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Foreword

Teacher: “Why are you doing your multiplication on the floor?”
Student: “You told me not to use tables.”

https://www.rd.com/jokes/math/

Numerically literate adults know how to multiply numbers, either in their heads, 
with paper and pencil using standard or alternative algorithms, by estimating and 
adjusting, or, if all else fails, by resorting to a calculator. Many remember the dis-
tress (or for others the joy) caused by memorizing the multiplication table. Teachers 
and researchers know the range of difficulties students may face while learning how 
to multiply numbers. Much has been said, written, and researched about multiplica-
tion, its learning, and its teaching—what else is there to add? Well . . . a lot! And this 
book shows just how much.

This book contributes to the integration of existing studies while providing new 
insights by weaving together many important themes in contemporary mathematics 
education, as follows:

 1. In the spirit of any serious design experiment (or, as in some traditions, didactic 
engineering), the book provides a thorough epistemological analysis of the com-
mon yet different meanings of the idea of multiplication, its many entailments, 
and its connections to its “predecessor ideas” (counting and addition) and to its 
“successors or extensions” (such as combinatory, ratio and proportion, division, 
fractions, decimals, and more).

 2. Embedded in the theory and practice of the powerful Japanese tradition of 
 lesson study, the book illustrates how epistemological analyses of the idea(s) 
of  multiplication, coupled with awareness of the complexities of student 
 cognition, can be translated into careful and detailed lesson plans, their practi-
cal implementation in authentic classrooms, and a  posteriori analyses and 
refinements.

https://www.rd.com/jokes/math/


vi

 3. Faithful to the current wide recognition of the crucial role played by culture in 
mathematics education, this book travels to different countries to report, analyze, 
and learn how different educational traditions regard multiplication and conse-
quently how to adopt different approaches and perspectives.

As an eager and ongoing learner of lesson study myself—having roots in Latin 
America, and in my past and present roles as a teacher, a grandparent, a curriculum 
developer, a mathematics teacher educator, and a researcher of mathematics educa-
tion—I have found myself gaining new insights while reading the different sections 
of this book and enjoying them very much. Likewise, I am confident that readers—
be they teachers, parents, teacher educators, curriculum developers, policy makers, 
or mathematics education researchers—will find themselves inspired by the differ-
ent chapters of this book and relishing enriching educational practices.

Rehovot, Israel Abraham Arcavi

Foreword
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Preface

“When American teachers retire, almost all the lesson plans and practices they 
developed also retire. When Japanese teachers retire, they leave a legacy.” This is 
quoted from the journal The Economist (2007) regarding the difference of cultural 
practice in teaching of Japanese teachers in comparison with American teachers. 
However, what is that legacy? It is the product of lesson study.

Lesson study (jugyou kenkyu in Japanese) has influenced the world with the 
Japanese approach to developing students who learn mathematics by and for 
themselves. In Japan, the innovative challenges by teachers in lesson study have 
contributed not only to developing students and young teachers but also to research 
and the development of mathematics education in relation to reforms of the 
national curriculum standards and revision of textbooks. Despite the many contri-
butions of lesson study mentioned in relation to teachers’ professional develop-
ment—such as pedagogical content knowledge, the curriculum, and content 
knowledge for teaching1—leading Japanese teachers continuously revise their 
school curriculum and textbooks, and influence the revision of the national cur-
riculum standards with innovative ideas based on their lesson study experiences.

The international leading project for lesson study under the Asia–Pacific 
Economic Cooperation (APEC) has been engaged in establishing the APEC lesson 
study community to improve and develop innovative mathematics education in the 
APEC region (2006–2018). In its third year of implementation, the delegates from 
the APEC economies were asked to evaluate the following aspects of the project, 
with the following results: useful for the improvement of the quality of mathematics 
education: 100% positive; influential for other subjects: 93% positive; useful for 
developing innovative teaching approach: 93% positive; useful for curriculum 
improvement: 80% positive; useful for sharing model teaching approaches: 80% 
positive; useful for developing teachers: 80% positive; useful for developing stu-
dents: 80% positive; and useful for developing practical/local theories of mathematics 

1 For example, see Lewis and Pettry (2006); Lewis, Perry, and Murata (2006) and Figure 2 of http://
www.criced.tsukuba.ac.jp/math/apec/.

http://www.criced.tsukuba.ac.jp/math/apec/
http://www.criced.tsukuba.ac.jp/math/apec/
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education: 53% positive. All those issues are related to the content of the legacy, 
especially the lesser-known aspect of it, which is the practical/local theories of 
mathematics education as a product of lesson study. What are these theories?

Part I of this book answers the last question on the design science of mathematics 
education by illustrating the Japanese approach in teaching multiplication. It includes 
the theory of Kyozaikenkyu (the study of teaching materials), which spans over 
100  years (see Isoda, 2007) and is embedded into the Japanese curriculum, 
textbooks, and teaching guidebooks. Its relation to a variety of proposals discussed 
in this book is shown in Part II by four leading Ibero-American researchers in pri-
mary mathematics education.

The Japanese engage in lesson study for developing students who learn mathe-
matics by and for themselves. In other words, students are asked to use their previ-
ous knowledge for their new learning. This is the design principle of the Japanese 
curriculum, which corresponds to mathematization under the reorganization of 
past experience, as described by Freudenthal (1973). The Japanese had already 
established most of the ideas for their curricula and teaching through lesson study 
by the 1960s.

This book has two parts. In Part  I, the Japanese approach to multiplication is 
explained in relation to lesson study. It is a coherent approach applied to curriculum 
standards, textbooks, and teaching practices for developing students who learn 
mathematics by and for themselves. It is the long-term product of lesson study 
under the design theories in mathematics education. The theoretical ideas used to 
produce lessons are also discussed. The nature of these Japanese theories is the 
design and reproducible science that enables teachers to predict the ideas of stu-
dents before the class, based on what they have already learned under the curricu-
lum sequence (not the same as the learning trajectory in some countries) and to 
produce new ideas which must be used in the future class through communication 
in class under the specific objective on the sequence of mathematics curriculum.

Part II—contributed by Ibero-American researchers—proposes, describes, and 
analyzes the teaching of multiplication in various contexts based on different 
theories such as French didactics, the learning trajectory, and ethnomathematics. 
In addition, it illustrates how the theories of mathematics education function.

This book identifies problems in the teaching of multiplication in elementary 
school mathematics beyond borders and language, and provides theoretical and 
practical ideas for possible solutions. It poses questions about the theories of math-
ematics education and what they are for. This book gives us opportunities to know 
how lesson study answers challenges from the perspective of design science for 
students and teachers.

Tsukuba, Japan Masami Isoda
Valparaíso, Chile Raimundo Olfos 

Preface
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Chapter 1
Introduction: Japanese Theories 
and Overview of the Chapters in This 
Book

Masami Isoda and Raimundo Olfos

This introductory chapter explains the origin of this book and provides overviews of 
every chapter in Parts I and II of the book. Part I of the book is aimed at explaining 
what multiplication and lesson study are in relation to the Japanese approach. It pro-
vides an overview of Japanese theories on mathematics education for developing stu-
dents who learn mathematics by and for themselves and it provides necessary ideas to 
understand the Japanese approach and lesson study. Part II consists of contributions 
from leading researchers in Ibero-America. Through their contributions, this book pro-
vides various perspectives based on different theories of mathematics education which 
provide the opportunity to reconsider the teaching of multiplication and theories.

1.1  Origin of This Book

This book originated from collaborative research done by the editors since 2008. 
When Olfos studied Japanese lesson study with Isoda at the University of Tsukuba, 
Olfos was amazed by how Japanese students mathematically communicate the cur-
riculum content and subject matter by themselves in their classroom under the 
problem- solving approach. They reorganize new mathematical knowledge by them-
selves based on what they have already learned under the learning trajectory in their 
curriculum sequence. Before he arrived in Japan, his image of problem solving was 
to recall and use learned content to solve new content. However, the Japanese 
problem- solving approach is done under the task sequence planned by the teachers 

M. Isoda (*) 
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and textbooks for students to reorganize mathematical knowledge by using what 
they have already learned. At the same time, he recognized that there were big dif-
ferences in the curricular content, textbooks, tasks, and teaching content in schools. 
In Chile, most children attempt (but do not memorize at all) the multiplication table 
in the earlier grades. However, the Japanese teach the multiplication table for 
enabling students to learn how to extend the multiplication table by themselves. 
Through discussion about the Japanese approach from the perspective of Chile, the 
editors recognized that the teaching of multiplication is an exemplar for sharing 
Japanese practical theories in mathematics education to establish coherent and con-
sistent alignment of the curriculum, teaching practice, and assessment.

To this end, the editors published lesson study books in Spanish (La Enseñanza 
de la Multiplicación: El Estudio de Clases y las Demandas curriculares [in English: 
Teaching of Multiplication: Lesson Study for Curricular Demands] (Isoda and 
Olfos, 2009a) and El Enfoque de Resolución de Problemas: en la Enseñanza de la 
Matemática: a Partir del Estudio de Clases [in English: Problem Solving Approach: 
Mathematics Teaching on Lesson Study] (Isoda and Olfos, 2009b) to explain the 
Japanese approach. For comparison of the first book with the Ibero-Americans’ 
proposals, Enseñanza de la Multiplicación: Desde el Estudio de Clases Japonés a 
las Propuestas iberoamericanas [in English: Teaching Multiplication: Japanese 
Lesson Study and Ibero-American Contributions] was published in Isoda and Olfos, 
2011 with leading researchers from Ibero-America.

Part I of this English-language book is a revision of Part I and Annex of the 2011 
Spanish- language book on multiplication under the current international curriculum 
reform movement. It aims to develop twenty-first-century skills and competencies 
including the human character, values, attitudes, and way of thinking (Isoda and 
Katagiri, 2012; Mangao, Ahmad, and Isoda, 2017). Part II of this book comprises 
excerpts from Part II of the 2011 Spanish-language book. This is a new book on 
multiplication in relation to Japanese lesson study.

This chapter briefly explains the Japanese theories that are used by teachers for 
designing and implementing lessons, and gives an overview of the subsequent chap-
ters to provides the perspectives of this book in teaching multiplication.

The Organisation for Economic Co-operation and Development (OECD) (2005) 
has defined competencies for curriculum reform for students to be able to succeed 
in this changing and refunctioning society by using the words “successful life” and 
“well functioning society”. The United Nations (2015) seeks the establishment of 
high-quality education on SDG4. To address these issues, curriculum reforms are 
under way. This book provides ideas for high-quality education and theoretical 
overviews for better teaching of multiplication in a competency-based curriculum 
based on the experiences in Japan and Ibero-America.

1.2  Overview of Japanese Theories for Designing Lessons

Through Japan’s remarkable economic growth up until the early 1990s and its high-
est achievements in several international surveys in mathematics (such as the 
International Association for the Evaluation of Educational Achievement (IEA) 

M. Isoda and R. Olfos
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Trends in International Mathematics and Science Study (TIMSS), and the 
Program for International Student Assessment (PISA)) since 1964, Japanese educa-
tion and its system have become internationally influential. Especially in the 1980s, 
the system of the Japanese national curriculum standards influenced England 
and the USA.1 The Japanese ways of teaching began to spread to developing countries 
through JICA in the 1990s.2 Japanese teaching approaches and lesson study have 
been learned internationally since around 2000 in relation to Stigler and Hiebert 
(1999) and NCMS (2000). Especially, NCMS praised Japanese lesson study from 
the aspect of teachers’ collaboration for long term development. Then, collaboration 
of teachers modeled by lesson study became one of research trends. Robutti et al. 
(2016) mentioned that it is not always successful because Japanese lesson study is a 
kind of cultural practice and there are missing informations. Indeed, Japanese les-
son study has a long tradition dating back to 1873 (Isoda, 2007, 2020; Makinae, 
2010, 2016; Baba, Ueda, Ninomiya, and Hino, 2018). The first guidebook for lesson 
study was written by Wakabayashi and Shirai (1883) and was aimed at improve-
ment of teaching and learning by adoption of the Pestalozzi method and Zen/
Confucian–style dialectical questioning. The book explained the principles of 
teaching under the Pestalozzi method, dialectical questioning and tasks for inquiry, 
objective-based lesson planning, and ways of critical discussion after observation of 
the class (such as preferred teaching materials and methods, and observed activities 

1 In Japan, schools that follow the national curriculum standards are recognized as schools that are 
supported by the government. The national standards are the bases for textbook authorization and 
national assessments. Authorized textbooks follow the standards, 90% of curriculum standards 
content on compulsory education and 80% on senior secondary education. After authorization, 
they can be called textbooks and freely selected by the district. Every school is supposed to manage 
its own curriculum under these conditions. Most schools’ curricula follow the textbooks’ recom-
mended curriculum; however, lessons are planned beyond these limitations, depending on the 
teachers. It looks like a top-down system; however, it includes lesson study, which involves a bot-
tom-up system. For example, well-recognized approaches and teaching materials will be embed-
ded into the new edition of textbooks. For revision of the curriculum, a laboratory school usually 
proposes new approaches and teaching materials. In Japan, there are no private educational consul-
tants who provide schools with their own/original curriculum, lesson plans, worksheets, tools, and 
methods of teaching. However, lesson study produces learning communities for innovation and 
sharing of ideas on curriculum development and implementation in every classroom. In Japan, 
results of lesson studies will be embedded into curriculum and textbooks. In countries which do 
not have the consistent curriculum alignment such as the countries do not have national standards, 
or countries that teachers don’t have custom to follow the standards even they have, teachers usu-
ally use worksheets copied from various different resources. In this type of worksheet culture, it is 
not easy to establish a coherent system under the curriculum alignment (see such as Squires, 2012) 
like the system in Japan. Indeed, on the worksheet culture, the teaching time distribution to the 
contents are not the same and if teachers use different worksheets, they find it difficult to estimate 
and utilize what students have learned in the past. Then, the teachers have to try to make sense of 
the teaching content at every class. In Japan, teachers are able to engage in sense making (McCallum, 
2018) for future learning to be able students to learn by and for themselves. See Chap. 5.
2 Singapore had the opportunity to study the Japanese system and the Japanese approach at the end 
of the 1970s (in a 5-year project with Japanese overseer development assistance). Since 1982, the 
Ministry of Education, Japan, has provided an 18-month program at teacher education universities. 
Each year, more than 150 teachers from Southeast Asia and other region study the Japanese 
approach, which includes learning mathematics education, in the program.
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4

of the teacher and students), with exemplary protocols for every subject in the cur-
riculum. This was the beginning of Japanese general theories for designing lessons, 
which are not known internationally, as we discuss in the preface to this book.

Japanese theories for mathematics education as for the school subject specific 
theories (Herbst & Chazan, 2016) are based on the didactics3 of lesson study involv-
ing math educators, which can be seen from four perspectives (Isoda, 2020). The 
first perspective is the theories that clarify the aims and objectives in every class. 
The national curriculum standards constitute an authorized document that explains 
the objectives. To clarify the objective of teaching, math educators have prepared 
related theories such as mathematical thinking. The second perspective is the termi-
nologies used to distinguish conceptual differences in teaching content. The third 
perspective is the theory used to establish the curriculum sequence and task 
sequence. The fourth perspective is the theory used to manage lessons. These theo-
ries have been prepared by math educators through lesson study.4

3 To date, a limited number of research articles on lesson study have focused on Japanese cases, 
such as Miyakawa and Winsløw (2013), analyzing lesson study by using French didactics. In Part 
I of this book, Japanese didactics mean design theories of practice to develop students’ compe-
tency to learn mathematics by and for themselves under the curriculum. This means that Japanese 
didactics is oriented toward realizing the aims of mathematics education. For teachers, it is not 
necessary to mean the theoretical frameworks for social scientific analysis on empirical studies 
even it can be used for (see such as Huang and Shimizu, 2016).
4 In the community of math educators, when we say “theory,” most math educators might imagine 
theoretical frameworks, such as French didactics, which are used for observation, analysis, and 
description of the research object. It is necessary to contribute to the research community for edu-
cators. On the other hand, the Japanese mathematics education theories which used by teachers and 
educators orient the design science and are necessary to develop and explain better teaching prac-
tices for students as for reproducible science (Isoda, 2015a). Thus, the bases are the aims and 
objectives, followed by the terminology to distinguish the teaching content, and then the sequence 
of teaching and the method of teaching. For example, French Didactics does not include aims and 
objectives in its theories although it includes anthropological approaches in mathematics education 
and design-based research (see the Encyclopedia of Mathematics Education (Lerman, 2014)). In 
French didactics, the aims and objectives are analyzed under the terminology/framework on didac-
tics: see such as Rasmussen & Isoda (2018) in the case of mathematical thinking. Conversely, 
when Japanese teachers refer to the aims and objectives in curriculum documents as terminology 
for their lesson plan, they continuously use the same terminology. For example, developing stu-
dents who learn mathematics by and for themselves is written into the curriculum document (see 
Ministry of Education, 1998). The teachers try to prepare teaching sequences, materials, and meth-
ods to develop students toward this shared aim which functions likely an axiom. On this meaning, 
Japanese Theories are the aims and objectives based, normative, theories for educators and teach-
ers. Lesson study has been functioning for their theorizations. Japanese theories are referred and 
functioning in various lesson study community though the national level publication for designing, 
observing and explaining the classes and students’ developments. Japanese math educators also 
use social scientific theories however it is not the major scope in Part I for illustrating the theories 
on lesson study.
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1.2.1  Mathematical Thinking and Activity: Aims 
and Objectives

The Japanese aims of education have been described as three pillars: human charac-
ter formation (such as values and attitudes), general thinking skills (such as mathe-
matical thinking and ideas), and specific knowledge and skills (such as mathematical 
knowledge and skills). If we change the terminology, the principle aims are com-
mon not only for Japan but also for other countries such as the Southeast Asian 
countries (Mangao et al., 2017).

The first two pillars are usually explained as higher-order thinking skills in many 
countries and also as the learning content for learning how to learn. It is usual for 
teachers to write or share these objectives through the lesson plan. According to the 
Japanese principle of the national curriculum, these aims are symbolized by a single 
concept: “Developing students who learn mathematics by and for themselves” 
(Shimizu, 1984). In Japanese mathematics education, this has been recognized in 
relation to mathematical activities as for reorganization of living and life (Ministry 
of Education, 1947). The activity has been re-explained as mathematical thinking 
and attitude (Ministry of Education, 1956) by Japanese math educators, who have 
tried to explain it further. Shigeo Katagiri (see Katagiri, Sakurai, and Takahasi, 1969 
and Katagiri, Sakurai, Takahasi, and Oshima, 1971), who was a curriculum special-
ist in primary school mathematics in the Ministry of Education, established the 
framework for mathematical thinking with teachers (Isoda and Katagiri, 
2012, 2016).5

In Japanese lesson study, Table  1.1 is used for clarifying the curriculum, task 
sequence, teaching materials,6 and methods of teaching. It is not a list of hints such 
as the strategies for solving problems adapted from Pólya (1945) but is used for pre-
cise descriptions of objectives for every teaching material in the lesson and for con-
sidering its processes as for preparation of future learning. It is also used to write the 
lesson plan for clarifying the objectives of teaching, which explains why it is neces-
sary to practice like that. Table 1.1 is used for writing these objectives more con-
cretely and clearly with teaching materials.7 This framework also provides the 
general study theme of lesson study beyond every objective of the teaching content.8

Katagiri also developed the list for questioning in the classroom in relation to 
teaching phases for Table 1.1.

5 The Japanese teachers’ manner of preparation will be illustrated in Chap. 7.
6 Teaching materials mean the content or the task of mathematics embedded objectives in the cur-
riculum. In Japanese mathematics education, development of mathematical thinking is a part of the 
aims of the national curriculum standards.
7 Katagiri’s framework is historically known. There are several projects for further revision of his 
framework on the context of 21st century skills (Mangao et al., 2017) in ASEAN region and com-
putational thinking for 4th Industrial revolution in APEC region.
8 The recursive process of lesson study can be continued according to the study theme even though 
the teaching content changes every time.
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Table 1.1 Types of mathematical thinking according to Katagiri (published in English in 2012)

I. Mathematical attitudes: Mindset
  1. Attempting to grasp one’s own problems, objectives, or entities clearly by oneself
   (a) Attempting to have questions
   (b) Attempting to be aware problematic
   (c) Attempting to find further problems from situation
  2. Attempting to take logical-reasonable actions (reasonableness)
   (a) Attempting to take actions that match the objectives
   (b) Attempting to establish a perspective
   (c)  Attempting to think based on the data that can be used, previously learned items, and 

assumptions
  3. Attempting to represent matters clearly and simply: Clarity
   (a) Attempting to record and communicate problems and results clearly and simply
   (b) Attempting to sort and organize objects when representing them
  4. Attempting to seek better ways and ideas
   (a) Attempting to raise thinking from the objects to operations
   (b) Attempting to evaluate thinking both objectively and subjectively, and to refine thinking
   (c) Attempting to economize thought and effort
II. Mathematical thinking related to mathematical methods: Mathematical Ways of Thinking
  1. Inductive thinking
  2. Analogical thinking
  3. Deductive thinking
  4. Integrative thinking (including extension)
  5. Developmental thinking
  6.  Abstract thinking (thinking that abstracts, concretizes, and idealizes, and thinking that 

clarifies conditions)
  7. Thinking that simplifies
  8. Thinking that generalizes
  9. Thinking that specializes
  10. Thinking that symbolizes
  11. Thinking that represents by numbers, quantities, figures and diagrams
III. Mathematical thinking related to mathematical contents: Mathematical Ideas
  1.  Clarifying sets of objects for consideration and objects excluded from sets, and clarifying 

conditions for inclusion (the idea of sets)
  2. Focusing on constituent elements (units) and their sizes and relationships (the idea of units)
  3.  Attempting to think based on the fundamental principles of expressions and the 

permanence of form (the idea of expression)
  4.  Clarifying and extending the meaning of things and operations, and attempting to think 

based on this (the idea of operation)
  5. Attempting to formalize operation methods (the idea of algorithms)
  6.  Attempting to grasp the big picture of objects and operations, and using the result of this 

understanding (the idea of approximation)
  7. Focusing on basic rules and properties (the idea of fundamental properties)
  8.  Attempting to focus on what is determined by one’s decisions, finding rules of relationships 

between variables, and using relationship (functional thinking)
  9.  Attempting to express propositions and relationships as formulas, and to read their 

meaning (the idea of formulas)
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1.2.2  Terminology and Sequences: Extension and Integration

The terminology distinguish conceptual differences and its development in cur-
riculum content. It includes the technical terms to distinguish conjectural differ-
ences such as different meaning of multiplication and the representations such as 
Tape Diagram and Proportional Number Lines for overcoming such differences. It 
is necessary to explain the process of reorganization of mathematical concepts in 
the curriculum sequence. The Japanese established most of it between 1900 and the 
1960s (see the special issues of the Journal of Mathematics Education published by 
the Japan Society of Mathematical Education in 2010).9 The related terminology for 
multiplication will be explained in Chaps. 3 and 4 in Part I of this book in relation 
to the historical development of school mathematics and current research perspec-
tives. Japanese teachers need to learn the terminology of school mathematics for 
developing students who learn mathematics by and for themselves because the 
school curriculum sequence cannot exist as a system deduced from the set and axi-
oms such as pure mathematics (see Freudenthal (1973)).

The sequence in the Japanese curriculum standards has been explained by the 
principle of “extension and integration” since 1968, which is oriented toward 
enhancing mathematical activities and developing mathematical thinking. It corre-
sponds to the principle of reinvention by Freudenthal (1973) who proposed mathe-
matization as the reorganization of mathematical experience (see Isoda, 2018).

Under this principle, the school mathematics curriculum can be seen as a set of 
partially ordered local mathematics theories, like a net that is consistent within 
every local theory like a knot; however, on extending and integrating local theories, 
the net has some inconsistencies in connecting the local theories, like entangled 
strings among knots. Japanese textbooks are written for students to be able to extend 
and integrate mathematics by and for themselves (see Chaps. 4 and 7).10 The questions 
mentioned in item 1(a) of the “I. Mathematical attitudes” section of Table 1.1 (by 
Katagiri) are written for producing such mathematical problematic situations, not 
only for problems posed in real-world situations such as mathematical modeling.

Such inconsistencies through the extension and integration of local theories in 
relation to multiplication are explained by adaptation of the conceptual and proce-
dural knowledge to meaning and procedure in Fig. 1.1 (Isoda, 1992, 1996, 2009).11

9 In relation to multiplication in this book, Izsák and Beckmann (2019) discussed the same idea, 
such as the definition of multiplication by measurements and proportional number lines; however, 
the Japanese established it in 1960s. See Chapter 3.
10 It means that Japanese textbook has the task sequence for Zone of Proximal Development (ZPD; 
Vygotski, 1978) by using what they already learned and preparing for future. Murata (2008) illus-
trated the function of tape diagram as a model for ZPD.
11 In 1992, Isoda proposed the design theory of the task sequence with adaptation of conceptual and 
procedural knowledge from Hiebert (1986) and published eight lesson study books in Japanese as 
the product of lesson studies; more than 200 lessons, ranging from the first grade to the tenth grade, 
were produced using this theory. Later, similar theories were also proposed by Hiroshi Tanaka and 
Kei Ohono, teachers of the Elementary School at the University of Tsukuba.

1 Introduction: Japanese Theories and Overview of the Chapters in This Book
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How do you explain the sequence of conceptual development in Fig.  1.1? 
Conceptual and procedural knowledge are used to explain the development of 
personal knowledge; however, in Fig. 1.1, we use them to design and explain task 
sequences in the curriculum. In the curriculum sequence, as in textbooks, these 
are not discussed at the same time. Conceptual knowledge is usually taught for 
meaning; however, it needs to use some known form of procedure. After introduc-
ing the meaning of multiplication as a binary operation (expression), the multipli-
cation table is proceduralized from repeated addition; otherwise, students cannot 
distinguish it from addition as a new operation. In the process of extension and 
integration, inconsistencies usually appear. For example, for doing multidigit 
multiplication, students need to see the multidigit numbers under the base ten 
system for applying the multiplication table instead of just repeated addition. For 
the extension of multiplication to multidigit numbers with column methods, mul-
tiplication as repeated addition should be integrated with the base ten system by 
using the rule of distribution. If we extend multiplication from whole numbers to 
decimals, the product of multiplication becomes small in case. It cannot be 
explained well as repeated addition. In the Japanese textbooks and Japanese 
teachers’ lesson design (as shown in later chapters) these processes are discussed 
more precisely in relation to the task sequence.

In the terminology of the “learning trajectory”, progressive relationship of con-
ceptual and procedural knowledge in Fig. 1.1 are not easily seen as two different 

Fig. 1.1 Simplified extension and integration process of multiplication (mul.) in the task sequence 
detailed in the textbooks, which is explained by conceptual and procedural knowledge (Isoda, 
2009)
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sides of the same coin.12 On the task sequence in Japanese textbooks, as in the cur-
riculum, it might be clearly distinguished. One of the reasons is that it is possible for 
students to learn the procedure without knowing when the procedure should be 
used. This may seem like a strange statement; however, the textbook provides the 
opportunity to exercise a set of similar tasks for getting fluency of the procedure. “If 
A, then B” is the format of the procedure. In the exercise in the chapter, students do 
only exercise B for solving given tasks. The condition, a part of A, is not necessary 
to consider in the exercise for practicing the same tasks.

Before the extension of multiplication to decimal numbers, the product of multipli-
cation only increases: “If it is multiplication of whole numbers, then the products 
become large.” However, until extension of whole number to decimals, whole num-
bers are numbers, so it looks correct to say, “If it is multiplication of numbers, then the 
products become large.” This is possible learning content for students through the 
exercise in the textbook chapter. The necessity for all students to think about condi-
tions in relation to A will be provided when students learn multiplication of decimals. 
Actually, when students learn whole numbers, they do not know about decimals. 
Students are able to learn A when they encounter multiplication of decimal numbers.13 
Another reason is related to the shortage of the capacity of working memory. If we 
limit working memory, procedures are very convenient and firster for doing multipli-
cation. Students do not need to consider the meaning of A, because the numbers given 
in the exercise are not decimals. They have already established a convenient procedure 
that can be used without considering the original meaning of A. After students attain 
fluency in the procedure, many students do not feel the necessity to go back to and 
interpret the original meaning of the situations. Many of them lose/compartmentalize 
it because they do not need to think about the condition of A as long as they are apply-
ing it to learned situations. The opportunity for extension and integration is a chance 
to reorganize their mathematics by comparing what they already knew and their 
developed mathematical ideas. At the moment of extension and integration on the task 
sequence, students are able to establish the significant meaning.

12 This metaphor was popularized by Sfard (1991). She illustrated by using the history of mathe-
matics. In the case of Japan, it can be illustrated by using the textbooks under the curriculum 
standards. Isoda (1992) established his theory on his lesson study groups in Japan such as province 
at Sapporo, Ibaraki, Tokyo, Toyama, Fukuoka and Okinawa by using the theories of Hiebert 
(1986). Simon (1995) characterized ‘hypothetical learning trajectory’ on teachers’ instructional 
design. Clements & Sarama (2004) characterized ‘learning trajectory’ by a learning goal, develop-
mental progressions of thinking and learning, and a sequence of instructional tasks. Japanese text-
books under the national curriculum standards are well established the task sequence which enable 
to develop mathematical thinking by using already learned and for preparing the future learning. 
Japanese textbooks are products of the huge experience and challenges of lesson study in whole 
Japan. On the consequence of their recursive revisions, all six textbook-companies’ series under 
the national curriculum standards become similar. Japanese teachers are able to produce their 
learning trajectry based on the experience of lesson study as the design and reproducible science. 
Thus, it is not just a personal hypotheths.
13 Tall (2013) explained this with his terminology “met before.”
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1.2.3  Problem-Solving Approach: Not Only a Teaching 
Method

If you have a chance to observe a lesson in a Japanese elementary school, the Japanese 
problem-solving approach looks the same as an open-ended approach,14 which involves 
posing an unknown task, solving the task in various ways, comparing solutions with 
the whole class, and summarize. However, the Japanese problem-solving approach is 
prepared in the following ideas: aims and objectives for developing students who learn 
mathematics by and for themselves, terminologies to explain the learning content, the 
curriculum and task sequence which connect past, current and future learning, and the 
teaching materials. On the other hand, an open-ended approach is characterized by an 
open-ended task. Consequently, the teaching materials used in the Japanese problem-
solving approach are not the same as open-ended approach for an independent task, 
topic, or content of mathematics because problem-solving approach is explained under 
the aims, objectives, task sequences and preparation of future learning.

In the Japanese problem-solving approach,15 the task given by the teacher to the 
class means that the teacher prepare the teaching material which embeds the objec-
tives in the task sequence. Thus, when you read a Japanese textbooks without con-
sidering the context and objective embed in the task sequence, it is just reading 
content but not regarding it as teaching materials. On the Japanese problem-solving 
approach, students reinvent the objective of the class from the given task as prob-
lematic. It was planned by the teacher to encourage them to think mathematically. 
The contradictions in the planned task sequence are necessary in this context. Given 
this limitation, the following exemplar on how the Japanese use the board in the 
lesson is meaningful (Fig. 1.2).

In this book, the Japanese approach means all those consequences and does not 
imply just a method of teaching like the scaffolding used to construct a building. 
Every component is explained by the theories and used for designing the classroom.

These theories are the models that will be illustrated in Part I of this book. Please 
note that there are several other theories in Japan, and many of them have been pro-
posed through critical discussions such as curriculum sequences. For example, the 
extension and integration principle provides task sequences that go against the 
general- to-specific principle proposed by the mathematicians’ group of Hiraku 
Toyama since the 1950s with the name of the water supply method (a metaphor 
from general-to-specific, see Kobayasi, 1989). Against the general-to-specific 
approach, several counter theories were proposed to support extension and integra-

14 In Japan, open-ended tasks appeared before and in the middle of World War II. This idea was 
proposed by Shimada in 1977 (published in English by Becker and Shimada (1997) and theoreti-
cally elaborated by Nohda (1983, 2000)). In Japan, the problem-solving approach was named  
arround 1950 in the context of progressivism and then was renamed in the 1980s in the context of 
the Agenda for Action (NCTM, 1980). The teaching style itself could be seen in the format of the 
lesson plan before World War II.
15 Tall (2013) explained it as “lesson study” because “problem solving” in English merely implies 
solving an unknown task or exercise.
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tion, some called it mathematization or discovery, such as Ito’s theory as a represen-
tative of 1961, 1962a, 1962b, 1962c, 1963a, 1963b, 1963c. Ito’s theory to mediate 
ideas by models (representations) such as proportional number lines (Ito, 1968) was 
named “discovery methods” by Ito (in English, 1971).16 Toshio Odaka established 
schema theories (1975, 1979, 1980) for a problem-solving approach (see School 
Mathematics Study Society at the Junior Secondary School of the Tokyo University 
of Education, 1969, 1970, 1971, 1972), inspired by the idea of Piaget for supporting 
the extension and integration principle from the tradition of mathematization in the 
1943 national textbook. Odaka produced a counter theory to explain an appropriate 
curriculum and task sequence—called the “exemplar approach”—against Toyama’s 
general-to specific sequence and schema theory, and completed as his task sequence 
for problem solving approach (Odaka & Okamoto, 1982)

16 Ito established the Japanese theory of proportional number lines which also included the idea of 
the definition of multiplication by measurements and tape diagram, wrote textbooks, and published 
seven guidebooks for teachers. He proposed proportional number lines for overcoming the incon-
sistency between local theories in the process of extension and integration. His theory is an integra-
tion of existed theories as discovery methods. Currently, his discovery method by consistent using 
of diagram can be seen from the perspective of the representation theory for Zone of Proximal 
Development. Isoda learned the theory for proportional number line from Prof. Tatsuro Miwa at 
the University of Tsukuba in 1981 on his undergraduate class for the elementary school mathemat-
ics curriculum. The same idea can be seen in Izak and Beckman (2019). Ito proposed his theory 
against the definition by attributes in relation to the Toyama group (Kobayasi, 1989). The theory 
by Toyama group will be discussed in Chap. 3.

Fig. 1.2 A lesson plan format by using the board in the problem-solving approach (Isoda, 2012)
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Tadao Kaneko, written by Sakai and Hasegawa (1989), also theorized a task 
sequence for specific-to-general and an exercise sequence for general-to-special 
(1987). Shigeru Shimada proposed the open-ended approach (1977; originally he 
began the study in the 1960s) based on his experience of the 1943 textbook under 
the mathematization principle, and Nobuhiko Nohda retheorized it as the open 
approach (1983). There were discussions about embedding open-ended tasks into 
textbooks in the 1980s.17 Their theory for open-ended tasks itself did not indicate 
the manner to establish the task sequence for conceptual development in curricu-
lum, directly. Odaka’s, Kaneko’s, and Isoda’s theories were proposed for the task 
sequence as for conceptual development on the curriculum under the principle.

1.2.4  Change Approaches for Developing Students 
and Teachers

Lesson study around the world is usually focusing on the open class such as that shown 
in Fig. 1.3. The most necessary activity for any teacher is the preparation of the lesson 
for setting the teaching materials which embed the objectives into the teaching content 
and process. In the process of planning the board writing (Fig. 1.3), teachers usually 
prepare various types of questioning for inquiry (known in Japanese as hatsumon).

There are three types of questioning by teachers and students from the viewpoints 
of the objectives:18 The first type is questions of mathematical interest such as the task 
given by the teacher (see box (a) in Fig. 1.2), and the problematic posed by the stu-
dents (see box (c) in Fig. 1.2). The second type is questions on teaching and learning 
in the teaching phases (see boxes 1–5 in Fig. 1.2) to provide the opportunity for reflec-
tions on what the students have learned that day in the summary (see box 5 in Fig. 1.2). 
The third type is meta-questions, which enable students to provide questions (like 
teachers) by and for themselves internally, such as “What do you want to do next?”19

In the lesson study process, after the open class, in the postclass discussions, the 
quality of the classroom communication by students is usually a subject for critique. 
If the students did the third type of questions by themselves well, a major point of 
discussion after the class observation is usually how the teacher developed the stu-
dents to think mathematically. The teacher usually explains his or her everyday efforts 
to prepare future learning with deep understanding of the teaching materials and 
sequences. To develop values, attitudes, and mathematical thinking, the second and 
third types of questions are necessary; however, the questions do not exist without the 

17 Their discussion about questioning in mathematics was not so far to the questioning the world 
(Chevallard, 2015), and the Study and Research Path (SRP) (Winsløw, Matheron, and Mercier, 
2013), which is related to the open approach by Nohda (2000), is a good framework to illustrate 
the open inquiry process. However, the Japanese problem-solving approach is more oriented to the 
task sequence to achieve the objectives and aims of the curriculum.
18 See the introductory chapter and pp. 127–128 in Isoda and Katagiri (2012).
19 See the Introductory Chapter of Isoda and Katagiri (2012). Hideyo Emori (2013) also mentioned 
similar ideas in classroom communication.
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first type in mathematics class. Thus, all questions are not just for the method of teach-
ing but are also associated with the teaching materials and task sequences. In this 
context, Japanese teachers try to develop teaching materials by clearly embedding the 
objectives into the content under the task sequence in their preparation of the class.

In the postclass discussion, student-centered approaches are usually recom-
mended instead of teacher-centered approach, and sometimes the  qualities of the 
subject, mathematics, are not focused on, even they observed students activity. In 
Japanese lesson study, teachers discuss the achievement of the objectives and the 
study theme in the lesson plan. The study theme, innovative proposals, and chal-
lenges, are explained by the teacher with the teaching materials, as well as the spe-
cific objective of the task under the sequence. Then, alternative possibilities in 
relation to the objective and study theme are discussed based on their observation of 
class. All of them are related to the teaching materials.

Depending on the objective, a teacher-centered approach may be preferable. For 
developing students to learn mathematics by and for themselves, the view of math-
ematics is not the same. It depends on the teaching material and the objective pre-
pared by the teacher (see Fig. 1.4). Exercise is necessary for acquisition of fluency 
in knowledge and skills. If the objectives are focused just on acquisition, mathemat-
ics can be seen as a set of knowledge and skills. An open approach is possible if 
teachers change the ordinal task to be open ended. Here, mathematics has various 
answers, which are the subject of communications. By using open-ended tasks, 

Fig. 1.3 What shall we discuss and observe?
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students and teachers usually learn ways of learning/teaching in the classroom. If 
they can use a textbook that has an appropriate task sequence for students based on 
the extension and integration principle, students can learn mathematics as a subject 
of extension and integration. This is a way to change the approach from being 
teacher centered to student centered. It is usually one of target of school based les-
son study which is done within every school.

If teachers can use student’s misconceptions and counter examples, they are able 
to develop students who have minds for proof and refutation (Lakatos, 1976; Isoda, 
2015b).20 However, dialectical discussions are not easy for students who are only 
learning mathematics through teachers’ explanations and exercises. It is also diffi-
cult to plan dialectical discussions for most teachers, because they cannot imagine 
the process for proof and refutation in school mathematics. Thus, in school-based 
lesson study, primary schools usually choose a problem-solving approach as the 
goal of training teachers by using appropriate textbooks.

On the subject of mathematics-based lesson study, many teachers are already 
able to teach with an open and problem-solving approach in their classes, and then 
they try to establish their own original task sequences for their classroom students. 
Such challenges are usually seen in the mathematics lesson study group at the 
Elementary School attached to the University of Tsukuba and the Sapporo mathe-
matics lesson study group. These teachers produce the textbooks and try to make it 
possible to practice in school-based lesson study. The examples of lessons shown in 
Part I of this book were produced by these teachers.

In school-based lesson study at elementary schools, it is not easy for every 
teacher to focus on mathematics as dialectics. In this sense, it is oriented toward a 
student-centered approach. Subject-based lesson study is done by math major teach-

20 Lakatos was Hegelian in the context of Karl Popper; proof and refutation are a kind of dialectic. 
It is the bases for to develop critical thinkers in mathematics class. However, dialectic discussion 
in the classroom is not popular in the world even though it can be seen from first grade of elemen-
tal school.

Fig. 1.4 Various approaches for developing students on lesson study (LS)
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ers and is oriented toward a subject-centered approach. In Part I of this book, we 
focus on Japanese multiplication, which is shared by the Japanese mathematics 
 lesson study groups and textbooks as a result of long-term development of a subject- 
centered approach as well as a student-centered approach.

1.3  Overview of Chapters in Part I: The Japanese Approach

Part I of this book illustrates the Japanese approach to multiplication through com-
parison of other perspectives. The theories used to design Japanese lesson study will 
be also illustrated.

In Chap. 2, the national curricula of seven countries are compared for confirmation 
of their differences and diversities, and for posing questions regarding teaching of 
multiplication, which will be answered in Chaps. 3, 4, 5, 6, and 7 in relation to the 
Japanese approach. The questions posed in Chap. 2 are related to the meanings and 
definition of multiplication, the necessity of appropriate selection of meanings for 
teaching other content such as division and extension of numbers (illustrated in Chap. 
4), ways of teaching the meaning of multiplication and the multiplication table in rela-
tion to memorization, ways of teaching algorithms (the column method) for multipli-
cation of multidigit numbers, and appropriate grades for introducing multiplication.

In Chap. 3, in relation to the question of defining the meaning of multiplication, 
the definition of multiplication in pure mathematics is confirmed first. Then, situa-
tions explaining the meaning of multiplication and the various types and uses of 
properties are discussed. Further, the Japanese definition of multiplication by mea-
surement, which extends the group of groups, is introduced. This definition of mul-
tiplication becomes a keyword to explain the Japanese approach. The difference in 
language structure that produces inconsistency in teaching multiplication in Indo- 
European languages is also explained. The learning of children using their language 
and ways of thinking through the subject of elementary school mathematics are also 
presented. The terminologies explained in Chaps. 3 and 4 provide the bases of mul-
tiplication and lesson study in other chapters.

Chapter 4, in relation to the question of teaching of other content, illustrates the 
Japanese consistent curriculum sequence and terminologies to adapt the idea of multi-
plication to division and extend it to decimals and fractions. It further illustrates how 
the Japanese curriculum and textbooks are planned to develop and reorganize stu-
dents’ mathematical ideas for multiplication up to proportionality under the Japanese 
definition of multiplication by measurement. It also explains that the reason why many 
countries in Central America, the Pacific, Southeast Asia, and so on choose Japanese 
textbooks is this consistent sequence to extend students’ ideas for future learning.

Chapter 5, in relation to the question of the definition and meaning of multiplica-
tion, illustrates how Japanese teachers introduce the meaning of multiplication 
under the definition of multiplication by measurement in two examples of lesson 
study. The capacity of the students to set the unit for measurement is enhanced in 
the Japanese classroom. Data on how Japanese students develop in the curriculum 
sequence are also provided. After these discussions, the Japanese and Chilean 
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approaches for introducing the meaning of multiplication are compared. The way in 
which the Chilean curriculum explains how students make sense of multiplication 
is also shown. On the other hand, the Japanese engage in sense making for multipli-
cation by enhancing the capacity of the students to set the unit for measurement.

Chapter 6, in relation to the question of the grade level at which the multiplica-
tion table should be taught, illustrates how the Japanese approach enables students 
to learn the skill to extend what they have learned and the significance of their learn-
ing. In Japan, the multiplication table is taught in the second grade, and this chapter 
explains three reasons for this. The first reason is the high achievement. The second 
reason is that students are able to extend the multiplication table by themselves in 
an appropriate teaching sequence. The third reason is that memorizing the table is 
an enjoyable activity for students as a cultural practice. In relation to the subtheme 
of this book, this chapter illustrates how students are able to extend the multiplica-
tion table by themselves in the task sequence.

Chapter 7, in relation to the question of multidigit multiplication, illustrates the 
extension of multiplication in vertical form and the column method, from single digit 
numbers to multidigit numbers, which includes the process of integration with addition 
in vertical form. Because multiplication of multidigit numbers by the column method 
is not repeated addition, students have to extend and integrate what they have already 
learned. In the Japanese approach, teachers prepare an appropriate task sequence that 
enables students to devise various approaches for vertical form and to choose the 
appropriate form in relation to the base ten place value system. Using the exemplar of 
lesson study and the teaching sequence in the textbook, three principles on how to 
design the task sequence using what the students have already learned are illustrated.

As explained in Section 1.1, to understand the Japanese approach to multiplica-
tion, readers have to note how the coherent alignment between the curriculum, text-
books, and teaching in Japan is planned through lesson study (see Isoda, Stephens, 
Ohara, and Miyakawa, 2007; Miyakawa and Winsløw, 2019). In Japan, the Ministry 
reforms the national curriculum every decade.21 Textbooks, which condense teach-
ers’ experience of lesson study in relation to every subject, are revised every 
4 years.22 Teachers must use the textbooks approved by the government, although 
they can create their own school curriculum. Teachers must also follow the national 
curriculum sequence. For countries in which every teacher teaches mathematics 
using their own independent curriculum, it may look like Japanese teachers are 
restricted by the national curriculum; however, this is a misunderstanding because 
the curriculum is the product of lesson study by teachers.23

In Japan, half of the university math educators are well-experienced schoolteach-
ers. Most of these math educators work with teachers in the schools and are challenged 

21 This has been a gradual transformation of the system over several decades. For example, the 
subject of English has been introduced in three steps: in the first decade, it was recommended as 
an activity; in the second decade, English activity was done every week; and in the third decade, 
English became a subject to be learned.
22 Textbooks are usually written by leading teachers of lesson study, and math educators usually 
contribute editing. Teachers in experimental schools usually collaborate with math educators for 
innovation of mathematics teaching.
23 There are various misunderstanding for Japanese lesson study (see such as Isoda, 2015a; Fujii, 
2014).
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to devise innovations in mathematics education. Members of curriculum reform com-
mittees are usually leading researchers and teachers in national-level lesson study. 
They are usually the authors of textbooks and members of national assessment com-
mittees. If they are engaged in lesson study, they try to embed their achievements in 
the national curriculum standards and textbooks that follow the national standards.

In this manner, lesson study has given way to harmonious progress between cur-
riculum design and classroom management. It contributes to the aspiration of offer-
ing mathematics education centered on a problem-solving approach that is connected 
to the demands of addressing the content established in the curriculum, the teaching 
materials, and the task sequences, and developing students’ interest/values and atti-
tude in learning mathematics and mathematical thinking.

1.4  Overview of Chapters in Part II, Focusing 
on Ibero- American Countries

Part II of this English edition develops a proposal for teaching multiplication and 
offers reflections on it by leading researchers in Ibero-American countries, which 
provide diverse original views and deep critiques but are not necessarily representa-
tives of the national approaches.

In Chap. 8, a contribution from Dr. Ubiratan D’Ambrosio and Dr. Claudia Sabba 
of Brazil is presented, which invites us to appreciate the development of their origi-
nal ideas—an ethnomathematical perspective on the question of the idea of multipli-
cation. The teaching approach is grounded on miniprojects that integrate diverse 
areas of knowledge in the Waldorf Schools tradition in Sao Paulo. There, the concept 
of multiplication is constructed together with the geometry of plane figures through 
the elaboration of mathematical thinking together with figures mounted on a circular 
wooden table. These ideas are connected to the use of photos taken using students’ 
cellular phones to introduce the concept of proportionality. They take photos of their 
bodies and faces, and use them to study Leonardo da Vinci’s Vitruvian Man.

Chapter 9 presents a contribution from Dr. David Block and Laura Resendiz of 
Mexico. They share a teaching sequence for addressing multiplication constructed 
and validated in the framework of French didactics engineering. The teaching pro-
posal is made up of a sequence of didactic situations about a kind of proportionality 
relation in which each value of a set—the number of necklaces—is made to corre-
spond, in another set, to pairs, threes, or Ns of values (numbers of beads of different 
colors required for that number of necklaces). The sequence includes multiplica-
tion, division, and proportionality problems. Also, the results of application of the 
sequence in a group of fourth-grade students (9–10 years of age) are presented.

The contribution in Chap. 10 comes from Professors Fatima Mendes, Jouana 
Brocardo, and Helia Oliveira of Portugal. The authors, bearing in mind the peda-
gogical notion of the “path,” show how a teacher, as a sailor, adjusts the sails to 
correct the path and reach port, taking responsibility for third-grade students’ learn-
ing regarding multiplication. The paths are associated with potential levels of 
achievement, learning goals, and competencies to be reached. So, while the study of 
learning tasks is connected to microdidactics and the study of teaching sequences is 
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connected to mesodidactics, the study of hypothetical learning paths lies in the mac-
rodidactic context particular to longitudinal study, which addresses the evolution of 
students’ understanding of a concept over years.

Chapter 11 provides the last contribution, from Dr. Maria del Carmen Chamorro of 
Spain, who reflects on why so many children fail in learning multiplication in elemen-
tary schools in Ibero-American countries. She describes four problems: students’ lack 
of understanding, lack of development of skill in written calculation, inappropriate-
ness of common teaching methods, and the presence of the algorithm without control-
ling how it is produced. Dr. Chamorro points out the virtues of Japanese teaching with 
respect to the importance of meaning or semantic dimension, the importance given in 
Japan to the use of manipulatives, and the relevance of the cultural dimension.
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Chapter 2
Multiplication of Whole Numbers 
in the Curriculum: Singapore, Japan, 
Portugal, the USA, Mexico, Brazil, 
and Chile

Raimundo Olfos, Masami Isoda, and Soledad Estrella

This chapter shows how the teaching of multiplication is structured in national cur-
riculum standards (programs) around the world. (The documents are distributed by 
national governments via the web. Those documents are written in different formats 
and depths. For understanding the descriptions of the standards, we also refer to 
national authorized textbooks for confirmation of meanings). The countries chosen 
for comparison in this case are two countries in Asia, one in Europe, two in North 
America, and two in South America: Singapore, Japan, Portugal, the USA (where 
the Common Core State Standards (2010) are not national but are agreed on by most 
of the states), Mexico, Brazil, and Chile, from the viewpoint of their influences on 
Ibero-American countries. (The National Council of Teachers of Mathematics 
(NCTM) standards (published in 2000) and the Japanese and Singapore textbooks 
have been influential in Latin America. Additionally, Portugal was selected to be 
compared with Brazil). To distinguish between each country’s standard and the gen-
eral standards described here, the national curriculum standards are just called the 
“program.” The comparison shows the differences in the programs for multiplica-
tion in these countries in relation to the sequence of the description and the way of 
explanation. The role of this chapter in Part I of this book is to provide the introduc-
tory questions that will be discussed in Chaps. 3, 4, 5, 6, and 7 to explain the fea-
tures of the Japanese approach. (As is discussed in Chap. 1, the Japanese approach 
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includes the Japanese curriculum, textbooks, and methods of teaching which can be 
used for designing classes, as has been explored in Chile (see (Estrella, Mena, 
Olfos, Lesson Study in Chile: a very promising but still uncertain path. In Quaresma, 
Winslow, Clivaz, da Ponte, Ni Shuilleabhain, Takahashi (eds), Mathematics lesson 
study around the world: Theoretical and methodological issues. Cham: Springer, 
pp. 105–22, 2018). The comparison focuses on multiplication of whole numbers. In 
multiplication, all of these countries seem to have similar goals—namely, for their 
students to grasp the meaning of multiplication and develop fluency in calculation. 
However, are they the same? By using the newest editions of each country’s curricu-
lum standards, comparisons are done on the basis of the manner of writing, with 
assigned grades for the range of numbers, meanings, expression, tables, and multi-
digit multiplication. The relationship with other specific content such as division, 
the use of calculators, the treatment of multiples, and mixed arithmetic operations 
are beyond the scope of this comparison. Those are mentioned only if there is a need 
to show diversity.

2.1  Comparison of Curricular Standards’ Descriptions 
for Introducing Multiplication in Different Countries

In the various programs (National Curriculum Standards and related documents), 
the meaning of multiplication is usually given using situations for multiplication. 
The way to find the answer (product) of multiplication is known as repeated addi-
tion. However, the sequence of descriptions and ways of explanation are very differ-
ent in terms of their format and terminology. Thus, here, we would like to briefly 
illustrate the differences in format, terminology, and ways of explanation in their 
introduction of multiplication.

In Singapore (Ministry of Education, Singapore, 2012), the term “multiplica-
tion” appears with “division” as one joint category—“multiplication and  division”—
from the first grade until the third grade. In the first grade (Ministry of Education, 
Singapore, 2012, p. 35), multiplication and division are explained: concepts of mul-
tiplication and division, use of “×,” multiplying within 40, dividing within 20, and 
solving one-step word problems involving multiplication and division with pictorial 
representations. The students should be given opportunities to experience the 
following:

• Making equal groups using concrete objects and counting the total number of 
objects in the groups by repeated addition using phrases such as “2 groups of 5” 
and “2 fives”

• Sharing a given number of concrete objects/picture cutouts and explaining how 
the sharing is done and whether the objects can be shared equally

• Dividing a set of concrete objects into equal groups and discussing the grouping 
and sharing concept of division

In Japan (Ministry of Education, Culture, Sports, Science and Technology; 
MEXT, 2017), the program is written in two categories: (A) knowledge and skills; 
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and (B) competencies for thinking, making decisions, and representing. 
Mathematical activity is autonomous and objective oriented, with the aims of 
 self- directedness, interactivity, and deep learning. In this framework, multiplication 
is introduced in the second grade as described below.

Students should be nurtured to be able to acquire the following through mathe-
matics activities for multiplication (MEXT, 2017, p. 51):

• To acquire the following knowledge and skills:

 – Understand the meaning of multiplication and know situations where multi-
plication is used

 – Represent situations where multiplication is used with algebraic expressions 
and interpret these expressions

 – Understand simple properties that hold for multiplication
 – Learn the multiplication table up to 9  ×  9 and multiply 1-digit numbers 

accurately
 – Know ways of multiplication of a 2-digit number by a 1-digit number in sim-

ple cases

• To acquire the following competency for thinking, making decisions, and 
representing:

 – Focusing on mathematical relations, thinking about the meaning and ways of 
calculation (operation), finding the properties of multiplication, and, by using 
these properties, utilizing calculation and confirming the result of 
calculation

 – Focusing on mathematical relations and utilizing multiplication in daily life

In Portugal (Ministério da Educação e Ciencia, 2013), the teaching of multiplica-
tion begins in the second grade. In the first grade, addition and subtraction are writ-
ten in different categories but in the second grade, they are written in the same 
category. Multiplication and division appear in different categories in the second 
grade. This implies that depending on the grade level, the content is seen from dif-
ferent perspectives. The term “multiplication” is explained for the second grade as 
follows (however, this clearly implies that the content is short) (Ministério da 
Educação e Ciencia, Portugal, 2013, p. 7):

• Additive and combinatorial meaning
• The symbol “×” with the terms “factor” and “product”
• The product of 1 and 0
• Multiplication tables for 2, 3, 4, 5, 6, and 10
• The terms “double,” “triple,” “quadruple,” and “quintuple”
• One- or two-step problems that involve multiplicative situations in the additive 

and combinatorics sense

In the USA, instead of the national standards, the Common Core State Standards 
for Mathematics (National Governors Association Center for Best Practices & 
Council of Chief State School Officers (NGAC and CCSSO), 2010) have a 
 hierarchy—grade, domain, cluster, and standards—and formal multiplication is 
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specified in the third grade. The domain “Operations and Algebraic Thinking” has 
seven standards, categorized into the following three clusters for multiplication:

• Representing and solving problems involving multiplication and division
• Understanding the properties of multiplication and the relationship between mul-

tiplication and division
• Multiplying and dividing within 100

In the other domains, multiplication is also mentioned. Additionally, the memo-
rization of multiplication tables is done in the third grade.

In Mexico (Secretaría de Educación Pública, 2017a, 2017b), the curriculum 
framework is written under the following hierarchy: domain, learning expectation, 
didactical orientation, and assessment. Multiplication is introduced in the sec-
ond grade.

The learning expectation for multiplication is as follows (Secretaría de Educación 
Pública, México, 2017a):

• Solve multiplication problems with natural numbers less than 10

In didactic orientation, the following processes of teaching are described:

• Problems regarding repeated quantities
• Making multiplication explicit
• Problems of counting in rectangular arrays
• Mental calculation and application of the product of digits in the cases of 5 and 2

In Brazil (Ministério da Educação, 2017), a National Common Curricular Base 
is written under the following hierarchy: thematic units, object of knowledge, and 
abilities according to the competencies of mathematics.

For the thematic unit of numbers in mathematics in the second grade (Ministério 
da Educação, 2017, pp. 280–281), the object of knowledge is as follows:

• Problems that imply addition of equal groups (multiplication)
• Problems that imply meanings of double, half, triple, and third

The abilities are:

• To solve and elaborate problems of multiplication (by 2, 3, 4, and 5) with the idea 
of adding equal parcels by means of strategies and forms of personal registry 
with or without the support of images and/or manipulative materials

• To solve and elaborate problems involving double, half, triple, and third, with the 
support of images or manipulative materials, using personal strategies

In the Chilean Curricular Framework (MINEDUC, 2012, p. 104) for the second 
grade, the skills that students should be able to acquire to show that they understand 
multiplication are as follows:

• Using concrete and pictorial representations
• Expressing multiplication as the addition of equal summands
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• Using the distributive property as a strategy for building the multiplication tables 
of 2, 5, and 10

• Solving problems that involve the multiplication tables of 2, 5, and 10

Based on the comparison of the programs above, there are differences in the 
format and terminology used to introduce multiplication.

• Some countries do not mention the meaning of multiplication. Combinatorics 
meaning is uniquely introduced in Portugal. In Japan, the word “meaning” is just 
said without referring to any idea. What is the meaning of multiplication?

• Some countries introduce complete multiplication tables in the same grade while 
others introduce 2 and 5 in the upper grades or in several grades. How they are 
different.

• Some countries introduce factors and others do not. Why?
• There is a variety in the ranges of numbers when introducing multiplication. In 

Brazil, multiple is mentioned as half and third. It already implies multiplication 
of fractions when it is introduced. In the case of other countries, how do they 
prepare to extend multiplication to larger whole numbers, decimals, and 
fractions?

Those differences provide some perspectives on what we shall compare.
With regard to differences in the format and terminology, as well as the grade 

level when multiplication is introduced, there are differences in the depth of writing. 
For example, some countries discuss the method of teaching and assessment of their 
programs, and others do not. For comparison of the depth of writing, their guide-
books and authorized textbooks should be referred to.

2.2  Comparison of the Assigned Grade Levels 
for Multiplication

How are the assigned grades and teaching sequence of multiplication different? The 
tables in this chapter—in relation to the range of numbers, meanings, tables, and 
multidigit multiplication—highlight the differences in specific aspects in dealing 
with multiplication according to the programs of the countries.

2.2.1  Range of Digits

When is it possible to discuss multiplication and multidigit multiplication? We can 
use the number of digits as an indicator (Table 2.1). Addition and subtraction are 
deeply dependent on the base ten place value system for making ten. On the other 
hand, the counting unit in multiplication is produced depending on the multiplicand 
and is not only limited to ten as a unit. The numbers up to 100 are necessary for 
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learning the multiplication table, and further extension of numbers produces the 
need for multidigit multiplication. For teaching multiplication of a 3-digit number 
by a 2-digit number, it is necessary to deal with numbers up to 100,000.

Based only on the viewpoint of the range of numbers, if the multiplication table 
is up to 10 by 10, it is not impossible to introduce the multiplication table from the 
first grade in all countries. When do they actually introduce multiplication?

2.2.2  The Meaning of Multiplication

For discussing the meaning of multiplication, every country introduces counting 
by 2s or by 5s in the first or second grade. Most countries, except Singapore and 
the USA, introduce multiplication from the second grade. The USA begins to 
introduce repeated addition in the second grade but the definition of multiplication 
is provided in the third grade. Singapore introduces multiplication within 40 in the 
first grade.

Multiplication as a group of groups and length based on unit length in a tape 
diagram are not mentioned in Mexico. An array diagram with a rectangular shape 
is not mentioned in the Portugal and Singapore programs. The area of a rectangle 
is introduced in the upper grades in every country. Combinatorics is discussed 
only in Portugal, and proportionality is mentioned only in Brazil and Japan 
(Table 2.2).

From Table 2.2, the following questions emerge: Is an array diagram an alterna-
tive for a group of groups? Is repeated addition the same as a group of groups? How 
do the different meanings contribute to understanding of multiplication? Is repeated 
addition the only way to obtain the result when multiplication is introduced? Why 
is combinatorics used when multiplication is still being introduced? Is the use of 
equal amounts in a group the way to explain the meaning of multiplication?

Table 2.1 School grades in which different countries introduce extensions of the range of digits

Country

School grade in which concept is introduced
Chile 
(2012)

Mexico 
(2017)

Brazil 
(2016)

Portugal 
(2013)

Singapore 
(2012)

Japan 
(2017)

USA 
(2010)

Up to 100 or 
so

1 1 1 1 1 1 1

Up to 1000 2 2 2 2 2 – 2
Up to 10,000 4 3 4 – 3 2 –
Up to 100,000 – 4 5 – 4 3 –
Up to 
1 million

– 5 – 3 5 – 4

Up to 
thousand,  
or millions

5 – – 4 – 3 –
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2.2.3  The Definition of Multiplication

The “×” symbol is introduced in different grades in different countries (see 
Table 2.3). In particular, the USA introduces repeated addition in the second grade, 
and introduces multiplication and symbol “×” in the third grade. Brazil, on the other 

Table 2.2 School grades in which different countries introduce various meanings of multiplication

Country

School grade in which concept is introduced
Chile 
(2012)

Mexico 
(2017)

Brazil 
(2016)

Portugal 
(2013)

Singapore 
(2012)

Japan 
(2017)

USA 
(2010)

Counting by 2s 1 1 1 2 1 1a 2
Situation for adding 
equal quantities

2 2 2 2 1 2 2

Repeated addition 2 2 2 2 1 2 2
Group as a unit or 
group of groups 
(without repeated 
addition)

2a – 3 2 1 2 3

Length based on unit 
length (tape diagram)

2 – 3 2 1 2 3

Array diagram (or 
rectangular shape)

3 2 3 – – 2 2

Area (rectangle) 4 4 5 3 3 4 3
Proportionality – – 4 – – 3b –
Combinatorics – – – 2 – – –

aIncludes interpretation of examples provided in the guidebook
bMeans a proportional number line or tape diagram

Table 2.3 School grades in which different countries introduce mathematical expressions of 
multiplication

Country

School grade in which concept is introduced
Chile 
(2012)

Mexico 
(2017)

Brazil 
(2016)

Portugal 
(2013)

Singapore 
(2012)

Japan 
(2017)

USA 
(2010)

Use of “×” symbol 2a 2 3b 2 1 2 3
Multiplication 
expression explained 
in Table 2.2

2? 2 3b 2 1? 2 3

Multiplier
Multiplicand

– – 4
5

– – 2 –

Product 4 2 5 2 3 2c 3
Factor 4 3 – 2 4 – 3

aIn the second grade, Chile uses the dot, for instance a Croix, as a multiplication symbol
bThis is not explicit in the National Common Curricular Base
cIn Japan, the term “product”, as well as sum, difference and quotient, is the content of teaching for 
students at  the fourth grade. Until fifth grade, student call it as a value of multiplication. On the 
other hands, the term “product” itself is appeared from the second grade in the guidebook

2 Multiplication of Whole Numbers in the Curriculum: Singapore, Japan, Portugal…



32

hand, introduces them in later grades. It is only in Japan that the multiplier and 
multiplicand are introduced at the beginning. In contrast, factors are not introduced 
in Brazil and Japan.

As a binary operation, multiplication is defined as N × N and provides the image/
value for every pair of natural numbers. The numerical expression of multiplication 
can be introduced with various meanings as provided in Table 2.2. The meaning is 
not only limited to repeated addition. Some countries introduce different terms such 
as factors, multiplier, and product providing exemplary numerical expressions with 
the symbol “×” for introducing multiplication. Why do some counties use it? How do 
the terms, symbols, and explanations contribute to the definition of multiplication?

2.2.4  Multiplication Tables

Multiplication tables are completed up to the second or third grade (see Table 2.4). 
Singapore spends 3 years on them, while Portugal, the USA, and Japan spend only 1 year.

Why do some countries divide the multiplication table into several grades and 
others do not? What criteria are used to select the order for discussion of the table?

2.2.5  Use of Algorithm or Column Method for Multiplication

The teaching of techniques to calculate the product of multidigit numbers varies 
among countries (see Table 2.5). Japan starts to teach T0 × U in the second grade 
(the simplest case of TU × U); the others start in the third grade. Some countries 
require 3 years, such as Chile, and others only 1 year, such as Portugal.

Comparing the countries, questions emerge, like the following: Why is the prod-
uct of a 3-digit number by a 2-digit number considered? Why is KHTU × TU not 
considered?

Table 2.4 School grades in which different countries introduce multiplication tables

Country

School grade in which concept is introduced
Chile 
(2012)

Mexico 
(2017)

Brazil 
(2016)

Portugal 
(2013)

Singapore 
(2012)

Japan 
(2017)

USA 
(2010)

The rows of 2 
and 5

2 2 2 2 1 (2) 2 3

The rows of 3 
and 4

3 2 and 3 2 2 2 2 3

The rows of 6 
and 8

3 2 and 3 – 2 and 3 3 2 3

The rows of 7 
and 9

4 3 2 2 4 2 3

Multiplying 
by 10

2 3 3 3 2 2 3
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2.2.6  Comparing the Results with Previous Research

The results of this comparison are not the same as the results of the comparisons made 
in the 2000s in our previous Spanish-language edition (Isoda and Olfos, 2009). Ten 
years ago, there was more diversity under the previous curricula. The teaching of 
multiplication at the various grade levels was very much different. For example, in the 
case of Chile, multiplication tables are presently taught in the second and third grades, 
but they were taught in the third and fourth grades 10 years ago, so now it is much 
easier to share teaching approaches beyond individual nations.

2.3  Questions for Later Chapters

Those comparisons in the tables show how the teaching of multiplication is assigned 
at each grade level. The sequences and content of teaching are different. From the 
comparisons, we raise several questions, which will be discussed in Chaps. 3, 4, 5, 
6, and 7. Here the questions are summarized as follows:

• In relation to the meaning of multiplication: What is the meaning of multiplica-
tion? Repeated addition? A group of groups? What is combinatorics? How many 
meanings do we have for multiplication? (See Chaps. 3 and 5.)

• In relation to the expression of multiplication: What are the multiplier and mul-
tiplicand? Why do some countries teach them and others do not? Why do some 
countries introduce factors instead of the multiplier and multiplicand? (See 
Chaps. 3 and 7.)

Table 2.5 School grades in which multiplication of multi-digits of numbers and vertical forms are 
introduced

Country

School grade in which concept is introduced
Chile 
(2012)

Mexico 
(2017)

Brazil 
(2016)

Portugal 
(2013)

Singapore 
(2012)

Japan 
(2017)

USA 
(2010)

TU × U 3 3 3 3 3 2 3
HTU × U 4 3a 4 3 3 3 –
KHTU × U – 4a 4 3 4 4 4
TU × TU 5 3a 4 3 4 3 4
HTU × TU – 4 4b 3 4 3 5
Algorithm in 
vertical form 
(column methods)

4 4 4 3 3 3 5

U units, T tens, H hundreds, K thousands
aPrograms in Mexico demand that the product has at most three digits in the third grade and five 
digits in the fourth grade, so 20 × 30 is acceptable in the third grade but 30 × 40 is not
bIn Brazil, the teaching of algorithms in the fourth grade is up to 5-digit numbers
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• In relation to the multiplication table: Why do some countries teach it at different 
grade levels? What is the difference? (See Chap. 6.)

• Some countries introduce the complete multiplication table in the same grade 
level while others introduce 2 and 5 at the upper grade level or at several grade 
levels. How are they different? (See Chap. 6.)

• Why do some countries teach multiplication algorithms (the column method or 
vertical form) in later grades? Why do they not teach it at the same time as the 
teaching of multiplication of several digits? (See Chap. 7.)

• How is the teaching of multiplication of whole numbers related to other numbers 
such as fractions and decimals, and how is it related to other operations such as 
division? (See Chap. 4.)

These questions can be explained in every country’s context. In Chaps. 3, 4, 5, 6, 
and 7, these questions will be answered in comparison with the Japanese approach 
by explaining the reasons why the Japanese prefer such a teaching sequence and 
ways of teaching. This provides alternative perspectives for the other countries, as 
has been explored in Chile (Estrella, Mena, & Olfos, 2018). Because of the differ-
ence of the format of the national curriculum documents, we did not analyze the 
philosophical, mathematical, educational reason of every curriculum sequence. 
Every curriculum for teaching multiplication exists under its school system, educa-
tional culture, historical background, and reform issues. This comparison is done 
for posing these basic questions which make clear the perspectives to explain 
Japanese Approach for multiplication.
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Chapter 3
Problematics for Conceptualization 
of Multiplication

Masami Isoda and Raimundo Olfos

This chapter addresses the problematics for the conceptualization of multiplication in 
school mathematics and fundamental difficulties, which include semantics for defin-
ing multiplication meaningfully, syntax in relation to languages, and difficulties that 
originate from historical transitions. The chapter discusses the contradictions or incon-
sistencies in the various meanings of multiplication in school mathematics situations. 
Many of these problems of multiplication are originated from European languages. 
This discussion of these problematics provides some answers to the questions posed in 
Chap. 2 and provides bases for the necessity to consider the Japanese approach 
described in Chaps. 4, 5, 6, and 7 of this book. The terminology of multiplication dis-
cussed here is related to mathematical usages of multiplication in relation to situations 
and models. Educational terminology used for multiplication to explain the curricu-
lum and task sequences for designing lessons are discussed in Chap. 4 of this book.

3.1  Definitions of Multiplication and Their Meanings 
in Situations in School Mathematics

Mathematics curricula look well designed and consistent for learned adults; 
 however, they usually have a number of inconsistencies for learners. Given this 
essential nature of mathematics curricula, the learning sequence used for mathemat-
ics, such as the curriculum and task sequence, can be explained by reorganization of 
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mathematics, such as mathematization (Freudenthal, 1973; see Chap. 1 of this book 
and Isoda, 2018). Here, several inconsistencies in the definitions and meanings of 
multiplication are confirmed.

Multiplication as an operation can be explained in several ways, depending on 
the context (see Freudenthal (1983)). Here, some definitions and meanings which 
can be seen in curriculum documents, textbooks, and research articles will be illus-
trated in relation to problematics. These definitions and meanings will provide some 
answers to the questions posed in Chap. 2 and the necessary didactic questions for 
considering the Japanese challenges to established teaching sequences for develop-
ing the concept of multiplication in later chapters.

3.1.1  The Concept of Multiplication in Pure Mathematics 
in Relation to School Mathematics

In the formal context of pure mathematics, multiplication is defined by axioms such 
as the field theory of numbers.1 Multiplication is defined as a binary operation and 
is distinguished from addition. In relation to abstract algebra, upper secondary 
school mathematics usually focuses on these two operations: division should be 
represented by multiplication of the dividend and the reciprocal (multiplicative 
inverse) of the divisor, and subtraction should be represented by addition of the 
minuend and the opposite (additive inverse) of the subtrahend. Multiplication and 
addition allow the rule of commutativity as a field axiom, such as 2 × 3 = 3 × 2 and 
2 + 3 = 3 + 2. On the other hand, subtraction and division change their values if the 
order of numbers changes: 2 ÷ 3 ≠ 3 ÷ 2, and 3 − 2 ≠ 2 − 3. It provides one of the 
necessity in school mathematics to reorganize the four arithmetic operations at the 
elementary school level into the two major operations at the university level. In rela-
tion to Set theory, multiplication can be seen as Cartesian products. The value of 
multiplication can be seen as a cardinal number of the set of ordered pairs.

In elementary school, students learn all four arithmetic operations on their basis 
of life under their languages.2 Depending on the learning trajectories under their 
own curriculum, students encounter contradictions (inconsistencies), which pro-
duce several gaps between arithmetic and the two operations in field theory.3

1 The axioms for numbers are not only limited to the field theory. There are theories for the number 
system based on the algebraic extensions from the axiom of Peano. Further extension to real num-
bers is done by the Dedekind cut and hyperreal numbers (Tall, 2013). Complex numbers do not 
maintain the axiom of order. The R-module in relation to vector space can be another perspective 
for the number system. Vergnaud (1983) also discussed the “multiplicative structure” in relation to 
modern mathematics. This chapter is written from the Japanese and Chilean authors’ perspective 
of the bases for the Japanese approach, which was established up to 1960s and is illustrated in Part 
I of this book.
2 The matter of language will be discussed in Sect. 3.2.
3 A simple example of miscalculation is 2

3

5
5

2

3
� � � , instead of 50

3
.
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In formal algebra, natural numbers are introduced with Peano’s axiom and the 
number systems are extended through progressive introduction of the four opera-
tions, magnitude4 relations (the equivalence relation (=)), and order relations 
(greater or less than (> or <)) (see Michell and Ernst (1996)).5 In elementary school, 
the equivalence of numbers can also be confirmed in every operation: 1 + 4 = 2 + 3 
= 3 + 2 = 4 + 1, 2 − 1 = 3 − 2 = 4 − 3 = . . . , 2 × 3 = 3 × 2, 2 ÷ 1 = 4 ÷ 2 = 6 ÷ 3 = 
.  .  . On natural number, the commutativity of multiplication also illustrates the 
equivalence of products. Within the natural numbers, the equivalence of values in 
addition and multiplication are finite but that in subtraction and division are infinite.

In school mathematics, the concept of multiplication is developed through reor-
ganization of the process for multiplication (see Chap. 1, Fig. 1.1).6 In elementary 
school, multiplication is usually introduced as repeated addition. Within a few 
years, children have to distinguish both addition and multiplication as independent 
operations. The elementary school curriculum usually treats the relationships 
between multiplication and division, and between addition and subtraction, as 
inverse operations, such as division of fractions is multiplication of reciprocal num-
bers. Teachers need to help students reorganize the four operations into two opera-
tions when the numbers are extended to positive and negative numbers. The rules of 
commutativity, associativity, and distributivity are usually introduced at the earlier 
stage of elementary school in preparation for future reorganizations.

For introducing multiplication of whole numbers, it can be defined as repeated 
addition, which is useful for getting the products of the multiplication table. In 
developing the multiplication table, the pattern “the product increases by the multi-
plier” for each row is used and, mathematically, it will be explained by the distribu-
tive law. For students, the row of 1—such as 1 × 1, 1 × 2, and 1 × 3—is not easy to 
explain by repetition because the row of 1 is the same as counting and not adding. 
Thus, we use the permanence of form (see Table 1.1 in Chap. 1). There is no count-
ing - objects for the row of 0, thus the row of 0 is normally never discussed. Extension 
of the multiplication table from 9 by 9 to 10 by 10, or more, is easier for students if 
we use the pattern (permanence of form) supported by the distributive law. If the 
multiplication table is established at once, it will provide an alternative way to get 
the value of multiplication as the product.7

As mentioned in Chap. 1, Fig. 1.1, extending the numbers to multidigit multiplica-
tion is done by the column method which is a mixture of the unit (multiplier) in the 

4 Here, the magnitude is used for the size of the number such as larger or less in mathematics without 
indicating a concrete unit quantity on concrete situation such as just “3,” not “3 marbles,” which is 
called a denominate number (a number with “marbles” as the denomination for the unit of quantity).
5 English translation of Otto Holder’s German text (1901), Journal of Mathematical Psychology 40, 
235–252 (1996).
6 Tall (2013, 2019) sketched the process of reorganization on his terminology of three words of 
mathematics.
7 In Japan, in the process of extension, the permanence of form has been enhanced in relation to 
mathematical thinking (see Chap. 1, Table 1.1) since 1956. It is used in the same way as the histori-
cal meaning of the extension of numbers, such as that described by George Peacock (for example, 
see Eves, 1997, p. 111).
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multiplication table and addition in the base ten place value system. Extension to deci-
mals and fractions causes overgeneralization of the definition of multiplication as 
repeated addition because addition of natural numbers always increases; however, it 
does not work with decimals and fractions. This is the problematic (which means 
“inconsistency” in elementary school mathematics, see Chap. 1) because multiplica-
tion of decimals (and fractions) does not always increase as repeated addition does on 
whole numbers. To overcome this, we need to follow the idea of the base ten system 

to find an alternative decimal unit such as 0.1 and 
1

10
 to see it as a unit fraction, 

and the vertical form multiplication algorithm (the column method) using the mul-
tiplication table. In this process, for instance, if 9 × 8 = 72, then 90 × 8 = 720; asso-
ciativity and commutativity can be used, such as 90 × 8 = 9 × 10 × 8 = 9 × 8 × 10 = 
(9 × 8) × 10 = 720. The distributive law is also necessary to introduce the multiplica-
tion algorithm (the column method), which will be explained in Chaps. 4 and 5.

3.1.2  Multiplicative Situations, Expression, and Translations

Formally, multiplication is a binary operation to get the product, just as addition is 
to get the sum. It is an expression in the world of mathematics without any concrete 
situation.8 On the other hand, in applying multiplication in life, several meanings 
depending on the situation should be learned, particularly with regard to translations 
(interpretation) between the situation and the multiplication expression throughout 
the school curriculum. These meanings are usually expressed with everyday lan-
guage to represent multiplication in situations and relations (mapping/arrow/corre-
spondence) as a translation between situations and multiplication (expressions). 
Everyday language is necessary to represent reasoning in elementary school; it also 
brings limitations, such as the row of 1 in the multiplication table, which has already 
been mentioned. Here, we would like to consider several meanings of multiplication 
in relation to situations.

3.1.2.1  Origin of Written Situations

Multiplicative situations can be found in the ancient Babylonian language, Sumerian 
(Muroi, 2017), represented as A a-rá B túm A. Here, túm means “carry” and implies 
repeated addition. It means “A, B times” (B × A), however, there were no expres-
sions to represent it as a binary operation. Kazuo Muroi translated the following 
inheritance text for explaining the Sumerian sense of the base 60 system:

There were 1,1,1,1 on base 60 system (= 219661 in base 10 system) rams and 13,13 on base 
60 system (= 793) shepherd boys. How many rams did each boy receive? Each boy received 
4,37 on base 60 system (= 277). There were 1,1,1,1 (= 219661) rams and 13 shepherd boys. 

8 Historically, the column method appeared much earlier than the expression.
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How many rams did each boy receive? Each boy received 4,41,37 (= 277 × 61 = 16897) There 
were 1,1,1 (= 3661) rams and 7 shepherd boys. How many rams did each boy receive? Each 
boy received 8,43 (= 523).

UET 5121 (from around the eighteen century BCE) was used in Muroi’s Japanese 
translation; see also Figulla and Martin (1953) and Friberg (2007).

For finding the answers, the Sumerians used various tables on tablets; however, 
they did not write down the process of calculation. According to Muroi, the division 
of a ÷ b is calculated as a × 1/b by using the reciprocal number table. For us, the 
quotation is a multiplicative situation; however, it is not the same as our multiplica-
tion as a binary operation. In division of the integers a÷b, a is not always divisible 
by b; it is a finite decimal or a recurring decimal. In the case of 1 ÷ 7, this produces 
a recurring decimal. In the base 60 system, the numbers 2, 3, and 5 as factors of 60 
are called a-rá-gub-ba, which means an ordinal factor. Seven in the base 60 system 
is the first number for which the reciprocal becomes a recurring decimal.9 This 
implies that the number sense for multiplication in the base 60 system is not the 
same as that in the base ten system. For example, in the binary system, multiplica-
tion becomes addition. In this book, we focus on multiplication in the base ten system.

3.1.2.2  In Situations of Geometry with Proportionality

In Euclid’s Elements, the idea of multiplication is discussed as “multiple/multiplic-
ity” in the ancient Greek language in relation to ratio and proportion (Chemla, 
Chorlay, & Rabouin, 2016; Saito, 2008). It is not the same as the current meaning 
of multiplication in school, which is represented by expressions with “×” as the 
symbol of operation. During the era of Euclid, there was no algebraic expression. 
For example, a current expression such as x2 + a would have no meaning for Euclid 
because it would imply the addition of (a segment) to (a square). In the context of 
the Euclidian Elements, the product can be measured with a plane (two- dimensional) 
unit by associating the unit as measurable with multiplicity. For Euclid, measurable 
means the existence of the greatest common divisor.

To create algebraic representation as a universal language (mathematics), 
Descartes redefined the four operations as constructions with segments although he 
used “∝” instead of the current “=”. Figure 3.1 was used for redefining multiplica-
tion in his book of geometry, published in 1637.

9 Muroi mentioned that this is an origin of a myth which distinguishes 7 from other decimals.

Fig. 3.1 Descartes (1637)
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In Fig. 3.1, BE:BC  =  BD:BA, then BE × BA  =  BC  ×  BD. If BA is a unit, 
BE = BC × BD. This is the definition of multiplication according to Descartes. This 
diagram was also used by Euclid. However, in the context of Euclid, BE × 
1 = BC × BD is acceptable because “an area = another area” but BE = BC × BD is 
not, because “a segment = an area” is inappropriate. Descartes established expres-
sions beyond the limitations of dimension.

Descartes reorganized geometry as a part of his universal mathematics with alge-
braic expressions. His motivation was to shift mathematics from distinguished sub-
jects such as geometry, arithmetic, astronomy, and music to algebra (universal 
mathematics). In his geometry, he needed to explain the appropriateness of using 
algebraic notation. In this context, the current meaning of multiplication, which is 
represented by expressions, becomes possible to use beyond Euclid.

We can extend Descartes’s procedure of geometric construction to multiplication 
of negative numbers “(−) × (−) = (+)” although the negative sign was not indepen-
dently discussed during his time, unlike today.

3.1.2.3  In Situations with Quantities and Definition by Measurement

In the context of quantities, multiplication is the operation used to get the total quan-
tity when the unit quantity and the number of units are known. This is the definition 
(explanation) in the Japanese curriculum documents, but it was not written in the 
textbook directory (Isoda, 2010). Here, we call it the definition of multiplication by 
measurement.10 This definition degenerates to a group of groups or a set of groups, 
which was mentioned in Chap. 2, if it is limited to the natural numbers. It is consis-
tent with Descartes’s definition when we adapt it to geometric construction. If we 
apply this definition to measurement with geometric construction, it is to measure the 
length when the length of the unit and the number of units are known. Here, the 
length of the unit and the number of units can be real numbers if we extend the seg-
ments to lines (according to Euclid, the line can be extendable). On the other hand, a 
set of groups is usually imagined as whole numbers by students. Definition by mea-
surement can be extended from natural numbers to real numbers. It does not contra-
dict repeated addition such as a set of groups and can be applied to real numbers.

The Japanese textbooks from the third to the sixth grades use proportional num-
ber lines11 (see Chap. 4 and Fig. 3.1) based on this definition (Isoda, Murata, & Yap, 
2015, Grade 2, p. 9; Isoda & Murata, 2011, Grade 2, p. 9). Even in the second-grade 
textbooks, an approach to that meaning is provided by sentences such as “number of 

10 “Get the total quantity when the unit quantity and the number of units are known” is not actually 
a measuring activity; however, it is well connected with the proportional number line, which will 
be explained fully in Chap. 4. Definition by measurement is named by Shizumi Shimizu 
(Curriculum Specialist in the MEXT, personal communication). The definition was known in the 
1960s at least (see Ito, 1968). Recently, Izak and Beckmann (2019) provided the same ideas for a 
world researchers.
11 The proportional number line for elementary school mathematics was systematized by Ito (1972). 
By using the textbooks (Hitotsumatsu et al., 2005), Murata (2008) illustrated the tape diagram as the 
model for Zone of Proximal Development.
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pieces of 3 cm tape and their lengths” (Isoda et al., 2015, Grade 2, p. 13; Isoda & 
Murata, 2011, Grade 2, p. 14). This definition is consistent with repeated addition 
when we limit the quantities to whole numbers or integers. If the measure and the 
value of the unit are natural numbers, the product can be seen as “repeated addition 
of the quantity corresponding to the unit” but when they are not, the definition 
applies to multiplication of decimals, fractions, and any measurement.12 Both of 
these meanings have been written in the guidebook for the Japanese curriculum 
since the 1960s and can also be seen in Freudenthal (1983). For the extension of 
multiplication, this definition by measurement can also be applied to fractions and 
decimals with proportionality by using proportional number lines in Japan, serving 
as a mediational means (model/representation) for definition by measurement before 
formal definition of the proportion. Theoretically, the proportional number line is 
consistent with the Descartes13 similarity in Fig. 3.1. Proportionality can be seen as 
the natural extension of multiplication in relation to definition by measurement.

Definition by measurement is not popular in the world. For example, in the 
Chilean curriculum (MINEDUC, 2013a, p. 152), repeated addition has been chosen 
as the definition. It looks like there is no inconsistency in interpreting the given 
example “In each of 6 boxes are 4 brushes, how many total brushes are there?” in 
the context of repeated addition rather than definition by measurement. However, 
the Chilean definition of repeated addition cannot be extended directly to decimals 
and fractions (see Chap. 5).

3.1.2.4  Contradictions between Repeated Addition and Situations 
with Quantities

In real-life situations, numbers usually appear with measurement units (quantities); 
these are called denominate numbers, such as “2 cups.”14 In this example, “2” is the 
number and “cups” is the denomination, with “a cup” as the unit of measurement to 
be counted. The “2” in “2 cups” can be seen as a mapping from the world of num-
bers in mathematics to the world of measurement in real life, setting the translation 
rule by seeing a cup as a counting unit. In this correspondence, the relationship of 
magnitude (greater than, less than, or equivalence to) is kept.

12 This works for real numbers. Multiplication of real numbers should be redefined for extension of 
real numbers to complex numbers.
13 If the intersecting lines in Fig. 3.1 become parallel lines, they are proportional number lines. First 
Japanese translation of Descartes’s Geometry was 1949 by Kouno.
14 In mathematics (not in real life), quantity as magnitude is defined with the axiom of the magnitude 
relationship (the equivalence relationship and order relationship) without any physical unit quantity. 
In this section, quantity means the physical quantity and the quantities produced from physical 
quantities referring to a measurement quantity in real life where numbers are usually denominated 
with a measurement unit. In English, a denominate number such as “3 apples” refers to the mea-
surement–quantity unit “apple,” whereas in some other languages—such as Thai, Japanese, and so 
on—the measurement–quantity unit does not correspond to the denomination well. For example, “3 
cups,” “3 apples,” “3 tomatoes,” etc., in English are all said as 3 ko (“3 pieces”) in Japanese; 3 ko is 
the denominate number. However, ko is not as clear as a measurement unit in English.
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The Japanese definition of multiplication is introduced by situations with denom-
inations by using measurement units such as the following: “If there are 3 apples for 
each dish (3 apples per dish) and 4 dishes, then the total number of apples is 12 
apples.” It is not the same as just saying “3 apples and 4 dishes.” In the case of a 
number with a denomination, the situation can be represented by a physical expres-
sion such as “(dishes) × (apples/dish) = (apples).” Here, “per dish part” is canceled 
out by the quantity “dish” in the multiplication, and what remains is the measure-
ment unit “apple.”

Multiplication is an operation in the world of numbers. However, with regard to 
interpretation in situations, it includes a metaphysical interpretation among physical 
quantities (measurement units) used in real life. As for the scaffolding used to sup-
port the interpretation and translation between a situation with physical measure-
ment units and the world of mathematics, mathematical sentences of quantities such 
as “(dishes) × (apples/dish) = (apples)” are used even though they are mathematical 
informal–physical representations, which are not formally allowed as mathematical 
expressions in the world of mathematics.

The interpretation of “physical expression” in the situation (see Kobayashi, 
1986) “(dishes) × (apples/dish) = (apples)” is inconsistent with the repeated addi-
tion of “(apples/dish)” in mathematics, which can be discussed as follows:

4 (dishes) × 3 (apples/dish) = 12 (apples)
≠ 3 (apples/dish) + 3 (apples/dish) + 3 (apples/dish) + 3 (apples/dish)15

≠ 12 (apples/dish), or ≠ (12 apples)/(4 dishes) =3 (apples/dish)
However, in mathematics textbooks, it will be as follows.

3 (apples) + 3 (apples) + 3 (apples) + 3 (apples) = 12 (apples)

4 (dishes)  

This inconsistency is related to embedding the ways of explanation in the quanti-
ties (several measurements) in the situation into the world of number operations 
without quantity. In general, the quantity for a denomination such as apples can be 
added because the quantity implies the measurement unit for counting, which is an 
apple. However, the measurement unit (quantity) produced by the rate of different 
units such as “apples/dish” cannot be added. To avoid such inconsistencies, when 
repeatedly adding (((3 + 3) +3) +3), we should see only the part of apples by disre-
garding the part of the “every (or per) dish” in each term and counting “4 dishes” 
repeatedly. Thus, we can say that repeated addition is the way to find the product by 
regarding 3 “apples” and 4 “dishes” instead of regarding 3 “apples/dishes” in the 
situation even if it is hiding the idea to see “3 apples” as one set for the dish. The 
translation between situations and multiplication is only possible using specific 
ways of reinterpretation of the measurement unit in situations, just like the one dis-
cussed above (see Chap. 5).

15 This sentence itself is inappropriate because the ratio of different units cannot be added.
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3.1.2.5  Using the Situation of Multiplication Only for the Attribute 
of the Object

In the 1950s, the Association of Mathematics Instruction (AMI), Japan, proposed to 
introduce the meaning of multiplication using the attribute of the object in relation 
to the binary operation with their theory of quantity (Kobayashi, 1986) and asserted 
that multiplication is not repeated addition (see Chap. 1). For example, two wheels 
are an attribute of a bicycle. In this situation, the row of 2 in the multiplication table 
is represented by the total number of wheels when the number of bicycles is given. 
The row of 3 is represented by the attribute of a tricycle. In this manner, AMI pro-
posed to choose the specific situation in relation to the attribute of a specific object 
which cannot be divided for each row by the attribute of the specific object for the 
introduction of the multiplication table. Even the row of 0, which is normally not in 
the multiplication table, is explained with the belly button of a frog because the frog 
does not have it.

In Chap. 5, we will revisit the treatment of the attribute of an object for multipli-
cation in the case of the Chilean approach with a discussion of making sense (or 
sense making) (McCallum, 2018).

3.1.2.6  In the Situation of Area, As for Extension to Decimals 
and Fractions

As it will be discussed in Chap. 4, for the extension of multiplication to decimals, 
conversion between measurement units such as 1.5 L and 15 dL is useful because it 
changes decimals into whole numbers, which can be seen as repeated addition, and 
the multiplication table can be applied. Area (diagram) is also used for the extension 
to decimals and fractions.

The area of a rectangle is defined by two perpendicular segments: a × b, “length 
(longer side) × width,” or “width × length.” Before defining the area by multiplica-
tion, school textbooks usually introduce the dot array or block array diagrams16 to 
explain multiplication (see Chap. 5). These array diagrams can be seen as a prepara-
tion to introduce the area (Mathematically, these can be seen as the idea for Cartesian 
Product: see 3.1.2.9). Conservation of the area of a rectangle in the dot array dia-
grams supports the commutative and distributive laws.

From the perspective of denominate numbers, the unit “1 cm2” means the same 
area of the square as “1 (cm) × 1 (cm).” The number of unit squares in a rectangle 
with length 3 (cm) and width 2 (cm) is 3 × 2 = 6. Then, the area formula of a rect-
angle is “length × width.” In the case of 2.5 (cm) × 1.2 (cm), it cannot be well rep-
resented by using the unit square “1 cm2”; however, if we change the unit square to 
1 mm2 it means 25 (mm) × 12 (mm).17 The area formula for a rectangle “length × 
width” supports the extension of multiplication from whole numbers to decimals 

16 The dot array diagram is also represented by parallel crosses.
17 Japanese usually uses “dL” and “L” for the model diagram of decimals to show concepts such as 

1

10
 

L because 1 mm is too small for the model.
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and fractions through the permanence of form. In the case of 1.5 (cm) × 3 (mm) or 
3 (mm) × 1.5 (cm), it has no meaning if they are expressed with different measure-
ment units. Thus, we have to change them into 15 (mm) × 3 (mm) or 3 (mm) × 15 
(mm). Changing the measurement units into the same quantity is a strategy for the 
extension of multiplication to decimals.

3.1.2.7  In the Situation of Tree Diagrams

In probability, multiplication can be applied in situations that can be explained by 
the tree diagram. In the tree diagram in Fig. 3.2, first there are two cases, then three 
cases that develop into six branches. If we use the term “splitting” for tree diagrams, 
one splits into two and then splits into three. This is written as 2 × 3. Based on the 
multiplication theorem of the probability for equally likely cases, it is written as  
1

2
 × 

1

3
. In tree diagrams, the operations 2 × 3 and 3 × 2 correspond to different 

diagrams and thus, area diagram is more preferable diagram explaining the com-
mutativity of multiplication,

3.1.2.8  Seeing the Tree Diagram as an Operator

A multiplication on probability tree looks like an operator. In some situations, the 
symbol “×” shows processes such as “1 → (× 2) → 2” and then “2 → (× 3) → 6” in 

tree diagrams, and in situations of probability as “1 2
1

2
� �� � � ” and then 

“
1

2
3

1

6
� �� � � ” according to the multiplication theorem of probability in equally 

likely cases. Here, the process “→ (× 2) →” and “1 2
1

2
� �� � � ” for indicating 

functions can be seen as operators. It implies that the “× 3” part of “2 × 3” or “1 × 

2 × 3” and the “× 
1

3
” part of “

1

2

1

3
× ” or “1

1

2

1

3
× × ” for showing the situations can 

be seen as operators.

Fig. 3.2 Tree Diagram
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In Indo-European languages, “× 2” should be written as “2×” and some prefer “2 ×” 
for showing the operator. Indeed, in f(g(x)), f(x) is the operator for g(x). However, 

“1 2
1

2
� �� � � ” cannot be written as “1 2

1

2
� �� � � .” In arithmetic, operators in 

“÷ 5” or “− 5” do not mean “5 ÷” or “5 −” because commutativity does not work for 
division and subtraction (except if it is an identity). For explaining the four arithmetic 
operations as operators, “× 2” is consistent usage with “÷ 2” in usage. Under the com-
partmentalization of knowledge, many Indo-European language users feel comfortable 
in using “2 ×” and “÷ 2” at the same time. However, preferring “× 2” is reasonable as 
long as it enhances the consistency of representations in the four  arithmetic operations 
as operators. It is a kind of unary operator in mathematics. Indeed, even though 
European Language, the unary operator “^” is written in the right hand such as 3^2 (3 
square). The matter of language will be discussed in the next section.

3.1.2.9  Activity of Elementary School and Cartesian Product

In Portugal’s curriculum (Ministério da Educação e Ciencia, Portugal, 2013, p. 9) as 
mentioned in Chap. 2, the situations of multiplication for repeated addition are distin-
guished from those for combinatorics: “Solve one-step or two-step problems involv-
ing additive, multiplicative situations and combinatorial.” The product of multiplication 
is also given by the counting activity in combinatorics: “Perform a given multiplica-
tion by fixing two disjoint sets and counting the number of pairs that can be formed 
with one element each by manipulating objects and by drawing.” If we draw a dia-
gram under this instruction, it should be a counting activity as shown in Fig. 3.3.

The combinatorial counting diagram in Fig. 3.3 can be seen as a part of tree dia-
gram (Fig. 3.2). In the case of Portugal, it is introduced as another definition. In 
many countries, multiplication using a tree diagram is discussed after elementary 
school as combinatorics. 

Watanabe (2003) explained Cartesian Product, A X B={(a,b): a∈A, b∈B}, as a 
meaning of multiplication. It can be seen from the perspective of probability tree 
because Fig. 3.3 can be seen from the perspective of ordered pares. On Cartesian 
Products, products by numbers of elements for A and B is a number of elements 
A X B. On set theory for Cartesian Products, commutativity and associativity do 
not work.

Fig. 3.3 Combinatorial 
counting

3 Problematics for Conceptualization of Multiplication



48

3.1.2.10  In Situations of Splitting as for Partitive Division

Confrey (1988) first presented splitting as a “multiplicative interpretation of parti-
tive division” (p. 255) although repeated addition looks like a multiplicative inter-
pretation of quotative division. Then, Confrey (1994, p. 292) defined splitting as “an 
action of creating simultaneously multiple versions of the original, which is often 
represented by a tree diagram.” Confrey focused on the development of ratios and 
proportional reasoning, including scaling, similarity, and exponentiation. All of 
these involve the coordination of two or more quantities or dimensions, which may 
or may not consist of levels of units that are commensurable.

Harel and Confrey (1994) point out that the idea of disaggregating or splitting is 
a powerful tool for teaching multiplication, which favors the extension of 
 multiplication to decimals and fractions, providing a geometric, and not only an 
arithmetical, view of multiplication.

According to Steffe (2003, p. 240), the splitting operation is the simultaneous 
composition of partitioning and iterating, where partitioning and iterating are under-
stood as inverse operations. Steffe (2003) and Hackenberg (2007) provide defini-
tions focused on the unit (and coordination of a unit of units). Steffe’s splitting 
builds multiplication as repeated addition, based on counting, addition, and subtrac-
tion. The focus has been on the coordination of levels of units in students’ develop-
ment of fractions, assuming equal-sized groups.

According to Harel and Confrey (1994), the operation that determines the total 
number of elements arranged in groups of equal quantity is of multiplicative character.

Following Confrey, in Fig.  3.4, equipartitioning/splitting indicates cognitive 
behaviors that have the goal of producing equal-sized groups (from collections) or 
pieces (from continuous wholes) as “fair shares” for each of a set of individuals. 
Equipartitioning/splitting is not breaking, fracturing, fragmenting, or segmenting in 
which there is a creation of unequal parts. Equipartitioning/splitting is the founda-
tion of division and multiplication, as well as ratios, rates, and fractions (see Chap. 4).

Confrey maintains that the technique of splitting promotes early work with units 
that are not a singleton, diminishing the difficulty that children have in conceptual-
izing ratios and proportions and other areas of multiplicative structures. For Confrey, 
the appropriate conceptions regarding ratios and proportions are built not on the 
basis of multiplication as repeated addition but, rather, as a parallel numbering sys-
tem that can be developed on the basis of a splitting operation. Confrey postulates 
that the foundation of the parallel system is developed naturally by children, and 
that the nature of such a system could have a powerful effect on the comprehension 

Fig. 3.4 Splitting equally: representation of 2 × 3 using splitting from the second rectangle to the 
third one. As well as the probability tree in Figs. 3.2 and 3.3, the splitting is consistent with multi-
plication as the operator: 1 → (× 2) → 2, 2 → (× 3) → 6 . Here the unit for counting number 6 is a 
smallest part of the rectangle in the right
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of multiplicative concepts. Children could build a multiplicative world parallel to, 
complementary to, and interdependent on the additive world.

Splitting links multiplication and division because it includes the meaning of 
equal distribution (partitive division); however, it is inconsistent with repeated addi-
tion. Fig. 3.5 can be read as 6 × 1 = 1 + 1 + 1 + 1 + 1 + 1 and 6 × 2 = 2 + 2 + 2 + 2 + 2 + 2 
and so on, but the basic units for counting the answers “6” and “12” are different. 
Splitting changes the unit of measurement before and after. In this context, the mul-
tiplicative world under the idea of splitting is consistent with equal division, parti-
tive division, but independent of the additive world, as has been discussed regarding 
the rate of different units.Given this inconsistency with repeated addition, splitting 
in multiplication is inconsistent with definition by measurement according to the 
Japanese. Because splitting changes the units before and after multiplication, in 
Fig. 3.4, the whole rectangle on the left is 1 before the multiplication but is divided 
into 6 equal pieces after the second.

Considering this consequence, Portugal can be seen as a unique country as it 
introduces both meanings of multiplication (group of groups and combinatorics), as 
mentioned in the introduction to the discussion in Chap. 2.

3.1.2.11  Another Usage: Splitting in Relation to the Distributive Law

The terminology of “splitting” is also used in relation to the distributive law (van 
den Van den Heuvel-Panhuizen, 2001) but it is outside Confrey’s claim in relation 
to partitive division. It is used in splitting, as in Fig. 3.6. Here, the knowledge of 
5 × 3 (5 threes) helps to give meaning to 6 × 3: “If 5 threes make 15, how many are 
6 threes?” For this expression, it is 5 × 3 + 3 and also can be seen as (5 + 1) × 3.

Fig. 3.5 Splitting changes the units’ figures for products in the diagrams

Fig. 3.6 Extending multiplication
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On another usage of the word ‘Splitting’, it is used to explain the distributive law 
such as “If 5 threes are 15 and 2 threes are 6, then 7 threes must be 15 + 6, which is 21.” 
5 × 3 + 2 × 3 = (5 + 2) × 3. The splitting on meaning of distribution is a key idea to 
extend the multiplication table and multiplication for multidigit numbers (Fig. 3.7).

In the multiplication table, (row of 3) + (row of 2) = (row of 5) if we adapt the 
distributive law (Table 3.1).

Here, splitting is used for inverse operation of distribution but not for equal divi-
sion. It keeps the unit for counting. It is consistent with the array diagram and area. 
Japanese textbooks such as those from Gakko Tosho (Hitotsumatsu et  al., 2005; 
Isoda, Murata & Yap, 2015; Isoda & Murata, 2011) use this idea to enable students to 
extend the multiplication table and adopt it by and for themselves (see Chaps. 6 and 
7). The activity for this meaning of splitting can be explained by the theorem in action 
for the distributive law (Vergnaud, 1990; see also Tall, 2013, pp. 183–188) (Fig. 3.8).

3.1.2.12  Limitations of Every Model for Multiplication

According to Freudenthal (1983), multiplication is used to find a number, called the 
product, that is to the multiplier what the multiplicand is to the unit, such as 6:3 = 2:1 
(6 is to 3 as 2 is to 1). It is related to proportionality and is consistent with definition 

Fig. 3.7 Splitting and 
distribution

Fig. 3.8 Row of 5 from rows of 2 and 3 using the distributive law

Table 3.1 Row of 2 and Row of 3 produce Row of 5

1 2 3 4 5 6 7 8 9
Row of 2 2 4 6 8 10 12 14 16 18
Row of 3 3 6 9 12 15 18 21 24 27
Row of 5 5 10 6 + 9 8 + 12
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by measurement as used by the Japanese since the 1960s and Descartes’s diagram 
(Fig. 3.1). In natural numbers such as 3 × 2, the multiplier 3 shows the number of 
repetitions of 2 for preferring multiplication in additive situations.

Even though the dot models in Fig. 3.9 can be used, there are various ways to find 
the units. In the models for repeated addition, all the units for counting should be 
seen as the same. Seeing the models from this perspective is possible when we have 
the idea of multiplication. At the same time, every model has its own nature as a 
mediational means. For example, the area diagram (model) for multiplication can be 
used for the extension of multiplication to decimals and fractions and positive (and 
0) real quantities, and is appropriate to explain commutativity. However, it cannot 
be a model for multiplication of negative quantities. Descartes’s constructions and 
proportional number lines, which are consistent with definition by measurement, 
can be applied for negative numbers, but commutativity cannot be seen instantly. 
Confrey links multiplication and partitive division; however, this is inconsistent 
with repeated addition because the unit for measurement changes.

From the viewpoint of magnitude, magnitude relationships (equivalent relations 
and order relations) can be illustrated by using models such as Descartes’s construc-
tion, area diagrams, and dot diagrams18 when their units of measurement are clearly 
embedded in the models. However, splitting and tree diagrams change their units. 
As Miwa (1983) mentioned, models function as a joint between mathematics and 
the real world. Gravemeijer (2008) discussed the model of a situation and the model 
for a form. Tall (2013) explained the conceptual difference and the development of 
the three worlds of mathematics by the terminologies “embodiment,” “symbolism,” 
and “formalism” and also the cognitive obstacles in one’s development, which he 
termed “met-before.” Freudenthal (1973) also explained the process of reorganiza-
tion by mathematization. The Japanese use these inconsistencies as part of their 
curriculum content by explaining it as extension and integration for the opportunity 
to develop mathematical thinking (Chap. 1).

Depending on the context, the roles of the models are different. The number lines 
are bases for Cartesian coordinates to represent the changes in the graph of function 
and the figure defined by an equation. Descartes’s construction of multiplication in 
his geometry is the origin of the Cartesian coordinates. Depending on the context, 
the roles of models change in the world of mathematics.

18 Historically, Pythagorean schools used a dot diagram to represent properties of numbers.

Fig. 3.9 Multiplication task variation (see Gakko Tosho textbooks—for example, Hitotsumatsu 
et al. (2005), Grade 2, Vol. 2, p. 12)

3 Problematics for Conceptualization of Multiplication



52

Every model for multiplication has limitations in its nature. Every model for a 
specific situation is usually used for scaffolding. However, the reasoning when 
using the models is not the same as the formal reasoning even though they support 
mathematical–conceptual reasoning itself. In the case of Japan, the terminologies 
“concrete objects,” “semi-concrete objects,” and “abstract objects” have been used 
to discuss the different functions of the models and situations, and extension and 
integration have been the principles of the teaching sequence, corresponding to 
reorganization for mathematization.

3.1.2.13  Conceptual Fields for Multiplication

Vergnaud (1990) studied the conceptual field for multiplicative structures and dis-
tinguished three types of problems: isomorphism of measures, product of measures, 
and single measure space. This categorization provides a framework to distinguish 
conceptual difference in relation to multiplicative situations in teaching.

A problem of the first type, isomorphism of measure, is “A bag has 7 sweets. 
How many sweets are there in 6 bags?” A scalar resolution to the problem is “If 
there are 7 sweets per bag, in 6 bags there will be 42 sweets (7 sweets/bag × 6 
bags).” A functional resolution is “If there are 6 bags, and in each bag, there are 7 
sweets, then there will be 42 sweets (6 bags × 7 sweets/bag).” In the functional reso-
lution, there is a movement from one measure (bags) to another (units of sweets). It 
is consistent with definition by measurement.

A problem of the second type, product of measures, is “We have 3 different shirts 
and 4 different skirts. How many combinations of shirts and skirts are possible?” 
This situation includes two fields of measurements that are composed without con-
stituting a proportional function that associates the two fields. It is consistent with 
combinatorics and the probability tree.

A problem of the third type, unique measure space, is “Andres has thrice (3 
times) the number of pencils that Jose has. How many pencils does Andres have if 
Jose has 4?” It is consistent with definition by measurement.

Vergnaud’s categorization for multiplicative situations can be also seen in our 
terminologies for meanings of multiplication in situations (see Figs. 4.20 and 4.21 
in Chap. 4).

This section has illustrated various meanings of multiplication; however, it has 
not discussed the curriculum design itself. As explained in Chap. 1, these terminolo-
gies distinguish the difference of content necessary for considering the curriculum 
and the task sequence. For example, the framework of the multiplicative structure 
must distinguish combinatorics and others, and combinatorics is consistent with 
splitting. Such discussions are bases to establish the sequence, but it does not explain 
well why only Portugal’s curriculum introduces combinatorics from the beginning. 
The terminologies promote to distinguish conjectural difference but do not explain 
the curriculum sequence itself. The principle of extension and integration, or reor-
ganization for mathematization, to develop mathematical thinking provide the 
sequence under the distinguished concepts (Chap. 1). The sequence will be dis-
cussed in Chap. 4 with further terminology.
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3.2  Problems with Multiplication that Originate 
from Languages

Vygotsky (1934/1986, 1934/1987) and Wertsch (1991) enhanced the roles of medi-
ational means to develop thinking. Under their perspective, children develop their 
mathematical thinking through mediational means used for communicating their 
language, such as speaking and writing, for making sense of what they learn.

Language enables us to verbalize numbers, such as “eleven, twelve, thirteen.” 
However, writing does not always correspond with our way of speaking. For exam-
ple, “twenty-five” is written as “25” under the base ten system and not as “205” (the 
way it is said). In English, as well as in other Indo-European languages, the way the 
four operations are spoken does not usually correspond to their algebraic expres-
sions: “Add B to A” is A (augend) + B (addend), read as “A plus B.” “Subtract B from 
A” is A (minuend) − B (subrahend), read as “A minus B.” “Divide 12 by 4” is “12 
(dividend) ÷ 4 (divisor)” but “multiplied 3 by 4” is “4 (multiplier) × 3 (multipli-
cand)”: “–r” or “–d,” which one is operato “–r”? Depending on Vygotskian claim, 
those inversions between grammatical structure and mathematical notation may set 
some limitations for learning mathematics in English, even though adults’ users of 
English do not perceive any difficulties and inconsistencies in their usage. In Japanese, 
the grammatical expressions and algebraic expressions correspond well and there is 
no such inverted correspondence between their daily expression and mathematical 
expressions. In multilingual countries, the differences are more complicated. For 
example, the official language of Indonesia is inverted like English. However, like 
Japanese, the Javanese language of the central island of Java in Indonesia has no such 
inversion. In Javanese, 2 × 3 means “2, 3 times” as well as Japanese.

In the case of English and Spanish, the “×” symbol in the multiplication expres-
sion, which is read as “by” and por (“by”), respectively, does not necessary refer to 
the order of numbers. In English, there is no order if we say “multiply A and B.”

However, if the expression is associated with the word “times” in English (or 
veces in Spanish) in real life—and, as such, the multiplier—the number of groups is 
placed to the left, as in Fig.  3.10. As for the language, there is a good ordinal 
correspondence.19

In Indo-European languages, when they introduce the multiplication table to be 
consistent with their languages, there is a syntactic contradiction between models A 
and B in Fig. 3.11 using “times.”

The row of 2 in the multiplication table is usually shown below:
2 × 1 = 2, 2 × 2 = 4, 2 × 3 = 6, 2 × 4 = 8, 2 × 5 = 10, 2 × 6 = 12, 2 × 7 = 14, 

2 × 8 = 16, 2 × 9 = 18.

19 As we discuss later, the daily usage of language and algebraic expression do not always corre-
spond. For example, in English (Latin), the limited words for multipliers (such as “single,” “dou-
ble,” “triple,” and “quadruple”) already include the meaning of “times” but are not applicable to the 
multiplication of any natural numbers. In real life, “double” in tea implies 2 cups of tea, with 1 cup 
as the unit. As in “half of something,” the “of” implies the multiplication symbol “×”. “Multiply 3 
by 2 to get 6” in daily usage is “3 multiplied by 2 equals 6” in an algebraic sentence. However, 
“multiply 5 and 2” enhances commutativity and does not consider the order of the multiplier and 
the multiplicand.
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Fig. 3.10 “×” as “times”

Fig. 3.11 What is repeated addition in a European language?
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The difference between the consecutive products is + 2, the same as the multi-
plier. This property is used to proceduralize the sequence of the row of 2.20 When we 
try to explain this constant difference with repeated addition, it will be understand-
able and reasonable for children to explain that “2 × 3 is 2 added 3 times, and 2 × 4 
is 2 added 4 times, thus the difference corresponds to 2 added once.” In model A, it 
should be written as 3 × 2 and 4 × 2. As long as we read the multiplication symbol 
“×” as “times,” the appropriate interpretation based on the repeated addition is “2 × 
3 [two times three] is 3 + 3, and 2 × 4 is 4 + 4, like model B. Every term increases 
by 1—that is, both 3s become 4s, and since there are two terms, the increase is 2.” 
Adding 2 in repeated addition and the interpretation of the two terms will be contra-
dictory for children as long as the definition of multiplication is repeated addition.

The reason for keeping the multiplier for the row number in the multiplication 
table—in this case, the multiplier for the row of 2—is based on multiplication in 
vertical form, which is called a multiplication algorithm in US English and the col-
umn method in UK English. For multiplying 43 × 2 in vertical form, the row of 2 is 
used for calculation from the lower line number 2 to the upper line number 43 (see 
Chap. 7). In multiplication in vertical form, multiplying from the lower number to 
the upper number is usually used not only in countries that speak Indo-European 
languages but also in countries that speak non-Indo-European languages, such 
as Japan.

In Fig.  3.11, the image of “increase by two in the row of 2” looks like 
model A. However, the row of 2 should be explained by model B. But model B can-
not clearly explain the constant difference in the consecutive products. To avoid this 
contradiction that students may meet, there are two well-known traditional 
approaches:21

• The first approach enhances commutativity for applying repeated addition in 
model B: 2 × 1 = 1 × 2 = 2, 2 × 2 = 2 × 2 = 2 + 2, and 2 × 3 = 3 × 2 = 2 + 2 + 2.

20 As explained briefly in Fig. 1.1 of Chap. 1, this procedure is known as an automatized algorithm. 
Proceduralization means to produce an algorithm with meanings. In the Japanese approach, “think-
ing about how to calculate” is an objective, as well as understanding and achieving proficiency. 
Thus, it is recommended that the procedure is produced by students on the basis of the meaning 
they already know (see Isoda & Olfos, 2009, pp. 127–144). The Japanese use the meaningful pat-
tern increase by the unit for memorizing the multiplication table. In Eastern culture, historically, 
the table should be memorized using the Chinese–Japanese abacus. In Western culture, memoriza-
tion in mathematics education is usually discouraged because the word “memorize” often implies 
“without understanding” and the table is used for reference. From the Eastern cultural perspective, 
Western images of memorization look like a stereotype discussion. In East Asia, historically, peo-
ple only used Chinese characters for academic subjects. Even if the word pronunciations were the 
same, they could reason by applying different characters to represent appropriate meaning. People 
were able to distinguish the meaning from the visible characters. The current simplified Chinese 
(pinyin) changed the tradition. Hangeul, and French-based Vietnamese alphabets become phono-
grams that have no intrinsic meaning for characters. However they still keep the tradition of mean-
ingful memorization.
21 Several approaches to vertical form will be discussed in Chap. 7.
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• The second approach prefers that in the row of 2 defined by model A, the 
 multiplicand is the constant, here 2, to be consistent with repeated addition, such 
as the  following: 1  ×  2  =  2, 2  ×  2  =  2  +  2  = 4, 3  ×  2  =  2  +  2  +  2  = 6, 
4 × 2 = 2 + 2 + 2 + 2 = 8, ..., 9 × 2 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 18.

Both approaches can be seen in countries that influenced from Indo-European 
languages and are considered to introduce the multiplication table reasonably. In 
the case of a number table without models and situations, the multiplication table 
is used to show the products of multiplication. In the multiplication table, if the 
multiplier is 2 and the multiplicand is 3, then the intersection, 6, is the product. In 
the multiplication algorithm in vertical form, mental calculation and mechanical 
writing of the products is necessary (see Chap. 7) and the first approach is pre-
ferred by many countries because it is well connected with the multiplication algo-
rithm. Indeed, the order in the multiplication table, such as the multiplier and 
multiplicand, and the row and column, are related to multiplication and division in 
vertical form (the column method, algorithm, and long division) and the represen-
tation of proportion, y = ax (see Chap. 4).

The reason why the second approach is not easily chosen is because it is incon-
sistent with the vertical form (column method), where multiplication is from the 
lower line to the upper line: If the row of 2 is “1 × 2 = 2, 2 × 2 = 4, 3 × 2 = 6, 4 × 2 
= 8, 5 × 2 = 10, 6 × 2 = 12, 7 × 2 = 14, 8 × 2 = 16, 9 × 2 = 18,” 43 × 2 in vertical 
form becomes upper line to lower line and making decision of applying row of 2 
from 2 × [  ] to [  ] × 2. And if so, the proportion changes to y = xa.

Against these two approaches, splitting has been proposed as an alternative 
approach in place of the traditional approaches. Indeed, Portugal considers both 
repeated addition and combinatorics (similar to the tree diagram) in introducing 
multiplication in the second grade. Due to the inconsistency between models A and 
B, it may be reasonable that Portugal introduces a number of cases from the second 
grade. It may be complicated for some of students if different situations cannot be 
seen as one operation for them. It will be supportive if students can use the idea of 
splitting to find the product, such as to split a rectangle horizontally into 2 and verti-
cally into 3 (see Fig. 3.4). In English and other European languages, only splitting 
and the tree diagram are not complete approaches, unlike the others, because they 
change the meaning of the unit and thus are not consistent with repeated addition. 
On the other hand, in the Japanese syntax, the notation under the Japanese grammar 
does not produce such inconsistences (see Fig. 3.12) (Isoda, Arcavi, & Mena, 2007, 
p. 281). If the Japanese notation 3 × 2, which is written 3 [×] 2 here, is translated 
into English, it means “3, two times.” In Fig. 3.12, “the difference in the row of 3 is 
the constant 3 (the constant property of the difference)” is explained consistently 
with repeated addition as follows: 3 [×] 1 = 3, 3 [×] 1 + 3 = 3 + 3 = 3 [×] 2, 3 [×] 
2 + 3 = (3 + 3) + 3 = 3 [×] 3, 3 [×] 3 + 3 = (3 + 3 + 3) + 3 = 3 [×] 4, and so on.

Thus, in Japanese notation, there is no contradiction between repeated addition 
and the property of constant difference between consecutive products.

In some Indo-European-language-speaking countries that are supported by the 
Japan International Cooperation Agency (JICA), the Japanese notation is preferred 
for overcoming contradictions. Because as the discussion on Section 3.1.2.8, and 
Fig. 3.10, from the perspective of division operator, multiplier will be seen as the 
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second number. For example, “‘divide a by b’ and then ‘multiplied by c’” might be 
fine to be written as a÷b×c. It will be strange if we have to write is as c×a÷b in any 
time because it is read as ‘c multiplied by a’ and then ‘divided by b’. In this approach, 
the terms “times” and veces create confusion in explaining and reading the multipli-
cation symbol “×”; it should be read as “multiplied by,” “by (por),” “of,” or “and” 
instead of “times (veces)”) because originally 3 [×] 2 meant “3, two times.” Here, 
we cannot read the symbol “×” as “times.” These syntactical changes are preferred 
by the curriculum departments in governments that have had deep discussions on 
historical tradition and current convenience. These countries use multi-languages 
on their histories and enhance the commutativity of multiplication.

The problem of inconsistency in English and Spanish originated from the differ-
ence between natural languages and mathematical notation.22 Several difficulties 
might appear because the natural language should be preferred in school mathemat-
ics at the begging for referring to situations with quantities in real life. In the world 
of mathematics without situations, such confusion never appears.23 Problematic 
appears in Indo-European languages but not in Japanese.

22 Fischbein, Deri, Sainati, and Sciolis (1985, p. 5), and Vergnaud (1990) also discussed the prob-
lematics of English but did not mention other languages. In this book, the roots of these contradic-
tions are discussed in Chaps. 6 and 7.
23 In informatics as a scientific language, mathematical notation itself can be changed. In program-
ming language, “=” usually means substitution. In metanotation in informatics, there are Polish 
notations, reverse Polish notations, and others such as normal mathematical notations.
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In English, there is no contradiction but it is not accum
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Fig. 3.12 Meanings and approaches of 3 × 2 in English and Japanese for applicable to traditional 
multiplication table and vertical form (column method) which multiply from the each digit in the 
bottom to the each digit in the top  (see Chap. 7)
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In theoretical arithmetic under normal mathematical notation, natural numbers 
are defined by the inductive definitions of Dedekind and Peano, and, in theory, the 
product is deduced inductively “M × (N + 1) = M × N + M” (Olfos, 2002). In this 
compete-inductive definition of multiplication, which is the same as the constant 
property in the table, the Japanese multiplication notation in Fig. 3.12 is consistent 
with the mathematical notation. The expression 3 × 4 refers to a group of three as 
the unit and 4 as the number of groups/units. Consequently, 3 × 5 = 3 × (4 + 1) = 3 
× 4 + 3, as the unit is added to the initial groups. On the other hand, as previously 
mentioned, the English usage of “times” corresponds to 3 × 5 = 5 + 5 + 5. To see the 
sequence increase by three in English notation as for the repeated addition of 3, it 
must be changed, like 3 × 5 = 5 + 5 + 5 = (4 + 1) + (4 + 1) + (4 + 1) = 3 × 4 + 3. 
It is an interpretation far from the inductive definition of multiplication.

The inconsistencies of expressions between natural language and mathematical 
notation in the Indo-European languages are problems not only for multiplication 
but also for the other three operations, as already mentioned. These inconsistencies 
produce difficulty for explanation of arithmetic in the said languages. As a con-
sequence, there are projects that prefer the Japanese notation system in Central 
America, Thailand, and other places. To maintain consistency between language 
and mathematics, Japanese textbooks have established a sequence for extension that 
can be seen as attractive in being understandable (see Chap. 4).

If you feel uncomfortable about discussion of the Japanese notation of multi-
plication and not your notation, this is because of your familiarity with your 
mother tongue. However, we should note that our acquired usage itself can be 
seen as the result of our achieved curricula. There are various approaches for solv-
ing the matters in Fig. 3.12. There are further reasons why the Japanese approach 
is selected by some countries24 as an alternative approach, like the idea of splitting 
in the US approach and combinatorics in Portugal. One reason is consistency of 
definitions with the extension of numbers and operations, and another reason is 
consistency with the multiplication table. Other reasons such as consistency of 
multiplication in vertical form and division and so on will be clearly illustrated in 
Chaps. 4, 5, 6, and 7 with explanations of the Japanese approach. The Japanese 
approach has rationality but it is one of the various existed approaches. The 
National Curriculum on Colombia introduce multiplication as ‘multiplier x (mul-
tiplied by) multiplicand’ at the lower grade and then,upper grades, treat ‘multi-
plier’ like an operator in relation to ‘divisor’ (see Section 3.1.2.8). Such an 
approach is normal for Latin America. On the next section, we would like to dis-
cuss the historical usages and influence to Chile.

24 In Latin America, the countries of Honduras, Guatemala, El Salvador, Nicaragua, the Dominican 
Republic, and Mexico prefer Japanese notation based on Japanese textbooks.
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3.3  European Languages and Their Historical Usages

Depending on historical origins such as languages and developments,25 there have 
been various textbooks in different periods and regions that placed the multiplicand 
on the right, while others placed it on the left. In the thirteenth century, Ibn al-Bannā 
(from Almohades (Morocco), which included a part of Spain) explained a procedure 
for multiplying in columns (grids) by placing the multiplicand at the top of the col-
umn and the multiplier to the left or to the right of the column; this was later known 
as “Napier’s bones” or “rods of Napier (1617). Ulloa (1706) indicated that the mul-
tiplier was placed below in the column algorithm. Before the predominance of mod-
ern mathematics, there were texts in Spain that presented the multiplier after the 
multiplicand, as the second number (Rey Pastor & Puig Adam, 1935). With the 
arrival of set theory, the  language changed, and inconsistencies appeared in mixing 
arithmetic language with algebraic language. Prima-Luce (1976) stated, “We call a 
‘product’ the cardinal of the Cartesian product. The second factor is called the mul-
tiplier. The first factor is called the multiplicand. 2 × 3 = 3 + 3 = 6.” (Prima-Luce, 
1976). There are two inconsistencies in the above description: maintaining names 
connected to the contexts together with formal language and exemplification with 
an inappropriate numerical representation.

The representation of “two hundred” can be seen as “2 times 100.” Spanish 
grammar accepts this, saying dos manzanas for “two apples” although nouns usually 
come before adjectives in Spanish, as in manzana roja (“apple red” rather than “red 
apple”), which involves a kind of rupture. 2A is A + A in algebraic notation. However, 
in the first grade, students learn arithmetic operations starting with situations like 
“Add something to A” or “Take something away from A.” So, A + B and A − B ini-
tially are represented by situations that add B to A or take B away from A. A is the 
noun or the subject to be transformed, so A comes before  B. If we adopt this 
approach to A × B, it is possible for Spanish (Roman) to see “A” as the multiplicand, 
as in Japanese, because the action is done by B, the multiplier, as in the previous 
discussion of the operator. In reciting “2 times 3, 6,” “2 times 4, 8,” “2 times 5, 10” 
the number 2 can be seen as being multiplied by several numbers as the action. The 
sequence of results is 2, 2 + 2, 2 + 2 + 2, and so on. In this instance, it is like the 
probability tree that was discussed earlier in this chapter. In this manner, “2 times 3” 
implies “2, three times”; “three times” looks like part of the operator, and the first 
number 2 looks like the multiplicand in Japanese. In Spanish, A × B as “A times B” 
and “A multiplied by B” provide a polysemy, which affects the meaning of the 

25 European languages can be divided into Latin–Roman, Indian Europe (for example, German, 
English, and Nordic languages), and Slavic. Some languages such as Finnish and Hungarian are 
independent of these categories. Here, we are referring to Latin–Roman and Indian Europe, espe-
cially Spanish. Cajori (1928) explained that multiplication symbol “×” was introduced by Oughtred 
(1631, used Latin Edition, 1667). Oughtred used column multiplication for number and introduced 
“×” for his algebraic notation. He mentioned factor at introduction and discussed his column mul-
tiplication. He did not used symbol “×” for column multiplication. He discussed significance of 
multiplication for logistics and estimation of multiplicand and calculation of multiple on the col-
umn (p.8).  It implicates that multiplicand comes upper and multiplier comes lower on column. See 
(Chap. 7).
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expression for the multiplication table. Consequently, even students misinterpret the 
pattern 2 × 6 = 2 × 5 + 2 as (2 + 2 + 2 + 2 + 2) + 2. It is not necessary to say “it should 
be 6 + 6” if they can see it like this in this situation. This is a possible reason why 
Central American countries such as Honduras, Guatemala, Nicaragua, and 
El Salvador prefer the Japanese notation of multiplication in JICA projects.

Freudenthal (1983) highlights the fact that the language of mathematics differs 
greatly from everyday language used in different countries where it has developed, and 
adds that the divergence between a natural language and mathematical language can in 
fact create learning difficulties. He also points out that “4 + 3” is a strange way to write 
the task “add 3 to 4,” which mathematically indicates the sum of 4 and 3, and that 
everybody reads “four plus three” even though it does not agree with their language 
(English or German, and also Spanish or French). At the beginning of the twentieth 
century, “7 − 4” was read in German as vier von sieben (“4 from 7”). These antecedents 
are indications that in German and English, it would be natural to write the subtrahend 
and then the minuend, and by analogy the multiplier would precede the multiplicand.

With regard to Spanish, which originated in Castile, Vallejo (1841, p. 26) wrote, 
“The expression ‘5 − 3 = 2’ means that after removing 3 units from 5, 2 are left, and 
is read ‘five minus three equals (or is equal to) two.’ ”

Anglo-Saxon languages differ from Latin languages. Base twelve English mea-
surement systems and base eight Spanish playing cards are remnants that predate 
the Indo-Arabic decimal system, which penetrated Europe through southern Spain. 
The Arab invasion of Spain during the eighth century brought the decimal system 
with its operative algorithms and modalities of oral expression, which surely con-
flicted with the existing European languages.

Research around 30 years ago by Fischbein, Deri, Sainati, and Sciolis (1985, 
p. 5) and Vergnaud (1990) revealed that differences between the multiplier and the 
multiplicand are at the root of different complexities presented by multiplication 
problems (which we mention in Figs. 3.11 and 3.12) and influence the decision of 
anticipating the operation that needs to be made.

3.3.1  The Transition in Chile

Chile inherited the Spanish language in the nineteenth century, along with textbooks 
that place the multiplicand first, on the left. Later, with North American influence 
and the universality of the International Commission on Mathematical Instruction 
(ICMI), Chilean mathematics programs in 1968 (MINEDUC, 1968) introduced 
multidigit multiplication in the fifth grade and used the term “factor” together with 
algebraic terminology with the idea of the multiplier on the left.

The current Chilean mathematics programs (MINEDUC, 2013b, 2013c) main-
tain the introduction of multiplication with the term “factor” and do not use the 
terms “multiplicand” and “multiplier.” The current programs for the third and fourth 
grades identify the word “factor” as a key term, which is cited more than a dozen 
times in each program.

The mathematics program in the national curriculum for the second grade in 
Chile (MINEDUC, 2013a) presents multiplication as repeated addition, without 
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establishing associations between the factors and the meaning that each of them can 
take on. It does not establish connections between the number of groups and the 
term “times.” It does not identify “times” as a pattern associated with a multiplier 
and a multiplicand.

The idea that the multiplier goes on the left is observed in the examples, without 
the term being mentioned, coinciding with the approach of textbooks from 
Singapore. In the second grade, the program says, “Demonstrate understanding of 
multiplication. using concrete and pictorial representations; expressing multiplica-
tion as the addition of equal addends. to construct the multiplication tables for 2, 5, 
and 10.” The program for the third grade adds, “to construct the multiplication 
tables up to 10.” The program for the fourth grade says, “Demonstrate understand-
ing of multiplication of 3-digit numbers multiplied by 1-digit numbers” and the 
program for the fifth grade adds, “of 2-digit numbers multiplied by 2-digit numbers.”

The same Chilean mathematics program for the fourth grade (MINEDUC, 
2013c, p. 66) currently presents as an example the calculation “231 × 3,” beginning 
the calculation on the right, although the multiplication table is introduced with the 
multiplier on the left, as can be observed in the bottom part of Fig. 3.13.

In Chile, textbooks and even curriculum standards have adapted influences from 
other countries and the tendencies in mathematical education of each period. 
Simultaneously, old textbooks still circulate in the country. In some textbooks and in 
the language of some parents and tutors, the teaching of the multiplication table—and, 
to a greater degree, the use of the procedure for multiplying from right to left—persist 
with the multiplier on the right. Despite all of these, for adults (and even for primary 
mathematics teachers), “3 × 2” means “3 times 2” and “3 multiplied by 2” without 
distinction, as the order of the factors does not change the product.

3.4  Final Remarks

This chapter has addressed the problematics in the conceptualization of multiplica-
tion in school mathematics—including definition of multiplication by measure-
ment, various meanings of multiplication, and the problem of syntax in relation to 

Fig. 3.13 Change the 
direction of multiplication 
from “left to right” to 
“right to left” for using the 
multiplication table
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languages and grammar—and has discussed historical transitions and adaptations to 
a country such as Chile.

The discussions of those problematics provide some answers to the related ques-
tions posed in Chap. 2; however, this chapter has not mentioned the curriculum and 
the task sequence themselves, which are necessary to consider for designing les-
sons. The mathematical terminology in this chapter provides a basis for the neces-
sity to consider the Japanese approach in Chaps. 4, 5, 6, and 7. The terminology for 
the curriculum and the task sequence will be discussed in Chap. 4.
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Chapter 4
Introduction of Multiplication and Its 
Extension: How Does Japanese Introduce 
and Extend?

Masami Isoda and Raimundo Olfos

In Chap. 1, the Japanese theories related to lesson study which oriented the 
 development of students who learn mathematics by themselves through the devel-
opment of mathematical thinking were summarized by the aims and objectives 
under the national curriculum standards, the terminology to distinguish content, the 
task sequence to develop students, and the teaching approach. In Chap. 2, the ques-
tions to make clear the Japanese Approaches were posed through the comparison to 
other countries. In Chap. 3, the difficulties to learn multiplication from using 
national languages towards mathematical form was described. In this chapter, 
Japanese curriculum sequence will be over-viewed from the perspective to make 
clear the extension and integration process shown on Fig. 1.1 of Chap. 1 by using 
the terminology and task sequence related to multiplication. It also describes related 
content such as the unit, division, decimals, fractions, and proportionality, and how 
each content is embedded for the preparation of future learning for sense making.  
The necessity to distinguish multiplier and multiplicand will be explained to 
sequence of these contents. The significance for the definition of multiplication by 
measurement in Chap. 3 will be also confirmed in relation to proportional num-
ber line.
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4.1  The Introduction of Multiplication Using the Japanese 
Approach

As discussed at Chap. 2, the process of teaching multiplications are usually fixed 
depending on the national curriculum standards in every county. For example, 
Hulbert, E. T. et al (2017) brought their research for teaching multiplication and 
division to the classrooms in USA under the Common Core State Standards 
Mathematics (2010) and show their teaching process clearly. Here we would like to 
illustrate how Japanese sequence of teaching multiplication are consistent with the 
related content under the principle of Extention and Integration (see Chap. 1).

Under Japanese grammar, the definition of multiplication in the second grade 
consists of associating the mathematical sentence A [×] B,1 “A, B times” with the 
answer C (A [×] B = C), which corresponds to the total number of elements, with A, 
the number of elements in each group, and B, the number of the same groups under 
the definition of multiplication by measurement in Chap. 3. The mathematical 
expression “3 [×] 2” codifies the operative procedure “three, two times”, in English 
or Spanish. The Japanese syntax of multiplication gives independent meanings for 
A (kakerareru-su; “multiplicand” in Japanese) and B (kakeru-su; “multiplier” in 
Japanese), which, as they are associated with situations in context, make it neces-
sary to consider that A [×] B and B [×] A refer to different situations, even though 
they give the same numerical result, C.2

On the other hand, in the case of English and Spanish notations, to avoid incon-
sistencies (which were discussed in Chap. 3), commutativity is enhanced from the 
beginning. Then, students do not care about the independent meanings of multiplier 
and multiplicand, thus A × B and B × A will be seen as the same from the introduc-
tion of multiplication. Some countries such as Brazil just call them factors (see 
Chap. 2). However, if we do or do not distinguish A (multiplier) and B (multipli-
cand) in multiplication, how will this influence other teaching content?

Here, we explain why the Japanese curriculum has a consistent teaching sequence, 
and then we explain the hidden inconsistencies seen in other countries. For explana-
tion, we go back to the definition mentioned in the Japanese mathematics curriculum 
guide (Isoda, 2005, 2010; Isoda and Chino, 2006), which points out that multiplica-
tion is used to find the total based on “how many units there are when a unit is given.” 
This was explained as definition by measurement in Chap. 3. For the second grade, the 
guide proposes the use of groups as a unit. Here a unit means an arbitrary measure 
wherein any number can be a unit in Descartes’s definition (see Chap. 3). In the 1989 
teaching guide, translated into English (Isoda, 2005), it is interpreted that:

• The study of multiplication begins as an efficient means to express a unit repeated 
several times. The unit can be the cardinality of a set or a group. So, if a group of 

1 In Japanese grammar, in the official placement of multiplication, the unit is on the left. In this 
chapter, we write Japanese multiplication using “[×]” instead of “×” to highlight this. In A [×] B, 
A is the multiplicand and B is the multiplier.
2 In the ancient Mesopotamian language, Sumerian, the order of words is the same as that in 
Japanese (Muroi, 2017); it is represented as A a-rá B túm. Here, túm means “carry” (see Chap. 3).
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3 elements is repeated 4 times, there are 3 + 3 + 3 + 3 elements, which is abbrevi-
ated as 3 [×] 4.

• The definition of multiplication arises from the assignation of the name of every 
quantity as an object of measurement; that is, the definition is set as the way of 
measurement in tape diagrams, which can be adopted into proportionality in the 
tape diagrams later.

• The meaning of multiplication is addressed gradually in the extension from 
restricted situations for repeated addition and times3 up to decimals and frac-
tions. The introduction of every row of the multiplication table begins with situ-
ations for quantities and extends multiplication up to 10 times. Units that are 
larger than 10 are discussed in the next grade. Continuous units are discussed, 
particularly with the centimeter as a unit of measurement4 (they already know 
measurement by 1 cm), for extending it to decimals and fractions (quantities of 
length produce continuous numbers) in later grades (Fig. 4.1).

The introduction of multiplication in the second grade in Japan (See Situation A 
and Meaning A in Fig. 1.1 of Chap. 1) is based on the operation to get the total 
quantity when the unit quantity and the number of units are known. It means, for 
natural numbers, a number in every group (unit) and counting the number of the 
same groups (units). It is the definition of multiplication by measurement and the 
whole number at this stage—that is, a set of groups or a group of groups (see Chaps. 
2 and 3). Two different quantities using denominate numbers are necessary; for 
example, each plate has 3 apples and there are 4 plates (see Chap. 3). This is signifi-
cant in two ways. One is to explain the situation briefly, which enables students to 
distinguish ordinary addition. Another is repeated addition in situations which is the 
starting point in the proceduralization from repeated addition to using the multipli-

3 The Japanese usage of “times” (bai) is not only limited to the number of repetitions. The number 
of repetitions is usually represented by kai instead of bai; bai in Japanese is used up to multiplica-
tion of decimals and fractions, and for proportionality in the context of enlargement and reduction 
of the given number. The idea of bai is the key idea in development of proportionality. Its usage is 
rather close to “of.”
4 In Japanese textbook, the symbol “×” is read as kakeru or Kake. It is close to por in Spanish and “by” 
in English. The tape diagram is introduced later after the redefinitions of “×” as bai (times). Bai is 
defined using the tape diagram. It is used for extension of numbers to decimals and fractions.

Fig. 4.1 Gakkotosyo 
(Hitotsumatsu, 2005), 
Grade 2, Vol. 2, p. 18
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cation table. As discussed in Chap. 3, repeated addition is not multiplication as a 
binary operation, even though it is the only way to find the answer at the start. 
Multiplication as a binary operation begins with the multiplication table.

At the introduction of the multiplication table on Procedure A of Fig. 1.1, 
repeated addition is necessary. On the extension of the multiplication table in 
every row, the pattern of products increases by the unit of the row. This becomes 
the principle to construct the multiplication table (see the discussion on perma-
nence of form in Chap. 3 and Table 1.1). On the teaching of the multiplication 
table, the pattern of products is introduced and then all rows are combined to form 
the multiplication table. Knowing the properties of the multiplication table pro-
motes the change in the meaning of multiplication from conceptual to procedural 
without concrete situations (see Chap. 1 and 3, especially Fig. 1.1). The properties 
of the table itself provide the procedural meaning of multiplication in the world of 
mathematics, which exists as patterns for sets of products without quantities. 
Chapter 7 of this book shows teaching of multidigit multiplication in the third grade 
in Japan. The proceduralized table with patterns also results in the conceptual mean-
ing of multiplication (this emerges as a procedure in the second grade; see Chap. 1, 
Fig. 1.1), which is used for developing the procedure in vertical form (the column 
method). The multiplicative procedure of multidigit numbers can be created based 
on the conceptual and procedural knowledge of the multiplication table and the base 
ten system up to the second grade.

The dualities through conceptualization and proceduralization in the Japanese 
teaching sequence for the conceptual development of multiplication are not limited 
to multiplication but also apply to all teaching sequences for mathematics in Japan 
(Isoda, 1996; Isoda and Olfos, 2009, pp. 127–144). Those gradual conceptual devel-
opment processes are well illustrated in the Gakkotosyo textbooks (Hitotsumatsu, 
2005; Isoda and Murata, 2011; Isoda, Murata, and Yap, 2015).

4.1.1  The Way to Initiate the Situation for Multiplication 
Before Repeated Addition in the Japanese Approach5

The first task consists of challenging the students with multiplicative situations so 
they are able to distinguish them from additive situations (see Figs. 4.2 and 4.3). 
Figure 4.3 is discussed at the introduction of the symbol “×” (multiplied by) with 
the expression “multiplied by” (kakeru in Japanese) or just “by” (kake in Japanese). 
For future extensions to fractions and decimals, the Japanese textbooks prefer the 
multiplication symbol to be read as “multiplied by” or just “by” instead of times.

The introduction of multiplication is enhanced to form groups (sets) of an equal 
quantity (set) and to determine the total number based on the number of groups. It 
is a simple activity for an adult. However, to distinguish it as a binary operation 
from ordinal additive situations, these tasks are necessary for second-grade stu-
dents. Thus, the second-grade textbooks include various situations for multiplica-

5 This section explains the outline. In Chaps. 5 and 6, it will be explained more concretely.
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tion based on the number of groups, where the group represents the unit. For 
example, in Fig. 4.2, if each stoplight has 3 lights, 2 stoplights have 6 lights. In 
Fig. 4.3, if we move one banana to another plate, we produce a situation where there 
are 3 bananas for every plate and 4 plates. Based on those tasks, teachers enable 
students to see the situation as a multiplicative situation by seeing the repeated 

Fig. 4.2 Gakkotosyo 
(Hitotsumatsu, 2005), 
Grade 2, Vol. 2, p. 47

Fig. 4.3 Gakkotosyo 
(Hitotsumatsu, 2005), 
Grade 2, Vol. 2, pp. 2–3, 
“Look at the banana plates. 
Is it a multiplicative 
situation?”
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quantity as the unit, and the expression of multiplication is introduced. When the 
students are able to distinguish the repetition of these situations with other additive 
situations, we can say that they are able to see the world by multiplication, as in 
Fig. 4.2.

In the beginning, the students will find the product by repeated addition or count-
ing; however, in the addition form, it is necessary to make clear the number of rep-
etitions. For this necessity, a multiplication expression is introduced. For knowing 
this reasonable and effective way of representation, the Japanese textbooks show 
various situations to count the number of times (kai in Japanese), for the students to 
be aware of its reasonableness and the simplicity of its form.

As shown in Fig. 4.4, a unit length of tape such as 3 cm is introduced. The tape 
model (diagram) is necessary for later extension to continuous numbers in relation 
to proportionality. After the definition of multiplication with a situation as a binary 
operation based on definition by measurement (see Chap. 3), the tape diagram in 
Fig. 4.4 is introduced and the term bai looks the same as “times” (in English) and 
veces (in Spanish) at this stage. The Japanese usage of bai (“times”) is not the same 
as the English and Spanish usage of the symbol “×”; in Japanese, bai is the terminol-
ogy used to explain proportionality. Later, the term bai can be used for extension 
from whole numbers to decimals and fractions by using proportional number lines 
(see Sect. 4.3), and then it becomes the base to define proportions in relation to ratio.

For finding the answer or product for a binary operation, the term bai is also con-
nected to repeated addition (kai in Japanese). As mentioned in Chap. 3, the repeated 
addition meaning of “times” in English and veces in Spanish is inconsistent with the 
multiplication table in relation to the order of expression.

After this, the multiplication table is introduced with the rows of 2 and 5, which 
have already been learned as ways of counting. Those rows are convenient for stu-
dents because they already knew the answers from their experience of counting by 
2s and 5s. Recognizing that the products can be increased by the units becomes the 
basis to extend multiplication in each row up to 9. After the exploration of the prop-

Fig. 4.4 Gakkotosyo 
(Hitotsumatsu, 2005), 
Grade 2, Vol. 2, p. 10., 
pp. 2–3
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erties of the multiplication table, a project to find multiplicative situations (as in 
Fig. 4.2) is done for students to explain the significance of multiplication.

4.1.1.1  Repeated Addition and Challenges to Difficulty

When the students begin the study of multiplicative situation, it is normal for them 
to see the situations as a kind of addition because they have learned only addition 
and subtraction, and they are recommended to use what they have already learned 
in the Japanese approach. To distinguish multiplication from ordinary addition, they 
need to reorganize their knowledge from counting by one to counting by the unit 
number (such as 2, 3, . . . , 9) as sets in the manner shown in Fig. 4.3 (see also Chap. 
5, Sect. 5.2). Up to the introduction of multiplication in the Japanese approach, the 
Japanese textbooks provide opportunities for students to learn that any magnitude 
can be a unit for counting. If the teachers have only discussed counting by one in the 
first grade, this becomes an obstacle for learning multiplication in the second grade. 
Thus, the first-grade Japanese textbooks enhance the activity of measurements to set 
the tentative unit for measuring as well as counting by 2s and 5s. The introduction 
of multiplication from verbalizing of the grouping such as in Fig. 4.3 looks like 
repeated addition to adults. However, this verbalizing activity enhances the ability 
of the students to explain the situation by a number in every group (unit) and to 
count the number of the same groups (units), by using different denominate num-
bers such as “3 apples for each plate and 4 plates.”

During the introduction of multiplication, if the teachers do not include the 
denominations of quantity (see Chap. 3), such as apple and plate, and just say “3 for 
each and 4,” the students lose the point of learning at the beginning even though it 
is routine for those students who have learned it well. If we compare it with “3 
apples for each dish and 4 dishes,” they may understand what the object of counting 
is. The number of dishes should be clearly mentioned for showing the unit of count-
ing. First, the Japanese textbooks ask the students to explain the situation of  grouping 
to develop the notion of the unit (Fig. 4.3) and, later, shift to repeated addition. In 
this context, “How many apples are there? And how many dishes are there?” and 
“Which have the same number of fruits in the dishes?” are not the same because the 
first questions can be a question of counting and the second one is a question for 
explaining a multiplicative situation. To clarify such differences, the Japanese text-
books consider tasks that distinguish the situations by sets of groups.

Repeated addition in situations is necessary for developing the multiplication 
table. However, as was mentioned in Chap. 3, it is not so much reasonable to repre-
sent repetition of 1 and 0 in situations such as 1 + 1 + 1 and 0 + 0 + 0 + 0 by multi-
plication. If the counting unit is 1, it is not addition but just looks like counting. 
Japanese textbooks introduce the row of 1 by the permanence of form: the situation 
“2 apples for every dish and 3 dishes” is 2 [×] 3; if it is “1 apple for every dish and 
3 dishes” how shall we express it? This is the question for the permanence of form. 
In the case of 0, the Japanese textbooks in the second grade discuss 10 times (bai) 
instead of multiplying 0.

4 Introduction of Multiplication and Its Extension: How Does Japanese Introduce…



72

4.1.1.2  Use of the Multiplicand and Multiplier for Students to Think 
of Division Situations by and for Themselves

When Japanese students begin multiplication with a situation of the type “2 multi-
plied by 3” in English, they learn that this is 3 ga 2 ko (“3, 2 times”)—writing it as 
“3 [×] 2”—and they learn to read it as 3 kakeru 2 ha 6. This Japanese notation may 
be misread by English readers, however; as mentioned in Chap. 3, the notations of 
multiplication in English and Spanish include contradictions.6

The multiplicand as the first element in multiplication and the multiplier as the 
second element in Japanese are introduced in the multiplication table and used in 
the extension of multiplication to fractions, decimals, and negative numbers (see the 
discussion of Descartes in Chap. 3).

In the Japanese curriculum sequence, the “multiplicand [×] multiplier” in multi-
plication is directly connected to division. Students who are able to define division 
by themselves are expected to use the idea of multiplication in situations involving 
division. In this context, teachers have to enable students to distinguish the first and 
second numbers by identifying the multiplicand and multiplier. The two different 
situations in division, which are called partitive and quotative division, can be dis-
tinguished by this identification.

Students are able to think by and for themselves, and are able to reorganize what 
they already know by using their daily language as well as their learned mathemati-
cal language. In this curriculum sequence, Japanese primary school teachers in the 
lower grades ask students to codify the situation for the expression “2 [×] 4” and 
distinguish to represent it as “4 [×] 2.” Japanese teachers try to develop  students to 
develop mathematical sense to make sense by and for themselves based on what 
they have learned and to elaborate the definitions in their classes (see Chap. 5). They 
are asked to analyze the situations and formulate them by using their everyday lan-
guage (see Fig. 4.5).

4.1.1.3  Commutativity and Order in Expression

In Japan, it is expected that all students will memorize the multiplication table in the 
second grade. For developing the table, the property “increase by 3 if the row is 3” 
is used.7 For memorizing the multiplication table, the teachers shorten an expression 
such as 3 kakeru 2 ha 6 to 3 kake 2 ha 6 and to 3 2 ga 68 by characteristic abbrevia-

6 In Japan, only primary school teachers recognize the difference between 3 × 2 and 2 × 3, explain-
ing the meaning of multiplication in each situation. In secondary school, teachers never distinguish 
these two because they do not feel any necessity to do so in their teaching. Primary teachers have 
to consider it on their curriculum sequence.
7 Here, we call this a “procedure with meaning” (Isoda and Olfos, 2009). Students memorize the 
table using properties (patterns), meaningfully.
8 The term ga is only used in the event that the product is less than 10. If it is more than 10, even ga 
is omitted, such as 3 [×] 4 = 12 (“3 4, 12”).
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tions in the Japanese language which in English mean “three one, three” (3 [×] 1 = 
3) and “three two, six” (3 [×] 2 = 6).”

Once the students have completed and memorized the multiplication table up to 
9 × 9,9 they lose the need to use repeated addition to get the product within the range 
of the multiplication table. They get the product of the binary operation automati-
cally, without referring to situations and repeated addition. In the task to find the 
properties of the multiplication table, without considering situations in multiplica-
tion, the students can find many of them. The numbers in the table have a symmetri-
cal property on the diagonal. For example, 2 × 3 and 3 × 2 are the same value since 
the answer does not change even though the order of the multiplicand and multiplier 
is changed. This discussion is on multiplication expression. On the other hand, in a 
concrete problem-solving situation, teachers and students continue to distinguish 
which one is the multiplicand and which is the multiplier in situations such as 
 partitive division and quotative division in the third grade (Isoda, 2010). It is useful 
up to ratios and rates for considering which one is the base unit quantity in the 
situation.

4.1.1.4  Differences in the Multiplier and Multiplicand in an Array 
and a Block Diagram

In Japanese classes, the teachers usually ask how to read the array or block diagram 
like those in Figs. 4.5 and 4.6 (see also Chap. 3). This is an opportunity to identify 
and distinguish the multiplicand and multiplier.

Figure 4.7 is a representation of 4 plates (the unit or group). Each plate (unit or 
group) has 2 sweets—that is, “four times two” in English—and this is codified 
using the mathematical expression “4 × 2.” In Japanese, it is represented as “2 [×] 
4” (“2, 4 times”). In Chap. 3, the Japanese notation is consistent with the property 

9 The Japanese numeral system follows the base ten numeral system. The base ten numeral system 
can be well recognized from twenty in the case of English and from hundred in the case of Spanish.

Fig. 4.5 How we read and express from Mr. Satoshi Natsusaka’s lesson
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of row 2 (Fig. 4.8). In this comparison, how to see the array is the point of the dis-
cussion, such as vertically and horizontally in Fig. 4.9.

Figure 4.9 is a model to illustrate commutativity—why it produces the same 
products and added the information for the order of multiplier and multiplicand in 
relation to Fig. 3.12.

4.1.1.5  Revisiting Which Notation Is Better and Why

“3 apples on each plate, and 2 plates” is 3 [×] 2 (3 apples, 2 times) in Japanese; the 
multiplier is on the right. In English, it is 2 × 3 (2 times 3 apples); the multiplier is 
on the left.

Fig. 4.7 4 × 2 in English 
and 2 × 4 in Japanese

Fig. 4.8 Increase by 2 
on row 2

2 2 + 2 2 + 2 + 2

2[ ]1 2[ ]2     2[ ]3

Fig. 4.6 How we read and express from Mr. Satoshi Natsusaka’s lesson (see Chap. 5)
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There is a grammatical–syntactical difference. As long as preferring the teaching 
language is fixed first, there is no choice. Thus, the discussion on which is better is 
unsolvable because it is a cultural matter; however, the question is necessary to design 
the curriculum sequence. Some usages of daily language such as “times,” “dividing 
into equally,” and “equally likely” are also learned in mathematics class at first. In this 
context, some Latin American countries already prefer the Japanese notation of mul-
tiplication for themselves.10

The Japanese form has the following significance (see Chap. 3):

• It facilitates the construction of the multiplication table: if the multiplier increases 
by 1, the product increases by the quantity of the multiplicand.

• The multiplication table is consistent with the multiplication algorithm.
• The meaning of multiplication consistently applies to the two meanings of divi-

sion in situations.
• The meaning of multiplication and the multiplication table is consistent with the 

algebraic expression (constant) × (variable).

Additionally:

• It agrees with the traditional Spanish arithmetic book by Rey Pastor and Puig 
Adam (1935) on the use of the terms “multiplicand” as the first factor and “mul-
tiplier” as the second factor.

• It first presents the multiplicand, the unit, the size, or the quantity of the elements 
in each group, which the students consider in order to be able to decide if multi-
plication is appropriate in this situation.

The English form has the following significance:

• It agrees grammatically with the use of the term “times” in English and the terms 
used in most of European languages, such as veces in Spanish.

10 Many Central and South American countries use Spanish as their national language; however, 
they use multilanguage in relation to their mother tongues.

Fig. 4.9 How to read the array diagram horizontally and vertically

2[ ]1 2[ ]2   2[ ]3 2[ ]4 
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As will be explained in the next section, the Japanese notation produces consis-
tency in the curriculum sequence. In terms of this consistency, the Japanese  teaching 
sequence in textbooks is considered more deeply as compared with that used in Chile.

4.2  Preparation for Multiplication in the Japanese 
Curriculum and Textbooks

One of the features of the Japanese course of study (the national curriculum stan-
dards) and authorized textbooks is that the sequence is well prepared for future 
learning for sense making (see also Chap. 5), which is explained by the extension 
and integration principle.11 In terms of this principle, the following sections describe 
the teaching sequence beginning in the first grade, the extension of multiplication to 
new numerical domains through proportionality, and the extension to other content 
such as division, rates, and fractions, up to proportions, in the Japanese context.

4.2.1  Preparation for Introduction of Multiplication 
in the First Grade

The teaching sequence of Japanese textbooks is well prepared for future learning, 
which means that each part of the teaching content includes preparation of the nec-
essary underlying ideas for use in the future, such as the idea of the “number of 
units,” according to the principle of learning based on what the students have already 
learned. In the following sections, the four preparations for introducing multiplica-
tion in the first grade are explained.

4.2.1.1  Composition and Decomposition of Cardinal Numbers for Binary 
Operations

First, the textbooks from the publisher Composition and decomposition of numbers 
in Gakkotosyo (Isoda and Murata, 2011) intensify the development of the idea of a 
number as the cardinal of a set up to 10. They teach composition and decomposition 

11 As explained in Chap. 1, the extension and integration principle was used in the course of study in 
1968 (Ministry of Education, 1968). The meaning is almost the same as the reorganization of expe-
rience which was defined by Freudenthal (1973) with his terminology of “mathematization” under 
his reinvention principle, although the term “mathematization” has been used officially in Japan 
since 1943 (Sugimura, Simada, Tanaka, and Wada, 1943). Preparation for future learning, con-
versely, is done using learned knowledge and skills from the perspective of students. However, the 
students do not know which of them should be used. Students have to know how to extend or to use 
the known. It is a source of problematics which should be solved in the lesson (See Fig. 1.1 in Chap. 
1). It is also a source from which the students produce misconceptions by their own overgeneraliza-
tion of their learned knowledge and skills. It is the task for a dialectical style of communication 
between appropriate and inappropriate use of what they have learned in the classroom (Isoda, 1996).
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of numbers before dealing with addition and subtraction (p. 26  in the first-grade 
textbook; see Fig. 4.10). This is done with the purpose of teaching the association 
of a number (cardinal) with a set and preparing for mental calculation for addition 
and multiplication.

If composition and decomposition of numbers are not taught before addition and 
subtraction, the students can only obtain the result of addition and multiplication by 
counting. If these are taught before addition and subtraction up to 10, the students 
can also obtain the answers as sets of objects and not necessarily by counting. 
Addition up to 10 is based on the composition of numbers, while subtraction up to 
10 is based on the decomposition of numbers.

When the students encounter addition of more than 10 up to 20, they will be able 
to use manipulatives, using the idea of making 10, such as 8 + 3 = 8 + (2 + 1) = (8 
+ 2) + 1 = 10 + 1 = 11. Here, 3 = 2 + 1 is a decomposition of the number 3, and 
8 + 2 = 10 is a composition of the number 10. On this learning trajectory, addition 
is extended/reorganized from the composition of numbers to the combination of 
decomposition and composition of numbers for making 10 in relation to carrying. 

Mathematically, addition and subtraction are both binary operations. When stu-
dents study addition on this trajectory, they can see addition as a binary operation 
and the sum as the value obtained. Otherwise, they can only use counting in instances 

Fig. 4.10 Gakkotosyo (Hitotsumatsu, 2005), Grade 1, p. 26 and p. 29
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such as “3 + 2 is three, four, five.” It becomes 3 + 1 + 1 when we represent the pro-
cess by using the plus sign. Getting the sum by counting is not a binary operation 
even though it is a strategy to get the sum. Here, counting is used as a method to 
justify the answer.

To learn addition as a binary operation, it is necessary that the two numbers refer 
to two sets. If we do not prefer this trajectory, counting will still remain as the 
method used to find the answer. The students may keep on counting as long as they 
can count. If students learn composite and de-composite of numbers.

4.2.1.2  Counting by Twos or by Fives as the Base for the New Unit 
to Count

Second, in the extension of numbers beyond 10, students are taught to count by 2s 
or by 5s as “ways of counting”. Here, the students become proficient in the number 
sequence for counting by 2s or by 5s. It becomes the basis for learning the multipli-
cation table and, for this reason, Japanese textbooks address the multiplication table 
starting with the rows of 2 and 5 in the second grade. Base 10 system itself is the 
base for column multiplication by using distribution in the later grade (See Chap. 7 
and Meaning of B in Fig. 1.1, Chap. 1).

4.2.1.3  Polynomial Notation

Third, multiplication is a binary operation and the answer is given by repeated addi-
tion at the introduction of multiplication (Fig. 4.11). To get the answer in multiplica-
tion, the students have to know polynomial notation first before they can interpret 
the meaning of polynomial notation.

Fig. 4.11 Preparation of 
repeated addition, Direct 
comparison, In direct 
comparison, and Arbitrary 
Unit, Gakkotosyo 
(Hitotsumatsu, 2005), 
Grade 1, p. 97
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4.2.1.4  Production of Tentative/Arbitrary Units

Fourth, in the introduction of “measurement” in the first grade (Fig. 4.12), the stu-
dents learn “how to compare” and not the measurement quantity itself such as “cm.” 
For “how to compare,” students study direct comparison, indirect comparison, and 
arbitrary units. For indirect comparison, through the comparison of A, B and C, 
students make an order and visualize transitivity, clearly: if B is smaller than A and 
B is smaller than C, then C is smaller than A. For direct and indirect comparisons, 
the differences are usually discussed. These are necessary to produce arbitrary units. 
The differences can produce a unit for measuring (a Euclidean algorithm). In Japan, 
students learn how to produce arbitrary units in this way. The standard units for 
measurement quantities such as “cm” are introduced in later grades. Those activities 
are the bases to understand that any object can be seen as a unit (See Table 1.1 in 
Chap. 1: the idea of unit). And this processes are prepared for students who are able 
to learn how to produce the necessary unit. It can be seen as learning trajectory by 
Szilagyi, Clements, & Sarama (2013).

Those preceding four preparations are the bases for the introduction of multipli-
cation in the first grade. In addition, there are other preparations. For example, mul-
tiplication is the base for proportionality. The number line is a key preparation for 
representing times and extending it to proportionality. In the first grade, it is implic-
itly introduced as a line of numbers by using repetitions of the unit tape (Fig. 4.13).

Fig. 4.12 Gakkotosyo (Hitotsumatsu, 2005), Grade 1, pp. 103–104
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4.3  Proportionality for Extension of Multiplication

Extension of numbers is part of the curriculum sequence in any country. In Japan, the 
key idea for multiplication in extension of numbers is proportionality (properties of 
proportion) using a tape diagram and a table with the rule of three before teaching the 
formal definition of proportions. Since the 1960s, proportionality has been embed-
ded in the Japanese textbooks by the following sequence for extension of numbers.

In the introduction of multiplication in the second grade, times (bai) is intro-
duced with a tape diagram (see Fig. 4.4) and repeated addition of the unit length 
tape, which corresponds to the constant difference in the multiplication table. The 
tape diagram is used for the extension of numbers to decimals and fractions as pro-
portional number lines (see Meaning C of Fig. 1.1 in Chap. 1).

4.3.1  Introduction of Proportional Number Lines and Their 
Adaptation for Extension

In the third grade, the Gakkotosyo textbooks (Isoda and Murata, 2011; Isoda, 
Murata, and Yap, 2015) extend this tape diagram to two-dimensional lines, which the 
Japanese call “proportional number lines” (see Figs. 4.14 and 4.15). The proportional 
number line is a model that represent the definition of multiplication by measure-

Fig. 4.13 Preparation of 
Number line, Gakkotosyo 
(Hitotsumatsu, 2005), 
Grade 1, p. 67, p. 70
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ment in all Japanese primary schools’ mathematics textbooks (see Chap. 3). In par-
ticular, the Gakkotosyo textbooks enhance the rule of three by using arrows to show 
the pattern on the table (see the four-column tables in Figs.  4.14 and 4.15). 
Proportionality is also embedded in these tables.

Fig. 4.14 Proportional number line is introduced by the number line with tape diagram in the case 
of Gakkotosyo (Isoda and Murata, 2011), Grade 3, Vol. 2, p. 73
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Those two types of representations—proportional number lines and the table for 
the rule of three—are not necessary to find the answer in situations involving mul-
tiplication at Grade 3. However, they are necessary to prepare for the extension of 
multiplication from whole numbers to decimals and fractions in upper grades (See 
Extension of B to C, Fig. 1.1, Chap. 1). Thus, the model representations in Figs. 4.14 
and 4.15 are the preparations made in the third grade for future learning in later 
grades as for sense making.

Fig. 4.15 Proportional number line is introduced by the number line with tape diagram in the case 
of Gakkotosyo (Isoda and Murata, 2011), Grade 3, Vol. 2, p. 74
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4.3.2  Extension of Multiplication by Using Proportional 
Number Lines

The following are the first four pages of the fifth-grade textbook on the extension to 
decimals (Isoda and Murata, 2011):

In Figs. 4.16, 4.17, and 4.18, there are tape diagrams to show proportionality and, 
at the same time, the rule of three in the table in Figs. 4.16 and 4.18. There are also 
further strategies that can be seen for extensions using the properties of multiplica-
tion sentences at 10 times and 1/10  in Fig. 4.18 and area diagrams in Fig. 4.19. 
When students discuss the mutual relationship of their ideas in Fig. 4.18, it is an 
opportunity for them to develop the idea of proportionality.12

In this manner, Japanese textbooks prepare for future learning by consistently 
developing and using the same representations. In these preparations, students are 
able to challenge further learning such as proportion (see Sects. 4.3.4 and 4.4) by 
and for themselves.13

4.3.3  Partitive and Quotative Divisions Using Multiplication

In case of divisibility (with no remainder), division is represented by (dividend) ÷ 
(divisor) = (quotient). Division is the inverse operation of multiplication, which is 
(dividend)  =  (divisor)  ×  (quotient) or (quotient)  ×  (divisor). If multiplication is 
repeated addition of the same number, then division can be seen as repeated subtrac-
tion of the same number. However, we should note that commutativity does not hold 
in division.

Two meaning of division are shown in Fig. 4.20.
The situations of the two activities on division in Fig. 4.20 are different. The situ-

ation of the partitive division activity establishes the number of equal partitions. The 
situation of the quotative division activity distributes the same amount recursively 
until there is no more left to distribute. However, if we compare only the left part of 
the diagram showing partitive division with that showing quotative division in 
Fig. 4.20, it looks the same as repeated subtraction. This correspondence provides a 
reason for students to explain these different situations to be integrated as one 
operation.

12 The term “proportion” is learned in the fifth grade in the 2011 edition and in the sixth grade in 
the 2005 edition.
13 As explained in Chap. 1, in Japan, the problem-solving approach is enhanced based on sequential 
preparations of applying already-learned knowledge to unknown tasks for extension and integra-
tion. Learned knowledge is not limited to the procedure but also includes ways of meaningful 
representations. Such preparations are beyond the strategy of teaching in Pólya’s articles. On this 
basis, the Japanese problem-solving approaches are very far from just the solving of nonroutine 
problems under the Pólya framework. In this context, Japanese teachers try to develop students’ 
mathematical thinking every day.
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Fig. 4.16 Extension to decimals, Gakkotosyo (Isoda and Murata, 2011), Grade 5, Vol. 1, p. 30

Multiplication in those situations is (number of each unit) [×] (amount of 
unit) = (product; total number) in Japanese notation, and (amount of unit) × (number 
of each unit) = (product; total number) in English notation. The partitive division situ-
ation corresponds to finding the amount of each unit (per dish or child), where the 
quotient means the amount of each unit. On the other hand, the quotative division situ-
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Fig. 4.17 Right page of Fig. 4.16 (continuous), Gakkotosyo (Isoda and Murata, 2011), Grade 5, 
Vol. 1, p. 31
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Fig. 4.18 Continuous from Figs. 4.16 and 4.17, Gakkotosyo (Isoda and Murata, 2011), Grade 5, 
Vol. 1, p. 32
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Fig. 4.19 Right page of Fig. 4.18, Gakkotosyo (Isoda and Murata, 2011), Grade 5, Vol. 1, p. 33

ation corresponds to finding the number of units, where the quotient means the num-
ber of units. Thus, the partitive division situation is represented by (total number) ÷ 
(amount of unit) = (number of each unit), which is the representation of the inverse 
operation (total number) = (number of each unit) [×] (amount of unit). The quotative 
division situation is represented by (total number) ÷ (number of each unit) = (amount 
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of unit), which is the representation of the inverse operation (total number) = (number 
of each unit) [×] (amount of unit). Those are two different meanings of quotient, 
depending on the situation. Left vertical arrows in partitive division on the left of Fig. 
4.20 and left vertical arrows in quotative division on the right of Fig. 4.20 both, can be 
seen as repeated subtraction of the same numbers. Repeated subtraction is a key to 
seeing both situations as the division operation for integration.

For teachers teaching mathematics in Indo-European languages, this discussion 
is not so clear because they do not use the terms “multiplier” and “multiplicand” 
(see Chaps. 2 and 3) and may not feel the necessity to do so because it is customary 
for them to use commutativity in their minds and expressions for finding the answer 
in multiplication. From the viewpoint of the Japanese approach, teachers who do 
not feel any necessity to do so can be seen as teachers who are less likely to teach 
mathematics by using what their students have already learned. If teachers are able 
to see that the two meanings are not exactly the same, they may understand the dif-
ficulty that students have in seeing the different situations as one operation. If they 
can make the distinction, they can really understand what content they should teach. 
The Japanese distinguish it clearly based on consistency of multiplication.14

4.3.4  Relationships Among the Rule of Three, Multiplication, 
and Division

The well-memorized and proceduralized multiplication-table is adapted to the 
tables that embed proportionality by multiplications and division rules. For filling in 
the blanks in the table, division is treated as the inverse operation of multiplication, 
as shown in different contexts in Fig. 4.21.

14 The Japanese use two different characters for division. Partitive division is waru (“splitting”) 
which implies dividing equally. Quotative division is jyo (“subtraction”) which implies repeated 
subtraction. Due to this difference, both partitive division and quotative division are necessary 
terminologies to specify what they teach even though they do not teach these words to students. In 
Japan, division using the abacus was introduced in the sixteenth century.

Fig. 4.20 Partitive division (left) and Quotative division (right), Gakkotosyo (Hitotsumatsu, 
2005), Grade 3, Vol. 2, p. 4 and p. 8
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Fig. 4.21 Various preparation for ratio, rate and proportion by using the table in relation to rule of 
three, multiplication and division
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Historically, these calculations using proportionality are done under the name of 
the “rule of three.” The “?” blanks in tables A, and “??” in B and C in Fig. 4.21 can 
be represented by multiplication as follows: (A) 3 × 4 = 12, (B) (?)×4 = 12, (C) 
3 × (?) = 12.15 If students learn division as inverse operation of multiplication, tables 
can be seen in various ways by using the idea of proportionality like Fig. 4.21. For 
finding these answers using multiplication, it is not necessary to refer to the original 
situations as long as the numbers in every table are placed in the appropriate col-
umns under the proportionality. In Japan, the three usages of the ratio on the situa-
tions likely Fig. 4.21 are summarized as kinds of formulas and such discussions 
were existed before World War II. If teacher teach those different usages just differ-
ent formulas, it produce difficulty for students. To recognize the proportionality, 
multiplication and division in the table treatments like Fig. 4.12 make it meaningful 
(see Fig. 1.1). Thus, Gakkotosyo textbook introduce it from Grade 3 in relation to 
multiplication and division and prepare the extension of multiplication and division 
into decimals and fractions, and ratio and proportion in Grades 5 and 6.

4.3.5  From Division to Ratios and Rates Using 
the Multiplicative Format

Division by a different quantity (partitive division) results in the rate, which is the 
unknown quantity and is represented by a quantity per another quantity, such as speed 
(km/h = distance (km)/duration (hour)) or population density (population/km2).

Division by the same quantity, which corresponds to quotative division, results 
in the ratio of the same quantity which produces the ratio value to show the coeffi-
cient.16 However, if we carefully read the task for quotative division, we may recog-
nize that it is not exactly division of the same quantity (denomination). It can be 
represented by (number of students) = (candies) ÷ (candies per student). Students 
usually see both the numbers 12 and 4 as the same candies and thus do not easily 
recognize them as different quantities in the sentence. Knowing the unit as a quan-
tity per  another quantity in those situations is a key to deriving expressions. In 
Japanese, terminology “per” is used for ratio on Grade 5, thus at Grade 2, Japanese 
use terminology “for each amount” instead of “per” to be expendable to ratio.

15 In Chap. 3, we referred Vergnaud (1983) to explain the situations for multiplication. Currently, 
the rule of three is explained by algebraic expressions. However, if we ask students to distinguish 
the expressions as different formula, it produce difficulties. Historically, the rule of three existed as 
methods to find the answers with the three numbers alignment before the emergence of algebraic 
expressions. With regard to ratios, the “× 4” arrows in the tables in Fig. 4.21 are explained as bai 
(“times”). In Japanese terminology, bai is a key word to explain proportionality. Division is alter-
nated reciprocal number of multiplication. The division treatments on tables in Fig. 4.21 are alter-
nated to reciprocal-number times at Grade 6.
16 This is the Japanese usage of “times” (bai) like multiple.
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4.4  Various Meanings of Fractions Embedding the Meanings 
of Division Situations

Fraction in situations can be distinguished in various perspectives and contexts (see 
Isoda, 2013).

A fraction as a part–whole relationship usually corresponds to the partitive divi-
sion situation; the Japanese call this a “dividing fraction.” A fraction can also be 
seen as quotative division. The situation of a fraction in quotative division is called 
an “operational (taking away, measuring) fraction.” A fraction with a denomination 
to indicate the unit quantity by the denomination is called a “fraction with a quan-
tity.” A fraction used for showing the number and used for the value of division as a 
quotient is called a “quotient fraction.” A fraction as a ratio is called a “fraction as 
the value of a ratio”. Japanese distinguish these five meanings of fractions.

Before providing explanations, first we describe the existing English-language ter-
minologies used to distinguish the meanings of fractions. In English, the following 
meanings of fractions are distinguished: according to Reys, Lindquist, Lambdin, and 
Smith (2012), from the USA, the meanings of fractions in situations are distinguished 
as part–whole, the quotient, and the ratio. Part–whole corresponds to the Japanese 
“dividing fraction” and the “operational (measuring) fraction” means the measuring by 
unit such as the measuring by using reminder like 4.22. However, it is not so much clear 
to distinguish these two ideas. According to the USA Common Core State Standards 
for Mathematics (CCSSM) (2010) “Understand a fraction 1/b as the quantity formed 
by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the 
quantity formed by a parts of size 1/b. (CCSS.MATH.CONTENT.3.NF.A.2.A).” It is a 
dividing fraction. And CCSSM continues “Represent a fraction a/b on a number line 
diagram by marking off a length 1/b from 0. Recognize that the resulting interval has 
size a/b and that its endpoint locates the number a/b on the number line. (CCSS.MATH.
CONTENT.3.NF.A.2.B).” This can be seen as an “operational fraction” if the scaling 
is done by 1/b; however, it is unclear if it is operational fraction. It implicates that 
CCSSM does not use terms like Japanese to establish conceptual consistency between 
the two division meanings and meanings of fractions even though it embedded the 
ideas. Indeed, Watanabe (2006) in USA makes clear the activity of the operational frac-
tion and explains the uniqueness of the Japanese way to introduce fractions. According 
to Haylock (2010), also from the USA, a fraction is (a) a part of a whole or unit, (b) a 
part of a set, (c) a modeling division problem, (d) a ratio and it is unclear if this is an 
operational fraction. According to Van de Walle, Karp, Bay-Williams, and Wray 
(2015), from the UK, there is no such manner to distinguish different types of fractions 
in different situations. According to Kupferman (2017), from Israel, there are various 
analyses. Petit, M. et al (2016) also explained various models of fraction under CCSSM 
well and we can read the ideas in it with Japanese terminology of fraction but their 
wording is following the CCSSM. These articles implicate that the Japanese approach 
clearly adopts two meanings of divisional situations into meanings of fraction in situa-
tions as “dividing fractions” and “operational fractions.”

The following is the introduction to the fraction in Gakkotosyo textbooks (Isoda 
and Murata, 2011) using a situation for an operational fraction (Figs. 4.22 and 4.23).
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Fig. 4.22 Measuring by the remaining part. Gakkotosyo (Isoda and Murata, 2011), Grade 3, Vol. 
2, p. 88
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Fig. 4.23 Continued from Fig. 4.22, Gakkotosyo (Isoda and Murata, 2011), Grade 3, Vol. 2, p. 89
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In Figs. 4.22 and 4.23, we can see three different meanings of a fraction. One is 
an operational fraction, which is measured by the remaining part. This remaining 
part as the unit for measurement is called a “unit fraction.”17 The other one is frac-
tion with quantity, here 1m tape.18

In this context, the size of the fraction cannot be compared without fixing the unit 
such as “m.” The size of a half a pizza in a dividing fraction cannot be compared with-
out fixing the size of the original (whole) pizza before dividing it. According to this 
meaning, dividing and operational fractions cannot be explained well as comparative 
sizes of numbers without fixing what the whole is. Especially, in dividing fractions, 
fixing the whole is easily forgotten than operational fraction. If forgot, the sizes of the 
fractions cannot be compared. To see a fraction as a number to compare sizes, Japanese 
textbooks show that meaning of the fraction in a context with a quantity such as 3/4 L 
and 1/2 L. It is a “fraction with quantity.” The fraction with quantity enables it to be 
put on the number line, clearly, because it fixes the unit for the magnitude.

The answer to division is called a quotient, which is a number without a denomina-
tion (quantity). The equivalence of fractions can be seen on the number line. The frac-
tion which is the answer to division is called a “quotient fraction” in the Japanese 
approach. By introducing the quotient fraction and equivalence of fractions, a fraction 
becomes a number because it begins to function as part of the operation of other num-
bers—that the division of numbers should have their answers on the number line.19

A fraction as the “value of a ratio” or the rate is not always a part–whole relation-
ship. Even the ratio of the width to the length of a rectangle with the same quantity is 
not a part–whole relationship physically because the width never belongs to the length 
of the rectangle directly.20 Contextually, the value of the ratio can be seen as a quo-
tient fraction if it is a fraction. It is usually used for (a/b) times (quantity). The 
Japanese consider this fraction as a ratio such as “half of a bottle.” Here, “half” is the 
value of the ratio and “of” implies multiplication. In Japanese, bai (“times”) is usu-
ally used in this context (“of”). The rate is represented by the division of different 
quantities and results in a new quantity such as “km/h.” It is related to partitive divi-
sion but not to part–whole relationships because of the differences in quantities. In 
the Japanese teaching sequence, ratios and rates can be seen as the extended adapta-
tion of multiplication and partitive and quotative divisions in relation to proportion-

17 The unit is the unit for measurement which is based on the definition of multiplication by mea-
surement. The unit can be a decimal or a fraction.
18 In the case of Gakkotosyo (2005), dividing fraction appeared the same pages. In the case of 2005 
edition, fraction is introduced from this page at the same time because students are not yet learned 
how to fold the 1m tape into 4. In the case of 2011 edition, paper folding for fraction is learned at 
2nd grade. Those differences originated from the difference of national curriculum standards.
19 Numbers can be seen as numbers when this becomes a number system which discusses existence, 
magnitude (greater or less, equality, comparison), and the four operations. The quotient fraction is the 
answer of division. Division is defined by the inverse operation of multiplication. Before the quotient 
fraction, Japanese textbooks already addressed addition and subtraction of fractions.
20 In the Euclidean algorithm for finding the greatest common divisor of two segments of a rect-
angle, we have to move the width to length by using a compass. As mentioned in the introduction 
of measurement, it functions to find the common unit for the measurement and also addition with 
different denominators.
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ality (See Fig. 4.21). In the Japanese curriculum, the different meanings of fractions 
are well  distinguished and sequenced in the curriculum up to ratios and proportions, 
and up to Integration of multiplication and division to multiplication by representing 
division as multiplication of reciprocal number.21

In the Japanese curriculum sequence, the definition of multiplication by mea-
surement is consistent with the multiplication table, division, fractions, and ratio 
and proportion. This consistency is supported by the model representations, propor-
tional number lines (see Fig. 4.24) and the table in relation to the rule of three (see 
Fig. 4.21). This is the reason why Japanese distinguishes the multiplier and multi-
plicand at the introduction of multiplication. Actually, if we do not distinguish both, 
we can not distinguish partitive and quotative division, then, can not distinguish 
dividing and operational (measurement) fraction. After this consistency and 
extended adaptation of multiplication, the formal definition of proportions is intro-
duced. To introduce Proportion formally, Gakko Tosyo Textbooks evolve the pro-
portional number line from tape diagrams on Fig. 4.4 to a tape and a number line on 
Fig. 4.14, and apply it for the extension of numbers on Fig. 4.16, and replace it to 
the parallel number lines on Fig. 4.24 as for the preparatory representations of the 
proportion. It illustrates the sequence to develop sense making for using multiplica-
tive reasoning and proportionality on the principle of extension and integration.  
This sequence and representations make possible to apply the definition of multipli-
cation by measurement to different teaching content (see Chap. 3). With this 

21 On this integration, “÷3” becomes “× (1/3)” which changes the view of multiplier from the first 
number to likely second number as an operator in the case of India-European language (see 
Chap. 3).

Fig. 4.24 Open class by Takao Seiyama (June 15, 2019 at the Elementary School at the University 
of Tsukuba). Learned task is multiple (see Fig. 4.21, A) (left): “Let’s find the price of ribbon when 
the price of 1 m is given.” Unknown task for today (see Fig. 4.21, B; right): “Let’s find the price of 
1 m of ribbon when the price for 2 m is given.” Before this class, students have already learned 
about proportions using proportional number lines. The major objective of today’s class is as fol-
lows: Using the proportional number line, recognize that division is the inverse operation of mul-
tiplication, such as 0.5 times is one half times or division by 2 (as review; left), and adopting 
learned to the new division task which can be seen as multiplication through finding the unit price 
at first and then finding the value by multiplication (right). By using the proportional number line, 
multiplication and division are integrated on the tasks for ratio like tables in Fig. 4.21
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 meaning, Japanese can introduce multiplication as preparation for division, frac-
tions, and proportions. In the Japanese approach, the teaching content and sequence 
are usually preparation for future learning. It is not only just making sense for rea-
sonable explaining at every moment but also to develop sense making for extending 
and integrating by and for themselves.

4.5  Further Challenges to Distinguish Additive 
and Multiplicative Structures

There are a number of misconceptions between additive and multiplicative struc-
tures in relation to ratios, rates, and proportions, such as misusing addition in mul-
tiplicative or divisional situations. An origin of this type of misconception is 
originated from the properties of the multiplication table (see Fig. 4.25).

When students learn multiplication in the second grade, they find and use this 
additive property. On the other hand, the multiplicative property is not easy for stu-
dents because they have just learned the table and still use the additive property for 
explaining the table, Explaining such as two times of multiplier produces two times 
(double) products, and three times of multiplier produces three times (triple) prod-
uct, and so on are not easy because the symbol “×” itself can be read “times.” On the 
multiplicative property there are “×” meaning of times and “left arrows and right 
arrows between expressions” meaning of times appeared at once on the multipliers 
in the table and the number of times (see Fig. 4.25; Isoda, 2015). If students extend 
multiplications to fractions in the upper grades, they can realize the difference of 
these two properties, such as half of two in Fig. 4.26. Thus, in the second grade, they 

Fig. 4.25 Additive 
property and multiplicative 
property of the 
multiplication table

Fig. 4.26 After the 
extension of multiplication 
to proportionality of 
numbers such as decimals 
and fractions, students are 
able to discuss ×0.5 and 
×(1/2)  
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cannot easily distinguish additive and multiplicative structures in the table like the 
one shown in Fig. 4.25, but not like the one shown in Fig. 4.26.

In Japan, a proportion is defined in the fifth grade by using “2 times (bai), 3 times 
(bai), . . . , of x corresponds to 2 times (bai), 3 times (bai), . . . , of y, respectively” 
and the constant of the quotient is the property of the proportion. Even though they 
have learned the use of “times” (bai) in proportions in the fifth grade, students are 
still confused, depending on the daily context; for example, the usage of bai-bai 
means “three times” or “quadruple.”22 Even though proportionality is learned in the 
fifth grade, students have to extend its usage and meet the problematic (see Chap. 1 
and Tall, 2013) to distinguish additive and multiplicative properties on every occa-
sion. In the sixth grade, students extend it to the enlargement of figures. In the task 
sequence shown in Fig. 4.27, both additive and multiplicative strategies appear.

Figure 4.27 shows a task sequence to develop students who learn mathematics by 
and for themselves by using what they have learned through extended tasks.

In task 1, all students easily draw “a.” The students use three drawing strategies: just 
adding 1 cm (↓), doubling of sides, and using the diagonal. They cannot distinguish 
these three on the drawing in task 1. In task 2, there are two drawings (“b” and “c”) and 
they meet the problematic. The students who draw “b” use the strategy of “adding 1 cm.” 
The students who draw “c” use the strategy of “doubling of sides” or “using the diago-
nal.” In task 3, which is posed on nonsquared paper, students draw “d” by “using the 
diagonal” and compare it with the other two strategies (“b” and “c”). Then, the teacher 
asks the students to summarize what they have learned through this task sequence and 
continues the lesson on how to draw by using diagonals with the idea of proportions.

22 In Japanese, just bai without a number implies “double.” Thus, bai-bai means “quadruple.” In 
English grammar, there are several types of numerals: cardinal or set numbers such as one, two, 
and three; ordinal numbers such as first, second, and third; multiplicative numbers such as once, 
twice, and thrice; multipliers such as single, double, and triple; and fractional numbers such as half 
and quarter. In Japanese, ordinal numbers, multipliers, and multiplicative numbers are expressed 
with denominations to the number such as first (1 banme), second (2 banme), and third (3 banme); 
single (1 bai), double (2 bai), and triple (3 bai); and once (1 kai), twice (2 kai), and thrice (3 kai).

Fig. 4.27 The sides of the square, trapezoid, and quadrilateral are enlarged two times on 1-cm- 
squared paper (by Suzuki in Isoda (1996), revised by Isoda)

Task 1. Square Task 2. Trapezoid Task 3. Quadrilateral

dcba

Additive

Multiplicative
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This task sequence for the problem-solving approach (See Chap. 1) was produced 
under the curriculum and task sequence theory of Isoda (1992, 1996) based on the 
theory of conceptual and procedural knowledge by Hiebert (1986) (see Chap. 1, Fig. 
1.1). In Task 1, the students already know the word “enlargement” in the daily context 
with images. At the beginning, it functions as the meaning. Thus, “a” is appropriate 
based on this meaning and it recognizes additive and multiplicative procedures. In 
Task 2, based on this meaning, “b” is inappropriate because it is an overgeneralization 
of additive procedure, and “c” (and “d”) is appropriate because it is an adaptation of a 
multiplicative (proportional) procedure. While comparing the procedures, students 
are able to recognize the difference in additive and multiplicative procedures. The task 
sequence functions to reconceptualize it with an appropriate procedure. From Tasks 2 
to 3, the procedure “using diagonals” is the only one that works. It is used to recon-
ceptualize the meaning of enlargement without an additive strategy, and students are 
able to define enlargement based on proportion with the point (homothetic center) of 
enlargement by using diagonal. After this, the students continue to learn the case of 
other figures such as enlargement of polygons. Consequently, using diagonals 
becomes the procedure for enlargement of figures.

4.5.1  Redefinition of Proportionality at Junior High School

In Japan, proportionality is extended to negative numbers and redefined as a func-
tion at the junior high school level. The difference in additive and multiplicative 
structures is discussed using positive and negative numbers from four arithmetic 
operations to two operations by using the reciprocal and inverse (see Chap. 3). The 
equation of the function y = ax can be seen algebraically as a generalized equation 
of the multiplication table such as in Figs. 4.25 and 4.26. The variable x is consistent 
with the multiplication table (see the discussion of Figs. 3.11 and 3.12 in Chap. 3). 
For y = ax + b and y = ax, only y = ax keeps the multiplicative property, and both 
keep the additive property.

The enlargement of figures in the sixth grade is the base for the definition of similar 
figures in relation to the center of similarity at the junior high school level. The line and 
point similarity of figures also becomes the source of problematics on this redefinition.

4.6  Final Remarks

The Japanese approach to multiplication at the elementary levels provides a consis-
tent sequence for preparing future learning in the curriculum in the context of exten-
sion and integration, up to proportions. The introduction of multiplication in the 
second grade is a preparation for division in the third grade and a preparation for 
proportions in the fifth and sixth grades. The reason why the Japanese try to main-
tain a consistent sequence to develop and extend ideas is based on the aims of edu-
cation, which tries to develop students who think and learn by and for themselves. 
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It is the process to develop the sense for making sense. The curriculum sequence 
enables students to think about what they already know and how they can challenge 
themselves to extend ideas by and for themselves. In the Japanese curriculum and 
textbooks, the problem-solving approach is enhanced based on a well-designed task 
sequence for applying already-learned knowledge to unknown tasks as well as prep-
aration for future learning. Learned knowledge is not limited to the procedure but 
includes ways of thinking, the methods of representations, and values and attitudes 
regarding mathematics.

Solving non-routine problems under the Pólya framework is not the same in 
usage as the Japanese problem-solving approach in Chap. 1 because the task 
sequence, which is designed by the teacher, is basically defined under the curricu-
lum sequence for enabling students to think by and for themselves in future learn-
ing. The second-grade tasks are unknown problems for the students; however, they 
become a routine problem after they have learned them or in later grades. The objec-
tives of the tasks which produce unknown and problematic situations can be 
explained by using these terminology in the curriculum sequence. Under the shared 
curriculum, Japanese teachers has been engaging in lesson study by using these 
terminology to explain and distinguish the objective of every class and produceing 
the textbooks for enabling them to practice. For developing students’ mathematical 
thinking and ideas for future learning through problem solving, the terminology is 
necessary to explain task sequence beyond just using a method of teaching simply 
changing every task to be open ended for just solve an independent problem. Similar 
terminology is existed in teacher education in the world but it is not always func-
tioning among classroom teachers. Beside, Japanese teachers have to use it on their 
lesson study activities systematically.23

The Japanese approach, which is based on the consistency of the curriculum 
sequence under explained terminology described in this chapter, is preferred for 
projects in Central America, Southeast Asia, Central Asia, Africa, and so on. In rela-
tion to this, the Japanese definition and notations of multiplication are also preferred 
because of the following consistencies:

• Consistency among situations, repeated addition, and the multiplication table
• Consistency with other content such as measurement, division, fractions, ratios, 

and proportions in relation to distinguishing the multiplier and multiplicand
• Expandability to decimals and fractions by using consistent representations such 

as dot–area diagrams, proportional number lines, and tables for the rule of three
• Consistency in proportionality

The specified consistencies support the process of extension and integration at 
future learning. Multiplication provides strong bases up to proportions in this pro-
cess. This specified feature is one of the reasons why the Japanese approach has 
been preferred by other countries. Such an approach, including the terminology, 

23 For example, Izak & Beckmann (2019) systematically explained the role of proportional number 
line however, in Japan, it was introduced for lesson study, already systematically embed the into 
textbooks 50 years ago  (see Chap. 1) and now, it progressively changes its  representations beyond 
the grades.
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which is explained in this chapter, existed in the textbooks until the curriculum of 
1968 and has been used in several Japanese official development assistance (ODA) 
programs around the world, from Singapore in the late 1970s to Africa and Central 
and South America from the 1990s onward.

There is an additional discussion on consistency in relation to the vertical form 
of multiplication in Chap. 7.
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given in order to demonstrate the sense of it from the teacher’s side. In relation to 
lesson study, this is a good exemplar of how Japanese teachers develop mathemati-
cal thinking. It also illustrates the case for being able to see the situation based on 
the idea of multiplication (Isoda, M. and Katagiri, S. (2012). Mathematical think-
ing: How to develop it in the classroom. Singapore: World Scientific; Rasmussen 
and Isoda Research in Mathematics Education 21:43–59, 2019), as seen in Figs. 4.2 
and 4.3 in Chap. 4 of this book.

5.1  Lesson Study for the Introduction of Multiplication

The introduction of multiplication to students does not demand much time. Teaching 
the meaning of multiplication demands 3 or 4  hours of lessons or sessions1 of 
45 minutes each in the three Japanese textbook series we analyzed (Gakko Tosyo,2 
Tokyo Shoseki,3 Keirinkan, and PROMETAM4) for multiplicative situations.5 The 
terms  “multiplicand” and “multiplier” are introduced to create the mathematical 
sentence appropriate for a given situation. Enabling students to see multiplicative 

1 Japanese usually teach mathematics with the whole class and use terminologies in Chap. 4 on 
the unit plan. A mathematics lesson in Japan corresponds to a session in a subunit of the unit 
plan. The subunit is usually called a “phase.” Another usage of the term “session” refers to one 
class hour. The term “lesson” refers to the topic addressed by the lesson plan and is sometimes 
not limited to one class hour. The lesson plan usually refers to a part of the phase in the unit plan, 
which means a section in the textbook. On the other hand, based on research in mathematics 
education, sessions usually use the context of the topic sequence. Here we have used the term 
“session” for one class hour. The lesson plan for lesson study by the group usually has a study 
theme and the objective of the class with the content topic as the teaching material (see Chap. 1; 
Isoda, 2015).
2 The English-translated edition of Study with Your Friends: Mathematics (Hitotsumatsu, 2005; 
Isoda and Murata, 2011; Isoda, Murata, and Yap, 2015; Isoda and Murata, 2020). Thai translated 
edition (Inprasitha and Isoda, 2010) is from the 2005 edition. Spanish-translated edition (Isoda and 
Cedillo, 2012) is from the 2005 edition. Indonesian adapted edition (Isoda et al) is from the 2011 
edition. Chilean adapted edition (Isoda et al., 2020; Isoda and Estrella, 2020) are the 2005 and 
2011 editions.
3 The English-language edition of New Mathematics is used (Hironaka and Sugiyama, 2006).
4 PROMETAM is the Project for Improving Technical Education in the Area of Mathematics in 
Honduras, with technical assistance from the Japanese International Cooperation Agency (JICA). 
The JICA-supported projects PROMESAM in the Dominican Republic, PROMECEM in 
Nicaragua, GUATEMATICA in Guatemala, and COMPRENDO in El Salvador were also imple-
mented in the period in which the framework for the development of the texts was elaborated.
5 For analyzing those textbooks, we also referred to the framework of Vergnaud (1990) to describe 
the concept of multiplication in a situation, the invariant, and the representation. However, we did 
not explain the lesson using his terminologies because we would not be able to clearly explain the 
significance of the teaching sequence based on his framework. Actually, the teaching sequence was 
never discussed on his framework. Instead of using his analytical terminology, we illustrated the 
real lesson study classroom in Japan and compared the Japanese approach with the Chilean 
approach to show its significance.
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situations with the idea of multiplication is a particular feature of Japanese educa-
tion.6 In a later section, it will be compared with the Chilean approach using the 
terminology “sense making” or “making sense.”

5.1.1  Lesson Study on the Meaning of Multiplication, by Mr. 
Natsusaka

In relation to the subtheme of this book, this section presents an exemplar of lesson 
study with the lesson plan, implementation of the lesson (an open class), and discus-
sion of the implementation, carried out in June 2008. The open class for the lesson 
study was implemented by Mr. Satoshi Natsusaka from the Elementary School at 
the University of Tsukuba. The implementation corresponds to the first of the three 
lessons that introduce the meaning of multiplication to second-grade students.

5.1.1.1  Description and Plan of the Lesson Being Investigated

The topic to be studied in this lesson was “the meaning of multiplication,” devel-
oped by Mr. Natsusaka. The goal of the study was to consider lessons that would 
allow for developing students’ competency to use multiplication by linking the situ-
ation with multiplication expressions, taking advantage of how students would 
understand the situation.

[Lesson plan by Mr. Satoshi Natsusaka]
1. Unit name: Multiplication (1).7

2.  Research theme of lesson study: To develop the eyes to see the situation 
mathematically.

 (a) From “counting” and “discovering” activities to “expressing” activities: When 
there are a number of groups with the same quantity of elements (a unit of mea-
surement)—say, balls—it is expressed as the “number of balls in a group times 

6 In Japan (as explained in Chap. 1), development of mathematical values, attitudes, ways of think-
ing, and ideas have been the objectives of mathematics teaching since 1968. Mathematical ideas 
usually change the way to see the situation. In research on mathematics education, this is some-
times referred to using terms such as “intuition” and “insight” (see van Hiele, 1986).
7 He is an author of Gakko Tosho textbooks (2005). It has four chapters on multiplication for grade 2. 
Multiplication  (1) provides an introduction and definitions with the meanings of situations. 
Multiplication (2) covers development of the row of 2, the row of 5, the row of 3, and the row of 4, 
and learning how to develop the multiplication table. The discussion between rows is used to produce 
the idea of distribution for extension of the table. Then, Multiplication (3) discusses extension of the 
multiplication table to include the rows of 6 to 9 and the row of 1. It is expected that students are able 
to extend it. Multiplication (4) explores the properties of the multiplication table. Finally, the book 
discusses the making of a project by students (see Fig. 4.2 in Chap. 4, and see Chap. 6). The lesson 
being analyzed here is his original work. Textbook authors usually try to offer new challenges in their 
classes to produce innovative ideas for teaching and further revision of textbooks.

5 Japanese Lesson Study for Introduction of Multiplication
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the number of the same groups” (in Japanese) which corresponds to the math-
ematical expression of multiplication. The students express such a situation 
using phrases like “There are n balls in each group (set) and there are m groups 
(set)” even though they do not know the mathematical expression for multipli-
cation (see Fig. 4.3, Fig. 4.8 in Chap. 4). For example, when balls are placed in 
a box as shown in Fig. 5.1,8 some students may express this situation by saying, 
“There are 4 columns of 3 balls.” This expression can be considered to identify 
groups of 3 balls aligned vertically and to show that there are 4 columns with 
this quantity of balls. There are no lines that separate or encircle groups of 3 
balls, but students who use this expression are imagining these lines.

Similarly, some students may observe the same situation from other points of 
view, such as “3 rows of 4 balls” or “2 groups of 6 balls.” In any case, they will try 
to calculate the total number of balls by identifying groups with the same quantity 
of elements. If it is understood that there are “4 columns of 3 balls,” the total number 
of balls can be found by making the calculation “3 + 3 + 3 + 3 = 12.” It is appropriate 
to lead the students to the multiplication expression, obtaining the expression from 
them and confirming what the expression “3 [×] 4” represents.9

 (b) The competency to see the situation as multiplication:10 As shown in Fig. 5.1, 
the quantity of balls in Fig. 5.2 is 12. The students who realized that in Fig. 5.1 

8 This was discussed as the array diagram in Chaps. 2 and 3.
9 In this chapter we use the Japanese notation “3 × 4” instead of the English notation “4 × 3” 
because we quote Japanese textbooks and photos in the classrooms, and we could not change origi-
nal photos, and so on. Thus, “[×]” is written as “×” from here onward.
10 In Japan (as discussed in Chap. 1), seeing the situation through mathematical ideas has been 
emphasized as subject matter of teaching to develop mathematical thinking since 1958 (see Isoda 
and Katagiri, 2012; Rasmussen and Isoda, 2019).

Fig. 5.2 Grouping the dots 
for multiplication

Fig. 5.1 The way to explain 
the array diagram such as 4 
columns of 3 balls and so on
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there were 4 groups of 3 balls are asked if they can also see that there are 4 
groups of 3 balls. Then, some students may think of separating the balls as 
shown in Fig. 5.3a or moving the 2 balls placed in the upper part to the corners 
of the lower part as shown in Fig. 5.3b. As such, the way of placing the balls is 
changed so that it is the same as in Fig. 5.1.11

The custom of observing the figure and determining the quantity of balls per unit 
or group will increase students’ competency to see the situation as a multiplication 
expression or a model of multiplication. Also, listening to how other students inter-
pret the figure and recognizing the model will allow them to enrich their points 
of view.

3. Unit goals:

 (a) To understand the meaning of multiplication through concrete situations.
 (b) To be able to formulate the multiplication expression for situations that can be 

expressed as such.

4. Unit plan (4 hours):

 (a) First phase: The meaning of multiplication (2  hours); this is the first of the 
2-hour lesson.

 (b) Second phase: Applying multiplication (2 hours).

5. Lesson outline:

 (a) Goal (objective of the class): Learn to express that “there are m groups of n 
quantities” considering groups of the same quantity when the number of 
elements is counted.

 (b) Development of the lesson.

11 This is the activity that enhances seeing the situation as a multiplicative situation (see Figs. 4.2 
and 4.3 in Chap. 4).

Fig. 5.3 To see the shape 
for multiplication:  
(a) 4 corners of  3 balls. 
(b) If we move two balls  
to appreciate places, it 
changes to 4 columns  
of 3 balls
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Main learning activity Considerations

Situation 1: observing the box and 
thinking, “How many balls will fit in it?”

2 + 2 + 2 = 6 (balls)
6 balls because 2 balls are placed in 3 
columns
6 balls because 3 balls are placed in 2 rows
Situation 2: observing the shape of a box 
where 12 balls can fit, and thinking, “How 
many balls will fit in it?”
6 sets of 2 balls (2 + 2 + 2 + 2 + 2 + 2)
4 sets of 3 balls (3 + 3 + 3 + 3)
2 sets of 6 balls (6 + 6)
Observing the balls placed as (Fig. 5.4) 
from the same point of view as in 
situation 2 if they are moved
2 + 4 + 4 + 2 = 12
4 sets of 3 balls are seen
6 sets of 2 balls are seen

Thinking by considering the role of the rectangular 
drawing of the box
It is desirable for the students to realize that if the 
number of rows and columns is known, the total 
number can be determined without putting all the 
balls in the box
Try to get verbal expressions like “there are so 
many groups of so many balls” from the students 
or expressions through the additive model
It is desirable to take advantage of the point of 
view of situation 1
Make the expression correspond to the words
If the numbers are added from the first row 
downward, it can be expressed using the equation 
2 + 4 + 4 + 2 = 12
If there are students who try to change the way the 
balls are placed by moving some, they could also 
recognize it

[End of lesson plan]

5.1.1.2  A Public Lesson (Open Class) by Mr. Natsusaka

The following is a translation of a transcript of the notes taken during the implemen-
tation of the lesson by Mr. Natsusaka with a class of 39 second-grade students from 
the Tsukuba School in Tokyo on June 19, 2008. These notes were taken in Spanish 
based on the simultaneous translations from Japanese that were offered to Central 
American teachers observing the lesson.

The lesson took place in the Elementary School Theater at the University of 
Tsukuba in Tokyo. Fig. 5.4 shows the arrangement of the desks between the stage 
and the first row of seats in the theater.

At 9:18 a.m. the students went up to the stage in two lines and received a round 
of applause from the audience. There were more than 300 people present, the major-
ity of whom were teachers from different parts of Japan. Some of the guardians 
(parents) participated in recording the class to support Mr. Natsusaka. Without a 
doubt, the lesson being observed was an important occasion not only for the teach-
ers watching but for the students as well.

After Mr. Natsusaka guided the students in greeting the audience and ceremoni-
ally opening the lesson, he flashed on the interactive screen questions about types of 
triangles and polygons. On various occasions, the students went to the screen and 
touched a part of it as a way to answer the question asked, such as “Which of these 
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figures is a triangle?” and “Which of the triangles is equilateral?” When a student 
touched the correct answer, the figure was filled in with the color green. Otherwise 
it was filled in with the color red. The activity let the students recognize 3 triangles, 
2 rectangles, 1 pentagon, and 1 hexagon among the figures. Next, Mr. Natsusaka 
proceeded on to new questions using the interactive software, changing the content 
flashed on the screen, such that 4 triangles and 6 rectangles appeared. At this point, 
all the students raised their hands, and it could be seen that they had become com-
fortable and were involved in the dynamics with the teacher.

9:36 a.m. (Teacher, Mr. Natsusaka, presented on the interactive screen a rectangle 
with circular pastries in it. He never mentioned that this was an introduction to 
multiplication. It should be noted that he used the interactive screen (see Fig. 5.5) 
and not paper or a chalkboard to present the problem situation, as was indicated 
in the lesson plan.)

Fig. 5.4 Open class given by Mr. Natsusaka

5 Japanese Lesson Study for Introduction of Multiplication
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Teacher: “How many sweets will fit in the box?” (A rectangle shape and one circu-
lar12 sweet were shown on the screen.) “Make guesses about how many pink 
sweets will fit in the blue box.”

(A student came up to the electronic screen and demonstrated on the screen what he 
understood. Teacher did not say whether this was good or not; he delayed react-
ing on purpose to give time for the students to think by themselves.)

9:37 a.m. Teacher: “How many pink sweets will fit?”
9:38 a.m. Teacher: “Open your notebooks and write. How many sweets will fit?” 

(Teacher observed that some students were not working, then he added the fol-
lowing for those who hadn’t thought of it.) “Look at the screen. I would like to 
know your predictions.” (Teacher walked around the classroom from desk to 
desk and quickly looked at the students’ notebooks.) “Now, I’m going to write 
here,” (using the left part of the second board) “some of your answers in your 
notebooks: 4 . . . , 5 . . . , 6 . . . ; from what I can see, some of you have written 
‘4,’ others ‘5,’ and others ‘6.’ One student wrote ‘8’ and another ‘12.’ Which of 
these answers seem possible to you? Which seem impossible?” (Teacher pro-
vided ambiguous situations and let the students fix the necessary conditions by 
asking questions that made them think. Indeed, the students began to critique.)
Student 1: “It can’t be 4; 2 more would fit.”
Student 2: “If we look at it, 6 would fit.”

9:40 a.m. Student 2: “Can the sweets be placed on top of each other?”
Student 3: “One layer of 6 and another of 6. I don’t think that only 6 will fit. If you 
want it to be a box with 6 on the bottom and 6 on top, it has to be a taller box.”
Teacher: “What are the bases for your conjectures?”
Student 4: “I think that 12 will fit: 6 on top and 6 on the bottom.” (looking at the 

box from the top view)
Student 5: “Observing it from above, then it would be 12: 3 layers of 4.” 

9:45 a.m. Mr. Natsusaka: “We will exclude that case. The box has to have all the 
pastries visible.” (The boxes with layers viewed from the top were excluded.)

12 They know the circle as a shape; however, they do not know the property of a circle. Thus, it is 
an ambiguous figure.

Fig. 5.5 Mr. Natsusaka 
uses the interactive screen 
to present the problem 
situation
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Student (going to the board and showing with his fingers how the length of the 
diameter of a circle was contained three times in the length of the rectangle): “3 
on the top row and 3 on the bottom row, so 6 fit.”
(Mr. Natsusaka put another box on the screen under the first. With the mouse and 
software tools, he placed 4 pastries in the box (see Fig. 5.6).)
Teacher: “It’s the same as what you did with cardboard. We have to prove . . . ,” 
(after drawing) “so 6 fit. There is enough space. If there are 3 in the first row, then 
. . . 3 fit on top.”
Student 1 (using the software’s copy option to draw another rectangle on the 
screen and commenting as follows): “Since 6 fit the first time, if the box is tall 
enough, 6 more will fit.” (In the left part of Fig. 5.7, the 6 balls became a unit, 
which was the side view of the layer.)

9:50 a.m. Student 2 (speaking from his desk and pointing at the 3 balls in the right 
part of Fig. 5.7): “The balls are superimposed.”
Teacher (trying to lead them to see it as 6): “Do 6 fit? Raise your hand if you 
think that 6 fit.” (Several students raised their hands.)
Student 4: “3 fit in 1 row. 3 + 3 is 6.”
Teacher (writing the expression “3 + 3 = 6” on the board): “3 + 3 = 6.”
Student (pressing the software’s buttons, visible on the interactive screen, and 
drawing as he spoke): “Then there are 6. There is a group of 3 and there is 
another group of 3.”
Teacher: “How did you divide it?” (on the screen)
Student: “Days ago,” (Mr. Natsusaka did not conduct the class for multiplication, 

yet) “we made a drawing like this,” (pointing to the ovals drawn on the board (see 
Fig. 5.8)) “we changed the shape, but is it the same?”

Student: “If we think of 2 groups of 3, there are 6.”
9:59 a.m. Teacher: “First, listen to what your classmate said,” (repeating the stu-

dent’s idea) “yesterday, someone separated it like that and said there were 2 
groups of 3. Could I also say that there are 3 groups of 2?” (See Fig. 5.9.)

Fig. 5.6 On the Monitor 
Screen: Mr. Natsusaka 
confirmed 3 or 4

Fig. 5.7 Show the students 
ideas on the screen 
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(Teacher no longer drew with the software on the electronic board; he drew on board 
2 with colored chalk, in the upper left-hand portion.)

Teacher: “So . . . there are 3 groups of 2. So, in a row of 2, there are 3 groups. So, 3 
groups of 2, there are 3 groups of 2. Do you all see it like that?”
Student: “If we take 3, twice, then it will be 6.”

Teacher: “3  +  3  =  6.” (See Fig.  5.10.) “So, in this case, how can you express 
2 + 2 + 2? If you express it using addition, how can we express it?” (Only half 
the class raised their hands, and a student asked Mr. Natsusaka a question).
Student: “It’s 2, like it’s grouped that way. So, is it about groups?”

Fig. 5.10 Mr. Natsusaka, 
Teacher, and a student 
interacting on the board

Fig. 5.8 Board Writhing 
(Bansho), Japanese teacher 
listen students’ idea 
through questioning and 
note on the board. See 
Fig. 1.2, Chap. 1

Fig. 5.9 Read the diagram 
and explain vertically and 
horizontal
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Teacher: “Your classmate asked what this number 2 represents.” (Teacher paused 
and waited for the students to raise their hands, then he spoke to the student who 
had just spoken): “Could you repeat what you said before?”
Student (returning to the board and explaining it as follows): “A group of 2 
repeated 3 times.”

Teacher (speaking to another student to evaluate his understanding and focus the 
discussion): “Can you repeat what your classmate said?”
(The student did not answer, so Teacher did.)
Teacher: “So, 2 represents the number that divides. There are 3 groups of 2. The 
number that divides 2 × 3 = 6 is 2. 3 indicates how many times.”
Student: “I can say it more simply: 2 is the number that is going to be multiplied.”
Teacher: “He said it in a way that is easier to understand.”
Student: “This number, 2, of 2 times 3, leads to 6. 3 shows how many there are.”

10:03 a.m. Teacher (drawing 2 pastries inside a circle on the board in blue): “So, 3 
indicates ‘how many circles.’ One way is 2 groups of 3, and another is 3 groups of 
2; that is, it can be said in different ways.” (He then returned to the interactive 
screen.) “Now, in this box,” (see the left part of Fig. 5.11) “how many will fit?”
Student: “Can you show the previous box again?” (See Fig. 5.6.)
Student: “Can you show both boxes?”
Teacher used the mouse to copy the box, showing both.)
Student: “Can you move one box under the other?”

10:06 a.m. Teacher: “Yes, I can move it.” (Since the student came up with argu-
ments, Teacher asked him to go over to the interactive board.) “Come here.”
Student: “In this [the box underneath], 6 fit.” (He used the software to move the 
boxes and line them up (see the middle part of Fig. 5.11).)
Teacher: “It looks like it marked it there. Do you know what it’s doing?”
Student: “It’s covering it up.”
Teacher: “He adjusted, marked, and moved. Think, what is Lu’s intention?”
(Teacher gave the students 30 seconds to talk in groups of three.)
Teacher: “Are the rectangles below of the same width?”

Teacher (showing that the rectangles had the same width by placing one rectangle 
beside the other): “So, how many sweets fit in this big box?”
Students (all responding together): “12.”
Teacher: “Who thinks that it’s not 12?”
Student: “I’m not sure, but it has to be even.”

Fig. 5.11 How many boxes? Here the box is a unit for counting: The inverse idea of splitting (see 
Chap. 3).
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10:12  a.m. Student (in front of the interactive screen, and moving the lower 
 rectangle): “It fits twice, so 12 fit.” (See the right part of Fig. 5.11.)
Student 2: “6 fit in the small box. I marked it there, and the space is equivalent to 
the box. So, the big box is equivalent to two small boxes. So, the total is obtained 
by adding two sixes.”

10:15 a.m. Teacher (writing on the board): “You all say that twice 6 is 12.” (See 
Fig. 5.12.)

 6 6 12� �  

Teacher: “So, 2 groups of 6, 4 groups of 3, 2 groups of 6. Is there another way to 
express the total?”
Student: “4 + 4 + 4.”
Teacher: “4 and 4 is 8, and 8 and 4 is 12.”
Student: “We can divide 3 times 4 in another way. 4 + 4 + 4 is a new way.”
Teacher: “Are there other ways?” (Teacher then decided to end the lesson.) “I had 
planned to have you try with stickers, but it’s time to end, so we will have to leave 
that for the next lesson on Monday. Now we’re going to say goodbye to the 
teachers visiting us.” (They looked at the visiting teachers.) “I’ll go with you all 
in a little bit. I’ll catch up.”
(A student asked if they would have another special activity the next day.)
Teacher: “No, you’ll have your normal classes. Tomorrow, there is music class. 
Don’t forget to bring your pencils, textbooks, and PE uniforms.”

10:19 a.m. (The students left.)

5.1.1.3  Post–Open Class Discussion

Once the students had left the theater in a line, the teacher spoke to the audience to 
give justifications for his actions according to the goal proposed for the lesson.

Mr. Natsusaka (Teacher): “Thank you; I would like to receive your comments. 
We just witnessed a second-grade lesson of introducing the meaning of multiplica-
tion, in which the students made conjectures about how many pastries fit in a box. 

Fig. 5.12 6 + 6 = 12 on 
the third board; is there 
another way to express the 
total?
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My intention was that the students would present at least the number per column. 
More than half already knew the word ‘multiplication’ although I don’t know if they 
understand it. But my intention was that the students would learn the meaning of 
multiplication, so although I heard the word ‘multiplication’ many times or expres-
sions like ‘2 times 3’ I didn’t repeat them because I wanted them to understand. So, 
I avoided introducing the expression ‘multiplication’ on purpose. I tried to use terms 
they all know.”

10:31 a.m. Mr. Natsusaka: “In the lesson, the first student said ‘4 + 2 is 6,’ 
expressing the total as a sum (See Fig. 5.13.). The second student said, writing 
vertically, that a group of 3 and another group of 3 is 6.” “This introductory part 
lasted for 10 minutes. There were two expressions that came out of this: ‘2 groups 
of 3’ and ‘2, 3 times.’ Maybe the students didn’t realize this. But I wanted them to 
understand. A student said ‘2 + 3’ but this sum cannot be used, so multiplication 
appeared as something important and necessary. Expressing verbally ‘in 2 groups 
there are 3’ indicates that there is another way to see it. So, I changed the color 
from blue to red because it represented something different. I wanted them to learn 
a new arithmetic operation. So, here,” (pointing to a diagram made during the les-
son) “there are 12 units. Then a child explained the situation thinking of figures of 
4 objects, 3 groups of 4, separating it in different ways. My intention was for the 
students to discover different groupings. How many groups could there be? I 
wanted them to group the objects in different ways before using the term 
multiplication.”

Visiting teacher from Central America: “Why didn’t you use concrete materials?”
Mr. Natsusaka: “I decided not to use tokens or concrete materials as I had already 

shown this to the students. Also, we already did that in first grade. That is used in 
Japan, but this time they didn’t use tokens. Honestly, I was thinking of using a blank 
piece of paper and different colored stickers to stick on the boxes. In the fourth 
grade, we study area and dimensions.”

Teacher in the audience: “I am using this program and I see the usefulness of the 
program. But why didn’t they use the real conjectures in three dimensions and see 
the height, as maybe it could be shown in different ways? Comparing would be 
easier for the students with something more real.”

Mr. Natsusaka: “This time I showed 2 vertically and 3 horizontally. What do you 
suggest?”

Fig. 5.13 Estimation of 
how many balls in the box
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Teacher in the audience: “A student showed 2 times 3 vertically. But using a real 
box would be more efficient. It would be possible to have various boxes and adapt 
to the students’ answers.”

Mr. Natsusaka: “Before class, I practiced with the software. Maybe more draw-
ings could be included. I didn’t think of using a real box because it could be 6 or 12 
that can fit. I didn’t think they would reach that point [three dimensions].”

Teacher in the audience: “I come from an island. You achieved the goal, but I’m 
lost. You always ask, ‘Why do you think so? Write the reason.’ This kind of behav-
ior was visible and developed reasoning and imagination. But why did the students 
know how to answer?”

Mr. Natsusaka: “I follow the guidelines of the new program [the national curricu-
lum standards] which places greater emphasis on verbal expression: expressive com-
petency, comprehensive competency, and textual formulations. It is important to ask 
for the reason or ‘Why can it be written like that?’ Teachers tend to assume what the 
student expresses. It is important to let the student say why so that the teachers will 
know how much they have understood and where their limit of understanding is. It is 
important to know how far they have really understood. The students fail in verbal 
expression, so they do it with diagrams. The students want to communicate their ideas. 
There are cases when students have difficulty expressing their ideas verbally, so they 
just draw diagrams. I understood that one student could not say what he understood, 
so I asked him to express it in another way or with more words—that is, to paraphrase. 
It is also important to promote the competency for listening—that they know how to 
interpret what others are trying to tell them. I intend to listen well to be able to com-
municate. If I express the ideas ambiguously or unclearly, then more time and situa-
tions are needed to communicate. If the students understand, then they ask questions. 
I asked them to express their ideas in another way by drawing. When the students try 
it, you have to evaluate what they understand. In the beginning, we played with these 
shapes.” (He indicated the triangles and rectangles on the interactive screen.) “There 
is an open polygonal chain. I asked, ‘Why isn’t it a shape, or can it be considered a 
shape?’ I get the children to think, ‘Why?’ Back to the topic, it is interesting to develop 
the competency for interpretation. I observe the students’ faces to see if they are listen-
ing to me. Looking at their faces, I can see if they don’t understand. As my colleague 
Mr. Tanaka says, ‘I look at the back of the classroom, and I go to the middle of the 
room to see if they are listening and understanding.’ It is important to see the stu-
dents’ faces.”

Teacher in the audience: “As you speak of the meaning of multiplication, you 
mentioned that in the fourth grade they will study area (dimensions). Regarding area, 
how would you introduce it? Because now you are drawing pastries (circles) . . .”

Mr. Natsusaka: “It’s a difficult question. Today, for example, I used pastries of 
the same color; maybe one row could be one color and the row underneath another 
color. But my intention, which I wanted to develop among the students, was that by 
looking at the same drawing, they could see various forms. Colors are useful for 
area; 1 rabbit, 2 ears; 3 rabbits, 6 ears. Such attribute models are in another discus-
sion because it fixes the view to every rabbit. But my intention was that in this 
lesson, the students would learn to group in different ways by themselves. In the 
case of rabbits, it’s obvious that they have 2 ears; it cannot be changed.”
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11:05 a.m. Mr. Natsusaka: “How many circles are there? I thought of expres-
sions like ‘4 + 4 + 4,’ but there are students who thought, ‘3 in the corners, 4 times.’ ” 
(See Figs. 5.14 and 5.15.) “It is important to develop this competency for discovering 
different groupings. After learning the meaning of multiplication, it can also be applied 
to this drawing. I moved two circles to give shape to the image.” (See Fig. 5.14.) “It’s 
not that they already know, but, rather, that before starting with the multiplication 
table, they have already learned to group in different ways.”

Visiting teacher: “I come from a distant province. You insisted on the compe-
tency to group in different ways. But when you said to a student that the big box 
(pointing to the rectangle drawn on the interactive screen) was the same as the 2 
small boxes, he said that it wasn’t the same. Maybe he said that 2 boxes of 6 isn’t 
the same as 1 box of 12.”

Mr. Natsusaka: “Maybe a student said 3 rectangular boxes in the big box.” 
(See the right part of Fig. 5.16.) “There were students who saw the big box as 2 
small boxes. But there were students who saw it as 3 boxes of 3 circles each. Later, 
in the next lesson, the students can continue with representation. There were a few 
who thought that there were 3 boxes.”

Visiting teacher: “Your lesson gave me ideas for my lesson. Sometimes, compar-
ing with my class, I intervene too much. But what were you trying to do? Also, the 
board was not used very well.”

Mr. Natsusaka: “I asked the students to express their ideas verbally. They didn’t do 
it. I tried to get them to formulate something before coming to the board, as some of 
them forget when they try to express it verbally. I wrote slowly so that the students 
could keep up. I also intervened when it was something important. When I posted the 

Fig. 5.14 Establish 
entangler shape to 
recognize the situation for 
multiplication

Fig. 5.15 To find the 
various unit for 
multiplication

Fig. 5.16 Change the box 
for changing the number of 
balls in it
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four problems, there wasn’t enough space on the board for the fourth problem. It 
depends on the students. Some of them try to economize in their notebooks. The use 
of the board and the notebooks have a lot to do with each other. There are teachers 
who insist on writing down the class goals. I don’t agree, because the goals are not 
static. The students’ goals, hidden goals, or maybe apparent goals can appear. I think 
this is wrong. On the other hand, writing down the goals leads the weaker students to 
understand better. Depending on the nature of the goals, it may be best to write them 
down or not, as some will be explored and discovered. If I write down the goals and I 
want them to discover regularities, then the lesson is already over, because if I write it, 
then they already know that there is regularity; thus, there is no more exploration. 
There are topics for which the lesson goals cannot be written. They are understood 
during the development of the lesson. Maybe halfway through the lesson, the inten-
tion can be written from the students’ perspective.”

11:20 a.m. Teacher in the audience: “We were observing the first lesson for 
understanding multiplication. What will the next lesson be like?”

Mr. Natsusaka: “It continues with the topic on expressing multiplication. For 
example, ‘2  ×  3 is 6,’ and it will show multiplication directly, no longer using 
3 + 3 + 3 but, rather, the multiplication expression.”

Teacher in the audience: “One student said ‘1 unit 12 times.’ How do you deal 
with this student?”

Mr. Natsusaka: “I would use the idea of 1 × . . . ; the multiplication table only 
goes up to 9, but maybe 12 groups of 1 can be expressed, or 1 unit 12 times, even 
though for now we only express up to 1 × 9. But it can be done.”

Teacher in the audience: “For the students to use multiplication, do you think it 
is important that they see different shapes or groupings?”

Mr. Natsusaka: “The students grouped in different ways, as I have said. In the 
following lessons, we will use multiplication and the students will learn the multi-
plication table. To familiarize them with the multiplication table, I use the method 
of practicing with a written record of their progress in the multiplication table.” 
(He shows notebooks made by the students that they use as a support for memoriz-
ing the table (see Fig. 5.17).) “The student learns the multiplication table for each 

Fig. 5.17 Students’ 
homework notebook 
(journal) for multiplication 
to show the group as unit 
and a number of groups
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number and is asked to check his progress. Then, the teacher or a family member 
(parent) signs after checking the memorization of the table. Then the student 
advances with the multiplication table of 2, of 3, etc. In the following lessons, I have 
the students write their ideas, then I have them do exercises. Following that, we look 
at some of the properties of multiplication. I ask them, ‘If I add these two rows,’ 
(referring to 2 and 3 in 3 × 2 and 3 × 3) ‘is it the same as 3 × 5? How much is it? If 
there are 6 and 9, then there is 15.’ That way, the students in the second grade dis-
cover that the results for the row of 5 are the sums of the results of the rows of 2 and 
3. Now I cover the part of the multiplication table, and I ask them to say the sum. 
What I am using is the distributive law. That way, they think of, look for, and dis-
cover patterns in the multiplication table. I can cover four numbers at a time. Many 
things can be learned from the multiplication table, which is why it is good for them 
to know how to use it well.”

11:27 a.m. (Dr. Isoda introduces himself as a professor at the University of 
Tsukuba.)

Dr. Isoda: “The students learn ‘How many more?’ but ‘How many times?’ is 
something different. Now, the students do not know how to multiply, but through 
grouping, it is possible that multiplication expressions present themselves. 
Multiplication, as an arithmetic operation, is important for students to learn how to 
express relations with a meaning different from that of addition. In multiplication, 
the first number represents something totally different from the second number. 
This was not mentioned in the lesson.”

Mr. Natsusaka (thanking Dr. Isoda for his contribution and closing the comments 
and question time): “Thank you for your attention.”

(While the audience is leaving the theater, a group of Central American teachers 
stays in the hall and asks Dr. Isoda some questions.)

Observing teacher from Central America: “How did the teacher carry out the 
evaluation of the lesson? The students have a tendency to count, and the teacher’s 
intention is that they group.”

Dr. Isoda: “Assessment for teaching and rating of students should be distin-
guished. As a confirmation, the teacher usually assesses students’ learning within 
the lesson, such as observing whether or not the students raise their hands and if 
they understand. Based on such assessment, teachers make decisions on what is 
necessary activity and needs to share the ideas or ask students to imagine other’s 
ideas, and so on.”

Observing teacher: “Do they all have computers? What was the importance of 
the use of the interactive screen?”

Dr. Isoda: “In this lesson, only the program with interactive software was used. 
There is a tendency to use it. Today the software’s advantages were not seen well. 
We can do the similar activity by using cards and so on. It is being experimented 
with now. It is a good interactive tool as well as other manipulative. There is a ten-
dency to use the interactive screen, to learn Information, Communication and 
Technological (ICT) tool, not to do something new but, today, it was used rather, as 
a teaching tool.” (See Fig. 5.18.)
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5.1.2  Lesson Plan on Applying the Meaning of Multiplication 
After Learning the Multiplication Table, by Mr. Tsubota

In the second grade in Japan, seeing situations in various ways with multiplication are 
usually learned both in the introduction to the meaning of multiplication and in the 
application after students have learned the multiplication table. The following lesson 
plan uses the meaning of multiplication and was developed by Mr. Kozo Tsubota 
(2007), Vice Principal of the Elementary School at the University of Tsukuba. Please 
note that the lesson study usually has a research theme. The  proposed research theme 
in this case is “Representing Ideas Using Expressions and Interpreting Expressions” 
for solving problems using multiplication, which is related to finding the unit for mul-
tiplication. However, in this exemplar, students have already learned the multiplica-
tion table. This is a good task for students in the next grade. Thus, interpretation 
between an expression and a situation is the main study theme. It should be noted that 
in lesson study in Japan, the lesson study theme and the goal/objective of the class 
should be distinguished (see Chap. 1 and Isoda, 2015a).13 The study theme is the 

13 Around the world, there have been a number of research on lesson study and some misconceptions 
about Japanese lesson study. They are related to the research of M. Yoshida (see Fernandez and 
Yoshida, 2004), who focused on school-based lesson study, which was a very unique activity in the 
world for professional development 20 years ago. In English, international researchers did not have 
the opportunity to understand the various meanings of Japanese lesson study (see Chap. 1). 
School-based lesson study at the elementary school level usually enhances a limited lesson study 
group as a learning community in the school; this is true. On the other hand, there are several types 
of lesson study communities in Japan as we mentioned Fig. 1.4 in Chap. 1. A good example is the 
subject-based lesson study that originated from the Elementary School at the University of Tsukuba 
in 1873 (see Isoda, Stephens, Ohara and Miyakawa, 2007). It is used for curriculum development 
too. In subject-based lesson study, the teacher usually focuses a lot on both personal research activ-
ity in the research society beyond his or her school and demonstration activity to show his or her 
practice at several schools as an invited consultant. Indeed, every teacher at the Elementary School 
at the University of Tsukuba has his or her community of lesson study in his or her subject. 

Fig. 5.18 Dr. Raimundo 
Olfos (left), Dr. Masami 
Isoda (middle), and a 
translator (right)
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theme proposed by the teacher who teaches the class and is written as a general issue. 
The objective of the class is defined for the specific content in the curriculum sequence.

 1. Study theme of lesson study: Representing ideas using expressions and interpret-
ing expressions.

 2. About the theme: In this lesson, the students find the number of dots in a collec-
tion (arrangement) of dots (see Fig. 5.20), and find ways of counting the number 
of dots in the arrangement. Some students represent their ways of counting using 
expressions, and others interpret the meaning of each expression. Through these 
activities, the students can find unexpected interpretations for their own expres-
sions, and other ways of counting can emerge. We want to use these experiences 
to encourage students to value learning from each other in studying mathemat-
ics. In particular, for each expression presented by a student regarding Fig. 5.19, 
another student interprets the meaning of the expression. This activity provides 
an extension of the students’ ways of thinking about the expressions.

 3. Goal (objective of the class): To understand how to solve problems using 
multiplication.

 4. Duration of the lesson: Special 1-hour lesson.
 5. Development of the lesson:

 (a) Lesson goal: To find ways of counting the total number of dots in a square 
with 4 dots on each side, represent each way of counting as an expression, 
and to interpret the meaning of the expressions.

 (b) Development:

The mathematics study group at the school has its own Journal of Elementary School Mathematics 
Education in Japan. Every mathematics teacher at the school edits at least one issue of the journal 
in a year in collaboration with his/her study group. At its annual meeting, more than 1000 teachers 
participate in studying new research issues for lesson study. All of them are professional leading 
teachers in Japan. The quality of school-based lesson study is maintained by such subject-based 
lesson study. In this context, if a lesson plan does not have a study theme, it is just preparation for a 
class and is not for lesson study to show others in Japan. Having only an objective without a study 
theme, the lesson plan looks like just a preparation of teaching. However, Japanese lesson study 
theme usually related  to develop students who learn mathematics by and for themselves (Isoda and 
Nakamura, 2010, Isoda 2015a, Isoda 2015b). Thus, the lesson study theme usually focuses on teach-
ing mathematical values, attitudes, ideas, and ways of thinking. Under the same theme, every 
teacher can develop different exemplars to share what to teach (see Chap. 1).

Fig. 5.19 Various unit for 
grouping and which is 
easier to get the number
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Content Considerations

Look at the image below and 
think, “How many dots are 
there in the image?”

Confirm that there are 25 dots 
and think about how to 
represent the way of counting 
them, using an expression
The students represent their 
ways of counting using 
expressions, and other 
students interpret the meaning 
of each expression:
1 + 3 + 5 + 7 + 5 + 3 + 1 = 25
(3 × 3) + (4 × 4) = 25
5 × 5 = 25
6 × 4 + 1 = 25
3 × 8 + 1 = 25
etc.
Confirm that there are various 
ways of counting

Show the image to the students briefly for them to construct a 
mental image of the arrangement of dots in the image
Each student should try to represent his or her own way of 
counting, using an expression
The students look at the expressions made by other students and 
think about the interpretation of these expressions

Confirm that there are various ways of counting by grouping 
and that for each expression there are various possible 
interpretations, as shown in the images

This activity is developed in the textbook “Item 2” from Shogaku Publishers 
(2008), including possible student responses, as proposed by Mr. Tsubota during 
lesson study (see Fig. 5.20)
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Fig. 5.20 Possible student responses, as proposed by Mr. Tsubota during lesson study
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5.2  Evidence to See Any Number as a Counting Unit

The 1989 curriculum standards (Isoda, 2005) reinforced the variety of the types of 
grouping and that any number can be seen as a unit and every unit is not limited to 
the base ten (decimal) place value system. The standards are reflected in the second 
grade at the beginning of the study of multiplication. In Japan, teachers use 
 textbooks, approved by the Ministry of Education, that follow the standards. For 
example, the number of unit squares in Fig.  5.21 is 27 by counting, by adding 
10  +  9  +  8, and by multiplying 9  ×  3.14 The Japanese standards ask teachers to 
develop students to choose the appropriate unit for counting, depending on what 
they have learned. This approach has been implemented since 1992 (based on the 
1989 curriculum standards).

Isoda and Odajima (1992) researched the development of the cardinal number 
among students from the viewpoint of grouping strategies. They studied how stu-
dents’ competency for grouping is reorganized, depending on the content of their 
learning, by comparing the grouping strategies offered by first-, second-, and third-
grade students in a survey (see Fig. 5.22).

The results, expressed in percentages, are shown in Table 5.1.
As shown in Fig. 5.23 and Table 5.1, in the first grade, some students use count-

ing or grouping to add. In the second grade, before studying the multiplication 
table, coins are used in forming groups to add. Some students can use grouping to 
multiply after their introduction to the meaning of multiplication in the classroom. 
In the third grade, after all the students have studied the multiplication table and 
the algorithm with the column method in vertical form, more than half of them use 
the idea of grouping to add or multiply. This task is not like the one shown in 
Fig. 5.22. At the time of this survey of student development, the teachers were not 
yet implementing the new curriculum. Even though it is not easy to find the unit to 

14 Figure 5.21 is used by Prof/Dr. Satoshi Kodo to explain the significance of mathematical ideas in 
how students change their view to see objects through the learning of mathematics (Personal com-
munication in 1984, see Chap. 1, Mathematical Thinking).

Fig. 5.21 How many unit squares are there?
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Fig. 5.22 Grouping strategies offered by first-, second-, and third-grade students in a survey

Table 5.1 Difference of the ways of counting by setting the various units for counting

Method

197 first-grade students 
(%)

214 second-grade 
students (%)

167 third-grade 
students (%)

Coins Tiles Coins Tiles Coins Tiles

Count one by one 36 47 36 23 10 12
Count by 2s or 5s 3 8.6 4 4 1 1
Count by 10s 3 5.4 10 22 8 8
Simple addition 10 2 3 4 1 0
Group to add 48 37 38 31 48 43
Group to multiply 0 0 9 16 32 36
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multiply in the tasks and the students are not asked to think about it, they applied 
multiplication.15

This result shows that learning multiplication develops the idea of grouping. 
Base ten units such as ones, tens, and hundreds are not the only units used for count-
ing. In the Japanese approach, the students should learn how to choose the appropri-
ate unit, set, or group for counting by using multiplication. In relation to vertical 
form, students should also fulfill the necessity to reorganize multiplication under the 
base ten place value system, which will be discussed in Chap. 7. The process of 
extension and integration is explained in Chap. 1.

15 This survey included data collected at another school. That school did not follow the national cur-
riculum but used the methods and textbooks proposed by the Toyama group (see Kobayashi, 1986), 
as explained at Chap. 1. The data showed that the students taught under the Toyama group (AMI) 
approach did not change their view as in Table 5.1. A limited number of schools preferred the AMI 
approach at that time. The data (which were taken from two classes) were insufficient to compare the 
difference with other schools that did follow the national curriculum. However, the data that showed 
no change represent the critical point for the discussion in the discussion of attribute on the next  
Sect. 5.3. In that section, the Japanese and Chilean approaches are compared. The Toyama approach 
is similar to the Chilean approach.

Fig. 5.23 Students’ competency for grouping tiles. (Note: The first data row in Table 5.1 is shown 
at the bottom row of the graph)

R. Olfos and M. Isoda



127

5.3  Comparison of the Japanese and Chilean Approaches

This section illustrates the feature of the Japanese introduction of meaning, which 
was explained in Sect. 5.1, in comparison with Chile. In Chile, multiplication is 
illustrated by repeated addition with seven sample activities (MINEDUC, 2017, 
pp. 151–154). If we prefer the activities closest to the Japanese approach, the fol-
lowing sample activities can be quoted:

In activity 1, the students are asked to transform sums in expressions with the 
word “times” (veces in Spanish), asking the following questions in these situations:

(i) How many times do you repeat 
the 2 in the case of the number of 
ears of the 5 children in the image 
shown on the left?

(ii) Answer the following questions 
that relate to the groups of 4 bottles 
in the image shown on the left:
How many times is the row of 4 
bottles repeated?
How many times is 4 bottles 
repeated?

In these examples, it is clear that there are no discussions to set the unit of mea-
surement by students because every pair of ears is fixed to the faces of the students, 
and counting the number of students corresponds to counting by 2s. Having two 
ears is an attribute of humans.16 Thus, instead of counting each ear, we count the 
number of students. In (ii), the number of 4-bottle sets is asked. Then, the children 
have to see the set likely to be an attribute of humans. Here, (i) will be a metaphor 
for (ii) to see the set as an attribute. Thus, the metaphor of the attribute can be seen 
as a model for the binary operation to introduce multiplication, which is discussed 
in Chap. 3.

In activity 2, the students are asked:

 (i) To draw a situation explaining what they understand about it and answering the 
question: “I have 5 cats and each one has 4 legs. How many legs are there in 
total?”

 (ii) To complete the following story, drawing what they are told: “5 friends go to a 
store and each one buys 2 figurines . . .”

16 This Chilean approach using attributes is the same idea as Toyama’s approach (see Kobayashi, 
1986, Sect. 5.2, Chaps. 1 and 3). It tries to express the meaning of multiplication by using a specific 
model for every row.
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Four legs are an attribute of a cat. This can be generalized to a situation like one 
person for two figurines, using the example of the cat as the metaphor for the attri-
bute. It is also enhanced to see the situation as the base for the binary operation.

The third example follows the reverse scheme postulated by the definition.
In activity 3, the students are asked to express the quantities in Fig. 5.24 as a 

repeated sum and then as multiplication in the form of “times” and then give 
the answer.

In a of Fig. 2.54, for example, the students are expected to calculate the quantity 
by using the expression “3 times 5 [for ‘3 · 5’ because a dot (‘·’) is used for ‘×’ in 
Chile] is 5 + 5 + 5 = 15.”

Here, multiplication can be seen as repeated addition. However, the answer can 
also be obtained by counting by each in the diagram and not necessarily by adding. 
In relation to activities 1 and  2, the task sequence implies that multiplication is 
introduced by the metaphor of the attribute of the object and reorganized as repeated 
addition.

From the discussion in Chap. 3, we can explain the reason why the Chilean pro-
gram enhances the sequence from activity 1 to activity 3. If we represent the denom-
ination of quantity clearly, “3 × 5 = 15” means “3 (dishes) × 5 (apples/dish) = 15 
(apples).” However, students cannot directly understand the meaning of “apples/
dish” as ratio. Thus, the Chilean program introduces the part of “apples/dish” using 
the metaphor of the attribute such as 5 apples for each dish. The attribute of the dish 
is 5 apples. For using the attribute as a metaphor for the binary operation, multipli-
cation has to be introduced, such as the ears of humans and the legs of cats. It can 
be seen as an effort to make sense of multiplication as a binary operation and as 
repeated addition.

However, as long as we use the attribute of animals, we encounter the difficulty 
of asking students to overgeneralize the attribute of the original model because we 
do not discuss a person with six fingers or with two heads. If it is an attribute, stu-
dents cannot change the unit of measurement. In addition, even though we introduce 
the unit of measurement by attributes, it cannot be connected well to repeated addi-
tion because it should be understandable if we write it as follows:

5 (apples) + 5 (apples) + 5 (apples) = 15 (apples)

3 (dishes)  

Fig. 5.24 Repeated addition or counting by each: MINEDUC, 2017, pp. 151–154
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As explained in Chap. 3, it is not the same as “3 (dishes) × 5 (apples/dish) = 15 
(apples).”

Through the comparison of the Chilean and Japanese approaches, we can recog-
nize well why the Japanese approach enhances the setting of various units of mea-
surement by students and asks them to count the number of units for setting the 
multiplication expression under the definition of multiplication by measurement 
(see Chap. 3). The most necessary activity for the introduction of multiplication is 
to see the situation by various units of measurement and find or set the number of 
units. As well as the usage of times (bai in Japanese) directed for proportionality 
represented by the proportional number lines (see Chap. 4), is a key idea of mathe-
matical thinking to see the situation with mathematical ideas—in this case, ideas of 
a set (a group) and multiplication (see the idea of set and unit in Chap. 1, Table 1.1). 
For setting the unit of measurement, we can move the object (as in Figs. 5.3, 5.14, 
and 5.16, and in Fig. 4.3 in Chap. 4). In the case of Chile, the attribute of a given 
object is used to let students see the number as a unit.

5.4  Final Remarks

On the comperison of Chilean and Japanese Approaches, the Chilean approach ana-
lyzed to make sense of multiplication in the situation from the teachers’ side, and 
the Japanese approach analyzed to develop the sense-making activity of students 
who are able to set the measurement unit and to try to make clear the number of 
units by and for themselves, as well as making sense.17 This chapter has illustrated 
this feature with two lesson study exemplars, a survey of student development from 
the first grade to the third grade before and after introduction of multiplication in 
Japan, and a comparison with Chile. Even we conclude Chilean Approach using 
attribute is an approach for making sense rather than sense making like Japanese 
approach, we should note the differences were originated from the  behind school 
system and teaching culture.  For example, Ministry of Education Chile distribute 
the different companies’ textbooks to the different grades as for the national text-
books. For example,  first grade textbooks are published from the company A and 
second grades’ textbooks are published from company B. On this setting of Chile, 
it is difficult to teach based on what students already learned and preparing future 
learning. Indeed, if the textbooks are different depending on the grades, students’ 
sense making beyond grades is difficult because the ways for make sense are not the 

17 McCallum (2018) explained the sense-making stance as “the process perspective: mathematics as 
pattern seeking, mathematics as problem solving, big ideas have in common what I call the sense-
making stance” (p. 2). He also mentioned, “Where the sense-making stance sees a process of people 
making sense of mathematics (or not), the making-sense stance sees mathematics making sense to 
people (or not). These are not mutually exclusive stances; rather they are dual stances jointly observ-
ing the same thing. The making-sense stance is related to the content perspective described by 
Schoenfeld, without the unappetizing ‘carving content into bite-sized pieces.’ It views content as 
something to be actively structured in such a way that it makes sense” (pp. 2–3). Both perspectives 
are necessary for curriculum development.
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same amongst several textbook companies. If Chile try to shift to the sense making 
stance from making sense stance, it have to change the textbook free distribution 
system itself.18 On this setting, Chilean make sense approach for multiplication can 
be seen as a best consideration on the current Chilean setting.  In the countries such 
as England and USA, textbooks are not referenced as the minimum essentials but 
functioning as the one of the sources for the worksheets which teachers prefer every 
day.  Such countries might be much more difficult to establish consistent sense mak-
ing teaching sequence beyond the grades like Japan as we discussed at Chap. 4.
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Chapter 6
Teaching the Multiplication Table and Its 
Properties for Learning How to Learn

Raimundo Olfos and Masami Isoda

Why do the Japanese traditionally introduce multiplication up to the multiplication 
table in the second grade? There are four possible reasons. The first reason is that it is 
possible to teach. The second reason is that Japanese teachers plan the teaching 
sequence to teach the multiplication table as an opportunity to teach learning how to 
learn. The third reason is that memorizing the table itself has been recognized as a 
cultural practice. The fourth reason is to develop the sense of wonder with appreciation 
of its reasonableness. The second and the fourth reasons are discussed in Chap. 1 of 
this book as “learning how to learn” and “developing students who learn mathematics 
by and for themselves in relation to mathematical values, attitudes, ways of thinking, 
and ideas.” This chapter describes these four reasons in this order to illustrate the 
Japanese meaning of teaching content by explaining how the multiplication table and 
its properties are taught under the aims of mathematics education. In Chap. 1, the aims 
are described by the three pillars: human character formation for mathematical values 
and attitudes, mathematical thinking and ideas, and mathematical knowledge and skills.

6.1  Revisiting the Japanese Educational Principle

For explaining the Japanese content of teaching, we have to revisit Chap. 1 of this 
book first and provide some necessary information on the manner of teaching. The 
Japanese educational principle in mathematics (MEXT, 2008; Shimizu, 1984) is to 
develop students who learn mathematics by and for themselves based on what they 
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have already learned. In accordance with this principle, learning how to learn in 
itself becomes the content of teaching. Indeed, Japanese students learn how to 
extend the multiplication table after they have been introduced to the meaning of 
multiplication in the same grade. The extension of the multiplication table is one of 
the best opportunities to develop students in accordance with this principle.

Learning the multiplication table is a facilitated activity which includes exten-
sion of the table and coordination of the processes of memorization and application. 
For students to be able to learn mathematics by and for themselves, Japanese teach-
ers plan well-sequenced activities and think of several strategies for teaching. In the 
given teaching sequence (task sequence), the students are able to engage in activi-
ties in which they need to remember what they have learned and appreciate the 
advantage of those methods for development in the lesson. Major activities in class 
usually include solving a given unknown task, with a discussion of the unknown as 
a problematic, and communication of ideas to solve the problematic by challenging 
the unknown to be known.1 At every necessary moment throughout the class, the 
 teachers provide opportunities for students to compare what is learned and what is 
unknown, and to reflect on what they have learned before and during the class. In 
the classroom, the teachers hang posters or printouts on the walls in an organized 
way showing content related to what has already been learned as hints so that the 
weaker students can use them as needed. This way, the students not only learn 
knowledge and skills but also learn how to learn, including values, attitudes, ideas, 
and ways of thinking in mathematics. From this process, the students gain a rich 
opportunity for understanding and connecting various ideas.

6.2  A Survey of Appropriate Grades to Introduce 
the Multiplication Table

In Japan, after World War  II, under the USA occupation through the General 
Headquarters (GHQ) of the Allied Powers, there was a discussion on whether to intro-
duce multiplication and the multiplication table in the second or third grade. Traditionally, 
the Japanese used to introduce it in the second grade; however, the GHQ recommended 
the third grade or upper grades in relation to the experience in the USA, known as pro-
gressivism. In 1957, Tatsuya Matsubara surveyed the appropriate grade for memorizing 
the multiplication table in relation to mental age with the support of Yoshinobu Wada.2 

1 Japanese teachers call problem solving for a problematic originating from a given unknown task 
a “problem-solving approach” (Isoda, 2015; Isoda and Katagiri, 2012).
2 Yoshinobu Wada, a professor at the Tokyo University of Education, was known as a curriculum 
specialist in the Ministry of Education, who tried to defend the order from the General Headquarters 
of the Allied Powers. He introduced mathematical activity as the reorganization of the organism by 
J. Dewey (1916) which is currently known as the radical constructivism by Glasersfeld (1995) in 
relation to Piaget (1970). The mathematical activity at that time was the new view of the mathema-
tization principle described in the 1943 textbooks during World War II.  It was revised as the 
 mathematical thinking and attitude principle, and the extension and integration principle in 
Japanese national curriculum reform (Isoda, 2018, 2019).
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In his survey, he adopted the research by Carleton Washburne3 (1931) in Japanese set-
tings, such as the ways of teaching, and he compared the difference in students’ success 
between Japan and the USA, as shown in Fig. 6.1. The Japanese setting meant the 
Japanese method of teaching under the cultural tradition of memorizing the multiplica-
tion table.4 The teaching content and methods involved 36 hours of lessons which were 
developed under the supervision of Wada and the teachers from the Elementary School 
at the Tokyo University of Education.5 The US setting studied by Washburne was the 
Winnetka schools in the USA which were influenced by progressivist education.

From the obtained results, shown in Fig. 6.1, Matsubara (1969) concluded that a 
mental age of 8.1 years is a possible age to learn multiplication, which implies that it 
might be suitable to teach the multiplication table from the later semester in the sec-
ond grade. From the viewpoint of curriculum reform, the USA setting was influenced 
by progressivism. The results were related to differences in the curriculum and teach-
ing culture. This implies that the lower achievements in the USA at an older age may 
have been relevant to the curriculum and education in that setting in that era.

3 Washburne was known for the Winnetka Plan for progressive education and was the president of 
the Progressive Education Association.
4 Since the sixteenth century, the Japanese “3Rs” (reading, writing, and arithmetic) have included 
memorization of the multiplication table. In the East, it was normal to memorize the division table 
in the past. See also Chap. 7 in this book.
5 It is a kind of lesson study under the collaboration of Wada Group and the Elementary School 
Mathematics Group of Tokyo university of Education. Tokyo University of Education was the 
predecessor of the University of Tsukuba, which originated lesson study in 1873. The elementary 
schools established a national-level lesson study group as a society in 1904. Wada also established 
his own lesson study group as a society and its still exist after Wada passed away.

Fig. 6.1 The mental age for successful learning of the multiplication table according to the 75% 
acceptance (Accept) line among Japanese students and USA students (Stu.). Num. number
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6.3  The Multiplication Table in Japanese Textbooks 
for Learning How to Learn

This section illustrates how Japanese teachers teach the multiplication table and 
learning how to learn in order to develop students who learn mathematics by and for 
themselves. In the case of Japan, elementary school mathematics textbooks are part 
of the results of lesson study as well as a major reference for lesson study.6 Here, 
these textbooks are preferred for illustration of the teaching.7

The four sets of textbooks analyzed were Gakko Tosho (Hitotsumatsu, 2005; 
Isoda and Murata, 2011),8 Tokyo Shoseki (Hironaka and Sugiyama, 2006), and 
PROMETAM (2005)9 (Secretaría de Educación, 2007).10 The objective of the analy-
sis was to know the aims of constructing, extending, memorizing, and applying the 
multiplication table of the numbers from 1 to 9.

For teaching the meaning of multiplication and the multiplication table, around 
33–35 hours of lessons with exercise and tests are allotted, which is distributed as 
described in the sample shown in Table 6.1.

The activities employed in the various books for teaching the multiplication 
table are similar. For example, Gakko Tosho textbooks present seven activities for 
introducing the multiplication table of 2, and these same activities are used with 
minimal variation in addressing the tables of 5, 3, and 4. The activities proposed 
in the Gakko Tosho books for presenting the multiplication table of 2 are shown 
in Fig. 6.2.

6 In Japan, teachers must preferentially use textbooks authorized by the national government.
7 This alternative might be not understandable for countries that usually use worksheets for teach-
ing, such as the USA and the UK. The roles of textbooks differ depending on the country. Worksheet 
culture has originated from textbooks that are applicable for different curriculum and do not only 
follow the official curriculum. In the East, textbooks traditionally represent the official curriculum 
well.
8 The chapters on multiplication for the second grade in the 2005 and 2011 editions are similar.
9 Here, we chose various textbooks to shows the similarity and consistency on the different curricu-
lum standards in Japan and the country in Japan Overseers Cooperation. See the English transla-
tion of three generations of Japanese Curriculum Standards: Isoda, 2005, Isoda and Chino, 2006 
and Isoda, 2010.
10 PROMETAM [Proyecto Mejoramiento en la Enseñanza Técnica en el Área de Matemática] was 
a textbook developmental project conducted in Honduras by JICA [the Japan International 
Cooperation Agency].

Table 6.1 Sample for teaching multiplication in the second grade

Content of subunits Number of hours of lessons

1. Meaning of multiplication 4 hours of lessons
2.1 Multiplication tables of 2, 5, 3, and 4 9 hours (including time for memorizing) + 3 hours 

of exercise, application
2.2 Multiplication tables of 6 to 9 9 hours + 1 hour of practice
2.3. Multiplication by 1 1 hour
3. Properties of the multiplication table 3 hours + 2 hours of practice and challenges
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Fig. 6.2 Isoda and Murata (2011), Grade 2, Vol. 2, pp. 17–18, Hitotsumatsu (2005), Grade 2, 
Vol. 2, pp. 13–14

As exemplified in Fig. 6.2, both editions are almost the same and include the 
 following activities:

 1. A situation with discrete quantities which can be extended
 2. An activity for extension with a diagram and tape (consecutive antiquity) at the 

back, so that students can extend it with a block model and see the pattern, and 
can continue by reading the expression and its interpretation (the expression of 
multiplication and the multiplication table)

 3. The manner of reading the row of 2 for comparing expressions and memorizing
 4. Using cards with the product written on the back for memorizing
 5. Representing situations as multiplication
 6. Determining multiplication from the picture
 7. Developing a situational problem from an expression like 2 × 7

The activities proposed in the Gakko Tosho textbook for presenting the multipli-
cation tables of 2, 5, 3, and 4 are shown in Table 6.2. Similar teaching of content and 
sequence are repeated in every extension of each row for enabling students to learn 
how to extend the multiplication table.

Table 6.3 shows that Gakko Tosho, Tokyo Shoseki, and PROMETAM have cho-
sen the same manner of presenting the multiplication table. The similarity between 
the learning activities and problem situations in the books from the different pub-
lishers implies consistency of the Japanese approach. The reason is explained in the 
next section.
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Table 6.3 Comparison of Gakko Tosyo, Tokyo Syoseki, PROMETAM

Activities for learning the multiplication 
table of 2

Publisher
Gakko Tosho Tokyo Shoseki PROMETAM

1. A situation Yes Yes Yes
2. Finding products and extending Yes Yes Yes
3. Continuing the row for memorizing Yes Yes Yes
4. Using cards Yes Yes Yes
5. Representing with drawings Yes No No
6. Determining the expression Yes Yes Yes
7. Constructing problems Yes Yes No
Practicing with rows of an array No

(instead of the 
array, it uses 
blocks with 
covering and 
uncovering sheet 
to show it as 
variable like  
Fig. 6.9)

Yes Yes

Table 6.2 Gakko Tosyo teaching sequence

Activity
Multiplication 
table of 2

Multiplication 
table of 5

Multiplication 
table of 3

Multiplication 
table of 4

1. A situation Yes Yes Yes Yes
2. Finding products 
and extending

Yes Yes, variation Yes, variation Yes, variation

3. Continuing the 
row for memorizing

Yes Yes No No

4. Using cards Yes Yes Yes, variation Yes, variation
5. Representing 
with drawings

Yes No Yes, variation Yes, variation

6. Determining the 
expression

Yes Yes Yes, variation Yes, variation

7. Constructing 
problems

Yes Yes Yes Yes

8. Others No Yes Yes Yes, variation
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6.3.1  Developing Multiplication Tables for the Rows of 2, 5, 3, 
and 4

There is consistency in developing the rows of the multiplication table in Japanese 
textbooks, which is the repetition of the format shown in Fig. 6.2 from the row of 2 
to the other rows. The repetition provides the students with the opportunity for 
learning how to construct and extend the rows: Students are able to imagine the 
ways of learning at the next rows.

The teaching sequence for the rows of 2 to 5 is 2, 5, 3, and 4, instead of 2, 3, 4 
and 5 because the products in the rows of 2 and 5 are known through counting by 
twos and fives. Students feel the necessity for memorization of the products in the 
rows of 3 and 4, likely through counting by 2s and 5s.

Uniquely, the Gakko Tosho (Hitotsumatsu, 2005) textbook for the second grade 
has the following activity between the rows of 2–5 and the rows of 6–9 (see Table 
3.1 in Chap. 3). The idea embedded in Fig. 6.3 is the distribution which makes it 
possible for the students to extend the rows of 2–5 to the rows of 6–9. For example, 
addition of the row of 2 and the row of 4 produces the row of 6. Students can pre-
dict further rows for extension of the table by themselves. The way of extending 
multiplication based on their prediction encourages them to develop further rows 
by and for themselves.

In the case of the PROMETAM project for the Central American country of Honduras, 
the teachers’ guide recommends that students need to practice for about 5 minutes each 
day without fail. For example, they can recite the table being studied when they arrive at 
school, before starting class, before leaving for recess, before leaving school, etc. The 
students should memorize the tables appropriately to solidify the base for understanding 
multidigit multiplication, which will be discussed in the next grade.

Fig. 6.3 Hitotsumatsu (2005), Grade 2, Vol. 2, pp. 22–24
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6.3.2  Transferring the Responsibility for Construction 
and Memorization of the Multiplication Table

The responsibility for the construction and memorization of the table is transferred 
from teachers to students in the following teaching sequence and materials (see 
Brousseau, 1997).

The study of the multiplication tables of 2 and 5 guided by the teacher includes 
the way to learn. Based on counting by 2s and 5s, the students can easily know the 
product of the rows of 2 and 5. Then, the study process for the tables of 3 and 4 
should be planned so that the students will manage concrete situations and build 
these tables by applying what they have learned. The students can find each prod-
uct by adding the multiplicand to the previous product in the table, so they do not 
need to add from the beginning to find the next product in the table. By repetition 
of the same ways of learning (Fig. 6.2), the students are able to imagine what they 
need to do next. As shown in Fig. 6.3, the students have a hypothesis for the exten-
sion of the table, which they want to check by themselves. By repetition in Table 6.2 
and use of the hypothesis, they are able to generate and confirm new rows in a 
learned manner.

As shown in Fig. 6.2 and in Tables 6.1 and 6.2, the teacher and the students can 
use arrays or blocks, multiplication cards, and manner of reading pattern for every 
row as a means for constructing, extending, practicing, and memorizing the multi-
plication table. To make the students responsible for constructing, extending, and 
memorizing, the teaching sequence and materials are prepared in the textbooks and 
by the teachers.

6.3.3  Extension of the Multiplication Tables of 6–9 and 1

Based on learning how to learn by repetition of the same learning sequence for the 
multiplication tables of 2 to 5 and the expectation of extension, students can extend 
the multiplication tables of 6 to 9 in every two class hours by themselves. In every 
class, the teachers ask the students to develop every row in the same manner.

The row of 1 is not easy to learn in the same manner because students do not 
feel any necessity for learning it. In the Gakko Tosho textbook, it is introduced as 
shown in Fig. 6.4. The necessity of the row of 1 exists for permanence of form (see 
Chaps. 3 and 4, Peacock (1880)). As long as the students use their previously 
learned knowledge, the numbers of candies and oranges should be expressed by 
multiplication. In this context, the piece of cake on the dish is expressed as 1 × 1. 
Realizing its necessity, the students can develop the row of 1 in the same manner 
for permanence of form.

Japanese teachers usually allot about two class hours for every row because it 
takes time for memorization as well as construction of the multiplication table by 
the students.
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6.3.4  Properties of the Multiplication Table for Discovering 
the World of Multiplication with a Sense of Wonder

After the construction of every row and memorization, the Japanese textbook treats 
the multiplication table as a world of multiplication and as an operation without 
situations (Figs. 6.5 and 6.6). It is remarkable difference when we compared it with 
other countries such as Chile, Mexico and Singapore which use several grades to 
extend multiplication table up to row of 9 (see Table 2.4 in Chap. 2). Even if the 
students have not memorized the multiplication table well, they can fill in the prod-
ucts using the property of every row by adding the same number to the next column. 
After completing the table, the students can find several patterns hidden in the mul-
tiplication table. Commutativity of multiplication is discovered at this moment. As 
discussed in Chap. 3, there is no  contradiction in the Japanese definition and the 

Fig. 6.4 Hitotsumatsu 
(2005), Grade 2, Vol. 2, 
p. 35
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multiplication table; thus, it is not necessary to discuss commutativity from the 
introduction of multiplication (see Chap. 5).

Students find a number of different properties in the multiplication table and feel 
a sense of wonder.11 Such mathematical structures of multiplication table enable 

11 It is related with mathematical value in relation to mathematical thinking (see Chap. 1, Table 1.1 
and Mangao, Ahmad, and Isoda (2017).

Fig. 6.6 Hitotsumatsu (2005), Grade 2, Vol. 2, pp. 39–40

Fig. 6.5 Patterns in the 
multiplication table of 3, as 
demonstrated by 
Y. Yamamoto (Rasmussen 
and Isoda, 2019)
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students to recognize the existence of the world of multiplication with the harmoni-
ous feeling of beautifulness.12 Some of them are revealed in later grades, as dis-
cussed below (Fig. 6.7).

Example 1 In the third grade (grade 2 in the 2017 curriculum), multiplication will 
be extended beyond 9 × 9. In Fig. 6.5, various patterns in the numbers can be found: 
products in the tens place: 0 0 0 (blanks of tens), 1 1 1, 2 2 2, 3 3 3, 4 4 4, and 5 5 5; 
3 × 18 = 3 × (10 + 8) = 3 × 10 + 3 × 8 = 30 + 3 × 8); products in the units place (3, 
6, 9, 2, 5, 8, 1, 4, 7 (if we change the order, we see 1 in the 7th line, 2 in the 4th line, 
3 in the 1st line, 4 in the 8th line, 5 in the 5th line, 6 in the 2nd line, 7 in the 9th line, 
8 in the 6th line, and 9 in the 3rd line). How do we explain these patterns? Can we 
find similar properties in other rows? (This example was provided by Yoshikazu 
Yamamoto from the Elementary School at the University of Tsukuba (Rasmussen 
and Isoda, 2019).)

12 In Japan, students have the opportunity to learn the world of addition using an addition table and 
the world of subtraction using a subtraction table by finding their properties. See Isoda and Katagiri 
(2012), Dizon M., D., Ahumad, N., J., Isoda, M. (2017), and the lesson study videos by Takao 
Seiyama at https://www.youtube.com/watch?v=7TY_SHTgmFQ, https://www.youtube.com/
watch?v=TR34ZdBXmz8, https://www.youtube.com/watch?v=NNWtmIQ7YNs&t=426s, and 
https://www.youtube.com/watch?v=njNK6xoAkwQ.

Fig. 6.7 Hitotsumatsu (2005), Grade 2, Vol. 2, pp. 41–42 (Row and column should be alternate)
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Example 2 In the upper grades, after students have learned the concept of aver-
ages, some teachers ask the students to find the total products in the multiplication 
table up to 9 × 9. There are various ways to find the total value of the multiplication 
table. Two beautiful and wonderful ways are 45 × (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 
9) and 5 × 5 × 81.13 The explanation of this property requires the ability to see the 
decomposition of a number with factors (multiplication) and addition.

Rasmussen and Isoda (2019) have analyzed example  1 using anthropological 
theory and noted that the Japanese extension of the multiplication table is fruitful 
teaching material to develop mathematical thinking.

After they have studied the multiplication table, the students are engaged in a 
game to know the significance of memorizing the table. Table 6.4 is a sample lesson 
plan given in the Annex of the Gakko Tosho textbook. And then, on the 2nd grade 

13 5 × 5 is at the center of the multiplication table.

Table 6.4 A Lesson for enjoying to use memorized table: Row and column should be alternate

Objective: That students have fun using the multiplication tables of 6 to 9 and learn
Point of assessments: Do the students enjoy playing by using the multiplication tables from 
memory? In the game, can students predict the values of the dice from the remaining numbers 
on the game board?
Teacher: We are going to play with a game board and two 
dice. We will use 30 chips to cover some of the spaces on the 
board
Today we are going to play first with dice and then with cards

Teacher: To play, roll the dice (or use a substitute). Multiply 
the two numbers and say the answer. If the answer is correct, 
you win the chip from that space. If there is no chip in that 
space, you have to put one of yours in that space. Decide how 
many times you will roll the dice. Play by taking turns. The 
student who gets the most chips wins

Specific materials are needed. 
The game board can be made 
by the students in their 
notebooks, or a photocopy can 
be used. The dice can be made 
from pieces of wood. A spinner 
or a deck of multiplication 
cards made by the students can 
be used as substitutes.
To make the game board, write 
the numbers in the first row and 
the first column. In the inner 
spaces of the game board, write 
the products of the numbers in 
the first row and the first 
column.
Then, place 30 chips on the 
game board, leaving some 
spaces uncovered. Students 
realize that the patterns of 
multiplication table do not 
appear if we change the order 
of numbers on the 
multiplication. They cannot fill 
in without memorizing the 
multiplication table. To answer 
this task they recognize the 
significance of memorizing
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Gakko Tosyo textbook, the 2005 edition extend the multiplication to the case of ten 
times and the 2011 edition additionally extend the multiple beyond the multiplica-
tion table 9 × 9 to multiplied simple two digit numbers by ones.

6.4  Memorizing the Multiplication Table as a Cultural 
Practice

Memorization of the multiplication table is a cultural practice that favors learning the 
multiplication table. In some countries, memorizing has a negative meaning because 
it seems to be forced by teachers without appropriate understanding and express it as 
a part of number sense instead of explaining it as memorizing. However, it does not 
have such a negative meaning in the East. The Japanese have been engaging in this 
cultural practice since the sixteenth century for using the abacus. In the sixteenth cen-
tury, even though the knowledge of the division table for the abacus was necessary to 
be an accountant. Jinkoki, by Yosoda (1627), as shown in Fig. 6.8, was the most popu-
lar and standard textbook until the middle of the nineteenth century which mentioned 
up to extraction of the square root and Pythagoras theorem. It became popular for 
everyone to memorize the multiplication table like songs. In this book, the multiplica-
tion table was read as ni ni no shi (“2 2, 4”), ni san no roku (“2 3, 6”), etc. In English, 
this means “two multiplied by two equals four” (in short, “two two is four”) and “two 
multiplied by three equals six” (in short, “two three is six”). There were no algebraic 
expressions yet in that era.

Fig. 6.8 Yoshida, M. (1627) Jinkoki, pp. 3–4
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At present, the recitation begins ni ichi ga ni (“2 1, 2”), ni nin ga shi (“2 2, 4”), ni 
san ga roku (“2 3, 6”), etc. For the row of 2, the students can recite it like a song in 
10 seconds. The majority of 8- or 7-year-old students can memorize it, as already men-
tioned. As for second-grade students, it is a milestone for their learning in their culture. 
Historically, there was a tradition to memorize not only the multiplication table but also 
the division table, memorizing multiplication table was basics and the people who 
mercerized the division table recognized experts for using the abacus.14 In the case of 
the division table, the practice of memorization was lost because we do not need it if 
we know multiplication and we do not use the abacus anymore for calculation.

In Chaps. 4 and 5 of this book, we mentioned that the multiplication table is 
introduced with the rows of 2 and 5 because the products of both can be found 
through counting by 2s and 5s. Additionally, teachers use some sequences for mem-
orization practice. The following is an example from a Japanese class:

 1. After constructing the row of 2 with meaning, ask the students to say and repeat 
it from “2 × 1” to “2 × 9” on the board.

 2. Cover the product of “2 × 1” with a piece of paper and ask them to say what it is 
(then lift the piece of paper to verify the answer).

 3. Ask the students: Two multiplied by one? Two one is two. Ask them to visualize 
and repeat the sequence, counting by 2s up to 10 to promote memorization.

 4. As in Fig. 6.9, covering the products of “2 × 1” and “2 × 2”, get the students to 
recite the multiplication table from “2 × 1” to “2 × 9” with counting by 2s and 
adding 2 every time. Repeat the activity, covering up more products, until they 
are all covered.

 5. Ask the students to stand up and recite the multiplication table quietly and to sit 
down once they are finished. (The teacher observes who among the students 
takes a longer time, who is faster, and who needs additional practice.)

When the lesson ends, sometimes the printout of the multiplication table with the 
products covered can be left on the classroom wall. The students can practice freely 

14 Jinkoki did not address addition and subtraction because it is a kind of visualized counting if we 
use an abacus.

Fig. 6.9 A paper role 
model to extend the row of 
2 to see the multiple as 
variable

R. Olfos and M. Isoda



147

and with satisfaction at confirming their answers by uncovering the products. This 
practice is competitive but enjoyable for second-grade students.

In Eastern culture, teachers have the responsibility to make students memorize 
the multiplication table. Thus, teachers place a lot of opportunity for providing 
activities to support the students. An array sheet like that shown in Fig. 6.9 is used 
in building the multiplication table and also in practicing it. The amount of the verti-
cal array diagram represents the multiplicand or the quantity in each group. The 
situation and the product can be presented by moving the paper that covers the 
groups horizontally.

Practicing the multiplication table includes four activities: (1) correctly recite the 
table observing the expression or the collection of arrays; (2) reciting from 2 × 1 to 
2 × 9; (3) reciting the table from the bottom up and from the top down; and (4) recit-
ing the table in random order.

Teachers assess students’ degrees of understanding by observing whether they 
can relate the mathematical expression to the meaning of other expressions. The 
group of groups represented by collections of balls also suggests plates with fruit, 
columns with cubes, etc. The student gains understanding by relating each expres-
sion to the expression in the table; for example, 2 × 4 + 2 is 2 × 5. (Mr. Tsubota’s 
class in Chap. 5 of this book is also an exemplar.)

6.4.1  Using the Cards

As shown in Figs. 6.2 and 6.4, each card has on its front the expression (binary 
operation) of multiplication and on its back the product. The Gakko Tosho text-
books include them in the Annex. Otherwise, the teachers or students prepare them 
in an appropriate size. They are used not only to practice memorization but also to 
find patterns in the multiplication table. The fundamental ways of memorizing the 
multiplication table using multiplication cards are as follows:

Individual use: (A) Place the cards in random on the table. Say the product while 
looking at the expression on the front of the card. (The students can place a mark 
on the cards they have incorrectly answered and practice more with them.) (B) 
Place the cards in random. Say the expression while looking at the product on the 
back of the card. (C) Carry out the practice of (A) or (B) with various multiplica-
tion tables.

Use in pairs: (A) One student shows the front of a card to another student, who gives 
the product while looking at the expression on the front of the card. Repeat this activ-
ity, taking turns. (The roles can also be changed when one student answers incorrectly, 
or each student can continue until he or she has correctly answered five times). (B) 
Each student prepares cards for one of the multiplication tables in random order. (It is 
best that they use cards for only one or two rows.) Each student places a card face up 
on the table at the same time, reads the expression, and gives the product while  looking 
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at the card. The student with a greater product wins. (C) Place the cards on the table, 
face up. A student chooses one, reads the expression, and gives the product. To check 
the answer given, look at the product on the back of the card. If the student has 
answered correctly, he or she can keep this card and continue with another card. If he 
or she has answered incorrectly, he or she lose his turn and does not keep the card 
(they can also take turns). The student who collects the greatest number of cards wins.

Use in pairs or in a group: (A) Place the cards face down on the table. A student 
quizzes his or her classmates by saying an expression from the multiplication tables 
in use. The others look for the product of this expression and pick up the cards that 
have this product. The student who gets the greatest number of cards wins. (B) Place 
the cards face up on the table. A student quizzes his or her classmates by saying a 
product from the multiplication tables in use. The others look for the expression of 
this product and pick up the cards that have this expression. The student who gets 
the greatest number of cards wins.

The teachers should help the students to invent other ways and to use the cards 
considering the students’ real situation (see Fig. 4.2, Chap. 2). For this kind of activ-
ity, Japanese teachers usually use the first 3–5 minutes of each class to practice all 
together. Enjoyable daily cultural practice is the key to memorization.

When we say real situation, some of teachers and math-educators usually imag-
ine the dichotomy to distinguish mathematics and real world. However, as explained 
Chap. 1, Japanese Approach usually consider on the curriculum sequence under the 
extension and integration principle (see Fig. 1.1). It is the reorganization process of 
mathematization. On this context, Japanese Approach enhance sense making (see 
Chap. 5), and it means change the intuition (see Fig. 5.22) and reality itself.  What 
is the reality for students in these activities on memorizing and using multiplication 
table? To the terminology of horizontal and vertical mathematization by Treffers, 
A. (1987), Freduental, H. (1994) expressed uncomfortableness from his perspective 
of mathematization (1973) and redefined mathematization with levels by the termi-
nology of living and life. He also mentioned mathematical object as entity (1983) to 
explain existence. On these context, reality, here, means the reality for second grade 
students on their life. For second grade students, reality is also existed on their 
enjoying games to think about and explore the rule and the behind structure for win-
ing the game, as well as their narrow economical experience. With comparison of 
second grade students’ economical-arithmetical life, these kinds of games provide 
the real situation for their world of multiplication within classroom. On this reality, 
these activities to memorize multiplication table is a kind of cultural practice with 
enthusiasm in Japanese classroom. The tools for these cultural practices has been 
developed by teachers. Followings are further examples.

6.4.2  Using Area-Array Cards

Mr. Hiroshi Tanaka (2007) designed new illustrated multiplication cards which 
include area-array images (see Fig. 6.10).
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6.4.3  Using a Notebook and Journal Writing at Home

In Japan, to develop children’s custom of self-learning at home, teachers usually use 
a notebook for homework and have them exchange journals/diaries.

These activities are not only for memorization but also for making it enjoyable 
for students, as shown in Fig. 6.11.

6.5  The Sense of Wonder in the Multiplication Table

During the middle of the second semester in three semesters per year, the second- 
grade students in all schools in Japan can be seen reciting the multiplication table in 
front of their teachers. What kind of actual practice does the teacher provide when 
the students are learning the multiplication table?

The following lesson plan was developed by Mr. Kozo Tsubota (2007), a teacher 
at the Elementary School at the University of Tsukuba. It uses the voice and ideas 

Fig. 6.11 A notebook: The 
left is student activity and 
the right is progress of 
every row and three step 
assessment with stamps 
and signs

Fig. 6.10 Multiplication cards by Hiroshi Tanaka
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of a real teacher—the one who is designing and leading the lesson study commu-
nity. The theme of his lesson study on the multiplication table is “Teaching the 
properties of the multiplication table to encourage students to discover patterns in 
the multiplication table with a sense of wonder and to appreciate the patterns in the 
table.” The task is related with judicious using of calculator if we ask it at second 
grade students, and if not it become upper grade task.

6.5.1  Focusing on Beautiful Patterns with a Sense of Wonder 
and Appreciation

When the multiplication table is being taught, it is usually with the following 
sequence of steps:

 1. The meaning of multiplication is built through known situations: ways of count-
ing and iterated sums.

 2. The multiplication table is developed up to 9. It is extended up to 9 × 9, through 
explorations.

 3. Students are asked to recite the multiplication table and apply it.
 4. The multiplication table as a whole is used with the goal of identifying patterns 

of addition, subtraction, and multiplication.

In these activities, many teachers usually focus on step 3. However, students 
should not simply memorize the multiplication table as if it were a song. In step 4, 
students should be given activities so they can discover the beautiful patterns in the 
numbers—in several rows of results—that make up the multiplication table. For 
example, the sum of the digits in the units place and in the tens place for any product 
of 9 is equal to 9; thus, 9 × 7 = 63 and 6 + 3 = 9. Moreover, if we take any product 
from the first half of the row of 9 and add it to the corresponding product from the 
opposite side of the second half of the row, the result will be 90; for example, 
9 × 1 = 9 and 9 × 9 = 81, and 9 + 81 = 90. Similarly, 9 × 2 = 18 and 9 × 8 = 72, and 
18 + 72 = 90.

6.5.2  Preparing a Problematic: “Why”

Students develop a sense of wonder based on the awareness of problematics in rela-
tion to given tasks (see Chap. 1). The lessons should be designed to allow the stu-
dents to follow up on these kinds of questions and investigate the “why.”

Materials have been developed so that students can see two multiplicative expres-
sions in class and be amazed by the fact that the results are the same. They ask why, 
carefully observing the expressions, transforming them and hypothesizing a 
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response, and find relationships among the numbers. The expressions given to the 
students are:

4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4
8 × 8 × 8 × 8 × 8 × 8 × 8 × 8

The students are asked which expression will give a larger result.
The answer is not easy for them to find, even when they make the calculations on 

paper. The students are allowed to use a calculator to find the answer. At this point, 
they can use the repetition function for arithmetic operations. The function consists 
of pressing 4 × = = . . . and 8 × = = . . . . When the calculator displays the results, it 
is confirmed that they are exactly the same. The result of both expressions is 
16,777,216.

At this moment, the question “Why are the results the same?” appears in the 
students’ minds. The students spend the rest of the lesson trying to answer the ques-
tion and discussing the problems among themselves.

The teacher should allow interaction among the students and guide the discus-
sion toward mathematical thinking. For example, the teacher should try to get the 
students to reach an understanding of the numbers 4 and 8. The students should 
realize that 4 × 4 × 4 = 64 and 8 × 8 = 64 are equal, or that the numbers can be 
decomposed into 4 = 2 × 2 and 8 = 2 × 2 × 2. The structure of this problem uses the 
power that 412 = 88; in other words, 412 = (22)12, and 88 = (23)8.

6.5.3  How to Begin the Class?

“Now I will write two mathematical expressions on the board. As soon as I finish, I 
will ask you which of the two gives a larger result. I want you to give an intuitive 
prediction, so raise your hand for the expression you think is greater.”

The teacher then writes the two following expressions silently on the board. The 
students look attentively at the board while the teacher writes the expressions. They 
are thinking about the results of the two addition problems:

 (A) 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4
 (B) 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8

After writing on the board, the teacher says, “OK, now I will ask. First, who 
thinks the result of A is greater?”

A few students raise their hands. The teacher continues with “Who thinks that B 
has a greater result?” Now, many students raise their hands. The majority of the 
students think that 8 is greater. The teacher then asks, “Why do you think so?” The 
students will probably give many different answers. The teacher asks one of the 
students who raised his hand.

Student: “I calculated the answer. I thought of a simple addition.”
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The teacher asks: “Good, so, how did you calculate the answer?” The student 
replies that he used multiplication. When the teacher asks them to write the expres-
sion, the students write:

 (A) 4 × 12 = 48
 (B) 8 × 8 = 64

The majority of the students agree that this is correct. The teacher then asks, 
“Any other reason?” Another student gives another reason. He goes to the board and 
tries to explain it by drawing line segments between the two expressions.

(4 + 4) + (4 + 4) + (4 + 4) + (4 + 4) + (4 + 4)
| | | | |
8 + 8 + 8 + 8 + 8

This is fast. After grouping and connecting the numbers, he asks the other stu-
dents to explain it. Can anyone explain the meaning of the groupings?

After some interactions, the teacher says: “Now comes the principal question of 
the lesson. I will change the plus signs to multiplication signs, and you must respond 
quickly to the initial question: Which of the expressions do you think is greater?”

6.6  Final Remarks

In Chap. 2 of this book, we confirmed that the multiplication table is taught in dif-
ferent grades around the world and posed the question as to the choice of grade for 
introducing it. In Japan, it is taught in the second grade, and this chapter has 
explained four reasons for this. The first reason is that it is possible. The second 
reason is that students are able to extend the multiplication table by themselves in 
an appropriate teaching sequence. To do so, they study ways to produce the table for 
the rows of 2 to 5 at first, and then they adapt ways of extension to other rows. They 
learn the meaning of a situation, producing the row with models and patterns, and 
creating situations for multiplication expressions. At the last stage, the structure of 
the multiplication table is analyzed and the properties of the table are established. 
The third reason is that memorizing the table is an enjoyable activity for students. 
The fourth reason is to develop a sense of wonder by exploring the patterns in the 
table and appreciate the reasonableness of the world of multiplication.

In the Japanese approach, students are able to learn the skill to extend what they 
have learned and the significance of their learning. Japanese teachers try to set the 
tasks and activities for memorizing and using the table through the various activities 
for sense making on the world of multiplication as a part of enjoyable cultural prac-
tice. The consequence of further Japanese students’ achievements in relation to the 
number sense, but not only limited multiplication, are known by surveys such as 
Reys, Reys, Nohda, Ishida, Yoshikawa, & Shimizu (1991) and Reys, Reys, Nohda 
and Emori (1995).
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Chapter 7
The Teaching of Multidigit Multiplication 
in the Japanese Approach

Masami Isoda, Raimundo Olfos, and Takeshi Noine

This chapter illustrates the process of the teaching multi-digit multiplication in rela-
tion to Chap. 1, Fig. 1.1 as follows. Firstly, the diversity of multiplication in vertical 
form is explained in relation to the multiplier and multiplicand, and the Japanese 
approach in comparison with other countries such as Chile and the Netherlands is 
clearly illustrated. Secondly, how a Japanese teacher enables students to develop 
multiplication in vertical form beyond repeated addition is explained with an exem-
plar of lesson study. Thirdly, the exemplar illustrates a full-speck lesson plan under 
school-based lesson study which demonstrates how Japanese teachers try to develop 
students who learn mathematics by and for themselves including learning how to 
learn (see Chap. 1). Fourthly, it explains the process to extend multiplication in 
vertical form to multidigit numbers by referring to Gakko Tosho textbooks.
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7.1  Diversity of Column, Algorithm, and Vertical Form 
Methods for Multiplication

There is a diversity of column multiplication in vertical form around the world; the 
terminology itself differs, such as “column methods” in UK English and “algorithm” 
or “long multiplication” in US English. As part of algebra, the expression a × b is 
standardized around the world even though some countries, such as Chile, prefer to 
write “3 ∙ 4” for 3 × 4. On the other hand, there is no universal standardized form for 
multiplication in vertical form, as well as other operations in vertical form. For exam-
ple, in Chile, Japan, and the Netherlands, 23 × 7 is written as shown in Fig. 7.1.

In Fig. 7.1, all approaches use row 7 of the multiplication table. Japan and the 
Netherlands do multiplication from the lower to the upper columns. The Chilean 
method is consistent with algebraic expressions. It is not exactly vertical, and it looks 
like a kind of memo if we compare it with others. The Chilean method calculates the 
ones first. The Japanese method asks students to devise various methods by them-
selves at the beginning and then later reduces the adding (intermediate) part in the 
process of extension to 2-digit multiplication. In the Japanese curriculum standards, 
thinking about how to calculate the operation is one of objective as well as under-
standing the meanings and getting proficiency. At the last moment, they compare and 
discuss about easiness or fastness. Students communicate and explain that, 14 means 
140 because of place value; It is not read as “one hundred forty” but as “fourteen” as 
an adaptation of the multiplication table. If it just means 7  ×  2  =  14 instead of 
70 × 2 = 140, the way of calculation can be seen as an algorithm using the multiplica-
tion table on the place value. This is the reason why the column method is called as 
an algorithm. To get the answer, it is necessary to use the multiplication table but not 
repeated addition (see Meaning of B, Fig. 1.1 in Chap. 1). Both the Japanese and the 
Netherlands forms calculate from the lower digit to the upper digit. However, in the 
Netherlands, 7 × 23 means to apply the multiplication table and calculate from tens, 
which is also the way to avoid a contradiction in Indo-European languages (See 
Chap. 3). In the case of Japan, there are some students who calculate from the largest 
place value in vertical form even though it is a way for mental estimation which fol-
lows the east culture cultivated by their abacus. Students prefer  to calculate from the 
ones as well as the case of addition and subtraction in vertical form1.

Here, these methods of multiplication are called column multiplication, an algo-
rithm, or vertical form. For understanding of all kinds of column multiplication with 
such huge diversity, we provide a historical perspective and set conditions for what 
vertical form in multiplication is.

1 Hulbert, E. T. et al (2017) also illustrated how progress students’ mathematical writing of multi-
plication algorism under CCSSM in USA.

Chile: Japan: Netherlands
(Freudenhtal
Institute):

2
23x7

161

23
x  7
140

21
161

23
x  7

21
140
161

23
x  7

21
14
161

23
x  7
161

23
7x

140
21

161

Fig. 7.1 Various vertical forms for multiplication
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7.1.1  Historical Illustration of Diversity

The roots of vertical forms in calculation can be found in ancient civilizations. 
Historically, various vertical forms appeared before the unified algebraic notation 
for arithmetic operations.

For example, ancient Egyptians wrote numbers in vertical form with the idea of 
doubling (2 times). However, it is not our meaning of multiplication because it was 
not necessary for them to memorize the whole multiplication table for doubles (see 
Fig. 7.2 for revision of Problem 79 from the Rhind Papyrus, 1650 BCE).

From the modern perspective, the idea of proportional reasoning can be found 
between the lines of this Egyptian writing. However, the Egyptians used doubles.

In Euclid’s Elements, there was a theory of proportion with measurement and mul-
tiples for proportional reasoning, in general. However, there was no current meaning 
of multiplication even though some English translations of Euclid’s Elements have 
used that term. Current historians explain it by the term “multiple/multiplicity” (see 
Chap. 3). For example, we can find the same figure as Descartes’s definition of multi-
plication (see Chap. 3 and Elements Chap. 6, Proposition 11). It was not the same as 
the current meaning of multiplication, which allows multiplication of different quanti-
ties, but a way of measurement such as to find a segment of a geometric mean.

Fibonacci’s Liber Abaci (1202) in English edition (Sigler, 2002) is known as a 
book that influenced calculations in vertical form from East Asia and India through 
Arabia with Arabic numerals during that era. It is done by the base ten place value 
notation system using Arabic numerals. We should note that most people used 
counting boards before Liber Abaci because they provide the answer by manipula-
tive counting. Arabic numerals were introduced in that era and the book of Fibonacci 
is known as a book that influenced innovative movements on arithmetic in Europe 
with the base ten place value notation system and column methods. Algebraic 
expression and the multiplication symbol “×” were invented after the Renaissance, 
especially the symbol “×” was introduced by William Oughtred (1631; see Cajori, 
1928). From that era, column calculation and the multiplication table gradually 
spread in Europe (Fig. 7.3).

Fig. 7.2 Arcavi and Isoda 
(2007) from Eric Peet 
(1923)
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The first chapter of Liber Abaci explained addition and multiplication tables as 
well as the base ten place value notation system with Arabic numerals in compari-
son with Roman numerals. The multiplication table begins from row 2: 2 times 2 
make 4, 2 3 6 (as 2 times 3 make 6), 2 4 8, up to 10 times 10 make 100 (no symbol 
between numbers). The second chapter is about multidigit multiplication in vertical 
form. The first example used to introduce multidigit multiplication was 12 × 12, the 
same 2-digit multiplication, which was explained by the process shown in Fig. 7.4.

Fig. 7.3 Gregorio Reisch 
(1504), Margarita 
Philosophica. Argentineñ: 
Opera Joannis Schotti. 
Arabic column methods 
versus a counting board. 
(Chapter title page for 
arithmetic; no page 
numbers in this book)

Fig. 7.4 Fibonacci’s Liber Abaci (Sigler, 2002, p. 24)
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These steps show why it begins with multiplication of the same 2-digit numbers. 
It is for explaining how to set the place value for the product with the algorithm 
using the multiplication table. Thus, base ten place value system is the bases for 
vertical form. After such an example of the same 2-digit numbers, in the next sec-
tion, multiplication of a 1-digit number by a 2-digit number is explained with 8 × 49 
as an example (Fig. 7.5). In vertical form, 8 was written at first, then 49 was written 
below 8, under the row (line) of 49, and the answer (product) was written at the top. 
If we write the product in the bottom row (line) instead of in the top row (line), the 
format becomes the same as that of the Japanese (Fig. 7.1). On the other hand, if we 
read it from the bottom row to the top row, it looks like the reverse of the 
Netherlands method.

In Margarita Philosophica by Gregorio Reisch (1504), which was known as an 
essential textbook for liberal arts in the sixteenth century, the explanation of vertical 
form and the multiplication table shown in Fig. 7.6 can be seen. Before multiplica-
tion, it explains addition and subtraction of column methods. On addition in vertical 
form, it states, “augend upper line plus addend lower line.” In the same manner, in 
Fig. 7.6, the multiplicand is in the upper line and the multiple is in the lower line.

Before the Fig. 7.9, the multiplication section in Margarita Philosophica began 
as follows:

What is multiplication? Magnificent! It is to produce the proportional number correspond 
to multiplicand. It is multiple of unit. For example, a 3 by (per) 4, multiplier make number 
12. It is the same proportion (ratio) 12 to 4 as 3 to unit. Because the ratio (proportion) of 
both, triple (thrice).2

2 Verbi gratia 3 per 4 multiplicare est numerum 12 pro creare. Qui se in eadem proportione ad 4 
habet sicut 3 ad unitatem. Quia utro bigs est proportio tripla. (No page numbers in this book).

Fig. 7.5 Fibonacci’s 
manner of one digit 
number multiplied  
by two digits number

Fig. 7.6 Gregorio Reisch (1504), Margarita Philosophica. Argentineñ: Opera Joannis Schotti. 
(No page numbers in this book), The multiplication table, left of the figure, is not the whole table 
but a half and no row of 1
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This definition of multiplication based on proportionality, as is Descartes’s, which 
is the definition of multiplication by measurement (see the discussion in Chap. 3). In 
this book, multiplication was explained for people who already knew about ratios 
and proportions because there is a chapter of Geometry before this chapter for 
Arithmetic. Thus, their usage of terminology is not the same as today’s. There was no 
algebraic expression but only vertical form with the base ten place value system and 
a multiplication table without algebraic symbols. The vertical form and table were 
the form for expressions. In this book, multiples3 and (set/cardinal) numbers are dis-
tinguished in the explanation. A number is represented by Arabic numerals and a 
multiple is represented by spelling out, such as “twice” (double), not represented as 
“2 times” by using Arabic numerals. The text sentences use a multiple such as “tri-
ple” which means 3 times. In a multiplication table such as “2 4 8” (see Fig. 7.6), it 
is read bis 4 sunt 8 (“twice 4 is 8”) which means the multiplier functions as “number 
of times.” At the rows on Fig. 7.6, right, the first number was used to be read as mul-
tiplicative numeral such as bis (twice). If multiplication is to produce the propor-
tional number corresponding to the multiplicand, a further interpretation of the 
multiplication table on the right side of Fig. 7.6 could be to understand it as “3 4 12” 
corresponding to “1 to 3 is 4 to 12”; for example, in the table, “2 2 4” implies “1:2 = 
2:4” and “2 3 6” implies “1:2 = 3:6” (the  algebraic expression did not exist in the 
text).4 On this notation, if first numbers on the table were read as multiplicative 
numeral, they may not feel necessary to use the symbol “×” because the number of 
times such as “two times” is represented by  multiplicative numeral “twice”.

On the basis of this understanding, we would like to return to the problem of the 
multiplier and multiplicand which has been discussed since Chap. 2. If we compare 
the left and right sides of Fig. 7.6 and consider the correspondence, we find that the 
multiplication on the left corresponds to (multiplier) [space (×)] (multiplicand) 
[space] (product) in the horizontal table on the right. In the table, the multiplier 
(numeral) is read as a multiple and the multiplicand is read as a number. It is a cal-
culation in vertical form as (lower line: multiplier)  ×  (upper line: multiplicand), 
which means it calculates from the lower row to the upper row in vertical form and 
the product is written under the lower row. The vertical form as a column method 
and the horizontal multiplication table function as mathematical forms instead of an 
algebraic expression at this era.

3 In English, the difference between multiplier (single, double, and triple: adjectives) and multipli-
cative numbers (adverbs: once, twice, and thrice) are existed. Japanese does not these numerals 
(Ramsey, 1892, p339). In English, the multiple (number of times) is based on the natural number. 
In Japanese, multiplicative numeral is represented by times (bai) and bai is not limited to use natu-
ral number but decimal and fraction (see Chap. 4). Proportionality is not limited to discrete num-
bers but is extended to real numbers and extend. The definition of multiplication by measurement 
(Chap. 3) is based on proportionality.
4 This interpretation of multiplication under proportionality is the only possible in Western culture. 
Under the influence of Euclid, Western Arithmetic is known as being ratio–proportion oriented. 
Eastern Arithmetic is known as being digit–calculation oriented, under the influence of the calcula-
tion matrix (table) and abacus.
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The forms in Margarita Philosophica did not contain contradictions. However, 
in this format, we can find the origin of the contradictions and confusion about mul-
tiplication in Europe, which are discussed in Chaps. 3, 4, and 6. The contradiction 
will appear if we add the multiplication symbol “×” into the vertical form as well as 
the algebraic expression. If we rewrite the vertical form shown on the left in Fig. 7.6 
as an expression from the top row to the bottom row, it is 7954 × 642 which means 
7954 (as the multiplier) × 642 (as the multiplicand) in the manner of the table. This 
contradicts the explanation given by Margarita Philosophica from the lower row to 
the upper row. If we rewrite the vertical form as 7954 × 642 and read the original 
method in Fig. 7.6, it is 7954 (multiplicand) [×] 642 (multiplier) which looks the 
same as the Japanese notation. In Margarita Philosophica, it is recommended that 
a large number is written in the top line and a small number is written in the lower 
line. Instead of using the multiplication symbol “×” and reading it as “multiplied 
by”, it uses “per (by)” or “multiple (numeral).” At that time, there was no contradic-
tion. However, the current difficulty may have appeared in the process of reorgani-
zation with algebraic notation.

Under the Universal Mathematics by Deacartes which integrate various mathe-
matical subjects under the algebra, algebraic notation had spread in Europe (see Fig. 
3.1 of Chap. 3). Oughtred introduced the symbol “×” as or algebraic notation and 
he never used it to represent the column method. He explained the necessity and 
usefulness of multiplication for logistics. In Oughtred on later 1694 Edmond Halley 
edition,  he called numbers in multiplications by factores, products, rectangle, and 
plane and not mentioned multiplier or multiplicand.5 On Gilberto Clark commen-
tary for Oughtred’s Clavem mathematicam (Key of the Mathematics) in 1682, the 
rectangle area diagram is added and both numbers of multiplier and multiplicand in 
column multiplication were called by factors, It implies that to avoid the confusion 
between multiplier and multiplicand in vertical form and expression they might 
preferred their rectangle and factors. Indeed, today, the area formula is length (lon-
ger side) × width (shorter side) as well as column multiplication which locate larger 
number top line. Rectangle is the model to explain commutativity from the era.

In that era of Margarita Philosophica in Europe, to define multiplication, they 
needed proportions. On the other hand, in China, arithmetic meant various methods 
of the numerical calculation on situations which had more than four operations from 
an early stage. In ancient China, arithmetic operations were written in the Suàn Shù 
Shū [A Book on Numbers and Computations] (186  BCE; English translation by 
Cullen, 2004), a bamboo book (Dauben, 2008). The multiplication table was neces-
sary to memorize for using rods6 on a calculation matrix which represented the base 
ten place value system, like the column methods. In Jiǔzhāng Suànshù [The Nine 
Chapters on the Mathematical Art], anonymous authors in the tenth to second 

5 In 1667 edition of Oughtred, there was no symbol for operation on vertical form to calculate 
numbers. The symbol for operations were appeared to explains the algebraic operation for the 
operation of letters. Thus, originally there were no operation symbols on vertical form.
6 Red rods represent positive numbers and black rods represent negative numbers.
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 centuries BC (10th–2nd centuries BC) had already discussed equations in a matrix.7 
Later, in the Yen Dynasty, Suànxué Qǐméng (1299) began a book with a multiplica-
tion table (Fig. 7.7). It also included a division table8 which may imply that they 
used an abacus for calculations.

At the end of the Sòng Dynasty, Yáng Huī asked learners to memorize a multipli-
cation table before studying his book Yánghuī Suàn Fǎ [Yáng Huī Algorithms] 
(1274, 1275), which is known as an introductory book (Jochi, 2003)9. This Chinese 
tradition was thought to have influenced the Middle East and reached Europe 
through Fibonacci.10

The Chinese did not necessarily invent algebraic expression itself because their 
calculations were well done on a matrix sheet11 up to positive and negative numbers 
and algebra. The Japanese extended it to solve equations using the abacus (Seki, 
1674). Even during the era of Descartes in the early seventeenth century, the vertical 
form, not the expression, was still the major form used to represent arithmetic 
 operations in Europe. Today, European algebraic representations have became a 

7 It can be seen as a kind of vertical form of the sweep-out method (thirteenth century), because it 
is based on the base ten system for the rod arrangement.
8 A division table cannot be understood without using an abacus.
9 http://www.osaka-kyoiku.ac.jp/~jochi/jochi2003b.pdf.
10 0 was established in India; however, the vacant place in the calculation matrix meant 0.
11 The Chinese matrix sheet, horizontally, represents the base ten place value system, the coeffi-
cients of a polynomial, and so on; vertically it represents the process of operations.

Fig. 7.7 Zhū Shìjié (1299), Suànxué Qǐméng (used (元)朱世傑「新編筭學啓蒙 3巻坿緫括1
巻」李朝初期) multiplication table (left) and division table (middle); and Yáng Huī (1274, 1275) 
Yanghuī Suan Fǎ (right) (used (宋)揚輝編「宋揚輝筭法 7巻」慶州府, 宣徳8 [1433]). In these 
books, the tables are to be memorized for calculations. In the case of Suanxue Qǐmeng (left), the 
multiplication table is half and second number is constant like  1 × 1 = 1, 1 × 2 = 2, 2 × 2 =4, 1 × 
3 =3,  2 × 3 = 6, 3 × 3 =9, 1 × 4 = 4, ..., 4 × 4 = 16, 1 × 5 = 5, ..., 5 × 5 = 25 and so on. See Jinkoki 
on Fig. 6.8 in Chap. 6, Chap. 6 for comparison: 2 × 2 = 4, 2 × 3 = 6, 2 × 4 = 8, …, 3 × 3 =9, 3 × 4 
=12 and so on. Jinkoki’s table, Fig. 6.8, is similar as Fig. 7.6 right, Margarita Philosophica but 
different with Suànxué Qíméng
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 universal language for mathematics around the world. However, various vertical 
forms have been used in arithmetic.

Most of these forms, except those in ancient Egypt, were written vertically, 
using both the idea of base ten place value in columns and the multiplication table. 
Ancient Egypt did not use place value numerals but doubling—row 2 in the multi-
plication table. Here, we would like to focus on multiplication in vertical form by 
using the base ten place value system and the multiplication table. Under these 
conditions, the Egyptian method is not multiplication in vertical form. The 
Chinese–Japanese abacus12 has place value but the numbers are represented by 
beads. The abacus is a manipulative, thus the given numbers are lost in the process 
of manipulation and only the product remains. On the other hand, multiplication in 
vertical form retains the multiplier, multiplicand, and product. Vertical form is a 
kind of expression that preserves the relationships among the multiplier, multipli-
cand, and product.

Calculation on the abacus is usually done from the largest place value. In the 
case of multiplication of 35 × 24, a way of manipulation is done by the following 
sequence: 3 × 2, 3 × 4, 5 × 2, 5 × 4. If we do a calculation in this manner with 
an abacus, there is no contradiction between the multiplier and the multiplicand 
(see Chap. 3) because the order of (multiplier) × (multiplicand) never changes  
and their multiplication table was half which means that their table itself existed 
under the commutativity. Thus, the Chinese who invented the abacus did not 
encounter a contradiction like the European people who imported multiplication in 
vertical form with tables from the East, invented algebraic expression, and later, 
 re-embedded the expression symbol “×” into the column methods.

Quoted historical books usually begin with or referred the multiplication table. 
The multiplication table can be seen as a historical root of expression of multiplica-
tion as a binary operation. Before algebraic expression, multiplication used the table 
and the column. There was no necessity to explain multiplication as repeated addi-
tion because algebraic expression did not exist at that time.

7.1.2  Revisiting the Confusion Between the Multiplier 
and Multiplicand, and the Need to Differentiate Them

As explained in the historical roots, the confusion as to which one is the multiplier 
and which is the multiplicand in a × b was appeared in relation to algebraic expres-
sion. In English, “a” is the multiplier and “b” is the multiplicand. We should note 

12 Originally, the Chinese abacus, which used to have two five-beads on top and five one-beads for 
every place value in bottom, could be used for both base ten and base sixteen systems under their 
measurement system. The Japanese revised it into one five-bead and four one-beads as an adaptation 
of the base ten system for educational and industrial objective to adapt the base ten French-European 
unit-quantities system (see Fig. 6.8). Ministry of Education fixed Japanese-style abacus in 1935, 
officially. The Japanese-style abacus influenced all East Asia before World War II. Currently, it is not 
easy to find the original Chinese traditional style abacus in East Asia. The Chinese–Japanese abacus 
is a tool to support mental calculation; it is not just for counting tools like other abacuses in the world.
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that the algorithm in the vertical form of multiplication proceeds from the lower 
digits to the upper digits using a multiplication table such as in Margarita 
Philosophica (Fig. 7.6). In the expression “a × b” the first number “a” is the multi-
plier but “b” is usually explained as the multiplier of the row of 7. The problem 
might have originated from seeing the vertical form as as for the presentation of 
algebraic notation expression because the historical representation does not have 
algebraic symbols such as “×” and “=”; indeed, if we put the symbol “×” into the 
vertical form, the following contradiction will happen.

If we do not have the multiplication symbol in Fig. 7.8, it is just to support 
mental arithmetic. The source of confusion originated from seeing the vertical form 
by algebraic expression. It was identified as an overgeneralization of algebraic 
expression in the historical manner of arithmetic. Actually, it produces confusion 
even for teachers because they are likely to explain the vertical form from Margarita 
Philosophica as A, instead of B (Fig. 7.9).

Writing “A” is the source of confusion because 23 is the multiplier in 23 × 7. 
There are five ways to avoid this confusion: the first is to be careful of expressions 
like “B”; the second is to change the format of the vertical form, as in the Netherlands 
(Freudenthal Institute)z; the third is to change the format of multiplication, which 
was mentioned in Fig. 3.11 (Model A) in Chap. 3; the fourth is to change the names 
such as the naming of the first number (factor) and the second number (factor) instead 
of “multiplier” and “multiplicand,” and the fifth way is to enhance commutativity. In 
Table  2.3  in Chap. 2, Chile, Mexico, Portugal, Singapore, and the USA (but not 
Brazil and Japan) do not use the terms “multiplier” and “multiplicand” (to avoid 
confusion) and just call them factors which do not imply the order of the two numbers.

In the case of factors with enhancing commutativity, there is no order in the 
expression. If students do not pay attention to the difference between the multiplier 
and multiplicand in situations, the students may lose the meaning of multiplication, 
as to which number is the unit (later it become the base for rate) and which number 
is the number of units. Students do not pay attention regarding the difference 
between 5 candies for each dish and 3 dishes, or 3 candies for each dish and 5 

2 3

x    7
1 6 1

2 3 x

7
1 6 1

USA: Thailand: 23 x 7: Multiplier 23, Multiplicand 7.
It is (20+3)x7=20x7+3x7=2x7x10+3x7
However,

indicates 7 x 3:   Multiplier 7, Multiplicand 3.
indicates 7 x 2:   Multiplier 7, Multiplicand 2.

Instead of 7 x 20: Multiplier 7, Multiplicand 20.

Fig. 7.8 Confusion of multiplier and multiplicand

2 3

x    7
1 6 1

A) B)

23 x 7: Multiplier 23, Multiplicand 7.

Multiplicand? Multiplicand for row 7

Multiplier? Multiplier of row 7

2 3

x    7
1 6 1

Fig. 7.9 To distinguish multiplier and multiplicand
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dishes. They also cannot distinguish situations of division as partitive division or 
quotative division (see Chap. 4). As we discussed in Fig. 4.20, they cannot produce 
the correspondence of meanings in both divisional situations as different interpreta-
tions of multiplication, multipliers, and multiplicands in situations. And at the later 
grade, “for each dish” becomes “per dish” which is a necessary terminology as for 
the bases of ratio and rate.

7.1.3  Terminology for Teaching Column Multiplication

Multiplication in vertical form is not repeated addition. For clear understanding, 
here we would like to confirm some basic technical terms for multiplication in vertical 
form, considering various approaches depending on the country.13

Mental Arithmetic Mental arithmetic is done by calculating mentally using 
memorized arithmetic. For vertical forms of addition and subtraction, it is necessary 
to memorize composition and decomposition of numbers for making 10 which is 
necessary for carrying and borrowing by place values. For multiplication in vertical 
form it is also necessary to memorize the multiplication table. In the diversity of 
vertical forms (Fig.  7.1) the Chilean method needs more mental arithmetic than 
those of Japan and the Netherlands.

Mental arithmetic is a necessary part of number sense to devise numbers and 
operations judiciously. For example, if students recognize 4 times in comparing 25 
and 100, they have a sense of the quadruple. In the Japanese approach, the relation-
ship between two expressions such as 80 × 2.4 and 80 × 24 (see Fig. 4.18 in Chap. 4) 
are formally learned as a part of number sense.14

Multiplication Table In relation to a numeral system such as in English, a multi-
plication table sometimes includes numerals up to 12 or more, depending on the 
country and culture. In the case of Spanish, the numerals up to 15 have specific 
names, then from 16 onward they are written as dieciséis (“ten and six”), etc., but 
after 100, the numbering in Spanish is well configured as the base ten system. On 

13 The terminologies in English for teaching elementary school mathematics were locally system-
atized by various scholars such as Treffers, Nooteboom, and de Goeij (2001) and Reys, Lindquist, 
Lambdin, and Smith (2012). The Freudenthal Institute provides the necessary ideas to describe the 
learning trajectory (see van den Heuvel-Panhuizen, 2001). Clements & Sarama (2004) defined 
learning trajectory by three aspects: a learning goal, developmental progressions of thinking and 
learning, and a sequence of instructional tasks. However, these terminologies are not unified 
around the world under the teaching culture which teachers prefer their own work sheets for teach-
ing (see Sect. 4.4, Chap. 4). Terminology for elementary school mathematics teaching also exists 
in Japan (Isoda and Nakamura, 2010) and it is more precise in the shared curriculum sequence as 
explained in Chap. 4.
14 In Japan, this has been formally enhanced, as an objective from the 1998 curriculum, as one of 
the ways to think about how to calculate, and the think about how to calculate based on the number 
sense are necessary for the bases of symbol sense in junior high school in the 2009 curriculum. 
Symbol sense was discussed by Abraham Arcavi (1994).
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the other hand, many Spanish-speaking countries use multiplication tables up to 9. 
This implies that those countries may have more difficulty engaging in multiplica-
tion as mental arithmetic. The French numeral system is also complicated.

In some countries such as Singapore, memorization is explained as development 
of number sense or proficiency in operations. In some countries such as Mexico and 
Chile, advanced students are able to use their partially memorized table with pos-
sible strategies to find the answer in multiplication.

Standard or Formal Algorithm An algorithm15 is a fixed sequential step-by-step 
calculation or procedure which usually includes recursive process. The terms “stan-
dardized algorithm” or “formal algorithm” in vertical form can be fixed in every 
country but are not necessarily the same as those in other countries because there is 
no universal format likely algebraic expression (see Fig. 7.1). The Japanese curricu-
lum asks students to think the ways of calculation.16 In the case of vertical form, it 
means selecting the standard algorithm in comparison with other possible approaches 
and appreciating every idea, especially the reasonableness of the standard algo-
rithm. In Japanese textbooks, an algorithm similar to the Netherlands one 
(Freudenthal Institute) also appeared as a student’s idea before the Japanese stan-
dard algorithm was set. Here, “formal” and “informal” are relative because the 
likely Netherlands algorithm also appeared in Japanese textbooks as a student’s 
idea. In classroom, students ideas can be seen as informal ideas however on the 
Japanese textbooks such possible ideas are formally treated. Japanese teachers are 
expected to treat them as ways of meaningful calculation in the process to select 
simpler, faster and easier one (see Chap. 1 Mindset, Table 1.1 in Chap. 1).

Decomposition Decomposing a number with base ten by using the distributive law 
enables students to consider the way of multiplication beyond the multiplication 
table. Before the introduction of column multiplication, the known product of mul-
tiplication was within the table. If we multiply by 10 times (bai in Japanese), it is 
easier to find the product of multiplication by 20 times, 30 times, and so on. In 20 
[×] 3 (20, 3 times), if we decompose the multiplication, it is 2 × 10 × 3 = 2 × 3 × 10. 
Decomposing numbers with base ten by using the distributive law such as 
23 × 7 = 20 × 7 + 3 × 7 is a key idea to produce column multiplication to distinguish 

15 In relation to developing the competency for coding and computational thinking (National 
Research Council, 2011; Araya, Isoda, Rafael, Inprasitha, To appear), finding and creating the 
algorithm itself enhances the objective of multiplication in vertical form.
16 In Japan, as well as understanding of the meaning and acquisition of the skill, thinking about 
ways of calculation, or thinking about how to calculate, which asks students to consider various 
ways of calculation, is a key objective. It includes a variety of vertical forms. It was introduced in 
the 1998 reforms. In the newest Japanese curriculum (MEXT, 2017a, 2017b), it is explained as 
follows. (1) Teachers should help students: (a) to understand that multiplication of 2- and 3-digit 
numbers by 1- and 2-digit numbers is based on basic multiplication of 1-digit numbers, and to 
understand how to calculate, using algorithms in a column form; (b) to multiply accurately and to 
use multiplication appropriately; and (c) to understand simple properties that hold for multiplica-
tion. (2) Teachers should help students to acquire the following abilities of thinking, making deci-
sions, and expressing: (a) focusing on mathematical relations, thinking about ways of calculation; 
(b) exploring properties that hold for calculations; and (c) calculating simply and checking the 
result of a calculation by making use of the properties.
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tens and ones using the row of 7 in the multiplication table. In Chap. 3, splitting as 
another usage (Figs. 3.6 and 3.7) is a representation of the distributive law and origi-
nally meant dividing equally (Fig. 3.4). In Fig. 7.1, the Japanese and the Netherlands 
vertical forms for multiplication clearly use decomposition which requires addition 
of an intermediate process for multiplication in vertical form. However, the Chilean 
vertical form requires mental arithmetic for the intermediate addition part and is not 
clear on how students do the intermediate part. Teachers may have to teach it through 
giving exercises. The Japanese approach enables students to think about how to 
calculate the intermediate addition part at first, and later this part will be reduced in 
relation to the progress in mental arithmetic.

7.2  Lesson Study for Introducing Multiplication 
in Vertical Form

As discussed at Fig. 1.1 in Chap. 1, for the extension of multiplication, students have 
to reintegrate multiplication table with base ten place value system by using decom-
position of numbers, opposite direction of distribution, instead of repeated addition. 
Even though the distributive law itself will be learned later, Gakko Tosho textbooks 
already introduced the idea at the second grade as for the extension of multiplication 
table (see Fig. 6.3, Chap. 6). Here, the way a Japanese teacher introduces multiplica-
tion in vertical form for Grade 3 students, especially how to introduce the idea of 
decomposing with the distributive law, is illustrated with the full format of the lesson 
plan, as follows. The first steps are to watch the video for understanding of the lesson 
and then to show the whole lesson plan to share how it was carefully prepared in the 
case of school-based lesson study for developing students in Japan. The first part is 
intended to illustrate decomposition of numbers to prepare for multiplication in verti-
cal form. It is an exemplar showing how Japanese students produce their ideas, some 
of which are necessary for further learning based on what they have already learned. 
The second part is detailed in the next section as an Annex for explaining school-
based lesson study with the full format of the lesson plan which includes a unit plan 
for introducing multiplication in vertical form beyond repeated addition.

7.2.1  Lesson Study Video Introducing Vertical Form

This lesson was taught based on the 1998 curriculum by Mr. Hideyuki Muramoto, 
with the assistance of Prof. Kazuyoshi Okubo (Muramoto and Okubo, 2007), in the 
third grade, on the topic of multiplication algorithms. It was video recorded for the 
Asia–Pacific Economic Cooperation (APEC) project “Innovations in the Classroom 
Through Lesson Study” (Isoda, Shimizu, Loipha, and Inprasitha, 2007).17 The list of 

17 Report retrieved on June 29, 2019, from http://www.criced.tsukuba.ac.jp/math/apec/apec2007/
progress_report/; video of Mr. Muramoto’s class and lesson plan retrieved on June 29, 2019, from 
http://www.criced.tsukuba.ac.jp/math/apec/apec2007/index.html#video.
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episodes and clips was developed by David Tall (Tall, 2013), and video can be seen 
too at the following URL: https://youtu.be/7tG_UDbQnmo.

The lesson is an example of the lesson study process for teaching mathematics. 
This 50-minute research lesson was planned and taught at Maruyama Primary 
School in Sapporo, Japan, to a grade 3 class of 40 students. It is the fourth class in 
a sequence of 13 sessions (see the last part of the next section). The task sequence 
in the 13 sessions begins from 20 × 3 which can be solved by repeated addition, and 
is then extended to 23 × 3 which is not easy to solve by repeated addition but is easy 
to solve by decomposition under the base ten place value system.18 Finally, decom-
position is used in multiplication in vertical form, followed by exercises. The fourth 
class discussed 23 × 3, which participants observed (Figs. 7.10 and 7.11).

The previous lesson considered the product of 20 × 3 and encouraged students to 
calculate the number of black circles (marbles) in the arrangement shown in 
Fig. 7.12,19 where the total of (10, 3 times) plus (10, 3 times) is 30 + 30, which is 60.

The detailed lesson plan can be found in the next section. Please note that the 
array diagrams used here can be read in two directions. As discussed in Fig. 4.9 in 
Chap. 4, the diagram does not consider the order of operation.

In this lesson, the students are encouraged to use their learned knowledge to 
solve the problem of calculating how many circles there are in a new arrangement 
(in which they will find 23, 3 times). The plan is to find various ways of doing it and 
consider which ones are more complicated and which ones are easier. The long- 
term goal is to make the students aware of the advantages of constructing column 

18 About Japanese task sequence for extension and integration principle, please see Chap. 1 and 
Chap. 4 such as Fig. 4.10 for the introduction of decomposition and composition of numbers and 
making 10, and Fig. 4.27 for task sequence for viable arguments by extension. Extension and 
Integration principle is a key principle for “Construct viable arguments and critique the reasoning 
of others.” (CCSS.MATH, 2010).
19 This is the diagram for decomposing multiplication. For learning vertical form, Japanese teach-
ers enable students to use the diagram and never use concrete objects for this task because concrete 
objects merely enhance counting which is not multiplication.

Fig. 7.10 Participants in the Asia–Pacific Economic Cooperation (APEC) Lesson Study Project 
for 2007 who observed Mr. Muramoto class 
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multiplication through a meaningful experience related to practical examples 
(Fig. 7.13).

When watching the video, take note of how the teacher begins at the left side of 
the chalkboard with the problem, prepares the development of the lesson, and indi-
cates important points in yellow chalk so the structure of the entire lesson is visible 
on the chalkboard.

Fig. 7.11 The summary part of the lesson study by Mr. Muramoto

Fig. 7.12 A diagram for 
20 × 3 (20, 3 times)

Fig. 7.13 Which one 
among the decompositions 
is better?
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The objective of this lesson is to help the students think about how to multiply 
2-digit numbers by 1-digit numbers.20 As soon as they see the mathematical expres-
sion (that is, 23 × 3), many of them feel that the problem cannot be solved directly 
using the multiplication table. If the students can see the structure of the problem 
with an arrangement (split) diagram, they will realize they can calculate this problem 
using the results of the multiplication they have already learned. “I want to make sure 
the students can see that they can use the idea of how many times a quantity contains 
the unit quantity,”21 Mr. Muramoto indicates.

In this lesson, the students will decompose the 2-digit numbers that are easy to 
use with the multiplication table. Through this investigation, the students will carry 
out the decomposition of a 2-digit number into various ways to make the calcula-
tion possible. Finally, based on simplicity, decomposition by tens and units (that is, 
23 into 20 and 3) is preferred to use for the vertical form. Additionally, they will 
learn that this idea is the foundation of the multiplication algorithm (the method for 
calculating with pencil and paper).

The crucial point of this lesson is that the students consider the way of calculation 
by themselves. They investigate the ways to decompose the number 23 so they can 
use what ever they have already learned. For example, students learned to set various 
groups as for the unit to study the every row of multiplication. To understand the 
algorithm, it is necessary that the students recognize the significance of decompos-
ing 23 into 20 and 3 such as simplicity. In this lesson, the teacher wants the students 
to observe a diagram in order to decompose the 2-digit number for use of the multi-
plication table.

In the following description, the teacher’s intention for this class, the actual 
teaching phases for the class, and the teacher assessment views are illustrated to 
provide the minimum knowledge needed to follow the video. The precise informa-
tion for understanding the theme of the lesson study is provided in the next section 
as an Annex based on Mr. Muramoto’s lesson plan.

7.2.2  Mr. Muramoto’s Objectives for This Class

At the start of the postclass discussion, after the class observation, Mr. Muramoto 
restates his purpose as follows:

Since the beginning of the school year (April), I have taught the students to draw a diagram 
of the problem situation in order to think about how to deduce expression and calculate. 
Also, I have emphasized the importance of mathematical learning in class, so the students 
can use the diagram to explain their logical thinking processes.

20 “Think about how to calculate” is a key objective of teaching operations in the Japanese national 
curriculum standards, as well as understanding of the meaning and acquisition of skill (see foot-
note 1). With this objective, Japanese teachers do not just try to make sense by putting the meaning 
into students but provide preparations for sense making that students may make sense of by and for 
themselves, by using their learned knowledge (see Chap. 5).
21 This is the definition of multiplication by measurement (see Chap. 3).
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There are some students in the class who already know how to multiply using the algorithm. 
Even though they already know the algorithm, it is not clear if they really understand its 
meaning. The students can understand it by looking at the diagram. They recognize the 
meaning and the value of decomposing the 2-digit number to calculate and generalizing the 
idea of “how many times a certain quantity contains the unit quantity.”

The solution to the problem 23 × 3 is always 69, independently of how the number 23 is 
decomposed to make the calculation. The students will realize how diverse ideas for making 
the calculation can be used, learning from each other in the classroom.

Doubtful students or those who have difficulty with 2-digit multiplication may not be able to 
grasp the idea of decomposing the 2-digit number, and instead they might use addition (23 + 
23 + 23 = 69). By learning from each other in the classroom and presenting various ideas, they 
can begin to think, “If I decompose 23, I wonder if the calculation would be easier.”

A diagram that shows how the number 23 is decomposed in various ways and the mathe-
matical expressions that go along with each different method will help these students to 
compare ideas and think of a better method.

This is his commentary after the class. The observers observe the class with a 
lesson plan. The lesson plan will be explained later. The illustration of the real class 
activity shows how the students are able to think of decomposing the number for 
multiplication in vertical form instead of repeated addition. The original lesson plan 
for school-based lesson study is too long and is shown in the next section.

7.2.3  Description of Actual Lesson Episodes

The lesson plan by the teacher, Mr. Muramoto, can be found in the Annex. The fol-
lowing table describes the seven principal episodes of the lesson, which were pro-
duced by David Tall. The total lesson video was retrieved on June 30, 2019, from 
https://youtu.be/7tG_UDbQnmo.

Description of the content of each of the principal episodes of the 
class (available in the videos)

Identification of the 
episodes in a video clip

In this class, Mr. Muramoto introduces a new problem, and the 
students try to guess what it is, based on their prior experience. The 
problem is presented in the video clip, and at the end, the students 
wait for a copy of the problem to calculate
Video at https://youtu.be/tolkfvBbDRM

The problem
(Video 1 of 7)
Begins at 01:58, 
duration 1:20

After establishing the problem of calculating 23 × 3, Mr. Muramoto 
encourages the students to work on their own, then he walks around the 
classroom while they work for about 5 minutes. He takes note of who 
has finished and who has not, then invites the students to explain their 
ideas. Initially, all the ideas are related to decomposing 23 into 20 plus 
3, or into 10 plus 10 plus 3. The video clip shows the first answer
Video at https://youtu.be/Qk6gJRIw9rY

The student Amon sees 
23 as 20 + 3
(Video 2 of 7)
Begins at 16:45, 
duration 2:18

(continued)
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Description of the content of each of the principal episodes of the 
class (available in the videos)

Identification of the 
episodes in a video clip

Each answer is received with approval, except possibly that of one 
student, who sees the entire arrangement as 30 + 30 + 9; he has seen 
the whole problem as two subarrangements of 3 rows of 10, which is 
30, and a subarrangement of 3 rows of 3, which is 9. The teacher 
explains to him calmly that he has not yet finished and must write it 
down in his notebook
Video at https://youtu.be/Di2xz4hoJgk

Amano has not finished
(Video 3 of 7)
Begins at 21:56, 
duration 1:01

One answer suggests that the 2 in 23 can be considered as two 10-yen 
coins
Video at https://youtu.be/ef_5eHYv4nI

Using 10-yen coins
(Video 4 of 7)
Begins at 25:18, 
duration 2:00

After about 17 minutes dedicated to the examples of decomposing 23 
into 20 and 3—or into 10, 10, and 3—a student suggests that no one 
has proposed anything different
Video at https://youtu.be/a6IUrFlynL8

“I realized something”
(Video 5 of 7)
Begins at 33:53, 
duration 1:02

After this intervention, various possibilities come up, including 
11 + 12, 9 + 9 + 5, and 11 + 11 + 1. The teacher encourages the 
students to talk among themselves. The video shows the difficulty of 
decomposing it as 9 + 9 + 5
Video at https://youtu.be/Qk6gJRIw9rY

3 × 9, 3 × 9, 3 × 5
(Video 6 of 7)
Begins at 38:13, 
duration 2:15

The teacher finds that some students have used the standard vertical 
form for presenting the problem. In the video, he encourages one of 
them to explain his idea. Then, he connects the vertical form to the 
other methods using posters and puts up a poster of the vertical sum 
for direct comparison. After the episode is shown, there is a detailed 
5-minute session that summarizes the class, in which Mr. Muramoto 
gets the students to read the purpose of the class from the chalkboard 
and suggest phrases to describe the class. The entire chalkboard 
presents the lesson’s principal ideas from left to right, allowing the 
students to consider the whole discussion and make their own notes
Video at https://youtu.be/i0m_K9wqJxE

Vertical form
(Video 7 of 7)
Begins at 42:08, 
duration 4:02

The previous table shows seven episodes. The following table refers to the iden-
tification of a 40-episode sequence. Each episode is associated with a position in the 
sequence, a duration, a name that identifies it (as well as an introduction to the 
problem, class activity, discussion, and summary), and a brief reference to the con-
tent of the episode.

Multiplication algorithm for the third grade. Teacher: Mr. Hideyuki Muramoto
December 6, 2006; 1:35–2:20 p.m.; Maruyama Elementary School, Sapporo

Time Length Episode

00:15.8 01:35.6 Introduction [8 min, 36 s]
The teacher begins by writing down the problem for the students to copy in 
their notebooks. Note that the students know the format: a problem is 
presented on the chalkboard and they wait for a photocopy to do the 
calculations themselves

(continued)
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02:21.6 01:28.1 The problem
How many circles are there?
Showing the circles row by row, the students guess how many there are (often 
based on the previous class with 20 circles in each row, before realizing that 
now there are 23)

03:19.5 01:56.9 Handing out the photocopies
05:16.4 00:06.6 Finding the answer by calculating (adding or counting)
05:23.0 00:27.3 23 circles
05:50.3 00:22.4 How many are there in the top row?
06:12.7 02:40.6 And in the next row?
08:53.3 00:38.6 Lesson activity [5 min, 13 s]

Think about how to calculate 23 × 3
09:31.9 04:34.6 [Lesson activity]
14:06.5 01:48.3 Discussion [first half: 17 min, 39 s]

The teacher begins the discussion by suggesting that they cannot calculate 
23 × 3 using the ideas they have already learned

16:44.9 00:50.3 Who has written it down? The teacher first checks who among the students 
have written an answer, who knows how to do it, and who still doesn’t have 
any idea

19:04.2 02:19.2 The student Amon decomposes 23 as 20 + 3. The teacher writes 3 × 3 = 9, 
20 × 3 = 60, 9 + 6 = 69, corrected (as observed below) to 9 + 60 = 69

19:51.5 00:47.3 23 × 3 is complicated. Shinjo presents the same idea
20:41.0 00:49.5 My idea might be the same. Another girl does the same thing; 3 × 3 is 9 and 

20 × 3 is 6 (corrected to 60)
21:24.7 00:43.7 I use what we have learned. Another girl explains how she has used what she 

learned from the previous lesson
21:40.7 00:31.2 Tens and units. The girl explains in terms of units places and tens places
21:56.9 01:10.5 Amano has not finished. (Amano sees the arrangement as 9, 30, 30. The 

teacher speaks softly to him and does not make it public)
23:06.4 02:12.1 Chiba is similar to Amano but makes an error. He decomposes 23 into 20 and 

3, multiplies 3 × 3, and adds 20, obtaining 29. Other students discuss
25:18.5 25:18.5 Using 10-yen coins, they once again decompose 23 into 20 and 3, but now 

they explain 20 as two 10-yen coins, so 2 × 3 is 6
27:19.2 01:34.2 2 groups of 10, one of one (the teacher divides the poster into rows of 10, 10, 

and 3, and writes what the students have explained): 10 × 3 = 30, 10 × 3 = 30, 
30 × 2 = 60, 3 × 3 = 9, 60 + 9 = 69

28:53.4 00:34.1 Tell me why. (Another boy explains how easy it is to make groups of 10. The 
book says that)

29:27.5 01:21.6 Who has the same idea? (Another student gives a similar explanation)
30:49.1 00:56.4 20 × 3 is easier. I know something. Multiplication by 10 is easier
31:45.5 01:42.4 Another method [14 min, 27 s]

A boy suggests a new distribution, decomposing 23 into 10 + 3 + 10 with 
3 × 3 in the middle. There are surprised whispers in the classroom

33:27.9 00:25.3 Now use 10 and 5. A girl returns to yesterday’s calculations of 20 × 3 which 
are still displayed at the side

33:53.2 01:02.6 I noticed something. A student suggests that all the methods end with 60 and 
9; none calculated 39 and 30

34:55.8 00:54.6 23 × 3 is complicated. As we said before, 23 × 3 is very complicated and 
confusing. We have learned to calculate 20 × 3, numbers that end in zero

(continued)
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35:50.4 01:01.1 23 × 3 does not end in zero. A boy explains that this is why we decomposed 
23 into 20 and 3 or 10, 10, and 3

36:51.5 00:07.9 A different way? The teacher asks if anyone has decomposed it in a different 
way

36:59.4 01:13.6 11 + 12. A boy says he decomposed 23 into 11 and 12 to calculate 11 × 3 and 
12 × 3. The teacher says, “We haven’t studied that yet.” The students talk 
about the difficulty of that

38:13.0 02:18.1 3 × 9, 3 × 9, 3 × 5. The teacher writes the students’ calculations on the 
chalkboard in a complex manner. The teacher approves and asks if they are 
similar to the other calculations.

40:31.1 01:37.3 23 is 11, 11, and 1. A boy makes a calculation with a small error, which is 
corrected

42:08.4 01:37.4 Vertical form. The teacher notices that Mai writes the problem in vertical 
form using the standard algorithm. He asks her to share her idea. There is 
discussion about tens and units, with some use of the idea of 10-yen coins

43:45.8 01:43.6 Is it totally different? Yamada talks about the relationship between the poster 
and the calculation that 3 × 3 is 9 and 3 × 20 is 60. In particular, he focuses on 
3 × 2, which is 3 × 20 with the answer in the tens place. The teacher explains 
it in terms of 10-yen coins

45:29.4 00:43.5 Watching carefully. The teacher takes the paper with calculations using 
vertical rows of circles

46:12.9 00:07.2 Summary [5 min]
The time runs out. A boy says, “I want to do more!”

46:20.1 02:08.3 Any good ideas? Takashi thinks it is good to think of two 10-yen coins. He 
explains that some people use numbers like 60 and add numbers that are not 
round numbers (in the units place)—round numbers that end in zero. Tsubota 
expands the idea

48:28.4 00:23.8 Let’s read. The teacher asks the students to read what they have written on the 
chalkboard. “We thought about how to calculate 23 × 3”

48:52.2 02:20.4 What should we write? The teacher encourages the students to say what to 
write. He takes the phrase “the vertical calculation form” and writes a phrase 
selected from the students’ suggestions to end the class

50:36.5 01:35.6 End and credits

For watching the video, please note the questions for formative assessment, 
written in the lesson plan (and listed in the next section), which will provide 
focal points.

7.2.4  Criteria for Formative Assessment in the Lesson Plan

The lesson plan, which is explained in the next section, plans to promote the stu-
dents’ capacity for logical explanation. The teacher plans to pay attention to the 
following points and help the students to recognize them individually and as a class.

• Do the students use diagrams to understand the problem situation?
• Can students show their own thinking using diagrams?
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• Can they reflect on, justify, and analyze their thinking using diagrams?
• Can they express their thinking or thought process using words like “because,” “as 

such,” “for example,” “if . . . , then . . . ,” and “while . . . , then . . .”?
• What point of view do the students have for comparing various ideas?
• How different are their answers?
• How different are their expressions?
• What are the reasons behind their thinking?
• How much do they use prior knowledge?
• Can they recognize the value of comparing different ideas and appreciate the new ques-

tions that result from this comparison?
• Can they relate their knowledge to the problem being discussed?

These explanations support the content in the video for establishment of decom-
position of numbers to prepare for multiplication in vertical form beyond repeated 
addition.

The video illustrates well how Mr. Muramoto’s students actively participate in 
and contribute to the lesson by and for themselves. His deep consideration to 
develop students is explained in his original lesson plan in the next section.

7.3  Annex for Sect. 7.2: Excerpts of the Lesson Plan 
by Mr. Muramoto, Illustrating Why and How a Japanese 
Teacher Prepares School-Based Lesson Study

The previous exemplar with the video is an ordinary Japanese method to initiate 
multiplication in vertical form. It is the subtheme of this book. The subtheme 
explains the Japanese approach with the various theories behind lesson study which 
is mentioned Chap. 1. For lesson study, Japanese teachers usually have a research 
(study) theme and an objective for the lesson (Isoda, 2015a, 2015b), as discussed in 
Chaps. 1 and 5. The objective of the lesson is written for the specified teaching 
content in the curriculum sequence. The research theme is usually related to higher- 
order thinking skills such as mathematical thinking, values, and attitudes. In Japan, 
these are written as the general aim in the mathematics curriculum such as develop-
ment of mathematical thinking and appreciation of simplicity. There are various 
Japanese theories22 behind this, such as mathematical thinking for making clear the 
objectives of the teaching materials such as value, attitude, mathematical ideas and 

22 The Japanese theory for mathematics education has been oriented toward designing mathematics 
class for developing children who learn mathematics by and for themselves, and trying to explain, 
specify, and share the objectives and aims of every class; they also function as the assessment 
standards for teaching. The theory is used for designing mathematics classes to carefully recognize 
the aims of mathematics education in every lesson and its task, and how well embedded the aims 
are into every lesson and task sequence over several lessons in every teacher’s planned curriculum. 
When compared with other countries, major differences can be seen in the curriculum and task 
sequences which have been prepared for enabling students to learn value and ways of thinking, and 
so on. The sequence is prepared to support extension and integration, which means reorganization 
of learned knowledge for extended situations (Chap. 1).
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ways of thinking (Isoda, 2012, 2016; Managao, Ahmad, & Isoda 2017), and theories 
to establish the task sequence to set the opportunity for students to think by and for 
themselves.

In Japan, school-based lesson study (see Chap. 1, Fig. 1.5; and Chap. 5, footnote 
13) is usually done for research and development in the school on the setting and 
targets of the school and under the subject groups under theoretical discussion. It 
clarify the comprehensive objectives of their mathematics teaching in the school. If 
non-Japanese teachers just observe the video, they may recognize some differences 
in the teaching methods from the activities of teachers and students. If they try to 
copy the activities as a method of teaching, they may experience difficulty and attri-
bute this to cultural differences and so on. Such impressions may come from over-
looking and missing perspectives such as the teaching materials with clear objectives, 
the established task sequence for the unit level, and the long-term sequence for 
human character formation. The Japanese approach is a cultural practice based on the 
theories behind these perspectives (Chap. 1).23 Here, to illustrate how lesson study is 
carefully planned, excerpts from Mr. Muramoto’s lesson plan as a part of school-
based lesson study are presented.24 The research theme of the school, the lesson study 
group and the teacher, and part of the lesson plans will be presented in the following 
order: the school and lesson study group vision in the setting of the school in relation 
to the research (study) theme, the unit plan with its objective, and the lesson plan25 
with its objective and assessments. The followings sited in small fonts are half of the 
excerpts from the original documents provided by Mr. Muramoto as for school-based 
lesson study. Here, the term “we” means his lesson study group at Maruyama 
Elementary School. In the followings, small font sentences are quotations or resume 
from his complete-specification lesson plan and normal fonts are commentaries.

7.3.1  Maruyama Elementary School Mathematics Group 
Vision and Mathematics Lesson Study Group’s Goals

Japanese lesson study is oriented toward the aims and objectives of education in the 
curriculum. Mr. Muramoto explains his school’s lesson study vision as follows:

23 It is not just a method of teaching that can be alternate other methods because it is proffered to 
realize the specified objective.
24 As explained at Fig. 1.4 in Chap. 1, school-based lesson study is managed by the research depart-
ment at every school. Subject-based lesson study is usually managed by teachers’ societies for 
specified subjects/disciplines. National- or regional-level lesson study is usually supported by 
laboratory schools affiliated with universities. The subject-based and national levels lead the 
national curriculum reform and the establishment of theories for designing the school curriculum 
with known theories. Here, this is school-based lesson study and discusses a school mathematics 
curriculum. The Japanese aims of education are discussed in Chap. 1.
25 In the school-based lesson study approach (konaikenkyu in Japanese), which produces a learning 
community of teachers under the leadership of the principal, the description given in this section is 
necessary as part of the lesson plan for the school-based lesson study.
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The mathematics group’s goals are those of elementary mathematics from the first grade 
through the sixth grade; that is:

• To establish learning with clear and systematic connections throughout the learning 
content

• To help children to acquire basic knowledge and technical skills regarding numbers, 
quantities, and geometric figures through mathematical activities; to promote the capac-
ity for creative and logical thinking; and to promote the attitude of enjoying the activity 
and appreciating the value of mathematical manipulation, and its use in daily life26

7.3.1.1  Actual Setting of the Students in Maruyama

When we, the mathematics lesson study group, analyzed the students’ scores on the 
achievement test in our school, we found that our students were above the national average 
in every domain in elementary school mathematics, although the drop in student achieve-
ment in the international context has become a topic of discussion in Japan.

7.3.1.2  Research Theme for Lesson Study

What kind of lessons develop students who can use what they have learned before to solve 
problems in new learning situations by making connections? For this question, preparation 
of teaching materials is the key.

7.3.1.3  Focal Points for Kyozaikenkyu (Preparation of Teaching Materials 
According to the Objective/Research on the Subject Matter) 
for Implementation of the Research Theme

We think that encouraging problem solving through mathematical activities will help us to 
reach this goal.

We think that teachers need greater clarity about how the topics of study are connected to one 
another. We need to think about how students can use previously learned content to solve prob-
lems in new situations and how different problem-solving situations require various forms of 
prior learning, and we need to use these ideas in the development of units and lessons.

To help the students to be responsible for their own problem-solving process, we think that 
students should be more aware of their own problem-solving processes and be able to 
articulate how they have made connections to prior learning and how they have used the 
ideas to solve problems in new situations.

Students acquire the capacity to think about their own diagrams and the number line, 
reflecting on their own problem-solving processes, determining what they understand and 
what they do not, and comparing their solutions with those of their classmates.

We think that students should not only focus on the accuracy or inaccuracy of their answers 
but also reflect on their own problem-solving processes. They have to understand that it is 
important to feel the genuine enjoyment of learning mathematics as well as getting correct 
or incorrect answers.

26 See Chap. 1.
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7.3.1.4  Thinking About Assessments That Help Students to Be More 
Precise in Their Problem-Solving Processes

We need to think about what points to pay attention to in assessing students’ learning in the 
teaching process in order to help them develop the mathematical thinking that is necessary 
to carry out meaningful and effective problem-solving activities (see Sect. 7.2.4).

7.3.2  Support for Other Teachers in School to Improve 
Students’ Learning

In school-based lesson study, teachers work as a team. The mathematics lesson 
study group in school also supports other teachers. Mr. Muramoto describes this as 
follows:

We will administer tests to understand the current state of student learning. Giving tests not 
only is a way to understand the current state of learning but also can be useful if teachers 
use them to reflect on and improve their own teaching.

7.3.2.1  Necessary Communication with Other Teachers

We share our essential approach with other teachers by demonstrating it through an open 
class. For example, it is important to encourage students to express themselves mathemati-
cally on what they have learned from each other in the classroom. Some examples of the 
capacities we want to develop are:

• To be able to describe ideas using number lines and diagrams
• To be able to manipulate concrete materials and explain their ideas to others
• To be able to think about and understand the meanings of numbers and operations, 

expressing them in mathematical expressions
• To be able to take notes that reflect students’ thinking and points of view

It is necessary for the mathematics group to engage in good communication with other 
groups in the school. Our assessment and vision of teaching and learning in the classroom 
is discussed because all staff members in the school can provide a consistent and systematic 
approach in educating our students as a whole.

7.3.3  To Promote Human Character Formation with Strong 
Hearts and Minds, Students Who Acquire This Kind 
of Competency Can Participate in the Classroom 
in the Following Ways

In the Japanese national curriculum standards, mathematics is a subject for human 
character formation, as well as other subjects. In relation to the theme of the lesson 
study, Mr. Muramoto and his study group teachers describe the subject as the pro-
gressive development of logical thinking, as discussed in the following sections.
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7.3.3.1  Planning Consistent Development of Proficiency in Logical 
Thinking

At the end of the second grade, students begin to use expressions like “because .  .  .” to 
describe their reasons and support their ideas.

In the third grade, they begin to compare their own ideas with those of others, and the 
expressions they use are “My idea is similar to that idea, so . . .”

In the fourth grade, students use expressions like “for example . . .” and “because . . .” 
more frequently. Also, they begin to use hypothetical declarations like “If this is so, then . . .”

In the fifth grade, they can be more sophisticated in their statements—for example, “If 
this is . . . , then it will be . . . , but if it is . . . , then I think we can say . . .” under certain 
conditions.

Finally, in the sixth grade, students can begin to describe things like “It can be said that 
this is so, but in the situation . . . , . . . is much better” and begin to make decisions about 
how to choose a better idea.

We hope to see this capacity of expressing oneself mathematically more often in the class-
room, and, as such, we would like to examine the current state of student learning more 
carefully.

We believe that feelings and emotions need to be incorporated into students’ learning. 
The feelings and emotions we refer to here are the students’ hopes and desires, as well as 
their feelings and emotions that are derived from their particularities, all of which are neces-
sary for students to autonomously and actively involve themselves in their own learning. 
This includes feelings and emotions expressed through phrases like “I wonder why . . . ,” 
“If that’s so, then . . . ,” “Is this always true?” and “There, I found it!”

These are some of the things we hope for and are trying to achieve. We believe that 
knowledge is gained through feelings and emotions, and that these will really help students 
to acquire solid capabilities and strong hearts and minds.

7.3.4  Survey of Students for Preparation and Challenges

In the School Based Lesson Study, teachers usually survey current status of their 
students for knowing reform direction, improvements and progress:

We carried out a survey about mathematics learning among third-grade students at 
Mayurama Elementary School for preparing lessons, and the responses were as follows:

Do you like mathematics?

• 50%: yes
• 44%: sometimes yes
• 5%: sometimes no
• 1%: no

The students who answered “Yes”:

• I like calculations and enjoy them.
• Yes, I understand, it’s entertaining.
• Because the answers are clear.
• Because I can listen to various ideas.

The students who answered “Sometimes yes”:

• I like calculations but not problems.
• It is very difficult to construct mathematical expressions for the problems.
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The students who answered “Sometimes no” or “No”:

• I don’t like problems.
• The tests are difficult.
• It is very difficult to construct mathematical expressions.

Maruyama’s Elementary School third-grade students like calculations, but many of them 
feel they are not good at constructing mathematical expressions for the problems. Thus, the 

following ideas are used to develop units and lessons:

We would like to increase the number of students who think logically and provide them 
with the capacities they need to understand the structures of the problems using diagrams 
and the number line.

We would like to increase the number of students who are interested in listening to other 
students’ problem-solving processes, thinking about whether the problem-solving process 
is similar or different, and being able to communicate it.

7.3.5  Exploring Topics That Students Learn in the Third 
Grade

The topics that students learn are the following:

• Addition and subtraction (3-digit numbers in vertical form)
• Multiplication (2- and 3-digit numbers multiplied by a 1-digit number using the 

algorithm)
• Division (its meanings and remainders)
• Large numbers (up to 10 million)
• Time and duration (meaning)
• Volume, length, and weight
• Characteristics of rectangles and squares
• Box forms (characteristics and nets)

• Tables and bar graphs (categorized data and construction of tables and bar graphs)

The key mathematical ideas and thinking that students learn in almost all domains of third-
grade mathematics are to think about quantities in terms of how many times the unit of 
measurement is contained in the quantity.27

• In addition, subtraction, and large numbers, we take 1, 10, 100, etc., as the unit.
• In multiplication and division, we look at how many times a quantity contains the unit 

of measurement, and we look at dividing something by a number of units.
• In time and duration, volume, length, and weight, we see how many times something 

contains the unit of measurement.
Using the big mathematical idea of how many times a quantity contains the unit 

quantity as the governing principle, we develop lessons that help to emphasize this idea, 
as well as thinking of daily lessons that will help to nourish this idea. For example:

• We develop lessons that help students to be aware of the connection between what they 
have learned before and what they are learning now, and to use previously learned 
knowledge to overcome obstacles in a new situation.

27 This is the definition of multiplication by measurement (Chap. 3).
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• We representing a problem situation with diagrams based on the idea of how many 
times a quantity contains the unit quantity consistently, helping students to understand 
the situation and the solution with greater clarity, and developing lessons that incor-
porate this idea to help them use the diagram to think logically about the solution to 
the problem.

• We develop lessons that help students to understand what they need to compare in vari-
ous ideas, previous ideas, and representations such as diagrams.

These students’ understanding will be enriched through lessons that pay attention to 
the problem-solving process in which prior knowledge is used.

7.3.6  Challenging Issues for the Lesson Study Group  
with Viewpoints

Although the achievement of students at Maruyama Elementary School appears to be good, 
we recognize that there are many students who wait to receive instructions from teachers 
about how to solve the problems instead of doing that by themselves.

We do not think there are many students who indicate a strong desire to address chal-
lenging problems, saying, “I want to solve this problem on my own, even if it takes me 
a long time.” Also, there are not many students who enjoy solving problems by trial and 
error.

We think this is the result of lessons that have not provided pleasant experiences in 
which the students reach solutions on their own, see interesting regularities or patterns in 
their investigations, think about this, and share questions that come up during learning with 
their classmates.

To develop students who can enjoy learning mathematics and acquire capacities for 
logical reasoning, which are the aims of the national curriculum standards, we decided to 
develop lessons with three viewpoints.

These viewpoints are discussed in the following.

7.3.6.1  Viewpoint 1: Teaching Material to Connect Unknown Content 
with Learned content

To develop teaching materials that pay attention to the connections between previously 
learned content and new content

It is necessary to clarify the mathematical thinking that the students have learned in the 
6 years of primary school, by researching teaching materials and the students’ processes of 
development. To do so, one must understand how previously learned content is necessary 
for learning new content, and how useful it is.

What students learned about multiplication in the second grade is precisely useful for 
calculation. The idea they learned regarding “how many times the unit of measurement a 
quantity is” is a fundamental idea of mathematics.

Also, in the second grade the students learn “length” by direct comparison, indirect 
comparison, and measurement with arbitrary units. So, the students who recognize the 
necessity of measuring with a universal unit can learn “weight” in the third grade using 
similar thinking.

The students who think about the “why” of the problem-solving process can begin to 
make connections between the problem and what they need to think about it, as well as 
what they need to think.
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7.3.6.2  Viewpoint 2: Knowing the Significance of Own Ideas 
Through Comparison with Others’ Understanding

Students can learn from each other and this helps them to think conscientiously about their 
own problem-solving processes.

There are many new things students can learn from each other in the classroom when they 
experience the real value of mathematics, its beauty, and its importance.

• Students can clarify their own problem-solving processes and participate in discussions to 
learn from each other.

• Students can learn through discovery by comparing their own thinking with that of others.
• Students can reflect and evaluate what they understand and what they do not.
• Students can clarify how they solve problems.

Learning experiences in the classroom that promote learning from each other not only 
improve student learning but also develop strong bonds among students.

7.3.6.3  Viewpoint 3: Prepare the Task Sequence with Formative 
Assessments

Assessment that promotes students’ capacity for logical thinking

For the students to be capable of thinking logically, we think they need to clarify their own 
problem-solving processes when they are doing problem-solving activities.

First, so that students enrich their learning, we think it is very important that the teacher 
provides help in organizing the chalkboard and highlighting the lesson’s important points.

Second, we want to plan appropriate help so that students feel the need to think about 
what prior knowledge they need to remember and can make connections to the new prob-
lem situation. Also, we want to include support questions to encourage students to think 
deeply about their problem-solving processes, understand each idea they produce (includ-
ing the similarities and differences of these ideas), and expand the knowledge they can gain 
through working together.

Finally, we want to prepare a second problem that helps us to understand student learn-
ing during the lesson to support understanding of the effect of what students learn from each 
other in the lessons.

Considering the current state of learning of Maruyama’s students and the content of the 
topic, we think it is important to develop units and lessons with these viewpoints in order to 
achieve the overall goal of developing students who can use what they have learned previ-
ously to solve problems in new learning situations by making connections.

7.3.7  Unit and Lesson Plans

The teachers intend to carry out:

• Lessons that prepare students to think conscientiously about the connection between 
what they have learned before and what they are leaning now

• Lessons in which students learn from each other and that help them to think conscien-
tiously about their own problem-solving processes

• An assessment that helps to strengthen students’ capacities for logical thinking
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The specific unit goals are:

• To think about how to calculate the multiplication of 2- and 3-digit numbers by 1-digit 
numbers using the ideas about multiplication that have been learned previously (calcu-
lations with 2- and 3-digit numbers multiplied by 1-digit numbers using the idea of 
decomposing numbers in the base ten system)

• To be able to carry out the calculation of 2- and 3-digit numbers multiplied by 1-digit 
numbers using the algorithm

The content that the students learned before this unit includes:

• Multiplication of 1-digit by 1-digit numbers (second grade)
• Multiplication that involves zero, multiplying by tens (third grade)
• Using the idea of the distributive law of multiplication to create the multiplication table 

(for example, the multiplication table of 7 can be developed using the tables of 5 and 2)

The lesson topic is:

• Third-grade mathematics lessons that promote students’ capacity to use what they have 
previously learned and make connections for solving problems in new learning 
situations

The lesson learning goal is:

• To be able to think about how to carry out the calculation of a 2-digit number multiplied 
by a 1-digit number using what was previously learned about multiplication (mathemat-
ical thinking)

Unit Plan for 13 Sessions

Learning activities

1

 
How many • are there?
Let’s find out by calculating!
Because we have 3 groups of 20 circles, I wonder if we can use multiplication. To 
calculate 20 × 3 or 20 + 20 + 20, 20 is two tens. We can discover how many tens there 
are using 2 × 3

2 Let’s think about the statement of the problem that shows the mathematical expression 
20 × 3
“Each chocolate costs 20 yen. We buy three. What is the total price?”

3 If the price of an item is 300 yen, what is the mathematical expression? 300 × 3
This time we can think about how many groups of 100 there are. We can discover how 
many hundreds there are using 3 × 5

4

How many • are there?
Let’s find out by calculating!
This time a group has 23 circles. There are approximately 60 circles
The mathematical expression should be 23 × 3. We cannot calculate it easily using the 
multiplication table. If we decompose 23 into smaller parts, then we could use the 
multiplication table. We can use an algorithm (a method of calculating with paper and 
pencil) to calculate. 9 × 3, 9 × 3, 5 × 3, together is 69. 10 × 3, 10 × 3, 3 × 3, together is 
69. 20 × 3, 3 × 3, together is 69. Which of these ideas is easiest to calculate? They all 
decompose 23 into smaller parts

(continued)
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Learning activities

5 Let’s find out how to calculate using the algorithm (a method of calculating with 
paper and pencil). Think of 23 as 20 and 3. Put 3 × 3 and 20 × 3 together. 
Calculate using the multiplication table

23
× 3
69

6 How many • are there? Let’s find out by calculating! The mathematical expression is 
16 × 4. It should be greater than 40. It looks like it is greater than 40. We can make this 
calculation by decomposing 16 into 10 and 6 like we did before. Let’s make this 
calculation using the algorithm. 6 × 4 = 24. We cannot write 24 in the units place. I 
wonder how I should write the number . . . We can write the 2 in 24 in the tens place

7 Let’s do a bunch of problems like ••• × •! Let’s think about all the problems using the 
algorithm. Some of the answers give 3-digit numbers. There are answers where 0 
appears in the tens place. There are problems that imply regrouping twice

8 The price of a meter of ribbon is 312 yen. We buy 3 meters of ribbon. How much does 
the ribbon cost? What would an estimate for the answer be? It should be more than 900 
yen. The mathematical expression is 312 × 3. I wonder if I can use the algorithm again 
for this. . . . If we decompose 312 into smaller numbers, we can calculate . . . 300 × 3, 
10 × 3, 2 × 3, together is 936

9 Let’s do some problems like ••• × •! I do a problem in which the answer is a 4-digit 
number. I do a problem that implies regrouping

10 Let’s practice calculating with the algorithm!
11 We can begin to calculate however we want. The price of a cake is 60 yen. There are 

four cakes in each box. If we buy two boxes, what will the total price be? I think we will 
need two mathematical expressions to solve this problem. First, we find the price of a 
box. 60 × 4 = 240. We have two 240-yen boxes; 240 × 2 = 480. First, we find the total 
number of cakes; 4 × 2 = 8. A cake costs 60 yen, so 60 × 8 = 480

12 Let’s practice!
13 Let’s review what we have learned in this unit

Lesson Plan

Learning activities and anticipated student 
reactions and thoughts Points to consider

How many • are there?
Let’s find out by calculating!

To understand the task, help students to see 
the circles as “how many in a group” and 
“how many groups”

There are 23 circles in each row
There are 3 groups of 23 circles
There are more than 60 circles. We can discover 
the number of circles by counting or adding
I wonder if we could use what we have already 
learned about multiplication. The mathematical 
expression should be 23 × 3

Before calculating, encourage students to 
estimate the answer

We cannot simply use the multiplication table to 
make the calculation. What should we do?

Praise them when they remember what they 
have already learned. Try to understand the 
students’ various ideas by walking around the 
classroom

(continued)
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Learning activities and anticipated student 
reactions and thoughts Points to consider

When you encounter students solving the 
problem using addition, ask them “Can you 
use multiplication to make this calculation?” 
Make sure you use the diagrams to represent 
how the calculations were carried out

S1:
  Decompose 23 into 9, 9, and 5
  9 × 3 = 27, 9 × 3 = 27, 5 × 3 = 15
  27 + 27 + 15 = 69; 69 circles
S2:
  Decompose 23 into 10, 10, and 3
  10 × 3 = 30, 10 × 3 = 30, 3 × 3 = 9
  30 + 30 + 9 = 69; 69 circles
S3:
  Decompose 23 into 20 and 3
  20 × 3 = 60, 3 × 3 = 9, 60 + 9 = 69; 69 circles

Make sure you encourage students to share 
their various ideas and help them to make a 
conscious effort to make their own value 
judgment regarding the various ideas. If a 
student uses an algorithm to calculate, ask 
him or her to think about how this calculation 
method is related to the diagram

If we decompose 23 into smaller parts, we can 
use different multiplications from the 
multiplication table to make the calculations. 
Which of these do you think is a good idea? 
What similarities are there among the different 
solutions? All the methods decide to decompose 
23 into smaller parts. There are methods that 
imply decomposing 23 into 3 parts and into 2 
parts. The numbers used in the mathematical 
expressions are different. If we use the 
multiplication 20 × 3 that we learned before, we 
have two mathematical phrases. I use an 
algorithm (calculating with paper and pencil) to 
make the calculation 23 × 3. If we compare this 
method and the diagram, this method also 
decomposes 23 into 20 and 3. If we decompose 
a number into smaller parts, then we can use the 
multiplication table, making the calculation in 
today’s problem. The idea we use in the 
algorithm (calculating with paper and pencil) is 
similar to the idea of decomposing 23 into 20 
(2 in the tens place) and 3 (3 in the units place)

Make sure you highlight the idea of “making 
the calculation easier using the multiplication 
table and other ways of multiplying that we 
have already learned.” if a student uses the 
algorithm, help him or her to consciously 
connect the idea of the algorithm to this idea

From the excepts of Mr. Muramoto’s full-speck lesson plan, it is clear that the 
lesson plan is not written for illustrating the methods of teaching for copying; 
instead, it is written for answering why and what questions, such as why we need 
teaching materials and what teaching materials are needed for the specified stu-
dents. If we share why, we can develop teaching materials with appropriate task 
sequences and clear objectives. These are the theories behind the explanation of the 
teaching activities in the Japanese problem-solving approach. It is not a method of 
teaching but a method to achieve the objectives with well-configured and sequenced 
teaching materials (see Chap. 1). What is necessary for the approach is a set of 
objectives and teaching materials that can be defined by the content and the task 
sequence with the aims and the objectives.
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7.4  Multidigit Multiplication in Vertical Form: Task 
Sequence for Extension and Integration in the Case 
of Gakko Tosho

The previous section illustrates how a Japanese teacher introduces multiplication 
in vertical form with the example of 23 × 3. In this section, the task sequence 
(see Chap. 4) of multidigit multiplication after learning multiplication of a 2-digit 
number by a 1-digit number is illustrated to explain how Japanese teachers develop 
students who are able to extend their ideas by and for themselves by using what they 
have already learned.

In this section, the Gakko Tosho textbooks Study with Your Friends: Mathematics 
are referred to because these have been preferred and used in Thailand,28 Mexico,29 
Indonesia,30 and Papua New Guinea31 on well-configured task sequences for exten-
sion and integration. This is the outstanding feature of the Gakko Tosho edition. 
The following sections include excerpts from a Gakko Tosho textbook for illustra-
tion of task sequences to explain the manner of extension and integration by stu-
dents. Every task has an exercise for proficiency, but that is not described here.

7.4.1  Task Sequence for Extension

In the Gakko Tosho textbooks (Isoda and Murata, 2011; Hitotsumatsu, 2005), multi-
digit multiplication introduced Grade 3 in the following.

28 This is the Open Approach Project by Maitree Inprasitha. By using the Thai edition of the Gakko 
Tosho textbook (Inprasitha and Isoda, 2010), he and his colleagues in Thailand produced a number 
of research articles under the name Open Approach such as in the Psychology of Mathematics 
Education (PME) and others. Their reteaches follows the Gakko Tosho textbook sequence under 
the Japanese national curriculum; it is called the problem-solving approach in Japan. When the 
Japanese say “open approach” this implies that the class is working with open-ended tasks (see 
Nohoda’s open approach in Chapter 1). With regard to the task for the problem-solving approach 
defined by the task sequence in the textbooks in relation to the objectives under the unit plan in the 
curriculum, it is not necessarily the task should be an open-ended task; however, it produces vari-
ous solutions like an open-ended task because it is posed as an unknown task for students in the 
task sequence. within students’ reach (zone of proximal development (ZPD), Vygotsky, 1962). 
Students can challenge as long as they well learned the previous tasks under the curriculum and 
textbooks.
29 The Pre-service Teacher Education Project for all teacher education colleges under the Ministry 
of Education, Mexico, by Marcela Santillan Nieto and Tenoch Cedillo Ávalos (Isoda and Cedillo, 
2012).
30 The Curriculum Center Project by the Ministry of Education, Indonesia (ongoing).
31 The Japan International Cooperation Agency (JICA) Improving the Quality of Mathematics 
and Science Education (QUIS-ME) project by the Department of Education, Papua New Guinea 
(ongoing).
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7.4.1.1  Task 1: Extension by Students

In this task (Fig.  7.14), a teacher provides a two-dimensional table with empty 
 boxies, and asks students to fill in examples and discuss what they have learned 
(such as when and how they learned it, and what they have not yet learned. In 
Fig. 7.14, there are the empty boxes indicate things they have not yet learned. The 
other filled expressions indicate things the students have already learned when they 
studied multiplication in vertical form  at Grades 2&3. From this contrast, students 
recognize the necessity to extend the numbers for multiplication in vertical form to 
multidigit numbers. Some of the leading teachers ask students to plan and discuss 
their learning sequence too.32

7.4.1.2  Task 2: 4 × 30

The textbook provides an opportunity for thinking about how to calculate, which 
has been an aim in the national curriculum standards since 1999, as well as compre-
hensive understanding and fluency of operation. To meet this objective, the task 
sequence is established by the extension and integration principle (see Chap. 1).

32 The Japanese approach oriented to develop students by and for themselves. Thus, leading teach-
ers of Lesson Study usually demonstrate their ways to develop students to learn mathematics by 
and for themselves.

Fig. 7.14 Gakko Tosho (Hitotsumatsu, 2005), Grade 3, Vol. 2, p. 59; and Gakko Tosho (Isoda, 
Murata, 2011), Grade 3, Vol. 2, p. 63
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At Grade 2, in Fig. 7.15, the task 2 for Grade 3 can be solved using groups of 
groups, 10 times. At Grade 2, students already learned T0 × U. The associativity of 
multiplication has already been learned (see Chap. 6).

7.4.1.3  Task 3: 21 × 13

Task 3 (Fig. 7.16) is a case without carrying. It is extended with carrying as shown 
in Fig. 7.17.

7.4.1.4  Tasks 4 and 5: With Carrying and with 0

In the case of these tasks (Fig. 7.17), students also use block diagrams to be able 
to explain to others; however, they are never expected to use manipulatives 
because manipulatives usually provide the opportunity for counting. From the 
early stages such as grades 1 and 2, students should be developed to be able to 
draw the diagrams. The task sequence continues on to multiplication of 3-digit 
numbers such as 123 × 32 and 385 × 35. The last task is 508 × 40 which needs to 
consider the treatment of 0.

Fig. 7.15 Gakko Tosho (Hitotsumatsu, 2005), Grade 3, Vol. 2, p. 60; and Gakko Tosho (Isoda, 
Murata, 2011), Grade 3, Vol. 2, p. 64
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Fig. 7.17 Gakko Tosho (Hitotsumatsu, 2005), Grade 3, Vol. 2, p. 63; and Gakko Tosho (Isoda, 
Murata, 2011), Grade 3, Vol. 2, p. 67

Fig. 7.16 Gakko Tosho (Hitotsumatsu, 2005), Grade 3, Vol.  2, pp.  61–62; and Gakko Tosho 
(Isoda, Murata, 2011), Grade 3, Vol. 2, pp. 65–66
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These tasks can be solved by using what the students have already learned from 
the previous tasks. The following Fig. 7.18 are parts of the last exercise (Fig. 7.18).33

In this task sequence, teachers ask students to use what they have already learned 
to justify their ways of calculation. For developing students who learn mathematics 
by and for themselves, a Task 1–style task is well known to focus their mind-set on 
the inquiry of extension. Tasks are sequenced for enabling students to extend their 
ideas by using what they have already learned. Posing question to others and 
critiquing other students’ ideas are also enhanced in the textbooks.

7.5  Final Remarks

This chapter has illustrated the extension and integration of multiplication from 
single digit to multidigit by using vertical form with the base ten system and a mul-
tiplication table (see Fig. 1.1 in Chap. 1 from Meaning of B to Procedure B). It has 
also discussed how students are able to integrate the definition of multiplication by 
measurement (a groups of groups; see Chap. 3), which supports repeated addition, 
with the base ten place value system (see the allow ‘↑’ on Meaning B n Fig. 1.1 

33 As mentioned in Chap. 1, the task sequences in Japanese textbooks are written under the exten-
sion and integration principle. Ordinal task sequence is from specific to general like Fig. 4.27 in 
Chap. 4. This process is also explained as the processes of both conceptualization of procedures 
and procedurization of concepts (see Chap. 1, Fig. 1.1). Gaining proficiency in the procedure is 
necessary for further conceptualization. Thus, there is a rich set of exercises at the end of every 
chapter in the textbook which maximize the proficiency for operations. The task sequence of the 
exercise for proficiency can be written from general to specific instead of from specific to general 
in cases; for example, after learned long division, the task sequence 85÷7, 68÷3, 54÷5 in exercise, 
is written in a general-to-specific form as for adaptation of an algorithm (Fig. 7.18, Gakko Tosho, 
2011, Grade 4, Vol. 1, p. 46): On 85 ÷ 7, 8–7 × 1 = 1, 15–7 × 2 = 1; On 68 ÷ 3, 6–3 × 2 = 0, 8–3 × 2 = 2. 
On 54 ÷ 5, 5–5 × 1 = 0, 4. Isoda learned this from Prof. Tadao Kaneko at the textbook editorial 
meeting.

Fig. 7.18 The task on the left side asks students to pose the question to others, and the task on the 
right side asks students to find mistakes in others’ answers. The tasks itself include the objective: 
Construct viable argument and critique reasoning of others on CCSS.MATH. (2010), USA
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coming from the outside of figure). The students are confident of what they have 
learned about addition and subtraction in vertical form (column methods) under the 
base ten system (see the allow ‘↑’ on Procedure B in Fig. 1.1).

Section 7.1 discussed historical possibilities explaining why multiplication in 
English-speaking and Spanish-speaking countries involves a contradiction, which 
has been recursively discussed since posed questions in Chap. 2 and it is the answer 
from the origin of contradiction for the questions.

In relation to the Japanese approach and lesson study discussed since Chap. 1, the 
explained task sequences in Sects. 7.3 and 7.4 were developed through experiences 
of lesson study by a number of teachers, and some of them were embedded into text-
books with the following hidden principles.34 The first principle is the sequence of 
extension from the special/simple case to the general/complex case which enables 
students to use learned knowledge and develop their learning of mathematics by and 
for themselves (See Chap. 1, Fig. 1.1). The second principle is the task sequence of 
mathematical necessity35 for enabling students to solve mathematical tasks by 
themselves, having further expectations of mathematical development and its inte-
gration. The third principle is the task sequence that enables students to appreciate 
their progress through collaborative problem solving with others.36 Last principle is 
related with the objective: Construct viable argument and critique reasoning of others 
on CCSS.MATH. (2010), USA. These principles were explained by the general prin-
ciple “Extension and Integration” on Japanese curriculum. On the context of re-
invention principle by Freudenthal (1973), it can be said as mathematization because 
it asking students to reorganize mathematics by and for themselves. These are also 
seen in Sect. 7.3 which was written by Mr. Muramoto’s lesson study group, prepared 
for his school-based lesson study.

Sections 7.2, 7.3, and 7.4 are an illustration of the Japanese approach to designing 
lesson study which is mentioned in Chap. 1 with its theoretical background. The exam-
ple provided by Mr. Muramoto illustrates that Japanese lesson study is a reproducible 

34 These principle is subsequents of general principle: extension and integration (see Chap. 1). The 
first principle can be recognized if readers read students’ textbooks on the principle. The second 
and third principles are usually explained in teachers’ guidebooks. The following textbooks are 
clearly written from the students’ perspective: Isoda and Tall (2019), Junior High School 
Mathematics, Vols. 1–3, Tokyo, Japan: Gakko Tosho.
35 In French didactics (Artigue, 2014), a priori analysis is also discussed to make clear the signifi-
cance: in so many cases, it is based on pure mathematics. On the other hand, the Japanese terminol-
ogy orients teachers to be able to distinguish conceptual differences in teaching content in the 
curriculum, such as different meanings of fractions. The mathematical necessity of introducing 
fractions is explained by using the terminology “dividing fraction, operational (measurable) frac-
tion, and fraction with quantity” (See Chap. 4, Figs 4.22 and 4.23).
36 In Mr. Muramoto’s lesson, the students discuss different ideas for multiplying 23 × 3, such as 
9 × 3 + 9 × 3 + 5 × 3, 10 × 3 + 10 × 3 + 3 × 3, and 20 × 3 + 3 × 3. They appreciate every idea and 
the last one is more economical, being related to the base ten system and the memorized multipli-
cation table. These insights are possible under the task sequence in his unit plan and the curriculum 
with acquisition as learned knowledge and skills.
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science37 (Isoda, 2015a, 2015b) that produces better practice through exploring “why” 
for objective and “what” for teaching materials with a sequence under the shared cur-
riculum. In Chap. 1, the Japanese theories used to design lessons are categorized as 
follows: the theory to clarify the aims and objectives in every class such as the national 
curriculum standards and mathematical thinking, the terminologies to distinguish con-
ceptual differences in teaching content, the theory to establish the curriculum sequence 
and task sequence, and the theory to manage the lesson such as Problem Solving 
Approach. Mr. Muramoto’s lesson plan (described in Sects. 7.2.2, 7.2.4, and 7.3) was 
written based on these theories as background knowledge and shows how Japanese 
teachers deeply plan their lessons through the year.38

Sect. 7.5 illustrated the trajectory for enabling students to develop multiplication in 
vertical form beyond repeated addition using what they have learned such as the defini-
tion of multiplication by measurement, addition and subtraction in vertical form with 
the base ten place value system, and block diagrams with splitting for decomposing 
numbers. It is the exemplar for how Japanese teachers plan and teach learning how to 
learn as a part of human character formation by using what students have learned with 
considering how students extend their ideas for performing extended tasks. Japanese 
teachers who are engaging in subject based lesson study usually try to develop their 
lessons to develop the students who construct viable argument and critique of others. 
In Chap. 1, it is explained as Dialectic Approach on Fig. 1.4. Stigler and Hiebert (1999) 
en-lighted Japanese Problem Solving Approach through the comparison of classroom 
videos among USA, Germany and Japan. On the context of learners perspective study 
by Clarke, Keitel, and Shimizu, Sekiguchi, (2006) illustrated clearly from the perspec-
tive of Japanese classroom culture by using his analytical framework for classroom 
norms. Through the part I from Chap. 1 to Chap. 7, this book informed the unknown 
Japanese theories which teachers use for designing their practice to realize their objec-
tives for developing students. It is the originality of this book as well as the meanings 
and roles of multiplication in elementary mathematics curriculum and its histori-
cal origin.

37 Even though in this case, teachers use the same textbook and task sequence to minimize their 
preparations, the teachers have to reinvent the objective for the teaching content. By sharing 
Japanese theories through lesson study, they usually find ideas for teaching such as the meaning 
of a task that is really problematic for children and is the subject of discussion (See Chap. 1, 
Fig 1.3).
38 This is the case in subject-based lesson study. Mr. Muramoto is a member of several subject-
based lesson study groups, such as Isoda’s lesson study group, based on the meaning (concept) and 
procedure mentioned in Chap. 1, Fig 1.1. In Japan, in the context of lesson study, teachers do not 
use the custom of writing references on their lesson plans like academic research papers even 
though they have studied various theories. In the teacher training program provided by the teacher 
training center, universities, and so on, they have a lot of opportunities to study design theories, 
which are explained in Chap. 1.
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Chapter 8
An Ethnomathematical Perspective on 
the Question of the Idea of Multiplication 
and Learning to Multiply: The Languages 
and Looks Involved

Claudia Georgia Sabba and Ubiratan D’Ambrosio

8.1  Introduction

One of the most delicate tasks performed by students and teachers continues to be 
learning about the objects and relationships of mathematics in school. Apart from 
this discipline having been referred to as difficult to understand for centuries, 
students are divided between those who fear it and those who adore it.

This passion for numbers is nurtured early on, not only in the school environ-
ment, but it must also be encouraged and developed through the guidance of elders 
who already perform more complex operations. The elders demonstrate to the 
young people the need to elaborate mathematical reasoning for resolution of daily 
problems, to use it as an object of leisure through hobbies, and to interconnect it 
with different areas of knowledge such as art, the exact sciences, the humanities, 
and the social sciences.

Mathematics is present in our daily routines. This causes all of us to use it con-
sciously or unconsciously for the accomplishment of our tasks.

In this sense, one of the mathematical concepts used by all of us involves multi-
plying quantities. It is present in almost all of our tasks and in the classroom full of 
students trying to learn and their worried teacher. However, most children and adults 
perform this activity easily out of the school context, although some of them have 
not attended school or even have not learned to develop some mental calculation 
techniques; nor do they comprehend the use of algorithms for multiplication.
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It is also worth emphasizing that thinking about the learning of mathematical 
concepts in the scope of educating the human being (a noun) to be (a verb) human 
requires a process in which mathematics is worked on as a whole—that is, by 
including and relating to it during the learning of content by the students. From the 
teacher, this demands an attitude of an educator involving himself or herself more 
and more in the ethnomathematics program, since, in education today, we believe 
that the process goes beyond teacher–student dialogue. It involves knowledge of 
mathematics, social relations, and the use of technology, which are present in all our 
actions, even though they are not available to all people of the world. This is one of 
the great challenges of the present century.

The computerization of societies, contact with technology through social net-
works, and the use of technology as a form of registration through the image, and 
also as a way of expressing what is thought, are parts of the universe of the young 
people of today. The act of teaching using new technologies or virtual environments 
is just another way of bringing the mathematics that exists in the world into their 
objects and relationships, packaged in a language that is easily accessible for 
the young.

The choice of appropriate language to extend the understanding of mathematical 
content makes the students more interested in learning something that matches the 
realities in which they exist. The use of art through symbols, icons, and photographs 
is getting closer and closer to young people.

In this context, we want to report here some mathematical ways and thoughts 
about this task, which involves the most basic as well as advanced calculations, but 
which are part of the daily life of some professionals and students.

The elaboration of the concept of multiplication happens naturally in the history 
of man. The elaboration of an algorithm to facilitate the solution of a problem was 
a human creation. However, these practical devices are not yet in the domain of the 
entire world population, although, in practice, everyone has a way to perform a 
necessary or requested calculation.

Perhaps this difference in looking at it causes a gap between practical and theo-
retical knowledge. Since the practice of some teachers is increasingly related to 
their classroom, this may make education decontextualized.

In this way, some groups of educators are increasingly placed in a macropercep-
tion between scientific knowledge and the cultural knowledge of the social groups 
in which teachers and students exist. According to gestalt theory, the perception of 
the whole context in which the individual exists gives him or her elements to better 
understand mathematical knowledge.

Another way of thinking about this involves the concept map of a website, where 
anyone can have access to all of the concepts involved and only perceive it in a lin-
ear way in which they relate to it. Weaving through the web in all dimensions will 
require the interaction of the individual in his or her learning.
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8.2  Alternative Modes

8.2.1  Project Learning

Escola Municipal de Ensino Fundamental (EMEF) Desembargador Amorim Lima 
was initially inspired by the Escola da Ponte to promote a major change in its politi-
cal pedagogical project. Today, with its own identity, this Brazilian school has a 
slightly more flexible political calendar, thus allowing newly proposed workshop 
activities to be added to the basic curriculum, which is composed of research and 
execution of scripts elaborated by the school.

These completed scripts work as miniprojects. They are integrated into the dif-
ferent areas of knowledge about the researched subject in the sense of giving auton-
omy to different ways of learning and discovering the world at the rate at which 
students develop their activities.

The school’s physical plan has been remodeled to carry out all the activities pro-
vided for in the political pedagogical project. The main building consists of three 
floors. On the ground floor, there is the computer room (which is well equipped with 
microcomputers and the internet), the capoeira room, the literacy room for first- 
grade children, and a repository of the teaching materials available to teachers. In 
the courtyard, there is a stage. On its wall are the principles of the school, written by 
teachers and students together. At the end of the inner courtyard, there is the canteen 
and, at its side, the stairs that lead to the classrooms. Through a corridor next to the 
canteen are the library and the art room. Accessing the school by the service 
entrance, the first room is for the secretaries of the school, the rooms of the teachers, 
the classroom of the first grade, the room of the pedagogical coordination, the 
boardroom (where meetings with teachers are held), and finally, the bathrooms 
(Fig. 8.1).

Going up the stairs from the inner courtyard on the first floor, there is a room for 
English workshops, two rooms for project realization, and the hall—inspired by the 
Escola da Ponte, formed by three linked rooms—where there are students from 
second to fourth grades. This hall has three living spaces and six computers, which 
are used by students doing research. The second floor is laid out similarly to the first 
floor; the only difference is the occupants. The activities here are for students in 
grades 5–8. Throughout the school building, there are works by the students. The 
walls are well painted. The rooms and halls are clean and organized between one 
activity and another. Green curtains complement the spaces, provide protection 
from the sun, and brighten the environment. Around the building, there is an out-
door area with courts, a skating rink, a vegetable garden (planted together by teach-
ers and students; the food produced is used to prepare lunch in the canteen), a white 
event tent (which was donated to the school), and a wooden tipi (created by Guarani 
natives from the village Morro da Saudade), which was part of an exchange with 
the school.
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As of February 2009, Prof. Dr. Geraldo Tadeu Souza introduced the fourth 
thematic axis: our world. In 2010, a fifth axis was added, so the work is organized 
as follows by the coordinating teachers of these axes:

 1. Alterity and identity: This uses theatrical language, a resource that has been elab-
orated since 2007 with the help of a professor from the Faculty of Education 
(FE) at the University of São Paulo (USP), Brazil.

 2. Life: This axis has been built through experiments and their documentation, 
under the scientific eye; for this, the school has spaces that allow this type of 
activity with groups.

 3. Our planet: In this axis, the focus is on chemical experiments that are performed 
and recorded.

 4. Our world: In this axis, art is predominant. Through activities that involve the 
construction of models and going to the cinema, the students produce reports in 
elaborate scripts.

 5. Literacy: This axis was added to the project in 2010. It arose from the need for 
experience by practice and to give more support to the activities of documenta-
tion and communication through literacy. As described by D’Ambrosio (1999):

Fig. 8.1 The hall (top) and a blackboard (bottom) at Escola Municipal de Ensino Fundamental 
(EMEF) Desembargador Amorim Lima (2004)
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 – LITERACY: It is the ability to process written and spoken information, which 
includes reading, writing, calculation, dialogue, eclogue, the internet in daily 
life [COMMUNICATION INSTRUMENTS].

 – MATHERACY: It is the capacity to interpret and analyze signs and codes, to 
propose and use models in daily life, to elaborate abstractions about represen-
tations of the real [INTELLECTUAL INSTRUMENTS].

 – TECHNOCRACY: It is the ability to use and combine simple or complex 
instruments, including the body itself, evaluating its possibilities and limita-
tions and its suitability to diverse needs and situations [MATERIAL 
INSTRUMENTS].

It is important to emphasize that this proposal, as a whole, seeks to build knowl-
edge based on the freedom to comprehend the world and to educate for responsibility 
and freedom.

At this pedagogical moment, the traditional teacher is replaced by a tutor teacher 
responsible for 20 students, arranged into groups of five. The purpose is to organize 
the research work to be done in the resolution of the scripts aside from assisting 
classmates to overcome some doubts.

8.2.2  Thinking of Multiplication Through Research Scripts

Although the mathematical content is not perfectly integrated into the projects in 
this school, in general, the questions cover all areas of knowledge. It is possible to 
think of the following topics for work:

Theme: Bees (second and third grades).
Questions
  1. How are the bees arranged in the hive?
  2. How are the combs arranged in the hive?
  3.  When observing the work of bees, can we say that there is some kind of organization and 

hierarchy in this environment?
  4.  Draw a piece of honeycomb on a 10 cm × 15 cm wooden frame. Describe some ways to 

organize mathematical thinking to count all the honeycomb cells.
  5.  How can we count the bees that are in the combs? Exemplify ways of counting by drawing 

it. Does knowing the number of cells help calculate the number of bees?
  6. What are the most common types of bees? Where do they come from?
  7.  Would there be another geometric figure that could be used by the bees to build a 

honeycomb? Which one do you consider the best? Does the hexagon suit the honey bees?

This example makes it possible to explore with groups not only the ways of 
counting the number of cells but also the beginning of the organization of mathe-
matical thinking by introducing some notions to begin the discussion of the concept 
of multiplication. So, if we are able to think of groups of 2 cells, we can count how 
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many there are and carry out multiplication. Likewise, as we increase the group size 
to 3, 4, and so on, we will reach a maximum group where the children by themselves 
will understand that it leads to the need to create an algorithm.

As we can see in the schematic drawings, when we count by 2s, there is a large 
group to be marked.

When you choose groups of  3, the number starts to decrease, and so on. 
Sometimes the group of students themselves suggests choosing groups of 10 so that 
the counting becomes much easier.

However, when we choose groups larger than 10, it is easier to visualize the 
groups, but the counting begins to be difficult mentally. At this point, one may sug-
gest or even begin to question the need to use a process or a way of performing 
calculations for numbers in this situation, so next we show how the multiplication 
algorithm works in order to facilitate the counting to be performed (Fig. 8.2).

Evaluation and self-evaluation: Elaboration of the activities and later comple-
mentation of the activities start in the classroom. At the end of each activity, it is 
recommended that students have a prearranged space to write their self-assessment 
of the knowledge presented. In this way, the student will say in his or her own words 
what he or she has learned that day, what still needs to be learned, and the curiosities 
or doubts that the lesson has generated, in order to research them later with the help 
of an older person, the internet, or the teacher.

It is important to emphasize that it is not only the work of observation, analysis, 
control, and evaluation that the tutor performs. At the same time, he or she also initi-
ates the construction of deep links bound both to the learning of scripts and to the 
personal and collective responsibilities of the group.

At this school, it is possible to perceive the affection and the concern of the 
teachers for the students. Besides recognizing each one by name and always looking 
directly in their eyes when talking and explaining the activities and content to them, 
the teacher guides the groups during analysis and evaluation of the results. Perhaps 
this is one of the most humanitarian facets of education, which puts an end to indis-
cipline and allows students to respect themselves as well as their teachers and all 
who contribute to the administration of the school.

Fig. 8.2 Honeycomb
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8.3  Multiplication: Tables with Polygons

In general, mathematical educators are very concerned with learning and teaching 
operations, especially with the concept of multiplication. According to Isoda and 
Olfos (2009a, b, pp. 46–55), in Guías para la Enseñanza de la Matemática, the 
concept of multiplication is approached by showing variations of how to represent 
a quantity that is repeated several times, going through concrete examples until it is 
abstracted for the calculation that one wishes to make.

In the Waldorf Schools of São Paulo, the concept of multiplication is built 
together with the geometry of flat figures through the elaboration of mathematical 
thought in conjunction with string figures created on a wooden table with nails 
(geoplan) and strings. These are designed especially for each child to be able to 
manipulate and understand the concept (Fig. 8.3).

Tag: Mathematical knowledge of the product of two natural numbers.
Topic: Learn and teach the product of two natural numbers.
Duration: For each multiplication table, it is necessary for the teacher to work through the 
mathematical content with the students. It is hoped that five lessons will be enough for each of 
them; however, this will depend on the knowledge of the group.
Content to be developed: Multiplication tables for numbers 1 to 12, polygons, relation of 
similarity, and direction.
Objectives: To give support for learning of multiplication tables, polygons, and similarity.
Methodology adopted: This class should be used after the teacher has already talked with the 
students and has exemplified and worked on individual activities on the concept of 
multiplication with an experimental class. This is followed by discussion in groups, formed by 
two or three students, for the elaboration of a geoplan, where the figures that geometrically 
represent the multiplication tables will be constructed. It is expected that from such discussion, 
geometric forms will emerge that will help the student to remember the results that are found.
Teaching resources: White board, pencil suitable for use on the board, kraft paper, piece of wood 
25 cm × 25 cm, nails, string, hammer, thick wool, notebook, pencil, crayons.

Fig. 8.3 Image of geoplan 
(Table 2)
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Description of activities: 10 nails are hammered with equal spaces between them on the circle. 
With a string or woolen ball, we begin the multiplication table and with each number found, we 
take a turn on the nail. For the table of 2, 2 × 1 = 2, so we mark position 2; 2 × 2 = 4, so we 
mark position 4. This goes up to 2 × 6 = 12, so we take one turn and two more. In the same 
way, 2 × 7 = 14, so we reach position 4. We continue until 2 × 10 = 20, which falls in the tenth 
position. In this way, the figure formed is a pentagon, which is associated with the results of 
this table.

We consider this idea relevant because it works with the results of the multiplica-
tion tables associated with the number they represent and gives an opportunity to 
work with the geometric figures.

8.4  Multiplication using Art and Technology

Leonardo da Vinci, a Renaissance artist and scientist, developed interfaces between 
art and science, not only to transform painting into a faithful representation of the 
world around us, through the use of perspective and nature as templates, but also to 
invent machines to change some things in nature. In this way, he conceptualized 
many machines, such as flying machines and machines to move large volumes of 
land or to defend the nobles for whom he worked at that time. He explored, studied, 
designed, and reproduced, on canvas, the geology of soils and the structure of vari-
ous plants and flowers. In his records and drawings of the human body, we can 
analyze his explanations and clear observations of how the human being is consti-
tuted, from the development of the fetus until birth.

In this context, bringing the figure of Leonardo into the classroom attracts the 
attention of young and old alike, both for the artistic value of his works of art and 
for the concepts explored in his inventions that inspire the desire to understand 
everything around us.

Sabba (2004) studied the works and the life of Leonardo, which show the inte-
gration between scientific knowledge and art, besides listing categories that could 
help the development of the human being as a whole by valuing emotions and sen-
sations through categories such as corporality (corporalità) and sensations (sensazi-
one) using art and drawings. These categories are already developed in schools such 
as the Waldorf Schools and the Sakura School in Tsukuba municipality, according 
to Isoda and Olfos (2009a, b, p. 55).

A good example of working in the classroom in this sense is the area of mathe-
matics represented by the features that make up Leonardo’s work Vitruvian Man. 
This presents a man inside a square and a circle, such that it is inscribed in the fig-
ures, besides having the body marked by proportions that make the human being so 
harmonious in our eyes.

Figure 8.4 shows the relationships that exist in our body—how it is possible to 
construct the height of the individual by knowing the size of his arm span and how 
there are symmetries between the parts in a certain direction.
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An activity to be developed would involve pieces of kraft paper, the size of which 
would be slightly larger than the height of the student. In this way, a young man 
would lie on top of the sheet while another one would draw his outline with a 
marker pen. In this drawing, we would mark the student with his feet together and 
with his arms stretched out, without moving the upper body. Then, his outline is 
drawn in another position with his feet and arms spread half open, just like the posi-
tion shown in Leonardo’s Vitruvian Man.

With the drawings at hand, we would ask them to draw the proportions that exist 
in the body and, after that, a square and a circle around the body. First, we would 
observe the ideas of students on how they would perform the activity, and then 
explore the geometric relationships that would involve the square, the circle, and 
also where the square is inscribed or circumscribed.

When the teacher decides to use this drawing, some students may feel uncomfort-
able; thus, the activity may not achieve its purpose. In order to avoid this, we can sub-
stitute a different approach that children always use that would also produce the same 
effect. For example, using a cell phone for taking pictures, instead of drawings, does 
not pose any problems for young students; on the contrary, this procedure shows them 
how mathematics is part of our universe and how it is possible to work with mathemati-
cal content within the world of information technology in which the students exist.

Perhaps a teacher who was born before the 1990s may feel uncomfortable using 
this approach. However, the students will feel confident in photographing their 
friends in the requested poses and can still work with a ruler and compass to per-
form the calculations. It is possible to work out the proportions that exist on the 
face, as well as the relations between the body parts. For example, the foot is the 
size of the forearm, and the perimeter of a closed hand also corresponds to this 
measure; these are among many such relationships that exist in the human body.

Fig. 8.4 Leonardo da 
Vinci’s Vitruvian Man
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Tag: Mathematical knowledge of division and products, construction of a square and 
circumference.
Theme: Learning and teaching of division and multiplication of integers.
Duration: It is expected that two lessons will be enough for the student to work through the 
mathematical content, with the help of the teacher in the second class; however, the teacher will 
decide, depending on the knowledge of the group.
Content to be developed: Relation of similarity, construction of the square and the 
circumference.
Objectives: To give support for learning of multiplication tables, polygons, and similarity.
Methodology adopted: This lesson should be used after the teacher has already talked with the 
students about Leonardo da Vinci and decided with them what methodology to use. Such 
activity is expected to show how the proportions construct the whole and make the symmetries 
of the figure more beautiful.
Teaching resources: Kraft paper roll, marker pen, whiteboard, pen suitable for use on the 
picture, notebook, pencil, colored pencil, mobile phone, computer, printer.

8.4.1  Multiplication Using the Calculator

Students are still prohibited by some teachers from using a calculator in tests and 
school activities, which at the end of their training entails a lack of knowledge of 
how to use and exploit such a tool that is necessary to facilitate the daily routines of 
many engineers, administrators, vendors, and others.

We believe that many activities can be done in order to facilitate conscious learn-
ing of the algorithms that we use to perform operations and also knowledge of the 
resources available to facilitate day-to-day calculations.

For example, the teacher usually asks students to solve problems that offer two 
numbers to multiply and find the result. Actually, in that case, the calculator solves 
everything and there is no room for many interactions.

However, if the educator offers the result of the product and one of the numbers 
involved in multiplication, the student will have to find the other number, which will 
lead to an inverted table exercise. For example, to solve the problem proposed in 
Fig. 8.5, without using the division algorithm, we must investigate the results of the 
three-dimensional table to deduce that it is a 3-digit number.

In this way, the student should think about which number, when multiplied by 3, 
will have a 2 in the units place. They will remember that if the number is 4, the result 
is 12. One group of 10 is carried over to the tens place, and 2 is in the units place. 
Again, remembering the results of the table of number 3, they will look for a num-
ber in the tens place such that, when multiplied by 3 and with the addition of 1 to 
the product, will give 2. This number is 7. Using the same analogy, the student 
would find the number 6. Therefore, the number sought is 674 (Fig. 8.6).

Still on this subject, after teaching the algorithm on multiplying 2-digit numbers 
or 3-digit numbers, the teacher could propose exercises, as shown in the Fig. 8.6, 
suggesting some of the numbers to help the others search Fig. 8.6.
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In the same way, the activities would allow an investigation on the part of the 
student, allowing him or her to think of several methods to solve a single problem 
as well as reminding him or her of the importance of the positional numeration that 
the numerical system possesses.

Tag: Mathematical knowledge of the product of natural numbers by units and by numbers 
greater than 10.
Theme: Learn and teach the product of natural numbers.
Duration: It is expected that each algorithm model will be worked on in three classes after the 
students have been familiarized with it; however, the teacher will decide, depending on the 
knowledge of the group.
Content to be developed: Multiplication of natural numbers, multiplication tables.

Fig. 8.5 Multiplication algorithm

Fig. 8.6 ??? × 13 = 6812, 
finish the count

8 An Ethnomathematical Perspective on the Question of the Idea of Multiplication…



210

Objectives: To give support for learning of multiplication tables and algorithms for 
multiplication, developing logical reasoning.
Methodology adopted: This class should be taught after the teacher has explained each of the 
algorithms.
Teaching resources: Whiteboard, pen suitable for use on the picture, notebook, pencil, colored 
pencils.

In all activities—both those described here and those that the teacher has 
already incorporated into his or her classroom practice—it is possible to ask the 
student to make a self-assessment by writing a few lines about their improvement, 
presenting their ideas in front of the class, and requesting them to write down the 
questions or the important points learned that day. We believe that honest self-
assessment on the part of the student—and, likewise, reading and adaptation of 
the teacher’s practices—will aid in the success of teaching and learning outcomes.

8.5  Some More Ideas About Learning and Teaching 
of Mathematical Knowledge

Although the learning and teaching of mathematics are generally decontextualized 
from the reality of the students and teachers for different reasons, it is important to 
observe that there is a worldwide increase in the number of both teachers and stu-
dents seeking ethnomathematics as a way to improve mathematical education and 
also to increase their self-confidence in the learning of educational content.

The ethnomathematics program allows integration of everyday knowledge to the 
scientific knowledge presented in schools and in unification the knowledge, as the 
human being is directly responsible for comprehension of their knowledge as well 
as for interfering in the environment around them and in reality, through the use of 
this knowledge. It is important for the teacher to contextualize each new topic in 
order to articulate this new knowledge in the context of the knowledge has already 
been acquired.

In the sense of articulating mathematical knowledge as a whole, the gestalt theory 
opens up a new vision. Thus, this theory applied in teaching shows how important 
macrovisualization of the object under study is, as well as visualization of its parts. 
It raises an important question in showing that the sum of the parts is different from 
the interaction of the parts. The whole—that is, the totality that gestalt refers to—can 
be understood as the articulation of various mathematical theories or examples which 
are sometimes presented without apparent connections but have the same theoretical 
basis. We call attention here mainly to the use of gestalt in mathematics.

For example, a student should imagine the object or the problem in question as a 
photograph. It is noted that the focus—the attention—of seeing the picture is not in 
the details but in the overall aspect that it conveys. The photograph of the whole is 
important, as is the visualization of the parts and their interaction.

C. G. Sabba and U. D’Ambrosio
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The presentation of the “photograph” gives the students a sense of location—
where I am and where I should go—in order to acquire/construct knowledge.

This indication is sometimes neglected mainly in mathematics and contributes 
to its decontextualization, since the students end up learning mathematics (the 
whole) as a list of rules and topics (the parts) to be assimilated and reproduced in 
a test without understanding that it is part of a greater whole. The same thing hap-
pens in the area of Portuguese language when a student writes an essay in which 
their use of periods is grammatically correct although there is no coherence 
between them; the writing will not make much sense even if its parts are perfectly 
correct.

For better understanding of the interaction of the parts, it is worth remembering 
the idea of a movie. Analyzing a movie frame by frame does not show the move-
ment and dynamism that the movie provides unless the frames are shown at a cer-
tain speed. In the same way, the articulation of mathematical content provides the 
idea of other mathematics.

An example of development in the practice of this vision would be the study of 
relations involving the volume of a cylinder, a sphere, and two cones, all with the 
same height, as shown in Fig. 8.7.

Figure 8.8 shows the articulation between the volumes (V) contained in half of a 
sphere, a cone, and half of a cylinder, all with height R.

Vsphere = (2/3) Vcylinder

Vcylinder = 3Vcone

Vsphere = 2Vcone

This shows the proportion between the volumes.
In general, the teaching of geometry in elementary school is based on a narrative 

that starts from simple elements—points, lines, and planes—in search of constitu-
tion of an image as the whole photograph.

The fundamental message that gestalt theory suggests is that the perception of 
the photograph gives rise to an interest in the points that constitute it. Beyond all 
that, the interaction between the points and the photograph can be only minimally 
understood if we limit it to a one-way direction that leads from the points to the 
photograph.

From what has been considered up to now, in all activities—both those described 
here and those that the teacher incorporates into his or her class practice—it is pos-
sible to ask students to make a self-evaluation by writing a few lines about their 
improvement, presenting their ideas in front of the class, and requesting them to 
write down the questions or the important points learned that day. It is important for 
students to learn not only to multiply and understand mathematics as techniques 
that relate numbers, points, and lines, but also to use this knowledge to solve practi-
cal problems in life.

Fig. 8.7 Geometry
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Foot notes
 1. Geraldo Tadeu Souza is a professor at the Federal University of São Carlos 

(UFSCAR), Sorocaba Campus, and a doctor in linguistics from the Faculdade de 
Filosofia, Letras e Ciências Humanas (FFLCH) at USP.

 2. Hernández (1998) explains that in a work project, the integrative aspect of 
knowledge construction violates the model of traditional education, so the trans-
mission of knowledge compartmentalized and chosen by the teacher takes a 
much broader and dynamic context due to the interaction of meanings, resulting 
in active production of meanings and knowledge—that is, “a variety of actions 
of understanding that show an interpretation of the theme, and, at the same time, 
an advance on it.” (Hernández, 2000, p. 184). The author further emphasizes that 
the project is not a methodology but a way of reflecting on the school and its 
function, which will present differences in each context.

 3. EMEF Desembargador Amorim Lima is a public school in the city of São Paulo, 
SP, Brazil. Escola da Ponte is a Portuguese public school in Vila das Aves in the 
District of Porto, Portugal.
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Chapter 9
“Necklaces”: A Didactic Sequence 
for Missing-Value Proportionality 
Problems

Laura Reséndiz and David Block Sevilla

9.1  Introduction: The Little Math Problem Factory

Multiplication or division problems that seemingly establish a relationship among 
three values are, in fact, “missing-value”1 proportionality problems where a fourth 
value becomes involved (Vergnaud, 1988, 1990). For example, “If a pencil costs 3 
pesos, how much would 5 pencils cost?”

Pencils Pesos

1 3
5 x

Three problems (one multiplication and two divisions) can be obtained, based on 
these four values, by shifting the position of the unknown value.

Multiplication
Pencils Pesos Pencils Pesos Pencils Pesos

Partitive Division Quotative Division

1 3 1 x 1 3
5 x 5 15 x 15  

Problems solved through division present different relationships between 
 numbers: in partitive division, 15 pesos are distributed equally among 5 pencils; 
 quotative division consists of finding out how many 3 pesos groups can be made 

1 Also known in the old ratio and proportion theory as “fourth proportional” problems.
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from 15 pesos. Various studies have shown that young children see considerable 
differences between each type of division. When unaware of which problems require 
division, children approach these problems in very different ways (Nesher, 1988; 
Martínez & Moreno, 1996, and others).

The three problems above show the unit value (the price of one pencil), as a given 
value (for multiplication or partitive division) or as the object of a question (quota-
tive division). There is a fourth type of problem where the unit value is neither 
requested nor provided, as shown in the table below.

Division/multiplication
Pencils Pesos

3 15
7 x

This is a typical missing-value proportionality problem. There are several ways 
to solve it, as will be shown later on, but all methods imply one division and one 
multiplication. In general, these problems are more complex than the previous ones.

Primary school students are expected to learn to solve all four types of problems, 
which, along with other types of problems, belong to the conceptual field of multi-
plicative structures.2 While some circumstances may require students to approach 
these problems separately, simultaneous learning is convenient in other circum-
stances. The “necklaces” sequence presented in this article explores this possibility. 
Next is a description of the sequence followed by the results of its application with 
a 4th grade primary school group (9 and 10 years old).

9.2  “Necklaces”: a Didactic Sequence

The following sequence is an adaptation of Guy Brousseau’s original idea as devel-
oped in B. Mopondi’s doctoral thesis3 (1986).

 (a) The setting

The setting is a factory that produces necklaces based on an initial “sample neck-
lace.” Each sample necklace has a certain number of different-colored beads. The 
samples vary depending on the number of beads of each color. For example (see 
Fig. 9.1), 1 necklace has 2 blue beads, 1 red bead, 4 green beads, and 3 yellow beads.

Before making n necklaces from a given sample, the factory requires a purchase 
order listing the exact number of each type of bead. Both the number of beads used 
in the sample necklace and the ones in the order can be organized into tables such 
as the following one.

2 The conceptual field of multiplicative structures is made of “situations that can be analyzed as 
simple or multiple proportion problems and that usually require multiplication or division” 
(Vergnaud, 1988).
3 In Mexico, an adaptation of this situation has been published in Block, Martínez & Moreno 
(2013).

L. Reséndiz and D. Block Sevilla



217

1 necklace 15 necklaces
4 blue 60 blue
9 red 135 red

7 green 105 green

 (b)  The type of problem

In missing-value problems, every element in what we will now call the “initial” set 
is matched to an element in the “final” set. For example, a given number of pencils 
corresponds to a certain amount of money—to a cost. In the necklace problem, each 
element or each number of necklaces in the set is matched with the numbers in the 
final set that represent the number of each color of bead required for that number of 
necklaces. For example, 15 necklaces require 60 blue beads, 135 red beads, and 105 
green beads. Meanwhile, the unit value for this necklace is composed of several val-
ues: 1 necklace → (4 blue, 9 red, 7 green). We call this a “one-to-many” relationship.

One-to-one relationship One-to-many relationship

Initial set pencils Final set pesos Initial set necklaces Final set beads

3 15 1 (4 blue, 9 red, 7 green)

7 x 15 (x, y, z)
 

A known example of this kind of relationship is the typical school problem where 
a certain number of students are matched to certain amounts of ingredients in a 
cooking recipe.4 However, necklaces are more tangible and familiar to students than 
recipes and provide empirical ways of verifying results.

As we discuss later in this chapter, one-to-many relationships lead to a greater wealth 
of relationships among elements than problems with “one-to-one” relationships.

 (c) Didactic variables and situation sequences

When modified, didactic variables may increase the difficulty or trigger changes 
in the strategy or procedure used to solve a situation (Chevallard, Bosch, & Gascón, 
1997, p. 216). In the “necklaces” situation sequence, the main variable is the pres-
ence or absence of unit values (beads in a necklace). During the first stage,  situations 
provide the unit value, while situations in the second stage do not. Other variables 
are as follows: (1) if unit values are absent, the relationship between two numbers 

4 A proportional relationship between a number of boxes and a number of objects, when all boxes 
have the same quantities, is probably the first relationship that students recognize and use in pri-
mary school. For more on the role of contexts or settings in identifying proportionality, see 
Burgermeister and Coray (2008).

Fig. 9.1 Sample necklace
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of necklaces could be whole or not; and (2) the number of beads could be small or 
relatively large. The table provided in the Annex offers examples of both types of 
problems and their characteristics.

 (d) Verifying results using computer software

These didactic situations are designed to give students means of empirically veri-
fying their results while assisting them in finding errors and ways to correct them.5 
At the end of each exercise, students enter the following information into a computer 
program6 specifically designed for this purpose: the number of each color of bead in 
the sample necklace, the number of necklaces they are making, and, finally, the num-
ber of each color of bead in the order. The computer then displays the sample neck-
lace, all completed necklaces, and any leftover or missing beads (see Fig. 9.2).

 (e) The purposes of the sequence

The sequence has two intended objectives: (1) to improve knowledge of division 
and multiplication with natural numbers by placing them in problems implying dis-
tribution (division), multiplicative comparison between quantities (division), and 
addition of given quantities several times (multiplication); and (2) to enable  students 
to develop different procedures for calculating missing values in relationships 
between proportional quantities, specifically the unit value procedure.7

5 For more on validation procedures in didactic situations theory, see Brousseau (1998).
6 The software was designed by a team from General Academic Computing Services (Dirección 
General de Servicios y Cómputo Académico (DGSCA)) at the National Autonomous University of 
Mexico (Universidad Nacional Autónoma de México (UNAM)).
7 Unit value procedures are those where a value corresponding to a single unit is calculated  in order 
to get the value that corresponds to any number of units.

Fig. 9.2 An example of a mistaken resolution displayed in the computer software
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9.3  Applying the Sequence

9.3.1  Methodology

 (a) Theoretical framework

This study is based on a methodology known as “didactic engineering” (Artigue, 
1995; Chevallard, et al. 1997, p. 213), which belongs to didactic situations theory 
(DST). Didactic engineering is known for its experiment structure “based on con-
ceiving, creating, observing, and analyzing sequences in teaching” and also for its 
way of achieving results by confronting data obtained through experimentation with 
previously formulated hypotheses. Artigue (1995, p.  36–37) calls it “internal 
validation.”

 (b) Conditions

School and Students We worked with a 35 students group (aged 9 and 10) of 4th 
grade primary school, in Mexico City. According to official Mexican curricula, year 3 
and year  4 mathematics is focused on learning multiplication and division. An 
expected outcome throughout the sequence was for students to strengthen their grasp 
on multiplication and division. On the other hand, during the second stage of this 
research, students were asked to calculate intermediate values, which can be signifi-
cantly more complex than simple multiplication and division. According to official 
school programs (Secretaría de Educación Pública, 1993), these problems are meant 
for Fifth grade curriculum. However, given the outcomes of the first stage of this 
research and given the context (based on a factory where necklaces are made with 
beads), it was decided that Fourth grade students would be able to approach these 
problems. As we will learn in the following pages, this was not the case for all 
students.

Duration The experiment took place during nine 60- to 90-minute sessions over a 
period of 2 months. The project leader guided the activities in the classroom. Five 
observers were assigned to log each session and to follow more or less seven partici-
pating pairs of students as well as group activities.

Development Some aspects were consistent in every situation: the teacher read the 
instructions, students worked in pairs for between 15 and 30 minutes, then results 
were verified followed by a group discussion. Result verification took place in two 
stages: (1) after completing their tables, students would review their partners’ 
results; and (2) any remaining doubts could be verified by entering the quantities 
into the computer.

The Available Technology Two portable computers and one projector for all 
sessions.8

8 Two computers were insufficient for the number of students we worked with. Despite implement-
ing measures to help the process, time was lost while students waited for the two computers in the 
class to turn on.
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9.3.2  Results

These results have been reported in Block (2001) and in Reséndiz (2005).
This section is divided into three parts: first, the students’ answers to problems 

where the relationship was 1 necklace to n necklaces; second, solutions to problems 
where the relationship was n to m necklaces (where n and m were greater than 1); 
and, finally, a brief discussion of the feedback from each situation, which turned out 
to be both problematic and interesting at the same time.

9.3.2.1  Problems Where the Relationship Is Between the Number 
of Beads in One Necklace and the Number of Beads in n 
Necklaces (the Unit Value Is Given or Present in a Question)

During sessions 1 and 2, students were asked to solve basic tables, which allowed 
most of them to understand the problem and become familiar with table formats and 
computer software.

Table 1-B Table 2-A

1 necklace Order for ___ 
necklaces 1 necklace Order for ___ 

necklaces
4 blue 16 blue 3 blue ___ blue
6 red 24 red ___red 48 red

5 green 20 green ___green 56 green  

We will focus on situations solved during sessions 3–5, where six tables were 
presented and each table led to three problems: one partitive division, one quotative 
division, and one multiplication.

Table 3-A
1 necklace __ necklaces

3 blue 15 blue
6 red __ red

__ green 30 green

 What to Calculate First?

When solving this variant, the first challenge is knowing where to start calculating 
the number of necklaces in the order. While most students figured this out on their 
own, some took longer than others, as seen in the following example.
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Table 3-B
1 necklace ___ necklaces

3 blue 24 blue
9 red ___ red

___green 8 green

Silvia: “Do we have to put 3 beads in each necklace? I don’t understand how the sample is made.”
(The observer drew the sample with 3 blue beads and 9 red beads, and told Silvia that they still 

didn’t know the number of green beads needed.)
Silvia: “So each necklace has 3 [blue beads]?” (They drew necklaces with 3 beads until they 

reached 24 beads. They answered that there were 8 necklaces in the order.)

 Finding the Number of Necklaces: Different Approaches to Quotative Division

Students attempted a range of procedures for finding the number of necklaces, from 
iterated necklace drawings to using the conventional division algorithm.

Iterating the Blue Beads from the Sample Necklace with Drawings Claudia 
and Yadira iterated a sample necklace that had 3 blue beads. They did it over and 
over while counting in their minds until all 15 blue beads stated in the order had 
been used. They reached the result by counting the number of times they iterated 3 
blue beads. This procedure was common during the first tables in the exercise but 
later disappeared.

Repetitively Adding the Number of Blue Beads in the Sample This procedure 
took a step further than the previous one because it occurred on a numerical level: 
knowing that the sample had 4 blue beads and the order had 36, students added the 
number 4 several times until they reached 36 (see Fig. 9.3), then they obtained the 
number of necklaces by counting the number of addends.

Juan Carlos or Alejandro (one of them): “If we multiply 4 times 10, we get 36.”
(The observer asked them to try again and pointed to each 4 as they added them up. She stopped 

when they reached 36, and they counted the 4s they had used.)
Students: “9.”

Fig. 9.3 Repetitively 
adding 4 beads to reach 32
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Finding the Unknown Factor in Multiplication This procedure became more 
and more frequent. Some students recognized that the problem required division. 
Students used different approaches to find the unknown factor, depending on the 
size of the quantity in question: successive approaches, multiplication tables, 
decomposition of known factors, and others. As we will see in the examples, these 
forms of division were also an opportunity to practice multiplication.

• Successive approaches

Table 3-B
1 necklace __ necklaces

3 blue 24 blue
9 red __ red

__ green 8 green

Francisco (doing “times 3” multiplications out loud): “3 times 5 is 15; 3 times 6, 18; 3 times 7, 21; 
you can make 7 necklaces and have beads left over.”

[. . .]
Observer: “Remember that you should have the least number of beads left over or preferably none 

at all.”
Francisco: “Let’s see, 3 on each necklace? We can make 7 and have 3 leftover beads. Oh, no, we 

can make 1 more, so it’s 8 necklaces.” (He wrote down “8 necklaces.”)

This procedure was frequently used in written form by students completing the 
last two tables, which was likely due to an increase in the number of beads used in 
these tables. For example:

Table 3-E
Sample __ necklaces
3 blue 42 blue
6 red __ red

__ green 126 green

(Fig. 9.4 shows what the students wrote on the back of their Table 3-E and 3-F 
worksheets.):

Fig. 9.4 Successive 
multiplications to find the 
unknown factor
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Some students started by multiplying the number of blue beads in the necklace 
10 times. Below is another example.

Table 3-E
Sample __ necklaces
3 blue 42 blue
6 red __ red

__ green 126 green

[. . .]

Roberto: “First I did 3 times 10 and got 30, then 3 times 11, and then 3 times 12 until I got to 14; 
14 times 3 is 42.”

• Using multiplication charts

Looking up quotients on multiplication charts is not a simple task. It requires an 
understanding of connections between quantities. The following example shows 
how Francisco and Adriana found the number of necklaces in Table 3-C by search-
ing for a number that when multiplied by 5 would equal 30.

Table 3-C
Sample __ necklaces
5 blue 30 blue
3 red __ red

__ green 24 green

Francisco and Adriana: “It’s 6 necklaces because 5 times 6 equals 30.” (They showed the observer 
their multiplication chart and said they used it to find the result.)

Observer: “How did you look for the results on the chart?”
Adriana: “On the ‘5’ chart,” (she ran her finger along the 5 row until she reached 30 then moved up 

along the corresponding column and showed the observer the 6) “so it’s 5 times 6 equals 30 . . . 
then 3 times 6 is 18. We can see it on the ‘3’ chart,” (she ran her finger along the 3 row until she 
reached 18 then moved up along the corresponding column and showed the observer how it 
intersected with the number 6) “and for the other one, 4 times 6 is 24.”

• Using the conventional division algorithm

Some students recognized that the problem was asking them to divide. As the 
quotient became larger, some of these students used the conventional division algo-
rithm, though not always successfully (see Fig. 9.5).

Table 3-E
Sample __ necklaces
3 blue 42 blue
6 red __ red

__ green 126 green

9 “Necklaces”: A Didactic Sequence for Missing-Value Proportionality Problems
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 Finding the Number of Beads in a Necklace from the Numbers in n Necklaces: 
Partitive Division

Students’ informal procedures reflected subtle differences in comparison to quota-
tive division procedures employed during the previous stage, which confirmed their 
awareness of differences in relationships between quantities (Martínez & Moreno, 
1996). Let’s look at an example of cyclical distribution.

Claudia and Yadira’s worksheet showed the following procedure (see Fig. 9.6).

Table 3-A
1 necklace __ necklaces

3 blue 15 blue
6 red __ red

__ green 30 green

The pair started by drawing 5 necklace “strings” (horizontal lines) and dis-
tributing the green beads one at a time. When they finished, they counted the 
green beads on each string. There was a significant difference between this pro-
cedure and their procedure for the previous problem where they drew strings 
with 3 beads each until they used up all 15 beads and then counted the number 
of strings.

Another observation was that more students attempted to solve these problems 
(partitive division) using the division algorithm than in previous problems: at least 
five pairs used it while only two had used it to solve quotative division problems. 

Fig. 9.5 Conventional 
division algorithm
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This increase may have been a consequence of elementary schools using more parti-
tive division problems to teach division.

 Finding the Number of Beads in n Necklaces from the Beads in a Single 
Necklace: Different Ways of Solving Problems That Require Multiplication

The following problem required simple multiplication. Again, students solved these 
problems through a variety of methods, from iteration and counting drawings to 
repeated addition and multiplication. Even without having previously used the algo-
rithm, students could distinguish multiplication problems more often than division 
problems. These students used the algorithm most, especially when trying to find 
larger quantities. In this section, we will look specifically at the explicit use of 
multiplication.

Multiplying the Number of Red Beads in the Sample Necklace by the Number 
of Necklaces Students used this procedure more than any other. As they progressed 
toward the final tables, they found themselves needing to write their calculations on 
paper. Some students used multiplication charts.9 In the following example, stu-
dents went as far as decomposing a multiplication factor.

When multiplying 6 by 14, Corelma and Luis implicitly decomposed a multipli-
cation factor as follows: 14 × 6 = (10 + 4) × 6 = (10 × 6) + (4 × 6) = 60 + 24.

Table 3-E
Sample __ necklaces
3 blue 42 blue
6 red ___ red

___green 126 green

60
+24

84

 

9 Also known as a “Table of Pythagoras.”

Fig. 9.6 Distributing the 
green beads one by one
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Incorrect Procedures Only a few of the students who correctly calculated the 
number of necklaces displayed procedural errors when attempting to solve the sec-
ond problem. Errors were apparently the result of not being able to discern what 
quantities were represented in the table. The following example shows what hap-
pened when David and Karina attempted to solve Table 3-B.

Table 3-B
Sample __ necklaces
3 blue 24 blue
9 red __ red

__ green 8 green

David (looking at the worksheet): “It’s 8 necklaces because 3 times 8 is 24.” (They wrote “8 neck-
laces” in the table.)

Karina (looking at the worksheet): “8 necklaces? 9 times . . . 9 times 3 is 27, then it’s 27, and we 
need 9 green beads.”

Observer: “Are you sure that 8 necklaces require 27 red beads in total?”
David and Karina: “Yes . . . can we check it on the computer?” (They verified their results and saw 

that their necklaces were incorrect.)

Karina misread the number of necklaces (she said “3” instead of “8”) despite 
David writing down the number of necklaces and despite both of them repeating the 
number out loud. What happened? She seemed unsure of what each quantity repre-
sented. In general, students expressed difficulty adapting to changes in table struc-
ture and therefore in the position of the missing value.

However, the results obtained from this set showed that these problems were 
suitable for 4th grade, as the students were able to approach these problems, develop 
procedures, and improve them in the process within a context rich in multiplicative 
relationships.

9.3.2.2  Problems Where the Relationship Is Between the Number 
of Beads in m Necklaces and the Number in n Necklaces (the Unit 
Value Is Neither Presented as a Known Quantity nor Requested)

In the final two sessions, the students solved tables like the ones below:

4 necklaces 7 necklaces 4 necklaces 7 necklaces

8 blue 12 blue
12 red 8 red

20 green 4 green
4 yellow 20 yellow  
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 The First Challenge: Understanding that the Number of Beads in the Sample 
(the Unit Value) Is Not Provided and Is Not Being Requested

During the first of the final two sessions, 11 of 17 pairs—70% of the group—solved 
the problem as if the four-necklace order (first column) was the sample. They 
repeated the procedure that had led them to solve previous tables (where the unit 
value was explicit), which were presented in a very similar format (two columns 
with missing data).

“We did the same as usual and multiplied these numbers,” [the numbers in the column 
under the order for 4 necklaces] “times this number” [7—the number of necklaces in the 
order on the right side of the table]. “I don’t get it . . . we have to find this order,” [on the 
right side of the table, 7 necklaces] “with this one?” [on the left side of the table, 4 
necklaces].

They were unable to distinguish between the sample and the order. The instruc-
tions were repeated using drawings as visual aids. However, some students repeated 
the same incorrect interpretation the second time. What caused these difficulties? It 
appears that the problem was not in the instructions but in the notion that both 
orders came from the same sample, which was unknown and needed to be figured 
out—or, as was expressed by a student when he finally understood the situation:

“Oh, I get it! This,” [the 4-necklace order] “is not the sample, and we need the sample. How 
do we find it if it’s not there anymore? Do we need to find other numbers?”

As a didactic variable, withholding the problem’s unit value considerably 
increased the degree of difficulty.

 Procedures

Once they understood the problem, the students were able to calculate the sample 
and the order without expressing further difficulties. Informal procedures were 
common throughout the two sessions: some students used graphic representation 
for assistance with divisions and, on a lesser scale, for support with multiplication. 
Most students estimated using multiplication to solve divisions, while very few used 
the conventional algorithm.

Before analyzing correct procedures, we will look at two incorrect procedures 
identified during the session.

Incorrectly Reinterpreting the Problem The following procedure was most 
common during the first attempts.
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4 necklaces 7 necklaces
12 blue 84 blue
8 red 56 red

4 green 28 green
20 yellow 140 yellow

Observer (explaining the task): “What do you need to know before making an order for 7 
necklaces?”

Pablo: “We must multiply 8 seven times to find the order.”
Observer (speaking to Jorge): “And what are you going to do?”
Jorge: “The same.” (He multiplied mentally and wrote the result in his table.)

Using Additive Constants At least one pair of students used this procedure. At the 
start of the activity, Jair and Ixami simplified the problem (this error was explained 
earlier), then looked for an additive constant, and, finally, understood the need to 
find unit values during the group discussion. Their worksheet was quite smudged 
(see Fig. 9.7). Below the Fig. 9.7 is the observer’s register.

4 necklaces 7 necklaces
12 blue 20 24 21
8 red 16 20 14

4 green 12 16 7
20 yellow 28 35 35

Observer’s version
(The numbers in cursive were erased.
The numbers on the right remained
and wereconsidered correct.)  

Apparently, to find the number of beads for 7 necklaces, they started by adding 8 
beads to each number of beads in the 4-necklace order. Then they added 12 beads to 
each quantity in the order for 4 necklaces. They became aware of their mistakes 
when they verified their results on the computer. In the end, they noted the correct 
results, after the group discussion.

Next, we will review examples of the many correct procedures that appeared in 
the session.

Using Internal Relationships In Table 4-F, the relationship between the number 
of necklaces is one to two, or double. At least one student, David, based his proce-
dure on this relationship. With this procedure, he implied that the relationship 
between the two numbers of necklaces was the same relationship for all pairs of 
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beads of each color in this table. In fact, this relationship presented a proportionality 
constant. It should also be said that, as expected, this procedure was rare and 
appeared only in cases where relationships were whole (double).

double

6 necklaces 12 necklaces

18 blue
60 red

42 green
6 yellow

Obs2: “How did you find it?”
David: “I multiplied. I doubled that
(points to the chart where it says ‘6
necklaces’)”

 

Using the Relationship Between the Number of Necklaces and the Number of 
Beads of a Certain Color (or the Relationship Between Quantities of Beads) At 
least two pairs attempted this procedure for Table 4-B by finding the relationship 
between one quantity of necklaces and one quantity of beads.

Enrique: “Look, it’s just that, I think here,” [in the order for 7 necklaces] “it’s 21, because 4 times 
3 is 12 and 7 times 3 is 21.”

Adriana: “I think we need to do 12 times 7.”

Table 4-B

4 necklaces 7 necklaces
12 blue

8 red

4´3=12 7´3=21

4 green
20 yellow

The use of these factors appeared to be intuitive and probably did not originate 
from an understanding of the problem. For example, they did not make any connec-
tion with the unit value. It also became evident when students who attempted this 

Fig. 9.7 Use of an 
additive constant
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procedure were asked, “What are the values for the sample necklace?” while verify-
ing results on the computer.10

Observer: “What is the sample [in this problem]?”
Adriana: “Mmm, there isn’t one.”
Enrique: “7.”
Observer: “No, you are going to make 7 necklaces. And the sample?” (pointing to the sample on 

the computer).
Student: “21 blue.”
Adriana: “This is the model” (pointing to the column with 4 necklaces).
Observer: “No, that’s the order for 4 necklaces.”
Enrique: “No, this one,” (pointing to the order for 7 necklaces) “you write in the order.”
Observer: “No, we’re still looking at the sample—look, in the sample.”
Enrique: “Ah!”
Observer: “What should we write here?” (pointing to the space for the sample in the computer). 

“How did you find these numbers [the order for 7 necklaces]?”
Enrique: “It’s 3 here [blue], 2 here [red], 1 here [green]. Adriana, how many did we say here?” 

(Both students stopped to think about the number of yellow beads in the order required.) “It’s 
5 here.”

At first, Adriana and Enrique tried to answer the sample necklace question by 
using all the numbers they encountered. It may be worthwhile asking: Did these 
students realize that the factors they identified (times 3, times 2, etc.) corresponded 
to the number of beads of each color per necklace? Did the students find the term 
“sample” (modelo in Spanish) confusing (as opposed to using “number of beads per 
necklace”)? In the end, Enrique seemed to grasp the meaning of the sample and 
provided the answers that had been requested.

By Recognizing the Need to Know the Sample (the Unit Value) before Obtaining 
the Quantities in the Order Once the students realized they had to figure out the 
sample necklace, they completed the implied calculations, dividing then multiply-
ing, using procedures like those mentioned before, both canonical and noncanoni-
cal. See the examples below.

• By finding the model through cyclical distribution, with the help of iconic 
representations

Two teams followed this procedure. Below is an example where the observer 
helped students by suggesting the pertinence of finding the sample.

Table 4-B
4 necklaces 7 necklaces

12 blue
8 red

4 green
20 yellow

10 When entering quantities, students needed to know the values for the sample necklace—that is, 
the number of beads of each color in one necklace.
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Before this procedure, the pair had simplified the problem.

Observer: “It says here that 12 blue beads were needed to make 4 necklaces. Can you use that 
information to figure out the number of blue beads in the sample?”

Juan Carlos (drawing 4 small circles then distributing 12 little dots one by one and counting the 
ones that remained inside one of the circles): “There are 3.”

Observer: “So, then, to make 7 necklaces, how many blue beads do you need?”
Juan Carlos (drawing 7 circles with 3 little dots in each circle; there were 21): “OK, I get it.”

This procedure was apparently used to find several results. The Fig. 9.8 shows an 
excerpt from the student’s worksheet, demonstrating how he found the answer for 
the red beads (8 red beads in a 4-neklace order).

• By searching for the unknown factor in a multiplication

Several students decided to calculate the number of beads corresponding to 
1 necklace (the sample) by looking for the unknown factors in multiplication where 
“number of necklaces times ‘×’ beads per necklace = number of beads.” Below is an 
example that demonstrates the difficulties that even the most skilled students 
encountered with this task. Also, for Table 4-A, Karina knew she needed to find a 
sample or, as she called it, “what goes on each necklace.” This is how Karina and 
Cecilia solved Table 4-A.

Fig. 9.8 Finding the model through cyclical distribution, with the help of iconic representations 
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Table 4-A
4 necklaces 7 necklaces

8 blue
12 red

20 green
4 yellow

Karina: “OK, let’s see what goes on each necklace. Since there are 8 [blue beads in 4 necklaces], 
each necklace needs 2 [blue beads].”

On the multiplication chart (see Fig. 9.9), Karina searched down the 4 column 
for the number 8 where it intersected with the 2 row; 2 was the quotient of 8 divided 
by 4 and the number of blue beads per necklace. Then, to find the number of blue 
beads in the order, she multiplied 2 by 7: she looked for the intersection of the 2 row 
and the 7 column, which was 14.

Karina started by figuring out the sample, then the order (See Fig. 9.9).
Karina demonstrated her skills using the chart for both dividing and multiplying. 

She quickly completed the two calculations needed to go from 4 to 7 necklaces by 
figuring out the quantities required in a single necklace.

Observer: “Karina, what’s in the sample? What do we place in the sample?”
Karina: “What do you mean by ‘place’?”
Observer: “Remember how the software asks us to create a sample? You wrote 14 [blue], 21 [red], 

28 [green], and 28 [yellow], but that is the order for 7 necklaces. If we want to verify this on the 
computer, we need a sample, right?”

Karina: “Which one is the sample?”
Observer: “How did you find these quantities [for the 7-necklace order]?”
Karina: “Oh! . . . Um, um, that’s right. Here, on the blue sample, we need 2 blue beads for each 

necklace; here [on the red beads] we need 3 per necklace, I think.” (They used the multiplica-
tion chart to finish the sample.)

Karina’s original way of finding the numbers of blue and red beads led, in fact, 
to finding each unit value. However, she seemed to have forgotten that those values 
corresponded to the “sample.”

Fig. 9.9 Use of the chart 
for searching the unknown 
factor in a multiplication
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9.3.2.3  Feedback

During the first stage, where the problems included the unit value (as a given value 
or as a question), the software fulfilled its purpose of enabling students to under-
stand the problem and empirically verify their results, which saved time and 
resources. When the problem was solved correctly, the software became a function-
ing validation tool. When typing errors had been made (miscalculations, for exam-
ple), the software detected where the error had taken place. Below is a scenario 
where Irving and Carlos suggested that the order was asking for 3 necklaces (in 
Table 3) during the group discussion.

The teacher requested the results for Table 3 during the group discussion.

Table 3
1 necklace __ necklaces

4 blue 16 blue
6 red 24 red

5 green 20 green

Teacher: “How many necklaces in this order?”
Carlos: “4.”
Irving: “3.”

The teacher asked each student to explain how they reached their results, but the 
rest of the class disagreed with their explanations. Then, the teacher suggested veri-
fying their results on the computer.

Teacher: “Irving, maybe we can try something; we can tell the computer that the answer is 3.”
Francisco: “There will be leftover beads.”

The computer made 3 necklaces, leaving 4 blue beads, 6 red, and 5 green unused. 
There were enough beads to make another necklace.

Teacher: “See? There were leftover beads.”
Francisco: “Enough for another one.”
Teacher: “Enough for another necklace, to make the fourth necklace.”

During the second stage, where the unit value was not included, verifying results 
on the computer became considerably more difficult. The most widespread diffi-
culty occurred when students attempted to verify their results on the computer with-
out knowing the sample. They had approached the problem through addition, solved 
the problem without stopping to find the sample necklace (by identifying regulari-
ties), or solved it by other means. When the computer asked students to enter the 
numbers for the sample, they did not understand what they were meant to do. As a 
result, some felt bewildered and returned to their seats; others attempted to find a 
sample for each order, which was a step away from having one sample for both 
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orders. Some students did not realize the pertinence of the sample until the com-
puter requested it.

The program sometimes validated incorrect answers. It happened mainly when 
students, knowing the numbers for one sample, verified only the values for one of 
the orders and omitted the second one. Let’s analyze an example. Yadira, Claudia, 
and Alejandro solved Table 4-C using drawings. However, they entered their data 
incorrectly.

Table 4-C
Sample 5 necklaces 11 necklaces

2 10 blue 22
4 20 red 44
4 15 green 44
1 5 yellow 11

The students drew their sample instead of writing it.

Observer: “What is the sample?”
Yadira: “2 blue, 4 red, 4 green, and 1 yellow.”
Observer: “What’s in the order?”
Yadira: “22 blue, 44 red, 44 green, and 11 yellow.”
Student: “I think the numbers are wrong.”
Observer: “Does the sample have the same number of red beads and green beads?”
Students: “Yes.”
Observer: “How did you find them, Yadira?”
Yadira: “Where it says 5 necklaces, 1 has 2 blue, so then, where it says 11 necklaces, I placed 2, 2, 

2, and got 22,” (showing me the drawing on her chart; she had drawn 12 necklace strings and 
added 2 beads on each of the first strings) “and these [the other numbers in the order]; they 
found them.”

Observer: “OK, let’s see if it works, OK?” The necklaces were correct.

The computer accepted the quantities for the sample and the order, and it vali-
dated the result without detecting any errors. However, the observer aptly reminded 
the students that the sample should be the same for both orders.

Observer: “It turned out all right, didn’t it? Just remember that the necklaces in this order are iden-
tical to the ones in the other [five-necklace] order. . . . Should we test it? . . . Let’s use the same 
sample for the other number of necklaces, and they should be identical. This will tell us if we’re 
right. . . . The sample is the same: 2, 4, 4, and 1, because the necklaces are identical. Can some-
one read me the numbers in the 5-necklace order?”

Yadira: “10 blue, 20 red, 15 green, and 5 yellow.”
Observer: “Let’s see if it’s true. If they come out the same as these [11 necklaces], then we’re fine, 

but if they don’t, there must be some mistake, right?” Three necklaces were made correctly, but 
the fourth and fifth were incomplete; 5 green beads were missing.
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After noticing the missing beads, the students realized they had made a mistake. 
In this case, however, given the number of relationships at stake, they could not find 
the error in their procedure.

Other Validation Resources Aside from using the software to validate results 
empirically, some students were seen verifying results through a range of inherent 
properties embedded in the problem’s relationships. This might have been the case 
for the student who, seeing the quantities in the following table, stated, “I think the 
numbers are wrong.”

5 necklaces 11 necklaces
10 blue 22 blue
20 red 44 red

15 green 44 green
5 yellow 11 yellow

The student probably thought that if an order presented two equal quantities of 
different-colored beads, then the number of beads in those two colors should also be 
the same in other purchase orders.

Others also tried keeping the order: if the number of beads of a certain color was 
greater than the number of another color in the set (for example, in the sample), that 
same relationship must carry over to the other set (for example, in the order). See 
the examples below.

Example 9.1

Table 2
1 necklace 8-necklace order

3 blue __ blue
__ red 48 red

__ green 56 green

For the red beads:

Yadira: “6 red beads.” (The observer thought she found the answer by testing numbers that when 
multiplied by 8 would equal 48. Then, she drew 8 lines and added 8 beads only to the first 2 
lines.)

For the green beads:

Yadira: “It can’t be less than 6.” (She realized that now she needed more beads than before and that 
the number of necklaces was the same. She wrote “7 green” on her worksheet.)
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Example 9.2
(That example was worked during a group discussion)

Table 3-A
Sample 5 necklaces
3 blue 15 blue
6 red 30 red

__ green 30 green

Tea1cher: “Finally, how did you know you needed 6 green beads?”
Student: “Because of 6 times 5.”
Luis: “Because if the line above said 6 red becomes 30, the line below is the same because the 

result is there [in the row for red beads].”

Students favored this type of semantic validation (Brousseau, 1998) in problems 
where plural relationships were in play. These resources could have been shared 
more during group sessions in a way that would encourage the students to find and 
reflect on relationships. For example, if one quantity in the sample was larger than 
another, the quantities in the order would maintain the same relationship; if the 
relationship between beads in the sample was “double,” the same applied to the 
order. Meanwhile, additive relationships, where one quantity was “larger than 
another by 3 beads” would not be reflected as such in the order.

9.4  Final Remarks

Most fourth-grade students were comfortable approaching relationships among 
three or four quantities of beads on 1 necklace and the corresponding quantities on 
n necklaces, and they could solve all three implied problems (two divisions, one 
multiplication), usually through noncanonical procedures. It can be said that one-to- 
many relationships provided richer contexts than those presented in problems with 
four values.

The relationships between the number of beads in n necklaces and m necklaces 
(where n and m were greater than 1) were significantly more difficult. However, at 
least 50% of the pairs in this 4th grade group could understand one or more of the 
problems presented during the last two sessions. It seemed that the greatest chal-
lenge was understanding that (1) each set of beads in the table matched a different 
“order” rather than a single necklace and a single order, and (2) both orders came 
from the same sample. Once students understood this, they encountered far fewer 
difficulties calculating the number of beads in the sample based on one of the orders, 
to then generate the second order. From the perspective of understanding multipli-
cative relationships, this was a remarkable achievement.

On the other hand, considering their school level, this was probably the first time 
that most of the students had needed to calculate information that was not directly 
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requested in the problem (the unit value) to solve it. Potentially, more students 
would be able to approach this variable when they reached 5th grade, which might 
be a better time to introduce it.

Finally, the computer software, as a “virtual means of interaction” (Mariotti, 
2002), supported the students’ understanding of problems and, more specifically, of 
relationships between the broad range of quantities used in the “necklace factory.” 
The computer software also provided a way of verifying the results. However, the 
program showed some limitations. When verifying the relationship between n and 
m necklaces, it asked for the sample necklace even when students had not figured 
out its pertinence for finding the solution. The program did not always enable stu-
dents to identify the source of their errors and did not invalidate certain types of 
erroneous procedures. It would be worthwhile to explore other forms of empirical 
verification for more difficult cases where the relationship in question was between 
n and m necklaces. For example, the program could display a graphic representation 
of the two orders that came from a certain sample. On the other hand, the wealth of 
relationships in play enabled a variety of semantic forms of verification, which were 
valuable from a didactic point of view.
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Chapter 10
Building Opportunities for Learning 
Multiplication

Fátima Mendes, Joana Brocardo, and Hélia Oliveira

10.1  Introduction

There have been fewer research studies on multiplication than studies on addition 
and subtraction (Fuson, 2003; Verschaffel, Greer, and De Corte, 2007). Verschaffel 
et al. (2007) state that there is really a scarcity of research regarding strategies used 
by students to solve multiplication and division problems.

Brocardo and Serrazina (2008) point out a curricular “big idea” to approach num-
bers and operations with the perspective of number sense development, articulating 
numbers, operations, and applications. For example, the authors note that decompo-
sition of numbers can be learned through number expertise articulating addition and 
multiplication: 80 is 20 + 20 + 20 + 20, four times 20, or 4 × 20. They also refer to 
the importance of articulating the meanings and the structures of the operations.

Focusing on number sense and the role of mental calculation, Brocardo (2011) 
stresses the importance of being able to look at numbers as the center of a web of 
relationships. For example, the number 48 may be represented as 2 × 2 × 12, 2 × 24, 
4 × 12, 50 − 2, 100/2 − 2, or 6 × 8. When solving numerical problems, students with 
number sense use the representation of 48 that is more suitable to mental manipula-
tion of the numbers or that best suits the context of the problem.
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The comprehension-based approach for learning multiplication introduced in 
this chapter includes these ideas of curricular integration and working with numbers 
and operations in the perspective of number sense development, which are briefly 
referred to here and will be detailed in the following sections.

10.2  Learning Trajectories

Planning multiplication teaching implies more than structuring the mathematical 
ideas involved in this operation. It is equally important to think how students can 
learn and progress in their learning, and to bear in mind that not all of them learn at 
the same pace and in the same way.

Simon (1995) uses the sailor metaphor to explain the concept of learning trajec-
tory, which we consider paramount for thinking about teaching multiplication. The 
sailor has a global plan that includes precise milestones and a clear definition of the 
place of arrival at the end of the trip. However, this plan has to be successively 
adjusted according to different events—weather conditions, boat performance, or 
unforeseen situations that may arise. Such adjustments may also include unantici-
pated stages. Like the sailor, teachers also need a global plan to guide the proposals 
they prepare for students. They have to change their global plan to take into account 
the capacity of each student to learn, the ideas or doubts that arise, and the unfore-
seen situations they encounter. Like the sailor, teachers plan each stage of their 
journey, bearing in mind the hypothetical trajectory and the conditions resulting 
from the implementation of the previous stages.

Setting the global plan of the “journey” (learning multiplication) involves start-
ing by clarifying the key milestones that determine the stages of a nonlinear path. At 
a macro level—the global plan of the journey—the hypothetical learning trajectory 
includes setting the progression of mathematical ideas and of strategies and models 
associated with multiplication. It also includes a flexible sequential vision, since the 
trajectory that is actually undertaken determines the adjustments and the paths to 
follow at the next stage. Lastly, it includes progression and interconnection as 
aspects that always underlie the design/selection of tasks for students.

10.3  A Hypothetical Trajectory in the Third Grade

The Portuguese educational curriculum states that in the third grade, (8- to 9-year- 
old) students should complete their studies on multiplication tables, develop their 
knowledge of whole and decimal numbers, and learn to build multiplication algo-
rithms. During the previous grades, they have started the transition from repeated 
addition to multiplication, the exploration of multiplication meanings, and compre-
hension and memorization of facts—namely, the ones arising from study of the 
multiplication tables of 2, 5, and 10.
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In the third grade, the key milestones for multiplication learning are the follow-
ing (Fosnot, 2007; Fosnot and Dolk, 2001):

• Consolidation of understanding of a group as a unit
• Distributive property of multiplication in relation to addition and subtraction
• Commutative property of multiplication
• Position values pattern associated with multiplication by 10
• Associative property of multiplication
• Understanding of the inverse relationship between multiplication and division
• Understanding of the proportional reasoning of multiplication

This last one—although emerging in the third grade—is further developed in 
later grades.

The models associated with multiplication that students can build by exploring 
each task are also important milestones for setting the hypothetical learning trajec-
tory. They are closely related to the models and procedures used in addition (see 
Figs. 10.1 and 10.2):

• Decomposition of terms used in repeated addition allows moving from a linear 
model to a two-dimensional model- the array model.

• The linear model, which supports repeated addition by “jumps,” becomes a pro-
portional model, such as the double line or proportion tables.

Considering that our focus is the third grade and that the work with proportions 
is developed in later grades, the trajectory we introduce here favors the use of the 
array model. The choice of the array model is supported by authors such as Barmby, 
Harries, Higgins, and Suggate (2009), who consider it an important support in the 
evolution of multiplicative reasoning. It should be noted that this is the model that 
helps to build and consolidate the use of distributive and associative properties, as 
Figs. 10.3 and 10.4 illustrate.

The rectangular model also allows understanding of the commutative property 
(Fig. 10.5), which cannot be understood from the linear model of successive addi-
tion: 4 rows of 5 elements have the same number of elements as 5 rows of 4.

Fig. 10.1 From a linear model to an array model

Fig. 10.2 From a linear 
model to a double line 
model

10 Building Opportunities for Learning Multiplication
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Combining the learning milestones with the array model, the numerical uni-
verse that is used, and the order of magnitude of the numerical values, several 
learning trajectories can be built according to choices depending on the specific 
curricular nature, the characteristics of the students, and also the specific context 
of each school.

The hypothetical trajectory introduced below (see Table 10.1) is thus one among 
many possible trajectories. This is an example of an actual trajectory implemented in 
a third-grade class (Mendes, Brocardo, and Oliveira, 2013), which includes adjust-
ments resulting from an experiment in a classroom of ten sequences of tasks and some 
particular conditions of the class and the school. We also point out the contexts used 
in the tasks, which take into account aspects related to multiplication learning.

Fig. 10.3 Array model for 
supporting the use of the 
distributive property of 
multiplication in relation to 
addition in calculation

Fig. 10.4 Array model for 
supporting the use of the 
associative property of 
multiplication
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Fig. 10.5 Array model for supporting the commutative property of multiplication

Table 10.1 Multiplication learning trajectory in the third grade

Sequences of tasks Learning milestones Contexts and numbers

Sequences 1 and 2: 
multiplication tasks where 
the calculation by groups is 
made evident
(6 tasks)

Consolidation of 
understanding a group as 
one unit
Distributive property of 
multiplication in relation 
to addition and subtraction
Commutative property of 
multiplication

Items displayed in a grocery store 
interconnected with use of multiples 
of 5, 3, and 6
Packs with 4, 6, and 12 stickers

Sequences 3 and 4: tasks 
whose context is related to 
the rectangular array
(6 tasks)

Consolidation of 
understanding a group as 
one unit
Distributive property of 
multiplication in relation 
to addition and subtraction
Commutative and 
associative properties of 
multiplication

Patterns in curtains and yard 
pavements interconnected with use of 
multiples of 5 and 10
Stacks of boxes interconnected with 
use of multiples of 5 and 10

Sequences 5 and 6: tasks 
with numbers in decimal 
representation
(6 tasks)

Distributive property of 
multiplication in relation 
to addition and subtraction
Commutative property of 
multiplication

Filling and emptying of bottles, 
relating their capacities to use of 
reference decimal numbers and 
relating them to each other (0.5, 1.5, 
2.5, and 0.25)
Using and relating reference decimal 
numbers associated with values of 
different coins (0.1, 0.2, 0.5, and 0.99)

Sequences 7 and 9: division 
tasks where multiplication 
is favored, revealing the 
relation between two 
operations
(8 tasks)

Understanding of the 
inverse relationship 
between multiplication 
and division

Collecting cards and using beverage 
vending machines to divide using 
multiplication, using multiples of 6 
and 8

Sequence 10: multiplication 
tasks where multiplication 
is favored, revealing the 
relation between two 
operations
(3 tasks)

Understanding of 
proportional reasoning

Filling in and using prices from tables 
for grocery item costs and a trip to the 
theater, using multiples of 1.25, 1.10, 
1.60, and 0.99
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Looking at Table 10.1 we can see that the learning milestones are the support for 
the trajectory and they emerge from the contexts of the tasks. When a new numerical 
set is introduced, the learning milestones are “revisited”: by starting the study of 
multiplication with decimal numbers, the learning milestones previously considered 
when studying the natural numbers are reworked.

This “revisiting” process is also present in the numbers included in each task. 
It starts by using situations involving multiples of 2, 3, 5, and 6. Then, it “revisits” 
the use of those multiples in order to work with multiples of 4, 10, and 12. This 
numerical “revisiting” is a sequential chain that repeats itself when introducing new 
learning milestones: when developing the idea of the inverse relationship between 
multiplication and division, the numerical set is restricted to the natural numbers 
and the groups of 6, 8, and 10 are used again (sequences 7 and 9). When introducing 
the proportional sense of multiplication, 1.25 and multiples of 10 are used, which 
are numbers that were previously considered as a reference (sequence 10). This is 
the starting point to build relationships with new numerical values.

10.4  Specifying the Hypothetical Trajectory: A Sequence 
of Tasks

Setting a learning trajectory like the one we showed in the previous section implies 
paying great attention to the specific characteristics of each of its sequence of tasks. 
We will now analyze sequence 4, composed of four tasks, as shown in Figs. 10.6, 
10.7, 10.8, and 10.9.

Task 1: Stacks of Boxes
The Piedade Grocery Store received boxes, each containing 24 apples as shown in 
Fig. 10.8. The 25 boxes were stacked as shown in the Fig. 10.6.

In total, how many apples are there?

Fig. 10.6 25 boxes with 24 apples each
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Task 2: Stacks of Boxes
In the Bairro Supermarket, there is also a stack of 25 apple boxes. These boxes are 
bigger, and each contains 48 apples as shown in the Fig. 10.7.

In this supermarket, how many apples are stored in the boxes?

Task 3: Stacks of Boxes
In the Girassol Supermarket, the total number of apples is the same as that in the 
Bairro Supermarket, but each box contains only 24 apples as shown in Figure.

In total, how many boxes of 24 apples are there in the Girassol supermarket?

10.4.1  Connected Calculations

Regarding mathematical ideas about multiplication, with this sequence it is intended 
that students progressively drop the idea of repeated addition and evolve toward 
multiplicative reasoning. It is also intended that they use the properties of multipli-
cation to calculate products. Therefore, the context of tasks 1 and 2 facilitates a 

Fig. 10.7 25 boxes with 48 apples each

Fig. 10.8 Box with 24 
apples

10 Building Opportunities for Learning Multiplication
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progression towards the array use, in combination with use of the properties of 
multiplication. The stacks of boxes can be seen in different ways, as different groups 
of rows or columns. For example, the stack with 25 boxes in task 1 may be seen as 
having 5 columns, each one with 5 boxes. It may also be seen as having 2 rows of 5 
boxes, plus another 2 rows of 5 boxes, plus 1 row of 5 boxes. In the first case, we 
“see” the stack of boxes organized into 5 columns, and it is the calculation of the 
number of apples in each column that sets the total number of apples. In the second 
case, we observe that in 2 columns there are 10 boxes, and we look at the stack with 
the biggest possible number of groups of 2 columns. The total number of apples is 
obtained from the number of apples in each of the groups (of 2 columns and of 1 
column) that are considered.

When students use these two strategies and make groups to calculate the 
requested value, they do not think about the properties of multiplication, nor the 
array model. However, the analysis of these strategies and the solution for other 
situations based on the same type of context can lead to an understanding of the 
properties, drawing the conclusion that 5 × 24 + 5 × 24 = 10 × 24 and that 25 
× 24 = 10 × 24 + 10 × 24 + 5 × 24. Besides exploring the different groups of 
boxes and the corresponding use of the distributive property of multiplication, 
students can also associate the total number of rows and columns with the total 
number of boxes. They start using the array model in similar situations, where 
each “cell” of the rectangle corresponds to a set of objects—in this case, a set of 
apples—and not just to an object, as happened at an earlier stage of learning 
multiplication.

Two important ideas regarding the learning trajectory, progression, and intercon-
nection are achieved either in the numerical values involved or in the possibility of 
using results and relationships from previous tasks:

• In task 2, each box has twice the number of apples as each box in task 1.
• In tasks 2 and 3, the total number of apples is equal and the quantity that fits in 

the boxes in task 2 is twice that in task 3.
• In task 2, by moving 2 boxes (the ones in the last column), we get an arrangement 

similar to the one in task 1.
• Task 4 helps to consolidate relations and properties used in the previous tasks—

double, distributive, commutative, and associative properties—and the use of 
numerical values present along the chain, such as groups of 24 and 48, and prod-
ucts of factors that result in 600 and 1200.

In parallel with matters of progression and interconnection between the tasks in 
each sequence, which are essentially oriented by the fundamental ideas linked to 
multiplication learning and to the overall design of the global hypothetical trajec-
tory, it is also important to bear in mind other aspects like diversity and the charac-
teristics of each task. We will analyze those aspects in the next section.

F. Mendes et al.
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10.5  The Tasks

In this hypothetical learning trajectory, we have included tasks of different natures: 
not just problems and investigations, nor just exercises. Each type of task has its 
own potential. It is fundamental to select the more appropriate ones according to the 
teaching objectives.

The sequence shown in Figs. 10.6, 10.7, and 10.8 includes problems (tasks 1, 2, 
and 3) and exercises (task 4). The stickers packs task (Fig. 10.10) is an example of 
another type of task (investigation) which can also be included when building a 
learning trajectory.

10.5.1  Task 4: Stickers Packs

Eva, Luís, and Leandra collect stickers. The stickers are sold in packs of 4, 6, and 12 
stickers. The 12-stickers packs are sold out. Raquel bought stickers, and she got 48.

Which stickers pack might she have bought? Explain your thoughts.
The selection of problem and investigation contexts—i.e., the characteristics of 

the situations that may be mathematized by the students (Fosnot and Dolk, 2001)—
should be oriented so that the contexts (i) allow construction of models, (ii) make it 
possible for students to really understand and act upon them, and (iii) inspire stu-
dents to ask questions and find solutions.

Tasks 1, 2, and 3 (Figs.  10.7 and 10.8) explore a context of fruit boxes and the 
different ways they can be stacked. There are other contexts that also allow students 
to progressively build and refine the models underlying the multiplication [charac-
teristic (i)]. They are based on organizing groups of objects in packages (eggs, balls, 
drink cans), rectangular patterns in curtains, or collecting and organizing the neces-
sary data to inventory the objects stored in a certain place. The boxes and the way 
they are stacked (Fig. 10.6) can help certain ways of thinking associated with the 
rectangular arrangement; i.e., they allow students to model situations using such an 
arrangement. Earlier, students should have had the opportunity to explore contexts 
that allowed them to model a situation such as repeated addition on a numerical line. 
At a later stage of multiplication learning, they should, for example, explore situa-
tions whose context allows them to model multiplication as an area or a proportion, 
using a corresponding double numerical line.

By analyzing the tasks included in Figs. 10.6, 10.7, 10.8, 10.9 and 10.10, we can 
easily see that they suggest that students seek ways to find solutions using different 
knowledge and relations [characteristic (ii)] in accordance with their level of math-
ematical development. For example, in task 1, to calculate 25 × 24, they can observe 
the image and start to calculate the total number of apples in each column, determin-
ing 5 × 24. Others can make groups of 10 boxes, calculating 10 × 24. Yet others, less 
familiar with multiplication procedures, can repeatedly add 24.

10 Building Opportunities for Learning Multiplication
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The context of the tasks should also challenge students to analyze possibili-
ties, find patterns, ask questions, or compare different forms of reasoning [char-
acteristic  (iii)]. Therefore, the tasks should “refer to” situations that students 
know or can imagine. They should also allow analysis from different points of 
view. For example, in the stickers packs task (Fig.  10.10), students could discuss 
several purchase possibilities for Raquel and decide which one would be the 
most inexpensive.

When designing and implementing a learning trajectory, tasks that focus on 
appropriation of certain facts and numerical relations should be included—usually 
called practice exercises. We highlight the ones we call numerical chains, as 
described by Fosnot and Dolk (2001). They aim to develop students’ mental calcu-
lation using important properties and relations of multiplication. Considering the 
specific characteristics of numerical chains (and according to the authors above), 
when exploring them, teachers should maintain a lively pace (not spending more 
than 15 minutes on them), and should favor oral skills (instead of written records).

The sequence shown in Fig. 10.9 includes three chains aiming to highlight pow-
erful strategies of mental calculation based on application of the associative prop-
erty of multiplication in the particular case of relations with doubles and halves, and 
the distributive property of multiplication in relation to addition, using reference 
numbers. Each chain should be explored on different days, since the aim is to focus 
on relations one at a time.

The exploration of a numerical chain has particular characteristics that we illus-
trate with the case of a teacher, Isabel, when she was working on the second chain 
in task 4 (Fig. 10.9). Isabel wrote an expression on the board and gave some time for 

Fig. 10.9 Task 4: Three 
numerical chains

Fig. 10.10 The stickers 
packs task
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students to think about it. She first wrote “10 × 60” on the board. Only after several 
students had raised their hand, stating that they already knew what the result of 
10 × 60 was, did she ask one of them to give his or her answer. After analyzing it, 
Isabel moved on to the next numerical chain, writing “20 × 30” on the board. The 
following dialogue shows how Isabel explored the various students’ answers for the 
10 × 60 calculation.

Leandra: “It is 10 × 60 or 60 × 10; it is 600.”
Isabel (writing “20 × 30” on the board): “And now?”
Duarte: “20 × 30 is 600 because it is 20 × 10 × 3. And 20 × 10 is 200, and × 3 is 

600.”
Bernardo: “And it can also be 10 × 30 times 10 × 30, which is 300 plus 300.”
Raquel: “It is 600 because it is equal to the last one! 40 is the double of 20 and 15 is 

half of 30.”
Gustavo: “We can also do 40 × 10 plus 40 × 5. It is 400 + 200, which is 600.”
(Isabel wrote “20 × 60” and a lot of arms are raised). Isabel - “And now?”
Guilherme: “It is 1200 because 60 × 10 is 600 and plus 60 × 10 is 600, so it is 1200.”
David: “I thought of 20 × 30 two times.”
José: “It is 1200 because it is the same as 40 × 30.”
Duarte: “We also can do 60 × 2 and then × 10.”

According to the objectives of the chain and the way the students reacted, the 
teacher would decide the level of freedom for justifications for different procedures 
to be analyzed and which processes to highlight. In the previous episode, Isabel 
chose not to ask for a justification for the 10 × 60 result since it was an answer most 
students already knew by heart. Regarding other calculations, she gave them oppor-
tunities to explain their ways of thinking that revealed application of different prop-
erties of multiplication.

10.6  Enacting the Tasks: Planning and Exploring

After selecting each task, teachers still must consider two very important moments: 
planning how to organize the class and putting such planning into action by 
exploring the task in the classroom (Stein, Engle, Smith, and Hughes, 2008). 
These two moments should be oriented by the learning trajectory, taking a global 
and flexible route to be followed according to the learning purposes and the stu-
dents’ reactions.

At these two moments, teachers’ attention should be focused on the students. 
Keeping the learning trajectory always in mind, teachers should be able to plan and 
explore from what students can understand, do, and ask.

10 Building Opportunities for Learning Multiplication
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10.6.1  Planning the Tasks’ Enactment

This is a stage in teachers’ work that can involve different aspects. We consider that 
the aspects involving the preparation of the tasks’ enactment in the classroom—
bearing in mind what students will be able to do and the doubts they might have—
are particularly relevant. Therefore, we give great importance to anticipation of their 
strategies and difficulties.

Anticipating the strategies associated with a task involves in-depth knowledge of 
their potential and mainly thorough knowledge of the way students think. Teachers 
have to put themselves in the place of their students and foresee the ways they find 
solutions at different levels of sophistication, according to different levels of learn-
ing and distinct ways of reasoning. This anticipation will help teachers recognize 
and understand the strategies used in the classroom and understand which ones are 
related to their teaching objectives, i.e., the mathematical ideas they intend students 
to learn (Stein et al., 2008).

By anticipating students’ strategies, teachers will be able to identify their diffi-
culties in the classroom according to the solutions that are found and understand 
why these exist. Thus, it will be easier to find a way to help students to overcome 
such difficulties. At the same time as they foresee students’ strategies, teachers 
should also anticipate possible difficulties linked to the interpretation of the 
task itself.

We will now show the strategies students could use in task 2 of the sequence 
illustrated in Fig. 10.7. In parallel with this anticipation, we will also identify some 
difficulties that students may have in each strategy.

We will organize the possible ways to find solutions into three categories: (i) ones 
based on additive reasoning, (ii) ones that use multiplicative reasoning and that take 
into account the context of the task, and (iii) ones that use multiplicative reasoning 
but do not take into account the context of the task. For each of these categories, we 
sequentially list the strategies from the least to the most sophisticated.

 (i) Strategies based on additive reasoning: Task 2 is included in sequence 4, so it 
is expected that students will use strategies underlying the properties of 
 multiplication. However, some students can still use additive strategies like the 
ones listed in Table 10.2.

 (ii) Strategies using multiplicative reasoning and taking into account the context of 
the task: The context “stacks of boxes” favors use of strategies that take advan-
tage of the properties and multiplicative relations, like the ones listed in 
Table 10.3.

 (iii) Strategies using multiplicative reasoning but not taking into account the 
context of the task: Students may use multiplicative strategies and not be influ-
enced by the way the boxes are organized. Still, some expected strategies take 
advantage of the previous task (see task 1 in Fig. 10.6) by establishing numerical 
relations between them (Table 10.4).
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Table 10.2 Additive strategies and expected difficulties

Expected strategies Possible difficulties

Thinking of 25 boxes, each one with 48 apples, and using 
additive procedures:
  Horizontally representing addition, by doing 

48 + 48 + . . . + 48 (25 addends)
  Repeatedly adding 48, by doing 48 + 48 = 96, 

96 + 48 = 144, . . .
  Adding addends 2 by 2, by doing 48 + 48 = 96, 

96 + 96 = 192, 192 + 192 = 384, . . .

In doing calculations with 
large numbers correctly, taking 
into account the number of 
addends (25) and the number 
we need to add (48)

Thinking of 25 boxes, each with 48 apples, and using the 
numerical line to sum them

In doing calculations with 
large numbers correctly, it is 
easy to lose count of the 
number of times 48 is added

Adding the number of boxes to the number of apples in each 
box, by doing 25 + 48 (an incorrect strategy)

Interpreting and understanding 
the task

Table 10.3 Multiplication strategies taking into account the context and expected difficulties

Expected strategies Possible difficulties

Observing how the boxes are stacked and from there 
calculating by rows using multiplication, thinking:
  2 rows, each with 6 boxes, is 12 boxes
  2 rows, each with 5 boxes, is 10 boxes
  1 row with 3 boxes
  12 × 48 + 10 × 48 + 3 × 48
Or thinking row by row:
  6 × 48 + 6 × 48 + 5 × 48 + 5 × 48 + 3 × 48

Calculating the product 12 × 48
Forgetting to add some partial 
products

Observing how the boxes are stacked and from there 
calculating by columns using multiplication, thinking:
  2 columns, each with 4 boxes, is 8 boxes
  3 columns, each with 5 boxes, is 15 boxes
  1 column with 2 boxes
  8 × 48 + 15 × 48 + 2 × 48
Or thinking column by column:
  4 × 48 + 4 × 48 + 5 × 48 + 5 × 48 + 5 × 48 + 2 × 48

Calculating the product 15 × 48
Forgetting to add some partial 
products

Observing how the boxes are stacked, mentally understanding 
that such an arrangement is the same as having a rectangular 
layout with 5 columns and 5 rows of boxes, then calculating 
by columns or by rows using multiplication, thinking:
  5 × 5 × 48 or 25 × 48
  First calculating 5 x 48 and then multiplying by 5, which is 

the same as 5 × (5 × 48) or (5 × 5) × 48
  Calculating 25 × 48, by doing 20 × 48 plus 5 × 48

Doing the calculations linking 
factors to multiples of 10
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Foreseeing the strategies students will use to find solutions for a certain task is 
very demanding and difficult for teachers. However, as this practice progresses, 
anticipation of different solutions becomes easier since the level of knowledge of 
the way students think about multiplicative reasoning is increasingly deeper.

Besides improving the knowledge of expected solutions when using this prac-
tice, it is also fundamental that teachers be able to list and discuss with other 
teachers the possible solutions to a given task. Possibly the task has already been 
explored in previous years, so it would be interesting to see the solutions found by 
those students, and to interpret and understand them, thus increasing the knowl-
edge of the way students reason and what different representations they use to 
explain it.

Although teachers try to list, as thoroughly as possible, the expected solutions 
students may use, it is possible that unexpected strategies emerge in the classroom. 
Still, the fact that teachers have thought about different task solutions in advance 
may later prove useful for recognizing and understanding the ones that have not 
been thought about before in the classroom.

Table 10.4 Multiplication strategies not taking into account the context and the expected 
difficulties

Expected solutions found by students Possible difficulties

Identifying the situation as being multiplicative and the numerical 
values to use, then calculating using the decimal decomposition of 48:
25 × 48 = 25 × 40 + 25 × 8

Doing the calculations 
linking factors to 
multiples of 10

Identifying the situation as being multiplicative and the numerical 
values to use, then calculating using the decimal decomposition of 25:
25 × 48 = 20 × 48 + 5 × 48

Doing the calculations 
linking factors to 
multiples of 10

Relating this task to the previous one and thinking that the number of 
boxes is the same, but now each box has 48 apples; i.e., it has double 
the number of apples that were in the boxes in the previous task. If the 
total of apples was 600 before, now it is doubled:
2 × 600 = 1200
Relating this task to the previous one and thinking that the number of 
boxes is the same, but now each box has 48 apples; instead of 
immediately thinking of doubling it, duplicating the number of apples 
in each box, by doing:
25 × 48 = 25 × (2 × 24)
25 × (2 × 24) = 2 × (25 × 24)—i.e., 2 × 600 = 1200
Identifying the situation as being multiplicative and the numerical 
values to use, then using doubles and halves relations:
25 × 48 = 50 × 24 because 50 is the double of 25 and 24 is half of 48
50 × 24 = 100 × 12 because 100 is the double of 50 and 12 is half of 24
100 × 12 = 1200 because I know how to multiply by 100

Doing the calculations 
linked to doubles and 
halves

Identifying the situation as being multiplicative and the numerical 
values to use, then using reference numbers (in this case, the number 
50, close to 48) and compensating:
 25 × 48 = 25 × 50 − 25 × 2

Forgetting that the 
compensation implies 
subtracting 25 × 2 and 
not just 2
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10.7  Exploring and Discussing Tasks

All work carried out in class has to consider two fundamental aspects. The first one 
is related to the teacher’s purpose for exploring a given task, considering the mathe-
matical ideas they expect students to develop and without losing sight of the task’s 
objectives and the learning trajectory set. The second aspect, directly related to pre-
dicting the strategies to be used by students, is how teachers manage the interactions 
between them, ensuring that “bridges” are built between strategies with different 
levels of sophistication. In this way, it is possible for students who use less powerful 
strategies to be able to understand the more efficient strategies of their colleagues, 
which will allow them to progress in their learning.

The two aspects identified above prove that the teacher’s action in the classroom 
is strongly supported by the preparation that has been done beforehand regarding 
selection of tasks and prediction of the strategies that students may use.

In the classroom, after a brief presentation of the selected task, students start to 
solve it individually or in pairs. At that moment, the teacher’s role is to monitor the 
students’ work, which is facilitated by the preparation made in anticipating the stu-
dents’ strategies. So, teachers initially have to have an idea if students understand the 
task and interpret it correctly. From there, each one works at his or her own level of 
knowledge.

As students develop their work, and facing the different strategies that come out, 
teachers should be able to relate such strategies to the ones they have anticipated. 
The way students represent and explain their reasoning is not always clearly notice-
able, even when teachers have foreseen a strategy based on similar reasoning. To 
facilitate their action at this exploration stage, it is important to ask themselves 
questions such as:

• “Do most students understand the problem? Are there any difficulties?”
• “Are the strategies used in line with the ones I anticipated?”
• “Are there any strategies I did not foresee?”

In this particular case, when monitoring the students’ work, the teacher Isabel 
realized that they were not using additive strategies. In fact, although these strate-
gies were expected due to the previous experience of the students in other tasks 
covered by the multiplication trajectory, they only used procedures whose underly-
ing reasoning was a multiplicative one. Based on the foreseen strategies, Isabel 
identified that a pair of students had suggested a way of solving the task that she had 
not thought of beforehand.

While monitoring the students’ work, teachers begin to prepare the collective 
discussion. They ask themselves questions about the objectives that have been set, 
and they identify the potential of the strategies that are used in order to select those 
that should be presented and discussed with the whole class. They ask themselves 
questions such as:

• “Considering the purpose of the task I have chosen and the strategies I have 
anticipated, which solutions will be presented and discussed with all students?”

• “In what order will they be presented and discussed?”
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Isabel’s aim was that students use the array model associated with the context 
and relate it to the properties of multiplication. So, looking at the students’ strate-
gies, she chose two of them in line with the ideas she intended to highlight. The 
choice she made was facilitated by the work she had done in advance regarding the 
strategies, since this allowed her to make a quick decision in class and in accordance 
with her intentions. It is interesting to note that one of the chosen strategies had not 
been initially anticipated by Isabel, to her surprise. However, when questioning the 
students about the way they were thinking, she decided this solution was worth 
sharing with all class.

The two solutions chosen by Isabel were from the pair Eva and Guilherme 
(Fig. 10.11) and from the pair Duarte and Tiago (Fig. 10.12).

While Eva and Guilherme showed a sketch to support their reasoning, Duarte 
and Tiago did not explicitly show something that could ground the reasoning 
they made.

In order to decide the order of the presentations and their discussions, Isabel used 
the criterion of progressive presentation of the strategies from less to more abstract. 
Therefore, Eva and Guilherme were the first pair to do their presentation, followed 
by Duarte and Tiago. The pairs were supported by the A3 sheet of paper on which 
they had solved the task, which was put up on the blackboard.

Fig. 10.11 The solution 
found by Eva and 
Guilherme
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After choosing which students’ solutions will support the discussions with the 
whole class, teachers have a decisive role in the key moments that follow. Indeed, 
the moment when the teacher guides the discussion with the whole class—facilitat-
ing the interactions between the students—is fundamental in the whole process. 
This is when the ideas associated with the learning trajectory set are pointed out, 
and “bridges” should be built at several levels: between different solutions with 
more or less sophisticated levels of reasoning; between solutions, ideas, and math-
ematical concepts; and also between the solutions that have been found and the 
purposes of the class. Teachers can guide their actions by asking themselves ques-
tions such as:

• “How should I guide the presentations and the sharing of the solutions that have 
been found, so as to facilitate the interactions between students?”

• “How should I manage the collective discussions in order to build ‘bridges’ 
between different solutions—some more informal and others more powerful?”

• “How should I guide the discussion so that students at lower levels of learning 
may evolve?”

• “How should I manage the collective discussion so that all students may learn in 
light of the class objectives?”

Isabel chose to alternate the presentations by the selected pairs with discussions 
with the whole class. She started by asking Eva and Guilherme to explain their solu-
tion. Eva’s oral presentation was very close to the written records made by the pair.

Eva: “We thought of 15 boxes with 48 apples plus 10 boxes with 48 apples. We 
added to the 8 boxes 2 more boxes,” (here she pointed to the sketch they made) 
“which gave us 10 boxes. And we did 15 × 48 + 10 × 48.”

Fig. 10.12 The solution 
found by Duarte and Tiago

10 Building Opportunities for Learning Multiplication



258

These students took advantage of the rectangular arrangement, transforming 
the “stack of boxes” into two “rectangles” with 10 and 15 boxes (see Fig. 10.13), 
and then calculated the corresponding partial products—10 × 48 and 15 × 48—con-
sidering that each box had 48 apples.

Isabel stressed that the way these students had used the rectangular layout to 
calculate the total number of apples by adding the two products 15 × 48 and 10 × 48 
was the same as calculating 25 × 48.

This relation allowed comparison between the strategy used by Eva and 
Guilherme and those used by other students who determined the total number of 
apples by calculating the product of 25 × 48 (see Fig. 10.14). Supported by a sketch, 
students could understand that calculating the number of apples in 10 boxes plus the 
number of apples in 15 boxes is the same as calculating, all at once, the number of 
apples in 25 boxes.

Confronting strategies enables the teacher to point out mathematical ideas that 
are key to multiplication learning. The fact that 10 × 48 + 15 × 48 and 25 × 48 are 
equal illustrates the distributive property of multiplication in relation to addition.

Encouraging students to orally explain their way of thinking, along with their 
written records, may help other colleagues with different levels of understanding 
about multiplication to progress in terms of ideas and relations that can be 
established.

For example, the part of the solution from Eva and Guilherme that is shown in 
Fig. 10.11 could also help support a collective discussion, where it is pointed out 
that the calculations made were based on numerical relations.

Using the knowledge of multiples of 10, 10 × 48 is mentally calculated first. 
Considering that 5 is half of 10, the corresponding product is also half of the 
prior product. Lastly, underlying the distributive property of multiplication in 
relation to addition, 15 × 48 is calculated by adding the previous partial products 
(see Fig. 10.15).

Fig. 10.13 Representation 
of a stack of 10 boxes plus 
15 boxes (caixas in 
Portuguese)

Fig. 10.14 Representation of 10 × 48 + 15 × 48 = 25 × 48
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We will now see how Isabel guided the collective discussion about the presenta-
tion by the other selected pair, Duarte and Tiago. The level of abstraction of their 
strategy, which was noticeable in their written records and in the way they explained 
it, initially led their classmates to ask for clarifications. The episode transcribed 
below shows how difficult it was for their classmates to understand this solution and 
how Isabel guided the pair in order for them to explain it in other words, considering 
that the first attempt had not been successful.

Gustavo: “I don’t understand! Can you explain it better?”
Isabel: “Can one of you two try to explain it in another way so your classmates can 

understand it?”
Duarte: “We took these two boxes,” (he pointed to the two last boxes on the right of 

the figure) “and we put them over here,” (he pointed to the upper layer on the left) 
“and they disappeared from here,” (he pointed to the two last boxes on the right) 
“then we did 5 × 48 because they were the boxes in one column. Since there were 
5 columns, we then did times 5.” (He wrote on the blackboard “(5 × 48) × 5)”.)

Unlike the previous pair, these students did not draw a sketch to support the visu-
alization of the transformation of the box stack into a rectangle; they only did it 
mentally. Then they calculated the number of apples by column, by doing 5 × 48. 
As they identified 5 columns, they then calculated 5 times the number of apples in 
each column. However, because they wrote their calculations as they were reason-
ing, they put factor  5 corresponding to 5 columns on the right since they wrote 
sequentially from left to right.

In case there were still students who did not understand this way of representing 
and thinking, it was important to clarify the expression “(5 × 48) × 5.” The intermedi-
ate calculation of 5 × 48 allowed its translation according to the context of the task. 
Considering a rectangle with 5 columns (and 5 rows), the teacher might ask students 
for the meaning of 240, i.e., the number of apples in each column of boxes. From 
there, the meaning of 5 × 240 might be quickly associated with the total number of 
apples since there were 5 columns, each one with 240 apples. The relation between 
5 × 240 and 240 × 5 (the expression used by Duarte and Tiago), which was not sup-
ported by the context itself, can be understood if we take into account these students’ 
previous experiences. In mathematical terms, the equality between 5  ×  240 and 
240 × 5 is justified by the commutative property of multiplication, which the students 
already knew about—namely, when they did calculations associated with multiplica-
tion tables.

Fig. 10.15 Part of the 
solution found by Eva and 
Guilherme
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Still focusing on this solution, Isabel encouraged the class to ask for clarifications 
from Duarte and Tiago:

Enzo: “I would like to know how Duarte and Tiago did 240 × 5 so quickly.”
Duarte (answering, thinking of 5 × 240): “We know that 5 × 4 is 20, so 5 × 40 is 200. 

And as we know that 5 × 2 is 10, we know that 5 × 200 is 1000. That’s why we 
wrote 1200.”

Duarte’s explanation, besides underlying the distributive property of multiplication 
in relation to addition, is related to another fundamental idea of multiplication learn-
ing: the use of multiples of 10. By stimulating questions about powerful strategies 
of calculation and its corresponding explanation, Isabel promoted the students’ 
development in terms of their level of learning multiplication.

Isabel’s action led to possible answers to the questions that could guide the 
collective discussions mentioned above. Regarding the presentation and sharing 
of the selected solutions, the teacher organized two moments associated with each 
presentation. After the presentation by the first pair, she generalized the discus-
sion with the whole class, giving an opportunity for students to contribute to it. 
The teacher highlighted aspects she considered relevant to the targeted solution. 
After the presentation by the second pair, Isabel organized a second collective 
discussion, which was another important moment of interaction and in which she 
had also a key role.

Regarding “bridge” building (Stein et  al., 2008), Isabel picked up Eva and 
Guilherme’s presentation and related it to other students’ solutions, highlighting the 
equality between the two expressions that were the basis for each group to initiate 
the calculation. In the case of Duarte and Tiago, she encouraged them to clarify their 
solution and explain the way they thought it was associated with the rectangular 
arrangement. She was trying to understand if the other students understood it and, 
when doubts remained, she guided the discussion so the context could be used to 
facilitate the explanation. She also used the students’ previous experience with the 
commutative property.

To allow students at lower learning levels to evolve, Isabel requested Eva and 
Guilherme to explain orally how they did some of their calculations, where power-
ful numerical relations associated with properties of multiplication were evident. 
She also encouraged Duarte and Tiago to clarify, when asked by a classmate, how 
they “quickly” did a certain calculation, highlighting important relations associated 
with multiples of 10.

The objectives of the task—to use the array model associated with the context 
and relate it to properties of multiplication—were highlighted throughout the dis-
cussion. Therefore, the teacher selected some solutions and, using the students’ 
voices, related the strategies to the array model. From there, important multiplica-
tion ideas related to its properties emerged. These were explained by the students or 
highlighted by the teacher.
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10.8  Implementing Learning Trajectories and Lesson Study: 
Perspectives on the Teacher’s Role

By building a multiplication learning trajectory, we have sought to exemplify cen-
tral elements of the teachers’ action. Next, we will show some convergent aspects 
between the approach introduced here and the lesson study approach (Isoda and 
Olfos, 2009) to the teacher’s role, and we will discuss the possible contributions of 
such contexts to teachers’ professional development.

10.8.1  The Teacher’s Role

One central aspect in both approaches is the importance given to careful lesson 
planning. Within the scope of lesson study, Isoda and Olfos (2009) set six chal-
lenges associated with lesson planning, where we can see some similarities with the 
learning multiplication trajectory developed by us: (i) description of the mathemati-
cal situations in context to be addressed in the lesson, (ii) characterization of the 
different tasks assigned to students and to teachers at different moments of the les-
son, (iii)  time limits and organization of the different moments of the lesson, 
(iv) anticipation of the students’ behaviors and products, (v) preparation of possible 
interventions by the teacher to guide the class toward the proposed goal, and 
(vi) selection and preparation of the materials and means for the lesson. Next, we 
will explain how each of these challenges set by Isoda and Olfos (2009) are similar 
to the perspectives guiding our work.

In connection with the first challenge, and in the case of the set learning trajec-
tory, both the sequences of the mathematical tasks and each task itself are carefully 
thought through. For each task, there is a clear description of its objectives, with 
identification of the learning milestones and models involved in the solution of a 
problem in context. Their preparation follows the criterion of the interconnection 
between tasks, considering, for example, the numbers involved from task to task 
and the contexts promoting the use of certain models or strategies. The contexts of 
the tasks are also important, since they should be a challenge for the students and 
lead them to want to explore them.

Teachers bring well-planned and previously explored tasks to the classroom. We 
also see these aspects reflected in a similar way in lesson study—namely, in chal-
lenges (i) and (vi). As shown earlier in this chapter, planning the learning trajectory 
involves, among other aspects, anticipation of the strategies used by students to find 
solutions. This aspect is also included in the characteristics referred to in  chal-
lenge (iv), as well as the possible difficulties the students may face, according to their 
different levels of mathematical development during the trajectory in question.

Another similarity between the two approaches is related to the nature of the 
mathematical tasks proposed. In both cases, the selection of suitable problems and 
how they are explored in the classroom demands a very particular focus from the 

10 Building Opportunities for Learning Multiplication



262

teacher. In fact, according to Isoda and Olfos (2009), by solving good problems, the 
students may gain new knowledge by applying previously learned knowledge. This 
characteristic of progressing in knowledge by solving problems is also included in 
the set trajectory, since the aim is to integrate, in each new task, knowledge and 
strategies developed in previous tasks. Therefore, in both approaches, problem solv-
ing is seen not simply as application of knowledge but as an opportunity to generate 
new knowledge.

However, for this to happen, we have to consider the way the problem is explored 
in class and how teachers and students’ activities are organized (challenges (iii) and 
(v)). Both approaches have a social dimension, since, for each task, time is reserved 
for presenting and discussing the students’ solutions. These moments are seen as 
opportunities to deepen the students’ learning, favoring the understanding of 
concepts. Thus, in both approaches there is clearly a time limitation and organiza-
tion of the different moments of the lesson (challenge (iii)) and characterization of 
the different tasks assigned to students and to teachers at different moments of the 
lesson (challenge (ii)), particularly at the moment of the discussion of students’ 
exploration of the task.

This crucial moment in the lesson has to be prepared beforehand. Considering 
the task’s objectives and the mathematical ideas that students develop in finding a 
solution, the teacher will select and order the solutions that will be presented in front 
of the class. So, as Isoda and Olfos (2009) state, the teacher has to “study the stu-
dents’ possible answers beforehand in order to ensure a flow and a progression pace 
and avoiding inactivity” (p. 166). As shown in the previous section, these options 
also aim to promote communication between students presenting strategies with 
different levels of mathematical sophistication, favoring not only progression of 
those still at less developed stages but also learning improvement of the other stu-
dents. In fact, by becoming aware of the various possible solution processes and by 
reflecting on them under the teacher’s guidance, the students can develop a deeper 
understanding of the mathematical knowledge involved.

In this respect, we stress again the importance of the teacher’s role, since teach-
ers have to lead students to make connections among the various solutions found in 
class and to highlight the most powerful representations and the mathematical ideas 
underlying the strategies presented. In one of the examples shown above, we saw 
clearly how the teacher could relate a less sophisticated solution to one of the most 
powerful ideas associated with the topic: the distributive property of multiplication 
in relation to addition. This is an aspect also pointed out by Isoda and Olfos (2009) 
regarding the teacher’s role at this stage of the lesson: “The main task of the teacher 
is to listen to students, understand their point of view, connect it to the class objec-
tive, and guide the next moments” (p. 165). Thus, when assuming this role, teachers 
focus on listening and understanding students’ reasoning, building “bridges” with 
the learning milestones of the ongoing trajectory.
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10.8.2  Opportunities for Professional Development

The implementation of the learning trajectory presented here occurred in a collab-
orative context between one primary classroom teacher and one researcher. We 
could imagine a similar scenario in a curricular development project, a research 
project, or a teacher training program where, despite the different roles, collabora-
tive work could be developed (Goodchild, 2014). We also find here some overlap-
ping points with lesson study, which (according to Isoda, Arcavi and Mena (2007)) 
usually includes a cycle with the following steps: planning, the research lesson, and 
the reviewing lessons. These can then be repeated in two or more implementation 
cycles with other teachers. As pointed out by these authors, all these processes occur 
in collaboration with other teachers, higher education teacher educators, and, 
possibly, supervisors from local educational authorities.

In the case presented here, the teacher and the researcher undertook a very mean-
ingful and extended process to adapt and constantly improve the learning trajectory. 
They met every week to reflect on each class and to plan the next ones. The researcher 
attended the classes and followed up on the students’ work, also contributing to the 
teacher’s decision making in the lessons—namely, the decisions related to the col-
lective discussion moments. The teacher is a professional who was always willing 
to learn and reflect on topics she considered could improve her performance and her 
students’ learning quality, seeing this experience as an important opportunity for 
professional development.

Still, we have to consider that the workload involved in the preparation and imple-
mentation of a learning trajectory like the one shown here is huge. It is an ambitious 
project that needs to be accomplished with the support of one or more experts. While 
recognizing that this work cannot be developed by the teacher alone, teachers may 
adapt and put this idea into practice under certain conditions; namely, they can col-
laboratively develop learning trajectories that are more limited in time, involving the 
preparation of fewer tasks or tasks already tested by themselves or others, which will 
allow acquisition of knowledge of students’ strategies and difficulties.

The set of ideas for teaching multiplication developed in this chapter can be 
adapted to particular contexts and to the specific curricular guidelines of each 
country and each grade. Furthermore, we consider that the materials presented 
here could be used in initial and in-service teacher education. These can allow 
future teachers to get to know several students’ strategies and reasoning, helping 
them to understand all of their potential. Such materials can also lead teachers to 
question and discuss the learning of multiplication, thus becoming a starting point 
for reflection about their practice and for motivating themselves to discuss and 
improve it.
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Chapter 11
Can We Explain Students’ Failure 
in Learning Multiplication?

Maria del Carmen Chamorro

11.1  Problem Presentation

Volumes have been written about teaching multiplication, and no didactic manual is 
without at least one chapter dedicated to this issue. Precisely for this reason, it is 
paradoxical that the teaching of multiplication, to which much time is dedicated, 
continues to be so deficient, and the results of students’ learning of it is so mediocre. 
This issue is not trivial if one considers that it is knowledge that should be acquired 
in compulsory elementary education and that is aimed at giving future citizens the 
necessary general education to deal with common problems in everyday life.

The problems students encounter, at least in Spain, are of four kinds.
First, to give up on memorizing results, long considered an outdated and aberrant 

pedagogical method that has resulted in poor mastery of the multiplication table, 
which makes students take a long time to carry out multiplication of, for example, 
three digits by two digits, making the activity tedious, as well as leading to many 
errors in the results. This circumstance seems to exceed the limits of a given coun-
try. As such, at a conference held in Santiago, Chile, in February 2003, Guy 
Brousseau stated that:

In recent times, French teachers made students (and thus their parents) responsible for 
learning the multiplication table, given that they considered learning it to be too repetitive 
and non-technical. When teachers today assume this responsibility again, they do so, using 
the same methods as parents (simple repetition). Emptied of content and of mathematical 
supports, this learning loses part of its interest and efficacy.1

1 Conference presentation by G. Brousseau in Santiago, Chile, in February 2003.
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Research on brain function has shown that memorization through oral recitation 
has a high cost, as well as not being mathematically pertinent:

Starting school supposes a radical change in mental arithmetic. One moves from an intui-
tive knowledge of numerical quantities, in which counting dominates, to arithmetic learned 
by memory. This great change, not coincidentally, is concurrent with the first difficulties in 
mathematics. Often, progressing in mathematics implies storing in memory great quantities 
of numerical information, a task that our brains are not prepared for. Children adapt to this 
as well as they can, but, as we will see, they often lose all intuitive understanding of arith-
metic operations (Dehaene, 2003).

Dehaene (1997) postulates that to master elemental arithmetic, our brains use at 
least two formats to represent numbers: a symbolic format, based on our language 
faculties, which is used for manipulating symbols and numerical algorithms; and a 
kind of language-independent representation that is located in brain circuits associ-
ated with visual and spatial processing, which is used for approximate calculation 
of numerical quantities. Elemental arithmetic capacities are obtained as the result of 
the dynamic integration of these two kinds of representations.

Second, the multiplication algorithm universally taught and used socially—the 
Fibonacci algorithm—is not precisely the most adequate and it presents innumera-
ble inconveniences: the necessity of retaining in memory the amount carried while 
a result from the multiplication table is being found; placement of the partial results 
obtained by multiplying the multiplicand by each digit of the multiplier, in a way 
that is difficult for students to understand and is often unjustified; errors in place-
ment when there are intermediate zeros in the multiplicand or multiplier; lack of 
control, when an error is produced, in finding its origin; etc.

Third, the understanding of the meaning of multiplication is not worked on 
enough, which leads to not identifying situations that can be solved with a multipli-
cative calculation. So, we find ourselves with schoolchildren who can apply the 
multiplication algorithm but are unable to resolve a simple multiplication problem, 
and ask their teachers the classic questions “Is it with addition?” “Is it with multi-
plication?” etc.

Finally, it must be said that we have practically never seen schoolchildren taught, 
simultaneously with the operative techniques, control mechanisms that allow them 
to evaluate, with the teachers’ sanction, if the result obtained when carrying out 
multiplication has an aspect of verisimilitude or, on the contrary, is clearly incorrect 
or even ludicrous. The reigning didactic contract indicates that the responsibility of 
the student ends when he or she provides a number as a result of the multiplication, 
without ever including, as part of the student’s work, deciding whether or not it is 
correct, which is a competency only of the teacher.

Classical learning of multiplication is based on mechanization; this mechaniza-
tion reaches both the multiplicative repertoire and the learning of the algorithm—an 
algorithm given to the student ready-made, without an express concern for the stu-
dent discovering the usefulness and pertinence of the intervening mechanisms, 
which necessarily leads to lack of motivation and interest. The wide array of alterna-
tive algorithms (lattice multiplication or gelosia multiplication, Egyptian multipli-
cation, Russian multiplication, etc.) are not contemplated to give the student the 
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choice of the algorithm that is most understandable or best suited to the numbers in 
question.2

It is evident that these four problems, the causes of which we analyze below, are 
interrelated and reinforce each other, and that one cannot be competent in calcula-
tion when conceptual understanding is not guaranteed and the calculation methods 
utilized are not understood.

11.2  Multiplication of Natural Numbers in the Curriculum

Operations with natural numbers have made up part of the elementary education 
curriculum in all countries of the world since long ago, and, as such, the contents are 
fixed and not up for discussion, although the same does not occur with the issue of 
how they should be taught.

The National Council of Teachers of Mathematics (NCTM, 2003) indicates in its 
curricular standards—as goals from the third grade to the fifth grade, in the part 
regarding understanding of the meaning of operations—the following:

• Understand diverse meanings of multiplication and division.
• Understand the effects of multiplying and dividing natural numbers.
• Identify and utilize the relations among operations (division as the inverse opera-

tion of multiplication, for example) to solve problems.
• Understand and utilize properties of the operations, for example, the distributive 

property of multiplication with respect to addition.
• With regard to fluency and estimation of calculations, it indicates:
• Develop fluency in the basic combinations of multiplication and division and 

utilize them to mentally carry out calculations related to them, for example, mul-
tiplying 30 times 50.

• Develop fluency in the four basic operations with natural numbers.
• Develop and utilize strategies for estimating the results of calculations with natu-

ral numbers and judge the reasonableness of these results.
• Choose and use appropriate methods and tools (mental calculation, estimation, 

calculators, pencil and paper) to calculate with natural numbers, according to the 
context and nature of the calculation in question.

These indications would be accepted today in almost all countries, although it 
does not follow from this—and this is what is curious—that the methodology 
applied in classrooms leads in all cases to achieving these goals.

2 This fact is so notorious that during the initial education of future elementary teachers, the teach-
ing students are amazed when they are told that there are other ways to multiply and confess that 
they have always thought that there is only one way to do it: the traditional way that they learned 
in school. Also, they tend to be unable to justify the placement of the partial results and need to be 
convinced that the multiplication of the digits of the multiplier must always be done in the order 
units, tens, hundreds . . .
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Entering a bit more into a vision of the future of what teaching calculation can 
lead to, the results of the Kahane Commission, created by the French Ministry of 
Education to reflect on mathematics teaching, have been published. One of the 
chapters in this nearly 300-page study by Kahane (2002) is dedicated to teaching 
calculation, and some of its recommendations that we consider most insightful are 
the following:

• Mental calculation can play an important role in linking calculation and reason-
ing, and exact calculation and approximate calculation in elementary school.3 If 
we want to achieve this role, it should not be the result of routine and memoriza-
tion but should be associated with diverse calculations strategies.

• For mental or written calculation to be effective, it must be supported by a mini-
mum memorized repertoire.

• Working on thinking calculation4 is essential for developing mathematical prop-
erties and concepts.

• The importance given to calculation algorithms is in decline, as exact numerical 
calculation done today with a pencil and paper is very limited, so it does not 
seem reasonable for the school to dedicate so much time to it, nor to demand a 
high level of competency from students in this area. Having available a reliable 
algorithm for simple cases seems sufficient.

• Greater interaction between calculation with a calculator and calculation with a 
pencil and paper, as a function of the goals of each situation, is desirable.

The reductionist image of calculation as a mechanical, automatable, and unintel-
ligent activity must be fought against, as well as the idea that learning it is a purely 
repetitive process. Calculation should be thoughtful, beginning with initial educa-
tion, and related to reasoning and proof.

The Spanish curriculum is regulated by Royal Decree 1513/2006, which estab-
lishes educational minimums in primary education5 and defines mathematical com-
petency regarding number algorithms as follows:

Mathematical competency implies the ability to follow certain processes of thinking . . . and 
apply some calculation algorithms.

Later, in block 1, dedicated to numbers and operations, it gives the following 
methodological indications:

3 In the work previously cited, Dehaene explains how the human brain is gifted with continuous 
and approximate representation. When our brains are presented with a number in a symbolic form 
such as “8” they immediately make an effort to convert it into a continuous quantity, and do so 
automatically and unconsciously. In this way, our brains allow us to find meaning in the symbol 
“8” as a quantity contained between 7 and 9, closer to 10 than to 2.
4 Thinking calculation is not the same as mental calculation; it is halfway between mental and writ-
ten calculation. Intermediate steps can be written, but procedures more similar to mental calcula-
tion than written calculation tend to be used.
5 It can be obtained online at http://www.educacion.es/educacion/que-estudiar/educacion-primaria/
contenidos.html.
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Numbers should be used in different contexts, with the knowledge that understanding of the 
processes developed and the meaning of the results is a prior and priority context compared 
to skill in calculation. Of principal interest is the ability to calculate with different proce-
dures and the decision in each case regarding which is the most adequate.

In each of the cycles, the corresponding contents are detailed:

First cycle (first and second grade):

• Utilization of multiplication in familiar situations to calculate the number of times
• Oral expression of the operations and the calculation
• Construction of the multiplication tables for 2, 5, and 10, based on the number of 

times, repeated sum, arrangement in grids . . .
• Development of personal strategies for mental calculation . . . for calculating dou-

bles and halves of quantities
• Approximate calculation; estimation and rounding of the result of a calculation to 

the nearest ten, choosing among various solutions and evaluating reasonable answers
Second cycle (third and fourth grade):
• Utilization of multiplication as an abbreviated sum, in rectangular arrangements, 

and combinatorics problems in familiar situations
• Additive and multiplicative decomposition of numbers; construction and memoriza-

tion of the multiplication tables
• Utilization of standard algorithms for adding, subtracting, multiplying, and dividing 

in problem-solving contexts
• Utilization of personal strategies for mental calculation
• Estimation of the result of an operation on two numbers, evaluating whether or not 

the answer is reasonable

We can conclude that the Spanish curriculum follows the fundamental recom-
mendations of the NCTM, although we appreciate that certain issues that we con-
sider vital to the understanding of the meaning of the operation are not given the 
weight they deserve (understanding diverse meanings of multiplication, understand-
ing the effects of multiplying and dividing natural numbers, identifying and utiliz-
ing relationships among operations—division as the inverse operation of 
multiplication, for example—to solve problems). Also, few indications are given 
regarding how to construct multiplication tables or how to arrive at the calculation 
algorithm, nor are the advantages of teaching one algorithm or another analyzed.

As strengths of this curriculum, we recognize the references to the need for 
working on mental calculation and estimation, as well as the use of the calculator. 
While it is accepted that students create personal calculation procedures, these seem 
to be limited to the domain of mental calculation and not applicable to written 
calculation.

If we compare this to the Chilean curriculum, it can be appreciated principally 
that the latter is more detailed and explicit, providing more indications regarding 
what to do and how to do it. We consider the strong points of the Chilean curriculum 
to be the proportionality approach to multiplication and its simultaneous treatment 
with division. We also find the learning order of the multiplication tables reasonable 
(2, 5, and 10 first, as the first thing children learn is to count by twos, by fives, and 
by tens). We share practically all the indications in the teaching guide that we have 

11 Can We Explain Students’ Failure in Learning Multiplication?



270

been able to read,6 which give very precise indications of how to proceed in the 
classroom to reach the definitive algorithm, and, as such, we believe that if teachers 
follow these indications rigorously, it will lead to the success of the students. We can 
summarize by saying that it is a good curriculum, and, as such, the causes of scho-
lastic failure must be looked for in other areas—for example, in how teachers apply 
this curriculum or in the training they have for its concrete interpretation.

Our knowledge of the Japanese curriculum is limited to what is described by 
Isoda and Olfos (2009), and we have been amazed to see the degree of detail and 
meticulousness in the Japanese government’s mathematics teachers’ teaching guide 
in the development of content related to multiplication. We appreciate, as a distinc-
tive feature of the Japanese curriculum, the importance granted to the manipulation 
of material, often considered “not very mathematical” in other cultures (e.g., in 
Spain), as well as to graphic representations (in particular, to numerical patterns) 
and how much time is dedicated to ensuring student comprehension of the meaning 
of an expression, without ignoring the acquisition of calculation procedures. We 
regard the disciplined participation of students in the development of the lesson as 
definitive for achieving the stated results, but we consider it difficult to extrapolate 
to Latin societies, where, unfortunately, the intrinsic motivation of mathematics 
itself is not usually enough to stimulate the desire to learn.

11.3  Contributions to Didactics

Recent research in the didactics of mathematics gives emphasis to considering mul-
tiplicative calculation, and arithmetic in general, as a means for comfortably and 
effectively resolving problems that present themselves in students’ daily lives, giv-
ing more importance to the meaning of operations than to the speed reached in using 
calculation algorithms. Currently, a universally accepted methodological principle 
is that more time and attention should be dedicated to dealing with situations that 
give meaning to multiplication, with less time dedicated to memorization and rep-
etition of the corresponding standard algorithm, as numerical competency cannot 
exist if it is not based on conceptual competency (Fig. 11.1).

In Gerard Vergnaud’s words:

Mathematical competency can be defined with relatively variable criteria:

 (a) Someone who knows how to deal with situations and solve problems is more competent than 
those who do not;

 (b) Someone who solves problems in the most efficient, most reliable, fastest, most general, or 
conceptually most elaborate way is more competent;

 (c) Someone who has a variety of alternative means for solving problems of a certain category and 
can choose the appropriate method as a function of the values of certain parameters of the situ-
ation is more competent (Vergnaud, 2001).

6 We have been able to access only what is described in the book by Isoda and Olfos (2009), and 
not the original documents.
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If we apply the previous case to multiplication, the result is that we should aspire 
for students to be able to distinguish in the case or when they encounter a situation 
that demands a multiplicative calculation, to know which is most appropriate (as a 
function of the numbers that appear), a) and to use a calculator, b) to use an algo-
rithm that requires a pencil and paper, or c) to use thinking or mental calculation. 
From this, it is easily deduced that standard learning of multiplication—which dedi-
cates many hours to learning the traditional algorithm and does not provide or teach 
alternative, personal calculation methods, ignores the existence of mental calcula-
tion, and dissociates problem solving and calculation—cannot educate schoolchil-
dren with the necessary numerical competency.

11.3.1  What Does the Theory of Conceptual Fields Teach Us?

One of Vergnaud’s most important contributions in his theory of conceptual fields 
(Vergnaud, 1990) has been to effectively show how some concepts relate to others 
and the necessity of considering the different contexts in which a concept appears. 
In the case at hand, it refers to not dissociating (as habitually happens) work with 
multiplication, division, and proportionality, as the situations that demand their use 
form part of the same conceptual field.

Gerard Vergnaud (1981), as early as his first texts, made manifest the necessity 
of carrying out an exhaustive study of the different types of situations in which 
multiplicative calculation participates, and which, as such, give meaning to the 
operation, leading to his well-known classification of multiplicative problems as 
isomorphism of measures, product of measures, and single measure space. This 
classification not only informs us about the level of difficulty of each of these 
types—which on its own helps us to explain many students’ errors and difficulties 
and the different rates of success and failure in one type or another—but also shows 
us the different contexts in which the necessity of multiplying appears. It is  necessary 

Fig. 11.1 Students discuss 
in pairs in the math lab
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for the teacher to be familiar with these contexts in order to be able to provide stu-
dents with all the variety of situations that give meaning to the concept of multipli-
cation, as it must not be forgotten that recognition of situations that can be dealt 
with using multiplication is much more important than having an effective multipli-
cation algorithm. Making students face this variety of situations will obligate them, 
in the best of cases, to adapt, modify, and generalize problem-solving procedures, 
and to abandon them and construct new ones in other cases. What we call learning 
is nothing other than an individual’s capacity to decontextualize a concept or proce-
dure and then recontextualize it again, and in doing so make necessary adaptations 
or changes.

Working and systematically observing the different problem-solving procedures 
for a multiplicative situation (“approximative” in Piaget’s language, or “working on 
schema” in Vergnaud’s7) helps students to discover operative invariants and is useful 
for the teacher not only to be able to determine with greater precision the levels of 
skill reached by the students, but also to follow a logical teaching progression 
adapted to the students’ competencies, as:

The cognitive function of a subject or of a group of subjects in situation is based on the 
repertoire of previously formed schemata available to each of the subjects considered 
individually.

As a consequence of this, there is unanimous agreement in didactics regarding 
the necessity of making students face, from the very beginning, situations of a mul-
tiplicative character, without needing to wait for students to have available algo-
rithms or advanced procedures for numerical resolution. Thus, emerging techniques 
like drawing the situation and then counting will lead to the iterated sum of equal 
summands, which is useful for giving meaning to the calculations, so that students 
always know what they are calculating in order to respond to a concrete question. 
This is the technique that is developed in many situations observed and studied by 
Isoda and Olfos (pastries in a box with various layers, and knowing how many there 
are in each layer; pastries in various boxes, and knowing how many there are in each 
box; pastries that fit in a box, and knowing the size of the pastries; balls in various 
containers, and knowing how many fit in each container; pencils in stacked boxes of 
pencils; etc.).

7 Vergnaud defines the concept of a schema as “the invariant organization of behavior for a given 
class of situations.” Subjects’ knowledge in action should be investigated in a schema—that is, the 
cognitive elements that allow for a subject’s action to be operative. The expressions “knowledge in 
action” and “theorem in action” designate knowledge contained in a schema, which can also be 
designated by the more global expression “operative invariants.”
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11.3.2  Developing Didactic Progressions for Teaching 
Multiplicative Calculation

Students should experience in class something that is intrinsic to mathematics: the 
need to debate the truth or falsity of an affirmation, the search for more effective 
solutions for solving a problem, and practicing debate as a means to answering 
these questions. The first edition of the book by Isoda and Olfos (2009) for teaching 
multiplication expertly shows something that many do not consider, but that has 
enormous importance in learning mathematics: that mathematical knowledge is 
built collectively in the little society of the class, which is why student motivation 
is needed.

Guy Brousseau, considered the father of the modern didactics of mathematics, 
says this on the topic (Brousseau, 1995):

As a social practice, proof is the legitimate method of convincing an interlocutor: the inter-
locutor should be respected, using nothing except his or her repertoire (logical, mathemati-
cal, scientific . . .) and the information he or she currently has available, and other means of 
pressure—rhetorical (formal ability), psychological (such as seduction, authority, or com-
passion) or material (threats, violence, etc.)—should be avoided.

In mathematics, knowing how to prove an affirmation, justify a result, etc., is part of 
one’s own learning of the material, but the practice of proof is constructed here very differ-
ently than how it tends to occur socially. There is a series of psychological barriers to 
overcome, as the person who is correct is not always the most powerful or the most socially 
valued, but rather the one who can prove their arguments to be valid, so our self-esteem is 
often compromised. The truth in mathematics is not associated with power, which conflicts 
with social habits. Even the teacher is obligated to demonstrate that what he or she says is 
true. Authority is not enough. Nor are things true based on voting, nor can we support our 
friends’ answers based on loyalty if these answers are not correct. The instrument of this 
initiation is learning proofs, not only as official knowledge, but also as a way of practicing 
proofs (and of limiting them to their domain of relevance). It forms part of the individual 
and particularly of the rational individual, just as much as the most essential social relations 
do. Democracy cannot exist without a social organization that integrates the role of knowl-
edge in decision making and without shared and correct management of knowledge, truth, 
and proof. In primary school, this fundamental civic formation is not formulated, but it first 
happens in mathematics (see Fig. 11.2).

Fig. 11.2 Researchers 
take notes from pairs’ 
discussions
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For debate to arise naturally in class, and not as an imposition by the teacher, a 
problem should be proposed that makes sense to the students and allows them to use 
personal or group strategies that can be compared and validated. The situations have 
to be designed so that the knowledge the students possess at that moment allows them, 
if not to solve the problem completely, at least to understand the solution and an out-
line of the solution (a base strategy). We should consider that whatever is being 
learned, students always possess prior knowledge, which is often partial or incorrect, 
and one of the teacher’s tasks is precisely to begin with this prior knowledge and make 
compatible something that is very important in calculation: the use of these personal 
procedures and the acquisition of faster and more effective universal algorithms.

If the students’ knowledge were sufficient to resolve the situation, we would be in 
a situation of application of prior knowledge, not a learning situation. As such, the 
students’ base strategies must be shown to be insufficient or not very effective, and 
the students should progress to be able to successfully solve the problem proposed in 
the situation (modification of schema, generalization, or construction of new schema).

As we have seen in the text from Isoda and Olfos, numerical learning requires 
considerable periods of time, and, as such, a family of interconnected situations 
must be designed—that is, didactic engineering (see Chamorro, 1999, 2003, 2004).

One of the first examples of didactic engineering—developed at COREM (Centre 
d’Observation por la Recherche en Enseignement des Mathématiques de Bordeaux) 
in 1985 and, as such, under the supervision of Guy Brousseau himself—is about 
multiplication and is clearly based on his theory of situations. Despite the 25 years 
that have passed, and everything that has happened in didactics in that time, some of 
its guiding principles remain relevant today:

Part I
Introducing multiplication through the need for rapidly counting the number of ele-
ments in a collection structured, or susceptible to being structured, in equal parts. 
The multiplicative structure a × b appears as a comfortable and effective way of 
designating the total number of elements in this collection, a manipulable collection 
at first, and later a represented collection. The need for using writing is connected to 
a situation of communication between teams: sending a message with a written 
multiplicative expression allows the receiver to form the corresponding collection 
(3 sessions).

Designation as a product of a collection arranged in the form of a table, using the 
number of elements per row and per column (1 session) (see Fig. 11.3 and 11.4).

Designation of products in the form a × b (4 sessions).

Part II
Comparison of numbers (near 250) written in the form a × b (1 session).

First calculation methods for a  ×  b based on a multiplicative repertoire (3 
sessions).

For example (see Fig. 11.5), find the value of 7 × 15 using the following reper-
toire: 4 × 6 = 24, 3 × 6 = 18 . . . 4 × 6 = 28, 7 × 7 = 49 . . .

 2 7 14× =  
 15  

M. del Carmen Chamorro



275

Part III: Abandoning Graph Paper
First sessions (2 or 3). Find the total number of squares in a grid, for example 
24 × 18 (see Fig. 11.6), using only blank paper and a multiplicative repertoire.

Second group of sessions (3 or 4). Progressive elaboration of a complete solution 
based on parts, using fundamentally the dimension 10 (see Fig. 11.7).

24 18 11 7 11 8 11 3 13 7 13 11× = × + × + × + × + ×

Last group of sessions (3 or 4). Search for the results of products provided by the 
teacher, without using graph paper, which can only be used for checking results.

Fig. 11.3 Collections 
arranged in the form of a 
table

Fig. 11.4 Products as 
tables of rows and columns

Fig. 11.5 Distributive property applied to arrays
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Part IV: Fine Tuning an Algorithm (Lattice Multiplication)

• Organization and observation of the product of one-digit numbers (tables) (1 
session).

• Rule of zeros: calculate in 1-step products like 20 × 30, 7 × 80, general rule (4 to 
7 sessions).

• Organization and arrangement of calculations, connected through additive 
decomposition of the factors (tens and units) and the distributive property.

• Reduction of the decomposition (3 to 6 sessions).
• Institutionalization of the algorithm, preferably lattice multiplication (1 session).

In parallel, mental calculation and solving multiplication problems are worked on.8

Part V

• Counting a collection (4 sessions): squares in a grid (43 × 32, 46 × 32, 56 × 37, 
234 × 526 . . .) posted on the board, using blank paper or graph paper.

8 The problem statements are of the following type: “A train has 9 cars, each with 18 seats and 4 
wheels. How many children can sit in the train?” or “A construction worker wants to put tiles in a 
bathroom. The tiles come in boxes of 10. The worker places 5 rows of 6 tiles each. How many tiles 
has the worker placed?”

Fig. 11.6 Task visual information

Fig. 11.7 Representation 
of a solution
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We could say that the ERMEL group (Equipe de Recherche des Mathématiques 
de l’Enseignement Elementaire)9 continues the paths introduced by the Bordeaux 
IREM (Institut de Recherche pour l’Enseignement des Mathématiques), which, at 
the same time, was heavily influenced by research carried out by Guy Brousseau.

In the guidelines in ERMEL’s latest edition, some principles to be followed in 
teaching multiplication can be observed:

• Reinforce what has been learned about decimal numeration.
• Introduce multiplication through iteration situations in which collections formed 

of subcollections of the same number of elements participate, or situations whose 
resolution requires a repetition of actions that imply adding or subtracting repeat-
edly the same quantity.

• Build the meaning of multiplication through the set of problems that belong to 
the multiplicative conceptual field.

• Give preference to multiplicative problems of the direct proportionality type in 
which the student can use known procedures that should evolve and adapt to new 
situations.

• Abandon graph paper, despite its advantages (easy geometric observation of the 
commutative property, easy management of the decomposition of products, mul-
tiplicative writing of a × b as a designation of a number and not as a calculation, 
etc.) due to the long and difficult process that must be followed to reach the 
Fibonacci algorithm if all the steps are followed.

• Do not separate multiplicative problems from the associated division problems.
• Construction of multiplication tables based on a series of multiples: discovery of 

the rule of zeros (using commutativity, iterated summation, or multiplicative 
decomposition of the numbers).

• Construction of the multiplication technique by the students.
• Insist on processes that allow for solving products through mental calculation 

(successive doubling, using multiples of 10, decomposing a number, etc.).
• Encourage the use of processes that can solve products through mental arithme-

tic (successive duplications, the use of multiples of 10, decomposition of num-
bers, etc.).

• Construction of the operatory multiplication technique through summing of mul-
tiples of the multiplicate of the type ×10, ×20, etc.

The above treatment is achieved over 2 years (in the third and fourth years) by 
presenting several different situations that must be resolved using multiplication pro-
cedures, as well as games aimed at the acquisition and memorization of sets or the use 
and discovery of mental arithmetic techniques (dominoes, battle games, bingo, etc.).

9 Since 1977, this group has been publishing various manuals aimed at preschool teachers, elemen-
tary teachers, and teacher trainers—manuals that have collected practically all the research results 
in didactics of mathematics at the elementary level, and that, as such, constitute an obligatory ref-
erence (see https://forums-enseignants-du-primaire.com/topic/78945-ermel/). Through the various 
successive editions, one can appreciate the evolution that has occurred in the teaching of different 
mathematical concepts.
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In our opinion, although the models and underlying multiplication structures are 
mathematically clear, there are unresolved questions in all known didactic 
approaches to multiplication, implying the need for in-depth study, analyzing the 
proposals given by the teacher in this regard. For example, if the teacher begins with 
situations that demand repeated addition, how can we justify that a × b is equal to 
b × a when one of the factors is measurement with dimensions? To find the process 
of calculating 4 bags of flour that cost €2 a bag, the correct answer is to do 
2 + 2 + 2 + 2, since calculating 4 + 4 would be absurd and make no sense, even 
though 4 + 4 = 2 + 2 + 2+ 2. Nevertheless, something that can easily be seen, even 
without wanting to see it, is that the number of objects arranged in 2 rows of 4 is the 
same as when they are arranged in 4 rows of 2.

Despite this, this difficulty is mainly seen in solving problems in which it is nec-
essary to maintain the meaning of the operations being carried out, keeping the 
connection with what is represented by the problem data. Thus, in the calculation of 
a multiplication (2 × 4 = 4 × 2),10 the pupil must search for the best way to solve the 
problem, meaning that the commutative property is greatly helpful.

Perhaps the only possible solution is always to propose the answer to a problem 
using the form that makes the most sense, clearly separating it from the calculation 
stage of actual multiplication, though it is then necessary to recontextualize the 
result obtained in order to ensure it makes sense.

11.4  Informal Arithmetic Methods

For many years, several researchers have questioned the importance of the common 
practice of teaching arithmetic algorithms, relative to the lack of consideration of 
informal arithmetic procedures used by pupils in daily life, often in parallel with the 
usual algorithms from school. The result is that in the eyes of the pupils, the school 
has a different way of doing things from daily life, and they are unable to realize that 
they are dealing with procedures that aim to find solutions to the same problem.

Resnick and Ford (1990) use data obtained by Lankford to conclude the 
following:

 1. The thought patterns/arithmetic strategies pupils develop when studying basic 
mathematics are highly individual, and they often do not follow orthodox models 
from textbooks or the classroom.

 2. Differences can be seen in . . . the arithmetic strategies of pupils that are success-
ful and those that are not.

10 The operation written as “2 × 4” is not read the same in all cultures. In Japan it would mean 
“2 + 2 + 2 + 2” whereas in Spain it is read as “2 times 4” and would therefore be written as “4 + 4.” 
We understand that although one of the two forms is more advantageous to the construction of 
tables, cultural tradition is far stronger, and it would be wrong for a school to go against social/
mental norms.
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 3. Indications can be found for teaching that support arithmetic ability based on 
pattern observation . . . by pupils who do incorrect calculations.

It can also be said that the use of informal arithmetic procedures is mostly among 
the pupils, and not all those who use them make mistakes.

For example, for counting the quantity of spots (see Fig. 11.8) some children will 
see the five spots of a die in five locations on the tile, while others will move the 
spots from the four corners into a new location, turning the tile into a 5 × 5 square.

Many of the informal multiplication methods used by pupils are based on a com-
mon pattern: counting (2 by 2, 3 by 3, etc.). It is therefore important to include this 
type of exercise in mental arithmetic work. We tend to think that this method, which 
can appear simple and primitive, is only used by first-year pupils, but the reality is 
that it remains in use by pupils in later years. Lankford found that of 176 seventh- 
year pupils, 63 (36%) used counting when doing multiplication. It is precisely the 
use of the counting algorithm that causes pupils to have difficulty in dealing with 
and retaining multiplication results in memory work, while also making them take 
longer in finding the results.

Therefore, the idea of pupils memorizing multiplication tables lies in the aim of 
transitioning from the counting algorithm to recalling numerical facts from long- 
term memory; i.e., numerical facts can be recalled from long-term memory almost 
immediately, thus freeing up resources in the working memory for immediate 
results and consequently decreasing the number of errors. This does not mean that 
the pupil will no longer make mistakes, as it is known that remembering a numerical 
result is more complex than recalling it from long-term memory, since numerical 
facts are strongly connected, even when they apply to different operations, and it is 
easy to activate an incorrect result such as “2 + 7 = 14” or “2 × 7 = 9.”

It is also known that the mistakes made by pupils are more systematic than ran-
dom. They respond to a certain logic, and this often originates from a lack of under-
standing of the procedures implied in algorithms, which are therefore applied 
incorrectly (see Fig. 11.9). It is precisely this logic that makes many errors persis-
tent, since the same incorrect procedure is repeatedly applied. It is therefore impor-
tant for teachers to take time to observe these errors and identify which procedures 
they come from. If this is not done, they will be unable to help their pupils overcome 
the errors.

Fig. 11.8 Grouping in five groups of five. (Reproduced from Tsubota, 2007)
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If the aim of teaching arithmetic is the development of understanding, research 
must be done into the informal procedures that pupils use in daily life to ensure that 
the teacher can help the child make a connection between their formal mathematics 
learning in school and their everyday practices. Baroody (1988) recommends that 
any formal expression of the type 3 × 4 = 4 + 4 + 4 + 4 is always linked to real expe-
riences that have meaning for the pupil. The pupil can then establish connections 
with her/his own informal knowledge, and the formal symbolism of the mathemat-
ics avoids becoming something hollow.

This becomes all the more significant when considering some results of research 
into how the human brain functions. For example, when asking why the results of 
memorizing multiplication tables are so mediocre (a lot of time is spent on memo-
rization and repetition of the tables, with very poor results, as pupils get confused 
and forget many of the multiplications despite the number of hours spent on it), 
Dehaene provides some very interesting clues, such as the very structure of the 
multiplication tables themselves. Furthermore, to make the difficulty experienced 
by children when learning this for the first time more understandable to adults, he 
replaces the list of numbers 0, 1, 2, 3, . . . with a list of names and replaces the mul-
tiplication with a workplace, giving a table such as the following:

• Carl David works in Richards-Brown Street     (3 × 4 = 12)
• Carl William works in Brown-Richards Street     (3 × 7 = 21)
• William Pierce works in Carl-Pierce Street       (7 × 5 = 35)

It is obvious that memorizing the results above is a very difficult task. This is 
because our memory is not structured like that of a computer. It is associative11 and 
it weaves several different connections between very different pieces of informa-
tion; this is at the same its strength and weakness.

11 Since human memory is associative, it weaves innumerable connections between very different 
pieces of information that in turn are activated regardless of whether they proceed or not, which 
happens from a very early age. When learning multiplication tables, it is vitally important that 
numerical facts are not mixed with facts relating to other operations, giving the result of a sum or 
a difference instead of a product. However, the human memory has difficulty saving the results of 
different operations separately. As a result, it is easier to notice that “2 × 4 = 9” is wrong than that 
“2 × 3 = 5” is wrong.

Fig. 11.9 Student’ work 
and mistake
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As Dehaene says, it is interesting to recall the behavior of a lion when we see a 
tiger, but it is disastrous to activate knowledge of 7 + 6 or 7 × 5 when we want to 
know 7 × 6. Interference and inappropriate association are the basis of the failure to 
memorize the multiplication tables.

The errors are not random, and incorrect answers are always numbers that are on 
the multiplication tables somewhere, often in the same line or column as the result 
the pupil is looking for. Considering that our brains use continuous and approxima-
tive representation, it is reasonable that when searching our long-term memory for 
the answer to 7 × 8, the results of 7 × 9 and 6 × 8 are also activated. The brain also 
has difficulty saving additions and multiplications separately. This explains why we 
are quicker to see that “2 + 4 = 8” is wrong and slower to spot whether “2 × 4 = 6” 
is wrong. Similarly, it is easier to see that “2 × 4 = 7” is wrong than to see that 
“2 × 4 = 6” is wrong. It is also known that the difficulty in recalling a numerical fact 
from long-term memory depends particularly on the number of associations that 
cause interference—so-called interfering associations (Bideau and Lehalle, 2002)—
which vary with the development of the individual and are activated when looking 
for an answer to a problem.

About 80% of errors arising when learning the multiplication tables are of the 
type described above, and the so-called distance effect can be seen (van Hout, 
Meljac, and Fischer, 2005). For example, the error “7 × 8 = 42” has a result from the 
adjoining table (7 × 6 = 42). Only 13% of errors are not related to inverted numbers, 
such as “8 × 7 = 54”; since 54 is 6 × 9, it is not in the 8 table or the 7 table. When 
multiplication and some other operation appear together in the same class or in the 
same problem, the errors that appear are consistent with swapping the operations 
(e.g., “8 × 7 = 15” or “4 + 2 = 8”), and this type of error can account for up to 30% 
of errors. Only 7% of errors are those of the type where the answer is not related to 
the numbers or the operations, for example: “5 × 9 = 26.”

Since it is known that the brain is associative, if the table has been built and 
learned by the pupils by establishing connections between the results—as shown in 
the guidelines of PROMETAM [Proyecto Mejoramiento en la Enseñanza Técnica 
en el Área de Matemática] (Secretaría de Educación, Honduras, 2007) and described 
in classes by Professor Tsubota (2007) or in the texts of ERMEL (1993, 1995)—
activating 7 × 5 can be helpful if we know that the next answer is found by adding 
another 7. This means that if we want to be more effective with less effort, we 
should adapt the way tables are taught to what is known about how the brain stores 
and recalls information in the long-term memory, favoring semantic learning of 
multiplication tables.12 However, pupils in primary education do not in general 
spontaneously seek out this type of method, meaning that it is necessary to encour-
age discovery of the properties of multiplication.

12 The term “semantic” assumes comprehension and serves to differentiate between rote learning 
(which is the most common type and is not based on comprehension or connections) and associa-
tions between products. Semantic learning of multiplication tables uses the associative character-
istic of memory, which is useful to find, for example, 6 × 9, using procedures such as (6 × 10) − 6, 
or (6 × 6) + (6 × 3).
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Of the multiplication tables, special mention must be made of the 1 and 0 tables, 
since they can be learned by the general rules: anything multiplied by 0 is 0, and 
anything multiplied by 1 is itself. It has been shown that access to numerical facts 
does not work in this case, such that results presented as n × 1 = n and m × 0 = 0 are 
recalled from memory through selective rules that can be lost or confused, meaning 
that errors affect all the answers in the table and not just certain numerical facts, as 
is the case with the other numbers.

Some researchers, such as McCloskey and Macaruso (1994), posit that the cog-
nitive system related to numerical treatment is structured into modules and 
comprises:

• A comprehension system
• A production system
• An arithmetic system

The first two can in turn be divided into two subsystems, one related to Arabic 
numbers and the other to verbal names. The third has three components: knowledge 
of the operation symbols, the arithmetic procedures, and the numerical facts saved 
in long-term memory. According to this model (see Fig. 11.10), each operation has 
a network of different representations, which can easily explain the disassociation 
between operations in the minds of many schoolchildren.

Fig. 11.10 The McClosky model. (From McCloskey, 1992, p. 113)
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For Dehaene, each number is represented by an analogous code in the form of a 
number line, an audiovisual code, and a visual–Arabic code, and each of these codes 
is used for different tasks. Specifically, multiplications and some simple additions, 
learned routinely by memory by some pupils, are coded verbally, while the results 
of subtractions and divisions are learned and solved by the application of rules that 
involve semantic manipulation (e.g., 68 − 17 = 68 − 20 + 3 = 48 + 3 = 48 + 2 + 1 
= 51), and therefore the analogous representation of the quantities. This fact is neu-
rologically linked with tasks carried out by each of the two hemispheres of the 
brain; thus, arithmetical operations are only possible for the left hemisphere, while 
both hemispheres can recognize whether two numbers are identical and perform 
counting, though the latter is done more easily by the left hemisphere.

For the treatment of calculation difficulties, educators/teachers should insist on 
the presentation of situations (to provide activities for students) in the varieties of 
codes, use verbal, written and Arabic numerals interchangeable.

The Japanese method of teaching the multiplication tables, as is done in schools 
in many countries, also involves memorization through repetition—i.e., using ver-
bal memory to store phrases such as “three times four is twelve” easily in the mem-
ory. It should be noted that the verbal memory stores this phrase on the same level 
as the phrase “two thousand bees appeared on the honeycomb”—i.e., a sentence 
without any numerical meaning.

There are many studies, dating from 1967, that confirm Asian superiority in 
mathematics and, in particular, that of Japanese13 students. Some factors that explain 
this superiority are the following:

• Schoolwork is of a large quantity and high quality, with pupils dedicating consid-
erably more extracurricular time to schoolwork than South American students. In 
particular, as stated in the text cited above, they spend a lot of time not only on 
systematic work to learn arithmetic but also on solving situations that require the 
application of that arithmetic.

• The attitude of parents, being more demanding and ambitious with the progress 
of their children.

• The culture of competition within schools (the text by Isoda and Olfos (2009) 
describes this aspect very well), putting additional pressure on students to obtain 
good results in school.

• Motivation based on the idea that work and effort are important virtues that are 
absolutely necessary for success in later life. These aspects are clearly seen in the 
classroom studies described in the aforementioned text.

In addition to these factors, there is also the numerical language. The uniqueness 
of the Japanese14 language allows for much shorter sentences than those possible in 
Spanish, since they omit the word “times,” thus facilitating memorization.

13 In the text by Fischer (2002, pp. 215–237), several studies can be found on the implementation 
of these aspects, particularly in the USA.
14 See Isoda and Olfos (2009), p. 50.
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With regard to oral numeration, Asian systems of number words are fully regular, 
while oral numeration in Spanish is very irregular and uses the different powers of 
ten as its basis, with each one given a specific word: diez (“ten”), cien (“one hun-
dred”), mil (“one thousand”), diez mil (“ten thousand”), cien mil (“one hundred 
thousand”), un millón (“one million”), etc. Furthermore, a different word is needed 
to designate each of the numbers from zero to fifteen. The words once (“eleven”), 
doce (“twelve”), trece (“thirteen”), catorce (“fourteen”), and quince (“fifteen”) are 
plainly irregular, as are veinte (“twenty”), treinta (“thirty”), cuarenta (“forty”), cin-
cuenta (“fifty”), sesenta (“sixty”), setenta (“seventy”), ochenta (“eighty”), and 
noventa (“ninety”). Asian systems, on the other hand, are fully regular and the com-
position of a number is clearly apparent in its name; for example, the word for 
“eleven” transliterates as “ten one,” the word for “twenty-five” as “two tens and 
five,” etc. All of these make the names of the numbers easier to learn for Asian 
pupils in general and for the Japanese in particular. This oral construction of num-
bers also makes it easier to avoid many errors that commonly arise in arithmetic, by 
combining the cardinal meaning with the name of the number.

However, doing arithmetic in Spanish requires a pre-established connection 
between the written number and the number words used in oral numeration (since 
the multiplication tables are learned orally)—i.e., understanding the quantitative 
meaning of the written form, which is evidently more complex (see Fig. 11.11).

11.5  Do We Have to Teach Algorithms?

It is evident that learning arithmetic algorithms is more costly in terms of classroom 
hours and the effort and failure of pupils, leading us to ask the question as to whether 
this effort is worthwhile in mathematics teaching.

Fig. 11.11 Dominoes for 
connecting arrays with 
products
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Before answering this question, we would like to examine one of the most sig-
nificant causes of pupils’ failure in arithmetic, which goes unnoticed by many 
teachers: the lack of understanding of decimal numbers.

The positional principle that governs decimal numbers15 is based on a consider-
able mathematical apparatus. It should not be forgotten that although all numbers 
involve an expression of a polynomial of 10 to different powers, their normal abbre-
viated written form, which removes the powers and leaves only the coefficients, 
works with a norm for reading and writing the numbers based on the value of the 
position—i.e., it is the position that allows us to interpret the value of the number.

Kamii conducted an experiment to determine children’s level of comprehension 
of the place value (Kamii, 1985). Basically, the test consisted of asking children to 
associate the number 16 with a number of corresponding tokens and then indicate 
how many tokens each of the numerals 1 and 6 represented in a drawing. The results 
were surprising: only 51% of the fourth-year pupils, 60% of the sixth-year pupils, 
and 78% of the eighth-year pupils drew ten tokens to represent the 1 in 16.

It is clear that, as such, a large percentage of pupils have difficulties understand-
ing place value, even in older age groups. The number of pupils who will fail in 
arithmetic, particularly in applying classical arithmetic algorithms, will also be very 
large, since they are almost all based on the properties of decimal numbers. The 
solution that many pupils find to this problem is rote learning without understanding 
the steps of the algorithm; thus, they lose control over what they are doing. For 
them, the path, the act of placing numbers in classical multiplication, going to one 
place if there is a zero in the multiplier, etc., are purely mechanical acts, lacking 
explanation; it is done like that merely because it is, and, as Baroody states:

Although children recall basic information learnt by memory, this does not guarantee intel-
ligent use of that information. Deep down, many of them learn arithmetic but do not learn 
mathematics. These problems are made worse when the exercises and repetitions lack any 
interest and meaning. All too often, mass teaching becomes an obstacle to meaningful 
learning, thought, and problem solving (Baroodi, 1988, p. 55).

We work to help students learn automated procedures mechanically as arithmeti-
cal algorithms (learning arithmetic), but they do not know how they are built and 
what they are for (learning mathematics). The pupils accumulate easily assessable 
knowledge, but they cannot use it in a meaningful way because it is not part of their 
interests or the solution to any problem. Adding to the difficulties that children have, 
for the reasons detailed above, when relating the name of a number to its cardinal 
meaning, the panorama facing teachers when teaching algorithms is not promising.

We should also ask ourselves about the usefulness of algorithms in daily life and 
their frequency of use. Many of us have never done a multiplication with a three- digit 
number after leaving school, and when it has been necessary, we have used a calcula-
tor or an estimate, depending on whether an exact answer was needed. This cannot be 
denied, but it is not sufficient to conclude that schools should adopt  measures to pro-
mote other type of arithmetic, both mental and use of a calculator, instead of spending 
time on learning algorithms.

15 See Isoda and Olfos (2009), p. 50.
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In our opinion, using a written arithmetic algorithm to multiply numbers with 
three digits is a waste of time and takes a great deal of effort for most pupils. 
However, these same pupils can acquire knowledge of number theory solely through 
observation, which can be done simply by letting them use a calculator freely. This 
can be enhanced by discoveries guided by questions proposed by the teacher: magic 
squares, numbers whose squares are palindromes, numbers whose products do not 
change when the numbers are written backward (e.g., 36 × 84 = 63 × 48), random 
numbers, the pole of a number, etc.

For multiplication of two-digit numbers by two-digit numbers, we recall the use 
of the distributive property and the automation of simple results, mainly multiples 
of 10, later adding the results without the need for putting them in place, as is done 
with the Fibonacci method.

To calculate 36 × 28, we can do the following:

 

36 28 30 6 20 8 30 20 30 8 6 20 6 8

30 20 3 2 10 10 600

× = +( )× +( ) = × + × + × + ×
× = × × × =

330 8 3 8 10 24 10 240

6 20 6 2 10 12 10 120

6 8 48

600 240 1

× = × × = × =
× = × × = × =
× =

+ + 220 48 960 48 1008+ = + =  

or use mental arithmetic strategies, depending on the level achieved by the pupils—
for example, using doubles which are often automated easily.

 

36 28 36 30 36 2 36 20 36 10 36 2

720 360 72 108

× = ×( ) − ×( ) = ×( ) + ×( ) − ×( ) =
+ − = 00 721008

36 28 40 28 4 28 28 2 2 10 28 2 2

56 2 10

−
× = ×( ) − ×( ) = × × ×( ) − × ×( ) =
× ×(( ) − ×( ) = − −56 2 1120 112 1008

 

Other nonconventional algorithms, such as Egyptian multiplication, are based on 
the process of doubling. In the case of the multiplication above, we have the following:

1

2

4

8

16

28

___

36

72

144

288

576

1008

____

1

2

4

8

16

32

36

____

28

56

112

224

448

896

1008

_____

M. del Carmen Chamorro



287

In the first case, we double 36, obtaining 4, 8, and 16 times 36 (in bold text), 
which can then be summed to find 28 times 36. On the right we can see that the 
result is the same if we double 28, obtaining 4 and 32 times 28, which are summed 
to give 36 times 28.

The diagram below is also useful, Fig. 11.13, as it can be followed mentally to 
find the product of two two-digit numbers (c.f. Fig. 11.12). For numbers with more 
than two digits, we believe that mental arithmetic is not appropriate; a calculator is.

If we apply the diagram above to 28 × 36, we have:

• Units: 8  ×  6  =  48; we write the “8” and carry the 4 to be added to the tens 
figure.

• Tens: 2 × 6 = 12, 3 × 8 = 24, 12 + 24 = 36, 36 + 4 = 40; we write the “0” and carry 
the 4 to be added to the hundreds.

• Hundreds: 2 × 3 = 6, 6 + 4 = 10; we write the “10”.

The result is 1008. The process can be done mentally, noting only the final result, 
but we can aid the process with a pencil and paper, writing down the intermediary 
steps, as described above.

In conclusion, we are left only to underline one of the ideas already described 
above: that arithmetic is not an end in itself but a means of solving problems quickly 
and effectively. Therefore, learning numerical facts or algorithms to the detriment of 
understanding and the meaning of the operation should be avoided at all costs. 
Attaining speed with arithmetic should not be an objective in school, and using 

Fig. 11.13 Diagrammatic 
explanation of Russian 
multiplication

The Russian peasant algorithm. 

* Write each number at the head of a column.
* Double the number in the first column, and halve the 
number in the second column.
* If the number in the second column is odd, divide it by 
two and drop the remainder.
* If the number in the second column is even, cross out 
that entire row.
* Keep doubling, halving, and crossing out until the 
number in the second column is 1.
* Add up the remaining numbers in the first column. 
* The total is the product of your original numbers.

Fig. 11.12 Russian peasant multiplication algorithm
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fingers or other objects should not be seen as embarrassing or something to be dis-
couraged in pupils. We can learn from the results of neuropsychology research, 
making us more understanding and tolerant of pupils’ mistakes, allowing us to adapt 
our teaching methods to how the brain actually works, as this is the root of many 
failures in learning arithmetic.

References

Baroody, A. (1988). El pensamiento matemático de los niños. Madrid: Visor aprendizaje.
Bideau, J., & Lehalle, H. (2002). Le développement des activités numériques chez l’enfant. Paris: 

Lavoisier.
Brousseau, G. (1995). Les mathématiques à l’école. Paris: Association des Professeurs de 

Mathématiques de L’Enseignement Public.
Chamorro, M. C. (1999). La didáctica de las matemáticas como disciplina científica. In  Actas del 

XII Seminario Interuniversitario de Investigación en Didáctica de las Matemáticas (pp. 3–80). 
Madrid: Universidad Complutense de Madrid.

Chamorro, M.  C. (Ed.). (2003). Didáctica de las matemáticas. Educación primaria. Madrid: 
Pearson.

Chamorro, M. C. (2004). A la búsqueda de la numeración. De la filogénesis a la ontogénesis: 
Aspectos didácticos e históricos. In M. C. Chamorro (Ed.), Números, espacios y volúmenes en 
el entorno del niño (pp. 95–121). Madrid: Ministerio de Educación, Cultura y Deporte.

Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford 
University Press.

Dehaene, S. (2003). La bosse des maths. Paris: Odile Jacob.
ERMEL [Equipe de Recherche des Mathématiques de l’Enseignement Elementaire]. (1993). 

Apprentisages numériques, CE1. Paris: Hatier.
ERMEL [Equipe de Recherche des Mathématiques de l’Enseignement Elementaire]. (1995). 

Apprentisages numériques, CE2. Paris: Hatier.
Fischer, J. P. (2002). Différences culturelles et variabilité des modalités des acquisitions numéri-

ques. In J.  Bideau & H.  Lehalle (Eds.), Le développement des activités numériques chez 
l’enfant (pp. 215–237). Paris: Lavoisier.

Isoda, M., & Olfos, R. (2009). La enseñanza de la multiplicación: el estudio de clases y las deman-
das curriculares. Valparaiso: Ediciones Universitarias de Valparaíso.

Kahane, J. P. (2002). L’enseignement des sciences mathématiques. Paris: Odile Jacob.
Kamii, C. K. (1985). El niño reinventa la aritmética [Children reinvent arithmetic]. Madrid: Visor 

Aprendizaje.
McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired 

dyscalculia. Cognition, 44, 107–157.
McCloskey, M., & Macaruso, P. (1994). Architecture of cognitive numerical processing mecha-

nisms: Contrasting perspectives on theory development and evaluation. Cahiers de Psychologie 
Cognitive/Current Psychology of Cognition, 13, 275–295.

NCTM [National Council of Teachers of Mathematics]. (2003). Principios y estándares para la edu-
cación matemática. Traducción Española de la Sociedad Andaluza de Educación Matemática 
Thales. Sevilla: SAEMT.

Resnick, L., & Ford, W. (1990). Enseñanza de las matemáticas y sus fundamentos psicológicos 
[Mathematics teaching and its psychological basis]. Barcelona: MEC-Paidós.

Secretaría de Educación, Honduras. (2007). Guías para el maestro y libros del estudiante de 
PROMETAM. Tegucigalpa: Ed. Secretaría de Educación, República de Honduras, Universidad 
Pedagógica Nacional Francisco Morazán, and Agencia de Cooperación Internacional del Japón.

M. del Carmen Chamorro



289

Tsubota, K. (2007). The future of mathematics teaching in Japan children: developing lesson to 
captivate. In APEC Tsukuba International Conference III. Tokyo: University of Tsukuba.

Van Hout, A., Meljac, C., & Fischer, J. P. (2005). Dyscalculies et troubles du calcul chez l’enfant. 
Paris: Masson.

Vergnaud, G. (1981). L’enfant, la mathématique et la realité. Berne: Peter Lang.
Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des 

Mathématiques, 10.2(3), 133–159.
Vergnaud, G. (2001). Additive and multiplicative problems. In M. C. Chamorro (Ed.), Difficulties 

in learning mathematics. Madrid: Ministerio de Educación, Cultura y Deporte.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons licence and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

11 Can We Explain Students’ Failure in Learning Multiplication?

http://creativecommons.org/licenses/by/4.0/


291© The Author(s) 2021
M. Isoda, R. Olfos (eds.), Teaching Multiplication with Lesson Study, 
https://doi.org/10.1007/978-3-030-28561-6

A
Additive reasoning, 252
Additive strategies, 252, 253
Array model

associative property, 244
commutative property, 245
distributive property, 244

Asia–Pacific Economic Cooperation (APEC), 
167, 168

B
Base ten place value system, 157, 158, 160, 

161, 163, 168, 190, 192
Binary operation, 41

C
Chilean Curricular Framework, 28
Cognitive function, 272
Column multiplication

decomposition, 166, 167
mental arithmetic, 165
multiplication table, 165
standardized/formal algorithm, 166

Common Core State Standards for 
Mathematics (CCSSO), 27

Commutativity, 141
Conceptual knowledge, 8
Cultural practice

abacus, 145
activities, 147
mathematical expression, 147
memorization, 145, 146
using area-array cards, 148

using front–back cards, 147, 148
using notebook and journal writing, 149

Curriculum sequences, 10
Cyclical distribution, 224

D
Didactic engineering, 219
Didactic sequence

calculation, 220
development, 219
didactic variables and situation 

sequences, 217
duration, 219
feedback, 233, 234
multiplication problems, 225, 226
partitive division, 224, 225
procedures

additive constants, 228
canonical and noncanonical, 230
informal, 227
internal relationships, 228
reinterpreting problem, 227
searching unknown factors, 231, 232

purposes, 218
quotative division (see Quotative  

division)
school and students, 219
setting, 216
theoretical framework, 219
type of problem, 217
unit value, 220, 226, 227
validation resources, 235, 236
verification, 218

Didactic situations theory (DST), 219

Index

https://doi.org/10.1007/978-3-030-28561-6#DOI


292

Didactics
calculation algorithms, 270
commutative property, 278
distributive property, 274, 275
ERMEL, 277
graph paper, 275
lattice multiplication, 276
math lab, 271
mathematical competency, 270
multiplicative structure, 274
situations, 271
task visual information, 276
teaching multiplicative calculation, 

273, 274
theory of conceptual fields, 271, 272

Dividing fraction, 91
Division

learning multiplication, 219
partitive, 216, 224
quotative, 215, 221–223

E
Educator approaching, 200
Ethnomathematics program, 210
Euclidian Elements, 41
Exemplar approach, 11
Extension, multiplication

adaptation, 80
division to ratios and rates, 90
meanings of fractions, 91, 94, 95
partitive and quotative divisions, 83, 84
proportional number lines, 80, 83
proportions, 80
tape model, 80

F
Fibonacci algorithm, 266

G
General-to-specific approach, 10
Gestalt theory, 200, 210

H
Hypothetical learning trajectory

grades, 243, 244, 246
tasks

connected calculations, 247, 248
stacks of boxes, 246, 247
stickers packs, 249–251

I
Informal arithmetic methods

cognitive system, 282
continuous and approximative 

representation, 281
counting algorithm, 279
distance effect, 281
formal mathematics learning, 280
human brain functions, 280
interfering associations, 281
memorization, 283
oral numeration, 284
pattern, 279
semantic learning, 281
semantic manipulation, 283
student’ work and mistake, 279, 280
teaching arithmetic algorithms, 278
understanding, 280, 284
verbal memory, 283

International Association for the Evaluation of 
Educational Achievement (IEA), 2

J
Japan International Cooperation Agency 

(JICA), 56
Japanese approach

additive and multiplicative structures, 96
array and block diagram, 73
binary operations, 68, 70, 76, 77
commutativity and order in 

expression, 72, 73
conceptualization and 

proceduralization, 68
Descartes’s definition, 66
drawing strategies, 97
elementary levels, 98
English and Spanish notations, 66
grammatical–syntactical difference, 75
mathematical expression, 66
multiplicand and multiplier, 72
multiplication table, 68
multiplicative procedure, 68
multiplicative property, 96
multiplicative situations, 68
multiplier and multiplicand, 66
number of groups, 68
number of units, 67
polynomial notation, 78
preparation, 76
problem-solving approach, 99
proceduralized table, 68
properties of table, 68

Index



293

properties, multiplication table, 96
proportion, 97
repeated addition and challenges to 

difficulty, 71
students learn multiplication, 96
task sequence functions, 98
task sequence to develop students, 97
teaching, 68
tentative/arbitrary units, 79
unit length of tape, 70
unit quantity, 67
unit to count, 78

Japanese educational principle, 133, 134
Japanese International Cooperation Agency 

(JICA), 104
Japanese lesson study

analytical terminology, 104
capacity, 106
counting and discovering activities, 105
development of, 105
English-language edition, 104
evidence, counting unit, 124, 126
goal, study, 105
Japanese vs. Chilean Approaches,  

127–129
lesson outline, 107
meaning of multiplication, 120, 121, 123
multiplicand and multiplier, 104
phase, 104
post–open class, 114–119
public lesson

explanations, 111, 112
interactive screen, 109, 110
student interaction, 112–114
students, 108, 109
translation, transcript, 108

sense making/making sense, 105
session, 104
students express, 106
teaching, 104
terminologies, 104
unit goals, 107
unit plan, 106, 107

Japanese theories
classroom management, 17
curriculum design, 17
decimals and fractions, 15
designing lessons

economic growth, 2
education and system, 3
mathematical thinking, 4
mathematics education, 4
national curriculum standards, 3

teaching approaches and lesson study, 3
teaching materials, 3

developing students and teachers, 12, 14, 15
differences and diversities, 15
extension and integration, 7–9
language structure, 15
learning of children, 15
mathematical thinking and activity, 5, 6
mathematics education, 17
measurement, 15
multidigit multiplication, 16
multiplication, 15
national curriculum, 16
problem-solving approach, 1, 10, 12
properties, 15
skills and competencies, 2
teaching, 15
teaching of multiplication, 2
terminology and sequences, 7–9

L
Learning multiplication

abstraction, 259
additive strategies, 255
array model, 256
collective discussions, 255, 258–260, 263
commutative property, 259, 260
comprehension-based approach, 242
confronting strategies, 258
distributive property, 260
exploration stage, 255
foreseen strategies, 255
hypothetical trajectory (see Hypothetical 

learning trajectory)
levels, 257
macro level, 242
oral presentation, 257
professional development, 263
progressive presentation, 256
sailor metaphor, 242
teacher’s action, 255
teacher’s role, 261, 262
unanticipated stages, 242

Learning trajectory, 8
Lesson study

class observation, 170, 171
episodes, 171–174
formative assessment, 174, 175
learning multiplication (see Learning 

multiplication)
school-based (see School-based lesson study)
video, vertical form, 168–170

Index



294

Linear model
array model, 243
double line model, 243

M
Macroperception, 200
Mathematical competency, 268, 270
Mathematical knowledge, 210, 211
Mathematical reasoning, 199
Mathematical thinking, 144, 151
Mathematics-based lesson study, 14
Mathematization, 7, 11
McClosky model, 282
Memorization, 283
Mental arithmetic techniques, 277
Mental calculation, 241, 250, 268, 269
Mental calculation techniques, 199
Missing values, 218, 226
Missing-value proportionality problem, 

215, 216
Multidigit multiplication, 139

algebraic expression, 160, 162, 163
algorithm, 156
Arabic numerals, 160
base ten place value system, 158, 161, 163
column (see Column multiplication)
column methods, 156
contradictions, 161
lesson study (see Lesson study)
multiplier and multiplicand, 163–165
principles, 191
proportional reasoning, 157
proportionality, 160
task sequences, 186–188, 190
vertical forms, 156, 157, 163

Multiple/multiplicity, 157
Multiplication

abilities, 28
algorithm/column method, 32
categories, 26
classical learning, 266
clusters, 28
comparisons, 33, 34
competency, 27
corporality and sensations, 206
definition, 31, 32
division, 26
European languages and historical 

usages, 59–61
evaluation and self-evaluation, 204
format and terminology, 26, 29
geometric relationships, 207

knowledge and skills, 27
languages

alternative approach, 56
consecutive products, 55
consistency, 58
European language, 54
expression, 53
grammatical expressions and algebraic 

expressions, 53
inconsistencies of expressions, 58
Indo-European languages, 53
Japanese syntax, 56
mathematical notation, 58
mathematical thinking, 53
multilingual countries, 53
multiplier and multiplicand, 56
problem of inconsistency, 57
product, 56
property, 55
syntactical changes, 57
table, 53
well-known traditional approaches, 55, 56

learning expectation, 28
mathematical activity, 27
mathematization, 38
meaning of, 30, 31
natural numbers (see Natural numbers)
perspectives, 29
range of digits, 29, 30
research, 203
results, comparison, 33
second grade, 27
skills, students, 28
students, mathematics activities, 27
tables, 32
tables with polygons, 205, 206
teaching, 27, 33
using calculator, 208–210

Multiplication tables
activities, 136, 137
construction and memorization, 140
cultural practice (see Cultural practice)
elementary school mathematics 

textbooks, 136
expressions, 151, 152
extension, 140
grades, 134–136, 152
Japanese educational principle, 133, 134
Japanese method, 283
lesson study, 150
memorization, 279, 280
patterns, 150
problematics, 150, 151

Index



295

properties, 141, 142, 144
rows, 139
rules, 282

Multiplicative reasoning, 243, 252, 253
Multiplicative relationships, 236
Multiplier vs. multiplicand, 163–165

N
National Common Curricular Framework, 28
National Council of Teachers of Mathematics 

(NCTM), 267
Natural numbers

calculations, 267
Chilean curriculum, 269
cycles, 269
elementary education curriculum, 267
goals, 267
Japanese curriculum, 270
mathematical competency, 268
mental calculation, 269
methodological indications, 268
teaching calculation, 268

Neuropsychology research, 288
Number sense development, 241
Numerical facts, 279, 282, 287

O
Object of knowledge, 28
Open-ended approach, 10
Open-ended tasks, 10, 13
Operations and Algebraic Thinking, 28
Organisation for Economic Co-operation and 

Development (OECD), 2

P
Partitive division, 224, 225
Pedagogical method, 265
Portuguese educational curriculum, 242
Practice exercises, 250
Problem-solving approach, 1, 10, 12, 98
Process of planning, 12
Program for International Student Assessment 

(PISA), 3
Progressivism, 134, 135
Project for Improving Technical Education in 

the Area of Mathematics 
(PROMETAM), 104

Project learning
axes, 202, 203
miniprojects, 201

political pedagogical project, 201
workshop activities, 201

Proportional number lines, 11

Q
Quotative division, 215

conventional division algorithm, 223, 224
multiplication charts, 223
procedures, 221
successive approaches, 222, 223

R
Representation of multiplication, 44, 

47, 56, 59
Revisiting process, 246

S
School-based lesson study, 14

cultural practice, 176
human character formation, 178, 179
issues

formative assessments, 182
problem-solving processes, 182
teaching material content, 181

Kyozaikenkyu, 177
lesson plan, 184, 185
lesson preparation, 179, 180
mathematics teaching, 176
problem-solving processes, 178
research theme, 175, 177
students’ learning, 178, 180, 181
teaching materials, 175
unit level, 176
unit plan, 182–184
vision, 176

School environment, 199
School mathematics

activity of combinatory, 47
attribute of the object, 45
axioms, 38
commutativity, 39
conceptual fields, 52
contradictions, 43, 44
decimals and fractions, 40, 45, 46
distributive law, 40
elementary school, 38, 39
formal algebra, 39
geometry, proportionality, 41, 42
inconsistency, 40
learning trajectories, 38

Index



296

School mathematics (cont.)
limitations, 50, 52
matter of language, 38
numbers to multidigit, 39
operations, 38
origin of written situations, 40, 41
partitive division, 48, 49
probability tree, 46, 47
products, 39
quantities and definition, measurement, 42
relation to the distributive law, 49, 50
subtraction and division, 38
teachers need, 39
tree diagrams, 46

Social networks, 200
Student-centered approach, 15
Students’ failure

diagrammatic explanation, 287
didactics (see Didactics)
Fibonacci method, 286
informal (see Informal arithmetic methods)
learning arithmetic algorithms, 284
natural numbers (see Natural numbers)
nonconventional algorithms, 286
positional principle, 285

problem presentation, 265–267
Russian peasant multiplication 

algorithm, 287
Study and Research Path (SRP), 12
Subject-based lesson study, 14
Syntax of multiplication, 56, 61

T
Tasks implementation

planning, 252, 254
Teaching

arithmetic algorithms, 278
calculation, 268
multiplication, 242, 263, 265
multiplicative calculation, 273, 

274, 276–278
students’ competencies, 272

Traditional education, 212
Trends in International Mathematics and 

Science Study (TIMSS), 3

V
Virtual environments, 200

Index


	Foreword
	Preface
	References

	Acknowledgements
	Contents
	Contributors
	About the Editors
	Chapter 1: Introduction: Japanese Theories and Overview of the Chapters in This Book
	1.1 Origin of This Book
	1.2 Overview of Japanese Theories for Designing Lessons
	1.2.1 Mathematical Thinking and Activity: Aims and Objectives
	1.2.2 Terminology and Sequences: Extension and Integration
	1.2.3 Problem-Solving Approach: Not Only a Teaching Method
	1.2.4 Change Approaches for Developing Students and Teachers

	1.3 Overview of Chapters in Part I: The Japanese Approach
	1.4 Overview of Chapters in Part II, Focusing on Ibero-American Countries
	References

	Part I: Japanese Approach for Multiplication: Comparison with other Countries, and Theoretical, Historical, and Empirical Analysis for Lesson Study
	Chapter 2: Multiplication of Whole Numbers in the Curriculum: Singapore, Japan, Portugal, the USA, Mexico, Brazil, and Chile
	2.1 Comparison of Curricular Standards’ Descriptions for Introducing Multiplication in Different Countries
	2.2 Comparison of the Assigned Grade Levels for Multiplication
	2.2.1 Range of Digits
	2.2.2 The Meaning of Multiplication
	2.2.3 The Definition of Multiplication
	2.2.4 Multiplication Tables
	2.2.5 Use of Algorithm or Column Method for Multiplication
	2.2.6 Comparing the Results with Previous Research

	2.3 Questions for Later Chapters
	References

	Chapter 3: Problematics for Conceptualization of Multiplication
	3.1 Definitions of Multiplication and Their Meanings in Situations in School Mathematics
	3.1.1 The Concept of Multiplication in Pure Mathematics in Relation to School Mathematics
	3.1.2 Multiplicative Situations, Expression, and Translations
	3.1.2.1 Origin of Written Situations
	3.1.2.2 In Situations of Geometry with Proportionality
	3.1.2.3 In Situations with Quantities and Definition by Measurement
	3.1.2.4 Contradictions between Repeated Addition and Situations with Quantities
	3.1.2.5 Using the Situation of Multiplication Only for the Attribute of the Object
	3.1.2.6 In the Situation of Area, As for Extension to Decimals and Fractions
	3.1.2.7 In the Situation of Tree Diagrams
	3.1.2.8 Seeing the Tree Diagram as an Operator
	3.1.2.9 Activity of Elementary School and Cartesian Product
	3.1.2.10 In Situations of Splitting as for Partitive Division
	3.1.2.11 Another Usage: Splitting in Relation to the Distributive Law
	3.1.2.12 Limitations of Every Model for Multiplication
	3.1.2.13 Conceptual Fields for Multiplication


	3.2 Problems with Multiplication that Originate from Languages
	3.3 European Languages and Their Historical Usages
	3.3.1 The Transition in Chile

	3.4 Final Remarks
	References

	Chapter 4: Introduction of Multiplication and Its Extension: How Does Japanese Introduce and Extend?
	4.1 The Introduction of Multiplication Using the Japanese Approach
	4.1.1 The Way to Initiate the Situation for Multiplication Before Repeated Addition in the Japanese Approach�
	4.1.1.1 Repeated Addition and Challenges to Difficulty
	4.1.1.2 Use of the Multiplicand and Multiplier for Students to Think of Division Situations by and for Themselves
	4.1.1.3 Commutativity and Order in Expression
	4.1.1.4 Differences in the Multiplier and Multiplicand in an Array and a Block Diagram
	4.1.1.5 Revisiting Which Notation Is Better and Why


	4.2 Preparation for Multiplication in the Japanese Curriculum and Textbooks
	4.2.1 Preparation for Introduction of Multiplication in the First Grade
	4.2.1.1 Composition and Decomposition of Cardinal Numbers for Binary Operations
	4.2.1.2 Counting by Twos or by Fives as the Base for the New Unit to Count
	4.2.1.3 Polynomial Notation
	4.2.1.4 Production of Tentative/Arbitrary Units


	4.3 Proportionality for Extension of Multiplication
	4.3.1 Introduction of Proportional Number Lines and Their Adaptation for Extension
	4.3.2 Extension of Multiplication by Using Proportional Number Lines
	4.3.3 Partitive and Quotative Divisions Using Multiplication
	4.3.4 Relationships Among the Rule of Three, Multiplication, and Division
	4.3.5 From Division to Ratios and Rates Using the Multiplicative Format

	4.4 Various Meanings of Fractions Embedding the Meanings of Division Situations
	4.5 Further Challenges to Distinguish Additive and Multiplicative Structures
	4.5.1 Redefinition of Proportionality at Junior High School

	4.6 Final Remarks
	References

	Chapter 5: Japanese Lesson Study for Introduction of Multiplication
	5.1 Lesson Study for the Introduction of Multiplication
	5.1.1 Lesson Study on the Meaning of Multiplication, by Mr. Natsusaka
	5.1.1.1 Description and Plan of the Lesson Being Investigated
	5.1.1.2 A Public Lesson (Open Class) by Mr. Natsusaka
	5.1.1.3 Post–Open Class Discussion

	5.1.2 Lesson Plan on Applying the Meaning of Multiplication After Learning the Multiplication Table, by Mr. Tsubota

	5.2 Evidence to See Any Number as a Counting Unit
	5.3 Comparison of the Japanese and Chilean Approaches
	5.4 Final Remarks
	References

	Chapter 6: Teaching the Multiplication Table and Its Properties for Learning How to Learn
	6.1 Revisiting the Japanese Educational Principle
	6.2 A Survey of Appropriate Grades to Introduce the Multiplication Table
	6.3 The Multiplication Table in Japanese Textbooks for Learning How to Learn
	6.3.1 Developing Multiplication Tables for the Rows of 2, 5, 3, and 4
	6.3.2 Transferring the Responsibility for Construction and Memorization of the Multiplication Table
	6.3.3 Extension of the Multiplication Tables of 6–9 and 1
	6.3.4 Properties of the Multiplication Table for Discovering the World of Multiplication with a Sense of Wonder

	6.4 Memorizing the Multiplication Table as a Cultural Practice
	6.4.1 Using the Cards
	6.4.2 Using Area-Array Cards
	6.4.3 Using a Notebook and Journal Writing at Home

	6.5 The Sense of Wonder in the Multiplication Table
	6.5.1 Focusing on Beautiful Patterns with a Sense of Wonder and Appreciation
	6.5.2 Preparing a Problematic: “Why”
	6.5.3 How to Begin the Class?

	6.6 Final Remarks
	References

	Chapter 7: The Teaching of Multidigit Multiplication in the Japanese Approach
	7.1 Diversity of Column, Algorithm, and Vertical Form Methods for Multiplication
	7.1.1 Historical Illustration of Diversity
	7.1.2 Revisiting the Confusion Between the Multiplier and Multiplicand, and the Need to Differentiate Them
	7.1.3 Terminology for Teaching Column Multiplication

	7.2 Lesson Study for Introducing Multiplication in Vertical Form
	7.2.1 Lesson Study Video Introducing Vertical Form
	7.2.2 Mr. Muramoto’s Objectives for This Class
	7.2.3 Description of Actual Lesson Episodes
	7.2.4 Criteria for Formative Assessment in the Lesson Plan

	7.3 Annex for Sect. 7.2: Excerpts of the Lesson Plan by Mr. Muramoto, Illustrating Why and How a Japanese Teacher Prepares School-Based Lesson Study
	7.3.1 Maruyama Elementary School Mathematics Group Vision and Mathematics Lesson Study Group’s Goals
	7.3.1.1 Actual Setting of the Students in Maruyama
	7.3.1.2 Research Theme for Lesson Study
	7.3.1.3 Focal Points for Kyozaikenkyu (Preparation of Teaching Materials According to the Objective/Research on the Subject Matter) for Implementation of the Research Theme
	7.3.1.4 Thinking About Assessments That Help Students to Be More Precise in Their Problem-Solving Processes

	7.3.2 Support for Other Teachers in School to Improve Students’ Learning
	7.3.2.1 Necessary Communication with Other Teachers

	7.3.3 To Promote Human Character Formation with Strong Hearts and Minds, Students Who Acquire This Kind of Competency Can Participate in the Classroom in the Following Ways
	7.3.3.1 Planning Consistent Development of Proficiency in Logical Thinking

	7.3.4 Survey of Students for Preparation and Challenges
	7.3.5 Exploring Topics That Students Learn in the Third Grade
	7.3.6 Challenging Issues for the Lesson Study Group with Viewpoints
	7.3.6.1 Viewpoint 1: Teaching Material to Connect Unknown Content with Learned content
	7.3.6.2 Viewpoint 2: Knowing the Significance of Own Ideas Through Comparison with Others’ Understanding
	7.3.6.3 Viewpoint 3: Prepare the Task Sequence with Formative Assessments

	7.3.7 Unit and Lesson Plans

	7.4 Multidigit Multiplication in Vertical Form: Task Sequence for Extension and Integration in the Case of Gakko Tosho
	7.4.1 Task Sequence for Extension
	7.4.1.1 Task 1: Extension by Students
	7.4.1.2 Task 2: 4 × 30
	7.4.1.3 Task 3: 21 × 13
	7.4.1.4 Tasks 4 and 5: With Carrying and with 0


	7.5 Final Remarks
	References

	Part II: Ibero and Ibero-American Contributions for the Teaching of Multiplication
	Chapter 8: An Ethnomathematical Perspective on the Question of the Idea of Multiplication and Learning to Multiply: The Languages and Looks Involved
	8.1 Introduction
	8.2 Alternative Modes
	8.2.1 Project Learning
	8.2.2 Thinking of Multiplication Through Research Scripts

	8.3 Multiplication: Tables with Polygons
	8.4 Multiplication using Art and Technology
	8.4.1 Multiplication Using the Calculator

	8.5 Some More Ideas About Learning and Teaching of Mathematical Knowledge
	References

	Chapter 9: “Necklaces”: A Didactic Sequence for Missing-Value Proportionality Problems
	9.1 Introduction: The Little Math Problem Factory
	9.2 “Necklaces”: a Didactic Sequence
	9.3 Applying the Sequence
	9.3.1 Methodology
	9.3.2 Results
	9.3.2.1 Problems Where the Relationship Is Between the Number of Beads in One Necklace and the Number of Beads in n Necklaces (the Unit Value Is Given or Present in a Question)
	What to Calculate First?
	Finding the Number of Necklaces: Different Approaches to Quotative Division
	Finding the Number of Beads in a Necklace from the Numbers in n Necklaces: Partitive Division
	Finding the Number of Beads in n Necklaces from the Beads in a Single Necklace: Different Ways of Solving Problems That Require Multiplication

	9.3.2.2 Problems Where the Relationship Is Between the Number of Beads in m Necklaces and the Number in n Necklaces (the Unit Value Is Neither Presented as a Known Quantity nor Requested)
	The First Challenge: Understanding that the Number of Beads in the Sample (the Unit Value) Is Not Provided and Is Not Being Requested
	Procedures

	9.3.2.3 Feedback


	9.4 Final Remarks
	Annex
	Problem Chart

	References

	Chapter 10: Building Opportunities for Learning Multiplication
	10.1 Introduction
	10.2 Learning Trajectories
	10.3 A Hypothetical Trajectory in the Third Grade
	10.4 Specifying the Hypothetical Trajectory: A Sequence of Tasks
	10.4.1 Connected Calculations

	10.5 The Tasks
	10.5.1 Task 4: Stickers Packs

	10.6 Enacting the Tasks: Planning and Exploring
	10.6.1 Planning the Tasks’ Enactment

	10.7 Exploring and Discussing Tasks
	10.8 Implementing Learning Trajectories and Lesson Study: Perspectives on the Teacher’s Role
	10.8.1 The Teacher’s Role
	10.8.2 Opportunities for Professional Development

	References

	Chapter 11: Can We Explain Students’ Failure in Learning Multiplication?
	11.1 Problem Presentation
	11.2 Multiplication of Natural Numbers in the Curriculum
	11.3 Contributions to Didactics
	11.3.1 What Does the Theory of Conceptual Fields Teach Us?
	11.3.2 Developing Didactic Progressions for Teaching Multiplicative Calculation

	11.4 Informal Arithmetic Methods
	11.5 Do We Have to Teach Algorithms?
	References

	Index

