy when traversing a deconfined medium: High pT suppression in A+A
collisions.

3. Hydrodynamic collective motion develops with the onset of (local) thermal
equilibrium. It is created by partonic pressure gradients that reflect the initial col-
lisional impact geometry via non-isotropies in particle emission called “directed”
and “elliptic” flow. The latter reveals properties of the QGP, seen here as an ideal
partonic fluid.

a. Radial hydrodynamical expansion flow (“Hubble expansion”) is a variant of
the above that occurs in central, head on collisions with cylinder symmetry, as
a consequence of an isentropic expansion. It should be sensitive to the mixed
phase conditions characteristic of a first order parton-hadron phase transition.
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4. Hadronic “chemical” freeze-out fixes the abundance ratios of the hadronic
species into an equilibrium distribution. Occurring very close to, or at hadroniza-
tion, it reveals the dynamical evolution path in the [T , μB] plane and determines
the critical temperature and density of QCD. The yield distributions in A+A
collisions show a dramatic strangeness enhancement effect, characteristic of an
extended QCD medium.

5. Fluctuations, from one collision event to another (and even within a single given
event) can be quantified in A+A collisions due to the high charged hadron
multiplicity density (of up to 600 per rapidity unit at top RHIC energy). Such
event-by-event (Debye) fluctuations of pion rapidity density and mean transverse
momentum (event “temperature”), as well as event-wise fluctuations of the
strange to non-strange hadron abundance ratio (may) reflect the existence and
position of the conjectured critical point of QCD (Fig. 7.1).

6. Two particle Bose-Einstein-Correlations are the analog of the Hanbury-Brown,
Twiss (HBT) effect of quantum optics. They result from the last interaction
experienced by hadrons, i.e. from the global decoupling stage. Owing to a near
isentropic hadronic expansion they reveal information on the overall space-time-
development of the “fireball” evolution.

In an overall view the first group of observables (1 to 2a) is anchored in
established pQCD physics that is well known from theoretical and experimental
analysis of elementary collisions (e+e− annihilation, pp and pp data). In fact, the
first generation of high Q2 baryon collisions, occurring at the microscopic level
in A+A collisions, should closely resemble such processes. However, their primary
partonic products do not escape into pQCD vacuum but get attenuated by interaction
with the concurrently developing extended high density medium, thus serving as
diagnostic tracer probes of that state. The remaining observables capture snapshots
of the bulk matter medium itself. After initial equilibration we may confront elliptic
flow data with QCD during the corresponding partonic phase of the dynamical
evolution employing thermodynamic [21] and hydrodynamic [22] models of a high
temperature parton plasma. The hydro-model stays applicable well into the hadronic
phase. Hadron formation (confinement) occurs in between these phases (at about
5 μs time in the cosmological evolution). In fact relativistic nuclear collision data
may help to finally pin down the mechanism(s) of this fascinating QCD process
[23–25] as we can vary the conditions of its occurrence, along the parton-hadron
phase separation line of Fig. 7.1, by proper choice of collisional energy

√
s, and

system size A, while maintaining the overall conditions of an extended imbedding
medium of high energy density within which various patterns [9–11, 15, 16] of the
hadronization phase transition may establish. The remaining physics observables
(3a, 5 and 6 above) essentially provide for auxiliary information about the bulk
matter system as it traverses (and emerges from) the hadronization stage, with
special emphasis placed on manifestations of the conjectured critical point.

The present review will briefly cover each of the above physics observables in a
separate chapter, beginning with the phenomena of confinement and hadronization
(Sect. 7.3), then to turn to the preceding primordial dynamics, e.g. to elliptical
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flow (Sect. 7.4), high pT and jet quenching (Sect. 7.5) and quarkonium suppression
(Sect. 7.6) as well as in-medium $-meson “melting”. We then turn to the late period,
with correlation and fluctuation studies (Sect. 7.7). We conclude (Sect. 7.8) with a
summary, including an outlook to the future of the research field.

However, before turning to such specific observables we shall continue this
introductory chapter, with a look at the origin, and earlier development of the ideas
that have shaped this field of research (Sect. 7.1.2). Then we turn to a detailed
description of the overall dynamical evolution of relativistic nucleus-nucleus col-
lisions, and to the typical overall patterns governing the final distributions in
transverse and longitudinal (rapidity) phase space (Sect. 7.2). The aspects of an
approach toward equilibrium, at various stages of the dynamical evolution (which
are of key importance toward the intended elucidation of the QCD matter phase
diagram), will be considered, in particular.

7.1.2 History

The search for the phase diagram of strongly interacting matter arose in the 1960s,
from a coincidence of ideas developing—at first fairly independently—in nuclear
and astrophysics. In fact, the nuclear proton-neutron matter, a quantum liquid at
T = 0 and energy density ε = 0.15 GeV/fm3, represents the ground state of
extended QCD matter. Of course, QCD was unknown during the development
of traditional nuclear physics, and the extended matter aspects of nuclei—such
as compressibility or the equation of state, in general—did not receive much
attention until the advent, in the 1960s, of relativistic nuclear mean field theory,
notably s-matrix theory by Brueckner [26] and the σ -model of Walecka [27]. These
theories developed the novel view of “infinite nuclear matter” structure, based on
in-medium properties of the constituent baryons that share parts of their vacuum
mass and surface structure with the surrounding, continuous field of relativistic
scalar and vector mesons. Most importantly, in the light of subsequent development,
these theories allowed for a generalization away from ground state density and
zero temperature. Such developments turned out to be of key relevance for acute
nuclear astrophysics problems: the dynamics of type II super-novae and the stability
of neutron stars, which both required the relation of pressure to density and
temperature of hadronic matter, i.e. the hadronic matter equation of state (EOS).
H.A. Bethe et al. [28] postulated that the final stages of supernova collapse should
evolve through the density interval 0.1 ≤ $/$0 ≤ 5 where $0 = 0.16 (baryons
per fm3) is the nuclear matter ground state density, and a similar domain was
expected for the neutron star density variation from surface to interior [29]. It
was clear that, at the highest thus considered densities the EOS might soften due
to strange hadron production caused by increasing Fermi energy. However the
field theoretical models permitted no reliable extrapolation to such high densities
(which, in retrospect, are perhaps not reached in supernova dynamics [30]), and the
experimental information concerning the EOS from study of the giant monopole
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resonance—a collective density oscillation also called “breathing mode”—covered
only the parabolic minimum occurring in the related function of energy vs. density
at T = 0, $ = $0.

The situation changed around 1970 due to the prediction made by W. Greiner et
al. [31] that nucleus-nucleus collisions, at relatively modest relativistic energies,
would result in shock compression. This mechanism promised to reach matter
densities far beyond those of a mere superposition (i.e. $/$0 ≤ 2γ ) of initial
target and projectile densities. Coinciding in time, the newly developed Bevalac
accelerator at LBL Berkeley offered projectiles up to 38Ar, at just the required
energies, 100 MeV ≤ ELab/nucleon ≤ 2 GeV. The field of “relativistic heavy
ion physics” was born. The topic was confronted, at first, with experimental
methods available both from nuclear and particle physics. It was shown that particle
production (here still restricted to pions and kaons) could indeed be linked to
the equation of state [32] and that, even more spectacularly, the entire “fireball”
of mutually stopped hadrons developed decay modes very closely resembling the
initial predictions of hydrodynamical shock flow modes [33] which directly link
primordial pressure gradients with collective velocity fields of matter streaming out,
again governed by the nuclear/hadronic matter EOS. Actually, both these statements
do, in fact, apply (mutatis mutandis) up to the present ultra-relativistic energies (see
Sects. 7.2–7.4). However it turned out soon that the equation of state at low or even
zero temperature (as required in supernova and neutron star studies) could only be
obtained in a semi-empirical manner [34]. The reason: compression can, in such
collisions, be only accomplished along with temperature and entropy increase. In
an ideal baryon gas exp(s/A) ∝ T 3/2/$, i.e. T 3/2 will grow faster than $ in a
non-isentropic compression. Thus the reaction dynamics will be sensitive to various
isothermes of the ground state EOS P = f ($, T = 0), staying at T � 0,
throughout, and, moreover, not at constant T . Thus a relativistic dynamical mean
field model is required in order to interactively deduce the T = 0 EOS from data
[34]. The EOS result thus remains model dependent.

The ideas concerning creation of a quark gluon plasma arose almost concurrent
with the heavy ion shock compression proposal. In 1974 T.D. Lee formulated the
idea that the non-perturbative vacuum condensates could be “melted down . . . by
distributing high energy or high nucleon density over a relatively large volume”
[35]. Collins and Perry [36] realized that the asymptotic freedom property of QCD
implies the existence of an ultra-hot form of matter with deconfined quarks and
gluons, an idea that gained wide recognition when S. Weinberg [37] proposed an
asymptotic freedom phase at the beginning of “The first Three minutes”. In fact,
this idea of deconfinement by asymptotic freedom (with implied temperature of
several GeV) was correct, but somewhat besides the point, as everybody expected,
likewise, that deconfinement sets in right above the limiting hadron temperature of
R. Hagedorn [38], TH ≈ 160 MeV. A medium existing down to that temperature
would, however, feature an average momentum square transfer Q2 < 1 GeV2, i.e.
be far into the non perturbative domain, and very far from asymptotic freedom.
Right above the hadron to parton transition the “quark gluon plasma” (as it was
named by E. Shuryak [39]) is not a weakly coupled ideal pQCD gas as soon became
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obvious by Lattice QCD calculations for extended matter [40]. Seen in retrospect
one obviously cannot defend a picture of point like quarks (with “current” masses)
at Q2 ≤ 0.2 GeV2 where size scales of 0.5 to 1 fm must play a dominating role.

An analytic QCD description of deconfinement does not exist. For heavy
quarkonia, cc (J/�) and bb (Y ) deconfinement in partonic matter, Matsui and Satz
proposed [41] a Debye screening mechanism, caused by the high spatial density of
free color carriers, that removes the confining long range potential as T increases
toward about 2Tc, an effect reproduced by modern lattice QCD [42]. However, light
hadron deconfinement cannot be understood with a non-relativistic potential model.
Such critical remarks not withstanding, we shall demonstrate in Sects. 7.3–7.6 that
the very existence, and also crucial properties of the QGP can in fact be inferred
from experiment, and be confronted with corresponding predictions of recent lattice
QCD theory.

Our present level of an initial understanding of the phase diagram of QCD matter
(Fig. 7.1), is the result of a steady development of both experiment and theory, that
began about three decades ago, deriving initial momentum from the Bevalac physics
at LBL which motivated—along with the developing formulation of the quark gluon
plasma research goals—a succession of experimental facilities progressing toward
higher

√
s. Beginning with the AGS at BNL (28Si and 197Au beams with

√
s ≤

5 GeV), the next steps were taken at the CERN SPS (
√
s from 6 to 20 GeV; 16O,

32S, 208Pb beams), and at the Relativistic Heavy Ion Collider RHIC (the first facility
constructed explicitly for nuclear collisions) which offers beams of 64Cu and 197Au
at 20 ≤ √

s ≤ 200 GeV. A final, gigantic step in energy will be taken 2008 with the
CERN Large Hadron Collider: 208Pb beams at

√
s = 5.5 TeV.

7.2 Bulk Hadron Production in A+A Collisions

In this section we take an overall look at bulk hadron production in nucleus-
nucleus collisions. In view of the high total c.m. energies involved at e.g. top SPS
(Etot

cm ≈ 3.3 TeV) and top RHIC (38 TeV) energies, in central Pb+Pb (SPS) and
Au+Au (RHIC) collisions, one can expect an extraordinarily high spatial density of
produced particles. Thus, as an overall idea of analysis, one will try to relate the
observed flow of energy into transverse and longitudinal phase space and particle
species to the high energy density contained in the primordial interaction volume,
thus to infer about its contained matter. The typical experimental patterns of such
collisions, both in collider mode at RHIC and in a fixed target configuration at the
SPS, are illustrated in Fig. 7.2 which shows a fractional view of the total distribution
of charged particles (about 4000 and 1600, respectively) within the tracking volume
of the STAR and NA49 experiments.

Most of these tracks correspond to “thermal” pions (pT up to 2 GeV) and, in
general, such thermal hadrons make up for about 95% of the observed multiplicity:
the bulk of hadron production. Their distributions in phase space will be illustrated
in the subsections below. This will lead to a first insight into the overall reaction
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Fig. 7.2 Charged particle tracks in central Au+Au and Pb+Pb collision events, in collider
geometry (top) from RHIC STAR TPC tracking at

√
s = 200 GeV, and in fixed target geometry

(bottom) from NA49 at the SPS,
√
s = 17.3 GeV

dynamics, and also set the stage for consideration of the rare signals, imbedded in
this thermal bulk production: correlations, jets, heavy flavors, fluctuations, which
are the subject of later chapters.

7.2.1 Particle Multiplicity and Transverse Energy Density

Particle production can be assessed globally by the total created transverse energy,
the overall result of the collisional creation of transverse momentum pT or

transverse mass (mT =
√
p2

T + m2
0), at the microscopic level. Figure 7.3 shows

the distribution of total transverse energy ET = ∑
i

E(%i) · sin% resulting from a

calorimetric measurement of energy flow into calorimeter cells centered at angle %i

relative to the beam [43], for 32S + 197Au collisions at
√
s = 20 GeV, and for 208Pb

+ 208Pb collisions at
√
s = 17.3 GeV.

The shape is characteristic of the impact parameter probability distribution (for
equal size spheres in the Pb+Pb case). The turnoff at ET = 520 GeV indicates
the point where geometry runs out of steam, i.e. where b → 0, a configuration
generally referred to as a “central collision”. The adjacent shoulder results from
genuine event by event fluctuations of the actual number of participant nucleons
from target and projectile (recall the diffuse Woods-Saxon nuclear density profiles),
and from experimental factors like calorimeter resolution and limited acceptance.
The latter covers 1.3 units of pseudo-rapidity and contains mid-rapidity ηmid = 2.9.
Re-normalizing [43] to � η = 1 leads to dET/dη (mid) = 400 GeV, in agreement
with the corresponding WA80 result [44]. Also, the total transverse energy of central
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Fig. 7.3 Minimum bias
distribution of total transverse
energy in Pb+Pb collisions at√
s = 17.3 GeV, and S+Au

collisions at
√
s = 20 GeV, in

the rapidity interval
2.1 < y < 3.4, from [43]
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Pb+Pb collisions at
√
s = 17.3 GeV turns out to be about 1.2 TeV. As the definition

of a central collision, indicated in Fig. 7.3, can be shown [42] to correspond to
an average nucleon participant number of Npart = 370 one finds an average total
transverse energy per nucleon pair, of ET/

〈
0.5 Npart

〉 = 6.5 GeV. After proper
consideration of the baryon pair rest mass (not contained in the calorimetric ET
response but in the corresponding

√
s) one concludes [43] that the observed total

ET corresponds to about 0.6 Emax
T , the maximal ET derived from a situation of

“complete stopping” in which the incident
√
s gets fully transformed into internal

excitation of a single, ideal isotropic fireball located at mid-rapidity. The remaining
fraction of Emax

T thus stays in longitudinal motion, reflecting the onset, at SPS
energy, of a transition from a central fireball to a longitudinally extended “fire-tube”,
i.e. a cylindrical volume of high primordial energy density. In the limit of much
higher

√
s one may extrapolate to the idealization of a boost invariant primordial

interaction volume, introduced by Bjorken [45].
We shall show below (Sect. 7.2.2) that the charged particle rapidity distributions,

from top SPS to top RHIC energies, do in fact substantiate a development toward a
boost-invariant situation. One may thus employ the Bjorken model for an estimate
of the primordial spatial energy density ε, related to the energy density in rapidity
space via the relation [45]

ε(τ0) = 1

πR2

1

τ0

dET

dy
(7.1)

where the initially produced collision volume is considered as a cylinder of length
dz = τ0 dy and transverse radius R ∝ A1/3. Inserting for πR2 the longitudinally
projected overlap area of Pb nuclei colliding near head-on (“centrally”), and
assuming that the evolution of primordial pQCD shower multiplication (i.e. the
energy transformation into internal degrees of freedom) proceeds at a time scale
τ0 ≤ 1 fm/c, the above average transverse energy density, of dET/dy = 400 GeV
at top SPS energy [43, 44] leads to the estimate

ε(τ0 = 1 fm) = 3.0 ± 0.6 GeV/fm3, (7.2)
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Fig. 7.4 Charged hadron
rapidity density at
mid-rapidity vs.

√
s,

compiled from
e+e−, pp, pp and A+A
collisions [53]

[GeV]NNs
1 10 10 2 10 3

2/ trapN
/

<
1

|
|

|
d/

d N

0

1

2

3

4

5 PHOBOS
NA49 (SPS)
E917 (AGS)
ISR (pp)

)pUA5 (p
)pCDF (p

data-e+e

PHOBOS Preliminary

Fig. 7.5 Lattice QCD results
at zero baryon potential for
energy density ε/T 4 versus
T /Tc with three light quark
flavors, compared to the
Stefan-Boltzmann-limit εSB
of an ideal quark-gluon
gas [48]

170
16

14

12

10

8

6

4

2

0
1.0 1.5          2.0 2.5 3.0 3.5 4.0

210 250 340 510

LHCRHIC

680

SB /T

T T

T

/

[MeV]

c

4

/ T
4

6.3
4.3

2.9
1.8

0.6 GeV /fm =3
c

thus exceeding, by far, the estimate of the critical energy density ε0 obtained from
lattice QCD (see below), of about 1.0 GeV/fm3. Increasing the collision energy
to

√
s = 200 GeV for Au+Au at RHIC, and keeping the same formation time,

τ0 = 1 fm/c (a conservative estimate as we shall show in Sect. 7.2.4), the Bjorken
estimate grows to ε ≈ 6.0 ± 1 GeV/fm3. This statement is based on the increase
of charged particle multiplicity density at mid-rapidity with

√
s, as illustrated in

Fig. 7.4. From top SPS to top RHIC energy [46] the density per participant nucleon
pair almost doubles. However, at

√
s = 200 GeV the formation or thermalization

time τ0, employed in the Bjorken model [45], was argued [47] to be shorter by a
factor of about 4. We will return to such estimates of τ0 in Sect. 7.2.5 but note, for
now, that the above choice of τ0 = 1 fm/c represents a conservative upper limit at
RHIC energy.

These Bjorken-estimates of spatial transverse energy density are confronted in
Fig. 7.5 with lattice QCD results obtained for three dynamical light quark flavors
[48], and for zero baryo-chemical potential (as is realistic for RHIC energy and
beyond but still remains a fair approximation at top SPS energy where μB ≈
250 MeV). The energy density of an ideal, relativistic parton gas scales with the



7 Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram 323

fourth power of the temperature,

ε = gT 4 (7.3)

where g is related to the number of degrees of freedom. For an ideal gluon gas,
g = 16 π2/30; in an interacting system the effective g is smaller. The results of
Fig. 7.5 show, in fact, that the Stefan-Boltzmann limit εSB is not reached, due to non
perturbative effects, even at four times the critical temperature Tc = 170 MeV. The
density ε/T 4 = g is seen to ascend steeply, within the interval Tc ± 25 MeV. At Tc
the critical QCD energy density ε = 0.6–1.0 GeV/fm3. Relating the thermal energy
density with the Bjorken estimates discussed above, one arrives at an estimate of the
initial temperatures reached in nucleus-nucleus collisions, thus implying thermal
partonic equilibrium to be accomplished at time scale τ0 (see Sect. 7.2.5). For
the SPS, RHIC and LHC energy domains this gives an initial temperature in the
range 190 ≤ T SPS ≤ 220 MeV, 220 ≤ T RHIC ≤ 400 MeV (assuming [47]
that τ0 decreases to about 0.3 fm/c here) and T LHC ≥ 600 MeV, respectively.
From such estimates one tends to conclude that the immediate vicinity of the phase
transformation is sampled at SPS energy, whereas the dynamical evolution at RHIC
and LHC energies dives deeply into the “quark-gluon-plasma” domain of QCD. We
shall return to a more critical discussion of such ascertations in Sect. 7.2.5.

One further aspect of the mid-rapidity charged particle densities per participant
pair requires attention: the comparison with data from elementary collisions.
Figure 7.4 shows a compilation of pp, pp and e+e− data covering the range from
ISR to LEP and Tevatron energies.

The data from e+e− represent dNch/dy, the rapidity density along the event
thrust axis, calculated assuming the pion mass [49] (the difference between dN/dy
and dN/dη can be ignored here). Remarkably, they superimpose with the central
A+A collision data, whereaspp and pp show similar slope but amount to only about
60% of the AA and e+e− values. This difference between e+e− annihilation to
hadrons, and pp or pp hadro-production has been ascribed [50] to the characteristic
leading particle effect of minimum bias hadron-hadron collisions which is absent
in e+e−. It thus appears to be reduced in AA collisions due to subsequent
interaction of the leading parton with the oncoming thickness of the remaining
target/projectile density distribution. This naturally leads to the scaling of total
particle production with Npart that is illustrated in Fig. 7.6, for three RHIC energies
and minimum bias Au+Au collisions; the close agreement with e+e− annihilation
data is obvious again. One might conclude that, analogously, the participating
nucleons get “annihilated” at high

√
s, their net quantum number content being

spread out over phase space (as we shall show in the next section).
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Fig. 7.6 The total number of
charged hadrons per
participant pair shown as a
function of Npart in Au+Au
collisions at three RHIC
energies [53]

7.2.2 Rapidity Distributions

Particle production number in A+A collisions depends globally on
√
s and collision

centrality, and differentially on pT and rapidity y, for each particle species i.
Integrating over pT results in the rapidity distribution dNi/dy. Particle rapidity,1

y = sinh−1 pL/MT (where MT =
√
m2 + p2

T), requires mass identification. If that
is unknown one employs pseudo-rapidity (η = − ln [tan(%/2)]) instead. This is
also chosen if the joint rapidity distribution of several unresolved particle species
is considered: notably the charged hadron distribution. We show two examples
in Fig. 7.7. The left panel illustrates charged particle production in pp collisions
studied by UA1 at

√
s = 540 GeV [51]. Whereas the minimum bias distribution

(dots) exhibits the required symmetry about the center of mass coordinate, η =
0, the rapidity distribution corresponding to events in which a W boson was
produced (histogram) features, both, a higher average charged particle yield, and an
asymmetric shape. The former effect can be seen to reflect the expectation that the
W production rate increases with the “centrality” of pp collisions, involving more
primordial partons as the collisional overlap of the partonic density profiles gets
larger, thus also increasing the overall, softer hadro-production rate. The asymmetry
should result from a detector bias favoring W identification at negative rapidity:
the transverse W energy, of about 100 GeV would locally deplete the energy store

1The rapidity variable represents a compact (logarithmic) description of longitudinal phase space.
It is based on longitudinal particle velocity (derived from plong and m), y = 1/2 ln((1 + βL)/(1 −
βL)). The rapidity distribution dN/dy is shape invariant under longitudinal Lorentz transformation,
and centered at “mid-rapidity” ymid = yCM, for all produced particle species; see Figs. 7.7, 7.8, 7.9,
and 7.10.
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Fig. 7.7 Left panel: charged particle pseudo-rapidity distribution in pp collisions at
√
s =

540 GeV [51]. Right panel: same in RHIC Au+Au collisions at
√
s = 130 GeV at different

centralities [52]. Closed lines represent fits with the color glass condensate model [64]

available for associated soft production. If correct, this interpretation suggests that
the wide rapidity gap between target and projectile, arising at such high

√
s, of width

�y ≈ 2 ln (2γCM), makes it possible to define local sub-intervals of rapidity within
which the species composition of produced particles varies.

The right panel of Fig. 7.7 shows charged particle pseudo-rapidity density dis-
tributions for Au+Au collisions at

√
s = 130 GeV measured by RHIC experiment

PHOBOS [52] at three different collision centralities, from “central” (the 6% highest
charged particle multiplicity events) to semi-peripheral (the corresponding 35–45%
cut). We will turn to centrality selection in more detail below. Let us first remark
that the slight dip at mid-rapidity and, moreover, the distribution shape in general,
are common to pp and Au+Au. This is also the case for e+e− annihilation as is
shown in Fig. 7.8 which compares the ALEPH rapidity distribution along the mean
pT (“thrust”) axis of jet production in e+e− at

√
s = 200 GeV [49] with the scaled

PHOBOS-RHIC distribution of central Au+Au at the same
√
s [53]. Note that the

mid-rapidity values contained in Figs. 7.7 and 7.8 have been employed already in
Fig. 7.4, which showed the overall

√
s dependence of mid-rapidity charged particle

production. What we concluded there was a perfect scaling of A+A with e+e−
data at

√
s ≥ 20 GeV and a 40% suppression of the corresponding pp, pp

yields. We see here that this observation holds, semi-quantitatively, for the entire
rapidity distributions. These are not ideally boost invariant at the energies considered
here but one sees in dNch/dy a relatively smooth “plateau” region extending over
| y |≤ 1.5–2.5.

The production spectrum of charged hadrons is, by far, dominated by soft pions
(pT ≤ 1 GeV/c) which contribute about 85% of the total yield, both in elementary
and nuclear collisions. The evolution of the π− rapidity distribution with

√
s is

illustrated in Fig. 7.9 for central Au+Au and Pb+Pb collisions from AGS via SPS to
RHIC energy, 2.7 ≤ √

s ≤ 200 GeV [54].
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Fig. 7.8 Pseudo-rapidity
distribution of charged
hadrons produced in central
Au+Au collisions at√
s = 200 GeV compared

with e+e− data at similar
energy. The former data
normalized by Npart/2. From
ref. [53]
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At lower
√
s the distributions are well described by single Gaussian fits [54] with

σ(y) nearly linearly proportional to the total rapidity gap �y ∝ ln
√
s as shown in

the right hand panel of Fig. 7.9. Also illustrated is the prediction of the schematic
hydrodynamical model proposed by Landau [55],

σ 2 ∝ ln

( √
s

2mp

)
(7.4)

which pictures hadron production in high
√
s pp collisions to proceed via a

dynamics of initial complete “stopping down” of the reactants matter/energy
content in a mid-rapidity fireball that would then expand via 1-dimensional ideal
hydrodynamics. Remarkably, this model that has always been considered a wildly
extremal proposal falls rather close to the lower

√
s data for central A+A collisions

but, as longitudinal phase space widens approaching boost invariance we expect that
the (non-Gaussian) width of the rapidity distribution grows linearly with the rapidity
gap �y. LHC data will finally confirm this expectation, but Figs. 7.7, 7.8, and 7.9
clearly show the advent of boost invariance, already at

√
s = 200 GeV.

A short didactic aside: At low
√
s the total rapidity gap �y = 2–3 does closely

resemble the total rapidity width obtained for a thermal pion velocity distribution at
temperature T = 120–150 MeV, of a single mid-rapidity fireball, the y-distribution
of which represents the longitudinal component according to the relation [19]

dN

dy
∝
(
m2T + 2mT 2

cosh y
+ 2T 2

cosh2y

)
exp [−m cosh y/T ] (7.5)
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Fig. 7.9 Left panel: negative pion rapidity distributions in central Au+Au and Pb+Pb collisions
from AGS via SPS to RHIC energies [54]. Right panel: the Gaussian rapidity width of pions versus√
s, confronted by Landau model predictions (solid line) [54]

where m is the pion mass. Any model of preferentially longitudinal expansion of
the pion emitting source, away from a trivial single central “completely stopped”
fireball, can be significantly tested only once �y > 3 which occurs upward from
SPS energy. The agreement of the Landau model prediction with the data in Fig. 7.9
is thus fortuitous, below

√
s ≈ 10 GeV, as any created fireball occupies the entire

rapidity gap with pions.
The Landau model offers an extreme view of the mechanism of “stopping”,

by which the initial longitudinal energy of the projectile partons or nucleons
is inelastically transferred to produced particles and redistributed in transverse
and longitudinal phase space, of which we saw the total transverse fraction in
Fig. 7.3. Obviously e+e− annihilation to hadrons represents the extreme stopping
situation. Hadronic and nuclear collisions offer the possibility to analyze the final
distribution in phase space of their non-zero net quantum numbers, notably net
baryon number. Figure 7.10 shows the net-proton rapidity distribution (i.e. the
proton rapidity distribution subtracted by the antiproton distribution) for central
Pb+Pb/Au+Au collisions at AGS (

√
s = 5.5 GeV), SPS (

√
s ≤ 17.3 GeV) and

RHIC (
√
s = 200 GeV) [56]. With increasing energy we see a central (but non-

Gaussian) peak developing into a double-hump structure that widens toward RHIC
leaving a plateau about mid-rapidity. The RHIC-BRAHMS experiment acceptance
for p, p identification does unfortunately not reach up to the beam fragmentation
domain at yp = 5.4 (nor does any other RHIC experiment) but only to y ≈ 3.2,
with the consequence that the major fraction of pnet is not accounted for. However
the mid-rapidity region is by no means net baryon free. At SPS energy the NA49
acceptance covers the major part of the total rapidity gap, and we observe in
detail a net p distribution shifted down from yp = 2.9 by an average rapidity
shift [56] of 〈δy〉 = 1.7. From Fig. 7.10 we infer that 〈δy〉 cannot scale linearly
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Fig. 7.10 Net proton rapidity
distributions in central
Au+Au/Pb+Pb collisions at
AGS, SPS and RHIC energies
[56, 57]

y
-4 -2 0 2 4

d/
d

y
n

B - B

210

310

410
8.0)E802 (

6.0)20A GeV (
4.0)30A GeV (
2.0)40A GeV (
1.5)80A GeV (

1.0)158A GeV (
1.0)BRAHMS (

with yp ≈ ln(2γCM) ≈ ln
√
s for ever—as it does up to top SPS energy where

〈δy〉 = 0.58 yp [56]. Because extrapolating this relation to
√
s = 200 GeV would

result in 〈δy〉 = 3.1, and with yp ≈ 5.4 at this energy we would expect to observe a
major fraction of net proton yield in the vicinity of y = 2.3 which is not the case. A
saturation must thus occur in the 〈δy〉 vs.

√
s dependence.

The re-distribution of net baryon density over longitudinal phase space is, of
course, only partially captured by the net proton yield but a recent study [57] has
shown that proper inclusion of neutron2 and hyperon production data at SPS and
RHIC energy scales up, of course, the dN/dy distributions of Fig. 7.10 but leaves
the peculiarities of their shapes essentially unchanged. As the net baryon rapidity
density distribution should resemble the final valence quark distribution the Landau
model is ruled out as the valence quarks are seen to be streaming from their initial
position at beam rapidity toward mid-rapidity (not vice versa). It is remarkable,
however, to see that some fraction gets transported very far, during the primordial
partonic non-equilibrium phase. We shall turn to its theoretical description in
Sect. 7.2.4 but note, for now, that pp collisions studied at the CERN ISR [58] lead
to a qualitatively similar net baryon rapidity distribution, albeit characterized by a
smaller 〈δy〉.

2Neutrons are not directly measured in the SPS and RHIC experiments but their production rate,
relative to protons, reflects in the ratio of tritium to 3He production measured by NA49 [57],
applying the isospin mirror symmetry of the corresponding nuclear wave functions.
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The data described above suggest that the stopping mechanism universally
resides in the primordial, first generation of collisions at the microscopic level. The
rapidity distributions of charged particle multiplicity, transverse energy and valence
quark exhibit qualitatively similar shapes (which also evolve similarly with

√
s)

in pp, pp, e+e− reactions, on the one hand, and in central or semi-peripheral
collisions of A ≈ 200 nuclei, on the other. Comparing in detail we formulate a
nuclear modification factor for the bulk hadron rapidity distributions,

RAA
y ≡ dNch/dy (y) in A+A

0.5 Npart dNch/dy in pp
(7.6)

where Npart < 2A is the mean number of “participating nucleons” (which undergo
at least one inelastic collision with another nucleon) which increases with collision

centrality. For identical nuclei colliding
〈
N

proj
part

〉
�

〈
N

targ
part

〉
and thus 0.5 Npart gives

the number of opposing nucleon pairs. RAA = 1 if each such “opposing” pair
contributes the same fraction to the total A+A yield as is produced in minimum bias
pp at similar

√
s. From Figs. 7.4 and 7.6 we infer that for | η |< 1, RAA = 1.5 at top

RHIC energy, and for the pseudo-rapidity integrated total Nch we find RAA = 1.36,
in central Au+Au collisions. AA collisions thus provide for a higher stopping power
than pp (which is also reflected in the higher rapidity shift 〈δy〉 of Fig. 7.10). The
observation that their stopping power resembles the e+e− inelasticity suggests a
substantially reduced leading particle effect in central collisions of heavy nuclei.
This might not be surprising. In a Glauber-view of successive minimum bias nucleon
collisions occurring during interpenetration, each participating nucleon is struck
ν > 3 times on average, which might saturate the possible inelasticity, removing
the leading fragment.

This view naturally leads to the scaling of the total particle production in nuclear
collisions with Npart, as seen clearly in Fig. 7.6, reminiscent of the “wounded
nucleon model” [59] but with the scaling factor determined by e+e− rather than pp

[60]. Overall we conclude from the still rather close similarity between nuclear and
elementary collisions that the mechanisms of longitudinal phase space population
occur primordially, during interpenetration which is over after 0.15 fm/c at RHIC,
and after 1.5 fm/c at SPS energy. I.e. it is the primordial non-equilibrium pQCD
shower evolution that accounts for stopping, and its time extent should be a lower
limit to the formation time τ0 employed in the Bjorken model [45], Eq. (7.1).
Equilibration at the partonic level might begin at t > τ0 only (the development
toward a quark-gluon-plasma phase), but the primordial parton redistribution
processes set the stage for this phase, and control the relaxation time scales involved
in equilibration [61]. More about this in Sect. 7.2.5. We infer the existence of a
saturation scale [62] controlling the total inelasticity: with ever higher reactant
thickness, proportional to A1/3, one does not get a total rapidity or energy density
proportional to A4/3 (the number of “successive binary collisions”) but to A1.08 only
[63]. Note that the lines shown in Fig. 7.7 (right panel) refer to such a saturation
theory: the color glass condensate (CGC) model [64] developed by McLerran and
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Venugopulan. The success of these models demonstrates that “successive binary
baryon scattering” is not an appropriate picture at high

√
s. One can free the partons

from the nucleonic parton density distributions only once, and their corresponding
transverse areal density sets the stage for the ensuing QCD parton shower evolution
[62]. Moreover, an additional saturation effect appears to modify this evolution at
high transverse areal parton density (see Sect. 7.2.4).

7.2.3 Dependence on System Size

We have discussed above a first attempt toward a variable (Npart) that scales the
system size dependence in A+A collisions. Note that one can vary the size either
by centrally colliding a sequence of nuclei, A1 + A1, A2 + A2 etc., or by selecting
different windows in Npart out of minimum bias collision ensembles obtained for
heavy nuclei for which BNL employs 197Au and CERN 208Pb. The third alternative,
scattering a relatively light projectile, such as 32S, from increasing A nuclear targets,
has been employed initially both at the AGS and SPS but got disfavored in view
of numerous disadvantages, of both experimental (the need to measure the entire
rapidity distribution, i.e. lab momenta from about 0.3–100 GeV/c, with uniform
efficiency) and theoretical nature (different density distributions of projectile and
target; occurrence of an “effective” center of mass, different for hard and soft
collisions, and depending on impact parameter).

The determination of Npart is of central interest, and thus we need to look at
technicalities, briefly. The approximate linear scaling with Npart that we observed in
the total transverse energy and the total charged particle number (Figs. 7.3 and 7.6)
is a reflection of the primordial redistribution of partons and energy. Whereas all
observable properties that refer to the system evolution at later times, which are of
interest as potential signals from the equilibrium, QCD plasma “matter” phase, have
different specific dependences on Npart, be it suppressions (high pT signals, jets,
quarkonia production) or enhancements (collective hydrodynamic flow, strangeness
production). Npart thus emerges as a suitable common reference scale.

Npart captures the number of potentially directly hit nucleons. It is estimated from
an eikonal straight trajectory Glauber model as applied to the overlap region arising,
in dependence of impact parameter b, from the superposition along beam direction
of the two initial Woods-Saxon density distributions of the interacting nuclei. To
account for the dilute surfaces of these distributions (within which the intersecting
nucleons might not find an interaction partner) each incident nucleon trajectory gets
equipped with a transverse radius that represents the total inelastic NN cross section
at the corresponding

√
s. The formalism is imbedded into a Monte Carlo simulation

(for detail see [66]) starting from random microscopic nucleon positions within
the transversely projected initial Woods-Saxon density profiles. Overlapping cross
sectional tubes of target and projectile nucleons are counted as a participant nucleon
pair. Owing to the statistics of nucleon initial position sampling each considered
impact parameter geometry thus results in a probability distribution of derivedNpart.
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Its width σ defines the resolution �(b) of impact parameter b determination within
this scheme via the relation

1

�(b)
σ(b) ≈ d

〈
Npart(b)

〉
db

(7.7)

which, at A = 200, leads to the expectation to determine b with about 1.5 fm
resolution [66], by measuring Npart.

How to measure Npart? In fixed target experiments one can calorimetrically
count all particles with beam momentum per nucleon and superimposed Fermi
momentum distributions of nucleons, i.e. one looks for particles in the beam
fragmentation domain ybeam ± 0.5, pT ≤ 0.25 GeV/c. These are identified as
spectator nucleons, and N

proj
part = A − N

proj
spec. For identical nuclear collision systems〈

N
proj
part

〉
=

〈
N

targ
part

〉
, and thus Npart gets approximated by 2Nproj

part . This scheme was

employed in the CERN experiments NA49 and WA80, and generalized [67] in a
way that is illustrated in Fig. 7.11.

The top panel shows the minimum bias distribution of total energy registered in
a forward calorimeter that covers the beam fragment domain in Pb+Pb collisions
at lab. energy of 158 GeV per projectile nucleon,

√
s = 17.3 GeV. The energy

spectrum extends from about 3 TeV which corresponds to about 20 projectile
spectators (indicating a “central” collision), to about 32 TeV which is close to the
total beam energy and thus corresponds to extremely peripheral collisions. Note
that the shape of this forward energy spectrum is the mirror image of the minimum
bias transverse energy distribution of Fig. 7.3, both recorded by NA49. From both
figures we see that the ideal head-on, b → 0 collision cannot be selected from these
(or any other) data, owing to the facts that b = 0 carries zero geometrical weight,
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and that the diffuse Woods-Saxon nuclear density profiles lead to a fluctuation of
participant nucleon number at given finite b. Thus the Npart fluctuation at finite
weight impact parameters overshadows the genuinely small contribution of near
zero impact parameters. Selecting “central” collisions, either by an on-line trigger
cut on minimal forward energy or maximal total transverse energy or charged
particle rapidity density, or by corresponding off-line selection, one thus faces a
compromise between event statistics and selectivity for impact parameters near
zero. In the example of Fig. 7.11 these considerations suggest a cut at about 8 TeV
which selects the 5% most inelastic events, from among the overall minimum bias
distribution, then to be labeled as “central” collisions. This selection corresponds to
a soft cutoff at b ≤ 3 fm.

The selectivity of this, or of other less stringent cuts on collision centrality is
then established by comparison to a Glauber or cascade model. The bottom panel of
Fig. 7.11 employs the VENUS hadron/string cascade model [68] which starts from a
Monte Carlo position sampling of the nucleons imbedded in Woods-Saxon nuclear
density profiles but (unlike in a Glauber scheme with straight trajectory overlap
projection) following the cascade of inelastic hadron/string multiplication, again by
Monte Carlo sampling. It reproduces the forward energy data reasonably well and
one can thus read off the average impact parameter and participant nucleon number
corresponding to any desired cut on the percent fraction of the total minimum bias
cross section. Moreover, it is clear that this procedure can also be based on the total
minimum bias transverse energy distribution, Fig. 7.3, which is the mirror image
of the forward energy distribution in Fig. 7.11, or on the total, and even the mid-
rapidity charged particle density (Fig. 7.6). The latter method is employed by the
RHIC experiments STAR and PHENIX.

How well this machinery works is illustrated in Fig. 7.12 by RHIC-PHOBOS
results at

√
s = 200 GeV [52]. The charged particle pseudo-rapidity density

distributions are shown for central (3–6% highest Nch cut) Cu+Cu collisions, with

Fig. 7.12 Charged hadron
pseudo-rapidity distributions
in Cu+Cu and Au+Au
collisions at

√
s = 200 GeV,

with similar Npart ≈ 100 [52]
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Fig. 7.13 Charged pion
multiplicity normalized by
NW vs. centrality in p+p,
C+C, Si+Si and Pb+Pb
collisions at

√
s = 17.3 GeV

[67, 69]
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〈
Npart

〉 = 100, and semi-peripheral Au+Au collisions selecting the cut window (35–
40%) such that the same

〈
Npart

〉
emerges. The distributions are nearly identical.

In extrapolation to Npart = 2 one would expect to find agreement between min.
bias p+p, and “super-peripheral” A+A collisions, at least at high energy where
the nuclear Fermi momentum plays no large role. Figure 7.13 shows that this
expectation is correct [69]. As it is technically difficult to select Npart = 2 from
A = 200 nuclei colliding, NA49 fragmented the incident SPS Pb beam to study
12C+12C and 28Si+28Si collisions [67]. These systems are isospin symmetric, and
Fig. 7.13 thus plots 0.5 (

〈
π+〉 + 〈

π−〉)/ 〈NW〉 including p+p where NW = 2 by
definition. We see that the pion multiplicity of A+A collisions interpolates to the
p+p data point.

Note that NA49 employs the term “wounded nucleon” number (NW) to count
the nucleons that underwent at least one inelastic nucleon-nucleon collision. This is
what the RHIC experiments (that follow a Glauber model) call Npart whereas NA49
reserves this term for nucleons that underwent any inelastic collision. Thus NW in
Fig. 7.13 has the same definition as Npart in Figs. 7.4, 7.6, 7.8, and 7.12. We see
that a smooth increase joins the p+p data, via the light A+A central collisions, to
a saturation setting in with semi-peripheral Pb+Pb collisions, the overall, relative
increase amounting to about 40% (as we saw in Fig. 7.4).

There is nothing like an N
1/3
part increase (the thickness of the reactants) observed

here, pointing to the saturation mechanism(s) mentioned in the previous section,
which are seen from Fig. 7.13 to dampen the initial, fast increase once the primordial
interaction volume contains about 80 nucleons. In the Glauber model view of
successive collisions (to which we attach only symbolical significance at high

√
s)

this volume corresponds to 〈ν〉 ≈ 3, and within the terminology of such models we
might thus argue, intuitively, that the initial geometrical cross section, attached to
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the nucleon structure function as a whole, has disappeared at 〈ν〉 ≈ 3, all constituent
partons being freed.

7.2.4 Gluon Saturation in A+A Collisions

We will now take a closer look at the saturation phenomena of high energy QCD
scattering, and apply results obtained for deep inelastic electron-proton reactions to
nuclear collisions, a procedure that relies on a universality of high energy hadron
scattering. This arises at high

√
s, and at relatively low momentum transfer squared

Q2 (the condition governing bulk charged particle production near mid-rapidity at
RHIC, where Feynman x ≈ 0.01 and Q2 ≤ 5 GeV2). Universality comes about
as the transverse resolution becomes higher and higher, with Q2, so that within the
small area tested by the collision there is no difference whether the partons sampled
there belong to the transverse gluon and quark density projection of any hadron
species, or even of a nucleus. And saturation arises once the areal transverse parton
density exceeds the resolution, leading to interfering QCD sub-amplitudes that do
not reflect in the total cross section in a manner similar to the mere summation of
separate, resolved color charges [61–65, 70, 71].

The ideas of saturation and universality are motivated by HERA deep inelastic
scattering (DIS) data [72] on the gluon distribution function shown in Fig. 7.14
(left side). The gluon rapidity density, xG(x,Q2) = (dNgluon)/(dy) rises rapidly
as a function of decreasing fractional momentum, x, or increasing resolution, Q2.
The origin of this rise in the gluon density is, ultimately, the non-abelian nature of

x
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,
) 2
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2

Fig. 7.14 (Left) HERA data for the gluon distribution function as a function of fractional
momentum x and square momentum transfer Q2 [72]. (Right) Saturation of gluons in a hadron; a
head on view as x decreases [75]
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QCD. Due to the intrinsic non-linearity of QCD [70, 71], gluon showers generate
more gluon showers, producing an avalanche toward small x. As a consequence
of this exponential growth the spatial density of gluons (per unit transverse area
per unit rapidity) of any hadron or nucleus must increase as x decreases [65].
This follows because the transverse size, as seen via the total cross section, rises
more slowly toward higher energy than the number of gluons. This is illustrated
in Fig. 7.14 (right side). In a head-on view of a hadronic projectile more and more
partons (mostly gluons) appear as x decreases. This picture reflects a representation
of the hadron in the “infinite momentum frame” where it has a large light-cone
longitudinal momentum P+ � M . In this frame one can describe the hadron wave
function as a collection of constituents carrying a fraction p+ = xP+, 0 ≤ x < 1,
of the total longitudinal momentum [73] (“light cone quantization” method [74]). In
DIS at large sqrts and Q2 one measures the quark distributions dNq/dx at small x,
deriving from this the gluon distributions xG(x,Q2) of Fig. 7.14.

It is useful [75] to consider the rapidity distribution implied by the parton
distributions, in this picture. Defining y = yhadron − ln(1/x) as the rapidity of the
potentially struck parton, the invariant rapidity distribution results as

dN/dy = x dN/dx = xG(x,Q2). (7.8)

At high Q2 the measured quark and gluon structure functions are thus simply related
to the number of partons per unit rapidity, resolved in the hadronic wave function.

The above textbook level [74, 75] recapitulation leads, however, to an important
application: the dN/dy distribution of constituent partons of a hadron (or nucleus),
determined by the DIS experiments, is similar to the rapidity distribution of
produced particles in hadron-hadron or A+A collisions as we expect the initial
gluon rapidity density to be represented in the finally observed, produced hadrons,
at high

√
s. Due to the longitudinal boost invariance of the rapidity distribution, we

can apply the above conclusions to hadron-hadron or A+A collisions at high
√
s,

by replacing the infinite momentum frame hadron rapidity by the center of mass
frame projectile rapidity, yproj, while retaining the result that the rapidity density of
potentially interacting partons grows with increasing distance from yproj like

�y ≡ yproj − y = ln(1/x). (7.9)

At RHIC energy,
√
s = 200 GeV, �y at mid-rapidity thus corresponds to x < 10−2

(well into the domain of growing structure function gluon density, Fig. 7.14), and
the two intersecting partonic transverse density distributions thus attempt to resolve
each other given the densely packed situation that is depicted in the lower circle
of Fig. 7.14 (right panel). At given Q2 (which is modest, Q2 ≤ 5 GeV2, for bulk
hadron production at mid-rapidity) the packing density at mid-rapidity will increase
toward higher

√
s as

�ymidrap ≈ ln(
√
s/M), i.e. 1/x ≈ √

s/M (7.10)
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thus sampling smaller x domains in Fig. 7.14 according to Eq. (7.9). It will further
increase in proceeding from hadronic to nuclear reaction partners A+A. Will it be
in proportion to A4/3? We know from the previous sections (Sects. 7.2.2 and 7.2.3)
that this is not the case, the data indicating an increase with A1.08. This observation
is, in fact caused by the parton saturation effect, to which we turn now.

For given transverse resolution Q2 and increasing 1/x the parton density of
Fig. 7.14 becomes so large that one cannot neglect their mutual interactions any
longer. One expects such interactions to produce “shadowing”, a decrease of
the scattering cross section relative to incoherent independent scattering [70, 71].
As an effect of such shadowed interactions there occurs [75] a saturation [61–
65, 70, 71, 75] of the cross section at each given Q2, slowing the increase with 1/x
to become logarithmic once 1/x exceeds a certain critical value xs(Q

2). Conversely,
for fixed x, saturation occurs for transverse momenta below some critical Q2(x),

Q2
s (x) = αsNc

1

πR2

dN

dy
(7.11)

where dN/dy is the x-dependent gluon density (at y = yproj−ln(1/x)).Q2
s is called

the saturation scale. In Eq. (7.11) πR2 is the hadron area (in transverse projection),
and αsNc is the color charge squared of a single gluon. More intuitively, Q2

s (x)

defines an inversely proportional resolution area Fs(x) and at each x we have to
choose Fs(x) such that the ratio of total area πR2 to Fs(x) (the number of resolved
areal pixels) equals the number of single gluon charge sources featured by the total
hadron area. As a consequence the saturation scale Q2

s (x) defines a critical areal
resolution, with two different types of QCD scattering theory defined, at each x, for
Q2 > Q2

s and Q2 < Q2
s , respectively [62, 65, 75].

As one expects a soft transition between such theories, to occur along the
transition line implied by Q2

s (x), the two types of QCD scattering are best studied
with processes featuring typical Q2 well above, or below Q2

s (x). Jet production at√
s ≥ 200 GeV in pp or AA collisions with typical Q2 above about 103 GeV2,

clearly falls into the former class, to be described e.g. by QCD DGLAP evolution
of partonic showers [76]. The acronym DGLAP refers to the inventors of the
perturbative QCD evolution of parton scattering with the “running” strong coupling
constant αs(Q

2), Dokshitzer, Gribov, Levine, Altarelli and Parisi. On the other
hand, mid-rapidity bulk hadron production at the upcoming CERN LHC facility
(
√
s = 14 TeV for pp, and 5.5 TeV for A+A), with typical Q2 ≤ 5 GeV2 at

x ≤ 10−3, will present a clear case for QCD saturation physics, as formulated
e.g. in the “Color Glass Condensate (CGC)” formalism developed by McLerran,
Venugopalan and collaborators [64, 65, 75, 77]. This model develops a classical
gluon field theory for the limiting case of a high areal occupation number density,
i.e. for the conceivable limit of the situation depicted in Fig. 7.14 (right hand panel)
where the amalgamating small x gluons would overlap completely, within any
finite resolution area at modest Q2. Classical field theory captures, by construction,
the effects of color charge coherence, absent in DGLAP parton cascade evolution
theories [75]. This model appears to work well already at

√
s as “low” as at
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RHIC, as far as small Q2 bulk charged particle production is concerned. We have
illustrated this by the CGC model fits [64] to the PHOBOS charged particle rapidity
distributions, shown in Fig. 7.7.

Conversely, QCD processes falling in the transition region between such limiting
conditions, such that typical Q2 ≈ Q2

s (x), should present observables that are
functions of the ratio between the transferred momentum Q2 and the appropriate
saturation scale, expressed by Q2

s (x). As Q2 defines the effective transverse
sampling area, and Q2

s (x) the characteristic areal size at which saturation is expected
to set in, a characteristic behavior of cross sections, namely that they are universal
functions of Q2/Q2

s , is called “geometric scaling”. The HERA ep scattering data
obey this scaling law closely [78], and the idea arises to apply the universality
principle that we mentioned above: at small enough x, all hadrons or nuclei are
similar, their specific properties only coming in via the appropriate saturation scales
Q2

s (x, h) or Q2
s (x,A). Knowing the latter for RHIC conditions we will understand

the systematics of charged particle production illustrated in the previous chapter, and
thus also be able to extrapolate toward LHC conditions in pp and AA collisions.

All data for the virtual photo-absorption cross section σγp(x,Q2) in deep
inelastic ep scattering with x ≤ 0.01 (which is also the RHIC mid-rapidity x-
domain) have been found [78] to lie on a single curve when plotted against Q2/Q2

s ,
with

Q2
s (x) ∼

(x0

x

)λ
1 GeV2 (7.12)

with λ � 0.3 and x0 � 10−4. This scaling [79] with τ = Q2/Q2
s is shown

in Fig. 7.15 (top panel) to interpolate all data. A chain of arguments, proposed
by Armesto et al. [63] connects a fit to these data with photo-absorption data for
(virtual) photon-A interactions [80] via the geometrical scaling ansatz

σγA(τA)

πR2
A

= σγp(τp = τA)

πR2
p

(7.13)

assuming that the scale in the nucleus grows with the ratio of the transverse parton
densities, raised to the power 1/δ (a free parameter),

Q2
s,A = Q2

s,p

(
AπR2

p

πR2
A

)1/δ

, τA = τh

(
πR2

A

AπR2
h

)1/δ

. (7.14)

Figure 7.15 (middle and bottom panels) shows their fit to the nuclear photo-
absorption data which fixes δ = 0.79 and πR2

p = 1.57 fm2 (see ref. [63] for detail).
The essential step in transforming these findings to the case of A+A collisions is
then taken by the empirical ansatz

dNAA

dy
(at y � 0) ∝ Q2

s,A(x)πR
2
A (7.15)
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Fig. 7.15 (Top) Geometric
scaling of the virtual
photo-absorption cross
section σγp on protons;
(middle) cross sections for
nuclei normalized according
to Eq. (7.13); (bottom) the
ratio of σγA to a fit of σγp

(see [63] for data reference)
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by which the mid-rapidity parton (gluon) density dN/dy in Eq. (7.11) gets related
to the charged particle mid-rapidity density at y ≈ 0 [70, 81], measured in nucleus-
nucleus collisions. Replacing, further, the total nucleon number 2A in a collision of
identical nuclei of mass A by the number Npart of participating nucleons, the final
result is [63]

1

Npart

dNAA

dy
(at y ≈ 0) = N0(

√
s)λ Nα

part (7.16)

where the exponent α ≡ (1 − δ)/3 δ = 0.089, and N0 = 0.47. The exponent α is
far smaller than 1/3, a value that represents the thickness of the reactants, and would
be our naive guess in a picture of “successive” independent nucleon participant
collisions, whose average number 〈ν〉 ∝ (Npart/2)1/3. The observational fact (see
Fig. 7.13) that α < 1/3 for mid-rapidity low Q2 bulk hadron production in A+A
collisions illustrates the importance of the QCD saturation effect. This is shown
[63] in Fig. 7.16 where Eq. (7.16) is applied to the RHIC PHOBOS data for mid-
rapidity charged particle rapidity density per participant pair, in Au+Au collisions at
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Fig. 7.16 Saturation model fit [63] applied to RHIC charged hadron multiplicity data at mid-
rapidity normalized by number of participant pairs, at various energies [82]. Also shown is an
extrapolation to pp data and a prediction for minimum bias Pb+Pb collisions at LHC energy,√
s = 5500 GeV

√
s = 19.6, 130 and 200 GeV [82], also including a prediction for LHC energy. Note

that the factorization of energy and centrality dependence, implied by the RHIC data
[52], is well captured by Eq. (7.11) and the resulting fits in Fig. 7.16. Furthermore,
the steeper slope, predicted for Npart ≤ 60 (not covered by the employed data set),
interpolates to the corresponding pp and pp data, at Npart = 2. It resembles the
pattern observed in the NA49 data (Fig. 7.13) for small Npart collisions of light
A+A systems, at

√
s = 17–20 GeV, and may be seen, to reflect the onset of QCD

saturation. Finally we note that the conclusions of the above, partially heuristic
approach [63], represented by Eqs. (7.13)–(7.16), have been backed up by the CGC
theory of McLerran and Venugopulan [64, 65, 75], predictions of which we have
illustrated in Fig. 7.7.

Bulk hadron production in AA collisions at high
√
s can be related, via the

assumption of universality of high energy QCD scattering, to the phenomenon of
geometric scaling first observed in HERA deep inelastic ep cross sections. The
underlying feature is a QCD saturation effect arising from the diverging areal
parton density, as confronted with the limited areal resolution Q2, inherent in
the considered scattering process. The “saturation scale” Q2

s (x,A) captures the
condition that a single partonic charge source within the transverse partonic density
profile can just be resolved by a sufficiently high Q2. Bulk hadron production in
A+A collisions falls below this scale.

7.2.5 Transverse Phase Space: Equilibrium and the QGP State

At RHIC energy,
√
s = 200 GeV, the Au+Au collision reactants are longitudinally

contracted discs. At a nuclear radius R ≈ A1/3 fm and Lorentz γ ≈ 100 their
primordial interpenetration phase ends at time τ0 ≤ 0.15 fm/c. This time scale is
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absent in e+e− annihilation at similar
√
s where τ0 ≈ 0.1 fm/c marks the end

of the primordial pQCD partonic shower evolution [83] during which the initially
created qq pair, of “virtually” Q = √

s/2 each, multiplies in the course of the
QCD DGLAP evolution in perturbative vacuum, giving rise to daughter partons of
far lower virtuality, of a few GeV. In A+A collisions this shower era should last
longer, due to the interpenetrational spread of primordial collision time. It should
be over by about 0.25 fm/c. The shower partons in e+e− annihilation are localized
within back to back cone geometry reflecting the directions of the primordial quark
pair. The eventually observed “jet” signal, created by an initial Q2 of 104 GeV2, is
established by then. Upon a slow-down of the dynamical evolution time scale to τ ≈
1 fm/c the shower partons fragment further, acquiring transverse momentum and yet
lower virtuality, then to enter a non perturbative QCD phase of color neutralization
during which hadron-like singlet parton clusters are formed. Their net initial pQCD
virtuality, in pQCD vacuum, is recast in terms of non-perturbative vacuum hadron
mass. The evolution ends with on-shell, observed jet-hadrons after about 3 fm/c of
overall reaction time.

Remarkably, even in this, somehow most elementary process of QCD evolution,
an aspect of equilibrium formation is observed, not in the narrowly focused final
dijet momentum topology but in the relative production rates of the various created
hadronic species. This so-called “hadrochemical” equilibrium among the hadronic
species is documented in Fig. 7.17. The hadron multiplicities per e+e− annihilation
event at

√
s = 91.2 GeV [38] are confronted with a Hagedorn [38] canonical

statistical Gibbs ensemble prediction [84] which reveals that the apparent species
equilibrium was fixed at a temperature of T = 165 MeV, which turns out to be the
universal hadronization temperature of all elementary and nuclear collisions at high√
s (Hagedorns limiting temperature of the hadronic phase of matter). We shall

return to this topic in Sect. 7.3 but note, for now, that reactions with as few as 20
charged particles exhibit such statistical equilibrium properties, a pre-requisite for
application of thermodynamic or hydrodynamic concepts.

What happens with parton (and hadron) dynamics in A+A collisions after τ0?
There will not be a QCD evolution in vacuum (which would be over after 3 fm/c)
as the transverse radius of the interacting system is large. It may grow to about
twice the nuclear radius, i.e. to about 15 fm before interactions cease; i.e. the system
needs about 15 fm/c to decouple. This simple fact is the key to our expectation that
the expansive evolution of the initial high energy density deposited in a cylinder
of considerable diameter (about 10 fm), may create certain equilibrium properties
that allow us to treat the contained particles and energy in terms of thermodynamic
phases of matter, such as a partonic QGP liquid, or a hadronic liquid or gas, etc.
Such that the expansion dynamics makes contact to the phase diagram illustrated in
Fig. 7.1. This expectation turns out to be justified as we shall describe in Sects. 7.3
and 7.4. What results for the evolution after τ0 in a central A+A collision is sketched
in Fig. 7.18 by means of a schematic 2-dimensional light cone diagram, which is
entered by the two reactant nuclei along z = t trajectories where z is the beam
direction and Lorentz contraction has been taken to an extreme, such that there
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Fig. 7.17 Hadron multiplicities in LEP e+e− annihilation at
√
s = 91.2 GeV confronted with the

predictions of the canonical statistical hadronization model [84]

Fig. 7.18 Schematic light cone diagram of the evolution of a high energy heavy ion collision,
indicating a formation phase τ0 (see text)
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occurs an idealized t = z = 0 interaction “point”. Toward positive t the light cone
proper time profiles of progressing parton-hadron matter evolution are illustrated.
The first profile illustrated here corresponds to the end of formation time τ0. From
our above discussion of the e+e− annihilation process one obtains a first estimate,
τ0 ≥ 0.25 fm/c (including interpenetration time of 0.15 fm/c at RHIC) which
refers to processes of very high Q2 ≥ 103 GeV2, far above the saturation scale
Q2

s discussed in the previous section. The latter scale has to be taken into account
for low pT hadron production.

It is the specific resolution scale Q2 of a QCD sub-process, as enveloped in
the overall collision dynamics of two slabs of given transverse partonic structure
function density, that determines which fraction of the constituent partons enters
interaction. In the simple case of extremely high Q2 processes the answer is that
all constituents are resolved. However, at modest Q2 (dominating bulk hadron
production) the characteristic QCD saturation scale Q2

s (x) gains prominence,
defined such that processes with Q2 < Q2

s do not exploit the initial transverse
parton densities at the level of independent single constituent color field sources
(see Eq. (7.11)). For such processes the proper formation time scale, τ0, is of order
of the inverse saturation momentum [61], 1/Qs ∼ 0.2 fm/c at

√
s = 200 GeV. The

first profile of the time evolution, sketched in Fig. 7.18, should correspond to proper
time t = τ0 = 0.25 fm/c at RHIC energy. At top SPS energy,

√
s = 17.3 GeV, we

cannot refer to such detailed QCD considerations. A pragmatic approach suggests
to take the interpenetration time, at γ ≈ 8.5, for guidance concerning the formation
time, which thus results as τ0 ≈ 1.5 fm/c.

In summary of the above considerations we assume that the initial partonic
color sources, as contained in the structure functions (Fig. 7.14), are spread out in
longitudinal phase space after light cone proper time t = τ0 ≈ 0.2 fm/c, at top
RHIC energy, and after τ0 ≈ 1.5 fm/c at top SPS energy. No significant transverse
expansion has occurred at this early stage, in a central collision of A ≈ 200
nuclei with transverse diameter of about 12 fm. The Bjorken estimate [45] of initial
energy density ε (Eq. (7.1)) refers to exactly this condition, after formation time
τ0. In order to account for the finite longitudinal source size and interpenetration
time, at RHIC, we finally put the average τ0 ≈ 0.3 fm, at

√
s = 200 GeV,

indicating the “initialization time” after which all partons that have been resolved
from the structure functions are engaged in shower multiplication. As is apparent
from Fig. 7.18, this time scale is Lorentz dilated for partons with a large longitudinal
momentum, or rapidity. This means that the slow particles are produced first toward
the center of the collision region, and the fast (large rapidity) particles are produced
later, away from the collision region. This Bjorken “inside-out” correlation [45]
between coordinate- and momentum-space is similar to the Hubble expansion
pattern in cosmology: more distant galaxies have higher outward velocities. This
means that the matter created in A+A collisions at high

√
s is also born expanding,

however with the difference that the Hubble flow is initially one dimensional
along the collision axis. This pattern will continue, at

√
s = 200 GeV, until the

system begins to feel the effects of finite size in the transverse direction which
will occur at some time t0 in the vicinity of 1 fm/c. However, the tight correlation



7 Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram 343

between position and momentum initially imprinted on the system will survive all
further expansive evolution of the initial “firetube”, and is well recovered in the
expansion pattern of the finally released hadrons of modest pT as we shall show
when discussing radial flow and pion pair Bose-Einstein momentum correlation (see
Sects. 7.2.6 and 7.7).

In order to proceed to a more quantitative description of the primordial dynamics
(that occurs onward from τ0 for as long the time period of predominantly longitu-
dinal expansion might extend) we return to the Bjorken estimate of energy density,
corresponding to this picture [45], as implied by Eq. (7.1), which we now recast as

ε =
(

dNh

dy

) 〈
ET

h

〉
(π R2

A t0)
−1 (7.17)

where the first term is the (average) total hadron multiplicity per unit rapidity
which, multiplied with the average hadron transverse energy, equals the total
transverse energy recorded in the calorimetric study shown in Fig. 7.3, as employed
in Eq. (7.1). The quantity RA is, strictly speaking, not the radius parameter of the
spherical Woods-Saxon nuclear density profile but the rms of the reactant overlap
profiles as projected onto the transverse plane (and thus slightly smaller than RA ≈
A1/3 fm). Employing A1/3 here (as is done throughout) leads to a conservative
estimate of ε, a minor concern. However, the basic assumption in Eq. (7.17) is to
identify the primordial transverse energy “radiation”, of an interactional cylindric
source of radius RA and length t0 (where τ0 ≤ t0 ≤ 1 fm/c, not Lorentz dilated at
midrapidity), with the finally emerging bulk hadronic transverse energy. We justify
this assumption by the two observations, made above, that

1. the bulk hadron multiplicity density per unit rapidity (dNh)/(dy) resembles the
parton density, primordially released at saturation scale τ0 (Figs. 7.7 and 7.16) at√
s = 200 GeV, and that

2. the global emission pattern of bulk hadrons (in rapidity and pT) closely reflects
the initial correlation between coordinate and momentum space, characteristic of
a primordial period of a predominantly longitudinal expansion, as implied in the
Bjorken model.

Both these observations are surprising, at first sight. The Bjorken model was
conceived for elementary hadron collisions where the expansion proceeds into
vacuum, i.e. directly toward observation. Figure 7.18 proposes that, to the contrary,
primordially produced partons have to transform through further, successive stages
of partonic and hadronic matter, at decreasing but still substantial energy density,
in central A+A collisions. The very fact of high energy density, with implied short
mean free path of the constituent particles, invites a hydrodynamic description of the
expansive evolution. With initial conditions fixed between τ0 and t0, an ensuing 3-
dimensional hydrodynamic expansion would preserve the primordial Bjorken-type
correlation between position and momentum space, up to lower density conditions
and, thus, close to emission of the eventually observed hadrons. We thus feel
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justified to employ Eq. (7.1) or (7.17) for the initial conditions at RHIC, obtaining
[61, 84]

6 GeV/fm3 ≤ ε ≤ 20 GeV/fm3 (7.18)

for the interval 0.3 fm/c ≤ t0 ≤ 1 fm/c, in central Au+Au collisions at y ≈ 0
and

√
s = 200 GeV. The energy density at top SPS energy,

√
s = 17.3 GeV, can

similarly be estimated [43, 44] to amount to about 3 GeV/fm3 at a t0 of 1 fm/c but
we cannot identify conditions at τ0 < t0 in this case as the mere interpenetration of
two Pb nuclei takes 1.4 fm/c. Thus the commonly accepted t0 = 1 fm/c may lead
to a high estimate. An application of the parton-hadron transport model of Ellis and
Geiger [85, 86] to this collision finds ε = 3.3 GeV/fm3 at t = 1 fm/c. A primordial
energy density of about 3 GeV/fm3 is 20 times ρ0 ≈ 0.15 GeV/fm3, the average
energy density of ground state nuclear matter, and it also exceeds, by far, the critical
QCD energy density, of 0.6 ≤ εc ≤ 1 GeV/fm3 according to lattice QCD [48]. The
initial dynamics thus clearly proceeds in a deconfined QCD system also at top SPS
energy, and similarly so with strikingly higher energy density, at RHIC, where time
scales below 1 fm/c can be resolved.

However, in order now to clarify the key question as to whether, and when con-
ditions of partonic dynamical equilibrium may arise under such initial conditions,
we need estimates both of the proper relaxation time scale (which will, obviously,
depend on energy density and related collision frequency), and of the expansion
time scale as governed by the overall evolution of the collision volume. Only if
τ (relax.) < τ (expans.) one may conclude that the “deconfined partonic system”
can be identified with a “deconfined QGP state of QCD matter” as described e.g. by
lattice QCD, and implied in the phase diagram of QCD matter suggested in Fig. 7.1.

For guidance concerning the overall time-order of the system evolution we
consider information [87] obtained from Bose-Einstein correlation analysis of pion
pair emission in momentum space (for detail see Sect. 7.7). Note that pions should
be emitted at any stage of the evolution, after formation time, from the surface
regions of the evolving “fire-tube”. Bulk emission of pions occurs, of course, after
hadronization (the latest stages illustrated in the evolution sketch given in Fig. 7.18).
The dynamical pion source expansion models by Heinz [88] and Sinyukov [89]
elaborate a Gaussian emission time profile, with mean τf (the decoupling time) and
width �τ (the duration of emission).

Figure 7.19 shows an application of this analysis to central Pb+Pb collision
negative pion pair correlation data obtained by NA49 at top SPS energy,

√
s =

17.3 GeV [90], where τf ≈ 8 fm/c and �τ ≈ 4 fm/c (note that τ = 0 in Fig. 7.19
corresponds, not to interaction time t = 0 but to t ≈ 1.4 fm/c, the end of the
interpenetration phase). We see, first of all, that the overall dynamical evolution
of a central Pb+Pb collision at

√
s = 17.3 GeV is ending at about 15 fm/c;

the proper time defines the position of the last, decoupling profile illustrated in
Fig. 7.18, for the SPS collisions considered here. While the details of Fig. 7.19
will turn out to be relevant to our later discussion of hadronization (Sect. 7.3) and
hadronic expansion (Sect. 7.4), we are concerned here with the average proper time
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Fig. 7.19 Time profile of
pion decoupling rate from the
fireball in a central Pb+Pb
collision, with τ = 0 the end
of the formation phase.
Bose-Einstein correlation of
π−π−pairs yields an average
Gaussian decoupling profile
with τf = 8 fm/c and duration
of emission parameter
�τ = 4 fm/c [87, 88]
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at which the partonic phase ends. After consideration of the duration widths of these
latter expansion phases [86, 87] one arrives at an estimate for the average time,
spent before hadronization, of �t = 3–4 fm/c, again in agreement with the parton
cascade model mentioned above [86]. This model also leads to the conclusion that
parton thermal equilibrium is, at least, closely approached locally in these central
Pb+Pb collisions as far as mid-rapidity hadron production is concerned (at forward-
backward rapidity the cascade re-scattering processes do not suffice, however).

This finding agrees with earlier predictions of τrelax = 1–2 fm/c at top SPS
energy [91]. However we note that all such calculations employ perturbative
QCD methods, implying the paradoxical consequence that equilibrium is closely
approached only at the end of the partonic phase, at such low

√
s, i.e. in a QGP

state at about T = 200 MeV which is, by definition, of non-perturbative nature. We
shall return to the question of partonic equilibrium attainment at SPS energy in the
discussion of the hadronization process in nuclear collisions (Sect. 7.3).

Equilibrium conditions should set in earlier at top RHIC energy. As transverse
partonic expansion should set in after the proper time interval 0.3 fm/c ≤ t0 ≤
1 fm/c (which is now resolved by the early dynamics, unlike at top SPS energy),
we take guidance from the Bjorken estimate of primordial energy density which is
based on transverse energy production data. Conservatively interpreting the result
in Eq. (7.18) we conclude that ε is about four times higher than at

√
s = 17.3 GeV

in the above proper time interval. As the binary partonic collision frequency scales
with the square of with the square of the density ρ (related to the energy density ε

via the relation ε = 〈E〉ρ = Tρ), and is inversely proportional to the relaxation time
τrelax we expect

τrelax ∝ (1/ρ)2 ≈ (T /ε)2 (7.19)
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which implies that τrelax(RHIC) ≈ 0.25 τrelax (SPS) ≈ 0.5 fm/c if we employ the
estimate T (RHIC) = 2T (SPS). This crude estimate is, however, confirmed by the
parton transport model of Molar and Gyulassy [92].

Partonic equilibration at
√
s = 200 GeV should thus set in at a time scale

commensurate to the (slightly smaller) formation time scale, at which the to be
participant partons are resolved from the initial nucleon structure functions and
enter shower multiplication. Extrapolating to the conditions expected at LHC energy
(
√
s = 5.5 TeV for A+A collisions), where the initial parton density of the structure

functions in Fig. 7.14 is even higher (x ≈ 10−3 at mid-rapidity), and so is the initial
energy density, we may expect conditions at which the resolved partons are almost
“born into equilibrium”.

Early dynamical local equilibrium at RHIC is required to understand the observa-
tions concerning elliptic flow, with which we shall deal, in detail, in Sect. 7.4. This
term refers to a collective anisotropic azimuthal emission pattern of bulk hadrons
in semi-peripheral collisions, a hydrodynamical phenomenon that originates from
the initial geometrical non-isotropy of the primordial interaction zone [93, 94]. A
detailed hydrodynamic model analysis of the corresponding elliptic flow signal
at RHIC [95] leads to the conclusion that local equilibrium (a prerequisite to the
hydrodynamic description) sets in at t0 ≈ 0.6 fm/c. This conclusion agrees with the
estimate via Eq. (7.19) above, based on Bjorken energy density and corresponding
parton collisions frequency.

We note that the concept of a hydrodynamic evolution appears to be, almost
necessarily ingrained in the physics of a system born into (Hubble-type) expansion,
with a primordial correlation between coordinate and momentum space, and at
extreme initial parton density at which the partonic mean free path length λ is close
to the overall spatial resolution resulting from the saturation scale, i.e. λ ≈ 1/Qs.

The above considerations suggest that a quark-gluon plasma state should be
created early in the expansion dynamics at

√
s = 200 GeV, at about T = 300 MeV,

that expands hydrodynamically until hadronization is reached, at T ≈ 165–
170 MeV. Its manifestations will be considered in Sects. 7.3–7.6. At the lower SPS
energy, up to 17.3 GeV, we can conclude, with some caution, that a deconfined
hadronic matter system should exist at T ≈ 200 MeV, in the closer vicinity of
the hadronization transition. It may closely resemble the QGP state of lattice QCD,
near Tc.

7.2.6 Bulk Hadron Transverse Spectra and Radial Expansion
Flow

In this chapter we analyze bulk hadron transverse momentum spectra obtained at
SPS and RHIC energy, confronting the data with predictions of the hydrodynamical
model of collective expansion matter flow that we have suggested in the previous
section, to arise, almost necessarily, from the primordial Hubble-type coupling
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between coordinate and momentum space that prevails at the onset of the dynamical
evolution in A+A collisions at high

√
s. As all hadronic transverse momentum

spectra initially follow an approximately exponential fall-off (see below) the bulk
hadronic output is represented by thermal transverse spectra at pT ≤ 2 GeV/c. We
shall turn to high pT information in later sections.

Furthermore we shall focus here on mid-rapidity production in near central
A+A collisions, because hydrodynamic models refer to an initialization period
characterized by Bjorken-type longitudinal boost invariance, which we have seen
in Figs. 7.7 and 7.9 to be restricted to a relatively narrow interval centered at
mid-rapidity. Central collisions are selected to exploit the azimuthal symmetry
of emission, in an ideal impact parameter b → 0 geometry. We thus select the
predominant, relevant hydrodynamic “radial flow” expansion mode, from among
other, azimuthally oriented (directed) flow patterns that arise once this cylindrical
symmetry (with respect to the beam direction) is broken in finite impact parameter
geometries.

In order to define, quantitatively, the flow phenomena mentioned above, we
rewrite the invariant cross section for production of hadron species i in terms of
transverse momentum, rapidity, impact parameter b and azimuthal emission angle
ϕp (relative to the reaction plane),

dNi(b)

pT dpT dy dϕp
= 1

2 π

dNi(b)

pT dpT dy

[
1 + 2vi1 (pT, b) cos ϕp + 2vi2 (pT, b) cos(2ϕp) + . . .

]

(7.20)

where we have expanded the dependence on ϕp into a Fourier series. Due to reflec-
tion symmetry with respect to the reaction plane in collisions of identical nuclei,
only cosine terms appear. Restricting to mid-rapidity production all odd harmonics
vanish, in particular the “directed flow” coefficient vi1, and we have dropped the y-
dependence in the flow coefficients vi1 and vi2. The latter quantifies the amount of
“elliptic flow”, to which we turn in Sect. 7.4. In the following, we will restrict to
central collisions which we shall idealize as near-zero impact parameter processes
governed by cylinder symmetry, whence all azimuthal dependence (expressed by the
vi1, v

i
2, . . . terms) vanishes, and the invariant cross section reduces to the first term

in Eq. (7.20), which by definition also corresponds to all measurements in which the
orientation of the reaction plane is not observed.

Typical transverse momentum spectra of the latter type are shown in Fig. 7.20,
for charged hadron production in Au+Au collisions at

√
s = 200 GeV, exhibiting

mid-rapidity data at various collision centralities [97]. We observe a clear-cut
transition, from bulk hadron emission at pT ≤ 2 GeV/c featuring a near-exponential
cross section (i.e. a thermal spectrum), to a high pT power-law spectral pattern.
Within the context of our previous discussion (Sect. 7.2.4) we tentatively identify
the low pT region with the QCD physics near saturation scale. Hadron production
at pT → 10 GeV/c should, on the other hand, be the consequence of primordial
leading parton fragmentation originating from “hard”, high Q2 perturbative QCD
processes.
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Fig. 7.20 Transverse
momentum spectra of
charged hadrons in Au+Au
collisions at

√
s = 200 GeV,

in dependence of collision
centrality [97] (offset as
indicated), featuring
transition from exponential to
power law shape
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We thus identify bulk hadron production at low pT as the emergence of
the initial parton saturation conditions that give rise to high energy density and
small equilibration time scale, leading to a hydrodynamical bulk matter expansion
evolution. Conversely, the initially produced hard partons, from high Q2 processes,
are not thermalized into the bulk but traverse it, as tracers, while being attenuated
by medium-induced rescattering and gluon radiation, the combined effects being
reflected in the high pT inclusive hadron yield, and in jet correlations of hadron
emission. We shall turn to the latter physics observables in Sect. 7.5, while staying
here with low pT physics, related to hydrodynamical expansion modes, focusing on
radially symmetric expansion.

In order to infer from the spectral shapes of the hadronic species about the
expansion mechanism, we first transform to the transverse mass variable, mT =
(p2

T + m2)1/2, via

1

2π

dNi

pT dpT dy
= 1

2π

dNi

mT dmT dy
(7.21)

because it has been shown in p+p collisions [98] near RHIC energy that the mT
distributions of various hadronic species exhibit a universal pattern (“mT scaling”)
at low mT:

1

2π

dNi

mT dmT dy
= Ai exp(−mi

T/T ) (7.22)
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with a universal inverse slope parameter T and a species dependent normalization
factor A. Hagedorn showed [99] that this scaling is characteristic of an adiabatic
expansion of a fireball at temperature T . We recall that, on the other hand, an ideal
hydrodynamical expansion is isentropic.

Figure 7.21 shows the
√
s dependence of the average transverse kinetic energy〈

mi
T

〉 − mi for pions, kaons and protons observed at mid-rapidity in central
Au+Au/Pb+Pb collisions [54]. Similarly, the inverse slope parameter T resulting
from a fit of Eq. (7.22) to K+ and K− transverse mass spectra (at pT ≤ 2 GeV/c)
is shown in Fig. 7.22, both for nuclear and p+p collisions [100]. We see, first of all,
that mT scaling does not apply in A+A collisions, and that the kaon inverse slope
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Fig. 7.21 The average transverse kinetic energy 〈mT〉 − m0 for pions, kaons and protons vs.
√
s

in central Au+Au/Pb+Pb collisions [54]. Open symbols represent negative hadrons
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Fig. 7.22 The inverse slope parameter T of Eq. (7.22) for K+and K− transverse mass spectra at
pT < 2 GeV/c and mid-rapidity in central A+A, and in minimum bias p+p collisions [100]
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parameter, T ≈ 230 MeV over the SPS energy regime, cannot be identified with the
fireball temperature at hadron formation which is Th ≈ 165 MeV from Fig. 7.1. The
latter is seen, however, to be well represented by the p+p spectral data exhibited in
the left panel of Fig. 7.22. There is, thus, not only thermal energy present in A+A
transverse expansion, but also hydrodynamical radial flow.

We note that the indications in Figs. 7.21 and 7.22, of a plateau in both 〈mT〉
and T , extending over the domain of SPS energies, 6 ≤ √

s ≤ 17 GeV, have
not yet been explained by any fundamental expansive evolution model, including
hydrodynamics. Within the framework of the latter model, this is a consequence
of the initialization problem [96] which requires a detailed modeling, both of
primordial energy density vs. equilibration time scale, and of the appropriate
partonic matter equation of state (EOS) which relates expansion pressure to energy
density. At top RHIC energy, this initialization of hydro-flow occurs, both, at a
time scale t0 ≈ 0.6 fm/c which is far smaller than the time scale of eventual bulk
hadronization (t ≈ 3 fm/c), and at a primordial energy density far in excess of the
critical QCD confinement density. After initialization, the partonic plasma phase
thus dominates the overall expansive evolution, over a time interval far exceeding
the formation and relaxation time scale.

Thus, at RHIC energy, parton transport [92] and relativistic hydrodynamic
[95, 96] models establish a well developed expansion mode that survives the
subsequent stages of hadronization and hadronic expansion. This is reflected in their
success in describing elliptic flow. On the other hand, the hydrodynamical model
far overestimates elliptic flow at SPS energy [96] at which, as we have shown in
Sect. 7.2.5, the initialization period may be not well separated from the confinement
(hadronization) stage. Thus, whereas the expansion evolution at

√
s = 200 GeV

(occurring at near-zero baryo-chemical potential in Fig. 7.1) “races” across the
parton-hadron phase boundary with fully established flow patterns, near μB = 0
where lattice QCD predicts the phase transformation to be merely a soft cross-over
[16], the dynamics at

√
s = 10–20 GeV may originate from only slightly above,

or even at the phase boundary, thus sampling the domain 200 ≤ μB ≤ 500 MeV
where the equation of state might exhibit a “softest point” [96]. The hydrodynamic
model thus faces formidable uncertainties regarding initialization at SPS energy.

The plateau in Figs. 7.21 and 7.22 may be the consequence of the fact that not
much flow is generated in, or transmitted from the partonic phase, at SPS energies,
because it is initialized close to the phase boundary [100] where the expected critical
point [9, 10] (Fig. 7.1), and the corresponding adjacent first order phase transition
might focus [101] or stall [96] the expansion trajectory, such that the observed radial
flow stems almost exclusively from the hadronic expansion phase. The SPS plateau,
which we shall subsequently encounter in other bulk hadron variables (elliptic flow,
HBT radii) might thus emerge as a consequence of the critical point or, in general,
of the flatness of the parton-hadron coexistence line. RHIC dynamics, on the other
hand, originates from far above this line.

Hadronic expansion is known to proceed isentropically [102]: commensurate
to expansive volume increase the momentum space volume must decrease, from
a random isotropic thermal distribution to a restricted momentum orientation
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preferentially perpendicular to the fireball surface, i.e. radial. The initial thermal
energy, implied by the hadron formation temperature TH = 165 MeV, will thus fall
down to a residual TF at hadronic decoupling from the flow field (“thermal freeze-
out”) plus a radial transverse kinetic energy term mi 〈βT〉2 where mi is the mass of
the considered hadron species and 〈βT〉 the average radial velocity. We thus expect
[103] for the slope of equation (7.22):

T = TF + mi 〈βT〉2 , pT ≤ 2 GeV/c (7.23)

and

T = TF

(
1 + 〈vT〉
1 − 〈vT〉

)1/2

, pT � mi (7.24)

the latter expression valid at pT larger than hadron mass scale (T then is the
“blue-shifted temperature” at decoupling [104] and 〈vT〉 the average transverse
velocity). The assumption that radial flow mostly originates from the hadronic
expansion phase is underlined by the proportionality of flow energy to hadron mass
(Eq. (7.23)).

Figure 7.23 illustrates this proportionality, by a recent compilation [103] of RHIC
results for central Au+Au collisions at

√
s = 200 GeV, and SPS results for central

Pb+Pb collisions at top SPS energy,
√
s = 17.3 GeV. At the latter energy the slope

parameter of the ! meson is seen to be close to that of the similar mass baryons
p and �, emphasizing the occurrence of mi scaling as opposed to valence quark
number scaling that we will encounter in RHIC elliptic flow data [94]. As is obvious
from Fig. 7.23 the multi-strange hyperons and charmonia exhibit a slope saturation
which is usually explained [103] as a consequence of their small total cross sections
of rescattering from other hadrons, leading to an early decoupling from the bulk
hadron radial flow field, such that 〈βT〉� < 〈βT〉p.

Fig. 7.23 Hadron slope
parameters T at mid-rapidity
as a function of mass. For
Pb+Pb at

√
s = 17.3 GeV

(triangles) and Au+Au at√
s = 200 GeV (circles);

from [103]



352 R. Stock

According to our observations with Eq. (7.23) a hydrodynamical ansatz for
the transverse mass spectrum of hadrons should thus contain the variables “true
temperature” TF at decoupling from the flow field, and its average velocity 〈βT〉,
common to all hadrons. This is the case for the blast wave model [104] developed
as an approximation to the full hydrodynamic formalism [96], assuming a common
decoupling or “freeze-out” from flow, for all hadronic species, and a boost-invariant
longitudinal expansion:

dNi

mT dmT dy
= Ai mT K1

(
mT coshρ

TF

)
I0

(
pT sinhρ

TF

)
(7.25)

where ρ = tanh−1βT. In an extended version of this model a function is included
that describes the radial profile of the transverse velocity field, βT(r) = βmax

T r/R,
instead of employing a fixed βT at decoupling [106]. Figure 7.24 flow shows [54]
the resulting energy dependence of TF and 〈βT〉, for the same set of data as implied
already in Figs. 7.21 and 7.22. The “true” decoupling temperature rises steeply at the
AGS and less so at SPS energy (as does 〈βT〉), to a value of about 95 MeV at top SPS
energy, which is considerably lower than the chemical freeze-out temperature, TH =
165 MeV, at which the hadronic species relative yield composition of the hadronic
phase becomes stationary (see Sect. 7.3, and Fig. 7.1). Chemical decoupling thus
occurs early, near the parton-hadron phase boundary, whereas hadronic radial flow
ceases after significant further expansion and cooling, whence the surface radial
velocity (its average value given by 〈βT〉 in Fig. 7.24) approaches βT ≈ 0.65. Both
data sets again exhibit an indication of saturation, over the interval toward top SPS
energy: the SPS plateau. This supports our above conjecture that radial flow is,
predominantly, a consequence of isentropic bulk hadronic expansion in this energy
domain, which sets in at TH. At RHIC energy, both parameters exhibit a further rise,
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suggesting that primordial partonic flow begins to contribute significantly to radial
flow.

7.3 Hadronization and Hadronic Freeze-Out in A+A
Collisions

Within the course of the global expansion of the primordial reaction volume
the local flow “cells” will hit the parton-hadron phase boundary as their energy
density approaches εcrit ≈ 1 GeV/fm3. Hadronization will thus occur, not at
an instant over the entire interaction volume, but within a finite overall time
interval [86] that results from the spread of proper time at which individual cells,
or coherent clusters of such cells (as developed during expansion) arrive at the
phase boundary. However, irrespective of such a local-temporal occurrence, the
hadronization process (which is governed by non perturbative QCD at the low
Q2 corresponding to bulk hadronization) universally results in a novel, global
equilibrium property that concerns the relative abundance of produced hadrons and
resonances. This so-called “hadrochemical equilibrium state” is directly observable,
in contrast to the stages of primordial parton equilibration that are only indirectly
assessed, via dynamical model studies.

This equilibrium population of species occurs both in elementary and nuclear
collisions [107]. We have seen in Fig. 7.17 a first illustration, by e+e− annihilation
data at

√
s = 91.2 GeV LEP energy, that are well reproduced by the partition

functions of the statistical hadronization model (SHM) in its canonical form [84].
The derived hadronization temperature, TH = 165 MeV, turns out to be universal to
all elementary and nuclear collision processes at

√
s ≥ 20 GeV, and it agrees with

the limiting temperature predicted by Hagedorn [38] to occur in any multi-hadronic
equilibrium system once the energy density approaches about 0.6 GeV/fm3. Thus,
the upper limit of hadronic equilibrium density corresponds, closely, to the lower
limit, εcrit = 0.6–1.0 GeV/fm3 of partonic equilibrium matter, according to lattice
QCD [48]. In elementary collisions only about 20 partons or hadrons participate:
there should be no chance to approach thermodynamic equilibrium of species by
rescattering cascades, neither in the partonic nor in the hadronic phase. The fact that,
nevertheless, the hadron formation temperature TH coincides with the Hagedorn
limiting temperature and with the QCD confinement temperature, is a consequence
of the non-perturbative QCD hadronization process itself [85], which “gives birth”
to hadrons/resonances in canonical equilibrium, at high

√
s, as we shall see below.

This process also governs A+A collisions but, as it occurs here under conditions of
high energy density extended over considerable volume, the SHM description now
requires a grand canonical ensemble, with important consequences for production
of strange hadrons (strangeness enhancement).

The grand canonical order of hadron/resonance production in central A+A
collisions, and its characteristic strangeness enhancement shows that a state of
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extended matter that is quantum mechanically coherent must exist at hadronization
[87, 88, 107]. Whether or not it also reflects partonic equilibrium properties
(including flavor equilibrium), that would allow us to claim the direct observation of
a quark gluon plasma state near Tc, cannot be decided on the basis of this observation
alone, as the hadronization process somehow generates, by itself, the observed
hadronic equilibrium. This conclusion, however, is still the subject of controversy
[107].

Two typical examples of grand canonical SHM application are illustrated in
Figs. 7.25 and 7.26, the first showing total hadron multiplicities in central Pb+Pb
collisions at

√
s = 17.3 GeV by NA49 [100] confronted with SHM predictions by

Becattini et al. [19]. This plot is similar to Fig. 7.17 in which e+e− annihilation to
hadrons is confronted with a SHM prediction derived from the canonical ensemble
[84]. Central Au+Au collision data at

√
s = 200 GeV from several RHIC exper-

iments are compared to grand canonical model predictions by Braun-Munzinger
et al. [108] in Fig. 7.26. The key model parameters, TH and the baryo-chemical
potential μB result as 159 MeV (160 MeV), and 247 MeV (20 MeV) at

√
s =

17.3 (200) GeV, respectively. The universality of the hadronization temperature is
obvious from comparison of the present values with the results of the canonical

Fig. 7.25 Total hadron multiplicities in central Pb+Pb collisions at
√
s = 17.3 GeV [100] versus

prediction of the grand canonical statistical hadronization model [19]
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Fig. 7.26 Hadron multiplicity ratios at mid-rapidity in central Au+Au collisions at
√
s = 200 GeV

from RHIC experiments STAR, PHENIX and BRAHMS, compared to predictions of the grand
canonical statistical model [108]

procedure employed in e+e− annihilation to hadrons at
√
s = 91.2 GeV (Fig. 7.17),

and in canonical SHM fits [109] to p+p collision data at
√
s = 27.4 GeV where

TH = 159 and 169 MeV, respectively.
Figures 7.25 and 7.26 illustrate two different approaches employed in grand

canonical SHM application, the former addressing the values of the hadronic multi-
plicities as obtained in approximate full 4π acceptance (within limitations implied
by detector performance), the latter employing a set of multiplicity ratios obtained
in the vicinity of mid-rapidity as invited, at RHIC energy, by the limited acceptance
of the STAR and PHENIX experiments. The latter approach is appropriate, clearly,
in the limit of boost-invariant rapidity distributions where hadron production ratios
would not depend on the choice of the observational rapidity interval. We have
shown in Sect. 7.2.2 that such conditions do, in fact, set in at top RHIC energy, as
referred to in Fig. 7.26. However, at low

√
s the y-distributions are far from boost-

invariant, and the total rapidity gap �y may become comparable, in the extreme
case, to the natural rapidity widths of hadrons emitted in the idealized situation
of a single, isotropically decaying fireball positioned at mid-rapidity. Its rapidity
spectra, Eq. (7.5), resemble Gaussians with widths i ≈ 2.35 (T /mi)

1/2 for hadron
masses mi . Clearly, the particle ratios (dNi/dy)/(dNj/dy) then depend strongly
on the position of the rapidity interval dy: away from y = 0 heavy hadrons will
be strongly suppressed, and particle yields in narrow rapidity intervals are useless
for a statistical model analysis unless it is known a priori that the radiator is a
single stationary spherical fireball [110]. This is not the case toward top SPS energy
(see Fig. 7.10), due to significant primordial longitudinal expansion of the hadron
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emitting source. Given such conditions, the total multiplicity per collision event
(the invariant yield divided by the total overall inelastic cross section) should be
employed in the SHM analysis, as is exemplified in Fig. 7.25.

7.3.1 Hadronic Freeze-Out from Expansion Flow

The hadronic multiplicities result from integration of the invariant triple differential
cross section over pT and y. Instrumental, experiment-specific conditions tend to
result in incomplete pT and/or y acceptances. It is important to ascertain that the
effects of hydrodynamic transverse and longitudinal flow do not blast a significant
part of the total hadron yield to outside the acceptance, and that they, more generally,
do not change the relative hadron yield composition, thus basically affecting the
SHM analysis. To see that hadronization incorporates only the internal energy in the
co-moving frame [110], we first assume that hadrochemical freeze-out occurs on a
sharp hypersurface �, and write the total yield of particle species i as

Ni =
∫

d3p

E

∫
�

pμ d3σμ(x) fi(x, p) =
∫
�

d3σμ(x)j
μ
i (x) (7.26)

where d3σ is the outward normal vector on the surface, and

j
μ
i (x) = gi

∫
d4p 2%(p0)δ(p2 −m2

i ) p
μ(exp [p ·u(x)−μi]/T ± 1)−1 (7.27)

is the grand canonical number current density of species i,μi the chemical potential,
u(x) the local flow velocity, and gi the degeneracy factor. In thermal equilibrium it
is given by

j
μ
i (x) = ρi(x)u

μ(x) with

ρi(x) = uμ(x)j
μ
i (x) =

∫
d4p 2%(p0)δ(p2 − m2

i ) p · u(x) fi(p · u(x); T ;μi)

=
∫

d3p′ fi(Ep′ ; T ,μi) = ρi(T , μi). (7.28)

Here Ep′ is the energy in the local rest frame at point x. The total particle yield of
species i is therefore

Ni = ρi(T , μi)

∫
�

d3σμ(x)u
μ(x) = ρi(T , μi) V�(u

μ) (7.29)

where only the total comoving volumeV� of the freeze-out hypersurface� depends
on the flow profile uμ. V is thus a common total volume factor at hadronization (to
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be determined separately), and the flow pattern drops out from the yield distribution
over species in 4π acceptance [110]. For nuclear collisions at SPS energies and
below one thus should perform a SHM analysis of the total, 4π-integrated hadronic
multiplicities, as was done in Fig. 7.25.

We note that the derivation above illustrates the termination problem of the
hydrodynamic description of A+A collisions, the validity of which depends on
conditions of a short mean free path, λ < 1 fm. A precise argumentation suggests
that two different free paths are relevant here, concerning hadron occupation number
and hadron spectral freeze-out, respectively. As hadrochemical freeze-out occurs in
the immediate vicinity of Tc (and TH ≈ 160–165 MeV from Figs. 7.25 and 7.26), the
hadron species distribution stays constant throughout the ensuing hadronic phase,
i.e. the “chemical” mean free path abruptly becomes infinite at TH, whereas elastic
and resonant rescattering may well extend far into the hadronic phase, and so does
collective pressure and flow. In fact we have seen in Sect. 7.2.6 that the decoupling
from flow occurs at TF as low as 90–100 MeV (Fig. 7.24). Thus the hydrodynamic
evolution of high

√
s collisions has to be, somehow artificially, stopped at the

parton-hadron boundary in order to get the correct hadron multiplicities Ni , of
Eqs. (7.26)–(7.29), which then stay frozen-out during the subsequent hadronic
expansion.

Equations (7.26)–(7.29) demonstrate the application of the Cooper-Frye pre-
scription [111] for termination of the hydrodynamic evolution. The hyper-surface�
describes the space-time location at which individual flow cells arrive at the freeze-
out conditions, ε = εc and T = Tc, of hadronization. At this point, the resulting
hadron/resonance spectra (for species i) are then given by the Cooper-Frye formula

E
dNi

d3p
= dNi

dy pT dpT
= gi

(2π)3

∫
�

fi(p · u(x), x)p · d3σ(x), (7.30)

wherepμfi d3σμ is the local flux of particle i with momentump through the surface
�. For the phase space distribution f in this formula one takes the local equilibrium
distribution at hadronic species freeze-out from the grand canonical SHM

fi(E, x) = [exp{(Ei − μi(x))/T } ± 1]−1 (7.31)

boosted with the local flow velocity uμ(x) to the global reference frame by the
substitution E → p · u(x). Fixing T = Tc (taken e.g. from lattice QCD) the hadron
multiplicities Ni then follow from Eq. (7.29), and one compares to experiment, as
in Figs. 7.25 and 7.26. In order now to follow the further evolution, throughout the
hadronic rescattering phase, and to finally compare predictions of Eq. (7.30) to the
observed flow data as represented by the various Fourier-terms of Eq. (7.20) one has
to re-initialize (with hadronic EOS) the expansion from �(Tc) = 165 MeV) until
final decoupling [96], at T ≈ 100 MeV, thus describing e.g. radial and elliptic flow.

Alternatively, one might end the hydrodynamic description at T = Tc and
match the thus obtained phase space distribution of Eq. (7.30) to a microscopic
hadron transport model of the hadronic expansion phase [95, 112]. This procedure
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Fig. 7.27 Modification of
mid-rapidity hadron
multiplicities in central
Au+Au collisions at√
s = 200 GeV after

chemical freeze-out at
T = Tc. Squares show a
hydrodynamic model
prediction at T = Tc (without
further interaction); circles
show the result of an attached
UrQMD hadronic cascade
expansion calculation [114]
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is illustrated in Fig. 7.27 by an UrQMD [113] calculation of Bass and Dumitru
[114] for central Au+Au collisions at top RHIC energy. We select here the results
concerning the survival of the hadronic multiplicities Ni throughout the dynamics
of the hadronic expansion phase, which we have postulated above, based on the
equality of the hadronization temperatures, TH ≈ 160 MeV, observed in e+e−
annihilation (Fig. 7.17), where no hadronic expansion phase exists, and in central
collisions of A ≈ 200 nuclei (Figs. 7.25 and reffig:Figure26). In fact, Fig. 7.27
shows that the {Ni} observed at the end of the hadronic cascade evolution agree,
closely, with the initial {Ni} as derived from a Cooper-Frye procedure (Eq. (7.29))
directly at hadronization. On the other hand, pT spectra and radial flow observables
change, drastically, during the hadronic cascade expansion phase.

The hadronic multiplicity distribution {Ni}, arising from the hadronization
process at high

√
s, freezes-out instantaneously also in A+A collisions, and is thus

preserved throughout the (isentropic) hadronic expansion phase. It is thus directly
measurable and, moreover, its hadrochemical equilibrium features lend themselves
to an analysis within the framework of Hagedorn-type statistical, grand canonical
models. As we shall show below, the outcome of this analysis is contained in a
[TH, μB] parameter pair that reflects the conditions of QCD matter prevailing at
hadronization, at each considered

√
s. In fact, the [T ,μ] points resulting from

the SHM analysis exhibited in Figs. 7.25 and 7.26 (at
√
s = 17.3 and 200 GeV,

respectively) have been shown in the QCD matter phase diagram of Fig. 7.1 to
approach, closely, the parton-hadron phase coexistence line predicted by lattice
QCD. Thus, TH ≈ Tc at high

√
s: hadrochemical freeze-out occurs in the immediate

vicinity of QCD hadronization, thus providing for a location of the QCD phase
boundary.
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7.3.2 Grand Canonical Strangeness Enhancement

The statistical model analysis [19, 107, 108] of the hadronization species distribution
Ni in A+A collisions is based on the grand canonical partition function for species i,

lnZi = giV

6π2T

∫ ∞

0

k4 dk

Ei(k) exp {(Ei(k) − μi)/T } ± 1
(7.32)

where E2
i = k2 + m2

i , and μi ≡ μBBi + μsSi + μI I
i
3 is the total chemical

potential for baryon number B, strangeness S and isospin 3-component I3. Its role
in Eq. (7.32) is to enforce, on average over the entire hadron source volume, the
conservation of these quantum numbers. In fact, making use of overall strangeness
neutrality (

∑
i NiSi = 0) as well as of conserved baryon number (participantZ+N)

and isospin (participant (N−Z)/Z) one can reduce μi to a single effective potential
μB. Hadronic freeze-out is thus captured in three parameters, T , V and μB. The
density of hadron/resonance species i then results as

ni = T

V

δ

δμ
lnZi (7.33)

which gives

Ni = Vni = giV

(2π)2

∫ ∞

0

k2 dk

exp {(Ei(k) − μi)/T } ± 1
. (7.34)

We see that the common freeze-out volume parameter is canceled if one
considers hadron multiplicity ratios, Ni/Nj , as was done in Fig. 7.26. Integration
over momentum yields the one-particle function

Ni = V Tgi

2π2 m2
i

∞∑
n=1

(±1)n+1

n
K2

(nmi

T

)
exp

(nμi

T

)
(7.35)

where K2 is the modified Bessel function. At high T the effects of Bose or Fermi
statistics (represented by the ±1 term in the denominators of Eqs. (7.32) and (7.34))
may be ignored, finally leading to the Boltzmann approximation

Ni = VTgi

2π2 m2
i K2

(mi

T

)
exp

(μi

T

)
(7.36)

which is the first term of Eq. (7.35). This approximation is employed throughout
the SHM analysis. It describes the primary yield of hadron species i, directly at
hadronization. The abundance of hadronic resonance states is obtained convoluting
equation (7.34) with a relativistic Breit-Wigner distribution [19]. Finally, the overall
multiplicity, to be compared to the data, is determined as the sum of the primary
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multiplicity equation (7.36) and the contributions arising from the unresolved decay
of heavier hadrons and resonances:

Nobserved
i = N

primary
i +

∑
j

Br(j → i) Nj . (7.37)

After having exposed the formal gear of grand canonical ensemble analysis we
note that Eq. (7.36) permits a simple, first orientation concerning the relation of T
to μB in A+A collisions by considering, e.g., the antiproton to proton production
ratio. From Eq. (7.36) we infer the simple expression

N(p)/N(p) = exp(−2μB/T ). (7.38)

Taking the mid-rapidity value 0.8 for p/p (from Fig. 7.26) at top RHIC energy,
and assuming that hadronization occurs directly at the QCD phase boundary, and
hence T ≈ Tc ≈ 165 MeV, we get μB � 18 MeV from Eq. (7.38), in close
agreement with the result, μB = 20 MeV, obtained [108] from the full SHM
analysis. Equation (7.38) illustrates the role played by μB in the grand canonical
ensemble. It logarithmically depends on the ratio of newly created quark-antiquark
pairs (the latter represented by the p̄ yield), to the total number of quarks including
the net baryon number-carrying valence quarks (represented by the p yield).

The most outstanding property of the hadronic multiplicities observed in central
A+A collisions is the enhancement of all strange hadron species, by factors ranging
from about 2 to 20, as compared to the corresponding production rates in elementary
hadron-hadron (and e+e− annihilation) reactions at the same

√
s. I.e. the nuclear

collision modifies the relative strangeness output by a “nuclear modification factor”,
RAA
s = NAA

s /0.5 Npart · N
pp
s , which depends on

√
s and Npart and features a

hierarchy with regard to the strangeness number s = 1, 2, 3 of the considered
species, RAA

s=1 < RAA
s=2 < RAA

s=3. These properties are illustrated in Figs. 7.28
and 7.29. The former shows the ratio of total K+ to positive pion multiplicities
in central Au+Au/Pb+Pb collisions, from lower AGS to top RHIC energies, in
comparison to corresponding ratios from minimum bias p+p collisions [100]. We
have chosen this ratio, instead of

〈
K+〉 /Npart, because it reflects, rather directly, the

“Wroblewski ratio” of produced strange to non-strange quarks [107], contained in
the produced hadrons,

λs ≡ 2(〈s〉 + 〈s〉)
〈u〉 + 〈d〉 + 〈u〉 + 〈

d
〉 ≈

{
0.2 inpp

0.45 inAA.
(7.39)

The low value of λs in pp (and all other elementary) collisions reflects a quark pop-
ulation far away from u, d, s flavor equilibrium, indicating strangeness suppression
[109].

The so-called strangeness enhancement property of A+A collisions (obvious
from Figs. 7.28 and 7.29) is, thus, seen as the removal of strangeness suppression;
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Fig. 7.28 The ratio of total K+ to total π+ multiplicity as a function of
√
s, in central Au+Au and

Pb+Pb collisions and in p+p minimum bias collisions [100]

Fig. 7.29 The nuclear modification factors RAA
s=1,2,3 for hyperon and anti-hyperon production in

nucleus-nucleus collisions at
√
s = 17.3 GeV, relative to the p+p reference at the same energy

scaled by NW(= Npart). The NA49 data refer to total 4π yields [116]. Closed lines represent the
inverse strangeness suppression factors from ref. [119], at this energy
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it is also referred to as a strangeness saturation, in SHM analysis [107, 108], for
the reason that λs ≈ 0.45 corresponds to the grand canonical limit of strangeness
production, implicit in the analysis illustrated in Figs. 7.25 and 7.26. The average
RAA
s=1 at

√
s ≥ 10 GeV thus is about 2.2, both in the data of Fig. 7.28 and in the

statistical model. It increases (Fig. 7.29) toward about 10 in s = 3 production of �
hyperons.

In order to provide for a first guidance concerning the above facts and
terminology regarding strangeness production we propose an extremely naive
argument, based on the empirical fact of a universal hadronization temperature
(Figs. 7.17, 7.25, and 7.26) at high

√
s. Noting that 〈s〉 = 〈s〉 and 〈u〉 ≈ 〈u〉 ≈

〈d〉 ≈ 〈
d
〉

in a QGP system at μB near zero, and T = 165 MeV, just prior to
hadronization, λs ≈ 〈s〉 / 〈u〉 ≈ exp{(mu − ms)/T } = 0.45 at pT → 0 if we take
current quark masses, ms − mu ≈ 130 MeV. I.e. the value of λs in A+A collisions
at high

√
s resembles that of a grand canonical QGP at μB → 0, as was indeed

shown in a 3 flavor lattice QCD calculation [115] at T ≈ Tc. On the contrary,
a p+p collision features no QGP but a small fireball volume, at T ≈ Tc, within
which local strangeness neutrality, 〈s〉 = 〈s〉 has to be strictly enforced, implying
a canonical treatment [109]. In our naive model the exponential penalty factor thus
contains twice the strangeness quark mass in the exponent, λs in pp collisions
≈ exp{2(mu − ms)/T } ≈ 0.2, in agreement with the observations concerning
strangeness suppression, which are thus referred to as canonical suppression. In a
further extension of our toy model, now ignoring the u, d masses in comparison to
ms ≈ 135 MeV, we can estimate the hierarchy of hyperon enhancement in A+A
collisions,

RAA
s ∝ NAA

s /N
pp
s ·0.5 Npart ≈ exp{(−sms+2sms)/T } = 2.2, 5.1, 11.6 (7.40)

for s = 1, 2, 3, respectively. Figure 7.29 shows that these estimates correspond well
with the data [116] for RAA derived in 4π acceptance for �, & and � as well as
for their antiparticles, from central Pb+Pb collisions at

√
s = 17.3 GeV. The p+p

reference data, and C+C, Si+Si central collisions (obtained by fragmentation of the
SPS Pb beam) refer to separate NA49 measurements at the same energy.

The above, qualitative considerations suggest that the relative strangeness yields
reflect a transition concerning the fireball volume (that is formed in the course of
a preceding dynamical evolution) once it enters hadronization. Within the small
volumes, featured by elementary collisions (see Sect. 7.3.3), phase space is severely
reduced by the requirement of local quantum number conservation [109, 117]
including, in particular, local strangeness neutrality. These constraints are seen to
be removed in A+A collisions, in which extended volumes of high primordial
energy density are formed. Entering the hadronization stage, after an evolution of
expansive cooling, these extended volumes will decay to hadrons under conditions
of global quantum mechanical coherence, resulting in quantum number conser-
vation occurring, non-locally, and on average over the entire decaying volume.
This large coherent volume decay mode removes the restrictions, implied by local
quantum number balancing. In the above, naive model we have thus assumed that
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the hadronization of an Omega hyperon in A+A collisions faces the phase space
penalty factor of only three s quarks to be gathered, the corresponding three s

quarks being taken care of elsewhere in the extended volume by global strangeness
conservation. In the framework of the SHM this situation is represented by the grand
canonical ensemble (Eqs. (7.34), (7.36)); the global chemical potentialμB expresses
quantum number conservation on average. Strict, local conservation is represented
by the canonical ensemble.

The grand canonical (GC) situation can be shown to be the large collision volume
limit (with high multiplicities {Ni}) of the canonical (C) formulation [118, 119],
with a continuous transition concerning the degree of canonical strangeness suppres-
sion [119]. To see this one starts from a system that is already in the GC limit with
respect to baryon number and charge conservation whereas strangeness is treated
canonically. Restricting to s = 1 and −1 the GC strange particle densities can be
written (from Eq. (7.36)) as

nGC
s=±1 = Zs=±1

V
λ±1
s (7.41)

with

Zs=±1 = Vgs

2π2
m2

s K2 (
ms

T
) exp

{
(BsμB + QsμQ)/T

}
(7.42)

and a “fugacity factor” λ±1
s = exp (μs/T ). The canonical strange particle density

can be written as [119]

nCs = nGC
s · (λ̃s) (7.43)

with an effective fugacity factor

λ̃s = S±1√
S1S−1

I1(x)

I0(x)
(7.44)

where S±1 = ∑
s=±1 Zs=±1 is the sum over all created hadrons and resonances

with s = ±1, the In(x) are modified Bessel functions, and x = 2
√
S1S−1 is

proportional to the total fireball volume V . In the limit x ≈ V → ∞ the
suppression factor I1(x)/I0(x) → 1, and the ratio S±1/

√
S1S−1 corresponds

exactly to the fugacity λs in the GC formulation (see Eq. (7.41)). Thus the C and GC
formulations are equivalent in this limit, and the canonical strangeness suppression
effect disappears. Upon generalization to the complete strange hadron spectrum,
with s = ±1,±2,±3, the strangeness suppression factor results [119] as

η(s) = Is(x)/I0(x). (7.45)
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In particular for small x (volume), η(s) → (x/2)s , and one expects that the larger
the strangeness content of the particle the smaller the suppression factor, and hence
the larger the enhancement in going from elementary to central A+A collisions. This
explains the hierarchy addressed in Eq. (7.40), and apparent from the data shown in
Fig. 7.29. In fact, the curves shown in this figure represent the results obtained from
Eq. (7.45), for s = 1, 2, 3 hyperon production at

√
s = 17.3 GeV [119]. They

are seen to be in qualitative agreement with the data. However the scarcity of data,
existing at top SPS energy for total hyperon yields, obtained in 4π acceptance (recall
the arguments in Sect. 7.3.1) both for A+A and p+p collisions does not yet permit
to cover the SHM strangeness saturation curves in detail, for s > 1.

This saturation is seen in Fig. 7.29, to set in already at modest system sizes, but
sequentially so, for ascending hyperon strangeness. Note that SHM saturation is
sequentially approached, from Eq. (7.45), with increasing fireball volume V . In
order to make contact to the experimental size scaling with centrality, e.g. Npart,
the model of ref. [119], which is illustrated in Fig. 7.29, has converted the genuine
volume scale to the Npart scale by assuming a universal eigenvolume of 7 fm3 per
participant nucleon. I.e. Npart = 10 really means a coherent fireball volume of
70 fm3, in Fig. 7.29. Within this definition, saturation of s = 1, 2, 3 sets in at fireball
volumes at hadronization of about 60, 240 and 600 fm3, respectively: this is the real
message of the SHM curves in Fig. 7.29.

The above direct translation of coherent fireball volume to participant number is
problematic [120] as it assumes that all participating nucleons enter into a single
primordially coherent fireball. This is, however, not the case [120] particularly in
the relative small scattering systems that cover the initial, steep increase of η(s),
where several local high density clusters are formed, each containing a fraction of
Npart. This is revealed by a percolation model [120] of cluster overlap attached to a
Glauber calculation of the collision/energy density. At each Npart an average cluster
volume distribution results which can be transformed by Eq. (7.45) to an average
{η(s, V )} distribution whose weighted mean is the appropriate effective canonical
suppression factor corresponding to Npart. On the latter scale, the SHM suppression
curve thus shifts to higher Npart, as is shown in Fig. 7.30 for the K+/π+ ratio vs.
Npart, measured at mid-rapidity by PHENIX in Au+Au collisions at

√
s = 200 GeV,

Fig. 7.30 The mid-rapidity
K+ to π+ ratio vs. Npart in
minimum bias Au+Au
collisions at

√
s = 200 GeV,

compared to the percolation
model [120] (solid line); a
prediction of which for
Cu+Cu at similar energy is
given by the long dashed line
(see text for detail)
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which is reproduced by the percolation model [120]. Also included is a prediction
for Cu+Cu at this energy which rises more steeply on the common Npart scale
because the collision and energy density reached in central Cu+Cu collisions, at
Npart ≈ 100, exceeds that in peripheral Au+Au collisions (at the same Npart) which
share a more prominent contribution from the dilute surface regions of the nuclear
density profile. We note, finally, that this deviation from universal Npart scaling does
not contradict the observations of a perfect such scaling as far as overall charged
particle multiplicity densities are concerned (recall Fig. 7.12) which are dominated
by pions, not subject to size dependent canonical suppression.

7.3.3 Origin of Hadro-Chemical Equilibrium

The statistical hadronization model (SHM) is not a model of the QCD confinement
process leading to hadrons, which occurs once the dynamical cooling evolution
of the system arrives at Tc. At this stage the partonic reaction volume, small in
elementary collisions but extended in A+A collisions, will decay (by whatever
elementary QCD process) to on-shell hadrons and resonances. This coherent
quantum mechanical decay results in a de-coherent quasi-classical, primordial on-
shell hadron-resonance population which, at the instant of its formation, lends
itself to a quasi-classical Gibbs ensemble description. Its detailed modalities
(canonical for small decaying systems, grand canonical for extended fireballs in
A+A collisions), and its derived parameters [T ,μB] merely recast the conditions,
prevailing at hadronization. The success of SHM analysis thus implies that the
QCD hadronization process ends in statistical equilibrium concerning the hadron-
resonance species population.

In order to identify mechanisms in QCD hadronization that introduce the hadro-
chemical equilibrium we refer to jet hadronization in e+e− annihilation reactions,
which we showed in Fig. 7.17 to be well described by the canonical SHM. In di-jet
formation at LEP energy,

√
s = 92 GeV, we find a charged particle multiplicity

of about 10 per jet, and we estimate that, likewise, about 10 primordial partons
participate on either side of the back-to-back di-jet [85]. There is thus no chance for
either a partonic or hadronic, extensive rescattering toward chemical equilibrium.
However, in the jet hadronization models developed by Amati and Veneziano [83],
Webber [121] and Ellis and Geiger [85] the period of QCD DGLAP parton shower
evolution (and of perturbative QCD, in general) ends with local color neutralization,
by formation of spatial partonic singlet clusters. This QCD “color pre-confinement”
[83] process reminds of a coalescence mechanism, in which the momenta and the
initial virtual masses of the individual clustering partons get converted to internal,
invariant virtual mass of color neutral, spatially extended objects. Their mass
spectrum [121] extends from about 0.5 to 10 GeV. This cluster mass distribution,
shown in Fig. 7.31, represents the first stochastic element in this hadronization
model.
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Fig. 7.31 Invariant mass
spectrum of color
neutralization clusters in the
Veneziano-Webber
hadronization model
[83, 121]
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The clusters are then re-interpreted within non-perturbative QCD: their internal,
initially perturbative QCD vacuum energy gets replaced by non-perturbative quark
and gluon condensates, making the clusters appear like hadronic resonances. Their
subsequent quantum mechanical decay to on-shell hadrons is governed by the phase
space weights given by the hadron and resonance spectrum [85, 121]. I.e. the clusters
decay under “phase space dominance” [85], the outcome being a micro-canonical or
a canonical hadron and resonance ensemble [84, 107]. The apparent hadro-chemical
equilibrium thus is the consequence of QCD color neutralization to clusters, and
their quantum mechanical decay under local quantum number conservation and
phase space weights. We note that the alternative description of hadronization, by
string decay [122], contains a quantum mechanical tunneling mechanism, leading
to a similar phase space dominance [123].

Hadronization in e+e− annihilation thus occurs from local clusters (or strings),
isolated in vacuum, of different mass but similar energy density corresponding
to QCD confinement. These clusters are boosted with respect to each other but
it was shown [124] that for a Lorentz invariant scalar, such as multiplicity, the
contributions of each cluster (at similar T ) can be represented by a single canonical
system with volume equal to the sum of clusters. In the fit of Fig. 7.17 this volume
sum amounts to about 45 fm3 [84]; the individual cluster volumes are thus quite
small, of magnitude a few fm3 [85]. This implies maximum canonical strangeness
suppression but may, in fact, require a micro-canonical treatment of strangeness
[109], implying a further suppression. These MC effects are oftentimes included
[125] in the canonical partition functions by an extra strangeness fugacity parameter
γs < 1 which suppresses s = 1, 2, 3 in a hierarchical manner, 〈Ni(s)〉 ≈ (γs)

si . The
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fit of Fig. 7.17 requires γs = 0.66, a value typical of canonical multiplicity analysis
in p+p, p+p and e+e− annihilation collisions [109] at

√
s ≥ 30 GeV.

The above picture, of hadrochemical equilibrium resulting from the combined
stochastic features of QCD color neutralization by cluster formation, and subsequent
quantum mechanical decay to the on-shell hadron and resonance spectrum (under
phase space governance) lends itself to a straight forward extension to A+A
collisions. The essential new features, of grand canonical hadronization including
strangeness enhancement, should result from the fact that extended space-time
volumes of ε > εcrit are formed in the course of primordial partonic shower
evolution, an overlap effect increasing both with

√
s and with the size of the

primordial interaction volume. As the volume of the elementary hadronization
clusters amounts to several fm3 it is inevitable that the clusters coalesce, to form
extended “super-cluster” volumes prior to hadronization [120]. As these super-
clusters develop toward hadronization via non perturbative QCD dynamics, it is
plausible to assume an overall quantum mechanical coherence to arise over the
entire extended volume, which will thus decay to hadrons under global quantum
number conservation, the decay products thus modeled by the GC ensemble.

Our expectation that space-time coalescence of individual hadronization clusters
will lead to a global, quantum mechanically coherent extended super-cluster
volume, that decays under phase space dominance, appears as an analogy to the
dynamics and quantum mechanics governing low energy nuclear fission from
a preceding “compound nucleus” [126]. Note that the observation of a smooth
transition from canonical strangeness suppression to grand canonical saturation
(Figs. 7.29, 7.30) lends further support to the above picture of a percolative growth
[120] of the volume that is about to undergo hadronization.

An extended, coherent quark gluon plasma state would, of course, represent
an ideal example of such a volume [127] and, in fact, we could imagine that the
spatial extension of the plasma state results from a percolative overlap of primordial
zones of high energy density, which becomes more prominent with increasing

√
s

and Npart. A QGP state preceding hadronization will thus lead to all the observed
features. However, to be precise: the hadronizing QCD system of extended matter
decaying quantum coherently, could still be a non-equilibrium precursor of the ideal
equilibrium QGP, because we have seen above that hadrochemical equilibrium also
occurs in e+e− annihilation, where no partonic equilibrium exists. It gets established
in the course of hadronization, irrespective of the degree of equilibrium prevailing
in the preceding partonic phase.

7.3.4 Hadronization vs. Rapidity and
√

s

We have argued in Sect. 7.3.1 that, at relatively low
√
s, the total rapidity gap

�y does not significantly exceed the natural thermal rapidity spreading width
i ≈ 2.35 (T /mi)

1/2 of a single, isotropically decaying fireball, centered at
mid-rapidity and emitting hadrons of mass mi [110]. However, this procedure
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involves an idealization because in the real Pb+Pb collision the intersecting dilute
surface sections of the nuclear density profiles will lead to a significant contribution
of single-scattering NN collisions, outside the central high density fireball. The
leading hadron properties of such “corona collisions” result in wider proper rapidity
distributions, quite different from those of the central fireball decay hadrons.
Their contribution will thus be prominent near target/projectile rapidity, and will
feature a canonically suppressed strangeness. The one-fireball assumption, although
inevitable at small �y, does not quite resemble the physical reality. This may
explain the need for an additional strangeness suppression factor in the GC one-
particle partition function (Eq. (7.32)) that has, unfortunately, also been labeled γs
but expresses physics reasons quite different from the extra suppression factor that
reflects micro-canonical phase space constraints in elementary collisions. It turns
out that all GC analysis of central A+A collisions at low

√
s, and addressed to total

4π multiplicities, requires a γs of 0.7–0.85 [19]; in the fit of Fig. 7.25 γs = 0.84.
At RHIC, �y ≈ 11 � i , and such difficulties disappear: γs ≈ 1 at midrapidity

and, moreover, the wide gap permits a SHM analysis which is differential in y.
Figure 7.32 shows the y-dependence of the ratios π−/π+, K−/K+ and p/p as
obtained by BRAHMS [128] in central Au+Au collisions at

√
s = 200 GeV.

The figure shows a dramatic dependence of the p/p ratio, which reflects the local
baryochemical potential according to Eq. (7.38). At yCM > 1 the p/p ratio drops
down steeply, to about 0.2 at y ≈ 3.5, thus making close contact to the top SPS
energy value obtained by NA49 [129]. The K−/K+ ratio follows a similar but
weaker drop-off pattern, to about 0.65 again matching with the top SPS energy value
of about 0.6 [130]. The deviation from unity of these ratios reflects the rapidity
densities of initial valence u, d quarks, relative to the densities of newly created
light and strange quark-antiquark pairs, i.e. the y distribution of the net baryon
number density, and of the related baryo-chemical potential of the GC ensemble.

Fig. 7.32 (Left) Anti-hadron to hadron ratios as a function of rapidity in central Au+Au collisions
at

√
s = 200 GeV. (Right) Interpretation of the correlation between p/p and K−/K+ in terms of

baryo-chemical potential μB variation in the grand canonical statistical model. From [128]
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Thus, in analyzing successive bins of the rapidity distributions in Fig. 7.32, the major
variation in the GC fit concerns the baryo-chemical potential μB(y) which increases
from about 20 MeV (Fig. 7.26) at mid-rapidity, to about 150 MeV at y ≥ 3 while the
hadronization temperature stays constant, at T = 160 MeV. This interplay between
K−/K+, p/p and μB is illustrated [128] in the right hand panel of Fig. 7.32, and
shown to be well accounted for by the GC statistical model [131].

These considerations imply that hadronization at RHIC (and LHC) energy occurs
local in y-space and late in time. The density distribution of net baryon number
results from the primordial pQCD shower evolution (c.f. Sect. 7.2.4), and is thus
fixed at formation time, t0 ≤ 0.6 fm/c at RHIC. Hadronization of the bulk partonic
matter occurs later, at t ≥ 3 fm/c [86, 95], and transmits the local conditions in
rapidity space by preserving the local net baryon quantum number density. Most
importantly we conclude that hadronization occurs, not from a single longitudinally
boosted fireball but from a succession of “super-clusters”, of different partonic
composition depending on y, and decaying at different time due to the Lorentz-
boost that increases with y, in an “inside-outside” pattern (c.f. Fig. 7.18). We are
thus witnessing at hadronization a Hubble expanding system of local fireballs.
The detailed implications of this picture have not been analyzed yet. Note that a
central RHIC collision thus does not correspond to a single hadronization “point”
in the [T , μ] plane of Fig. 7.1 but samples {T , μ} along the QCD parton-hadron
coexistence line [132].

Throughout this chapter we have discussed hadronic freeze-out at high
√
s only

(top SPS to RHIC energy), because of the proximity of the chemical freeze-out
parameters [T , μB] to the QCD phase boundary from lattice QCD, which suggests
an overall picture of hadronization, to occur directly from a partonic cluster or
super-cluster. Our discussion of the GC statistical hadronization model has been
explicitly or implicitly based on the assumption that hadronic freeze-out coincides
with hadronization. However, the GC model has also been applied successfully
to hadro-chemical freeze-out at

√
s down to a few GeV [19, 107, 108] where it

is not expected that the dynamical evolution traverses the phase boundary at all,
but grand canonical multiplicity distributions, and their characteristic strangeness
enhancement pattern, are observed throughout. Toward lower

√
s, T decreases

while μB increases, as is shown in Fig. 7.33 which presents a compilation of all
reported freeze-out parameters [108].

These points have also been included in the phase diagram of Fig. 7.1 which
shows that they are gradually branching away from the phase separation boundary
line that could recently be predicted by lattice QCD once new methods had been
developed to extend the theory to finite μB [9, 10]. At

√
s ≥ 20 GeV we see that

εc(QCD) ≈ εH ≈ εGC (7.46)

where εGC is the freeze-out density inferred from GC analysis [19, 107, 108].
In turn, the GC hadronic freeze-out points drop below the lattice QCD coexis-

tence line at lower
√
s, implying that chemical freeze-out now occurs within the

hadronic expansion phase. This requires a model of freeze-out, now governed by
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Fig. 7.33 Energy
dependence of the
hadro-chemical freeze-out
points obtained by grand
canonical statistical model
analysis in the plane [T , μB],
with interpolating curve at
fixed energy per particle of
about 1 GeV [107, 139]

the properties of a high density hadronic medium, upon expansive cooling and
dilution. Holding on to the model of a quantum mechanical de-coherence decay to
on-shell hadrons that we discussed in Sect. 7.3.3, we argue that an initial, extended
high density hadronic fireball, given sufficient life-time at T smaller, but not far
below Tc, could also be seen as a quantum mechanically coherent super-cluster, as
governed by effective mean fields [133]. In such a medium hadrons, at T near Tc,
acquire effective masses and/or decay widths far off their corresponding properties
in vacuum: they are off-shell, approaching conditions of QCD chiral symmetry
restoration as T → Tc [134]. This symmetry is inherent in the elementary QCD
Lagrangian, and “softly” broken within the light quark sector by the small non-zero
current quark masses, but severely broken at T → 0 by the high effective constituent
quark masses that get dressed by non perturbative QCD vacuum condensates.
Pictorially speaking, hadrons gradually loose this dressing as T → Tc [135],
introducing a change, away from in vacuum properties, in the hadronic mass
and width spectrum. Such in-medium chiral restoration effects have, in fact, been
observed in relativistic A+A collisions, by means of reconstructing the in-medium
decay of the ρ vector meson to an observed e+e− pair [136] (see Sect. 7.6.3).

A dense, high T hadronic system, with mean-field induced off-shell constituents
is also, clearly, quantum mechanically coherent. At a certain characteristic density,
ε < εc, and temperature T < Tc, as reached in the course of overall hadronic
expansion, this extended medium will undergo a decoherence transition to classical
on-shell hadrons. Its frozen-out hadronic multiplicity distribution should be, again,
characterized by the phase space weights of a grand canonical ensemble at T < Tc.
Theoretical studies of such a mean field hadronic expansion mode [137] have also
shown that such mechanisms play essentially no role at

√
s ≥ 20 GeV because
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the expanding system is already in rapid flow once it traverses the phase boundary,
with an expansion time scale shorter than the formation time scale of mean field
phenomena. At lower energies, on the other hand, the system might not even dive
into the deconfined phase but spend a comparatively long time in its direct vicinity,
at the turning point between compression and re-expansion where all dynamical
time constants are large, and the hadron density is high, such that the inelastic
hadronic transmutation rate becomes high (particularly in collisions of more than
two hadronic reactants, with reaction rates [138] proportional to εn), and sufficiently
so for maintaining hadronic chemical equilibrium after it is first established at
maximum hadron density, in low

√
s systems that do not cross the phase boundary

at all.
The GC freeze-out parameters [T ,μ] at various

√
s in Fig. 7.33 permit a

smooth interpolation in the T ,μ plane [139], which, in turn, allows for GC model
predictions which are continuous in

√
s. Such a curve is shown in Fig. 7.28

compared to the 4π data points for the K+/π+ multiplicity ratio in central collisions
Au+Au/Pb+Pb, at all

√
s investigated thus far. It exhibits a smooth maximum, due

to the interplay of T saturation and μB fall-off to zero, but does not account for
the sharp peak structure seen in the data at

√
s ≈ 7 GeV and μB ≈ 480 MeV.

This behavior is not a peculiarity of the K+ channel only; it also is reflected in
an unusually high Wroblewski ratio (see Eq. (7.39)) obtained at

√
s = 7.6 GeV,

of λs = 0.60 [19]. This sharp strangeness maximum is unexplained as of yet. It
implies that hadron formation at this

√
s reflects influences that are less prominent

above and below, and most attempts to understand the effect [141–143] are centered
at the assumption that at this particular

√
s the overall bulk dynamics will settle

directly at the phase boundary where, moreover, finite μB lattice theory also expects
a QCD critical point [9–11]. This would cause a softest point to occur in the equation
of state, i.e. a minimum in the relation of expansion pressure vs. energy density,
slowing down the dynamical evolution [144, 145], and thus increasing the sensitivity
to expansion modes characteristic of a first order phase transition [143], which
occurs at μB ≥ μcrit

B . Such conditions may modify the K/π ratio (Fig. 7.28) [143].
It thus appears that the interval from top AGS to lower SPS energy, 5 ≤ √

s ≤
10 GeV, promises highly interesting information regarding the QCD phase diagram
(Fig. 7.1) in the direct vicinity of the parton-hadron coexistence line. In particular,
the physics of a critical point of QCD matter deserves further study. Observable con-
sequences also comprise so-called “critical fluctuations” [146, 147] of multiplicity
density, mean transverse momentum and hadron-chemical composition [148], the
latter in fact being observed near

√
s = 7 GeV in an event by event study of the

K/π ratio in central Pb+Pb collisions [149]. We shall return to critical point physics
in Sect. 7.7.



372 R. Stock

7.4 Elliptic Flow

We have up to now mostly stressed the importance of central collisions and mid-
rapidity data because they provide for the highest primordial energy density and
avoid problems caused by emission anisotropy and the presence of cold spectator
sections of target and projectile nuclei. On the other hand, a fundamentally new
window of observation is opened by non-central collisions as the finite impact
parameter breaks cylinder symmetry, defining emission anisotropies with respect
to the orientation of the impact vector �b as we have shown in Eq. (7.20). In a
strongly interacting fireball collision dynamics, the initial geometric anisotropy
of the reaction volume gets transferred to the final momentum spectra and thus
becomes experimentally accessible. Furthermore, the high charged particle multi-
plicity allows for an event-by-event determination of the reaction plane (direction
of �b), enabling the study of observables at azimuth ϕ, relative to the known reaction
plane. We shall show that this opens a window into the very early stages of A+A
collisions onward from the end of nuclear interpenetration, at τ ≈ 2 R(A)/γCM.
Our observation thus begins at the extreme energy densities prevailing right at
formation time (Sects. 7.2.4 and 7.2.5), i.e. concurrent with the initialization phase
of relativistic hydrodynamic expansion. We access the phase diagram of Fig. 7.1 in
regions far above the QCD phase boundary.

Before turning to the details of elliptic flow data we wish to illustrate [96]
the above statements. Figure 7.34 exhibits the transverse projection of primordial
energy density, assumed to be proportional to the number density of participant
nucleons in the overlap volume arising from a Au+Au collision at impact parameter
b = 7 fm. The nuclear density profiles (assumed to be of Woods-Saxon type)
intersect in an ellipsoidal fireball, with minor axis along the direction of �b which

Fig. 7.34 Transverse
projection of primordial
binary collision density in an
Au+Au collision at impact
parameter 7 fm, exhibiting
participant parton spatial
excentricity [96]
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is positioned at y = 0. The obvious geometrical deformation can be quantified by
the spatial excentricity (unfortunately also labeled ε in the literature)

εx(b) =
〈
y2 − x2

〉
〈
y2 + x2

〉 (7.47)

where the averages are taken with respect to the transverse density profiles of
Fig. 7.34. εx is zero for b = 0, reaching a value of about 0.3 in the case b = 7 fm
illustrated in Fig. 7.34.

Translated into the initialization of the hydrodynamic expansion the density
anisotropy implies a corresponding pressure anisotropy. The pressure is higher in
x than in y direction, and thus is the initial acceleration, leading to an increasing
momentum anisotropy,

εp(τ ) =
∫

dx dy (T xx − T yy)∫
dx dy (T xx + T yy)

(7.48)

where T
μx
(x) is the fluid’s energy-momentum tensor. Figure 7.35 shows [96, 150] the

time evolution of the spatial and momentum anisotropies for the collision considered
in Fig. 7.34, implementing two different equations of state which are modeled with
(without) implication of a first order phase transition in “RHIC” (“EOS1”). A steep
initial rise is observed for εp , in both cases: momentum anisotropy builds up during
the early partonic phase at RHIC, while the spatial deformation disappears. I.e. the
initial source geometry, which is washed out later on, imprints a flow anisotropy
which is preserved, and observable as “elliptic flow”. A first order phase transition
essentially stalls the buildup of εp at about τ = 3 fm/c when the system enters the

Fig. 7.35 Time evolution of
the spatial excentricity εx and
the momentum space
anisotropy εp (Eqs. (7.47)
and (7.48)) in the
hydrodynamic model of an
Au+Au collision at b = 7 fm,
occurring at

√
s = 200 GeV

[96]. The dynamics is
illustrated with two equations
of state
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mixed phase, such that the emerging signal is almost entirely due to the partonic
phase. We have to note here that the “ideal fluid” (zero viscosity) hydrodynamics
[150] employed in Fig. 7.35 is, at first, a mere hypothesis, in view also of the fact
that microscopic transport models have predicted a significant viscosity, both for a
perturbative QCD parton gas [92, 151] and for a hadron gas [95, 152]. Proven to be
correct by the data, the ideal fluid description of elliptic flow tells us that the QGP
is a non-perturbative liquid [153, 154].

Elliptic flow is quantified by the coefficient v2 of the second harmonic term in
the Fourier expansion (see Eq. (7.20)) of the invariant cross section; it depends on√
s, b, y and pT. Figure 7.36 shows the

√
s dependence of v2 at mid-rapidity and

averaged over pT, in Au+Au/Pb+Pb semi-peripheral collisions [93, 155]. We see
that the momentum space anisotropy is relatively small overall, but exhibits a steep
rise toward top RHIC energy.

Figure 7.37 shows the (pseudo)-rapidity dependence of v2 at
√
s = 130 and

200 GeV as obtained by PHOBOS [156] for charged particles in minimum bias
Au+Au collisions. It resembles the corresponding charged particle rapidity density
distribution of Fig. 7.8, suggesting that prominent elliptic flow arises only at the
highest attainable primordial energy density.

That such conditions are just reached at top RHIC energy is shown in Figs. 7.38
and 7.39. The former combines STAR [157] and PHENIX [158] data for the
pT dependence of elliptic flow, observed for various identified hadron species
π±,K±, p,K0 and �,� in Au+Au at 200 GeV. The predicted hydrodynamic flow
pattern [96, 159] agrees well with observations in the bulk pT < 2 GeV/c domain.
Figure 7.39 (from [155]) unifies average v2 data from AGS to top RHIC energies
in a scaled representation [93] where v2 divided by the initial spatial anisotropy εx

Fig. 7.36 Energy
dependence of the elliptic
flow parameter v2 at
mid-rapidity and averaged
over pT, in Au+Au and
Pb+Pb semi-peripheral
collisions [155]
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Fig. 7.37 Pseudo-rapidity
dependence of the
pT-averaged elliptic flow
coefficient v2 for charged
hadrons at

√
s = 130 and

200 GeV [156]

Fig. 7.38 Transverse
momentum dependence of
elliptic flow v2 for mesons
and baryons in Au+Au
collisions at

√
s = 200 GeV.

The hydrodynamic model
[96, 159] describes the mass
dependence at pT ≤ 2 GeV/c
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is plotted versus charged particle mid-rapidity density per unit transverse area S,
the latter giving the density weighted transverse surface area of primordial overlap,
Fig. 7.34. Figure 7.39 includes the hydrodynamic predictions [95, 96, 150, 159, 161]
for various primordial participant or energy densities as implied by the quantity
(1/S) dnch/dy [93]. Scaling v2 by εx enhances the elliptic flow effect of near-central
collisions where εx is small, and we see that only such collisions at top RHIC energy
reach the hydrodynamical ideal flow limit in models that include an EOS ansatz
which incorporates [96] the effect of a first order phase transition, which reduces
the primordial flow signal as was shown in Fig. 7.35.

At top RHIC energy, the interval between t0 ≈ 0.6 fm/c, and hadronization
time, tH ≈ 3 fm/c, is long enough to establish dynamical consequences of an early
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Fig. 7.39 Elliptic flow v2
scaled by spatial excentricity
ε as a function of charged
particle density per unit
transverse area S, from AGS
to top RHIC energy. The
hydrodynamic limit is only
attained at RHIC [155]
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approach toward local equilibrium. The “lucky coincidence” of such a primordial
resolution of dynamical time scale, with the extreme primordial density, offered by
semi-central collisions of heavy nuclei, results in an extremely short mean free path
of the primordial matter constituents, thus inviting a hydrodynamic description of
the expansive evolution. Consistent application of this model reveals a low viscosity:
the primordial matter resembles an ideal fluid, quite different from earlier concepts,
of a weakly interacting partonic gas plasma state (QGP) governed by perturbative
QCD screening conditions [36, 41].

A further, characteristic scaling property of elliptic flow is derived from the
pT dependence of v2, observed for the different hadronic species. In Fig. 7.38 one
observes a hadron mass dependence, the v2 signal of pions and charged kaons rising
faster with pT than that of baryons. Clearly, within a hydrodynamic flow velocity
field entering hadronization, heavier hadronic species will capture a higher pT, at a
given flow velocity. However, unlike in hadronic radial expansion flow phenomena
(c.f. Sect. 7.2.6) it is not the hadronic mass that sets the scale for the total pT derived,
per particle species, from the elliptic flow field, but the hadronic valence quark
content. This conclusion is elaborated [94] in Fig. 7.40.

The left panel shows measurements of the pT dependence of v2 for several
hadronic species, in minimum bias Au+Au collisions at

√
s = 200 GeV [161]. The

middle panel bears out the hydrodynamically expected [162] particle mass scaling
when v2 is plotted vs. the relativistic transverse kinetic energy KET ≡ mT − m

where mT = (p2
T + m2)1/2. For KET ≥ 1 GeV, clear splitting into a meson branch

(lower v2) and a baryon branch (higher v2) occurs. However, both of these branches
show good scaling separately. The right panel shows the result obtained after scaling
both v2 and KET (i.e. the data in the middle panel) by the constituent quark number,
nq = 2 for mesons and nq = 3 for baryons. The resulting perfect, universal scaling
is an indication of the inherent quark degrees of freedom in the flowing matter as
it approaches hadronization. We thus assert that the bulk of the elliptic flow signal
develops in the pre-hadronization phase.
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Fig. 7.40 v2 vs. pT (left panel) and transverse kinetic energy KET = mT−m0 (middle) for several
hadronic species in min. bias Au+Au collisions at

√
s = 200 GeV, showing separate meson and

baryon branches. Scaling (right panel) is obtained by valence quark number nq , dividing v2 and
KET [94]

The above scaling analysis has been extended to ! meson and � hyperon
production, and also to first PHENIX results [163] concerning elliptic flow of
the charmed D meson [94], with perfect agreement to the observations made in
Fig. 7.40, of a separation into meson/hadron branches on the KET scale, which
merge into a universal v2 scaling once both v2 and KET per valence quark are
considered. The observation that the D meson charm quark apparently shares in the
universal flow pattern is remarkable as its proper relaxation time is, in principle,
lengthened by a factor M/T [164]. A high partonic rescattering cross section σ

is thus required in the primordial QGP fireball, to reduce the partonic mean free
path λ = 1/nσ (where n is the partonic density), such that λ � A1/3 (the overall
system size) and, simultaneously, λ < 1 fm in order to conform with the near-zero
mean free path implication of the hydrodynamic description of the elliptic flow,
which reproduces the data gathered at RHIC energy. The presence of a high partonic
rescattering cross section was born out in a parton transport model study [92] of the
steep linear rise of the elliptic flow signal with pT (Fig. 7.38). In such a classical
Boltzmann equation approach the cross sections required for the system to translate
the initial spatial into momentum space anisotropy, fast enough before the initial
deformation gets washed out during expansion (c.f. Fig. 7.35), turn out to exceed
by almost an order of magnitude the values expected in a perturbative QCD quark-
gluon gas [92].

The non-perturbative quark-gluon plasma is thus a strongly coupled state (which
has been labeled sQGP [165]). At RHIC energy this reduces the partonic mean free
path to a degree that makes hydrodynamics applicable. A Navier-Stokes analysis
[166] of RHIC flow data indicates that the viscosity of the QGP must be about ten
times smaller than expected if the QGP were a weakly interacting pQCD Debye
screened plasma. This justifies the use of perfect fluid dynamics.
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Considering first attempts to derive a quantitative estimate of the dimensionless
ratio of (shear) viscosity to entropy, we note that η/s is a good way to characterize
the intrinsic ability of a substance to relax toward equilibrium [167]. It can be
estimated from the expression [94]

η/s ≈ T λf cs (7.49)

where T is the temperature, λf the mean free path, and cs is the sound speed derived
from the partonic matter EOS. A fit by the perfect fluid “Buda-Lund” model [168]
to the scaled v2 data shown in Fig. 7.40 yields T = 165 ± 3 MeV; cs is estimated
as 0.35 ± 0.05 [94, 162], and λf ≈ 0.30 fm taken from a parton cascade calculation
including 2 ↔ 3 scattering [169]. The overall result is [94]

η/s = 0.09 ± 0.02 (7.50)

in agreement with former estimates of Teaney and Gavin [170]. This value is very
small and, in fact, close to the universal lower bound of η/s = 1/4π recently derived
field theoretically [171].

Elliptic flow measurements thus confirm that the quark-gluon matter produced
as

√
s → 200 GeV is to a good approximation in local thermal equilibrium up to

about 3–4 fm/c. In addition, the final hadron mass dependence of the flow pattern
is consistent with a universal scaling appropriate for a nearly non-viscous hydrody-
namic flow of partons, and the observed v2 signal reflects a primordial equation of
state that is consistent with first numerical QCD computations [153, 154, 165] of
a strongly coupled quark-gluon plasma (sQGP) state. First estimates of its proper
shear viscosity to entropy ratio, η/s, are emerging from systematic analysis of the
elliptic flow signal. At lower

√
s precursor elliptic flow phenomena are observed,

as well, but are more difficult to analyze as the crucial, new feature offered by top
RHIC energies is missing here: a clear cut separation in time, between primordial
formation of local partonic equilibrium conditions, and hadronization. At RHIC
(and at future LHC) energy elliptic flow systematics thus captures the emerging
quark-gluon state of QCD at energy densities in the vicinity of ε = 6–15 GeV/fm3,
at temperature T ≈ 300 MeV, and μB → 0, describing it as a strongly coupled, low
viscosity liquid medium.

7.5 In-medium Attenuation of High pT Hadronand Jet
Production

In the preceding sections we have followed the dynamical evolution of bulk matter
in A+A collisions (at pT ≤ 2 GeV which covers about 95% of the hadronic output),
from initial formation time of partonic matter which reflects in charged particle
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transverse energy and multiplicity density, also giving birth to hadrons, and to the
elliptic expansion flow signal.

An alternative approach toward QCD plasma diagnostics exploits the idea
[41, 172] of implanting partonic products of primordial high Q2 processes into the
evolving bulk medium, that could serve as “tracers” of the surrounding, co-traveling
matter. The ideal situation, of being able to scatter well defined partons, or electrons,
from a plasma fireball, is approximated by employing primordially formed charm-
anticharm quark pairs [41], or leading partons from primordial di-jet production
[172]. Both processes are firmly anchored in perturbative QCD and well studied in
elementary collisions (where such partons are directly released into vacuum), which
thus serve as a reference in an analysis that quantifies the in-medium modification
of such tracer partons. Not a surprise, in view of our above inferences, from elliptic
flow, of a high temperature, strongly coupled primordial medium: these in-medium
modifications are quite dramatic, leading to a suppression of J/� production from
primordial cc pairs (Sect. 7.6), and to high pT hadron and jet quenching, the subject
of this chapter.

7.5.1 High pT Inclusive Hadron Production Quenching

At top RHIC energy,
√
s = 200 GeV, di-jet production from primordial hard pQCD

parton-parton collisions (of partons from the initial baryonic structure functions) is
the source of “leading” partons, with ET up to about 30 GeV. They are derived from
the inclusive cross section arising if the A+A collision is considered, first, as an
incoherent superposition of independent nucleon-nucleon collisions, as enveloped
within the target-projectile nucleon densities. In this framework, the pQCD cross
section for producing an ET parton in A+B takes the form of “factorization” [173]

dσ

dET dy
=
∑
a,b

∫
xa

dxa

∫
xb

dxb fa/A(xa)fb/B(xb)
dσab

dET dy
(7.51)

where the f (x) are the parton distributions inside projectile A and target B nuclei,
and the last term is the pQCD hard scattering cross section. This equation describes
the primordial production rate of hard partons, leading to the conclusion [172] that,
at RHIC energy, all hadrons at pT ≥ 6–10 GeV should arise from initial pQCD
parton production.

As partons are effectively frozen during the hard scattering, one can treat each
nucleus as a collection of free partons. Thus, with regard to high pT production, the
density of partons within the parton distribution function of an atomic number A
nucleus should be equivalent to the superposition of A independent nucleons N :

fa/A (x,Q2) = A fa/N (x,Q2). (7.52)
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From Eqs. (7.51) and (7.52) it is clear that the primordial high Q2 inclusive
parton cross section in a minimum bias A+B reaction scales as A · B times the
corresponding (N+N or) p+p cross section. Furthermore, as each leading parton
ends up in an observed high pT hadron h, we thus write the invariant hard hadron
cross section as

E dσAB→h/d3p = A · B · E dσpp→h/d3p. (7.53)

Since nucleus-nucleus experiments usually measure invariant yields Nh for a given
centrality bin, corresponding to an average impact parameter b, one writes instead:

E dNAB→h(b)/d3p = 〈TAB(b)〉E dσpp→h/d3p, (7.54)

where TAB(b) is the Glauber geometrical overlap function of nuclei A, B at impact
parameter b, which accounts for the average number of participant parton collisions
at given impact geometry [174], 〈Ncoll(b)〉. One can thus quantify the attenuating
medium effects, as experienced by the primordially produced tracer parton on its
way toward hadronization, by the so-called nuclear modification factor for hard
collisions (analogous to Eq. (7.6), that refers to soft, bulk hadron production):

RAB(pT, y, b) = d2NAB/dy dpT

〈TAB(b)〉 d2σpp/dy dpT
. (7.55)

Obviously, this concept of assessing the in-medium modification of hadron produc-
tion at high pT requires corresponding p+p collision data, as a reference basis. Such
data have been, in fact, gathered at top RHIC, and top SPS energies,

√
s = 200 and

17.3 GeV, respectively. Alternatively, in situations where the relevant reference data
are not known, one considers the production ratio of hadronic species h, observed
in central relative to peripheral collisions:

RCP(pT, y) = d2Nh(b1)/dy dpT

d2Nh(b2)/dy dpT
× 〈TAB(b2)〉

〈TAB(b1)〉 (7.56)

where b1 � b2 are the average impact parameters corresponding to the employed
trigger criteria for “central” and “peripheral” A+A collisions, respectively. This ratio
recasts, to a certain extent, the in-medium attenuation analysis, offered by RAB,
insofar as peripheral collisions approach the limiting conditions, of a few single
nucleon-nucleon collisions occurring in the dilute surface sections of the nuclear
density profiles, i.e. essentially in vacuum.

Employing the above analysis schemes, the RHIC experiments have, in fact,
demonstrated a dramatic in-medium suppression of the high pT yield, for virtually
all hadronic species. Figure 7.41 shows RAA for neutral pions produced in min.
bias Cu+Cu and Au+Au collisions at

√
s = 200 GeV where PHENIX extended the

pT range up to 18 GeV/c [175]; the nuclear modification factor refers to the range
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Fig. 7.41 The nuclear
modification factor RAA for
π0 in min. bias Cu+Cu and
Au+Au collisions at√
s = 200 GeV, in the range

pT > 7 GeV/c [175], plotted
vs. centrality as measured by
participant nucleon number
Npart
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Fig. 7.42 RAA for π0

production in central Au+Au
collisions at
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[175], compared to a
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pT > 7.0 GeV/c and is shown as a function of centrality, reflected by Npart. We infer
a drastic suppression, by an RAA approx0.25 in near central collisions. Figure 7.42
shows the pT dependence [175] of neutral pion RAA in central Au+Au collisions
(Npart = 350), with a suppression to below 0.2 at pT ≥ 4 GeV/c.

Note that RAA cannot reach arbitrarily small values because of the unatten-
uated contribution of quasi-in-vacuum surface “corona” single nucleon-nucleon
collisions, closely resembling the p + p → π0 + X inclusive yield employed in
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the denominator of RAA, Eq. (7.55). Even in a central trigger configuration this
suggests a lower bound, RAA ≈ 0.15. Nuclear attenuation of high pT pions thus
appears to be almost “maximal”, implying a situation in which the interior sections
of the high energy density fireball feature a very high opacity, i.e. they are almost
“black” to the high pT partons contained in pions.

We remark here, briefly, on a confusing feature that occurs in Fig. 7.42 (and in
the majority of other RAA vs. pT plots emerging from the RHIC experiments):
the pQCD number of collision scaling employed in RAA does not describe pion
production at low pT as we have demonstrated in Sect. 7.2. The entries at pT ≤
3 GeV/c are thus besides the point, and so are pQCD guided model predictions, as
shown here [176].

Nuclear modification analysis at RHIC covers, by now, the high pT production of
a multitude of mesonic and baryonic species [177], most remarkably even including
the charmed D meson which is measured via electrons from semi-leptonic heavy
flavor decay by PHENIX [175] and STAR [178]. Figure 7.43 illustrates the first
PHENIX results from central Au+Au at

√
s = 200 GeV, RAA falling to about

0.3 at 5 GeV/c. Heavy flavor attenuation thus resembles that of light quarks, as is
also attested by the predictions of in-medium parton transport models [179, 180]
included in Fig. 7.43, which cast the medium opacity into an effective parton
transport coefficient q̂ which is seen here to approach a value 14 GeV2/c at high pT,
again corresponding to a highly opaque medium. We shall describe this approach in
more detail below.

A most fundamental cross-check of the in-medium attenuation picture of color
charged partons consists in measuring RAA for primordial, “direct” photons.

Fig. 7.43 The nuclear
modification factor RAA vs.
pT for electrons from
semi-leptonic decays of
heavy flavor (mostly D)
mesons in central Au+Au
collisions at

√
s = 200 GeV

[175]; with calculations of in
medium energy loss using
different attenuation models
[179, 180]
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Figure 7.44 shows first PHENIX results [181] for direct photon RAA vs. pT in
central Au+Au at

√
s = 200 GeV. Photons obey pQCD number of collisions scaling,

RAA ≈ 1! Also included in Fig. 7.44 are the attenuation ratios for neutral pions
(already shown in Fig. 7.42), and for η mesons that follow the pattern of extreme
suppression. In essence, the PHENIX results in Figs. 7.43 and 7.44 wrap up all
one needs to know for a theoretical analysis of fireball medium opacity, for various
flavors, and indicate transparency for photons.

We turn, briefly, to RCP as opposed to RAA analysis, in order to ascertain similar
resulting conclusions at RHIC energy. Figure 7.45 illustrates an RCP analysis of
π, p and charged hadron high pT production in Au+Au at

√
s = 200 GeV by STAR

Fig. 7.44 Modification factor RAA vs. pT for direct photons in central Au+Au at 200 GeV
(squares). Also shown are RAA for π0 (triangles) and η (circles) [181] fitted by the attenuation
model [176, 180]
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Fig. 7.45 RCP, the ratio of scaled π, p and charged hadron yields vs. pT in central (5%) and
peripheral (60–80%) Au+Au collisions at

√
s = 200 GeV [182]



384 R. Stock

[182], the central to peripheral yield ratio referring to a 5%, and a 60–80% cut of
minimum bias data. We showed in Eq. (7.56) that the RCP measure also refers to a
picture of pQCD number of binary collision scaling, inappropriate at low pT. Thus
ignoring the features of Fig. 7.45 at pT ≤ 3 GeV/c we conclude that the high pT
data again suggest a suppression by about 0.3, common to pions and protons, thus
approaching the ratio, of about 0.2, observed in Figs. 7.41 and 7.42 which employ
the “ideal” in-vacuum p + p → hadron + X reference.

At top SPS energy,
√
s = 17.3 GeV, the experimentally covered pT range is

fairly limited [183], pT < 4 GeV/c. Figure 7.46 shows NA49 results, RCP for
p and charged pions. Contrary to former expectations that such data would be
overwhelmed by Croonin-enhancement [184] the same systematic behavior as at
RHIC is observed, qualitatively: RCP (baryon)> RCP (meson) at pT > 3 GeV/c.
Note that, again, the data do not approach unity at pT → 0 because of the employed
binary scaling, and that the strong rise of the proton signal at pT < 2 GeV/c is
largely the result of strong radial flow in central Pb+Pb collisions, an effect much
less prominent in pion pT spectra. The high pT suppression is much weaker than
at RHIC but it is strong enough that the expected Croonin enhancement of high
pT mesons is not observed. These SPS data, as well as first results obtained at
the intermediate RHIC energy of

√
s = 62.4 GeV [185] are reproduced by an

attenuation model based on the primordial gluon density dNg/d y that scales as
the charged particle midrapidity density dNch/d y [176], and was also employed in
Figs. 7.43 and 7.44.

Fig. 7.46 RCP results from
SPS Pb+Pb collisions at√
s = 17.3 GeV, for pions

and protons [183], with
attenuation model fits [176]
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7.5.2 Energy Loss in a QCD Medium

The attenuation model that we have hinted at consists of a gluon radiative energy
loss theory of the primordially produced leading, high pT parton as it traverses
a medium of color charges, by means of emission of gluon bremsstrahlung.
We expect that the resulting partonic specific energy loss, per unit pathlength
(i.e. its dE/dx) should reflect characteristic properties of the traversed medium,
most prominently the spatial density of color charges [176] but also the average
momentum transfer, per in-medium collision of the considered parton or, more
general, per unit pathlength at constant density. Most importantly, an aspect of
non-abelian QCD leads to a characteristic difference from the corresponding QED
situation: the radiated gluon is itself color-charged, and its emission probability is
influenced, again, by its subsequent interaction in the medium [186] which, in turn,
is proportional to medium color charge density and traversed pathlength L. Thus,
the traversed path-length L in-medium occurs, both in the probability to emit a
bremsstrahlung gluon, and in its subsequent rescattering trajectory, also of length
L, until the gluon finally decoheres. Quantum mechanical coherence thus leads to
the conclusion that non-abelian dE/dx is not proportional to pathlength L (as in
QED) but to L2 [187].

This phenomenon occurs at intermediate values of the radiated gluon energy,
ω, in between the limits known as the Bethe-Heitler, and the factorization regimes
[186],

ωBH ≈ λ q2
T � ω � ωfact ≈ L2 q2

T/λ ≤ E (7.57)

where λ is the in-medium mean free path, q2
T the (average) parton transverse

momentum square, created per collision, and E the total cm energy of the traveling
charge. In the BDMPSZ model [186–188] the properties of the medium are encoded
in the transport coefficient, defined as the average induced transverse momentum
squared per unit mean free path,

q̂ =
〈
q2

T

〉
/λ. (7.58)

The scale of the radiated gluon energy distribution ω dN/dω is set by the
characteristic gluon energy [186, 187]

ωc = 1

2
q̂ L2. (7.59)

To see more explicitly how the various properties of the color charged medium enter
in q̂ we rewrite it as

q̂ = ρ

∫
q2

T dq2
T

dσ

dq2
T

≡ ρσ
〈
q2

T

〉
= λ−1

〈
q2

T

〉
(7.60)
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where ρ is the color charge density of scattering centers, σ the effective binary
cross section for interaction of the considered leading parton at scale q2 (which
may depend on quark flavor), and

〈
q2

T

〉
as above. Obviously, both σ and

〈
q2

T

〉
refer to

detailed, intrinsic properties of the QCD medium, globally described by density ρ.
The leading parton cross section with in-medium color charges should depend on
the implied resolution scale, Q2 = 〈

q2
T

〉
, and can thus be obtained from perturbative

QCD [186–188] only if Q2 > Q2
sat, the saturation scale that we discussed in

Sect. 7.2. Likewise,
〈
q2

T

〉
itself reflects a medium property, the effective range of the

color force, which is different in confined and deconfined media. Hadron size limits
the force range in the former case, such that q̂ is minimal in ground state hadronic
matter also, of course, due to the small energy density ρ = ρ0 = 0.15 GeV/fm3

[189]. This was, in fact, confirmed by a RHIC run with deuteron-gold collisions, in
which mid-rapidity hadrons traverse sections of cold Au nucleus spectator matter.
Figure 7.47 shows results obtained for RdA dependence on pT, forπ0 from PHENIX
[190], and for charged hadrons from STAR [191]. For comparison, both panels
also include the corresponding RAA data for central Au+Au collisions (all at√
s = 200 GeV/c), exhibiting the typical, drastic high pT quenching of inclusive

hadron production, clearly absent in d+Au collisions.
We have shown a first application of the BDMPSZ model, to RHIC inclusive D

meson production [179], in Fig. 7.43. Before engaging in further model application
we note, first, that Eqs. (7.57)–(7.60) above refer to the idealized conditions of an
infinitely extended medium of uniform composition. In reality, the fireball medium
expands, at time scale concurrent with the proper time incurred in the leading
partons propagation over distance L, such that all ingredients in q̂ , exhibited in
Eq. (7.60), vary with expansion time [192]. However, before turning to adaption to
reality of the infinite matter model, we wish to expose its prediction for the final
connection of the specific average partonic energy loss 〈�E〉 and in-medium path
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Fig. 7.47 RAA vs. pT for d+Au collisions at
√
s = 200 GeV, compared to central Au+Au results,

for π0 (left) and charged hadrons (right). From [190, 191]
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length L traversed:

〈�E〉 =
∫

ω
dN

dω
dω ∝ αs CR q̂ L2. (7.61)

This relation [193] represents the eikonal approximation limit of extended medium
and high leading parton initial energy E > ωc (Eq. (7.59)). The average energy loss
is thus proportional to the appropriate strong coupling constant αs, to the Casimir
factor corresponding to the leading parton (with value 4/3 for quarks, and 3 for
gluons), as well as to q̂ and L2.

In order to verify the non-abelian nature of radiative parton energy loss in a
partonic QCD medium it would, of course, be most convincing if a direct, explicit
L2 dependence of 〈�E〉 could be demonstrated. Such a demonstration is lacking
thus far, chiefly because of the obvious difficulty of simultaneously knowing the
primordial parton energy E, the transport coefficient q̂ and—in finite nuclear col-
lision geometry—its variation along the actual traversed path L as the surrounding
medium expands with propagation time. Moreover, the partonic medium induced
energy loss �E of the primordial parton is not directly observable. Even if we
assume that high pT partons evolve into the observed hadrons only after leaving the
fireball medium [176], their ensuing “fragmentation” to hadrons (which is known
from p + p jet physics) results in several hadrons usually comprising a “leading”
hadron which transports a major fraction 〈z〉 ≡ 〈

Eh/Ep
〉

of the fragmenting parton
energy Ep, which, in turn, equals Ep (primordial)—�E, with �E sampled from
a probability distribution with mean 〈�E〉 according to Eq. (7.61). The observed
leading hadron energy or transverse momentum is thus subject to sampling, both,
z from the fragmentation function, and �E from in-medium energy loss. Finally,
inclusive high pT leading hadron observation in A+A collisions involves an average
over all potential initial parton production points, within the primordially produced
density profile. A specific distribution of in medium path lengths f (L) arises, for
each such production point, which, moreover, depends on a model of space-time
fireball expansion. The final inclusive yield thus requires a further, weighted volume
average over f (L) per production point. Thus, typical of an inclusive mode of
observation, the “ideal” relationship of Eq. (7.61), between radiative in-medium
energy loss �E and traversed path length L gets shrouded by double averages,
independently occurring at either side of the equation [176, 179, 189, 194–196]. A
detailed L2 law verification cannot be expected from inclusive central collision data
alone (see next section).

However, the unmistakably clear signal of a strong, in-medium high pT parton
quenching effect, gathered at RHIC by RAA measurement for a multitude of
hadronic species (Figs. 7.20, 7.41, 7.42, 7.43, 7.45, and 7.47), in Au+Au collisions
at

√
s = 200 GeV, has resulted in first estimates of the transport coefficient q̂,

the medium—specific quantity entering Eq. (7.61), in addition to the geometry—
specific path length L. In fact, the transport coefficient can, to some extent, be
analyzed independently, owing to the fact that q̂ ∝ $ from Eq. (7.60). The density
$ falls down rapidly during expansion, but it is initially rather well constrained



388 R. Stock

by the conditions of one-dimensional Bjorken expansion that we have described
in Sects. 7.2 and 7.4. The major contribution to partonic �E arises in the early
expansion phase (via a high q̂), in close analogy to the formation of the elliptic flow
signal. These two signals are, thus, closely correlated: the primordial hydrodynamic
expansion phase of bulk matter evolution sets the stage for the attenuation, during
this stage of QCD matter, of primordially produced “tracer” partons, traversing the
bulk matter medium as test particles.

The bias in partonic �E to the primordial expansion period is borne out in an
expression [193, 195] which replaces the q̂ coefficient, appropriate to an infinitely
extended static medium considered in the original BDMPSZ model, by an effective,
expansion time averaged

q̂eff = 2

L2

∫ L

t0

dt (t − t0) q̂ (t) (7.62)

to be employed in the realistic case of an expanding fireball source. Due to the
rapid fall-off of $, in q̂ = $σ

〈
q2

T

〉
from Eq. (7.60), the integral depends, far more

strongly, on q̂ (t ≈ t0) than on total path length L. Furthermore, inserting q̂eff into
the BDMPSZ formula [193, 195] for the transverse momentum downward shift,
occurring in leading parton or hadron pT spectra (of power law form p−ν

T , see
Fig. 7.20)

� pT ≈ −αs

√
πq̂L2pT/ν, (7.63)

we see that the first order proportionality to L2 is removed. The downward pT shift
is thus, primarily, a consequence of q̂eff which, in turn, is biased to reflect the “ideal”
transport coefficient q̂ at early evolution time. Within this terminology, the pT
shift (see Eq. (7.63)) determines the experimentally measured ratio RAA(pT) which
quantifies the effective transport coefficient q̂eff for the pT domain considered. It
can be related, as a cross check, to the initial gluon rapidity density if the collision
region expands according to Bjorken scaling [187, 197]:

q̂ = αs
2

L
R−2
A

dNg

dy
. (7.64)

A typical result of application of the model described above [195] is shown in
Fig. 7.48. Analogous to Fig. 7.41, RAA for neutral pions and charged hadrons is
averaged over the range 4.5 ≤ pT ≤ 10 GeV/c, and shown as a function of
centrality (assessed by Npart) in minimum bias Au+Au collision at

√
s = 200 GeV

[190, 191, 198]. A path-averaged q̂eff of 14 GeV2/fm is inferred from the fit, in close
agreement to the value found in [195].

A more recent study [199] of the PHENIX RAA data for π0 in central Au+Au
collisions (Fig. 7.42) is shown in Fig. 7.49. The analysis is carried out in the frame-
work of the WHDG model [200], which replaces the (effective) transport coefficient
q̂ (employed in the BDMPSZ model [186–188], and turned into the data analysis
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Fig. 7.48 The effective
transport coefficient
q̂ = 14 GeV2/fm in the
parton quenching model
(PQM) of [195] determined
from the centrality
dependence of RAA for π0

and charged hadrons,
averaged over 4.5
≤ pT ≤ 10 GeV/c, in Au+Au
at

√
s = 200 GeV
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Fig. 7.49 Application of the
WDHG transport model [200]
based on Eq. (7.64) to
PHENIX RAA data for π0

[175], indicating primordial
1000 ≤ (dNg)/(d y) ≤ 2000

formalism of [193, 195]) by the primordial gluon mid-rapidity density dNg/dy, as
the fundamental parameter, via Eq. (7.64). The initial gluon density, in turn, being
related to the charged hadron mid-rapidity density [61]. Figure 7.49 shows that,
within the still preliminary statistics at pT > 10 GeV/c, the “conservative” estimate
of αs = 0.3 and dNg/dy = 1000 does not appear to be the most appropriate choice,
the data rather requiring 1000 < dNg/dy < 2000. Overall, Fig. 7.49 demonstrates
a certain insensitivity of the data, to the basic parameters of theoretical high pT
quenching models of inclusive hadron production at RHIC energy, that we have
already inferred from Fig. 7.43, concerning choice of q̂.

Radiative in-medium energy loss of primordially produced partons, traversing
the evolving bulk medium as “tracers”, must be extremely strong. This is indicated
by the inclusive attenuation ratios RAA, which fall down to about 0.2 in central colli-
sions thus almost reaching the absolute lower limit of about 0.15 that arises from the
unavoidable fraction of un-attenuated primordial surface “corona” nucleon-nucleon
interaction products [201].
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Not expected from early estimates of medium opacity based on the picture of a
weakly coupled perturbative QCD medium [172, 202], the interior sections of the
central Au+Au interaction volume must be almost “black” toward high pT parton
transport [194, 195] at

√
s = 200 GeV, also including charm quark propagation

(Fig. 7.43). The remaining signal should thus stem, primarily, from the dilute surface
sections, and from the finite fraction of partons traversing the interior with small, or
zero radiative energy loss, as a consequence of the finite width of the �E probability
distribution [193, 194]. Seen in this light, the smooth decrease of RAA with centrality
(Fig. 7.48) should reflect the combined effects, of a decreasing surface to volume
ratio, an increasing effective q̂ (due to interior density increase) that confronts the
increasing average geometrical potential path length 〈L〉 (essentially enhancing its
effect), and a thus diminishing fraction of primordial high pT partons experiencing
a small �E.

Not surprisingly, the ideal non abelian QCD relationship of �E proportional
to in-medium high pT parton path length L2 can, thus, not be established from
inclusive high pT quenching data alone. We shall show in the next section that di-jet
primordial production can offer a mechanism of higher resolution. The inclusive
RAA attenuation data, obtained at RHIC, are seen to establish an unexpected,
high opacity of the primordial interaction volume, extending to high pT parton
propagation. The required, high transport coefficient q̂ = 14 GeV2/fm from
Fig. 7.48, confirms and extends the picture derived from elliptic flow data [167]:
at top RHIC energy the plasma is non-perturbatively, strongly coupled, a new
challenge to lattice QCD [61]. The QGP may be largely composed of colored, string-
like partonic aggregates [203].

7.5.3 Di-jet Production and Attenuation in A+A Collisions

In order to analyze leading parton attenuation in a more constrained situation [204],
one investigates parton tracer attenuation under further geometrical constraints
concerning the in-medium path length L, by means of di-jet analysis, and/or by
varying the primordial parton density that enters q̂ via Eq. (7.60) in studies at
different

√
s while maintaining the observational geometrical constraints.

We shall concentrate here on di-jet attenuation data obtained in Au+Au collisions
at top RHIC energy,

√
s = 200 GeV. At this relatively modest energy the initial

pQCD production cross section of leading partons (as described in Eq. (7.51))
reaches up to pT = 25 GeV/c. The ensuing DGLAP shower multiplication initiates
“parton fragmentation” to hadrons [83, 85, 121], each carrying a momentum fraction
zT = pT/pT (primord. parton). The created ensemble of hadrons h belonging to the
observed hadronic jet can be wrapped up by the total fragmentation function

Fh (z,
√
s) =

∑
i

∫
dz

z
Ci (z,

√
s) Dpart→h(z,

√
s) (7.65)
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which summarizes the contributions arising from the different shower partons i.
Here, Ci are the weight coefficients of the particular process, and Dpart(i)→h are the
individual fragmentation functions (FFs) for turning parton i into hadron h. Similar
to the parton distribution functions (PDFs) in Eq. (7.51), derived from deep inelastic
electron-parton scattering (DIS) and shown in Fig. 7.14, the FFs are semi-empirical
non-perturbative QCD functions that have an intuitive probabilistic interpretation.
They quantify the probability that the primordial parton produced at short distance
1/Q fragments into i shower partons, forming a jet that includes the hadron h [205,
206].

At Fermilab energy,
√
s = 1.8 TeV, the jet spectrum reaches up to ET ≈

400 GeV, and a typical 100 GeV jet comprises about 10 hadrons which can
be identified above background by jet-cone reconstruction algorithms [205]. This
allows for a complete determination of the corresponding fragmentation function,
and for a rather accurate reconstruction of the pT and ET of the primordial parton
that initiated the jet. Similar conditions will prevail in jet spectroscopy of Pb+Pb
collisions at LHC energy,

√
s = 5.5 TeV.

However, at RHIC energy a typical jet at 15 ≤ ET ≤ 25 GeV features a
fragmentation function comprised of a few hadrons with ET in the 2–15 GeV range.
Considering the high background, arising in the lower fraction of this energy domain
from concurrent, unrelated high pT hadron production processes, a complete jet-
cone analysis cannot succeed. The RHIC experiments thus confront back-to-back
di-jet production with an analysis of the azimuthal correlation between high pT
hadrons. Defining the observational geometry by selecting a high pT “trigger”
hadron observed at azimuthal emission angle ϕtrig, the associated production of
high pT hadrons is inspected as a function of �ϕ = ϕass − ϕtrig. If the trigger
has caught a leading jet hadron one expects the hadrons of the balancing back-to-
back jet to occur at the side opposite to the trigger, �ϕ ≈ π . The trigger condition
thus imposes the definition of a “near-side” and an “away side” azimuthal domain.
Furthermore, the relatively narrow rapidity acceptance of the STAR and PHENIX
experiments (centered at y = 0) selects di-jets with axis perpendicular to the beam
direction.

Originating from a uniform distribution of primordial back-to-back di-parton
production vertices, throughout the primordial reaction volume, the trigger selected
di-jet partons thus experience an (anti-)correlated average path length 〈L〉 to arrive
at the surface while experiencing medium-specific attenuation, with

〈
Ltrig

〉 ≈ 2R −〈
Laway

〉
, R being the transverse medium radius. No such geometric constraint exists

in the study of inclusive high pT hadron production. We thus expect information
different from the inclusive RAA(pT) signal. The geometrical selectivity can be
even further constrained by fixing the direction of the impact parameter (i.e. the
reaction plane) in semi-central collisions (recall Sect. 7.4), and observing the di-jet
correlation signal in dependence of the di-jet axis orientation relative to the reaction
plane.

The very first di-hadron correlation measurements confirmed the existence of
strong in-medium attenuation. Figure 7.50 shows the azimuthal yield distributions,
per trigger hadron, as observed by STAR at

√
s = 200 GeV [207]. The left panel
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Fig. 7.50 Di-hadron correlation from back-to-back di-jet production in Au+Au collisions at
√
s =

200 GeV. The trigger particle is at azimuth ! = 0, with a pT > 4 GeV threshold. The away side
peak at �! = π is observed (left panel) in p+p, d+A but absent in central Au+Au. Right panel
shows the correlation in Au+Au for different orientations of the trigger direction relative to the
reaction plane [207]

shows the distribution of hadrons with pT ≥ 2 GeV/c relative to a trigger hadron
with p

trig
T ≥ 4 GeV/c. Data for p+p, d+Au and central Au+Au are illustrated. At

the “near side” (the trigger position is ! = 0) all three reactions exhibit a similar
narrow distribution of hadrons associated with the trigger hadron, typical of a jet
cone fragmentation mechanism. Note that the associated near-side central Au+Au
signal thus exhibits no signs of an attenuation softened fragmentation function,
indicating that the trigger imposed high pT hadron should predominantly stem from
primordial jet production vertex points located near to the surface of the reaction
volume, in azimuthal trigger direction. Thus, conversely, the balancing opposite
jet has to develop while traversing almost the entire transverse diameter of the
interaction volume. I.e.

〈
Loppos

〉 ≈ 2 R thus emphasizing the expectation that di-jet
spectroscopy should allow for stricter constraints on path length L in comparison
to single high pT hadron RAA analysis. In fact, no trigger related away side signal
of pT > 2 GeV/c hadrons is observed in Fig. 7.50 for central Au+Au collisions,
whereas p+p and central d+Au collisions exhibit a clear away-side di-jet signal.

We conclude that the trigger bias, selecting a single near side hadron of pT ≥
4 GeV/c in central Au+Au collisions, responds to a primordial di-jet of about
10 GeV per back-to-back parton. After traversal of in medium average path length
L → 2 R the fragmentation function of the opposite side parton contains on
average no hadron at pT > 2 GeV/c, indicating that it should have lost a fraction
〈�ET〉 ≥ 5 GeV. The medium is thus highly opaque, but the total disappearance
of the opposite side signal can only provide for a lower limit estimate of 〈�ET〉,
within the trigger conditions employed here. We shall show below that the situation
changes with more recent RHIC data [208] that extend the trigger hadron pT range
toward 20 GeV/c.

However, the right hand panel of Fig. 7.50 shows that an improved constraint
on partonic in-medium path length can already be obtained by studying the di-jet
back-to-back production geometry in correlation with the orientation of the reaction
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plane that arises from non-zero impact parameter in semi-central A+A collisions.
We have seen in Fig. 7.34 that such collisions exhibit an elliptical primordial
transverse density profile, with minor axis along the impact vector �b, defining the
reaction plane. Di-jets with axis “in-plane” thus traverse a shorter in-medium path
length as orthogonal “out-of-plane” jets, the difference in average path length being
quantified by the spatial excentricity ε(b), Eq. (7.47). Figure 7.50 (right) shows the
di-hadron correlation results in semi-peripheral Au+Au collisions, as compared to
the in-vacuum p+p reference. At the 20–60% centrality window employed here, out
of plane jet emission occurs along the major axis, the reaction volume diameter
still of magnitude 2R, as in central collisions. The trigger condition thus again
selects opposite side path lengths L → 2 R, but the energy density should be
lower than in central collisions. Even so, the average opacity along the away side
parton path appears to be high enough to wipe out the correlation signal. In-plane
geometry, however, shows a partially attenuated signal (as compared to the global
p+p reference) at the opposite side, corresponding to path lengths L ≈ R. These
data thus provide for first information concerning the relation of 〈�E〉 and average
traversed path length [176].

Obviously, one wants to extend the above study to higher di-jet energies, i.e.
to measurement of di-hadron correlations at hadron trigger pT → 20 GeV/c,
conditions sampling the very low primordial cross section, at

√
s = 200 GeV,

of jet production at primordial ET → 30 GeV [208, 209]. Figure 7.51 shows the
corresponding jet correlations selected with high pT trigger, 8 < p

trig
T < 15 GeV/c,

and high pT associated hadrons, pT > 6 GeV/c, in minimum bias d+Au, semi-
central Au+Au and central Au+Au at

√
s = 200 GeV. Very clear and almost

background-free back-to-back jets are observed in all three cases, in sharp contrast
with the away side jet total disappearance in central Au+Au at lower jet energy,
Fig. 7.50 (left panel). The near side trigger associated hadron yield decreases only
slightly from d+A to central Au+Au, while the away side yield drops down by an

STAR Preliminary
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Fig. 7.51 Di-hadron correlation at high pT in central Au+Au collisions at
√
s = 200 GeV,

compared to d+Au and peripheral Au+Au; for 8 ≤ p
trig
T ≤ 15 GeV, and passoc

T > 6 GeV. From
[208]
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attenuation factor of about 0.2, the signal thus not being completely extinguished.
We infer RAA(L → 2R) ≈ 0.2.

In order to show how such data can be evaluated in a picture of in-medium lead-
ing parton attenuation (as finally reflected in leading hadron production observed
in the above di-hadron correlation data) we briefly consult the pQCD factorization
[210] prediction for the inclusive production of a high pT hadron at central rapidity,
in the nuclear collision A + B → h + x [196],

d3σAB→hx

d2pT dy
= KNLO

∑
abc

∫
d�r dxa dxb dzc Fa/A(xa,Q

2, �r)

×Fb/B(xb,Q
2, �b − �r) d3σab−c

d2pT (c) dyc
(xa, xb,Q

2)

× 1

z2
c

Dh/c(zc,Q
2) (7.66)

where the parton (a, b) distribution functions F in nucleus A,B and the elementary
pQCD cross section for a+b → c+x have been already implied in Eq. (7.51). Their
spatial integral gets convoluted with the fragmentation function D that describes the
conversion of the leading parton c to a hadron carrying a fraction 0 < zc < 1 of its
transverse momentum. K is a factor introduced as a phenomenological correction
for “next to leading order” (NLO) QCD effects. Within the (further) approximation
that the leading parton c suffers medium induced gluon bremsstrahlung energy
loss but hadronizes outside the interaction volume (in vacuum), the in-medium
quenching leads, merely, to a re-scaling of the fragmentation function,

Dmed
h/c =

∫
dε P (ε)

1

1 − ε
Dvac

h/c

(
zc

1 − ε
,Q2

)
, (7.67)

where the primary parton is implied to lose an energy fraction ε = �E/Ec with
probability P(ε) [196]. Therefore the leading hadron is a fragment of a parton with
reduced energy (1−ε)Ec, and accordingly must carry a larger fraction of the parton
energy, zc/(1 − ε). If no final state quenching is considered, P(ε) reduces to δ(ε).
The entire effect of medium attenuation on the leading parton is thus contained in
the shift of the fragmentation function.

An application of this formalism [196] is shown in Fig. 7.52. The in-medium
modification of the hadron-triggered fragmentation function (see Eq. (7.67)) is
evaluated for central Au+Au collisions at

√
s = 200 GeV. In adaptation to the

modalities of RHIC di-hadron correlation data, the opposite side fragmentation
function (for observation of trigger-related hadrons with pT > 2 GeV/c) is studied
in dependence of the trigger selected pT window. Its attenuation is quantified by the
ratio D (with quenching) to D (without quenching), as a function of the fraction
zT, of opposite side hadron pT to trigger hadron pT. Referring to the observational
conditions implied in Fig. 7.50 (left) ptrig

T ≈ 4–6 GeV/c and opposite side pT >
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Fig. 7.52 The ratio of the
hadron-triggered
fragmentation function,
Eq. (7.67), in central Au+Au
and in p+p collisions, for
different values of ptrig

T [196]
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2 GeV, the predicted suppression amounts to a factor of about 0.35, whereas the
data imply a factor smaller than 0.2. Likewise, comparing to the data of Fig. 7.51,
the (harder) trigger conditions should lead to a suppression of about 0.45 from
Fig. 7.52 but the observed value is close to 0.2. The predictions appear to fall short
of the actually observed suppression. This calculation employs an ansatz for the
transport coefficient q̂ similar to Eq. (7.64), recurring to the primordial gluon density
at τ0 ≤ 0.6 fm/c which, in turn, is estimated by the charged hadron mid-rapidity
density [197]. However, this pQCD based argument can also not reproduce the
magnitude of the effective transport coefficient (Eq. (7.62)), q̂eff ≈ 10–15 GeV2/fm,
shown in refs. [194, 195, 199] to be required by the large observed suppression (see
Fig. 7.43).

It has been argued [199, 211] that these models need refinement by introducing
more realistic dynamics, and/or by completely abandoning the pQCD ansatz
for hard parton in-medium transport [212, 213]. We shall return to these novel
suggestions, of how to treat dynamical, non equilibrium quantities of the “strongly
coupled” parton plasma of non perturbative QCD (toward which equilibrium lattice
theory can only give hints), in our final conclusion (Sect. 7.8). In the meanwhile,
we note that the expected non abelian behavior, �E ∝ L2, could not be verified
quantitatively, as of yet [211], because of the unexpectedly high opacity of the
fireball interior sections at

√
s = 200 GeV, in combination with the limited jet

energy range that is available at RHIC energy. It appears possible, however, to
extend the analysis of the “back side jet re-appearance” data [208, 209] (Fig. 7.51)
toward this goal. The situation should improve at LHC energy,

√
s = 5.5 TeV,

where primordial 100–200 GeV jets are abundant, such that the opposite side jet
can be reconstructed with explicit use of the complete Fermilab jet cone recognition
algorithms [205] even if their in-medium ET loss ranges up to 50 GeV.



396 R. Stock

[rad]

-1
0 2 4

d/
dN

hc
/1

N

Au+Au Central 5%

girt
3

2

1

0
STAR  Preliminary

[rad]
-1 0 2 41 3

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

J
(  

    
   )

2.5 - 4 GeV/c 2 - 3 GeV/c, all charge×

Centrality: 0 - 10%
Centrality: 30 - 40% 0.33
Centrality: 60 - 92% 0.048

×
×

Fig. 7.53 Di-hadron correlation: away side emission pattern in central Au+Au collisions, com-
pared to pp data by STAR [214] (left panel) and to peripheral Au+Au (right panel) by PHENIX
[215]

A further prediction of the model employed in Fig. 7.52 has been confirmed
by the RHIC experiments. The high medium opacity at top RHIC energy leads
to an intriguing emission pattern of low pT opposite side hadrons. Clearly, the
trigger-selected ET flux, of up to 20 GeV, toward the away-side, cannot remain
unnoticeable. Inspection of the attenuated fragmentation functions [196] in Fig. 7.52
reveals an enhanced emission of bremsstrahlung gluon hadronization products at
zT ≤ 0.1 This fraction of in-medium jet-degradation products has in fact been
observed, as is shown in Fig. 7.53. The left panel shows STAR results [214] for
the di-hadron correlation in central Au+Au at

√
s = 200 GeV, with near-side

hadron trigger 4 < pT < 6 GeV/c, and opposite side observation extended to soft
hadrons, 0.15 < pT < 4 GeV/c. A prominent double-peak structure is indicated,
symmetric about �! = π . The right panel shows high resolution PHENIX results
[215] for Au+Au at three centralities, from peripheral to central collisions. For the
former, the typical p+p-like away side peak (c.f. Fig. 7.47) is recovered, while a
double peak appears in the latter case, shifted from �! = π by ± δ! ≈ 700. A
hypothetical mechanism comes to mind [213], of sideward matter acceleration in
a “Mach-cone” directed mechanism of compressional shock waves initiated by the
in-medium energy loss of the opposite side leading jet parton, which traverses the
medium at “super-sonic” velocity, i.e. at v > vs, the appropriate speed of sound in
a parton plasma.

If confirmed by pending studies of the away-side multi-hadron correlation, that
might ascertain the implied conical shape of the soft hadron emission pattern (about
the direction �! ≈ π of the leading parton), this mechanism might lead to the
determination of the sound (or shock wave) velocity of a strongly coupled parton
plasma: a third characteristic QGP matter property, in addition to viscosity η (from
elliptic flow) and q̂ (from high pT parton attenuation). We note that the implied
concept, of measuring the shock wave transport velocity of a strongly interacting
medium, dates back to the 1959 idea of Glassgold et al. [216], to study shock wave
emission in central p+A collisions at AGS and PS proton energy, of about 30 GeV.
In hindsight we can understand the inconclusiveness of such searches: the “low
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energy” incident proton does not preserve its identity, breaking up into relatively
soft partons in the course of traversing the target nucleus. Their coupling to the
surrounding cold baryonic target matter is weak, and possible collective transverse
compressional waves are swiftly dissipated by the cold, highly viscous [61] hadronic
medium. The shock compression and Mach-cone emission mechanism was then
revived by Greiner et al. [217] for central 20Ne + U collisions at Bevalac energy
[218]. The recent RHIC observations in Fig. 7.53 have been called “conical flow”
[219]; they demonstrate, again, the strong coupling to the medium, of even a
20 GeV/c leading parton [220].

7.6 Vector Meson and Direct Photon Production:
Penetrating Probes

This chapter is devoted to three observables that have been profoundly studied
already at the SPS, as tracers of the created fireball medium:

1. J/� “charmonium” production, as suppressed in a high T QGP medium,
2. “direct” photons as black body T sensors of the QGP state;
3. ρ meson in medium production, studied by di-lepton decay.

These three observables represent an internally connected set of ideas of high
density QCD matter diagnostics: all serve as medium tracers but in a complementary
way. Matsui and Satz [41] realized that at the modest top SPS energy, 17.3 <√
s < 20 GeV, the production rate of cc pairs (that would in part develop toward

charmonium production, J/�,� ′, etc.) was so low that only the primordial, first
generation nucleon-nucleon collisions in an A+A event would create a measurable
yield (nothing after thermalization). I.e. the primordial cc yield would be well-
estimated by A4/3 σpp(cc). Initially produced in a superposition of states including
color triplets and octets [221] the emerging cc pairs thus co-travel with the
developing high energy density fireball medium, as tracers, on their way toward
J/� or � ′ and D, D̄ formation. Attenuation, characteristic of medium properties,
will break up leading cc pairs resulting in a suppression of the eventually observed
J/� yield: another “quenching” observable.

As the suppression of J/ψ is related to medium temperature and density, the
extent of charmonium quenching should also be related to the rate of black body
thermal fireball radiation, by photon emission via elementary qq → gγ and
qg → qγ processes in the plasma [222, 223]. Photons leave the interaction volume
essentially un-rescattered, and their radiative intensity, proportional to T 4, makes
them an ideal probe of the initial fireball temperature. This thus could be an ideal
diagnostics of the early deconfined matter, but it is difficult to disentangle from a
multitude of concurrent low pT photon sources [224], most prominently π0 → 2γ
decay, with cross sections higher by several orders of magnitude. The thermal
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photon signal thus becomes more promising the higher the initial temperature Ti
which might reach up to 500–600 MeV at LHC energy.

Similar to photons, in medium created lepton pairs [225] escape essentially un-
attenuated as was shown for the Drell-Yan process, qq → LL by CERN experiment
NA38/NA50 [226]. Thermal di-lepton production in the mass region ≤ 1 GeV is
largely mediated by light vector mesons. Among these, the ρ meson is of particular
interest due to its short lifetime (1.3 fm/c), making it an ideal tracer (via its in-
medium di-lepton decay) for the modification of hadrons composed of light quarks,
in the vicinity of T = Tc. This modification signal is thus complementary to the
heavy quark charmonium J/� suppression (break up) effect that sets in at T ≥ 1.5–
2Tc (see below). Moreover, in addition to the deconfinement breakup mechanism
by QCD plasma Debye screening of the color force potential acting on the cc pair
[41], the QCD chiral symmetry restoration mechanism [227] can be studied via
in-medium modification of the ρ spectral function as T → Tc. Note that the in
vacuum ρ mass and width properties are owed to non-perturbative QCD condensate
structures [1, 228] which spontaneously break the chiral symmetry of the QCD
Lagrangian, at T → 0. These properties should change, in the vicinity of Tc, and be
reflected in modifications of the di-electron or di-myon decay spectra—unlike the
suppression effect on the J/� which simply dissolves primordial cc pairs before
they can hadronize, a yes-no-effect whose onset with

√
s or centrality serves as a

plasma thermometer, by observing RAA or RCP < 1.

7.6.1 Charmonium Suppression

Due to the high charm and bottom quark masses, the “quarkonium” states of cc and
bb can be described in non-relativistic potential theory [229, 230], using

V (r) = σr − α

r
(7.68)

as the confining potential [231], with string tension σ = 0.2 GeV2 and gauge
coupling α = π/12. We are interested in the states J/� (3.097), χc (3.53) and
� ′ (3.685) which are the 1S, 1P and 2S levels. The decay of the latter two feeds into
the J/� , accounting for about 40% of its yield. The radii derived from Eq. (7.68)
are 0.25, 0.36 and 0.45 fm, respectively, well below hadron size at least for the J/�
and χc states.

With increasing temperature, σ(T ) decreases, and at deconfinement σ(Tc) = 0.
For T ≥ Tc we thus expect

V (r) = −α

r
exp [−r/rD (T )] (7.69)

where rD(T ) is the QCD Debye screening radius. It was initially estimated from
a SU (2) gauge theory of thermal gluons [41], to amount to about 0.2–0.3 fm at
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T/Tc = 1.5. In this picture, the screened potential (Eq. (7.69)) can still give rise
to bound cc states provided their radius is smaller than rD. The pioneering study
of Matsui and Satz [41] concluded that screening in a QGP system would dissolve
the J/� , or its cc̄ precursor, at T ≥ 1.3 Tc whereas the χc and � ′ states would be
suppressed already directly above Tc.

The corresponding energy density for J/� suppression, employing

ε/εc ≈ (T /Tc)
4 ≈ 2.9 (7.70)

(obtained with εc ≈ 1 GeV/fm3 from lattice QCD), would thus amount to about
2.9 GeV/fm3. This motivated an extensive experimental effort at the CERN SPS Pb
beam at

√
s = 17.3 GeV. We have seen in Sect. 7.2 that the Bjorken estimate [45]

of average transverse energy density reached in central Pb+Pb collisions [43, 44]
amounts to ε = (3.0 ± 0.6) GeV/fm3, with higher ε to be expected in the interior
fireball sections: encouraging conditions.

However, the above approach assumes the validity of a two-body potential
treatment at finite T , near a conjectured critical point of QCD. More recently the
quarkonium spectrum was calculated directly in finite temperature lattice QCD
[232], with the striking result that the J/� dissociation temperature in a realistic
non-perturbative treatment of the QCD plasma state moves up to about T = 2 Tc,
whereas χc and � ′ dissociation is expected [230] to occur at T = (1.1–1.2)Tc.

In addition to high T breakup of cc̄ or J/� , we have to take account of the
so-called “normal suppression” of charmonium yields, observed in proton-nucleus
collisions [233]. This effect is due to a re-scattering dissociation of the primordially
produced, pre-hadronic cc system upon traversal of (cold) hadronic matter [234]. It
can be studied in p+A collisions where the data on J/� production relative to pp

collisions can be described by the survival probability

SpA ≡ σpA

Aσpp
=

∫
d2b

∫
dz ρA(b, z) exp

{
−(A − 1)

∫ ∞

z

dz′ ρA(b, z′)σabs

}

(7.71)

where σabs is the effective cross section for the “absorption” (break-up) of the cc in
cold nuclear matter, and ρA is the transverse nuclear density profile. The data [233]
suggest σabs = 4.2 mb. The generalization of Eq. (7.71) to the nucleus-nucleus
case [235] gives a good description of the J/� suppression (relative to binary pp
scaling) in S+U and peripheral Pb+Pb collisions at top SPS energy [226]. It has thus
become customary to quantify the J/� suppression in central A+A collisions by
relating the observed yield, not directly to the scaled pp yield (thus obtaining RAA),
but to a hypothetical “normal absorption” yield baseline, established by Eq. (7.71).
All further absorption is called “anomalous suppression”.

Figure 7.54 shows the results gathered at
√
s = 17.3 GeV by the NA38–

NA50–NA60 di-muon spectrometer [236], for minimum bias S+U (
√
s = 20 GeV),

In+In and Pb+Pb. Up to Npart ≈ 100 all yields gather at the “normal absorption”
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Fig. 7.54 J/� production
measured in minimum bias
collisions of S+U at√
s = 20 GeV and Pb+Pb and

In+In at
√
s = 17.3 GeV. The

yield is scaled by “normal
nuclear absorption”,
Eq. (7.71) [236]
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expectation from p+A scaling. A plateau at 0.8 follows for intermediate Npart values
up to about 200 (which corresponds to central In+In collisions, so the NA60 data
end here), and a final falloff toward 0.6 for central Pb+Pb collisions. It appears
natural to interpret the former step as an indication of � ′ suppression, the final step
as χc dissociation. No genuine J/� suppression is indicated. The expectation from
lattice calculations [232] that J/� dissociation does not occur until T ≈ 2 Tc (and,
thus, ε ≈ 16 εc) is thus compatible with Fig. 7.54. We know from Eq. (7.70) that
T ≤ 1.3 Tc at top SPS energy. The data are thus compatible with no break-up of the
J/� at the SPS, unlike at top RHIC energy where one expects T ≈ 2Tc [61, 96].

The RHIC data obtained by PHENIX [237] are shown in Fig. 7.55. Minimum
bias Au+Au collisions are covered at mid-rapidity, as well as at 1.2 < y < 2.2,
and plotted vs. Npart. Due to a parallel measurement of J/� production in p+p
collisions [238] the PHENIX experiment is in the position to show RAA, but this
is done without re-normalization to p-A absorption. J/� is suppressed in central
collisions, RAA ≤ 0.2. Note that RAA cannot drop down below about 0.15, due
to unsuppressed surface contributions. The suppression is thus stronger than at top
SPS energy3—in fact it is almost maximal. We conclude that in central Au+Au at√
s = 200 GeV the charmonium signal gets significantly quenched, in accord with

the inferences about the primordial temperature that we presented in Sects. 7.2.5
and 7.4, to amount to about 300 MeV, i.e. T/Tc ≈ 2 as implied for J/� dissociation
by the lattice calculations [232].

3Dropping the unfortunate distinction between normal and anomalous absorption one gets RAA =
0.35 for the central Pb+Pb collisions in Fig. 7.54, almost a factor 2 above the RHIC value.
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Fig. 7.55 RAA for J/�
production in minimum bias
Au+Au collisions at√
s = 200 GeV, by PHENIX

[237] at mid-rapidity and at
1.2 < y < 2.2

The above interpretation is still a matter of controversy [239]. It remains unclear
whether successive, distinct stages of normal and anomalous J/� suppression are
compatible with the dynamical evolution in central A+A collisions. A further open
question refers to the difference in Fig. 7.55 of the 〈y〉 = 0 and 〈y〉 = 1.7 data at
intermediate centrality [239] interpretation of which should be suspended until the
advent of higher statistics data.

A different aspect of charmonium production in A+A collisions requires atten-
tion: at the stage of universal hadronization a certain fraction of bound cc mesons
results, as the outcome of the density of uncorrelated c and c quarks in the QGP
medium as it enters hadronization [240, 241]. The stage of statistical hadronization
(recall Sect. 7.3) is omitted in the charmonium suppression models [41, 230, 234,
235], which proceed in two steps (only): primordial nucleon-nucleon collisions
produce an initial input of cc pairs, proportional to σNN

cc × NAA
coll (b). In vacuum,

the low relative momentum fraction of these cc pairs (about 1%) would evolve into
charmonium hadrons, after a formation time of several fm/c. In the concurrently
developing QGP medium, however, the initial cc correlated pairs may dissociate
owing to the absence (due to color screening [41]) of vacuum-like bound states
[232], at high T . At T ≥ 2 Tc all fireball charmonium production would thus cease,
all cc pairs ending up in singly charmed hadrons. This picture [230] is incomplete.

Even if all cc̄ pairs break up at RHIC during the early phase of central collisions,
the single charm and anti-charm quarks flow along in the expanding medium of
equilibrated light and strange quarks. This picture is supported [94] by the observed
elliptic flow of charm merging into the universal trend. Charm cannot, however,
be chemically (flavor) equilibrated at the low plasma temperature, where it is
essentially neither newly created nor annihilated [241]. The initially produced c and
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c quarks (a few per central Au+Au collision at RHIC, a few tens at LHC) finally
undergo statistical hadronization at T = Tc along with all other light and strange
quarks. To deal with the non-equilibrium overall charm abundance an extra charm
fugacity factor γc is introduced into the statistical model [108] calculation (for
details see [241]). J/� and � ′ are thus created in non-perturbative hadronization,
with multiplicities proportional to γ 2

c and phase space weights, along with all other
charmed hadrons. This “regeneration” model also agrees with the RHIC data of
Fig. 7.55, albeit within a large systematic uncertainty [241].

We note that the term regeneration is, in fact, misleading. The statistical
hadronization process does not recover the initial, small fraction of correlated cc

pairs that would end up in J/� in vacuum. It arises from the total density of
primordially produced c and c, uncorrelated in the hadronizing fireball volume.

The statistical hadronization J/� production process, sketched above, thus
has the unfortunate property of providing a trivial background charmonium yield,
unrelated to the deconfinement signal [41] referring to the primordial J/� yield.
Only about 1% of the primordial cc yield results in charmonia, in vacuum. The
in-medium deconfinement process breaking up the cc correlation on its way to
charmonia, thus constitutes a mere 1% fraction of the total charmed quark and
anti-quark number. The regeneration process is insensitive to this 1% fraction,
deconfined or not. At Tc, charm hadronization reacts only to the total abundance
of c and c, as imprinted into the dynamical evolution by the perturbative QCD cc

production rate of initial nucleon-nucleon collisions. At RHIC, it turns out [241] that
the c and c density is low, giving rise to substantial canonical suppression (recalling
Eqs (7.38)–(7.42) in Sect. 7.3) of the two charm quark charmonia, relative to D

mesons, during hadronization. With a tenfold c, c density at LHC, grand canonical
charmonium production will set in, thus probably overshooting the primordial yield
reference, σJ/�

NN ×Ncoll. Thus we expect RAA > 1 at the LHC. The role of a critical
deconfinement “thermometer” is lost for J/� at LHC, but the bottonium Y states
can take over, being deconfined well above T = 300 MeV [242].

The RHIC result [237] for J/� in central Au+Au collisions (Fig. 7.55), namely
that RAA → 0.2, represents the lucky coincidence that the initial temperature, T ≈
300 MeV, is high enough to dissolve the correlated cc charmonium precursor states,
while the J/� suppression is not yet overshadowed by the trivial hadronization
yield of J/� .

7.6.2 Direct Photons

Photons are produced during all stages of the dynamical evolution in A+A colli-
sions. About 98% stem from final electromagnetic hadron decays, not of interest
in the present context, other then by noting that their rate has to be painstakingly
measured experimentally, in order to obtain “direct” photon spectra at low pT by
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Fig. 7.56 The WA98 direct
photon transverse momentum
spectrum for central Pb+Pb
collisions at

√
s = 17.3 GeV.

Also indicated are scaled pA

results above 2.0 GeV/c and
pQCD estimates [243]. From
[224]
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subtracting the decay fraction from the total. This was done [224] by WA98 in
central Pb+Pb collisions at top SPS energy; we show their result in Fig. 7.56.

Only upper limits could be obtained at pT ≤ 1.5 GeV/c due to overwhelming
background from π0 and η decay, thus also obscuring the major spectral domain
in which to look for a direct photon QCD plasma black body radiation source,
i.e. for thermal photons of a fireball at T between Tc and about 250 MeV [223].
Several data from p+p and p+A collisions at nearby

√
s and scaled up to central

Pb+Pb are included in Fig. 7.56, at pT ≥ 2 GeV/c, and one sees the Pb+Pb data
in clear excess of such contributions from primordial bremsstrahlung and hard,
pQCD initial partonic collisions [243]. This excess ranges up to about 3.5 GeV/c, in
Fig. 7.56. Above, the hard pQCD initial collision yield dominates [244] over thermal
production.

In contrast to all other primordial high pT pQCD yields (e.g. J/� , charm, jet
leading partons) this photon yield is not attenuated in the medium of A+A collisions.
We have shown in Fig. 7.44 the RAA for the PHENIX central Au+Au direct photon
results [181] at RHIC

√
s = 200 GeV, obtained in a background substraction

procedure [245] similar to the one undertaken by WA98. This procedure gives
reliable data at pT > 4.0 GeV/c, at RHIC, and we observe RAA = 1. Hard
initial photons are not attenuated, and there is no sign of any other direct photon
contribution besides the primordial pQCD yield which, in fact, is shown (by RAA =
1) to obey binary scaling. However, there is no hint to plasma thermal radiation
(except for a trend at the very limit of statistical significance, at pT < 4.5 GeV/c) in
this high pT window.
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The WA98 SPS data, with thermal radiation enhancement indicated in the
interval 1.5 < pT < 3.5 GeV/c, thus remained as the sole evidence until,
more recently, the PHENIX experiment gained low pT data [246] exploiting the
fact that any source of real photons emits also virtual photons γ ∗ leading to
internal conversion to an e+e− pair (the Dalitz effect). To identify this yield the
invariant mass distribution of e+e− pairs is analyzed outside the phase space limits
of π0 Dalitz decay; the decay pairs of all remaining hadron sources (η,�) is
subtracted as a “cocktail”. The remaining pair yield is then converted assuming
γ ∗

dir/γ
∗
inclusive = γdir/γinclusive (see ref. [246] for detail), thus finally obtaining data

representative of γdir in this approach. Figure 7.57 shows the corresponding pT
distribution which covers the interval 1.3 ≤ pT ≤ 4.5 GeV/c, within which
the conventional direct photon extraction method did not give significant results
[181]. The PHENIX experiment has also obtained direct photon spectra in p+p
and d+Au at

√
s = 200 GeV [247] which are both well accounted for [246] by

a next to leading order (NLO) pQCD photon production model [248]. These data
were already employed in deriving RAA = 1 for central Au+Au collisions, as
shown in Fig. 7.44 and referred to, above. The pQCD fits derived from p+p and
d+A are shown in Fig. 7.57 after binary scaling to Au+Au (pQCD ×TAA). They
merge with the yield at pT ≥ 4 GeV/c but demonstrate a large excess yield below
3 GeV/c. That excess is well described by adding a thermal photon component
resulting from the hydrodynamic model of d’Enterria and Peressounko [249]. It
traces the dynamical evolution during the early stages of equilibrium attainment,

Fig. 7.57 Internal conversion
measurement of direct
photons in central Au+Au
collisions at 200 GeV [246].
Predictions by pQCD [248]
and thermal hydrodynamic
[249] models are included
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in which the photon luminosity of the emerging QGP matter phase is maximal.
The hydrodynamic model provides for the space-time evolution of the local photon
emission rate [223] which includes hard thermal loop diagrams to all orders, and
Landau-Migdal-Pomeranchuk (LPM) in-medium interference effects. Similar, in
outline, to previous models that combined algorithms of plasma photon radiation
luminosity with hydrodynamic expansion [250], the model [249] fits the data in
Fig. 7.57. It implies a picture in which the early stage of approach toward thermal
equilibrium at RHIC is governed by a symbolic, initial, effective “temperature”
of about 550 MeV which, after equilibration at t ≈ 0.6 fm/c, corresponds to
T ≈ 360 MeV in the primordial plasma [249]: close to the consensus about initial
T as derived from J/� suppression, jet attenuation, elliptic flow and transverse
energy coupled with the 1-dimensional Bjorken expansion model.

However, we note that the employed theoretical framework, hard thermal loop
(HTL) QCD perturbation theory of a weakly coupled plasma state, as combined
with hydrodynamics, has a tendency to call for rather high initial T values. This
applies both to the above analysis [249] of RHIC data which is based on the thermal
field theory model of Arnold, Moore and Yaffe [223], and to previous analysis
[250] of the WA98 SPS data of Fig. 7.56. Direct photon production is even more
strongly biased toward the primordial, high T evolution than jet attenuation (that
may be proportional to T 3 [212]). Thus, by implication of the model [249] that
fits the low pT RHIC data of Fig. 7.57, the yield is highly sensitive to the (pre-
equilibrium) formation period, 0.15 < t < 0.6 fm/c, where the HTL model might
not be fully applicable. This illustrates the present state of the art. The model(s)
based on perturbative QCD require extreme initial “temperatures” to produce the
high photon yield, indicated by the RHIC experiment. The strongly coupled nature
[213] of the non perturbative local equilibrium QGP state at RHIC, T ≈ 300 MeV,
may provide for an alternative approach to plasma photon production.

7.6.3 Low Mass Dilepton Spectra: Vector Mesons In-medium

We have dealt with dilepton spectra throughout the above discussion of J/� and
direct photon production, as messenger processes sensitive to the energy density
prevailing (during and) at the end of the primordial equilibration phase. The third
tracer observable, low mass vector meson dilepton decay in-medium, samples—on
the contrary—the conditions and modalities of hadron deconfinement in the vicinity
of T = Tc. SPS energy is ideally suited for such studies as the QGP fireball is
prepared near Tc whereas, at RHIC, it races through the Tc domain with developed
expansion flow. The major relevant data thus stem from the CERN SPS experiments
NA45 [251] and NA60 [136], which have analyzed e+e− and μ+μ− production at
invariant mass from 0.2 to 1.4 GeV.

Figure 7.58 shows NA45 data [251] for e+e− production in central Pb+Au
collisions at

√
s = 17.3 GeV. In searching for modifications of $ properties

and of π+π− annihilation via virtual intermediate $ decay to e+e−, in the high
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Fig. 7.58 Di-electron mass spectrum for central Pb+Au collisions at
√
s = 17.3 GeV with the

hadron decay cocktail (left) and further in medium contributions (right) [251]; see text for detail

density environment near the hadron-parton coexistence line at T = Tc, the various
background sources have to be under firm control. The Dalitz decays of π0, η

and η′ and the in vacuo e+e− decays of $,ω and !, which occur after hadronic
freeze-out to on-shell particles, form a hadronic “cocktail” (left panel in Fig. 7.58)
that is generated from yields provided by the grand canonical statistical model
[108]. Within detector resolution, π,ω and ! leave distinct peaks but the observed
invariant mass distribution is not accounted for.

One needs also to account for background from Drell-Yan lepton pair production
and open charm decay, both scaling with “number of collisions” A4/3. The latter
contribution arises from primordial cc charm production, 〈c〉 = 〈c〉 which leads to
synchronous formation of 〈D〉 = 〈

D
〉

at hadronization; subsequent decays D →
lepton + X, D → antilepton + Y create LL pairs. This procedure is straight
forward as no significant medium attenuation occurs besides the statistical charm
redistribution conditions at hadronization (Sect. 7.6.1), governing D,D production
[241].

Onward to non-trivial backgrounds in the invariant mass plot of Fig. 7.58, we
recall the presence of thermal lepton pairs from virtual photon production in the
early plasma phase, in parallel to real “direct” photon emission [252]. The spectrum
of such pairs contains an average decay factor exp (Mll/T ), with T the (initial)
plasma temperature. With T ≥ 220 MeV assumed for top SPS energy [43, 44],
this contribution is a background candidate over the entire invariant mass interval
covered by the data. In general Drell-Yan, open charm decay and plasma radiation
contributions are smooth, partially closing the “holes” in the hadronic cocktail
undershoot of the data. This smoothing effect is helped, finally, by consideration
of modifications concerning the $ meson spectral function near T = Tc, which
[133–135] both affects the immediate $ → e+e− decay invariant mass region
(through the fraction of in-medium $ decays vs. the in vacuum decay fraction after
hadronic freeze-out) and, even more importantly, the contribution of in-medium
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π+π− annihilation to dileptons. The latter contribution accounts for the most
obvious deviation between cocktail and data at 0.3 ≤ mll ≤ 0.7 GeV in Fig. 7.58
(left panel).

The right hand panel of Fig. 7.58 shows the results of various theoretical models
which address the sources of the significant dilepton excess over hadronic (in
vacuum) and Drell-Yan cocktails, labeled “Rapp-Wambach” [133, 135], “dropping
mass” (Brown-Rho [134]) and “Kaempfer” [252]. We shall return to these models
below but note, for now, that the extra yield in central A+A collisions chiefly
derives from π+π− annihilation via the (in medium modified) $ resonance, and
from modification of the $ peak itself.

With improved statistics and background control, the A+A specific extra dilepton
yield below M ≈ 1.4 GeV/c2 can be represented by itself, after cocktail subtraction.
This has been first accomplished by NA60 [136, 253] and, more recently, also by
NA45 [254]. We show the former results in Fig. 7.59. The left panel shows the
di-muon invariant mass spectrum in semi-central Indium-Indium collisions at top
SPS energy

√
s = 17.3 GeV, compared to the hadronic cocktail, qualitatively

in agreement with the left hand panel of Fig. 7.58 but with superior resolution
and statistics. The cocktail subtraction procedure (see [136] for details) leads to
an invariant mass spectrum of di-muon excess in In+In, shown in the right side
panel of Fig. 7.59: an experimental landmark accomplishment. The $ vacuum decay
contribution to the hadronic cocktail has been retained and is shown (thin solid
line) to be a small fraction of the excess mass spectrum, which exhibits a broad
distribution (that is almost structureless if the cocktail $ is also subtracted out),
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Fig. 7.59 (Left) Di-muon invariant mass spectrum in semi-central In+In collisions at
√
s =

17.3 GeV, with hadron final state decay cocktail. (Right) Excess mass spectrum after cocktail
subtraction, confronted with fits from the broadening [133, 135, 255] and the dropping mass [228]
models. From [136]
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widening with collision centrality [136]. The best theoretical representation of the
excess yield again results (like in Fig. 7.58, right panel) from the broadening model
[133, 135, 255] where the $ spectral function is smeared due to various coupling
mechanisms within the medium via the vector dominance model, prior to hadronic
freeze-out. In the VDM $ couples, both, to pion pair annihilation, and to excited
baryon states like the N∗ (1520), via their Nππ decay branches.

The above data still imply serious conceptual questions. It is unclear to exactly
which stage of the dynamical evolution (in the vicinity of T = Tc) the excess
dilepton yield should correspond. As the observations appear to be coupled to in-
medium $ meson “metabolism” we need to identify a period of temporal extension
above the (in vacuo) $ half life (of 1.3 fm/c), safely 2 fm/c. This period should
be located in the vicinity of hadro-chemical freeze-out. From top SPS to RHIC
energy, hadro-chemical freeze-out should closely coincide with hadron formation,
i.e. it should occur near the parton-hadron coexistence line, at T = Tc. The
microscopic parton cascade model of reference [85] implements the Webber [121]
phenomenological, non-perturbative QCD hadronization model (recall Sect. 7.3.3)
which proposes pre-hadronization clusters of color neutralization (Fig. 7.31) as the
central hadronization step. In it, so one might speculate, the transition from pQCD to
non perturbative QCD creates the chiral condensates 〈qq〉, spontaneously breaking
chiral symmetry [256] (see below), and creating hadronic mass. The overall process,
from pQCD color neutralization to on-shell hadrons, takes about 2.5 fm/c [85, 86]
at top SPS energy. This could, thus, be the period of excess dilepton yield creation.
However, the relation of the models employed above [133–135, 255, 256] to this
primordial spontaneous creation of chiral condensates is still essentially unknown
[256].

Thus, at present, the 1990s paradigm of a direct observation of the chiral phase
transition in QCD has been lost. The Brown-Rho model [134] predicted the $ mass
to drop to zero at T = Tc, occurring as a certain power of the ratio 〈qq〉med / 〈qq〉vac

of the chiral condensate in medium and in vacuum which approaches zero at
the chiral phase transition temperature, then expected to coincidence with the
deconfinement temperature. This “dropping mass” model is ruled out by the data
in Fig. 7.58 and 7.59. This is, perhaps, a further manifestation of the fact that the
deconfined QGP state at T ≥ Tc is not a simple pQCD gas of quarks and gluons
[213]. In fact, lattice calculations [232, 257] find indications of surviving light qq
pair correlations in the vector channel at T ≥ Tc. Thus the two most prominent
symmetries of the QCD Lagrangian, non abelian gauge invariance (related to
confinement) and chiral invariance (related to mass) might exhibit different critical
patterns at T = Tc and low baryo-chemical potential. This conjecture is best
illustrated by the observation that the broad, structureless NA60 excess dilepton
spectrum of Fig. 7.59 (after cocktail $ subtraction) is equally well reproduced by a
T ≈ 160–170 MeV calculation in hadronic (equilibrium) matter [133, 253, 254],
and by a thermal QGP fireball of qq annihilation at this average temperature [252],
as illustrated here by the model curve labeled “Kaempfer” in Fig. 7.58 (right panel).
This observation has invited the concept of parton-hadron duality near Tc [258],
which might be provocatively translated as “the QCD chiral transition properties
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cannot be unambiguously disentangled from the deconfinement transition effects at
Tc” [256].

We may be looking at the wrong domain of [T ,μB] space: too high
√
s and, thus,

too high T , too low μB. Already at top SPS energy the medium is dominated by the
deconfinement, not by the chiral QCD transition. After hadronization the medium
is still at T close to Tc but the density drops off within a few fm/c, not allowing for
an equilibrium mean field state of chirally restored hadrons. It is thus perhaps not
surprising that the data are seen to be dominated by simple broadening and lack of
structure: perhaps that is all that happens to hadrons at Tc.

The chiral restoration transition should thus be studied at higher μB and lower
T such that the dynamics achieves high baryon densities but still merely touches
the critical (deconfinement) temperature. In fact, at μB → 1 GeV and T <

100 MeV the chiral transition should be of first order [259]. Here, in fact, the
chiral condensate mass plays the role of the order parameter (in analogy to the
magnetization in a spin system), which approaches zero as T → Tc. We might thus
speculate that, unlike at top SPS to LHC energy (where deconfinement dominates),
the chiral QCD first order phase transition will dominate the phenomena occurring
near the hadron-parton borderline, in the vicinity of

√
s = 4–6 GeV [142]. This

requires a new experimental program, with low energy running at the SPS [260], at
RHIC [261] and at the GSI FAIR project [262].

7.7 Fluctuation and Correlation Signals

Fluctuation and correlation signals in A+A collisions can be evaluated in single
events, due to the high multiplicity of produced particles. Depending on the physics
context we may be interested to see either a small, or a large nonstatistical fluc-
tuation effect. For example in view of the universality of hadronization (Sect. 7.3)
we would have difficulty with an event by event pion to baryon ratio (essentially
μ−1

B ) fluctuating by, say, 50%. Conversely, searching for critical fluctuations in the
vicinity of a predicted critical point of QCD [146, 147] we would be frustrated
if event-wise 〈pT〉, dN/d y (low pT pion) [263] or strange to non-strange ratios
like K/π [148, 264] would not exhibit any significant fluctuation beyond statistics.
Overall, event by event fluctuation observables also carry a message concerning
the robustness of our assumptions about equilibrium attainment. It turns out that
equilibrium properties are not, merely, central limit consequences of ensemble
averaging. Rather to the contrary, each A ≈ 200 central collision event at

√
s ≥

10 GeV appears to offer, to the dynamical evolution of bulk properties, a sufficiently
complete macroscopic limit. Such that we can view the event-wise bulk dynamics
as “self analyzing”.
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Fig. 7.60 Initial transverse
energy density distribution of
a single central Au+Au
collision event at√
s = 200 GeV [265]

7.7.1 Elliptic Flow Fluctuation

That this ascertations is far from trivial is illustrated in Fig. 7.60. It shows [265]
the primordial transverse energy density projection (the stage basic to all primordial
observables) at t ≈ 0.2 fm/c, in a central Au+Au collision at

√
s = 200 GeV,

exhibiting an extremely clumpy and nonhomogeneous structure, apparently far
away from equilibrium.

The imaging of this initial geometrical pattern of the collision volume by a
hydrodynamic evolution even applies at the level of individual events, such as
illustrated in Fig. 7.60. The PHOBOS Collaboration has shown [266–268] that an
event by event analysis of the elliptic flow coefficient v2 is possible (see ref. [266] for
detail), by means of a maximum likelihood method. For initialization they sample
the seemingly random initial spatial density distribution of single Au+Au collision
events by the “participant excentricity” of individual Monte Carlo events,

εpart =
√
(σ 2

y − σ 2
x )

2 + 4σ 2
xy

σ 2
y + σ 2

x

(7.72)

where σxy = 〈xy〉 − 〈x〉 〈y〉. The average values of εpart turn out to be similar
to εx from Eq. (7.47), as expected, but the relative fluctuation width σ(ε)/ 〈ε〉part
turns out to be considerable. It is the point of this investigation [267, 268] to show
that the observed relative event by event flow fluctuation equals the magnitude of
the relative excentricity fluctuation. This is shown [268] in Fig. 7.61. The left panel
demonstrates that the average 〈v2〉 obtained vs. Npart from the event-wise analysis
agrees with the previously published [156] event-averaged PHOBOS data. The right
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Fig. 7.61 (Left) Event by event elliptic flow analysis by PHOBOS gives an average 〈v2〉 that
agrees with the result of ensemble analysis, in Au+Au at 200 GeV, for charged hadrons. (Right)
Event-wise relative v2 fluctuation vs. Npart, compared to the event-wise relative fluctuation of the
participant excentricity, σ(εpart)/

〈
εpart

〉
. The closed line gives v2 variation due to Npart number

fluctuation. From [268]

panel shows that the event-wise relative fluctuation of v2 is large: it amounts to about
0.45 and is equal to the relative fluctuation of εpart, i.e.

σ(v2)/ 〈v2〉 ≈ σ(εpart)/
〈
εpart

〉
. (7.73)

The initial geometry appears to drive the hydrodynamic evolution of the system,
not only on average but event-by-event [268], thus providing for an example of the
self-analyzing property mentioned above. The v2 signal thus emerges as the most
sensitive and specific diagnostic instrument for the primordial conditions and their
subsequent evolution: it reveals even the random (Fig. 7.60) initial fluctuations. In
comparison the analysis with thermal photons is only sensitive to the primordial
temperature [249], and restricted by very small cross sections and significant
background from other sources and evolution times. It also does not give viscosity
information.

7.7.2 Critical Point: Fluctuations from Diverging
Susceptibilities

Recalling the goal defined in the introduction we seek observables that help to
elaborate points or regions of the QCD phase diagram, Fig. 7.1. We have seen
several observables that refer to the QCD plasma environment at T ≥ 300 MeV,
μ ≈ 0 (elliptic flow, jet attenuation, J/� suppression, direct photon production),
which could be first resolved within the primordial time interval τ ≤ 1 fm/c
accessible at RHIC energy. The LHC will extend the reach of such observables
toward T ≈ 600 MeV, xF ≤ 10−3, at μB = 0. On the other hand, relativistic A+A
collisions at lower energy permit a focus on the hypothetical QCD parton-hadron
coexistence line, T = Tc (μB), with the domain μB → 500 MeV being accessible
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at the SPS. Characteristic observables are radial flow, hadro-chemical freeze-out,
and chiral symmetry restoration effects in dilepton vector meson spectra. Focusing
on this domain, we discuss fluctuations potentially associated with the existence of
a critical point [8–11, 146, 147].

At the end of Sect. 7.6.3 we mentioned the conclusion from chiral symmetry
restoration models [15, 259] that at high μB the phase transformation occurring at
Tc (μB) should be a chiral first order phase transition. On the other hand, lattice
QCD has characterized [16] the phase transformation at μB → 0, to be merely a
rapid cross-over. Thus, the first order nature of the phase coexistence line in Fig. 7.1
has to end, with decreasing μB, in a QCD critical point, tentatively located by recent
lattice QCD calculations [9–11] in the interval μB = 300–500 MeV. The existence
of such a point in the [T ,μB] plane would imply fluctuations analogous to critical
opalescence in QED [146, 147, 263]. Beyond this second order phase transition
point the coexistence line would be the site of a rapid cross-over [16]. This overall
theoretical proposal places potential observations related to the critical point itself,
and/or to the onset of first order phase transition conditions at higher μB, within the
domain of the lower SPS energies,

√
s ≤ 10 GeV. Note that, at such low energies,

the initialization of thermal equilibrium conditions should occur in the vicinity of
Tc, unlike at RHIC and LHC, and that the central fireball spends considerable time
near the coexistence line, at 300 ≤ μB ≤ 500 MeV.

To analyze potential observable effects of a critical point, we recall briefly the
procedure in finite μB lattice theory that led to its discovery. One method to compute
thermodynamic functions at μB > 0 from the grand canonical partition function
Z(V, T ,μq) at μq = 0 is to employ a Taylor expansion with respect to the chemical
quark potential [10, 11, 270], defined by the derivatives of Z at μ = 0. Of particular
interest is the quark number density susceptibility,

χu,d = T 2
(

δ2

δ(μ/T )2

p

T 4

)
(7.74)

which can also be written as

χq = T 2
(

δ

δ(μu/T )
+ δ

δ(μd/T )

)
nu + nd

T 3 (7.75)

with χq = (χu + χd)/2 and quark number densities nu, nd. We see that the
susceptibility refers to the quark number density fluctuation. The lattice result
[10, 270] is shown in Fig. 7.62, a calculation with two dynamical flavors assuming
Tc = 150 MeV and three choices of chemical quark potential, μq = 0, 75 and
150 MeV, respectively, corresponding to μB = 3 μq = 0, 225 and 450 MeV. These
choices correspond to LHC/RHIC energy, top SPS energy and

√
s ≈ 6.5 GeV,

respectively. At μB = 0 one sees a typical smooth cross-over transition at T = Tc
whereas a steep maximum of susceptibility occurs with μB = 450 MeV. This
suggests the presence of a critical point in the (T , μB) plane [270] in the vicinity of
(150 MeV, 450 MeV). For final confirmation one would like to see this maximum
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Fig. 7.62 Quark number
density susceptibility vs.
temperature for light quarks
in 2 flavor lattice QCD at
finite μB. The calculation
refers to Tc = 150 MeV and
quark chemical potential
μq/Tc = 0, 0.5 and 1.0,
respectively [270]. Smooth
lines interpolate the
calculated points; error bars
indicate lattice statistics
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disappear again, toward μq > Tc, but this is beyond the convergence domain of the
employed Taylor expansion (see ref. [9] for alternative approaches).

From Fig. 7.62 we also expect a divergence of the strangeness susceptibility, for
which no results from a 3 dynamical flavors calculation at finite μB exist to date.
A lattice calculation at μB = 0, T ≈ 1.5 Tc suggests [271] that the u, d, s quark
flavors densities fluctuate uncorrelated (but we do not know whether that is also
true at μB = μcrit

B ). This could thus be observed in event by event analysis, in
particular as a fluctuation of the Wroblewski ratio λs = 2(s + s)/(u + u + d + d)

which is approximated by the event-wise ratio (K+ + K−)/(π+ + π−). This was
first measured by NA49 in central collisions of Pb+Pb at top SPS energy; the result
[272] is shown in Fig. 7.63. The data result from a maximum likelihood analysis
of track-wise specific ionization in the domain 3.5 ≤ y ≤ 5 slightly forward of
mid-rapidity. The width σdata is almost perfectly reproduced by the mixed event
reference, such that the difference,

σdyn =
√
(σ 2

data − σ 2
mix) (7.76)

amounts to about 3% of σdata only, at
√
s = 17.3 GeV. This analysis has more

recently been extended to all energies available thus far, at the SPS [273] and at
RHIC [274]. Figure 7.64 shows that σdyn stays constant from top SPS to top RHIC
energy but exhibits a steep rise toward lower energies that persists down to the
lowest SPS energy,

√
s = 6.2 GeV. Figure 7.33 shows [107] that at this energy

μB = 450 MeV, thus corresponding to the susceptibility peak in Fig. 7.62. Again,
as we noted about the peak in Fig. 7.62: if these data indicate a critical point effect in
the vicinity of μB = 450 MeV the relative fluctuation should decrease again, toward
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Fig. 7.63 Event by event
fluctuation of the K+−/π+−
ratio in central collisions of
Pb+Pb at

√
s = 17.3 GeV,

relative to mixed event
background (histogram) [272]
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Fig. 7.64 The relative
deviation of the event by
event K/π fluctuation width
from the mixed event
background width, σdyn (see
Eq. (7.76)); at SPS [273] and
RHIC [274] energies

yet higher μB and lower
√
s. These data will, hence, be re-measured and extended to

lower
√
s by experiments in preparation [260–262] at CERN, RHIC and GSI-FAIR.

This will also help to evaluate alternative tentative explanations invoking fluctuating
canonical suppression [120], or strangeness trapping [275]. Finally, the position of
the critical point needs to be ascertained by lattice theory.
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7.7.3 Critical Fluctuation of the Sigma-Field, and Related
Pionic Observables

Earlier investigations of critical QCD phenomena that might occur in high energy
nuclear collisions were based on QCD chiral field theory [276]. The QCD critical
point is associated with the chiral phase transition in so far as it appears as a remnant
of a tri-critical point [147] corresponding to the “ideal” chiral limit that would occur
if mu = md = 0. Therefore the existence of a second-order critical point, at μB > 0,
is a fundamental property of QCD with small but non-zero quark masses [277]. The
magnitude of the quark condensate, which plays the role of an order parameter of
the spontaneously broken symmetry (generating hadronic mass), has the thermal
expectation value

〈qq〉 = 1

Z

∑
n

〈n | qq | n〉 exp(−En/T ) (7.77)

with the partition function of hadronic states En

Z =
∑
n

exp(−En/T ). (7.78)

The low energy behavior of the matrix elements 〈n | qq | n〉 can be worked out
in chiral perturbation theory [277]. At the QCD critical point the order parameter
fluctuates strongly. Its magnitude 〈qq〉 is identified with an isoscalar quantity, the
so-called σ -field. The critical point communicates to the hadronic population via
the σ ↔ ππ reaction, generating fluctuating fractions of the direct pion yield
present near T = Tc, which thus gets imprinted with a fluctuation of transverse
momentum (in the low pT domain) stemming from σ mass fluctuation, downward
toward the critical point. At it the isoscalar field ideally approaches zero mass, in
order to provide for the long wavelength mode required by the divergence of the
correlation length [147].

Note the relatively fragile structure of the argument. In an ideal, stationary
infinite volume situation the sigma field would really become massless, or at least
fall below the π+π− threshold; thus its coupling to π+π− becomes weak, and
restricted to very small pT. Furthermore, such primary soft pions, already small
in number, are subject to intense subsequent re-absorption and re-scattering in the
final hadronic cascade evolution [114]. In fact, experimental investigations of event
by event pT fluctuations in central A+A collisions, covering the entire

√
s domain

from low SPS to top RHIC energy have not found significant dynamic effects [278–
281]. Figure 7.65 illustrates the first such measurement by NA49 [278] in central
Pb+Pb collisions at

√
s = 17.3 GeV, at forward rapidity 4 < y < 5.5, showing the

distribution of event-wise charged particle average transverse momentum, a perfect
Gaussian. It is very closely approximated by the mixed event distribution, ruling
out a significant value of σdyn from Eq. (7.76). More sensitive measures of changes,
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Fig. 7.65 Event by event
fluctuation of average
charged hadron pT in the
interval 4.0 < y < 5.5, in
central Pb+Pb collisions at√
s = 17.3 GeV. Mixed event

background given by
histogram [278]
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event by event, in the parent distribution in transverse momentum space, have been
developed [282, 283]. NA49 has employed [278, 279] the measure !(pT), defined
as [282]

!(pT) =
√〈

Z2
〉

〈N〉 −
√
z2 (7.79)

where zi = pT i−pT for each particle, with pT the overall inclusive average, and for
each event Z = ∑

N zi is calculated. With the second term the trivial independent
particle emission fluctuation is subtracted out, i.e. ! vanishes if this is all. Indeed,
the data of Fig. 7.65 lead to ! compatible with zero. Furthermore, a recent NA49
study [279] at mid-rapidity, covers the range from

√
s = 17.3 to 6.3 GeV (where

the K/π ratio fluctuation in Fig. 7.64 exhibits the much-discussed rise, and even
the ensemble average in Fig. 7.28 shows the unexplained sharp peak) but finds no
significant ! signal.

Alternatively, one can base a signal of dynamical pT fluctuation on the binary
correlation of particle transverse momenta in a given event, i.e. on the co-variance〈
pT i pTj

〉
[281, 283] of particles i, j in one event. Of course, the co-variance

receives contributions from sources beyond our present concern, i.e. Bose-Einstein
correlation, flow and jets (the jet activity becomes prominent at high

√
s, and

will dominate the pT fluctuation signal at the LHC). In co-variance analysis,
the dynamical pT fluctuation (of whatever origin) is recovered via its effect on
correlations among the transverse momentum of particles. Such correlations can
be quantified employing the two-particle pT correlator [281, 284]

〈
�pT i �pTj

〉 = 1

Mpairs

n∑
k=1

N(k)∑
i=1

N(k)∑
j=i+1

�pT i�pTj (7.80)
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where Mpairs is the total number of track pairs of the events k contained in the entire
ensemble of n events, N(k) is the number of tracks in event k, and �pT i = pT i−pT
where pT is the global ensemble mean pT. The normalized dynamical fluctuation is
then expressed [281] as

σ(pT)dyn =
√〈

�pT i �pTj

〉
/ pT. (7.81)

It is zero for uncorrelated particle emission.
Figure 7.66 shows the analysis of pT fluctuations based on the pT correlator,

for central Pb+Au SPS collisions by CERES [280] and for central Au+Au at four
RHIC energies by STAR [281]. The signal is at the 1% level at all

√
s, with no hint

at critical point phenomena. Its small but finite size could arise from a multitude of
sources, e.g. Bose-Einstein statistics, Coulomb or flow effects, mini-jet-formation,
but also from experimental conditions such as two-track resolution limits [284].
We note that even if a critical opalescence effect, related to a fluctuating chiral
condensate at T = Tcrit, couples to the primordial, low pT pion pair population
[147, 285], this signal might be dissipated away, and thus “thermalized” to the
thermal freeze-out scale of about 90–110 MeV, as a pion experiences about 6
re-scatterings during the hadronic cascade [114]. On the other hand the hadro-
chemical K/π ratio fluctuation (Fig. 7.64) would be preserved throughout the
cascade (Sect. 7.3).

Fig. 7.66 Dynamical pT
event by event fluctuation
analysis by σ(pT)dyn of
Eq. (7.81), vs.

√
s, showing

SPS [280] and RHIC [281]
data
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7.7.4 Bose-Einstein-Correlation

Identical boson pairs exhibit a positive correlation enhancement when � �pij → 0,
an intensity correlation analogous to the historical Hanbury-Brown and Twiss effect
(HBT) of two photon interferometry [286] employed in astrophysics. In nucleus-
nucleus collisions this is an aspect of the symmetry of the N-pion wave function that
describes pion pairs at the instant of their decoupling from strong interaction. The
momentum space correlation functionC(q,K), q = p1−p2, K = 1

2 (p1+p2) is the
Fourier transform of the spatial emission function S(x,K) which can be viewed as
the probability that a meson pair with momentum K is emitted from the space-time
point x in the freezing-out fireball density distribution [96, 287].

The aim of HBT two particle interferometry is to extract from the measured
correlator C(q,K) as much information about S(x,K) as possible. In addition
to the traditional HBT focus on geometrical properties of the source distribution
(“HBT radii”) there occurs information on time and duration of emission, as we have
already employed in Fig. 7.19, illustrating τf and �τ in central Pb+Pb collisions at
top SPS energy [90]. Moreover, even more of dynamical information is accessible
via the effects of collective flow on the emission function. In this respect, the
observations make close contact to the hydrodynamic model freeze-out hyper-
surface (Sect. 7.3.1) and the contained flow profiles. HBT thus helps to visualize the
end of the collective radial and elliptic flow evolution. This implies that we expect
to gather evidence for the, perhaps, most consequential property of A+A collisions
at high

√
s, namely the primordially imprinted Hubble expansion.

We do not engage here in a detailed exposition of HBT formalism and results as
comprehensive recent reviews are available [96, 287]. Briefly, the measured quantity
in π+π+, π−π− or K+K+ interferometry is the correlator

C(q,K) = d6N/dp3
1 dp3

2

d3N/dp3
1 d3N/dp3

2

(7.82)

of pair yield normalized to the inclusive yield product. The correlator is related to
the emission function which is interpreted as the Wigner phase space density of the
emitting source [288]:

C(q,K) ≈ 1 + | ∫ d4x S(x,K) eiqx |2
| ∫ d4x S(x,K) |2 . (7.83)

Due to the experimental on-shell requirement K0 = √
K2 + m2 the 4-vector

components of K are constrained on the left hand side. Thus, relation (7.83) cannot
simply be inverted.
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To proceed one employs a Gaussian ansatz on either side of Eq. (7.83). The
experimental data are parametrized by source “radius” parameters Rij (K),

C(q,K) = 1 + λ(K) exp [−
∑
ij

R2
ij (K)qiqj ] (7.84)

employing λ(K) essentially as a fudge factor (related nominally to possible
coherence of emission effects in the source, which would dilute or remove the
Bose-Einstein statistics effect of C → 2 for q → 0 but have never been seen in
nuclear collisions). In Eq. (7.84) the sum runs over three of the four components of
q , due again to the on-shell requirements [287]. For the emission function S(x,K)

a Gaussian profile is assumed about an “effective source center” x(K), thus

S(x,K) → S(x(K),K) × G (7.85)

where G is a Gaussian in coordinates x̃μ(K) relative to the center coordinates
xμ(K). Inserting Eq. (7.85) into (7.83) one finally obtains

C(q,K) = 1 + λ(K) exp [−qμqv
〈
x̃μ x̃ν

〉] (7.86)

where 〈x̃μ x̃ν〉 are the elements of the space-time variance of the correlation func-
tion, which re-interpret the “radii” R2

ij in Eq. (7.84). Assuming azimuthal symmetry
(central collisions), cartesian parametrizations of the pair relative momentum q

coordinates (corresponding to fixation of the space-time variance in Eq. (7.84)) have
been introduced by Yano, Koonin and Podgoretskii [289], and, alternatively, by Pratt
[290]. The latter, out-side-longitudinal coordinate system has the “long” direction
along the beam axis. In the transverse plane, the “out” direction is chosen parallel
to KT = (p1T + p2T )/2, the transverse component of the pair momentum K . The
“side” direction is then orthogonal to the out- and long-direction but, moreover, it
has the simplest geometrical interpretation (see ref. [287] for detail), to essentially
reflect the transverse system size [288]. The parameters of Eq. (7.86) are thus
defined; as an example we quote, from identification of Eq. (7.84) with (7.86), the
resulting geometrical definition of the “side” radius,

R2
side(K) =

〈
ỹ(K)2

〉
. (7.87)

Overall, this model of Fourier related correlators, C(q,K) the experimentally
accessible quantity (see Eq. (7.82)), and S(x,K) the to-be-inferred spatial freeze-
out fireball configuration, leads to the Gaussian ansatz [287]

C(q,K) = 1 + λ(K) exp[−R2
out(K)q2

out − R2
side(K)q2

side −
R2

long(K)q2
long + cross terms] (7.88)
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which is fitted to the experimental correlation function (Eq. (7.82)). The experiment
thus determines the variancesRout, RsideandRlong. In the so-called “local co-moving
system” (LCMS), defined as the frame in which pz,1 = −pz,2, i.e. βlong = 0, we
obtain in addition to Eq. (7.87)

Rout(K)2 =
〈
(x̃(K) − βT t̃ (K))2

〉

R2
long(K) =

〈
z̃(K)2

〉
(7.89)

and finally, for azimuthal symmetry in central collisions with
〈
x̃2
〉 ≈ 〈

ỹ2
〉

we find
the “duration of emission” parameter illustrated in Fig. 7.19 [90]:

〈
t̃ 2
〉
≈ 1

βT

(
R2

out − R2
side

)
. (7.90)

The resulting reduction of the initial 8 coordinates of the meson pair stems,
in summary, from the on-shell requirement, from azimuthal symmetry and from
approximate Bjorken invariance in the LCMS system [287, 288]. One has to
be aware of the latter idealizations. Note that in an expanding source all HBT
parameters depend on K , the pair mean momentum (see below).

We make first use of the above parametrization in Fig. 7.67. From the purely
spatial radii Rside and Rlong one can define a mid-rapidity volume at pionic
decoupling, Vf = (2π)2/3 R2

side Rlong which is shown [291] at K = 0.2 GeV
for central Pb+Pb and Au+Au collisions from AGS [292] via SPS [90, 293] to
RHIC [294] energy. The upper panel shows the

√
s dependence, the lower illustrates

Fig. 7.67 Coherence
freeze-out volume Vf from
π−pair Bose-Einstein
correlation analysis in central
Au+Au and Pb+Pb collisions,
(upper panel) plotted vs.

√
s,

(lower panel) vs. mid-rapidity
charged particle density
dNch/dy [291]
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the dependence on the charged particle rapidity density dNch/dy which one might
intuitively expect to be related to the freeze-out volume [295]. We see, firstly, that
the plot vs.

√
s exhibits a non-monotonous pattern at the transition from AGS to

SPS energies [287, 295], whereas the plot vs. dN/dy rather features a rise toward a
plateau that ends in a steep increase at RHIC energies. Second, the tenfold increase
in charged particle rapidity density is reflected in only a doubling of the “volume”
Vf.

The latter observation reminds us of the fact that the geometrical parameters
obtained via the above analysis do not refer to the global source volume if that
volume undergoes a collective Hubble expansion [96, 287]. A pion pair emitted with
small relative momentum into the azimuthal direction �KT is likely to stem (only)
from the fraction of the expanding source that also moves into this direction. This
coupling between position and momentum in the source becomes more pronounced,
both, with increasing KT and increasing sources transverse velocity βT from radial
expansion. We have seen in Fig. 7.24 that the latter increases dramatically with√
s, such that the coherence volume Vf comprises a decreasing fraction of the total

fireball. It should thus rise much more slowly than proportional to the global dN/dy
[96, 287].

A striking experimental confirmation of the Hubble expansion pattern in central
A+A collisions is shown in Fig. 7.68. The illustrated HBT analysis of NA49 [90]
at

√
s = 17.3 GeV, and of PHOBOS [294] at

√
s = 200 GeV, employs the

alternative parametrization of the correlation function C(q,K) introduced [289]
by Yano, Koonin and Podgoretskii (YKP). Without describing the detail we note
that the YKP correlation function contains the “YK velocity” βYK describing the

Fig. 7.68 Emitting source
rapidity (YYKP) as a function
of pion pair rapidity (Yππ ).
From π−pair correlation
analysis in central Pb+Pb
collisions at

√
s = 17.3 GeV

[90], and in central Au+Au
collisions at

√
s = 200 GeV

[294]
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source’s longitudinal collective motion in each interval of pion pair rapidity,

Yππ = 1

2
ln

(
E1 + E2 + pz1 + pz2

E1 + E2 − pz1 − pz2

)
. (7.91)

Defining the “YKP rapidity” corresponding to βYK by

YYKP = 1

2
ln

(
1 + βYK

1 − βYK

)
+ ycm (7.92)

leads to the results in Fig. 7.68, indicating a strong correlation of the collective
longitudinal source rapidity YYKP with the position of the pion pair in rapidity space.

We are interested in a possible non-monotonous
√
s dependence of freeze-out

parameters such as Vf because of recent predictions of the relativistic hydrodynamic
model that a QCD critical point should act as an attractor of the isentropic expansion
trajectories in the [T , μB] plane [101, 296]. Figure 7.69 shows such trajectories
characterized by the ratio of entropy to net baryon number, S/nB, which is
conserved in each hydro-fluid cell throughout the expansion. Note that the S/nB
ratio is determined from the EOS during the primordial initialization stage in the
partonic phase; the relationship between S/nB and

√
s is thus not affected by the

presence or absence of a critical end point (CEP) at T = Tc which, however,
drastically influences the trajectory at later times as is obvious from comparing the
left and right panels, the latter obtained with a first order phase transition at all
μB but no CEP. In this case, the S/nB = const. trajectories in the partonic phase all
point to the origin in the [T , μq] plane because μq/T ∝ ln(S/nB) in an ideal parton
gas; whereas they point oppositely below T = Tc because T 3/2/$ ∝ ln(S/nB) in
a hadron gas. This organization is dramatically upset for the cases S/n = 100,
50, and 33 by the assumption of a CEP, tentatively placed here at T = 155 MeV,
μB = 368 MeV.
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Fig. 7.69 (Left) Influence of a critical point on hydrodynamic model isentropic expansion
trajectories characterized by various values of entropy to net baryon number s/nB. (Right) The
same trajectories without a critical point but a first order transition all along the phase boundary
[296]
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A first conclusion from this model is that it should not be essential to fine-tune√
s to make the system pass near the CEP because the attractor character would

dominate over a substantial domain, e.g. at hadro-chemical freeze-out conditions
250 ≤ μB ≤ 500 MeV in the example of Fig. 7.69. Please note that hadro-chemical
freeze-out is not treated correctly in this model, to occur at TH which is 160 ≤ TH ≤
130 MeV from Figs. 7.1 and 7.33. The trajectories shown here below TH are thus not
very realistic. The expected pattern could cause the “plateau” behavior of several
observables at hadronic freeze-out over the range of SPS energies that corresponds
to the above interval of μB and TH, e.g. 〈mT〉 and T in Figs. 7.21 and 7.22, elliptic
flow v2 at mid-rapidity in Fig. 7.36, and coherent hadronic freeze-out volume Vf
from HBT in Fig. 7.67.

A consistent search for critical point effects implies, at first, a correct treatment
of the hadronic expansion phase in hydro-models as above [101, 296], properly
distinguishing chemical composition freeze-out, and eventual “thermal” freeze-
out at hadronic decoupling. From such a model predictions for the

√
s or S/nB

systematics could be provided for the HBT source parametrization implied by
Eqs. (7.84)–(7.86). I.e. the hydrodynamic model provides the correlator S(x,K) in
cases with, and without a critical point which, as Fig. 7.69 shows, leads to consider-
able changes in the system trajectory in the domain near hadronization and onward
to hadronic thermal freeze-out, at each given S/n or

√
s. On the experimental

side, this trajectory is documented by [T ,μB] at hadronic freeze-out from grand
canonical analysis [140] (Sect. 7.3) which also yields S/nB. Furthermore, as we
shall show below, HBT in combination with the analysis of pT or mT spectra will
describe the situation at thermal hadron freeze-out yielding Tf, βT at the surface
and the “true” transverse radius Rgeom of the source, in addition to the coherence
volume Vf illustrated in Fig. 7.67 (which also documents the present, insufficient
data situation). Of course, we have to note that the lattice results concerning the
critical point are not yet final [270], and neither is the hydrodynamic treatment [296]
concerning the EOS in the vicinity of the CEP.

We turn to combined analysis of the two final processes of expansive evolution,
formation of pT spectra and decoupling to Bose-Einstein pair correlation, in order
to show how the experimental information mentioned above can be gathered. At
the level of “hydrodynamically inspired” analytic models for the emission function
S(x,K) several approaches [106, 297] have established the connection, arising from
radial flow, between hadronic mT spectra and the KT dependence of the HBT radii
Rside, RoutandRlong, Eqs. (7.87), (7.92), which fall down steeply with increasing KT
[291–294]. A combined analysis lifts continuous ambiguities between the thermal
freeze-out temperature Tf and the radial expansion velocity βT (for which a radial
profile βT = (r/Rside) β0 is assumed), that exist in the blast wave model derivation
of both the pT spectra, Eq. (7.25), and the KT dependence of Rs.

This was first demonstrated in a NA49 study of pion correlation in central Pb+Pb
collisions at

√
s = 17.3 GeV [90] that is shown in Fig. 7.70. The ambiguous anti-

correlation of fit parameters Tf and β2
T can be somewhat constrained if several

hadronic species are fit concurrently. This is obvious in Fig. 7.70 from the overlap
of parametrization regions for negative hadron, and for deuterium mT spectra. An
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Fig. 7.70 Allowed regions of
freeze-out temperature vs.
radial expansion velocity for
central Pb+Pb collisions at√
s = 17.3 GeV and

mid-rapidity, combining
negative hadron and
deuterium spectral data
analysis with BE π−
correlation results on KT
dependence of R⊥ ≈ Rs [90]
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Fig. 7.71 The surface
velocity (here denoted as ρ0)
of radial expansion at
decoupling in central Au+Au
and Pb+Pb collisions vs.

√
s.

From combined analysis of
hadron pT spectra and π−pair
correlation [291, 297]
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orthogonal constraint on β2
T/Tf results from a blast wave model fit of the HBT KT

dependence of RT ≈ Rside [298], employed here. We see that the three independent
1σ fit domains pin down Tf and βT rather sharply, to [115 MeV, 0.55]. A relativistic
correction [297] leads to Tf = 105 MeV, βT = 0.60. The

√
s dependence of βT at

the freeze-out surface, from such an analysis [291, 297] is shown in Fig. 7.71. The
data again exhibit a plateau at SPS energies, which remains to be understood [299].
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In the light of the considerations above, the plateau might turn out to reflect a critical
point focusing effect.

7.8 Summary

We have seen that many physics observables in relativistic nucleus-nucleus colli-
sions can, at RHIC energy

√
s = 200 GeV, be related to the primordial dynamical

phase, from initial QCD parton shower formation to local momentum space
equilibration. The time interval is 0.35 to 0.65 fm/c. This domain can be investigated
at RHIC due to the short interpenetration time, of 0.15 fm/c. From among the bulk
hadron production signals, total and midrapidity charged particle rapidity densities,
dNch/d y, reflect the primordial parton saturation phenomenon [72]. It leads to an
unexpectedly slow increase of multiplicity with fireball participant number Npart,
and with

√
s. This observation signals the onset of nonperturbative QCD, a coherent

shower multiplication by multigluon coherence [62, 65, 70, 71, 75]. It is expected
to be even more dominant in LHC Pb+Pb collisions at 5.5 TeV. Furthermore,
elliptic flow, a collective bulk hadron emission anisotropy, also originates from
the primordial, nonisotropic spatial density profile of shower-produced partons
[93, 96]. A hydrodynamic evolution sets in at t < 1 fm/c, implying the existence
of a primordial equation of state (EOS) for partonic matter in local equilibrium.
Moreover, the experimental elliptic flow data at RHIC are well described by “ideal
fluid” hydrodynamics, i.e. by a very small shear viscosity η and a small mean free
path λ [94, 95].

These observations indicate the existence of a (local) equilibrium state at very
early times in the bulk parton matter stage of the dynamical evolution. This quark-
gluon plasma (QGP) state of nonperturbative QCD was predicted by QCD lattice
theory [11]. In Au+Au collisions at RHIC energy this state appears to be realized
under the following conditions [61].

The energy density ε amounts to 6–15 GeV/fm3, far above the parton-hadron
QCD confinement region at ε = 1 GeV/fm3, and at about 55 times the density
of nuclear ground state matter, ρ0 = 0.14 GeV/fm3. Translating to macroscopic
units we are dealing with a matter density of about 1.3 · 1019 kg/m3, the density
prevailing in the picosecond era of the cosmological evolution. The corresponding
temperature amounts to T = 300–330 MeV (about 3.6 · 1012 K), far above the
“Hagedorn limit” [38] for the hadronic phase (TH = 165 MeV). From an analysis
of the production ratios of the various hadronic species (from pions to Omega
hyperons) arising from this primordial partonic state at hadronization, the statistical
hadronization model (SHM) determines its baryo-chemical potential [108], μB =
20 MeV at RHIC energy. This value indicates that one is already close to the near-
zero net baryon number conditions, μB ≈ 0, prevailing in the corresponding big
bang evolution, where the density of particles exceeds that of antiparticles by a
fraction of about 10−9 only.
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Overall we thus obtain entries in the QCD phase diagram of Fig. 7.1. RHIC
creates a parton plasma at about T = 300 MeV and μB = 20 MeV. It turns out
to behave like an ideal fluid and features an extremely short mean free path λ, thus
inviting a description by relativistic hydrodynamics. The small shear viscosity η (or
the small viscosity to entropy ratio η/s) are highlighted by the striking observation
that even the fluctuations of primordial parton density in individual, single events,
are preserved in the single event variation of elliptic flow [267, 268]. Moreover, the
observed scaling of elliptic flow with hadron valence quark number [94]—and thus
not with hadronic mass as in radial flow [103]—confirms the implied origin of the
elliptic flow signal from the partonic phase.

At the LHC the phase of early QCD plasma formation is expected to shift to yet
higher energy density, in the vicinity of T = 600 MeV andμB = 5 MeV. One is thus
getting nearer to the domain of QCD asymptotic freedom, and might expect a falloff
of the partonic cross section which is extremely high at RHIC [61], as reflected by
the small η/s and λ values.

The observed features of the QCD plasma produced at RHIC energy have
invited the terminology of a “strongly coupled” quark-gluon plasma (sQGP [165]).
Further evidence for the strongly coupled, non perturbative nature of the primordial
partonic state stems from the various observed, strong in-medium attenuation effects
on initially produced high pT partons. In Au+Au collisions at

√
s = 200 GeV

this high medium opacity leads to a universal quenching of the high pT hadron
yield [175] including, most remarkably, heavy charm quark propagation to D
mesons [175, 178]. We have shown in Sect. 7.5 that the interior of the collisional
fireball at midrapidity is almost “black” at t < 1 fm/c. This is also reflected in a
strong suppression of the back-to-back correlation of hadrons from primordially
produced di-jets [207, 208], and in a similarly strong suppression of the J/�

yield [237] which we have shown in Sect. 7.6 to be ascribed to an in-medium
dissolution of the primordially produced cc̄ pairs [41] at T about 300 MeV.

The underlying high medium opacity can be formally expressed [188, 193, 195]
by an effective parton transport coefficient q̂ (Eqs. (7.58) and (7.62)) which
quantifies the medium induced transverse momentum squared per unit mean free
path λ. The value of q̂ derived from analysis of the various attenuation phenomena
turns out to be almost an order of magnitude higher than what was expected from
former, perturbative QCD based models [196]. Analogously, η/s has turned out
to be much smaller than the previous perturbative QCD expectation [92]. The two
quantities may be related [300] via the heuristic expression

η

s
≈ 3.75 C

T 3

q̂
(7.93)

with C a to be determined constant; C = 1/3 from [300]. This relation shows that a
larger value of q̂ implies a small value for the ratio η/s. The latter has a lower bound
by the general quantum gauge field theory limit η/s ≥ (4π)−1 [171], a value not too
far from the estimate η/s = 0.09 ± 0.02 derived from relativistic hydrodynamics
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applied to elliptic flow v2 [94, 170]. As a consequence, q̂ cannot grow beyond a
certain upper bound that should be established at LHC energy.

These considerations are an example of the recent intense theoretical search for
alternative methods of real-time strong coupling calculations, complementary to
lattice QCD. In this regime, lattice QCD has to date been the prime non-perturbative
calculational tool. However, understanding collective flow, jet quenching and
primordial photon radiation requires real time dynamics, on which lattice QCD
information is at present both scarce and indirect. Complementary methods for
real-time strong coupling calculations at high temperature are therefore being
explored. For a class of non-abelian thermal gauge field theories, the conjecture
of a correspondence between anti-de Sitter space-time theory and conformal field
theory (the so-called AdS/CFT conjecture) has been shown [301] to present such
an alternative. It maps nonperturbative problems at strong coupling onto calculable
problems of classical gravity in a five-dimensional anti-de Sitter (ADS5) black hole
space-time theory [302]. In fact, this formalism has been recently applied [212] in a
calculation of the transport coefficient q̂ that governs in-medium jet attenuation,
resulting in an effective, expansion time averaged q̂eff = 5 GeV2/fm at T =
300 MeV corresponding to top RHIC energy, rather close to the experimental
estimates (c.f. Figs. 7.41 and 7.48).

Thus, it does not seem to be too far-fetched to imagine [301] that the quark-
gluon plasma of QCD, as explored at RHIC, and soon at the LHC (and theoretically
in lattice QCD), and the thermal plasma of certain supersymmetric conformal gauge
field theories (for example N = 4 “Super-Yang-Mills” (SYM) theory as employed
in [212, 301]) share certain fundamental common properties.

The focus on early time in the dynamical evolution of matter in nucleus-nucleus
collisions is specific to RHIC energy as the initial interpenetration period of two
Lorentz contracted mass 200 nuclei amounts to 0.15 fm/c only. The subsequent
evolution is thus reflected in a multitude of observables. It is, at first, described as
a one-dimensional Hubble expansion [61], setting the stage for the emergence of
the medium specific quantities addressed above (gluon saturation, direct photon
production, hydrodynamic elliptic flow, jet quenching and J/� suppression).
These observables tend to settle toward their eventually observed patterns at
t ≤ 1.0–1.5 fm/c, owing to the fact that they are most prominently determined
under primordial conditions of high temperature and density. For example, photon
production reflects T 4, and the transport coefficient q̂ falls with T 3 [212].

On the contrary, at the energy of former studies at the CERN SPS, 6 ≤ √
s ≤

20 GeV, such early times stay essentially unresolved as the initial interpenetration
takes upward of 1.5 fm/c. A fireball system in local (or global) equilibrium
thus develops toward t = 3 fm/c, at T about 220 MeV, closer to the onset of
hadronization [85, 86]. Also the baryo-chemical potential is much higher than in
RHIC collisions, 250 ≤ μB ≤ 450 MeV. However, we thus gain insight into
the QCD physics of the hadronization, and high μB domain of the phase diagram
sketched in Fig. 7.1, in the vicinity of the conjectured parton-hadron coexistence
line of QCD.
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For reference of such data, e.g. statistical species equilibrium (Sect. 7.3), dilepton
studies of light vector meson “melting” at the phase boundary (Sect. 7.6.3), and
hadronic event-by-event fluctuations (Sects. 7.7.2 and 7.7.3), to theoretical QCD
predictions, a recent progress of lattice QCD [8–10] is of foremost importance.
The technical limitation of lattice QCD to the singular case of vanishing chemical
potential, μB = 0 (which arises from the Fermion determinant in the lattice
formulation of the grand canonical partition function), has been overcome recently.
Three different approaches have been outlined, the respective inherent approxima-
tion schemes touching upon the limits of both the mathematical and conceptual
framework of lattice theory, and of present day computation power even with multi-
teraflop machines. First results comprise the prediction of the parton-hadron phase
boundary line, which interpolates between the well studied limits of the crossover-
region at μB → 0, T ≥ Tc and the high net baryon density, low T region for
which a first order character of the phase transition has been predicted by chiral
QCD models [15]. We have illustrated this line in Fig. 7.1, and we have shown in
Sect. 7.3 that hadronic freeze-out occurs at, or near this line at

√
s ≥ 17.3 GeV

(top SPS energy). The coexistence line includes an intermediate (T, μB) domain
featuring a critical point of QCD at which the first order line at higherμB terminates,
in a critical domain of (T, μB) in which the transition is of second order. One
thus expects the nature of the confining hadronization transition—an open QCD
question—to change from a crossover to a second order, and onward to a first
order characteristics in a relatively small interval of μB that is accessible to nuclear
collision dynamics at the relatively modest

√
s of about 5 to 15 GeV. This domain

has as of yet only received a first experimental glance, but the top AGS and low SPS
energy experiments exhibit phenomena that can be connected to the occurrence of a
critical point and/or a first order phase transition, notably the “SPS plateau” in 〈mT〉,
the non-monotonous K+/π+ excitation function, and the eventwise fluctuations of
this ratio (Sects. 7.2.6, 7.3, 7.7.2 and 7.7.3). A renewed effort is underway at RHIC,
at the CERN SPS and at the future GSI FAIR facility to study hadronization, in-
medium meson modification induced by the onset of QCD chiral restoration, as
well as critical fluctuations and flow, in the low

√
s domain.

7.9 Postscript

Reinhard Stock

7.9.1 Progress of the Field

Returning, after a decade, to the topic of “Relativistic Nucleus-Nucleus Collisions
and the QCD Phase Diagram”, one is struck by the impressive progress that has
transported many of the crucial themes, and physics observables, from initial,
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qualitative consideration to oftentimes quantitative comprehension. We shall briefly
revisit some of these topics below, sketching the present state of the art, and
mentioning some completely new developments (such as the study of light system
collisions and, more spectacularly, the possible advent of Equation of State(EOS)
information from neutron star mergers). This will, however, not be a real review but
merely a narrative of recent progress.

The development of the field took a decisive turn by the startup of the CERN
LHC collider which did not only move the energy frontier up to truly asymptotic
values, 2.76 and 5.02 TeV per projectile nucleon pair in Pb + Pb collisions,
but also introduced a completely new generation of nuclear collision experiments,
offering an extended reach of physics observables and, moreover, a vastly increased
event statistics capability ranging upward well into the 109 domain. On the other
hand, the “blockbuster” innovations from the late RHIC period, minimally viscous
hydrodynamics with specific viscosity η/s tantalizing close to the fundamental field
theoretical limit (establishing the QGP as a near-ideal liquid), transport coefficients
of the QGP from in-medium-jet quenching, statistical production of charmonia and
the impression that charmed quarks are also thermalized in the deconfined QCD
phase, the saturation of the QCD hadronization temperature near 160 MeV, just
to mention the highlights, have remained the cornerstones of LHC physics to a
large degree. This holds, also, for the notoriously evasive gluon saturation and
Colour Glass Condensate physics, and to the inconclusive critical point searches.
In retrospect, one may state that one very central and important element of the
RHIC progress (handed on to the LHC physics) consisted of a clear separation of
the collisional initialization time period (the first fm/c interval) from the ensuing
hydrodynamical evolution and its in-medium effects. This provided for a much
clearer relationship between data and theory: it is the simple feature that projectile-
target interpenetration which took several fm/c at SPS energies is now shrunk to
subfractions of a fm/c thus providing for a sharp, global synchronization of the
successive eras of collisional dynamics: initialization, flow expansion, hadroniza-
tion, final hadron/resonance “afterburning”. This is essential as one wants to tie the
formation of the physics observables to a specific stage of the dynamical evolution,
thus making them clearcut diagnostic tools.

One last thing. Neither RHIC nor the LHC experiments were built to explore
phenomena typical of a large baryochemical potential, such as the critical point of
QCD or the existence of a first order phase transition toward yet lower energies
and, quite generally, the QCD phase diagram at high μB . However, at second
thought a vigorous development at RHIC, the Beam Energy Scan(BES) program,
as well as a re-vitalization of SPS experiments(the NA61/Shine experiment), and
a concurrent brilliant extension of lattice QCD technique concerning (“critical”)
fluctuation observables, were undertaken. Also, the low energy, high μB domain
will come under renewed focus with new facilities, FAIR at GSI Darmstadt and
NICA at JINR Dubna, both under construction.

In the following we will present brief sketches of the recent and concurrent
work, theoretical and experimental, concerning a couple of (subjectively selected)
observables: reaction dynamics decomposed into 4 characteristic, separate stages,
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initialization, hydrodynamic expansion, hadronization and final hadron/resonance
“gas” expansion. We shall focus on the two characteristic parameters of the QCD
plasma medium, the specific viscosity η/s and the transport coefficient q̂ , as
revealed by anisotropic flow and hadron/jet suppression, respectively. Then we turn
to charmonium and bottonium suppression in the QCD medium, paying special
attention to charmed meson statistical equilibrium hadronization. This leads us to
hadronization and the information we have on the QCD phase diagram. These topics
are all in full development since RHIC’s first decade of operation, and have been
introduced in the preceding review article. Then we turn to a couple of more recent
topics, e.g. small systems analysis, formation of light nuclei and antinuclei, critical
point searches and the possible role of (now observable) neutron star mergers to
unravel the EOS of cold hadronic matter.

7.9.2 Reaction Dynamics

Whereas, at the SPS energies, a central Pb+Pb collision featured some fraction of
the collisional system already expanding toward hadronization at the time where
the last participant nucleons just experienced their first collisions, the various
evolutional stages are clearly separated from top RHIC energy onward. With
Lorentz contraction factors in the hundreds to thousands domain, the primordial
collisional system longitudinal size is less than a nucleon radius such that all
primordial interactions occur “at once” so that after about 0.5 fm/c the initialization
processes can be expected to settle down toward local equilibrium. This creates a
primordial fireball that still features a highly clumpy energy density distribution.
This distribution fluctuates from event to event due to a number of influences
stemming from remaining impact parameter fluctuation, instantaneous density fluc-
tuations within the average projectile-target Woods Saxon nucleon position/density
profile (which are thus getting “photographed”), and by the presence or absence
of colour saturation processes [303]. The latter can go along with the formation
of a Colour Glass Condensate State [304] which decays to a parton system at the
end of the initialization period, thus creating a particular topology of the primordial
energy density distribution [305]. A model calculation of a zero impact parameter
Au + Au collision transverse energy density distribution was already shown in
Fig. 7.60, exhibiting pronounced clumpiness. This distribution is then, approx-
imately, translated into the energy-momentum tensor that starts the next stage:
hydrodynamic expansion. The most remarkable feature of this evolution (see below)
is the occurrence of a nearly ideal hydro-flow dynamics which approximatively
preserves information, the better the lower dissipative processes like shear viscosity
turn out to be. Thus, most remarkably, the eventwise fluctuating primordial fireball
profile becomes measurable after flow decoupling, modulo the strength of shear
viscosity. Two of the objects of desire in this physics [306]!

The hydrodynamic evolution stage is thus, theoretically, well separable from the
initialization period. The transition is, in itself, of course a matter of theoretical
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model building. We mention here, in particular, investigations of the AdS/CFT
correspondence method [307] with respect to primordial equilibration [308]. Col-
lective flow then transports the density distribution toward decoupling; this stage
is analyzed under the general idea to follow the Fourier components εn of the
primordial energy density distribution eccentricity as they get delivered to obser-
vation in the form of spatial flow anisotropics quantified [309] by their Fourier
harmonics decomposition coefficients vn(see ref. [310] and bibliography therein).
Strictly speaking, the hydro-phase does not directly “deliver” the observables of
viscous, anisotropic flow to observation. This phase ends at hadronization because
the mean free path in the ensuing hadron-resonance(HR) expansion stage is too long
for hydrodynamics to apply. One thus introduces a transition from hydro to HR gas
by means of a hadronization model that translates hydro matter flow into hadron-
resonance propagation (by the Cooper-Frye formalism [311]). The latter is then
described by a hadron transport model acting as an “afterburner” [312, 313]. Such
so-called hybrid models thus consist of three stages that incorporate stage specific
dynamical models for initialization, hydro flow and hadron-resonance afterburning.
This allows for a very wide variety of theoretical choices concerning the overall
dynamics. Add to this that the experimental data from RHIC and LHC can be
analyzed with various techniques, delivering the flow coefficients vn(reaction plane
method, cumulant method etc.). Thus an almost excessive wealth of data to model
comparisons have been undertaken, with the highest focus on elliptical flow v2.
Data exist for up to v6. In general v1—directed flow—and v2 are predominantly
related to impact geometry variations of mass 200 collisions, creating anisotropic
primordial energy density gradients. Whereas v3, in particular, appears to be
more dependent on the primordial energy density profile and its even by event
fluctuations, potentially related to Colour Glass Condensate(CGC) formation [314].
Very briefly summarizing the results one observes an anticorrelation between the
initialization-, and the hydro flow-effects. The specific shear viscosity η/s (that
quantifies the speed with which the system approaches equilibrium) is tantalizingly
close to the Kovtun, Son and Stariets [315] minimum of 1/4π , throughout, but
its deduced value at RHIC goes up with changing the initialization model from a
“trivial” Glauber trajectory choice, to a CGC model, as is illustrated in Fig. 7.72 with
RHIC STAR data [314] for v2 vs. theory [315]. Employing the Glauber initialization
one deduces η/s to be near 0.08 (the KSS limit) whereas the CGC model requires
twice the shear velocity, about 0.16. The Glauber initial fireball is wider, spatially,
than the one from the CGC model. That ambiguity has not finally been settled yet,
it persists at the LHC, where the specific viscosity is slightly larger. The overall
present result, within the CGC type of hybrid dynamical models, is given by Eskola
and coworkers [316] and illustrated in Fig. 7.73. Similar results for η/s have been
given by other theory groups [313, 317]. In summary, an unambiguous conclusion
about the QGP state as a near ideal liquid has been arrived at, whereas the existence
of the CGC still remains to be finally established.
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Fig. 7.72 STAR v2 data [314] confronted with viscous hydrodynamics [315] for various choices
of η/s, employing a Glauber- and a Colour Glass type initialization

Fig. 7.73 Energy dependence of η/s from a simultaneous fit of RHIC and LHC data [316], with
CGC initialization

7.9.3 Energy Loss in a QCD Medium: Hadron Suppression
and Jet Quenching

The hydrodynamic model of the plasma evolution employs quantities that could
be derived from QCD, for example the equation of state and the specific shear
viscosity η/s. A different aspect of the QGP is seen by an individual hard parton,
or a jet, traversing it. In general, the overall medium effect will be energy loss and
momentum broadening, as well as a re-appearance of the lost energy in the form
of soft emission. A major obstacle in the interpretation of single parton(seen as
hard hadrons) and jet attenuation is the medium expansion, i.e. one needs, not a
hydrodynamic but a genuinely microscopic QCD transport model. Then the key
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ingredient in a theoretical description will be the parton transport parameter q̂ that
we introduced in Sects. 7.5.2 and 7.5.3. We recall that it represents the average
transverse momentum broadening square per unit pathlength, 〈p2

T 〉/λ (cf. [359–
362, 366]). It is proportional to the local gluon number density. Recall further that
the average in-medium energy loss is proportional to q̂ [363]. This parameter can
be systematically deduced from identified hadron pT spectra in A+A collisions as
compared to the same spectra in minimum bias p+p at similar energy, resulting in
the nuclear modification factor RAA as defined in Sect. 7.5.1. For jets the standard
method is to estimate the jet energy loss by comparing the leading hadron (or fully
reconstructed jet) energy on the trigger side with that of the away-side jet, where
geometry has made sure that the trajectory traversed the QGP medium. Note, by
the way, that q̂ is inversely proportional to η/s from Eq. (7.93) (from old article!).
Thus if the latter is in a sense “near-minimal” the transport coefficient has to be
near-maximal. So the medium opaqueness might completely wipe out the jet at
lower energies, as was indeed observed at RHIC (see Figs. 7.50 and 7.53): the
black interior situation. At the LHC jet energies are always sufficient to observe
both jet sides. We illustrate that in Fig. 7.74 [318] where we see very significant
suppression in the “low” energy domain of recent LHC Pb + Pb data, gradually
weakening toward high pT . This indicates that the energy loss is not growing in
proportion to pT . Corresponding results for the p + Pb jet production at the LHC
indicates essentially zero medium effect, asserting that the suppression in Pb + Pb

is indeed a final state, QGP effect. We mentioned above that all data concerning
heavy flavour charm quark attenuation point to a behaviour similar to that of the

Fig. 7.74 Nuclear Modification Factors for jet production, obtained by the ALICE, CMS and
ATLAS LHC collaborations, for p + Pb and Pb + Pb collisions[318]
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Fig. 7.75 RAA factors for D meson production in p+Pb and Pb+Pb, by ALICE at LHC [319]

light quarks. This is illustrated in Fig. 7.75 by ALICE data [319] for D meson
production in p + Pb and Pb + Pb, central Pb + Pb collisions again showing
drastic suppression whereas this is absent in the p + Pb collision. We should also
mention here that the charmed hadrons follow the flow vn patterns observed for
light quark hadrons. In the end, all A + A data, both about the shear viscosity, near
minimal, and the transport coefficient, have been shown to be semi-quantitatively
consistent [320]. Figure 7.76 shows the result of current state of the art theory; quite
remarkably, the theory groups have followed the example of the experimentalists,
forming collaborations. Here we show the transport coefficient results from the
JET Collaboration [320], extracted from fits to the combined data from RHIC and
LHC, as of 2014. Indeed, the transport coefficient falls with temperature, consistent
with the inversely proportional specific shear velocity rising with T. Note that the
temperature scale reflects the energy density in the center of the fireball at an
initial time of 0.6 fm/c, that we have ascribed above to the end of the primordial
initialization period. This would be the medium in which the hard partons born
by perturbative QCD interactions start embedding. The results of many theory
collaborations are indicated in this Figure (see ref. [320]). The JET collaboration
employs perturbative QCD technique to generate the jets in the primordial A + A

environment, then follows them through the co-travelling non-perturbative QCD
plasma medium. This situation is characteristic of all “hard probes” studies: one
has to combine the short range pQCD scale with the long range scale inherent in
the structure(s) of the plasma QCD medium: the leading parton does not interact
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Fig. 7.76 Temperature dependence of the jet transport coefficient q̂/T 3, extracted with different
approaches for jet quenching at an initial jet energy of 10 GeV, in central A+A collisions (see
ref. [320])

with a free gas of partons! The diagnostic of this state is the goal of all had
probes physics. The present estimate [320] of the transport coefficient amounts to
about 1.5 GeV2/fm for a 10 GeV quark jet. The lost energy gets radiated by soft
gluon emission from the plasma and is indeed recovered experimentally in hadrons
populating the vicinity of the jet cone. The question of the elementary degrees of
freedom in a high T QCD plasma is coming within reach by such studies.

7.9.4 Charmonium

The J/� signal entered relativistic heavy ion physics as the “Holy Grail” observable
of QGP formation by the work of Matsui and Satz [321], at the time the CERN SPS
A+A program took shape, in the late 1980s. From among all observables predicted
then to provide evidence of QCD deconfinement and QGP formation, the proposed
in-medium colour Debye-screening mechanism preventing the primordially pro-
duced cc̄ pair to hadronize as a J/� hidden charm meson was presenting a direct
link between deconfined partons and the suppressed cross section of observed J/� ,
which was relatively well known from elementary p + p and e+ + e− collisions.
We have reported in Sect. 7.6.1 on the success of the charmonium suppression
idea at the SPS (Fig. 7.54) and at RHIC (Fig. 7.55). However, we recall that it
was predicted early on that if free charm and anticharm quarks were thermalized
in the plasma medium (as has been verified meanwhile) they would hadronize
statistically forming open charm mesons and charmonia [322] in relative hadro-
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chemical equilibrium, along with all other hadrons, albeit with a separate fugacity
factor for c and c̄ because these stem from the early hard collision phase unlike the
majority of the lighter quarks [323]. We note that this mechanism is oftentimes
called recombination, erroneously so as the thermal charm quarks do not really
stem from Debey-screened J/� breakup which covers a mere 1% fraction of
the total primordial charm-anticharm production. The statistical cc̄ hadronisation
mechanism and its traces in RHIC data were soon to be fully substantiated [324].
At LHC energy we expect a significantly higher number density of thermalized
c and c̄ quarks as the system enters hadronization and, hence, a higher fraction
of chemical equilibrium charmonia (for a recent review see ref [325]). Indeed,
Fig. 7.77 (from [325]) shows that the RAA ratios for J/� drop down far more
steeply with midrapidity multiplicity (centrality) at RHIC than at the LHC where,
indeed, not much of the low energy charmonium suppression remains visible, being
overshadowed here by the statistical production. We might remark that nobody
nowadays insists on a proof of deconfinement anymore (as was the case in 1986)
and, furthermore, that the universality of statistical hadron production in A + A

collisions, of which we see evidence here, is in itself a strong manifestation of
deconfinement. To this topic we turn our attention next, but remark, in passing, that

Fig. 7.77 Multiplicity(centrality) dependence of the Nuclear Modification Factor for J/� produc-
tion at mid-rapidity at top RHIC, and at LHC energy [325]



7 Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram 437

the suppression theme is now turning over to the bottonomium production at the
LHC [326], visible there because of the much lower thermal bottom quark density.

7.9.5 Hadronization and the QCD Phase Diagram

This chapter will have two main topics, first the analysis of hadron production
multiplicities with the Statistical Hadronization Model (SHM) that incorporates the
canonical or grandcanonical partition functions of a hadron-resonance gas (HRG)
model. This will be an update on Sect. 7.3. Second, however, we turn to new
developments of lattice QCD theory, extension to finite baryochemical potential and
determination of the hadronization parameters T vs. μB from, first, a determination
of the overlap between Lattice QCD and the HRG model [327], to reveal the
“hadronization point” and, second, from fitting new data concerning fluctuation of
conserved charges to higher order Lattice susceptibilities [328]. Some remarks are
also necessary with regard to the Lattice conclusion that the parton to hadron phase
transition is “merely” a cross-over at small μB , top RHIC and LHC energy.

We have shown in Sect. 7.3.4 that, ideally, the Statistical Hadronization
Model(SHM) freeze-out curve should reveal the QCD parton-hadron phase
transformation line in the (T, μB) plane, i.e. the most prominent feature of the QCD
phase diagram. This follows from the assumption that inelastic reactions (except
resonance decays) among hadrons cease directly at the instant of hadronization:
chemical hadron freeze-out determines the hadronization “point” corresponding to
the chosen A+A collision energy. Add, for correctness: as long as freeze-out occurs
from the QCD hadronization transition, i.e. from a QGP. About freeze-out from hot,
dense hadronic matter in expansion, we do not yet know the final interpretation
of the hadronic multiplicities. Now, the above ideal picture, absence of final state
effects from the afterburning phase, may require certain corrections. It has been
shown [329] that, on the one hand, the bulk hadrons from a relativistic A + A

collision (i.e. pions and kaons that carry about 95% of the total cm energy output
at LHC energy) do indeed pass the afterburner stage essentially unchanged. At the
relatively low SPS energies, this applies also to protons and Lambdas. Whereas
the antibaryon yields get reduced, away from chemical equilibrium, by annihilation
processes that occur throughout the hadron/resonance expansion phase. At top
RHIC and LHC energies, baryons and antibaryons are similarly affected, with the
exception of the Omega hyperons which suffer little annihilation. These afterburner
effects were quantified [330] by the microscopic transport model UrQMD [312]
which is employed in many of the current multi-stage “hybrid” models [313, 316]
for the afterburner stage. The thus obtained modification factors for each species
were applied to the grand canonical partition functions of the SHM [330]. We
show the results in Fig. 7.78, which gives (T ,μB) points for AGS, SPS and LHC
energies. The overall result of the annihilation corrections is seen to be an upward
shift of the hadronization curve(see also [331]), above the curve resulting from
the uncorrected SHM procedure which agrees with other SHM work [332]. The
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Fig. 7.78 Freeze-out points in the (T ,μB ) plane extracted from hadron multiplicity data at LHC,
SPS and AGS energies, obtained with the standard Statistical Hadronization Model, and with the
SHM corrected for baryon-antibaryon annihilation during the afterburner phase [330]

modified approach also explains the so-called “nonthermal proton to pion ratio
puzzle” at the LHC [332], much discussed but simply resulting, in this model,
from proton annihilation going to pions, thus decreasing the p/π ratio; of course a
non-thermal effect [333]. The pseudo-critical temperature at μB=0 turns out to be
164 ± 5 MeV, as compared to about 155 MeV in the standard approach. This new
development is still vigorously contested by the ALICE community [325, 332]; it
appears highly desirable that groups employing a different afterburner model turn
their attention to the final state effects.

The reader will have noticed that entries from RHIC are missing in Fig. 7.78. This
is the result of another tension in the community. By far the most comprehensive set
of hadron multiplicity data stems from the STAR experiment at RHIC [334] which,
up until now, has published baryon/antibaryon multiplicities without correction for
feeddown from weak hyperon decays which are misidentified as primary particles
(this omission is now disposed of, for subsequent data taking, by the new STAR
vertex tracking detector [335]). Accidentally, the extra particles from feeddown
do closely compensate for the losses by annihilation, and a picture of perfect
equilibrium thus emerges from SHM analysis [334]. Then, apparently, there arises
no p/π puzzle at top RHIC energy, the two missing corrections cancelling. We are
at μB about 20 MeV, very close to the value of about 1 MeV encountered at LHC.
A kink in the phase diagram? Clearly an inconsistency. In ALICE at the LHC, the
primary vertex is very precisely reconstructed, eliminating secondary decays, and
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NA49 at the SPS has employed a formidable correction simulation to determine the
feeddown fractions, of order 50%. Once all this dust settles, one can still expect
an interesting freeze-out curve [323], which should reflect influences of a critical
point, perhaps even adjacent to a new, further form of QCD phase transition, from
quarkyonic [337] to hadronic matter, that interpolates between the partonic and the
hadronic phases at high μB [323]. This region in the QCD phase diagram will
receive the necessary attention by NA61(SPS) and by the FAIR and NICA projects.

We turn to a second, very much elaborated source of information about the
parton-hadron phase boundary, which was made possible by recent developments
of Lattice QCD. In a way, this progress was a generalization of the attempt to
extend Lattice QCD from μB=0 to finite baryochemical potential [336], by a Taylor
expansion of the reduced thermodynamic pressure in terms its derivatives with
respect to μq/T :
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where derivatives are taken at μq = 0. The derivatives of the reduced pressure, of
order n on the r.h.side of equ. [304], with respect to a chemical potential, are called
susceptibilities. In general, fluctuations of conserved quantum numbers are obtained
as derivatives of the pressure to various chemical potentials μX/T , where X stands
for net baryon number B, charge Q, strangeness S or charm C (see [328, 337, 338]
and references therein). Also one can formulate correlations of net charges X and
Y by mixed susceptibilities [339] which contain derivatives jointly to μX and μY .
Now, all such susceptibilities could be obtained from recent Lattice calculations, up
to order six, as well as from the Hadron Resonance Gas (HRG) model and, most
significantly, some of them can be related to experimentally accessible quantities.
For example, net baryon number fluctuations (one can approximate them by net
proton number fluctuations) are expressed by properties of the event by event
multiplicity distribution, e.g. mean (MB), variance (σ 2

B), skewness (SB ) and kurtosis
(κB):
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Fig. 7.79 The overlap between Lattice QCD and Hadron Resonance Gas(HRG) model cal-
culations of the normalized pressure, energy density and entropy density, as a function of
temperature [341]. It is seen that the results match over a relatively broad temperature domain,
characteristic of a cross-over transition, and slightly different for the three quantities

where the n-th order susceptibilities χB
n are obtained from the corresponding partial

derivatives of the Lattice or HRG pressure P(T ,μX) with respect to the baryon
chemical potential, and the mean, variance, skewness and curtosis from the data on
net proton number fluctuations e.g. by the STAR Collaboration at a set of RHIC
energies [340]. We cannot do justice to this very wide body of recent work here
but merely present two typical results. Figure 7.79 illustrates the Lattice-HRG
overlap analysis [341] technique showing the normalized pressure, energy density
and entropy density as a function of temperature, at μB = 0. The HRG curves
start seriously departing from the Lattice results above about 170 MeV. Recall
that the parton-hadron-transition is a relatively broad cross-over at μB=0; so we
would conclude that the crossover domain ends here. The center of the pseudo-
critical region might thus be at about 160 MeV, at μB = 0; the authors also show
the region center and width estimate from other analyses [337]: not really fully
supported by the present analysis. The most recent results in the comparison of
Lattice with the STAR kurtosis data are shown in Fig. 7.80 (taken from ref [338]
which gives a comprehensive review of the topic). It shows the ratio of the two
susceptibilities χB

4 and χB
2 , equal to kurtosis times variance, vs. temperature,

from various state of the art Lattice calculations, and a band about a freeze-out
temperature of T = 153 MeV indicated by the data. We cannot exhaust the topic
which is under vigorous development but wish to enumerate points of concern that
are presently under investigation:

1. It is unclear whether various hadronization observables like hadron multiplicities
and higher order multiplicity fluctuations should refer to an identical freeze-
out temperature within the relatively broad pseudocritical temperature band. The
latter might freeze out later (sequential freeze-out).
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Fig. 7.80 The ratio of the two susceptibilities χB
4 and χB

2 , equal to kurtosis times variance, vs.
temperature, from various state of the art Lattice calculations [338], and a band about a freeze-out
temperature of T = 153 MeV indicated by the data

2. Net proton multiplicity is not a conserved quantity but taken here as a proxy for
net baryon number: an approximation sensitive to the experimental energy and
acceptance [342, 343].

3. Higher order fluctuations and their ratios receive sizeable contributions from the
fluctuation, event by event, of the participant nucleon number [343].

4. Higher order fluctuations can be dampened in the course of the afterburner
expansion [344].

5. The standard Hadron-Resonance Gas model employed in the Lattice-HRG
overlap study may need amendments due to Van der Waals-Type hadron-
hadron repulsion [345], or to high lying strange resonances that are not yet
experimentally known [346].

Clearly, these questions need to be addressed before we can finally conclude on
the QCD phase diagram and the parton-hadron phase boundary.

7.9.6 New Topics

7.9.6.1 Proton Induced Collisions

In defining the nuclear modification factor RAA (Sect. 7.9.3) we have employed, in
the denominator, the experimental minimum bias p + p momentum distribution at
the same cm energy as the energy per participant nucleon pair of the A + A data
forming the numerator. Thus, the p + p cross section is employed as a reference,
to incorporate the “no QGP physics” situation that is captured in the Glauber
model which describes the A + A collision as an superposition of independent,
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minimum bias nucleon-nucleon collisions occurring at the microscopic level. Of
course this cannot be a realistic model but for the hard, partonic collisions occurring
during the primordial interpenetration we may still employ it as a standard of
comparison. Nevertheless it was tempting to check whether p + p collisions
revealed any of the effects ascribed to the QGP medium in A + A collisions, such
as grand canonical hadrochemical equilibrium at 160 MeV apparent temperature,
collective hydrodynamic flow in its multifold Fourier harmonics phenomena, jet
attenuation etc., thus making it useless as a “no new physics” standard reference.
This experimental program occupied the first half of this decade, both at RHIC
and LHC. Lacking space for detail, we briefly summarize the main results. Indeed,
minimum bias p + p collisions turned out to be essentially free of the new
physics: ok to employ them in RAA. However, onset behaviour of grand canonical
hadronization [347], of elliptic flow [348], and new modification patterns of jet
production [349] were observed in high multiplicity selections of p + p data
at LHC where the midrapidity charged particle density increases from about 8
in minimum bias mode, up to well beyond 20 in the ALICE study [347], with
extremes ranging up to about 80. No surprise then: these are geometrically small
but energy rich systems which lead to equilibrium conditions due to extreme density
of degrees of freedom. Such that the bulk phenomena, advent of grandcanonical
hadronization [347] and development of anisotropic hydro flow, exhibit onset
patterns. Whereas the hard probes which depend on pathlength might well still
stay unaffected of the medium. No big surprise, but initially the community was
quite smitten by the surfacing of typical QGP signals in an elementary collision.
A different, completely new aspect concerning jet production: the selection of
extreme multiplicity density at midrapidity clearly represents a strong bias as to
the primordial partonic collision generation, possibly selecting for changes in jet
observables [349]. An interesting, unexplored aspect of jet production.

Along with p + p came a wave of p + Au/Pb collision studies. Here we
would expect that the projectile side of rapidity space shows essentially p + p

properties whereas the heavy nucleus side shows, firstly, a strong dependence of
impact parameter and participant nucleon number variation. Second, the resulting
primordial fireballs should grow in proportion to Npart , leading to clear collective
signals in the bulk production observables, emerging with increasing centrality
(multiplicity), as was indeed observed [347, 350]. However, again the hard probes
did not show significant attenuation as we have seen in Figs. 7.74 and 7.75 for LHC
collisions [318, 319]. It is reassuring to confirm that extended path length in hot QGP
matter is required in order to produce attenuation, whereas cold nuclear spectator
matter has a very low transport parameter [320]. In general p + Pb collisions share
the complicating feature, common to all light-on-heavy collisions, that the effective
center of mass for soft production moves away from the corresponding p + p cm
frame that controls hard processes, as Npart increases. At the LHC this shift goes
up to two rapidity units for very central collisions, potentially causing more or less
trivial effects in the attenuation of hard partons traversing the soft-produced QGP
medium [351]. Also the effective midrapidity position for soft, bulk production is
now outside the acceptance for ALICE.
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7.9.6.2 Lambda Polarization and Fireball Vorticity

Huge global angular momenta are generated in non-central A+A collisions. In fact
they get converted to the vorticity of a QGP [352] and get transmitted to particle
polarization at the stage of hadron formation and particlization whence hadrons are
emitted from the hypersurface of a hydrodynamically expanding fireball (51, 52).
The global angular momentum can thus lead to the local polarization of hadrons.
The polarization, in turn, can be measured by � and �̄ hyperon weak decay into a
proton and a pion which is “self-analyzing” since the proton is emitted preferentially
along the direction of the Lambda spin in its rest frame. The global polarization (the
net polarization of the local ones in an event which is aligned in the direction of
the event plane, i.e. along the direction of the angular momentum of the plasma)
of � and �̄ has recently been measured by the RHIC STAR Collaboration [355] at
collisional energies below 62.4 GeV. At higher energies, including LHC, the falling
of the polarization with energy [355] still precludes measurement. The measurement
determines the event average of sin(!p − �RP ), where !p and �RP are the
azimuthal angle of the proton momentum in the Lambda rest frame, and that of
the reaction plane. Its orientation cannot be directly measured but is approximated
by the event plane determined from the hadronic directed flow; this is accounted for
by a reaction plane resolution factor [355]. Alternative methods have been proposed
recently [356]. For an overview see ref. [357].

From the data one can estimate [353, 354] the local vorticity in the plasma, the
result implying that the QCD matter created in such collisions is the most vortical
fluid known as of yet. Moreover, this new observable can shed a new, independent
light on the equilibrium properties encountered (or not) in the course of (relativistic
hydro) expansion toward hadronization [358].

7.9.6.3 EOS from Neutron Star Mergers

The recent observation of gravitational waves from a neutron star merger has, in
fact, been anticipated with regard to its possible sensitivity to the EOS of dense
hadronic matter at low temperature and high baryochemical potential. This is a
topic of nuclear collision research already since the early BEVALAC studies at LBL
when it was realized that the EOS should be of importance, both, to the dynamics
of supernova explosions and to the radial structure of neutron stars, also affecting
their maximum mass with regard to black hole formation. The hope was to derive
the EOS from the data concerning hydrodynamic directed sidewards expansion,
and from Kaon production in A + A “compressive collisions” [359] at the low
BEVALAC energies, in the GeV per nucleon energy range. One of the key problems
arose from the fact that even at these energies the collisional fireball temperature
ranges up to about 100 MeV whereas the above astrophysical phenomena require the
EOS of cold, compressed matter [360]. The newly accessible Neutron star mergers
promise to open up a window to the low T EOS [361], and to crucial transport
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parameters [362], once more experimental information becomes available, as can
be expected.

7.9.6.4 Production of Light Nuclei in A + A Collisions

At RHIC and LHC, a large number of light nuclei and antinuclei have been mea-
sured [325, 363, 364], from deuterium to anti-alpha. This continues a tradition dating
back to BEVALAC time [365] and SPS [366]. Dating back is also the controversy
concerning model description or, alternatively stated, the lack of a comprehensive
understanding [325, 364, 367]. The Statistical Hadronization Model(SHM) gives a
very good description(hadro-chemical freeze-out) of the LHC yields [325], along
with all other hadron multiplicities. The coalescence model [365, 367] addresses
the end of the hadron/resonance expansion stage (kinetic freeze-out), whence the
produced nucleons, spread out in phase space, overlap, to a certain degree, with
the internal wave functions of the various clusters. There are difficulties in both
views if one takes them literally. The clusters cannot have existed at 160 MeV, the
hadronization temperature. On the other hand, the coalescence cannot proceed on-
shell because of the cluster binding energies (that are ignored in the model). All this
points to a deeper flaw in, either the models, or their conventional understanding.
The role of quantum mechanics seems to be missing, as pointed out long ago by E.
Remler [368]. Hadronization does not directly produce a decoherent, on-shell state,
in A + A collisions. If hadronization occurs via the quantum mechanical decay
of initially produced colour singlet clusters (see Sect. 5.3.3), then Fermis Golden
Rule refers to the phase space weights AFTER decoherence. And, in fact, in the
SHM partition functions we employ the set of in-vacuo free masses of the produced
particles, also for the clusters, with apparent success. One might then speculate
that the number densities and their ratios are fixed by the entropy at hadronization,
but we have to wait until after the freeze-outs to have them decohere. This is a
speculation, of course.
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Chapter 8
Beyond the Standard Model

Eliezer Rabinovici

8.1 Introduction

Starting sometime in 2008/2009 one expects to be able to take a glimpse at physics
at the TeV scale. This will be done through the Large Hadronic Collider (LHC) at
CERN, Geneva. It will be a result of an unprecedented coordinated international
scientific effort. This chapter is written in 2007. It is essentially inviting disaster
to spell out in full detail what the current various theoretical speculations on the
physics are, as well motivated as they may seem at this time. What I find of more
value is to elaborate on some of the ideas and the motivations behind them. Some
may stay with us, some may evolve and some may be discarded as the results of
the experiments unfold. When the proton antiproton collider was turned on in the
early eighties of the last century at Cern the theoretical ideas were ready to face
the experimental results in confidence, a confidence which actually had prevailed.
The emphasis was on the tremendous experimental challenges that needed to be
overcome in both the production and the detection of the new particles. As far as
theory was concerned this was about the physics of the standard model and not about
the physics beyond it. The latter part was left safely unchallenged. That situation
started changing when the large electron positron (LEP) collider experiments also at
Cern were turned on as well the experiments at the Tevatron at Fermilab. Today it is
with rather little, scientifically based, theoretical confidence that one is anticipating
the outcome of the experiments. It is less the method and foundations that are tested
and more the prejudices. It is these which are at the center of this chapter. Some
claim to detect over the years an oscilatory behavior in the amount of conservatism
expressed by leaders in physics. The generation in whose life time relativity and
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quantum mechanics were discovered remained non-conservative throughout their
life. Some of the latter developed eventually such adventurous ideas as to form
as a reaction a much more conservative following generation. The conservative
generation perfected the inherited tools and has uncovered and constructed the
Standard Model. They themselves were followed by a less conservative generation.
The new generation was presented with a seemingly complete description of the
known forces. In order to go outside the severe constraints of the Standard Model
the new generation has drawn upon some of the more adventurous ideas of the older
generation as well as created it own ideas. In a way almost all accepted notions were
challenged. In the past such an attitude has led to major discoveries such as relativity
and quantum mechanics. In some cases it was carried too far, the discovery of the
neutrino was initially missed as energy conservation was temporarily given up.

The standard model is overall a very significant scientific achievement. It is a
rather concise framework encompassing all the known properties of the known basic
interactions. It is arguably the most impressive theoretical understanding of a large
body of experimental information existing. An understanding backed by precise
predictions all verified by high quality experiments. In this context it may seem
surprising that one is searching for anything beyond the Standard Model. There are
however diverse scientific reasons for the search of the beyond.

In 2007 the scientific community was aware of quite a few gaps in the
understanding of the particle interactions. One class of observations posed obvious
pressing problems:

• There is a large body of evidence that the so called dark matter should be
composed mostly of different particle(s) than those that serve as the building
blocks of the standard model. What are they? More recently also what is called a
dark energy was needed to explain the data. Its possible origin(s) is under active
study.

• A standard model for cosmology is forming and it includes in most cases
versions of inflation. Such models seem to require the existence of a new heavy
particle(s). What are they? On a more speculative note, models require more
detailed understanding of how physical systems behave in big bang/crunch like
circumstances and of how and if universes may form.

Another set of observations could be either defined as posing problems requiring
an explanation or as pointing to new directions only after being combined with a
certain amount of theoretical prejudice (TP). In the past some major advances were
driven by such combinations.

• Three known interactions, the colored, the weak and the electromagnetic inter-
actions all obey the dictum of quantum mechanics and are all well described by
gauge theories but have otherwise very different properties and strengths at the
energy scales probed till 2007. A TP, a strong and deeply ingrained one, suggests
that all interactions, those known and those yet to be discovered should unify
at a certain higher energy scale. This is the idea of a Grand Unified Theories
(GUTS). Eventually it was found that to realize a particular aspect of this, the
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convergence of the all the couplings to a single value at an appropriate energy
scale, there should be physics beyond the standard model. In Super Symmetric
(SUSY) systems this indeed may occur. In fact the unification is achieved at a
distance scale rather close to the Planck scale, the scale at which gravity becomes
strong and its quantum effects, if there, should become noted. Thus the fourth
force Gravity is naturally added to the unification scheme. An older realization
of this TP was that all known interactions are but the low energy descriptions of a
system containing only the gravitational force and residing in a higher number of
space-time dimensions. This had led to Kaluza Klein theories and their variants.
This idea has been revisited with the advent of SUSY and string theory.

• The observation of what is called dark energy and its very possible confirmation
of a very small, but not vanishing, cosmological constant is viewed by many
as a major problem lacking an explanation. The TP behind this is that any
fundamental quantitative property of nature should be explained and not fine
tuned. The absence of any significant amount of CP violation in the strong
interactions is another such problem. The discovery of a new particle, the Axion,
could be a signal of the solution of the latter one. The discovery of another
particle, the Dilaton, could indicate a resolution of the former. This issue has
led also to the reexamination of the so called enthropic principle.

• Many predictions of Classical General Relativity were confirmed experimentally
over the years. The TP in 2007 is that there should be a quantum theory of gravity.
Such a four dimensional quantum theory of gravity is not well defined within
only field theory. This has been a driving force in the study of the properties of a
theory were the basic constituents of nature are not particles but extended objects,
including strings.

• A very successful framework to explain the basic interactions in particle physics
is the so called Wilsonian one. It is very powerful when the laws of physics
are such that different largely separated scales are essentially decoupled from
each other. The physics beneath any energy scale (cutoff) is well described by
operators whose scaling dimensions, in d spacetime dimensions, is not much
larger than the same d. In many cases there is only a finite number of such
operators, i.e. only a finite amount of terms in the Lagrangians describing the
Physics below the energy scale. This TP has been tested successfully time and
again but may eventually be falsified, perhaps in a theory of gravity. But given
the validity of this method physical quantities should be only slightly dependent
on the cutoff scale, and thus on the unknown physics extending beyond it.
Generically the mass of scalar particles is strongly dependent on the cutoff. In
particular instead of the scale of such masses being set by the weak interactions
scale they will depend strongly on the cutoff. The only known, in 2007, physical
scale beyond that of the weak interactions is of the order of the Planck scale. The
discovery of Higgs particles whose masses is in the TeV range or lighter will thus
require a large amount of fine tuning. The TP does not accept that. This is one
manifestation of the so called hierarchy problem. This had led to ideas such as
technicolor and supersymmetry as properties of beyond the standard model.
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• It seems very likely in 2007 that eventually the neutrino masses will be added
without caveats to the pantheon of particles, the particle data tables. Some TPs
point to new physics at a rather high mass scale as the origin of small neutrino
masses.

It is interesting that very few of the theoretical ideas and visions used to the
address the ample set of problems mentioned above were originally created directly
for that purpose. They were more tools whose applications were found only well
after they were formed.

The theoretical structures discovered and created where an outcome of an urge
to question, generalize and unify almost anything.

• In addition to the attempts to unify all symmetries and considering extra
dimensions it was suggested that the topology of the extra dimensions may
determine the low mass particle spectrum. These extra dimensions were assumed
for year to be small but it turned out they could also be large, leading to theories in
which large extra dimensions play a key role. A variant of this idea is that there
exists a hidden sector where many desired things occur, SUSY is broken, the
cosmological constant is (nearly) cancelled to name some. These effects are then
communicated to the Standard Model particles by messengers. In many cases the
weak gravitational force is designated that role.

• A natural direction of generalization is to question the point particle nature of
the basic constituents of nature. Is there a consistent theory of elementary higher
dimensional objects such as strings or membranes, this direction of research is
developed under the name of string theory. It has led to much more satisfactory
theory of gravity. It has success, faces many challenges not least of which is the
present lack of experimental evidence and has a touch of magic. This magic has
had already a significant impact on Mathematical Physics.

• The never satiated desire for simplicity may suggest to remove even the concept
of a point particle which propagates in space time and for that matter to remove
even the concept of space time. The idea is that space time is but an emergent,
long distance, phenomena. The search for “true” underlying picture is still on.

• The quest for knowledge includes a succession of Copernican like revolutions.
After each such step the researcher finds herself even further removed from the
Center. A possible prospect for such a revolution is that our universe is but one
of many universes. The idea emerges in quite a few contexts not necessarily
unrelated. These include the many world interpretation of quantum mechanics,
third quantization in quantum gravity, the mutliverse in models for inflation and
in string theory. In string theory the idea has been refined in the brane world
picture, our universe reflects an underlying structure in which different particles
reside on different multi dimensional subspaces.

• In the process of quantization it was assumed that the space coordinates
commute with each other as do their conjugate momenta. Mathematically one
may construct noncommutative manifolds, manifolds whose coordinates do not
commute. This had led to the study of physics on such manifolds. This an the
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idea that the underlying theory of nature depends only on topology have both
been extensively studied but at this stage still more in the realm of mathematics.

The various theoretical ideas mentioned above were extensively studied in the
second part of the twentieth century. The respective developments are documented
in many books covering thousands of pages. In this review we have made the
following choices. The emphasis is on various aspects of SUSY. There has been
significant progress in understanding the dynamics of systems which have in some
form or another supersymmetric features. These systems have been researched
in the weak coupling and the strong coupling regimes, perturbatively and non-
perturbatively. The properties uncovered are remarkable in some cases. We also
review, more briefly, the attempts to lay out a framework suitable for extracting
supersymmetric signatures of nature. This rich area of research will better receive
its due rewards after the accumulation of actual experimental data. The more
“senior” areas of research such as examining the possibility of the existence of
extra dimensions, grand unified theories and superstring theory will be reviewed
in a much more descriptive manner. This choice was influenced by the possibility
that the LHC will shed some concrete light on what is beyond the standard model.

8.2 Super Symmetry [1]

Super Symmetry (SUSY) embodies several forms of unification and generalization.
It joins space time and internal symmetries and it generalizes the meaning of
space time by adding fermionic components to the canonical space time bosonic
coordinates. An original stated motivation for SUSY in field theory was to have a
symmetry which was able to relate the self couplings of bosons, the self coupling
of fermions and the Yukawa couplings of fermions to bosons. Eventually SUSY
while indeed unifying such couplings has given rise to a multitude of possible non-
equivalent ground states. Such a degeneracy of ground states was of a magnitude
unknown before. In string theory, SUSY stabilized superstring theories by removing
the tachyions which plagued the bosonic string theories. Over the years the
motivations have varied and evolved. SUSY was called upon to emeliorate the so
called hierarchy problem which will be reviewed below and it was perceived as
an omen that in a SUSY theory one was able to arrange that the colored, weak
and electromagnetic couplings unify at a single high energy scale. That scale not
far from the Planck scale. In addition it was discovered that this enriched structure
allows to obtain exact results in situations were only approximations were available
before. In particular for four and higher dimensional systems. In its presence a very
rich dynamics has been unraveled.
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8.2.1 Elementary Particles in SUSY Models: Algebraic
Structure

Many successes resulted from the application of symmetry principles to systems
such as atoms, nuclei and elementary particles. They have been obtained even in
the face of a rather incomplete understanding of the dynamics of these systems.
Consequentially evermore higher symmetries were searched for, and in particular
unifying ones. Such was the search for a symmetry that would contain in a
non-trivial way both the Poincar’e space time symmetry and internal symmetries
such as Isospin and flavor SU(3). It was shown that that was impossible, only
a trivial product symmetry is allowed. Theorems are proved under assumptions,
time and again new important directions emerge once significant loop holes in the
assumptions are uncovered. Such was the case for obtaining consistently massive
spin one particles and such was the case here. Allowing the algebra of the symmetry
generators to be graded, i.e. to include both commutators and anti commutators a
new structure containing both Poincar’e and internal symmetries was discovered.

A simple version of the SUSY algebra is given by the following anticommutation
relations which obey the following commutation relations:

{
Qα,Qα̇

} = 2σμ

αβ̇
Pμ,

{
Qα,Qβ

} =
{
Qα̇,Qβ̇

}
= 0. (8.1)

Where the Qα are fermionic generators of supersymmetry. Pμ are the generators
of space-time translations and the σ matrices are the Pauli matrices.

[
Pμ,Qα ]=[Pμ,Qα̇ ]=[Pμ, Pν

] = 0 (8.2)

This is called the N = 1 supersymmetry algebra.
It can be generalized to include a higher number of supersymmetries. For exam-

ple in four space-time dimensions there are also N = 2 and N = 4 supersymmetries:

{
Qi

α,Q
j

α̇

}
= 2δij σμ

αβ̇
Pμ + δαβ̇Uij + (γ5)αβ̇Vij , (8.3)

i and j run over the number of supersymmetries, U and V are the central charges
i.e. they commute with all other charges, (they are antisymmetric in ij). When
they do not vanish they are associated with what are called BPS states such as
monopoles. The d = 4 realisations have as, μ,ν = 0,1,2,3 the space-time indices. In
four dimensions one has two component Weyl Fermions. Those with α or β indices
transform under the (0, 1

2 ) representation of the Lorentz group; and those with dotted
indices, α̇ or β̇ transform under the ( 1

2 ,0) representation.
The possible particle content of supersymmetric (SUSY) theories is determined

by the SUSY algebra.
Consider first the massless representations of N = 1 supersymmetry.
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The simplest is the called the chiral multiplet. It contains two real scalars and one
Weyl Fermion:

(
−1

2
, 0, 0,

1

2

)
(ϕ,ψ) (2, 2) (8.4)

In the above table, first are written the helicities; then the associated component
fields, ϕ denotes a complex scalar and ψ a Weyl Fermion; and finally are the number
of physical degrees of freedom carried by the Bosons and Fermions. The massless
multiplet containing a spin one boson and a spin one half Fermion is called the
vector multiplet. Its content in the case of N = 1 is:

(
−1,−1

2
,

1

2
, 1

) (
λα,Aμ

)
(2, 2) (8.5)

λ is a Weyl Fermion and Aμ is a vector field.
For N = 2 supersymmetry, there is a massless vector multiplet:

(
−1

− 1
2 0

− 1
2 0

1
2
1
2

1

)
( 0 ) (ϕ,ψ) + (

λα,Aμ

)
(4, 4) (8.6)

and a massless hypermultiplet which is given by:

⎛
⎜⎜⎝

0
− 1

2 0 1
2

− 1
2 , 0, 1

2
0

⎞
⎟⎟⎠ (ϕ1, ψ1) + (ϕ2, ψ2) (4, 4) . (8.7)

For Massive multiplets, in N = 1, there is again the chiral multiplet which is
the same as the massless multiplet but with now massive fields. The massive vector
multiplet becomes:

(
−1

− 1
2

− 1
2

0
0

1
2
1
2

1

)(
h,ψα, λα,Aμ

)
(4, 4) (8.8)

Where h is a real scalar field. The massive vector multiplet has a different field
content than the massless vector multiplet because a massive vector field has an
additional physical degree of freedom. One sees that the massive vector multiplet
is composed out of a massless chiral plus massless vector multiplet. This can occur
dynamically; massive vector multiplets may appear by a supersymmetric analogue
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of the Higgs mechanism. With N = 4 supersymmetry, the massless vector multiplet
is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1,

− 1
2

− 1
2

− 1
2

− 1
2

,

0
0
0
0
0
0

,

1
2
1
2
1
2
1
2

, 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
λa, φI ,Aμ

)
(8, 8) (8.9)

where I = 1..6, a = 1..4.
These are the unitary representations of the Super Symmetry algebra whose par-

ticle content allows them to participate in renormalizable interactions. Any higher
supersymmetry in four dimensions would have to involve non-renormalizable terms.
Mostly for particles with spin higher than one.

8.2.2 Supersymmetric Lagrangians

The task of writing down explicit supersymmetric Lagrangians was quite laborious.
Originally all the interaction terms had to be written down explicitly. In some
cases this had turned out to be much simpler by the introduction what are called
superfields. These will be described below and make use of the anticommuting
Grassman variables suitable to describe fermions. This is called the Super Space
notation. In the spirit of generalization, the mathematical book keeping device has
been elevated by some to a generalzation of regular space whose coordinates are
denoted by communting numbers to a superspace in which some variables are
Grassman variables. This superspace has its own geometircal properties and it was
suggested to give it also a life of its own. It is not clear yet how fundamental
the superspace description is but adopting this notation leads to considerable
simplification. We note here that another generalization of space has been suggested.
In regular space the coordinates commute also quantum mechanically, it was
suggested to explore the situation that space coordinates not commute in quantizing
the theory. This has experimental consequences, as of now this suggestion has no
experimental backing.

8.2.2.1 Superspace, Chiral Fields and Lagrangians for Spin Zero
and One-half Particles

Returning to superspace, spacetime can be extended to include Grassmann spinor
coordinates, θ α̇,θα . Superfields are functions of the superspace coordinates. Con-
structing a Lagrangian out of special types of superfields provides a useful way
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to construct explicitly supersymmetric Lagrangians. The integration formulas for
Grassmann variables are:

∫
dθαθα = ∂

∂θα
= 1,

∫
dθα = 0 (8.10)

Which results also in:

∫
d2θd2θL =

∫
d2θ

∂2L
∂θ1θ2

(8.11)

The supercharges can be realized in superspace by generators of supertransla-
tions:

Qα = ∂

∂θα
− iσ

μ
αα̇θ

α̇
∂μ, Qα̇ = − ∂

∂θ α̇
+ iθασ

μ
αα̇∂μ. (8.12)

To define the concept of (anti) chiral fields one defines a supercovariant
derivative:

Dα = ∂

∂θα
+ iσ

μ
αα̇θ

α̇
∂μ, Dα̇ = − ∂

∂θα̇
− iθασ

μ
αα̇∂μ. (8.13)

A superfield ! is called “chiral” if:

Dα̇ Φ = 0. (8.14)

Anti-chiral fields are defined by reversing the role of the θ and θ .
One introduces the variable,

yμ = xμ + iθσμθ (8.15)

in terms of which the expansion of a chiral field is,

Φ(y) = A(y) + √
2θψ(y) + θθF (y) (8.16)

The Taylor expansion terminates after just a few terms because of the anticom-
muting property of the Grassmann coordinates. As a function of the coordinate x
the expansion may be written as follows:

Φ(x) = A(x) + iθσμθ ∂μA(x) + 1
4θθθθ ∗ A(x)+ √

2θψ(x)

− i√
2
θθ ∂μψ(x)σμθ + θθF (x)

(8.17)
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The key point is that

L =
∫

d2θ Φ(x) (8.18)

is a invariant under supersymmetric transformations (up to a total derivative).
After the integration some terms will disappear from the expansion of !(x)

leaving only:

Φ(x) = A(x) + √
2θψ(x) + θθF (x) (8.19)

A(x) will be associated with a complex Boson; ψ(x) will be associated with a
Weyl Fermion and F(x) acts as an auxiliary field that carries no physical degrees
of freedom. These are called the component fields of the superfield. The product of
two chiral fields also produces a chiral field. Therefore, any polynomial, W(!), can
be used to construct a supersymmetry invariant as

L =
∫

d2θW (Φ) = FW(Φ) (8.20)

is a supersymmetry invariant. This is used to provide a potential for the chiral field.
The kinetic terms are described by:

∫
d2θd2θ ΦiΦj = ΦiΦj

∣∣∣∣
θθθθ

(8.21)

! is an anti chiral field. After expanding and extracting the θθθθ term one
obtains (up to total derivatives):

F ∗
i Ff − ∣∣∂μA∣∣2 + i

2
∂μψσ

μ
ψ (8.22)

One has thus constructed the following Lagrangian:

L = ΦiΦi

∣∣
θθθθ

+
[
λiΦi + 1

2
mijΦiΦj + 1

3
gijkΦiΦjΦk

]
θθ

(8.23)

= i∂ψiσψi + A∗
i ∗ Ai + F ∗

i Fi + λiFi + mij

(
AiFj − 1

2ψiψj

)
+ gijk

(
AiAjFk − ψiψjAk

) + h.c.
(8.24)

One can eliminate the auxiliary fields Fi, F ∗
i in favor of the fields carrying

quantum degrees of freedom. The equation of motion for F ∗
k is as follows:

Fk = λ∗
k + mijA

∗
i + g∗

ijkA
∗
i A

∗
j (8.25)
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This gives:

L = i∂ψiσψi + A∗
i ∗ Ai − 1

2mijψiψj − 1
2m

∗
ijψ

∗
i ψ

∗
j

− gijkψiψjAk − g∗
ijkψiψj − A∗

k − F ∗
i Fi

(8.26)

where the last term leads after integration on the Fis to a potential for the fields A,A∗ ;
these are known as the F terms, VF(A∗ ,A). (Note, VF ≥ 0). It turns out as explained
later that at the ground state this must vanish i.e. VF(A∗ ,A) = 0 if SUSY is not to
be spontaneously broken. This in turn implies that Fi = 0 for such a symmetric
ground state. Although this is a classical analysis so far, in fact it is true to all orders
in perturbation theory as there exists a non-renormalization theorem for such an
effective potential in SUSY theories. The Lagrangian described above is called the
Wess-Zumino Lagrangian (WZ).

So far the scalar fields have been defined over simple flat manifolds. To describe
the kinetic terms of supersymmetric Lagrangians of systems containing scalar
fields spanning complicated manifolds it is convenient to introduce the following
supersymmetry invariant:

∫
d4θK

(
Φ,Φ

)
. (8.27)

K
(
Φ,Φ

)
is called the Kähler potential, unlike the potential W(!) but similar to

the kinetic term introduced above, the Kähler potential depends on both ! and Φ.
One may add any function of ! or Φ to the integrand since these terms will vanish
after integration. For the usual kinetic terms, K is taken to be given by K = ΦΦ

which produces the −δij∂μA∗i∂μAj kinetic terms for the scalars. For the case of a
sigma model with a target space whose metric is gij; this metric is related to the
Kähler potential by:

gij = ∂2K

∂Φi∂Φj

. (8.28)

The above supersymmetry invariant (8.27) which previously gave the usual
kinetic terms in the action, produces for general K the action of a supersymmetric
sigma model, with the target space metric given by Eq. (8.28).

8.2.2.2 Global Symmetries

It is possible to construct Lagrangians which have a global symmetry which does
not commute with supersymmetry and thus assigns different quantum numbers
to particles in the same supermultiplet. This symmetry already in its discrete
form forbids unwanted interaction terms which strongly violate baryon and lepton
conservation laws. Such interactions arise due to the bosonic superpartners to
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standard model particles carrying Baryonic and Leptonic numbers. The symmetry
also in its continuous U(1) version turns out to play a possible role in the possibilities
to spontaneously break SUSY. It is called R symmetry.

R-symmetry is a global U(1) symmetry that does not commute with the super-
symmetry. Its discrete version is called R parity. The action of the R-symmetry on a
superfield ! with R-character n as follows.

RΦ (θ, x) = exp (2inα)Φ (exp (−iαθ) , x) (8.29)

RΦ
(
θ, x

) = exp (−2inα)Φ
(
exp

(
iαθ

)
, x

)
(8.30)

Since the R-charge does not commute with the supersymmetry, the component
fields of the chiral field have different R-charges. For a superfield ! with R-character
n, the R-charges of the component fields may be read off as follows:

R (lowest component of Φ) = R(A) ≡ n,R (ψ) = n − 1, R(F ) = n − 2
(8.31)

The R-charge of the Grassmann variables is given by:

R (θα) = 1, R (dθα) = −1 (8.32)

with, barred variables having opposite R charge. The kinetic term ΦΦ is an R
invariant. (θθθθ is an invariant.) For the potential term,

∫
d2θW (8.33)

to have zero R charge requires that R(W) = 2. For the resulting mass term from
W = 1

2mΦ2,

mψψ + m2|A|2, (8.34)

to have vanishing R-charge requires

R (Φ) = R(A) = 1, R (ψ) = 0 (8.35)

Adding the cubic term:

W3 = λ

3
Φ3 (8.36)
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produces

V = |λ|2|A|4 + λAψψ. (8.37)

This term is not R-invariant with the R-charges given by (8.35). To restore R-
invariance requires λ is assigned an R-charge of −1. This can be viewed as simply
a book keeping device or more physically one can view the coupling as the vacuum
expectation value of some field. The expectation value inherits the quantum numbers
of the field. This is how one treats for example the mass parameters of Fermions
in the standard model. There is also one other global U(1) symmetry, one that
commutes with the supersymmetry. All component fields are charged the same with
respect to this U(1) symmetry. Demanding that the terms in the action maintain this
symmetry requires an assignment of U(1) charges to λ, and m.

The charges are summarized in the following table:

U(1) U(1)R
Φ 1 1
m −2 0
λ −3 −1
W 0 2

These symmetries can be used to prove important nonrenormalisation theorems.
In particular it can be shown that the potential:

W = 1

2
m Φ2 + 1

3
λΦ3. (8.39)

does not change under renormalization.
These non-renormalization theorems play an important role in analyzing the

dynamics of supersymmetric systems and in addressing the so called hierarchy
problem.

8.2.2.3 Lagrangians for SUSY Gauge Theories

A vector superfield contains spin 1 and spin 1
2 component fields. It obeys a reality

condition V = V .

V = B + θχθχ + +θ2C + θ
2
C − θσμθAμ

+ iθ2θ
(
λ + 1

2σ
μ∂μχ

)
− iθ

2
θ
(
λ − 1

2σ
μ∂μχ

)
+ 1

2θ
2θ

2 (
D2 + ∂2B

) (8.40)
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B,D, Aμ are real and C is complex. The Lagrangian has a local U(1) symmetry
with a gauge parameter, � an arbitrary chiral field:

V → V + i
(
Λ − Λ

)
(8.41)

B, χ , and C are gauge artifacts and can be gauged away. The symmetry is actually
U(1)C as opposed to the usual U(1)R because although the vector field transforms
with a real gauge parameter, the other fields transform with gauge parameters that
depend on the imaginary part of �.

It is possible to construct a chiral superfield, Wα , from V as follows

Wα = −1

4
DDDαV,Dβ̇Wα = 0 (8.42)

One may choose a gauge (called the Wess Zumino gauge) in which B, C and χ

vanish and then expand in terms of component fields,

V (y) = −θσμθAμ + iθ2θ λ − iθ
2
θλ + 1

2θ
2θ

2
D

Wα(y) = −iλα +
(
δ
β
αD − i

2 (σ
μσν)αβFμν

)
θβ + (

σμ∂μλ
)
α
θ2 (8.43)

Where Aμ is the vector field, Fμν its field strength, λ is the spin 1
2 field and D is

an auxiliary scalar field. Under the symmetry (8.41), the component fields transform
under a now U(1)R symmetry as:

Aμ → Aμ − i∂μ
(
B − B∗) , λ → λ,D → D (8.44)

Note, W is gauge invariant. The following supersymmetric gauge invariant
Lagrangian is then constructed:

L =
∫

d2θ

(−iτ

16π

)
WαWα + h.c. (8.45)

where the coupling constant τ is now complex,

τ = θ

2π
+ i

4π

g2.
(8.46)

Expanding this in component fields produces,

L = 1

4g2
FμνF

μν + 1

2g2
D2 − i

g2
λσDλ + θ

32π2 (∗F)μνFμν . (8.47)

D is a non-propagating field. The θ term couples to the instanton number density
(this vanishes for abelian fields in a non-compact space). A monopole in the
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presence of such a coupling will obtain an electric charge. The supersymmetries
acting on the component fields are, (up to total derivatives):

δεA = √
2εψ

δεψ = i
√

2σμε∂μA + √
2εF

δεF = i
√

2εσμ∂μψ

δεFμν = i
(
εσμ∂νλ + εσμ∂νλ

) − (μ ↔ ν)

δελ = iεD + σμνεFμν

δεD = εσμ∂μλ − εσμ∂μλ.

(8.48)

One may also add to the action a term linear in the vector field V, known as a
Fayet-Iliopoulos term:

2K
∫

d2θd2θV = KD =
∫

dθαWα + h.c. (8.49)

It plays a possible role in the spontaneous breaking of SUSY. The U(1) gauge
fields couple to charged chiral matter through the following term

L =
∑
i

∫
d2θd2θΦi exp (qiV )Φi (8.50)

Under the gauge transformation

V → V + i
(
Λ − Λ

)
,Φi → exp

(−iqiΛ
)
Φi (8.51)

Since there are chiral Fermions there is the possibility for chiral anomalies. In
order that the theory is free from chiral anomalies one requires:

∑
qi =

∑
q3
i = 0. (8.52)

Writing out the term (8.50) in components produces:

L = F∗F −
∣∣∣∣∂μφ + iq

2
Aμφ

∣∣∣∣
2

− iφσ

(
∂μ + iq

2
qAμ

)
ψ − iq√

2

(
φλψ − φλψ

) 1

2
qDφφ.

(8.53)

There are two auxiliary fields, the D and F fields.
Adding the kinetic term (8.47) for the vector field and a potential, W̃ (Φ) for the

matter, gives the total Lagrangian,

L =
∫

d2θ

(
WαWα +

∫
d2θ Φ

i
exp (qiV )Φi + W̃ (Φ)

)
(8.54)
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this produces the following potential,

V =
∑
i

∣∣∣∣∣
∂W̃

∂φi

∣∣∣∣∣
2

+ q2

4

((
2K +

∑
|φi |2

)2
(8.55)

So far only systems with U(1) vector fields were discussed. One can also
consider non-Abelian gauge groups. The fields are in an adjoint representation of
the group, Aa

μ,λa,Da, the index a is the group index, (a = 1 . . .dim(group)) and

Da = ∑
iφiT

a
R(Φi)

)
Φi .

8.2.3 Supersymmetrical Particle Spectrum in Nature?

The classification of the particles was naturally followed by an attempt to correlate
the known particles with the algebraic results. The photon is massless to a very good
approximation, the only known fermionic particle that at the time was considered
massless as well was the neutrino. It was found that in the standard models the two
cannot be members of the same multiplet. As SUSY is broken, it was at the time
expected that the breaking be spontaneous and in case of a global symmetry this
would lead to a massless spin one half Goldstone particle, a spin half fermion in
the case of broken SUSY. It would have also been nice and simple if the neutrino
would be at least the Goldstone fermion or as it has become termed a Goldstino.
This turned out not to be consistent with experiment as well. Eventually one got
resigned to the situation that all known particles, be they bosons or fermions, have
supersymmetric partners which are yet to be discovered. The yet to be confirmed
spin zero elementary particle, the Higgs, has a spin one half superpartner—the
Higgsino. In fact in a supersymmetric model extension of the standard model at least
two Higgs fields are required. The SUSY interaction terms can each be composed
only of chiral, or only antichiral fields. For such interaction terms a single Higgs
field would not permit to construct the Yukawa interaction terms needed to provide
masses to all quarks and leptons. Also with only one field the theory would not
be consistent as it would suffer what is called an anomaly. The particles carry a
U(1) gauge charge, and in the presence of a single Higgsino that gauge symmetry
would become invalid once quantum corrections are taken into account. An extra
Higssino, and thus an extra Higgs, is required to restore the gauge invariance at the
quantum level. The two mentioned problems get to be resolved by adding the one
extra Higgs supermultiplet. The superpartners of the known spin one half quarks and
leptons are denoted squarks and sleptons and are required to be spin zero bosons.
The superpartners of the various spin one known gauge particles are termed the
photino, wino, zino and gluino. They are assagined spin one half and are in the
adjoint representation of the gauge group. In the LHC a major effort is planned for
observing these particles.
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8.2.4 Spontaneous SUSY Breaking: Perturbative Analysis

Any attempt to relate supersymmetry to nature at the level of the known particles
requires the symmetry to be broken. It could have been broken explicitly, in
this section the currently known mechanisms for its spontaneous breaking are
described. This includes the breaking at the classical level in a class of gauge
theories (by D terms) and in theories with no gauge particles (by F terms). Also
are described the dynamical breaking of Supersymmetry as well as its effective
breaking in a metastable vacuum. For SUSY not to be spontaneously broken all
the SUSY generators Qi

α need to annihilate the ground state. As the Hamiltonian
is constructed out of positive pairings of the SUSY generators, SUSY preservation
occurs if and only if the energy of the ground state vanishes. Conversely, SUSY is
broken if and only if the energy of the ground state does not vanish, Qi

α | G.S. > 	=
0 iff EG.S. 	= 0. As the Hamiltonian of the SUSY system is non-negative, the non-
vanishing ground state energy in the case spontaneous SUSY breaking is positive.

As for the actual mechanism for the spontaneous breaking, it turned out that the
breaking of supersymmetry requires a somewhat elaborate structure.

8.2.4.1 F-terms

Consider first a system which contains only spin zero and spin one-half particles. In
that case the condition for SUSY not to be broken is the vanishing of the potential
generated by the F terms. Super Symmetry is thus unbroken when the following
equations have a solution:

VF = 0 ⇐⇒ Fi = 0 ∀i, (8.56)

These are n (complex) equations with n (complex) unknowns. Generically, they
have a solution. Take the example of the one component WZ model, where

F1 = −λ − mA + gA2. (8.57)

This has a solution. There is no supersymmetry breaking classically. The non-
renormalization theorem for the F terms ensures this result to be correct to all orders
in perturbation theory. The solution is:

V = A∗A|(gA − m)|2 (8.58)

and hence there are actually two supersymmetric vacuum: either at < A > = m/g or
at < A> = 0.

Let us examine now how supersymmetry may be spontaneously broken. The
following anecdote may be of some pedagogical value. It turns out that a short time
after supersymmetry was introduced arguments were published which claimed to
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prove that supersymmetry cannot be broken spontaneouly at all. Supersymmetry
resisted breaking attmepts for both theories of scalars and gauge theories. One could
be surprised that the breaking was first achieved in the gauge systems. This was done
by Fayet and Illiopoulos. The presence in the collaboration of a student who paid
little respect to the general counter arguements made the discovery possible. Fayet
went on to discover the breaking mechanism also in supersymmetric scalar theories
as did O’Raighfeartaigh.

We will describe four examples of mechanisms of breaking Super Symmetry.
The first will be for theories not containing gauge particles. The second for systems
containing gauge particles, the third is of a dynamical breaking of Super Symmetry
and the fourth occurs if our universe happens to be in a long lived metastable vacuum
of positive kinetic energy.

8.2.4.2 SUSY Breaking in Theories with Scalars and Spin One Half
Particles by F Terms

The Fayet-O’Raifeartaigh potential contains three fields this is the minimal number
needed in order to break supersymmetry. It is:

LPotential = λΦ0 + mΦ1Φ2 + gΦ0Φ1Φ1 + h.c. (8.59)

Minimizing the potential leads to the following equations:

0 = λ + gΦ1Φ1

0 = mΦ2 + 2gΦ0Φ1

0 = mΦ1

(8.60)

These cannot be consistently solved so there cannot be a zero energy ground state
and supersymmetry must be spontaneously broken. To find the ground state one
must write out the full Lagrangian including the kinetic terms in component fields
and then minimize. Doing so one discovers that in the ground state A1 = A2 = 0
and A0 is arbitrary. The arbitrariness of A0 is a flat direction in the potential, the
field along the flat direction is called a moduli. Computing the masses by examining
the quadratic terms for component fields gives the following spectrum: the six real
scalars have masses: 0,0,m2m2,m2 ± 2gλ; and the Fermions have masses: 0,2 m.
The zero mass Fermion is the Goldstino. We turn next to breaking of supersymmetry
theories that are gauge invariant.

8.2.4.3 SUSY Breaking in Supersymmetric Gauge Theories

The potential for the supersymmetric gauge theory was obtained to be:

V =
∑
i

∣∣∣∣∣
∂W̃

∂φi

∣∣∣∣∣
2

+ q2

4

(
2K +

∑
|φi |2

)2
(8.61)
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The first term is the F-term and the second is the D-term. Both these terms need
to vanish for supersymmetry to remain unbroken.

Some remarks about this potential are in order:
Generically, the F-terms should vanish since there are indeed n equations for

n unknowns. If < ϕi > = 0, that is if the U(1) is not spontaneously broken then
supersymmetry is broken if and only if KF. I. 	= 0. When K = 0 and the F-terms have
a vanishing solution then so will the D-term and there will be no supersymmetry
breaking.

These ideas are demonstrated by the following example. Consider fields !1,!2
with opposite U(1) charges and Lagrangian given by:

L = 1

4

(
WαWα + h.c.

)+ Φ1 exp(eV )Φ1 + Φ2 exp (−eV )Φ2 + m Φ1Φ2 + h.c. + 2KV

(8.62)

This leads to the potential:

V = 1

2
D2 + F1F

∗
1 + F2F

∗
2 (8.63)

where

D + K + e
2

(
A∗

1A1 − A∗
2A2

) = 0
F1 + mA2∗ = 0
F2 + mA∗

1 = 0
(8.64)

Leading to the following expression for the potential:

V = 1

2
K2 +

(
m2 + 1

2
eK

)
A∗

1A1 +
(
m2 − 1

2
eK

)
A∗

2A2 + 1

8
e2(A∗

1A1 − A∗
2A2

)2

(8.65)

Consider the case, m2 > 1
2eK . The scalars have mass,

√
m2 + 1

2eK and√
m2 − 1

2eK . The vector field has zero mass. Two Fermions have mass m and
one Fermion is massless. Since the vector field remains massless then the U(1)
symmetry remains unbroken. For K 	= 0, supersymmetry is broken as the Bosons
and Fermions have different masses. (For K = 0 though the symmetry is restored.)
The massless Fermion (the Photino) is now a Goldstino. Note that a trace of the
underlying supersymmetry survives as one still has TrM2

B = TrM2
F even after

the breaking of supersymmetry. MB and MF are the bosonic and fermionic mass
matrices respectively.

Next, consider the case, m2 < 1
2eK; at the minimum, A1 = 0,A2 = v where

v2 ≡ 4
1
2 eK−m2

e2 .



474 E. Rabinovici

The potential expanded around this minimum becomes, with A ≡ A1 and Ã ≡
A2 − v:

V = 2m2

e2

(
eK − m2

)+ 1
2

(
1
2e

2v2
)
AμA

μ

+ 2m2A∗A = 1
2

(
1
2e

2v2
) (

1√
2

(
Ã + Ã∗

))2

+
√
m2 + 1

2e
2v2

(
ψψ̃ + ψψ̃

)
+ 0 × λλ

(8.66)

The first term implies that supersymmetry is broken for m > 0. The photon is
massive, m2

γ = 1
2e

2v2 implying that the U(1) symmetry is broken as well. The

Higgs field, 1√
2

(
Ã + Ã∗

)2
has the same mass as the photon. Two Fermions have

non-zero mass and there is one massless Fermion, the Goldstino.
In the above example there is both supersymmetry breaking and U(1) symmetry

breaking except when m = 0 in which case the supersymmetry remains unbroken.
Next consider a more generic example where there is U(1) breaking but no

supersymmetry breaking, ! is neutral under the U(1) while !+ has charge +1 and
!− has charge −1. The potential is given by:

L = 1

2
mΦ2 + μΦ+Φ− + λΦΦ+Φ− + h.c. (8.67)

There are two branches of solutions to the vacuum equations (a denotes the
vacuum expectation value of A, etc.):

a+a− = 0, a = −−λ

m
(8.68)

which leads to no U(1) breaking and

a+a− = −1

8

(
λ − mμ

g

)
, a = −μ

g
(8.69)

which breaks the U(1) symmetry.
Note, the presence of a flat direction:

a+ → eαa+, a− → e−αa− (8.70)

leaves a−a+ fixed and the vacuum equations are still satisfied.
Typical generic supersymmetry breaking requires that some of the equations

for the vanishing of the potential to be redundent. Such could be the case if the
system had an extra symmetry such as an R symmetry mentioned before. In the
examples above containing only scalar fields this was indeed the case. The absence
of a zero energy solution led also to a spontaneous breaking of the R-symmetry.
This should lead to the presence of a Goldstone Boson corresponding to the broken
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U(1)R. Inverting this argument leads to the conclusion that supersymmetric breaking
in nature is not easy to obtain since we do not observe even such a particle. This
argument was revisited in recent years.

So far only systems with U(1) vector fields were discussed. To have a non-
vanishing FayetIliopoulos term there needs to be a U(1) factor in the gauge group.
To obtain a breaking of SUSY in a gauge system with does not have a U(1) factor
one needs to consider dynamical SUSY breaking. This is a more complex problem
and new tools were developed to explore this possibility. The functional form of
such a breaking allows to obtain a scale of SUSY breaking which is naturally much
smaller than the relevant cutoff of the problem. This is reflected by the relation:

MSUSY−breaking = Mcutoff exp (−c/g (Mcutoff)) . (8.71)

8.2.5 Dynamics of SUSY Gauge Theories and SUSY Breaking

The description of the mechanism of dynamical breaking of SUSY is preceded by
a survey of the general possible phase structure of gauge theories as well as its
concrete realizations in SUSY gauge theories.

8.2.5.1 Phases of Gauge Theories

The phase structure of gauge theories can be introduced by analyzing them as
statistical mechanical systems regulated by a finite lattice. The basics can be
illustrated by considering D = 4 lattice gauge theories, in particular those for which
the gauge fields which are ZN valued. The system has a coupling g.

The effective “temperature” of the system is given by, T = Ng2

2π .
For a given theory there is a lattice of electric and magnetically charged operators.

The electric charge is denoted by n and the magnetic charge by m. An operator with
charges (n,m) is perturbative, i.e., it is an irrelevant operator and weakly coupled to
system, so long as the free energy, F > 0, i.e.,

n2T + m2

T
>

C

N
, (8.72)

however, when the free energy is negative for the operator (n,m), it condenses
indicating the presence of a relevant operator and hence an infra-red instability, this
occur when,

n2T + m2

T
<

C

N
. (8.73)

Keeping N,C fixed and vary T.
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( << 1)T

( >> 1)T

( ~ 1)T

Fig. 8.1 Different possible phases

The system has three phases depending which operators condense. At small T,
there is electric condensation which implies that there is electric charge screening,
magnetic charges are confined, and the log of the Wilson loop is proportional to the
length of the perimeter of the loop. (This is called the Higgs phase).

At high T, magnetic condensation occurs, this is the dual of electric condensation.
Magnetic charges are screened, electric charges are confined and the log of the
Wilson loop is proportional to the area. (This is called the confinement phase.) For
intermediate values of T it is possible that there is neither screening of charges nor
confinement, this is the Coulomb phase (Fig. 8.1).

In the presence of a θ parameter, an electric charge picks up a magnetic charge
and becomes dyonic.

n′ = n + θ

2π
m (8.74)

This lead to a tilted lattice of dyonic charges and one may condense dyons with
charges (n0,m0). This leads to what is called oblique confinement with the charges
commensurate with (n0,m0) being screened and all other charges being confined.

These ideas relate to the gauge theories of the standard model. For QCD it
was suggested that confinement occurs due the condensation of QCD monopoles.
This is a magnetic superconductor dual to the electric one which describes the
weak interactions. It is difficult to study this phenomenon directly. The Dirac
monopole in a U(1) gauge theory is a singular object; however by embedding the
monopole in a spontaneously broken non-Abelian theory with an additional scalar
field one may smooth out the core of the monopole and remove the singularity.
One may proceed analogously, by enriching QCD; adding scalars and making the
theory supersymmetric one can calculate the condensation of monopoles in a four
dimensional gauge theory.

In general the possible phase structure of gauge theories and their actual realiza-
tions were obtained by using various approximation schemes. While supersymmetry
has not yet disclosed if it part of nature in some form or another, in its presence, the
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Fig. 8.2 Possible phases of
gauge theories (g1 and g2 are
some relevant couplings)
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phase structure of gauge theories was exactly obtained in some cases. Most earlier
exact important results in field theories, such as asymptotic freedom, were obtained
in circumstances in which the couplings are weak. SUSY enables to obtain also
results in the strong coupling regime. The analytic control seems to become larger
the more supersymmetries the system possesses. This has been achieved in four
dimensions for supersymmetric gauge theories with N = 1,2,4 supersymmetries.
There are many new methods that have been utilized and the phase structures of
these theories have been well investigated. Novel properties of these theories have
been discovered such as new types of conformal field theories and new sorts of
infra-red duality. To these we turn next (Fig. 8.2).

8.2.5.2 SUSY QCD: The Setup

The goal will be to examine theories that are simple supersymmetric extensions of
QCD. Consider the case of a N = 1 vector multiplet with gauge group SU(NC), and
NF chiral multiplets in the fundamental representation of SU(NC), and NF chiral
multiplets in the antifundamental representation. The Lagrangian is:

L = ∫
(−iτ )TrWαWαd

2θ + h.c.

+ Q+
F exp (−2V )QF + Q̃ exp(2V )Q+

F

∣∣
θθθθ

+ mFQ̃F Q|θθ (8.75)

where the coupling is:

τ = θ

2π
+ i

4π

g2.
(8.76)
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Apart from the local SU(NC) gauge symmetry, the fields are charged under the
following global symmetries.

SU(NF )L × SU(NF )R × U(1)V × U(1)A × U(1)RC

Qi
a NF 1 1 1 1

Q̃a
i 1 NF −1 1 1

Wα 1 1 0 0 1

When NC = 2, because 2 ∼ 2, the global flavor symmetry is enhanced to
SO(2NF)L × SO(2NF)R.

There is an anomaly of the U(1)A × U(1)R symmetry. A single U(1) symmetry
survives the anomaly. This is denoted as U(1)R and is a full quantum symmetry.
The adjoint Fermion contributes 2NC × R(λ) to the anomaly. The Chiral Fermions
contribute, 2NF × RF . R(λ) = 1, while RF is now chosen so that the total anomaly
vanishes,

2NC + 2RFNF = 0. (8.77)

This leads to

RF = − NC

NF .
(8.78)

The Bosons in the chiral multiplet have an R-charge one greater than the
Fermions in the multiplet. Thus,

RB = 1 − NC

NF

= NF − NC

NF

. (8.79)

The non-anomalous R-charge, is given by:

R = RC − NC

NF

QA, (8.80)

where RC is the classical R-charge and A is the classical U(1)rmA charge. Following
non-anomalous global charges: This leads to the

SU(NF )L × SU(NF )R × U(1)V × U(1)R
Qi

a NF 1 1 NF −NC

NF

Q̃a
i 1 NF −1 NF −NC

NF

Wα 1 1 0 1

One is now ready to identify the classical moduli space.
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8.2.5.3 The Moduli Space

The classical moduli space is given by solving the D-term and F-term equations:

Da = Q+
F T

a QF − Q̃F T
aQ̃+

F

FQF = −mFQ̃

F
Q̃F

= −mFQ

(8.81)

For NF = 0 or for NF 	= 0 and mF 	= 0, there is no moduli space. Note, the vacuum
structure is an infra-red property of the system hence having mF 	= 0 is equivalent
to setting NF = 0 in the deep infrared.

Consider the quantum moduli space of the case where NF = 0. One can show that
the number of zero energy states of the system is no smaller than The Witten index,
Tr(−1)F = NC i.e. the rank of the group +1. This number is larger than zero and
thus there is no supersymmetry breaking in these systems. There are 2NC Fermionic
zero modes (from the vector multiplet). These Fermionic zero modes break through
instanton effects the original U(1)R down to Z2NC. Further breaking occurs because
the gluino two point function acquires a vacuum expectation value which breaks the
symmetry down to Z2. This indeed leaves NC vacua. The gluino condensate is:

< λλ >= exp

(
2πik

NC

)
Λ3

NC
(8.82)

where �NC is the dynamically generated scale of the gauge theory and
k = 1, . . . ,NC − 1 label the vacua. Chiral symmetry breaking produces a mass
gap. Note, because chiral symmetry is discrete there are no Goldstone Bosons.
Further details of quantum moduli spaces will be discussed later.

Consider the case where mF = 0 and 0 < NF < NC. The classical moduli space
is determined by the following solutions to the D-term equations:

Q = Q̃ =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 0 .. .. 0
0 a2 0 .. .. 0

. 0 .. .. 0
. 0 .. .. 0
aNF 0 .. .. 0

⎞
⎟⎟⎟⎟⎟⎠

NF ×NC

(8.83)

Where the row indicates the flavor and the column indicates the colour. There are
NF diagonal non-zero real entries, ai. (To validate this classical analysis the vacuum
expectation values must be much larger than any dynamically generated scale, i.e.,
ai >> �. The gauge symmetry is partially broken:

SU (NC) → SU (NC − NF ) . (8.84)
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This is for generic values of ai. By setting some subset of ai to zero one may break
to a subgroup of SU(NC) that is larger than SU(NC − NF). Also, if NF = NC − 1
then the gauge group is complete broken. This is called the Higgs phase.

The number of massless vector Bosons becomes

NC
2 −

(
(NC − NF )

2 − 1
)

= 2NCNF − NF
2, (8.85)

the number of massless scalar fields becomes,

2NCNF −
(

2NCNF − N2
F

)
= N2

F . (8.86)

The matrix

Mĩj ≡ Q̃ĩQj (8.87)

forms a gauge invariant basis. The Kahler potential is then,

K = 2Tr
√(

MM
)
. (8.88)

When singularities appear, i.e. detM = 0, it signals the presence of massless
particles as well as of enhanced symmetries.

When NF ≥ NC, one has the following classical moduli space,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0
0 a2

·
·
aNC

0 0 ·· ·· 0
· · ·· ·· 0
0 0 ·· ·· 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

NF ×NC

, Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã1 0
0 ã2

·
·
ãNC

0 0 ·· ·· 0
· · ·· ·· 0
0 0 ·· ·· 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

NF ×NC

(8.89)

with the constraint that

|ai |2 − |ãi |2 = ρ. (8.90)

Generically the SU(NC) symmetry is completely broken. However, when
ai = ãi = 0 then a subgroup of the SU(NC) can remain.
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We will now consider some special cases, first the classical moduli space for
NF = NC. The dimension of the moduli space is given by:

2NC
2 −

(
NC

2 − 1
)

= NC
2 + 1 = NF

2 + 1 (8.91)

There are NF
2 degrees of freedom from M˜ij and naively one would have two

further degrees of freedom from:

B = εi1...iNC
Q

i1
j1
. . .Q

iNC

jNF
, B̃ = εi1...iNC

Q̃
i1
j1
. . . Q̃

iNC

jNF
. (8.92)

There is, however, a classical constraint:

detM − BB̃ = 0 (8.93)

which means M, B and B̃ are classically dependent. This leaves only N2
F + 1

independent moduli.
Generically, as well as the gauge symmetry being completely broken, the global

flavor symmetry is also broken. There is a singular point in the moduli space where
M = 0 = B = B̃.

Next, consider the case, Nf = NC + 1, again there are N2
F moduli from Mĩj .

There are also, 2(NC + 1) degrees of freedom given by:

Bi = εii1...iNC
Q

i1
j1
. . .Q

iNC

jNF
, B̃ĩ = εi1...iNC

Q̃
i1
j1
. . . Q̃

iNC

jNF
. (8.94)

However, there are again the classical constraints:

detM − MĩjB
iBj̃ = 0

Mj̃iBi = MĩjBj̃ = 0
(8.95)

giving again an N2
F + 1 dimension moduli space. (The moduli space is not

smooth). There is a generic breaking of gauge symmetry. In all these cases
the potential has flat directions of zero energy, SUSY is unbroken. The non-
renormalization theorem extends this result to all order in perturbation theory, it
will be the non-perturbative effects which will lift the vacuum degeneracies in some
cases and will lead to dynamical breaking of SUSY.

8.2.5.4 Quantum Moduli Spaces/Dynamical SUSY Breaking

A rich structure emerges. One is required to examine on a case by case basis the role
that quantum effects play in determining the exact moduli space. Quantum effects
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Fig. 8.3 Potential for
1 < NF < NC, it has no
ground state

V

det [M]

both perturbative and nonperturbative can lift moduli. In what follows the quantum
moduli space is examined for the separate cases: 1

≤ NF ≤ NC − 1, NF = NC,NF ,NC + 1, NC + 1 < NF ≤ 3NC

2
,

3NC

2
< NF < 3NC,NF = 3CN, and NF > 3NC.

We start with the study of the quantum moduli space for 0 < NF < NC.
Classically, the dimension of the moduli space is N2

F from Q, Q̃. The following
table summarizes the charges under the various groups.

SU (NC) SU(NF )L SU(NF )R U(1)V U(1)A U(1)Rcl
U(1)R

Qi
a NC NF 1 1 1 1 NF −NC

NF

Q̃a
i NC 1 NF −1 1 1 NF −NC

NF

Λ3NC−NF 1 1 1 0 2NF 2NC 0
M 1 NF NF 0 2 2 2 − 2NC

NF

detM 1 1 1 0 2NF 2NF 2 (NF − NC)

�, the dynamically generated QCD scale is assigned charges as m and g were
before. The power 3NC − NF is the coefficient in the one loop beta function. There
is no Coulomb phase so Wα does not appear.

The symmetries imply, the superpotential, W, has the following form:

W =
(
Λ3NC−NF

)a
(detM)bc (8.96)

a, b are to be determined. c is a numerical coefficient, If c does not vanish, the
classical moduli space gets completely lifted by these nonperturbative effects (Fig.
8.3).
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One examines the charges of W under the various symmetries. Automatically, the
charges of W for the flavor symmetries, SU(NF)L × SU(NF)R and the U(1)V vanish.

If one requires the U(1)A charge to vanish then this implies a = −b. Requiring
the U(1)R charge to vanish implies that b = 1

NF −NC
. These restrictions fix:

W = c

(
Λ3NC−NF

detM

) 1
NC−NF

(8.97)

For non-vanishing c, all the moduli are now lifted and there is no ground state.
What is the value of c? This is a difficult to calculate directly unless there is

complete higgsing. For NF = NC − 1 there is complete symmetry breaking and one
can turn to weak coupling. From instant on calculations one calculates that c 	= 0
and the prepotential for the matter fields is

W ∼
(
Λ2NC+1

detM

)
. (8.98)

One may now go to NF < NC − 1 by adding masses and integrating out the heavy
degrees of freedom. This produces

< Mi
j>min =

(
m−1

)i
j

(
Λ3NC−NF det m

) 1
NC . (8.99)

Thus in this region the dynamical effects remove the supersymmetric vaccum. In
fact the system has no ground state and supersymmetry is broken dynamically. One
can go one step further and consider the possibility that the effective potential above
is modified so as to have a local minimum with positive vacuum energy. It is possible
to construct many such examples and consider that supersymmetry seems broken
as a result of the universe being for the (long) time being in the metastable state.
Eventually the system may tunnel to another lower energy vacuum and perhaps
eventually will reach a SUSY vacuum. In the analysis of such systems once needs
also to take into account gravity. In the cases which follow supersymmetry is not
broken, they are described to illustrate the rich structure which emerges once one
can treat the system when it strongly interacts. Perhaps also structures like those of
the dyonic condensates will yet play a role somewhere in nature (Fig. 8.4).

We now turn to study the dynamics and quantum moduli space for the NF ≥ NC

case. In this situation there is a surviving moduli space. In the presence of a mass
matrix, mij for matter one obtains

< Mi
j >=

(
m−1

)i
j

(
Λ3NC−NF det m

) 1
NC . (8.100)
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Fig. 8.4 Potential with finite
masses has a ground state.
Mmin → ∞ as m → 0

V

MMmin

Previously, for the case of NF < NC, it turned out that m → 0 implied < Mi
j > →

∞ thus explicitly lifting the classical moduli space. For NF ≥ NC it is possible to
have m → 0 while keeping < Mi

j > fixed.
Consider the case where NF = NC. Quantum effects alter the classical constraint

to be:

detM − BB̃ = Λ2NC . (8.101)

This has the effect of resolving the singularity in moduli space. The absence of a
singularity means there will not be additional massless particles.

The physics of this theory depends on the position in moduli space of the vacuum.
For large, M/B/B̃ one is sitting in the Higgs regime; however, for small M/B/B̃

one is in the confining regime. Note that M cannot be taken smaller than �. As
the system has particles in the fundamental representations there is no actual phase
transition between these two regimes, the transition is of a quantitative nature.
In addition global symmetries need to be broken in order to satisfy the modified
constraint equation.

Consider some examples: with the following expectation value,

< Mi
j >= δijΛ

2, < BB̃ >= 0, (8.102)

the global symmetries are broken to:

SU(NF )V × UB(1) × UR(1), (8.103)

and there is chiral symmetry breaking. When,

< Mi
j >= 0, < BB̃ > 	= 0 (8.104)
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Fig. 8.5 Phases of super
QCD

then the group is broken to:

SU(NF )L × SU(NF )R × UR(1) (8.105)

which has chiral symmetry and also has confinement. This is an interesting situation
because there is a dogma that as soon as a system has a bound state there will be
chiral symmetry breaking (Fig. 8.5).

The dynamics for the case NF = NC + 1 brings about some different dynamics.
The moduli space remains unchanged. The classical and quantum moduli spaces
are the same and hence the singularity when M = B = B̃ = 0 remains. This is not
a theory of massless gluons but a theory of massless mesons and baryons. When,
M, B, B 	= 0 then one is in a Higgs/confining phase. At the singular point when,
M = B = B̃ = 0 there is no global symmetry breaking but there is “confinement”
with light baryons.
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Fig. 8.6 Two systems with a
different ultra-violet behavior
flowing to the same infra-red
fixed point.

There is a suggestion that in this situation, M,B, B̃ become dynamically
independent. The analogy is from the nonlinear sigma model, where because of
strong infrared fluctuations there are n independent fields even though there is a
classical constraint. The effective potential is:

Weff = 1

Λ2NC−1

(
Mi

jBiB̃
j − detM

)
(8.106)

the classical limit is taken by:

Λ → 0 (8.107)

which in turn imposes the classical constraint.
For higher values of the number of flavors NF the plot thickens even more as new

duality emerge. Infrared dualities which in some circumstances uncover new types
of dynamical structures.

8.2.5.5 Infra-red Duality

Two systems are called infra-red dual if, when observed at longer and longer length
scales, they become more and more similar (Fig. 8.6).

It has been observed that the following set of N = 1 supersymmetric gauge
theories are pairwise infra-red dual called Seiberg dualities.

System Dual System
Gauge Group #flavors Gauge Group #flavor #singlets

SU(NC)SO(NC)Sp(NC ) NFNF2NF SU(NF − NC)
SO(NF − NC + 4)
Sp(NF − NC − 2)

NFNF2NF N2
FN

2
FN

2
F

For a given number of colors, NC, the number of flavors, NF , for which the
infrared duality holds is always large enough so as to make the entries in the table
meaningful. Note that the rank of the dual pairs is usually different. Lets explain why
this result is so powerful. In general, it has been known for quite a long time that
two systems which differ by irrelevant operator have the same infra-red behavior.
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In these cases the UV structure of the Infrared dual theories is very different,
the dual systems have a different numbers of colors. The common wisdom in
hadronic physics has already identified very important cases of infra-red duality.
For example, QCD, whose gauge group is SU(NC) and whose flavor group is
SU(NF) × SU(NF) × U(1), is expected to be infra-red dual to a theory of massless
pions which are all color singlets. The pions, being the spin-0 Goldstone Bosons
of the spontaneously broken chiral symmetry, are actually infra-red free in four
dimensions. We have thus relearned that free spin-0 massless particles can actually
be the infra-red ashes of a strongly-interacting theory, QCD whose ultraviolet
behavior is described by other particles. By using supersymmetry, one can realize
a situation where free massless spin- 1

2 particles are also the infra-red resolution
of another theory. This duality allows for the first time to ascribe a similar role
to massless infra-red free spin-1 particles. Massless spin-1 particles play a very
special role in our understanding of the basic interactions. This comes about in the
following way: Consider, for example, the N = 1 supersymmetric model with NC

colors and NF flavors. It is infra-red dual to a theory with NF − NC colors and
NF flavors and N2

F color singlets. For a given NC, if the number of flavors, NF ,
is in the interval NC + 1 < NF < 3NC

2 , the original theory is strongly coupled
in the infra-red, while the dual theory has such a large number of flavors that it
becomes infrared free. Thus the infra-red behavior of the strongly-coupled system
is described by infrared free spin-1 massless fields (as well as its superpartners), i.e.
infrared free massless spin-1 particles (for example photons in a SUSY system)
could be, under certain circumstances, just the infra-red limit of a much more
complicated ultraviolet theory. This is the first example of a weakly interacting
theory in which spin one particles that in the infra-red may be viewed as bound
states of the dual theory. The duality has passed a large number of consistency
checks under many circumstances. The infrared duality relates two disconnected
systems. From the point of view of string theory the two systems are embedded in a
larger space of models, such that a continuous trajectory relates them. An additional
new consequence of this duality follows for the case

3NC

2
< NF < 3NC

the two dual theories are both asymptotically free in the UV and are describe
by the same nontrivial conformal field theory in the infrared. The panorama of
these structures is given in Fig. 8.8. Finally a class of examples was found among
N = 2 SUSY conformal systems for which there are two very different Lagrangian
descriptions as far as the local symmetries are involved which are actually identical
at all distance scales.
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8.2.5.6 More General Matter Composition of SUSY Gauge Theories

One can enrich the structure of the theory by adding Na particles in the adjoint
representation. At first one has no matter in the fundamental representation and
scalar multiplets which are adjoint valued. The potential for the scalars, ϕi is given
by:

V = ([ϕ, ϕ])2. (8.108)

This potential obviously has a flat direction for diagonal ϕ. The gauge invariant
macroscopic moduli would be Trϕk. Consider the non-generic example of NC = 2
and Na = 1, the supersymmetry is now increased to N = 2. There is a single complex
modulus, Trϕ2. Classically, SU(2) is broken to U(1) for Trφ2 	= 0. One would expect
a singularity at Trϕ2 = 0. The exact quantum potential vanishes in this case.

Naively, one could have expected that when Trϕ2 is of order � or smaller, one
would expect that the strong infra-red fluctuations would wash away the expectation
value for Trϕ2 and the theory would be confining. The surprising thing is that
when SU(2) breaks down to U(1), because of the very strong constraints that
supersymmetry imposes on the system, there are only two special points in moduli
space and even there the theory is only on the verge of confinement. Everywhere
else the theory is in the Coulomb phase. At the special points in the moduli space,
new particles will become massless.

One can examine the effective theory at a generic point in moduli space where
the theory is broken down to U(1). The Lagrangian is given by,

L =
∫

d2θ Im
(
τeff

(
Trφ2, g,Λ

)
WαW

α
)

(8.109)

The τ eff is the effective complex coupling which is a function of the modulus,
Trϕ2, the original couplings and the scale, �. This theory has an SL(2,Z) duality
symmetry. The generators of the SL(2,Z) act on τ , defined by (8.76), as follows:

τ → − 1

τ
, τ → τ + 1 (8.110)

This is a generalization of the usual U(1) duality that occurs with electromag-
netism to the case of a complex coupling. Recall the usual electromagnetic duality
for Maxwell theory in the presence of charged matter is:

E → B,B → −E, e → m,m → −e. (8.111)

This generalizes to a U(1) symmetry by defining:

E + iB, e + im. (8.112)
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The duality symmetry now acts by:

E + iB → exp (iα) (E + iB) , e + im → exp (iα) (e + im) . (8.113)

For the SU(2) case the moduli are given by u = Trϕ2, for SU(NC) the moduli are
given by uk = Trϕk, k = 2, . . . ,NC. The classical moduli space is singular at times,
there are no perturbative or nonperturbative corrections.

The dependence of τ on the moduli coordinate u was found. The vast number of
results and literature on this will not be described here. Briefly:

The following complex equation,

y2 = ax3 + bx2 + cx + d (8.114)

determines a torus. The complex structure of the torus, τ torus will be identified with
the complex coupling τ eff. a,b,c,d are known holomorphic functions of the moduli,
couplings, and scale, and so will implicitly determine τ torus.

When y(x) and y
′
(x) vanish, for some value of x, τ is singular. Therefore,

τeff = i∞, g2
eff = 0 (8.115)

and the effective coupling vanishes. This reflects the presence of massless charged
objects. This occurs for definite values of u in the moduli space. These new massless
particles are monopoles or dyons. The theory is on the verge of confinement. For
N = 2 supersymmetry that is the best one can do. The monopoles are massless but
they have not condensed. For condensation to occur the monopoles should become
tachyonic indicating an instability that produces a condensation. One can push this
to confinement by adding a mass term: m̃Trϕ2, or generally for SU(NC) the term:

δW = gkuk. (8.116)

This breaks N = 2 supersymmetry down to N = 1. The effective prepotential is
now:

W = M (uk) qq̃ + gkuk (8.117)

then

∂W

∂uk
= 0,

∂W

∂ (qq̃)
= 0 ⇒ M (< uk >) = 0, ∂ukM (< uk >) < qq̃ >= −gk

(8.118)

Since generically,

∂ukM (< uk >) 	= 0 (8.119)
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There will be condensation of the magnetic charge, confinement has been
demonstrated to be indeed driven by monopole condensation. A monopole is usually
a very heavy collective excitation. It is only the large amount of SUSY which allows
one to follow the monople as it becomes massless and even condenses.

8.2.6 Dynamics of SUSY Gauge Theories with N > 1 SUSY

8.2.6.1 N = 4 Supersymmetry

In the presence of this large amount of supersymmetry in four space-time dimen-
sions the particle content was described in an earlier section. It consists of spin
one, spin one half and spin zero particles. The particles are all in the adjoint
representation of the gauge group. They fall into representations of the SU(4) global
symmetry group as well. The full Lagrangian is fully dictated by the symmetry. The
large symmetry leads to several properties which can be demonstrated.

• The theory is scale invariant quantum mechanically. This was shown to all orders
in perturbation theory as well as non-perturbatively. This served as an example
of non-trivial four dimensional scale invariant theories.

• The theory has thus a meaningful coupling constant on which the physics truly
depends (unlike massless QCD in which dimensionless quantities do not depend
on the coupling). Moreover the coupling can be complexified by adding the θ

parameter. (In the absence of a chiral anomaly the theory truly depends also on
θ even though massless fermions are present). The theory is invariant under the
modular group SL(2,Z), this group relates in particular small and large values of
the coupling.

• The theory has flat directions along the scalar fields for any value of the coupling.
The different points along the flat directions are not generically related by any
symmetry. Each point characterizes a different vacuum choice for the system.
These different vacua are called moduli. There is a special point in the moduli
space and that is the point at the origin of field space where all scalar fields obtain
a zero expectation value. At that point the theory is realized in a scale invariant
manner. The massless fields rendering the theory with a rather complex analytic
structure. Choosing different vacua along the moduli space leads to different
residual gauge symmetries, as the scalar fields are in the adjoint representations
the residual gauge group is at least U(1)r where r is the rank of the group. In each
of these vacua the scale symmetry is spontaneously broken leading to a presence
of a dilaton, the Goldstone Boson of broken scale invariance, in the spectrum.
The vacuum energy is the same in all the phases associated with the different
vacua choice. It has no dependence on any of the expectation values of the scalar
fields. The spectrum includes massless and massive gauge particles.

• In the broken phases of the theory the conditions are appropriate for the presence
of various solitons in the system. In general they contain particles particles which
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have both electric and magnetic charges, called dyons. The massess of many of
these particles, called BPS states is protected by the large SUSY to the extent that
the mass dependence on the coupling is exactly known. This has applications in
the counting microscopically the entropy of some black holes.

• Moreover, a hidden wish of theoreticians is that not only will one theory describe
all physical phenomena but that that theory be exactly solvable. Given the
complexity of four dimensional field theory this hope was suppressed. It had
resurfaced when it was uncovered that quite a few properties of the N = 4 theory
are exactly calculable. The system seems to have a large number of conserved
quantities and this results in many so called integrability features.

• As will be discussed in the section on string theory, there is a large body of
evidence that N = 4 theory encodes in it the information of special string theories
which include gravity and black holes. These are string theories for strings
propagation on a manifold part of which has a negative curvature and a negative
cosmological constant.

To conclude, supersymmetric gauge theories have a very rich phase structure and
many outstanding dynamical issues can be discussed reliably in the supersymmetric
arena that are hard to address elsewhere.

8.2.7 Gauging Supersymmetry

During most of the second part of the twentieth century local symmetries were
at center stage. The model unifying the electromagnetic and weak interactions
actually united them mainly by using the concept that gauge theories do describe
both. The stronger unification using only one non-semi simple group is yet to be
achieved. The gauge theories have allowed to make precise calculable predictions
for experimentally measurable quantities. Yet in the last year of that century some
scientists suggested to move on and accept that gauge symmetries are simply
redundent descriptions (choosing not to emphasize that this description allows for
a local description of the theory). Be that as it may, at the time it was natural to
promote global symmetry into a local symmetry. The result was very rewarding, it
turned out that the “gauge particle” of local supersymmetry is a masselss fermion
of the spin 3/2, called the gravitino, whose partner in the same supermultiplet is
a massless spin two particle, the graviton. Local supersymmetry led to general
coordinate invariance and the presence of gravity. This is called supergravity
(SUGRA).

Lagrangians invariant under this local symmetry were found. Writing them down
required even more efforts than those needed for the global supersymmetry case.
Nevertheless this was achieved and a superfield notation was discovered as well.
The Lagrangians are rather lengthy and we do not display them here. The system
had additional interesting features.
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• There is a Higgs like feature for such systems. The massless gravitino became
massive when spontaneous breaking of supersymmetry occurred. The would-be
goldstino became part of the massive gravitino. This may resolve the issue of the
missing Goldstino.

• SUSY may persist in the presence of a negatively valued cosmological constant.
Thus the spontaneous breaking of supersymmetry may be fine tuned so as to
obtain a zero value or very small value for the cosmological constant. This is done
by balancing the positive vacuum energy resulting from breaking supersymmetry
against the value of the negative cosmological constant.

• The presence of gravity renders the Lagrangians to be superficially non-
renormalizable. In fact in these theories the ultra violet divergences are much
less severe than what would be expected by power counting. In the presence of
local SUSY the supersymmetry can be enhanced up to N = 8 in four dimensions.
Such a theory is intimately related to a ten dimensional theory with N = 1
supersymmetry in ten dimensions. Some scientists have the hope that this very
special theory is in fact finite. Time will tell.

• Once global SUSY is embedded in supergravity one can imagine also terms
which softly break supersymmetry and do not result from spontaneous breaking,
i.e. one can add relevant terms to a Lagrangian describing for low energies a
systems of particles containing superparticles with non-supersymmetric masses
and interactions.

8.2.8 The Hierarchy Problem

SUSY was uncovered on the route of circumventing the no go theorem concerning
the unification of a internal and space time symmetries into a unified group as well
as attempting to find a symmetry which relates the different couplings in a rather
general Lagrangian involving both bosons and fermions. It was taken up again when
it was decided to declare the very large value of the ratio of the planck scale and
the weak interaction scale as a problem. On a more technical level the problem was
stated as follows. Consider a theory with an interacting scalar particle. Notice that to
this date no fundamental spin zero elementary particles were observed, the discovery
of an elementary spin zero Higgs particle would change this unfamiliar situation,
a situation in which the simplest realization of a symmetry is not manifested in
nature on an elementary level. No matter what the original mass of the scalar
is, the interactions shift the mass. The mass shift is divergent as is the case for
renormalizable theories. However according to the renormalization group ideas one
always encodes the present knowledge valid up to an energy scale � in an effective
low energy theory. In that case the mass shift is proportional to the cutoff �. As
long as there is no physical scale near that of the weak interaction’s scale of 1
TeV one needs to fine tune the input initial mass to obtain a Higgs mass of the
weak interaction scale. This is to be contrasted with the case of a fermion mass.
In that case the fermion mass is shifted by the interactions by an amount which is
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proportional only to the logarithem of the cut off and is proportional to the initial
mass of the fermion. The shift vanishes when the initial fermion mass vanishes. The
reason behind the vanishing of the mass of the fermion is that for a massless fermion
the system obtains a new symmetry, chiral symmetry. This symmetry should be
restored in the zero mass limit. As long as that symmetry is not broken the mass
remains zero. If the symmetry is dynamically broken the mass shift can be very
small. In the case of supersymmetrical systems it is the fermionic nature which
prevails and thus the bosonic mass shifts are small, in a supersymmetric theory
one may imagine that the hierarchy problem is solved. (The softer divergences
of the supersymmetric systems are of similar origin as those responsible for the
no renormalization theorems described before) The problem ab initio is a problem
which involves in some manner theoretical taste and in any case it seems from the
LEP data that if one insists on a hierarchy problem it is already present. SUSY has
not come to the rescue in time and if it is a symmetry of nature, solving the hierarchy
problem may well not be its main purpose.

An earlier attempt to solve the hierarchy problem involved the introduction of
a new gauge symmetry similar in many ways to color called technicolor. This is a
specific realization of the idea that the Higgs particle in not a fundamental particle.
Indeed both in describing aspects of superconductivity and superfluidity the Higgs
scalar is only an effective degree of freedom. As of 2007 these line of ideas were
not consistent with some of the experimental data. An often quoted problem is that
such an interaction induces flavor changing neutral interactions at a too high rate.

8.2.9 Effective Theories

One may wonder why the Lagrangians describing the basic interactions are
expressed in terms of a finite number of terms rather then by an infinite one. As
long as the laws of physics allow the decoupling of far away scales this can be
explained. The theory is written down in full generality in the presence of a short
distance/high energy cutoff. The cutoff � may reflect the scale below which one
has no knowledge on the interactions. The terms are constrained only by possible
symmetries, their number is a priori infinite. The physics beneath any lower energy
scale, �

′
is obtained by integrating out all the degrees of freedom which are heavier

than �
′
. A new set of terms replaces the original set, it contains generically less

terms. This process can be repeated till a theory approaches a critical surface. The
theory on the critical surface is scale invariant. The resulting theory near the critical
surface is well described by operators whose scaling dimensions, in d space-time
dimensions, can be determined near the surface and happen to be smaller and at
most not much larger than d. In many cases there is only a finite number of such
operators, i.e., only a finite amount of terms in the Lagrangian describe the physics
near the critical surface. This not only explains the concise form of the Lagrangian
but provides one with a systematic method to classify the allowed terms to appear,
the power of the method is further enhanced when symmetries are present, as those
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constrain further the allowed terms. This can also sometimes be turned around. The
collection of marginal and relevant operators may exhibit a symmetry of its own.
This offers a proof that the symmetry should be present at low energies but may well
disappear at higher energies if the irrelevant operators do not respect it. The resulting
Lagrangian is called the effective low energy Lagrangian. It should contain all the
light particles of the system and all the symmetries, may they be realized linearly or
nonlinearly, (when the symmetry at question is spontaneously broken). Integrating
out heavy particles results in a local Lagrangian consisting of a finite number of
terms. Integrating out light degrees of freedom is likely to lead to non-local effects.
The terms whose quantum scaling dimensions are smaller than d are called relevant
terms. They become very large as the system is probed at lower energies and
disappear at high energies, their number is usually finite and in many cases small.
Examples of such terms are mass terms for both bosons and fermions in general and
the non-Abelian Maxwell term for asymptotically free systems such as QCD. The
terms whose scaling dimensions are exactly d are called marginal operators, they
include the full Lagrangian for exactly scale invariant systems. Their number is also
generically finite. They are equally important at all scales. Terms whose dimension
is larger than d are called irrelevant operators. There is an infinite number of them.
Each term on its own becomes insignificant in the low energy region and renders the
theory non-renormalizable for high energies. (One can imagine examples where an
infinite number of such terms collaborate to become relevant but that would most
likely mean that the expansion around the critical surface should be modified).
Those terms which have scaling dimensions not very much larger than d (such
as five and six in four dimensions), can be useful hints for the scale at which the
physics needs to be modified. For example the original four Fermi interactions are
dimension six operators in four space-time dimensions. Their coefficient, the so
called Fermi coupling, has dimension (−2) and hints at the nearly Tev scale of the
weak interactions. Indeed at higher energies this irrelevant term is replaced by the
classically marginal gauge interactions of the standard model. The replacement of
an irrelevant operator by a relevant (or marginal) one at high energy leads to a well
defined theory and it called UV completion. The UV completion is not unique, but
its simplest version seems to do the job in the weak interactions case. This is clearly
to be done when, like for the weak interactions in the 1950s, the leading term in the
effective Lagrangian is irrelevant. When the irrelevant term appears in addition to
marginal and relevant ones it may or may not indicate new physics.

8.2.10 MSSM Lagrangian

All this said one can write down the simplest low energy theory that by definition
contains only marginal and relevant operators. For the case of systems with broken
SUSY which still do not have a hierarchy problem one may allow in addition
only those of the above operators which retain the at most logarithmic divergence
structure of the theory. This requires that the classical marginal operators are all
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Table 8.1 Internal quantum
numbers of the Higgs
superfields and one
generation of matter
superfields comprising the
MSSM model.

Field SU(3)c SU(2)L U(1)Y

L̂ =
(

ν̂eL

êL

)
1 2 −1

Êc 1 1 2

Q̂ =
(

ûL

d̂L

)
3 2 1

3

Û c 3∗ 1 − 4
3

D̂c 3∗ 1 2
3

Ĥu =
(

ĥ+
u

ĥ0
u

)
1 2 1

Ĥd =
(

ĥ−
d

ĥ0
d

)
1 2∗ −1

supersymmetric as well as some of the classical dimension three operators. The
dimension two relevant operators, namely the bosonic mass terms may break SUSY
as long as the classically marginal terms are supersymmetric. The, so far, simplest
model imposes minimality. It contains the Standard Model particles and interactions
and their minimal extensions. Each Standard model particle is accompanied by a
superpartner. Only one new supersymmetric multiplet is added in which neither the
bosons nor the fermions are part of the Standard Model, this is a second Higgs
field. The interactions are minimally extended to be N = 1 superymmetric. The
system resulting for this construction is called the Minimal Super Symmetric Model
(MSSM). The number of resulting terms may be minimal but it can hardly be
considered as small, in fact it has 178 parameters. The superpotential in the MSSM
contains the following terms:

f̂ =μĤ a
u Ĥda+

∑
i,j=1,3

[
(fu)ij εabQ̂

a
i Ĥ

b
u Û

c
j + (fd)ij Q̂

a
i ĤdaD̂

c
j + (fe)ij L̂

a
i ĤdaÊ

c
j

]
.

(8.120)

The indices of SU(2)L doublets are denoted above as a and b. The (fk)ij are
the appropriate Yukawa couplings. The Quarks, Leptons and Higgs particles are
all chosen to be chiral fields and the notation, for one generation, is made explicit in
Table 8.1.

The terms above were constructed to be invariant under the standard model
symmetries, they turn out to conserve also both baryon (B) and lepton (L) numbers.
However, the terms listed below are marginal and relevant terms which also
conserve the standard model symmetries but do not conserve either B or L. The
generic amount of violation induced by these terms is not consistent with the
experimental data. Thus in MSSM one requires both B and L conservation. By
the no renormalization theorems the symmetry will be respected to all orders in
perturbation theory. Such symmetries which are preserved quantum mechanically in
perturbation theory, once imposed classically, are denoted as natural in a “technical”
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sense.

f̂L =
∑
ijk

[
λijkεabL̂

a
i L̂

b
j Ê

c
k + λ′

ijkεabL̂
a
i Q̂

b
j D̂

c
k

]
+
∑
i

μ′
iεabL̂

a
i Ĥ

b
u . (8.121)

f̂B =
∑
ijk

λ"
ijkÛ

c
i D̂

c
j D̂

c
k. (8.122)

The B and L symmetries are in any case not respected by non-perturbative effects.
The above mentioned terms can also be forbidden by imposing a different global
symmetry called R-parity which was already mentioned in the context of SUSY
breaking. It is defined here as:

R = (−)3(B−L)+2s, (8.123)

s denoting the spin of the particle. The standard model particles are even
under the R-parity, while their superpartners are odd under it. In MSSM the
bosonic partners of the standard model matter fermions carry non-zero L and B
quantum numbers. The (non)conservation of B and L symmetries are not in general
correlated. They happen to coincide on the terms disallowed above. For example,
the terms below both respect R-parity but the first violates L number conservation
and the second does not respect B number conservation.

εabL̂
aĤ b

u εcd L̂
cĤ d

u (8.124)

and

ÛcÛcD̂cÊc (8.125)

For the record we write down all the dimension three and dimension two
operators which softly break SUSY in the MSSM model. i and j run over the
generations and are summed over as are the doublet SU(2) indices a and b.

Lsof t = −
[
Q̃

†
i m

2
Qij

Q̃j + d̃
†
Ri
m2

Dij
d̃Rj + ũ

†
Ri
m2

Uij
ũRj

+ L̃
†
i m

2
Lij

L̃j + ẽ
†
Ri
m2

Eij
ẽRj + m2

Hu
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Hd
|Hd |2

]
− 1

2

[
M1λ0λ0 + M2λAλA + M3g̃B g̃B

]
− i

2

[
M ′

1λ0γ5λ0 + M ′
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+
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a
i H

b
u ũ

†
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a
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†
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+ (ae)ij L̃
a
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†
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+ h.c.
]

+
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d ũ

†
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a
i H

∗
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†
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+ (ce)ij L̃
a
i H

∗
uaẽ

†
Rj

+ h.c.
]

+ [
bHa

dHda + h.c.
]
.

(8.126)
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The model, as written, has 178 independent parameters. Their number could
be reduced if they had their origin in an underlying microscopic theory. In some
present versions the matrices of parameters denoted above by cij are set to zero
thus reducing by fiat the number of free parameters to 124. This is but the tip of an
iceberg, one proceeds from versions of the MSSM and derives the mass spectrum of
the supersymmetric particles while ensuring to preserve the known properties of the
standard model particles as well as a variety of experimental bounds. The bounds
range from cosmological ones to bounds on rare decays. We hope that in the not
too distant future the fog will disperse and one will be able to write a rather concise
item in a physics encyclopedia which would select the relevant physical components
of this effort. As mentioned any model for SUSY breaking should respect present
experimental constraints. Many models of spontaneous SUSY breaking fail to do
this as a result it was suggested to add to the yet to be seen superpartners of the
standard model particles also a hidden sector. In such models SUSY is to be broken
in the hidden sector and its effects are supposed to be mediated to the “seen” sector.
The agents or messengers which couple the two sectors vary. In some models the
coupling is by the gravitational force at tree level, in others the coupling occurs first
only at the one loop level and is called anomaly (Weyl anomaly) mediated. There are
models in which the coupling is done through gauge interactions, they have a lower
energy scale than the gravity mediated interactions. Each of these models has some
advantages as well as disadvantages and are at this stage an active area of research.

We will end the section with a short glossary of terms currently used in describing
MSSM features which were not mentioned above.

Short Glossary:

• Chargino—Charged supersymmetric partner of a charged standard model parti-
cle.

• Gaugino—Spin one half supersymmetric partner of a standard model gauge
particle.

• LSP—Lightest supersymmetric partner of a standard model particle. It is long
lived in many models.

• μ term—Term coupling the two different Higgs chiral supermultiplets.
• Neutralino—Neutral supersymmetric partner of a neutral standard model parti-

cle.
• squark—Spin zero supersymmetric partner of a standard model quark.
• slepton—Spin zero supersymmetric partner of a standard model lepton.
• tan(β)—Ratio of the expectation values of the two Higgs fields.
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8.3 Unification

8.3.1 Gauge Group Unification [2]

The standard model is unified along the lines that all of its components, the
colour, weak and electromagnetic interactions are described by gauge theories.
They are SU(3) ∗ SU(2) ∗ U(1). The gluons and the photons, the electrons and
the quarks belong to different representations of the product gauge group, it is
natural to attempt to have all of the elementary particles and interactions as a
single representation of a single gauge group. Intermediate algebraic solutions to
this problem have been found. For example the gauge group SU(5) does very
economically unify the known gauge groups. Moreover it predicts that quarks
and leptons can transmute into each other, in particular violating Baryon number
conservation. The proton could decay in such models for example into an positron
and a neutral pion. The original estimates of the half life time of the proton placed
it possibly around 1031 years. That prediction was within experimental reached and
initiated the construction of very ingenous experiments. Proton decay at that rate
was not found, the lower bound on the proton life time was improved to be 1035, thus
invalidating the simplest version of the grand unified group SU(5). In that version
the particles did not all belong to the same representation as one may have wished
based on esthetics. There have been many other attempts since to find an appropriate
unifying group these included SO(10) (which incorporated naturally a right handed
SU(2) singlet neutrino) and exceptional groups such as E(6). This was done with and
without SUSY. Using the renormalization group it was found that in the presence of
SUSY the in teractions may indeed unify in magnitude at a high energy not much
below the planck scale of 1019 GeV. At such scales it becomes difficult to ignore
quantum gravity. In any case we will not review this vast subject further here.

8.3.2 Extra Dimensions and Unification [3]

The first ideas of unification by increasing the number of dimensions were suggested
in classical field theory by Kaluza and Klein (KK) in the period of the 1920s. At
the time there were two well known interactions, gravity and electromagnetism.
KK suggested that space time is five dimensional rather than four dimensional and
that there is but one fundamental interaction-gravity. In order to be consistent with
observations it was suggested that the five dimensional space time is composed out
of a fifth dimension which is a spatial circle of inverse radius m, and the usual
four dimensional Minkowski component. The radius 1/m should be small enough to
have not been observed yet. The resulting low energy (i.e. energies much lower
than m) five dimensional Lagrangian decomposes into several four dimensional
Lagrangians. They describe, four dimensional gravity, four dimensional Maxwell
electrodynamics and the coupling of a neutral spin zero additional particle. The
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symmetry group of the low energy Lagrangian consists of four dimensional general
coordinate invariance as well as a U(1) four dimensional gauge symmetry. This
result is obtained in the following manner [3].

The basic five dimensional gravitational action is thus given by:

Ŝ = 1

2κ̂2

∫
d5x̂

√
−ĝR̂ (8.127)

With κ̂2 being the five dimensional Newton constant. The action Ŝ is invariant
under the fivedimensional general coordinate transformations

δĝμ̂ν̂ = ∂μ̂ξ̂
ρ̂ ĝρ̂ν̂ + ∂ν̂ ξ̂

ρ̂ ĝρ̂μ̂ + ξ̂ ρ̂ ∂ρ̂ ĝμ̂ν̂ (8.128)

A useful 4 + 1 dimensional ansatz was:

ĝμ̂ν̂ = eφ/
√

3

(
gμν + e−√

3φAμAν e−√
3φAμ

e−√
3φAν e−√

3φ

)
. (8.129)

The fields depend on the five dimensional coordinate x̂μ̂, which were written as:
x̂μ̂ = (xμ, y), μ = 0,1,2,3, and all unhatted quantities are four-dimensional. The
fields gμν(x), Aμ(x) and ϕ(x) are the spin 2 graviton, the spin 1 photon and the spin
0 dilaton respectively. The fields gμν(x,y), Aμ(x,y) and ϕ(x,y) may be expanded in
the form

gμν (x, y) =
n=∞∑
n=−∞

gμνn(x)e
inmy,

Aμ (x, y) =
n=∞∑
n=−∞

Aμn(x)e
inmy,

φ (x, y) =
n=∞∑
n=−∞

φne
inmy

(8.130)

Recall that m is the inverse radius in the fifth dimension.
In general the five dimensional theory can be described in terms of an infinite

number of four dimensional fields. It also has an infinite number of four-dimensional
symmetries appearing the Fourier expansion of the five dimensional general coordi-
nate parameter ξ̂ μ̂ (x, y)

ξ̂μ (x, y) =
n=∞∑
n=−∞

ξμn(x)e
inmy,

ξ̂4 (x, y) =
n=∞∑
n=−∞

ξ4
n(x)e

inmy.

(8.131)

However, at energy scales much smaller than m only the n = 0 modes in the
above sums enter the low effective low energy action.



500 E. Rabinovici

The n = 0 modes in (8.130) are just the four dimensional graviton, photon and
dilaton. Substituting (8.129) and (8.130) in the action (8.127), integrating over y and
retaining just the n = 0 terms one obtains (dropping the 0 subscripts)

S = 1

2κ2

∫
d4x

√−g

[
R − 1

2
∂μφ∂

uφ − 1

4
e−√

3φFμνF
μν

]
(8.132)

where 2πκ2 = mκ^2 and Fμν = ∂μAν − ∂νAμ. From (8.128), this action is invariant
under general.

coordinate transformations with parameter ξμ0, i.e. (again dropping the 0
subscripts)

δgμν = ∂μξ
ρgρν + ∂νξ

ρgμρ + ξρ∂ρgμν

δAμ = ∂μξ
ρAρ + ξρ∂ρAμ

δφ = ξρ∂ρϕ,

(8.133)

local gauge transformations with parameter ξ4
0

δAμ = ∂μξ
4 (8.134)

and global scale transformations with parameter λ

δAμ = λAμ, δϕ = −2λ/
√

3 (8.135)

The symmetry of a vacuum, determined by the VEVs

< gμν >= ημν,< Aμ >= 0,< ϕ >= ϕ0 (8.136)

is the four-dimensional Poincare group ×R. These expectation values have not been
determined dynamically but let us settle here for them. At this level of the analysis
the masslessness of the graviton is due to unbroken four dimensional general
covariance, the masslessness of the photon is consistent with the four dimensional
gauge invariance and the dilaton seems massless because it is the Goldstone boson
associated with the spontaneous breakdown of the global scale invariance. In fact
taking into account the actual periodicity in y which is not manifested for only the
n = 0 low energy modes the symmetry acting on the scalar field is U(1) rather than
R and is thus not a true scale symmetry. The field ϕ0 is a pseudo-Goldstone boson
and does not really deserve to called a dilaton. Further analysis uncovers an infinite
tower of charged, massive spin 2 particles with charges en and masses mn given by

en = n
√

2km,mn =| n | m (8.137)
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Thus the KK ideas provide an explanation of the quantization of electric charge.
(Note also that charge conjugation is the parity tranformation y → −y in the fifth
dimesion.) If one indeed identifies the fundamental unit of charge e = √

2km with
the charge on the electron, then one is forced to take m to be very large: the Planck
mass 1019 GeV. Such extra scalar particles seem to be present abundantly in string
theories as well. The experimental question was mainly to set bounds on the value
of the radius R(= 1/m) of the fifth dimension. The limits are obtained from precision
electroweak experiments and require m > 7TeV. This is for models with one extra
dimension, in which the gauge bosons propagate in the bulk but the fermions and
Higgs are confined to four dimensions. More on this shortly. There are also bounds
from astrophysics they are not model independent bounds. They are important for
large dimensions in which only the graviton propagates, and they depend on number
of large dimensions. The strongest bounds arise from supernova emissions, giving
1/m < 10−4 mm for the case of two large extra dimensions. Although researchers
such as Einstein and Pauli had studied such theories for dozens of years this path has
been abandoned. Extra dimensions resurfaced when string theory was formulated.
It was found out that strings are much fussier than particles, (super) strings can
propagate quantum mechanically only in a limited number of dimensions. In fact,
not only was the number of allowed possible dimensions dramatically reduced, the
allowed values of the number of space-time dimensions did not include the value
4. These dimensions are usually required to be 10 or 26 (The origin of this basic
number is, at this stage, disappointingly technical.) In fact while the numbers 10
and 26 result from the theory they need not always be related directly to extra
dimensions. When the extra dimensions emerged in string theory it was suggested
in the spirit of KK that any extra dimensions are very small. As interest was diverted
from string theory back to field theory the ideas of KK were revised allowing one
to take into account the extra interactions discovered since the original work of
KK. It turned out that if one which to trade all the known standard model gauge
interactions, i.e. the all SU(3) ∗ SU(2) ∗ U(1) interactions, for a theory of gravity
alone one was led to consider eleven dimensional gravity. Such theories raised
interest also for other reasons. The return of string theory brought back with it an
intense study of extra dimensions. In particular extra dimensions in the form of
compact Calabi-Yau manifolds which allowed to have four dimensional effective
theories with N = 1 SUSY. The topology of the extra dimensions determined in
some cases the number of zero modes on them, that is the spectrum of massless
particles. The number of generations of particles for example could be correlated
thus to the topology of those extra dimensions offering a solution to the origin of
the repetitive structure of the elementary particles. A vast amount of research on the
possible extra dimensions is ongoing. There have also been attempts to understand
dynamically the origin of the difference between the four large extra dimensions and
the rest. Some efforts were directed to explain how a spontaneous breaking of space
time symmetries could lead to such asymmetry in the properties of the different
dimensions. Solid state systems such as liquid crystals also exhibit such differences.
Other efforts focused on determining why an expanding universe would expand
asymmetrically after a while only in four directions. Another development occurred
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following the realization that string theory in particular allows what are called brane
configurations. Branes are solitons, extended objects embedded stably in a space
time of larger dimension. Vortices and magnetic monopoles were mentioned as
such lower dimensional objects. There is a consistent possibility that for example
a four dimensional universe can be embedded in higher dimensions. The known
gauge interactions living only on the brane while gravity extends to the full space.
If our universe has this structure many things can be explained and in particular
this has given rise to the possibility the extra dimensions could be much larger than
previously expected. Actually they could extend up to the submicron region. This
could lead to measurable deviations from Newton’s gravity at those distance scales.
Astrophysics gives upper bounds on how large such extra dimensions may be but in
any case this is a very significant relaxation of a bound, in fact I am not aware of
any bound on such a fundamental quantity in physics that has been altered to such
an extent by a theoretical idea. All this said one should stress the obvious, also the
bounds have been relaxed the true value of the extra dimensions may still be very
small, perhaps even Planckian. Some suggestions of larger extra dimensions could
well be tested at the LHC.

The fact that unification may occur not far from the planck scale brings quantum
gravity to the front row and with it a theory which attempts to be able to indeed tame
quantum gravity that is string theory.

8.4 String Theory [4]

8.4.1 No NOH Principle

String Theory is at this time far from being a complete theoretical framework, not
to mention a phenomenological theory. That said, the theory of extended objects
has evolved significantly and has shaped and was shaped by aspects of modern
mathematics. In my opinion is it appropriate to highlight the qualitative aspects of
string theory and the ideas behind it. This choice is not made for lack of formulas
or precision in string theory. An essential catalyst in the process of the formation of
string theory was urgency, the urgency created out of the near despair to understand
the amazing novel features of the hadronic interactions as they unfolded in the
1960’s. String theory was revitalized in the latter part of the twentieth century by
the urgency to understand together all of the four known basic interactions. Here
I shall briefly review some of the motivation to study a theory of extended objects
and discuss the challenges string theory faces, the successes it has had, and the
magic spell it casts. We start by reviewing a hardware issue, the hard wiring of some
scientific minds. Researchers using string theory are faithful followers of an ancient
practice, that of ignoring the NOH principle. The NOH principle is very generic, it
states that Nobody Owes Humanity neither a concise one page description of all the
basic forces that govern nature nor a concise description of all the constituents of
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matter. Actually no reductionist type description is owed. Time and again physicists
driven by their hard wiring processed the experimental data utilizing theoretical
frameworks and were able to come up with explicit formulae; formulae that were
able to express on less than one page the essence of a basic force. A key assumption
used and vindicated was that the basic constituents of nature are point-like. The
electromagnetic forces, the weak interactions and even the powerful color forces
were rounded up one by one, straddled by the rules of quantum mechanics and
then exhibited on a fraction of a page. Using these formulae, an accomplished
student abandoned on an isolated island can predict with an amazing accuracy the
outcome of some very important experiments involving the basic forces. The level
of accuracy ranges from a few percent in the case of some aspects of the color forces
to better than 10−10 for some features of the electromagnetic interactions.

8.4.2 Why Change a Winning Team: Extended Constituents
Are Called Upon to Replace Point-like Ones

Point particles have done a tremendous job in shouldering the standard model of
particle interactions. Why replace them by extended objects? In the section on
SUSY we have outlined several of the reasons for that. The standard model does
reflect the enormous progress made in the understanding of particle physics but it
is not perfect, at least as seen by a critical theorist through his TPs. The model is
afflicted with tens of parameters as well as what are termed naturality problems.
The values of some physical quantities, such as the mass of the Higgs particle,
are required to be much lighter than the theory would naturally suggest. Ignoring
the NOH principle, scientists find themselves once again on the path of searching
for a more concise description. One effort was directed towards unifying the three
interactions, thus following the conceptual unification of the electromagnetic and
weak interactions, described each by a gauge theory. That direction led to possible
unifications at scales not so distant from where quantum gravity effects are definitely
supposed to become important. In fact, gravity, the first of the basic forces that was
expressed by a mathematical formula, is the remaining unbridled known force which
is considered currently as basic. Here the quantum breaking methods based on the
concept of a basic point like structure have failed. Sometimes what is considered
failure is also a measure of intellectual restlessness, still it made sense to search
for alternatives. Actually even with no apparent failure lurking upon basic physics,
a study of a theory of fundamentally extended objects is called for. After all, why
should the basic constituents be just point like? String theory is a natural extension
of the idea that the basic constituents are point-like, it is an investigation into
the possibility that basic constituents are ab initio extended objects. The simplest
such extended objects being one-dimensional, that is strings. In a sense one may
regard also point particles as extended objects dressed by their interactions. The
direct consequences in this case are however totally different. It turned out that
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such a generalization did eventually reproduce many properties of point particle
interactions and in addition enabled one to formulate what seems as a theory of
gravity. This it should do, following the tradition of subjecting any new theory to the
test of the correspondence principle. The theory is well defined up to several orders
and perhaps to all orders in perturbation theory. The perturbations are small at the
vicinity of a very small distance scale called the string scale, as small as that distance
is, it is sometimes expected to be larger than the Planck length and thus is associated
with lower energies than the Planck energy (it is related to the plank scale by the
string interaction coupling). Interactions among strings are, to a large extent, softer
and fuzzier than those among point particles. Recall that a large number of successes
of particle physics consisted of explaining and predicting the physics of the various
interactions at scales at which they were weakly coupled, otherwise, a large dose
of symmetry was essential. This is perhaps the most significant achievement of
string theory. It is also its major source of frustration, if the string scale is indeed
of the order of 10−32 cm or even slightly larger, it is not known today how to
verify, experimentally, any prediction resulting from perturbative string theory. It
is very difficult to imagine, for example, how to set up an experiment measuring the
differential cross section of graviton-graviton scattering at the string scale. We will
return to this extremely important issue later on and continue to follow for a while
the path of the theoreticians.

8.4.3 New Questions

The impact of scientific progress can be tested by the type of questions it makes
us aware of, as well as by the answers it eventually provides for them. By studying
string theory new questions do arise. Values taken for granted are subjected to query
and downgraded to being parameters. String theory suggests questioning the values
of some such physical quantities and in some cases offers scientific answers to the
question. A prime example is that of the number of space-time dimensions. In a
point like constituent theory there is a very large degree of theoretical freedom. As
far as we know spin zero point particles, for example, could have propagated in
any number of dimensions, their interactions would have been different depending
on the dimension of space-time but nevertheless they would have been allowed.
A theory of spin one half particles can turn out to be in consistent on certain
type of manifolds but they do not restrict the dimensionality of the space in
which they propagate. Strings are much fussier than particles, (super) strings can
propagate quantum mechanically only in a limited number of dimensions. In fact,
not only are the number of allowed possible dimensions dramatically reduced,
the allowed values of the number of space-time dimensions do not include the
value 4. These dimensions are usually required to be 10 or 26 depending on the
amount of supersymmetry the string is endowed with. The origin of this basic
number is, at this stage, disappointingly technical and one should note that though,
strictly speaking, the number 26 does indeed appear in string theory, it is not
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always possible to associate this number with the number of dimensions. In fact
the numbers appearing are 15 and 26 and they reflect from one point of view a
conformal anomaly in the theory describing first quantized string theory. In first
quantized field theory of particles can be expressed as a sum over one dimensional
field theories, i.e. quantum mechanics, of a particle moving in space time and
interacting along its space time trajectory. The action of the quantum mechanical
system is geometrical and describes in its simplest form the length of the particle’s
trajectory. The result should not depend on the parameterization of trajectory and
this should be general coordinate invariant. In a more fancy manner the action
describes a particle coupled to gravity evolving in one space time dimension. The
generalization to a description of the motion of a one dimensional object, a string,
follows. As the string is a one dimensional object, its motion in space time spans
a two dimensional manifold. The theory describing its motion is that of a particle,
coupled to gravity, moving in two space-time dimensions. The two dimensions are
called the world sheet and the theory describing them using first quantization is
called the World Sheet theory. The usual counting of quantum degrees of freedom
leads to the conclusion that gravity has minus one degrees of freedom in both one
and two dimensions. In other words the system is over constrained and will require
a higher degree of symmetry to be consistent. In addition the two dimensional
gravitational system has an anomaly which restricts the algebraic structure of the
conformal system describes by the string. A motion of a (super) string in (10) 26
flat dimensions removes the anomaly. There are many other ways to remove it and
perhaps many more to be discovered. Sometimes the background on which the string
can propagate has no obvious geometrical description, just an algebraic one. The
space in which the strings moves is called the Target Space. The interactions of
strings are described by them parting or joining, this is described (in a Euclidean
formulation) by a compact two dimensional surface with non-trivial topology. These
manifolds are called Riemman manifolds and are distinct by their topology. The
freely propagating string is described by a world sheet 2 sphere, the first interactions
occur when the world sheet is a torus. The theory is defined perturbatively by
summing with a certain weight over all such two dimensional Riemann surfaces.
The non-perturbative structure is non-trivial but less understood at this stage. But
setting that aside, one would like to detect extra dimensions experimentally. As the
idea of having extra dimensions was raised originally in field theory, upper bounds
on the length of such dimensions were already available, more recently under the
security net of string theory these bounds have been revised (they have been relaxed
by more than 10 orders of magnitude and brought up to the sub micron regime),
in fact I am not aware of any bound on a fundamental quantity in physics that
has been altered to such an extent by a theoretical idea. This fact about strings
illustrates the tension inherent in attempts to search for experimental verification
of extremely basic but very weakly coupled phenomena. Sitting in our chairs we
sometimes forget how frail gravity is. It is all the planet earth that gravitationally
pulls us towards its center, yet all this planetary effort is easily counterbalanced
by the electromagnetic forces applied by the few tiles beneath our chair. Although
string theory sets constraints on the possible number of dimensions, that is not to
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say that point particles allow everything. We mentioned that spin one half particles
can’t be defined on all manifolds but the number of known restrictions is much
smaller. The interactions could be of an infinite (sometimes classifiable) variety, the
color group, which happens to be SU(3), could have been for all the theory cares,
SU(641), the electromagnetic force could have been absent or there could have been
17 photons. Not everything is allowed, but an infinite amount of variations could
have been realized instead of what one actually sees in nature today. The same goes
for many (but not all) of the properties of the space-time arena in which all the
interactions are occurring, in particular effective low energy theories (and one seems
to be constrained to use only such theories for a long time to come) contain many
more free parameters such as masses and some of the couplings. In a string theory
one may have expected that all or most of these parameters are fixed in some manner.
Actually is it more complicated, for some string backgrounds, some parameters are
fixed, while other parameters are not. In addition there seemed to be several string
theories leading to even more possibilities.

8.4.4 The One and Only?

As we have discussed the desire to find the one and only theory encompassing all
fundamental physical phenomena seems hard wired in many scientific minds. Is
string theory an example of such a theory? Before addressing this question let us
reflect upon the limitations of the methods used. What would in fact satisfy the
purest (or extremist) of reductionists? A one-symbol equation? Be her desires, what
they may be, one should recall that one is using mathematics as our tether into the
unknown. This tool, which has served science so well, has its own severe limitations,
even ignoring the issue of using differential equations as tool to probe short distance,
a generic problem in mathematics can’t be solved, maybe the NOH principle will
eventually have its day, one will run out of interesting questions which have answers,
maybe that day is today! (Although some mathematicians suggest to use physicists
as hound dogs that will sniff one’s way towards interesting and solvable problems).
Having this in mind the key question is posed in hope it does have an answer: find the
unique theory describing the fundamental forces. There have been ups and downs
for the proponents of the one and only string theory. The understanding of the
situation has passed several evolutionary stages. From the start it was recognized
that one may need to settle for more than only one string theory. It was thought
that a distinction could been drawn between a theory of only closed strings and a
theory containing both open and closed strings. A theory with only open strings
was realized to be perturbatively inconsistent. Even those theories needed not only
a fixed dimension but in addition an extra symmetry, supersymmetry, to keep them
consistent. It was very quickly realized that actually there are an infinite varieties of
backgrounds in which a string could move. For example, consider 26 dimensional
spaces in which one dimension is actually a circle of radius R. It turned out that all
possible values for the radius, R, of the circle are allowed. It was then realized that
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Fig. 8.7 The potential, familiar from the standard model, has a shape of a sombrero. In the figure,
its minima lie on a circle, each point along the circle, can be a basis for a ground state. The physics
around each is equivalent. In string theory and in supersymmetric systems flat potential arise

Fig. 8.8 The potential has two orthogonal flat directions. The landscape of the valleys is
generically more elaborate. Each point along the flat directions can serve as a basis of a ground
state. In many cases. The physics around each ground state is different

there is a large variety of 22 dimensional compact manifolds in the case of bosonic
strings (6 dimensional compact dimensions in the case of the supersymmetry),
which could accompany the four dimensional Minkowski space-time one is familiar
with. Each such compact manifold was called a string compactification. Next it
was suggested that actually all possible compactifications are nothing but different
solutions/ground states of a single string theory. Each of the solutions differing from
each other by the detailed values of the physical parameters it leads to. But the
ground states have also many common features, such as generically the same low
energy gauge group. To appreciate this consider the difference between the potential
of the Higgs particles which may describe the mass generation of the carriers of the
weak interactions and the effective potential leading to the ground states in string
theory. For the electro-weak interaction case the potential has the form of a Mexican
hat, the ground state may be described by any point in the valley (Fig. 8.7) but all
choices are equivalent, they describe exactly the same physics.

In the case at hand the valley of minima is flat and extends all the way to infinity.
Any point along the valley can be chosen as a ground state as they all have the
same energy and yet each describes different physics. The manifold describing the
infinity of these degenerate ground states is called the moduli space when they are
continuously connected (Fig. 8.8).
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These connected regions of valleys trace out very elaborate geography and
describe different possible solutions of string theory. All known stable ones share in
common the property of describing a supersymmetric theory. In such theories each
bosonic particle has a fermionic particle companion. It then turned out that there
actually are several different types of string theories, each having its own infinite set
of degenerate ground states. What made the string theories different were details,
most of which are rather technical, which seemed to affect the particle content and
gauge symmetries of the low energy physics. There was a stage, in the eighties of
the last century, at which some researchers imagined they were on the verge of being
able to perform reliable perturbative calculations of a realistic theory containing all
the aspects of the standard model. That turned out not to be the case. However, in
the process, the geography of many interesting ground states was surveyed. Next, a
large amount of circumstantial evidence started to accumulate hinting that all these
theories are after all not that distinct and may actually be mapped into each other
by a web of surprising dualities. This led once again to the conjecture that there is
but one string theory, this time, the theory that was supposed to encompass all string
theories and bind them, was given a special name, M theory. Even in this framework
all string theories brought as dowries their infinite moduli space. M theory still had
an infinite number of connected different degenerate supersymmetric ground states,
they were elaborated and greatly enriched by what are called brane configurations.
Branes are a special type of solitons that appear in string theory. They come in
various forms and span different dimensions. What is common to several of them,
is that open strings may end on them.

Thus what was thought to be a theory of only closed strings contains open strings
excitations in each of its sectors that contain branes. Moreover, every allowed brane
configuration leads to its own low energy physics. In fact there are suggestions that
our four dimensional experience results from us living on one or several branes
all embedded in a larger brane configuration placed in a higher dimensional space-
time. How does that fit with the expectations to have the One and Only string theory?
Well, in this framework there is one theory but an infinite amount of possible ground
states. Are we owed only once such state? There are those who hope that the vacua
degeneracy will be lifted by some yet to be discovered mechanism leaving the one
unique ground state. Others are loosing their patience and claiming that the NOH
principle takes over at this stage, the theory will retain its large number of ground
states.

Moreover a crucial ingredient of string theory at present is super symmetry
which was discussed obove, a beautiful symmetry not yet detected in nature, and
even if detected, it seems at this stage to play only a role of a broken symmetry.
It is not easy to obtain even remotely realistic models of string theory in which
supersymmetry is broken (that is the symmetry between fermions and bosons is
broken), a nearly vanishing cosmological constant and light particles whose mass
values are amendable to a calculation within a reliable approximation. Candidates
for such ground states have been suggested recently, these particular candidates
consist of very many isolated solutions living off the shore of the supersymmetric
connected valleys. Many of these solutions actually have different values for the
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vacuum energy and perhaps may thus decay from one to the other. In particular
bubbles may form within one configuration, bubbles that contain in them a lower
energy configuration. Some researchers would like to see the universe itself, or
the bubbles that form in it, as eternal tourists who will end up visiting many of
these metastable states. Some suspect that many of these metastable states are
stable. Some would encourage brave sailors to take to sea again, as they did in
the 1980s, and charter this unknown geography, some are trying to make this
endeavor quantitative by counting vacua which have a given property, such as a
given cosmological constant. This subject is still at its infancy, many hopes and
opinions are currently expressed, it would be nice if this issue will turn out to fall
within the realm of solvable problems.

The challenges to string theory on the experimental side have been to reproduce
the standard model. This has not been done to this day. Many new ideas and
insights have been added. Bounds have been shifted several times, one has felt
being very near to obtaining the desired model, each new approach seemed to bring
one nearer to that goal, but obtaining one completely worked-out example, which
is the standard model, remains a challenge for string theorists. Another important
issue is that of the value of the cosmological constant. It is usually stated that the
small value of the cosmological constant is a major problem. These arguments are
centered around some version of a low energy effective field theory. That theory
could be valid below a few tens of electron volt thus describing only aspects of
electromagnetism or it could be at a TeV scale describing both the electroweak
interactions. The arguments goes on to say that the vacuum energy of such an
effective theory should be, on dimensional arguments grounds, proportional to the
scale of the cutoff, (the cutoff is set at that energy beyond which the ingredients of
the physics start to change) that is evs or TeVs in the above examples. In either
case, the value of this vacuum energy, which is the source of the cosmological
constant, is larger by an astonishing number than the known bounds on the value
of the cosmological constant. The argument is not correct as stated, it is not only the
cutoff that contributes to the cosmological constant, all scales do actually contribute
to the vacuum energy and if a cutoff should be invoked, it is the highest one, such as
the Planck scale, that should be chosen. Moreover, this argument does not take into
account the possibility that the fundamental theory has a certain symmetry which
could be the guardian of vanishingly small value of the cosmological constant. Such
a symmetry exists, it is called scale invariance, and it has shown to be a guardian
in several settings. Scale invariance is associated with the absence of a scale in the
theory. There are many classical systems which have this symmetry and there are
also quantum systems which retain it. In a finite, scale invariant theory not only
does the vacuum energy get contributions from all scales, they actually add up
to give rise to a vanishing vacuum energy. This remains the case even when the
symmetry is spontaneously broken. Being a consequence of a symmetry, the vacuum
energy contribution to the cosmological constant vanishes also is the appropriate
effective theory. What does string theory have to say about that? String theory
could well be a finite theory, it is not scale invariant, as it contains a string scale,
if that scale would be spontaneously generated perhaps one would be nearer to
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understanding the value of the cosmological constant. If that scale is indeed not
elementary, one would be searching for the stuff the strings themselves are made
off. Such searches originating from other motivations are underway, some go by the
name of Matrix Model. Particle Physics as we know it is described by the standard
model evolving in an expanding universe. The methods used to study string theory
are best developed for supersymmetric strings, and for strings propagating on time
independent background, nature is explicitly neither. What then are the successes of
string theory?

8.4.5 Successes: Black Holes, Holography and All That . . .

A major success described above was to obtain a theory of gravity well defined
to several orders in perturbation theory, in addition, no obvious danger signals
were detected as far as the higher order in perturbation theory are concerned, non
perturbative effects are yet to be definitely understood. This issue involves the short
distance structure of string theory. String theory is supposed to be a consistent
completion of General Relativity (GR). General relativity suffers from several
problems at low energies. String theory, which according to a correspondence
principle, is supposed to reproduce GR in some long distance limit, will thus have
inherited in this merger, all the debts and problems of GR. If it does solve them it will
need to do it with a “twist” offering a different point of view. That perspective could
have been adopted in GR but was not. This has occurred in several circumstances,
one outstanding problem in GR is to deal with the singularities that classical gravity
is known to have. These include black holes, big bangs and big crunches as well as
other types of singularities. String theory can offer a new perspective on several of
these issues. Let us start with black holes. The first mystery of black holes is that
they seem to posses thermodynamical properties such as temperature and entropy.
This is true for charged black holes as well as for uncharged Schwarzschild ones.
In the presence and under the protection of a very large degree of supersymmetry,
string theory tools enabled to provide a detailed microscopical accounting of the
entropy of some black holes. More precisely it was shown in these special cases
that the number of states of a black hole is identical to the number of states of
essentially a gauge theory. It was possible to count the microscopic number in the
gauge theory case and the resulting number of states was exactly that predicted
for black holes! These are mostly higher dimensional very cold black holes. This
has not yet been fully accomplished for uncharged black holes. Black holes have
several more non-conventional properties. The above mentioned entropy of a mass
M black hole is much smaller, for many types of black holes, than that of a non
gravitating system of particles which have the same energy, M. In fact one may
suspect that such black holes dominate by far the high energy spectrum of any
gravitating system. The Schwarzschild radius of these black holes actually increases
with their mass. In general one associates large energies with short distances, in the
case of black holes large energies are related also to large distances. A meticulous
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separation of long and short distances is a corner stone of the renormalization group
approach, this is not evident in the case of gravity. One possible implication of this
behavior is that in gravitational systems the amount of information stored in a spatial
volume is proportional to the boundary’s surface area rather then to the bulk volume.
String theory provides explicit and concrete realizations of this amazing behavior.
A system of strings moving in particular ten dimensional space-times (of the anti
de Sitter type) are equivalent to special highly symmetric supersymmetric non-
Abelian gauge theories living in four dimensions and experiencing no gravitational
forces. Moreover modifying the backgrounds on which the strings propagate by
adding defects to them, one finds that strings propagating on certain backgrounds are
equivalent to gauge theories in which color is confined. String theory methods are
used to perform difficult calculations in hadronic physics. String theory, which was
born out of hadronic physics, has returned to pay back its original debt! In addition,
remarkable structures have been uncovered in supersymmetric gauge theories using
string theory methods. Attempts have been made to confront strings with other
singularities. Why should strings respond to singularities in any other way than
particles do? A Talmudic story helps explain the manner in which extended objects
modify problems associated with point particles. During a seminar, the following
question came up: Assume a pigeon (a very valuable animal at the time) is found
somewhere, to whom does it belong? The rule is, finders-keepers, as long as the
pigeon is found further away, than some determined distance, from the entrance to
an owned pigeon-hole. A student raised his hand and asked: “The pigeon is, after all,
an extended object, what if one of its legs is nearer than the prescribed distance to
the pigeon-hole but the other leg is further away?” The student was ejected from
his place of study for raising the question. Strings definitely turn out to soften
some harsh singularities which are time independent (called time like singularities).
Strings are also found to punch through singularities which form at particular times
such as a big crunch. The analysis of such systems is still at very early stages,
still I would like to note a very interesting feature in common up the present to all
attempts to study using string theory methods universes that are spatially closed. In
these cases the compact universe is found to be immersed in one way or another in
a non compact universe. The study of strings near these singularities could well be
essential to appreciate their properties at short distances. A key ingredient driving
some researchers is a new panoramic vista opening up to them. For some it is the
precise calculations of experimentally measurable quantities, for others it is the
Magic.

8.4.6 Magic

The universe as viewed with string probes is full of magic ambiguities and
symmetries unheard of before. In fact most mathematical concepts used to describe
the universe are veiled under symmetry. There are cases for which each of the
following concepts becomes ambiguous: distances, the number of dimensions,
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topology, singularity structure, the property of being commutative or not being
commutative. Let us somewhat elaborate on the magic.

• Distance—The simplest example is that of a universe in which one of the
dimensions is extended along identified with a circle of radius R. It turns out
that an experimentalist using strings as his probes will not be able to determine
if the universe is indeed best described but one of it dimensions being a circle of
radius R (in the appropriate string scale) or by being a circle of radius 1/R. For
point particles moving a circle of radius R, the energy spectrum has large gaps,
when R is small, and very small gaps, when the value of R is large. For strings,
which are extended objects, the spectrum consists of an additional part, that of
the strings wrapping around the circle. A point particle can’t wrap around the
circle. This part of the spectrum is narrowly gapped for small values of R and
widely gapped for large values of R, this is because the energy required to wrap a
string, which has its tension, around the circle, is proportional to the length of the
wrapped string. For an experimentalist, who can use point particles as probes, the
distinction is clear, not so for one using string probes. This is but the tip of the
iceberg of an infinite set of ambiguities. Some geometries, judged to be different
by point probes, are thus identified by extended probes.

• Dimensions—One could at least expect that the value describing the number of
spacetime dimensions to be unique. It turns out not to be the case. Ambiguities in
calling the “correct” number of space-time dimensions come in several varieties.
In string theory there are examples of a string moving in certain ten dimensional
space-times which measures exactly the same physics as that measured by a
certain point particle gauge theory in four dimensions. Each system is made out
of totally different elementary constituents, one system is defined to exist in ten
dimensions, the other in four and yet both reproduce the same observables, the
same physics. Another example consists of a strongly coupled string theory in ten
dimensions whose low energy physics is reproduced by an eleven dimensional
supergravity theory. This is true for large systems. For small, string scale,
systems, more magic is manifested. A string in some cases can’t distinguish if it
is moving on a three dimensional sphere or a one dimensional circle. So much
for non-ambiguous dimensions.

• Topology—Objects that can be deformed to each other without using excessive
violence (such as tearing them) are considered to have the same topology. The
surface of a perfect sphere is the same, topologically, as that of the surface of
a squashed sphere, but different, topologically, than that of a bagel/torus. Well,
once again that is always true only as far as point particles probes are concerned.
In string theory there are examples in which the string probes can describe the
same set of possible observations as reflecting motions on objects with different
topologies. In addition in string theory there are cases were one may smoothly
connect two objects of different topology in defiance of the definition given above
for different topologies. Topology can thus be ambiguous.

• Singularities—A crucial problem of General Relativity is the existence of singu-
larities. Bohr has shown how such singularities are resolved in electrodynamics
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by quantum mechanics. In GR one is familiar with singularities which are
stationary (time-like) such as the singularity of a charged black hole and those
which form or disappear at a given instance instant such as the big bang and
the big crunch (space-like). What happens in string theory to black holes big
crunches or big bangs? A good question. Consider first the motion a particle on
a circle of some radius and the motion of the string on a segment of some length.
The circle is smooth, the segment has edges. For a point particle probe the first is
smooth and the second is singular. In some cases, viewed by stringy probes, both
are actually equivalent, i.e. both are smooth. The string resolves the singularity.
Moreover there are black holes for which a string probe can’t distinguish between
the black hole’s horizon and its singularity. There are many other cases in string
theory where time-like singularities are resolved. The situation in the case of
space-like singularities is more involved and is currently under study. Some
singularities are in the eyes of the beholder.

• Commutativity—The laws of quantum mechanics can be enforced by declaring
that coordinates do not commute with their conjugate momenta. It is however
taken for granted that the different spatial coordinates do commute with each
other and thus in particular can be measured simultaneously. The validity of this
assumption is actually also subject to experimental verification. A geometry can
be defined even when coordinates do not all commute with each other. This is
called non-commutative geometry. There are cases when strings moving on a
commutative manifold would report the same observations as strings moving on
a non-commutative manifold. It seems many certainties can become ambiguities,
when observed by string probes. Stated differently, string theory has an incredible
amount of symmetry. This may indicate that the space-time one is familiar with,
is in some sense suited only for a “low” energy description. At this stage each
of these pieces of magic seems to originate from a different source. The hard-
wired mind seeks a unified picture for all this tapestry. This review may reflect
ambiguous feelings, challenges, success and magic each have their share. All in
all, string theory has been an amazingly exciting field, vibrating with new results
and ideas, as bits and pieces of the fabric of space time are uncovered and our
idea of what they really are shifts.

8.4.7 Human Effort and Closing Remarks

One may estimate that more than 10,000 human years have been dedicated up to
now to the study of string theory. This is a global effort. It tells an amazing story
of scientific research. In the mid eighties a regime/leadership change occurred. The
scientific leaders which had nursed the standard model, have been replaced by a
younger generation of string theorists. Some of those leaders complained that the
field had been kidnapped from them. Mathematical methods of a new type were
both applied and invented, many pieces of a vast puzzle were uncovered and a
large number of consistency checks were used to put parts of the puzzle together
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tentatively. As in any human endeavor alternative paths are suggested and critique is
offered. I have incorporated in this note some of the serious challenges string theory
faces. There are additional complaints, complaints that the new style leaves too
many gaps in what is actually rigorously proven, complaints that a clean field theory
description is needed and lacking. Research has been democratized and globalized
to a quite unprecedented extent. This has mainly been achieved by making research
results available simultaneously to most of the researchers by posting them on the
web daily. There are some drawbacks inherent to that evolution, research attitudes
have been largely standardized and the ranges of different points of view have been
significantly focused/narrowed. The outside pressures to better quantify scientific
production have found an easily accessible statistical database. In particular, that
is leading to assigning a somewhat excessive weight for the citation counting in
a variety of science policy decisions. The impact of that is yet to stabilize. All
that said, one should notice that phenomenologists and experimentalists do turn to
string theory and its spin offs in search of a stimulus for ideas on how to detect
possible deviations from the standard model. The problems string theory faces
are difficult, one approach is to accept this and plunge time and again into the
dark regions of ignorance using string theory as an available guide, hoping that
it will be more resourceful than its practitioners are. Another approach is to break
away from the comfort of physics as we formulate it today and replace some of
its working axioms by new ones, such as holography, the entropic principle or
eventually perhaps something else. It seems that the question of the exact nature of
the basic constituents of matter will remain with us for still quite awhile. My favorite
picture is that it will turn out that asking if the basic constituents are point like, are
one, two or three-dimensional branes is like asking whether matter is made of earth
or air. A theory including the symmetries of gravity will have different phases, some
best described by stringy excitations, some by point particles, some by the various
branes, and perhaps the most symmetrical phase will be much simpler. Several of
these will offer the conventional space time picture, other will offer a something
new. String theory either as a source of inspiration, or as a very dynamic research
effort attracting criticism leaves few people indifferent.

8.5 Hindsight from 2018

The years from 2007 to 2018 were yet another example of the well-known difficulty
of predicting the future. Luckily what I wrote in 2007 contained, on this front,
enough disclaimers to satisfy the most strict of lawyers.

During those years one could celebrate a gigantic engineering triumph. After
succumbing to a very significant early setback the LHC outperformed its expecta-
tions. The experimental triumph was as impressive. The detectors performed well
beyond what one could dream. They obtained results from picking out the Higgs
particle out of haystack through rediscovering particles which were first detected at
electron-positron machines to finding more hadrons in the heavier flavour sectors.
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This success was not matched by validating any of the TPs (Theoretical
Prejudices) which I had discussed in some detail. The discovery of the quite likely
absence of new particles in the new energy vistas opened by the LHC had an impact.
Of course one can still hope that positive new discoveries will be made and I for one
do hope so; still it is more and more considered as a possibility that we will need to
settle for a long time for accelerators that will validate the Standard Model and not
uncover treasures beyond it. A school of thought is developing, since the activation
of the LHC, that beyond the Standard Model lurks non other than the Standard
Model itself. At least for a while.

This requires soul searching of the theoretical physics community. What could
be the result of such an examination of the routes taken so far? Recall that NOH
(Nobody Owes Humanity), it may be that using elegance and beauty as our guiding
principles, and indeed SUSY and string theory are beautiful, has failed us. Perhaps
our esthetics taste does not confirm with that of nature. Perhaps these TPs will
manifest themselves at some higher energy and perhaps we are on a totally wrong
track. Falsifying ideas is a most important component of the scientific method, but
many would not agree that the TPs have been indeed falsified. New ideas should be
encouraged and welcomed, there is nothing as good as a good new idea to revitalize
our thinking. The results of such debates cannot be dictated. Each researcher will
draw her/his own conclusions. Be that as it may, such an open debate is required.
Hopefully there will be something to report on in the next edition of this book.

One aspect of “Beyond” physics that is considered more actively now involves
testing the possibility that the Standard Model has scale or even conformal invariant
features. Some of them I suggested long ago and pointed out in this volume,
especially its relation to the puzzle of the value of the vacuum energy.

The fact that, depending on the exact value of the top quark mass, the Universe is
living dangerously and may eventually self-destruct as it decays to some other place
was also noted and investigated.

The dark matter elephant in the room remains very present.
The mathematical aspects of SUSY have been considerably sharpened during

these years and have led to many new surprising exact results in more regions of
strong coupling where no one ventured before. I was most attracted to a branch
of research trying to attempt to use quantum information aspects as ingredients
that build up semiclassical geometry and also quantum space time. These attempts
are in their infancy but they have already covered quite some ground. Sometimes
it has happened that a change of perspective and bringing in new tools was a
way for a younger generation to take over the leadership of a field. The absence
of experimental data to crown new leaders serves as a fertile ground for this
mechanism.

Finally, back to experiment; for years black holes seemed as removed from
experiment as the detection of stringy effects are 2017 has seen the hundred years
search for the detection of gravitational waves reach a discovery moment. Humans
observed particles collide at the LHC and black holes collide in the Universe—a
great moment. Theorists are seriously considering the properties of those very black
holes in terms of information processing. Seeds for a new TP have been sown.
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Over this decade we have learned or should have learned the importance of
patience, humility, and diversity of ideas. Not the type of lessons that theoretical
physicists appreciate too much.
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Chapter 9
Symmetry Violations and Quark Flavour
Physics

Konrad Kleinknecht and Ulrich Uwer

9.1 Introduction

9.1.1 Matter–Antimatter Asymmetry in the Universe

One of the surprising facts in our present understanding of the development of
the Universe is the complete absence of “primordial” antimatter from the Big
Bang about 13.7 billion years ago. The detection of charged cosmic-ray particles
by magnetic spectrometers borne by balloons, satellites, and the space shuttle
has shown no evidence for such primordial (high-energy) antibaryons; nor has
the search for gamma rays from antimatter–matter annihilation yielded any such
observation. In the early phases of the expanding Universe, a hot (1032 K) and
dense plasma of quarks, antiquarks, leptons, antileptons and photons coexisted in
equilibrium. This plasma expanded and cooled down, and matter and antimatter
could recombine and annihilate into photons. If all interactions were symmetric with
respect to matter and antimatter, and if baryon and lepton numbers were conserved,
then all particles would finally convert to photons, and the expansion of the Universe
would shift the wavelength of these photons to the far infrared region.

This cosmic microwave background radiation was indeed observed by Penzias
and Wilson in 1965 [1], and its wavelength distribution corresponds exactly to
Planck black-body radiation at a temperature of 2.73 K (see Fig. 9.1). The density
of this radiation is about 5 × 102 photons/cm3.
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Fig. 9.1 Frequency
distribution of the cosmic
microwave background
variation, as measured by the
COBE satellite and
earth-based experiments
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However, this radiation is not the only remnant of the Big Bang; there is also a
small amount of baryonic matter left over, at a density of 6 × 10−8 nucleons/cm3,
about 10−10 of the photon density. This phenomenon can only be explained if the
three conditions of Sakharov [2] are fulfilled:

– there must be an interaction violating CP invariance, where C is the particle–
antiparticle transformation and P the space inversion operation;

– there must be an interaction violating the conservation of baryon number;
– there must be phases of the expansion without thermodynamic equilibrium.

The first condition was shown to be fulfilled when, in 1964, J. Christenson, J.
Cronin, V. Fitch and R. Turlay discovered CP violation [3] in decays of neutral
K mesons. The second criterion would imply that protons are not stable; searches
for such a decay have been unsuccessful, showing that the lifetime of the proton
is longer then 1031 years. The third condition can be met in cosmological models
by inflationary fast expansion or by a first-order phase transition in the electroweak
interaction of the Standard Model.

In the following, we shall concentrate on the observed CP violation, which could
in principle lead to a small surplus of matter, the observed baryon asymmetry of
10−10 in the Universe.

9.2 Discrete Symmetries

Symmetries and conservation laws have long played an important role in physics.
The simplest examples of macroscopic relevance are the laws of conservation of
energy and momentum, which are due to the invariance of forces under translation
in time and space, respectively. Both are continuous transformations. In the domain
of quantum phenomena, there are also conservation laws corresponding to discrete
transformations. One of these is reflection in space (the “parity operation”) P
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[4]. The second discrete transformation is particle–antiparticle conjugation C [5].
This transforms each particle into its antiparticle, whereby all additive quantum
numbers change their sign. A third transformation of this kind is time reversal T ,
which reverses momenta and angular momenta [6]. This corresponds formally to an
inversion of the direction of time. According to the CPT theorem of Lüders and
Pauli [7–9], there is a connection between these three transformations such that,
under rather weak assumptions, in a local field theory all processes are invariant
under the combined operation C · P · T .

9.2.1 Discrete Symmetries in Classical Physics

9.2.1.1 Parity P

The parity operation consists in reversing the direction of the position vector �r =
(X, Y,Z) in Cartesian coordinates. This corresponds to reflection in a plane mirror,
followed by a rotation by 180◦. Symmetry under parity operation is therefore also
called mirror symmetry.

The parity operation reverses the direction of all polar vectors derived from the
position vector; in particular, this is the case for the momentum �p = m�v = md�r/dt
and the acceleration �a = d2�r/dt2. Therefore, the Newtonian force �F = d �p/dt is also
reversed under the parity operation.

This must be also the case for the Lorentz and Coulomb forces on a particle with
charge q moving with velocity �v:

�F = q( �E + �v × �B) . (9.1)

Since the charge q is invariant under P , and the force �F and the velocity �v change
sign, the electric field strength �E must change sign and the magnetic field strength
�B must remain unchanged.

For the electric potential �A, we obtain from the relations

�E = −gradV − ∂ �A/∂t, (9.2)

�B = rot �A, (9.3)

the result that �A changes sign and V remains invariant, since the spatial differential
operator changes sign under the parity operation.

We therefore have four classes of quantities with different transformation behav-
ior under P : axial vectors or pseudovectors such as �B and the angular momentum
�J = �r× �p, and scalars such as V , which remain invariant under P ; and polar vectors

such as �r, �p, �F, �E and �A, and pseudoscalars such as �E · �B , which change sign under
P .
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9.2.1.2 Time Reversal T

This operation consists in reversing the sign of the time axis t . Under this operation
t → −t , the velocity �v, the momentum �p and the angular momentum �J change sign,
while the force �F remains unchanged under T . From the fact that the Coulomb and
Lorentz forces are invariant, we derive the result that �E → �E and �B → �B under T ;
for the potentials, V → V but �A → − �A.

9.2.1.3 Dipole Moments

Elementary particles with spin may have electric or magnetic dipole moments.
The spin �s has the dimensions of an angular momentum, and therefore remains
unchanged under parity and changes sign under time reversal.

The potential energy of an electric or magnetic dipole in an external field is
proportional to the scalar product of the electric or magnetic moment with the
strength of the external electromagnetic field. Since the moments must be parallel
to the spin, the potential energy is given by

− de�s · �E for the electric case (9.4)

and

− dm�s · �B for the magnetic case (9.5)

Here de and dm are the electric and magnetic dipole moments, respectively. If we
consider the transformation properties of �s, �E and �B under P and T , it turns out
that for both operations dm → dm and de → −de. This means that observation of a
nonvanishing electric dipole moment would violate any invariance under parity and
time-reversal transformations.

In classical physics, all processes are invariant under parity and under time
reversal. In the case of mirror symmetry, this means that a physical experiment
will lead to the same result as a mirror-imaged experiment, since the equations of
classical physics are left-right symmetric. In a similar way, the classical motion of
one particle can be reversed, e.g. by playing a film backwards, and this inversion
of the motion corresponds formally to time reversal. Again, the laws of motion are
invariant under T , and the reversed motion follows the same path backwards as
forwards.

Of course, this is no longer the case if many particles move and interact with
each other; in this case the second law of thermodynamics ensures that entropy is
increasing, thus defining an arrow of time.
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9.2.2 Discrete Symmetries in Quantum Systems

9.2.2.1 Particle–Antiparticle Conjugation

In relativistic quantum mechanics, the Dirac equation requires that for each solution
describing a particle, there is a second solution with opposite charge, describing the
antiparticle. The antiparticle of the electron, the positron, was found in 1933 [10],
and the antiproton was found in 1955 [11]. The particle–antiparticle conjugation
C transforms the field φ of the particle into a related field φ† which has opposite
quantum numbers: the charge, lepton number, baryon number, strangeness, beauty,
etc., for the antiparticle are opposite in sign to the values for the particle.

Invariance under the C transformation is always valid in the strong and electro-
magnetic interactions. This means, in particular, that the visible spectral lines from
atoms and their antiatom partners are identical, and we cannot use these lines to
identify antimatter in the Universe.

This would be especially important in the science-fiction scenario in which a
man-made spacecraft sets out to meet a distant civilization, where it would be
advisable to know whether the other planet was made of matter or antimatter. In
this case another means of differentiation would have to be found.

9.2.2.2 Violation of Mirror Symmetry: Parity Violation in Weak
Interactions

Lee and Yang [13] suggested that of the four interactions—strong, electromagnetic,
weak and gravitational—the weak interaction might violate mirror symmetry when
it was described by a combination of vector and axial-vector currents in the
Lagrangian (V–A theory). The interference of these two currents could lead to
pseudoscalar observables which would change sign under the parity operation. One
such observable is the scalar product of an axial vector (such as the spin of a particle)
with a polar vector (such as the momentum of another particle in the final state). If
the expectation value of this pseudoscalar is measured to be nonvanishing, then
parity is violated.

An experiment on the beta decay of cobalt-60 [14] measured exactly such an
observable, the scalar product of the spin 5h̄ of the 60Co nucleus and the direction
of the electron from its beta decay into an excited state of 60Ni with nuclear spin
4h̄. The 60Co nuclei were polarized by embedding them in a cerium–magnesium
crystal, where the magnetic moments were aligned by a weak external magnetic
field of about 0.05 T. In the strong magnetic field inside this paramagnet, the 60Co
nuclei are polarized through hyperfine interactions if the temperature is low enough
(0.01 K) to avoid thermal demagnetization. The polarization was measured through
the asymmetry of γ rays from the cascade decay of the 60Ni state. The measurement
then required the detection of the electron direction relative to the polarization of the
Co nuclei. The experimenters found that the electron was emitted preferentially in
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a direction opposite to the external magnetic field, and that this effect disappeared
when the crystal was warmed and the nuclear polarization disappeared. Thus, at low
temperature, a nonzero pseudoscalar is observed, demonstrating parity violation.

By comparing nuclear beta decays having an electron and an antineutrino in
the final state with their counterpart with emission of a positron-neutrino pair, it
was shown that the helicity h = �s · �p/|�s · �p| of neutrinos is opposite to the one of
antineutrinos [18].

Other experiments lead to similar results. The helicity h = �s · �p/|�s · �p| of
the neutrino emitted in the weak electron capture by 152Eu was measured in
an experiment by Goldhaber and Grodzins [19] to be negative; the neutrino is
“left-handed”, i.e. the spin is aligned antiparallel to the momentum. Similarly,
measurements of the polarization of electrons from β− decay showed a negative
value, with a modulus increasing with the velocity of the electron, v/c. Positrons
from β+ decay were found to have a positive polarization that increases with v/c.

9.2.2.3 Violation of C Symmetry, and CP Invariance

In the realm of weak decays of particles, supporting evidence for the violation of
mirror symmetry came from the observation that parity is violated in the decay
π+ → μ+νμ, and that the muon neutrino from this decay is left-handed [15, 16].
The P-conjugate process, i.e. π+ → νμμ

+, with a right-handed neutrino, does not
occur. The same is true for the C-conjugate process, π− → μ−νμ, with a left-
handed antineutrino. However, if we combine the C and P operations, we arrive at a
process π− → μ−νμ with a right-handed antineutrino, which proceeds at the same
rate as the original π+ decay, with a left-handed muon neutrino. Evidently, in weak
interactions, P and C are violated, while it seemed at the time of those experiments
that the process was invariant under the combined operation C · P . This argument
can be visualized as in Fig. 9.2. Here the P mirror and the C mirror act on a left-
handed neutrino, both leading to unphysical states, a right-handed neutrino and a
left-handed antineutrino. Only the combined CP mirror leads to a physical particle,
the right-handed antineutrino. This argument was made by Landau [17], suggesting
that the real symmetry was CP invariance.

9.2.2.4 CP Invariance and Neutral K Mesons

One consequence of this postulated CP invariance was predicted by Gell-Mann
and Pais [12] for the neutral K mesons: there should be a long-lived partner to
the known V0

(
K0

1

)
particle of short lifetime (10−10s). According to this proposal,

these two particles are mixtures of the two strangeness eigenstates K0(S = +1) and
K0(S = −1) produced in strong interactions. Weak interactions do not conserve
strangeness, and the physical particles should be eigenstates of CP if the weak
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Fig. 9.2 The mirror image of
a left-handed neutrino under
P , C and CP mirror
operations

interactions are CP-invariant. These eigenstates are described as follows (where
we choose the phases such that K0 = CPK0):

CPK1 = CP
[

1√
2

(
K0 + K0

)]
= 1√

2

(
K0 + K0

)
= K1 , (9.6)

CPK2 = CP
[

1√
2

(
K0 − K0

)]
= 1√

2

(
K0 − K0

)
= −K2 . (9.7)

Because CP |π+π−〉 = |π+π−〉 for π mesons in a state with angular momentum
zero, i.e. the two-pion state has a positive CP eigenvalue, a decay into π+π− is
allowed for the K1 but forbidden for the K2; hence the longer lifetime of K2, which
was indeed confirmed when the K2 was discovered [20, 21].

9.2.2.5 Discovery of CP Violation

In 1964, however, Christenson et al. [22] discovered that the long-lived neutral K
meson also decays to two charged pions with a branching ratio of 2 × 10−3.

The motivation of this experiment was twofold: the experimenters wanted to
check on an effect found by Adair et al. [23] when the latter observed interactions
of long-lived kaons (K2) in hydrogen, and they wanted to test CP invariance by
searching for the decay of K2 into two pions. Adair et al. had found anomalous
regeneration of short-lived kaons (K1) above expectation. “Regeneration” is an
effect due to the different strong interactions of the two components of a long-lived
kaon, K0 and K0. This leads to a creation of a coherent K1 component when a K2
beam traverses matter. The anomalous effect above expectation was still observed
in the experiment of Christenson et al. when the (K2) beam hit a hydrogen target.

Therefore, Christenson et al. emptied the target and looked for K2 → π+π−
decays from the vacuum. To their surprise, they found such decays, which meant
that CP invariance was broken in this decay.
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Fig. 9.3 The experimental setup used by Christenson et al. [22] for the discovery of CP violation

The magnetic spectrometer used by Christenson et al. is shown in Fig. 9.3.
On each side of the spectrometer, one charged particle is detected through spark
chambers in front of and behind the magnet. The two vector momenta �pi (i = 1, 2)
of the two particles are measured. Assuming the mass of the particles to be the pion
rest mass mπ their energies can be obtained from

E2
i = �p2

i + m2
π . (9.8)

The invariant mass of the pair is

mππ =
√[

(E1 + E2)2 − ( �p1 + �p2)2
]
, (9.9)

and the kaon momentum is

�pK = �p1 + �p2 . (9.10)

From the reconstructed kaon momentum, the intersection of the kaon flight path
with the target plane gives an indication of whether this was a two-body decay
coming from the target or a three-body decay with an escaping neutrino.

In the latter case, the direction of �pK does not point back to the target source.
The result of the experiment is shown in Fig. 9.4. A significant peak of K → π+π−
decays coming from the target direction (cos θ = 1) is seen, while the background
of three-body decays outside the peak can be extrapolated under the signal, and
represents only ∼20% of the data in the signal region: there is a signal at the level
of 2 × 10−3 of all decays, and CP is violated.

From then on the long-lived K meson state was called KL because it was no
longer identical to the CP eigenstate K2. However, the physical long-lived state
KL was a superposition of a predominant K2 amplitude and a small admixture
of a K1 amplitude, KL = (K2 + εK1)/

√
1 + |ε|2 where the admixture parameter
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Fig. 9.4 (a) Experimental distribution of m∗ compared with Monte Carlo calculation. The calcu-
lated distribution is normalized to the total number of observed events. (b) Angular distribution of
those events in the range 490 < m∗ < 510 MeV. The calculated curve is normalized to the number
of events in the total sample

ε is determined by experiment to satisfy |ε| ∼ 2 × 10−3 . Similarly, the short-
lived state was called KS, and KS = (K1 + εK2)/

√
1 + |ε|2. The CP violation

that manifested itself by the decay KL → π+π− was confirmed subsequently
in the decay KL → π0π0 [24, 25], and by a charge asymmetry in the decays
KL → π±e∓ν and KL → π±μ∓ν [26, 27].

9.2.3 Discrete Symmetries in Quantum Mechanics

The three discrete symmetries P , C and T are described by the operators P
for the parity transformation, C for particle–antiparticle conjugation and T for
time reversal. Invariance of an interaction described by a Hamiltonian H under
a symmetry operation means that H commutes with the relevant operator, e.g.
[H, P] = 0. According to experimental evidence, the strong and electromagnetic
interactions are P- and C-invariant. The corresponding operators are unitary, i.e. the
Hermitian conjugate is equal to the inverse:

C† = C−1 , (9.11)

P† = P−1 . (9.12)

For two states |ψ〉 and |ϕ〉, such a unitary transformation does not change the
product:

〈ψ | ϕ〉 = 〈ψ ′ | ϕ′〉 , (9.13)

where |ψ ′〉 and |ϕ′〉 are the transformed states.
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By defining the intrinsic parity of the proton as +1, a phase convention for the
fields can be chosen, such that the parity operator P has only eigenvalues of +1
or −1, and all particles have intrinsic parities ±1 as quantum numbers. These
conserved quantities, which correspond to discrete symmetries, are multiplicative
quantum numbers.

The third discrete symmetry, time reversal, is a special case. The corresponding
operator T is not unitary, but antiunitary. Here the bracket 〈ψ|ϕ〉 is not conserved
by the T transformation, but rather

〈ψ ′|ϕ′〉 = 〈ψ|ϕ〉∗ . (9.14)

Probability is still conserved, i.e.

|〈ψ ′|ϕ′〉| = |〈ψ|ϕ〉| , (9.15)

but the phases are not. The fact that T is antiunitary can be deduced from the
Schrödinger equation for a free particle, where the time derivative is odd under
T while the Laplace operator � is even. This can be reconciled with T invariance
only if T makes the changes i → −i and ψ → ψ∗.

CPT , the product of all three discrete transformations, being a product of two
unitary and one antiunitary operator, is also antiunitary. According to the CPT
theorem of Lüders [7] and Pauli [8], and Jost [9], a field theory with Lorentz
invariance, locality, and the commutation relations given by the spin-statistics
theorem, is CPT -invariant. At present there is no realistic field theory which
violates CPT invariance.

As a consequence of this theorem, violation of one of the three discrete
symmetries implies a violation of a complementary one. If CP is violated, then
T is also violated.

The experimental consequences of CPT invariance are the equality of the
masses, lifetimes and magnetic dipole moments of a particle and its antiparticle.
These equalities have been tested with great precision, as shown in Table 9.1.

A very special case in this context is that of the masses of the neutral K mesons.
The mass difference between the long-lived KL and the short-lived KS can be
measured in interference experiments. This difference is due to second-order weak

Table 9.1 Comparison of masses m, lifetimes τ , and magnetic g-factors of particle and antiparti-
cles

Particle |m − m|/m |τ − τ |/τ |g − g|/g
e < 4 × 10−8 (−0.5 ± 2.1) × 10−12

μ (1 ± 8) × 10−5 (−2.6 ± 1.6) × 10−8

π (2 ± 5) × 10−4 (5.5 ± 7.1) × 10−4

p < 7 × 10−10 (0.3 ± 0.8) × 10−6

K0 < 4.7 × 10−19
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interactions and, therefore, is very small, about �m = (3.480 ± 0.007) × 10−6

eV, which means that �m/mK < 10−14. From this, one can deduce very stringent
limits on the mass difference between the K0 and K0, of order 10−18.

Thus, from experimental evidence, there is no doubt about the validity of CPT
invariance.

9.3 Mixing and Decay of Neutral Flavoured Mesons

9.3.1 Particle–Antiparticle Mixing

Neutral mesons (represented by N0 in this chapter) with a characteristic quantum
number, such as the strangeness S for K0 mesons, charm C for D0 mesons and
beauty B for B0

s and B0
d mesons, have the particular property that they can mix with

their antiparticles, which carry an opposite-sign quantum number. Weak interactions
do not conserve any of these quantum numbers (S, C, B); consequently N0 and
N0 can mix by second-order weak transitions through intermediate states such as
2π, 3π, πμν, πeν (for K0), or πK (for B0). The states that obey an exponential
decay law are linear superpositions of N0 and N0,

α |N0〉 + β |N0〉 =
(
α

β

)
. (9.16)

The time-dependent Schrödinger equation then becomes a matrix equation

i
d

dt

(
α

β

)
= X

(
α

β

)
, (9.17)

where Xik = Mik − iΓik/2, and Mik and Γik are Hermitian matrices, called mass
matrix and decay matrix, respectively. Both of the latter two matrices are Hermitian:
M = M† and Γ = Γ †. However, X is not Hermitian. The elements of the matrix X

are

X11 = 〈N0|H|N0〉 , X22 = 〈N0|H|N0〉 ,

X12 = 〈N0|H|N0〉 , X21 = 〈N0|H|N0〉 (9.18)

where CPT invariance requires the diagonal elements to be equal: X11 = X22. The
matrix has the form

X =
⎛
⎝ m − i

2Γ m12 − i
2Γ12

m∗
12

− i
2Γ

∗
12

m − i
2Γ

⎞
⎠ . (9.19)
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The off-diagonal elements of the matrices are given by

Γ21 = 2π
∑

$
F
〈N0|HW|F 〉〈F |HW|N0〉 , (9.20)

where the sum runs over all possible physical intermediate states F , which have a
phase space density $F . Similarly,

M21 = 〈N0|HW|N0〉 +
∑
n

〈N0|HW|n〉〈n|HW|N0〉
m

N0 − mn

, (9.21)

where the sum extends over all possible virtual intermediate states n.
The eigenvalue equations for X yield two eigenstates, which can be labeled by

their mass: h for the higher mass, l for the lower mass. These eigenstates are the
physical particles with a definite mass and an exponential lifetime distribution. The
eigenvalues Mh and Ml of the matrix X are

Mh = mh − i

2
Γh ,

Ml = ml − i

2
Γl (9.22)

We denote the differences between the physical quantities by �Γ = Γh − Γl and
�m = mh − ml > 0 and denote the average values by

Γ = Γh + Γl

2
, (9.23)

m = mh + ml

2
. (9.24)

For the B0—B0 system and the D0—D0 system, the two decay widths Γh and Γl are
expected to be nearly equal (because the numbers of final states for the decay are
very similar). In these cases it is customary to introduce the dimensionless quantities

x = �m

Γ
(9.25)

and

y = �Γ

2Γ
. (9.26)

Here x is positive by definition, and y varies between −1 and +1. For heavy systems
such as B0, |y| is expected to be much less than 1, while for the K0 system, y is
found experimentally to be close to −1, since here the decay width of the lighter
state is 600 times larger then that of the heavier state. Therefore, for the K0 system,
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Table 9.2 Parameters of the four neutral oscillating meson pairs [28] (see Sects. 9.5.5.7 and 9.6.4)

K0/K0 D0/D0 B0/B0 B0
s /B0

s

τ [ps] 89.59 ± 0.04 0.4101±0.0015 1.519±0.004 1.510±0.007

51 160 ± 210

Γ [109s−1] 5.61 2.44×103 (658±2) (662±3)

y = �Γ/(2Γ ) −0.9965 (0.645±0.008)×10−2 |y| � 0.01 −(0.062± 0.005)

�m [109s−1] (5.286±0.011) <70 (507±2) (17.76±0.02)×103

�m [10−6eV] (3.480±0.007) <5 (334±3) (11.69±0.13)×103

x = �m/Γ 0.945±0.002 <0.03 0.769±0.004 26.81±0.10

the lighter state is called KS (“short-lived”) and the heavier state KL (“long-lived”).
Table 9.2 gives a summary of various parameters of oscillating meson pairs.

9.3.2 Decays of Neutral Mesons

9.3.2.1 Time-Dependent Schrödinger Equation

From the time-dependent Schrödinger equation for mixed states given above, it
follows that

d

dt

(
|α|2 + |β|2

)
= − (

α∗β∗)Γ
(
α

β

)
. (9.27)

Since both of the neutral mesons N0 and N0 decay, the left-hand side of this equation
is negative for any α or β. ThereforeΓ is positive definite, in particularΓ11, Γ22 and
detΓ are positive.

The physical particles, which have a definite mass and lifetime, are mixtures of
the eigenstates N0 and N0 of the strong interaction, which carry definite values of
their characteristic quantum numbers strangeness S, charm C, and beauty B.

If the weak interaction through which these particles decay is invariant under
a discrete symmetry, say CP , then the physical particles are eigenstates of this
symmetry because HW commutes with CP .

The effect of discrete symmetries on N0 and N0 is the following: CP is unitary,
and there is an arbitrary phase a:

CP |N0〉 = eia|N0〉 ,
CP |N0〉 = e−ia|N0〉 . (9.28)
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CPT , however, is antiunitary, and, with an arbitrary phase b,

CPT |N0〉 = eib|N0〉 ,
CPT |N0〉 = eib|N0〉 . (9.29)

For T , which is also antiunitary, we obtain

T |N0〉 = ei(b−a)|N0〉
T |N0〉 = ei(b+a)|N0〉 (9.30)

We choose the arbitrary phase a to be equal to 0 here, such that the eigenstates of
CP are

|N+〉 = 1√
2

(
|N0〉 + |N0〉

)
,

|N−〉 = 1√
2

(
|N0〉 − |N0〉

)
, (9.31)

with the property that they have CP eigenvalues +1 and −1:

√
2 CP |N+〉 = CP |N0〉 + CP |N0〉 = |N0〉 + |N0〉 = √

2 |N+〉
√

2 CP |N−〉 = CP |N0〉 − CP |N0〉 = |N0〉 − |N0〉 = −√
2 |N−〉 (9.32)

Historically, in the K0 system, |N+〉 was designated by |K1〉, and |N−〉 by |K2〉.
Discrete symmetries impose certain conditions on the elements of the mass and

decay matrix. CPT invariance requires the masses and lifetimes of the particle
and antiparticle to be equal, i.e. X11 = X22, or M11 = M22 and Γ11 = Γ22, for the
diagonal elements. CP invariance requires that |X12| = |X21|. In the following, we
assume CPT invariance.

The eigenvalue equation for the matrix X yields

�μ = �m − i

2
�Γ = 2

√
X12X21 . (9.33)

The corresponding eigenvectors of X are written

|Nh〉 = p|N0〉 − q|N0〉 ,
|Nl〉 = p|N0〉 + q|N0〉 , (9.34)
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or in the form of the corresponding relations

|N0〉 = 1

2p
(|Nh〉 + |Nl〉) ,

|N0〉 = −1

2q
(|Nh〉 − |Nl〉) . (9.35)

Unitarity requires |p|2 + |q2| = 1, and CP invariance would mean p = q = 1/
√

2.
In the case of CP noninvariance, an asymmetry parameter can be defined by

ε = p − q

p + q
or

p

q
= 1 + ε

1 − ε
(9.36)

and we obtain

ε =
1
2 &mΓ12 + i &mM12

�m − i
2�Γ

, (9.37)

where &mM12 � &mΓ12 for the K meson system, and therefore

arg ε � arctan
2�m

ΓS
(9.38)

In this case the two physical states are not orthogonal, and we obtain

〈Nl |Nh〉 = 2 'e ε

1 + |ε|2 . (9.39)

For the eigenstates of the time-dependent Schrödinger equation, the time evolution
obeys an exponential decay law, as can be shown in the Wigner–Weisskopf
approximation. Here, the time t is measured in the rest frame given by the common
mass defined by the strong and electromagnetic interactions. The time evolution is
given by

|Nh(t)〉 = e−imht− 1
2Γht |Nh(0)〉 ,

|Nl (t)〉 = e−imlt− 1
2Γl t |Nl(0)〉 . (9.40)

In this way, Nh decays as exp(−Γht) and Nl as exp(−Γlt), while the phases of the
two states evolve with different frequency, and this difference will show up in any
interference effect between the two decaying mesons.
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On the other hand, if initially a pure flavor state N0 or N0 is produced, the decay
law is not exponential but shows oscillations. If we define the complex quantities

γh = imh + Γh

2
,

γl = iml + Γl

2
, (9.41)

for the heavy (h) and light (l) meson states, respectively, then the amplitude for an
initially pure state N0 at time t = 0 is given by (9.34), and at a finite time t the two
components evolve according to (9.40). At this time, the state is

ψN = 1

2

(
N0 (e−γht + e−γl t

) − q

p
N0

(
e−γht − e−γl t

))
. (9.42)

The probability of finding an N0 after a time t , starting from an initially pure N0

state is

P(N0 → N0) = 1

4

∣∣∣∣ qp
∣∣∣∣
2 [

e−Γht + e−Γl t − 2e−Γ t cos (�m t)
]
. (9.43)

If we express this in the unified variables T = Γ t, x and y, this reads

P(N0 → N0) = 1

2

∣∣∣∣ qp
∣∣∣∣
2

e−T (cosh yT − cos xT ) . (9.44)

Similarly, the probability of finding an N0 in an initially pure N0 state is

P(N0 → N0) = 1

2
e−T (cosh yT + cos xT ) . (9.45)

The difference between these two probabilities is then

P(N0 → N0) − P(N0 → N0)

= 1

2
e−T (cosh yT + cos xT ) − 1

2
e−T

(∣∣∣∣ qp
∣∣∣∣
2

cosh yT −
∣∣∣∣ qp

∣∣∣∣
2

cos xT

)

= 1

2
e−T

[
cosh yT

(
1 −

∣∣∣∣ qp
∣∣∣∣
2
)

+ cos xT

(
1 +

∣∣∣∣ qp
∣∣∣∣
2
)]

. (9.46)
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However, the two states Nh and Nl are not orthogonal, but their overlap δ is

δ = 〈Nh|Nl〉 = |p|2 − |q|2 =
1 −

∣∣∣ qp
∣∣∣2

1 +
∣∣∣ qp

∣∣∣2
= 2 'e ε

1 + |ε|2 . (9.47)

From this result, we obtain

P(N0 → N0) − P(N0 → N0) = 1

2
e−T

(
1 +

∣∣∣∣ qp
∣∣∣∣
2
)
(δ cosh yT + cos xT ) .

(9.48)

Similarly,

P(N0 → N0) + P(N0 → N0) = 1

2
e−T

(
1 +

∣∣∣∣ qp
∣∣∣∣
2
)
(cosh yT + δ cos xT ) ,

(9.49)

and the flavor asymmetry at time T in an initially pure flavor state becomes

A(T ) = P(N0 → N0) − P(N0 → N0)

P (N0 → N0) + P(N0 → N0)
= cos xT + δ cosh yT

cosh yT + δ cos xT
. (9.50)

This function behaves very differently for the neutral K, D, and B meson systems.

9.3.2.2 Decay Asymmetries and CP

We define the decay amplitudes of neutral mesons to a final state f as

Af = 〈f |T |N0〉 ,
Af = 〈f |T |N0〉 . (9.51)

The decay amplitudes of the mass eigenstates are then

Ah
f = pAf − qAf ,

Al
f = pAf + qAf , (9.52)

and we define the complex quantity

λf = qAf

pAf

. (9.53)
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The moduli for the decay of N0 to f and the decay of N0 to its CP conjugate state
f are equal if CP is conserved, and vice versa:

|Af | = |Af | ,
|Af | = |Af | . (9.54)

(If f is a CP eigenstate, this is simplified to |Af | = |Af |).
Now CP violation may occur in three different ways:

1. CP violation in the mixing, if |q/p| 	= 1, called “indirect CP violation”.
2. CP violation in the decay amplitudes, when (9.54) is not valid, called “direct CP

violation”.
3. CP violation in the interference, when the phase of the expression

AfA
∗
f AfA

∗
f
p2/q2 (9.55)

is not zero.

These three types of CP violation are characterized by the following details:

1. CPviolation in the mixing. This type of CP violation will show up if the mass
eigenstates of a neutral meson system are different from the CP eigenstates, i.e.
if |q/p| 	= 1 (or ε 	= 0) and if there is a relative phase between M12 and Γ12. For
the neutral kaon system, this is evident from the existence of the decay KL →
π+π−, where |ε| ∼ 2 × 10−3, and from the charge asymmetry in semileptonic
decays δL which is proportional to 2 'e ε. For the neutral B system, this effect
could be seen also in the charge asymmetry of semileptonic decays

aSL = Γ (B0(t) → l+νX) − Γ (B0(t) → l−ν̄X)

Γ (B0(t) → l+νX) + Γ (B0(t) → l−ν̄X)
. (9.56)

This asymmetry is expected to be small in the Standard Model of order �Γ/�m

or O(10−3).
2. CPviolation in the decay amplitude. This effect appears if the decay amplitude

Af of the neutral meson N0 to a final state f is different from the amplitude Af

of the antiparticle N0 to the charge-conjugate state f , i.e. |Af /Af | 	= 1. In the
neutral-kaon decay to two π mesons, this is realized by the interference of two
decay amplitudes, one with �I = 1/2 to an isospin I = 0 state, and another
with �I = 3/2 to an isospin I = 2 state. The amplitude of direct CP violation
is denoted by ε′ and proceeds through penguin diagram processes. The observed
magnitude of this amplitude is |ε′| ∼ 4×10−6. In the neutral B meson system, the
required two decay amplitudes with different weak phases and different strong
phases could be a penguin diagram and a tree diagram, e.g. for the decay to
the final state K−π+ or K+π−. The b → s penguin diagram has a dominant
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contribution from a top quark loop, with a weak coupling V ∗
tbVts and an isospin-

1/2 (Kπ) state. The tree diagram for b → u + (us) has a coupling V ∗
ubVus and

leads to I = 1/2 or 3/2 states. The observed quantity is the decay asymmetry:

a = N(B0 → K−π+) − N(B0 → K+π−)
N(B0 → K−π+) + N(B0 → K+π−)

. (9.57)

Asymmetries in the order of 10% and 025% have been observed for the B0 and
the B0

s meson respectively.
3. CPviolation in the interference. Here the time dependence of the decay of an

initially pure flavor state to a final state f is different for an initial particle or
antiparticle. The final state can be a CP eigenstate such as π+π− (CP = +1)
or J/ΨKS (CP = −1). In the kaon system the observed effect is &mε ∼ 1.6 ×
10−3, while in the B0 system it is a very large asymmetry of order O(1).

9.4 Models of CP Violation

After the discovery of CP violation in K decay, a host of theoretical models
was proposed to allocate this phenomenon to known interactions. Assuming CPT
invariance of all interactions, the observed CP-violating effects in K decay imply
also T violation (the experimental data of Sect. 9.5 are even sufficient to prove T
violation without CPT invariance). In general, with CPT invariance, there are four
combinations of violations possible:

(a) T -conserving, C-violating and P-violating;
(b) T -violating, C-conserving and P-violating;
(c) T -violating, C-violating and P-conserving;
(d) T -violating, C-violating and P-violating.

Parity conservation in strong and electromagnetic interactions has been tested,
for example by looking for a circular polarization in γ rays from nuclear transitions.
The presence of a wrong-parity admixture in one of the nuclear states involved will
cause a small amplitude for a γ transition with abnormal multipolarity that can
interfere with the dominant amplitude and cause such a circular polarization. In the
experiments of Lobashov et al. [46], polarizations of the order of 10−5 have been
measured. These are consistent with being due to the two-nucleon force np → pn
induced by the weak interaction (see [47] for a review).

From many experiments of a similar nature, one can infer that the strong and
electromagnetic interactions are not of type (a), (b) or (d). Therefore, if the source
of the CP-violating phenomena is located in the strong or the electromagnetic
interaction, there must be a part of one of those interactions that belongs to class
(c), i.e. C- and T -violating, but P-conserving.
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The proposed models can be grouped into the following four categories:

1. Millistrong CP violation models [29–31] postulate the existence of C- and T -
violating terms of order 10−3 in the strong interaction. The process KL →
π+π− is supposed to occur by the interference of two amplitudes: first, the KL
decays via the normal CP-conserving weak interaction, with �S = 1, into an
intermediate state X, and then this state decays into π+π− by a T -violating
strong interaction. The amplitude of the process is of order GF a, where GF

is the Fermi coupling constant and a is the coupling of this CP-violating
strong interaction. From the experimental value of |η+−|, one can conclude that
a ≈ 10−3.

2. Electromagnetic CP violation models [32–35] require large parts of the electro-
magnetic interaction of hadrons to be C- and T -violating, but P-conserving. A
two-step process KL → X → 2π could then occur through the interference of a
weak and an electromagnetic CP-violating amplitude. The product of GF with
the fine structure constant α is not too far from GF × 10−3, as required by the
magnitude of |η+−|.

3. Milliweak models assume that a part, of the order of 10−3, of the weak interaction
is CP-violating and is responsible for the observed effects. The decay KL → 2π
is then a one-step process, hence the name “direct CP violation”, and CP or T
violations of the order of 10−3 should show up in other weak processes [36–44].
In these models, based on two doublets of quarks, CP violation is introduced in
different ways. In one example [44], CP violation is due to the Higgs couplings,
with flavor-changing neutral currents allowed; in another one [42], it is due
to right-handed weak currents. A bold alternative was considered in 1973 by
Kobayashi and Maskawa [48]: they saw that if there are three doublets of quarks,
there is a possibility of CP violation in the 3×3 weak quark mixing. Today, with
six quarks observed, this seems the most natural modelas discussed below.

4. The superweak model [45] postulates a new �S = 2 CP-violating interaction
that has a coupling (coupling constant g) smaller than the second-order weak
interaction. This interaction could induce a transition KL → KS, with a subse-
quent decay KS → 2π . More precisely, this interaction would cause a first-order
transition matrix element

MSW = 〈K|HSW |K〉 ∼ gGF . (9.58)

The mass difference itself is related to the second-order weak matrix element

MKK =
∑
n

〈K|HW |n〉〈n|HW |K〉
EK − En + iε

. (9.59)

where n is an intermediate state with energy En and HW is the weak
Hamiltonian. In order that the CP-violating amplitude for KL → 2π relative
to the CP-conserving amplitude should be of the observed magnitude, the
ratio MSW/MKK must be of the order of 10−3. Since MSW ≈ gGF and
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MKK ∼ G2
F
m2

p where the proton mass mp is used as a cutoff in the integration,

this yields g ∼ GFm
2
p ≈ 10−8.

This superweak interaction can be detected only in the KL–KS and B0–B0

systems because these are the only known pairs of states with such a small
difference in energy that they are sensitive to forces weaker than the second-order
weak interaction. The clear prediction of this model is that there is no direct CP
violation in the decay.

For models other than the superweak one, violations of CP or T should manifest
themselves in other reactions of particles or nuclei. One observable is the electric
dipole moment (EDM) of the neutron. Most milliweak models predict this EDM
to be of order 10−23 ecm to 10−24 ecm, while the superweak model predicts
10−29 ecm. The present experimental upper limit is 0.63 × 10−25 ecm.

One of the milliweak models mentioned above under item 3 of the enumeration
which is rather clear in its predictions should be noted: this is the idea of Kobayashi
and Maskawa (KM) dating from 1973 [48]. At the time of the discovery of CP
violation, only three quarks were known, and there was no possibility of explaining
CP violation as a genuine phenomenon of weak interactions with left-handed
charged currents and an absence of flavor-changing neutral currents. This situation
remained unchanged with the introduction of a fourth quark because the 2×2 unitary
weak quark mixing matrix has only one free parameter, the Cabibbo angle, and no
nontrivial complex phase. However, as remarked by Kobayashi and Maskawa, the
picture changes if six quarks are present. In this case the 3×3 unitary mixing matrix
Vik naturally contains a phase δ, in addition to three mixing angles (Sect. 9.7). It is
then possible to construct CP-violating weak amplitudes from “box diagrams” of
the form shown in Fig. 9.5.

In the K0–K0 system, this amplitude is proportional to the product of the four
weak coupling constants G2

F
VtsV

∗
t sVtdV

∗
td . If there is a nontrivial phase δ in the

unitary mixing matrix, then the product is a complex number, with the imaginary
part depending on the phase δ. This leads to time-reversal (T ) violation and to CP
violation. The CP-violating mixing parameter for the kaon system, ε, is given by

ε = G2
F
f 2

K mK m2
W

G
√

2π2�m
BK &m(Vtd V

∗
t s)F (m2

t , m
2
c) . (9.60)

Fig. 9.5 Box diagram for K0–K0 mixing connected with the CP-violating parameter ε
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Here GF is the Fermi constant, fK the kaon decay constant, BK the kaon bag factor
(0.80 ± 0.15), and F(M2

t , m
2
c) the loop function due to interference of the top and

charm graphs, given by

F(m2
t , m

2
c ) = 'e

(
V ∗
csVcd

) [
η1S0

(
m2
c

)
− η3S0

(
m2
c ,m

2
t

)]
− 'e

(
V ∗
t sVtd

)
η2S0

(
m2
t

)
,

(9.61)

where S0(m
2
t ) is a kinematical factor, and η1, η2, and η3 are QCD correction factors.

For the B0
d–B0

d mixing, a similar box graph applies, with the s quark replaced
by a b quark. Here the amplitude is proportional to G2

F
VtbV

∗
tbVtdV

∗
td . Analogous

diagrams can be calculated for B0
s (bs) mixing and for D0 (cd) mixing.

All CP-violating amplitudes in the KM model are proportional to the following
product of the three mixing angles and the phase δ (Sect. 9.7),

J = |VusVubVcb sin δ| (9.62)

A necessary consequence of this model of CP violation is the non-equality of the
relative decay rates for KL → π+π− and KL → π0π0. This “direct CP violation”
is due to “penguin diagrams” of the form given in Fig. 9.6 for kaon decays. The
amplitude for this direct CP violation is denoted by ε′. In kaon decays, it will show
up in the interference of two decay amplitudes, with the final two-pion state having
isospin 0 or 2 (A0 and A2 in (9.91)). With six quarks, the weak quark mixing through
flavor change can carry a nontrivial phase δ in the mixing matrix, and therefore
can induce a CP-violating difference between weak decay amplitudes, such that
|Af | 	= |Af |. This model gives an explicit origin of direct CP violation with a
predictable size. In the kaon system, these asymmetries are very small because of
the small value of |J | ∼ 3 × 10−5, the suppression of �I = 3/2 currents, and the
partial cancellation of two penguin graphs, called Q6 and Q8, shown in Fig. 9.6.
However, in the B0 system, the asymmetries of the decay rates to CP eigenstates
can be very large. Examples are the decays B0 → J/ΨKS and B0 → π+π−.

The main models which could be tested experimentally were the KM model and
the superweak model, and the decisive question was the existence or non-existence
of direct CP violation. For the kaon system in the superweak model ε′ = 0, and

Fig. 9.6 Penguin diagrams for K0 → 2π decay with direct CP violation (amplitude ε′). The
graphs correspond to the Wilson operators Q8 and Q6 and give rise to amplitudes with opposite
signs
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the decay rates of KL to π+π− and to π0π0 are equal. The predicted value of ε′
within the KM model can be estimated if one infers the magnitude of the mixing
angles from other experiments and if the hadronic matrix elements for box graphs
and penguin graphs are calculated. Typical values of |ε′/ε| are in the range +(0.05–
2.0)×10−3 for three generations of quarks. A measurement of this quantity to this
level of precision therefore becomes the experimentum crucis for our understanding
of CP violation. If ε′ is orthogonal to ε, then a measurement of the phases of η+−
and of η00 (see Eqs. (9.79) and (9.80), respectively) can help to detect a finite value
of &m(ε′/ε). If, however, the phase of ε′ is close to that of ε, and since |ε′/ε| � 1
to a good approximation, we obtain

ε′

ε
� 'e

(
ε′

ε

)
= 1

6

(
1 − |η00|2

|η+−|2
)

. (9.63)

Various methods have been used to calculate the value of 'e(ε′/ε). Owing to the
difficulties in calculating hadronic matrix elements in the penguin diagrams, which
involve long-distance effects, the task turns out to be very difficult. In particular, the
electroweak penguin diagram (corresponding to the Wilson operator Q8) and the
QCD penguin diagram (operatir Q8) yield contributions of opposite sign and lead
to a partial cancellation in the result ε′/ε. At the time of this review, great progress
has been made by lattice calculations which now can be compared to the two groups
of earlier analytic calculations.

The lattice calculation of the RBC-UKQCD-collaboration [49, 50] imply the
following values of the penguin graph matrix elements [51, 52]:

B6 = 0.57 ± 0.19 and B8 = 0.76 ± 0.05 . (9.64)

From this the lattice method obtains:

ε′/ε = (1.9 ± 4.5)× 10−4 (9.65)

On the side of analytic calculations, one method was based on the limit of large N ,
where N is the numbers of colours in QCD [53] (“dual QCD” or “DQCD”). At large
N , QCD becomes a theory of three mesons. Here one gets B6 = B8 = 1 at the pion
mass scale. Considering the meson evolution of these matrix elements to the mass
scale of 1 GeV [54], Buras and Gerard obtain a suppression of both B6 and B8. At
the scale of the charm quark mass, they find

B6 ≤ 0.6 and B8 = 0.8 ± 0.1 , (9.66)

in agreement with the lattice results. using the lattice values for B8 and the relation
B6 ≤ B8, they find an upper bound;

ε′/ε ≤ (6.0 ± 2.4)× 10−4 (9.67)
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However, an alternative analytic calculation [55] based on chiral perturbation theory
which emphasizes final state interactions and neglects the meson evolution, obtains
a much larger value

ε′/ε = (15 ± 7)× 10−4 . (9.68)

Further improvement of the lattice calculations will hopefully clear-up this impor-
tant discrepancy of the standard model prediction for ε′/ε.

9.5 The Neutral K Meson System

9.5.1 Mass Eigenstates and CP Eigenstates

The eigenstates of strangeness are K0 (S = +1) and K0 (S = −1), the CP eigen-
states are K1 (with CP eigenvalue +1) and K2 (CP eigenvalue −1), and the mass
eigenstates are

|KS〉 = p |K0〉 + q|K0〉 (Short-lived) , (9.69)

|KL〉 = p |K0〉 − q|K0〉 (Long-lived) , (9.70)

where, from experiment, KL is the heavier state (h). The lifetimes of the two
eigenstates are very different. While the short-lived particle (KS) has a mean
lifetime of (0.8959 ± 0.0004)× 10−10 s, the long-lived particle KL has a lifetime
of (5.17 ± 0.04)× 10−8 s, i.e. 600 times larger. This is due to the fact that the
dominant CP-conserving decays are KS → 2π and KL → 3π, πeν, πμν, with
a much smaller phase space for the three-body decays. Using the parameter
ε = (p − q)/(p + q), (9.69) and (9.70) can also be written

|KS〉 = 1√
1 + |ε|2 (|K1〉 + ε|K2〉) , (9.71)

|KL〉 = 1√
1 + |ε|2 (|K2〉 + ε|K1〉) . (9.72)

The long-lived state is therefore mainly a state with CP eigenvalue −1, with a
small (2 × 10−3) admixture of a CP +1 state K1. The two mass eigenstates are
not orthogonal if CP is violated, because 〈KS|KL〉 = 2 'e ε.

If the validity of CPT symmetry is not assumed, the expressions are generalized
to

|KS〉 = 1√
1 + |ε + δ|2 (|K1〉 + (ε + δ)|K2〉) , (9.73)
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|KL〉 = 1√
1 + |ε − δ|2 (|K2〉 + (ε − δ)|K1〉) . (9.74)

with a CPT violating parameter δ.

9.5.2 Isospin Decomposition

In KS,L → 2π decays, the angular momentum of the pions vanishes. The spatial
part of the wave function is therefore symmetric, and since pions are bosons, the
isospin wave function must be symmetric too. The two symmetric combinations of
two I = 1 states have I = 0 and I = 2, and the four transition amplitudes that exist
are

〈0|T |KS〉 , 〈2|T |KS〉 , 〈0|T |KL〉 , 〈2|T |KL〉 . (9.75)

These can be reduced to three complex numbers by normalizing to the amplitude
〈0|T |KS〉:

ε0 = 〈0|T |KL〉
〈0|T |KS〉 , (9.76)

ε2 = 1√
2

〈2|T |KL〉
〈0|T |KS〉 , (9.77)

ω = 〈2|T |KS〉
〈0|T |KS〉 . (9.78)

The experimentally observable quantities are

η+− = 〈π+π−|T |KL〉
〈π+π−|T |KS〉 , (9.79)

η00 = 〈π0π0|T |KL〉
〈π0π0|T |KS〉 , (9.80)

δL = Γ (KL → π−l+ν) − Γ (KL → π+l−ν̄)
Γ (KL → π−l+ν) + Γ (KL → π+l−ν̄)

. (9.81)

Relating the isospin states to the physical 2π states

〈0| = 1√
3
〈π−π+| − 1√

3
〈π0π0| + 1√

3
〈π+π−| , (9.82)

〈2| = 1√
6
〈π−π+| +

√
2

3
〈π0π0| + 1√

6
〈π+π−| . (9.83)
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we obtain

η+− = ε0 + ε2

1 + (1/
√

2)ω
, (9.84)

η00 = ε0 − 2ε2

1 − √
2ω

. (9.85)

Because of the validity of the �I = 1/2 rule for CP-conserving weak nonleptonic
decays, ω � 1 and therefore can be neglected.

A suitable choice for the phase of the K0 → 2π(I = 0) amplitude is obtained
by choosing this amplitude to be real except for final-state interactions between two
pions, leading to a phase shift δ0:

〈0|T |K0〉 = eiδ0A0 and A0 real. (9.86)

Similarly,

〈2|T |K0〉 = eiδ2A2 . (9.87)

With these choices, we obtain

ε0 = ε , (9.88)

ε2 = i√
2

ei(δ2−δ0)
&mA2

A0
= ε′ . (9.89)

Therefore, representing ε and ε′ in the complex plane, we obtain the triangle
relations

η+− = ε + ε′ , η00 = ε − 2ε′ . (9.90)

In this way, η+−, η00 and 3ε′ form a triangle in the complex plane, the Wu–Yang
triangle. The CP-violating decay amplitude ε′ is due to interference of �I =
1/2 (A0) and �I = 3/2 (A2) amplitudes:

ε′ = i &mA2

2A0
ei(δ2−δ0) . (9.91)

Its phase is given by the ππ phase shifts in the I = 0 and I = 2 states, δ0 and δ2,
respectively, assuming CPT invariance:

arg(ε′) = (δ2 − δ0) + π

2
. (9.92)

The ππ phase shifts have been measured precisely in pion-scattering experiments.
The results obtained are δ2 = (−7.2 ± 1.3)◦ [151] and δ0 = (39 ± 5)◦ [152]. Using
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dispersion relation calculations or chiral perturbation theory, these results can be
used to extract arg(ε′). The results are (42.3 ± 1.5)◦ [149] and (46.0 ± 3.6)◦ [150].

The decomposition of the observable decay amplitude into ε and ε′ corresponds
to a separation of the CP-violating effects due to the mass and decay matrices
(represented by ε), which are seen also in the impurity of the KL and KS states,
from CP violation in the transition matrix element (represented by ε′).

The phase of ε is given by (9.37) and (9.38):

arg ε = ΦD + arctan

(
2�m

ΓS

)
, (9.93)

where �m = mL − mS and

ΦD = − arctan

( &mΓ12

2 &mM12

)
. (9.94)

If there is no strong CP violation in the channels K → 2π (I = 2), K → πlν,
and K → 3π , ΦD is very small. This can be deduced from the Bell–Steinberger
unitarity relation [156]. If the final states of the KL and KS decays are designated by
|F 〉, then

ΓS =
∑
F

|〈F |T |KS〉|2 , (9.95)

ΓL =
∑
F

|〈F |T |KL〉|2 . (9.96)

Unitarity leads to the relation

i
(
MS − M∗

L

) 〈KS|KL〉 =
∑
F

〈F |T |KL〉∗〈F |T |KS〉 . (9.97)

If CPT invariance is not assumed, the left side of this unitarity relation includes a
contribution of the CPT violating parameter δ. It then has the form [156]:

(1 + i tanΦSW)['e ε − i&mδ] (9.98)

The mass matrix elements are then (with CPT invariance assumed)

X11 = X22 = MS + ML

2
(9.99)

X12 = (MS − ML)(1 + ε)

2(1 − ε)
(9.100)

X21 = (MS − ML)(1 − ε)

2(1 + ε)
. (9.101)
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Ignoring all final states but 2π or assuming &mΓ12 = 0, we obtain the following
from the unitarity relation or from (9.37):

arg ε = arctan

(
2�m

ΓS

)
= ΦSW (9.102)

where ΦSW designates the phase in the superweak model
When we add other final states of CP-violating decays, the phase is shifted by

ΦD, and an upper limit can be obtained from the unitarity relation:

ΦD ≤ 0.75

ΓS|η+−|
∑
F

√
ΓF,CPV · ΓF,CPC (9.103)

where the sum runs over all states F 	= 2π and the root is taken of the product of
the CP-violating (CPV) and CP-conserving (CPC) decay rates.

Present limits on CP-violating processes in these decays show that contributions
from semileptonic decays are negligible. Using the limits on (�Q = �S)-violating
amplitudes, we obtain

|ΦD(Ke3)| < 0.07◦ , |ΦD(Kμ3)| < 0.05◦ . (9.104)

In the same way, the measurement of the CP-violating part of the KS → π+π−π0

decay [153–155],

Γ (KS → π+π−π0)

ΓS
= 3.5+1.1

−0.9 × 10−7 , (9.105)

allows us to set the limit

|ΦD(π
+π−π0)| < 0.05◦ . (9.106)

Similarly, from the limit [158, 159] Γ (KS → 3π0)/ΓS < 2.8 ×10−8 it follows that

|ΦD(3π0)| < 0.02◦ . (9.107)

New, more sensitive experiments will improve this limit. If we use the experimental
values of �m and ΓS from Sect. 9.5.5, then arg ε = (43.4 ± 0.1 ± 0.17)◦, where the
first error comes from the uncertainties of �m and ΓS and the second error from the
uncertainty of ΦD.

Another independent observable is the charge asymmetry

δL = 1 − |x|2
|1 − x|2 2 'e ε , (9.108)
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where x = g/f is the ratio of the �Q = −�S to the �Q = �S amplitude
(Sects. 9.5.3.2 and 9.5.5.6).

9.5.3 Interference Between Decay Amplitudes of KL and KS

An arbitrary coherent mixture of KL and KS states will show interference phenom-
ena when decaying into 2π and in other common decay channels. According to
Sect. 9.3.2.1 the eigentime development of KL is

|KL〉 → |KL〉 e−iMLτ , (9.109)

where ML = mL − (i/2)ΓL, and correspondingly for KS. An arbitrary mixture

|ψ(0)〉 = aS|KS〉 + aL|KL〉 (9.110)

will develop into

|ψ(τ)〉 = aS e−iMSτ |KS〉 + aL e−iMLτ |KL〉 . (9.111)

We call the ratio aS/aL = V .

9.5.3.1 2π Decay

The 2π decay amplitude is therefore

〈2π |T |ψ(τ)〉 = aS e−iMSτ 〈2π |T |KS〉 + aL e−iMLτ 〈2π |T |KL〉
= 〈2π |T |KS〉aS e−iMSτ + aLη e−iMLτ , (9.112)

where η = η+− for π+π− decay and η = η00 for π0π0 decay. The observed decay
rate is proportional to

R(τ) = |aS|2 e−ΓSτ + |aL η|2 e−ΓLτ + 2|aS||aL||η| e−(ΓL+ΓS)(τ/2) cos (�m τ + Φ) .

(9.113)

where Φ = arg(aS) − arg(ηaL). We obtain for various initial conditions of the
mixture:

1. For an initially pure K0 state (aS = 1 = aL),

R1(τ ) = e−ΓSτ + |η|2 e−ΓLτ + 2|η| e−(ΓL+ΓS)(τ/2) cos (�m τ − arg η) .

(9.114)
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2. For an initially pure K0 state, the interference term changes sign.
3. For an incoherent mixture of K0 (intensity NK ) and K0 (intensity N

K
), the

interference term is multiplied by the “dilution factor”

NK − N
K

NK + N
K

. (9.115)

Measurement of the interference term under these conditions is called the vacuum
interference method.

4. For the coherent mixture behind a regenerator, aS = $, aL = 1, and we obtain

R2(τ) = |$|2 e−ΓSτ + |η|2 e−ΓLτ + 2|$||η| e−(ΓL+ΓS)(τ/2) cos
(
�mτ + Φ$ − argη

)
.

(9.116)

9.5.3.2 Semileptonic Decays

Interference phenomena and CP violation can also be observed in the decay of a
coherent mixture of K0 and K0 mesons into semileptonic final states. In particular
the time-dependent charge asymmetry δ(τ ) = (N+ − N−)/(N+ + N−) shows an
oscillatory behavior, where N+ denotes decays into π+e−ν final states and N− into
π−e+ν. Assuming CPT invariance, we obtain

δ(τ ) = 2
1 − |x|2
|1 − x|2

[
'e ε + |V | e−(1/2)(ΓS−ΓL)τ cos (�m τ + ΦV )

]
. (9.117)

where x is the ratio of amplitudes with �S = −�Q and �S = �Q. x is consistent
with zero, in agreement with the �S = �Q rule.

For an initially pure KL beam (R = 0), the asymmetry is independent of the
decay time:

δL = 2 'e ε
1 − |x|2
|1 − x|2 . (9.118)

For an initial incoherent mixture of K0 (NK) and K0 (N
K
) the quantity |R| has to

be replaced by (NK − N
K
)/(NK + N

K
), i.e. by the same dilution factor as for 2π

interference in a short-lived beam.
For the coherent mixture created by a regenerator,R is given by the regeneration

amplitude $, and ΦR by the regeneration phase Φ$ .
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9.5.4 Detection of K0 Decays

The main decay modes originating from K0’s in a neutral beam and their respective
branching ratios are [163]

KL → π±e∓ν (40.55 ± 0.11)% Ke3 ;
KL → π±μ∓ν (27.07 ± 0.07)% Kμ3 ;
KL → π+π−π0 (12.54 ± 0.05)% Kπ3 ;
KL → π0π0π0 (19.52 ± 0.12)% Kπ3 ;
KS → π+π− (69.20 ± 0.05)% Kπ2 ;
KS → π0π0 (30.69 ± 0.05)% Kπ2 .

The experimental problem is to detect the rare CP-violating decay modes
KL → π+π− and KL → π0π0, with branching ratios of order 10−3, in this
overwhelming background of other decays, and to measure their decay rate, and, by
interference, their phase relation to CP-conserving decay amplitudes. In addition,
the CP impurity in the KL state can be obtained by measuring the charge asymmetry
in the semileptonic decay modes.

9.5.4.1 Charged Decay Modes

The two charged decay products in π+π− and semileptonic decays are usually
recorded in a magnetic spectrometer consisting of a wide-aperture magnet and at
least three layers of position-measuring detectors. The vector momenta �pi (i = 1, 2)
of the charged decay products are measured and the energies of the particles are
obtained from the calculated vector momenta �pi , assuming their rest mass to be
mπ , as

Ei =
√

�p2
i + m2

π . (9.119)

The invariant mass of the pair is

mππ =
√
(E1 + E2)2 − ( �p1 + �p2)2 , (9.120)

and the kaon momentum �pK = �p1 + �p2. The lifetime of the kaon from the target to
the decay vertex (zV) in the kaon rest system is given by τ = (zV − zT)mK/(cpz),
where mK is the kaon mass, c the light velocity, and pz the component of �pK along
the beam line.
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Two sets of information can be used to separate 2π and leptonic decays. First, the
invariant mass mππ is required to be equal to mK within the experimental resolution.
Second, all experimenters use lepton identification.

The most frequently used methods for electron identification at intermediate
energies, around 10 GeV, are Cerenkov counters, and identification through com-
parison of the energy deposition in electromagnetic and hadronic showers. At high
energies, i.e. for electrons with energies between 10 GeV and 100 GeV, electron
identification in calorimetric detectors works on the principle that for a particle of
momentum p, the energy E deposited in a calorimeter by an electron (or photon) is
much higher than for a hadron of the same momentum.

For the identification of muons one uses their penetration through several (∼8)
interaction lengths of material in order to distinguish them from pions interacting in
this absorber.

Once the 2π decay mode has been identified, one has to know, in general,
whether the KS or KL from which the decay products originate has undergone
scattering on its way from its production to the decay point. In the case of a short-
lived beam produced by protons interacting in a target near to the detector, this is
done by calculating the distance of the intercept of the reprojected kaon momentum
pK in the target plane from the target center, pt. Unscattered events cluster around
pt = 0. In the case of a long-lived beam, one uses the component of pK transverse to
the beam, pt, or the angle θ between the kaon direction pK and the beam direction
in order to separate transmitted and coherently regenerated (θ = 0 = pt) kaons
from events due to kaons that have undergone scattering, or diffractive, or inelastic,
regeneration.

9.5.4.2 Neutral Decay Modes

The detection of the neutral decay mode KL → π0π0 → 4γ is complicated by the
presence of the decay KL → 3π0 → 6γ with a 21% branching ratio. This decay
can simulate 4γ events for kinematic reasons, e.g. if two γ rays are missed by the
detector. Very specific kinematic features of the 2π0 decay were therefore used in
the early medium-energy experiments in order to obtain a clean KL → 2π0 signal
[167–170, 172].

For kaon energies between 40 GeV and 200 GeV, totally absorbing electro-
magnetic calorimeters are used. These calorimeters consist of scintillating crystals,
Cerenkov lead glass counters, or liquid-noble-gas detectors with or without lead
radiators. Their longitudinal thickness is around 25 radiation lengths, and their
transverse segmentation corresponds to the transverse width of an electromagnetic
shower, given by the Molière radius RM of the material. In this way, the energies Ei

and the transverse positions (xi, yi) of each of the four photon-induced showers are
measured in the calorimeter. This is the only information available for reconstruct-
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ing all variables describing the decay. In principle, the invariant mass of the four
photons can be calculated using the relation

M2 = E2 − �p2 =
(

4∑
i=1

Ei

)2

−
(

4∑
i=1

�pi

)2

(9.121)

=
∑
i 	=j

(EiEj − EiEj cos θij ) (9.122)

= 2
∑
i<j

EiEj

θ2
ij

2
. (9.123)

The opening angle θij between two photons can be obtained from the transverse
distance rij between the impact points in the calorimeter,

rij =
√
(xi − xj )2 + (yi − yj )2 , (9.124)

and the distance z of the K meson decay point from the calorimeter. Using these
variables, the invariant four-photon mass can be written as

M = 1

z

√∑
i<j

EiEj r
2
ij . (9.125)

This relation can be used to calculate the distance of the decay point of the kaon
from the calorimeter by using the kaon mass as a constraint:

z = 1

MK

√∑
i<j

EiEj r
2
ij . (9.126)

With this knowledge about the decay point, the invariant mass of any pair (i, j ) of
photons can then be calculated:

Mij = 1

z
rij

√
EiEj . (9.127)

Of the three possible combinations, the one where both masses are closest to the
π0 mass is chosen. A scatter plot of m12 versus m34 shows a signal at (mπ0,mπ0 )
if the four photons come from the decay KL → π0π0, while for events from the
decay KL → 3π0, with four detected photons, the invariant masses are spread over
a large region around this point (Fig. 9.20). It is possible to extract the amount of
background in the signal region by extrapolating the observed level of background
events into this signal region, with the help of Monte Carlo simulations of the KL →
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3π0 background. In high-energy experiments, the background can then be reduced
to a level below one percent.

9.5.4.3 Detectors Measuring Charged and Neutral Decay Modes
Simultaneously

For the measurement of the parameter ε′ of direct CP violation, the ratio of the
decay rates of KL into charged (π+π−) and neutral (π0π0) two-pion states has to be
measured with great precision. For this purpose, experimentalists reduce systematic
normalization uncertainties by measuring charged and neutral decays (from KL and
KS mesons) simultaneously.

Four such experiments have been constructed for high-energy K meson beams,
two of them at CERN (NA31 and NA48) and two at Fermilab (E731 and kTeV).

One experiment has been designed to detect K mesons of a few hundred MeV/c
momentum arising from the annihilation of stopping antiprotons in a hydrogen
target at the Low Energy Antiproton Ring (LEAR) at CERN (CPLEAR).

9.5.4.4 NA31

This detector (Fig. 9.7) [171], situated in a KL or KS beam from the CERN SPS, was
based on calorimetry and was designed for good stability and high efficiency. The
KL and the KS beam were produced by a 450 GeV proton beam with a production
angle of 3.6 mrad.

A schematic illustration of the beam layout and the apparatus is shown in Fig. 9.7.
The principal features can be summarized as follows:

• to adjust the steeply falling vertex distribution of the KS decays to the almost flat
vertex distribution of the KL decays, the KS target is located on a train that can
be positioned at 41 stations in the decay volume;

• an anticounter with a 7 mm lead converter in the KS beam is used to veto decays
in the collimator, defines the upstream edge of the decay region, and provides for
the relative calibration of the 2π0 and π+π− energy scales to a precision better
than ±10−3;

• two wire chambers spaced 25 m apart, with ±0.5 mm resolution in each
projection, track charged pions;

• a liquid-argon/lead sandwich calorimeter with strip readout detects photons with
±0.5 mm position resolution and an energy resolution of
σE/E = 10%/E ⊕ 7.5%/

√
E ⊕ 0.6% (E in GeV);

• an iron/scintillator sandwich calorimeter measures the energy of charged pions
with ±65%/

√
E (E in GeV) energy resolution.

The energies of the two pions and their opening angle are used to measure the
invariant mass of the charged pair.
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Fig. 9.7 Beam layout and detector in the NA31 experiment. The setup contains a movable target
for the production of the KS mesons, and a liquid-argon calorimeter; it does not contain a magnet

The NA31 experiment collected KL and KS decays in alternating time periods.
In each case the charged and neutral decays were collected simultaneously.

9.5.4.5 NA48

This experiment (Fig. 9.8) was also built at CERN [201]. The detector was exposed
to a simultaneous nearly collinear KL/KS beam, derived from a 450 GeV/c proton
beam from the SPS.

The KS beam was produced by using a fraction of the protons that did not interact
with the KL target.

Charged particles were measured by a magnetic spectrometer composed of four
drift chambers with a dipole magnet between the second and the third chamber.
The average efficiency per plane was 99.5%, with a radial uniformity better than
±0.2%. The space point resolution was ≈95 μm. The momentum resolution was
σp/p = 0.48% ⊕ 0.009% × p, where the momentum p is in GeV/c. The ππ

invariant mass resolution is 2.5 MeV.
A liquid-krypton (LKr) calorimeter was used to reconstruct K → 2π0 decays.

Cu–Be–Co ribbon electrodes of size 40 μm × 18 mm × 125 cm defined 13212 cells
(each with a 2 cm × 2 cm cross section) in a structure of longitudinal projective
towers pointing to the center of the decay region. The calorimeter was ∼27 radiation
lengths long and fully contained electromagnetic showers with energies up to
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100 GeV. The energy resolution of the calorimeter was σE/E = (3.2 ± 0.2)%/E ⊕
(9 ± 1)%/

√
E ⊕ (0.42 ± 0.05)% where E is in GeV.

9.5.4.6 kTeV

The kTeV experiment at the 800 GeV/c Tevatron [180] uses a regeneration tech-
nique to produce the KS beam (Fig. 9.9). The KL “double beam” entered from the
left, one half continuing as KL, the other half producing a KS beam by regeneration.
The regenerator in the kTeV experiment was made of blocks of plastic scintillator.
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These blocks were viewed by photomultiplier tubes to reject inelastically or quasi-
elastically scattered kaons.

The evacuated decay volume extended over 40 m, or about 7 KS mean lifetimes
at 100 GeV/c, followed by the first drift chamber. The analysis magnet was located
between the second and the third drift chamber. Each of the four drift chambers had
two horizontal and two vertical planes of sense wires. The typical single-hit position
resolution of the drift chambers was about 110 μm in either direction, which lead
to a mean mass resolution of 2.2 MeV for the reconstructed kaon mass obtained
from the π+π− decay mode. The momentum resolution for a charged particle was
σp/p = 0.17% ⊕ 0.0071% × p (in GeV/c).

The four photons from the 2π0 were detected in an electromagnetic calorimeter
made of pure cesium iodide. The calorimeter consisted of 3100 blocks arranged in
a square array of 1.9 m side length. The blocks had two sizes: 2.5 × 2.5 cm2 in
the central region and 5 × 5 cm2 in the outer region. All blocks are 50 cm, or ∼27
radiation lengths, long. Two 15 cm square holes allowed the passage of the KL and
the KS beam through the calorimeter. The calorimeter had an energy resolution of
σE/E = 2%/

√
E⊕0.4% (E in GeV). The average position resolution for electrons

was about 1.2 mm for clusters in the smaller crystals and 2.4 mm for the larger
crystals.

9.5.4.7 CPLEAR

In contrast to the detectors described in the previous sections, the CPLEAR detector
measured decays from kaons produced in p̄p annihilations at rest obtained from
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the low energy p̄ ring LEAR at CERN. The antiprotons were stopped in a 16 bar
hydrogen gas target and formed a protonium before annihilation. In annihilation
reactions of the type p̄p → K0K−π+ and p̄p → K0K+π−, the charged kaon was
identified through the time of flight and track curvature in a solenoidal magnetic
field (“tagging”). This tag was used as a trigger for detecting the decay products
of the neutral K meson associated with the K+ or K−. A unique property of this
scheme is that the strangeness of the neutral K meson is known from the charge of
the tagged K+ or K−.

As shown in Fig. 9.10, the experiment had a cylindrical, onion-type, setup. Six
cylindrical drift chambers, starting at a radius of 25.46 cm and going out to a radius
of 50.95 cm, provided the main tracking information for charged particles. The
offline track-finding efficiency was better than 99% and the wire positions were
determined with an accuracy of about 10 μm. The mean mass resolution achieved
for the invariant kaon mass in the π+π− final state was 13.6 MeV/c2. By applying
kinematically and/or geometrically constrained fits, the K0 momentum resolution
σpt

/pt was improved from 5.5% to 0.25%.
The tracking detectors were followed by the particle identification detector

(PID), used for charged-kaon identification and e/π separation. It was located at
radii between 62.5 cm and 75.0 cm. and was composed of two layers of plastic
scintillators with an 8 cm thick liquid threshold Cerenkov detector in between.
The two charged tracks from the decays K0 → π+π−, π+e−ν, π+μ−ν were
reconstructed and the decay vertex was calculated. Using this vertex and the
annihilation point in the hydrogen target, the proper time for decay of the kaon
was obtained.

Magnet coils Al support rings

Beam monitor

Streamer tubes

Drift chambers

Proportional chambers

16 bar H   target2

1 m

200 MeV/c
p

Cherenkov and Scintillator counters

Electromagnetic calorimeter

Fig. 9.10 CPLEAR detector
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The electromagnetic calorimeter had the form of a barrel and was an assembly of
18 lead plates alternating with sampling chambers. It was located at radii between
75 cm and 100 cm. The calorimeter had a total thickness of ∼6 radiation lengths,
an energy resolution of σE/E ≈ 13%/

√
E (E in GeV) and a position resolution

of ∼5 mm for the photon conversion points. The photon detection efficiency was
(90 ± 1)% for photon energies above 200 MeV. For photons with energies below
200 MeV the efficiency dropped significantly and was only about 60% for 100 MeV
photons.

All subdetectors were embedded in a 3.6 m long, 2 m diameter solenoid magnet,
which provided a 0.44 T uniform field.

9.5.5 Elucidation of CP Violation in K0 Decays (I): Search for
�m(ε′/ε)

9.5.5.1 The Significance of the Phase 	+−

The phase of η+−, Φ+− = arg(η+−), was a possible clue that would help to
disentangle the two components of CP violation, since

η+− = ε + ε′ . (9.128)

If ε′, the parameter of direct CP violation, was comparable in size to ε, and if its
phase was orthogonal to ε, then the phase of η+− would deviate in a detectable way
from the phase of ε, which is mainly determined by the experimentally measurable
values of �m and ΓS = 1/τS (see Sect. 9.5.2):

arg(ε) = arctan

(
2�

ΓS

)
+ ΦD = ΦSW + ΦD (9.129)

With the present values of �m and ΓS (Sect. 9.5.5.7), ΦSW = (43.4 ± 0.1)◦.
A significant deviation of the measured value of Φ+− from ΦSW would be

evidence for a nonvanishing component &m(ε′/ε) and against the superweak model
of CP violation.

9.5.5.2 Measurements of the Phase 	+− in Interference Experiments
Behind a Regenerator

The relative phase between the two amplitudes of the decays KL → π+π− and
KS → π+π− has been measured by two distinct methods.

The first consists of measuring the interference of the KL → π+π− amplitude
with the coherently regenerated KS → π+π− amplitude behind a slab of material
(the regenerator). The experiments require (a) the measurement of the π+π−
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Fig. 9.11 z decay distribution of K → π+π− decays in the regenerator beam, for the restricted
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interference term that is proportional to “2|$||η|” (kTeV experiment [180])

intensity as a function of the K0 eigentime behind the regenerator, which is given in
Sect. 9.5.3.1, and (b) an independent determination of the regeneration phase.

The latest and most precise experiment of this type has been done by
the kTeV collaboration [180] (see also [176]) in an experiment at Fermilab
with an 800 GeV/c proton beam. The detector is described in Sect. 9.5.4.6;
5 × 109 events were recorded in 1996–1997, among those were about
9 × 106 K0 → π+π− events. Their z decay distribution in the restricted
kaon momentum interval from 40 to 50 GeV/c is shown in Fig. 9.11. The
corresponding decay time distribution was fitted with the formula (9.116). The
nuclear regeneration amplitude F = i(f (0) − f (0))/k was assumed to decrease
with the kaon momentum �p according to a power law F (p) = F (70 GeV/c)×
(p/70 GeV/c)α. This was motivated by a Regge model where the difference between
the K and K scattering amplitudes would be described by one single ω meson
exchange trajectory. In this model, the phase of the regeneration amplitude is given
by ΦF = −(π/2)(1 + α). In the fit, Φ+−, �m, ΓS and α were free parameters, and
ΦF was assumed to be given by the Regge model. The results are

Φ+− = 44.12◦ ± 0.72◦ (stat) ± 1.20◦ (syst) = 44.12◦ ± 1.40◦ , (9.130)

�m = (5288 ± 23) × 106 s−1 , (9.131)

τS = (89.58 ± 0.08 (stat)) × 10−12 s , (9.132)

χ2 = 223.6 for 197 degrees of freedom . (9.133)

The systematic error in Φ+− includes a 0.25◦ uncertainty from the fact that the
relation between the regeneration phase and the momentum dependence of the
regeneration amplitude through a dispersion relation integral is incomplete. It has
been argued [178] that this uncertainty is larger, more than one degree, because of
the limited momentum range in which the regeneration amplitude was measured.
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9.5.5.3 Measurements of 	+− in Vacuum Interference Experiments

The other method for measuring Φ+− is the vacuum interference method mentioned
above (Sect. 9.5.3.1), where one observes the K → π+π− distribution obtained
from an initially pure strangeness state. The information on Φ+− is contained in the
interference term proportional to cos(�m τ − Φ+−), and the time at which the two
interfering amplitudes are equal is ∼ 12τS, so that the correlation of Φ+− with �m

is rather strong.
Three experiments of this type have been done in the intermediate-energy domain

[166, 182, 183]. An analysis of the latest and most precise of those has been
performed by the CERN–Heidelberg group [166]. The apparatus was situated in
a 75 mrad short neutral beam derived from 24 GeV/c protons. The time distribution
of 6 × 106 KS,L → π+π− decays is shown in Fig. 9.12: (curve a), together with the
fitted time distribution, as given in Sect. 9.5.3.1. The result of this fit is

Φ+− = (49.4◦ ± 1.0◦) + 305◦ (�m − 0.540 × 1010 s−1)

�m
, (9.134)

|η+−| = (2.30 ± 0.035)× 10−3 , (9.135)

ΓS = (1.119 ± 0.006)× 10−10 s−1 , (9.136)

χ2 = 421 for 444 degrees of freedom . (9.137)

Fig. 9.12 Time distribution of K → π+π− events from a coherent mixture of KL and KS
produced in pure strangeness states [166]. Curve a: events (histogram) and fitted distribution
(dots). Curve b: events corrected for detection efficiency (histogram), and fitted distribution with
interference term (dots) and without interference term (curve). Inset: interference term as extracted
from data (dots) and fitted term (line). (CERN–Heidelberg experiment [166])
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In the high-energy domain, this method has also been used by the NA31
collaboration [184]. In a 3.6 mrad neutral beam derived from 450 GeV protons,
kaons of mean momentum around 100 GeV were allowed to decay. Two different
target positions were chosen, at distances of 48 m and 33.6 m from the defining
collimator of the neutral beam, which marked the upstream end of the decay
volume. Kaons that decayed along 50 m in an evacuated tank were detected
further downstream at about 120 m from the final collimator by the NA31 detector
(Sect. 9.5.4.4, Fig. 9.7). The measured time distribution of π+π− decays is similar
to the one in Fig. 9.12. There are 2.24×106 and 0.57×106 π+π− events in the data
for the target in the near and far positions, respectively; the corresponding numbers
of π0π0 events are 1.81 × 106 and 0.31 × 106. The phases were extracted from a
fit to the time distribution of the ratio of the data in the near and far positions of the
target.

The results are

Φ+− = (46.9◦ ± 1.4◦) + 310◦ (�m − 0.5351 × 1010 s−1)

�m

+ 270◦ (τS − 0.8922 × 10−10 s)

τS
(9.138)

and

Φ00 = (47.1◦ ± 2.1◦) + 310◦ (�m − 0.5351 × 1010s−1)

�m

+ 225◦ (τS − 0.8922 × 10−10 s)

τS
. (9.139)

The difference between the two phases comes out to be

Φ00 − Φ+− = 0.2◦ ± 2.6◦ ± 1.2◦ . (9.140)

9.5.5.4 Measurements of the Phase Difference 	00 − 	+−

For small |ε′/ε|, this phase difference is related to ε′/ε by the equation

Φ00 − Φ+− = −3 &m
(
ε′

ε

)
. (9.141)

In this way, the component of ε′ orthogonal to the direction of ε can be measured.
In the absence of CPT violation and for small |ε′/ε|, both of the phases Φ00 and
Φ+− are close to the superweak phase ΦSW (9.102).

The measurement of this phase difference by the NA31 experiment (Sect. 9.5.5.3)
was improved by the simultaneous measurement of the time distributions of π+π−
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and π0π0 decays behind a regenerator in the kTeV experiment [180] (Sect. 9.5.5.2).
Here, the uncertainty arising from the phase of coherent regeneration (which is the
determining uncertainty in the Φ+− measurement) cancels in the comparison of the
two decay modes. The authors of [180] conclude that

Φ00 − Φ+− = (0.39 ± 0.50)◦ . (9.142)

Together with an earlier measurement by E731/E773 [179] and the NA31 measure-
ment (9.140), this gives

Φ00 − Φ+− = (0.36 ± 0.43)◦ . (9.143)

9.5.5.5 Measurement of 	+− from a Tagged Pure Strangeness State

The CPLEAR experiment (Sect. 9.5.4.7) offers the unique feature of tagging a
pure neutral strangeness state K0 or K0 produced in a pp annihilation at rest
by identifying a charged kaon produced in the same reaction. Compared with
the vacuum interference experiments (Sect. 9.5.5.3), this offers the advantage of
a full-size interference term, whereas in the vacuum interference experiments, an
incoherent mixture of (predominantly) K0 and K0 forms the initial state, and the
interference term is diluted.

The interference term is visualized by measuring the decay-rate asymmetry for
decays into π+π−,

A+−(τ ) = N(τ) − N(τ)

N(τ) + N(τ)
(9.144)

= 2 'e ε − 2 |η+−|e−(1/2)ΓSτ cos(�m τ − Φ+−) . (9.145)

In the corresponding experimental distribution, the background was subtracted
and the events were appropriately weighted taking into account the tagging efficien-
cies for K0 and K0. The result is shown in Fig. 9.13 [181]. The result of a fit to these
data gives values for Φ+− and |η+−|, which are correlated with the values chosen
for �m and τS, respectively.

The correlation parameters are

δΦ+− = 0.30(�m− 0.5301 × 1010 s−1) (9.146)

and

δ|η+−| = 0.09(τS − 0.8934 × 10−10 s) . (9.147)
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Fig. 9.13 (a) Measured decay-rate asymmetry, Aexp
+−(τ ); the data points include residual back-

ground. (b) Decay-rate asymmetry, A+−(τ ); the data points are background subtracted. In both
cases the continuous curve is the result of the fit (CPLEAR experiment, [185])

For the values of �m and τS chosen by the authors of [181], the results are

Φ+− = 43.19◦ ± 0.53◦ (stat) ± 0.28◦ (syst) ± 0.42◦ (�m) , (9.148)

|η+−| = [2.264 ± 0.023 (stat) ± 0.026 (syst)] × 10−3 . (9.149)

A similar asymmetry is obtained for decays to π0π0, although with less statistical
weight.

The following values of the CP parameters in the neutral mode have been
extracted:

Φ00 = 42.0◦ ± 5.6◦ (stat) ± 1.9◦ (syst) , (9.150)

|η00| = [2.47 ± 0.31 (stat) ± 0.24 (syst)] × 10−3 . (9.151)

9.5.5.6 Charge Asymmetry in Semileptonic Decays

This asymmetry δL is the third manifestation of CP violation (9.108). This
asymmetry measures the CP impurity of the long-lived kaon state: δL = 2'e ε(1 −
|x|2)/(|1 − x|2), where x is the �S = �Q violation parameter. Considerable
precision was achieved in the first ten years of experimentation after 1964: for
the Ke3 mode, two experiments, by the Princeton group [186] and by the CERN–
Heidelberg group [187], have been reported; for the Kμ3 mode, results have been
obtained from Stanford [189] and one from the CERN–Heidelberg group [187], and
a Brookhaven–Yale group [190] obtained a result for a mixture of both decay modes.
Recently, two new results on this asymmetry have been reported by the kTeV and
NA48 collaborations. The most significant features of these results are:
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1. Event numbers of up to 298 million events in the Ke3 mode and 15 million events
in the Kμ3 mode.

2. An apparatus design such that the decay products (π and electron) traverse only
minute amounts of matter (about 0.3–0.4 g cm−2), thus diminishing corrections
due to secondary interactions of these particles.

3. The precision of the Kμ3 asymmetry measurements is a factor of 4 below the
value for Ke3, making a comparison between the two possible. Table 9.3 gives
the results; the average δL = (3.316 ± 0.053)× 10−3.

The charge asymmetries for Ke3 and Kμ3 decays are equal to within 8%: δeL/δ
μ
L =

1.04 ± 0.08. Assuming the validity of the �Q = �S rule, which is supported by
the present experiments, we obtain 'e ε = (1.658 ± 0.026) × 10−3. If we use the
most precise tests of the �Q = �S rule by the CPLEAR experiment [185], there is
a small correction

1 − |x|2
|1 − x|2 = 0.996 ± 0.012 . (9.152)

9.5.5.7 Parameters of CP Violation in the K0 System: �m(ε′/ε)

KS Lifetime We take the average of the older measurements combined with the two
most recent measurements by the kTeV collaboration, (0.8965 ± 0.0007) × 10−10

s [180], and by the NA48 collaboration, (0.89598 ± 0.0007)× 10−10 s [197]. Our
grand average is

τS = (0.8959 ± 0.0004)× 10−10 s . (9.153)

Table 9.3 Charge asymmetry measurements in Kl3 decays

Group and reference Year Decay mode Result [×103] δ [×103]
Columbia [164, 192] 1969 Ke3 2.46 ± 0.59

Columbia–Harvard–CERN
[193]

1970 Ke3 3.46 ± 0.33 Ke3 average

San Diego–Berkeley [194] 1972 Ke3 3.6 ± 1.8 3.322 ± 0.055

Princeton [186] 1973 Ke3 3.18 ± 0.38

CERN–Heidelberg [187] 1974 Ke3 3.41 ± 0.18

kTeV [188] 2002 Ke3 3.322 ± 0.058 ± 0.047

NA48 [157] 2003 Ke3 3.317 ± 0.070 ± 0.072

Brookhaven–Yale [190] 1973 Ke3 + Kμ3 3.33 ± 0.50

SLAC–Berkeley [165, 195] 1969 Kμ3 5.8 ± 1.7

Berkeley [196] 1972 Kμ3 6.0 ± 1.4 Kμ3 average

Stanford [189] 1972 Kμ3 2.78 ± 0.51 3.19 ± 0.24

CERN–Heidelberg [187] 1974 Kμ3 3.13 ± 0.29

The Kμ3 and Ke3 average value is δL = (3.316 ± 0.053) × 10−3



564 K. Kleinknecht and U. Uwer

We use this value in the following sections.

Mass Difference 
m Combining the values from the CERN–Heidelberg exper-
iments [173–175] with those from Fermilab E731 and E773 [176, 179], from
CPLEAR [181, 198, 199] and from the most precise single measurement by kTeV
[180], we obtain

�m = (0.5286 ± 0.0011)× 1010 s−1 . (9.154)

Superweak Phase From the two parameters given above, we obtain the phase of ε
in the superweak model,

ΦSW = arctan

(
2�m

ΓS

)
= (43.4 ± 0.1)◦ . (9.155)

Moduli of the Amplitudes η+− and η00 New measurements of η+− from the
ratio of π+π− decays and semileptonic decays yield precise values of η+−. We
combine these with previous results and obtain [160–162].

|η+−| = (2.230 ± 0.006)× 10−3 . (9.156)

Absolute measurements of the amplitude η00 are much less precise. A recent average
including the CPLEAR result is

|η00| = (2.23 ± 0.11)× 10−3 . (9.157)

Phase 	+− In all measurements, this phase is extracted from an interference term
with a beat frequency �m. Taking the results from NA31 [184], E731 [176], E773
[179], and kTeV [180], together with the pre-1975 data and the result from CPLEAR
[181], we obtain the world average

Φ+− = (43.3 ± 0.4)◦ (9.158)

using the values for �m and τS above. This result is in excellent agreement with
the value of Φ

SW
= (43.4 ± 0.1)◦. Since the interference experiments were

evaluated without assuming CPT invariance, this constitutes a stringent test of CPT
invariance. The difference is Φ+− −ΦSW = −(0.1 ± 0.4)◦. At the same time, this
result can again be used to constrain the component of ε′ orthogonal to ε:

&m
(
ε′

ε

)
= −(1.7 ± 7.0)× 10−3 . (9.159)

Therefore, at this level of 10−2 relative to the amplitude for CP violation by mixing,
ε, there is no evidence for a direct CP violation amplitude ε′ orthogonal to ε. Our
interest now shifts to the component of ε′ parallel to ε, i.e. 'e(ε′/ε).
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9.5.6 Elucidation of CP Violation in K0 Decays (II):
Discovery of Direct CP Violation in �e(ε′/ε)

9.5.6.1 Significance of the Double Ratio R

The real part of ε′/ε is connected with the amplitude ratios η00 and η+− of CP-
violating KL decays to CP-conserving KS decays. A measurement of decay rates
with the required precision of 10−3 is only possible by measuring the ratio of rates
in the same beam in the same time interval. From the Wu–Yang triangle relations
(9.90) η00 = ε − 2ε′ and η+− = ε + ε′, we obtain

'e

(
ε′

ε

)
= 1

6

(
1 −

∣∣∣∣ η00

η+−

∣∣∣∣
2
)

. (9.160)

A measurement of the double ratio

R = |η00|2
|η+−|2 = Γ (KL → 2π0)/Γ (KL → π+π−)

Γ (KS → 2π0)/Γ (KS → π+π−)
(9.161)

to a precision of about 0.3% is therefore required to distinguish between the two
remaining models, the KM milliweak model and the superweak model. Since the
KM model predicts values of 'e(ε′/ε) in the range between 0.2 × 10−3 and
3 × 10−3, the precision required for detecting a signal of direct CP violation
depends on the actual value. If the largest prediction is realized in nature, a precision
of δR = 5 × 10−3 would be sufficient for a three-standard-deviation observation.
If, however, the lowest value is realized, a precision of δR = 0.4 × 10−3 would
be needed, corresponding to samples of several million events for each of the four
decay modes.

9.5.6.2 The NA31 Experiment: First Evidence for Direct CP Violation

The first observation of direct CP violation was made by a collaboration of
physicists at CERN in 1988 [191]. The experiment, called “North Area No. 31”, or
NA31, was based on the concurrent detection of 2π0 and π+π− decays. Collinear
beams of KL and KS were employed alternately. The beam layout and the apparatus
were described in Sect. 9.5.4.4. The K0 → 2π0 → 4γ decays were reconstructed
and separated from the background primarily due to KL → 3π0 → 6γ decays
as described in Sect. 9.5.4.2. This background is uniformly distributed in a two-
dimensional scatter plot of photon-pair masses, while the 2π0 signal peaks at a point
S where both photon pairs have the π0 mass, with a 2 MeV resolution. Signal and
background events were counted in equal-area χ2 contours around S. Figure 9.14
shows the χ2 distribution of events in the KS beam and in the KL beam. The signal
region was taken as χ2 < 9. Background in the KL data was subtracted by linear
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Fig. 9.14 Number of
accepted 4γ events as a
function of χ2 for the
KS → π0π0 (left) and
KL → π0π0 (right) data, and
a Monte Carlo calculation of
the background originating
from KL → 3π0 decays
(dotted). The signal region
was taken as χ2 < 9 (NA31
experiment [191])

extrapolation into the signal region, and amounts to about 4%, while it is negligible
in the KS data.

The K0 → π+π− decays were reconstructed from the four space points of the
two pion tracks in two wire chambers. From these tracks, the position of the decay
vertex along the beam was reconstructed with a precision of better than 1 m. The
energies E1 and E2 of the two pions were obtained from the energies deposited
in the liquid-argon electromagnetic calorimeter and the iron-scintillator hadronic
calorimeter. The K0 energy was then calculated using the kaon mass and the opening
angle θ of the two tracks as constraints from the ratio E1/E2:

EK =
√

A

θ2

(
m2

K
− Am2

π

)
, (9.162)

where

A = E1

E2
+ E2

E1
+ 2 . (9.163)

Background from K0 → πeν (Ke3) decay was reduced by comparing, for each
track, the energy deposited in the front half of the electromagnetic calorimeter with
the energy deposited in the hadron calorimeter.

After cuts on the invariant π+π− mass and on the transverse location of the
center of energy relative to the center of the neutral beam, a residual background of
three-body decays was subtracted.

Figure 9.15 shows the transverse distance dT between the decay plane, as
reconstructed from the two tracks, and the K0 production target, at the longitudinal
position of the target. For KS decays, this distributions peaks at dT = 0 with a
resolution given by the measurement error and multiple scattering. For KL decays,
in addition to this component of two-body decays from the target, there is a broader
distribution mixed in due to three-body decays. The signal region was taken to be
dT < 5 cm, and the three-body background was extrapolated from a control region
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Fig. 9.15 Event distribution for charged decays as a function of the distance dT (in cm) between
the decay plane and the production target for KS (left) and KL (right) decays, and for various
background components (right) (NA31 experiment [191])

7 < dT < 12 cm. This background amounts to (6.5 ± 2.0) × 10−3 of the signal,
including systematic uncertainties.

The remaining event sample contained 109 × 103 of KL → π0π0, 295 × 103

of KL → π+π−, 932 × 103 of KS → π0π0, and 2300 × 103 of KS → π+π−.
In order to equalize the acceptance for KS decays (with an average decay length
of 6 m) to that for the uniformly distributed KL decays, the KS data were taken
with the KS target displaced in 1.2 m steps over 48 m such that the distribution
of KS decays became effectively uniform in the fiducial region. This makes the
double ratio essentially insensitive to acceptance corrections. The double ratio was
evaluated in 10 × 32 bins in energy and vertex position. The weighted average, after
all corrections, is

R = 0.980 ± 0.004 (stat) ± 0.005 (syst) . (9.164)

The corresponding result for the direct-CP-violation parameter is [191]

'e

(
ε′

ε

)
= (33.0 ± 11.0)× 10−4 . (9.165)

This, with three-standard-deviation significance, shows that the CP-odd K2 decays
to two pions, and was the first evidence of direct CP violation.

In further measurements with the NA31 detector, the event numbers recorded
were considerably increased, by a factor of four, thus decreasing the statistical error.
In addition, the background from Ke3 decays was reduced by introducing a two-
stage transition radiation detector as an additional identifier for electrons. With these
improved data, the double ratio was measured with reduced uncertainty. Including
the former result, the double ratio obtained is

R = 0.982 ± 0.0039 , (9.166)
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leading to a value

'e

(
ε′

ε

)
= (23.0 ± 6.5)× 10−4 , (9.167)

or 3.5 standard deviations from zero.

9.5.6.3 The Experiment E731 at Fermilab

In this experiment [177] charged and neutral decays were registered in separate runs
with a slightly different detector. On the other hand, in E731 KL and KS decays were
collected simultaneously using a split beam: in one half of the beam cross section,
KL mesons from the target were allowed to decay over a long decay region of 27 m
(charged decays) or 42 m (neutral decays), while in the other half, the KL beam hit
a block of B4C, whereby a beam of KS mesons was regenerated.

The vertex distribution of the events from regenerated KS was concentrated in
a small region behind the regenerator, positioned at 123 m from the target, owing
to the typical KS decay length of 5 m. On the other hand, the vertex distribution of
KL → π0π0 decays extended from 110 to 152 m from the target. The detector
acceptances for KL and KS decays therefore were very different, and since the
decay volumes for KL → π+π− and KL → π0π0 were different, this acceptance
correction does not cancel in the double ratio.

The π+π− decays were selected by requiring the invariant ππ mass to be near
the kaon mass and the transverse kaon momentum to satisfy p2

t < 250 MeV2/c2.
The background from incoherent kaon regeneration amounted to (0.155±0.014)%.
The extrapolated 3π0 background under the peak is 1.78% and 0.049% in the
vacuum and regenerator beams, respectively. Neutral background from incoherent
scattering in the regenerator was subtracted by evaluating the distribution of the
transverse center of energy of each event around the center of each beam. After this
background subtraction, the event numbers in the vacuum beams were 327 × 103

(π+π−) and 410 × 103 (π0π0). In the regenerator beams, there were 1.06 × 106

π+π− events and 0.800×106 2π0 events. The regeneration amplitude was assumed
to fall in accordance with a power of the kaon momentum, pα . In the fit, the
parameter α, the regeneration amplitude at 70 GeV/c momentum, and 'e(ε′/ε)
were varied. The results were

α = −0.6025 ± 0.0065 (9.168)

and

'e

(
ε′

ε

)
= (7.4 ± 5.2 (stat) ± 2.9 (syst)) × 10−4 , (9.169)
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where the systematic uncertainty includes a part from acceptance calculations
(1.19 × 10−4) and from the energy calibration (1.6 × 10−4). The authors of [177]
deduce an upper limit 'e(ε′/ε) < 17 × 10−4 (95% C.L.), which is at variance with
the observation of the NA31 experiment.

9.5.6.4 The kTeV Experiment at Fermilab

The disagreement between the positive result of NA31 and the null result of E731
left an unsatisfactory state of affairs. For this reason, new experiments with a tenfold
increase in data-taking capacity and reduced systematic uncertainty were designed,
at both Fermilab and CERN.

The Fermilab experiment at the 800 GeV Tevatron, called kTeV, was described
in Sect. 9.5.4.6 [180]. The main improvements compared with E731 were:

– all four decay modes were measured concurrently;
– the electromagnetic calorimeter was made of CsI, with much improved energy

resolution;
– the regenerator at 123 m from the target was made of plastic scintillator, viewed

by photomultipliers such that inelastic regeneration could be detected by the
recoiling nucleus;

– the kaon momentum range from 40 to 160 GeV/c and the decay vertex region
from 110 m to 158 m from the target were the same for all decay modes.

As in the E731 experiment, a double beam of KL and regenerated KS entered
the decay volume. K0 → π+π− decays were identified by their invariant mass.
Semileptonic Ke3 events were reduced by a factor of 1000 by requiring the ratio
of the calorimetric energy E of a track to its momentum p to be less than 0.85.
Kμ3 events were rejected by registering the muon penetrating the 4 m iron wall.
The invariant-ππ-mass shows a rms mass resolution of 1.6 MeV, and events in the
range 488–508 MeV were selected. Background from KS produced in incoherent
regeneration was suppressed mainly by vetoing events with a signal generated in the
active regenerator indicating the recoil of a nucleus in the scattering process. Further
reduction of this background was achieved by extrapolating the kaon direction back
to the regenerator exit face and calculating the transverse momentum of the kaon
relative to the line connecting this intercept with the target position. After a cut
against the backgrounds from semileptonic decays and from collimator scattering,
11.1 million and 19.29 million π+π− events remain in the vacuum beam and
regenerator beam samples, respectively.

The selection of 2π0 events follows the lines described in Sect. 9.5.4.2. Events
with an invariant π0π0 mass between 490 and 505 MeV were selected. Events in
which a kaon scatters in the collimator or the regenerator were reduced by a cut
in the ring number (RING), defined by the maximum deviation �xcoe or �ycoe (in
cm) of the center of energy of all showers from the center of the corresponding beam
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spot at the CsI position, to which the event was assigned by use of the x-position of
the center of energy:

RING = 4 × Max(�x2
coe,�y2

coe) . (9.170)

The signal was selected by the cut RING < 110 cm2. The largest background
comes from regenerator scattering in the regenerator beam, 1.13%, adding up to
a total of 1.235% in that beam. Also, in the vacuum beam, the events scattered
in the nearby regenerator make the largest contribution to the background, 0.25%,
which is 0.48% in total. After all cuts and background subtraction, the remaining
signal consists of 3.3 million and 5.55 million events in the vacuum and regenerator
beams, respectively. The 3.3 million KL → π0π0 events are the limiting factor in
the statistical uncertainty in the double ratio.

Since the vertex distributions of KL decays (flat) and KS decays (concentrated
behind the regenerator) are very different, the raw double ratio has to be corrected
by the double ratio of acceptances (Fig. 9.16). The quality of the Monte Carlo simu-
lations for the acceptances was checked by reproducing the z vertex distributions
of the vacuum beam data for different decay modes (Fig. 9.17). In general the
agreement is good, except that the π+π− data show a slope of (−0.70 ± 0.30) ×
10−4/m.

The result for 'e(ε′/ε) is [180]

'e

(
ε′

ε

)
= (20.71 ± 1.48 (stat) ± 2.39 (syst)) × 10−4 = (20.7 ± 2.8) × 10−4 .

(9.171)

The systematic uncertainty for the neutral decays is mainly due to background, CsI
energy calibration and acceptance corrections; for the charged decays, it is mainly
due to uncertainties in the acceptance and trigger efficiency.

The acceptance correction that has to be applied is about 5 × 10−2 for R, or
∼ 80 × 10−4 for 'e(ε′/ε), four times larger than the signal.

9.5.6.5 The NA48 Experiment

When the NA31 observation of a nonvanishing 'e(ε′/ε) was not confirmed by the
result from the E731 experiment, the CERN-based collaboration set out to construct
a new, improved detector with the goal of achieving a precision measurement of
'e(ε′/ε) with a total uncertainty of 0.2 × 10−4.

The new experiment was designed

– to measure all four decay modes concurrently by using two incident proton
beams;

– to improve on neutral-background rejection by developing a liquid-krypton
electromagnetic calorimeter with substantially better energy resolution;
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Fig. 9.16 (a) z vertex distribution for reconstructed K → π+π− decays for the vacuum beam
(thick) and regenerator beam (thin histogram). (b) z vertex distribution for reconstructed K →
π0π0 decays. (c) Kaon momentum distribution for reconstructed K → π+π− decays. (d) Kaon
momentum distribution for reconstructed K → π0π0 decays. All K → ππ analysis cuts have
been applied and background has been subtracted (see [180])

– to improve on charged-background rejection by using a magnetic spectrometer.

The resulting beam and detector have been described in Sect. 9.5.4.5. Data
were taken in 1997, 1998 and 1999 with 450 GeV protons. In the design of the
NA48 detector, the cancellation of systematic uncertainties in the double ratio was
exploited as much as possible [201]. Important properties of the experiment are

– two almost collinear beams, which lead to almost identical illumination of the
detector, and

– the KS lifetime weighting of the events defined as KL events.

The KL target was located 126 m upstream of the beginning of the decay region,
and the KS target 6 m upstream of the decay region. The beginning of the KS decay
region was defined by an anti-counter used to veto kaon decays occurring upstream
of the counter and defining the global kaon energy scale.

The identification of KS decays was done by a detector (tagger) consisting of an
array of scintillators situated in the proton beam directed on to the KS target. To
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Fig. 9.17 (a) Comparison of the vacuum beam z distributions for data (dots) and MC calculations
(histograms). The data-to-MC ratios (b) have been fitted to a line, and the z slopes are shown. The
neutral distributions are for the combined 1996 + 1997 samples; the charged distributions are for
1997 only (kTeV experiment [180])

identify events coming from the KS target a coincidence window of ±2 ns between
the proton signal in the tagger and the event time was chosen (see Fig. 9.18). Owing
to inefficiencies in the tagger and in the proton reconstruction, a fraction αSL of true
KS events are misidentified as KL events. On the other hand, there is a constant
background of protons in the tagger which have not led to a good KS event. If those
protons accidentally coincide with a true KL event, this event is misidentified as a
KS decay. This fraction αLS depends only on the proton rate in the tagger and the
width of the coincidence window.
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Fig. 9.18 (a), (c) Minimal difference between tagger time and event time (�tmin). (b) �tmin for
charged KL and KS events. (d) Comparison between charged and neutral event times. For this
measurement, decays with tracks selected by the neutral trigger were used (γ conversion and Dalitz
decays KS → π0π0

D → γγγ e+e−) (NA48 experiment [201])

Both effects, α+−
SL

and α+−
LS

, can be measured (see Fig. 9.18b) in the charged
mode, as KS and KL events can be distinguished by the vertical position of the decay
vertex. The results are α+−

SL
= (1.63 ± 0.03) × 10−4 for the data from 1998/1999

and (1.12 ± 0.03) × 10−4 for the data from 2001. For the accidental-tagging rate,
the value measured was α+−

LS
= (10.649 ± 0.008)% for the 1998/1999 data sample

and (8.115 ± 0.010)% for the 2001 sample, owing to the lower instantaneous beam
intensity. This means that about 11% or 8% of true KL events are misidentified as KS
events; however, this quantity is precisely measured to the 10−4 level here. For the
measurement of R the difference between the charged and the neutral decay modes,
�αLS = α00

LS
− α+−

LS
, is important. Proton rates in the sidebands of the tagging

window were measured in both modes to determine �αLS . The result is �αLS =
(4.3 ± 1.8) × 10−4 for the 1998/1999 event sample and (3.4 ± 1.4) × 10−4 for
the 2001 event sample. Several methods have been used to measure �αSL , leading
to the conclusion that there is no measurable difference between the mistaggings
measured by different methods within an uncertainty of ±0.5 × 10−4.
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Fig. 9.19 Comparison of the
p′2

t tail of the KL → π+π−
candidates with the sum of all
known components (NA48
experiment [201])

Fig. 9.20 Distribution of the
KS → π0π0 candidates in the
space of two reconstructed
values of mγγ . The contours
correspond to increments of
one standard deviation (NA48
experiment [201])

Another important correction is the background subtraction. Decays of the types
KL → πeν and KL → πμν can be misidentified as K → π+π− decays, as the ν

is undetectable. These events were identified by their high transverse momentum p′
t

and their reconstructed invariant mass. The remaining background can be measured
by extrapolating the shape of the background in the p′2

t distribution into the signal
region (Fig. 9.19). In this way, the charged background fraction leads to an overall
correction to R of (16.9±3.0)×10−4 for the 1998/1999 data and (14.2±3.0)×10−4

for the 2001 sample.
The reconstruction of π0π0 decays followed the principles described in

Sect. 9.5.4.2. The two γ γ masses for the best pairing are anticorrelated because
of the constraint of the kaon mass (Fig. 9.20). The ellipses in Fig. 9.20 designate
contours with increments of one standard deviation. The background from 3π0
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Table 9.4 Event numbers of the NA48 experiment after tagging correction and background
subtraction [201, 202]

Event statistics [× 106]

1998/1999 2001 1998/1999 2001

KS → π+π− 22.221 9.605 KL → π+π− 14.453 7.136

KS → π0π0 5.209 2.159 KL → π0π0 3.290 1.546

decays with two undetected photons is distributed with constant probability over
each ellipse, as shown by Monte Carlo calculations. This leads to a correction to R

of (−5.9 ± 2.0)× 10−4 for the 1998/1999 sample and (−5.6 ± 2.0)× 10−4 for the
2001 sample.

The numbers of signal events after these corrections are summarized in Table 9.4.
The efficiency of the triggers used to record neutral and charged events has been

determined. In the neutral decay mode the efficiency was measured to be 0.99920 ±
0.00009, without any measurable difference between KS and KL decays. The π+π−
trigger efficiency was measured to be (98.319 ± 0.038)% for KL and (98.353 ±
0.022)% for KS decays. Here, a small difference between the trigger efficiencies
for KS and KL decays was found. This leads to a correction to the double ratio of
(−4.5 ± 4.7)× 10−4 for the 1998/1999 sample and (5.2 ± 3.6)× 10−4 for the 2001
sample.

Other systematic uncertainties include the limited knowledge of the energy scale,
nonlinearities in the calorimeter, and small acceptance corrections.

Summing all corrections to and systematic uncertainties in R, the authors find the
amount to (35.9 ± 12.6) × 10−4 for the 1998/1999 data and (35.0 ± 11.0)× 10−4

for the 2001 data.
The corresponding result for the direct-CP-violation parameter is

'e

(
ε′

ε

)
= (15.3 ± 2.6)× 10−4 (9.172)

for the data from 1997 [203] and 1998/1999 [201], and

'e

(
ε′

ε

)
= (13.7 ± 3.1)× 10−4 (9.173)

for the data from 2001 [202].
A comparison of these two values is significant because they were obtained

at different average beam intensities. The combined final result from the NA48
experiment is

'e

(
ε′

ε

)
= (14.7±1.4 (stat)±0.9 (syst)±1.5 (MC))×10−4 = (14.7±2.2)×10−4 .

(9.174)
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Fig. 9.21 Time sequence of
published measurements of
the parameter 'e(ε′/ε) of
direct CP violation. The
experiments at CERN are
marked by filled circles and
the experiments at Fermilab
are marked by open squares.
The kTeV result from 2003 is
a reanalysis of the data from
the kTeV 1999 result (see
[204] and also
[180, 200–203])

9.5.6.6 Conclusions About Direct CP Violation, �e(ε′/ε) and the
Wu–Yang Triangle

The two experiments kTeV and NA48 have definitively confirmed the original
observation of the NA31 team that direct CP violation exists. The results of all
published experiments on ε′/ε are shown in Fig. 9.21. Therefore, CP violation as
observed in the K meson system is a part of the weak interaction due to weak quark
mixing. Exotic, new interactions such as the superweak interaction are not needed.
We therefore have a very precise experimental result for ε′/ε. The theoretical
calculations of ε′/ε within the Standard Model, however, are still not very precise.
This does not change the main conclusion of the experiments that ε′ is different
from zero and positive, i.e. direct CP violation exists.

If we take into account the four relevant experiments NA31, E731, NA48, and
kTeV, the weighted average comes out to be

'e

(
ε′

ε

)
= (16.7 ± 1.6)× 10−4 . (9.175)

The consistency of the result is not completely satisfactory, since χ2/ndf = 6.3/3.
If the phase of ε′ as defined in (9.92), arg ε′ = (42.3 ± 1.5)◦ [149], is inferred, then
a more precise value for the component of ε′ transverse to ε can be derived.

We have done a complete fit to the Wu–Yang triangle (9.90), using as input

'e

(
ε′

ε

)
= (16.7 ± 1.6)× 10−4, 'e ε = (1.658 ± 0.0265)× 10−3 ,

Φ+− = 43.3◦ ± 0.4◦, Φ00 − Φ+− = (0.36 ± 0.43)◦ ,

|η+−| = (2.230 ± 0.006)× 10−3, |η00| = (2.225 ± 0.007)× 10−3 ,

arg ε = 43.4 ± 0.1◦, arg ε′ = 42.3◦ ± 1.5◦ .
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Fig. 9.22 Result of the fit to the Wu–Yang triangle relations between η+−, η00, ε and ε′. (a)
Correlation of 'e ε and &mε ; (b) correlation of 'e(ε′/ε) and &m(ε′/ε). The boundaries of the
black areas correspond to one-standard-deviation uncertainties

The result of this fit is, with χ2/ndf = 3/4

&m
(
ε′

ε

)
= (−3.2 ± 4.4)× 10−5 (9.176)

and

&mε = (1.530 ± 0.005)× 10−3 . (9.177)

Also, the real part of ε is constrained by the fit:

'e ε = (1.619 ± 0.005)× 10−3

The result of this fit is expressed in correlation plots for 'e ε and &mε, and for
'e(ε′/ε) and &m(ε′/ε), in Fig. 9.22.

The result for direct CP violation (9.175) can also be quoted as a decay
asymmetry between the K0 and K0 decay rates to a π+π− final state. If the
amplitudes are called a = amp(K0 → π+π−) and a = amp(K0 → π+π−),
then this asymmetry is

A = Γ (K0 → π+π−) − Γ (K0 → π+π−)
Γ (K0 → π+π−) + Γ (K0 → π+π−)

= |a|2 − |a|2
|a|2 + |a|2 . (9.178)
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Since a/a = 1 − 2ε′, we obtain

∣∣∣∣aa
∣∣∣∣
2

= 1 − 4 'e ε′ (9.179)

and

A = 2 'e ε′ = 2

(
'e ε 'e

(
ε′

ε

)
− &mε &m

(
ε′

ε

))
= (5.5 ± 0.6)× 10−6 .

(9.180)

This very small decay rate asymmetry can be compared with the large values of
some similar observables in the B system.

9.6 The Neutral B Meson System

The KM model today often also referred as CKM1 mechanism of the Standard
Model predicts direct CP violation for the neutral K meson system and it was
thus a strong support for the theory when a finite value of 'e(ε′/ε) was observed.
The ultimate test of the quark-mixing paradigm however was the precise study of
CP violation in the neutral B meson system for which the theory predicted large
CP violation. The discovery of B0 − B0 mixing in 1987 [58] made the B0 system
the prime candidate for observing CP violation in a physical system different from
the neutral kaon. The observation of large time-dependent CP asymmetries in B0

decays in 2001 by the B-factories [59, 60] allowed the determination of the complex
phase δ of the CKM matrix and as a consequence provided a first sensitive test of the
unitarity of the quark mixing matrix. With the observation of the B0

s meson mixing in
2006 [61] a second B meson system became available for precise mixing studies and
studies of CP violating effects. With the start of the LHCb experiment [62] the focus
of the B meson studies have changed. Precision measurements no longer aim to
prove the CKM paradigm but look for small deviations from the theory predictions
as possible smoking-guns for physics beyond the description of the Standard Model.

1N. Cabibbo introduced the concept of quark mixing for two quark generations [56]. It was
extended to more generations by M. Kobayashi und T. Maskawa who also explained CP violation
in case of three and more generations [57]. The corresponding 3 × 3 quark mixing matrix is today
referred as KM or CKM matrix. In the remaining part of this chapter the term CKM matrix is used.
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9.6.1 Phenomenology of Mixing in the Neutral B Meson
System

The parameters of mixing in the two neutral B mesons—the B0 with quark content
(b̄d) and the B0

s with quark content (b̄s), in the following they are called both
generically B0—are very different from those observed in the neutral K meson
system. In Sect. 9.3 the complex decay parameters γh and γl are defined for the
heavy (h) and light (l) meson states (see Eq. (9.41)):

γh = imh + h

2
,

γl = iml + l

2
.

With these parameters the time evolution of the neutral B states can be written as
(see Eqs. (9.34) and (9.40))

|Bh(t)〉 = (p

∣∣∣B0
〉
− q

∣∣∣B0
〉
)e−γht ,

|Bl (t)〉 = (p

∣∣∣B0
〉
+ q

∣∣∣B0
〉
)e−γl t . (9.181)

The two initial states at t = 0, with a definite quantum number B , are

ψB(0) = B0 and ψ
B
(0) = B0 . (9.182)

Their decay law is not any longer exponential and results to a finite probability P

for a flavor change given by Eqs. (9.44) and (9.45). In the Standard Model, the CP
violation in mixing of neutral B mesons is expected to be very small, such that
|q/p| = 1 within O(10−4) and O(10−5) for the B0 and the B0

s system respectively

[63]. In this approximation the mixing probabilities for the two B0 and B0 are equal,
i.e.

P(B0 → B0) = P(B0 → B0) , (9.183)

and Eq. (9.44) can be written as

P(B0 → B0) = 1

2
e−T (cosh yT − cos xT ) = 1

2
e−Γ t

(
cosh

�t

2
− cos(�m t)

)
.

(9.184)
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Fig. 9.23 Feynman diagrams of the B0 mixing

Correspondingly, the probability for remaining in the original beauty state is,

P(B0 → B0) = P(B0 → B0) = 1

2
e−Γ t

(
cosh

�t

2
+ cos(�m t)

)
. (9.185)

One thus obtains for the flavor asymmetry at time t of an initially pure flavor state
(see Eq. (9.50)):

A(t) = P(B0 → B0) − P(B0 → B0)

P (B0 → B0) + P(B0 → B0)
= cos(�m t)

cosh �t
2

(9.186)

The mixing parameter x is determined through short-range interactions given by
box diagrams of the type shown in Fig. 9.23. For the B0 mixing the diagrams with a
virtual t quark dominate and one obtains [63, 65] for the mixing parameter x,

x ≡ �m

Γ
= G2

F

6π2 BBq
f 2

Bq
mBq

τBq
|V ∗

tbVtq |2M2
WF

(
m2

t

M2
W

)
ηQCD (9.187)

with index q = d(s) for the B0 (B0
s ) respectively. Here, mBq

and τBq
are the mass

and the lifetime of the neutral B meson, BBq is the bag factor parametrizing the

probability that the d (s) and the b quarks will form a B0 (B0
s ) hadron, fBq is the

B meson decay constant, F is the calculated loop function, increasing with the top
quark mass squared m2

t , and ηQCD ≈ 0.8 is a QCD correction. The parameters GF

and MW are the Fermi coupling constant and the mass of the W boson and Vij are
the CKM matrix elements (see Sect. 9.7).

For the B0 meson the lifetimes of the heavy and light state are approximately
equal, Γh = Γl = Γ , and y = �Γ/2Γ ≈ 0. In this case the flavor asymmetry
simplifies to A(t) = cos (�mt). For the B0

s meson a significant lifetime difference
between the heavy and light states arises due to different decay channels as result of
the different CP eigenvalues of the two mass states. The lifetime or width difference
can thus be measured using final states with defined CP values.2 From recent theory
calculations one expects for the B0

s meson �/ ≈ 13% [64, 66]. It should further

2This is strictly true only if one ignores the very small CP violation in mixing.
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be noted that applying the definition of Sect. 9.3 for � leads to a negative width
differences for the B0

s mesons. It is therefore common practice [67] to redefine �

to be positive,

� = l − h . (9.188)

To test the approximation |q/p| ≈ 1, i.e. the assumption of vanishing CP
violation in the mixing,

amix = P(B0 → B0) − P(B0 → B0)

P (B0 → B0) + P(B0 → B0)
= 1 − |q/p|4

1 + |q/p|4 ≈ 0 ,

one can measure the semi-leptonic CP asymmetry for the two B0 species (see
Eq. (9.56)),

aSL = (B0(t) → 
+νX) − (B0(t) → 
−νX)

(B0(t) → 
+νX) + (B0(t) → 
−νX)
= amix , (9.189)

where the detection of a B0 decaying into a wrong-sign muon B0 → B0 → 
−νX
indicates mixing.

The measurement of the time-dependent CP asymmetry between the decays of a
B0 and a B0 to a common final state f probes the CP violation in the interference
between the decay with and without mixing. Following Eq. (9.51) one introduces
the decay amplitudes

Af = 〈f |T |B0〉 , Af̄ = 〈f̄ |T |B0〉 ,
Af = 〈f |T |B0〉 , Af̄ = 〈f̄ |T |B0〉 . (9.190)

The theoretical description simplifies if decays to CP eigenstates B → fCP are
used. These final states fulfill CP |fCP 〉 = ∣∣fCP

〉 = ηCP |fCP 〉 with ηCP = ±1 and
Af = ηCPAf̄ .

Using Eq. (9.42), one obtains the decay rates of initially pure B0 and B0 states,

dN(t)

dt
= 1

4

∣∣∣∣(e−γht + e−γl t
)
Af − q

p

(
e−γht − e−γl t

)
Af

∣∣∣∣
2

,

dN(t)

dt
= 1

4

∣∣∣∣(e−γht + e−γl t
)
Af − p

q

(
e−γht − e−γl t

)
Af

∣∣∣∣
2

. (9.191)

The time dependent CP asymmetry is defined as

aCP (t) = dN − dN

dN + dN
. (9.192)
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Neglecting the very small deviation of |q/p| from unity (i.e. CP violation in mixing)
and using the ratio defined in Eq. (9.53),

λf = qAf

pAf

, (9.193)

one obtains for aCP (t) [68],

aCP (t) = −Adir
CP cos(�mt) + Amix

CP sin(�mt)

cosh(�
2 t) + A� sinh(�

2 t)
(9.194)

with

Adir
CP = 1 − ∣∣λf ∣∣2

1 + ∣∣λf ∣∣2 , Amix
CP = − 2&λf

1 + ∣∣λf ∣∣2 , A� = − 2'λf

1 + ∣∣λf ∣∣2 . (9.195)

The first term accounts for possible direct CP violation while the other two terms
encode properties of the mixing. Experimentally, by measuring the time dependent
CP violation aCP (t) one can determine the coefficients of cos(�mt) and sin(�mt)

and thus determine
∣∣λf ∣∣ and &λf . In general, non-perturbative QCD effects prevent

to relate these quantities to CP phases originating from the quark mixing. However,
in case of so called golden modes which are dominated by a single decay amplitude
and thus a single combination VCKM of CKM elements such an association is
possible. Since the strong interaction respects the CP symmetry, golden modes
fulfill:

Af

Af

= ηCP

Af̄

Af

= ηCP

V∗
CKM

VCKM

(9.196)

From this equation one sees that
∣∣Af

∣∣ = ∣∣Af

∣∣ and that assuming |q/p| = 1, one
obtains

∣∣λf ∣∣ = 1. Thus golden modes satisfy

Adir
CP = 0 , Amix

CP = −&λf . (9.197)

For golden decays of B0 mesons for which the decay width difference � is
negligible, expression (9.194) further simplifies to

aCP (t) = −&λf sin(�mt) . (9.198)

Thus, if λf carries a non-trivial weak phase φ (&λf 	= 0) the time dependent CP
asymmetry will show a sinusoidal time behaviour with an amplitude given by sin φ.



9 Symmetry Violations and Quark Flavour Physics 583

9.6.2 Production and Detection of B-Mesons

The precise measurement of oscillation and CP violation in the neutral B meson
system requires a high number of produced B mesons. A good reconstruction of
the B meson decay vertex, necessary for an excellent decay time resolution, is
needed to resolve the time-dependent effects. To perform the CP measurements
the determination of the production flavor of the B meson, often referred as flavor-
tagging, is necessary.

9.6.2.1 e+e− B-Factories

The first experiments which have systematically addressed these requirements are
the BABAR experiment [69] at the e+e− collider PEP-II at Stanford and the Belle
experiment [70] at the Japanese e+e− collider KEKB. Both e+e− machines were
operating at a centre-of-mass energy of

√
s = 10.58 GeV, corresponding to the

mass of the Υ (4S), an excited bb̄ resonance which decays to B0B0 (∼ 50%) and
B+B− (∼50%). The cross section for the Υ (4S) production is 1.1 nb which is about
a quarter of the total hadronic cross section.

BABAR was operated from 1999 to 2008 and collected a data set corresponding
to an integrated luminosity of 550 fb−1. The Belle experiment has also been started
in 1999 and was taking data until the end of 2009, collecting about 1 ab−1 of data.
Due to the large number of B mesons the two experiments have recorded, they are
often referred as B-factories.3 To continue this successful path, the KEKB collider
as well as the Belle experiment have both undergone an upgrade. The new Belle-II
experiment has started data-taking in 2018 and will be operated at a 40 times larger
instantaneous luminosity [72].

The mass of the ϒ(4S) lies only 11 MeV/c2 above the sum of the two produced
B mesons which would therefore be produced essentially at rest and would not fly.
The vanishing decay length would prevent a measurement of the decay time. To
overcome this problem both machines have been operated with slightly asymmetric
beam energies resulting in a small boost of the ϒ(4S) and thus of the produced B
mesons. The boost factor βγ was 0.56 (0.425) for the BABAR (Belle) experiment,
resulting into typical decay lengths of about 250 μm for the two B mesons with
lifetimes of 1.5 ps.

If the ϒ(4S) with JP = 1− decays into a pair of neutral B mesons, the two
mesons are produced in a coherent B0B0 state with negative parity,

B0(θ1)B0(θ2) − B0(θ2)B0(θ1) , (9.199)

3A comprehensive description of the two e+e− machines, the two detectors, the operation and the
physics results can be found in [71].
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where θ1,2 are the B meson production angles relative to the e+ direction. The
flavors of the two mesons are thus fully correlated until the first meson decays at
time t1. If at that time this meson is a B0 the flavor of the second meson is fixed to
be a B0 and vice versa. The time evolution of the second B meson with decay time
t2 is then given by

ψ2(t2) = B0
(

e−γh(t2−t1) + e−γl(t2−t1)
)

− q

p
B0

(
e−γh(t2−t1) − e−γl(t2−t1)

)
,

(9.200)

i.e. the time evolution of the flavor of the second B meson is defined by the time
difference �t = t2 − t1 between the two decays. Depending on which of the two B
mesons is studied, �t can also be negative.

The decay topology of a B0B0 pair produced at t = 0 from the decay of the
ϒ(4S) is illustrated in Fig. 9.24, where one of the neutral B mesons (signal B) is
decaying at t2 into the golden mode J/ψKS used to measure the time-dependent CP
violation, and the other B meson (tagging B) decays at t1 into a flavor-specific final
state. The charge of the electron indicates the flavor of the B meson at the time of
the decay (B0). At this time the signal B was thus a B0.

Due to the boost of the ϒ(4S) the different decay times result into different z-
positions of the two decay vertices along the beam direction. The difference �z is
about 250 μm and is related to the decay time difference �t:

�z = z2 − z1 = βγ c (t2 − t1) = βγ c�t . (9.201)

Both B-factories are very similar. Therefore only the Belle experiment at the
KEKB collider in Tsukuba is discussed here. To produce a boost βγ = 0.425 of the

Fig. 9.24 Decay topology of B0B0 pairs
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ϒ(4S) in the laboratory, the KEKB electron beam has an energy of 8 GeV while the
positrons collide with an energy of 3.5 GeV. The highest instantaneous luminosity
achieved at KEKB was L = 2 × 1034s−1 cm−2 [71].

The Belle detector (Fig. 9.25) followed the typical onion-shape design. After an
exchange in 2003, a silicon vertex detector (SVD) made from four layers of double-
sided silicon strip sensors was used as inner component. The innermost (outermost)
SVD layer was located at a radial distance of only 20 (88) mm from the collision
point. The impact parameter resolution for charged particle tracks obtained is [71]

σr =
[

21.9 ⊕ 35.5

p

]
μm [p in GeV/c] ,

σz =
[

27.8 ⊕ 31.9

p

]
μm .

The SVD was followed by the central drift chamber (CDC) which extended to
a radial distances of 88 cm. The combined tracking system of SVD and CDC
provided a good momentum resolution, especially for low momentum tracks, thanks
to the minimization of material. For the transverse momentum a resolution of
σpT /pT = 0.0019 · pT ⊕ 0.0030/β [pT in GeV/c] was achieved [71]. Particle
identification was provided by the time-of-flight (TOF) system and by the aerogel

Fig. 9.25 Belle detector with the silicon vertex detector (SVD), the central drift chamber (CDC),
the time-of-flight-system (TOF) and the aerogel Cherenkov counter (ACC), the CsI electromag-
netic calorimeter and the KL/μ detector (KLM). The detector is embedded in a magnetic field of
1.5 T produced by a solenoid with a length of 4.4 m and a diameter of 3.4 m [70]
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Cherenkov counter (ACC). Photon and electron energies were measured in the
electromagnetic calorimeter (ECL) consisting of thallium-doped CsI crystals. The
energy resolution varied from 4% at 100 MeV to about 1.6% at 8 GeV [71]. All
detector components were placed inside a super-conducting solenoid magnet of
cylindrical shape which was providing a magnetic field of 1.5 T. The iron return
yoke is instrumented with resistive plate chambers (KLM) and served to identify
muons and KL with a momentum above 600 MeV/c.

9.6.2.2 The LHCb Experiment at the Large Hadron Collider

The multi-purpose experiments CDF and D0 [73–76] operated at the pp̄ collider
Tevatron at Fermilab established that—despite of the harsh and high-multiplicity
environment of the hadron collisions—precision measurements of B mesons com-
petitive with those performed at e+e− B-factories are possible at hadron machines.
Both experiments have pioneered studies of the B0

s system which was hardly studied
at the e+e− machines, as kinematically the heavier B0

s system is only accessible
through the decays of the ϒ(5S). Only the Belle collaboration collected a small
data sample of ϒ(5S) decays.

At the Large Hadron Collider (LHC) at CERN, the LHCb experiment [77]
and to a lesser extent also the ATLAS and CMS experiments [78, 79] followed
the successful path of precision B meson studies explored at Tevatron. The cross
section for bb̄ pair production in the pp collision of the LHC is huge, about 500 μb
for proton-proton center-of-mass energies of 13 TeV. As only small fractions of
the proton energies are needed to produce the bb̄ pair, the momentum factions
x1 and x2 of the colliding partons are in general very different and the relatively
light bb̄ system is boosted in the laboratory frame into either the forward or the
backward direction. The LHCb experiment has therefore been designed as a single-
arm forward spectrometer. With a pseudo-rapidity coverage of 2 < η < 5 about
35% of all produced bb̄ pairs lie within the detector acceptance. The average boost
of the b hadrons is large, βγ ≈ 25, resulting into average flight distances of about
1 cm. Although the bb̄ cross section at the LHC is large, the total inelastic cross
section is about a factor 200 larger. The huge rate of non b events together with the
fact that the decay products of the b hadrons are comparably soft makes the trigger
to the primary challenge for any B meson experiment. Typical combined trigger
and reconstruction efficiencies vary between 0.1 and 10% depending on the decay
channel. Channels with muons in the final state are in general easier to trigger and
reconstruct.

At a hadron collider the two produced b quarks hadronise separately and no
quantum correlation between the two b hadrons exists. It is therefore harder to
conclude from the flavor of the second b hadron (tagging B), which for the case
that it is a neutral B meson oscillates independently, on the production flavor of the
signal B. Effective tagging efficiencies therefore stay significantly below 10%.

The LHCb forward spectrometer is shown in Fig. 9.26 and includes a high-
precision tracking system consisting of a silicon-strip vertex detector (Velo) sur-
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Fig. 9.26 LHCb detector consisting of a vertex detector (Vertex Locator), a first Cherenkov
detector (RICH1), a large-area silicon-strip detector (TT), the main tracking stations (T1, T2, T3)
with an inner part built from silicon-strip detectors and outer part build with straw drift tubes, a
second Cherenkov detector (RICH2), a scintillating-pad detector (SPD) and a preshower detector
(PS) in front of an electromagnetic (ECAL) and hadronic calorimeter (HCAL, and the muon system
with 5 stations (M1 to M5). A dipole magnet (4 Tm) is placed between the large-area silicon-strip
detector and the main tracking stations [77]

rounding the pp interaction region, a large-area silicon-strip detector (TT) located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors (IT) and straw drift tubes (OT) placed downstream of the
magnet. The tracking system provides a measurement of momentum of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0%
at 200 GeV/c. The minimum distance of a track to the primary proton-proton vertex,
the impact parameter (IP), is measured with a resolution of

σIP = (15 + 29/pT )μm [pT in GeV/c]

The average boost and the vertex resolution translates into a decay-time resolution
of about 50 fs. Different types of charged hadrons are distinguished using infor-
mation from two ring-imaging Cherenkov detectors (RICH). Photons, electrons
and hadrons are identified by a calorimeter system consisting of scintillating pads
(SPD) and a preshower detector (PS), an electromagnetic calorimeter (ECAL) and
a hadronic calorimeter (HCAL). Muons are identified by a system composed of
alternating layers of iron and multiwire proportional chambers. The online event
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selection is performed by a trigger system consisting of a hardware stage, based
on information from the calorimeter and the muon systems, followed by a software
stage, which applies full event reconstruction.

The displacement of the B decay vertex from the primary interaction vertex
is an important identification requirement of B events. However, due to the large
boost in forward direction, the association of b hadrons to their production vertex is
challenging, in particular if the number of primary vertices is large. In order to keep
the average number of primary proton-proton interactions per bunch crossing at the
most optimal value (below 2) the instantaneous luminosity for the LHCb interaction
point was leveled by displacing the centres of the colliding beams slightly. Until
2018 LHCb has recorded data corresponding to an integrated luminosity of 3 fb−1

at 7 and 8 TeV, and 6 fb−1 at 13 TeV proton-proton centre-of-mass energy. This
data sample corresponds to more than 1×1012 bb̄ events produced inside the LHCb
acceptance.

9.6.3 Measurements of B Oscillations

Mixing in the B0−B0 system was discovered in 1987 by the ARGUS collabora-
tion [80] and the first time-integrated determinations of the mixing parameter xd
have been performed by the ARGUS and the CLEO collaborations [81, 82]. Time-
dependent measurements of the mixing frequency �md became possible at the
electron-positron collider LEP. The silicon vertex detectors and the large boost of
the B mesons produced at the Z resonance allowed to observe the B0 oscillations.
With their high statistics and low background B samples the BABAR and Belle
experiments improved the errors on the mixing frequency �md significantly
[83, 84]. Exploiting the excellent time resolution as well as the large statistics
of recorded B mesons the LHCb experiment performed the so far most precise
measurement of �md [88].

After the first B0 mixing measurement it was clear that mixing was an important
effect also in the B0

s −B0
s system and theory predicted a much faster oscillation of the

B0
s meson. While limits on xs existed from LEP and the two Tevatron experiments it

took until 2006 that the CDF collaboration resolved the fast mixing and performed
the first measurement of the mixing frequency [85]. The measurement was repeated
with much smaller uncertainties by the LHCb collaboration in 2012 [86].

The oscillation frequency of neutral B mesons is measured using flavor-specific
final states, i.e. final states like B0 → D(∗)−
+ν
 or B0 → D−π+ where the charge
of one of the final-state particles (e.g. the lepton or pion charge) indicate the flavor
of the decaying signal B0 (e.g. b̄ → c̄
+ν
). In case of incoherent production of the
two b hadrons, a flavor-specific decay of the second B (Btag) is used to tag the flavor
at the time t = 0 of the production. For the coherent production at the B factories the
tagging B defines the flavor of the signal B at time �t with respect to its decay—see
Fig. 9.24 and Eq. (9.201). B-factory experiments have also used explicitly so called
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dilepton events where both B mesons decay semi-leptonically. Flavor-mixing of one
of the B mesons is indicated by the presence of same-sign lepton events.

For LHCb, where the boost factor of the decaying B is not known and must
be reconstructed from the final-state particles, semi-leptonic signal decays with an
undetected neutrino present an additional complication compared to full hadronic
decays. To account for the missing neutrinos in the calculation of the proper decay-
time correction factors are used.

An important performance number for the mixing measurement and even more
for CP violation measurements is the tagging power or effective tagging efficiency
Q = εtagD

2
tag which corresponds to the efficiency to correctly tag the flavor of

the signal B meson. The tagging power is the product of the tagging efficiency
εtag, the probability that a specific algorithm delivers tagging information, and the
square of the dilution factor Dtag = 1 − 2ω, where ω is the mistag probability,
i.e. the probability that a tagging decision is wrong. At a hadron collider, B
mesons are produced independently of each other and mistag probabilities are large
(about 40%). The B-factories profit from the coherent B0B0 production and mistag
probabilities of only a few percents are achieved for some tagging algorithms.
Consequently, the tagging power at the B-factories is as high as 30% while for
LHCb values only up to 6% are obtained.

If one considers the effect of the tagging dilution Dtag as well as the effect of a
finite time resolution expressed by a dilution factor Dt one expects that the measured
flavor asymmetry Ameas parameterizes as,

Ameas(t) = Nunmixed (t) − Nmixed (t)

Nunmixed (t) + Nmixed (t)
= DtagDt

cos�mt

cosh�/2t
, (9.202)

where t is the decay time of the signal B. For the measurement at BABAR and Belle
with coherently produced B mesons the time difference �t = tsig − ttag between
the decay times of the signal and the tagging B needs to be used instead. Nunmixed

and Nmixed are the observed numbers of unmixed (B0B0) or mixed (B0B0 or B0B0)
events for different decay times. The effect of the finite time resolution is treated in
the fit by a convolution with a resolution function. For LHCb, the effect of the time
resolution on the measurement of the slow B0-B0 mixing is negligible (Dt ≈ 1).
For the fast oscillating B0

s -B0
s the measured decay-time resolution of 44 fs leads to

a dilution factor of ≈ 0.73.

9.6.3.1 Measurement of the B0-B0 Oscillation Frequency

BABAR and Belle have used large event samples of dilepton events where both B
mesons decay leptonically with either a muon or an electron in the final-state to
measure �md . Figure 9.27 shows the measured decay time difference �t (t2 − t1,
see above) of opposite-sign and same-sign di-lepton events as measured by BABAR,
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Fig. 9.27 Distributions of time difference �t of the two neutral B mesons for (a) opposite-
sign and (b) same-sign dilepton events; (c) asymmetry between opposite- and same-sign dilepton
events. Points are data and the lines correspond to result of a fit. Figure taken from [83]

as well as the mixing asymmetry Ameas(�t). The fit to the data resulted in a value
of �md = (0.493 ± 0.012 ± 0.009) ps−1 [83]

The most precise determination of �md at the B-factories was performed by
Belle analyzing simultaneously semi-leptonic decays B0 → D∗−
ν and a set of
four different hadronic decays in a data sample of 140 fb−1 and resulting into the
value �md = (0.511 ± 0.005 ± 0.006) ps−1 [84]. The various �md measurements
at the B-factories have been averaged [87] to

�md = (0.509 ± 0.003 ± 0.003) ps−1 .

LHCb has performed a mixing measurement using fully reconstructed hadronic final
states as well as semi-leptonic decays. The most precise LHCb measurement was
performed using semi-leptonic B0 decays. A total of 1.923×106 B0 → D−μ+νμX
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candidates and 0.829 × 106 B0 → D∗−μ+νμX candidates (charge conjugated
decays included) are used [88] and yield

�md = (0.5050 ± 0.0021 ± 0.0010) ps−1 .

Dominated by the LHCb result, the current world average of the existing �md

measurements yields

�md = (0.5064 ± 0.0019] ps−1 [130].

Using the B0 lifetime average of 1.520 ± 0.004 ps [130] one obtains the mixing
parameter,

xd = �md

d

= 0.770 ± 0.004 [130],

which is of similar magnitude as the value of the neutral K system, xK = 0.945 ±
0.002 (see Sect. 9.5). As predicted, the decay width difference of the B0 turns out to
be very small. The world average [130] of yd is,

yd = �d

2d

= −0.001 ± 0.005

compared to yK = −0.9965 for the K meson.

9.6.3.2 Measurement of the B0
s −B0

s Oscillation Frequency

Inserting the corresponding CKM elements in Eq. (9.187) one expects that the
oscillation of the neutral B0

s meson is by a factor |Vts|2 / |Vtd |2 faster than the
oscillation of the B0. To resolve the fast oscillation pattern represented a challenge
and the first measurement of �ms was achieved only in 2006 by the CDF
experiment [85].

The by far most precise determination of �ms was performed by LHCb [86]
using about 34,000 B0

s → D−
s π

+ decays (charge conjugated decays are included).
Figure 9.28 shows the decay time distribution dependent number of observed B0

s
meson decays which decay with the same (unmixed) or the different flavor (mixed)
with respect to their production. One can nicely observe the rather fast oscillation
pattern. A fit accounting for the tagging dilution and for the finite time resolution
results into

�ms = (17.768 ± 0.023 ± 0.006) ps−1[86] .

This value agrees well with the theoretical prediction �ms = (18.3 ± 2.5) ps−1

which however, exhibits large errors due to the uncertainties of the hadronic
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Fig. 9.28 Decay time
distribution for B0

s candidates
tagged as mixed (different
flavour at decay and
production; red, continuous
line) or unmixed (same
flavour at decay and
production; blue, dotted line).
Figure adopted from [86]
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BBs [66]. With the mean B0

s life-time, τ = 1.509 ± 0.004 ps−1,
one obtains for the mixing parameter

xs = 26.72 ± 0.09 [130] .

9.6.4 CP Violation in Neutral B Meson Mixing

CP violation in mixing, amix 	= 0, is predicted to be O(10−4) for B0 mesons and
O(10−5) for B0

s mesons [66]. As the CP violation in mixing is probed using semi-
leptonic B decays it is often also referred to as aSL (see Eq. (9.56)). In 2010, the D0
collaboration reported an anomalous charge asymmetry in the inclusive production
rates of like-sign dimuon events [89] indicating a significant deviation from the
prediction. Their most recent study [90] shows a discrepancy to the theory prediction
of about three standard deviations .

B mesons containing a b̄ quark undergo decays with a positively charged leptons
in the final-state (b̄ → c̄ 
+ν
), while B̄ mesons decay into negatively charged
leptons (b → c 
−ν̄
). In case of pair production of B mesons with subsequent
semi-leptonic decay, a pair of negatively charged leptons indicates the mixing of
B0 into a B0, while the observation of a positively charged lepton pair signals the
transformation of B0 into B0. The dilepton asymmetry is measured with dimuon
events and is defined as

A

 = N(μ+μ+) − N(μ−μ−)
N(μ+μ+) + N(μ−μ−)

, (9.203)

where N(μ+μ+) and N(μ−μ−) are the number of events with two positively or
two negatively charged muons, respectively. At a hadron collider the detection of
two muons does not distinguish between initial B0 or initial B0

s meson and the above
dimuon asymmetry as determined by the D0 experiment measures a combination of
the B0 and B0

s mixing asymmetries adSL and asSL defined in Eq. (9.189).
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Measurements performed by BABAR, Belle, D0 and LHCb determine separately
the mixing asymmetries adSL and asSL for the two neutral B mesons by using partially
reconstructed semi-leptonic decays or with fully reconstructed hadronic decays.
Measuring the expected very tiny CP asymmetries requires a precise understanding
of various experimental and instrumental effects, e.g. asymmetries arising from
different detection efficiencies (AD) or different material interaction (AI ) for the
two charge-conjugated final states. The so far most precise determination of both
mixing asymmetries has been performed by the LHCb experiment. At the LHC
the initial proton-proton collision is not a particle-antiparticle symmetric state. The
number of produced b and b̄ hadrons of a given species is not necessarily the same
and the production asymmetry AP has also to be taken into account when the
measurement of the mixing asymmetry is performed. The measured asymmetry of
a neutral B meson, independent whether it is a B0 or a B0, into a final state f or its
conjugated state f̄ can be expressed by the mixing asymmetry a

q
SL,

Ameas = N(B0
q /B

0
q → f )(t) − N(B0

q /B
0
q → f̄ )(t)

N(B0
q /B

0
q → f )(t) + N(B0

q /B
0
q → f̄ )(t)

= a
q

SL

2
−
(
AP + a

q

SL

2

)
· cos

(
�mqt

)
cosh

(
�qt/2

) + AD + AI . (9.204)

By omitting the flavor tagging of the decaying neutral B the sensitivity to aSL is
a factor 1/2 smaller with respect to a tagged measurement. At the same time one
dramatically wins in statistical power as no tagging is required.

For the B0 system the time dependent analysis together with the precise
determination of AD and AI allows to eliminate the production asymmetry AP .
LHCb has performed this complicated analysis [91] and obtained for the mixing
asymmetry of the B0 system the value

adSL = (−0.02 ± 0.19 ± 0.30) %

with a total precision of 3.6 per mill. In case of the fast oscillating B0
s system the

measurement simplifies as the term involving the production asymmetry cancels in a
time integrated measurement. Furthermore, the measurement was performed using
D−

s μ
+νμX final states with the D−

s meson decaying to φ(→ K+K−)π− [92]. For
the charge symmetric K+K− state the interaction asymmetry is negligible and one
only needs to correct for the pion detection asymmetry. The final result obtained for
asSL is

asSL = (0.39 ± 0.26 ± 0.20) % [92] ,

with a total precision of 3 per mill.
Figure 9.29 shows the different aSL measurements [91–97] for the two neutral

B systems as well as the averages. The D0 measurement indicating large mixing
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Fig. 9.29 Mixing asymmetries asSL and adSL as measured by the different experiments [91–97].
The D0 dimuon measurement (contour) [90] determines a combination of asSL and adSL. Green
bands show the averages. The theory prediction is marked by the black dot. Figure adopted from
[92]

asymmetries is not confirmed by the other experiments. The measured aSL values
can be used to determine the deviation of |q/p| from unity,

aSL = 1 − |q/p|4
1 + |q/p|4 ≈ 2 (1 − |q/p|) , (9.205)

or equivalently

∣∣∣∣ qp
∣∣∣∣ ≈ 1 − aSL

2
. (9.206)

The most recent world averages as provided by the HFLAV group4 and published
in [130] are for the B0 system,

adSL = 0.0021 ± 0.0017 ,

|q/p| = 1.0010 ± 0.0008 ,

and correspondingly for the B0
s system,

a2
SL = 0.0006 ± 0.0028 ,

|q/p| = 1.0003 ± 0.0014 .

4Heavy Flavor Averaging Group
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The values so far show no evidence for CP violation in mixing and are consistent
with the theory prediction of very small CP asymmetries [66].

9.6.5 CP Violation in the Interference of Mixing and Decay

The B-factories BABAR and Belle were built with the primary goal to discover CP
violation in the interference of B0 decays to the CP eigenstate B0 → J/ψKS with
and without mixing. Large CP violation had been predicted for this channel. Shortly
after the start of data-taking the two collaborations presented first measurements in
summer 2000. A clear evidence of the first CP violation outside the neutral K meson
was established in 2001 [59, 60].

9.6.5.1 B0 Meson

The expected time-dependent CP asymmetry is defined in Eq. (9.192) and
parametrised by Eq. (9.194). Taking into account the negligible width difference,
� ≈ 0, for B0 mesons the time-dependent CP asymmtery for the channel
B0 → J/ψKS can be written as

AJ/ψKS (t) = Amix
J/ψKS

sin(�mdt) − Adir
J/ψKS

cos(�mdt) , (9.207)

where the coefficientsAmix
J/ψKS

and Adir
J/ψKS

have been introduced in Eq. (9.195). The

decay B0 → J/ψKS is a golden mode, dominated by a single tree-level amplitude.
CP violation in the decay amplitudes can therefore be neglected, i.e. Adir

J/ψKS
≈ 0.

The coefficient Amix
J/ψKS

is given by the CKM matrix elements involved in the short

range box diagrams responsible for the B0 mixing and by the CKM matrix elements
appearing in the decay amplitudes. With Amix

J/ψKS
= −&λJ/ψKS (see Eq. (9.195))

and the definition of λJ/ψKS of Eq. (9.193),

λJ/ψKS = q

p

AJ/ψKS

AJ/ψKS

,

one can calculate the time-dependent CP asymmetry according to Eq. (9.197). For
the decay B0 → J/ψKS one finds for the ratio q/p describing the mixing and for
the ratio of the amplitudes the following CKM factors,5

q

p
= V ∗

tbVtd

VtbV
∗
td

and
AJ/ψKS

AJ/ψKS

= ηJ/ψKS

(
VcbV

∗
cs

V ∗
cbVcs

)(
VcsV

∗
cd

V ∗
csVcs

)
, (9.208)

5True only up to a phase factor which cancels later on.



596 K. Kleinknecht and U. Uwer

The second CKM term in the expression for the amplitude ratio is a result of the K0–
K0 mixing necessary to produce the KS. As the Vcs terms all cancel one obtains for
the Amix

J/ψKS

Amix
J/ψKS

= −&
{
ηJ/ψKS

(
V ∗
tbVtd

VtbV
∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)}
= −ηJ/ψKS sin(2β) , (9.209)

where the last equality uses the definition of the CKM angle β of Sect. 9.7. Finally
one obtains for the time-dependent CP asymmetry,

AJ/ψK0
s
(t) = −ηJ/ψKS sin (2β) sin (�mdt) . (9.210)

For the decay B0 → J/ψKS the CP eigenvalue of the final state is ηJ/ψKS = −1.
Due to opposite CP eigenvalue of the KL the CP eigenvalue of the decay B0 →
J/ψKL is ηJ/ψKL = +1. Both statements are strictly true only if one ignores the

very small CP violation in the K0K
0

mixing. The decay B0 → J/ψKL is interesting
as one expects exactly the same magnitude of the CP violation as for B0 → J/ψKS
but an opposite time behavior due to the opposite CP eigenvalue.

Experimentally the decay B0 → J/ψK0
s is easy to access. The J/ψ meson

decays into two leptons and can be easily triggered and selected. Additional
requirements on the displacement of the B vertex from the primary vertex allow an
almost background-free reconstruction even at a hadron collider. The measurement
has been extended to include other (cc̄) resonances for which the same CP behavior
as for the golden mode is expected.

At the B-factories the time-dependent CP asymmetry is measured as function of
the time difference �t = t2 − t1. The most precise determination of the quantity
sin (2β) has been performed by the Belle experiment using about 32,000 signal
candidates with an average signal purity of 79% [98],

sin (2β) = 0.667 ± 0.023 ± 0.012 .

The time-dependent CP asymmetry for the CP-odd and CP-even final states as
measured by Belle are shown in Fig. 9.30. The BABAR experiment has recorded
less signal candidates (15,481 candidates with a purity of 76% ) and obtained [99],

sin (2β) = 0.687 ± 0.028 ± 0.012 ,

with a slightly larger statistical error than the Belle measurement.
The LHCb collaboration has also performed the measurement of sin (2β) by

analysing the time dependent CP violation in B0 → J/ψKS and B0 → ψ(2S)KS
decays with 52,000 and 8000 signal candidates, respectively [100, 101]. As for the
measurement of the CP violation in mixing the observed time dependent asymmetry
has to be corrected for the production asymmetry between B0 and B0 of about 1%.
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show the measurement for B0 → J/ψKL (ηf = +1) The distributions are background subtracted.
Figure adapted from [98]

The resulting value sin (2β) = 0.760 ± 0.034 [101] is slightly larger than the ones
measured at the B-factories. It is important to notice that despite the much larger
number of signal candidates used for the LHCb measurement the total error is
comparable with the ones of Belle and BABAR. The reason is the significantly
larger mistag probability at a hadron collider which leads to a reduction of the
statistical power of the events. Using all available measurements of sin (2β) an
average value of

sin (2β) = 0.691 ± 0.017
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is obtained [87] which corresponds to a value of the phase β of,

β = (21.9 ± 0.7)◦ or β = (68.1 ± 0.7)◦ ,

where the ambiguity is not resolved.

9.6.5.2 B0
s Meson

Analogue to the measurement of the CKM phase β in the B0 system, the mea-
surement of a corresponding CP violating phase βs , defined in Sect. 9.7, can be
performed in the B0

s system, assuming that the B0
s oscillation can be resolved. The

golden channel used is the decay B0
s → J/ψφ. Due to its higher mass the B0

s system
cannot be produced at the ϒ(4S) resonance and βs was therefore not accessible at
the B-factories.

The two Tevatron experiments CDF and D0 have performed explorative studies
of the decay B0

s → J/ψφ [102, 103] and also first measurements [104, 105] but
the results have been limited by the number of recorded signal events. The first
significant measurement of the phase6 φs = −2βs has been presented by the LHCb
experiment in 2011 [106].

In the decay B0
s → J/ψφ the final-state is composed of two vector particles

and angular momentum conservation allows for the relative angular momentum
values L = 0, 1 or 2. The final-state J/ψφ is thus not a pure CP-state but a
linear combination of CP-even and CP-odd eigenstates depending on the relative
angular momentumL of the two vector mesons: ηCP = ηCP (J/ψ)ηCP (φ)(−1)L =
(−1)L. The measurement of the time dependent CP asymmetry requires a separate
treatment of the CP-odd and CP-even states which can be achieved statistically by
analyzing the angular distribution of the final-state particles J/ψ → μ+μ− and
φ → K+K−. To measure the angular distribution of the final state particles it is
common to use the helicity basis. The three decay angles necessary to describe the
decay are denoted by (θK, θμ, ϕh) and are defined in Fig. 9.31. The polar angle θK
(θμ) is the angle between the K+ (μ+) momentum and the direction opposite to the
B0

s momentum in the K+K− (μ+μ−) centre-of-mass system. The azimuthal angle
between the K+K− and μ+μ− planes is ϕh.

The analysis of the B0
s → J/ψφ events is further complicated by a small

fraction of non-resonant B0
s → J/ψK+K− decays (CP-odd) which interfere with

the φ meson decaying to two charged kaons. These non-resonant events need to be
considered. Effectively one therefore studies B0

s decays to J/ψK+K−.

6In the Standard Model the phase φs determined by the measurement of the time-dependent CP
asymmetry in the decay B0

s → J/ψφ equals in leading order to −2βs with βs being defined in
Sect. 9.7. However, in case of new physics effects the two phases could differ. In the context of this
textbook these differences are ignored.
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Fig. 9.31 Definition of helicity angles as discussed in the text. Figure taken from [107]

In the absence of CP violation in mixing the CP-odd and CP-even decays
of the B0

s meson correspond to the heavy and light mass eigenstates. Thus
separating statistically the polarization amplitudes in an angular analysis allows
the measurement of the decay width H and L and thus the measurement of the
different lifetimes of the two B0

s mass states.
With a data-sample of 96,000 B0

s → J/ψK+K− events LHCb has performed
a simultaneous analysis of the measured decay time and the three decay angles to
determine the time-dependent CP asymmetry and the related CP phase φs [108].
Figure 9.32 shows the decay time distribution as well as the distributions of the three
decay angles. One clearly sees how the CP-odd and CP-even components can be
statistically separated using the decay angles. The decay time distribution shows the
different decay behavior of the two CP components with the CP-even component
decaying visibly faster. For the average decay width s and for the decay width
difference �s one obtains [108],

s = (L + H)/2 = 0.6603 ± 0.0027 ± 0.0015 ps−1 ,

�s = L − H = 0.0805 ± 0.0091 ± 0.0032 ps−1 .

The simultaneous determination of the time-dependent CP asymmetry results in
the following value for the CP violating phase φs ,

φs = −0.058 ± 0.049 ± 0.006 .

The time-dependent CP violation in the B0
s system is thus very small and within

the sensitivity of the measurement no CP violation has been seen. The phase φs can
also be measured in the mode B0

s → J/ψπ+π−. The J/ψπ+π− final-state has been
shown to be an almost pure (97.7%) CP-odd final state [109] and the CP violating
phase can thus be extracted without the complication of an angular analysis. A much
smaller signal sample with 27,000 events results into a comparable precision for φs ,
φs = −0.070 ± 0.068 ± 0.008 [110]. The analysis of these events however, requires
the knowledge �s as external input. Performing a combined analysis of the two
decay channels [108] LHCb reports a value of φs of

φs = −0.010 ± 0.039 .
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Fig. 9.32 Decay-time and helicity-angle distributions for B0
s → J/ψK+K− decays (data points).

The solid blue line shows the total signal contribution, which is composed of CP-even (long-dashed
red), CP-odd (short-dashed green) and S-wave (dotted-dashed purple) contributions. Figure taken
from [108]

The ATLAS and CMS collaborations have also performed measurements of the
phase φs and of the width difference �s [111, 112]. The overall experimental
situation is summarized in Fig. 9.33 where also the theoretical expectation is shown.
It should be noted that there is no ab-initio theory prediction for the phase φs . The
prediction results from the measurement of sin (2β) and exploits the unitarity of the
CKM matrix, see also Sect. 9.7. The average value for φs , φs = −0.021 ± 0.031
[130], agrees very well with the expectation φs = −0.0370 ± 0.0006 [113].

9.6.6 Direct CP Violation

B meson decays offer a broad decay phenomenology and are an ideal system to
look also for large direct CP violation. Topologically very different tree-level and
penguin decay amplitudes can result into the same final state and their interference
can cause significant CP asymmetries. Considering the B meson decay B → f
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Fig. 9.33 68% confidence level contours in the φs -�s plane, showing the measurements from
CDF, D0, ATLAS, CMS and LHCb together with their combination (white ellipse). The thin black
line represents the Standard Model predictions. Figure taken from [130]

and its CP conjugates B̄ → f̄ , direct CP violation or CP violation in the decay
is measured as time-integrated asymmetry of the observed signal yields:

ACP = (B → f ) − (B̄ → f̄ )

(B → f ) + (B̄ → f̄ )

For a given B decay B → f , direct CP violation can only arise if at least two
interfering decay amplitudes A1 and A2 exist and if these decay amplitudes carry
different weak and strong phases, ϕi and δi . The total decay amplitude Af is given
as sum

Af = |A1| eϕ1+δ1 + |A2| eϕ2+δ2 .

For the amplitudes of the charge conjugated process Āf̄ the weak phases change
sign while the strong phases stay unchanged,

Āf̄ = |A1| e−ϕ1+δ1 + |A2| e−ϕ2+δ2 .

The expected signal yields depend on the interference of the amplitudes and the
observable CP asymmetry is determined by the difference of the interference terms.
The CP asymmetry is a function of the weak and strong phases as well as a function
of the ratio R of the decay amplitudes,

ACP = 2 sin(φ1 − φ2) sin(δ1 − δ2)

R + R−1 + cos(φ1 − φ2) cos(δ1 − δ2)
with R ≡

∣∣∣∣A1

A2

∣∣∣∣ . (9.211)
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To observe large asymmetries the interfering amplitudes should have different
weak and strong phases. While the weak phases, and in particular the weak phase
difference, are determined by the CKM parameters, the theoretical determination
of the strong phases is difficult. The B meson are subject to both, short and long-
distance QCD effects which cannot be treated perturbatively.

In the following, two classes of B decays exhibiting large direct CP violation
will be discussed: B decays to charmless final-states, i.e. to final-states without D
mesons, and decays to charmed final-states of the type B → DK .

9.6.6.1 Direct CP Violation in Charmless B Decays

As sketched in Fig. 9.34 charmless two-body B decays such as B0 → K+π− can
proceed via two topologically very different classes of decay amplitudes, tree and
penguin processes, which carry different weak and in generally also different strong
phases. Large direct CP violation is therefore expected for these decays.

First experimental evidence for direct CP violation in B meson decays was
reported by the Belle collaboration in 2004 for the decay B0 → π+π− [114].
As the neutral B meson decays here to a CP eigenstate the formalism of (9.194)
and (9.207) has to be applied, i.e. the observable time dependent asymmetry can be
parametrized by the coefficient Adir

ππ describing the effect of direct CP asymmetry
and the coefficient Amix

ππ to describe the effect of indirect CP violation through
interference of diagrams with and without mixing. Belle observed a deviation of the
coefficient Adir

ππ from zero, i.e. direct CP violation, at the level of 3.2σ . The result
suggested large interference effects between the relevant tree and penguin diagrams
and was confirmed by subsequent measurements. Today, the most recent value of
this coefficient is Adir

ππ = 0.32 ± 0.04 [87] and confirms the early hints for direct
CP violation in B0 → π+π−.

The two B-factory experiments, BABAR and Belle, also studied B0 → K+π−
decays where large penguin contributions were expected. Both collaborations
performed time-independent analyses and reported the observation of large direct
CP violations for B0 → K+π− decays ( Babar: ACP = −0.133 ± 0.030 ± 0.009
[115]; Belle: ACP = −0.101 ± 0.025 ± 0.005 [116]). Both measurements represent
the first doubtless observation of large direct CP violation in the B0 system. It is

Fig. 9.34 Tree-level (left) and penguin (right) contribution to the charmless two-body decay
B0 → K+π−
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Fig. 9.35 Invariant mass spectra of (a, b) B0 → K+π− the recorded decays and zoomed in (c, d)
to show the B0

s → K−π+ decays. Panels (a) and (c) represent the K+π− invariant mass, whereas
panels (b) and (d) represent the K−π+ invariant mass. The results of a mass fit describing the
signals are overlaid. The main components contributing to the fit model are also shown. Figure
taken from [118]

useful to remember that direct CP violation in the neutral kaon system is many
orders smaller (O(10−6)). It is the effect of the large weak phases entering the B0

decay amplitudes which produces the much larger direct CP violation.
Already with the very first data-set recorded in 2011 and corresponding to only

0.35 fb−1 of data, the LHCb experiment has repeated the measurement of ACP for
the channel B0 → K+π− [117]. LHCb’s excellent resolution of the reconstructed
K±π∓ invariant mass allows to distinguish between a decaying B0 and B0

s and thus
also probed the decay B0

s → K−π+. The measurement of ACP (B
0
s → K−π+) =

0.27 ± 0.08 ± 0.02 provided the first evidence (3.3σ ) for direct CP violation in
the B0

s system. The measurement was repeated with more data and the observed
direct CP violation ACP (B

0
s → K−π+) = 0.27 ± 0.04 ± 0.01 [118] confirmed

the earlier result. Figure 9.35 shows the invariant mass distribution for the recorded
B0
(s) → Kπ decays. Clear differences in the number of recorded decays for the B

and the anti-B decays are observed.



604 K. Kleinknecht and U. Uwer

Fig. 9.36 Tree-level Feynman diagrams of the decays B− → D0(D
0
)K−. The left diagram

implies a b → uc̄s transition, and is strongly suppressed by the small value of |Vub|. The right
diagram proceeds via a transition b → cūs

9.6.6.2 Direct CP Violation in B → DK Decays and Measurement of
CKM Phase γ

While direct CP violation in B decays is large and experimentally easy accessible,
the theoretical interpretation is non-trivial. The calculation of the non-perturbative
hadronic effects and the resulting strong phases is difficult. A way to use direct
CP asymmetries to constrain the CKM parameters is therefore a simultaneous
determination of the weak (CKM) phases and the hadronic nuisance parameters
including the strong phases. This approach is followed to determine the CKM phase
γ as defined in Sect. 9.7. Ignoring higher order terms, γ is in good approximation
equal to the phase of the CKM matrix element Vub (Vub = |Vub| e−iγ ).

The phase can be probed using B− → D0(D
0
)K− decays with either a b → uc̄s

(D
0
K−) or b → cūs (D0K−) tree-level quark transition as depicted in Fig. 9.36.

The two decays can be described by three parameters: rB (≈ O(0.1)), the absolute
value of the ratio of both amplitudes; δB the strong phase difference; and the
CKM phase γ . In order to observe the CP violating interference between the

two amplitudes the D0 and the D
0

mesons emerging in case of the two different
amplitudes should decay into a common final state fD , i.e. D, D̄ → fD . The size
of the CP violating interference which provides the sensitivity to γ is proportional
to rB .

The possibility of observing direct CP violation in B− → DK− decays was
first discussed in the 1980s [119, 120] using decays of the D(D̄) to neutral kaons
and pions. Since then, several methods have been proposed which can be grouped
according to the choice of the final state.

• The Gronau-London-Wyler (GLW) method [121, 122] considers the decays of
D mesons to CP eigenstates, such as the CP-even decays D0 → K+K− and
D0 → π+π−.

• The Atwood-Dunietz-Soni (ADS) approach [123, 124] extends this to include
final states that are not CP eigenstates, for example D0 → K+π− together
with its doubly Cabibbo-suppressed counterpart D0 → K−π+. The interference
between Cabibbo-allowed and doubly Cabibbo-suppressed decay modes in both
the B and D decays gives rise to large charge asymmetries. However, the different
D decays require additional parameters rD and δD to describe the ratio of
suppressed and favored D decay amplitudes as well as their phase difference.
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• The Grossman-Ligeti-Soffer (GLS) method [125] is similar to the ADS method
but uses singly Cabibbo-suppressed decays such as D → KSK+π− decays.

• The Giri-Grossman-Soffer-Zupan (GGSZ) method [126] uses self-conjugate
multibody D meson decay modes like KSπ

+π− or KSK+K− and requires an
analysis of the Dalitz plot to account for the varying D decay parameters. A
model-dependent analysis assumes specific D decay amplitudes while a model-
independent approach uses external input for the strong-phase difference δD and
the D amplitude ratio rD in bins of the Dalitz space.

Simultaneous fits to several observables, CP asymmetries or ratios of suppressed
to favored modes, allow the determination of the decay parameters including the
CKM phase γ . The main issue with all methods is the small overall branching
fraction of the observable decays which range from 5 × 10−5 to 5 × 10−9 [127].
The precise determination of the CKM phase γ therefore requires a very large data-
sample. The B factories have pioneered different methods to determine γ , however
the achieved overall statistical precision on γ was limited. Combining the different
methods and quoting a single result for γ , BABAR and Belle report the following
values [127]:

γ = (69 ± 17)◦ (BABAR) ,

γ = (68 ± 14)◦ (Belle) .

The breakthrough towards a precision determination of the phase γ came
when the LHCb experiment was able to measure even very rare doubly Cabibbo-
suppressed decays such as B− → [

π−K+]
D
K− and its charge-conjugated

counter-parts with sufficiently high statistics to observe CP asymmetries. Fig-
ure 9.37 shows as an example the decay B− → [

π−K+]
D
K− as well as the

decay B− → [
π−K+]

D
π− which also provides sensitivity to γ together with the

corresponding charge conjugated decays [128]. The observed yields clearly signal
direct CP violation for both channels. LHCb has analysed B+ → DK+ decays
with a multitude of different decay modes of the neutral D, B+ → D∗K+ and
B+ → DK∗+ decays and B0 → DK∗ decays. In addition time-dependent analyses
of B0

s → D∓
s K

± and B0 → D∓π± are performed and measure combinations of
the CKM phases γ and βs or β, respectively. The combination of the different LHCb
measurements [129] finally result into a value of

γ = (74.0+5.0
−5.8)

◦ (LHCb) , (9.212)

in perfect agreement with the early measurements by BABAR and Belle. For the
average of all γ measurements one finds [87],

γ = (73.5+4.2
−5.1)

◦ . (9.213)



606 K. Kleinknecht and U. Uwer

100

50

400

200

5400530052005100 5500 5400530052005100 5500

m (Dh ) [MeV/ c 2]

LHCb

B – [ –K+]DK
–

LHCb

B – [ –K+]D
–

LHCb

B + [ +K–]DK
+

B + [ +K–]D
+

LHCb

E
ve

nt
s 

/ (
10

 M
eV

/ c
2 
)

Fig. 9.37 Invariant mass distributions of selected B± → [
π±K∓]

D
h± decays, separated by

charge. The dashed pink line left of the signal peak shows partially reconstructed B0
s →[

K+π−]
D
K−π+ decays, where the bachelor pion is missed. For the two channels, one clearly

observes a yield difference, i.e. CP asymmetry, between the two charge-conjugated channels.
Figure taken from [128]

9.7 Weak Quark Mixing and the CKM Matrix

The observation of direct CP violation in the neutral K meson and the confirmation
of large CP violating effects in the neutral B meson system provided the experi-
mental evidence of weak quark-mixing as the primary source of CP violation in the
hadron sector. A multitude of precision measurements confirmed the prediction of
the quark-mixing paradigm of the Standard Model [57] and led to the Nobel prize
for Kobayshi and Maskawa. Despite this success of experimental and theoretical
quark flavor physics we know today that other sources of CP violation must exists
to explain the baryon asymmetry of our universe.

9.7.1 Quark-Mixing Matrix

Historically quark-mixing was introduced by Cabibbo [56] to explain the different
coupling strength of hadronic currents in weak decays of neutrons and pions
compared to strangeness changing processes, such as the decay of K mesons
and Λ hyperons. Cabibbo postulated—expressed in today’s notation—that the
weak eigenstates of the then known quarks with charge −1/3 were not the flavor
eigenstates d and s but a linear combination, rotated by an angle θ , the Cabibbo
angle:

dc = d cos θ + s sin θ . (9.214)
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The GIM mechanism [131], introduced to cancel the KL → μ+μ− amplitude,
required the orthogonal state

sc = −d sin θ + s cos θ , (9.215)

and an additional charge +2/3 quark, the charm quark, complementing the two
quark doublets.

We know today that three generations of up-type quarks ui (i = 1, 2, 3: u-, c-,
t-quark) with electrical charge +2/3 and three generations of down-type quarks
di (i = 1, 2, 3: d-, s-, b-quark) with electrical charge −1/3 exist. In the Standard
Model, the masses and mixing of quarks arise from the Yukawa interaction with
the Higgs condensate which couples the left-handed quark fields uL and dL to the
right-handed quark fields uR and dR (for better readability the generation index is
suppressed). After spontaneous breaking of the electroweak symmetry the Yukawa
terms give rise to masses and mixing:

LYukawa = − v√
2

(
d̄LYddR + ūLYuuR

) + h.c.

The Yukawa matrices Yd and Yu are complex 3 × 3 matrices in generation or
flavor space and do not need to be diagonal. Indeed, in the Standard Model they are
not, and as a consequence the flavor states are not equal to the mass eigenstates of the
quarks. The mass eigenstates ũL,R and d̃L,R are obtained by unitary transformations
of the above quark flavor states: ũA = VA,uuA and d̃A = VA,ddA (with chirality
index A = L,R for left and right-handed quark fields, and suppressed generation
indices). The unitary matrices VA,u and VA,d diagonalize the Yukawa matrices and
one obtains the diagonal quark mass matrices for the up- and down-type quarks,

Mu = diag(mu,mc,mt ) = v√
2

VL,uYuV†
R,u ,

Md = diag(md,ms,mb) = v√
2

VL,dYdV†
R,d.

The quark masses will appear as usual Dirac mass terms in the above Yukawa part
of the Lagrangian:

LYukawa = − ¯̃
dLMdd̃R − ¯̃uLMdũR + h.c.

If the up-type and and down-type Yuakawa matrices Yu and Yd cannot be
diagonalized simultaneously by the same transformations there is a net effect of
the change of the quark basis. The charged current terms of the Standard Model
Lagrangian combining left-handed up and down-type quarks therefore get a flavor
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structure imprinted which is described by the Cabibbo Kobayshi Maskawa (CKM)
quark-mixing matrix

VCKM ≡ VL,uV†
L,d .

The charge current terms expressed in the mass eigenstates have the form

LCC = − g√
2

( ¯̃uLγ μW+
μ VCKMd̃L + ¯̃

dLγ
μW−

μ VCKM
†ũL

)
.

Here, the matrix element (VCKM)ij connects a left-handed up-type quark of the
ith generation to a left-handed down-type quark of the j th generation. The matrix
elements are therefore expressed using flavor indices:

VCKM =

⎛
⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎠

For a non-diagonal CKM matrix the charged quark currents are thus inter-generation
flavor changing currents. In analogy to the flavor eigenstates introduced by Cabibbo
it is usual to absorb the CKM matrix by introducing for the down-type quarks the
weak quark eigenstates d̃ ′ = VCKMd̃L.

Since it is the product of unitary matrices the CKM matrix itself is unitary,
i.e. VCKMVCKM

† = 1, and its elements are in general complex. The number of
parameters of a general unitary 3 × 3 matrix is nine, three rotation angles and six
phases. By rephasing the quark mass eigenstates q̃ → eiαq q̃ one can remove five
phases, corresponding to the five independent phase differences between the quarks,
and leaving one CP violating phase δ. The usual parametrization of the CKM matrix
uses the three rotation angles θ12, θ23, θ13 and the phase δ:

VCKM =

⎛
⎜⎜⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞
⎟⎟⎠
⎛
⎜⎜⎝

c13 0 s13e
−iδ

0 1 0

−s12e
iδ 0 c13

⎞
⎟⎟⎠
⎛
⎜⎜⎝

c12 s12 0

−s12 c13 0

0 0 1

⎞
⎟⎟⎠ (9.216)

=

⎛
⎜⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎟⎠ ,

where sij = sin θij and cij = cos θij . in the Standard Model, the phase δ is
responsible for all CP violating phenomena in quark-flavor changing processes.



9 Symmetry Violations and Quark Flavour Physics 609

The rotation angles are defined and labeled in a way which relates to the mixing
of two specific generations. In the limit θ23 = θ13 = 0 the third generation
decouples, and the situation reduces to the usual Cabibbo mixing of the first two
generations, with θ12 identified as the Cabibbo angle. The angles θ12, θ23, θ13 can
all be chosen to lie in the first quadrant, i.e. s

ij
, c

ij
> 0, by appropriate redefinition

of the quark field phases.
From measurements it is known that 1 � s12 � s23 � s13 . It is therefore

common to use a parametrization of the CKM matrix that emphasizes this hierarchy.
In the Wolfenstein parametrization one defines

λ = s12 = |Vus |√
|Vud |2 + |Vus |2

, Aλ2 = s23 = λ

∣∣∣∣VcbVus

∣∣∣∣ , Aλ3 (ρ + iη) = s13e
iδ = V ∗

ub ,

where λ is the sine of the Cabibbo angle (sin θ ≈ 0.22) and the real numbers A, ρ
and η are of order unity. With these parameters the CKM matrix can be expressed
in powers of λ and takes the convenient form

V =

⎛
⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎟⎠ + O(λ4) . (9.217)

As the definition of (ρ + iη) depends on the phase convention, one often introduces
the parameters (ρ̄ + iη̄), defined by

Aλ3 (ρ + iη) = Aλ3(ρ̄ + iη̄)
√

1 − A2λ4
√

1 − λ2
[
1 − A2λ4(ρ̄ + iη̄)

] . (9.218)

This definition ensures that (ρ̄ + iη̄) = −(VudV
∗
ub)(VcdV

∗
cb) is phase convention

independent and the CKM matrix written in the parameters λ, A, ρ̄ and η̄ is unitary
to all orders in λ.7

The elements of the CKM matrix are fundamental parameters of the Standard
Model and need to be experimentally determined. The unitarity condition of the
CKM matrix imposes a set of relations between the matrix elements:

∑
i

Vij V
∗
ik = δjk with jk = {dd, ds, db, ss, sb, bb} (9.219)

∑
j

Vij V
∗
kj = δik with ik = {uu, uc, ut, cc, ct, tt} (9.220)

7To O(λ2) one finds ρ̄ = ρ(1 − λ2/2) .
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Fig. 9.38 Sketch of the
Unitarity Triangle (UT).
Figure taken from [133]

The six vanishing combinations (j 	= k, i 	= k) describe triangles in the complex
plane. The area of all triangles is given by half of the Jarlskog invariant J [132],

&
[
VijVklV

∗
il V

∗
kj

]
= J

3∑
m,n=1

εikmεjln , (9.221)

where one representation of Eq. (9.221) reads for instance J = & [
VusVcbV

∗
ubV

∗
cs

]
.

Expressed in the parameters of the standard CKM representation one finds J =
−c12c13c23s12s13s23 sin δ. A nonvanishing CKM phase and hence CP violation
requires J 	= 0.

While four of the six unitarity triangles are degenerated and rather slim, only two
triangles have approximately equal sides, of which one is usually referred as the
Unitarity Triangle (UT),

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (9.222)

Commonly one normalizes the triangle basis to unity by dividing each side by
VcdV

∗
cb to obtain a triangle with vertices exactly at (0, 0), (0, 1) and the apex at

(ρ̄, η̄). The UT is sketched in Fig. 9.38. As can be seen from Fig. 9.38 the angles of
the UT are

α = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
(9.223)

β = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
(9.224)

γ = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
(9.225)
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Often a different naming convention, also shown in Fig. 9.38, is used to label the
three angles. The UT angles are constraint by the CP observables discussed in
Sect. 9.6:

β = (21.9 ± 0.7)◦ (9.226)

γ = (73.5+4.2
−5.1)

◦ (9.227)

The measurement of the angle α has not been discussed in Sect. 9.6. It is measured
using the observation of time-dependent CP violation in the decays B0 → ππ ,
ρρ, and πρ by BABAR and Belle. The average of this measurements result into
[133, 134],

α = (84.5+5.9
−5.2)

◦ . (9.228)

The sum of three angles, α + β + γ = (180 ± 7)◦, is consistent with the
expectation and represents a first test of the unitarity of the CKM matrix. An
additional constraint of the CKM phases and thus of the UT angles comes from the
measurement of time-dependent CP violation in B0

s decays and the measurement of
the phase βs (with φs = −2βs , see Sect. 9.6),

βs = arg

(
− VtsV

∗
tb

VcsV
∗
cb

)
= (0.60 ± 0.89)◦ . (9.229)

In addition to the measurements of CP violation in the B meson systems also the
measurements of CP violation in the K0K̄0 mixing, |εK | = (2.233±0.015)×10−3

(see Sect. 9.5) provides information about the CKM matrix. The measurement of
|εK | can be translated into an approximate hyperbolic constraint on the apex (ρ̄, η̄)
of the UT [135].

The sides of the unitarity triangle are accessible by measuring decay rates and
mixing frequencies. In the following the experimental determination of the CKM
elements as well as a test of the unitarity of the CKM matrix is discussed.

9.7.2 Determination of the CKM Matrix Elements

1. |Vud |. Precise determinations of |Vud | are available from nuclear beta decays,
from the decay of the free neutron and from semileptonic pion decays (π+ →
π0e+ν). The most precise value results from an analysis of superallowed 0+ →
0+ nuclear beta decays which are pure vector transitions. The measurements of
the transition energies, the partial branching fractions, and the half-lives of the
parent nuclei together with radiative and isospin-symmetry-breaking corrections
allow the determination of the corrected F t-value, from which, by using the
muon life-time, |Vud | can be determined. The average of the fourteen most
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precise determinations yield [136],

|Vud | = 0.97417 ± 0.00021 ,

where the error is dominated by the theoretical uncertainty stemming from the
nuclear structure and radiation correction.
The theoretical uncertainties in extracting a value of |Vud | from neutron decays
are significantly smaller than those for the superallowed decays, however the
value depends on the ratio between axial-vector and vector couplings (gA ≡
GA/GV) and on the neutron lifetime. Using the most recent measurements [133]
the following value for |Vud | is obtained,

|Vud | = 0.9763 ± 0.0016 ,

with the error dominated by the gA uncertainty.
An alternative approach is the measurement of the very small (O(10−8))
branching ratio of the pion beta-decay π+ → π0e+ν. The value normalized
by a very precise theoretical prediction for π+ → e+ν and yields [137]

|Vud | = 0.9749 ± 0.0026 .

The error here stems mainly from the measurement of the rare process.
2. |Vus |. Earlier measurements of |Vus | from kaon decays have used KL → πeν

to extract the product of |Vus | and the form factor |Vus |f+(0) at q2 = 0. The
most recent data provide enough experimental constraints to also use decays to
muons as well as decays of KS and K±. Averaging results from KL → πeν,
KL → πμν, K± → π0e±ν, K± → π0μ±ν and KS → πeν yields the value
|Vus |f+(0) = 0.2165 ± 0.0004 [133]. Lattice QCD calculations of f+(0) have
been carried out for different numbers of quark flavors. The form-factor average,
f+(0) = 0.9704±0.0032, of the (2+1)-flavor lattice calculations [138] is in good
agreement with a classical calculation [139]. With this value one obtains,

|Vus | = 0.2231 ± 0.0008 .

The lattice calculation of the ratio of kaon and pion decay constant, fK/fπ =
1.1933 ± 0.0029 [138], allows the determination of the ratio |Vus/Vud | from
K → μν and π → μν decays. Using the precise measurement of the K → μν

branching fraction by the KLOE collaboration [140] results in |Vus | = 0.2253 ±
0.0007.
An alternative determination of |Vus | uses hadronic τ decays to strange hadrons.
The average of the measured inclusive and exclusive branching fractions yields
|Vus | = 0.2216 ± 0.0015 [134].

3. |Vcd |. First determinations of |Vcd | came from neutrino scattering experiments.
The difference of the ratio of double-muon to single-muon production for
neutrino and antineutrino scattering is depending on the charm production cross
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section and thus on |Vcd |2, as well as on the semileptonic (muonic) branching
ratio of the produced charm mesons, B̄μ. The method was first used by the
CDHS group [141] but has also been applied by CCFR [142] and by CHARM
II [143]. Averaging the results is complicated, also because B̄μ is an effective
quantity which depends on the specific neutrino beam characteristics. One finds
B̄μ|Vcd |2 = (0.463 ± 0.034) × 10−2 [144] and using the average value of
B̄μ = 0.087 ± 0.005 one obtains [133]

|Vcd | = 0.230 ± 0.011 .

Similar to |Vus |, |Vcd | can also be extracted from semileptonic (D → π
ν) and
leptonic (D+ → μ+ν) charm decays. Also here, QCD lattice calculations are
used to determine the relevant form factors f Dπ+ (q2 = 0) and fD [138]. Using
the average of the branching fraction measurements from BABAR, Belle, BES
III and CLEO-c for D → π
ν [134] results into [133]

|Vcd | = 0.2140 ± 0.0029 ± 0.0093,

where the first uncertainty is experimental and the second stems from the
theoretical uncertainty of the form factor calculation. The measurements of the
leptonic branching ratio D+ → μ+ν by BES III and a CLEO-c results into [134]

|Vcd | = 0.2164 ± 0.0050 ± 0.0015 ,

where also here the first error is experimental while the second describes the
uncertainty of the form factor calculation. For the average of the three different
determinations of |Vcd | the Particle Data Group [133] quotes a value of

|Vcd | = 0.218 ± 0.004 .

4. |Vcs |. Measurements of semileptonic decays of D mesons to kaons D → K
ν

as well as the measurement of leptonic decays of Ds mesons, D+
s → μ+ν,

together with the corresponding form factors from lattice calculations allow the
determination of |Vcs |. Branching fraction measurements have been performed
by Belle, BABAR, CLEO-c and BES III, and are averaged in [134]. From the
semileptonic measurements one obtains |Vcs | = 0.967 ± 0.025 where the error
is dominated by the theoretical uncertainty of the form factor calculations. The
average of the leptonic measurements results into |Vcs | = 1.006 ± 0.019 where
the dominating uncertainty is experimental. For the average of both values the
Particle Data Group [133] reports a values of

|Vcs | = 0.997 ± 0.017.
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5. |Vcb|. This matrix element is determined from semileptonic B decays to D

or D∗ mesons. Two experimentally and theoretically different approaches are
used. The inclusive approach measures the inclusive semileptonic decay rate to
any charmed final state together with the moments of the leptonic energy and
the hadronic invariant mass spectra. An operator product expansion within the
Heavy Quark Effective Theory (HQET) allows the calculation of decay rates
and the energy and mass spectra in dependence of expansion parameters αs and
the inverse of the heavy quark mass. The simultaneous measurement of several
distributions over-constrains the physical parameters and allows a determination
of |Vcb|. An analysis and an averaging of existing measurements is performed in
[145] and leads to |Vcb| = (42.2 ± 0.8) × 103 with uncertainties arising mainly
from higher-order perturbative and non-perturbative corrections.
In the exclusive approach semileptonic B decays to exclusive channels containing
D and D∗ mesons are studied. In the infinite quark mass limit with mb ,mc �
ΛQCD , heavy quark symmetry predicts that all form-factors are given by a
single function which depends on the product of the four-velocities v of the
B and v′ of the D(∗) (mesons) and are normalized at the point of maximum
momentum transfer to the lepton system (v · v′ = 1). The matrix element
|Vcb| is obtained from an extrapolation to this point. The precise determination
of normalization and the shape of the form factor function requires additional
corrections calculated using HQET. Reference [145] quotes |Vcb| = (41.9 ±
2.0) × 103 as the average exclusive value of |Vcb|.
The inclusive and the exclusive determination of |Vcb| are in agreement and [145]
performs the average of both values:

|Vcb| = (42.2 ± 0.8)× 103.

6. |Vub|. Similar to |Vcb| also |Vub| is determined analysing inclusive and exclusive
semileptonic B decays with a b → u
ν̄ transition. The determination of |Vub|
from inclusive decays however suffers experimental and theoretical difficulties.
The total inclusive decay rate is hard to measure due to the large background
from CKM-favored b → c
ν̄ transitions. Therefore, strong kinematic cuts
are introduced to suppress these background contributions. The restriction to
tight kinematic regions however complicates the theoretical description. The
calculation of partial decay rates in the various kinematic regions requires
the introduction of non-perturbative distribution functions—the so called shape
functions—to describe the effect of hadronic physics. At leading order there is
only a single shape function which can be determined using inclusive B̄ → Xsγ

decays. Subleading effects are considered using different theoretical models
based on Heavy Quark Expansion (HQE). A recent summary of the |Vub| values
extracted within different models from measurements by BABAR, BELLE and
CLEO can be found in [145]. All calculations give similar values for |Vub| and
similar error estimates. As average [145] quotes

|Vub| = (4.49 ± 0.15+0.16
−0.17) × 10−3 .



9 Symmetry Violations and Quark Flavour Physics 615

To consider different theoretical treatments the authors assign an additional
quadratic error of ±0.17 × 10−3.
The determination of |Vub| from exclusive decays, such as B → π
ν decays,
suffers experimentally from very small signal yields and requires the theoretical
determination of the corresponding form factors. Lattice form factor calculations
are available for the high q2 regions. So called light-cone QCD sum rules (LCSR)
are applicable for the low q2 region. A simultaneous fit to experimental B →
π
ν data and lattice results as function of q2 together with additional constraints
from LCSR results into

|Vub| = (3.67 ± 0.09 ± 0.12)× 10−3 [134].

The inclusive and exclusive determinations of |Vub| are largely independent and
the large discrepancy between both methods remains a puzzle. Inflating the errors
to account for this discrepancy [145] quotes an average of

|Vub| = (3.94 ± 0.36)× 10−3

The LHCb experiment has used the ratio of the two baryonic decays Λb →
pμ−ν̄ and Λb → Λcμ

−ν̄ to extract the ratio |Vub/Vcb| = 0.083 ± 0.006 [146].
The q2-dependent form factor ratio had to be taken into account to consider the
different kinematical ranges of the two decays. Using the above average for |Vcb|
one obtains

|Vub| = (3.50 ± 0.26)× 10−3 .

7. |Vtb|. An experimental determination of |Vtb| without assuming unitarity is
possible using the production of single-top quarks. Single-top quark production
cross-sections have been measured by the Tevatron experiments CDF and D0,
and at LHC by ATLAS and CMS. Using these measurements [133] quotes the
value

|Vtb| = 1.019 ± 0.025 .

8. |Vtd | and |Vts|. The two CKM elements |Vtd | and |Vts| are expected to be very
tiny and tree-level decays of the top-quark to a d-quark or s-quark will be
very difficult to measure. However, both elements are accessible through the
measurements of the mixing frequency of B0 and B0

s mesons (see Sect. 9.6).

Using the most recent lattice QCD results for the hadronic factors, fBd

√
B̂Bd =

(219±14)MeV and fBs

√
B̂Bs = (270±16)MeV [138], together with the world

averages for the mixing frequencies Δmd and Δms results into [133]

|Vtd | = (8.1 ± 0.5)× 10−3 and

|Vts | = (39.4 ± 2.3) × 10−3 ,
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where the uncertainties are dominated by the lattice uncertainties of the hadronic
factors. Several uncertainties are reduced when calculating the ratio

ξ =
(
fBs

√
B̂Bs

)
/

(
fBd

√
B̂Bd

)
= 1.239 ± 0.046 .

The ratio |Vtd |/|Vts| is therefore stronger constraint [133],

|Vtd |/|Vts| = 0.210 ± 0.001 ± 0.008 .

Using the independent measurements of the CKM elements the unitarity of the
CKM matrix can be checked. One obtains for the first two rows [133],

|Vud |2 + |Vus |2 + |Vub|2 = 0.9994 ± 0.0005 ,

|Vcd |2 + |Vcs |2 + |Vcb|2 = 1.043 ± 0.034 ,

which agrees well with the unitarity assumption. In addition, the direct measurement
of |Vtb| leaves little room for mixing of the top into unknown other states.

9.7.3 Global Analysis and Test of the Unitarity of the CKM
Matrix

The available information on the magnitude and the phases of the CKM elements
can be analysed by a global fit to all CKM parameters. The most precise information
is obtained imposing Standard Model constraints such as the unitarity of the CKM
matrix and the existence of exactly three quark generations. Input parameters of
the global analysis are, beside the experimental measurements, also theoretically
determined hadronic parameters with sometimes large errors.

Different approaches exist to combine the experimental data and to treat the
experimental and theoretical errors. The CKM-Fitter group [135, 147] is using
a frequentist’s framework based on a χ2 analysis. In these fits the frequentist’s
treatment is also applied to the theoretical errors. The UTfit group [148] uses a
baysian approach for all errors. The two different statistical approaches lead to very
similar results and here only the results of [135] are presented.

Figure 9.39 shows the experimental constraints in the (ρ̄, η̄) plane. Indicated
is the unitarity triangle with its angles α, β and γ . The different measurements
clearly limit the apex of the triangle to a small (dashed) region. For the Wolfenstein
parameters introduced in Eq. (9.217) the global fit [133, 135] gives

λ = 0.22453 ± 0.00044 , A = 0.836 ± 0.015 , (9.230)

ρ̄ = 0.122+0.018
−0.017 , η̄ = 0.355+0.012

−0.011 . (9.231)
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Fig. 9.39 Experimental constraints of the unitarity triangle. Shaded areas correspond to 95% C.L.
Figure taken from [133]

Alternatively one can give the fit results of the magnitudes of all nine elements of
the CKM matrix:

VCKM =

⎛
⎜⎜⎝

0.97446 ± 0.00010 0.22452 ± 0.00044 0.00365 ± 0.00012

0.22438 ± 0.00044 0.97359+0.00010
−0.00010 0.04214 ± 0.00076

0.00896+0.00024
−0.00023 0.04133 ± 0.00074 0.999105 ± 0.000032

⎞
⎟⎟⎠

(9.232)

Figure 9.39 represents an impressive confirmation of the CKM paradigm which
describes the flavor transition and the CP violation in the quark sector. The global
fit currently does not point to deviations from the Standard Model picture. However,
the effect of New Physics might be small. Over-constraining measurements of CP
asymmetries, mixing and flavor changing decays will put further bounds on possible
New Physics contributions.
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9.8 Conclusion

Nearly 40 years after the discovery of CP violation, the nature of the phenomenon
has been clarified experimentally. In the K meson system, CP violation has been
discovered in the mixing (ε), in the decay (ε′/ε, direct CP violation), and in the
interference between mixing and decay (&mε); in the B meson system, CP violation
in the interference between mixing and decay (sin 2β) as well as CP violation in the
decay have been observed. While finishing this article, the LHCb collaboration has
also reported the first observation of CP violation in the decay of neutral D mesons
to K+K− and π+π− (O(1.5 × 10−3)) [205]. All observations are consistent8 with
the model of Kobayashi and Maskawa where the 3 × 3 mixing matrix of six quarks
has one non-trivial complex phase δ = (71.0 ± 0.3)◦. This leads to complex weak
coupling constants of quarks, and to T and CP violation.

In cosmology, CP violation together with a large departure from thermal
equilibrium via a first-order electroweak phase transition [206] and a baryon number
violation by instanton processes [207] could explain the observed baryon asymme-
try. The source would be the asymmetric interactions of quarks and antiquarks with
the Higgs field [208]. The size of the observed CP violation in the quark sector,
expressed by the Jarlskog determinant, however is insufficient to explain the matter
asymmetry by several orders of magnitude [209]. Moreover, the low mass of the
Higgs boson disfavours baryogenesis during the electroweak phase transition [210].
A way out of this dilemma is the hypothesis that CP violation in the neutrino sector
could cause a lepton asymmetry. (B+L)-violating processes before the electroweak
phase transition could then convert the lepton asymmetry into a baryon asymmetry.
Leptogenesis would proceed through the production of heavy Majorana neutrinos in
the early Universe [211]. While the experimental proof of leptogenesis is difficult,
the observation of CP violation in the neutrino sector and the exploration of the
nature of the neutrino (Dirac or Majorana fermion) could establish strong hints.

In quark flavor physics the focus has changed after the successful establishment
of the Kobayashi-Maskawa paradigm. Today, the precise measurement of flavor
changing processes and CP asymmetries are used as tools to test the Standard
Model predictions. Tiny deviations between observations and theory predictions
could hint to additional quantum corrections modifying the size and the phase of
flavor changing amplitudes. The origin of these additional corrections could be
new heavy particles at mass scales much higher than the energies accessible by
today’s collider experiments. Experimental results on neutral meson mixing already
constrain the ratio between mass scale and the coupling strength of new particles to
values above 102 to 104 TeV, where the strongest bounds come from the neutral K
meson system [212]. The next generation of precision quark-flavor experiments will

8For the D mesons the theoretical predictions still have large uncertainties. For K mesons recent
theoretical results on the value of the CP violating amplitude ' (

ε′/ε
)

both from dual QCD [213]
and from lattice QCD [214] deviate from the experimental value reported in Sect. 9.5, thus further
clarification is needed.



9 Symmetry Violations and Quark Flavour Physics 619

thus open a window to New Physics complementary to the direct searches at highest
energies.
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Chapter 10
The Future of Particle Physics: The LHC
and Beyond

Ken Peach

10.1 2017 Update

I have been asked to submit a revised version of this chapter, published almost a
decade ago. However, I think that it is better to leave the historical record as it
was—this was an article written in its time and for its time. If I was writing this
article today, I would call it “The Future of Particle Physics—Beyond the LHC”,
in recognition of the fact that, when originally written, the LHC was still under
construction and now it has been operating for several years. The other key event
which informed the original article was the recently-developed European Strategy
for Particle Physics, adopted by the CERN Council in July 2006; the strategy was
updated in 2013 and formally adopted in May of that year [1]; as I write, the process
of updating the strategy is under way.

The intervening decade has seen significant progress, most spectacularly in the
observation of the Higgs scalar [3] at 125.10 ± 0.14 GeV/c2 [2] which completes
the Standard Model of the particles and their interactions (excluding gravity) which
dominate the local region of the universe. This means that all of the free parameters
of the Standard Model are now known with reasonable precision, which can be
chosen as (see Table 10.1):

1. The quark masses (mu, md), (mc, ms), (mt, mb);
2. the charged lepton masses me, mμ, mτ ;
3. the Z0 mass MZ;
4. the Higgs Mass MH;
5. the electromagnetic coupling constant α;
6. the strong coupling constant αs(MZ);
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Table 10.1 Parameters of the Standard Model [2]

mu
2.14+0.49

−0.26 MeV/c2
mc
1.27 ± 0.02 GeV/c2

mt
172.9 ± 0.4 GeV/c2

md
4.67+0.48

−0.17 MeV/c2
ms
93+11

−5 MeV/c2
mb
4.18+0.03

−0.02 GeV/c2

me
0.5109989461(31)
MeV/c2

mμ

105.6583745(24)
MeV/c2

mτ

1776.86(0.12) MeV/c2

MZ
91.1876 ± 0.0021
GeV/c2

MH
125.10 ± 0.14 GeV/c2

α

7.2973525664(17)
× 10−3

GF
1.1663787(6) × 10−5

GeV−2

αs(MZ)
0.1179(10)

λ

0.22453 ± 0.00044
A
0.836 ± 0.015

ρ

0.122 ± 0.0175
η

0.355 ± 0.0115
Derived quantities sin2θW

0.23129 ± 0.00005
MW = Mz cos θw
80.385 ± 0.015 GeV/c2

sin22θw = απ

8GFM
2
Z

7. the weak coupling constant GF; and
8. the Cabibbo-Kobayashi-Maskawa (CKM) parameters in the Wolfenstein

parametrization λ, A, ρ and η.
In addition, two other useful quantities are given—MW and sin2θW—which

can be written in terms of the other parameters, as shown in the last line of
Table 10.1.

This is a total of 18 parameters which can only (so far) be determined by
experiment. However, once determined, they describe the observed interactions with
remarkable precision; for example, the muon anomalous magnetic moment (aver-
aged between μ+ and μ−) is (11,659,209 1 ± 54stat ± 33syst) × 10−11, to be com-
pared with the theoretical expectation of (11,659,180 3 ± 1EW ± 49Had) × 10−11,
where the first error in the theoretical calculation comes from electroweak correc-
tions and the second comes from a combination of low-order (42) and higher order
(26) hadronic corrections [4]. The difference between these is (288 ± 80) × 10−11

(3.5 standard deviations) and it is, of course, hotly debated whether this is
statistically significant and, if it is, what that significance might be. There is a
new experiment at Fermilab [5] which aims to reduce the total error in the muon
anomalous magnetic moment to 14 × 10−11, which, even without improvements to
the theoretical calculations, would (if the central value of the discrepancy remained
unchanged) increase the significance to more than 5 standard deviations.

Within the Standard Model, because the neutrinos have only one helicity state,
they must be strictly massless. However, the phenomenon of neutrino oscillations,
now well established, requires the neutrinos to have mass—essentially, the oscilla-
tion is a beating in the propagation through time of the different mass eigenstates
that form the flavour eigenstates. The past decade has seen enormous progress in
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Table 10.2 Neutrino Oscillation Parameters [6, 7]a

Normal hierarchy Inverted hierarchy

Δm2
12 | Δm2

23 |
7.37+0.20

−0.14 × 10−5 eV2/c4 2.50 ± 0.04 × 10−3 eV2/c4 2.46 ± 0.04 × 10−3 eV2/c4

Sin2θ12 Sin2θ23

0.297+0.019
−0.016 0.439+0.060

−0.019 0.569+0.023
−0.060

Sign (Δm2
23) Sin2θ13

? 0.0214+0.0011
−0.0010 0.0218+0.0010

−0.0011

�mν δ/π
< 0.183 eV (95% CL) 1.35+0.21

−0.14 1.32+0..32
−0.22

aThe 3-sigma limits have been converted into 1-sigma asymmetric errors

the determination of the neutrino oscillation parameters (see Table 10.2). Although
the mathematics of the flavour mixing is similar in the quark and neutrino sectors,
the phenomenology is very different. In the quark sector, the flavour oscillations—
described by the CKM matrix—take place in either mixing or decay of bound
states. In the neutrino sector—described by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix—the flavour oscillations take place in vacuum, although there
is an additional term for neutrino transmission in matter to take account of the
different interaction cross-sections of the electron neutrinos, and the muon and
tau neutrinos (and, of course, their antineutrinos). The main uncertainty is whether
the third neutrino mass is heavier than the other two (normal hierarchy) or lighter
(inverted hierarchy), with an emerging preference [8] for normal hierarchy. Most
impressive is the evidence that the CP-violating phase angle in the PMNS matrix
(δ) is non-zero –0/2π is excluded at the 3-standard deviation level, and π at 2.5
(1.5) standard deviations for the normal (inverted) hierarchy. The best limits on
the absolute neutrino mass scale come from cosmology, giving an upper limit on
�mν of 0.183 eV at the 95% confidence level [7]. There are essentially two ideas
for extending the Standard Model to include finite neutrino masses. The first notes
that, since the neutrino has no electric charge, it is possible to construct a mass-
like term from the left-handed neutrino and right-handed-antineutrino fields, which
changes its nature to that of a Majorana particle [9]. (If the neutrinos are indeed
Majorana particles, there are two additional phase angles (α and β) in the PMNS
matrix which are, however, extremely difficult to measure.) The second postulates
the existence of a heavy right-handed neutrino which, in combination with a very
high mass scale (like the GUT scale), produces through the “see-saw” mechanism
one light left-handed neutrino (<< 1 eV/c2) and a heavy right-handed neutrino
(>> 1012 GeV/c2)—as the left-handed neutrino becomes lighter the right-handed
neutrino becomes heavier through the “see-saw”. One consequence of these is that
there are interactions that allow a change of lepton number by 2 units, thus enabling
neutrinoless double-β decay to occur. (For a recent review, see [10].)

The other area where the Standard Model obviously fails is in the Dark Sector—
Dark Matter and Dark Energy. The cosmological and astronomical evidence for
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these is overwhelming (see reference [11] for a recent review) with a recipe for
the current state of the Universe containing about 70% of Dark Energy, 25% Dark
Matter and 5% “normal” matter, the only part addressed by the Standard Model.
From a particle physics perspective, Dark Matter is more tractable. First, there
is the challenge of directly detecting it using large volume, sensitive detectors
deep underground. The past decade has seen the limits steadily improved (see
reference [12] for a recent review), while the small number of claimed signals
have still not been independently confirmed. There is an ongoing programme of
experiments at the major underground laboratories which should improve these
limits by several order of magnitude over the next few years. Second, there are
straightforward extensions of the Standard Model which provide candidates for
Dark Matter. Unfortunately, there is no reliable estimate for the mass scale at which
these new particles might appear. Such evidence might come from the Dark Matter
searches themselves. The other place where a mass scale might be forthcoming is in
the analysis of the deficiencies of the Standard Model. For example, Supersymmetry
was proposed to address some hierarchy problems within the model, and also
to assist in Grand Unification, both of which pointed to a TeV energy scale for
appearance of new particles. However, so far these have failed to materialize at
the LHC; unfortunately, the parameter space for Supersymmetry is extensive and
so, while this might be disappointing it may not be conclusive. Dark Energy, on the
other hand, is still mysterious and it is unclear where it fits in to the global picture; its
understanding might require the reconciliation of quantum mechanics with general
relativity.

The “open questions within the Standard Model” identified in the original article
have been largely resolved, although there are still details to be addressed, for exam-
ple the transition from perturbative to non-perturbative QCD. However, the “open
questions beyond the Standard Model” remain, refined somewhat; for example, the
“pattern of fermion masses” might nowadays be cast as “understanding the Yukawa
couplings of the fundamental fermions to the Higgs”. The improvements in the
knowledge of the neutrino oscillation parameters do not explain how the mixing
comes about, nor how the neutrinos derive their (tiny) masses. Again, there has
been much progress in the measurement of the various cosmological parameters,
including those which either determine or are determined by particle physics, but
the “open questions in particle physics and cosmology” are still far from resolved.
For example, the arguments for Grand Unification of the strong and electroweak
forces remain intact (see Fig. 10.1) even though there is, as yet, no direct evidence
for the existence of Supersymmetric particles. A second area which points to new
physics is to note that, of the 18 parameters that define the Standard Model, 11
are directly related to mass (the quarks, the charged leptons, the Z and the Higgs),
which becomes 12 if the Fermi constant is replaced (as it can be) by the mass of
the W. Given this, there are three mass hierarchies to be explained. First, within a
generation, what determines the relative masses of the charged lepton, the down-
type quark (charge −1/3) and the up-type quark (charge +2/3) (and why is the
up-quark lighter than the down quark, while the charm and top quarks are heavier
than the strange and bottom quarks)? Second, what determines the large (several



10 The Future of Particle Physics: The LHC and Beyond 629

60

50

40

30

20

10

0

60

SM

α1
α2
α3 50

40

30

20

10

0
0 5 10

SOFTSUSY 3.6.2

15 0 5 10 15

α i
–1

(Q
)

log10(Q/GeV)

SOFTSUSY 3.6.2

log10(Q/GeV)

MSSM: m0=M1/2=2 TeV , A0=0, tanβ=30

Fig. 10.1 The evolution of the fundamental forces as a function of energy in the standard model
(left) and a particular set of parameters in the Minimal Supersymmetric Standard Model (right).
(Adapted from [13])

orders of magnitude) mass differences between the generations of the same type of
fundamental fermion. Third, what determines the masses of the heavy field bosons
(Higgs and the W and Z)? (The other gauge bosons—the photon and the gluon—
remain massless, protected by an unbroken gauge symmetry.) The origin of the
mixing matrix and CP-violation in the quark sector is still unresolved, as are the
masses and oscillation parameters in the neutrino sector.

The detection of Gravitational Waves from the merger of two black holes [14]
and the subsequent detection of gravitational waves from a binary neutron star
inspiral [15] open the door to a new era of observational astronomy of matter under
extreme conditions, and may also provide insight into the long-standing issue of
the incompatibility of general relativity with quantum mechanics. Resolving this is
likely to require understanding of physics at the Planck scale.

Given this, the main conclusions of the “Way Forward” are largely unchanged.
Clues to the physics that must exist beyond the Standard Model could come directly
from the observation of new states of matter (e.g. Supersymmetry), either at the LHC
or at a new energy frontier machine, or indirectly from precision measurements
of Standard Model parameters, for example at a Linear Collider built to produce
large numbers of Higgs particles under clean conditions. Alternatively, ultra-
high precision measurements of low energy parameters (g-2, μ → e conversion,
neutrinoless double β decay . . . ) as well as new astrophysical observations (Dark
Matter, gravitational waves) could give strong pointers toward the new physics.
The tremendous progress in the neutrino sector from, particularly, T2K and Noνa
probably means that the arguments in favour of a neutrino factory have weakened
somewhat, but the arguments for the other facilities discussed (including the
luminosity upgrade for the LHC) remain and have strengthened.

A recent publication by the T2K collaboration (Nature 580, 339–344 (2020))
reports that “The 3σ confidence interval for δCP, which is cyclic and repeats every
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2ϕ, is [−3.41, −0.03] for the so-called normal mass ordering and [−2.54, −0.32]
for the inverted mass ordering”.
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