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Foreword

One of us, who had the good fortune of meeting Trevor Fletcher in the symposium
on the centennial of L’Enseignement Mathématique held in Genève in October of
2000, received a piece of excellent advice from this notable mathematics educator,
namely, that a fundamental task of the teacher of mathematics is to let students
experience the intellectual life that the teacher really lives. Fletcher placed this
quote (from E.E. Moise) at the forefront of his paper of 1975 that bears the title “Is
the teacher of mathematics a mathematician or not?” [Schriftenreihe des Instituts
für Didaktik der Mathematik Bielefeld, 6 (1975), 203–218].

Everybody began with a world “without mathematics”, this term to be taken
with a grain of salt because mathematics is everywhere in our world and comes up
frequently and unavoidably in our daily lives, perhaps even without our noticing it.
You can imagine such a world by putting yourself in the shoes of an infant who
knows no “formal mathematics”. Then we gradually move on to another world of
mathematics after knowing some elementary mathematics in forming mathematical
ideas of objects, notions, theories and techniques out of our experience under some
guidance. Then we continue to move on to a world after knowing more “formal
mathematics” in refining those mathematical objects, notions, theories and tech-
niques under further guidance. In learning and doing mathematics (which should go
hand in hand) the learner proceeds through these worlds and will experience what
Fletcher proposed (see Chap. 1 for further elaboration). This is akin to what the
esteemed mathematics educator Hans Freudenthal termed as the process of
“mathematising”.

Freudenthal valued the specificity of subject specific didactics. He believed that
the teaching of mathematics could and should only be studied in the perspective of
mathematics instead of under any kind of theory of general didactics. In his book
Weeding and Sowing: A Preface to a Science of Mathematics Education (1978)
Freudenthal says, “I see more promise in approaching general didactic problems via
the didactics of special teaching areas than in pressing special didactics into the
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straitjacket of general didactics. It is a priori improbable that a common pattern
exists for such different instruction activities as arithmetic and gymnastics.” His
words vividly describe the shackles that prevent the teaching of mathematics to
students with intellectual disability in Hong Kong from making substantive
improvement. For decades, institutionalized professional development programmes
for teachers teaching these students focus on psychology and general didactics, with
subject-specific didactics virtually missing, leaving teachers with the formidable
tasks to design effective learning processes that could lead students through small
steps directing towards specific achievement. One of the many shocking phe-
nomena is that many students with moderate intellectual disability do not know
how to count from one to ten, even at the age of sixteen!

One of us started to be involved in providing mathematics-specific professional
development programmes for these teachers six years ago. Core activities include
epistemological analysis of content structure and detailed engineering of instruc-
tional designs. The former rests solely on the nature of mathematics as an academic
discipline, while the latter deals with the design and implementation of learning
environments that tailor for specific student groups. For instance, teachers would
first examine the structure of counting: (1) remembering the sequence of symbols,
(2) remembering the sequence of sounds (pronunciation) for the symbols,
(3) matching the quantities with the symbols, and (4) matching the quantities with
the sounds. Secondly, teachers are introduced to various tactics to allow students
(whose memories are very weak in general) to progressively familiarize and
memorize the symbols one by one through carefully designed counting books or
counting cards that link up, and provide hints to, the triad of quantity, symbol, and
sound. After five years of clinical application, it is now generally observed that
students with moderate intellectual disability could progressively learn how to
count from one to ten.

Regarding teacher education Freudenthal adopted an integrated approach under
which mathematics and its didactics should be handled in an intertwined way. In the
same book Weeding and Sowing: A Preface to a Science of Mathematics Education
he says, “My goal is integrated teacher training, where in particular the subject
matter and the didactical component should penetrate each other [...]” What Erich
Wittmann has done is to make explicit how this is achieved through (i) the design
and execution of substantial learning environments, and (ii) the study of the impacts
they bring about. As said in his paper of 2001 [Developing mathematics education
in a systemic process, Educational Studies in Mathematics, 48(1), 1–20], “[the]
design of substantial learning environments around long-term curricular strands
should be placed at the very centre of mathematics education. Research, develop-
ment and teacher education should be consciously related to them in a systematic
way.”
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The 1960 Nobel Laureate in Physiology or Medicine Peter Medawar says in his
book The Hope of Progress (1972), “A scientist’s present thoughts and actions are
of necessity shaped by what others have done and thought before him; they are the
wave front of a continuous secular process in which The Past does not have a
dignified independent existence of its own. Scientific understanding is the integral
of a curve of learning; science therefore in some sense comprehends its history
within itself.” It reminds us of an intriguing remark, again from Freudenthal in his
book Revisiting Mathematics Education: China Lectures of 1991, that says,
“Children should repeat the learning process of mankind, not as it factually took
place but rather as it would have done if people in the past had known a bit more of
what we know now.”

Ever since the early 1980s one of us has been deeply interested in engaging with
the integration of history of mathematical developments in the teaching and
learning of mathematics. Through such activities one will become aware of the need
in examining a topic from three perspectives: a historical perspective, a mathe-
matical perspective, and a didactical perspective. “Although the three are related,
they are not the same; what happened in history may not be the most suitable way
to go about teaching it, and what is best from a mathematical standpoint may not be
so in the classroom and is almost always not the same as what happened in history.
However, the three perspectives complement and supplement each other.”
[M. K. Siu, Study group in history of mathematics—Some HPM activities in Hong
Kong, Education Sciences, Special Issue, 2014, 56–68.] A teacher of mathematics
would do well to know something about the historical perspective, to have a solid
idea of the mathematical perspective, and to focus on the didactical perspective.
Viewed in this light we note that the history of mathematics means far more than
merely anecdotal embellishment in the design of substantial learning environments.

To be a good teacher what matters most is not just how much more the teacher
has learnt and knows, nor even how much deeper, but of how differently from
various perspectives. In addition, a good teacher should try to carry out what
George Pólya maintains that “first and foremost, it should teach those young people
to THINK” [On learning, teaching, and learning teaching, American Mathematical
Monthly 70 (1963), 605–619], and through exploration and thinking to enable
students become aware that mathematics makes sense and is thus comprehensible.
In this respect the idea of an “elementary mathematics research program of math-
ematics education” proposed by Erich Wittmann is, in his own words, a “truly
interdisciplinary task for which elements of mathematics, its history, its applica-
tions, aspects of epistemology, psychology, pedagogy and the mathematics cur-
riculum have to be merged together” [The mathematical training of teachers from
the point of view of education. Journal für Mathematik-Didaktik, 10, 291–308].
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The papers of Wittmann and his colleagues collected in this volume would, on one
hand, provide a rich and resourceful collection for enriching teachers of mathe-
matics in this endeavor, and on the other hand, inspire mathematics education
researchers who are working towards creating good and great mathematics lessons.

May 2020 Man Keung Siu
Honorary Professor

Department of Mathematics
University of Hong Kong
Hong Kong, Hong Kong

Chun Ip Fung
Principal Consultant (formerly Assistant Professor

Education University of Hong Kong)
Circle and Square Academy

Hong Kong, Hong Kong
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Preface

Every sentence, that I write, means always already the
whole, therefore always the same, perspectives of the whole,
as it were, considered from different angles.

Ludwig Wittgenstein

The invitation by the Japanese Academic Society of Mathematics Education to
present my experiences with the design science approach at the annual meeting of
this society in 2017 has inspired me to systematically re-think the gradual devel-
opment of this approach since its inception in the early 1970s.

While working on the written version of this plenary lecture (the last paper of
this volume) it occurred to me that it could make sense to combine my major papers
on this topic in a book. When I mentioned this idea to some colleagues, they
unanimously encouraged me to pursue this and to also include applications of this
approach to the developmental research in the project Mathe 2000.

The papers collected in this volume can be classified into four categories:

1. The papers “Teaching Units as the Integrating Core of Mathematics Education”
(p. 25), “Mathematics Education as a Design Science” (p. 77), and “Understanding
and Organizing Mathematics Education as a Design Science” (p. 265) deal with the
methodological framework of the approach, and the papers “Developing
Mathematics Education in Systemic Process” (p. 191) and “Collective Teaching
Experiments: Organizing a Systemic Cooperation Between Reflective Researchers
and Reflective Teachers in Mathematics Education” (p. 239) elaborate on the
specific status of mathematics education as a systemic-evolutionary design science.

2. The main method for designing learning environments is described in some
generality in the paper “Structure-genetic didactical analyses—empirical
research ‘of the first kind’” (p. 249). The paper “Designing Teaching: The
Pythagorean Theorem” (p. 95), by far the longest of this volume, demonstrates
this method with one of the central topics of the curriculum. Structure-genetic
didactical analyses are implicit in the many substantial learning environments
that are contained in almost all papers, according to the wisdom expressed in the
Latin phrase verba movent, exempla trahunt.
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3. The papers “Clinical Interviews ‘Embedded in the Philosophy of Teaching
Units’” (p. 37), “The Mathematical Training of Teachers from the Point of View
of Education” (p. 49), and “The Alpha and Omega of Teacher Education:
Stimulating Mathematical Activities” (p. 209) deal with teacher education. It is
worth pointing out that the challenges in teacher education at our university
have been the major motivation for conceiving mathematics education as a
design science. Over decades the mathematics educators at this university have
seen themselves confronted with large courses of up to 700 student teachers
every term. This has been a real challenge. “Learning environments” have
turned out as a very effective tool for introducing student teachers into ele-
mentary mathematics, into principles of mathematics teaching, and into the
curriculum. On p. 221 an empirical study is mentioned that proves the high
acceptance of this approach by student teachers.

4. Four papers exhibit the use of non-symbolic means of representation as one
crucial element for designing learning environments that are adapted to stu-
dents’ prior knowledge and at the same time are mathematically sound. The
paper “Standard Number Representations in Teaching Arithmetic” (p. 161)
contains a comprehensive toolkit of non-symbolic representations for a central
topic of the curriculum. These representations are so powerful that they are able
to carry operative proofs, as shown in the paper “Operative Proofs in School
Mathematics and Elementary Mathematics” (p. 223). The difficulties student
teachers usually encounter in accepting operative proofs as sound proofs are
discussed in the paper “When is a proof a proof?” (p. 61, written in collaboration
with G. N. Mueller) that looks at proofs also from a general perspective.

Between the two papers published in 2002 and the paper published in 2014 there
is a gap of more than 10 years in which I did not publish any further papers on the
design science approach. There is a good reason for this “silence”: during this
period my colleague Gerhard Mueller and I concentrated on applying the design
science approach to developing the innovative textbook series Das Zahlenbuch (K–
4). We took this step as we wanted to find out if this approach would work also at
the very forefront of the teaching practice. In our textbook work we did not act
merely as editors, as is common in the textbook business, but wrote large parts
of the student books and the workbooks, all teacher’s manuals, and accompanying
materials ourselves, supported by advisory boards of teachers in different parts of
Germany. Our intention was to elaborate our conception down to the most specific
details. Connected to this work was in-service teacher education on a large scale.
One of the mottos of Mathe 2000 is “He who receives criticism should be happy”. It
is attributed to the ancient Chinese philosopher Mong Tze. As we communicated
this motto to teachers they felt free to speak openly and to provide us with ample
and precise feedback from their teaching practice.

As Das Zahlenbuch was adapted to other European countries, our close contacts
with teachers reached beyond the German borders. A translation into English, The
Book of Numbers, is used in the Swiss International Schools. The Appendix of the
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present volume contains pages from this textbook that are related to learning
environments described in some papers.

Our experiences in textbook development have convinced us that the design
science approach is effective also at this level. The feedback we received from
teachers was not only a confirmation of the approach as a whole but also deepened,
refined, and extended it.

As an adherent of the genetic principle I do believe that the best way to
understand a concept is to see how it originated from a rough idea and how it has
been increasingly articulated, expanded, differentiated, and coordinated with other
concepts in a continued process. For this reason, I have decided to arrange the
papers in the order in which they were written and published. I am convinced that
this order will not only facilitate the understanding of the approach, but also
stimulate the reader to critically examine this process, to think of variations,
extensions, and alternatives. Moreover, the papers in their natural order represent a
historical progress of one idea in mathematics education over a quite long period of
time. This might be an interesting case study for both experienced mathematics
educators and novices. Comments on the papers are given on pp. 20–24.

The objective of mathematics education as a design science is not to design any
learning environments but rather learning environments that represent mathematical
and educational quality at the same time: “substantial learning environments”, as
they have been specified. For this purpose, mathematics must be seen not as just a
provider of subject matter, but as an educational task (Hans Freudenthal).
Connecting mathematics and mathematics education requires looking at mathe-
matics from the point of education and also looking at mathematics education with
a broad understanding of elementary mathematics. This reciprocal way of thinking,
fully addressed in the paper “The Mathematical Training of Teachers from the Point
of View of Education” (p. 37), is present in all papers. In the introductory Chap. 1
this important point will be discussed extensively.

I am well aware that in my work I have drawn heavily upon what great minds
before have created. For good reasons John Dewey, Johannes Kuehnel, Jean Piaget,
Hans Freudenthal, and Heinrich Winter have been chosen as arch fathers of the
project Mathe 2000. There is perhaps some merit in systematically applying the
design science approach to the developmental research conducted in Mathe 2000
and to teacher education. However, this work has also been greatly influenced by
developments in England in the 1960s, the golden age of English mathematics
education, I would say, at the Freudenthal Institute Utrecht in the 1970s and 1980s,
by Nicolas Rouche’s developmental research at the Centre de Recherche sur
l’Enseignement des Mathématiques (CREM) in Nivelles/Belgium in the 1980s and
1990s, and by developments in Japan in the same period of time.

The reader will meet some basic quotations, particularly those from John
Dewey’s works, in several papers. I do not think this as a disadvantage as these
quotations deserve to be repeated and as they serve as links between the chapters.

In preparing this volume I have greatly appreciated the cooperation with Natalie
Rieborn/Springer Nature, who took care of the editing process, and Barbara
Giese/RWTH Aachen who skillfully converted the text into a nice LateX.
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I have profited very much from the continuous professional and personal
exchange with quite a number of fine colleagues, and I would like to single out five
of them. The first is Jerry P. Becker, who I met first at ICME 1 in 1969 and who
since then has kept me informed about international developments. As to ele-
mentary mathematics and the history of mathematics I owe much to my German
colleagues Gerhard N. Müller, co-director of Mathe 2000, Gerd Walther, my first
doctoral student and later Professor at the University of Kiel, and my colleagues
from Hong Kong, Man Keung Siu and Chun Ip Fung, who by the way are all used
to looking beyond their noses.

Last not least, I would like to express my sincere thanks to my Japanese col-
leagues for the fruitful exchange I have had with them over two decades. I feel
solidarity with them in their conscious emphasis on and their commitment (fu-
doshin) to teacher education as I do believe that what ultimately counts in math-
ematics education is the impact on teachers. The design science approach is
subordinated to this end.

I am looking forward to any comments to this volume, and I would be happy to
get into contact with mathematics educators and mathematicians who are thinking
in similar directions.

Erich Christian Wittmann
Department of Mathematics

Technical University of Dortmund
Dortmund, Germany
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Chapter 1
Unfolding the Educational and Practical
Resources Inherent in Mathematics for
Teaching Mathematics

This: Combining thinking and doing
This: Inducing students to combine thinking and doing
is the source point of any productive education.

Friedrich Froebel 1821

The objective of this introductory chapter is to explain the common rationale
behind the papers of this volume. The structure is as follows.

The first section shows that learning environments are a natural way to address
teachers in their main role, teaching, and that therefore this approach is promising
for improving mathematics teaching in an effective way. The section ends with a
teaching model based on Guy Brousseau’s theory of didactical situations.

The second section illustrates how in a concrete case the general terms in this
teaching model can be brought to life by drawing from processes inherent in math-
ematics.

The general principles behind this special case are explained in the third section.
It will turn out that they arise from a genetic view of mathematics.

The fourth section deals with the consequences for teacher education that result
in demanding special mathematical courses for teachers.

1 From “Instruction and Receptivity” to “Organization
and Activity” in Teaching

In 1968 the journal Educational Studies in Mathematics (founded by Hans Freuden-
thal) started with the papers presented at a conference on “How to teach mathematics
so as to be useful?” One year later, after two years of teaching at the gymnasium
and four years in mathematical research, the present author moved to mathematics
education and saw himself confronted with huge challenges in teacher education.
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This led him to the following question: “How to teach teachers so as to be useful for
teaching mathematics so as to be useful?”

The main professional task of a teacher is to prepare, conduct, analyze lessons
and mark papers, and the success of teaching crucially depends on getting students
actively involved, not by applying extrinsic means of motivation but by applying
intrinsic ones. So, it seems a logical decision to develop mathematics education in a
way that makes sense at the very front of teaching. This has completely been in line
with the position expressed by Richard Elmore (1997):

“What do I teach on Monday morning?” is the persistent question confronting teachers.
Because they are inclined to ask such questions, teachers are often accused by researchers,
reformers, and policymakers of being narrow and overly practical in their responses to the big
ideas of education reform. Given the state of the current debate on standards-based reform,
though, I think theMonday morning question is exactly the right one, and it should be firmly
placed in the minds of everyone who purports to engage in that reform.

Consider the following practical issues. Most statements of content and performance stan-
dards coming from professionals and policymakers take no account whatsoever of such basic
facts as the amount of time teachers and students have in which to cover content. They are
merely complex wish lists. In order to be useful in answering the Monday morning question,
they have to be drastically pared, simplified, and made operational in the form of lesson
plans, materials, and practical ideas about teaching practice.

Mutatis mutandis this statement also refers to present research in mathematics
education.

For centuries the professional frame of teachers has been described as the “didactic
triad” (Fig. 1) or in a somewhat extendedversion as the “didactic tetrahedron” (Fig. 2).

Fig. 1 Didactic triad

Fig. 2 Didactic tetrahedron
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Up to the end of the nineteenth century and into the first decades of the twentieth
century the role of the teacher was widely understood as that of an “instructor” or
“deliverer of knowledge”. His or her task was to separate pieces of subject matter,
present it to the students, link it to what they had learned before, embed it into a
system and test if the students could reproduce and apply the new knowledge.

The most elaborate form of this view on teaching and learning are the famous
“formal stages” by Friedrich Herbart that were elaborated for the teaching practice
by his successors. Wilhelm Rein gave them their final form: “Preparation”, “Presen-
tation”, “Association”, “System”, and “Application” (for details see de Garmo 2001,
Chap.V, 130 ff.).

At the beginning of the twentieth century the “progressive education” movement
gave new impetus to voices who had been pleading in favor of a shift for a long
time. In 1916 the German mathematics educator Johannes Kuehnel (1865–1928)
described the new role of teachers and students according to the new vision in his
book “Neubau des Rechenunterrichts” [Re-Installing the Teaching of Arithmetic]
(Kuehnel 1954, 69–70, transl. E.Ch.W.) as follows:

The goal of teaching arithmetic is to provide the students with the foundations for a mathe-
matical penetration of all things and phenomena of nature and human life . . . When therefore
in the enlightened educational view of our time skills appear as certainly indispensable tools
and so as an unquestioned objective of teaching, however, not more than tools, it is the task
of the future to consciously replace the mere concentration on skills by true mathematical
education.

The main question that provides the yardstick and the orientation for the whole book can
be formulated as follows: What is the both scientifically and practically founded teaching
method by which we can further the development of the student in the desired way?

This formulation readily reveals the influence of the new orientation. It is not a method
by which we want to instruct the student in something in a way as easy, as painless or as
pleasurable as possible, be it knowledge or skills. Instructing, presenting, conveying are
notions of the art of teaching of the past and have only little value for the present time; for
the educational view of our time is no longer directed to plain subject matter. Of course,
the student should acquire knowledge and skills also in future – we even hope more than
in the past – however, we do not want to impose them on him, but he should acquire them
himself. In this way also the role of the teacher is changing in every respect. Instead of
delivering subject matter he will have to develop the student’s abilities. This is something
completely different, in particular for teaching arithmetic. For the differently formulated
question for the teaching method will deprive the teacher of two instruments that in the past
seemed indispensable and as marks of the highest art of teaching: presenting and forming.
For compensation the teacher gets two other instruments that at first sight seem insignificant,
that, however, are much more powerful: providing opportunities and stimulating individual
development.

And the student is no longer tuned to passively receiving knowledge, but to actively acquiring
it. What characterizes the teaching method of the future is not instruction and receptivity,
but organization and activity.

In the following decades this view of teaching and learning has gradually spread
in many countries and found substantial support from many sides (see, for example,
ATM 1967, with a wonderful preface by David Wheeler; Freudenthal 19721; Becker

1Interestingly, Hans Freudenthal had studied Kuehnel’s book thoroughly.
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and Shimada 1997, translated from the Japanese original published in 1977; Revuz
1980, with a most remarkable title; Winter 1989).

In the early1980s Heinrich Winter, very much influenced by Hans Freudenthal,
served as an advisor for a committee engaged with developing a syllabus for the
primary school of the state of North Rhine-Westphalia. In the document the role of
the teacher is described in Winter’s unmistakable style as follows (KM 1985, transl.
E.Ch.W.):

For pursuing the mission and the objectives of mathematics teaching a conception is appro-
priate in a particular way in which learning mathematics is considered as a constructive,
inquiry-based process. This means that students should get as many opportunities as possi-
ble for self-reliant learning in all phases of the learning process:

– starting from challenging situations; stimulating the students to observe, to ask questions,
to guess

– displaying a problem or a complex of problems; encouraging students’ own ideas and
providing support

– anchoring newknowledge in prior knowledge inmanifoldways; summarizing newknowl-
edge as clearly and concisely as possible, in some cases insisting onmemorization; encour-
aging students to practice on their own

– discussing with students about the nature of the new knowledge and about the processes
with which it has been gained (recollection), stimulating students to investigate related
problems by themselves.

The role of the teacher consists of finding and offering challenging problems, providing
students with conceptually rich teaching aids and productive forms of exercises and above
all to establish and maintain a communication that is favorable for the learning processes of
all children.

This syllabus also reflected the so-called “general mathematical objectives” that
Winter had already formulated ten years previously: Mathematizing, Exploring,
Explaining and Communicating (Winter 1975).

Another important innovation brought about by this syllabus is the emphasis on
a balanced orientation to both applications and structure (applied and pure mathe-
matics) that Winter had postulated in a paper on the role of mathematics for general
education, in which he delineated three major objectives of mathematics teaching
(Winter 1995):

(1) to perceive and understand phenomena in the world around us that concern us or
should concern us, in nature, society and culture, and to do this in a way specific
for mathematics,

(2) to get acquainted with mathematical structures, represented in language, sym-
bols, pictures and formulae, and to understand them as mental creations, as a
deductively ordered world of its own,

(3) to acquire problem-solving strategies (heuristic strategies) going beyond math-
ematics by coping with problems.

The design science approach to mathematics education has been born from the
intention to assist teachers in these tasks, that is, to provide them with first-hand
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knowledge for organizing learning processes in the form of elaborated teaching units
(later called substantial learning environments). These units should be explicit about
how

– to introduce students into mathematical activities by which mathematical knowl-
edge can be acquired,

– to accompany them and to provide support during their activities,
– to assist students in reporting about their observations, in formulating the patterns
they have found,

– to assist students in explaining these patterns,
– to fix the knowledge that has been acquired and to summarize it in a pregnant
form.

These professional interventions of teachers reflect the natural flow of any goal-
directed teaching and learning of mathematics. Guy Brousseau has captured them in
five “didactical situations”: instruction, action, formulation, validation, and institu-
tionalization (Brousseau 1997).

Table1 shows the interplay between the teacher’s interventions and students’
activities whereby italics indicate who is taking the initiative during the situation in
question (Wittmann and Müller 2017, 20).

Table 1 Brousseau’s didactical situations

Instruction Action Formulation Validation Institution-
alization

Teacher Explaining the
objectives and
the
problem(s),
providing
students with
material

Observing and
stimulating
students, if
necessary,
asking for
explanations

Listening,
asking for
further
explanations

Stimulating
explanations,
deepening
insights

Summarizing
the acquired
knowledge in
a concise form

Students Paying
attention,
listening,
asking for
further
explanations,
“joining in”

Working on
the problems,
exchanging
information
with other
students

Presenting
solutions or
patterns that
have been
discovered

Explaining
solutions and
patterns by
taking up
teacher’s
suggestions

Listening,
asking for
further
explanations

This table is extremely useful for organizing teaching and for analyzing and evalu-
ating lessons along the “Organization andActivity”model of learning and teaching—
provided the potential inherent in mathematics is used properly.

The next section illustrates it with an example.
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2 The Learning Environment “Calculating with
Remainders”

The book Notes on Primary Mathematics (ATM 1967) starts with the sketch of a
unit (“An Addition Game”) that is well suited to show how Table1 can be brought
to mathematical life. In this section this unit will be expanded into a fully-fledged
learning environment. In Germany the natural place of this unit in the curriculum is
the beginning of grade 5. This grade is traditionally devoted to refreshing knowledge
of mental arithmetic, semiformal strategies of calculation, the standard algorithms,
and the arithmetical laws from the first four years of education (that in most German
states form the primary school).

Objectives: Repetition of arithmetic at the primary level in the context of a mathe-
matical structure that goes beyond the familiar number structure and has applications
on the EAN-Number and the ISBN-Number.

Mathematical background: Residue class rings
Teaching materials: Counters, dot arrays, worksheets

1. At the beginning the teacher announces that the following unit is intended to
practice arithmetical skills and to explore new mathematical structures that at
first sight look a bit strange but give the opportunity for creative work.

2. Introduction of the tasks
First the students are asked to solve some division problems (Fig. 3).
Based on the results and explanations of the students the teacher emphasizes that
any number can be written as a multiple of 10 plus a remainder that is just the
Ones digit of the number (Fig. 4)

Fig. 3 Divisions by 10 without remainder

Fig. 4 Divisions by 10 with remainder
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The students then receive the extended Hundred chart as a worksheet (Fig. 5)
and use it as follows:
Each student chooses two columns of this chart and exerts additions and mul-
tiplications only with the numbers of these two selected columns. The teacher
explains this rule by means of examples (Fig. 6).

3. Student work
While the students are working the teacher checks if the task has been well
understood and provides support where necessary.

Fig. 5 Extended Hundred chart

Fig. 6 Examples of calculations
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4. Report
After the students have collected enough data the teacher directs the attention
to the Ones digits of the results. The students report on their findings. With the
teacher’s support they will formulate a pattern: the Ones digits of the results
depend only on the Ones digits of the summands resp. the factors.
For example, the Ones digits 3 and 7 always yield the Ones digit 0 for addition
and the Ones digit 1 for multiplication.

5. Explanation of the pattern
The explanation follows immediately from the standard algorithms (Fig. 7):

Fig. 7 Schemes of long addition and long multiplication

Both the addition and the multiplication of the Ones digits might lead to a carry.
This carry and the following calculations do not affect the Ones digits. The size
of the numbers does not matter.

6. Summary
The teacher summarizes the findings by telling the students that mathematicians
have found it useful to “forget” the tens, hundreds, thousands, etc. and to calculate
only with the Ones digits by using slightly different signs:

7 ⊕ 4 = 1

In words: the Ones digit 7 additively combined with the Ones digit 4 yields the
Ones digit 1.
In short: 7 plus 4 equals 1. In this case, however, “plus” means the new sign ⊕.

7 � 4 = 8

In words: the Ones digit 7 multiplicatively combined with the Ones digit 4 yields
the Ones digit 8.
In short: “7 times 4 equals 8”. Again “times” here means the new sign �.
The students get a worksheet (Fig. 8) in which some results of the addition and
the multiplication table for the Ones have already been entered. The teacher
should take time and slowly explain how the tables have to be read and show
how sums and products of Ones are entered into the table.
Only after a thorough clarification should the individual students fill in the miss-
ing entries themselves. Of course, students are allowed to cooperate, as always,
and to assist each other.
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Fig. 8 Addition table and multiplication table modulo 10

7. Applications
Certainly, the students will wonder what purpose these tables are useful for and
will be surprised that there is an application in their immediate environment.
Both the European Article Numbers (EAN) and the International Standard Book
Number (ISBN) consist of 13 digits whereby the last digit is a check digit that
is determined in the following way: the first 12 digits are alternately multiplied
by 1 and 3 according to the addition and multiplication table for the Ones, and
then the sum of the products is determined according to the addition table of the
Ones. Finally, the check digit is chosen such that it complements the sum to 0.

Example EAN 978489582586?
First the digits are multiplied alternately with 1 and 3:

9 � 1 ⊕ 7 � 3 ⊕ 8 � 1 ⊕ 4 � 3 ⊕ 8 � 1 ⊕ 9 � 3 ⊕ 5 � 1 ⊕ 8 � 3 ⊕ 2 � 1

⊕ 5 � 3 ⊕ 8 � 1 ⊕ 6 � 3.

From the multiplication table for the Ones we gather the results of the products:

9 ⊕ 1 ⊕ 8 ⊕ 2 ⊕ 8 ⊕ 7 ⊕ 5 ⊕ 4 ⊕ 2 ⊕ 5 ⊕ 8 ⊕ 8.

The addition table for the Ones allows us to calculate this sum step by step:

9 ⊕ 1 = 0, 0 ⊕ 8 = 8, 8 ⊕ 2 = 0, . . .

In shorthand notation:

9 ⊕ 1 ⊕ 8 ⊕ 2 ⊕ 8 ⊕ 7 ⊕ 5 ⊕ 4 ⊕ 2 ⊕ 5 ⊕ 8 + 8.
0 8 0 8 5 0 4 6 1 9 7

The check digit must be 3 as 7 ⊕ 3 = 0.
The teacher explains this procedure by means of examples. Then the students join

in to explain the check digits of some other EAN or ISBN Numbers. It is helpful to
hand out a sheet with correct addition and multiplication tables for the Ones.
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At the end of this unit each student should be able to determine the check digit
of the EAN number of an article bought in some shop or check the ISBN number of
some of their books.

Possible continuation of this learning environment
The module 10 can be replaced by any module m (see ATM 1967).

It is standard to write the numbers in schemes with m columns. All numbers
with the same remainder under the division by m then form a column. Within each
column the numbers increase by m. These columns are denoted by the remainders
1, 2, . . . , 0. Figure9 provides this scheme for the module 5.

First the scheme must be investigated. The students realize that in each column
the numbers increase by 5. If a multiple of 5 is added to a number in some column
the result lies in the same column. The last column contains the multiples of 5.

If counting along this scheme is accompanied by a growing array of dots the
students see that all numbers in a column leave the same remainder when divided by
5 (see the “film” in Fig. 10).

The numbers with the remainder 0 are identified as the multiples of 5 that are
known from the multiplication table. In the Mathe 2000 curriculum the multiples
of any number are calculated by explicitly using the arithmetical laws. In this case
students know already that the sum and the difference of two multiples is again a
multiple and that themultiple of themultiple of a number is amultiple of that number,
too.

Fig. 9 Number table modulo 5

Fig. 10 Iconic representation of the number table modulo 5
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In ATM (1967) the scheme in Fig. 8 and similar schemes are investigated. The
columns are denoted by letters, A, B, C , D, E etc. As in the Mathe 2000 curriculum
“pretty packages” play a prominent role from grade 1, it is natural to tie in with
this format. The teacher shows how “pretty packages” can be constructed with the
scheme in Fig. 9. Two columns are chosen and then “pretty packages” are constructed
by starting with the sum or the product of the two smallest numbers of the columns
and increasing one or both numbers gradually. After each calculation the column of
the result is noted. Figure11 shows some examples:

As mentioned previously, the first objective of this learning environment is to
refresh arithmetical skills. So, it is no disadvantage at all that these calculations
take time. The students are free to use mental arithmetic, semiformal strategies, and
standard algorithms. They are also free to choose numbers as big or as small as they
want.

Fig. 11 Calculations with fixed columns

The most difficult problem is determining the remainder of the results when the
numbers get bigger. In theMathe 2000 curriculum students learn how to decompose a
number into multiples of the divisor according to their preferences and they learn the
standard algorithm for division, as well as for arbitrary big divisors (see the “smart
division” in Wittmann and Müller 2018, 238–240).

Of course, some calculations will be wrong. However, students will quickly guess
that all results in a pretty package have the same remainder. This helps them to spot
and correct mistakes. After calculating students will have much to report.

Unanimous finding: the remainders of the results do not depend onwhich numbers
of a column have been chosen, but only the columns themselves.

The teacher shows how to fix the findings in tables similar to Fig. 8 (see Fig. 12).

Fig. 12 Addition table and multiplication table modulo 5
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How to explain the pattern? For the module 5 the proof that the columns of the
sum and the product of two numbers depend only on the columns of the summands
resp. the factors can be given in a way similar to the module 10.

Example The Ones digits 2 and 7 in the column “Remainder 2” and the Ones digits
3 and 8 in the column “Remainder 3” add up to 2 + 3 = 5, 2 + 8 = 10, 7 + 3 = 10,
and 7 + 8 = 15. The results all have the Ones digit 5 or 0. Therefore they belong to
the column “Remainder 0”.

The Ones digits of products with these Ones digits yield 2 · 3 = 6, 2 · 8 = 16,
7 · 3 = 21, and 7 · 8 = 56. So, all products have the Ones digits 1 or 6 and belong to
the column “Remainder 1”. However, it would take time to check all combinations.

The following operative proof uses the arithmetical laws and knowledge from
“pretty packages”. It has the advantage of covering all modules. For the module 5
the proof runs as follows:

If a summand of a sum or a factor of a product is moved up one step within a
column it increases by 5. The sum then also increases by 5, whichmeans it stays in the
same column. The product increases by a multiple of 5, according to the distributive
law. Therefore, the product also does not leave the column.

For the addition these operations can be illustrated by referring directly to coun-
ters: if 5 counters are added to a summand then the sum is increased by 5. In the
case of multiplication dot arrays render the same service. The increase of a factor
of a product by 5 changes the product by a multiple of 5 (see Wittmann and Müller
2017, 71, 202–205).

For grade 5 this proof is quite appropriate, provided that the arithmetical laws
have received the attention they deserve from grade 1.

If there is enough time students could investigate other modules (ATM 1967).
The learning environment can be taken up later in the curriculum when the arith-

metical laws are available in their formal setting and the operative proof can be
re-formulated in the language of algebra. Substantial mathematics should be revis-
ited on multiple occasions regardless.

The structure-genetic didactical analysis in this sectiondemonstrates the following
points:

1. What has to be taught is determined in broad terms by the syllabus. It is up to
the designer to construct learning environments consistent with the syllabus that

– take up students’ prior knowledge
– present problems that call for students’ active participation in investigating
these problems

– provide students with interesting materials for practicing skills and fostering
heuristic strategies

– give students an authentic account of what mathematics is about.
(see Winter’s description of the role of the teacher in Sect. 1)

It is obvious that mathematics and its applications are the decisive source for
design.
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2. The unit in this section startswith an assignment that leaves the individual student
free space for his or her activities. First results are likely to provide feedback for
the following calculations. The conjecture (discovery) of patterns leads to the
desire for explanations, that is proofs. If earlier in the curriculum the designer
has taken measures for introducing tools that are appropriate for formulating a
proof then the teacher and the students are well prepared.
It is obvious that thewhole teaching/learning process is essentially determined by
thenatural flowof amathematical investigation.Brousseau’s didactical situations
describe the essential steps in this process. It is mathematics that provides the
teacher with first-rate professional knowledge.

3. The mathematical structure that is carrying the learning environment does not
only give stimuli to the teacher, but, as important, also to the students. The more
experience students have acquired in past learning, the more they will be able to
proceedon their own.Winter’s generalmathematical objectives “Mathematizing,
Exploring, Explaining, Communication” are used all the time. Mathematical
activities that give rise to these general mathematical objectives are the best
context for learning notations, symbols, termini, expressions, and the informal
language that naturally go along with doing mathematics.
It is obvious that students get essential stimuli for learning from mathematics
itself.

However, the conclusions that are drawn here presuppose a certain view of math-
ematics. This will be clarified in the following two sections.

3 Mathematics for Specialists and Mathematics for
Teachers

From the point of view of the mathematical specialist the structure underlying the
learning environment of Sect. 2 is an elementary example of the following general
construction:

One starts from the commutative ring (Z,+ , ·) of integers in which the following
laws hold:

(Z,+) is a commutative additive groupwith 0 as the neutral element, the operation
· obeys the commutative and associative law, and + and · are connected by the
associative law.

The set mZ of multiples of any number m > 1 forms not only a subring of
(Z,+ , ·), but it also contains all products s · t , where s ∈ Z and t ∈ mZ.

Two elements a, b ∈ Z are called equivalent, denoted by a ≡ b, if a − b ∈ mZ.
It is easy to see that this is exactly the case if a and b leave the same remainder when
divided by m.

By using the existence of the neutral element 0 for addition, the existence of addi-
tive inverse elements, and the associative law for addition, it is proved that the relation
≡ is a reflexive, symmetric, and transitive relation. Therefore, it is an equivalence
relation that splits Z into disjunct equivalence classes. There are m classes, denoted
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as [0], [1], . . ., [m − 1] according to the possible remainders 0, 1, . . . ,m − 1, under
the division by m.

The set of these residue classes is called the residue class ring Z modulo m,
written as Z/m Z. The elements of a class are called “representatives” of this class.
Any of these elements or “representatives” determines the class.

ForZ/mZ two operations are derived from the operations+ and− inZ as follows:
For any classes [a], [b] ∈ Z/m Z

the sum [a] ⊕ [b] is defined as the class [a′ + b′]
the product [a] � [b] is defined as the class [a′ · b′]

where a′ is an arbitrary element of [a] and b′ is an arbitrary element of [b].
In order to show that these operations are welldefined it has to be proved that the

resulting classes are independent of the choice of the representatives.

Proof Assume a ≡ a′, that is a = a′ + s · m, and b ≡ b′, that is b = b′ + t · m.
From the laws holding in Z we deduce

a + b = a′ + s · m + b′ + t · m = a′ + b′ + (s + t) · m, that is

(a + b) − (a′ + b′) = (s + t) · m ∈ Z.

a · b = (a′ + s · m) · (b′ + t · m) = a′ · b′ + (a′ · t + b′ · s + s · t · m) · m, that is

a · b − a′ · b′ = (a′ · t + b′ · s + s · t · m) · m ∈ Z.

Bydefinitionwegeta + b ≡ a′ + b′ anda · b ≡ a′ · b′. The laws holding in (Z,+ , ·)
are transferred to the structure (Z/m Z,⊕ ,�) as follows: [0] is the neutral element
of ⊕, [−a] the inverse element of [a], the associative law for ⊕ follows from the
associative law in (Z,+).

Proof For a, b, c ∈ Z we have

([a] ⊕ [b]) ⊕ [c] = ([a + b]) ⊕ [c] = ([(a + b) + c] = [a + (b + c)]
= [a] ⊕ [b + c] = [a] ⊕ ([b] ⊕ [c]).

In a similar way the commutative law for ⊕ and the commutative and associative
law for � and the distribute law are derived.

Therefore (Z/m Z,+ , ·) is a commutative ring also.
This construction can be generalized to any ring R and a subring I with the

property that for all s ∈ R and t ∈ I the product s · t belongs to I. Such a subring
is called an ideal. The arising structures are called quotient rings. For the sake of
simplicity the signs + and − are also used for ⊕ and �.

In an analogous way quotients of other algebraic structures can be defined.
The construction of quotient structures is a powerful tool of mathematics that

marks the turn to modern mathematics at the beginning of the twentieth century. It
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is far from being easily accessible and needs a long habituation (Gowers et al. 2008,
26):

Many people find the idea of a quotient somewhat difficult to grasp, but it is of major
importance throughout mathematics, which is why it has been discussed in some length
here.

In the context of this volume the decisive question is the following: to what extent
is it necessary that teachers know the theory of residue class rings in its mathematical
setting? For mathematical hardliners the answer is clear: teachers need to know it in
full it as it is standard in mathematics. For them it is also clear that this knowledge
is not only necessary but also sufficient for teaching any decent unit about residue
class rings, even if in teaching elementary means have to be employed.

Mathematics educators would hardly agree to the second part of the statement,
but many tend to agree to the first part. In Germany the formal theory of residue class
rings is a firm part of courses in number theory for student teachers at secondary level
and for primary student teachers with mathematics as a major subject. Even books
written by mathematics educators follow the formal presentation (see, for example,
Padberg 2008).

However, a closer look at this issue leads to a differentiated picture. For teachers
who want to teach in the learning environment illustrated in Sect. 3 a knowledge of
the theory of residue class rings is certainly necessary, however, not in its formal
setting, but in a setting that uses a terminology that is meaningful for communication
with students in the early secondary grades. If for a given module the numbers are
represented in tables, the equivalence relation is implicitly defined by this scheme, the
term “class” is replaced by “numbers in a column”, and the remainders are the natural
substitutes for the classes. The term “representative of a class” is superfluous. The
independence of the operations from the choice of the representatives is secured by
an operative proof that uses the laws of arithmetic, however, in a way that students are
familiar with (see Sect. 2). The objects of calculations are not classes, but remainders.

This informal treatment of residue classes is mathematically sound and can be
expanded into a theory of residue class rings beyond the formal setting (see Sect. 4).
For the designer the mathematical theory is nevertheless very important as it displays
the logical relationships in a concise way and shows that this structure is no impasse
but finds a continuation in many parts of mathematics. It would be stupid to ignore
that many learning environments are stimulated by higher mathematics. There is no
doubt that the authors of ATM (1967) who designed the first learning environment in
their book had full mastery of the formal representation of the theory of residue class
rings. So, to know higher mathematics is a significant advantage for the designer.
However, it is by far not sufficient for designing learning environments that match
students’ prior knowledge at various levels.

The tension between informal and formal settings of mathematics visible in this
example is a general one. Wolfgang Kroll, one of the most experienced teachers and
supervisors in the practical phase of teacher education in Germany, has expressed it
as follows (Kroll 1997, transl. E.Ch.W.):
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Mathematics is a network of concepts and theorems that can be knotted in very different ways
and captures quite different things: relationships with the real world, views, imaginations,
motives, interests, meanings. As a mental activity – so should it be experienced – it also
includes the processes that create mathematics. Networks that are built in a linear way
according to the scheme “definition, theorem, proof” have a completely different meaning
(and function!) in comparison with networks that are knotted according to other needs, with
meshes sometimes wider, sometimes closer, sometimes forwards, sometimes backwards, in
different colors and for different purposes.

Thenetworkknotted at the university is the “scientific systemmathematics”, the net knotted at
school is something different, and could be called “mathematics as symbolic appropriation
of reality”. Therefore, mathematics at school is neither contained in mathematics at the
university nor can it be easily derived from it.

Despite these differences, the network “school mathematics” and the network
“university mathematics” must not be seen as contradictory. In several papers (that
are referred to in some parts of this volume) John Dewey has dissolved the ten-
sion with a genetic view of mathematics and by distinguishing between two aspects
of mathematics: mathematics as a research field and mathematics as a means for
fostering mental growth.

Very illuminating in our context is Dewey’s comment on a paper by the geometer
G.B.Halsted. This comment appeared in close proximity toDewey’s great paper “The
Relation of Theory to Practice in Education”. Halsted, the author of a textbook on
elementary geometry based on Hilbert’s “Grundlagen der Geometrie”, had criticized
textbooks in geometry for being mathematically incorrect and insisted that textbooks
should from the very beginning present “not only the truth, but the whole truth”
(Dewey 1903/1977, 218). Dewey fundamentally disagreed and instead suggested to
look at learning geometry as a process that advances from more intuitive, context-
related, and applied versions of geometry to more rigorous representations (Dewey
1903/1977, 228):

These two sides, which I venture to term the psychological and the logical, are limits of a
continuous movement rather than opposite forces or even independent elements . . . it is a
social wrong under the name of pure science to force [students who are not ready for it] into
paths having next to no meaning for them, and which consequently lead next to nowhere.

It is important to understand that both sides are part of onemathematics. One side
refers to research, the other one to earlier steps in the development ofmathematics and
tomathematical learning. From the genetic point of view, it is amistake to consider the
mathematics of specialists as the “true” manifestation of this science and to relegate
school mathematics to the sidelines as “pre-mathematics”. Historically, mathematics
itself has developed from elementary theories, and the lower levels have carried the
higher ones, not the other way round. In the same way, more elementary levels
of learning that are necessarily less advanced carry the higher ones and cannot be
skipped. Representations of some mathematics on a higher level cannot be imposed
on students who do not have the necessary prior knowledge. It cannot be emphasized
enough that mathematics at lower levels is mathematics in its own right and that the
basic approach to studying mathematics is invariant over the various levels:
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Because mathematics is made by men and exists only in their minds, it must be made or re-
made in themind of each personwho learns it. In this sensemathematics can only be learnt by
being created. We do not believe that a clear distinction can be drawn between the activities
of the mathematician inventing new mathematics and the child learning mathematics which
is new to him. The child has different resources and different experiences, but both are
involved in creative acts (ATM 1967, preface).

Therefore, the best way to organize learning processes is to draw from the poten-
tial that is inherent in seeing mathematics as a growing organism, which requires a
special approach. At a conference dedicated to clarifying the scientific status ofmath-
ematics education (or didactics of mathematics) in 1975 Trevor Fletcher answered
the question of whether the teacher of mathematics is a mathematician or not in the
following way (Fletcher 1975, 217):

I have come to the conclusion that the teacher of mathematics certainly needs to be a math-
ematician, and that he needs to be a special sort of mathematician. He needs the general
mathematical background that enables him to talk on equal terms with mathematics gradu-
ates, although he does not need some of the more specialized areas of mathematics that form
part of most degree courses which are devoted exclusively to the subject. He needs a broad
knowledge of applications in the world outside and in other parts of the school curriculum.

In addition, the teacher needs specialist skills of his own, in the translation of mathematics
from one form into another, in understanding the pattern of thinking of his pupils at various
stages of development, and in understanding the relevance of structural ideas in mathematics
to the teaching of it.

Mathematics educators who want to serve teachers at the very front of teaching
must be mathematicians of the special sort described by Fletcher.

The conclusion also from this section is thatmathematics if seen in its development
is themost valuable source for designing learning environments and curricula and for
providing teacherswith basic knowledge for preparing and conducting lessons and for
analyzing learning processes. In fact, it is the natural source, stands for mathematical
authenticity, and is the only way to preserve the beauty of mathematics.

4 From “Instruction and Receptivity” to “Organization
and Activity” in Teacher Education

The quotation at the beginning of this chapter consists of two parts. Its meaning is
nicely supported by Heinrich Froebel’s introduction into his third geometric gift: a
cube divided into eight smaller cubes. Froebel suggests to the nursery school teacher
to play a double role: first she should take this material into a room where nobody
can disturb her and work intensively with this material herself as a learner in order
to get thoroughly acquainted with it. Only then will she be in a position to slip into
her role as a teacher and work with children.

In the same sense mathematics teachers should first explore a learning environ-
ment on their own without thinking about teaching. Only after they have become
familiar with it they should think about how to guide students in exploring it. This
access would greatly strengthen the familiarity with mental processes as fixed in
Winter’s general objectives.
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Themathematical education of teachers should support this approach. In his paper
on “The Relationship of Theory and Practice in Education” a long chapter is devoted
to the training in subject matter, in which Dewey is explicit in this respect (Dewey
1903/1977, 263):

Now the body of knowledge which constitutes the subject-matter of the student teacher
must, by the nature of the case, be organized subject-matter. It is not a miscellaneous heap
of separate scraps. (. . .) There is, therefore, method in subject-matter itself . . . method of the
highest order which the human mind has yet evolved, scientific method (. . .) Such being the
case, there is something wrong in the “academic” side of professional training, if by means
of it the student does not constantly get object-lessons of the finest type in the kind of mental
activity which characterizes mental growth, and hence the educative process.

It should be obvious that the typical formal treatment of residue class rings that is
suitable for specialists does not meet these requirements as it follows the paradigm
“Instruction and Receptivity”, excludes mathematical processes, and leaves little
room for student teachers’ activities.

What is needed instead is an introduction into this topic that is closer to the learning
environment in Sect. 3. In this context the derivation of the laws in Z/m Z from the
laws in Z is quite easy:

The remainder 0 is the neutral element in Z/m Z and its own inverse, for remain-
ders a �= 0 the remainder m − a is the inverse.

Proof of the associative law for ⊕ in Z/m Z:
Let a, b, c be remainders module m. The result of (a ⊕ b) ⊕ c lies in the same

column as the result of (a + b) + c and the result of a ⊕ (b ⊕ c) lies in the same
column as the result of a + (b + c). We have (a + b) + c = a + (b + c) because of
the associative law in Z. Therefore,

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

In the same way the commutative law for ⊕, the commutative and associative law
for �, and the distributive law for ⊕ and � can be derived.

Within this setting student teachers are given free space to determine the addition
and multiplication tables for various modules, to compare the multiplication tables,
and to discover similarities and differences. They could, for example, discover that
for some modules all products of a remainder �= 0 with the other remainders are
different, while for other modules there are remainders �= 0 for which the product is
0, for example, in the case of the module 10, where 5 � 2 = 0. In a formal treatment
these phenomena would be done away by a dry proof of the theorem that in case of
a module m that is a prime number the ring (Z/m Z,⊕ ,�) is a field.

In a course for teachers it would make sense to connect this topic to place value
systems with bases different from 10. This again would open up room for investiga-
tions. For the base 5-system the proof of the dependence of sums or products only
from the columns would work exactly as in the base 10-system. And this could be
transferred to other place value systems.

For special multiplication tables the students could investigate which remainders
are squares of others: this would give the teacher a chance to mention the research
by Gauss and others about the so-called reciprocity law.
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In a course of this kind it would also make sense to look at examples where
knowledge about residue class rings is applied for solving problems. Elementary
number theory is full of such examples that are an important enrichment of the
theory.

Mathematical courses that are related to teaching are highly accepted by student
teachers. They help them to see, appreciate, and use the educational and practical
resources inherent inmathematics. Such courses also contribute greatly to developing
a positive attitude towards the subject. For this reason, they are the key to real progress
in mathematics teaching, and this applies to all levels. The design science approach
matters to teacher education also.
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Comments and Some Personal Remarks on the Papers in
Chapters 2–14

In addition to the general background described in this chapter it seems appropriate
to say a few words about the origin of each paper and the context in which it was
written.

Chapter 2: Teaching Units as the Integrating Core of Mathematics Education. Edu-
cational Studies in Mathematics 15 (1984), 25–36.

This paper is a translation of the German original

Unterrichtsbeispiele als integrierender Kern der Mathematikdidaktik.
Journal für Mathematik-Didaktik 3 (1982), 1–18.

that was based on a plenary lecture in Darmstadt in 1981 at the annual meeting of
mathematics educators from German-speaking countries.

It was not the first paper of mine on the design science approach. In 1974 there
was a lively discussion on the scientific status of mathematics education to which
I had contributed the article “Didaktik der Mathematik als Ingenieurwissenschaft”
[“Didactics of Mathematics as Engineering”], Zentralblatt für Didaktik der Mathe-
matik 74/3, 119–121. This article was just a first attempt in this direction. The later
paper of 1984 presented the idea more clearly, even if the terminology was still in a
preliminary state, as well as the diagram (Fig. 1).

Chapter 3: Clinical Interviews Embedded in the “Philosophy of Teaching Units”—
AMeans of Developing Teachers’ Attitudes and Skills. In: Christiansen, B. (ed.),
Systematic Cooperation Between Theory and Practice inMathematics Education,
Mini-Conference at ICME 5, Adelaide 1984. Copenhagen: Royal Danish School
of Education, Dept. of Mathematics 1985, pp. 18–31.

This paper was inspired by a sabbatical leave in Switzerland in 1974 where I had a
chance to attend Jean Piaget’sMonday seminars.Although at that timemymain inter-
est was devoted to the formalization of Piaget’s concept of grouping, I noticed that
the research method used by the members of the Centre d’épistémologie génétique
was very well suited for developing the attitudes that characterize a good teacher. The
paper gives an account of a course that right after my return from Geneva was firmly
integrated into our teacher education program. The course consisted of two parts: in
part 1 the basics of Jean Piaget’s genetic epistemology were given (see Wittmann,
E.Ch., Mathematisches Denken im Vor- und Grundschulalter [The Development
of Mathematical Thinking at the Pre-school and primary level]. Wiesbaden. Vieweg
1982); in part 2 the student teachers conducted clinical interviews, documented them,
and presented the results in a seminar. In retrospect the participants evaluated this
course highest in the whole program. Again, the terminology in this paper is prelim-
inary. What now is called the “design science approach” appears in the paper (and
already in the previous paper) as “Philosophy of Teaching Units”.
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Chapter 4: The Mathematical Training of Teachers from the Point of View of Edu-
cation. Journal für Mathematik-Didaktik 10 (1989), 291–308.

My first years in teacher education coincided with the heyday of “New Math”, a
movement that I had rejected from the very beginning. The pressure at that time to
be “mathematically correct” was enormous. It was not easy to get rid of the formats of
courses that I had been living with for a decade during my study of mathematics and
my years in a department of mathematics. I consider my book Elementargeometrie
und Wirklichkeit [Elementary Geometry and Reality] (Wiesbaden: Vieweg 1987),
as a personal breakthrough that was reflected in Chap. 4, originally presented as a
survey lecture at ICME 6, Budapest 1988. When preparing this paper, it occurred to
me that informal representations are crucial for unfolding the resources for teaching
that are inherent in mathematics. The geometry book was also an attempt to mix
structure and applications in mathematical courses.

Chapter 5: When is a proof a proof? Bulletin de la Sociétè Mathématique de Bel-
gique, Série A, Tome XLII (1990), 1542.

The German original

Wann ist ein Beweis ein Beweis? In: Bender, P. (Hrsg.), Mathematikdidaktik:
Theorie und Praxis. Festschrift für Heinrich Winter. Berlin 1988, S 237–257

was written in collaboration with Gerhard Mueller and dedicated to Heinrich Winter
on the occasion of his sixtieth birthday.

The paper has been another decisive step in getting rid of the rigid bonds of formal
mathematics. The documents included in the paper show that it has not been easy
for student teachers to accept informal proofs as they had been “drilled” in formal
presentations at school. In 1988 I attended a conference at the island of Samos, the
birthplace of Pythagoras, and presented this paper. In the very first row, Andrew
Gleason, one of the four mathematicians who contributed to solving Hilbert’s fifth
problem, was carefully listening to my talk. As he didn’t say anything in the discus-
sion, I asked him afterwards if he would agree to these proofs, to which he answered:
“Of course, why do you ask me?”. One year later, when I presented the same paper
at a conference of the German Association of Teachers of Mathematics and Science
(MNU) in Darmstadt many participants openly disagreed with my message. In the
last mail I received from Hans Freudenthal in spring 1990 he complained of the
stubbornness of German gymnasium teachers (my former colleagues!).

Chapter 6: Mathematics Education as a “Design Science”. Educational Studies in
Mathematics 29 (1995), 355–374.

In 1987 Gerhard Mueller and I had collected enough experience in our courses in
mathematics and mathematics education for student teachers and thought it appro-
priate to found the project Mathe 2000 and to explicitly base it on the design science
approach. After finishing our work on the two volumes of theHandbuch produktiver
Rechenübungen [Handbook for practicing skills in a productive way], published in
1990 and 1992, it seemed about time to re-assure ourselves about our approach. The
result was the paper
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Mathematikdidaktik als “design science”. Journal für Mathematik-Didaktik 13
(1992), 55–70.

When I was invited for a plenary presentation at the ICMI-Study Conference on
“Mathematics Education as a Research Domain. A Search for Identity”, chaired by
Anna Sierpinska and Jeremy Kilpatrick, in Washington, D.C. in 1994, I presented
the English translation of this paper that was also published in the ICMI-Study.

In comparison with the paper in Chap.2, this version of the design science
approach is much more differentiated in many respects. Above all, mathematics
education is described as a “systemic-evolutionary” design science surrounded by
a series of related disciplines (see Fig. 1). There is also progress in seemingly tiny
things. For example, the original representation of arithmogons (Fig. 2) had been
changed (Fig. 2) in order to facilitate the use of counters. However, the term “teach-
ing units” was retained.

From that time on, my courses on mathematics education took on the following
format. In the first 45min of a lecture I presented five teaching units on a topic
that incorporated a theoretical principle, and in the second 45min I explained this
principle. In a follow-up seminar (1.5h) the participants were given worksheets that
stimulated activities for deepening their understanding of the topic. The acceptance
of these courses by student teachers was very high, and I cannot but recommend the
format.

Chapter 7: Designing Teaching: The Pythagorean Theorem. In: Cooney, Th. P.
(ed.), Mathematics, Pedagogy, and Secondary Teacher Education. Portsmouth,
NH: Heineman 1996, 97–165.

In the early 1990s my colleague Georg Schrage and I were invited by TomCooney, at
that time professor at one of the leading American centers of mathematics education
in Athens/Ga., to join an NSF project that was aimed at bridging the gap between
mathematics, mathematics education, and the teaching practice. This project gave
me a chance to demonstrate the main method of the design science approach, later
called structure-genetic didactical analysis, in some detail, including mathematical
analyses, clinical interviews, the design of lessons, and theoretical considerations.

The style of the paper differs from that of the other papers due to the objective of
the NSF project: to include tasks that can directly be used in teacher education. As
teacher education is a focus in this volume, the style has been maintained.

Chapter 8: Standard Number Representations in Teaching Arithmetic. Journal für
Mathematik-Didaktik 19 (1998) 2/3, 149–178.

While working on the “Handbuch produktiver Rechenübungen”, a grammar of non-
symbolic representations for arithmetic had been developing almost by itself. The
paper in Chap.8 is the summary of our experiences during this work. In the new
edition of the “Handbuch” (2017/2018) the conception is carried a step further and
connected with the notion of operative proof in a consistent way. The recent software
“Plättchen&Co. digital” [Counters &Co. digitally] contains digital versions of most
of the teaching aids listed in this paper.
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Chapter 9: Developing mathematics education in a systemic process. Educational
Studies in Mathematics 48 (2002), 1–20.

In this paper, a plenary lecture at ICME 9, the design science approach was further
elaborated with respect to systemic boundary conditions. One section is devoted to
teacher education.

Chapter 10: The Alpha and Omega of Teacher Education: Stimulating Mathemat-
ical Activities. In: Holton, D., Teaching and Learning at University Level. An
ICMI Study. Dordrecht: Kluwer Academic Publishers 2002, 539–552.

While in Chap.4 a new conception of mathematical courses for teachers is sketched
in broad lines, the paper in Chap.10 describes a format for these courses in detail.
Similar to my courses on mathematics education, this format also includes two parts:
the first organizes student teachers’ activities on a series of topics, and the second
includes a systematic presentation of these topics.

As mentioned in the paper, a group of mathematics educators has joined together
in writing a book, “Arithmetik als Prozess” [Arithmetic as a Process], based on
this format. This book was intended as the first volume of a series, “Elementary
Mathematics as a Process”, that, however, has not been continued to date. I think it
would be promising to restart this project at the international level as a joint venture
of mathematicians and mathematics educators.

Chapter 11: OperativeProofs inSchoolMathematics andElementaryMathematics.

Translated from the German original

Operative Beweise in der Schul- und Elementarmathematik. mathematica didac-
tica 37, H. 2 (2014), 213–232.

Operative proofs that are inspired by the “operative principle” have been cultivated
by quite a number of German mathematics educators. This type of proof is already
discussed in some of the previous papers, and in some length in Chap. 7. In Chap.11
the notion of operative proof is elaborated on in some detail and illustrated by typical
examples. In the new edition of the “Handbuch” 2017/2018 operative proofs are
developed systematically from grade 1, in line with standard representations.

Chapter 12: Collective Teaching Experiments: Organizing a Systemic Cooperation
Between Reflective Researchers and Reflective Teachers in Mathematics Educa-
tion. In: Nührenbörger, M. et al. (2016). Design Science and its Importance in the
German Mathematics Educational Discussion. (S. 26–34) Rotterdam: Springer
Nature.

This short paper presented at ICME 13 expands on the systemic constraints of teach-
ing by essentially referring to the work of Donald Schön. The paper introduces the
idea of “collective teaching experiments” stimulated by the Japanese lesson studies.
In the new “Handbuch” 2017/2018 proposals for such experiments are made for
teaching arithmetic.
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Chapter 13: Structure-genetic Didactical Analyses—Empirical Research “of the
First Kind”. In: Błaszczyk, P. & Pieronkiewicz, B. (eds.), Mathematical Trans-
gressions 2018. Kraków: Universitas, 133–150.

This paper, a plenary paper presented at a conference inCracow in 2015, describes the
main researchmethod of the design science approach, the structure-genetic didactical
analysis, and shows that this method also helps to disclose empirical evidence about
the feasibility of learning environments. The second part of the title is in no sense
intended as a provocation. It simply states that mathematics educators have always
included experiences from their teaching practice or that of teachers they were in
contact with.

Chapter 14: Understanding and Organizing Mathematics Education as a Design
Science. Origins and New Developments. Hiroshima Journal of Mathematics
Education 12 (2019), 1–20.

This paper is based on a plenary lecture at the annual conference of the Japanese
Academic Society of Mathematics Education, Hiroshima 2017. All aspects that are
discussed in this chapter are included, and in many places references are made to
the new “Handbuch” 2017/2018 and to the “Book of Numbers”. In Fig. 1 the related
disciplines have been re-ordered. The disciplines on the left side are more closely
connected to mathematics education than those on the right side. New in the picture,
on the left side, is “semiotics”. This is due toWilliDoerfler’s epochalwork in this area.
His paper “Wieso kann man mit abstrakten Objekten rechnen? [How is it possible to
calculate with abstract objects?]”, quoted in Chap. 8, has been an eye-opener for me.

Erich Ch. Wittmann

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 2
Teaching Units as the Integrating Core
of Mathematics Education

Abstract How to integrate mathematics, psychology, pedagogy and practical teach-
ing within the didactics of mathematics in order to get unified specific theories and
conceptions of mathematics teaching? This problem—relevant for theoretical and
empirical studies in mathematics education as well as for teacher training—is con-
sidered in the present paper. The author suggests an approach which is based on
teaching units (Unterrichtsbeispiele). Suitable teaching units incorporate mathemat-
ical, pedagogical, psychological and practical aspects in a natural way and therefore
they are a unique tool for integration. It is the aim of the present paper to describe
an approach to bridging the often deplored gap between didactics of mathematics
teaching on one hand and teaching practice, mathematics, psychology, and pedagogy
on the other hand. In doing so I relate the various aspects of mathematics education
to one another. My interest is equally directed to teacher training and to the method-
ology of research in mathematics education. The structure of the paper is as follows.
First I would like to make reference to and characterize an earlier discussion on
the status and role of mathematics education; secondly, I will talk about problems
of integration which naturally arise when mathematics education is viewed as an
interdisciplinary field of study. The fourth and essential section will show how to
tackle these problems by means of teaching units. The present approach is based on
a certain conception of mathematics teaching which is necessary for appreciating
Sect. 4. This conception is therefore explained in Sect. 3.

1 Discussion of the Status and Role of Mathematics
Education

In spite of the important progress in international cooperation on mathematics edu-
cation achieved during the last decade, discussions on the specific quality of mathe-
matics education (or didactics of mathematics) were mainly restricted to the national
level. As for the situation in Germany it was only at the 5th Annual Meeting on

This paper is a modified version of the opening address given by the author at the 14th Annual
Meeting of German Mathematics Educators, Darmstadt, March 1981.
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Mathematics Education (1971) in Bayreuth that H. G. Steiner stimulated a broad
discussion on this issue leading to a series of papers on the status and role of math-
ematics education (Bigalke et al. 1974).

The picture of mathematics education emerging in this way was not at all
homogeneous—and it is still not so today. However, restricting attention to the views
of those authors who work as professional mathematics educators in research as well
as in teacher training reveals a remarkable agreement: mathematics education (didac-
tics of mathematics) is considered as a discipline of its own related intrinsically to
mathematics, psychology, pedagogy, and some other fields of study, as well as to the
practice of mathematics teaching (cf. Fig. 1).

Fig. 1 Didactics of mathematics and the surrounding disciplines

Corresponding to Fig. 1 the memorandum of the “Gesellschaft für Didaktik der
Mathematik” on teacher training (March 1981) has describedmathematics education
as follows:

It is the task of the teacher to combine mathematical knowledge, psychological experience,
and a positive attitude towards young people in order to stimulate and support the learn-
ing of students towards educational goals beyond mathematics. The teacher’s thinking and
doing is characterized by taking into account the interlacing of mathematical, pedagogical,
psychological and practical conditions and by making balanced decisions. Accordingly, a
reasonable training of mathematics teachers has to include didactical studies in addition to
solid mathematical and educational studies.

It is the didactics of mathematics which in an interdisciplinary manner investigates the com-
plexity of mathematical learning and teaching. As the professional field of study of mathe-
matics teachers it has to introduce the student teachers to the integrative view and practice
which are necessary for their profession and to explain the meaning of their educational
work in mathematics. The didactics of mathematics relates mathematical and educational
studies to one another, and it provides the necessary bridge to teaching practice.

In short, the feature of mathematics education (didactics of mathematics)
expressed in this quotation can be described by the catchwords “interdisciplinary”,
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“integrative” and “applied”. Obviously these requirements are the immediate conse-
quences of the complex working conditions of mathematics teachers.

2 Problems of Integration

As we all know it is much easier to postulate interdisciplinarity, integration and
applicability than to put them into practice. Apart from inherent issues, we also
have to take into account external pressures which push mathematics education in
certain directions contrary to interdisciplinarity and integration. Very clear indicators
for pressures of this kind are the quite different expectations about mathematics
education expressed by specialists of related fields. For example, mathematicians, if
they admit the necessity of mathematics education at all, very often consider it to
be elementary mathematics. They expect the didactician to be qualified by standards
of mathematical research and to keep mathematically alive, at least by working in
“a small mathematical garden” (H. Meschkowski). Sometimes practical experience
is called for, by which is usually meant naive experience. Possible sympathies of
mathematics educators for psychology or pedagogy, however, are criticized or even
rejected on the grounds that they lead away from mathematics. On the other side
most pedagogues and psychologists regard the didactics of mathematics as part of
the disciplines of education. Affinity for mathematics arouses suspicion and quickly
qualifies the mathematics educator as a narrow-minded specialist of mathematics.
What are the expectations of practicing teachers for mathematics educators? In their
eyes mathematics educators should have about 10 years teaching practice and should
continuously be involved in school life, at best by part-time teaching. The theoretical
investigations carried out by mathematics educators are conceived of as unnecessary,
if not obnoxious, digressions.

Tensions between didacticians of mathematics and academians in the reference
fields arising from these role expectations are sometimes very hard to endure, par-
ticularly when the mathematics educators form no department of their own but are
integrated into the departments of mathematics or education. Nevertheless, I do not
recommend a surrender to the temptation of reducing the tensions by one-sided adap-
tation. This would inevitably widen the gap to the other fields of reference and would
invalidate the tasks of mathematics education. Frankly speaking I think it a sign of
weakness. It should be beneath the didactician’s dignity to adapt to the environment
like a chameleon.

Instead I would like to argue strongly in favour of an independent didactics of
mathematics, and I consider the problems of relating the didactics of mathematics to
mathematics, to the educational disciplines, and to teaching practice as completely
natural problems which should be made conscious, in order to stimulate the mutual
crossings of borders. I am deeply convinced that in the long run this will be profitable
not only for mathematics education but also for the fields of reference.

Progress in solving the problems of integration mentioned above is of particular
importance for teacher training, as most teacher training programmes consist of iso-
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lated mathematical, educational, didactical and practical components. Also, research
in mathematics education very often lacks the interlocking of different aspects.

The following approach to integrating the various aspects of mathematics educa-
tion originated in the reform of our teacher training programs at DortmundUniversity
initiated by the 1976 teacher training law of North Rhine-Westphalia. Actually I will
restrict myself to teacher training for the primary level, because in this area we have
made the greatest progress; however, I am convinced that our approach can easily be
transferred to the other levels.

Of course we are not the first ones trying to reform teacher training by integrating
different components, neither are we the first ones to use teaching units for this
purpose. Therefore I do not believe the approach of this paper to be totally new;
however, I think it worthwhile to elaborate the full momentum of the “philosophy of
teaching units” in a systematic and comprehensive way. The main part of this paper
will be devoted to that task.

3 Some Views on Mathematics Teaching

A more detailed analysis of the problems of integration in Sect. 2 leads very quickly
to uncovering an inconsiderate use of language in discussions on teacher education
which is responsible for obscurities and misunderstandings, as well as for seem-
ing consensus: the terms “mathematics”, “psychology”, “pedagogy”, “mathematics
education”, “teaching practice”, etc., are tacitly assumed to have a definite mean-
ing, although quite to the contrary, all these fields more or less obviously admit of
varieties of very differently marked points of view.

With respect to this plurality of views it is hopeless from the very beginning
to establish relationships in general and to combine any conception of didactics of
mathematicswith any conception ofmathematics, with any kind of teaching practice,
etc. I see no other way out of this situation than to start from some basic educational
view on mathematics teaching and to select those attitudes towards mathematics,
psychology, pedagogy and teaching practice which are compatible with this funda-
mental view. I am well aware that this approach explicitly involves subjectivism.
However, subjectivism is already implicitly present and, moreover, there is always
room for intersubjective agreement anyway.

The fundamental idea of mathematics teaching which is at the heart of the pro-
posed approach—my ideology so to speak—is the following one:

Mathematics teaching is doing mathematics with students in order to cultivate their under-
standing of reality.

Of course this “axiom” is nothing but a short formulation of a “genetic” view on
mathematics teaching which has been developed elsewhere in detail (cf. Wittmann
1980b).

What are the consequences of this position for the fields surrounding the didactics
of mathematics?
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As far as mathematics is concerned, the genetic view of mathematics teaching
emphasizes the dynamics of mathematics, its applications in small and big problems,
the processes of solving problems, the relationships within mathematics, as well as
to the outside world. Clearly this view is in sympathy with the lively picture of
mathematics as described in Lakatos (1976), not with the anaemic skeleton usually
presented to freshmen students.

Concerning psychology, those theories are of particular interest which are based
on the learner’s active search andwhich consider the learner’s prerequisite knowledge
as a crucial factor in the learning process. A typical example of this is J. Piaget’s
genetic epistemology and psychology.

Finally, within pedagogy both theories and methods of social learning have to be
emphasized.

I would like at least to indicate the consequences to be inferred from these evalu-
ations for the training of mathematics teachers. In order to be able to do mathematics
with pupils the student-teacher needs:

(1) sufficient mathematical training in order to do mathematics at an appropriate
level above the school curriculum;

(2) psychological training which introduces him or her to observing, analysing and
understanding the successful and non-successful mathematical thinking pro-
cesses of students;

(3) pedagogical training which incorporates understanding for social learning.

It is obvious that to achieve these goals we need teacher training programs quite
different from most present ones. However, I cannot go into details here.

4 Teaching Units as the Integrating Core of Mathematics
Education

The central thesis of this paper is this:

In order to establish relationships between the different aspects of mathematics education
and between the corresponding components of teacher training as well, it is useful to start
from entities which already represent integration in a natural way, namely teaching units.
Appropriate teaching units provide opportunities for doing mathematics, for studying one’s
own learning processes and those of students, for evaluating different forms of social orga-
nization, and for planning, performing and analysing practical teaching. Therefore teaching
units are a unique means for penetrating all components of teacher training and relating them
to one another.

Finally, teaching units offer an excellent way for applied research into mathematics teaching.

I would like to illustrate this “philosophy of teaching units” by means of some
special units.
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4.1 Some Teaching Units

In my teacher training courses I regularly present a teaching unit (TU) in a format
which involves brief information on: objectives (O), materials (M), mathematical
problems arising from the context of the unit (P) and the—mostly mathematical,
sometimes psychological—background of the unit (B). During the course these com-
ponents are explained as much as I judge necessary.

The first three of the following examples are taken from the didactics of the
primary level, the fourth from the secondary level.

4.1.1

TU Arithmogons (McIntosh and Quadling 1975; Walther 1978)
O: Adding, subtracting, operative investigation of these operations,

searching-discovering.
M: Trigonal and quadrilateral arithmogons (partly on worksheets).
P: Given numbers in some vertices and edges. Find the other numbers!
B: Linear independence of the numbers in vertices and edges, systematic

solution by means of systems of linear equations, operative principle.1

As a reminder, arithmogons are triangles, quadrilaterals, in general n-gons, whose
sides and vertices can be labelled by numbers according to the following rule: Each
number in a side is the sum of the numbers in the adjacent vertices (cf. Fig. 2)

I’ll come back to the mathematical background later.

Fig. 2 Arithmogons: examples

1The operative principle is explained in Wittmann (1980b), Chap.8.
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4.1.2

TU “Chinese Remainder Theorem”
O: Dividing with remainder, discovering, explaining.
M: Number line (integers).
P: Find a number which when divided by 3 leaves the remainder 1 and

when divided by 4 leaves the remainder 2.
Find another number of this kind.
Find another one, . . . etc.
Can you find a pattern?

B: Chinese Remainder Theorem.

4.1.3

TU Mini-Group-Ticket (Wittmann 1980a)

O: Combinatorial counting, adding, subtracting, halving of amounts of
money, mathematizing real situations, interpreting texts, reading tables.

M: Folder of the German Railway.
P: What is a mini-group ticket?

What is a mini-group?
How many mini-groups exist?
How much can you save by using a mini-group ticket?

B: Combinatorial counting, computational algorithms for addition and
subtraction, functions.

4.1.4

TU Galton Board (Schupp 1976)

O: Mathematizing a stochastic situation.
M: Galton boards of various sizes, balls.
P: Where will the first ball fall?

Where will the second one fall?, etc.
Why?
What path can a ball take?
How many paths exist?
Which paths lead to the same goal?
Compare the probabilities of the paths, etc.

B: Bernoulli-chain, binomial distribution.

The examples are intended to show that a teaching unit in the sense of the present
paper is not yet an elaborated plan for a series of lessons, although each one contains
essential points of such a plan. Rather a teaching unit is an idea or a suggestion for
a teaching approach which intentionally leaves various options of realisation open.
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4.2 Teaching Units in Teacher Training

First I would like to showhow teaching units can be usedwithin different components
of teacher training.

In didactical training proper, teaching units serve as illustrations of didactical con-
ceptions of teaching certain mathematical ideas or concepts. In this sense Gerhard
Müller and myself wrote a book for primary student teachers (Müller and Wittmann
1978), half of which consists of 24 carefully selected teaching units. These units
represent the essential content, objectives, and materials of mathematics teaching at
the primary level. On the other hand teaching units are useful references in courses
on general didactical principles. Unit 4.1.1, for example, involves an application of
the operative principle; unit 4.1.3 is a model for the genetic principle (see Wittmann
1980b, Chap.10). My own experiences in teacher training have convinced me that
lectures on basic issues of mathematics teaching are hard to bear, both for the pro-
fessor and for the students, without reference to concrete teaching units.

In other words, the value of teaching units for didactical training is based on the
fact that they organise didactical knowledge in an effective way for mathematics
teaching.

As formathematical training, arithmogons, for example, fit perfectly into a course
on algebra for primary and secondary students. Students may first investigate arith-
mogons on their own and develop their own strategies for solving them.

There are different types of tasks.

(a) The numbers in the circles are given.
(b) Some numbers in the circles and some numbers in the squares are given.
(c) Only the numbers in the squares are given.

While in cases (a) and (b) the missing numbers can easily be determined by addition
and subtraction, in case (c) problem solving strategies are needed. It turns out that trig-
onal arithmogons have always exactly one solution, while quadrilateral arithmogons
have either no or more than one solution.

These experiences pave the way for a systematic algebraic treatment of arith-
mogons (McIntosh and Quadling 1975): The numbers x1, x2, . . . , xn in the vertices
and the numbers y1, y2, . . . , yn in the edges of an n-gon (cf. Fig. 3) are related to one
another by the linear equations

x1 + x2 = y1, x2 + x3 = y2, . . . , xn + x1 = yn.
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Fig. 3 Arithmogons: general setting

In other words, the mapping ϕ assigning the n-tuple (x1, . . . , xn) to the n-tuple
(y1, . . . , yn) is a linear mapping of Qn (or Rn) into itself. Transforming the corre-
sponding matrix shows that ϕ is of rank n, if n is odd and of rank n − 1, if n is
even.

In the same manner the other units give rise to genuine mathematical work, as
is indicated by the cues describing the mathematical background and need not be
elaborated in detail here.

On the whole, I hope to have made clear that teaching units may serve as starting
points for substantial mathematical activities on which important mathematical the-
ories can be built. These theories are then obviously related to mathematics teaching.
So prospective teachers will not think them irrelevant or useless, as is so often the
case in today’s teacher training. In my opinion a change of mathematical training
towards the direction described here is one of the most urgent tasks in reforming
teacher education.

As far as the practical training is concerned, it almost goes without saying that
students should elaborate and test teaching units which they have met during their
didactical training. In my opinion the crucial point for planning a lesson is to make
the content or skills to be taught accessible by means of appropriate problems (cf.
Wittmann 1980b, Chap.5). This is the reason why “problems” is one of the four
items to be considered in a teaching unit.

Videotapedunits are very useful for illustrating didactical ideas and for stimulating
students. In Dortmund we are going to establish a collection of videotapes of our
favourite teaching units.

Because it is very difficult to study thinking processes of individual children in
the classroom, student teachers should be offered psychological-didactical studies
which introduce them to clinical interviews (cf. Herscovics and Bergeron 1980). My
own approach to this field (Wittmann 1982) does not primarily use themes from the
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psychological literature, but rather, as might be expected, psychological problems
arising from teaching units. For example, unit 4.1.3 poses the questions ’Which
strategies do primary children use to find mini-groups?’ and ’How many do they
discover?’ (cf. Heßler et al. 1980).

Last but not least, I should explain how to rethink the pedagogical training from
the point of viewof teaching units. In principle, teaching units are open to pedagogical
considerations, too. I would like to refer here to teaching units which were especially
devoted to organizing social activities (Müller and Wittmann 1978, Chap.1.5.1, pp.
116 ff., Chap. 1.5.4, pp. 128 ff.; Wittmann 1977).

As mathematics educators are usually not as responsible for the pedagogical
training as they are for the other components of teacher training, they cannot exert
too much influence in this direction. It is important that pedagogues pick up teaching
units and deepen them pedagogically.

4.3 Teaching Units in Didactical Research

Empirical research in mathematics education at the international level seems more
and more in favour of clinical studies (Easley 1977). As long as such studies are
done outside the natural context of learning and teaching and as long as they are
directed towards basic research, however, they do not provide us with the knowledge
necessary for guiding the learning of specific contents and procedures. For many
years H. Freudenthal has developed a conception of mathematics education which is
centered around the study of open and guided mathematical learning processes (cf.
Freudenthal 1978). I would like to go a little step further and suggest that researchers
investigate the mathematical thinking of pupils by using the framework provided
by a series of didactically rich and widely accepted teaching units. The studies of
Schupp (1976) with respect to unit 4.1.4 as well as those of Bell (1976), Galbraith
(1981), may serve as models. Research of this kind would be immediately applicable
to mathematics teaching by its very design. It would always include certain content
and thus keep us away from unjustified generalisations over other contents.

The methodical degrees of freedom, offered when turning a variable teaching
unit into a definite one, should be used by researchers in systematic variations of the
conditions.

I would like to embed the “philosophy of teaching units” described in this paper
into the methodology of the “Sciences of the artificial” created by the American
Nobel Prize Winner Herb Simon (Simon 1970). Teaching units are just artificial
objects constructed by mathematics educators, and it is my proposal to investigate
the behavior and the adaptability of these objects to different educational ecologies.
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5 Conclusion

The English group theorist Graham Higman once remarked “that progress in group
theory depends primarily on an intimate knowledge of a large number of special
groups”. I believe that mathematics education could equally take substantial profit
from the intimate knowledge of a large number of special teaching units.

This is not to question the importance of more general aspects of mathematics
teaching beyond or independent of particular teaching units. Quite to the contrary:
Just as group theory does not consist of a list of special groups, but is a theory
surrounding and surmounting special groups, didactics of mathematics can only be
viewed as a theory of and beyond real teaching.

Acknowledgements The author is indebted to Dr J. P. Becker, Carbondale, Illinois, for critical
comments.
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Chapter 3
Clinical Interviews Embedded in the
“Philosophy of Teaching Units”—
AMeans of Developing Teachers’
Attitudes and Skills

Those who like practice without theory are like seamen sailing
without steering wheel and compass and never being sure where
the voyage goes. Practice must always rest on good theory.

Leonardo da Vinci

Within the field of mathematics education there is at present a clearly increased inter-
est in methodological issues. This fact cannot be explained only by internal motives
but is also a reaction to pressures coming from well-established disciplines, which
question the academic status of mathematics education, as well as from teachers’
associations, which question the utility of mathematics education for practice. It is
the relationship between theory and practice that lies at the very heart of the prob-
lem, and it is to be expected that first and foremost the elaboration of effective ways
to relate theory and practice to each other will help to define the specific status of
mathematics education, to prove its necessity, and thus to stabilize it, both internally
and externally.

The theory-practice relationship is a problem that appears in more or less all
applied fields of knowledge. So mathematics education can learn from the experi-
ences of more advanced disciplines that support the following facts:

(1) The delineation of theory from practice is a natural and necessary step of devel-
opment in any applied field and, in principle, opens the way to a more effective
practice.

(2) The relationship between theory and practice cannot be fixed once and for all
but must be continuously re-thought throughout the progressive development of
the discipline in question.

(3) Tensions between theory and practice are not bad as such, but can be used for
mutual criticism and thus as a source of progress.

Slightly revised version of a paper that appeared in: Christiansen, B. (ed.) (1984): Systematic Co-
operation between Theory and Practice. Mini-Conference at ICME 5, Adelaide 1984. Copenhagen:
Royal Danish School of Educational Studies. Dept. of Mathematics, 18–31.
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(4) There is always the tendency that theories will fix their own ends and develop
independently of practice. This is no danger as long as they are related to a
significant core which itself is related to practice in a vital way. If, however,
theories develop in complete isolation from practice, they are bound to become
useless and to degenerate.

At the present stage of mathematics education, the creation of such a significant
coremust be the primordial aim. I agree completely with the view expressed by Alan
Bell (1985, 109):

One might ask the general question whether, in the present state of knowledge about math-
ematical education, we should progress faster by collecting “hard” data on small questions,
or “soft” data on major questions. It seems to me that only results related to fairly important
practitioner questions are likely to become part of an intelligible scheme of knowledge. The
developing theory of mathematical learning and teaching must be a refinement, an extension
and a deepening of practitioner knowledge, not a separate growth. Specific results unrelated
tomajor themes do not become part of communal knowledge.On the other hand “soft” results
on major themes if they seem interesting and provocative to practitioners, get tested in the
myriad of tiny experiments which teachers perform every day when they “try something and
see if it works.”

The present paper is based on an approach that tries to bridge the gap between
theory and practice bymeans of teaching units (Wittmann 1984).While this approach
is addressed to didactics as a whole, the perspective taken in this paper is that of pre-
service teacher education. In the first part of the paper, John Dewey’s position on
the relationship between theory and practice is reviewed. The second and essential
part will show how clinical interviews can be used to develop teachers’ attitudes and
skills within the “philosophy of teaching units.” The paper is based on the booklet
Wittmann (1982), which is a kind of reflection on the sabbatical leave spent by the
author in Switzerland in 1974 where he had a chance to collaborate with Jean Piaget
on the clarification of the concept of “grouping” (Wittmann 1978).

1 Cooperation Between Theory and Practice Through
“Intermediate Practice”

From the viewpoint of the practitioner, the theory-practice interaction can be
described by the scheme in Fig. 1 that is adapted from thewell-known theory-practice
loop in science. It reads as follows:

Within his or her daily practice the teacher is continuously confronted with (more
or less open) teaching situations. In order to manage a given situation he or she
uses his or her theoretical repertoire, his or her experience and various means for
developing a model which indicates what to look for, what to do, what to expect, and
which also explains his or her observations, decisions and prognoses. The model is
a model “in the making,” that is, it is being revised during the teaching process as
indicated by the arrows.
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Fig. 1 The theory-practice loop of teaching

In the long run, experience with teachingmodels will lead to strengthening, weak-
ening, modifying and revising the theoretical repertoire. So this repertoire itself is
undergoing continuous development. By its very nature it may be called a subjective
theory (or perhaps better, a collection of subjective theories) of the teacher. It must
be distinguished from the theories of teaching developed within the discipline of
mathematics education.

UsingKarl Popper’s conception of the threeworlds (Popper 1972), it can be stated:
The teachers’ field of activity belongs to world 1, his subjective theory of teaching
to world 2, whereas didactical theories of learning and teaching are part of world 3.

The central issue of teacher education is addressed by the following question:
What is the best way to build up an effective theoretical repertoire for teaching?

One answer that has been given for centuries and is shared by the vast majority
of practitioners even today is the apprenticeship-conception of teacher education
(cf. Egsgard 1978): Suppose the prospective teacher knows his or her subject matter.
Then the necessary theoretical tools evolve best through practice itself under the
guidance of experienced teachers.

In a second view, the scientific conception of teacher education, which is held by
most mathematics educators, the best professional preparation of teachers is seen in a
study of mathematical, educational and didactical theories accompanied or followed
up by practical work.

The two positions can only be evaluated and compared by referring to basic
normative assumptions on mathematics teaching. The author of the present paper is
in favor of a “genetic” perspective which can be characterized as follows:

(1) Mathematics is not just a collection of concepts, procedures and structures, but
a living organism whose growth is stimulated by continuous attempts to solve
big and small problems inside and outside of mathematics.
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(2) Knowledge cannot be simply transmitted from the teacher to the learner, but
must be developed (“constructed”) through the learner“s own activity.

(3) Social interaction is an essential component of learning and development.

Although the origins of the genetic view reach far back in history, this view has
only received conscious attention since the beginning of the 20th century. Inter-
estingly, a fundamental paper by John Dewey also elaborated on the relationship
between theory and practice from this point of view at that early time (Dewey
1904/1977).

Dewey sees the essential task of a teacher in “directing the mental movement of
students” and stimulating the “interaction of mind” (Dewey 1904/1977, 254):

As every teacher knows, children have an inner and outer attention. The inner attention is the
giving of the mind without reserve or qualification to the subject in hand. It is the first-hand
and personal play of mental powers. As such it is a fundamental condition of mental growth.
To be able to keep track of this mental play, to recognize the signs of its presence or absence,
to know how it is initiated and maintained, how to test it by results attained, and to test
apparent results by it, is the supreme mark and criterion of a teacher. It means insight into
soul-action, ability to discriminate the genuine from the sham, and capacity to further one
and discourage the other.

Dewey rejects the assumption held by the proponents of the apprenticeship-type
of teacher education that the attitudes and skills of a good teacher can be acquired best
through practice. On the contrary, he even considers premature practice as detrimen-
tal, because it puts the attention of the student teacher in the wrong place, and tends
to fix it in the wrong direction, namely towards controlling the external attention of
children, towards keeping them fixed upon his or her own questions, suggestions,
instructions and remarks and upon their “lessons.”

According to Dewey, a reasonable practical training of student teachers is only
possible (Dewey 1904/1977, 256)

... where the would-be teacher has become fairly saturated with his subject matter, and with
his psychological and ethical philosophy of education. Only when such things have become
incorporated in mental habit, have become part of the working tendencies of observation,
insight, and reflection, will these principles work automatically, unconsciously, and hence
promptly and effectively. And this means that practical work should be pursued primarily
with reference to its reaction upon the professional pupil in making him a thoughtful and
alert student of education, rather than to help him get immediate proficiency.

Dewey’s approach, which he calls the “laboratory point of view,” consists in
forming the prospective teacher through “vital theoretical instruction.” Of course
Dewey is far from understanding “vital theoretical instruction” as a transmission of
mathematical, educational or didactical theories. His position is characterized by a
very subtle analysis of what academic disciplines might contribute to a teacher’s
subjective theory of teaching. What is important to him, as far as the subjects are
concerned, is not the bulk of ready-made structures but the processes of thinking
inherent in subject matter (Dewey 1904/1977, 263–264):

There is therefore, method in subject matter itself –method indeed of the highest order which
the humanmind has yet evolved, scientificmethod. It cannot be too strongly emphasized that
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this scientific method is the method of mind itself ... [It] reflect[s] the attitudes and workings
of mind in its endeavor to bring rawmaterial of experience to a point where it at once satisfies
and stimulates the needs of active thought. Such being the case, there is something wrong in
the “academic” side of professional training, if by means of it the student does not constantly
get object-lessons of the finest type in the kind of mental activity which characterizes mental
growth and, hence, educative process.

It is necessary to recognize the importance for the teacher’s equipment of his own habituation
to superior types of method of mental operation. The more a teacher in the future is likely
to have to do with elementary teaching, the more, rather than the less, necessary is such
exercise. Otherwise, the current traditions of elementary work with their tendency to talk
and write down to the supposed intellectual level of children will be likely to continue. Only
a teacher thoroughly trained in the higher levels of intellectual method and who thus has
constantly in his own mind a sense of what adequate and genuine intellectual activity means,
will be likely, indeed, not in mere word, to respect the mental integrity and force of children.

As far as teacher education is concerned, Dewey arrives at a surprising conclusion
(Dewey 1904/1977, 260, 262):

What the student [teacher] needs most at this stage of growth is ability to see what is going
on in the minds of a group of persons who are in intellectual contact with one another. He
needs to learn to observe psychologically – a very different thing from simply observing
how a teacher gets “good results” in presenting any particular subject ... It is not too much to
say that the most important thing for the teacher to consider, as regards his present relations
to his pupils, is the attitudes and habits which his own modes of being, saying, and doing are
fostering or discouraging in them. Now ... I think it will follow as a matter of course that only
by beginning with the values and laws contained in the [student teacher’s] own experience
of his mental growth, and by proceeding gradually to facts connected with other persons of
whom he can know little, and by proceeding still more gradually to the attempt actually to
influence the mental operations of others, can educational theory be made most effective.

Dewey’s position can be summarized with respect to mathematics teaching as
follows: The main task of a teacher is to stimulate and to develop the mental activity
and interaction of his or her pupils. The best way for a student teacher to acquire the
necessary competence is to become familiar with mathematical thinking, to reflect
upon these mathematical activities, to observe and analyze his or her own learning, in
interactionwith other student teachers, and to study the development ofmathematical
thinking in children and groups of children.

This kind of doingmathematics and doing psychology reflects the essential aspects
of learning and teaching mathematics in the classroom. So it represents some sort of
practice, which can be denoted as “intermediate practice.” The author of the present
paper considers this kind of theory-based practice as the key to relating theory and
practice in teacher education to each other.

Fromwhat has been said before it should gowithout saying that theoretical studies
of mathematics, psychology and education in the sense of intermediate practice
require an interdisciplinary approach and a re-organization of teacher education.
This approach provides a real chance for mathematics education to fill a prominent
place in teacher education programs.
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2 Clinical Interviews as a Special Kind of Intermediate
Practice

The importance of intermediate practice for prospective teachers would be greatly
enhanced if doing mathematics and doing psychology could be linked to the school
curriculum without, however, trivializing or distorting the requirements mentioned
before. Wittmann (1984) suggested centering didactical research and development
as well as teacher education around groups of teaching units which are sufficiently
rich in order to allow for mathematical and psychological activities in the sense of
intermediate practice and which are representative of the curriculum. This idea is
not new. For example, it is developed to some extent in Fletcher (1965). Additional
examples of this “philosophy of teaching units” for the primary level are provided
by Müller and Wittmann (1984), Wittmann (1982). Clinical interviews fit in here in
a quite natural way as will be shown in this section.

The clinical method and other protocol methods have been enjoying increased
popularity as a research instrument among researchers in mathematics education
(cf., for example, Easley 1977; Ginsburg 1983). Bergeron and Herscovics (1980)
have also suggested using clinical interviews in teacher education.

At the university of Dortmundwe started a “Development ofMathematical Think-
ing” course as part of our teacher education programs in 1975. In the first years this
course was more or less an introduction into Piagetian psychology. Clinical inter-
views played an important but nevertheless subordinate role in the course. They were
just used to illustrate Piaget’s theory. In this period the few interviews conducted by
student teachers were just replications of experiments of the Genevan school.

Over the years the course has been revised considerably in several respects. As the
pitfalls, inconsistencies and flaws of Piaget’s stage theory became more and more
apparent (cf., for example, Brown and Desforges 1979; Groen and Kieran 1983)
Piaget’s theory was pushed to the background in favor of his research method, the
clinical interview.

As the time available for the course didn’t allow for a lengthy introduction into psy-
chological theories anyway, we decided to concentrate the psychological-didactical
training of our students on “doing psychology” in analogy to the emphasis we had
put on “doing mathematics” within our mathematical courses. It seemed to us that
clinical interviews are the easiest way of doing psychology.

Consequently, the course was split up into two parts:

(1) An introduction into basic ideas of Piaget’s genetic epistemology and into the
clinical method,

(2) Clinical interviews with kindergarten or primary children conducted by the stu-
dent teachers themselves.

The second part turned out to be extremely motivating for student teachers. It
demonstrated that clinical interviews are a very valuable instrument for developing
attitudes and skills of good teaching far beyond the psychological insights they may
provide. Virtues of good teachers are: introducing children into a situation, making
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them feel comfortable, following their work and observing them without interrupt-
ing them, showing interest, listening carefully, accepting the children’s thinking,
avoiding criticism or authoritarian evaluation of the children’s ideas, stimulating
their thinking by cautiously arousing cognitive conflicts or by pointing to facts and
statements that seem to have been overlooked, etc. (Wittmann 1982, preface).

A third modification of the course concerned the contents of the interviews. As
already mentioned before, we started by replicating Genevan studies. However, the
themes of these studies are far from the mathematics curriculum, in particular with
respect to mathematical processes. So we replaced themmore and more with themes
taken from teaching units. The following examples are described through the sug-
gestions and questions that “define” the interviews.

(1) Even and Odd Numbers
Questions:

– Can you tell me an even and an odd number? Is 5 even or odd? Is 10 even or odd?
Why?

– Given a set of counters: How can you find out if the number of these counters is
even or odd?

– The child is told the parity of each of two given sets of counters, each set with
more than 10 counters, but the exact numbers are not given. The child is then asked
to predict if the union of the two sets will be even or odd and to justify his or her
answer.

(2) The Robbers and the Treasure

Fig. 2 Plan for playing “The robbers and the treasure”
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The children are told a story (Müller and Wittmann 1984, 42): Two robbers are
wrestling for a treasure. After some time there is no winner and they are exhausted.
So they agree to resolve the quarrel by playing a game: They number a set of stones
between their caves with numbers from 1 to 20 (Fig. 2). The treasure is put on field
10. Now they take turns throwing the die. According to the results, the treasure is
moved towards the corresponding cave. As soon as the treasure enters a cave the
owner of the cave wins it.

Suggestions and questions:

– Play the game with your partner.
– Suppose the treasure is on number 11: Where might it be after each of the two
robbers has thrown the die just once?

– Where will the treasure be if the “plus robber” throws a “5” and the “minus robber”
a “4?”

(3) Only Nine Digits
The child is provided with digit cards for the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9.

Suggestions and questions:

– Form two 3-digit numbers such that their sum is as big as possible.
– Why do you think your sum the maximum?
– Can you find other solutions?
– How can you make the sum as small as possible?

(4) A Word Problem

– In a class of 29 children there are three more girls than boys. How many girls and
boys are there?

(5) The Ice Cream Problem
Suggestions and questions:

An ice cream seller offers four kinds of ice cream: chocolate, lemon, raspberry,
pistachio. He sells cones with three scoops.

– How many different cones are possible?

(6) Northcott’s Nim
In this game of strategy, pairs of children are asked to play the game and to find out
how to play as cleverly as possible (Wittmann 1982, 16–23).

In part, the themes for clinical interviews were inspired by theoretical consider-
ations. We wanted to know how children of different ages would react to a given
problem in order to use that knowledge for teaching. In many cases, however, the
inspiration came from observing classes. One sees an interesting teaching episode,
but the class moves on too quickly to the next activities. One wants to learn more
about it and to understand the children’s thinking in more detail. For example, theme
(3) was inspired by a lesson given by a primary teacher to third-graders.

For each year we have developed new sets of themes and offered them to pairs of
student teachers for investigation. As a rule each pair selects a theme according to its
taste and goes to a kindergarten or primary school, explains the tasks to the teachers
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and asks for collaboration. Supported by the teachers, the interviews are conducted
with some 15 children, then transcribed and analyzed. Finally a report is written,
presented and discussed in the seminar.

Some of the student teachers extend their clinical study into a thesis as part
of their final examination. To give an example: One student teacher is presently
working on theme (2) in cooperation with two schools. The teachers of grade 1 have
identified children who have difficulties in adding and subtracting numbers. The
student teacher uses the game both as a diagnostic and a remedial instrument. An
interesting theoretical question here is the transition from material-based to mental
calculations. At the same time, the study will provide information about the use of
the game as a context for practicing computational skills. This kind of cooperation
with schools looks quite promising.

Our experiences with the course in its new format are positive in two respects.
First, the course fully serves its purpose as a framework for intensive intermediate
practice. Clinical interviews with individual children or small groups of children
in kindergarten or primary school represent a protected atmosphere where student
teachers can concentrate on “intellectual contact,” “interaction of mind” and “mental
movement,” to use Dewey’s terms. The student teachers are also stimulated to reflect
on their own behavior and its influence on children. With some student teachers
this results in quite a dramatic change of awareness. Later in their practical phase
of teacher education (which in Germany follows university education and lasts two
years), student teachers who reflect on their university studies retrospectively rate the
relevance of the course very highly. The course ranks far ahead of all other courses.
In particular, the student teachers appreciate the close connection to actual teaching
practice.

Our second experience is that the skills of student teachers in conducting clinical
interviews are a very good indicator of their skills in teaching a class. This is not
surprising. As has already been mentioned before, the attitudes and skills of good
teaching coincide with good attitudes and skills in conducting clinical interviews. So
the course is very useful with respect to the personal development of student teachers
as prospective teachers.

3 Concluding Remarks

Mathematics educators, who are in favor of major themes, basic ideas, and great
lines of mathematics education, might find the occupation with teaching units as
suggested in this paper to be conceptually poor, not controlled enough, not “research-
oriented,” and perhaps naive. However, there are substantial arguments in favor of the
“philosophy of teaching units” as a basis for the discipline of mathematics education.

1. Teaching units are a natural way to provide teachers and student teachers with
a holistic view of mathematical, psychological, pedagogical, and practical aspects
of mathematics teaching. This view is a specific mark of mathematics education.
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2. Teaching units must not be seen in isolation, but rather in their relationship
with objectives, contents and principles of mathematics teaching which they fill
with meaning. Themes (2) and (3) of Sect. 2 are examples of a new approach to
practicing skills (cf., for example, Winter 1984; Wittmann 1984). Themes (1) and
(6) are typical for studying and developing mathematical processes (cf. Bell 1979).
Theme (5) belongs to a class of units that are important for the development of
combinatorial thinking, and theme (4) fits into the research on word problems. All
themes could also be used to study social interaction in the classroom.

3. For bridging the gap between theory and practice it is necessary to have realistic
empirical tests of theoretical ideas. It is only natural to use teaching units for infus-
ing theoretical ideas with “meaning.” Clinical interviews attached to teaching units
offer excellent opportunities for intermediate practice and thus for shaping effective
subjective theories of teaching (see Sect. 1).

4. The ability to do mathematics and to do psychology seems to be an essential
prerequisite for making use of didactical theory in an intelligent way. Almost every-
thing depends on self-reliant teachers equippedwith heuristic strategies for selecting,
modifying, rearranging, specializing, transferring, supplementing, and making prac-
tical what is offered to them. In order to be able to apply results of research in effective
ways, teachers must to some extent be able to do research themselves. Preparing and
conducting clinical interviews on fresh themes seems to be a good introduction.

References

Bell, A.W.: The learning of process aspects of mathematics. Educ. Stud. Math. 10, 361–387 (1979)
Bell, A.W.: A review of ‘acquisition of mathematics concepts and processes’ by Richard Lesh &
Marsha Landau. Educ. Stud. Math. 16, 103–110 (1985)

Brown, G., Desforges, C.: Piaget’s Theory: A Psychological Critique. Routledge & Kegan Paul,
London (1979)

Dewey, J.: The relation of theory to practice in education. Reprinted in: Dewey, J. (1977). In:
Boydston, J.A. (ed.) The Middle Works 1899–1924, vol. 3, pp. 249–272. SIU Press, Carbondale
(1904)

Easley, J.A.: On clinical studies in mathematics education. Mathematics Education Report ERIC
Center, Columbus, Ohio (1977)

Egsgard, J.C.: President’s report: problems of the teacher of mathematics and some solutions. Math.
Teach. 71, 550–557 (1978)

Fletcher, T.J. (ed.): Some Lessons in Mathematics. A Handbook on the Teaching of ‘Modern’
Mathematics. CUP, London (1965)

Ginsburg, H. (ed.): The Development of Mathematical Thinking. New York (1983)
Groen, G., Kieran, C.: In search of Piagetian mathematics. In: Ginsburg, H. (ed.) Development of
Mathematical Thinking, pp. 351–375. New York (1983)

Herscovics, N., Bergeron, J.: The training of teachers in the use of clinical methods. Concordia
University Montreal. Paper submitted to ICME 4, Berkeley (1980)

Müller, G.N.,Wittmann, E.C.: DerMathematikunterricht in der Primarstufe. Ziele, Inhalte, Prinzip-
ien, Beispiele. Vieweg, Braunschweig (1984)

Popper, K.R.: Objective Knowledge. An Evolutionary Approach. Oxford (1972)
Winter, H.: Begriff und Bedeutung des Übens imMathematikunterricht. Mathematik lehren 1, 4–16
(1984)



References 47

Wittmann, E.C.: Piagets Begriff der Gruppierung. In: G. Steiner (Hrsg.) Die Psychologie des 20.
Jahrhunderts, Band VII: Piaget und die Folgen, pp. 219–235. Kindler, Zürich (1978)

Wittmann, E.C.: Mathematisches Denken bei Vor- und Grundschulkindern. Vieweg, Braunschweig
(1982)

Wittmann, E.C.: Teaching units as the integrating core of mathematics education. Educ. Stud. Math.
15, 25–36 (1984)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 4
The Mathematical Training of Teachers
from the Point of View of Education

Incidentally, I dislike everything that is mere knowledge to me
without extending my activity or directly invigorating me.

J. W. von Goethe (in a letter to Friedrich Schiller)

Summary

The paper describes an approach to integrating the mathematical and educational
components in teacher training which is based on elaborating educational and psy-
chological aspects inherent in “good mathematics”. This leads to a conception of
informal, problem- and process-oriented presentations of elementary mathematics.
The paper concludes by sketching an “elementary mathematics research program”
in mathematics education.

Introduction

Since the middle of the seventies there has been a growing international discussion
about what professional qualifications mathematics teachers need and what kind of
training is appropriate to develop these qualifications (Bromme et al. 1981; Fletcher
1975; Otte 1979; Proceedings of ICME-4, Berkeley 1980, Chap.5; Proceedings of
ICME-5, Adelaide, 1984, Theme Group 3, pp. 146–158). It is not by chance that this
discussion emerged in the seventies because, at that time, societal change in many
countries around the world brought discord between two quite different philosophies
of teacher training: that of training teachers for the grammar school, the college, the
gymnasium, the lyceum, etc. and that of training teachers for the elementary school.
The first of these two philosophies put prominent emphasis on subject matter as if
familiarity with subject matter per se would form the only true scientific basis of
teaching; vice versa, the other concentrated on pedagogy, psychology and methods
courses and considered subject matter as a more-or-less trivial aspect of teaching
(cf., Heintel 1978, pp. 12–22; Krämer 1987).

The recognition that the professional knowledge of all teachers has to be some
synthesis of subject matter and educational knowledge helped to transform the his-
toric controversy between different groups of teachers and teacher training philoso-
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phies into a structural problem of teacher training in general. As Otte (Otte 1979,
pp. 114–115) comments:

Compared with other professions, the special structural problem of the teaching profession
is that it does not have one “basic science“ such as law for the lawyer, medicine for the
physician... Scientific theory is related in two utterly different ways to the practical work
of mathematics teachers: first, scientific knowledge and methods are the subject matter of
teaching; second, the conditions and forms of its transmissionmust be scientifically founded.
Thus, teaching is under far more complex pressure than other professions to justify itself
against competing conceptions of scientific theories, and has to copewith far greater demands
with respect to the integration of diverse dimensions in the unity of action.

Similarly it was not by chance that in the seventies mathematics education (didac-
tics of mathematics) emerged around the world as a specific interdisciplinary field
of study related both to mathematics and to the educational sciences since a specific
response to this structural problem of integrating the mathematical and educational
aspects of teaching had to be developed which neither mathematics nor the educa-
tional sciences could provide.

Because of the inherent complexity of issues and because of historic burdens
smooth and quick solutions of this problems of integration resolving all tensions
between the different aspects are not likely, and so integration should be seen as an
extended process which requires both time and deliberation. It is therefore appro-
priate to pause from time to time and reflect on what progress has been made, what
deficiencies have been observed and to consider how to proceed further. The present
paper is intended as a contribution to such an evaluation.

The structure of the paper is as follows:
I will first try to establish that a genuine integration of mathematics into mathe-

matics education and a conception of embedding mathematics courses into a truly
professional teacher training program are still lacking. Following John Dewey I will
next show that a genuine integration of mathematics and education can be achieved
only if educational and psychological relationships and processes inherent in good
mathematics are elaborated and developed. This then leads me to a conception of
informal, problem- and process-oriented presentations of elementary mathematics
and their role in mathematics teacher training programs. I will conclude by identify-
ing a research program on elementary mathematics.

1 The Problem of Integrating Mathematical and
Educational aspects in Mathematics Education and
Teacher Training

The diagram in Fig. 1 has been introduced to describe the locus of mathematics edu-
cation and its interrelationshipswith themost important fields of reference (Wittmann
Wittmann 1981, p. 2). Using this diagram I would like to describe the present state
of integrating mathematical, educational and practical components into mathematics
education as follows:

We have “flows” of theories from mathematics, psychology and pedagogy into
mathematics education. Some of these are applied to didactical problems in an eclec-
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Fig. 1 Didactics of mathematics and the surrounding disciplines

tic way without, however, achieving a genuine integration. Although we can appre-
ciate the contributions of mathematics educators to psychology I would nevertheless
argue that presently research in mathematics education tends more to consuming
“theories from abroad” than to producing its own “home-grown theories”, to pro-
jecting its specific demands back to the related fields, and to working in these fields
on its specific problems (Fig. 1).

We see a striking example of the lack of integration of mathematics into mathe-
matics education in a recently published book by the international Bacomet-Group
which set out “to consider, define, and analyse basic components ofmathematics edu-
cation for teachers” (cf. Christiansen et al. 1986). In a review of the book Quadling
(1987, p. 188) makes the following statement:

This is clearly an important book: the international perspective, the eminence of the collabo-
rators, the resources which have supported its production, the targeting on a teacher-educator
readership all mark it out for special attention. And yet in some respects the outcome is a
disappointment. However stimulating the preparatory conferences were for the contributors,
to the outsider there are few signs of common purpose... There must be concern also that
the subject “mathematics” is curiously relegated to the side-lines, with many issues raised
by Dörfler and McLone [in their article on school mathematics] ignored in later chapters...

The situation is not very different as far as the level of teacher training is con-
cerned. In general, the mathematical training of teachers is not systematically related
to educational aspects. Very often we find a formal study of mathematics ignoring
the requirements of school in, as I see it, a scandalous way (Cooney 1988; Romberg
1988). The problem is particularly serious when the mathematical, the didactical and
the educational training of teachers are in the responsibility of different faculties.
However, organisation alone cannot explain the lack of integration. Even at insti-
tutions where the mathematical training of teachers is in the hands of mathematics
educators there is often the same formal mathematical training as is typically found
in departments of mathematics. This is mainly due to the fact that many mathematics
educators tend to stick to their own scientific background either in mathematics or
in the educational sciences and do not seriously strive for an integration of the two
worlds.
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2 The Educational Substance of Subject Matter

At a conference on “Trends and problems of mathematics teacher training” held in
Bielefeld, FRG, Fletcher (1975, p. 217) asked the question “Is a mathematics teacher
a mathematician or not?” and came to the following conclusion:

The teacher of mathematics certainly needs to be a mathematician, and he needs to be a
special sort of mathematician. He needs the general mathematical background that enables
him to talk on equal terms with mathematics graduates, although he does not need some of
the more specialised areas of mathematics which form part of most degree courses which
are devoted exclusively to the subject. He needs a broad knowledge of applications in the
world outside and in other parts of the school curriculum.

In addition the teacher needs specialist skills of his own, in the translation of mathematics
from one form into another, in understanding the pattern of thinking of his pupils at various
stages of development and in understanding the relevance of structural ideas in mathematics
to the teaching of it. Mathematics has its own criteria of truth, and the teacher has a special
relation to his profession; if the teacher does not teach from conviction he alters the nature
of the teaching he gives. The mathematics teacher is not only a mathematician, he is a
professional mathematician with unique responsibilities.

A biased reader might perhaps understand Fletcher’s paper as a plea for the tra-
ditional subject matter philosophy of teacher training referred to at the beginning
of this paper, and consequently either support or reject it emphatically. However, a
careful analysis of his paper shows that Fletcher is far from neglecting the educa-
tional component in the professional knowledge of mathematics teachers. In fact the
basic message of his paper is that the educational knowledge cannot be acquired in
separation from mathematics. In his contribution to ICME 4 Fletcher (1983, p. 113)
put it this way:

Whenwe are teachingmathematics to prospective secondary teachers teachingmethod is not
a subject apart. In many training institutions these two components are treated separately,
but good mathematics and good methods can be studied simultaneously to the benefit of
both. Let us make this our major fundamental change.

In my view, exactly this is the track we should follow in order to bring about
a genuine integration between the mathematical and the educational knowledge of
mathematics teachers. This perspective is further developed by reference to papers
of two scholars from education and philosophy.

John Dewey (1904) wrote a fundamentally important article on the relation of
theory to practice in teacher training. At that time the problems of integrating subject-
matter preparation with professional instruction and relating educational theory to
student-teaching were relatively new. It proves testimony to Dewey’s genius that
he at once hit the crucial points. Part B, section II, of Dewey’s paper is devoted to
training in subject matter and its relationship to educational theory and to practice:

I turn now to the side of subject matter, or scholarship, with the hope of showing that here
too the material, when properly presented, is not so merely theoretical, remote from practi-
cal problems of teaching, as is sometimes supposed... Scholastic knowledge is sometimes
regarded as if it were something quite irrelevant to method.When this attitude is even uncon-
sciously assumed, method becomes an external attachment to knowledge of subject-matter.
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It has to be elaborated and acquired in relative independence from subject-matter, and then
applied.

Now the body of knowledgewhich constitutes the subject-matter of the student-teachermust,
by the nature of the case, be organized subject-matter... it has been selected and arrangedwith
reference to controlling intellectual principles. There is, therefore, method in subject-matter
itself – method indeed of the highest order which the human mind has yet evolved, scientific
method.

It cannot be too strongly emphasized that this scientific method is the method of the mind
itself. The classifications, interpretations, explanations, and generalizations which make
subject-matter a branch of study do not lie externally in facts apart frommind... It is necessary
to recognize the importance for the teacher’s equipment of his own habituation to superior
types of method of mental operation. The more a teacher in the future is likely to have to
do with elementary teaching, the more, rather than the less, necessary is such exercise...
Only a teacher thoroughly trained in the higher levels of intellectual method and who thus
has constantly in his own mind a sense of what adequate and genuine intellectual activity
means, will be likely, in deed, not in mere word, to respect the mental integrity and force of
children...

The present divorce between scholarship and method is as harmful upon one side as upon
the other - as detrimental to the best interests of higher academic instruction as it is to the
training of teachers. But the only way in which this divorce can be broken down is by so
presenting all subject-matter, for whatever ultimate, practical, or professional purpose, that
it shall be apprehended as an objective embodiment of methods of mind in its search for,
and transactions with, the truth of things.

Of course Dewey’s ideas must be seen in the context of his holistic views about
the relationship of subject-matter to life and learning and about the relationship of
theoretical insight to practical activity in general. Ignoring this context could again
easily lead to the wrong conclusion that Dewey pleaded for trivializing educational
knowledge and for restricting teacher training to subject-matter training, which is
certainly the last thing he wanted. In fact, Dewey argued in favor of elaborating the
educational substance of subject-matter beyond the limitations of narrow subject
specialists, as we shall see in the next section.

To reflect this unified picture ofmathematical and educational components, didac-
tics of mathematics as a specific professional discipline cannot be organized on the
scientific level as a field of study where mathematical, psychological, pedagogi-
cal and practical aspects of teaching are investigated separately. Rather it must be
equally based on a genuine integration of mathematics and the educational sciences.
In a paper delivered at the first Symposium on mathematics education held in Kla-
genfurt, Austria, the philosopher Peter Heintel (1978, pp. 45–46) elaborated this
position very clearly:

Didactics of subject-matter means didactics rooted in subject-matter, in knowledge itself. It
means analysing the subject according to didactical moments inherent or “deep-frozen” in
itself.

We have to start from the fact that the knowledge inherited in the subject has been the result
of learning processes of mankind and that something of this genesis is still existent. Also we
have to acknowledge the fact, that all knowledge, each subject and each science represent
conventional and authorized systems of language, which govern not only our relations to
nature, but also our social relations...
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...Therefore taking subject matter fundamentally into account in building didactical mod-
els means breaking up the narrow boundaries of special disciplines, reconstructing “deep-
frozen” learning processes, and elaborating the social use of knowledge and also its limita-
tions.

3 Elementary Mathematics in Teacher Training

It goes almost without saying that the conception described above depends crucially
on a proper understanding of mathematics as the subject of mathematics teaching.
“Mathematics” must not be seen within the narrow boundaries of a specialised disci-
pline which is represented exclusively by the departments of pure mathematics at the
universities; rather it should be seen in the full spectrum of its relationships to sci-
ence, to technology, to the humanities, and to human life.We should be reminded here
of Whiteheads’s famous dictum that there is only one subject matter of education,
namely “Life in all its manifestations”. Therefore the anemic, sterile presentations
of mathematics as a closed formal system still widely in vogue around the world, are
inappropriate for educational purposes. A genuine integration of the mathematical
and educational aspects compels mathematics educators to develop courses which
introduce mathematics as an integral part of human culture and in which preservice
teachers learn mathematics as a language and like a language, not as a tacit and
lonely game with “glass pearls”. As a consequence there courses must present math-
ematics in a “mixed form” or as “interpreted mathematics” (cf. Dörfler and McLone
1986, p. 60), and theymust concentrate on themore elementary fields ofmathematics
because those have the richest cultural interrelationships and therefore the strongest
educational impact.

The pragmatic proposal presented here is this:
Every teacher training program should involve courses in elementarymathematics

which are designed with respect to didactical, pedagogical and psychological aims.
These courses should cover thewholemathematical training for primary teachers, for
teachers of the lower secondary level a major part of it. These courses in elementary
mathematics may be characterized as follows:

(1) The courses should be explicitly related to the content of school mathematics and
give a coherent treatment of relevant parts of elementary algebra (number theory
and combinatorics), elementary geometry, calculus, and elementary stochastics.
However, they should go well beyond school mathematics in both depth and
breadth.

(2) The courses should be rich in relationships to history, culture and the real world
and should involve applications to mathematical phenomena in the environment
of school students.

(3) The courses should be organized in a genetic way, i.e. they should be problem-
and process-oriented. Theory should be developed through problems from inside
and outside of mathematics with heuristics included in a prominent manner.
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(4) The style of these courses should be informal (“inhaltlich-anschaulich”) and
involve a variety of means of representation using, in particular, concrete mate-
rials, pictures, diagrams, etc. This can be done in a sound way while avoiding
sloppy and incorrect presentations. Logic must not be suspended in elementary
mathematics.

(5) The courses should allow for a variety of teaching/learning formats, e.g. investi-
gation, exposition, reading, and cooperative learning which involves discussion
and a growing student awareness of their own learning processes.

(6) The courses will deal implicitly with the teaching of school mathematics, but
they need not do so explicitly. Thismay be reserved for special didactical courses
which are closely related to the courses in elementary mathematics. Although
there are interesting attempts in primary teacher training to integratemathematics
and didactics within one course (cf. Goffree 1982; Davis 1987). I am personally
in favor of a split for a pragmatic reason given already in Dewey’s paper: “...
the mind of a [teacher] student cannot give equal attention to both at the same
time.”

Comparing these characteristics with recent research on the nature of professional
knowledge and mathematical literacy of mathematics teachers (Steinbring 1988;
Romberg 1988) there can be no doubt that courses in elementary mathematics form
an indispensable part of the professional training of mathematics teachers. In my
view they represent what Fletcher (1975, p. 206) has called the teacher’s “special
mathematical expertise”.

There is insufficient space in this paper to describe a course in elementary mathe-
matics along the lines detailed above, but I would like at least to provide a glimpse of
what elementary mathematics in this sense should be like. Let me give two examples.

The first one is from elementary algebra. My colleague Gerhard Müller and I are
presently developing amathematics course on arithmetic for primary teacher students
in which counters and arrays of dots are used as a basic means of representation. For
example, we follow a nice idea of Winter (1983) in deriving the divisibility rules.
Students are given a place value chart with boxes for ones, tenths, hundreds etc. and
are asked to solve a series of problems, as in the following:

(a) Find numbers up to 1000 which can be represented by 1, 2, 3, 4, 5 or 6 counters
as in Fig. 2.

(b) Determine the remainders of each of these numbers with respect to the divisor
9.

Fig. 2 Representing numbers by counters on the place value chart
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The investigation shows that the remainders depend only on the number of coun-
ters, and the question arises why this is so. Answer: Moving a counter one box up or
down changes the number by 9 (= 10− 1) units and therefore the remainder does
not change. This is an argument, both rigorous and general, which proves the divisi-
bility rule for 9. By working with counters and searching for patterns all elementary
divisibility rules can be discovered and proved in this manner.

This little piece of substantial mathematics contains problems, theorems and
sound proofs, and is clearly related to the teaching of arithmetic at the primary
level. Further, it gives primary teacher students an important opportunity for investi-
gation, provides them with a familiar means of representation (i.e., counters) which
is fundamental for the primary level, and can serve as a model of how mathematics
is developed. Since counters and the place value chart have also played an important
role in history, this example meets all characteristics of the elementary mathematics
courses listed above.

My second example is from elementary geometry. In my own course at the Uni-
versity of Dortmund I have included the following unit on mirrors (cf., Wittmann
1987, Chap.1.1 and 3.2):

Starting from physical experiments with plane mirrors the concept of reflection
is introduced and some inequalities are derived (Fig. 3).

The first two inequalities follow from the equal length of symmetric segments
and the triangle inequality applied on the triangles BSC and BTA’.

Figure3 (i) supports also the proof of a useful theorem that is an extension of
the base angle theorem and its converse: The side opposite the bigger one of two
angles of a triangle is longer than the side opposite the smaller angle and vice versa
the angle opposite the longer one of two sides is bigger than the angle opposite the
smaller side.

Fig. 3 Geometric inequalitites
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The third inequality is a consequence of this theorem as the right angle in triangle
is always the biggest angle.

These simple inequalities have surprisingly many applications.
Next the parabola, the ellipse and the hyperbola are defined by means of the

well-known envelope constructions (Fig. 4).
Using the above inequalities tangents of these curves can be determined and then

the focal properties are easy to prove. The transfer from the parabola to the ellipse
and the hyperbola is a very nice exercise in heuristics. The unit ends with a study
of technical applications of curved mirrors, e.g. telescopes, where combinations of
different mirrors are used, and the kidney lithotripter developed a few years ago by
the German company Dornier (Fig. 5).

Fig. 4 Envelope constructions of the parabola and the ellipse

Fig. 5 Applications of elliptic and parabolic mirrors
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Checking this unit against the items listed above shows that itmeets all the required
properties.

It can be seen that teaching proper didactical courses will be enhanced by courses
in elementary mathematics if each one is tuned to the other; e.g., the divisibility rule
for 9 could be re-met in a didactical course under the perspective of teaching it to
children. Winter (1985) has reported on a teaching unit with 10 year-old-children
which provides excellent material for didactical studies. Equally the example on
mirrors can easily be related to the teaching of geometry at the secondary level.
In this connection I would like to refer to the “philosophy of teaching units” (cf.,
Wittmann 1984; Becker 1986) which recommends the use of teaching units in a
systematic way in order to relate different components of teacher training to one
another.

4 The Elementary Mathematics Research Program of
Mathematics Education

However reasonable and convincing the idea of integrating mathematical and educa-
tional aspects in teacher training may appear in principle, the difficulties of putting
it into practice on a large scale should not be underestimated. In order to overcome
them hard and extended research is needed.

Experiences in writing a textbook on elementary geometry for teacher training
(cf., Wittmann 1987) have convinced me that the development of courses on elemen-
tary mathematics in the sense described above cannot be considered a more-or-less
simple appendix to mathematics; quite on the contrary, it presupposes the conceptual
reconstruction of elementary parts of mathematics from an educational point of view.
Accordingly we have here a truly interdisciplinary task for which elements of math-
ematics, its history, its applications, aspects of epistemology, psychology, pedagogy
and the mathematics curriculum have to be merged together. At first sight one might
get the impression that this variety of aspects is an arbitrary mixture, but such is not
the case. Behind the seeming diversity there is a common perspective—the genetic
principle of mathematics education (cf., Wittmann 1981, Chap.10) which unites all
of the following:

(1) a genetic view on mathematics as expressed by Felix Klein and Henri Poincaré
around the turn of this century and revived in our time by, for example, Freuden-
thal and Lakatos,

(2) Jean Piaget’s genetic epistemology and Soviet psychology based on the concept
of activity as the background of a great deal ofwork being done in the psychology
of mathematics, and

(3) genetic theories of personal development and social interaction developed in
both in the Western and Eastern World.

Although the literature of mathematics and its applications as well as the literature
of mathematics education are full of beautiful examples of elementary mathematics
which are consistent with the genetic view, nevertheless, a coherent, homogeneous,
and comprehensive conception of elementary mathematics is lacking and therefore
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the position of elementary mathematics in teacher training is not as respected as
it should be (cf. also, Fletcher 1975, p. 206). In my opinion this gap can only be
filled if elementary mathematics is made a focus of didactical research. Therefore
elementarymathematics is suggested as an important research context inmathematics
education, with the vision to establish elementary mathematics as a kind of “natural
mathematics”, natural in the sense of “natural language” and “natural numbers”.

In particular, this research should involve:

– the foundation of informal mathematics as a self-consistent level of mathematical
thought beyond mathematical formalism (cf., Hanna 1983; Müller and Wittmann
1988),

– the development of a “grammar” of non-symbolic means of representation (cf.,
Sawyer 1964),

– the development of operative proofs (cf., Semadeni 1974; Kirsch 1979; Walther
1984),

– the development of informal theories within contexts (cf., “didactical phenomenol-
ogy”, Freudenthal 1983; Walther 1984; “interpreted mathematics”, Dörfler and
McLone 1986).

In this way elementary mathematics could become a substantial body of didactic
knowledge with a unique profile which could compete in coherence and systematics
with formal mathematics.

The pursuit of this research programwill certainly not open a royal road to mathe-
matics educationbut itwill likelymoveus closer to an integrationofmathematical and
educational aspects within mathematics education and would greatly contribute to
making our discipline an efficient professional background formathematics teachers.
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Chapter 5
When Is a Proof a Proof?

In his famous talk at ICME 2 (Exeter 1972) the French mathematician R. Thom
pointed out that any conception of mathematics teaching necessarily rests on a cer-
tain view of mathematics (Thom 1973, 204). As a consequence mathematics edu-
cation cannot develop without close links to mathematics. However, “mathematics”
must not be identified with the “official” picture of mathematics represented by lec-
tures, mathematical journals and textbooks. What is needed is a fundamental and
comprehensive view of mathematics as a cultural phenomenon including historic,
sociological, philosophic and psychological aspects. Only this broader perspective
permits us to recognize the “real” picture ofmathematics and to use it formathematics
education.

In teacher training this extended perspective is necessary not only to provide
prospective teachers in didactical courses with a sound meta-knowledge about math-
ematics but also with a productive relationship to school mathematics. During the
past decade the investigations on the professional life of teachers have convincingly
shown that school mathematics is not just a derivative of university mathematics
but a relatively independent field, as it contains a variety of aspects which cannot
be reduced to bare mathematical forms (Otte and Keitel 1979; Steinbring 1985,
1988; Dörfler and McLone 1986). As far as teacher training is concerned this new
appreciation of school mathematics has influenced didactical and practical studies
in pre-service and inservice training (Seeger and Steinbring 1986).

We believe, however, that in addition themathematical training of student teachers
has to be modified by including studies in elementary mathematics which emphasize
meaning, process and informal means of representation, thus enabling student teach-
ers to experience educational values of mathematics. Our position has developed
through the past ten years while we have been strongly involved in reforming our
teacher training programs. An example of what we have in mind is provided by a
recent textbook on elementary geometry (Wittmann 1987).

The present paper aims at elaborating a central point of this kind of elementary
mathematics, namely the notion of a sound informal proof. InGermanweuse the term
“inhaltlich-anschaulicher Beweis” in order to indicate that this method of demon-
stration calls upon the meaning of the terms employed, as distinct from abstract
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methods, which dispense with the interpretation of the terms and employ only the
abstract relations between them.

During the seventies and eighties “proof” has been the subject of extended research
in mathematics education (cf. the carefully collected list of references in Stein 1981,
as well asWinter 1983a and Stein 1985). A completely new line of research has been
opened up byGilaHanna’s book “Rigorous Proof inMathematics Education” (Hanna
1983). This book was the first comprehensive attempt to transfer to mathematics
education new tendencies in the philosophy of mathematics which originated in
1963 in Imre Lakatos’ famous thesis “Proofs and Refutations” (Lakatos 1979).

The present paper is intended as a further contribution to the demystification of
formalism inmathematics education. The first section shows bymeans of case studies
that formalistic views on proof are still widely spread among mathematics teachers
and student teachers. The second section gives some examples which show that in
mathematical research informal and social aspects are highly important not only for
finding but also for checking proofs. For overcoming these formalistic viewswe offer
two strategies. One of them consists of referring to papers of leading mathematicians
who give an authentic account of what their work is about. The other strategy is to
elaborate informal mathematics as an independent level of mathematical thought.
The third section of this paper explains in more detail what is intended by this
“elementary mathematics research program of mathematics education”.

1 Proofs and “Proofs”

The formalistic conception of mathematics, established during the first half of this
century, definesmathematics as the science of “rigorous proof”, i.e. the purely logical
derivation of concepts from basic concepts and of theorems from axioms. As an
illustration we refer to Pickert (1957, 49):

Fortunately research into the foundations of mathematics – typical for this century – has
developed a notion of mathematical proof which is independent of any imagination. I will
start from this notion, explain it bymeans of a few examples and Iwill try to showbymeans of
further examples what instruments are available in order to handle proofs in a more effective
way, i.e. instruments which facilitate communication, retrieval and the discovery of proofs.
It is the totality of these instruments which I would like to call “imagination” (Anschauung).
In this way imagination is restricted to a certain domain: we use it as a guide, but wemust not
trust it. The validity of proofs depends only on what is left when imagination is completely
removed. In my view this position is justified for the following reasons: first I do not see
how generally accepted decisions on the validity of a proof could be made otherwise - i.e.
by using imagination. Second I believe that this position reflects the view of contemporary
mathematicians.

The following quotation from MacLane (1981, 465) is even more pointed:

This use of deductive and axiomatic methods focuses attention on an extraordinary accom-
plishment of fundamental interest: the formulation of an exact notion of absolute rigor. Such
a notion rests on an explicit formulation of the rules of logic and their consequential and
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meticulous use in deriving from the axioms at issue all subsequent properties, as strictly
formulated in theorems. Moreover, each derivation can be tested and understood in its own
terms, independent of any reference to examples of the activity or the reality for which the
axioms were designed ... This formal character of mathematics may serve to distinguish it
from all other types of science. Once the axioms and the rules are fully formulated, every-
thing else is built up from them, without recourse to the outside world, or to Intuition, or to
experiment. An absolutely rigorous proof is rarely given explicitly. Most verbal or written
mathematical proofs are simply sketches which give enough detail to indicate how a full
rigorous proof might be constructed. Such sketches thus serve to convey conviction – either
the conviction that the result is correct or the conviction that a rigorous proof could be con-
structed. Because of the conviction that comes from sketchy proofs, many mathematicians
think that mathematics does not need the notion of absolute rigor and that real understanding
is not achieved by rigor.
Nevertheless, I claim that the notion of absolute rigor is present.

While MacLane like Pickert refer to intuition at least as a means for handling and
evaluating proofs, the logician Rosser (1953, 7) takes an extreme position:

Thus, a person with simple arithmetical skills can check the proofs of the most difficult
mathematical demonstrations, provided that the proofs are first expressed in symbolic logic.
This is due to the fact that, in symbolic logic, demonstrations depend only on the forms of
statements, and not at all on their meanings.
This does not mean that it is now any easier to discover a proof for a difficult theorem. This
still requires the same high order of mathematical talent as before. However, once the proof
is discovered, and stated in symbolic logic, it can be checked by a moron.

What role formalism has played in relationship with or in opposition to other
philosophic positions and how it has developed into the “official” philosophy of
mathematics is explained by Davis and Hersh (1983, Chap. 7). In addition these
authors describe how during the past ten years quite different views have gained
ground in which the possibility of absolutely rigorous and eternal proofs has been
denied and in which proof is considered as a social process among mathematicians:

A proof only becomes a proof after the social act of “accepting it as a proof”. This is as
true for mathematics as it is for physics, linguistics, or biology. The evolution of commonly
accepted criteria for an argument’s being a proof is an almost untouched theme in the history
of science. (Manin 1977, 48).

Going one step further leads to the possibility of different criteria for checking
and evaluating proofswithin different social contexts. An important example, applied
mathematics, is analyzed by Blechman, Myschkis and Panovko (1984).

Wewill now show bymeans of four case studies, ranging from primarymathemat-
ics teaching to teacher training, howmathematical understanding can be inhibited by
formalistic views on proof. Our experiences with student teachers are concentrated
on the primary and the lower secondary level. However, our contacts with student
teachers for the upper secondary level in didactical courses have convinced us that
formalism is represented even more strongly in this group than in the two other
groups—as one would expect.

Example 1 (Chinese Remainder Theorem) This theorem was part of a course in
number theory for student primary teachers. Some students felt overwhelmed and
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protested at the inclusion of this—in their view useless—topic into primary teacher
programs. In defence the students were told that the Chinese Remainder Theorem
could suggest some interestingworkwith 9-year old children. In order to substantiate
this claim it was agreed to pose the following problem to third graders:

Find numbers which leave the remainder 1 when divided by 2, and the remainder 2 when
divided by 3.

Of course this problem was not introduced in this compact form, but was explained
by checking small numbers step by step. In particular 5 was stated as the smallest
number with the required properties:

5 = 2 · 2 + 1, 5 = 1 · 3 + 2.

Afterwards the children started their own search. Children who had found a series
of solutions were stimulated to find all solutions.

The spectrum of achievements was considerable. Some students still had prob-
lems with the calculations, others paid attention only to the remainder 2. The best
performance was by Henning, according to the teacher the “mathematician” of the
class. It is represented here in facsimile (Fig. 1).

Obviously Henning had checked number by number and had found the solutions
11, 17, 23. Then he recognized a pattern which he summarised by the statement:

Fig. 1 Student solution



1 Proofs and “Proofs” 65

“Because 2 · 3 = 6 and 3 · 2 = 6.” When asked to explain this subtle argument Hen-
ning said something like this:

If I consider the remainder 1, I have to proceed in steps of 2 and I meet the odd numbers. If
I consider the remainder 2, I have to proceed in steps of 3. The steps coincide only after 3
two-steps and 2 three-steps.

In our view this argument is a sound informal demonstration of the solution. The
student teachers, however, were not willing to accept it as a proof. In their view a
“real” proof had to be based an formal transformations of a system of congruences—
something going obviously beyond the capabilities of primary children. Therefore
they continued to reject the Chinese Remainder Theorem as a topic appropriate for
primary teacher training.

Example 2 (Irrationality of
√
2) Pickert (1987, 212) presents the following proof

of the irrationality of
√
2 by a 13-year-old student:

Let a, b ∈ N∗ be relatively prime such that (a/b)2 = 2. Then a2 = 2b2 and therefore b2 is
a common divisor for a2 and b2. As a and b are relatively prime, so are a2 and b2. As a
consequence b2 = 1 and so a2 = 2, which is impossible for a ∈ N∗.

According to Pickert this argument is a “proof”, because the student uses tacitly the
inference

a, b relatively prime =⇒ a2, b2 relatively prime,

which does not hold in rings in general. In our view this position is too formalistic.
The inference used by the student is a direct consequence of the unique factorisation
of natural numbers into prime numbers. The latter is well known to students in grade
7 because it has been treated in grade 5 and is used all the time for cancelling frac-
tions. The student is right to use “socially shared” knowledge implicitly. The above
mentioned inference becomes crucial only within ring theory—a context completely
irrelevant at school.

Example 3 (Euler’s polyhedron theorem) In a lecture “Geometry in 3-space” for
primary students, Euler’s theorem was proved for convex polyhedra in the following
informal way:

First the concept of a Schlegel diagram was explained and as an illustration,
the Schlegel diagrams for some polyhedra were produced by means of rubber
sheets. Then the relationship v + f − e = 2 was proved by showing that an arbi-
trary Schlegel diagram can be reconstructed by startingwith one point (v = 1, f = 1,
e = 0) and adding edge by edge such that v + f − e does not change (cf. Wittmann
1987, 270ff.) Right after the demonstration a student asked “Was that really a proof?”
The teacher, somewhat irritated by this unexpected question, askedback: “Whynot?”,
and received a very instructive answer: “Because I understood it!”

A conversation later on showed clearly that the student had difficulties with the
formalistic teaching received at school and had consistently arrived at the conclusion
that mathematical proofs were not accessible to her.

In our view this student is not a single case but represents a great number of
students.
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Example 4 (Trapezoid numbers) Experiences like that in example 3 have stimulated
us to investigate the mathematical “world view” of our students more systematically.
The method we have found most useful is to confront the students with informal and
formal proofs and to ask them to evaluate the validity of each type.

In this way primary student teachers were introduced to the old Greek “arithmetic
of dot patterns” (cf. Becker 1954, 34 ff.). For example starting with square num-
bers (Fig. 2) and the triangular numbers (Fig. 3) trapezoid numbers were defined as
composition of square and triangular numbers (Fig. 4).

Fig. 2 Square numbers

Fig. 3 Triangular numbers

Fig. 4 Trapezoid numbers

By “playing”with patterns the students guessed that for all n the trapezoid number
Tn and n leave the same remainder when divided by 3:

Tn ≡ n (mod 3).

The teacher offered the following “iconic” proof (Fig. 5):
Starting from the right the pattern Tn is decomposed into columns. Obviously

each 3-column is a multiple of 3. If n itself is a multiple of 3 (case 1) then Tn splits
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completely into 3-columns and is also a multiple of 3. If n leaves the remainder 1
(case 2) then Tn splits into 3-columns and a single column with n points at the left
side and it is again obvious that Tn leaves the remainder 1, too.

Fig. 5 Decomposition of trapezoid numbers modulo 3

Finally, if n leaves the remainder 2 (case 3), Tn breaks up into 3-columns and two
columns with n and (n + 1) points at the left side, and it is easy to see that Tn like n
leaves the remainder 2.

Right after this demonstration some students expressed their doubt on the valid-
ity of it. The teacher didn’t intervene and the group agreed very quickly that the
demonstration could achieve only the status of an illustration, and not the status of a
proof.

The teacher then offered the following “symbolic” proof:

Case 1: Let n = 3k. Then Tn = (3n2 − n)/2 = n(3n − 1)/2 = 3k(9k − 1)/2, and
as k or 9k − 1 are even, Tn (like n) is divisible by 3.

Case 2: Let n = 3k + 1. Then Tn = (3(9k2 + 6k + 1) − (3k + 1))/2 = (27k2 +
15k + 2)/2 = (27k2 + 15k)/2 + 1 = 3k(9k + 5)/2 + 1,
i.e. Tn (like n) leaves the remainder 1.

Case 3: Let n = 3k + 2. Then Tn = 3(9k2 + 12k + 4) − (3k + 2))/2 = (27k2 +
33k + 10)/2 = 3(9k2 + 11k + 2)/2 + 2,
i.e. Tn (like n) leaves the remainder 2.

The confrontation of the iconic and the symbolic argument aroused a lively dis-
cussion on the validity of each, in which the teacher defended the iconic argument as
a sound proof. The students were then asked to give written comparisons of the two
forms of proof. The papers showed very clearly how strongly the teaching received
at school had predisposed the students towards formal proofs and how difficult it was
for them to accept an “iconic” proof. As an illustration we quote from some papers:
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The iconic proof is much more intuitive for me and it explains to me much better what the
problem is. For me dot patterns are convincing and sufficient as a proof. Unfortunately we
have not been made familiar with this type of proof at school . . . Only symbolic proofs have
been taught.

For me the iconic proof is easier and better to understand than the symbolic proof. The
reason is that it is much more intuitive than the symbolic one. I have tried to follow the
symbolic proof by verification. However, the calculation is somewhat abstract, and I cannot
link anything concrete to it.

The symbolic proof is to be preferred, because it is more mathematical.

The iconic proof is highly intuitive. It shows very clearly that Tn is divisible by 3 if n is
divisible by 3, and vice versa. It is true that the iconic proof does not allow to substitute
arbitrarily large numbers for n and to prove the statement for them because so many dots
cannot be drawn; but for smaller numbers the representation by means of 3-columns is very
useful for the understanding.

The iconic proof is very intuitive. One understands the connection from which the statement
flows. I can’t imagine how a counterexample could be found, because it does not matter how
many 3-columns are constructed. In my opinion this is nevertheless no proof, but only a
demonstration which, however, holds for all n. At school I have learnt that only a symbolic
proof is a proof. Therefore I trust such proofs more. As symbolic proofs are more or less just
“calculating to and fro” one easily loses sight of what is to be proved. The confrontation of
the two types of proof seems very instructive to me.

The iconic proof is much easier to understand and more intuitive than the symbolic one.
At school there were mainly symbolic proofs. Iconic proofs were only means for finding
symbolic proofs. I still have this feeling.

I prefer the symbolic proof, as school has confronted me only with this type of proof.
These proofs guarantee generality. The iconic proof is more intuitive, which is surely an
advantage for primary teaching. I for myself see the iconic proof more as an illustration and
concretisation of the symbolic proof.

The symbolic proof is more mathematical. This proof is more demanding, as some formulae
are involved which you have to know and to retrieve. The iconic proof can be followed
step by step, and each is immediately clear. However, I wonder if an iconic proof would be
accepted in examinations.

Personally I like the iconic proof as it is more intuitive. You can see at once what’s going on
whereas the symbolic proof forces you to think in an abstract way. You know the formula
and you develop through abstract thinking (?) the proof, but you don’t have a direct reference
to numbers. I prefer the symbolic proof as I have been confronted with such proofs at school
and as it is more mathematical.

I am familiar with the symbolic proof. Therefore it is easier for me to handle.

I prefer the iconic proof because of its intuitive character. To me the symbolic proof is too
abstract. Possibly I could have discovered the iconic proof for myself. Nevertheless I always
try to find a symbolic proof, presumably because of my former mathematics teaching.

Influenced by the mathematics teaching at school and at the university I would prefer the
symbolic proof. However, the iconic proof is much more convincing, as it is less abstract
and easier to verify. Up to now iconic proofs were unknown to me.

Normally I trust symbolic proofs more, as they use general “numbers” (variables), i.e. they
cover any number in any case. However, in this example I trust the iconic proof, too. It is
more intuitive and the idea of the proof is clear and obvious.

To me the iconic proof is mathematical enough – I do not mistrust it!! One important point
for me is that children at the primary level can understand things better through intuition.
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Judging by the objectives ofmy study as a prospective primary teacher I cannot see verymuch
reason for symbolic proofs – in particular when they become even “more mathematical”. I
miss the practical impact.

What these statements show is reinforced by our experiences in teacher training:
the vastmajority of student teachers holds a definite formalistic viewonmathematical
proof (cf. also Aner et al. 1979). Obviously this fact is only a reflex of the “official”
picture of mathematics prevailing at school and in teacher training for a very long
time. Branford (1913, 328) has recognized this problem very clearly at the beginning
of this century:

I think it a fact that the vast majority of teachers is firmly convinced that mathematics does
not differ so much from other sciences by the measure of rigour but by the absolute rigour
of mathematical proofs in contrast to the approximate rigour of other proofs.

And Branford continues:

The disaster caused by this belief at all levels of mathematics teaching is, I think, terrible.

The negative consequences of a formalistic understanding of proof by teachers
can be quite different:

Teachers who see themselves as pedagogues, pragmatists and teachers with a
negative attitude towards mathematics refrain from introducing their students to
proof because they think “mathematical” proofs are too difficult for their children.
Instead they offer pictures, plausible arguments, verifications, examples and rules
related to certain types of tasks. Lenné (1969, 51) called this didactical position the
“didactics of tasks” (Aufgabendidaktik). On the other side teachers who care for
“mathematical rigour” try to bring their teaching to the level of formal definitions
and proofs, even if in practice they do not get very far. Systematic attempts in this
direction were made by the “New Maths” movement in the sixties and seventies.
Here elements of formal university mathematics were more or less directly “mapped
down” to the level of teaching. This approach has therefore rightly been called the
“didactics of mapping down” (Andelfinger and Voigt 1986, 3).

Contrary to the “didactics of tasks” and the “didactics of mapping down” there
is a third branch of didactics, centered around the genetic principle, in which the
concept of informal proof has been developed. Branford, one of the most important
representatives of genetic didactics distinguishes three types of proof (Branford 1913,
100 ff., 239 ff.):

• experimental “proofs” (typical of the “didactics of tasks”)
• intuitive proofs
• scientific proofs (typical of university mathematics and the “didactics of mapping
down”)

Branford thinks that the middle type of proof, intuitive proof, is indispensable for
the development of mathematical understanding and characterises it in the following
way:
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This level of proof establishes general and rigorously valid truths. However it refers, if
necessary, to postulates of sensual perception. It puts truth on a basis of its own by immediate
recall to first principles. It does not represent truth as a mere link in a systematic chain of
arguments where the effective strength of the connection is weakened by the number of
previously stated truths forming the links of the chain (103) . . .

Opposite to experimental “proof” we find the two other types of proof, the scientific and
the intuitive proof, the latter being a more preliminary and less rigorous kind of the ideal
scientific proof; in reality there is no sharp border between these two types, they differ only
in the degree of logical rigour. The truths derived by each of the two types are generally valid
as far as we can judge. Otherwise sensual perception would show us exceptions (108 f.)

With perfect clarity Branford points out here that the border between “proof” and
proof does not lie between “experimental” and “intuitive” proof on the one side and
purely logical proofs on the other side but is to be drawn between experimental proofs
on the one side and the two other types on the other side. Later on this position was
elaborated in more detail, in particular by H. Freudenthal’s contributions (Freuden-
thal 1963, 1973, Chap. 8, 1979). The decisive distinction between experimental
“proofs” and intuitive, informal proofs has been clarified by didactical research on
operative proofs and on “pre-mathematics” (Semadeni 1974; Kirsch 1979; Winter
1983b; Walther 1984): Experimental “proofs” consist of the verification of a finite
number of examples guaranteeing of course no generality. Informal operative proofs
are based on constructions and operations which by intuition are seen as applicable
to a whole class of examples and as leading to certain consequences. For example the
decomposition of a trapezoid point pattern into 3-columns is a universal operation
which generates insight into the remainder. The dot pattern is not a picture here but
a symbol (cf. Jahnke 1984).

In spite of its advanced development the genetic position has not received much
attention as yet in mathematics teaching at any level. The main reason might be that
informal explanations of concepts and informal proofs seem inhomogeneous, unsys-
tematic, shaky and invalid when considered from the point of view of formalism.
Many teachers, textbook authors and teacher trainers refrain from representations
which might be interpreted as a sign of mathematical incompetency. A change in
this unfavourable situation can be expected only to the extent that formalism is over-
come as the “official” philosophy of mathematics and that comprehensive informal
conceptions of elementary theories of mathematics are developed. These two points
are considered in the following sections.

2 Formalism as a Fiction: The Indispensability of Intuition
and Social Agreement in Checking Proofs

As already mentioned in the introduction of this paper at present the philosophy of
mathematics is undergoing a dramatic change arising from a growing awareness of
working mathematicians that formalism is in contradiction to their experiences and
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that the ideal of an “absolutely rigorous” proof can no longer be maintained (Davis
and Hersh 1983, Chap. 7; Hanna 1983).

We would like to illustrate the new views an proof by quoting from papers of
leading mathematicians.

Hardy (1929, 18 f.):

I have myself always thought of a mathematician as in the first instance an observer, a man
who gazes at a distant range of mountains and notes down his observations. His object is
simply to distinguish clearly and notify to others as many different peaks as he can. There are
some peaks which he can distinguish easily, while others are less clear. He sees A sharply,
while of B he can obtain only transitory glimpses. At last he makes out a ridge which leads
from A, and following it to its end he discovers that it culminates in B. B is now fixed in
his vision, and from this point he can proceed to further discoveries. In other cases perhaps
he can distinguish a ridge which vanishes in the distance, and conjectures that it leads to a
peak in the clouds or below the horizon. But when he sees a peak he believes that it is there
simply because he sees it. If he wishes someone else to see it, he points to it, either directly
or through the chain of summits which led him to recognise it himself. When his pupil also
sees it, the research, the argument, the proof is finished.

The analogy is a rough one, but I am sure it is not altogether misleading. If we were to
push it to its extreme we should be led to a rather paradoxial conclusion; that there is,
strictly, no such thing as mathematical proof; that we can, in the last analysis, do nothing
but point; that proofs are what Littlewood and I call gas, rhetorical flourishes designed to
affect psychology, pictures on the board in the lecture, devices to stimulate the imagination
of pupils. This is plainly not the whole truth, but there is a good deal in it. The image gives
us a genuine approximation to the processes of mathematical pedagogy on the one hand
and of mathematical discovery on the other; it is only the very unsophisticated outsider who
imagines that mathematicians make discoveries by turning the handle of some miraculous
machine . . .

On the other hand it is not disputed that mathematics is full of proofs, of undeniable interest
and importance, whose purpose is not in the least to secure conviction. Our interest in these
proofs depends on their formal and aesthetic properties . . . Here we are interested in the
pattern of proof only. In our practice as mathematicians, of course, we cannot distinguish
so sharply, and our proofs are neither the one thing nor the other, but a more or less rational
compromise between the two. Our object is both to exhibit the pattern and to obtain assent.
We cannot exhibit the pattern completely, since it is far too elaborate; and we cannot be
content with mere assent from a hearer blind to its beauty.

Wilder (1944, 319):

In conclusion, then, I wish to repeat my belief that what we call “proof” in mathematics
is nothing but a testing of the products of our intuition. Obviously we don’t possess, and
probably will never possess, any standard of proof that is independent of time, the thing to be
proved, or the person or school of thought using it. And under these conditions, the sensible
thing to do seems to be to admit that there is no such thing, generally, as absolute truth in
mathematics, whatever the public may think.

Thom (1973, 202 ff.):

The real problemwhich confronts mathematics teaching is not that of rigour, but the problem
of the development of “meaning”, of the “existence” of mathematical objects.

This leads me to deal with the old war-horse of the modernists (of the Continental European
variety): rigour and axiomatics. One knows that any hope of giving mathematics a rigorously
formal basis was irreparably shattered by Gödel’s theorem. However, it does not seem as
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if mathematicians suffer greatly in their professional activities from this. Why? Because in
practice, a mathematician’s thought is never a formalised one. The mathematician gives a
meaning to every proposition, one which allows him to forget the formal statement of this
proposition within any existing formalised theory (the meaning confers on the proposition
an ontological status independent of all formalisation). One can, I believe, affirm in all
sincerity, that the only formal processes in mathematics are those of numerical and algebraic
computation. Now can one reduce mathematics to calculation? Certainly not, for even in a
situation which is entirely concerned with calculation, the step of the calculation must be
chosen from a very large number of possibilities. And one’s choice is guided only by the
intuitive interpretation of the quantities involved. Thus the emphasis placed by modernists
on axiomatics is not only a pedagogical aberration (which is obvious enough) but also a truly
mathematical one.

One has not, I believe, extracted from Hilbert’s axiomatics the true lesson to be found there;
it is this: one accedes to absolute rigour only by eliminating meaning; . . . But if one must
choose between rigour and meaning, I shall unhesitatingly choose the latter. It is this choice
one has always made in mathematics, where one works almost always in a semi-formalised
situation, with a metalanguage which is ordinary speech, not formalised. And the whole
profession is happy with this bastard situation and does not ask for anything better. . . .

A proof of a theorem (T) is like a path which, setting out from propositions derived from
the common stern (and thus intelligible to all), leads by successive steps to a psychological
state of affairs in which (T) appears obvious. The rigour of the proof – in the usual, not
the formalised, sense – depends on the fact that each of the steps is perfectly clear to every
reader, taking into account the extensions of meaning already effected in the previous stages.
In mathematics, if one rejects a proof, it is more often because it is incomprehensible than
because it is false. Generally this happens because the author, blinded in some way by the
vision of his discovery, has made unduly optimistic assumptions about shared backgrounds.
A little later his colleagues will make explicit that which the author had expressed implicitly,
and by filling in the gaps will make the proof complete.

Atiyah (1984, 16 ff.):

If I’m interested in some topic then I just try to understand it; I just go on thinking about it
and trying to dig down deeper and deeper. If I understand it, then I know what is right and
what is not right.

Of course it is also possible that your understanding has been faulty, and you thought you
understood it but it turns out eventually that you were wrong. Broadly speaking, once you
really feel that you understand something and you have enough experience with that type
of question through lots of examples and through connections with other things, you get a
feeling for what is going on and what ought to be right. And then the question is: How do
you actually prove it? That may take a long time . . .

I don’t pay very much attention to the importance of proofs. I think it is more important to
understand something . . .

I think ideally as you are trying to communicate mathematics, you ought to be trying to com-
municate understanding. It is relatively easy to do this in conversation. When I collaborate
with people, we exchange ideas at this level of understanding – we understand topics and
we ding to our intuition.

If I give talks, I try always to convey the essential ingredients of a topic. When it comes to
writing papers or books, however, then it is much more difficult. I don’t tend to write books.
In papers I try to do as much as I can in writing an account and an introduction which gives
the ideas. But you are committed to writing a proof in a paper, so you have to do that.

Most books nowadays tend to be too formal most of the time, they give too much in the way
of formal proofs, and not nearly enough in the way of motivation and ideas. . . .
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I think it is very unfortunate that most books tend to be written in this overly abstract way
and don’t try to communicate understanding.

Long (1986, 616):

As far as the loss of certainty is concerned in itself (i.e., not as a historical-cultural phe-
nomenon) it does not seem extraordinarily surprising or significant to me. I am far more
puzzled by what “absolute certainty” might mean than by the fact that mathematics doesn’t
offer it. It seems to me that there is a similarity between this historical event (of 450 years
duration) and the debating tactic which builds and then destroys a straw man.

Mathematics is a human creation. That does not mean that it is arbitrary, but it does mean
that it would be immodest to expect it to be “certainly true” in the common sense of the
phrase. It is incoherent to try and imagine mathematics as a source or body of absolutely
certain knowledge. . . .

Proof is a form of mathematical discourse. It functions to unite mathematicians as practi-
tioners of one mathematics. . . . a proof functions in mathematics only when it is accepted as
a proof. This acceptance is a behavior of practicing mathematicians. . . .

Fermat wrote that “the essence of proof is that it compels belief.” To the extent that the com-
pulsion operates via insight, (relatively) informal proofs will continue to play an important
role in mathematics. Proofs that yield insight into the relevant concepts are more interesting
and valuable to us as researchers and teachers than proofs that merely demonstrate the cor-
rectness of a result. We like a proof that brings out what seems to be essential. If the only
available proof of a result is one that seems artifical or contrived it acts as an irritant. We
keep looking and thinking. Instead of being able to move on, we are arrested. I mention these
familiar facts only to emphasize that proof is not merely a system of links among various
theorems, axioms, and definitions but also a system of discourse among people concerned
with mathematics. As such it functions in a variety of ways.

From these first-hand informations we derive the following picture about the role
of intuition and social agreement in elaborating and checking proofs in mathematics:

(1) The validity of a proof does not depend, at least not only, on its formal presen-
tation within a formal axiomatic-deductive setting, but on the intuitive coher-
ence of conceptual relationships and their agreement with the experiences of the
researchers.

(2) The highly complex abstract theories of higher mathematics need a certain level
of formal presentation for the sake of conceptual unambiguity and brevity. How-
ever, working with this formalism in a meaningful way presupposes an under-
standing of the communicative structures of the researchers working in the field
and an intuitive understanding of the investigated objects. Any mathematical
theory refers to a class of objects which can be represented in various ways
and which via these representations become accessible for an operative study of
their properties and relationships. Therefore mathematics is “quasi-empirical”
(Lakatos 1963, 29 ff.; Jahnke 1978).

(3) Proofs serve primarily for understanding why the theorem in question is true.
During the process of creating and sharing understanding among researchers
proofs (and theorems!) are elaborated, re-formulated, generalized, improved,
formalized etc. Along this process criter a of rigour may change. “Absolutely
rigorous” proofs do not exist.
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3 The Elementary-Mathematics-Research-Program of
Mathematics Education

The changing views an proof in mathematics must be reflected in mathematics edu-
cation in, as we believe, the following way:

(1) The teaching and learning of mathematics in the social context of school has to
be based on a context of understanding and a frame of communication different
from those in university mathematics. To appropriately transfer proof activities
into the boundary conditions of school, we must abandon formal axiomatic-
deductive presentations of relevant mathematical theories in favour of sound
informal presentations. These are characterized by embeddings into meaningful
contexts, by emphasis on motivation, by the use of heuristic strategies and pre-
formal means of representation and by informal proofs. “Save the phenomena!”
must be the maxim of mathematics education.

(2) Above all informal proofs can further understanding and therefore they have to
be included into the process of learning and communication among students.
Lakatos’ “Proofs and Refutations” (Lakatos 1969) may serve as a model.

(3) The mathematical training of student teachers must contain informal courses
in elementary mathematics in order to create a useful background for teaching.
Comprehensive informal presentations of elementary mathematical theories are
muchmore effective professional tools than backgroundknowledge derived from
formal presentations.

Withinmathematics, formal presentations of elementarymathematics have a great
tradition (cf. e.g. Lenz 1967; Griffith and Hilton 1976–1978) which we explicitly
appreciate. But even if those presentations provide a lot of insight into mathematics
teaching, from the point of view of this paper they are not sufficient. The literature
of elementary mathematics, school mathematics, didactics of mathematics and the
history of mathematics is full of informal approaches to certain problems, fields or
even theories (cf. Sawyer 1964; Engel 1973/1976). To unify and to systematize these
approaches, particularly by developing a “grammar” of iconic representations and
concrete models, is in our view an extraordinarily important research problem of
mathematics education which we would like to call the “elementary-mathematics-
research-program” in mathematics education. The availability of comprehensive
informal presentations of arithmetic, elementary algebra, elementary geometry, ele-
mentary stochastics and elementary analysis would lead to integrating mathematical,
pedagogic, psychological and practical components of mathematics education and
open a new level of didactical research and development and teacher training.

In order to indicate that this program points far beyond mathematics education
we would like to close by quoting the mathematician Nowoshilow, member of the
Soviet Academy of Science:
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The closed and sterile formal mathematics is not only a “luxury” which civilization can
afford [as stated by Dieudonné] but also an inevitable consequence of civilization. From this
point of view the fight against the spread of mathematical formalism among human beings
around the world is an ecological task.

(Epilogue in Blechman, Myschkis and Panovko 1984, 326).
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Chapter 6
Mathematics Education as a ‘Design
Science’

Mathematics education (didactics of mathematics) cannot grow without close rela-
tionships to mathematics, psychology, pedagogy and other areas. However, there
is the risk that by adopting standards, methods and research contexts from other
well-established disciplines, the applied nature of mathematics education may be
undermined. In order to preserve the specific status and the relative autonomy of
mathematics education, the suggestion to conceive of mathematics education as a
“design science” is made. In a paper presented to the twenty second Annual Meet-
ing of German mathematics educators in 1988 Heinrich Bauersfeld presented some
views on the perspectives and prospects of mathematics education. It was his inten-
tion to stimulate a critical reflection’among the members of the community’ on what
they do and what they could and should do in the future (Bauersfeld 1988). The early
seventies have witnessed a vivid programmatic discussion on the role and nature of
mathematics education in the German speaking part of Europe (cf., the papers by
Bigalke, Griesel, Wittmann, Freudenthal, Otte, Dress and Tietz in the special issue
74/3 of the Zentralblatt für Didaktik der Mathematik as well as Krygowska 1972).
Since then the status of mathematics education has not been considered on a larger
scale despite the contributions by Bigalke (1985) and Winter (1986). So the time
is overdue for redefining the basic orientation for research; therefore, Bauersfeld’s
talk could hardly have been more appropriate. In recent years the interest in a bet-
ter understanding of the nature and role of mathematics education has also grown
considerably at the international level as indicated, for example, by the ICMI-study
on ‘What is research in mathematics education and what are its results?’ launched
in 1992 (cf., Balacheff et al. 1992). The following considerations are intended both
as a critical analysis of the present situation and an attempt to capture the specificity
of mathematics education. Like Bauersfeld, the author presents them ‘in full sub-
jectivity and in a concise way’ as a kind of ‘thinking aloud about our profession’.
(The present paper concentrates on the didactics of mathematics although the line of
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argument pertains equally to the didactics of other subjects and also to education in
general (cf., Clifford and Guthrie 1988, a detailed study on the identity crisis of the
Schools of Education at the leading American universities).)

1 The ‘Core’ and the ‘Related Areas’ of Mathematics
Education

The sciences should influence the outside world only by an enlightened practice; basically
they all are esoteric and can become exoteric only by improving some practice. Any other
participation leads to nowhere.

J.W. v. Goethe, Maximen und Reflexionen

Generally speaking, it is the task of mathematics education to investigate and to
develop the teaching of mathematics at all levels including its premises, goals and
societal environment. Like the didactics of other subjects mathematics education
requires the crossing of boundaries between disciplines and depends on results and
methods of considerably diverse fields, including mathematics, general didactics,
pedagogy, sociology, psychology, history of science and others. Scientific knowledge
about the teaching of mathematics, however, cannot be gained by simply combining
results from these fields; rather it presupposes a specific didactic approach that inte-
grates different aspects into a coherent and comprehensive picture of mathematics
teaching and learning and then transposing it to practical use in a constructive way.

The specificity of this task necessitates, on the one hand, sound relationships to
the disciplines related to mathematics education, and on the other hand, a balance
between practical proximity and theoretical distance with respect to schools. Bauers-
feld (1988, p. 15) refers here to the ‘two cultures’ of mathematics education. How
we can integrate the variety of aspects, and at the same time, set weights and deal
with the tensions that exist between theory and practice is not at all clear a priori.
This is why it is so difficult to arrive at a generally shared conception of mathematics
education.

In my view, the specific tasks of mathematics education can only be carried out
if research and development have specific linkages with practice at their core and if
the improvement of practice is merged with the progress of the field as a whole.

This core consists of a variety of components, including in particular:

• analysis of mathematical activity and of mathematical ways of thinking,
• development of local theories (for example, on mathematizing, problem solving,
proof and practising skills),

• exploration of possible contents that focus on making them accessible to learners,
• critical examination and justification of contents in view of the general goals of
mathematics teaching,

• research into the pre-requisites of learning and into the teaching/learningprocesses,
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• development and evaluation of substantial teaching units, classes of teaching units
and curricula,

• development of methods for planning, teaching, observing and analysing lessons,
and

• inclusion of the history of mathematics education.

Work in the core necessitates the researcher’s interest and proximity to practical
problems. A caveat is in order, however. The orientation of the core towards practice
may easily lead to a narrow pragmatism that focuses on immediate applicability
and may therefore become counterproductive. This hazard can only be avoided by
connecting the core to a variety of related areas that bring about an exchange of ideas
with related disciplines and that allow for investigating the different roots of the core
in a systematic way (cf., Fig. 1). Of course, the core and the related areas overlap,
and the ill-defined borders between them change over time. Thus, a strict separation
is not possible.

Fig. 1 The core and the areas related to mathematics education, their links to the related disciplines
and the fields of application

Although the related areas are indispensable for the whole entity to function in an
optimal way, the specificity of mathematics education rests on the core, and therefore
the core must be the central component. Actually, progress in the core is the crucial
element by which to measure the improvement of the whole field. This situation is
comparable to music, engineering and medicine. For example, the composition and
performance of music must take precedence over the history, critique and theory
of music; in mechanical engineering the construction and development of machines
is paramount to mechanics, thermodynamics and research of new materials; and in
medicine the cure of patients is of central importance when compared to medical
sociology, history of medicine or cellular research.
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However, the division between the core and the related areas does not imply that
the core is restricted to practical applications since the related areas have to develop
the necessary theory. In fact, building theories or theoretical frameworks related to
the design and empirical investigation of teaching is an essential component of work
in the core (cf., Freudenthal 1987).

As in engineering, medicine and art, the different status of the core and the related
areas is also clearly indicated in mathematics education by the following facts:

1. The core is aimed at an interdisciplinary, integrative view of different aspects
and at constructive developments whereby the ingenuity of mathematics edu-
cators is of crucial importance. The related areas are derived much more from
the corresponding disciplines. Therefore research and development in didactics
in general get their specific orientation from the requirements of the core. The-
oretical studies in the related areas become significant only insofar as they are
linked to the core and thus receive a specific meaning. In particular, the research
problems listed in Bauersfeld (1988, pp. 16–18) can be tackled in a sufficiently
concrete and productive way only from the core.

2. Teacher education oriented towards practice must be based on the core. The
related areas are indispensable formore deeply understanding practical proposals
and their applications in an appropriate way. However, in teacher education too,
the related areas realize their full impact only if they are linked to the core.

The central position of the core is mainly an expression of the applied status
of mathematics education. Emphasizing the core does not diminish the importance
of the related areas, nor does it separate them from the core. As clearly indicated
in Fig. 1, it is the core, the related areas and a lively interaction between them that
represent the full picture of mathematics education and that also necessitate the
common responsibility of mathematics educators independent of their special fields
of interest.

Work in the core must start from mathematical activity as an original and natural
element of human cognition. Further, it must conceive of “mathematics” as a broad
societal phenomenon whose diversity of uses and modes of expression is only in part
reflected by specialized mathematics as typically found in university departments
of mathematics. I suggest a use of capital letters to describe MATHEMATICS as
mathematical work in the broadest sense; this includes mathematics developed and
used in science, engineering, economics, computer science, statistics, industry, com-
merce, craft, art, daily life, and so forth according to the customs and requirements
specific to these contexts. Specialized mathematics is certainly an essential element
of MATHEMATICS, and the broader interpretation cannot prosper without the work
done by these specialists. However, the converse is equally true: Specialized mathe-
matics owes a great deal of its ideas and dynamics to broader scientific and societal
sources. By no means can it claim a monopoly for “mathematics”.

It should go without saying that MATHEMATICS, not specialized mathematics,
forms the appropriate field of reference for mathematics education. In particular, the
design of teaching units, coherent sets of teaching units and curricula has to be rooted
in MATHEMATICS.
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As a consequence, mathematics educators need a lively interaction with MATH-
EMATICS and they must devote an essential part of their professional life to stim-
ulating, observing and analyzing genuine Mathematical activities of children,
students and student teachers. Organizing and observing the fascinating encounter
of human being with MATHEMATICS is the very heart of didactic expertise and
forms a natural context for professional exchange with teachers.

As a part ofMATHEMATICS, specializedmathematicsmust be taken seriously by
mathematics educators as one point of view that, however, has to be balanced with
other points of view. The history of mathematics education clearly demonstrates
the risks of following specialized mathematics too closely: On the one hand, subject
matter and elements ofmathematical language can be selected that do notmakemuch
sense outside specialized mathematics—perhaps a lasting example of this mistake
is the New Maths movement. On the other hand, the educationally important fields
of MATHEMATICS that are no longer alive in specialized research and teaching
may lose the proper attention—perhaps the best example for this second mistake is
elementary geometry.

Mathematics educators must be aware that school mathematics cannot be derived
from specialized mathematics by a “transposition didactique du savoir savant au
savoir enseigné” (cf., Freudenthal 1986). Instead, they must see school mathematics
as an extension of pre-mathematical human capabilities which develop within the
broader societal context provided by MATHEMATICS (cf., Schweiger 1994: p. 299
and Dörfler 1994, as well as the concept of “ethno-mathematics” in D’Ambrosio
1986). It is only from this perspective that the unity of mathematics teaching from
the primary through the upper secondary level can be established and that reasonable
mathematical courses in teacher training can be developed which deserve to be called
a scientific background of teaching.1

2 A Basic Problem in the Present Development of
Mathematics Education: The Neglect of the Core

The ‘hard sciences’ are successful, as they deal with ‘soft problems’. The ‘soft sciences’ are
badly off, as they are confronted with ‘hard problems’.

Heinz v. Foerster

An approach to the study of problems of learning and teaching in mathematics edu-
cation requires a scientific framework that includes both research methods and stan-
dards. As a young discipline, mathematics education is under considerable pressure

1I do not intend to give mathematical specialists advice not asked for. However, in my opinion it
would also be beneficial for them to perceive themselves as partners in a larger mathematical system
described by MATHEMATICS. Without some change of awareness on their part, all attempts to
change the public image of “mathematics” are nothing but cosmetics and bound to fail.
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from different directions. How to establish standards is as controversial as the status
of mathematics education itself and can likewise be addressed in different ways.

One tempting approach is to adapt methods and standards from the hard sciences
and the humanities. I dare say that all around the world quite a number of math-
ematics educators are taking this approach wherein the scientific background and
their personal interests might be as influential as the wish to be recognized and sup-
ported by scientists in the related disciplines. However, approaches, methods and
standards adopted from related disciplines are more easily applied to problems in the
neighborhood of these disciplines than to problems in the core. Consequently, a great
deal of didactic research adheres to mathematics, psychology, pedagogy, sociology,
history of mathematics and so forth. Thus the holistic origin of didactic thinking,
namely mathematical activity in social contexts, is dissolved into single strands,
and the specific tasks of the core are neglected. In my view this is a big problem
that presently inhibits major progress in mathematics education. The problem is by
no means restricted to mathematics education, however. For example, Clifford and
Guthrie (1988: p. 3) have identified it as a universal problem in education:

Our thesis is that schools of education, particularly those located an the campuses of presti-
gious research universities have becomeensnared improvidently in the academic andpolitical
cultures of their institutions and have neglected their own worlds. They have seldom suc-
ceeded in satisfying the scholarly norms of their campus letters and science colleagues, and
they are simultaneously estranged from their professional peers. The more they have rowed
toward the shores of scholarly research the more distant they have become from the public
schools they are bound to serve.

Themovement away from the core and towards the related areasmay also be prob-
lematic because very often the adoption of frameworks and standards from related
disciplines is linked to the dogmatic claim that these frameworks and standards were
the only ones possible for didactics. From this position follows a blindness towards
the central tasks of mathematics education and a systematic underestimation of the
constructive achievements brought about in the core. Sometimes the core is even
denied a scientific status. Mathematics educators who retreat into a “mathematical
garden” (H. Meschkowski) tend of course to trivialize the educational aspects of
mathematics education; similarly, those working in the areas related to psychology
and pedagogy neglect the mathematical aspects. These tendencies are reinforced by
voices from the related disciplines that argue against the scientific status of didactics
more or less publicly. As a result we have an unreasonable set-back into reductionist
positions analyzed as unfounded many years ago (cf., Bigalke 1985; Winter 1985).
It is ironic that mathematics education set out in the late sixties to overcome exactly
these polarized positions. What is urgently needed therefore is a methodological
framework that does justice to the core of mathematics education.
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3 Mathematics Education as a Systemic-Evolutionary
‘Design Science’

It is the yardstick that creates the phenomena... A religious phenomenon can only be revealed
as such if it is captured in its own modality, i.e., if it is considered by means of a religious
yardstick. To locate such a phenomenon by means of physiology, psychology, sociology,
economics, linguistics, art, etc. means to deny it. It means to miss exactly its uniqueness and
its irreducibility.

Mircea Eliade, The Religions and the Sacred

Establishing2 scientific standards in mathematics education by adopting standards
from related disciplines is, as mentioned, unwise because problems and tasks of
mathematics education tend to be tackled only insofar and to the extent that they are
accessible to the methods of the related disciplines. As a consequence, the core is
not sufficiently recognized as a scientific field in its own right.

Fortunately there is a silver lining in this dilemma if one abandons the fixation
on the traditional structures of the scientific disciplines and instead looks at the
specific character of the core, namely the constructive development of and research
into mathematics teaching. Here mathematics education is assigned to the larger
class of “design sciences” (cf., Wittmann 1974) whose scientific status was clearly
delineated from the scientific status of natural sciences by the Nobel Prize Winner
Herb Simon. The following quotation from Simon (1970, pp. 55–58) explains also
the resistance offered to the design sciences in academia. In this way the present
situation of mathematics education is embedded into a wider context and becomes
accessible to a rational evaluation.

Historically and traditionally, it has been the task of the science disciplines to teach about
natural things: how they are and how they work. It has been the task of engineering schools
to teach about artificial things: how to make artifacts that have desired properties and how
to design …

Design, so construed, is the core of all professional training; it is the principal mark that
distinguishes the professions from the sciences. Schools of engineering, as well as schools
of architecture, business, education, law and medicine, are all centrally concerned with the
process of design.

In view of the key role of design in professional activity, it is ironic that in this century the
natural sciences have almost driven the sciences of the artificial from professional school
curricula. Engineering schools have become schools of biological science; business schools
have become schools of finite mathematics …

2The term “design” and related terms used subsequently in this paper might cause irritation, for
in traditional understanding these terms are linked to mechanistic procedures of making tools and
controlling systems (cf., Jackson 1968: 163 ff.). In part 3 of this paper we will show, however, that in
striking contrast to the “mechanistic” paradigm of design andmanagement there is a new “systemic-
evolutionary” paradigm based on the appreciation of the complexity and self-organisation of living
systems. It is in the context of this new paradigm that the term “design” and similar ones are used
in the present paper.
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The movement toward natural science and away from the sciences of the artificial has pro-
ceeded further and faster in engineering, business andmedicine than in the other professional
fields I have mentioned, though it has by no means been absent from schools of law, jour-
nalism and library science …

Such a universal phenomenon must have a basic cause. It does have a very obvious one. As
professional schools …are more and more absorbed into the general culture of the univer-
sity, they hanker after academic respectability. In terms of the prevailing norms, academic
respectability calls for subject matter that is intellectually tough, analytic, formalizable and
teachable. In the past, much, if not most, of what we knew about design and about the artifi-
cial sciences was intellectually soft, intuitive, informal and cookbooky. Why would anyone
in a university stoop to teach or learn about designing machines or planning market strate-
gies when he could concern himself with solid-state physics? The answer has been clear: he
usually wouldn’t …

The older kind of professional school did not know how to educate for professional design at
an intellectual level appropriate to a university; the new kind of school has nearly abdicated
responsibility for training in the core professional skills …

The professional schools will reassume their professional responsibilities just to the degree
that they can discover a science of design, a body of intellectually tough, analytic, partly
formalizable, partly empirical, teachable doctrine about the design process.

It is the thesis of this chapter that such a science of design not only is possible but is actually
emerging at the present time.3

In the writer’s opinion the framework of a design science opens up to mathemat-
ics education a promising perspective for fulfilling its tasks and also for developing
an unbroken self-concept of mathematics educators. This framework supports the
position described in part 2, for the core of mathematics education concentrates on
constructing “artificial objects”, namely teaching units, sets of coherent teaching
units and curricula as well as the investigation of their possible effects in different
educational “ecologies”. Indeed the quality of these constructions depends on the
theory-based constructive fantasy, the “ingenium”, of the designers, and on sys-
tematic evaluation, both typical for design sciences. How well this conception of
mathematics education as a design science reflects the professional tasks of teachers

3The underestimation of the “skills of designing and making” is deeply rooted in our culture. Cf.
A. Smith, A coherent set of decisions, the Stanley Lecture, Manchester Polytechnic 1980: p. 22:

Throughout the whole of our society we show little respect for the skills of designing and
making. Indeed in many of our schools these very skills are looked down upon and are
referred to as the noddy subjects, fit only for the less able in our community.

I remember, during my years as chairman of the Schools Council, visiting a school where,
after I had been shown the fairly conventional range of school work, I was taken into the
workshops and there on the bench was a most beautiful and competent piece of metal work.
It was a joy to look at, but it was described to me as a piece of work “by one of our less able
pupils”. It was an extraordinary description, which spoke volumes about our distorted scale
of values. There was a piece of work which expressed ability, as fine in its way as the best
essay written by the highest flyer in English, but never seen by academic people as such.
To write things with pen on paper is an up-marked, respectable activity; to conceive pattern
in your mind and to make them with your hands is a down-marked activity, less worthy of
respect.
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is shown, for example, by Clark and Yinger (1987, pp. 97–99) who have identified
teaching as a “design profession”.

The clear structural delineation ofmathematics education as a design science from
the related sciences underlines its specific character and its relative independence.
Mathematics education is not an appendix to mathematics, nor to psychology, nor
to pedagogy for the same reason that any other design science is not an appendix to
any of its related disciplines. Attempts to organize mathematics education by using
related disciplines as models miss the point because they overlook the overriding
importance of creative design for conceptual and practical innovations.

As far as research frameworks and standards are concerned, mathematics edu-
cators working in the core should primarily start from the achievements in the core
already available. There is no doubt that during the past 25 years significant progress,
that includes the creation of theoretical frameworks, has been made within the core
and that standards have been set which are well-suited as an orientation for the
future. “Developmental research” as suggested by Freudenthal and elaborated by
Dutch mathematics educators is a typical example (cf., Freudenthal 1991, pp. 160–
161; and Gravemeijer 1994). Of course, it is reasonable also to adopt methods and
standards from the related disciplines to the extent that they are appropriate to the
problems of the core.

It is no surprise that there objections to the view of mathematics education as a
“design science” emerge, for the simple reason that the design sciences have tradi-
tionally followed—and are still widely following—a mechanistic paradigm whose
harmful side effects are becoming more and more visible. This approach would cer-
tainly be detrimental to education. However, we are presently witness to the rise of
a new paradigm for the design sciences that is based on the “systemic-evolutionary”
development of living systems and takes the complexity and self-organizationof these
systems into account (cf., Malik 1986). Even if researchers in the design sciences in
general hesitate to adopt this new paradigm, there is no reason whymathematics edu-
cators should not follow it, even more so since this paradigm corresponds to recent
developments in the field. The systemic-evolutionary view on the teacher-student
and the theorist-practitioner relationships differs greatly from the traditional view.
Knowledge is no longer seen as the result of a transmission from the teacher to a
passive student, but is conceived of as the productive achievement of the student who
learns in social interaction with other students and the teacher. Therefore the mate-
rials developed by mathematics educators must be construed so as to acknowledge
and allow for this interactive approach. In particular, they must provide teachers and
students the freedom to make choices of their own. In order to facilitate and stimu-
late a flexible use of the materials designed in this way, teachers have to be trained
and regarded as partners in research and development and not as mere recipients
of results (cf. Schupp 1979; Schwab 1983; Fischer and Malle 1983, and the papers
by Brown/Cooney, Seeger/Steinbring, Voigt, and others in Zentralblatt für Didaktik
der Mathematik (4/91 and 5/91)). As a consequence, teacher training receives a new
quality. An important orientation for innovations along these lines is the approach
developed by Schön (1987) for the training of engineers that is based upon the idea
of the “reflective practitioner”.
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As a systemic-evolutionary design science mathematics education can follow
different paths. It is certainly not reasonable to develop it into a “monoparadigmatic”
form as postulated, for example, for the natural sciences. In a design science the
simultaneous appearance of different approaches is a sign of progress and not of
retardation as stated by Thommen (1983, p. 227) for management theory:

Because of a continuously changing economic world it is possible to (re-)construct an eco-
nomic context within different formal frameworks, or models. These need not be mutually
exclusive, on the contrary, they can even be complementary, for no model can take all prob-
lems and aspects into account as well as consider and weigh them equally. The more models
exist, the more problems and aspects are studied, the greater is the chance for mutual cor-
rection. Therefore we consider the variety of models in management theory as an indicator
for an advanced development of this field moving on in an evolutionary, not a revolutionary
process in which new models emerge and old ones disappear.

4 The Design of Teaching Units and Empirical Research

That, in concrete operation, education is an art, either a mechanical art or a fine art, is
unquestionable. If there were an opposition between science and art, I should be compelled
to side with those who assert that education is an art. But there is no opposition, although
there is a distinction.

John Dewey, On the sources of a science of education

For developing mathematics education as a design science it is crucial to find ways
how design on the one hand and empirical research on the other can be related to
one another. In the following the writer proposes a specific approach to empirical
research, namely empirical research centered around teaching units.

It cannot be denied that teaching units, and on a wider scale curricula, have found
attention in mathematics education in the past. In fact, curriculum development held
a prominent place in the late sixties and early seventies. Nevertheless, the writer
contends that the design of teaching units has never been a focus of research. At best
teaching units have been used asmore or less incidental examples in investigating and
presenting theoretical ideas. Many of the best units were published in teachers’ jour-
nals, not in research journals, and were hardly noticed by the research community.
For this phenomenon the following explanation is offered: In contrast to “research”,
the design of teaching has been considered as a mediocre task normally done by
teachers and textbook authors. To rephrase Herb Simon:Why should anyone anxious
for academic respectability stoop to designing teaching and put him- or herself on
one level with teachers? The answer has been clear: He or she usually wouldn’t.

In order to overcome this fundamentally incorrect view we have to recognize that
in all fields of design there is—by the very nature of design—a wide spectrum of
competence and experience ranging from the amateur, to the novice, the less or more
skilled worker, the experiencedmaster, up to the creative inventor. Typically, the bulk
of design on a larger scale is done in special centers for research and development.
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As a design science mathematics education can be no exception from this rule.
That teachers take part in design can be no excuse for mathematics educators to
refrain from this task. On the contrary: The design of substantial teaching units, and
particularly of substantial curricula, is a most difficult task that must be carried out by
the experts in the field. By no means can it be left to teachers, although teachers can
certainly make important contributions within the framework of design provided by
experts, particularly when they are members of or in close connection with a research
team. Also, the adaptation of teaching units to the conditions of a special classroom
requires design on a minor scale. Nevertheless, a teacher can be compared more to
a conductor than to a composer or perhaps better to a director (“metteur en scène”)
than to a writer of a play. For this reason there should exist strong reservations about
“teachers’ centers” wherein teachers meet to make their own curriculum.

We should be anxious to delineate teaching units of the highest quality from the
mass of units developed at various levels for various purposes. These “substantial”
teaching units can be characterized by the following properties:

1. They represent central objectives, contents and principles of mathematics teach-
ing.

2. They provide rich sources for mathematical activities.

3. They areflexible and can easily be adapted to the conditions of a special classroom.
4. They involve mathematical, psychological and pedagogical aspects of teaching

and learning in a holistic way, and therefore they offer a wide potential for empir-
ical research.

Typically, a substantial teaching unit always carries a name. As examples I men-
tion “Arithmogons” by Alistair McIntosh and Douglas Quadling, “Mirror cards” by
Marion Walter, “Giant Egbert” and other units developed in the Dutch Wiskobas
project, and Gerd Walther’s unit “Number of hours in a year” (Walther 1984, 72–
78). Other examples and a systematic discussion of the role of substantial teaching
units in mathematics education are given by Wittmann (1984).

For the sake of clarity, one example of a substantial teaching unit is sketched
below. In our primary project Mathe 2000 the following setting of arithmogons is
used in grade 1:

A triangle is divided in three fields by connecting its midpoint to the midpoints
of its sides. We put counters or write numbers in the fields. The simple rule is as
follows: Add the numbers in two adjacent fields and write the sum in the box of the
corresponding side (cf. Fig. 2).
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Fig. 2 Modified representation of arithmogons

Various problems arise: When starting from the numbers inside, the numbers
outside canbeobtainedby addition.Whenoneor twonumbers inside and respectively
two or one number outside are given, the missing numbers can be calculated by
addition and subtraction. When the three numbers outside are given, we have a
problem that does not allow for direct calculation but requires some thinking. It turns
out that there is always exactly one solution. However, it may be necessary to use
fractions or negative numbers.

Themathematics behind arithmogons is quite advanced: The three numbers inside
form a vector as well as the three numbers outside. The rule of adding numbers in
adjacent fields defines a linear mapping from the three-dimensional vectorspace over
the reals into itself. The corresponding matrix is non-singular. One can generalize
the structure to n-gons as shown in McIntosh and Quadling (1975).

The teaching unit based upon arithmogons consists of a sequence of tasks and
problems that arise naturally from themathematical context. The script for the teacher
may be structured as follows:

1. Introduce the rule by means of examples and make sure that the rule is clearly
understood.

2. Present some examples in which the numbers inside are given.
3. Present some examples in which some numbers inside and some numbers outside

are given.
4. Present a problem in which the numbers outside are given.
5. Present other problems of this kind.

As can be seen, a substantial teaching unit is essentially open. Only the key
problems are fixed. During each episode the teacher has to follow the students’ ideas
in trying to solve the problems. This role of the teacher is completely different from
traditional views of teaching. Teaching a substantial unit is basically analogous to
conducting a clinical interview during which only the key questions are defined and
the interviewer’s task is to follow the child’s thinking.
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The structural similarity between substantial teaching units on the one hand, and
clinical interviews on the other, suggests an adaptation of Piaget’s method for study-
ing children’s cognitive development to empirical research on teaching units (cf.,
Fig. 3). As a result we arrive at “clinical teaching experiments” in which teaching
units can be used not only as research tools, but also as objects of study.

Fig. 3 Comparison of clinical interviews with teaching experiments

The data collected in these experiments havemultiple uses: They tell us something
about the teaching/learning processes, individual and social outcomes of learning,
children’s productive thinking, and children’s difficulties. They also help us to eval-
uate the unit and to revise it in order to make teaching and learning more efficient.

The Piagetian experiments were repeated many times by other researchers. Many
became a focus of extended psychological research. Some even established special
lines of study; for example, the “conservation” experiments. It is no exaggeration
to say that Piaget’s experiments and the patterns he observed in children’s thinking
survived much longer than his theories, in many cases until the present. In the same
way, clinical teaching experiments can be repeated and thereby varied. By comparing
the data we can identify basic patterns of teaching and learning and derive well-
founded specific knowledge on teaching certain units. Much can be learned here
from Japanese research in mathematics education (cf., Becker and Miwa 1989).

In conducting such studies, existingmethods of qualitative research can effectively
be used, particularly those developed by Frenchmathematics educators in connection
with “didactical situations” and with “didactic engineering” (cf. Brousseau 1986;
Artigue and Perrin-Glorian 1991; Arsac et al. 1992). Concerning the reproducibility
of results it is very instructive to look at the social sciences. Friedrich von Hayek,
anotherNobel prizewinner in economics, has convincingly pointed out that empirical
research on highly complex social phenomena yields reproducible results if directed
towards revealing general patterns beyond special data (von Hayek 1956). To admit
that the results of teaching and learning depend on the students and on the teacher
does not preclude the existence of patterns related to the mathematical content of a
specific teaching unit (cf., also, Kilpatrick 1993, pp. 27–29 and Sierpinska 1993, pp.
69–71). Of course, we must not expect all these patterns to arise on any occasion
nor under all circumstances. It is quite natural that patterns will occur, varying with
the educational ecologies. One should be reminded here of the well-known fact that
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Piagetian interviews also reveal recurring content-specific patterns which, however,
do not occur with every individual child.

Research centered around teaching units is useful for several reasons. First, it is
related to the subject matter of teaching (cf., the postulate of “relatedness” in Kil-
patrick 1993, p. 30). Second, knowledge obtained from clinical teaching experiments
is “local”. Here we need to be more careful in generalizing over contents than we
have been in the past. In the future we can certainly expect to derive theories covering
a wide range of teaching and learning. But these theories cannot emerge before a
variety of individual teaching units has been investigated in detail. For studying the
mathematical theory of groups the English mathematician Graham Higman stated in
the fifties “that progress in group theory depends primarily on an intimate knowledge
of a large number of special groups”. The striking results achieved in the eighties in
the classification of finite simple groups showed that he was right. In a similar way,
the detailed empirical study of a large number of substantial teaching units could
prove equally helpful for mathematics education.

Third, theory related to teaching experiments is meaningful and applicable. We
should, however, be aware that, due to the inherent complexity of teaching and learn-
ing, the data and theories that research might provide may never provide complete
information for teaching a certain unit. Only the teacher is in a position to determine
the special conditions in his or her classroom. Therefore there should be no sharp
separation between the researcher and the teacher as stated earlier. As a consequence,
teachers have to be equipped with some basic competence in doing research on a
small scale. The writer’s experience in teacher training indicates that introducing
student teachers into the method of clinical interviews is an excellent way towards
that end (Wittmann 1985).

In the writer’s opinion, the most important results of research in mathematics
education are sets of carefully designed and empirically studied teaching units that are
based on fundamental theoretical principles. It follows that these units should form a
major part of the professional training of teachers. Teachers who leave the university
should have in their baggage a set of substantial teaching units that represent the
standards of teaching. From the experiences with our primary project Mathe 2000 it
is clear that such units are the most efficient carriers of innovation and are well-suited
to bridge the gap between theory and practice.

5 And the Future of Mathematics Education?

The frogs tend to forget that once they were tadpoles, too.
Korean Proverb

Generally speaking, it may be taken for granted that dealing in an intelligent waywith
complex systems on a scientific basis will become inevitable in all parts of human
life. Very often the methods offered by the specialized disciplines are not sufficient.
Riedel (1988) recently pleaded for a more context-related, more practical and less-
formal “second philosophy”, in contrast to the traditional “first philosophy” that aims
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at complete descriptions and deductions and that is bound to fail when applied to
complex systems, because of its “ideology of self-restriction” (Fischer 1980). This
seems to be a signal for a critical reflection in all sciences from which mathematics
education as a systemic-evolutionary design science can take profit in the long range,
since societywill have to accept the fact that the development of human resources is at
least as important for economic prosperity as is the development of new technologies
and new marketing strategies.

In the short run the status of didactics in the universities will remain arduous. The
resistance from the specialized sections within the related disciplines to establishing
didactics in teacher training programs at all levels and to funding research in didac-
tics is likely to continue. The history of the universities shows many instances in
which scholars of established disciplines displayed their ignorance and acted in an
unfair way towards newly evolving disciplines. The resistance of the old universities
towards the technical schools at the end of the 19th century, the resistance of pure
mathematicians towards applied ones at the beginning of this century and the vote of
the German Philosophical Society against the establishment of chairs of pedagogy
at the universities in the fifties are only a few examples. Obviously it is difficult, if
not impossible, for specialists to understand and to appreciate new developments on
the very borderline of their discipline.

In order to strengthen their position at the universities and to acquire funds
from research foundations, mathematics educators need support from society. In this
respect the relationships of mathematics education to the schools play a fundamental
role. The use and the indispensability of didactic research for improving practice
have to be convincingly demonstrated to teachers, supervisors, administrators, par-
ents and the public. This can only be achieved from the core, that is, by concentrating
on central tasks and by organizing design, empirical research and teacher education
accordingly.

At the same line, there is potential in establishing a network of “Public—School—
School Administration—Teachers’ Unions—Teacher Training—Design, Research,
Development” people in which the core of mathematics education will naturally
find its proper place. In other words, organizing a systemic effort involving all the
constituent groups.

This is consistent with the advice given by Clifford and Guthrie to schools of
education in general (cf., Clifford and Guthrie 1988: pp. 349–350):

The major mission of schools of education should be the enhancement of education through
the preparation of educators, the study of the educative process, and the study of schooling
as a social institution. As John Best has observed, the challenge before schools of education
is quite different from that confronting the specialist in politics in a department of political
science; concerned with building the discipline, he or she is under no obligation to train
country clerks, city managers, and state legislators, and to improve their performance by
conducting research directed toward that end. In order to accomplish their charter, however,
schools of education must take the profession of education, not academia, as their main point
of reference. It is not sufficient to say that the greatest strength of schools of education is that
they are the only places available to look at fundamental issues from a variety of disciplinary
perspectives. They have been doing so for more than half a century without appreciable
effect on professional practice. It is time for many institutions to shift their gears.
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Chapter 7
Designing Teaching:
The Pythagorean Theorem

1 Introduction

Here we consider a fundamental activity of teachers that has to be based on an
integrated view of mathematics and pedagogy in order to be successful: namely,
the design of teaching. As expressed in the title, a well-known topic of geometry,
the Pythagorean theorem, is used for illustrating this integrative approach to student
teachers. In otherwords, the emphasis of the paper is less on the Pythagorean theorem
per se but more on general principles of a teacher’s “design kit” that can be applied
to other topics as well.

The design of teaching lies at the very heart of a teacher’s professional activities.
That is why some authors conceive of teaching as a design profession and corre-
spondingly of mathematics education as a design science (Clark and Yinger 1987;
Wittmann 1985, 1995). For this reason the paper can also be understood as an exam-
ple of how to organize research and development in mathematics education along
the lines of design.

Accordingly there are four sections that follow. The first section is to make the
reader think about the Pythagorean theorem within the context of school by remem-
bering personal experiences from school and university; by solving textbook prob-
lems; by looking at the treatment of the Pythagorean theorem in textbooks; and by
interviewing students on what they have retained from teaching.

The second section introduces the reader to the framework of mathematical con-
cepts behind and around this theorem and its proofs; problem contexts from which
the theorem naturally arises; and research on students’ psychological development
in understanding and using these concepts.

The third section will demonstrate how the mathematical, heuristic, and psycho-
logical strands from the second section have to be related and tuned to one another,
that is to be integrated, in the design of teaching units. The section contains teaching
plans of introductory teaching units for the Pythagorean theorem.
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Thefinal section explains somekey concepts that can be generalized from the three
strands of Sect. 2: the notion of “informal” proof; the heuristic strategy “specializing”;
and the so-called operative principle.

All three principles will also be illustrated by subject matter different from the
Pythagorean theorem in order to stimulate the transfer of these key concepts to other
topics.

2 Thinking About the Pythagorean Theorem within the
School Context

But neither thirty years, nor thirty centuries, affect the clearness, or the charm, of geometric
truths. Such a theorem as “the square of the hypotenuse of a right-angled triangle is equal to
the sum of the squares of the sides” is as dazzingly beautiful now as it was in the days when
Pythagoras first discovered it, and celebrated its advent, it is said, by sacrificing one hundred
oxen – a method of doing honour to science that has always seemed to me slightly exag-
gerated and uncalled for. One can imagine oneself, even in these degenerate days, marking
the epoch of some brilliant scientific discovery by inviting a convivial friend or two, to join
one in a beefsteak and a bottle of wine. But one hundred oxen! It would produce a quite
inconvenient supply of beef.

C.L. Dodgson

In any right triangle the area of the square described on its longest side (the
hypotenuse) is equal to the sum of the areas of the squares described on the other
two sides (the legs).

This theorem is named after the Greek philosopher Pythagoras who lived around
500 B.C. and was the spiritual leader of a kind of philosophic-religious sect (the
Pythagorean brotherhood, see van der Waerden 1978). Historians are certain that the
fact stated in the theorem was already known to the ancient Babylonians, Egyptians
and Chinese. So Pythagoras did not discover it, but might have been one of the first
to give a proof.

The Pythagorean theorem enables one to compute the length of the third side of a
right triangle if the lengths of the other two sides are given. In elementary geometry
and its applications this situation arises very frequently when informations about
lengths of segments are near at hand and right triangles can easily be identified or
introduced.

Because of its richness in mathematical relationships and applications the
Pythagorean theorem and its generalizations form a cornerstone of geometry. Mathe-
maticians do not hesitate to rank the theorem among the top 20 theorems of all times.
Without any doubt the Pythagorean theorem is the outstanding theorem of school
mathematics. Generations of students have learned it, willingly or unwillingly, and
many of them have kept the “Pythagorean” in their mind throughout their lives as
the incarnation of a mathematical theorem.
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Before interacting with the views expressed in this paper it is absolutely necessary
for you first to mobilize your knowledge about the Pythagorean theorem and to
get some fresh first hand experiences about the Pythagorean theorem, its teaching
and, most important, about the learners. The following six activities are intended as
catalysts for “jumping in.”

Hints to solutions can be found in the appendix, but first try yourself.

Exploration 1
Write down your own “memories” of the Pythagorean theorem both from
school and university. Do you remember how the theorem was introduced,
proved, applied? Did you encounter the theorem later on? Discuss your notes
with your fellow students.

Exploration 2
Fig. 1 shows a cartoon from the nineteenth century. Discuss it in terms of
the Pythagorean theorem: What special case is represented and how can it be
proved from the two shapes?

Fig. 1
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Exploration 3
The following three problems may serve as a test for your feeling about the
appropriate use of the Pythagorean Theorem.
Solve the problems, and record whether or not you used the Pythagorean
theorem.

1. How long is the spatial diagonal s in a rectangular solid with edges a, b, c
(see Fig. 2)?

Fig. 2

2. The vertices of a square and the midpoints of its sides are connected as
shown in Fig. 3. What part of the area is formed by the shaded figure?

Fig. 3

3. A car is jammed in a parking lot. Under which conditions is it possible
for the car to move out of the lot? Represent cars by pieces of cardboard,
do some tests and devise a geometric model (see Fig. 4).

Fig. 4
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Exploration 4
Because of its prominent role in schoolmathematics the Pythagorean theorem
provides a rich source for collecting data on what “remains” in students after
they have been taught the Pythagorean theorem in school.
The following interview form (Fig. 5) may give you an idea of how to probe
students’ thinking about the Pythagorean theorem. The interview starts with
questions that scratch only the surface of the Pythagorean theorem and from
there goes on to questions that test understanding.

Age: Intended profession:

1. Do you remember the Pythagorean
theorem and can you write it
down?

2. Do you have an idea of what the
Pythagorean theorem is good for?

3. Can you give an example for its use
in some profession?

4. Can you relate Fig. 5 to the
Pythagorean theorem?

5. Do you know a proof of the
Pythagorean theorem?

Fig. 5

1. Use the above interview form (or make your own form) and interview
some students from grades 9 to 12. You may also ask some students to
give written responses.

2. Analyze your data. Are there recurring patterns in students’ responses?

Exploration 5
Select a sample of textbooks for grades 7 to 10 and investigate if and how the
Pythagorean theorem is introduced, proved, and applied. Which approach do
you find most convincing? Discuss your choice with your fellow students.

Exploration 6
If you had to design a teaching unit for introducing the Pythagorean theorem
on the basis of your present knowledge about the Pythagorean theorem, what
basic idea would you choose and why?
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3 Understanding the Structure of the Pythagorean
Theorem

The design of teaching units requires a thorough understanding of the subject matter
and of the psychological premises for learning it as teaching is a continuous process of
mediating between the mathematical structure of the subject matter and the cognitive
structures of the learners.

The best way to understand the mathematical structure of the Pythagorean theo-
rem consists of examining proofs of and heuristic approaches to it. In order to get
information about the psychological structures on which the teaching of this theo-
rem can be based we have to look into developmental research on students’ thinking
about basic notions relevant in this context.

Although the mathematical, the heuristic, and the psychological strands of the
Pythagorean theorem will be investigated separately in this section and their proper
integration is to be attacked in the next section within the design of teaching units,
relationships between them will become apparent quite naturally without taking
special effort.

3.1 Different Proofs of the Pythagorean Theorem

The main goal of all science is first to observe and then to explain phenomena. In mathe-
matics the explanation is the proof.

D. Gale

The richness of the Pythagorean theorem in conceptual relationships is clearly
demonstrated by a multitude of different proofs. Lietzmann (1912) lists about 20
proofs, Loomis (1968) in his classic “The Pythagorean Proposition” even 370, most
of which, however, are obtained from a few basic proofs by slight variations. It
is interesting to realize that the Pythagorean theorem is rooted in all cultures. A
particularly nice ethnomathematical approach based on a special decorative motif
was developed by Gerdes (1988).

The following four proofs and their variations are interesting for both historic and
educational reasons, and they cover also the essential approaches to the Pythagorean
theorem found in textbooks. These four proofs are presented here as they are typically
met in the mathematical literature. Taken as they stand they certainly cannot serve
as a model for lively teaching, and the reader might wonder why they have been
included here. However, the proofs display the conceptual relationships behind and
around the Pythagorean theorem in the most effective way, and so analyzing and
comparing them is indispensable for integrating content and pedagogy. Moreover, it
will be instructive for the reader to compare the “lecture style” of this section with
the process-oriented style of the next section and to see by what means life can be
brought into seemingly “dead” content.
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Proof 1 (Euclid’s proof (Euclid, Book I, §47)) Euclid’s famous Elements of Mathe-
matics (1926) represents the first systematic mathematical treatise ever written. The
thirteen books develop elementary geometry and arithmetic through a deductively
organized sequence of theorems and definitions starting from basic concepts and
axioms. The Elements has been the most influential mathematical textbook of all
times and up to the twentieth century has also determined the teaching of geometry
at school.

At the end of Book I we find the Pythagorean theorem (Proposition 47, see Fig. 6):

Fig. 6

In right-angled triangles the square on the side subtending the right angle is equal to the
squares on the sides containing the right angle.

Let ABC be a right-angled triangle having the angle B AC right; I say that the square on
BC is equal to the squares on B A, AC .
For let there be described on BC the square B DEC , and on B A, AC the squares G B, HC ;
through A let AL be drawn parallel to either B D or C E , and let AD, FC be joined. Then,
since each of the angles B AC , B AG is right, it follows that with a straight line B A, and at
the point A on it, the two straight lines AC , AG not lying on the same side make the adjacent
angles equal to two right angles; therefore C A is in a straight line with AG.
For the same reason B A is also in a straight line with AH . And, since the angle DBC is
equal to the angle F B A: for each is right: let the angle ABC be added to each; therefore the
whole angle DB A is equal to the whole angle F BC .
And, since DB is equal to BC , and F B to B A, the two sides AB, B D are equal to the two
sides F B, BC respectively; and the angle AB D is equal to the angle F BC ; therefore the
base AD is equal to the base FC , and the triangle AB D is equal to the triangle F BC .
Now the parallelogram BL is double of the triangle AB D, for they have the same base B D
and are in the same parallels B D, AL .
And the square G B is double of the triangle F BC , for they again have the same base F B
and are in the same parallels F B, GC . (But the doubles of equals are equal to one another.)
Therefore the parallelogram BL is also equal to the square G B.
Similarly, if AE , BK be joined, the parallelogram C L can also be proved equal to the square
HC ; therefore the whole square B DEC is equal to the two squares G B, HC .
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And the square B DEC is described on BC , and the squares G B, HC on B A, AC . Therefore
the square on the side BC is equal to the squares on the sides B A, AC .
Therefore etc.

Q.E.D.

Proof 1* (Dynamic Version of Euclid’s Proof ) In order to seek a more palatable
way of understanding a proof whose diagram is as complicated as Euclid’s proof, it
is necessary first of all to understand the essence of the proof. What is Euclid trying
to do? He has two squares, B AG F and AC K H , on the sides of the right triangle
ABC . He wants to show that the sum of the areas of these squares is equal to square
BC E D, the one on the hypotenuse. How does he do that?We can reduce the number
of lines considerably for the purpose of demonstrating what he is trying to show
(Fig. 7).

Fig. 7

He is trying to demonstrate that the area of square B DEC can actually be decom-
posed into two pieces, one equal in area to square B AG F and the other equal in area
to AC K H . He demonstrates that the two darker regions are equal in area and the
two lighter regions are equal in area.

Once you have convinced yourself that the above description is an accurate ren-
dition of Euclid’s proof, then you are in a position to create a proof that has more
visual appeal. One such proof involves transforming each of the small squares on
the sides of the original triangle into something more dynamic than the triangles
as intermediaries. We can actually imagine the original small squares being trans-
formed progressively into several parallelograms before actually forming the shaded
rectangles that compose square BC DE .

Once we have the essence of the proof, we are still left with the pedagogically
interesting task of transforming somethingquite technical andnonintuitive into some-
thing that is dynamic and intuitive. Euclid’s proof shows that the two lighter regions
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are equal in area by introducing an intermediary figure: � F BC . He shows that the
two darker regions are equal in area by introducing another intermediary figure: �

BC K . Each member of the pair of similarly shaded regions is equal to twice the area
of that corresponding triangle.

Below is a description of the stages of successive transformation (see Fig. 8).

Fig. 8

1. Square B AG F is sheared into parallelogram BC M F .
2. Parallelogram BC M F is rotated into parallelogram B DN A.
3. Parallelogram B DN A is sheared into rectangle B DL Q.

All three transformations preserve area. Therefore square BAGF and rectangle
BDLQ have equal areas. In an analogous way square AC K H is transformed into
rectangle QL EC . As a consequence the area of C B DE is equal to the sum of the
areas of squares AC K H and B AG F .

It is tempting to reduce thewhole argument to a film simply “showing” the equality
of areas. However, this would give a distorted view of proof. A visual demonstration
can certainly support, but not replace, a proof. The proof hinges upon a conceptual
framework that explains why there transformations can be applied and why they lead
to the properties in question.
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Exploration 7
Compare proofs 1 and 1*. Which parts of proof 1 correspond to which parts
of 1*? Are there details in proof 1 that are missing in proof 1*? What are the
advantages and the disadvantages of the formal language of “signs” in proof
1 and the informal language of “pictures” in proof 1*?

While Proofs 1 and 1* employ transformations, the following Proofs 2 and 3
depend on dissecting figures and rearranging the parts in clever ways.

The reference to dissections (decompositions) is quite natural as the measure
“area” has the following properties:

1. Squares are used as units.
2. Congruent shapes have equal area.

(Formally formulated: Area is invariant under rigid motions.)
3. If a polygon is dissected in disjunct parts the sum of the areas of the parts is equal

to the area of the whole polygon.
(Formally formulated: The area measure is additive.)

As a consequence of 1. and 2. equi-decomposable polygons have the same area.
This relationship is also basic for the derivation of formulae for the areas of special
polygons. So decomposition proofs are well embedded in the curriculum.

Obviously the following three proofs are the result of playing with shapes with
the intention to get closed figures.

Proof 2 (Indian Decomposition Proof ) This proof comes to us from the ancient
Indians. It gives a direct solution of the problem to construct a square whose area is
equal to the sum of the areas of two given squares.

Fig. 9
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Construction 1 (Fig. 9): Draw right triangle ABC with sides a = BC , b = AC ,
c = AB. Describe square C E DB on side BC , extend C A and draw square E FG H
(side b). Extend E H such that H K = a and draw quadrilateral AG K B.

Statement 1 The sum of the areas of squares C E DB and E FG H is equal to the
area of square AG K B.

Proof Let α and β be the acute angles in the right triangle ABC . As the sum of
angles in all triangles is 180◦ we have the basic (and frequently used!) relation
α + β = 180◦ − 90◦ = 90◦.

By construction AF = C E + E F − C A = a + b − b = a and DK = E H +
H K − E D = b + a − a = b. Therefore all triangles ABC , G AF , G K H , and
K B D have sidesa, b subtending a right angle and so are congruent.As a consequence
all sides of AG K B have equal length c and all angles have measure α + β = 90◦,
that is, AG K B is a square.

The area c2 of AG K B is equal to the sum a2 + b2 as AGKB is composed of the
shaded polygon and two triangles and the original squares are covered by the same
polygon and two congruent triangles.

On Sect. 3.2 we will meet Fig. 19 which turns out as nothing but Fig. 9, rotated
by 180◦.

Proof 3 (Geometric-Algebraic Proof ) This proof relates the Pythagorean theorem
to the binomial formula (a + b)2 = a2 + 2ab + b2, another fundamental topic of
school mathematics.

Fig. 10

Construction 2 (Fig. 10): Given lengths a, b we construct a square with side a + b
and inscribe a quadrilateral ADC B which is a square (why?). As the area of each of
the right triangles surrounding ADC B is 1

2 · ab we get

c2 = (a + b)2 − 4 · 1
2ab = a2 + 2ab + b2 − 2ab = a2 + b2.
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Exploration 8
Cut a square frame (side a + b) and four right triangles with legs a, b out of a
piece of cardboard. The triangles can be put into the frame in different ways
(see Figures 11a, 11b, and 11c).

1. Derive the Pythagorean theorem from Figures 11a and 11b and also from
Figures 11c and 11b without using algebra. Compare these geometric
proofs with proof 3.

2. Compare Figures 11b and 11c with Fig. 9 (proof 2). Can you extend Fig.
10 such that both Fig. 11b and Fig. 11c are visible in the extended figure?

Fig. 11

Proof 3* (Bhaskara’s Proof ) This proof is credited to the Hindu mathematician
Bhaskara, who lived in the twelfth century, but it is much older and likely to have
been known to the Chinese before the time of Christ.
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Fig. 12

The “Bhaskara” Fig. 12 arises from Fig. 10 (Proof 3) by folding the four right
triangles inside the square. A careful check of lengths and angles reveals that the
small quadrilateral inside is a square with side b − a. Therefore

c2 = 4 · 1
2ab + (b − a)2 = 2ab + b2 − 2ba + a2 = a2 + b2.

In this case there is no immediate purely geometric interpretation as before. However,
we will come back to this problem later.

Proof 4 (Similarity Proof ) It is an interesting question for historians which proof
might have been given by Pythagoras himself. van der Waerden (1978) concludes
from the context in which the Pythagoreans lived and worked that they might have
used the self-similarity of a right triangle, that is its decomposability into two triangles
similar to it. This proof runs as follows (see Fig. 13):

Fig. 13

The altitude dropped from vertex C divides the right triangle ABC into two right
triangles with angles equal to the original triangle (why?). Therefore BC D andC AD
are similar to ABC . This gives the proportions

p

a
= a

c
,

q

c
= b

c
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that can be transformed into

p = a2

c
, q = b2

c
.

As p + q = c we get c = p + q = a2

c + b2

c and finally c2 = a2 + b2.
Note that area doesn’t play any role in this proof. The geometric basis is provided

by proportions of lengths arising from similarity. The squares are the result of a purely
algebraic manipulation of symbols standing for lengths. However, it is possible to
interpret Fig. 13 in terms of area. This leads us to

Proof 4* (Similarity/Area Proof ) Consider Fig. 13 once more. Triangles BC D and
C AD are small copies of triangle ABC . Therefore the lengths of the sides of BC D
and C AD can be obtained by reducing the lengths of the corresponding sides of
ABC by the factor a

c and respectively the factor b
c . So we have

Area (BC D) = a2

c2
· Area (ABC)

Area (C AD) = b2

c2
· Area (ABC).

As the sum of the areas of BC D and C AD is equal to the area of ABC we arrive at

a2

c2
· Area (ABC) + b2

c2
· Area (ABC) = Area (ABC)

(
a2

c2
+ b2

c2

)
· Area (ABC) = Area (ABC)

a2

c2
+ b2

c2
= 1

a2 + b2 = c2.

Note: If a dilatation with scale factor k is applied, areas are transformed by the square
k2. For example, area is multiplied by 4 if lengths are doubled, and multiplied by 1

4
(that is, divided by 4) if lengths are halved.

Exploration 9
Compare Proofs 4 and 4*: In both proofs each of the two small triangles is
first related to the big triangle separately. How? Then all three triangles are
brought together. What is the crucial relation combining the three triangles
and leading to the Pythagorean theorem in each proof? In other words: the
Pythagorean theorem expresses an equality of areas. On what relationship is
this equality based in each proof?



3 Understanding the Structure of the Pythagorean Theorem 109

Reflective Problem 1
Analyze the proofs in this section: Where in the proof is the existence of a
right angle crucial?
On which geometric or algebraic concepts is each of them based? Which
geometric transformations are used? How do these affect area, length, mea-
sure of angles? Which algebraic formulae are used? Which step establishes
the “equals” sign inherent in the theorem?
Evaluate the proofs: Which of them do you find easiest, which one most
demanding? List them in order of increasing difficulty. Do you find them
equally sound? If not, why?Which proof do you findmost convincing, which
one most interesting? Why? Do you prefer the algebraic or the geometric
proofs?
Discuss your views with your fellow students; in particular compare your
“difficulty” lists.

3.2 Heuristic Approaches to the Pythagorean Theorem

We should orientate our teaching more on problems than on theories; a theory should be
taught just as far as necessary for framing a certain class of problems.

Giovanni Prodi

From the point of view of mathematical learning the mere study of proofs is
not satisfactory, as it presents mathematics as a corpse laid down for an autopsy.
Certainly logical analyses have their merit for recognizing conceptual relationships.
However, in order to design teaching units that stimulate students to explore, describe,
explain, and apply patterns we have to go back to the source of mathematical activity,
that is, to mathematical problems inside and outside of mathematics. It is of central
importance that students are offered the opportunity to experience mathematical
concepts, theorems and techniques as answers to problems and as starting points for
new problems. Otherwise it will be almost impossible for them to grasp the meaning
of mathematics and to develop confidence in the use of it.

Our next task will be then to find appropriate problems that can lead to the dis-
covery of the Pythagorean theorem and to explanations, that is proofs, of it.

The general direction of search is clear: We have to investigate situations in which
the Pythagorean theorem is naturally used and examine if the context is strong enough
in order to “generate” the theorem and to establish a proof.

Two approaches are offered below.

Approach 1 Clairaut’s Approach (Clairaut 1741, sections 16,17)
A.C. Clairaut (1713–1765) was one of the most famous French mathematicians
of the 18th century. He was a mathematical prodigy and wrote his first published
mathematical paper on four spatial curves discovered by him as a twelve-year-old.
Another paper of his attracted the attention of members of the French Academy
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of Science who at first couldn’t believe that a sixteen-year-old had written such an
ingenious and profound paper of 127 pages. By special order of the King Clairaut
was appointed a member of the Academy at the age of 18. It remained the only
exception ever made to admit a person under 20 to the Academy.

Clairaut was also very much interested in teaching mathematics and as he strongly
objected to the formalistic style of the textbooks used at his time, including Euclid’s
Elements of Mathematics, he set out to write books on elementary geometry and
algebra in a quite different style. In the preface of hisElémens de Géometrie (Clairaut
1743) he explains his views on learning and teaching as follows:

Although geometry is an abstract field of knowledge, nobody can deny that the difficulties
facing beginners are mostly due to how geometry is taught in elementary textbooks. The
books always start from a large number of definitions, postulates, axioms and some prelimi-
nary explanations that appear to the reader as nothing but dry stuff. The theorems coming first
do not direct the students’ mind to the interesting aspects of geometry at all, and, moreover,
they are hard to understand. As a result the beginners are bored and rejected before they have
got only the slightest idea of what they are expected to learn.
In order to avoid this dullness attached to geometry some authors included applications in
such a way that right after the theoretical treatment of the theorems their practical use is
illustrated. However, in this way only the applicability of geometry is shown without facil-
itating the learning of it. As any theorem precedes its applications the mind is brought into
contact withmeaningful situations only after having taken great pains in learning the abstract
concepts.
Some thoughts on the origins of geometry made me hope to avoid these unpleasant difficul-
ties and to take students’ interests seriously into account. It occurred to me that geometry as
well as other fields of study must have grown gradually; that the first steps were suggested
by certain needs, and that these could hardly have been too high as it were beginners who
made them for the first time. Fascinated by this idea I decided to go back to the possible
places where geometric ideas might have been born and to try to develop the principles of
geometry by means of a method natural enough to be accepted as possibly used by the first
inventors. My only addendum was to avoid the erroneous attempts these people necessarily
had to make.

Exploration 10
Compare Clairaut’s view on problem-oriented teaching with statements on
“Mathematics as ProblemSolving” in theNCTMCurriculum and Evaluation
Standards for School Mathematics (1989, pp. 7, 66, 75-77, 125, 137-139).
What arguments are put forward in favor of problem-oriented teaching?

The problem chosen by Clairaut for introducing the Pythagorean theorem was
this:

Determine the side c of a square whose area is the sum of the areas of two given
squares with sides a and b.

In section 16 of his book he considers first the special case a = b by asking how
to construct a square whose area is twice the area of a given square.

The solution of this special case is fairly easy if one takes two copies of the given
square, draws the diagonals, and rearranges the four triangles (see Fig. 14a and b).
In concrete form four congruent isosceles triangles can be cut from cardboard and
arranged in two ways corresponding to Fig. 14a and b (“square puzzle”).
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Fig. 14

In section 17 of his book Clairaut addresses the general case:
How to construct a square whose area is the sum of the areas of two different given
squares?

The straightforward transfer from the special to the general case (see Fig. 15) is
not successful, however, at least not immediately. Figure 16 does not “close”.

Fig. 15

Fig. 16



112 7 Designing Teaching: The Pythagorean Theorem

But the construction can be adapted: If one dissects Fig. 16 by starting from a
different point H (see Fig. 17) the new Fig. 18 is an “improvement.”

Fig. 17

Fig. 18

Clairaut continues: “Following this idea it is quite natural to ask if it is possible
to find a point H on DF such that

1. the triangles ADH and E F H if rotated around A resp E into the positions AD′ H ′
and E F ′ H ′ meet in H ′,

2. the four sides AH , H E , E H ′ and H ′ A are equal and form right angles.

It is easy to see that H is determined by DH = C F (= b) or H F = DC (= a). (See
Fig. 19).”
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Fig. 19

The problem is now solved and all that remains to do is to introduce the sides
a, b, c and to state that by construction c2 = a2 + b2. The figure is determined by
the right triangle AH D and can be drawn by starting from an arbitrary right triangle
AH D. Therefore c2 = a2 + b2 holds for the sides of any right triangle.

Figure 19 is well known to us: It is nothing but Fig. 9 of the “Indian decomposition
proof” (Proof 2). While this figure came out of the blue in Sect. 1 it appears here
within the solution of a problem, and the Pythagorean theorem gives the answer to
this problem. We have in this example a good illustration for the difference between
a proof embedded solely into a net of logical relationships and a proof embedded
into a meaningful context.

Exploration 11
Use the software The Geometer’s Sketchpad or Geogebra for representing
Clairaut’s approach in a dynamic way.
Special case: First draw figure 14a. Rotate AE D around A by 270◦ and
triangle BC E around B by−270◦ (or 90◦). You get a combination of Figures
14a and 14b.
General case: Draw Figure 17 starting with segment DF and choose H as a
(moving) point on DF . Rotate AH D around A by 270◦ and E F H around E
by −270◦ (or 90◦). You get Fig. 18. By moving H on segment DF points H ′
and H ′′ move on line C D′, and you can easily find the position of H when
the figure “closes” (see Fig. 19).

Approach 2 The Diagonal of a Rectangle
Our second approach starts from the following problem:
How long is the diagonal of a rectangle with sides a and b?

This problem is interesting from the mathematical point of view, but it has also a
reasonable real interpretation: A rectangular frame with sides a, b is to be stabilized
by means of a diagonal lath. How long should the lath be (see Fig. 20)?
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Fig. 20

If the Pythagorean theorem is known the answer is obvious: c = √
a2 + b2. How-

ever, our aim is again to use this problem for “generating” the Pythagorean theorem.
How can we approach this problem? For example, we can compare a, b and c

and find that c is longer than both a and b and smaller than a + b. We also can draw
rectangles of different shapes, measure c, and establish a table.

a in cm 10 8 4 8 7.5 9
b in cm 5 5 3 6 7.5 7.5
c in cm 11.2 9.4 5 10 10.6 11.7

But how to calculate c? The heuristic strategy “Specializing” used by Clairaut is
a reasonable strategy here, too. So let us consider first the special case of a square
(see Fig. 21).

Fig. 21

How is the diagonal c of a square related to its side a?

Reflective Problem 2
Think about this problem. Note that one diagonal divides the square into two
congruent right triangles with hypotenuse c and altitude c/2. So there are
two ways of calculating the area that can be used to derive the relationships
c2 = 2a2 and c = √

2 · a.

c2 = 2a2 “cries” for a geometric interpretation. It is provided by the “square puzzle”
from approach 1: Four congruent right isoceles triangles can be put together to form
either one big square or two small squares (see Fig. 22a and b).
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Fig. 22

As before we try to generalize this result to rectangles, that is, we look for a gen-
eralized “puzzle” establishing the Pythagorean theorem for arbitrary right triangles.

Is it possible to recombine the four halves of two congruent rectangles to make a
square whose side is the diagonal of the rectangle?

Exploration 12
Cut four congruent right triangles from cardboard (see Fig. 23) and think
about this problem first for yourself. Can you make a square shape with side
c with these pieces?

Fig. 23

Fig. 24
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Afirst attempt leads to Fig. 24which, however, is not a square, but only a rhombus:
All sides are equal, but the angles are different—two of them are 2α and two of them
are 2β.

However, because of the basic relation α + β = 90◦ we could try to combine the
four right triangles in a slightly different way (see Fig. 25).

We arrive at three equal sides, two right angles, and an isolated right triangle. The
question is:
Does the fourth triangle really fit in? The dotted line indicates a square “hole” with
side a − b. Because of a − (a − b) = b and b + (a − b) = a the gap is exactly filled
indeed by the fourth triangle. So we get a square with side c but, alas, with a square
“hole” inside (see Fig. 26).

That the angles of the “hole” are right angles follows from the right angles of the
triangles.

Fig. 25

Fig. 26
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Nevertheless we can calculate c:

c2 = 4 · 1
2

ab + (a − b)2

c2 = 2ab + a2 − 2ab + b2

c2 = a2 + b2

c =
√

a2 + b2

This is the formula we were looking for: The side c is expressed as a function of
a and b.

Again, Fig. 26 is well known to us: It is exactly Fig. 12 used by Bhaskara (Proof
3*). Inmarked contrast to that presentation, the figure appears herewithin the solution
of a problem. Sowe have another illustration of the difference between a formal proof
within a deductive structure and an informal proof arising from ameaningful context.

As in the special case we want to understand c2 = a2 + b2 in purely geometric
terms.

The square with side c can be formed by means of a puzzle consisting of five
pieces (“Bhaskara-Puzzle”): four congruent rectangular pieces with sides a, b and a
square piece with side a − b. Can these five pieces be recombined to form a shape
composed of a square with side a and a square with side b?

Exploration 13
Cut the five pieces of the “Bhaskara-Puzzle” from cardboard and show geo-
metrically that c2 = a2 + b2. You have to arrange the five pieces such that
they cover the union of a square with side a and of a square with side b.
Hint: Fig. 9 or Fig. 19.

Exploration 14
Reexamine the logical line in approaches 1 and 2: At what places is the
assumption of right angles crucial?

3.3 Exploring Students’ Understanding of Area and
Similarity

Concepts are the backbone of our cognitive structures. But in everyday matters concepts are
not considered as a teaching subject. Though children learn what is a chair, what is food,
what is health, they are not taught the concepts of chair, food, health. Mathematics is no
different. Children learn what is number, what are circles, what is adding, what is plotting
a graph. They grasp them as mental objects and carry them out as mental activities. It is
a fact that the concepts of number and circle, of adding and graphing are susceptible to
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more precision and clarity than those of chair, food, and health. Is this the reason why the
protagonists of concept attainment prefer to teach the number concept rather than number,
and, in general, concepts rather than mental objects and activities? Whatever the reason may
be, it is an example of what I called the anti-didactical inversion.

Hans Freudenthal

The mathematical and heuristic structure of subject matter form only two of the
three strands that have to be twisted in the design of teaching. The third equally
important one is knowledge of the students’ cognitive structures as far as they are
relevant for the topic to be learned.

Our mathematical analyses have shown that the Pythagorean theorem is funda-
mentally related to the concepts of area and similarity. Therefore it is necessary to
provide data on the psychological development of these concepts. We cannot give
a systematic and coherent review of research here. Instead we concentrate on a few
interesting studies that give a first orientation and—what is even more important—
also provide a basis for doing similar studies. The central part of this section is
“Clinical interviews on area and on doubling a square,” where the reader is stimu-
lated to do some study of his or her own.

The basicmessage of this chapter is this:Mathematical concepts are neither innate
nor readily acquired through experience and teaching. Instead the learner has to
reconstruct them in a continued social process where primitive and only partly effec-
tive cognitive structures that are checkered with misconceptions and errors gradually
develop intomore differentiated, articulated and coordinated structures that are better
and better adapted to solving problems. For teachers this message is of paramount
importance: Concepts must not be presupposed as trivially available in students nor
as readily transferable from teacher to student. On the contrary, the teacher must be
prepared that students often will misunderstand or not understand what he or she
is talking about. To have a feeling for students’ misconceptions, to be able to dig
into students’ thinking until some solid ground appears that may serve as a basis
for helping the students to reconstruct their conceptual structures on a higher level,
to interact with students particularly in seemingly hopeless situations—that is the
supreme mark and criterion of a competent teacher.
Doubling a Square: Plato’s dialogue Meno
The Greek philosopher Plato (ca. 429–348 B.C.) is an important figure for math-
ematics education as in his philosophic system mathematics played a fundamental
role. Relevant for teaching and learning and therefore frequently referred to is his
dialogue Meno that centers around the fundamental questions if virtue can be taught
and where knowledge does come from.

One part of this dialogue is particularly interesting as perhaps the oldest recorded
lesson in mathematics: Socrates teaches, or better interviews, a boy on how to double
a square (Plato 1949).
The structure of the interview is as follows:

1. A 2 × 2-square is presented and the boy is asked to find a square of double size
(see Fig. 27)
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Fig. 27

2. Although the boy predicts the area of this new square as 8 square feet, nevertheless
his first suggestion is to double the sides. This leads to the 4 × 4-square (see Fig.
28) that turns out as four times as big instead as twice as big—a cognitive conflict
for the boy!

Fig. 28

3. In order to correct his mistake the boy offers the 3 × 3-square (lying between the
2 × 2 and the 4 × 4-square) as the solution (see Fig. 29). Again Socrates arouses
a cognitive conflict by having the boy calculate its area: to his own surprise the
boy finds 9 square feet instead of the expected 8!

Fig. 29

4. Finally, it is Socrates who returns to the 4 × 4-square (see Fig. 30), introduces the
diagonals and guides the boy to discover that the square formed by the diagonals
has the required area of 8 square feet and therefore is the solution of the problem.
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Fig. 30

Clinical Interviews on Area and on Doubling a Square
Plato’s dialogue is interesting in our context not only because it deals with a special
case of the Pythagorean theorem, the doubling of a square, but also because it can be
considered as the ancient version of a psychological method that was fully developed
by the great Swiss psychologist and epistemologist Jean Piaget (1896–1980) in the
thirties and is now widely used in research: the “clinical interview” However, there
is a basic difference in the views of Plato/Socrates and Piaget as far as the origin
of knowledge is concerned. These Greek philosophers believed that knowledge was
already innate in human beings. So they compared the teacher’s task to that of a
midwife: With a definite goal in mind the teacher has to make the student “remem-
ber” and bring his knowledge to light. In sharp contrast with this view Piaget sees
knowledge not as something pre-fabricated inside or outside the learner but as the
continued personal construction and reconstruction of the learner while interacting
with and trying to adapt to the natural and social environment. Therefore the Piagetian
interviewer unlike Socrates in Plato’s dialogue is anxious not to guide the student to
a definite end. The aim of the clinical interview is to uncover the student’s authentic
mental structures, not to subject him or her to any kind of “teaching”. Therefore the
interviewer must be open to what the student has to offer, try as far as possible to put
him- or herself in the student’s place and make sense of the student’s thinking—also
in case of strange and contradictory answers. He or she must not be content with just
listening to students, but has to stimulate them to express their mental processes with
words or actions, always following their fugitive thoughts. Questions like “How do
you know?” or “Why do you think so?” and cautious counter-arguments for arousing
cognitive conflicts like “But some other child told me ...” are essential elements of
clinical interviews. In short, the clinical interview is a kind of “mental auscultation”
analogous to the physical auscultation in medical checkups. For this reason it was
called clinical.

It is important for student teachers to realize that the clinicalmethod is valuable not
only from the psychological but also from the pedagogical point of view: In conduct-
ing clinical interviews the student teacher acquires insight into children’s thinking
and becomes familiar with essential habits of good teachers—introducing children
into a mathematical situation with parsimonious means and with clear explanations,
showing interest for what they are doing, observing themwithout interrupting, listen-
ing to them, accepting their intellectual level, giving them time to work and to think,
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stimulating their thinking by sensitive questions and hints, and so forth (Wittmann
1985).

Of course, the clinical method is also extensively used in Piaget/Inhelder/
Szeminska (1964), one of the major studies of children’s geometric thinking. The
book contains a chapter on doubling area and volume (Chap. XIII).

The following study done by student teachers was inspired by both Plato and
Piaget. It may give a feeling for both Piaget-like studies into students’ thinking and
the clinical interview as a research method.

The following setting was used:
Material: 16 congruent squares (3 cm × 3 cm) and 32 triangles (half of one 3 × 3
square), made of cardboard.
Technique: Students were interviewed individually according to the following
scheme:

1. Involve the student in an informal chat as a kind of warm-up.
2. Show the student the geometric forms and ask: Which different figures can you

build with these?
3. After phase 2 is finished take four squares, form a 2 × 2-square, tell the student

the following story, and conduct some “mental auscultation” on his or her under-
standing of area:
Imagine that this is a pasture surrounded by a fence. It is just big enough to give
grass for exactly eight cows. Now the farmer buys eight more cows and wants
to fence off a pasture that is twice as big. As he likes squares the bigger pasture
should be a square as well.
Can you help the farmer and make a square of double size?

The above scheme is “half-standardized” in the sense that only some key infor-
mations and questions are prescribed that have to be reproduced in all interviews and
so form the common core. All other interactions depend on the student’s responses.

The following two interviews with the 11 year-old Dirk and with the fifteen-year-
old Stefan give an impression of the wide range of students’ abilities and thinking.
Dirk

1. While playing around with the forms and laying out a variety of figures Dirk
explicitly states that four triangles can be arranged to make a larger triangle (see
Fig. 31).

Fig. 31

2. In order to solve the pasture problem Dirk adds four squares and produces
Fig. 32:
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Fig. 32

Dirk: Oh, no, that doesn’t work. That gives me nine squares, but I need eight.
Next he tries to attach a triangle to a square (see Fig. 33a).
When seeing that this is possible he builds Fig. 33b and adds another triangle (see

Fig. 33c)

Fig. 33

Dirk: Oh, no, that doesn’t fit!
His next figure is Fig. 34.

Fig. 34

He counts the squares: These are only seven squares. Must all sides be equal?
Interviewer: Yes. Do you think you can do it?

Dirk’s next step is Fig. 35, a figure with an area equivalent to eight squares, but
not a square.

Fig. 35
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Dirk, after thinking for a while: I could try it with triangles.
He first makes the original square (see Fig. 36a)
Then he supplements eight more triangles (see Fig. 36b).

Fig. 36

Dirk: I think, that’s it!
Interviewer: Why do you think it is twice as big as the old square?
Dirk: Inside you have the old square with eight triangles, and in addition eight new
triangles.
Interviewer: How did you hit upon the idea to arrange the triangles this way?
Dirk: I saw that two triangles make a larger triangle (see Fig. 37) that can be added
to the square.

Fig. 37

Stefan

1. Stefan builds only few figures, for example a rectangle and a “house” (see Fig. 38a
and b).

Fig. 38

2. Stefan immediately lays a 3 × 3-square (see Fig. 39)
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Fig. 39

Interviewer: Do you think this is right for twice as many cows? Is it really double
the size?
Stefan: Yes.
Interviewer: How do you know that?
Stefan: These are four [he points to the original square] and these are ... five—there
is room for more cows.
Interviewer: Can you also build a pasture for exactly sixteen cows?
Stefan: I do not see how.
He adds two squares to the original square (Fig. 40).

Fig. 40

Stefan: No. In this way I again get one more ... It is not possible.
Interviewer: What about using these triangles?
Stefan: No. Two triangles make a square again.
Interviewer: So you think, it’s not possible?
Stefan: No, it’s not possible. Either you have to take one square more or you must
build a rectangle.
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Exploration 15
Analyze Figures 33c, 34 and 35 in the interview with Dirk. How far are they
away from the solution? Keep in mind that the solution has to meet two
requirements: it has to be a square and it has to have an area of 8 unit squares.
Fig. 34 can be extended to a square in two ways: 1. By adding four given
triangles to the four longer sides of the octagon one gets a 3 × 3 square. 2.
But compare Fig. 33c with Fig. 34. Obviously Dirk tries to add triangles to
the smaller sides of the octagon. The given triangles are too big, as Dirk
recognizes: What triangles would be necessary to extend the octagon to a
square in this second way? How many unit squares would this second square
have?
Do a similar analysis with the second interview. What is the biggest block in
Stefan’s thinking?

The main findings of some thirty interviews with students in the age range eleven
to fifteen were the following:

1. Only a few students built first the 4 × 4-square and they were aware at once that it
was too big, that is, the first misconception in Plato’s dialogue was not observed.

2. However, almost all students arrived at the 3 × 3-square somewhere in the inter-
view either taking it for the solution (as the boy in Plato’s dialogue) or using it as
a step towards the solution.

3. Students that flexibly operatedwith forms (like Dirk) had amuch higher chance of
finding the solution than students who were “fixed” to certain tracks (like Stefan).
The variable “age” was of minor importance.

Reflective Problem 3
Form pairs or triples of student teachers and conduct clinical interviews with
secondary students on doubling a square by using the material and the tech-
nique described above.One of you should conduct the interview, the other one
or two should act as observer(s) and take written notes or serve the cassette
recorder or the video camera. Don’t forget to change roles.
In retrospect you can also examine how far you have fulfilled the requirements
for clinical interviews listed at the beginning of this subsection or in Ginsburg
1983.

Exploration 16
Show secondary students the “Bhaskara-puzzle” (Exploration 13) and ask
them to form “different figures”. If they do not hit upon the square by them-
selves ask them to make one.

Student Conceptions and Misconceptions about Area Measure and Similarity
Piaget’s research on area formed the starting point for many investigations that share
the following general framework: The student is offered a series of items where
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figures are to be constructed and transformed in various ways—cut from paper,
moved around, reflected, decomposed, rearranged, enlarged and reduced. The student
is always asked to describe, predict and explain how area “behaves” under these
transformations. The answers indicate how well he or she has attained the concept
of area.

We will see in section called “The Operative Prinziple” that in Piaget’s theory
of cognitive development the flexible use of “operations” is considered as the cor-
nerstone of intelligent behavior in mathematics and beyond. Of course the nature of
operations differs from domain to domain: in arithmetic we deal with number oper-
ations, in calculus we use transformations of functions, in combinatorics we operate
with combinatorial formulae, and so forth. Nevertheless in all these fields there is
an operative structure of knowledge. The following analysis of operations connected
to area and similarity has therefore far-reaching importance as an instructive special
case.

The present subsection tries to give an idea of research that clearly follows the
Piagetian paradigm and covers the age range from eight to fifteen. The aim is just to
establish a feeling for area as a concept developing in students’ minds.

In clinical interviews with eight- to eleven-year-olds Wagman (1975) used the
following tasks that directly reflect the basic properties of the concept of area: 1. Use
of squares as units, 2. Invariance under rigid motions, 3. Additivity.

Unit Area Task. The investigator presents three polygons that can be covered by unit
squares and asks the child to find out how many squares are needed in each case.
The necessary squares are piled besides each polygon. In the second part the child is
given a large number of triangular tiles each of which is equal to one half the square
tile. The child is asked to find out how many of these triangular tiles are needed to
cover the polygons.
Congruence Axiom Task: The investigator presents the child with two congruent
isosceles right triangles, one blue, the other one green. The child is asked how many
white triangles (of half linear dimensions) are necessary for tiling the blue triangle.
After discovering the answer (4) the child is asked to guess without trying howmany
white triangles will be needed to tile the green triangle.

Additivity-of-Area Tasks

1. The child is presented with two polygonal regions a. with equal areas, b. with
different areas. Given a set of smaller shapes the child is asked to cover each of
the two polygons and to decide if they have the same or different amounts of
space.

2. Polygons are decomposed and the pieces are rearranged to form another polygon.
The child is asked to compare the areas.

In all these tasks the investigator encourages the child to work on the materials
and to give explanations: “How do you know?”, “Why do you know?”, “Are you
sure?”.

As we shall see, these tasks test the children’s ability to operate flexibly and
effectively with shapes and their understanding of the concept of area.
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In her study with 75 children from eight to eleven years, Wagman found that 6 of
them were still in a “pre-measurement” stage, 31 showed some first understanding
of area, 35 could use all properties of the area concept in simple cases, and only 4
displayed full mastery (Wagman 1975, 107).

In a study with large numbers of secondary students (twelve to fourteen years)
Hart (1981, 14-16) used the following tasks that are similar to some of Wagman’s
tasks and also test the mastery of the properties invariance and additivity:

1. A machine makes holes in two equal squares of tin in two different ways (see Fig.
41 A, B). Students are asked to compare the amount of tin in A and B.

Fig. 41

2. A square A is cut into three pieces and the pieces are arranged to make a new
shape B (see Fig. 42). Students are asked to compare the areas of A and B.

Fig. 42

The result revealed that about 72 percent of the total population could successfully
answer both questions.There were no major differences between the age groups.

In comparing Wagman’s findings with these results we recognize a substantial
increase in understanding the concept of area for the majority of students. However,
the concept of area is by no means mastered by all secondary students.

In the past decade research on the development of the similarity concept has been
intensified. A typical problem used in the International Studies of Mathematical
Achievement in 1964 and in 1982 for eight graders is the following one:

On level ground, a boy 5 units tall casts a shadow 3 units long. At the same time a
nearby telephone pole 45 units high casts a shadow the length of which, in the same
units, is
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A. 24
B. 27
C. 30
D. 60
E. 75

The results are remarkable: 56 percent of the students chose the correct answer (27)
at the end of the school year 1963/64, whereas only 41 percent did so at the end of
the school year 1981/82.

In examining students’ thinking on ratio and proportion Hart (1981, 97–101) used
a battery of items among them the following task:

The students are shown a 3 cm × 2 cm rectangle (Fig. 43) and a base line of 5 cm
(Fig. 44) that is to be completed “so it is the same shape but larger” than the given
rectangle.

Fig. 43

Fig. 44

This task requiring an enlargement in ratio 5 : 3 belongs to the highest level
of difficulty. Hart (1981, 99) found that only 5 percent of the thirteen-year-olds, 9
percent of the fourteen-year-olds and, 15 percent of the fifteen-year-olds achieved
this level and stated:

Similar triangles appear early in the introduction to ratio in most secondary textbooks and
children are expected to recognize when triangles are similar to each other and the properties
they possess. On interview it was found that the word “similar” had little meaning for many
children. In everyday language the word is used in a non-technical sense to mean “approx-
imately the same”. There was particular difficulty with the word when similar triangles or
rectangles were under discussion. The test items dealing with similar figures (not triangles or
rectangles) were some of the hardest on the test paper. Using ratio to share amounts between
people “so that it is fair” seemed to be much easier than dealing with a comparison of two
figures. In enlarging figures there is the danger of being so engrossed in the method to be
used that the child ignores the fact that the resulting enlargement should be the same shape
as the original ... The introduction of non-whole numbers into a problem does not make the
question a little harder but a lot harder.
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These findings are confirmed by a series of other papers (see, for example, the
review by Lappan and Even 1988).
Summary:
Psychological research on the concepts of area and similarity suggests the following
conclusions for teaching the Pythagorean theorem:

1. A satisfactory treatment of the Pythagorean theorem can only be reached within
a long-term perspective of the curriculum. For coming to grips with the concepts
of congruent and similar figures as well as of linear and area measure students
need rich opportunities to operate with figures within meaningful contexts. Work
has to start in the early grades with concrete materials, it has to be continued with
concrete materials and drawings in the middle grades, and should gradually be
extended to more symbolic settings in higher grades. It is only in this way that
students can understand the properties of area and relationships between figures
based on area and exploit them with mental flexibility for solving problems as
well as for proving theorems.

2. The approach to the Pythagorean theorem via similarity is conceptually much
more difficult for students than the approaches via area preserving dissections
and recombinations of figures. Therefore similarity is not appropriate for intro-
ducing the Pythagorean theorem. However, it is a good context for taking up
the Pythagorean theorem at a more advanced level. Because of the fundamen-
tal importance of the Pythagorean theorem the first encounter with this theorem
should take place at latest in grade 7 or 8. In each of the subsequent years the
students should meet the theorem in ever new contexts and with new proofs.

Exploration 17
The psychological findings on childrens’ thinking as illustrated in the present
section show that students of a given age range differ considerably in their
understanding of basic concepts. The teacher is therefore confronted with
the following fundamental problem: How to cope with this wide spectrum of
student abilities?
List the major measures that are recommended to teachers in the Curricu-
lum and Evaluation Standards for School Mathematics (NCTM 1989) for
addressing this problem.

4 Designing Teaching Units on the Pythagorean Theorem

Themathematical and psychological analyses and activities in the preceding sections
have set the scene for attacking the central problem of this paper: the design of
teaching units on the Phytagorean theorem.

Fromwhat has been said so far in this paper the following boundary conditions for
designing introductory teaching units on the Pythagorean theorem should be clear:



130 7 Designing Teaching: The Pythagorean Theorem

1. Students should be faced with a problem that is typical for the use of the
Pythagorean theorem and rich enough to derive and explain (prove) the theo-
rem.

2. The conceptual underpinning of the unit should be as firmly rooted in students’
basic knowledge as possible.

3. The setting should be as concrete as possible in order to account for different
levels in themastery of basic concepts, to stimulate students’ ideas and to facilitate
checking.

It is typical for all kinds of design that the designer cannot derive his “products” by
means of logical chains of arguments from a scientific basis. Instead he or she has to
invent them relying on his or her imagination and using the scientific basis for checks
of validity, reliability and effectiveness. Therefore the above boundary conditions do
not determine one teaching unit but leave room for the designer’s preferences. It is
important to keep this in mind and to interpret the following units as suggestions,
not as dogmatic prescriptions.
Exploration 18
Before analyzing the following teaching units resume Exploration 6 and do
some brainstorming on ideas how to introduce the Pythagorean theorem.
Which mathematical or real problem situations do you think appropriate at
which school level? What approaches are chosen in textbooks?

Two introductory teaching units on the Pythagorean theorem are offered below.
One of them is based on ideas developed in the section on heuristic approaches (pages
15–24), the other one is taken from a Japanese source and puts strong emphasis on
technology.

4.1 Approaching the Pythagorean Theorem via the Diagonal
of a Rectangle

The problem of determining the diagonal in a rectangle with sides a, b (a ≥ b) seems
to be an appropriate context for introducing the Pythagorean theorem in grade 8.
Students can explore this problem by first measuring diagonals, then considering the
special case a = b, and finally trying to transfer the idea from this case to the general
case. The solution and the proof depend on dissecting and recombining figures. These
area-preserving operations can easily be illustrated by using two puzzles made of
cardboard:

1. The “square puzzle” consisting of four semi-squares with side a.
2. The “Bhaskara puzzle” consisting of four right triangles (semi-rectangles) with

legs a, b and a square of side a − b (where a > b).

The language of puzzles is very powerful and allows for expressing Proof 3 of the
Pythagorean theorem in the following way that seems to be a good orientation for
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work with students (for other approaches to the Pythagorean theorem using puzzles
see Eaves 1953; Spaulding 1974; Engle 1976 andBeamer 1989).We take an arbitrary
square piece of cardboard with side a and cut it along one of its diagonals (length c)
into two isoceles right triangles (see Fig. 45).

Fig. 45

We repeat this process with a second congruent square piece of cardboard and
arrive at four isoceles triangles with legs a and acute angles of 45◦ (see Fig. 46).
These triangles are pairwise congruent as the right angles and the legs are equal. The
four pieces can be recombined to make a square with side c as the four right angles
form one full angle at the midpoint and adjacent legs of lengths a fit together.

Fig. 46

Fig. 47

All angles at the four vertices are right angles as 45◦ + 45◦ = 90◦. Figure 47 is
really a square.
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Obviously, the area of the square with side c is equal to the sum of the areas of
two squares with side a: c2 = 2a2.

In a similar way we dissect two congruent rectangular pieces of cardboard with
sides a and b (a > b) into four right triangles with legs a and b (see Fig. 48).

Fig. 48

All four triangles are congruent as they coincide in the right angles and the legs
a and b. The sum of the acute angles α and β is 90◦ (= 180◦ − 90◦).

The four triangles can be recombined to make a square with a small square hole.
At each corner the triangles fit perfectly as α + β = 90◦ (see Fig. 49).

Fig. 49

The square inside has four right angles and equal sides of length a − b. Hence it
is a square.

We fill the hole by a square piece of cardboard and recombine the five pieces as
in Fig. 50.
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Fig. 50

The resulting figure consists of two rectangles with sides a, b and a square with
side a − b. The dotted line decomposes the figure into two quadrilaterals: As (a −
b) + b = a, a − (a − b) = b and all angles are right angles, the quadrilaterals are
squares with sides a and b. Now the square with side c is composed of the same
five pieces as the two squares with sides a and b. Therefore we have proved that
c2 = a2 + b2.

This description may sound a little clumsy, but it describes a procedure students
can perform and comment orally quite easily, and this procedure explains why the
relationship c2 = a2 + b2 must be true: the line of arguments is a sound proof in an
informal setting centered around the solution of a problem.

It appears as instructive to round out the unit by comparing the measurements in
the table with the values calculated by means of the formula. Also the heuristic use
of the Pythagorean theorem should be derived from this special context: given the
lengths of two sides of a right triangle the length of the third side can be calculated.

As a result we arrive at the following plan for a teaching unit. The plan is presented
in a “half-standardized” way directly analogous to the scheme used in conducting
clinical interviews (see Sect. 3.3). The unit is divided into “episodes”. At the begin-
ning of each episode the teacher has to take the initiative. His or her crucial inter-
ventions (and only these!) are explicitly described. The further moves to be taken
depend on students’ ideas and therefore they have to be left open.
Teaching Plan

1. Presenting the guiding problem
Rectangles of different shapes are drawn on the blackboard (Fig. 51).

Fig. 51
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The teacher explains the problem of finding the length of the diagonal. As an
example making a lath for stabilizing a rectangular frame is mentioned.

It is only natural that the students will also suggest to measure the diagonals. The
teacher recommends to draw a variety of rectangles and to measure the diagonals,
and fixing the results in a table (Fig. 52).

Fig. 52

At the end of this episode some data are collected in a common table on the
blackboard.

2. Redefining the problem
The teacher redefines the problem as the typically mathematical problem of find-
ing a formula for computing the diagonal c from the sides a and b. The advantage
of a formula should be plausible to students.
Students are stimulated to guess what such a formula could be like. The suggested
ideas are written up and tested against the values in the table.
At the end of this episode the students are informed about the steps to follow:
Receiving some hints from the teacher they should try to discover and prove the
formula as far as possible by themselves.

3. Specializing the problem: Diagonal of a square
Material: Congruent paper squares. As a first hint the teacher suggests to study
squares as an easier special case.
Each student gets some congruent paper squares and diagonalizes them. The task
is to find an arrangement of squares such that a relationship between diagonal c
and side a can be deduced.
Figure 53 is almost inevitable and leads to the relationship c2 = 2a2, from which
c = √

2 · a can be derived.

Fig. 53
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The episode is concluded by a guided informal proof of the relationship c2 = 2a2

based on the transformation in Fig. 54.

Fig. 54

4. Generalizing the solution: Diagonal of a rectangle
Material: Congruent paper rectangles. The teacher suggests to adapt the solution
from squares to rectangles.
Each student gets two paper rectangles, diagonalizes them and tries to make a
square. Students are guided to discover the Bhaskara solution and to give an
informal proof of the Pythagorean theorem (Fig. 55).

Fig. 55

c2 = a · ab

2
+ (a − b)2 = a2 + b2

c =
√

a2 + b2

5. Discussing the formula
The teacher informs about the history of the Pythagorean theorem and about
its importance. Students check the formula by comparing the measured values
(episode 1) with the values obtained from the formula.
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4.2 Japanese Approach to the Pythagorean Theorem

The Japanese volume Mathematics Education and Personal Computers contains a
case study on the Pythagorean theorem as an example for improving the traditional
format of teaching (Okamori 1989, 155-161). Instead of treating the whole class as
one body the class was split up into small groups (four or five students) according to
interests, academic abilities and social relationships. The idea was to offer students
different approaches to the subject matter that might better serve the individual needs
and preferences.

Each group was provided with a microcomputer that had been fed with an inter-
active software allowing for three different contexts to investigate and prove the
Pythagorean theorem:

1. “Geometric-algebraic”: The screen shows squares and dissections as presented
in Proofs 3 and 3* (see Figs. 10 and 11a).

2. “Euclid dynamized”: The screen shows a movie according to Proof 1*
(see Fig. 8).

3. “Experimental”: The screen shows a right triangle and the squares described on its
sides. Themedium size square is dissected according to Fig. 73 (see the dissection
proof derived from problem 2 of Exploration 3 on page 4).

The following teaching plan shows a structure that is typical for Japanese math-
ematics education:

• The objectives are clearly defined.
• The steps are precisely described.
• Materials for students are carefully provided.
• At the end of the lesson the teacher summarizes what has been learned.

Teaching plan

1. General information
The class is divided in small groups. Students are told that they are expected to
do a geometric investigation by means of the computer. Then they receive some
instructions how to use the system and how to interact within the groups. The three
contexts for approaching the theme are explained in general terms, and the groups
are asked to decide for themselves which context they would like to choose.

2. Introducing the task
When the students start the program three triangles appear on the screen: an
obtuse one, a right one and an acute one. The sides of each triangle carry squares:
the longest side a square colored red, the smaller sides squares colored green.
The students are stimulated to discuss the relationship between the area of the
red square and the sum of the areas of the green squares in all three cases. The
teacher suggests to draw the squares on graphic paper and to estimate the area.
The discussion within the groups and with the whole class should lead to the
conjecture of the Pythagorean theorem for right triangles.
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3. Defining the task
The groups are given the following task: Try to find out from the figures and
transformations offered by the computer program why the conjectured relation-
ship must hold. Give a written account of your reasoning. Use the prepared work-
sheets.
The groups are handed out worksheets that present the essential figures and give
some hints for the solution. Groups that have finished their task may switch over
to another context.
Context (1): The group has to express the lengths of the relevant segments and
the areas of the relevant figures by means of letters and to derive the Pythagorean
theorem by means of algebraic formulae. The worksheet for the context is shown
in Fig. 56.

Fig. 56

Context (2): The group has to describe and to explain the dynamic version of
Euclid’s proof (Proof 1*). The worksheet for this context is shown in Fig. 57.
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Fig. 57

Context (3): Students are asked to fit the four parts of the medium size square and
the small square into the big square and to prove that the five parts fill the big
square exactly. The worksheet for the context is shown in Fig. 58.

Fig. 58
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4. Consolidation
The results of the groups are corroborated. The teacher asks some questions that
test students’ understanding.

Reflective Problem 4
Compare the two teaching units. Discuss the advantages and disadvantages
of

• elaborating one idea versus presenting a variety of ideas
• introducing the Pythagorean theorem in a problem context versus guiding
the students quickly to a conjecture

• using concrete materials versus using dynamic pictures on a screen
• formulating a proof orally versus fixing it on a worksheet

Reflective Problem 5
Tom Apostol made a videotape The Theorem of Pythagoras that is available
from the NCTM. The three main ideas are:

1. Lengths of corresponding sides of similar triangles have the same ratios.
2. Shearing a triangle does not change its area.
3. If the scale for measuring distances is multiplied by a factor k, the area

of a figure is multiplied by k2.

If you have access to this videotape: analyse it in terms of the proofs discussed
in this chapter. How are the conceptual relationships represented that are
essential for sound proofs but cannot be replaced by pictures ? In which grade
would you use the videotape? How would you use it? As an introduction, as
an illustration during learning or as a summary?

5 Reflecting on the Units: Some Key Generalizable
Concepts

The outlines of each of the units on the Pythagorean theorem given in the preceding
section are restricted to a short description of a sequence of phases. They state what
is “on” in each phase, but no information is given about how to interact with the
students within each phase.

It might be tempting for student teachers to fill these holes with a step-by-step
script promising control and a reduction of the uncertainties of teaching. This, how-
ever, would run counter to the conditions of effective teaching and learning as
described in the introduction. Instead of a straitjacket the teacher needs a concept for
his or her teaching, and this can be provided only by a professional tool-kit consisting
of appropriate general principles. By their very nature these principles go beyond
individual teaching units. They secure that present learning is rooted in past learning
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and oriented towards future learning, and thus they provide teaching and learning
with a direction, locally and globally.

The present section will examine three general principles that are rooted in the
analyses and explorations before: the notion of informal proof, heuristic strategies,
and the “operative principle.”

5.1 Informal Proofs

Aproof becomes a proof only after the social act of “accepting it as a proof.” This is as true for
mathematics as it is for physics, linguistics or biology. The evolution of commonly accepted
criteria for an argument’s being a proof is an almost untouched theme in the history of science.

Yuri. I. Manin

A proof of a theorem is a pattern of conceptual relationships linking the state-
ment to the premises in a logically stringent way. In an earlier section we have met
a number of proofs of the Pythagorean theorem that vary in the conceptual rela-
tionships employed and—even more important for mathematics education—also in
their representations. Some of them consist mainly of a text and use a figure just for
supporting the text. Others rely heavily upon figures and transformations and contain
only a few explaining lines. The proof aimed at in the first teaching unit even uses
pieces of cardboard, real displacements and rearrangements of these pieces, and a
comment that may be given only orally.

It is of paramount importance for appreciating new developments in the teaching
of proofs to understand that the evaluation of different types of proof has been
controversial inmathematicsand inmathematical education over history, particularly
in the twentieth century.

For almost two thousand years Euclid’s “Elements of Mathematics” dominated
mathematics and the teaching of it, and the notion of mathematical proof established
in this book was the celebrated peak of mathematical activity. In mathematics edu-
cation, too, it was admired, emulated as far as possible, and hardly ever questioned,
apart from a few outsiders (see, for example, Clairaut 1743).

At the end of the nineteenth century the situation changed fundamentally. Mathe-
maticians and a growing minority of mathematics teachers became dissatisfied with
the Euclidean standard for quite different reasons and initiated opposing devel-
opments. Mathematicians working in the foundations of mathematics discovered
that Euclid unexpectedly had used intuitive assumptions in his logical chains of
arguments—for example the assumption that any line intersecting a side of a trian-
gle also intersects at least another side—and they set out to establish a purported
level of “absolute” rigor that was to reduce reasoning to a manipulation of symbols
and statements according to formal rules. No room was left for intuition. Hilbert’s
famous book, Foundations of Geometry, became the model for the new standard that
is perfectly described, for example, in MacLane (1981, 465):
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This use of deductive and axiomatic methods focuses attention on an extraordinary accom-
plishment of fundamental interest: the formulation of an exact notion of absolute rigor. Such
a notion rests on an explicit formulation of the rules of logic and their consequential and
meticulous use in deriving from the axioms at issue all subsequent properties, as strictly for-
mulated in theorems. ... Once the axioms and the rules are fully formulated, everything else is
built up from them, without recourse to the outside world, or to intuition, or to experiment ...
An absolutely rigorous proof is rarely given explicitly. Most verbal or written mathematical
proofs are simply sketches which give enough detail to indicate how a full rigorous proof
might be constructed. Such sketches thus serve to convey conviction—either the conviction
that the result is correct or the conviction that a rigorous proof could be constructed. Because
of the conviction that comes from sketchy proofs, many mathematicians think that mathe-
matics does not need the notion of absolute rigor and that real understanding is not achieved
by rigor. Nevertheless, I claim that the notion of absolute rigor is present.

In mathematics education, on the contrary, a growing number of teachers, sup-
ported by a few eminent mathematicians like F. Klein and H. Poincaré, recognized
the educational inadequacy of formal systems in general and looked for more natu-
ral (“genetic”) ways of teaching. Although this movement brought about very nice
pieces of “informal” geometry its influence remained quite limited as it failed to
develop a global approach to the teaching of geometry comparable in consistency
and systematics with the usual programs derived from Euclid. The main difficulty
was to conceive a notion of an informal and at the same time sound proof, convincing
the mass of teachers.

While up to the 1950s extreme forms of mathematical formalism were mitigated
by the pedagogic sensitivity of many teachers who used informal proofs in their
teaching, and if only as a didactic concession to their students, the movement of New
Maths, influential around the world from the late fifties to the early seventies, sought
to introducemathematical standards of rigor into the classroomwithout any reduction
(see, for example, the excellent analysis in Hanna 1983). This program eventually
failed not only because it proved as impracticable, but also, and even more, because
mathematical formalism and the idea of “absolute” rigor turned out as mere fictions.
Mathematicians became more and more aware that a proof is part of the social
interaction of mathematicians, that is of human beings, and therefore not only the
discovery but also the check of proofs greatly depend on shared intuitions developed
by working in a special field (Davis and Hersh 1983, Chap. 7). The validity of a proof
does not depend on a formal presentation within a more-or-less axiomatic-deductive
setting, and not on the written form but on the logical coherence of conceptual
relationships that are not only to convince that the theorem is true, but are to explain
why it is true. Informal representations of the objects in question are a legitimate
means of communication and can greatly contribute to making the proof meaningful.

In a letter submitted to the working group on proof at the 7th International
Congress on Mathematical Education, Québec 1992, Yuri Manin, a leading Rus-
sian mathematician, described the new view on proof very neatly:

Many working mathematicians feel that their occupation is discovery rather than invention.
My mental eye sees something like a landscape; let me call it a “mathscape.” I can place
myself at various vantage points and change the scale of my vision; when I start looking into
a new domain, I first try a bird’s eye view, then strive to see more details with better clarity.
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I try to adjust my perception to guess at a grand design in the chaos of small details; and
afterwards plunge again into lovely tiny chaotic bits and pieces.

Any written text is a description of a part of the mathscape, blurred by the combined imper-
fections of vision and expression. Every period has its own social conventions, and the
aesthetics of the mathematical text belong to this domain. The building blocks of a modern
paper (ever since Euclid) are basically axioms, definitions, theorems and proofs, plus what-
ever informal explanations the author can think of.

Axioms, definitions and theorems are spots in a mathscape, local attractions and crossroads.
Proofs are the roads themselves, the paths and highways. Every itinerary has its own sight-
seeing qualities, which may be more important than the fact that it leads from A to B.

With this metaphor, the perception of the basic goal of a proof, which is purportedly that
of establishing “truth,” is shifted. A proof becomes just one of many ways to increase the
awareness of a mathscape...

Any chain of argument is a one-dimensional path in a mathscape of infinite dimensions.
Sometimes it leads to the discovery of its end-point, but as often as not we have already per-
ceived this end-point, with all the surrounding terrain, and just did not know how to get there.

We are lucky if our route leads us through a fertile land, and if we can lure other travellers
to follow us.

The consequences of this new view for mathematics education can hardly be
overestimated (Wittmann and Müller 1990, pp. 36–39). While in the past unjustified
emphasis was put on the formal setting of proofs mathematics education is now in a
position to exploit the rich repertoire of informal representations without distorting
the nature of proof.

In this new framework the use of puzzles in proving the Pythagorean theorem
as suggested in the first teaching unit is quite natural. However, it is essential for
the soundness of the proof that the decomposition of figures into parts and their
rearrangement is accompanied by explanations of why the figures fit together in
different ways and what this means for area. It is the task of the teacher to ensure that
the necessary questions are asked and answered by the students. For this interaction
with the students the teacher needs a clear understanding of what an informal proof
is about.

The use of informal proofs is by no means restricted to geometry. In order to
enlighten the difference between formal and informal proofs a bit more we consider
the famous theorem on the infinity of primes.

Formal Proof:
Let us assume that the set of prime numbers is finite: p1, p2, . . . , pr .
The natural number

n = p1 · p2 · . . . · pr + 1

has a divisor p that is a prime number, that is, n is divisible by one of the numbers
p1, . . . , pr . From p|n and p|p1 · . . . · pr we conclude that p also divides the differ-
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ence n − p1 · . . . · pr = 1. However, p|1 is a contradiction to the fact that 1 is not
divisible by a prime number. Therefore our assumption was wrong.

Informal Proof:
We start from the representation of natural numbers on the numberline and apply the
sieve of Eratosthenes (Fig. 59). The number 2 as the first prime number is encircled,
and all multiples of 2 are cancelled as they certainly are not prime numbers. The
smallest number neither encircled nor cancelled is 3. The number 3 must be a prime
as it is no multiple of a smaller prime. Therefore 3 is encircled and again all multiples
of 3 are cancelled. For the same reason as before the first number neither encircled
nor cancelled, namely 5, is a prime number. Thus 5 is encircled and all multiples of 5
are cancelled. This procedure is iterated and yields a series 2, 3, 5, 7, 11, ... of prime
numbers.

Fig. 59

The infinity of prime numbers will be demonstrated if we can explain why the
iterative procedure does not stop. Assume that we have arrived at a prime number
p. Then p is encircled and all multiples of p are cancelled. The product n = 2 · 3 ·
5 · 7 · 11 · . . . · p of all prime numbers found so far is a common multiple of all of
them. So it was cancelled at every step. As no cancellation can hit adjacent numbers
the number n + 1 has not been cancelled so far. Therefore numbers must be left and
the smallest of them is a new prime number.

Comparison of the Two Proofs
First it has to be stated that both proofs are based both are based on similar conceptual
relationships. In particular a product of prime numbers increased by 1 plays the
crucial role in both proofs. Contrary to the formal proof that works with symbolic
descriptions of numbers the informal proof is based on a visual representation of
numbers on the numberline and on operations on it. In this way the formal apparatus
can be reduced as some of the necessary conceptual relationships are inbuilt into this
representation.

Consequences for Mathematics Teaching
In the past concrete and visual representations of mathematical objects were almost
exclusively used for the formation of concepts and for illustrating relationships. Our
analyses have shown, however, that appropriate representations are powerful enough
to carry sound proofs. This fact opens up tomathematics education a new approach to
the teaching of proofs: instead of postponing the activity of proving to higher grades
where the students are expected to be mature for some level of formal argument,
informal proofs with concrete representations of numbers and geometric figures
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can be developed from grade 1. Students can gradually learn to express conceptual
relationships more and more formally.

This view on proofs is closely related to Jean Piaget’s psychology in which several
stages from concrete to formal ones are delineated. Although Piaget’s theories have
been criticized in many respects the basics of his genetic epistemology are still valid.
His emphasis on “operations” as the motor of thinking is of extreme importance for
teaching and learning. In Sect. 3 we will investigate the “operative principle”.

AlthoughEratosthenes lived after Euclid it couldwell be that the sievewas already
known to Euclid. As we have seen above that sieve naturally leads to the formal
description in the term

n = 2 · 3 · 5 · . . . · p + 1.

Exploration 19
The sequence in Fig. 60 indicates a transformation of the squares described on
the smaller sides of a right triangle into the square described on the hypotenuse is
sometimes offered as a “proof without words”. The reader is only invited to look at
the figure (“Behold!”). Of course, without any explanations the transformation is
nothing but an experimental verification. Elaborate an informal proof by describing
the transformations, explaining why they are possible and why area does not
change. Hint: See proof 1* for comparison.

Fig. 60



5 Reflecting on the Units: Some Key Generalizable Concepts 145

Exploration 20
Give two proofs of the formula 1 + 3 + . . . + 2n − 1 = n2: an informal one
based on Fig. 61 and a formal one based on mathematical induction.

Fig. 61

5.2 “Specializing”—A Fundamental Heuristic Strategy

When we study the methods for solving problems, we notice a different face of mathemat-
ics. Actually, mathematics has two aspects; it is the rigorous science of Euclid, but it is
also something else. According to Euclid mathematics appears as a systematic, deductive
science; but mathematics in the making appears as experimental and inductive. Both aspects
are as old as mathematics itself.

G. Polya

The heart of our teaching unit stimulating and controlling all activities is a math-
ematical problem: How long is the diagonal of a rectangle?

The essential step in solving this problem consists of considering a special case—
How long is the diagonal of a square?—and in generalizing the special solution. It
is important to understand this approach not just as a clever trick in the context of the
Pythagorean theorem but as a fundamental heuristic strategy widely used in solving
mathematical problems.

We owe to G. Polya (1887–1985), the great master of mathematical discovery in
this century, a basic revival of heuristics, the study of means and methods of problem
solving (Polya 1981). Polya’s work was taken up and extended by mathematics
educators (Mason 1982; Brown and I. and Walter, M. I. 1983; Schoenfeld 1985) and
is clearly visible in curriculum developments all over the world (see for example, the
items “mathematics as problem solving and as reasoning” in the NCTM-Standards).

Heuristic strategies operate on two levels: They serve to generate new problems
out of given ones, and they help to construct solutions of problems out of known
results. The two levels, however, are inseparably intertwined: The art of problem
posing and the art of problem solving are sides of one and the same medal.

Schoenfeld (1985, 76, 80–81) describes and differentiates the strategy “Special-
izing” (Strategy S) as follows:

To better understand an unfamiliar problem, you may wish to exemplify the problem by
various special cases. This may suggest the direction of, or perhaps the plausibility of, a
solution ... the description of Strategy S given above is merely a summary description of five
closely related strategies, each with its own particular characteristics:
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Strategy S1: If there is an integer parameter n in a problem statement, it might be appro-
priate to calculate the special cases when n = 1, 2, 3, 4 (and maybe a few more). One may
see a pattern that suggests an answer, which can be verified by induction. The calculations
themselves may suggest the inductive mechanism.

Strategy S2: One can gain insight into questions about the roots of complex algebraic expres-
sions by choosing as special cases those expressions whose roots are easy to keep track (e.g.,
easily factored polyomials with integer roots).

Strategy S3: In iterated computations or recursions, substituting the particular values of 0
(unless it causes loss of generality) and/or 1 often allows one to see patterns. Such special
cases allow one to observe regularities that might otherwise be obscured by a morass of
symbols.

Strategy S4: When dealing with geometric figures, we should first examine the special cases
that have minimal complexity. Consider regular polygons, for example; or isosceles or right
or equilateral rather than “general” triangles; or semi- or quarter-circles rather than arbitrary
sectors, and so forth.

Strategy S5a : For geometric arguments, convenient values for computation can often be cho-
sen without loss of generality (e.g., setting the radius of an arbitrary circle to be 1). Such
special cases make subsequent computations much easier.

Strategy S5b : Calculating (or when easier, approximating) values over a range of cases may
suggest the nature of an extremum, which once thus “determined”, may be justified in any
of a variety of ways. Special cases of symmetric objects are often prime candidates for
examination.

The heuristic pattern related to “specializing” can be described as follows:

For further illustration of Strategy S4, which obviously has been applied in our
proof of the Pythagorean theorem, let us consider another example from geometry,
Viviani’s theorem.This theorem states that the sum of distances of an arbitrary point
inside or on the boundary of an equilaterial triangle from the three sides has a constant
value independent of the position of P (Fig. 62a–c).
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Fig. 62

Students asked to measure the distances and to add them for different points will
quickly conjecture this fact. As a direct proof is not near at hand a heuristic approach
using Strategy S4 seems natural.

The complexity is least if P is one of the vertices as then two of the three distances
are 0 and the third distance is an altitude of the triangle. In an equilateral triangle all
altitudes have equal length h (case 1, Fig. 62b).

The next level of complexity (case 2) is provided by points P on one of the three
sides as in this case one distance is 0 (Fig. 62c).

Our goal is to show that the two other distances add up to h.
If P is the midpoint of the side the two distances are equal by way of symmetry

(Fig. 63).

Fig. 63

The reflection at line AB maps P D onto P D′. The 30◦-angles around P ensure
that D′ is on line P E . Because of the right angles at E and D resp. D′ lines B D′
and AC are parallel and D′E = 2h1 is the distance between them. But this distance
is also h. Therefore 2h1 = h.

This line of arguments holds also if P is an arbitrary point on a side (Fig. 64).
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Fig. 64

The general case (P inside of ABC) can be reduced to case 2 (Fig. 65): A′ B ′ is
the line through P parallel to AB.

Fig. 65

As the angles at A′ and B ′ are equal to the angles at A and B, triangle A′ B ′C is
equilateral and, according to case 2, h1 + h2 = h′ = altitude of A′ B ′C . Obviously
h′ and h3 add up to h, the altitude of ABC . Therefore h1 + h2 + h3 = h. (For an
alternative approach following the “What if not ...?” strategy, see Jones/Shaw 1988.)

Our example shows that “specialization” at the level of problems and “generaliza-
tion” at the level of solutions can be performed in steps: the solution of the problem
for an extremely special case is step-by-step transferred to less special cases up to
the general case.

The interaction between “specialization” and “generalization” is often used to
generate new knowledge in the following way: One tries to generalize a problem that
has been solved (possibly in different ways). If a reasonable generalization has been
found one attempts to generalize the solution(s).

Pattern of generalization:
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This heuristic strategy is particularly fruitful for the Pythagorean theorem and
leads to the discovery of two important generalizations:

Law of cosines:
The sides a, b, c and the angles a, b, c of an arbitrary triangle are related by the
following formulae:

a2 + b2 = c2 + 2ab cos γ

b2 + c2 = a2 + 2bc cosα

c2 + a2 = b2 + 2ca cosβ

General Pythagorean theorem:
If similar figures are described on the sides of a right triangle then the sum of the
areas of the two smaller figures is equal to the area of the third figure.

For an excellent heuristic analysis of these generalizations the reader is referred
to The Art of Problem Posing by Stephen Brown and Marion Walter (1983, 44–61,
112–116).

Exploration 21
The midpoints of the sides of an arbitrary quadrilateral are the vertices of a
new quadrilateral. What do you conjecture about the shape of this midpoint-
quadrilateral? How long are its sides?
Prove your conjecture by applying the strategy “specialization”.

Exploration 22
Generalize Problem 2 of Exploration 3.

5.3 The Operative Principle

It would be a great mistake, particularly in mathematics education, to neglect the role of
operations and always to remain on the level of language. ... The initial role of operations
and logico-mathematical experience, far from hindering the later development of deductive
thought, constitutes a necessary preparation.

J. Piaget

In discovering the Pythagorean theorem and in establishing a proof as envisaged in
the teaching unit students have to “play around” with figures: Squares and rectangles
are dissected, the pieces are arranged in various ways, a hole is filled, and so forth.

The teacher of mathematics must be aware that this activity offers by no means
just an ad hoc approach to the Pythagorean theorem but that it reflects the natural
functioning of our cognitive system. According to the constructivist view of learning,
knowledge is neither received from environmental sources (that is from structures
considered as inherent in reality or structures offered by the teacher) nor unfolds
simply from inside. Knowledge is constructed by the individual through interacting
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with the environment: the individual operates upon the environment and tries both to
assimilate the environment to his or her mental structures and to accommodate the
latter to the external requirements.

Let us illustrate this goal-directed “playing around” by means of some examples.

Episode 1: During a christmas party a 1.5-year-old is sitting on the legs of his father at a
table with candlelights. He gazes at a candle burning in front of him, but out of his reach.
Suddenly a child on the other side of the table bends over the table and blows the candle
out. The boy observes the event carefully and notes how somebody else lights the candle
again. Now it is he who wants to blow the candle out: he hisses—the candle is still burning,
he reinforces his hissing sound, again without success, he growls, he moves his body, first
towards the candle, then aside, he hits the table with his hands and moves them around and
so forth. All cognitive schemas available to him are tested, however, without success. After
15 minutes the boy loses his interest.
Episode 2: Two twelve-year-olds play the following game of strategy (Fig. 66).

Fig. 66

One of the players has red counters, the other blue ones. They take turns to fill the row from
1 to 10 successively with counters. Each player may add one or two counters of his colour.
The player first arriving at 10 is the winner.

First the students play more or less randomly. Then they discover that 7 is a favourable
position: the player arriving at 7 can also arrive at 10: If the opponent adds 1 counter, then
2 counters lead to 10. If the opponent adds 2 counters, then 1 counter is sufficient to cover
10. By trying out different moves and by evaluating them the students discover that 4 and 1
are also favourable positions, and that the player starting the game has a winning strategy.

Episode 3: A student teacher tries to solve the following geometric problem by means of
The Geometer’s Sketchpad or Geogebra: Given lines g, h and circle k construct a square
ABC D such that A lies on g, B and D on h, and C on k (Fig. 67). First she draws g, h
and k. Then she chooses A on g as a moving point. She recognizes that the choice of A
determines B and D on h as the foot F of the perpendicular l dropped from A to h must
be the midpoint of the square. The student constructs points B and C as images of A under
rotations with center F and angles 90◦ and −90◦. Next she recognizes that A is mapped to
C by means of a rotation with center F and angle 180◦. But C does not lie on circle k. In
order to fulfill this requirement the student moves A along g, back and forth. B, C and D
move correspondingly and it is easy for her to maneuver C on k.
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Fig. 67

Actually, there are two solutions in this case. When performing the movement a second
time the student suddenly observes that A and C move symmetrically with respect to h
(Fig. 68). This leads her to the following solution of the problem: Line g is reflected on h
into g′.The intersections of g′ and circle k are possible positions for vertex C . Dropping the
perpendicular from C to h and intersecting it with g gives the corresponding vertex A. B
and D can be constructed as above.

Fig. 68

Each of the three episodes illustrates an important aspect of Piaget’s view: The
searching individual acts upon objects and observes the effects of his or her actions
(episode 1). Known effects are used for anticipating paths to certain goals (episode
3). Knowledge is not a ready-made matter, but it is constructed by the individual
through interaction with reality (episode 2).

This “operative” approach ranges from everyday situations to more and more
abstract and complex mathematical situations, from concrete objects to symbolically
represented objects, and thus it is essential for the whole mathematical curriculum.



152 7 Designing Teaching: The Pythagorean Theorem

For illustration, again a few examples.

Example 1 (Primary level: Addition and Subtraction) Problem: The sum of two
numbers is 32, the difference is 8. Which are the numbers?
To solve this problem the numbers are represented by counters of different colours
(Fig. 69).

Fig. 69

Here 16 red and 16 blue countersmake 32, but the difference is 0. Replacing a blue
counter by a red one leads to 17 + 15 = 32, 17 − 15 = 2. Repeating this operation
two more times gives

19 + 13 = 32, 19 − 13 = 6, 20 + 12 = 32, 20 − 12 = 8

Example 2 (Secondary level: Symmetric figures)

Fig. 70

A rectangular piece of paper (Fig. 70) is folded along a line of symmetry and
cut along the dotted lines. The shaded triangle is unfolded and leads to a special
quadrilateral, a kite.

Questions:
Which properties are imprinted into the kite by this generating process?
Which forms can a kite have?
How to cut in order to make all sides equally long?
Can a square be generated in this way?

To answer these questions students will have to fold, cut, check, vary the attempts,
check again until they arrive at the answers.
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Example 3 (Secondary level: Quadratic functions) The graph of a quadratic func-
tion is typically derived from the standard parabola, the graph of the function y = x2,
by means of four basic geometric transformations that model algebraic transforma-
tions of the functions:

Algebraic transformation Geometric transformation
y = x2 into y = ax2 Affine dilatation of the standard para-

bola with factor a along the y-axis
y = ax2 into y = −ax2 Reflection at x-axis
y = ax2 into y = a(x − c)2 Translation by c along the x-axis
y = a(x − c)2 into y = a(x − c)2 + d Translation by d along the y-axis

Example 4 ((College): Derivative) The software program Supergraph developed
by David Tall allows—among other interesting things—for representing graphs of
functions on the screen and for pursuing the tangent on its way along the graph. The
computer also fixes the slope of the tangent step by step (derivative). By observing
this “movie” for various functions the student can find out how basic properties of a
function are reflected in the derivative (domains of increase and decrease, maxima,
minima, etc.).

The common kernel of these four examples has been termed the operative prin-
ciple and described as follows (Wittmann 1987, 9):

To understand objects means to explore how they are constructed and how they behave if
they are subjected to operations (transformations, actions, ...).

Therefore students must be stimulated in a systematic way

(1) to explore which operations can be performed and how they are related with one another,

(2) to find out which properties and relationships are imprinted into the objects through
construction,

(3) to observe which effects properties and relationships are brought about by the operations
according to the guiding question “What happens with ..., if ...?”

In this formulation the nature of the “objects” has deliberately been left open. There-
fore the operative principle has a wide range of applications.

It is not by chance that examples 3 and4 employ the computer. In fact the computer,
if properly used, is the ideal device for making the operative principle practical.

Through the lens of the operative principle the concept of area appears in the
following operative setting:
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The “objects” in question are geometric figures. These figures can be changed
by a great variety of “operations,” for example, reflections, translations, rotations,
dilatations, shearingmotions, decompositions, extensions, reductions... The standard
questions are: What happens with the area of a figure if the figure is reflected, trans-
lated, decomposed, extended ...?
Answers:

Area behaves invariant under rigid motions,
additive under decompositions,
monotone under extensions,
quadratic under dilatations and
invariant under shearing motions.

In other words:

Congruent figures have the same area.
The area of a composite figure is the sum of the areas of its parts.
If a figure F1 is contained in figure F2, the area of F1 is not bigger than that
of F2.
If figure F is mapped on to F’ by means of a dilatation with factor k, then
Area (F’) = k2· Area (F).
Shearing motions do not change the area.

In retrospect the reader will see that the tasks for studying the development of the
concept of area involved exactly the above operations. The reader is perhaps surprised
that the clear emphasis on psychology at the beginning of this section has given way
to quite mathematical considerations. However, this change of perspective has not
happened by chance. In Piaget’s view cognitive psychology, that is, the study of the
growth of knowledge in individuals, is strongly related to epistemology, that is, the
study of growth and structure of scientific knowledge.

The “operative” view at cognition, learning and teaching is also strongly related
to the notion of proof. In Sect. 1 it was stated that a proof is a logical chain of
conceptual relationships. Nowwe can put it a little more precisely: In a proof objects
are presented and introduced that are constructed in characteristic ways, and these
objects are subjected to certain operations such that known effects arise. It is from
these constructions and operations that the essential conceptual relationships flow
on which the proof is based.

For illustration let us consider Proof 2 of the Pythagorean theorem. The proof
starts with constructing an appropriate figure (Fig. 71). Then certain parts of the
figure are analyzed whereby at some places operations appear.
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Fig. 71

Objects Relationships imposed on the
objects by construction or by oper-
ation

Triangle ABC : α + β = 90◦
Segment AF : AF = a
Segment DK : DK = b
Triangles ABC , G AF , G H K , K B D: all congruent (triangle ABC can

be laid upon the others)
Quadrilateral AG K B: square
Hexagon BC FG H D consisting of squares BC E D and

E FG H and square AG K B
The square and the hexagon are
equidecomposable, and therefore
of equal area (three parts covering
the hexagon can be rearranged to
cover the square)

Exploration 23
What are “objects,” “operations” and “effects” in

1. the Bhaskaran puzzle proof of the Pythagorean theorem (see p. 133, Fig.
50),

2. Clairaut’s approach (see Figures 15 to 19 and Exploration 11),
3. the three episodes and the four examples of the present section?



156 7 Designing Teaching: The Pythagorean Theorem

6 Appendix: Solutions to the Problems in Exploration 3

Problem 1 This is a typical example for using the Pythagorean theorem. First, the
diagonal d of the rectangular base ABC D is calculated, d2 = a2 + b2. Then the
Pythagorean theorem is applied once more: the triangle AC P with sides c, d and s
is also right. Therefore

s2 = d2 + c2 = a2 + b2 + c2, or s =
√

a2 + b2 + c2.

Problem 2 The problem seems to call for the Pythagorean theorem, and in fact
it is possible to solve it by calculating the side of the shaded square in several
steps by means of the Pythagorean theorem and similarity arguments. However, the
Pythagorean theorem is not necessary. The figure can be embedded into a square
lattice (why?). By comparing the parts of the resulting dissection (see Fig. 72) one
sees that the original square is five times the area of the shaded square.

Fig. 72

The new figure, however, is close to figures related to the Pythagorean theorem,
for example to the figures in Proof 3 and in Exploration 8. If we combine the parts
of the original square in an appropriate way (see Fig. 73), we touch the idea of a new
dissection proof of the Pythagorean theorem: by starting from the midpoints of its
sides a big square can be dissected into a small square and four congruent rectangles.
The latter can be recombined to make a square whose sides are twice the length of
the small square (see Fig. 74).

It is important to see the Fig. 71 not as static but as a dynamic network of elements
that are connected by relationships.
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Fig. 73

Fig. 74

The transition from Figs. 72, 72 and 74 can also be made with arbitrary squares.
All one has to do is to decompose the sides of the larger square into two segments
whose difference is the side of the smaller square. Check it and you have the idea
of a new proof of the Pythagorean theorem! Explain Fig. 75, which is used by the
Japanese teaching unit mentioned earlier (worksheet (3)).
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Fig. 75

Problem 3 Assume that the car is 4.60 m long and that the distances to the adjacent
cars are 0.30 m each. Then the “length” available for the car is 4.60 m + 2 × 0.3
m = 5.20 m. In order to move the car out of the lot without too much trouble the
diagonal d of the car should be a little bit smaller than the available length 5.20 m
(see Fig. 76).

Fig. 76
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Application of the Pythagorean theorem leads to

d =
√

(4.60)2 + (1.70)2 m ≈ 4.90m.

4.90 m is 30cm smaller than the available length. So it is possible to move the car
out.
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Chapter 8
Standard Number Representations in the
Teaching of Arithmetic

Abstract The paper describes the specific approach towards the choice and use of
number representations as developed by the project Mathe 2000.

The project Mathe 2000 founded in 1987 at the University of Dortmund is a devel-
opmental research project that is based on a conception of mathematics education as
a design science. In the past the project has been concerned with developing theoret-
ical concepts and practical materials for the teaching of mathematics at the primary
level, including an innovative textbook series. However, the project represents a
comprehensive view of mathematics teaching and will be extended to the secondary
level. As a special feature of the project, design, empirical research, pre-service
and in-service teacher training, and public relations are closely linked and pursued
simultaneously. Essential for this approach is the establishment of a “theory-practice
network” bringing together all partners of the educational system. Here the “Hand-
book for Practicing Skills in Arithmetic” (2 vols.) has been playing a fundamental
role as a basic reference.1

The present paper is intended to describe and illustrate a specific feature of this
project, namely the development of a “grammar of non-symbolic representations”
as suggested in Wittmann 1988. The area that is chosen here is arithmetic, one of the
basic areas of mathematics teaching.

The first section of this paper presents ten principles which describe basic views
on teaching and learning.

In the second section, the epistemological nature of number representations is
elaborated in contrast to their use as methodical instruments in traditional didactics.
It will be shown that “representation” is a fundamental idea of mathematics.

The third section is devoted to the problem of selecting standard number repre-
sentations for teaching arithmetic to which symbolic notations are usually related.

Finally, the use of standard representations is illustratedbymeansof some teaching
units that also represent fundamental ideas of arithmetic.

1For a broader discussion of the Mathe 2000 approach to primary mathematics see Becker and
Selter 1996.
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162 8 Standard Number Representations in the Teaching of Arithmetic

1 Principles of Learning and Teaching

In spite of differences in detail, most mathematics educators around the world might
share the following basic views of learning and teaching: Mathematical concepts
are neither innate nor readily acquired through experience and teaching. Instead the
learners have to reconstruct them in a continued social process where primitive and
only partly effective cognitive structures which are chequered with misconceptions
and errors gradually develop into more differentiated, articulated and coordinated
structures which are better and better adapted to solving problems. Teachers cannot
expect concepts to be readily transferable from teacher to student. As Johannes
Kühnel put it neatly at the beginning of this century, the main role of the student is
characterized by “activity”, not by “receptivity”, and correspondingly the main role
of the teacher by “organisation”, not by “instruction”. In interacting with students,
the teacher must have a feeling for students’ ways of thinking and help them to
reconstruct their conceptual structures on a higher level.

The diagram in Fig. 1 is an attempt to capture this “genetic” or “developmental”
view on teaching and learning in a system of ten principles in order to make it
practical for the design of teaching. The author is well aware that systems of this
kind are always scholastic to some extent. Nevertheless, he has found the diagram
useful for keeping balance in coping with the many aspects of learning and teaching.

Fig. 1 Principles of learning and teaching
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Explanation of the diagram: The vertices of the triangle are linked to the old
didactic triad teacher, subject matter, learner and mark the epistemological, the psy-
chological and the social corners of the diagram: In order to organize learning sit-
uations that stimulate students’ activities and social interactions (upper vertex) the
teacher has to mediate between the genesis of mathematical knowledge on the one
hand (left vertex) and the student’s developing cognitive repertoire on the other hand
(right vertex). The operative principle, derived from Jean Piaget’s epistemology and
psychology, integrates epistemological, psychological and social aspects, and thus
occupies the central position by right.

The “spiral principle” (Bruner 1960, Chap.3), Vygotsky’s principle of the “zone
of proximal development” (Wertsch 1985) as well as the principle of “natural dif-
ferentiation”2 refer to different levels in the development of knowledge of which the
teacher has to be aware.

Three other principles are related to the problem of representing knowledge:
one of them speaks in favor of a careful selection of basic representations. Another
one recommends a “progressive schematisation” in the representation of knowledge
during the learning process (Treffers 1987). The third states that it is impossible
for the student to understand even concrete and visual representations directly and
postulates their interactive exploration (Schipper 1982; Voigt 1989; Lorenz 1992;
Cobb et al. 1992).

Finally, the diagram involves another grouping of the ten principles: the three
principles at the left corner together with the central principle form the four episte-
mological principles. Similarly, we have four psychological principles at the right
comer and four social principles on the upper corner. The operative principle belongs
to all three groups because of its integrative character.

For the present paper, it is important to note that the problem of representing
knowledge plays a fundamental role in the concept of learning and teaching as
expressed in the diagram.

2 The Epistemological Nature of Number Representations

In order to clarify the background of the principles of Fig. 1 concerned with “repre-
sentations”, it is crucial to examine the history of teaching aids as well as the role of
representations in mathematics itself in some detail.

2“Natural differentiation” means that the individual student, not the teacher, decides which of the
offered tasks he or she should choose and elaborate on.
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2.1 Notes on the History of Number Representations: From
Tools of Teaching to Tools of Learning

The use of teaching aids was postulated for the first time in full weight by Come-
nius, one of the arch-fathers of didactics, in the 17th century. In his classic “Didac-
tica Magna”, published in 1657, he formulated the “golden rule” for all teaching
(Comenius 1923, 184–187):

From this a golden rule for teachersmaybederived.Everything should, as far as is possible, be
placed before the senses. For this there are three cogent reasons. Firstly, the commencement
of knowledge must always come from the senses (for the understanding possesses nothing
that it has not first derived from the senses).

Secondly, the truth and certainty of science depend more on the witness of the senses than on
anything else. For things impress themselves directly on the senses, but on the understanding
only mediately and through the senses. It follows, therefore, that if we wish to implant a true
and certain knowledge of things in our pupils, we must take especial care that everything be
learned by means of actual observation and sensuous perception.

Thirdly, since the senses are the most trusty servants of the memory, this method of sensuous
perception, if universally applied, will lead to the permanent retention of knowledge that
has once been acquired. If the objects themselves cannot be procured, representations of
them may be used. Copies or models may be constructed for teaching purposes. For every
branch of knowledge similar constructions (that is to say, images of things which cannot be
procured in the original) should be made, and should be kept in the schools ready for use. It
is true that expense and labor will be necessary to produce these models, but the result will
amply reward the effort.

What Comenius had in mind was to replace the purely verbal teaching practiced
in the Middle Ages. His efforts were mainly directed towards elementary science. A
famous example for his intentions is his classic textbook “Orbis pictus”. The teaching
of mathematics is not touched by Comenius, as mathematics, according to the then
prevailing Platonic view, belonged to the realm of intellectual and spiritual ideas and
therefore was not accessible to concrete or visual representation and perception.

In the 18th century this situation changed completely, when Kant in his philo-
sophic system assigned a quite different status to mathematics. According to Kant,
mathematical knowledge is “synthetic”, that is depends on basic perceptions of space
and time. In the introduction of his “Critique of pure reason”, Kant explains this new
conception of mathematics in a way which is very close to mathematics teaching
(Kant 1943, 9–10):

We might, indeed, at first suppose that the proposition 7+ 5 = 12, is a merely analytical
proposition, following (according to the principle of contradiction), from the conception of
the sum of seven and five. But if we regard it more narrowly, we find that our conception
of the sum seven and five contains nothing more than the uniting of both sums into one,
whereby it cannot at all be cogitated what this single number is which embraces both. The
conception of twelve is by no means obtained by merely cogitating the union of seven and
five; and we may analyze our conception of such a possible sum as long as we will, still
we shall never discover in it the notion of twelve. We must go beyond these conceptions,
and have recourse to an intuition which corresponds to one of the two- our five fingers, for
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example, or like Segner in his “Arithmetic”, five points, and so by degrees, add the units
contained in the five given in the intuition, to the conception of seven. For I first take the
number 7, and, for the conception of 5 calling in the aid of the fingers of my hand as objects
of intuition, I add the units, which I before took together to make up the number 5, gradually
now by means of the material image my hand, to the number 7, and by this process, I at
length see the number 12 arise. That 7 should be added to 5, I have certainly cogitated in my
conception of a sum= 7+ 5, but not that this sumwas equal to 12. Arithmetical propositions
are therefore always synthetical, of which we may become more clearly convinced by trying
large numbers. For it will thus become quite evident, that, turn and twist our conceptions as
we may, it is impossible, without having recourse to intuition, to arrive at the sum total or
product by means of the mere analysis of our conceptions.

Kant’s statement

Concepts without intuitive perception are empty, intuitive perceptions without concepts are
blind

became the slogan for a big movement among educators who set out to ground
teaching on visual representations.

One of the first to applyKant’s view to the teaching ofmathematicswas Pestalozzi.
In his “ABCderAnschauung” he attempted to teach basic facts about natural numbers
and fractions through precisely defined chains of exercises related to the “Table of
units” (Fig. 2) and to the decomposition of a square (Pestalozzi 1803). Although
in theory perception was related to activity (“Selbsttätigkeit”) Pestalozzi’s practical
proposals lacked far behind his postulate, as we understand it nowadays.

Fig. 2 Pestalozzi’s “Table of units”

Along the same lines Tillich wrote a textbook for teaching arithmetic which was
based on a kit of rods, a precursor of the Cuisenaire rods (Tillich 1806). Beyond
mere perception an element of “activity” on part of the student is implicit in Tillich’s
approach. It was Froebel who some years later made this element explicit in his
theoretical approach to cognition. However, it is important to note that here “activity"
was understood as completely prescribed behavior. No roomwas left to the student’s
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own initiative, as is shownby the following section “Representation and perception of
the number series as a continuous whole” from Froebel’s course (Froebel 1826/1966,
289–290, transl. E.Ch.W.). Essentially the basic representation is nothing but one
column of Pestalozzi’s “Table of units”:

Count from One to Ten and each time draw as many vertical strokes (of a certain length) as
the number word indicates, that is One |, Two ||, Three |||, etc., one below the other.
(One) . . . |, (Two) . . . ||, (Three) . . . |||, (Four) . . . ||||, etc.
Have you done so? What have you done?

We have counted from one to ten, and each time , etc.

Well! You have represented the natural series of all numbers from one to ten. What have you
represented?
Emphasizing, perceiving and getting aware of the interaction between word and set, number
itself:

– starting from the number words:

Teacher and students recite in unison by pointing to the represented series:
One is | (one One), Two is || (two Ones), Three is ||| (three Ones), etc.

– starting from the number or set:

Teacher and students recite in unison by pointing to the sequence
| is One, || is Two, ||| is Three, etc.
Word and set merge, appear as one thing, number is perceived in its pure form:
| One is One, || Two is Two, ||| Three is Three, etc.
Recitation by teacher and students as before.

During the 19th and 20th century a wide variety of teaching aids for arithmetic
was invented. Although many of these inventions aimed at student “activity” the
restrictions from the times of Tillich and Froebel were never overcome. Teaching
aids remained tools in the hands of the teacher and were subordinated to didactic
systems which were based on the empiricist credo that knowledge is something to be
transmitted from teacher to student. It was firmly believed that teaching aids work
the better the more their use is prescribed by the teacher in all details. This belief was
taken over by theories of learning arising in the 19th century which recognized the
insufficiency of the “perception channel” for learning and introduced the “activity
channel”. These advanced empiricist theories were further elaborated in the 20th
century and exerted a great influence on didactics and on the teaching practice’. A
good example from our time is Galperin’s theory of learning and teaching in which
the “reflection of the objective reality in the mind” is pursued by activities prescribed
in detail step by step (cf., Gravemeijer 1994, Sect. 2, for an excellent analysis of the
traditional use of manipulatives and its limitations).

A typical application of this narrow didactic view is provided by the “transition
beyond ten” in traditional German didactics for grade 1. In order to calculate 7+ 5
Cuisenaire rods (or counters) must be arranged in a definite way (Fig. 3) and the
calculation must follow prescribed steps:

7+ 3 = 10, 5− 3 = 2, 10+ 2 = 12.



2 The Epistemological Nature of Number Representations 167

210
7 5

Fig. 3 Using Cuisenaire rods for deriving results

In the past 20years “constructivist” conceptions of learning and teaching have
gained ground and have shed a quite different light on “teaching” aids. In Europe
this movement was very much influenced by Piagetian psychology. Already in the
late sixties Jean Piaget stated the shortcomings of traditional visual methods very
clearly (Piaget 1970, 71–72):

One of the causes of the slowness with which the active methods have been adopted is the
confusion that sometimes occurs between the active methods and the intuitive methods. A
certain number of pedagogues in fact—and often in the best possible faith - imagine that the
latter are an equivalent of the former, or at least that they produce all the essential benefits
that can be derived from the active methods.

We are faced here, moreover, with two distinct confusions. The first, which has already been
mentioned, is that which leads people to think that any “activity” on the part of the student
or child is a matter of physical actions, something that is true at the elementary levels but is
no longer so at later stages when a student may be totally “active”, in the sense of making a
personal rediscovery of the truths to be acquired, even though this activity is being directed
toward interior and abstract reflection.

The second confusion consists in believing that an activity dealing with concrete objects is
no more than a figurative process, in other words nothing but a way of producing a sort of
precise copy, in perceptions or mental images, of the objects in question. In this way it is
forgotten that knowledge is not at all the same thing as making a figurative copy of reality
for oneself, but that it invariably consists of operative processes leading to a transformation
of reality, either in actions or in thought. It is also forgotten that the experience brought to
bear on the objects may take two forms, one of which is logico-mathematical and consists
in deriving knowledge, not from the objects themselves, but from the actions as such that
modify the objects.

Since all this has been forgotten, the intuitive methods come down, quite simply to a process
of providing students with speaking visual representations, either of objects or events them-
selves, or of the result of possible operations, but without leading to any effective realization
of those operations. These methods, which are, moreover, traditional, are continually being
reborn from their own ashes and do certainly constitute an advance to purely verbal or formal
teaching techniques. But they are totally inadequate in developing the child’s operative activ-
ity, and it is only as a result of a simple confusion between the figurative and the operative
aspect of thought that it has been believed possible to pay tribute to the ideal of the active
methods while at the same time giving concrete form to the subject matter of education in
this purely figurative guise.

In his critical analysis of the mass of new materials and diagrams introduced into
the teaching of mathematics by “New Math”, Schipper discovered an important fact
(Schipper 1982): Children do not understand these representations immediately nor
automatically. On the contrary, they must learn them as a kind of additional subject
matter.
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In the meantime this fact has been validated by a variety of research findings
(Radatz 1986; Voigt 1989; Jahnke 1989; Lorenz 1992). Krauthausen (1994) has
summarized the new view on concrete and visual representations, diagrams etc. in
six propositions (Krauthausen 1994, 30–35):

1. What primarily counts are mental images of concepts. Visual representations can
support these to some extent.

2. Mental images are not just copies of external representations, but they are formed
by the constructive activity of the individual.

3. These constructions are idiosyncratic, that is, they are determined by the experi-
ences and personal knowledge of the individual.

4. Concrete and visual representations are no, speaking pictures’, they do not fulfil
the expected function as carriers of mental images per se.

5. Concrete and visual representations are neither only aids for the so-called’slow
learners’ nor is their use restricted to the early steps of the learning process. They
are important for all children and they are useful for the whole duration of the
learning process.

6. Concrete and visual representations are not automatically the better, the more
specifically they represent the intended concept. ,Perfect’ representations can be
counterproductive. In order to fulfill their function good representations must
involve a certain vagueness.

In this new view representations of mathematical structures are no longer consid-
ered as tools of the teacher for transmitting knowledge, but as tools of the learner for
doing mathematics. Their status is no longer a didactic, but an epistemological one
(Wittmann 1993).

Representations of knowledge develop with the cognitive repertoire of the indi-
vidual. They have to be constructed and re-constructed in an extended interactive
process as a kind of language and as a field for exploration. It is through applying
and testing these representations in new contexts that the individual understands and
uses them better and better.

2.2 Representations in Mathematics

The shift from didactics to epistemology draws the attention to the true origin of
representations, namely to mathematics itself. Kaput (1987) and Dörfler (1991) have
very clearly pointed out the fundamental role which is played by representations of
mathematical objects inmathematical research. Even if systematic-deductive presen-
tations of mathematical theories do not point it out explicitly, mathematical theories
do not only involve concepts, theorems, and algorithms, but also the construction
of objects to which they pertain. These constructions form a “quasi-reality” which
allows for experimentally investigating concepts, conjectures and proofs. So within
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the development of a theory there is a continuous interplay between descriptions and
constructions. For example, the exponential function can be described as a homo-
morphism of the additive group of real numbers into the multiplicative group of real
numbers, and it can also be constructed by defining its values step by step for natural
numbers, integers, fractions and irrational numbers. In a similar way, a group can be
defined bymeans of axioms, and it can be constructed as a permutation group.Within
every theory we also find attempts to characterize classes of objects by showing how
they are constructed out of well-known special objects. Theorems of this kind are
called representation theorems (Kaput 1987). A good example is provided by the
complete classification of finite simple groups achieved in the early eighties.

In highermathematics representations are in general symbolic. However, the early
history ofmathematics demonstrates very clearly the basic role of counters (“calculi”)
in the development of arithmetic (cf., Damerow/Lefèvre 1981). It is interesting to
note that the ancient Greeks discovered and proved the first theorems on even, odd
and figurate numbers by forming appropriate patterns of counters (cf., Becker 1954,
34–40), and it is equally interesting to realize that eminent research mathematicians
emphasize the explanatory power of these patterns for the foundations of arithmetic
even today (cf., Penrose 1994, 48–50).

Considered through the epistemological lens, representations have an amphibian-
like status: On the one hand they are quasi-real or, as in the case of counters, even
real, on the other hand they carry theoretical relationships. As a consequence the
use of representations is not restricted at all to founding or illustrating concepts.
On the contrary: Representations can be used and are used in the full process of
making mathematics including mathematizing, discovering, reasoning, and commu-
nicating. The rise of experimental mathematics due to efficient computer software
bears witness to this fact.

Because of their amphibian-like status representations can be used to model real
situations and they can be used to model mathematical structures. In the first case
they are “more abstract” than what they model, in the second case they are “more
concrete”.

By working with representations of mathematical objects, even proofs of general
statements become possible, as explained in Piaget’s epistemology: According to
Piaget, mathematical knowledge is not derived from the objects themselves, but
from operations with objects in the process of reflective abstraction (“abstraction
réfléchissante”, Beth/Piaget 1961, 217–223). When it is intuitively clear that the
operations applied to a special object can be transferred to a class of objects the
relationships based on these operations are general. An instructive example is given
by Dress (1974) who describes in detail how he found and proved a theorem on the
Burnside ring of finite groups by elaborating the special case A5, the alternate group
of order 5.

In the process of learning the interplay between formal descriptions of mathemat-
ical structures by means of symbols (“signs”) on the one hand and their quasi-real
representations (“referents” or “objects”) on the other hand is reflected in the epis-
temological triangle of “concept, sign and object” introduced by Steinbring (1994)
(Fig. 4).
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Fig. 4 The epistemological triangle

As a simple example think of the first natural numbers, denoted by the signs
1, 2, 3, ... and represented by sets of counters. In the early stages of the development
of the number concept, counters are more meaningful and more operative than the
signs. But the more the signs are filled with meaning and carry relationships, the
more they contribute to better understanding operations with counters. At higher
levels signs and connected symbolic operations can well be used as representations
of new concepts and become accessible to experimental investigation.

By analyzing a number of lesson transcripts, Steinbring has shown that problems
of understanding, ruptures, mistakes, misunderstandings etc. in the teaching/learning
process are often due to treating or seeing the upper corners of the epistemological
triangle in isolation or to subordinating one corner to the other one. In order to
overcome the “socially conventionalized strictness of sign attribution” he argues in
favor of “a conceptual flexibility for constructing references between symbol and
referent” (p. 381).

3 Selection of Standard Number Representations

For instructional design the message resulting from the preceding analysis seems
clear. In distinct opposition to the flood of “teaching aids” offered on the market
manipulatives should be carefully selected: “Less is More”.

The present section gives an account of how Mathe 2000 has approached the
problem of selecting and designing a set of standard number representations for the
teaching of arithmetic.

3.1 Criteria for Selecting and Designing Standard
Representations

The following criteria for selecting and designing standard representations for a given
domain of teaching have been developed and continuously modified in the process of
design. On the one hand they re-phrase theoretical results of the preceding sections,
on the other hand they reflect practical conditions and constraints of teaching.
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Criterion 1:
The number of standard representations for teaching a given domain should be small
so that the students can become thoroughly familiar with them in the time available
for learning. In order to avoid ruptures in the learning process, these standard repre-
sentations should be compatible with one another.
Criterion 2:
The standard representations should capture the fundamental mathematical ideas
underlying the given domain as far as possible. This secures mathematical substance
and opens up extended opportunities for students’ structuring activities as the basis
of mental images.
Criterion 3:
Standard representations should be available in two isomorphic user-friendly ver-
sions: a big one for the purpose of demonstration in the class, a small one for stu-
dent’s use. This facilitates the transition from individual and small group work to
classroom communication and vice versa.

The big standard representations should be fixed on the walls of the classroom
and be freely accessible, the small versions should be ready at hand.
Criterion 4:
Each student should be equippedwith personal copies of the standard representations.
Therefore the small versions must be made of low cost materials (as a rule paper).

Of course the leading criterion for selection and design is the second one. Its
application depends crucially on the identification of fundamental ideas of the given
domain, a task that is taken up in the following section for arithmetic.

3.2 Fundamental Ideas of Arithmetic

A developmental approach to teaching a given field of knowledge cannot be based
on systematic-deductive presentations. What is needed instead is a genetic picture of
this field. Here Bärbel Inhelder’s suggestion to identify “fundamental ideas” which
can be elaborated in the process and progress of learning has proved as a striking
method (Bruner 1960, Chap.2).

The following list of fundamental ideas of arithmetic has been based on the oper-
ative principle: In any domain of knowledge there are

• “objects”
• “operations” which can be applied to the objects and
• the “effects” of the operations on the properties and relationships of objects.

In arithmetic the “objects” are numbers, sums, differences, products, quotients,
functions, etc. The “operations” are counting, adding, subtracting,multiplying, divid-
ing, etc. The “effects” are expressed by the laws of arithmetic and all kinds of number
patterns.
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This operative structure is visible in the following list of fundamental ideas of
arithmetic:

1. “Number as a synthesis of the ordinal and the cardinal aspect”
The natural numbers form an infinite series which is covered in counting (ordinal
aspect). They also serve as cardinal numbers.

2. “Operating with numbers”
The laws of arithmetic provide the frame for (more or less sophisticated) mental and
informal calculations as well as for algorithms. The laws of arithmetic are preserved
in the larger domains (fractions, integers, real numbers).

3. “Decimal system”
Our conventional number system is based on the number ten. An important role
is also played by the number 5 as a half ten (“Power of five”, Flexer 1986). The
thousand triade is repeated in the millions, milliards, etc.

4. “Standard algorithms”
Standard algorithms allow for reducing calculations with numbers to calculations
with digits. The algorithms can be automatized and implemented on hand-held cal-
culators and computers.

5. “Number patterns”
Arithmetic is rich in problems and number patterns (number theory, combinatorics).

6. “Numbers in the environment”
Natural numbers can be applied as cardinal numbers, ordinal numbers, magnitudes,
operators and codes.

7. “Arithmetic as a language”
Real situations can bemathematised by using the conceptual structures of arithmetic.

3.3 Standard Number Representations

With the criteria of Sect. 3.1 and the list of fundamental ideas of Sect. 3.2 in mind,
available manipulatives have been checked, selecting those which seemed most
appropriate for the teaching units that were being developed.

It turned out very quickly that some of the traditional number representations
were optimal solutions for our purposes (for example, the Hundred Table) and that
others could be easily adapted (for example, the Hundred array). The remaining gaps
were filled by newly developed materials (for example, posters for the addition and
multiplication tables).

Some well-known and popular number representations did not meet our criteria
and consequently had to be dropped. For example, the Cuisenaire rods, though offer-
ing a good potential for structuring activities in grade 1 and in part in grade 2, do not
incorporate the “power of five” (criterion 2, fundamental idea 3), cannot be extended
to grades 3 and 4 (criterion 1), and are too expensive to be available for every student
(criterion 4). Moreover, when it comes to operating on sums, the Cuisenaire rods are
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less flexible than the Twenty frame and counters (criterion 2, fundamental idea 2).
For similar reasons base ten blocks had to be excluded from the list.

The followingmanipulatives were chosen as standard number representations (cf.
Wittmann and Müller 1990, 9–12, 1992, 10–12). They are listed here according to
their correspondence to the fundamental ideas of arithmetic as they appear grade by
grade3:

“Series of Numbers”

Grade 1:

• Twenty Row (Circles in groups of five, numbered from 1 to 20 or alternately with
entries 5, 10, 15, 20)

Grade 2:

• Hundred Row (100 circles, coloured in groups of five, with entries 5, 10, 15, 20)

Grade 3:

• Thousand Row (yardstick-like representation of numbers from 1 to 1000 with
entries 25, 50, 75, 100, 125, 150, . . .)

3At this place a general comment seems appropriate. In German mathematics education there has
been a steady work on teaching aids since the 19th century. This work has been accompanied by
coining short and fitting names for teaching aids and a didactical language for their use. The German
language has been facilitating this process by certain linguistic characteristics, for example, the easy
formation of compounds.

When the present chapter and the textbook DAS ZAHLENBUCH were translated into English
it has been impossible at some places to find suitable English terms. Therefore, the author has
taken the freedom to coin new words that are more or less literal translations from the German. For
English-speaking readers these terms may need habituation, and it is not unlikely that some might
reject them together with the didactical context into which they belong.

It cannot be ignored that there is a general problem in translating meanings from one language
and one cultural context into another one. In Hughes (1994, 311–312) the English poet Ted Hughes
expresses his irritation when he realized that an urban American poet had degraded his poems.
Hughes explains this lack of understanding with the spread of a lingua franca that is unavoidably
developing in a multicultural society like the US. This second language has a tendency of becoming
superficial and of ironing out deeper meanings, and it induces the speakers of this language to
consider themselves as superior and to ignore what is communicated in other languages.

To some extent this problem also exists in mathematics education, and it becomes especially
apparent at international conferences. The use of English as a lingua franca of mathematics edu-
cation is a double-edged sword. Mathematics educators in non-English-speaking countries are
well-advised to preserve and to cultivate their context and stick to proven achievements that are not
reflected in the lingua franca.
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Grade 4:

• Number line as a mental model indicated by representations of various sections
of the number line.

Hassler Whitney’s idea of the empty number line (Treffers and de Moor 1990;
Gravemeijer 1994, p. 120 ff.) has been integrated in grades 3 and 4. Figure 5 (from
Treffers and de Moor 1990, 56–57), shows how this idea is used by children.

Fig. 5 Reasoning with the empty number line

“Calculating”

Grade 1:

• Counters (one side red, other side blue) for representing numbers, sums and
differences as well as patterns

• Number cards for numbers 0 to 20 (one side: numbers written with digits, other
side: corresponding pattern of dots) (Fig. 6)

Fig. 6 Number cards
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• Twenty frame and counters for a systematic study of the addition table (Fig. 7)

Fig. 7 Twenty frame

• Addition chart (big version 90cm x 120cmwith colored boxes for demonstrating
the operative structure of the addition table (Fig. 8).

Fig. 8 Addition chart

Grade 2:

• Hundred array (subdivided into four 25 squares according to the “power of five”)
and “cover card” for showing numbers from 1 to 100 (Fig. 9).



176 8 Standard Number Representations in the Teaching of Arithmetic

Fig. 9 Hundred chart with cover card

• Bar/dot representation: As a shorthand notation, bars are used for tens and dots
for ones (Fig. 10).

Fig. 10 Bar/dot representation

Fig. 11 Dot array

• Dot arrays: These arrays are used for representing products (Fig. 11).
• Hundred array and “angle card” for representing products (Fig. 12).
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Fig. 12 Hundred array and angle card

• Multiplication grid: The subdivision of dot arrays by a line or a cross gives rise
to a shorthand notation for computing products according to the distributive law
(Fig. 13).
The multiplication grid is very useful when it comes to calculating products of
larger numbers.

Fig. 13 Multiplication grid

• Multiplication system (big version 90cm× 120cm): Systematic overview of the
multiplication table where the products are represented as strings of circles.

• Multiplication chart (big version 90cm × 120cm), structure analogous to the
Addition chart (Fig. 14).
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Fig. 14 Multiplication chart

Grade 3:

• Thousand array (Wittmann and Müller 1992, p. l 0): 10 copies of the hundred
array in linear order. This array is useful for representing numbers and for sup-
porting calculations (Fig. 18).

“Decimal System”

Grade 1:

• Twenty frame (Fig. 7)

Grade 2:

• Hundred chart (Fig. 15)
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Fig. 15 Hundred chart

Grade 3:

• Square/bar/dot representation of numbers (Fig. 16)

• Place value chart and counters (Fig. 17)

Fig. 16 Square (bar/dot representation

Fig. 17 Place value chart and counters



180 8 Standard Number Representations in the Teaching of Arithmetic

• Thousand book (Wittmann/Müller 1990, p. 10, 14ff.)

This teaching aid is a continuation of theHundred chart. It reflects the triadic structure
of the decimal system: 10 unit squares form a line, 10 lines form a page, and 10 pages
form the whole book. Each page is isomorphic to the hundred chart (Fig. 18). The
pages can be folded to make a Leporello (Fig. 18). The back of the Thousand book
shows the Thousand array (Fig. 19)

Fig. 18 Thousand book

Fig. 19 Thousand array
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Grade 4:

• Place value chart and counters with further columns at least up to the million

• Million book: The Thousand book if folded together is a square, like one unit field
of the book itself. With this bigger square, the construction of the Thousand book
is repeated on a higher level: 10 Thousand books (folded to squares) make one
line (10 000), 10 lines make one page (100 000), and ten pages make the whole
Million book. In this book every number from 1 to 1 000 000 has a definite place.
For example, 365 278 is the 278th number in the 366th thousand book.

The construction can be repeated infinitely: The Million book, when folded
together is again a square, 10 squares make a line, 10 lines make a page, 10
pages make the Milliard book, and so forth.

The triadic structure of the place value chart and the series of Thousand book,
Million book, Milliard book, · · · reflect the triadic writing of natural numbers, for
example 423 365 278. Within each triad the calculations are identical.

• Digit cards for digits 0 to 9 (Fig. 20)

Fig. 20 Digit cards

“Standard Algorithms”

Grade 3:

• Place value chart for addition and subtraction

Grade 4:

• Place value chart for division

• Napier’s strips: As a preliminary version of long multiplication a diagram used
in the Middle Ages (written version of Napier’s rods) can be easily derived from
the Multiplication grid (Fig. 21).
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Fig. 21 Napier’s strips

“Number Patterns”

All grades:

• Patterns of counters, dot arrays, place value chart and counters

“Numbers in the Environment” and “Arithmetic as a
Language”

Over the grades:

• Yardsticks, square metre (made of paper), cubic metre (made of wooden rods),
clocks, calendars, money, scales and weights, measuring vessels.

4 Some Teaching Units

The following brief sketches of teaching units developed in the project Mathe 2000
are to indicate how standard number representations can serve as tools for the learner
in mathematizing, discovering, reasoning and communicating during the entire pro-
cess of active and social learning.

It should become clear that the students enjoy all freedom in using the manipu-
latives, including the freedom not to use them, in other words, that standard repre-
sentations do not necessarily involve standard ways of teaching and learning. On the
contrary: If freed from a didactic system, standard representations, which by their
very design are related to fundamental mathematical ideas, greatly contribute to a
stable learning environment and stimulate the learning process in the same way as a
rich and stable language environment in early childhood fosters the process of lan-
guage acquisition. As convincingly shown by Dewey (1976) a learning environment
carefully grounded on the subject matter of teaching is even a pre-condition for the
success of open learning processes.
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The following descriptions indicate the potential of the unitswhich in real teaching
is only rarely exhausted. The units can be used very flexibly and leave much room
for natural differentiation. For further details the reader is referred to the “Handbook
of Practicing Skills in Arithmetic” (Wittmann/ Müller 1990, 1992).

4.1 The Twenty Frame and the Addition Table (Grade 1)

In opposition to the traditional method the (open) number space 1 to 20 is introduced
as a whole at the beginning of grade 1 fairly quickly and considered in several
rounds from different sides. Similarly, the addition table is studied in a holistic way.
After considering “additive situations” in the environment and eliciting children’s
spontaneous addition strategies, a first systematic study of the addition table is built
upon the Twenty frame. Children can represent and solve addition tasks in different
ways. In principle there are no prescribed methods. It is only by trying different
placements and groupings of counters, by changing counters and by discussions
in small groups or in the class that the individual child will discover relationships
and learn to use them according to his or her personal preferences in mastering the
addition table. Of course the “power of five” will be experienced by all children
as a very useful strategy which, however, is to be used flexibly. The Twenty frame
supports this strategy.

For example, let us consider the task 7+ 5.

Representation A (Fig. 22): 7 red counters are placed in the first row, 5 blue ones in
the second one. The two fives on the left side are grouped together to make 10.

Fig. 22 First solution of 7+ 5 with the twenty frame

Representation B (Fig. 23): Again 7 red counters are placed in the first row, 3 of 5
blue counters fill the first row and leave two counters for the second row. This is the
traditional “transition beyond ten”.

Fig. 23 Second solution of 7+ 5 with the twenty frame
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Representation C (Fig. 24): One red counter is translated to the second row. Before
calculating the task 7+ 5 is changed into 6+ 6, a task with the same result which,
however, is easier for many children.

Fig. 24 Third solution of 7+ 5 with the twenty frame

It should bementioned that this approach to the addition table via theTwenty frame
is essentially identical with the approach suggested byTreffers via the arithmetic rack
(cf., Gravemeijer 1994, 71–72).

4.2 Multiplication Chart (Grade 2)

This poster is used for a systematic study of the operative relationships between mul-
tiplication tasks. From the rich source of activities, a unit for practicingmultiplication
facts combined with discovery and proof is chosen.

The students are asked to calculate the following pairs of tasks on the Multipli-
cation chart:

1 · 1 = , 2 · 2 = , 3 · 3 = , 4 · 4 = , 5 · 5 = . . . 10 · 10 = .
1 · 3 = , 2 · 4 = , 3 · 5 = , 4 · 6 = . . .

Most children will find out that the results of each vertical pair differ by 1. Some
will discover the missing partners of the first and the last task in the first row (0 · 2
and 9 · 11) and state that the difference is again 1.

By means of counters children can be guided to look at special cases and to find
an operative proof why the difference must be 1 (Fig. 25). For example, the pattern
of 5 · 5 has one row, that is 5 counters, more than the pattern of 4 · 6. The latter has
one column, that is 4 counters, more than the former. Therefore 5 · 5 must be 1 more
than 4 · 6. The same operations can be applied to other patterns. Stimulated by this
operative series, students can investigate other adjacent pairs of rows or columns on
their own and look for similar relationships.



4 Some Teaching Units 185

Fig. 25 Number pattern

4.3 An Introduction into the Thousand Book (Grade 3)

“Introducing” the Thousand book means to have the children explore its structure
without predetermining objectives. At the beginning of the unit, each child gets a
personal copy of the book and is stimulated to think about it. After some time the
children are asked to report on their ideas. For the teacher this “local finding” yields
valuable information for further teaching.

If the question “Why is the Thousand book called a’book’?” is not asked sponta-
neously by the children, the teacher has to pose it and to make sure that the students
become aware of the “lines” and “pages”.

A good stimulation for a deeper exploration is the following suggestion:
“Find tasks with the result 1000 and write them down on a sheet of paper!” This open
problem allows for “natural differentiation”. Some children stick to simple problems
like 500+ 500, 600+ 400, 999+ 1. Others find tasks like 10 · 100, 50 · 20 or 40 · 25
and go beyond 1000, for example 10000− 9000 = 1000.

Another good problem for studying the back of the Thousand book, the Thousand
array, is to divide 1000 (“smarties”) among 2, 3, 4, . . ., 10 children.

This introductory unit shows very clearly that the structure of the number space
1 to 1000 is not “taught” in the traditional sense. It is “learned” through exploring
problems related to its structure. During the exploration there is plenty of room for
students’ own initiative and choice.

4.4 “Always 22” (Grade 3)

This unit is based upon the following rule:

(1) Select three digit cards from the nine cards 1, . . . , 9 (for example 2, 4, 7)
(2) Form all possible two-digit numbers (24, 27, 42, 47, 72, 74) and add them

(24+ 27+ 42+ 47+ 72+ 74 = 286)
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(3) Divide this sum by the sum of the three selected digits

(2+ 4+ 7 = 13, 286 : 13 = 22)

There are many (84) triples of digits, and different children will make different
choices. The more surprising is the fact that independently of the selected digits
the result of the division task is always the number 22 (giving the unit its name)—
provided the calculations are correct.

For one case the explanation of this observation is easy, namely when the sum of
digits is exactly 10 (for example for the digits 2, 3, 5). Representing the numbers in
the place value chart shows how the sum of digits is related to the sum of numbers:
The sum of digits appears twice in the Ones column and twice in the Tens column.
Division by the sum of digits necessarily yields 2 tens and 2 ones, that is 22. The
same patterns occurs with other triples.

Again we have an example where standard representations are powerful enough
to establish a proof.

4.5 Place Value Chart (Grade 4)

A good activity for the operative study of the place value chart is provided by the
following problem: Which numbers can be represented by 3 (or 2, 1) counters on a
place value chart with four columns?

Children can explore this problem more or less systematically. It is not necessary
that all children discover all 20 possible numbers. However, if the children are told
that there are in all 20 numbers, there is a good chance that the class as a social body
will find them all. It is a nice activity to order them (and to determine the differences
of adjacent numbers, particularly if the problems with 2 counters and 1 counter have
been solved previously).

In the Mathe 2000 curriculum this combinatorial problem does not come out of
the blue but is part of a strand of combinatorics running from grade 1 to 4. In grade
3 the present problem is prepared by the corresponding problem for the place value
chart with three columns.

In grade 1 the children investigate how many different Easter nests can be found
with 3 (4) eggs where for the eggs the colors red, blue and yellow are available. These
problems are structurally isomorphic to the problems with the place value chart.

In grade 2, 3 and 4 the children determine the number of different shortest ways
in a grid from one vertex to another one with a certain distance (measured in the grid
metric).
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5 Conclusion

The design of a curriculum is only half of theway to reshapingmathematics teaching.
In order to get deeper insights into the teaching and learning ofmathematics empirical
research on a large scale is needed. The research findings will certainly give rise to
re-working, modifying and refining the design. In this sense design depends very
much on empirical research. But the reverse is equally true. Good design is also a
pre-condition for productive empirical research as rich learning environments are
much more likely to yield substantial results.

The author is convinced that because of this interdependence of design and empir-
ical research a systematic cooperation between instructional designers and empirical
researchers, grounded on a solid theoretical basis, will open a new chapter in the
development of mathematics education as a discipline.

Acknowledgements The author is indebted to Adrian J. Pinel,Wilhelm Schipper andAdri Treffers
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Chapter 9
Developing Mathematics Education
in a Systemic Process

The aim of this paper is to make a concrete proposal for bridging the gap between
theory and practice in mathematics education and for establishing a systemic rela-
tionship between researchers and teachers as well as to explain the background and
the implications of this proposal.1

1 Bridging the Gap Between Theory and Practice: The
Role of Substantial Learning Environments

You cannot fail if you follow the advice the genius of human reason whispers in the ear of
each new-born child, namely to test thinking by doing and doing by thinking.

J.W. von Goethe

In Guy Brousseau’s book “Theory of Didactical Situations in Mathematics” the
scene is set with a teaching example, the “race to 20”, which is based on a game of
strategy (Brousseau 1997, 3–18). In a somewhat modified version this game can be
described as follows (cf. Fig. 1).

Fig. 1 Plan for the game “The race to 20”

1Plenary Lecture at the 9th International Congress on Mathematical Education (ICME 9)
Makuhari/Japan, July 31–August 6, 2000. The paper was prepared during a sabbatical leave at
the University College Chichester/England. The author is indebted to Afzal Ahmed, Brian Grif-
fiths, Honor Williams and Heinz Steinbring for critical comments. The author also would like to
express his gratitude to Jerry P. Becker whowas one of the very firstWestern mathematics educators
to recognise the impact of research conducted by Asian mathematics educators. Since the seventies
Jerry Becker has been providing first hand information about the Japanese approach to mathematics
education which has greatly influenced the author’s research.
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A line of circles is numbered from 1 to 20. The first player starts by putting 1
or 2 counters on the first circle or the first two circles, the second player follows
by putting 1 or 2 counters on the next circles similarly. Continuing in this way the
players take turns until one of them arrives at 20 and in doing so wins the game.

The “race to 20” helps to corroborate basic arithmetical ideas (relationships of
numbers on the number line, addition, repeated addition). It is also a rich context for
general objectives of mathematics education (exploring, reasoning and communicat-
ing) and a typical example of the fundamental principle of “learning by inquiry”. If
children analyse the moves backwards they recognise that the positions 17, 14, 11,
8, 5 and 2 are winning positions. So the first player has a winning strategy: In the
first move she puts down two counters and then responds to a 2-counters move of the
second player with a 1-counter move and to a 1-counter move of her opponent with
a 2-counters move. In this way the first player jumps from one winning position to
the next one and finally arrives at 20.

There are many variations of this game: Any natural number can be chosen as the
target, and the maximal number of counters to be put down on every move can be
increased. In fact we have a whole class of games of strategy before us which require
a continuous adaptation of the strategies used.

The basic ideas of analysing these games can be generalised to the wider class of
finite deterministic games of strategy for two persons with full information which
cannot end in a draw: by means of the game tree and the marking algorithm one can
prove that for each of these games there exists a winning strategy either for the first
or the second player.

As mentioned in Brousseau’s book the “race to 20” was reproduced 60(!) times
under observation and each of its phases was the object of experimentation and
clinical study. Based on a variety of other teaching examplesBrousseau developed his
theory of didactical situations. In the research context “aspects of proving” Galbraith
(1981) studied students’ psychological processes in their attempts to uncover the
structure underlying the “race to 25.”

The “race to 20” and its variations represent what has been called a substantial
learning environment, an SLE, that is a teaching/learning unit with the following
properties (Wittmann 1995, 365/366):

(1) It represents central objectives, contents and principles of teaching mathematics
at a certain level.

(2) It is related to significant mathematical contents, processes and procedures
beyond this level, and is a rich source of mathematical activities.

(3) It is flexible and can be adapted to the special conditions of a classroom.
(4) It integrates mathematical, psychological and pedagogical aspects of teaching

mathematics, and so it forms a rich field for empirical research.

The concept of an SLE is a very powerful one. It can be used to tackle successfully
one of the big issues of mathematics education which has become more and more
urgent and which is of crucial importance for the future of mathematics education
as a discipline: the issue of theory and practice. Fortunately, for some years now this
issue has been more and more recognised and addressed by mathematics educators.
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Referring to the recent ICMI Study “Mathematics Education as a Research Domain”
(Sierpinska and Kilpatrick 1998) Ruthven stated that there is a wide gap between
the scholarly knowledge of researchers on the one hand and the craft knowledge of
teachers on the other hand, and argued in favour of a re-orientation of mathematics
education:

While most of the contributors identify the development of knowledge and re-sources capa-
ble of supporting the teaching and learning of mathematics as an important goal for the field,
there is disappointment with what has been demonstrated on this score.

(Ruthven, 2001)

A claim similar to Ruthven’s was made by Clements and Ellerton for the South East
Asian and by Stigler and Hiebert for the American context:

From our perspective, at the present time mathematics education needs less theory-driven
research, and more reflective, more culture-sensitive, and more practice-orientated research
which will assist in the generation of more domain-specific theory.

(Clements and Ellerton 1996, 184)

Perhaps what teachers are told by researchers to do makes little sense in the context of an
actual classroom. Researchers might be very smart. But they do not have access to the same
information that teachers have as they confront real students in the context of real lessons
with real learning goals . . . It is clear that we need a research-and-development system for
the steady, continuous improvement; such a system does not exist today.

(Stigler and Hiebert 1999, 126–127)

This criticism can be extended: for teachers’ decision-making the logical and episte-
mological structure of the subject matter is at least as important as are psychological,
social or more general aspects of learning and teaching. However, in the mainstream
of current research in mathematics education this very structure has not received the
attention it deserves. Therefore the gap between theory and practice is also due to a
gap between mathematics on one side and mathematics education on the other side.
This gap is particularly obstructive to progress in reforming mathematical education
as the epistemological structure of the subject matter contains psychological and
social aspects at least implicitly while the converse does not hold.

Of course the issue of relating theory and practice to one another is not specific for
mathematics education. In all fields we have, at one extreme, mere “doers” who act
in a pragmatic manner, who don’t see any point in worrying about theory and who
even think of theory as a threat to practice. At the other extreme are mere “thinkers”
who develop analyses and theories with no grounding in practice and without caring
for practical implications and applications.

In tackling the issue of theory and practice a superficial re-arrangement of the
field is not sufficient. If we seriously want to establish links between theory and
practice a fundamental change is needed. For systemic reasons it is highly unlikely
that theories which have been developed independently of practice can be applied
afterwards:

The developing theory of mathematical learning and teaching must be a refinement, an
extension and a deepening of practitioner knowledge, not a separate growth
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as stated by Alan Bell in the mid-eighties (Bell 1984, 109).
Therefore in order to organise a strong and lasting systemic interaction between

theorists and practitioners we have to look for some common core in which theory
and practice aswell asmathematics andmathematics education inseparably permeate
one another. Substantial learning environments can serve this purpose quite naturally
(cf., Wittmann 1984; Wittmann 1995/1998). Accordingly, the main proposal of this
paper is as follows (see Fig. 2which is an extension of a diagrampresented inRuthven
2000):

Thedesignof substantial learning environments around long-termcurricular
strands should be placed at the very centre ofmathematics education. Research,
development and teacher education should be consciously related to them in a
systematic way.

Fig. 2 The role of substantial learning units in connecting the teaching practice with research

This proposal is supported by encouraging experiences which have been made in
various projects around the world. Prominent examples are the work of the British
Association of Teachers of Mathematics in the sixties (cf., Fletcher 1965; Wheeler
1967), the prolificDutchWiskobas project and its follow-up projects conducted at the
Freudenthal Institute, and the systematic work of Japanese mathematics educators
(cf., Shimada and Becker, 1996). These projects show what an important role SLEs
can play for both researchers and practitioners: as common points of reference, as
knots in the collective memory, and as stimuli for action. The proposal reflects a
certain understanding of the particular nature of the system of education which will
be examined in the next section.
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2 (Burst) Dreams

Variety can only be absorbed by variety.

Ross Ashby

It is not by chance that development projects based on SLEs have been successful in
changing mathematics teaching as well as in changing teachers’ attitudes: in these
projects fundamental systemic conditions have been taken into account. This will be
explained inmore detail by referring to three dreams that were dreamt by a prominent
philosopher, a prominent mathematician and a prominent educator. These dreams
have been selected because they capture the non-systemic tradition of teaching and
learning which must be fully recognised in order to be overcome.

2.1 Descartes’ Dream

In 1619 the young René Descartes (1596–1650) had a vision of the “foundations
of a marvellous science”, on which he elaborated later in several writings, particu-
larly in his Discourse on the method of properly guiding the reason in the search
of truth in the sciences (Descartes 1637). Basically this method consisted of a few
rules by which the mind can arrive at more and more complete descriptions of real-
ity. In modern words the method was a totalitarian programme for mathematising
reality. By separating the thinking mind, the res cogitans, from the world outside,
the res extensa, Descartes established a sharp split between man and his environment
which later on became a fundamental ideology of Western thinking. Already before
Descartes Francis Bacon (1561–1626) had formulated the inductive method of sci-
ence and summarised its technological use in the slogan “Knowledge is Power”. So
from the very beginning Descartes’ dream of arriving at a complete description of
the environment was accompanied by the dream of controlling and making use of
it. The “Cartesian system” of philosophy, as it was called later, has paved the way
for an unrestrained mathematisation, control and also exploitation of more and more
parts of our natural and social environment. In our time the availability of computers
has accelerated this process (cf. Davis and Hersh 1988). “Benchmarking”, “control-
ling”, “evaluation”, and “assessment” have become key notions in the management
hierarchies of economics and administration.

2.2 Hilbert’s Dream

At the turn to the 20th century the very science in which Descartes wanted to ground
truth, mathematics, was fundamentally shaken by the discovery of inconsistencies
within Cantor’s set theory. Among those mathematicians who were particularly
alarmed was David Hilbert. In order to defend “the paradise”, which, in his eyes,
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Cantor had created, he started the so called “finitistic programme” bywhich he hoped
to prove the consistency and infallibility of mathematical theories once and for all
(Hilbert 1926). Although Hilbert’s dream burst already in 1930 when Gödel proved
his incompleteness theorem, the formalistic setting of Hilbert’s programme has sur-
vived and turned into an implicit theory of teaching and learning. Interestingly, the
Bourbaki movement which set formal standards in mathematics up to the seventies
started in the mid-thirties from a discussion about how to teach analysis. Also in this
day and age the belief in formal precision as a necessary if not sufficient means to
manage teaching/learning processes is still widespread among mathematicians and
non-mathematicians. The Mathematically Correct movement, at present one of the
most aggressive pressure groups in the U.S., is a horrifying example.

2.3 Comenius’ Dream

Johann Amos Comenius (1592–1670) is well-known as one of the founding fathers
of didactics. His famous book “Great Didactic” published in 1657 was the first
comprehensive work on teaching and learning. In many respects Comenius was far
ahead of his time. For example, he was among the first to project a plan of universal
education and to see the significance of education as an agency of international
understanding. In one respect, however, he was a child of his time. Deeply impressed
by Bacon’s visions of a technological age and by the efficiency of newly invented
machines, he was obsessed by the idea of transposing the functioning of machines
to the functioning of teaching. In the Chaps. 13 and 32 of the “Great Didactic” he
states:

The art of teaching, therefore, demands nothing more than the skilful arrangement of time,
of the subjects taught, and of method. As soon as we have succeeded in finding the proper
method it will be no harder to teach school-boys, in any number desired, than with the help
of the printing-press to cover a thousand sheets daily with the neatest writing . . . The whole
process will be as free from friction as is the movement of a clock whose motive power is
supplied by the weights. It will be as pleasant to see education carried out on my plan as to
look at an automatic machine of this kind, and the process will be as free from failure as are
these mechanical contrivances, when skilfully made . . . Knowledge can be impressed on
the mind, in the same way that its concrete form can be printed on paper. (Comenius 1910,
96–97, 289)

Comenius’ dream has been dreamt over the centuries in ever new forms and is still
present in some corners of cognitive science and education, including mathematics
education, as various forms of “direct teaching” and “hard science”-like methods of
research demonstrate (cf., for example, Begle 1979).

Also a certain tendency within the research community to consider teachers as
mere recipients of research results is clearly related to Comenius’ dream:

I suspect that if teachers are mainly channels of reception and transmission, the conclusions
of research will be badly deflected and distorted before they get into the mind of pupils. I am
inclined to believe that this state of affairs is a chief cause for the tendency . . . to convert
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scientific findings into recipes to be followed. The human desire to be an “authority” and
to control the action of others does not, alas, disappear when a man becomes a researcher.
(Dewey, 1929/1988, 24)

2.4 The ‘Systemic-Evolutionary” Versus the
“Mechanistic-Technomorph” Approach to the
Management of Complexity

It may seem as too far-fetched to look at Descartes, Hilbert and Comenius from
the point of view of modern systems and management theory. However, there is a
good reason to do so, for the three dreams, as different as they may appear, share
a common feature: They reflect the self-concept of individuals who perceive them-
selves as standing on a higher level and as equipped with the capacity to gather
complete information about some field and to use this information for bringing this
field under control. The Swiss management theorist Malik has called this attitude
the “mechanistic-technomorph approach to the management of complexity” and
described it as follows:

The paradigm [underlying this approach] is the machine in the sense of classical mechanics.
Basically, a machine is constructed according to a given purpose and to a given plan, and
its function, reliability and efficiency depend on the functions and the properties of its
elementary components . . . The technological success which has been achieved by following
this paradigm is overwhelming, and gave rise to the belief in its unlimited applicability far
beyond the engineering disciplines. . . . The paradigm includes the firm conviction that
no order whatsoever which corresponds to human purposes can be brought about without
following this paradigm. (Malik 1986, 36 ff., transl. E.Ch.W.)

During the past decades another paradigm has been taking ground, based on the
fact that biological and social organisms are far too complex in order to allow for a
“mechanistic-technomorph” description and control fromoutside. In order to achieve
certain goals with living systems a fundamentally different approach is appropriate:

The systemic-evolutionary approach [to the management of complexity] starts from quite
different assumptions. Its basic paradigm is the spontaneous, self-generating ordering exem-
plified best by the living organism.Organisms are not constructed, they develop. Spontaneous
orderings develop also in the social domain. They arise bymeans of and as the result of human
actions, but they do not necessarily correspond to preconceived intentions, plans or goals.
Nevertheless they can be highly rational. (Malik 1986, 38 ff, transl. E.Ch.W.)

According to the systemic-evolutionary paradigm the only reasonable and feasi-
ble way of influencing and guiding a social system is to interact sensibly with the
self-organising powers inside the system. Recommendations and instructions from
outside which do not fit into the internal processes of the system are, at best, useless.
If, in addition, a minute control is exerted from the outside, the development of spon-
taneous powers inside the system is suppressed, and this undermines its efficiency.
A system without a proper infrastructure is not able to interact adequately with a
complex environment: variety can only be absorbed by variety.
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The systemic-evolutionary approach to the management of complexity has been
developing in Western philosophy only during the last decades. So it is even more
astounding that it has emerged inAsiamore than 2000years earlierwhenLaoTzu and
ChuangTzu founded the philosophy of taoism. The basicmaximof taoism for leaders
is “wu wei”. This means: leaders should not interfere with the natural powers and
inclinations of their clients, but should instead build upon self-organisation and offer
help for self-help. It is the present author’s hope that the Asian societies will succeed
in preserving the systemic-evolutionary thinking as a precious heritage from their
past while it is spreading only slowly and with great difficulties in Western societies
which are still in the claws of deeply rooted mechanistic-technomorph patterns of
thinking and action.

3 Consequences for Mathematics Education

A little child needs no famous teacher to learn to speak. He or she learns to speak sponta-
neously in the company of people who can speak.

Chuang Tzu

Individual students, individual teachers, classrooms, staffs, school districts, states,
countries: all are living organisms and therefore highly complex systems.Beyond any
political or educational ideologies the following systemic conclusions can be drawn
just from the natural law of the inherent complexity of these systems:

1. Learning unfolds best if the spontaneous powers of all involved are brought to
bear and encouraged, and if autonomy and self-responsibility are developed.

The inevitable results of—possibly well-intended—straitjacket schemes of teaching,
assessment and accountability are “over-standardisation, over-simplification, over-
reliance on statistics, student boredom, increased numbers of dropouts, a sacrifice
of personal understanding and, probably, a diminution of diversity in intellectual
development.” (Stake 1995a, 213).

2. The traditional borderline between the researcher on one side and the teacher on
the other side has to be abandoned. Research has to build upon the spontaneous
powers of teachers in the sameway as teaching has to build upon the spontaneous
powers of students.

Donald Schön described this new relationship between theorists and practitioners
very convincingly in his book The Reflective Practitioner (Schön 1983, 323):

In the kinds of reflective research I have outlined, researchers and practitioners enter into
modes of collaboration very different from the forms of exchange envisaged under the model
of applied science. The practitioner does not function here as a mere user of the researcher’s
product. He reveals to the reflective researcher the ways of thinking that he brings to his
practice, and draws on reflective research as an aid to his own reflection-in-action.

3. At all levels the traditional hierarchies have to be transformed into networks of
co-operation and mutual support.
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A good account of what this means in different contexts is given in Burton 1999.
Although the “mechanistic-technomorph” paradigm of management is still dom-

inant in all fields of society around the world, the awareness of the systemic nature
of teaching and learning is steadily growing. As far as research and development
in mathematics education are concerned there are already innovative research pro-
grammes which follow the new paradigm with remarkable success, for example
developmental research (Freudenthal 1991; Gravemeijer 1994), Guy Brousseau’s
theory of didactical situations (Brousseau 1997), the Japanese lesson studies (Stigler
and Hiebert 1999, Chap.7), and action research (cf. Ahmed and Williams 1992;
Clements and Ellerton 1996, Chap.5).

The impact of these research programmes on practice rests on the fact that they are
systematically focused on the design and empirical research of SLEs. A firm basis
for a systemic researcher-teacher-interaction for “SLE studies” is thus provided, as
illustrated by the following examples.

Example 1 In German primary schools the traditional approach to arithmetic in
grade 1 has been to introduce the number space 1–20 step by step: The first quarter
of the school year is restricted to the numbers 1–6, the second quarter to the numbers
1 to 10. The third quarter is open to numbers 1 to 20, however, tasks like 7+ 5, in
which the 10 has to be bridged, are postponed to the last quarter of the school year.
Moreover, children are expected to follow the arithmetic procedures given by the
teacher.

In the project Mathe 2000 this traditional approach was challenged and replaced
by a holistic approach: The open number space 1 to 20 is introduced fairly quickly
as one whole, children are encouraged to start from their own strategies and are not
restricted to just one procedure. This new approach was formulated and published
as a connected series of SLEs in a handbook for practising skills (Wittmann and
Müller 1990; Grade 1: Chaps. 1–3). It was based on a systematic epistemological
analysis of arithmetic, on inspirations from the developmental research conducted at
the Freudenthal Institute (cf., Treffers et al. 1989/1990; Van den Heuvel-Panhuizen
1996) and on the intuitions of the designers. It was not based on empirical research
conducted by professional researchers. Empirical studies, which confirmed the holis-
tic approach, came only later (cf. Selter 1995; Hengartner 1999). Thus teachers were
the first to try it out in their practice and they found that it works better than the
traditional approach. Through the existing networks of teachers this new approach
has spread widely in a remarkably short period of time. An innovative textbook is
presently available (Wittmann andMüller 2000), based on the holistic approach, and
its wide acceptance by teachers has convinced authors of traditional textbooks to
modify their approach.

From the systemic point of view the success of this innovation is not surprising:

Onemight ask the general questionwhether, in the present state of our knowledge aboutmath-
ematical education, we should progress faster by collecting “hard” data on small questions,
or “soft” data on major questions. It seems to me that only results related to fairly important
practitioner questions are likely to become part of an intelligent scheme of knowledge . . .
Specific results unrelated to major themes do not become part of communal knowledge. On
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the other hand, “soft” results on major themes, if they seem interesting and provocative to
practitioners, get tested in the myriad of tiny experiments which teachers perform every day
when they “try something and see if it works”. (Bell 1984, 109)

Example 2 The second example is an SLE from the Japanese “open-ended
approach”. This unit was thoroughly researched before it was published (Hashimoto
1986; Hashimoto and Becker 1999). Its guiding problem is the so-called “matchstick
problem”: Children are shown a linear arrangement of squares (Fig. 3) and asked to
find out how many matchsticks are needed to build 5, 6, 7 or more squares.

Fig. 3 The matchstick problem

There is a great variety of counting strategies to solve this problem. After having
discussed the various solutions, children determine the number ofmatchsticks needed
for other numbers of square, and try to find a general formula. In a similar way
arrangements of matchsticks with more rows can be studied. Based on these concrete
examples fundamental counting principles of combinatorics can be extracted, for
example the addition principle and the principle of multiple counting (cf., Schrage
1994).

Systematic lesson studies of the matchstick problem provided exactly the profes-
sional knowledge teachers need in order to teach this unit successfully. The match-
stick problem has then been included in a textbook (Seki et al. 1997, 117–118).

Stigler/Hiebert comment on the impact of lesson studies as follows:

The knowledge contained in these reports . . . is not made up of principles devoid of specific
examples or examples without principles. It is theories linked with examples. This knowl-
edge is notable in several respects. First, theoretical insights are always linked with specific
referents in the classroom. When a lesson-study group reports, for example, that one of
its hypotheses has been supported, it is never outside the context of a specific lesson with
specific goals, materials, students, and so on, all of which would be described in the report.
(Stigler and Hiebert 1999, 163)

Example 3 A third example is provided by Heinz Steinbring’s empirical research
on the interplay between the epistemological structure of the subject matter and
psychological and social factors (cf., for example, Steinbring 1997). Although highly
theoretical, his research is strongly related to SLEs which are part of the current
teaching practice. So the applicability of the research results is guaranteed from the
very outset.
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4 Substantial Learning Environments for Practising Skills

What counts is not memorising, but understanding, not watching, but searching, not receiv-
ing, but seizing, not learning, but practising.

A. Diesterweg

Focusing mathematics education on substantial learning environments involves
the risk that must be clearly recognised in order to be avoided: substantial mathe-
matics is fundamentally related to mathematical processes such as mathematising,
exploring, reasoning and communicating. These are higher order thinking skills.
Emphasising them can easily lead to neglecting basic skills, in particular at a time
when efficient calculators and computers are available. Basic skills also tend to be
neglected for another reason: to a large extent traditional ways of teaching math-
ematics consisted of prescribed procedures and their stereotyped practice. In their
eagerness to get rid of “teach them and drill them”routines in favour of “construc-
tivist”ways of learning and teaching reformers easily get trapped: they tend to identify
practice with stereotyped practice, and by abolishing stereotypes they are likely to
do away with the practice of skills at all.

As the mastery of basic skills is an indispensable element of mathematical com-
petence we have to find ways how to integrate the practice of skills into substantial
mathematical activities. This is not an easy task, as stated, for example, by Ken Ross:

. . . drills of important algorithms that enable students to master a topic, while at the same
time learning the reasoning behind them, can be used to great advantage by a knowledgeable
teacher. Creative examples that probe students’ understanding are difficult to develop but
are essential. (Ross 1998, p. 253)

The following example of an SLE (cf.Wittmann andMüller 1990, grade 2, Chap.3.3)
illustrates how the practice of a basic skills and the development of higher order skills
can be combined. The example refers to an area of arithmetic which is notorious for
drill and practice: the multiplication table.

The epistemological structure of the unit is unfolded in a heuristic manner as this
is the best way to capture the potential of an SLE for both teaching and research (see
also Sect. 5.1).

The rule on which the unit is based is very simple: With two arbitrarily chosen
pairs of consecutive numbers two calculations are performed: one “top down,” the
other one “crosswise” (Fig. 4).

Fig. 4 Multiplying “top down” and “crosswise”
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After sufficiently many calculations with numbers chosen by the children them-
selves a pattern is recognised: The result obtained “top down” seems always ‘1 bigger
than the result obtained “crosswise”. Children who have found pairs for which this
relationship does not hold will spot some mistake in their calculations.

In trying to explain the pattern children have to go back to the meaning of mul-
tiplication: 3 · 6 means 6+ 6+ 6, 4 · 7 means 7+ 7+ 7+ 7, etc. So 3 · 6+ 4 · 7
contains one 7 more and one 6 less than 3 · 7+ 4 · 6 which gives it an advantage of
1 (Fig. 5).

Fig. 5 Comparing the results

Of course the standard proof of this relationship is an algebraic one employing
variables which are not available in grade 2. But variables are not needed at this level,
the argument used above is absolutely appropriate. As a next step the distributive law
can bemademore explicit. For example, 3 · 6+ 4 · 7 can be written as 3 · 6+ 3 · 7+
7 and comparedwith 3 · 7+ 4 · 6written as 3 · 7+ 3 · 6+ 6. This pre-algebraic form
is an excellent preparation for algebra in higher grades. As is typical for substantial
learning environments the activity can be extended: Instead of pairs of consecutive
numbers pairs of numbers which differ by 2, 3 or any other number can be chosen.
In Fig. 6 the differences are 2.

Fig. 6 First modification of the problem

The differences can also be mixed (Fig. 7).

Fig. 7 Second modification of the problem
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From these examples a general pattern is emerging: the difference of the results
of the two calculations is the product of the differences of the given numbers. It is
not difficult to generalise the above proof for the introductory case. All one has to do
is to decompose the second product in both calculations according to the distributive
law.

Furthermore: beyond pairs of numbers triples of consecutive numbers (Fig. 8) and
triples with fixed differences can be considered. In this case the “top down” result can
be compared with two other results: one obtained by multiplying cyclically “from
left to right”, the third one obtained by multiplying cyclically from “right to left”. In
this case each triple

Fig. 8 Generalizing the problem

involves nine multiplications. Of course also triples with higher differences can be
studied, and triples with different differences can be mixed as well. Furthermore:
Pairs and triples can be generalised to n-tuples. Also more advanced mathematics
can be employed as the expressions are scalar products of vectors . . .

In grade 2 or 3 only a tiny section of this very substantial learning environment can
be explored. However, this does not reduce its importance for mathematics education
as will be shown in the final section.
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5 Substantial Learning Environments in Teacher
Education

I never force a piece of wood into a salad bowl. It’s a raw material, living and talking.

P. Peeters, Belgian wood artist

Efforts to establish a systemic relationship between theory and practice must
include teacher education as it is in this field that the foundations for being able to act
as a reflective practitioner are laid. SLEs, if properly used, can play a fundamental role
here, too. It is appropriate to discuss didactical and mathematical courses separately
as their positions in teacher education are different.

5.1 Didactics Courses

The use of substantial learning environments is obvious for the didactic education of
student teachers, that is for methods courses. By their very design SLEs offer unique
possibilities for linking theoretical principles to concrete examples. If student teach-
ers leave the university with the intimate knowledge of theory-based learning envi-
ronments they have at their disposal a professional background that will help them
immensely to act as reflective practitioners. As convincingly explained in Chap.6 of
Stigler and Hiebert (1999, p. 85 ff.) teaching is a cultural activity that can only be
understood by becoming active in this culture. For this reason the best way for student
teachers to capture the spirit of a substantial learning environment is to explore its
epistemological structure, to reflect on it in terms of didactic principles, and to test
their anticipations in the light of practical experiences. John Dewey gave a wonder-
ful account of this “laboratory point of view” in his fundamental paper The Relation
of Theory and Practice in Education first published almost 100years ago (Dewey
1976).

In the last few years enormous progress has been made in applying the new
technological possibilities of Multimedia to teacher education (cf. Lampert and Ball
1998). Here SLEs can be of great help in order to identify teaching episodes that
are substantial, mathematically and didactically, theoretically and practically, and
to establish a well-structured and manageable information system that reflects the
contents, objectives and principles of teaching mathematics at the corresponding
level.

5.2 Mathematics Courses

It is a simplematter of fact that around the worldmathematical courses or even whole
programmes often make only little or no sense for student teachers, for various rea-
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sons. Either the relevant subject matter is not covered at all, or the mathematical
substance is stifled by a formalistic style of presentation or, even worse, there is no
substance: mathematics is reduced to conceptual or procedural skeletons. Neverthe-
less, it would be wrong to conclude from meaningless courses that mathematical
courses proper are of no use, in principle, for student teachers, and that the neces-
sary mathematics should better be integrated into courses in mathematics education.
On the contrary, a specific understanding of subject matter is of paramount impor-
tance for teachers as was convincingly explained, for example, by John Dewey in the
paper mentioned above (Dewey 1976). Dewey’s arguments are based on a genetic
perspective. He saw scientific enquiry as a social process and knowledge as a result
of it.

From this perspective Dewey’s emphasis on teachers’ subject matter knowledge
must not be taken as an unconditional support for mathematical courses of any kind
but for courses which meet specific criteria. Courses in the context of specialised
mathematics are perhaps appropriate for prospective mathematicians in industry or
in research. However, from the point of view of mathematics education, it is coun-
terproductive to take such courses as a model for teacher education. To consider
specialised mathematics as something absolute and as a yardstick for the mathemat-
ical training in any other professional context would be a fundamental mistake. It
is a well established fact in the psychology of learning that knowledge cannot be
acquired as a formal structure independently of the context in which it is to be used.
Therefore, what is needed for teacher education is an idea of mathematics in the
educational context, as formulated, for example, by Freudenthal:

The idea of transposing academic mathematics (savoir savant) down to school mathematics
(savoir enseigné) is wrong at its very outset, because the thinking behind this idea is directed
top down and not bottom up. The mathematics to be learned at school by the big majority of
our prospective citizens does not correspond at all to any theories of academic mathematics
from which it could be watered down (didactically or not); at best it corresponds to the
mathematics of scholars who lived centuries ago. The vast majority of our young peoplemust
be prepared to a technological know how (at various levels), not to the special knowledge of
experts. The role of academic mathematics within this technological culture is much more
modest than it has been claimed since a quarter of a century . . . (Freudenthal 1986, transl.
E.Ch.W.)

To postulate a specific conception of mathematics in the educational context has
implications for both contents and methods. Elementary topics which are closely
related to the curriculum are far more important for teachers than advanced topics,
and above all student teachers must experience mathematics as an activity (Freuden-
thal 1973; Wittmann 2001). It is only in this way that they can learn to deal with
elementary mathematical structures in a productive way and to play their role as
reflective practitioners also with respect to contents: SLE studies presuppose a flex-
ible mastery of the content.

In order to make mathematical courses meaningful for teacher education they
should be systematically related to SLEs. By their very definition SLEs are based on
substantial mathematics beyond the school level. Therefore every SLE offers math-
ematical activities for student teachers on a higher level. However, disconnected
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pieces of mathematical islands attached to scattered SLEs do not serve the purpose.
What is needed in teacher education are systematic and coherent courses of elemen-
tary mathematics which cover the mathematical background of a variety of SLEs.
To develop such courses is a challenging problem for the next decade. Within the
project Mathe 2000 a special seriesMathematics as a Process has been started which
is an attempt in this direction (cf., Müller et al. 2002).

Focusing the mathematical education of student teachers on substantial learning
environments can also serve another purpose. At a time when education in general
is in danger of being subordinated to economic purposes and to methods of mass
production, when, as a consequence, mathematics at school is in danger of being
reduced to a toolkit for applications, and teaching is in danger of preparing students
just for passing tests, the following point is crucially important: Student teachers of all
levelsmust experience the aesthetics of a genuinemathematical activity leading to the
creation of structural wholes. The presence of SLEs in the mathematical studies can
contribute to making student teachers aware that mathematics is not a homogeneous
mass that can be cut into arbitrary pieces and forced into instructional schemes.
Mathematical structures are living organisms, and learning processes must follow
their inherent dynamics if learning mathematics is to make a deeper sense.

6 Conclusion

The systemic approach to the management of complexity on which this paper is
based is more than just a scientific paradigm: basically, it is a way of life carried
by an enlightened self-interest and directed towards sustainable development and
co-existence. Therefore it is appropriate to conclude the paper with the systemic
postulates for a future society formulated by Heinz von Foerster, the great master of
systemic thinking (von Foerster 1984):

1. Education is neither a right nor a privilege: it is a necessity.
2. Education is learning to ask questions to which the answers are not known.
3. A is better off if B is better off.
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Chapter 10
The Alpha and Omega of Teacher
Education: Organizing Mathematical
Activities

In future not instruction and receptivity, but organisation and
activity will be the special mark of the teaching/learning process.

Johannes Kühnel (1869–1928)

1 Introduction

The aim of this paper is to describe an introductory mathematics course for primary
student teachers and to explain the philosophy behind it.

The paper is structured as follows: It starts with a general plea for placing the
mathematical training of any category of students into their professional context.
Then the context of primary education in Germany, with its strong emphasis on
the principle of learning by discovery, is sketched. The third and main section of the
paper presents the “O-script/A-script method”, a special teaching/learning format for
stimulating student teachers’ mathematical activities along the principle of learning
by discovery. In Sect. 4 special attention is given to the notion of proof in the context
of primary teacher education. The paper concludes with some observations of how
student teachers evaluate this approach.

2 Mathematics in Contexts

It is a most remarkable phenomenon that the teaching and learning of mathematics
at the university level which was hardly a subject of public discussion in the past is
now attracting world wide attention. The Discussion Document for the ICMI Study
on this topic (ICMI 1997) lists five external reasons for this changing attitude:

1. the increase in the number of students who are attending tertiary institutions;

2. pedagogical and curriculum changes that have taken place at the pre-university level;
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3. the increasing differences between secondary and tertiary mathematics;

4. the rapid development of technology;

5. demands on universities to be accountable.

I would like to add an internal reason and to comment on it: the changing views
about the nature of mathematics. The first three-quarters of this century witnessed
a steady rise of formalism and structuralism culminating in Bourbaki’s monolithic
architecture of mathematics. However, by the end of the seventies this programme
despite its success in some fields of mathematics turned out as a failure as a universal
programme, as did similar structuralistic programmes in other areas, for example
linguistics and architecture. At that time it was widely recognized that in no field of
study could semantics be replaced by syntax. Postmodern philosophy rediscovered
the meaningful context as an indispensable aspect of all human activity, including
mathematical activity. As far as details of the changing views of mathematics are
concerned I refer to Davis and Hersh (1981) and Ernest (1998).

As a consequence,wehave to conceive of “mathematics” not solely as an academic
field of study but as a broad societal phenomenon. Its diversity of uses and modes of
expression is only in part reflected by the kind of specialized mathematics which we
typically find in university departments. I suggest a use of capital letters to describe
MATHEMATICS as mathematical work in the broad sense including mathematics
in science, engineering, economics, industry, commerce, craft, art, education, daily
life, and so forth, and including the customs and requirements specific to these
contexts. Of course, specialized mathematics is a central part of MATHEMATICS.
But mathematicians cannot and must not claim a monopoly for the whole. It is
unjustified to assume that any piece of mathematics would form an absolute body of
knowledge carrying its potential applications in itself. In his paper “The pernicious
influence of mathematics on science” J.T. Schwartz used drastic words to warn
mathematical specialists of applying mathematics to other fields without paying
proper attention to the context (Schwartz 1986).

The consequences for the teaching and learning of mathematics at the university
should be clear: In teaching mathematics to non-specialists the professional context
of the addressees has to be taken fundamentally and systematically into account. The
context of mathematical specialists is appropriate for the training of specialists, not
for the training of non-specialists.

In the present paper the professional context to be considered is teaching mathe-
matics at the primary level. There are mathematicians who look down on this task.
In my view this is a fundamental mistake. The importance of primary mathematics
within MATHEMATICS can hardly be overestimated. After all, it is at this level
where the systematic encounter of children with mathematics begins and where the
points for their whole mathematical education are set. I would like to refer here to
the wisdom of the Tao-te-ching:

Plan difficult things at the very beginning when they are still easy.
Care for big things as long as they are still small.
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Although many elements of the context of primary teacher education are specific the
general approach adopted in this paper might be interesting for developing mathe-
matical courses for other professional fields, too.

3 The Context of Teacher Education

Since the beginning of the 1980s the development of primary education in the
State of North Rhine-Westphalia has exerted a great influence on the other Ger-
man States.1 The boundary conditions for primary mathematics education in North
Rhine-Westphalia are special in two respects:

1. In the first phase2 of their education at the university all primary student teachers
have to study three subjects: German language, mathematics and a third subject
(for example, environmental education, physical education, art, etc.). One of the
three subjects has to be chosen as a major subject (45 credit hours out of the 120
credit hours of the whole 3-year programme). Two other (minor) subjects cover
25 credit hours.3 As a consequence mathematics is compulsory for all primary
student teachers. Roughly 90% of them choose mathematics as a minor subject
(25 credit hours).

2. The syllabus for primary schools (grades 1 to 4) adopted in 1985 marked an
important turning point in the history of public education in Germany. For the
first time the principle of learning by discovery was explicitly prescribed as the
basic principle of teaching and learning (Kultusminister des Landes Nordrhein-
Westfalen 1985, Sect. 3):

The tasks and objectives of mathematics teaching are best served by a conception in which
learning mathematics is considered as a constructive and investigative process. Therefore
teaching has to be organized such that children are offered as many opportunities as possible
for self-reliant learning in all phases of the learning process:

1. starting from challenging situations; stimulating children to observe, to ask questions,
to guess;

2. exposing a problem or a complex of problems for investigation; encouraging individual
approaches; offering help for individual solutions;

3. relating new results to known facts in a diversity of ways; presenting results in a more
and more concise way; assisting to memory storage; stimulating individual practice of
skills;

4. talking about the value of new knowledge and about the process of acquiring it; sug-
gesting the transfer to new, analogous situations.

1With 17 million people Northrhine-Westfalia is the largest German State.
2The first phase (3 years) is followed by the second phase (2 years) which is spent at special
institutions in close proximity of schools.
325 credit hours are for general education (pedagogy, psychology, ...).
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The task of the teacher is to find and to offer challenging situations, to provide children with
substantial materials and productive ways of practising skills, and, above all, to build up and
sustain a form of communication which serves the learning processes of all children.

This emphasis on mathematical processes instead of ready-made subject matter is
visible in other parts of the syllabus, too. For example, the first section “Tasks and
objectives” lists the following four “general objectives” of mathematics teaching:
Mathematizing, Exploring, Reasoning and Communicating. Obviously, these objec-
tives reflect basic components of doing mathematics at all levels. The fourth section
of the syllabus describes in some detail why mathematical structures on the one hand
and applications of mathematics on the other hand are two sides of one coin and
how these two aspects can be interlocked in teaching. The explicit statement of this
complementarity is also novel for German primary schools.

The development of this new syllabus was certainly very much influenced by
similar developments in other European countries, in particular, the Netherlands.
However, there has also been a strong trend towards active learning within German
mathematics education. At the beginning of this century, Johannes Kühnel, one of
the leading figures of progressive education in Germany, wrote his famous book
“Neubau des Rechenunterrichts” (“Reconstructing the Teaching of Arithmetic”) in
which he described the “teaching/learning method of the future” as follows (Kühnel
1954, 70):

The learner will no longer be expected to receive knowledge, but to acquire it. In future
not instruction and receptivity, but organisation and activity will be the special mark of the
teaching/learning process.

Since the late eighties considerable progress has been made in developing practical
approaches and materials for this new conception of primary mathematics teaching
including innovative textbooks (cf. Winter 1987; Wittmann and Müller 1994–1997,
and Becker and Selter 1996). The project Mathe 2000 has played a leading role
in this development. Of course the implementation of these materials depends cru-
cially on the teachers’ ability to abandon the deeply rooted instruction/receptivity
model of teaching and learning in favour of the organisation/activity model. How-
ever, as experience shows, it is not enough just to describe new ways of teaching
in general terms. The natural way to stimulate and to support the necessary change
within the school system is to restructure teacher education according to the organ-
isation/activity model. Only teachers with first hand experiences in mathematical
activity can be expected to apply active methods in their own teaching as something
natural and not as something imposed from outside. Therefore all efforts in pre-
service and in-service teacher education have to be concentrated on reviving student
teachers’ and teachers’ mathematical activity.

Interestingly, the new emphasis on student activity is not restricted to teacher edu-
cation, it is a general phenomenon of the present discussion about teaching mathe-
matics at the university level (cf. the section “Student Activity” in ICMI 1997). More
and more mathematicians are taking special care of stimulating student activities.
Bill Jacob’s “Linear Functions and Matrix Theory” (Jacob 1995) is a good example.
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4 The O-Script/A-Script Method

The traditional pattern of introductory mathematics courses at German universities
is a combination of a 2 to 4 hours per week lecture (“Vorlesung”) on the one hand
and 2 hours of practice (“Übungen”) which take place in groups of about 30 students
on the other hand. I am well aware that expository teaching can be very stimulating
and that work in groups based on good problems can arouse students’ thinking and
communication as well. Nevertheless I contend that grosso modo the lecture/practice
pattern has a strong inherent tendency towards instuction and receptivity: Often the
tasks and exercises offered to students for elaboration requiremainly or evenmerely a
reproduction of the conceptual and technical tools introduced in the lecture. So more
or less students’ individual work and work in groups tends to be subordinated to the
lecture. Frequently, work in groups degenerates into a continuation of the lecture:
The graduate student responsible for the group just presents the correct solutions of
the tasks and exercises.

The lecture/practice format is particularly common in courses for large groups of
students. In fact if you are confronted with numbers of students as large as 400 to
600, as we are in our primary teacher education programme, there is a strong pressure
towards instuction/receptivity, and it is hard to think of alternatives.

However, the more I got involved in developmental research along the lines of
learning by discovery the more I felt the contradiction between the teaching/learning
model which I followed inmymathematical courses and the teaching/learningmodel
which I recommended in my courses in mathematics education.

The O-script/A-script method has been developed as an attempt to mitigate this
cognitive conflict. The basic idea, the Alpha and Omega, of this method is very sim-
ple: Just take Johannes Kühnel literally in teacher education and replace “instruction
and receptivity” by “Organisation and Activity”, that is, use both the lecture and the
group work for organizing student activities.

An essential ingredient of this new teaching/learning format is a clear distinction
between the text written down by the lecturer on the blackboard or the overhead
projector and the text elaborated by the individual student. As the lecturer’s main
task is to organize students’ learning her or his text is called the “O-script”. It is not a
closed text, but it contains many fragments, leaves gaps, and often gives only hints.
Therefore it is a torso to be worked on. As the elaborated text expresses the student’s
individual activity it is called the “personal A-script”.

The regulations of our teacher education programme do not allow for making the
A-script obligatory. However, the A-script can be used as an additional qualification
by students who fail the final test. Experience shows that the majority of student
teachers is willing to write an A-script. How to organize students’ activity in a
lecture? In trying to find an answer to this question I got inspired by two quotations:

We should teach more along problems than along theories. A theory should be developed
only to the extent that is necessary to frame a certain class of problems. (Giovanni Prodi)
The main goal of all science is first to observe, then to explain phenomena. In mathematics
the explanation is the proof. (David Gale)
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Accordingly, I divided the course in two parts: The first part was devoted to
introducing and clarifying a list of 50 carefully selected generic problems which
should be elaborated in the A-scripts. The second systematic part should present a
theoretical framework for these problems, however, based on students’ experiences
in writing the A-scripts. The second part did not differ from ordinary lectures. I think
this format absolutely appropriate at this place of the learning process. Actually, I
don’t see a substitute for it.

The following areas which are closely related to the contents of the primary
curriculum were covered in the course: (1) Place Value Systems, (2) Elementary
Combinatorics, (3) Arithmetic Progressions, (4) Sequences, (5) Elementary Number
Theory.

These areas are rich playgrounds for genuinemathematical activities. By using the
opportunities offered in the course student teachers acquire not only the appropriate
background knowledge which enables them to look at the primary curriculum from
a higher level. They also acquire first-hand experiences in mathematizing, exploring,
reasoning, and communicating.

The 10 problems selected for the area “Arithmetic Progressions” are as follows:

1. (FromButts 1973.) Try to decompose the set {1, 2, 3, ..., n} of the first n natural numbers
into two subsets such that the sum of the numbers in one subset is equal to the sum of
the numbers in the other subset. For which n is this possible? For which n not?

2. Investigate the analogous problem for the set {2, 4, ..., 2n} of the first n even numbers.

3. Investigate the analogous problem for the set {1, 3, ..., 2n − 1} of the first n odd num-
bers.

4. Which numbers can be represented as sums of consecutive numbers?

5. Which numbers can be represented as sums of 2 (or 3, 4, ...) consecutive numbers?

6. In how many ways can 1000 be represented as a sum of consecutive numbers?

7. In how many ways can 1000 be represented as a sum of consecutive odd numbers?

8. From Monday to Friday 60 little lambs were born on a pasture: on Tuesday 3 more
than on Monday, on Wednesday 3 more than on Tuesday, on Thursday 3 more than on
Wednesday, and on Friday 3 more than on Thursday. How many lambs were born on
each day?

Fig. 1 Steinbring’s problem
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9. (From Steinbring 1997). In the scheme of Fig. 1 the number in the circle (the “addi-
tion number”) and the number in the first box (“the starting number”) can be chosen
arbitrarily. The numbers in the other four boxes are calculated inductively according to
the following rule (see the example in Fig. 1): The number in a box is the number in
the preceding box plus the addition number. The numbers in all five boxes are added to
give the final result (the “target”). How to choose the starting number and the addition
number in order to get the target 50? How many solutions do exist? Which numbers
can be obtained as targets?
(In this problem and the next one natural numbers and the number 0 are admitted.)

10. Investigate the same problem for 6 boxes instead of 5.

The list of these 10 problems has been constructed by employing the “method of
generating problems” (Wittmann 1971). So the use of heuristic strategies is ensured.
Problem 8 is taken from a textbook for grade 4, problem 9 from a paper on the
findings of a teaching experiment based on this problem. Therefore student teachers
can see explicit connections with the primary curriculum.4 As these connections
are reinforced in the subsequent maths education course the maths courses become
meaningful for student teachers within their professional context.

In the first part of the course each weekly lecture introduced 5 problems to the stu-
dent teachers for investigation. The problems were explained in full detail and it was
indicated how these problems could be attacked in different ways by using various
“enactive”, “iconic” and “symbolic” representations. Themain heuristic strategies as
described, for example, in Polya (1981), Mason (1982) or Schoenfeld (1985), were
explained by referring to the problems of the course. However, no solutions were
given.

The student teachers had less problems with developing ideas. The real challenge
was how to formulate a coherent text. “What should an A-script look like?” was a
frequent question. So parts of the lecture as well as of the group work had to address
this difficulty. Referring to some examples I indicated in my lectures how the gaps
of the O-script can be filled to get an A-script. In addition, student teachers were
allowed to submit drafts of their A-scripts for critical reading, and could revise them
according to the comments they received.

At the end of the first part of the course the students (at least the brave ones)
had intensively worked on 50 selected problems. Even when they hadn’t solved all
problems properly, they had experienced a variety of mathematical phenomena. This
was a good basis for the theoretical framework developed in the subsequent second
part of the course.

For example, the problems on arithmetic progressions were theoretically framed
by proofs of the sum formula and of the following remarkable theorem by J.J.
Sylvester: The number of representations of a number n as a sum of consecutive
numbers is equal to the number of odd divisors of n.

Both proofs were based on ideas that had been developed by students before.

4After their own work on problem 9 student teachers were shown a video on a teaching experiment
in which a group of 12 fourth graders had found all solutions within 30 minutes.
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Interestingly, the extended work on problems in the first part paid off in the second
part: the course “covered” the same mathematical content as courses in the ordinary
format usually do.

5 Operative Proofs

As stated at the beginning, the basic tenet of the present paper is that themathematical
training of student teachers should reflect their professional context. This requirement
is particularly critical when it comes to proofs.

It should be obvious that the notion of formal proof related to deductively struc-
tured theories is inappropriate or even counterproductive as a background for appre-
ciating “Reasoning” as an objective of primary mathematics. That is not to say, how-
ever, that the notion of proof is irrelevant for primary mathematics. On the contrary.
Fortunately, contemporary views of proof allow for an intellectually honest incorpo-
ration of proof into both primary teacher education and primary teaching. Studies in
the history and philosophy of mathematics have destroyed the long held formalistic
doctrine that the only rigorous form of proof is a formal proof. It has turned out that
the notion of formal proof has its clear limitations, particularly from the point of
view of the practising mathematician (cf., for example, Branford 1913, Hardy 1929,
Thom 1973, Davis and Hersh 1981, Atiyah 1984, Long 1986 and Thurston 1994).
In a letter submitted to the working group on proof at ICME 7, Québec 1992, Yuri I.
Manin expressed his broader understanding of “proof as a journey” very nicely:

Many working mathematicians feel that their occupation is discovery rather than invention.
My mental eye sees something like a landscape; let me call it a “mathscape”. I can place
myself at various vantage points and change the scale of my vision; when I start looking
into a new domain, I first try a bird’s eye view, then strive to see more details with better
clarity. I try to adjust my perception to guess at a grand design in the chaos of small details
and afterwards plunge again into lovely tiny chaotic bits and pieces.

Any written text is a description of a part of the mathscape, blurred by the combined imper-
fections of vision and expression. Every period has its own social conventions, and the
aesthetics of the mathematical text belong to this domain. The building blocks of a mod-
ern paper (ever since Euclid) are basically axioms, definitions, theorems and proofs, plus
whatever informal explanations the author can think of.

Axioms, definitions and theorems are spots in a mathscape, local attractions and crossroads.
Proofs are the roads themselves, the paths and the highways. Every itinerary has its own
sightseeing qualities, which may be more important than the fact that it leads from A to B.

With this metaphor, the perception of the basic goal of a proof, which is purportedly that
of establishing “truth” is shifted. A proof becomes just one of many ways to increase the
awareness of a mathscape.

Any chain of argument is a one-dimensional path in a mathscape of infinite dimensions.
Sometimes it leads to the discovery of its end-point, but as often as not we have already
perceived this end-point, with all the surrounding terrain, and just did not know how to get
there.

We are lucky if our route leads us through a fertile land, and if we can lure other travellers
to follow us.
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In mathematics education this new view of proof has been reflected in many papers
(cf., for example, de Villiers 1997). Based on Semadeni’s and Kirsch’s proposals of
“pre-mathematical” or “pre-formal” proofs (Semadeni 1974; Kirsch 1979), the con-
cept of “operative proof” has been developed (Wittmann 1997). An operative proof
is a proof which is embedded in the exploration of a mathematical problem context
and which is based on the effects of operations exerted thereby on meaningfully
represented mathematical objects.

For this reason operative proofs explain phenomena which were observed before
(cf. Gale’s statement quoted above) and thus they contribute to understanding math-
ematics.

As also non-symbolic representations can be used operative proofs are particu-
larly useful for the early grades and for primary teacher education. I would like to
demonstrate this by giving two examples frommy introductory course on arithmetic.

Example 1 (Infinity of primes) The formal proof of the infinity of prime numbers
runs as follows: Let us assume that the set of prime numbers is finite: p1, p2, . . . , pr .
The number n = p1 p2 . . . pr + 1 has a divisor p that is a prime number. Therefore
n is divisible by one of the numbers p1, . . . , pr . From p|n and p|p1 p2 . . . pr we
conclude that p also divides the difference n − p1 p2 . . . pr = 1. However, p|1 is a
contradiction of the fact that 1 is not divisible by a prime number. Therefore the
assumption was wrong.

The following operative proof of the infinity of primes is based on the represen-
tation of natural numbers on the number line. One of the problems that the student
teachers had to investigate was the determination of primes by means of the sieve of
Eratosthenes. Therefore they knew from their own experience how the sieve works.
Using this knowledge the infinity of primes can be proved just by explaining why
the iterative sieve procedure does not stop: Assume that in finding primes we have
arrived at a prime number p. Then p is encircled and all multiples of p are cancelled.
The product

n = 2× 3× 7× 11× . . .× p

is a common multiple of all primes sieved out so far. So it was cancelled at every
previous step of the procedure. As no cancellation process following the selection
of a prime can hit adjacent numbers the successor of n has not been cancelled yet.
Therefore after every step there are numbers left and the smallest of them is a new
prime number.

Example 2 (Sylvester’s theorem) In the first part of the course the student teachers
worked with arithmetic progressions and investigated the representation of natural
numbers as sums of consecutive numbers. Based on their experiences the following
operative proof of Sylvester’s theorememerged in a naturalway: Sums of consecutive
numbers are represented as staircases.Dependingon the parity of the number of stairs,
each staircase can be transformed into a rectangular shape that represents a product.
If the parity is odd, there is a middle stair and the upper part of the staircase can be
cut off and added to the lower part (Fig. 2).
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Fig. 2 Operative proof of Sylvester’s theorem, case 1

Fig. 3 Operative proof of Sylvester’s theorem, case 2

If the parity of stairs is even then the staircase can be divided vertically in the
middle and the two parts fit together to make a rectangular shape (Fig. 3).

A careful study of the effects of these two operations shows that in both cases an
odd divisor of the represented number arises: either the number of stairs or the sum
of the heights of the first and last stair (which must be odd for an even number of
stairs). As a consequence any staircase representation of a number gives rise to an
odd factor of n. But the converse is also true: A rectangle with an odd side can be
transformed into a staircase of one of the two types depending on the relative size
of the odd factor. A closer inspection reveals that this relationship between staircase
representations and rectangular representations of n is bijective.

Again this operative proof explains phenomena which are well known from pre-
vious work on problems.

The advantage of operative proofs in the context of teacher education is obvi-
ous: These proofs are not separated from this context but closely related to it. In
becoming acquainted with operative proofs student teachers learn to appreciate the
use of informal means of representation for doing mathematics at early levels. Often,
elements of such activities in teacher education can immediately be implanted into
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primary teaching. Consider, for example, the following exercise from a textbook for
the second grade:

1+ 2+ 3 =
2+ 3+ 4 =
3+ 4+ 5 =
4+ 5+ 6 =
. . . . . .

Looking at the results children discover the times 3-row. If the sums are represented
by three columns of counters, the displacement of one counter to make a rectangle
is obvious. This work with counters is a good and in my view also a necessary
preparation for algebra where the same exercise can be resumed as follows:

(a − 1)+ a + (a + 1) = 3a.

6 Experiences with the Course

Feedback from student teachers collected by means of a questionnaire after the
introductory course on elementary geometry showed that the “O-script/A-script”
method was accepted by 75% of the population. The writing of the A-script was
experienced as a very time-consuming, but effective exercise. In the same vein 70%
affirmed that their understanding of the principle of learning by discovery had been
improved.

However, only 59% of the students indicated that the course had had amore or less
positive influence on their view of mathematics. 41% expressed their concerns about
the openness of the first part. This result is not surprising as at school many students
are programmed as receivers of knowledge. The adopted definitely mechanistic and
formalistic attitude towards mathematics gives them a feeling of security and helps
them “to survive”. Feeling comfortable with mechanistic routines in the system of
school and university (!) they do not want to be confronted with uncertainty.

The unfavourable influence of mathematical experiences from school is particu-
larly apparent in student teachers’ preconceptions of operative proofs. An instructive
example was reported in Wittmann and Müller (1990). In a seminar student teach-
ers studied figurate numbers.5 In particular trapezoid numbers were introduced as a
composition of square and triangular numbers (see Fig. 4).

In looking for patterns the students guessed that for all n the trapezoid number ‘Tn
and n leave the same remainder modulo 3. For this relationship an operative proof
(at that time called “iconic proof”) was given which was based on the corresponding
pattern.

5In history figurate numbers played a fundamental role as a cradle of number theory. We are
convinced that these numbers are also a wonderful context for stimulating mathematical activities
in children. As a consequence figurate numbers play an important role in “mathe 2000”.
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Fig. 4 Trapezoid numbers

Right after this demonstration some students expressed their doubt on its validity.
The teacher didn’t intervene and quickly the whole group agreed that the demonstra-
tion could only claim the status of an illustration, not the status of a proof. The teacher
then offered a formal proof and confronted it with the operative proof. The student
teachers were invited to think about these two types of proof and to write down their
opinions. The papers showed very clearly how the student teachers’ appreciation of
operative proofs was inhibited by the understanding of proof that they had acquired
at school. For illustration I quote from some papers:

The symbolic proof is to be preferred because it is more mathematical.

The iconic proof is much more intuitive for me and explains much better what the problem
is. For me the inferences drawn from patterns of dots are convincing and sufficient as a
proof. Unfortunately we have not been made familiar with this type of proof at school. Only
symbolic proofs have been taught.

The iconic proof is very intuitive. One understands the connections fromwhich the statement
flows. I can’t imagine how a counterexample could be found, because it does not matter how
many 3-columns can be constructed. In my opinion it is nevertheless not a proof, but only
a demonstration, which, however, holds for all n. At school I learned that only a symbolic
proof is a proof.

The symbolic proof is more mathematical. This proof is more demanding, as some formulae
are involved which you have to know and to recall. The iconic proof can be followed step
by step, and each step is immediately clear. However, I wonder if an iconic proof would be
accepted in examinations.

Cognitive conflicts in accepting operative proofs as valid proofs have to be under-
stood as natural symptoms of a metamorphosis lifting student teachers to higher
professional levels. Experience shows that in retrospect student teachers consciously
appreciate teacher education programmes which are embedded in the professional
context. In a recent survey by the centre of teacher education at the University of
Dortmund 2700 student teachers in North Rhine-Westphalia in their second phase
of training were asked to evaluate the courses in mathematics and mathematics edu-
cation they had received in the first phase of their training at the university (Zentrum
für Lehrerbildung 1997). The results are very encouraging (Fig. 5). The evaluations
of the programmes at the universities Paderborn and Dortmund which share the
same philosophy were much higher than those of the six other universities in North
Rhine-Westphalia which offer courses in primary teacher education.
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Fig. 5 Results of the empirical study

A team of 16 authors has just written a book “Arithmetic as a Process” (Müller
et al. 2004) which is based on the O/A approach to teacher education described in
this paper. This book is a truly mathematical book, but unlike other books it con-
sciously puts mathematics in the context of teacher education—neither by sacrificing
education to mathematics nor mathematics to education.
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Chapter 11
Operative Proofs in School Mathematics
and Elementary Mathematics

Abstract This paper gives an account of the conceptual and practical approach to
“operative proofs” that has been developed in the Mathe 2000 project. By means of
some typical learning environments, this notion and its theoretical background are
explained.

Keywords Operative proof · Learning environments · Practicing skills · Design
science

In the past few decades, the notion of “proof” has been a prominent topic of research
inmathematics education, bothwithin theGerman-speakingworld and at the interna-
tional level. Within this topic, we can distinguish between three lines of research: the
philosophical and epistemological aspects of proving, the elaboration of the various
functions of proving, and the empirical investigation of students’ routes to proving.
Hanna and de Villiers (2012) provide an excellent overview of this research.

The present paper builds upon an independent line of research that has been
evolving in German mathematics education in the context of elaborating on the
operative principle and the genetic principle. This line of research is closely connected
with curriculum development, and for this reason it is of particular interest for Mathe
2000, a project that is based on the following two basic assumptions:

1. A seamless learning process throughout a child’s education is only possible if
the teaching of mathematics from kindergarten through the end of high school
is treated as a whole and if it reflects an authentic view of mathematics as the
science of patterns (Wittmann 2006).

2. Mathematics education can best serve its purpose for developing mathematics
teaching if it is conceived of as a “design science” (Simon 1970), that is, if
the design, the empirical investigation and the implementation of the artificial
objects of the design science mathematics education, namely substantial learning
environments, are put at the very core of developmental research (Wittmann 1995,
2002).

In accordance with the first assumption, the project aims at introducing funda-
mental ideas of mathematics early and at developing them in a genetic way. Proving
is one of these fundamental ideas. The investigation of this idea within the framework
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of ordinary teaching, namely by employing the usual means of representation and by
connecting proof to the practice of skills, is a challenge on which we have focused.

It is on the second of these aspects, the practice of skills, that we have placed
particular emphasis, as we see it as absolutely crucial to a successful and sustainable
learning process. During the developmental research in Mathe 2000, the concept
of “operative proof” has taken shape more and more. Papers by Werner Walsch
and Heinrich Winter on proof, both related to curriculum development, have been
important landmarks for us (see e.g. Walsch 1972; Winter 1984).

The structure of the present paper reflects the second basic assumption. The first
section describes some learning environments which include “operative” proofs.
These examples serve as illustrations for the second section, in which the notion of
“operative proof” is explained, as well as for the last section, in which the theoretical
underpinning of this notion will be described.

1 Some Learning Environments with Embedded Operative
Proofs

The following four learning environments cover the spectrum from grades 1 to 6. At
this level, the special features of operative proofs become particularly clear.

1.1 Even and Odd Numbers

Counters are a fundamental means of representing numbers in primary-school math-
ematics. Usually they are understood as “teaching aids” which have been specially
invented for this purpose. However, their status is not primarily a didactic, but rather
an epistemological one: in the time of Pythagoras there was a period in Greek arith-
metic known as “ψηϕoι arithmetic” which can be considered the cradle of arithmetic
(Becker 1954, 34–41; Damerow and Lefèvre 1981).

In the Mathe 2000 curriculum, odd and even numbers are introduced in grade 1
in the ancient Greek fashion by means of special patterns of counters (Fig. 1).

Fig. 1 Representation of even and odd numbers by dot arrays
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These patterns are painted on cardboard and cut out so that children can perform
operations with the pieces and form sums of numbers. The initial exercises help
children become familiar with the material. The next exercise asks the children to
find sums with an even result. This is a first invitation to look at the structure more
carefully. The subsequent task is more direct, as children are asked to reflect on the
results of the four packages of sums in Fig. 2: “What do you notice? Can you explain
it?”

Fig. 2 Pretty packages with even and odd summands

At this early level, teachers are expected to refrain from pushing the children. All
they should do is listen to children’s spontaneous attempts to grasp the underlying
patterns.

In grades 2 and 3, even and odd numbers are revisited using a wider range of
numbers. This becomes necessary because there will inevitably be some children
who will have to realize that 30, for example, is an even number although 3 is an
odd number. Children are again given small packages of problems similar to those
in Fig. 2 with larger numbers and asked the same questions.

At this level, the even/odd patterns are recognized more clearly and expressed in
the children’s own words more precisely. In the manual, teachers are advised to be
content with children’s spontaneous explanations and “warned” against demanding
a “proof.”

In grade 4, however, children are expected to have enough experience with even
and odd numbers and to be ready to tackle the following task, which explicitly
demands a proof:

Even numbers can be represented by double rows, odd numbers by double rows
and a singleton. Use this representation to prove that:

(a) The sum of two even numbers is always even.
(b) The sum of two odd numbers is always even.
(c) The sum of an even and an odd number is always odd.

Children realize that no singletons occur when even patterns are combined and that
in the case of two odd patterns, the two singletons form a pair, yielding another even
result. Children also see that the singleton is preserved if an even and an odd pattern
are combined and that in this case the result must be odd. The teacher’s task is to take
up the children’s attempts and to assist the children in formulating coherent lines of
argument.
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The formal proof is addressed in higher grades, and in fact it expresses exactly
the same relationships, albeit using a different language: the language of algebra. In
general, operationswith patterns of counters are an excellent preparation for algebraic
calculations.

1.2 Multiplicative Arrow Strings

In grade 2 the multiplication of natural numbers is based on rectangular arrays of
counters. The Hundred array (ten lines of ten dots, subdivided into four quadrants
by the vertical and horizontal midlines) is a very convenient teaching aid. Children
can easily represent and determine all products of the multiplication table. The sub-
division of the field suggests the implicit use of the distributive law in calculating
the results.

From the multitude of exercises, the following one is selected, in which children
are offered strings of operators as in Fig. 3:

Fig. 3 Arrow strings
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When reflecting on the results, students recognize that the target numbers differ
from the starting numbers in a systematic way: in the first chain, the target number
is always 1 more than the starting number; in the second chain, it is 2 more, etc.

An explanation of these number patterns can be given by referring to arrays of
counters.

Fig. 4 An operative proof of the pattern underlying Fig. 3, a)

Figure 4 must be read as follows: We place 3 counters, double them, add two
more counters, and finally divide by 2. We get one counter more than we had at the
beginning. We start with 5 counters, double them, add two more counters and divide
by 2. Again we get one counter more than we had before. We start with 6 counters,
etc.

The repetition of the argument for several starting numbers is essential.
In grade 3, these operator chains are resumed with larger numbers; the operators

·2,+2 and :2 are replaced by the operators ·20,+20, :20, etc. The earlier explanations
are repeated by referring again to arrays. This time, however, they are only given in
shorthand notation (Fig. 5).

Fig. 5 An operative proof of the pattern with bigger numbers

The verbal description is as follows: “5 times 20 plus 20 is 6 times 20; 6 times 20
divided by 20 is 6, one more than 5” etc.

This argument is based on general relationships between numbers, not on special
numbers. The approach provides efficient preparation for the transition to algebra
long before variables are used.

1.3 Egyptian Fractions

This learning environment deals with a classic topic that can be found in some
secondary-school textbooks, albeit without including a proof.
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It is well known that the ancient Egyptians represented fractions smaller than 1
as sums of different unit fractions (with the numerator 1). To achieve this, they used
a table for fractions of the type 2/2n + 1. The mathematical question is whether any
fraction smaller than 1 can be represented in this way. The answer is in the positive
and the standard proof runs as follows: Let n/m be a reduced fraction, n < m. We
choose the largest unit fraction 1/k smaller than n/m and subtract it from the given
fraction:

n/m − 1/k = (n · k − m)/m · k.

The numerator (n · k − m) of the fraction on the right side must be smaller than n.
Otherwise 1/k would not be the largest unit fraction smaller than n/m. Therefore,
(n · k − m)/m is a fraction with a numerator smaller than n, and it is smaller than
1/k. This procedure can be repeated. Step by step the numerators of the remaining
fractions get smaller and smaller and, in a finite number of steps, one arrives at the
numerator 1 and at a representation of n/m as a sum of different unit fractions.

There is another proof which rests on a repeated use of the formula

2/(2n + 1) = 1/(n + 1) + 1/(2n + 1) · (n + 1).

The hard part, however, is showing that this algorithm terminates (see Fung 2005).
Both proofs go far beyond the secondary-school level, and again the question

arises if it is possible to explain the existence of such a representationwith elementary
means. The following learning environment shows that it is possible.

First, students are provided with some historical background information. Then
they are asked to find representations of reduced fractions of the type 2/3, 2/5, 2/7,
. . . as sums of different unit fractions. This investigation, which involves ample prac-
tice in adding and subtracting fractions, takes some time and leads to the following
pattern:

2/3 = 1/2+ 1/6, 2/5 = 1/3+ 1/15, 2/7 = 1/4+ 1/28, 2/9 = 1/5+ 1/45, . . . ,

It is not important whether the students discover the underlying pattern themselves
or whether the teacher provides some hints that incorporate the students’ findings.

The explanation of this pattern is quite easy, as it rests on a very simple operative
relationship: if the denominator of a fraction is increased, the fraction is decreased.
If an arbitrary fraction of the type 2/2n + 1 is given, say 2/31, we increase the
denominator by 1 and get a smaller fraction with an even denominator, 2/32, and
this fraction can be reduced to a unit fraction, 1/16. Calculating the difference leads
to

2/31− 1/16 = (2 · 16− 31)/31 · 16 = 1/31 · 16 = 1/496,

which is a unit fraction. This procedure can be applied to any fraction of the type
2/2n+1. The numerator of the difference must always be 1, as it marks the difference
between an odd number and the subsequent even number. Students should verify this
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fact by calculating quite a number of examples. In noting down the calculations on
the blackboard, the table of the ancient Egyptians is re-established.

The next step is to look at reduced fractions of the type 3/n, where n is not a
multiple of 3. These are the fractions 3/4, 3/5, 3/7, 3/8, 3/10, 3/11, . . .

Again, the students’ calculations can be ordered with the teacher’s assistance.
Perhaps some students will find out by themselves that the idea they have already
applied to fractions with the numerator 2 can be adapted: Take any reduced fraction
with the numerator 3, say 3/31. Increase the denominator until you get a multiple of
3. The fraction 3/33 is smaller than the given fraction and can be reduced to a unit
fraction, 1/11.

Calculating the difference leads to

3/31− 1/11 = (3 · 11− 31)/31 · 11 = (33− 31)/31 · 11 = 2/31 · 11 = 2/341,

a fraction with the numerator 2. This difference can be treated as before:

2/341 = 1/171+ 1/341 · 171 = 1/171+ 1/58 311.

In this context, it becomes obvious that the numerator of the difference must be
smaller than the numerator of the given fraction because it measures the distance of
the denominator from the next largest multiple of the numerator. If the numerator of
the difference is 1, the difference is a unit fraction and we are done. If it is 2, we can
apply our earlier results for fractions with the numerator 2.

In the same way, fractions of the type 4/n can be reduced to fractions with the
numerators 3, 2 or 1, and by mathematical induction we conclude that any reduced
fraction smaller than 1 can be represented as a sum of different unit fractions.

Again, students should verify the procedure for quite a number of fractions. Exam-
ple:

5/11− 5/15 = 5/11− 1/3 = (15− 11)/3 · 11 = 4/33

4/33− 4/36 = 4/33− 1/9 = (36− 33)/297 = 3/297 = 1/99

Therefore: 5/11 = 1/3+ 1/9+ 1/99.
In order to double-check the calculations, the unit fractions should be added up,

a useful exercise for adding fractions.
As in the previous learning environments, the notion of proof is not present at the

beginning. It is only after quite a number of calculations that patterns are recognized
and verified by checking the examples, and it is not until much later that these patterns
are explained by looking at the effects of the operations. Practicing skills and proof
are inseparably intertwined within a truly mathematical investigation.
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1.4 Fitting Polygons

The following series of learning environments is based upon “fitting,” a fundamental
idea of elementary geometry (Freudenthal 1971, 422–423).

To develop the idea of “fitting” across the primary grades, the Mathe 2000 cur-
riculum starts in grade 1 with the following activity (Fig. 6): paper squares of equal
size are cut into two or four isosceles right triangles, and the parts are recombined
to make other shapes.

Fig. 6 Decomposing a square into isosceles triangles and rearranging the parts

At this level, the approach is essentially experimental. Students move the parts
around and see if they fit. However, it is not merely experimentation that is at work
here. For example, two right angles form a straight angle by the “definition” of a
right angle. One of the shapes that can be obtained in this way is a special case of
the Pythagorean theorem.

In grade 2 this activity is extended: paper squares are folded and cut so that four
congruent right triangles are obtained (Fig. 7). One of the shapes that can be made
by re-arranging these basic forms is well known as a foundation of the Pythagorean
theorem.

Fig. 7 Decomposing a square into four rectangles and rearranging the parts

Fitting regular polygons together is continued in grade 3 by means of a template
for drawing squares, regular triangles, pentagons, hexagons and octagons with the
same side length (Fig. 8). Children can explore, still experimentally, which shapes
fit which way, a very creative exercise. They realize that there are only three regular
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tessellations, discover some semi-regular tessellations and quite a number of other
tessellations.

Fig. 8 Template for drawing regular polygons

Fig. 9 “clock template”

In grade 4 children make regular polygons from cardboard bymeans of the “clock
template” (Fig. 9) and build the five Platonic solids (Winter 1986). The name “clock
template” is derived from the fact that a circle is divided into 60 equal parts. As 60 is
divisible by 3, 4, 5 and 6, the clock template allows for a convenient construction of
squares, regular triangles, pentagons and hexagons. For example, to draw a regular
polygon one must divide the circumference into five equal parts of 12 “minutes” and
connect the points. When clock templates of different sizes are used, polygons of
different sizes are obtained. The shapes are copied onto cardboard. The segments
of the circle containing the sides of the polygons can be folded down and used for
pasting the polygons together. In this way, stable models of all five Platonic solids
can be made. Interestingly, the proof of the existence of at most five Platonic solids
at the end of book 13 of Euclid’s Elements of Mathematics is fully in line with the
children’s experimental findings.

In grade 5 the concept and the measure of an angle is based on cutting and fit-
ting polygons, which once again mirrors the historical development of mathematics
(Becker 1954, 27). At this level, the purely experimental approach givesway to a con-
ceptual approach: by referring to the measure of angles and the lengths of segments,
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students can explain why certain combinations of polygons must fit. Polygons cut
frompaper and drawings of polygons now enjoy a new status. They are no longer sim-
ple physical objects that allow for empirical experiments but rather representations
of mathematical concepts that carry theoretical properties (see Sect. 3.2 below).

In the following grades, cutting polygons into parts and re-combining these parts
is the customary approach to arriving at formulas for area and decomposition proofs
of the Pythagorean theorem.

2 The Concept of Operative Proof

In the preface of Shafarevich 2005 there is an interesting statement concerning the
limitations of formal definitions:

. . . the meaning of a mathematical notion is by no means confined to its formal definition; in
fact, it may be rather better expressed by a (generally fairly small) number of basic examples,
which serve the mathematicians as the motivation and the substantive definition, and at the
same time as the real meaning of the notion. Perhaps the same kind of difficulty arises if we
attempt to characterize in terms of general properties any phenomenon that has any degree
of individuality.

So it is for good reason that the present paper starts with typical examples of opera-
tive proofs. Referring to these examples, this notion can now be described as follows:

Operative proofs

– arise from the exploration of a mathematical problem in the context of practicing
skills and explaining patterns,

– are based on operations with “quasi-real” mathematical objects,
– use means of representation with which students are familiar at a given level
– are communicable in a simple problem-oriented language with little symbolism.

Strictly speaking, the term “operative proof” is not entirely correct, as it is not
the proof that is “operative” but rather the whole mathematical setting. However,
for the sake of brevity the term seems acceptable. Operative proofs have received
growing attention since Zbigniew Semadeni’s seminal papers on “pre-mathematics”
(Semadeni 1974; Semadeni 1984). His ideas were elaborated on in Germany by
Kirsch (1979), Heinrich Winter (1985) and others and in Japan by Mikio Miyazaki
(1997). These authors called proofs of this kind “pre-formal proofs” or “explanations
by actions on manipulable things.” These descriptions indicate that the authors had
some concerns about the status of such proofs while, at the same time, they also had
an unquestioned respect for formal proofs. However, research in the philosophy of
mathematics and a re-thinking of the role of proofs in the mathematics community
has changed the situation considerably cf. the overview given in Hanna 2000.

The first example in Sect. 1.1 shows that operative proofs are the most elementary
form of proof associated with the first attempts to shape the discipline known as
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“mathesis.” Operative proofs refer not to symbolic descriptions of mathematical
objects within a systematic-deductive theory but rather directly to these objects via
representations that allow for “concrete” operations. These operations are generally
applicable independently of the particular objects to which they are applied. So it is
not fromparticular cases that the generality of a pattern is derived but from operations
with objects (see also Kautschitsch 1989, p. 184). This fact must be kept in mind in
order to avoid erroneously rejecting “operative proofs” as non-rigorous proofs.

In higher mathematics the objects and the operations are much more complicated.
Nevertheless, the operative character of proofs is still present in mathematics of
all levels (see, for example, operative proofs of Sperner’s Lemma in Struve and
Wittmann 1984 and of the structure of the limit cycles of Bulgarian Solitaire in
Wittmann 2006).

3 The Theoretical Background of Operative Proofs

The notion of operative proof is based on some theoretical positions from various
disciplines. In this section, four positions will be described.

3.1 Mathematics as the Science of Patterns

As already mentioned at the beginning, the Mathe 2000 project has adopted the
view of mathematics as the science of patterns, which has become a widely accepted
view among mathematicians in the post-Bourbaki era (Sawyer 1995; Steen 1988;
Devlin 1994). What matters in mathematics education, however, is not the science of
ready-made and static patterns but rather the science of dynamic patterns which can
be developed globally in the curriculum as well as explored, continued, re-shaped,
and invented in the context of learning environments by the learners themselves.
In other words, long-term and short-term mathematical processes related to patterns
countmuchmore than the finished products. Thework of British, Scottish, Dutch and
Japanese mathematics educators in the sixties and seventies as well as the pioneering
work of Heinrich Winter, the “German Freudenthal,” have all served as models
(Fletcher 1965; Wheeler 1967; IOWO 1976; Becker and Shimada 1997; Winter
1984; 2015).

In order for students to understand mathematics, it is important that they become
aware of mathematical patterns as early as possible. The ability to see something
general in something particular is essential for appreciating and understanding math-
ematics at any level, particularly as far as the role of proof is concerned.
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3.2 The Quasi-empirical Nature of Mathematics

Operative proofs depend on appropriate representations of mathematical objects. It
was Imre Lakatos who first pointed out the fact that mathematical theories are always
developed in close relationship with the construction of the objects to which they
refer (Lakatos 1976). Graph theory emerges with the construction of graphs, group
theory emerges with the construction of groups, theories of coding emerge with the
construction of new codes, etc. In each theory the mathematical objects form a kind
of “quasi-reality” which permits the researcher to conduct experiments similar to
scientific experiments. In recent decades, the importance of this “quasi-empirical”
perspective for mathematics education has gained more and more recognition.

At the school level, informal representations of mathematical objects are indis-
pensable as they provide a “quasi-reality” that is easily accessible. Patterns become
“visible” and managable when informal representations like counters, the number
line, the place value chart, calculations with numbers and constructions of geometric
figures are used.

Representations of mathematical objects, both informal and formal, form an inter-
face between pure mathematics and managable applications. They can be seen as
concretizations of abstract mathematical concepts on the one hand and as repre-
sentations of real objects on the other hand. Compared with the abstract objects,
these representations are more concrete than the mathematical objects which they
represent, and compared with the real objects they model, they are more abstract.

The “quasi-reality” of mathematical objects forms a world of its own which Yuri
Manin in a letter to ICME 7 aptly called a “mathscape.” As the theoretical nature
of mathematical objects is imposed on these representations, this mathscape is well
suited to support the building of theories at whatever level by conveying meaning,
stimulating ideas and providing data for checking mathematical arguments. Unlike
Hilbert’s fictitious mathematician who has cut all ontological links, the working
mathematician and the learner act inside a “visible” mathscape. The following state-
ment by D. Gale summarizes this position very neatly (Gale 1990, 4):

Themain goal of all science is first to observe and then to explain phenomena. Inmathematics
the explanation is the proof.

3.3 The Operative Principle

In Jean Piaget’s epistemology, knowledge is seen as a construction that results from
the interaction of the individual with the environment: the individual acts upon the
environment, notices the effects of her or his actions, and fits them into growing
and changing cognitive schemata. According to Piaget, mathematical knowledge is
not derived from the objects themselves, but from operations with objects in the
process of reflective abstraction (“abstraction réfléchissante,” Beth and Piaget 1961,
217–223). Operations involve general patterns for the following reason: when it is
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intuitively clear that the operations applied to a particular object are applicable to
all objects of a certain class to which the particular object belongs, the relationships
which can be derived from these operations are recognized as generally valid.

Quite a number of German mathematics educators have contributed to applying
Piaget’s epistemology to mathematics education. Over the course of time, this has
led to the following formulation of what is referred to as the “operative principle”
(Wittmann 1996, 154–161):

To understand mathematical objects means to explore how they are constructed and how
they behave if they are subjected to operations (actions, constructions, transformations, . . .).
Therefore students must be stimulated in a systematic way

(1) to explore which operations can be performed and how they are linked to one another,

(2) to find out which properties and relationships are imprinted into the objects through
construction,

(3) to observe which effects, properties, and relationships are brought about by the opera-
tions according to the guiding question “What happens with . . . if . . .?”

The relationship of this principle to operative proofs is obvious: operative proofs
depend on the effects of operations applied to the objects in question. Because of the
general nature of the operations, operative proofs are rigorous proofs with a clear
foundation. At this level, the effects of the operations take over the role that axioms
play at higher levels.

3.4 Practicing Skills in a Productive Way

When Mathe 2000 was founded 20 years ago, it was a conscious decision to pay
particular attention to basic skills in order to escape the fate of many curriculum
projects in the sixties and seventies which had failed because they neglected basic
skills. Traditionally, “practice” is linked to the proverbial “drill and practice,” which
of course is not compatible with the objectives of mathematics teaching as we see
them today. So a new approach to practice had to be developed which deliberately
combines the practice of skills with higher objectives like mathematizing, exploring,
reasoning and communicating. This type of practice has been called “productive
practice” (Wittmann and Müller 1990/1992). The basic idea is quite simple: for
practicing skills, appropriate mathematical patterns are used as contexts.

Learning environments designed accordingly always start with extended calcula-
tions, constructions or experiments. In this way a “quasi-reality” is created, allowing
students to observe phenomena, discover patterns, formulate conjectures, and finally
to explain, i.e. prove, patterns. The operations on which these operative proofs rest
are introduced in this first phase in a natural way. Reference to this quasi-reality
is made continuously while the environment is explored more and more deeply. In
checking and verifying arguments, skills are practiced again.
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The aspect of “practice” comes in a second time at a higher level. The ability to
understand an argument in a proof depends on repetition as much as it does on the
mastery of a skill. So it is very important that explanations are not only repeated
several times within a given learning environment by referring to a series of different
examples. It is equally important that coherent sequences of learning environments
within the curriculum provide continued opportunities for repeating explanations.
Heinz Steinbring’s studies of the Mathe 2000 learning environments strongly con-
firm this fact (Steinbring 2005, Chap. 3). We cannot expect students to become
familiar with operative proofs on the spot; students need continued opportunities for
improving and refining their arguments. Developmental research in the Mathe 2000
project has shown that the addition table, the multiplication table, and the standard
algorithms for addition, subtraction, multiplication and division are so rich in pat-
terns that there is no need to introduce additional content for developing the higher
objectives of mathematics teaching. It is crucial, however, to select representations of
numbers that incorporate fundamental mathematical relationships and so to allow for
operations upon which operative proofs can be built (Wittmann 1998). In arithmetic,
counters provide the representation of choice. For example, rectangular arrays of
counters allow the multiplication of natural numbers to be represented in a fashion
that contains and supports the arithmetical laws. Section 1.2 provides some insight
into the power of this representation.

4 Concluding Remarks

Operative proofs are not restricted to school mathematics but rather reach far into
those parts of elementary mathematics that are accepted as the background of school
mathematics and should form the subject matter of teacher education. The text-
book “Arithmetic as a Process” (Müller et al. 2004), which was inspired by Mathe
2000, makes systematic use of informal representations and operative proofs within
a process-led approach to the science of patterns. For example, in the chapter on
number theory, all theorems up to Euler’s generalization of Fermat’s “little theorem”
are explained by referring to “quasi-realities” represented by arrays of counters, the
number line and arrays of numbers (Müller et al. 2004, 255–290).

In teacher education, the operative approach offers a dual advantage: this approach
not only helps student teachers learn and understand mathematics better, but it also
provides them with first-hand professional knowledge in dealing with means of rep-
resentation and communication that are appropriate for the classroom.Mathematical
courses designed accordingly provide an excellent basis for courses in mathemat-
ics education in which the underlying didactic principles can be made explicit by
referring to student teachers’ own mathematical experiences.
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Chapter 12
Collective Teaching Experiments:
Organizing a Systemic Cooperation
Between Reflective Researchers and
Reflective Teachers in Mathematics
Education

The success of any substantial innovation in mathematics teaching depends crucially
on the ability and readiness of teachers to make sense of this innovation and to
transform it effectively and creatively to their context. This refers not only to the
design and the implementation of learning environments but also to their empirical
foundation. Empirical studies conducted in the usual style are not the only option
for supporting the design empirically. Another option consists of uncovering the
empirical information that is inherent in mathematics by means of structure-genetic
didactical analyses. In this chapter, a third option is proposed as particularly suited
to bridge the gap between didactical theories and practice: collective teaching exper-
iments.

The following five points indicate in a nutshell the line of argument of this paper.

• Mathematics education as a “systemic-evolutionary” design science
• Taking systemic complexity systematically into account: lessons from other dis-
ciplines

• Empowering teachers to deal with systemic complexity as reflective practitioners
• Collective teaching experiments: a joint venture of reflective researchers and reflec-
tive practitioners

• The role of mathematics in mathematics education.

1 Mathematics Education as a “Systemic-Evolutionary”
Design Science

The proposal to consider mathematics education as a design science in Wittmann
(1995) was stimulated by the intention to establish a sound methodological basis for
a science of mathematics education that would guarantee a firm link between theory
and practice and preserve the mathematically founded work achieved in curriculum
development and teacher education bymathematics educators in the past (see Sect. 2).
This proposal was based on the seminal book by Simon (1970) in which the design
sciences were characterized as being concernedwith the construction of artefacts that
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serve defined purposes. In the design science mathematics education these artefacts
are substantial learning environments.

Therefore, the core of this discipline consists of the design, the empirical investiga-
tion, and the implementation of substantial learning environments both with respect
to boundary conditions set by society and beyond these constraints. It is obvious that
there is a basic difference between design sciences, such as mechanical engineering
and computer science in which artefacts (cars, computers, etc.) are developed that
function according to natural laws in a completely controlled way and can be easily
applied by the users, and design sciences such as economics, medicine in which the
artefacts (marketing strategies, therapies, etc.) cannot take account of all elements of
the environment in which the artefacts are to be used as this environment is simply
too complex and also fluid.

Following Malik (1986), these two classes of design science can be distinguished
as “mechanistic-technomorph” and “systemic-evolutionary” design sciences. Obvi-
ously, mathematics education belongs to the latter class for which a sharp separation
between researchers and developers who design artefacts and users who simply
apply them is not appropriate. The consequences for mathematics education have
been indicated already in Wittmann (1995) and further elaborated in more general
terms inWittmann (2001). In the following, the practical implications of this systemic
principle are discussed.

2 Taking Systemic Complexity Systematically into
Account: Lessons from Other Disciplines

In the comprehensive literature in which appropriate models for the cooperation
between researchers and practitioners in systemic-evolutionary design sciences are
developed, Donald Schön’s research on the “reflective practitioner” stands out in
depth and in scope (Schön 1983). Schön was mainly concerned with management,
architecture, psychotherapy, town planning, and those parts of engineering in which
social aspects matter. Later he extended his analyses also to education (Schön 1991).
This stimulated other educators to expand on them (cf., for exampleWieringa 2011).

Schön describes the traditional relationship between “professionals” and “clients”
as follows (Schön 1983, p. 292):

In the traditional professional-client contract, the professional acts as though he agreed to
deliver his services to the client to the limits if his special competence . . . The client acts as
though he agreed, in turn, to accept the professional’s authority in his special field [and] to
submit to the professional’s ministrations.

In some parts of some practices . . . practitioners can and do make use of the knowledge
generated by university-based researchers. But even in these professions, . . . large zones
of practice present problematic situations which do not lend themselves to applied science.
What is more, there is a disturbing tendency for research and practice to follow divergent
paths. Practitioners and researchers tend increasingly to live in different worlds, pursue
different enterprises, and have little to say to one another.



2 Taking Systemic Complexity Systematically into Account: Lessons … 241

Schön replaces the unproductive traditional roles of researchers and practitioners
with a picture in which the responsibilities are to some extent shared. Researchers
act as “reflective researchers” and practitioners as “reflective practitioners” (Schön
1983, p. 323):

In the kinds of reflective research I have outlined, researchers and practitioners enter into
modes of collaboration very different from the forms of exchange envisaged under the
model of applied science. The practitioner does not function here as a mere user of the
researcher’s product. He reveals to the reflective researchers the ways of thinking that he
brings to his practice, and draws on reflective research as an aid to his own reflection-
in-action. Moreover, the reflective researcher cannot maintain distance from, much less
superiority to, the experiences of practice. . . .Reflective research requires a partnership of
practitioner-researchers and researcher-practitioners.

However, Schön is far from denying researchers a special status: “Nevertheless,
there are kinds of research which can be undertaken outside the immediate context
of practice in order to enhance the practitioner’s capacity for reflection-in-action”
(Schön 1983, p. 309).

Schöndistinguishes four types of this “reflective research” (Schön1983, p. 309ff.):
Frame analysis: This type of research deals with general attitudes that provide

practitioners with general orientations for their work.
Repertoire-building research: The focus here is on practical solutions of exem-

plary problems (“cases”) that provide guidance not only in routine cases but also
when it comes to dealing with similar new problems.

Research on fundamental methods of inquiry and overarching theories: This type
is closely connected to both types mentioned above. It is directed to developing
“springboards for making sense of new situations” for which no standard solution is
available.

Research on the process of reflection-in-action: Here the emphasis is on stimu-
lating and reinforcing practitioners to engage in reflective practice.

In recent years, the paradigm of applied science with its typical separation of
responsibilities has been challenged also from another side. In his sociological stud-
ies of the ways technological tools (nuclear power stations, pesticides, vaccines, etc.)
are developed, tested, and implemented and how these tools affect natural and social
systems, the French philosopher Bruno Latour equally rejected the traditional sepa-
ration between research and applications and introduced the concept of “collective
experiment”:

In this new constellation, the expert is more and more disappearing. . . . The expert has
been responsible for the mediation between the producers of knowledge and the society
concerned with values and ends. However, in the collective experiments in which we are
intrinsically caught up, exactly this separation of different roles has disappeared. So the
position of the expert has been undermined. [It has] been proposed that the extinct concept
of “expert” be replaced by the comprehensive concept of “co-researcher.” (Latour 2001, p.
32, transl. E.Ch.W.)

Obviously the educational system is a “collective experiment, in which we are
intrinsically caught up”. A separation between researchers who provide professional
knowledge and teachers who simply use this knowledge is not appropriate.
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Neither Schön’s nor Latour’s analyses provide practical solutions for mathemat-
ics education. However, they stimulate ideas for addressing the issue of managing
complexity in this field.

3 Empowering Teachers to Cope with Systemic Complexity
as Reflective Practitioners

In the first part of this section proposals are made how the collaboration between
mathematics educators as reflective researchers and teachers as reflective practition-
ers can be filled with life. In the second part these proposals are examined in the light
of the preceding section.

A good general orientation for this section is given by John Dewey’s view on the
role teachers can play as “investigators”. This view bears witness to the systemic
sensibility of this farsighted author:

It seems to me that the contributions that might come from classroom teachers are a compar-
atively neglected field; or, to change the metaphor, an almost unworked mine. . . . There are
undoubted obstacles in the way. It is often assumed, in effect if not in words, that classroom
teachers have not themselves the training that will enable them to give effective intellectual
cooperation. This objection proves too much, so much so that it is almost fatal to the idea
of a workable scientific content in education. For these teachers are the ones in direct con-
tact with pupils and hence the ones through whom the results of scientific findings finally
reach students. They are the channels through which the consequences of educational theory
come into the lives of those at school. I suspect that if these teachers are mainly channels of
reception and transmission, the conclusions of science will be badly deflected and distorted
before they get into the minds of pupils. I am inclined to believe that this state of affairs is
a chief cause for the tendency, earlier alluded to, to convert scientific findings into recipes
to be followed. The human desire to be an “authority” and to control the activities of others
does not, alas, disappear when a man becomes a scientist. (Dewey 1929/1988, 23–24)

As stated in Sect. 1 the core of mathematics education as a design science consists of
the design, the empirical investigation and the implementation of substantial learning
environments with respect to boundary conditions set by society and beyond. So it
has to be examined in which way teachers can be enabled and encouraged to act as
reflective practitioners in these three areas.

In terms of design: In the author’s view the most important service mathematics
educators can render to teachers is to provide them with elaborated substantial learn-
ing environments together with the structure-genetic didactical analyses on which
the design has been based. The language in which substantial learning environments
are communicated is meaningful to teachers. So reflective practitioners have good
starting points to transform what is offered to them into their context and to adapt,
extend, cut, and improve it accordingly. In a recent paper Chun Ip Fung has demon-
strated teachers’ creative work in this area by means of a striking example and has
shown that in this way a constructive dialogue between researchers and teachers can
be established (see Sect. 3).
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In termsof implementation: Individual learning environments and curricula cannot
be implemented successfullywithout teachers’ support. The implementation requires
again teachers’ creative powers in taking the local conditions into account and in
adapting the proposed materials correspondingly. It is a triviality that teachers will
engage more in the implementation of contents, objectives, or methods, the more
these are meaningful to them. Reflective researchers have to keep this in mind.

In terms of empirical evidence: This is a particularly important issue. In the
author’s view teachers can best act as reflective investigators if empirical studies are
attached to substantial learning environments and the results are communicable in
a language that is understandable. Under these conditions teachers can cooperate in
these studies and contribute to communicating the findings to practice.

However, empirical studies of the ordinary type are not the only way to get empir-
ical evidence for the feasibility and the effectiveness of substantial learning environ-
ments. Another source are structure-genetic didactical analyses of the subject matter.
Mathematics, well understood, provides not only the subject matter of teaching, but
also methods of learning and teaching as it is itself the result of learning processes
(see Sect. 4 in Wittmann 2018, with references to the fundamental paper by Dewey
1977). As these analyses imply empirical information on “staging” learning environ-
ments in the interactionwith students, it is justified to call them empirical research “of
the first kind,” in distinction from ordinary empirical studies, the empirical research
“of the second kind.” Both structure-genetic didactical analyses and ordinary empir-
ical studies are conducted either by researchers alone or determined by them. As
teachers who collaborate with researchers in a research team are provided with addi-
tional information, have access to additional material, and enjoy support in various
ways, they work under conditions that do not reflect the real practice. So for sys-
temic reasons another type of empirical study seems promising: “collective teaching
experiments.” This empirical research “of the third kind” is obviously derived from
Latour’s “collective experiments.” It is conducted by “freelancing” teachers in their
daily practice, as will be discussed in some detail in the following section.

To conclude the present section, the above proposals for the interaction between
reflective researchers and reflective teachers are examined against Schön’s (1983)
four types of “reflective research.”

In terms of frame analysis: In order to provide teachers with an orientation beyond
substantial learning environments, it is useful to summarize basic knowledge about
mathematics, learning and teaching mathematics in didactical principles. One prin-
ciple, for example, is “orientation on fundamental mathematical ideas.” This princi-
ple is based on Alfred N. Whitehead’s view on mathematical education (Whitehead
1929), Jean Piaget’s epistemology (e.g. Piaget (1972), and Hans Freudenthal’s work,
in particular Freudenthal (1983). This principle can be communicated to teachers best
by linking it to series of learning environments in which this principle is a leading
one.

In terms of repertoire-building research: Elaborated substantial learning envi-
ronments form a repertoire for teaching par excellence. They contain the essential
information for teaching. The reflective teacher, however, will not stick to this reper-
toire but use it as a springboard for exploring other learning environments.
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In terms of research on fundamental methods of inquiry and overarching theo-
ries: In close connection with the two types of research discussed before this type
of research is directed to introducing teachers into methods of inquiry inherent in
mathematics and into elementary mathematical theories of subject matter that are
relevant for teaching.

In terms of research on the process of reflection-in-action:The proposals that have
been made for the design, the empirical study, and implementation of a substantial
learning environment are well suited to stimulating teachers to act as reflective prac-
titioners.

It is obvious that both pre-service and in-service teacher education play a key
role in educating reflective practitioners. Therefore the reflective mathematics edu-
cator is well advised to link his research to teacher education including mathematics
education and at least elementary mathematics.

4 Collective Teaching Experiments: A Joint Venture of
Reflective Teachers and Reflective Researchers

The idea to encourage teachers to become researchers of their own practice is not
new at all. It is particularly manifest in the Japanese tradition of lesson studies
(Stigler and Hiebert 1999). In lesson studies, a group of teachers collaborates over
a period of time on the design, the empirical investigation, and the implementation
of learning environments. The lessons are given by teachers in actual classrooms,
observed, discussed and refined in several rounds until an acceptable result has been
reached. A striking example is the recent Japanese research on elements of knot
theory (Kawauchi and Yanagimoto 2012).

Collective teaching experiments are a modification of lesson studies in the fol-
lowing way: The reflective researchers offer research problems publicly and invite
teachers to investigate them in their daily practice. There is only a loose connection
with researchers who collect the feedback and turn it into the improvement of the
design and the implementation.

The following example is to illustrate this proposal:
In the past decades, German math teaching at the primary level has undergone a

development away from standard procedures towards flexible strategies that reflect
the true nature of mathematics. The curriculum developed in the project Mathe 2000
is based on fundamental ideas of mathematics that can be developed over the grades.
The arithmetical laws represent such a fundamental idea. The commutative and
associative law of addition are implicitly introduced even at the kindergarten level
and applied in a consequent and consistent manner at the primary and secondary
level. The laws leave space for applying them in different ways, and it is important
that teachers and children become aware of this freedom by being offered different
strategies.
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In adding two digit numbers there are essentially three basic strategies. None of
them causes problems (see Fig. 1).

Fig. 1 Basic strategies for addition problems

All three strategies can be transferred to subtraction. However, the second strategy
causes a problem when the ones in the subtrahend exceed the ones in the minuend
(see Fig. 2).

Fig. 2 Basic strategies for subtraction problems

Experience shows that many children transfer the strategy “tens plus tens, ones
plus ones” blindly to the strategy “tens minus tens, ones minus ones” and arrive at
wrong results. For the problem 65− 28, for example, they calculate 60− 20 = 40,
8− 5 = 3 and get 43. So teachers, supported by textbook authors, reject and avoid
this strategy either by prescribing the first subtraction strategy or by modifying the
critical one as follows: 50− 20 = 30, 15− 8 = 7, so 65− 28 = 37.

For us such didactic compromises are no option. We believe that it is better not
to avoid the critical strategy also for its long-term importance. As early as 1977, the
Dutch computer scientist Sytze van der Meulen, after his talk in our colloquium at
our Institute for Development and Research inMathematics Education in Dortmund,
left a message in our guestbook that has since been a continuous reminder to us:

When a boy answers the question “howmuch is 7− 4”with 3, he is not a genius when his age
is 7.When this boy answers the question howmuch is “4− 7” with “there are three missing”
he shows some intelligence, but still is not a genius at the age of 7. The tragedy of our school-
education is that this boy at the age of 11 may have difficulties with the concept of negative
numbers. The tragedy of his teacher is that he missed 4 years of the boy’s development!

Over the years we have taken several steps to overcome teachers’ scruples con-
cerning the subtraction strategy “tens minus tens, ones minus ones,” and we have
stimulated teaching experiments on a small scale. Since 1995 we have been using
any opportunity to explain this strategy to teachers and to ask them to try it out with
their students.

We recommend to explain 5− 8 = −3 as follows:
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We have 5 and have to take away 8. First we take away 5, and then we have to take away
3 more. In order not to forget this, we note it down as “−3”. Finally we take away 3 by
breaking up one ten into 10 ones, and remove 3 of them.

By means of bars of ten and counters, this procedure can be well demonstrated
step by step.

Wealso tell teachers that this strategyhas an important advantage:The calculations
are easier in comparison with the first strategy, so this strategy seems particularly
suited for weaker students despite the first impression that it might not be appropriate
for them.

One teacher did a small study and communicated it to us: After she had taught
subtraction in the hundreds space in the traditional way without the critical strategy,
she administered a test to her class. Then she introduced this strategy and repeated the
test. It turned out that the results were no better and no worse. As she had a class with
many weak students who had difficulties with this strategy, her recommendation was
to avoid this strategy. Nevertheless, we continued our “propaganda” for this strategy
and improved our proposal how to explain it to students.

One year later an “unforced” e-mail arrived from this teacher that read as follows:

Last year my students did have difficulties with the strategy “tens minus tens, ones minus
ones” because of the negative numbers. Now I would like to report on my latest experiences
with this strategy in grade 3. In the introductory lesson, I wrote down the problem 629− 263
without any repetition of the calculations from the year before and without any explanations
from my side. Apart from very few exceptions the children calculated 20− 60 = −40.
For them it was obvious: “The result is −40, exactly as last year with the ones.” I would
emphasize that my class is not a superclass, and that I have very many weak students. For
them, calculations with negative numbers do not cause any problem. I am strongly in favour
of introducing this strategy already in Grade 2.

As many teachers have still reservations against this strategy, we have refined
our explanation. We recommend now to let students distinguish between the cases
when there are enough ones in the minuend and those where more ones have to be
taken away than are available. We recommend to propose packages of subtraction
problems to students and asking them to mark those where a minus sign appears in
ones calculation with an asterisk before they perform the actual calculations. The
latest improvement in teaching this strategy is to explicate 5− 8 = −3 in more
detail: 5− 5− 3 = 0− 3 = −3. We do not have enough feedback from teachers as
this moment; however, we are confident that this step will increase the acceptance
of this strategy.

These experiences and similar ones with other issues have led us to a far-reaching
conclusion: Our main publication, a handbook for teaching arithmetic at the primary
level (Wittmann and Müller 1990/1992) will be rewritten soon with the explicit invi-
tation to teachers to conduct collective teaching experiments. All learning environ-
ments collected in this new book will belong to the standard curriculum. They will be
accompanied not only with the general recommendation to read them critically and
to test them in their classroom but also to participate in conducting collective teach-
ing experiments in cooperation with other teachers. We will also create a platform
for an exchange about the experiences with these experiments.
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Issues that are of particular interest for us are operative proofs, the use of our
course on mental arithmetic, and the use of new digital means of representation.

5 Closing Remarks: The Role of Mathematics in
Mathematics Education

It is important to realize that the research and development program that has been
described in this paper heavily depends on resources that are offered by “well-
understood” mathematics. “Well-understood” means that mathematics is seen as
a social organism that has developed in history and it still developing with strong
relations to many areas of human life, and that also the mathematical knowledge
of the individual is seen as an organism in its genesis from tiny seeds to a more or
less extensive body. Doingmathematics is learningmathematics and learningmathe-
matics should also be firmly linked to doing mathematics. Therefore, the interaction
between teachers and students and between teachers and researchers can greatly
profit from relying on the adaptability of elementary mathematical structures with
respect to students’ individual cognitive levels and on the processes inherent in vital
mathematics.

When once asked what his motives as a mathematician were for engaging in
mathematics education Hans Freudenthal replied: “I want to understand better what
mathematics is about.” The reverse also holds: mathematics educators who want
to understand better what mathematics education should be about are well advised
to study elementary mathematical structures thoroughly. It is highly rewarding to
“unfreeze” the educational material that is “deep-frozen” in polished presentations of
mathematics, as they are common in highermathematics. After all “well-understood”
mathematics is the best common reference for all involved in teaching and learning
mathematics: researchers, teachers and students. “Theories of mathematics educa-
tion” like those collected in Sriraman and English (2010) are far from being suited
for establishing a systemic cooperation between reflective researchers and reflective
teachers.
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Chapter 13
Structure-Genetic Didactical
Analyses—Empirical Research “of the
First Kind”

Abstract In mathematics education, theories of teaching and learning based on
disciplines different from mathematics (“imported” theories) are widely dominat-
ing the field. This imbalance greatly reduces the impact of mathematics education
both on teacher education and on the teaching practice. In order to return to a bal-
anced situation it is necessary to pay more attention to theories which are based on
mathematics. As an example of such a “homegrown” theory, the paper presents the
structure-genetic didactical analysis, the research method of mathematics education
conceived of as a “design science”.

Keywords Design science · Substantial learning environments · Didactical
analysis · Empirical research

AMS (2000) Subject Classification: Primary 97C · Secondary 97D

A comparison of the papers published in journals and proceedings in the 1970s and
early 1980s (see, for example, the pace-setting paper Krygowska 1972) with the
papers in the new millennium shows that over the past two decades the coordinate
system of mathematics education has shifted massively away from

– the subject matter mathematics,
– the teaching practice and
– the critical examination of educational foundations concerning the subject,

towards

– qualitative and quantitative empirical studies of learning and teaching processes,
– the development and application of tests and
– theories of learning mathematics based on ideas imported from other disciplines.

This shift consciously or unconsciously involved a break from the tradition of
mathematics education. Nevertheless, this tradition is still alive. In recent decades a
branch of mathematics education has developed that explicitly builds on the tradition
of “subject matter didactics” as it has been common in the past in many countries.
This “mathematics education emerging from the subject”, as it has been called,
continues to carry the teaching of mathematics and teacher education and has created
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a scientific basis of its own. The internationally known projectMathe 2000may serve
as an example (Wittmann 2012). “Mathematics education emerging from the subject”
constitutes by no means “didactics from the armchair” for which its predecessor
had been criticized. On the contrary, it is supported empirically in its own way. Its
specific feature is that it rests on theories of teaching and learning that are implicit in
the subject mathematics itself. This will be shown in this paper, which is structured
as follows: in the first three sections three central themes of the curriculum will
be considered both from the position of the present mainstream in mathematics
education and from the position ofmathematics education emerging from the subject.
In the fourth section the researchmethod of the latter, the structure-genetic didactical
analysis, will be characterized and it will be indicated what can be achieved by this
method.

1 Introduction of the Multiplication Table in Grade 2

In the curricula of many countries multiplication is introduced as “repeated addition”
and the multiplication table is accordingly learned row by row. The last decade has
seen a vivid discussion in the Anglo-Saxon countries about what multiplication is
about. The empirical analysis of (Park and Núñes 2001) fits into this context. The
authors compared two hypotheses of concept formation for multiplication: multipli-
cation as “repeated addition” and multiplication as a “schema of correspondences”.
What the latter means, however, remains unclear in that paper. It is likely that the
authors allude to the interpretation of multiplication as a linear function: for a fixed
multiplier c we have a mapping that assigns the product x · c (= c · x) to any num-
ber x . As a result of their research the authors arrive at the conclusion that “repeated
addition” should not be used for defining multiplication, but only for calculating the
results.

From the perspective of mathematics education emerging from the subject multi-
plication in grade 2 can be approached in the followingway: multiplication is defined
as “abridged” addition, as it is common in mathematics. For calculating the results
it is natural to refer to the laws of multiplication: among the multiples

1 · m, 2 · m, 3 · m, 4 · m, 5 · m, 6 · m, 7 · m, 8 · m, 9 · m and 10 · m

there are four multiples that are trivial or easy to calculate:

1 · m, 2 · m (double of 1 · m), 10 · m and 5 · m (half of 10 · m).

Other multiples from 3 · 7 to 9 · 7 can be derived from easy ones by means of the
distributive law:
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3 · m = 2 · m + 1 · m,

4 · m = 2 · m + 2 · m (or 5 · m − 1 · m),

6 · m = 5 · m + 1 · m,

7 · m = 5 · m + 2 · m,

8 · m = 10 · m − 2 · m,

9 · m = 10 · m − 1 · m.

This approach has been elaborated by Arnold Fricke in his “operative didactics”
and is widespread in German primary schools (Fricke 1968). In the early eighties
Heinrich Winter went one step further: In line with his general postulate to look at
arithmetic from the point of view of algebra he suggested to use rectangular arrays
of dots for representing multiplication (Winter 1984). This proposal is also found in
Courant and Robbins (1996, p. 3), a classic among mathematical textbooks, and in
Freudenthal (1983, pp. 109–110). In (Penrose 1994, pp. 51–53) it is even stated that
rectangular arrays of dots are the most efficient means to explain what multiplication
is about.

The preference of eminent mathematicians for these arrays underlines the fact
that this representation of multiplication is not just a visual aid which has been
invented for the purpose of teaching, but that is fundamentally interwoven in the
epistemological structure of mathematics. The great advantage of this representation
is that the commutative law, the associative law and the distributive law can be derived
in an operative way and used in teaching (see, for example, Wittmann and Müller
2017, pp. 201–211). This is not possible with other representations of multiplication.

Later in the curriculum arrays of dots pass into the representation of a product
as the area of a rectangle and this representation reaches up to the integral. It is a
fundamental idea of algebra and calculus.

Comparison:What multiplication is about and how it should be introduced in the
classroom, cannot be decided by means of empirical methods imported from psy-
chology, but should be based on a sound mathematical and epistemological analysis.
This, however, is not to say that empirical investigations of learning processes are
superfluous (see Sect. 3).

2 Designing a Substantial Learning Environment
for Practicing Long Addition

While the first example deals with the didactical foundation of some topic the second
example leads to the very core of teaching. The natural way to help learners to
master some piece of knowledge or some skill is to offer them substantial learning
environments that stimulate mathematical activities. Here the practice of skills plays
a crucial role. HeinrichWinter introduced the concept of “productive practice” which
means a type of practice in which contents and general objectives of mathematics
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teaching (mathematizing, exploring, reasoning and communicating) are combined
(Winter 1984).

In order to design a substantial learning environment for practicing long addition
in our projectMathe 2000we had to browse elementarymathematics for patterns that
involve long addition. We had to check whether children’s knowledge in grade 3 is
sufficient for understanding and solving the intended tasks, for exploring, discovering
and describing patterns and for explaining them by using familiar means with some
support of the teacher.

Our analyses led us to the following learning environment that is based on the
famous rule “casting out nines” (Wittmann and Müller 2012, pp. 85).

The guiding problem posed to students is as follows:

Form two three-digit numbers with the six digit cards 2, 3, 4, 5, 6, and 7 and add these two
numbers.

(a) Find different results.

(b) Try to reach results as near as possible to 600, 700, 800, 900, 1000, 1100, 1200 and
1300.

(c) Try to find results between 900 and 1000.

The subtasks (b) and (c) are intended as hints for discovering the underlying
pattern.

Guy Brousseau’s theory of didactical situations provides a natural framework for
the teacher in putting a learning environment into practice (Brousseau 1997).

Here this theory can be applied as follows: In the first situation the problem is
introduced to students, best by means of examples.

In the second situation students work on their own, individually or in groups. The
teacher serves as an advisor.

In the third situation the results are collected and compared. The teacher is free
to add some more examples, and to give hints that stimulate students to discover the
underlying pattern. Subtask (b) is particularly helpful as the optimal results 603, 702,
801, 900, 999, 1008, 1098, 1107, 1197, 1206, 1296, 1305 reveal a striking pattern:
The total of the digits of these numbers is 9, 18 or 27.

The results in subtask (c) support these findings. Possible results are 900, 909,
918, 927, 936, 963, 972, 981, 990, 999.

A check with other examples will confirm this pattern. Of course some students
will offer calculations with results that seem to violate this pattern. However, checks
will reveal mistakes in the calculations.

In this way the conjecture is formed that for this problem only results are possible
for which the total of the digits is a multiple of 9.

Situation 4 in Brousseau’s classification requires the explanation of this pattern.
The place value chart with which students in grade 3 are familiar, serves this purpose
perfectly (Wittmann and Müller 2013, 120–121): Some examples are represented
by means of counters on the place value chart. It is interesting to note that in this
context the total of the digits of a number has a very concrete meaning: It denotes
the number of counters that are necessary for representing the number on the place
value chart.
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Fig. 1 Operative Proof of the rule “Casting out nines”

Figure1 shows two examples:
In the first example 5+ 2+ 7 = 14 counters are needed to represent the first

number 527 on the place value chart, and 3+ 4+ 6 = 13 counters are needed to
represent the second number 346. So 14+ 13 = 27 counters are needed to represent
the sum 527+ 346. To execute this addition on the place value chart means to push
the counters in all columns together, and to replace 10 counters in the Ones column
by 1 counter in the Tens column. Therefore 9 counters less 27 are needed to represent
the result 873, namely 18 counters.

In the second example again 27 counters are needed to represent the sum.We have
a carry from the Ones to the Tens column and a second carry from the Hundreds to
the Thousands column. According to the two carries the total of digits of the result
1161 is 27− 2 · 9 = 9.

As in all examples 27 counters are needed to represent the sum the total of the
digits of possible results must be 27, 18 or 9 depending on the number of carries.

The fifth and final didactical situation is “institutionalization”. Here the teacher’s
task is to summarize in a concise way what has been discovered. This might include
the information that the operation of “casting out nines” is independent of the special
numbers used here: For any sum of two or more numbers the sum of the totals of the
digits of the numbers differs from the total of the digits of the result by a multiple of
9. The reason is that any carry involves a “loss” of 9 counters.

The teacher should also have in mind that this operative proof of the rule “casting
out nines” is not an impasse, but that it can be continued later in the curriculum for
deriving divisibility rules (Winter 1983).

Comparison: In this example the “home-grown” approach is unrivaled. It is obvi-
ous that theories of mathematics education imported from elsewhere, as well as
empirical methods, are blunt when it comes to designing substantial learning envi-
ronments. Only a thorough knowledge of mathematical structures and processes
connected with curricular expertise will lead to solutions, and this knowledge is also
essential for the teacher in doing her or his job.
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3 Nets of a Cube

Nets of the cube are a standard topic of mathematics teaching at the secondary level.
In this section two approaches to this topic are compared.

Susanne Prediger and Claudia Scherres have conducted guided clinical interviews
with pairs of students in grade 5 (Prediger and Scherres 2012). The objective of this
study has been to investigate in some depth how students proceed when trying to find
as many different nets as possible. The authors applied quite a number of empirical
instruments in order to obtain a differentiated picture of the processes occurring
during the collaboration. The results of this study are very complex and therefore
cannot be summarized in short terms. For the following comparison two findings are
relevant (Prediger and Scherres 2012, p. 171):

1. Pairs of students can often exhaust their potential only through the intervention
of the teacher.

2. The cooperation for exploiting the potential fully is enhanced when this cooper-
ation is guided by mathematical considerations.

From the perspective of developmental research the first objective of a didactical
analysis concerning the topic “nets of the cube” is to find out at which place of
the curriculum students are in a position to respond to the requirements that certain
treatment of this topic involves. At the very outset it should be kept in mind that
any beautiful and important topic might allow for different approaches suitable for
different places in the curriculum.

In the Mathe 2000 curriculum nets of the cube are embedded in the fundamental
idea of “dissecting and recombining figures”, which is systematically developed
along grade levels. An easy way of determining all possible nets is revealed in
connection with polyominoes, a rich topic that was introduced by Golomb (1962)
and elaborated for the primary level inBesuden (1984).Apolyomino is a composition
of congruent squares edge by edge. Polyominoes that are congruent are considered
as equal. It is easy to see that there is only one domino (with two squares), but that
there are two different triominoes (with three squares). Children in grade 3 easily
find all 5 tetrominoes (with 4 squares) by adding one square to triominoes, and also
all 12 pentominoes (with 5 squares) by entending tetrominoes. It is a stimulating task
for kids to determine the 8 pentominoes that can be folded into an open cube.

In a textbook for grade 3, the 11 nets of a cube are obtained in the following way
(Wittmann and Müller 2013, p. 65): The children are informed that it is possible to
derive all 35 hexominoes by extending the 12 pentominoes. As this process would
take too much time, the 35 hexominoes are provided by the teacher (Fig. 2) and the
students are asked to find out which of these hexominoes are nets of a cube. In Fig. 2
the nets are arranged in five groups of 7 nets. This suggests forming five groups
of students each of which has to make their 7 hexominoes with paper squares and
sellotape and to investigate which ones can be folded into a cube. All five groups
have to explain the reasons why some of their hexominoes do not produce nets. So
in cooperation all 11 nets are determined through cooperation in a rigorous way.
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Fig. 2 Selecting the nets of cubes from the set of hexominoes

An alternative approach at this level would be to start from the 8 pentominoes
that can be folded into an open cube and to extend them to nets of a cube. However,
as most nets can be derived from different nets of an open cube, it may be rather
complicated to eliminate congruent nets.

In grade 5, the theme “nets of a cube” should be revisited. Again it seems appropri-
ate to provide the students first with paper squares and sellotape and to stimulate them
to find as many different nets as possible. Based on students’ findings the teacher
can guide the students to a systematic derivation of all possible nets. A natural way
is to refer to the “addition principle” of combinatorics which consists of subdividing
the set of combinatorial possibilities into subsets which are easier to manage. In the
case of nets of the cube the maximum number of squares in a row is an appropriate
criterion for a classification as is indicated briefly.
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Case 1: 6 squares in a row
No cube is possible as there are overlays and two faces remain open.

Case 2: 5 squares in a row
Again no cube is possible as there is one overlay and one face remains open.

Case 3: At most 4 squares in a row
First it must be found out where a fifth square can be added so that a net
becomes possible. For each of the two possible positions of the fifth square
the possible positions of the sixth square have to be determined. Some care
is needed to eliminate nets that are congruent to nets that have been found
before. Figure3 shows how to proceed stepwise starting from four squares
in a row. The six nets determined in this way are drawn in bold lines.

Fig. 3 Derivation of the nets of a cube where at most four squares are in a row

Case 4: At most 3 squares in a row
In Fig. 4 no arrows are drawn away from the four pentominoes on the right.
The reason is that the extensions of these pentominoes would result in nets
that were already found.

Case 5: At most 2 squares in a row
In this case there is essentially only one way to get a net (Fig. 5).

It is obvious that this systematic derivation of all 11 nets of the cube is not easy.
However, only means are used that are accessible to students in grade 5. With the
assistance of the teacher, this learning environment is good to handle.

Of course it cannot be predicted how the investigation of this learning environment
might develop in a certain class. Every interaction takes place under the particular cir-
cumstances of the class.However, a teacherwhoknows themathematical background
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Fig. 4 Derivation of the nets of a cube where at most three squares are in a row

Fig. 5 Derivation of the only net of a cube where at most two squares are in a row

thoroughly is in a position to deal flexibly and productively with the contributions
and ideas from the students. Based on their findings the teacher can introduce the
classification. Different groups of students can investigate the three cases. In this way
the complexity of the task is reduced to a reasonable level. The teacher can provide
support where necessary.

Comparison: In this example the empirical investigation and the didactical anal-
ysis complement each other. Both are useful and instructive. There is no question
that a teacher who has more insight into the processes linked to finding the various
nets is more likely to interact with the students than a teacher who closely adheres to
the mathematical structure and hardly leaves any room to the students. On the other
hand, it is hard to imagine that a teacher who does not have a clear picture of the
mathematical structure can organize a lesson solely with the spontaneous ideas of
the students and with general pedagogical knowledge.
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With respect to teaching and to teacher education, there are nevertheless significant
differences between the two approaches. It is questionable if the “high resolution”
instruments that have been employed in the empirical study by Prediger and Scherres
(2012) can be communicated to teachers and students teachers in the time that is
usually available in teacher education. It is also a question whether the results of this
study can be integrated into teaching materials that work without the intervention of
a teacher. The main findings prove the opposite.

In contrast, the didactical analysis requires only a relatively small amount of time
and can be well integrated into teacher education. The language that is used is simple
and easy to understand. If the nets of a cube are included in both mathematical and
didactical courses in an inquiry-based way there is a good chance that the metacog-
nitive and cooperative skills that have been found as important in the empirical study
can be acquired implicitly in these courses. This, however, is not to devalue empir-
ical studies. The aim of this paper is to plead for didactical analyses as one tool of
mathematics education without excluding other tools.

4 Structure-Genetic Didactical Analyses

The approach of mathematics education emerging from the subject is based on the
following assumptions:

1. Mathematical skills and techniques are acquired best in an active way under the
guidance of mathematically experienced teachers. This refers to both teaching
and teacher education. The practice of skills in its various forms plays a crucial
role for successful learning.

2. The level of achievement that can be reached depends on the organization of teach-
ing along fundamental mathematical ideas that are being revisited continuously.
Only in this way is it possible to secure solid foundations for further learning
and to brush up on prior knowledge. Also, only in this way it is also possible to
provide mathematical structures as building blocks for modeling real situations.
The development of curricula that are consistently and systematically designed
accordingly and combine the orientation towards structures with the orientation
towards applications is the central task of mathematics education.

3. Authentic mathematical activities in which heuristic plays a crucial role, are by
their very nature social and communicative and include theories of teaching and
learningquite naturally (implicit didactics). Tomake student teachers and teachers
aware of these implicit theories by referring to their own mathematical experi-
ences is the most direct and most efficient form of providing them with (explicit)
didactical knowledge.

Against this background, didactical analyses as employed in the examples above
are playing a fundamentally important role. This research method, which is the gold
standard inmathematics education conceived of as a “design science”, is an extension
of the traditional “subject matter didactics”. While the latter has been focused on the
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logical analysis of subject matter and too much linked to the “broadcast” method
of transmitting knowledge from the teacher to the student, the extended method
emphasizes both the genesis of knowledge over the grades and individual learning
processes. In order to emphasize this wider perspective, the term structure-genetic
didactical analysis is proposed for this extended method.

The above examples show that structure-genetic didactical analyses are linked
to hard facts: to the mathematical practice in exploring, describing and explaining
patterns on various levels, to the prerequisite knowledge of learners, to the objectives
of teaching and to the curriculum. This is all empirical material. Therefore, the
structure-genetic didactical analysis is an empiricalmethod. Because of its nativeness
itmaywell be considered as empirical research of “the first kind”. The usual empirical
studies are then empirical research of the “second kind”. The assertion that only
empirical studies of the second kind would provide “evidence-based models” for
teaching and learning is untenable.

Structure-genetic didactic analyses are of primary importance in mathematics
education for the following reasons:

1. They emerge from the mathematical practice, that is from doing mathematics, at
various levels.

2. They foster an active relationship with mathematics as a living subject.
3. They are constructive and therefore absolutely essential for designing substantial

learning environments and curricula.
4. They are natural guidelines for teachers, as they unfold the implicit theories of

teaching and learning of mathematics, that is, as they “unfreeze” the “didactical
moments frozen in the subject” (Heintel 1978, 46).

5. They are meaningful for teachers, as the feedback from the field clearly demon-
strates.

The examples in the first three sections show that structure-genetic didactical
analyses take the following points into account:

– mathematical substance and richness in activities at different levels,
– evaluation of the cognitive load on students,
– curricular matching (with respect to contents and general objectives)
– coherence and consistency along the curriculum,
– curricular reach,
– potential for practicing skills (most important!)
– estimation of the expenditure of time.

Paradigms of structure-genetic didactical analyses are Wheeler (1967), Freuden-
thal (1983) and the developmental research initiated by Hans Freudenthal at the
IOWO in the 1970s, the developmental research initiated by Nicolas Rouche at
the CREM in Belgium, see for example (Rouche et al. 1996), as well as the work
of Heinrich Winter, the German Freudenthal, in particular (Winter 2015). These
paradigms demonstrate that the development of mathematics education as a research
discipline also depends on the design of conceptually founded substantial learning
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environments. Achievements in this direction have to be acknowledged as results of
research.

In the context of this paper point 4 above is of particular importance and therefore
deserves some elaboration. The idea that theories of teaching and learning are implic-
itly contained in the subject matter, and that therefore mathematics education is not
completely dependent on imports of theories from other disciplines is by far not new.
More than 100 years ago John Dewey has formulated this idea with a clarity that
leaves nothing to be desired. In his paper there is a long enlightening section on the
importance of the subject matter for teacher education (Dewey 1977, pp. 263–264):

Scholastic knowledge is sometimes regarded as if it were something quite irrelevant to
method. When this attitude is even unconsciously assumed, method becomes an external
attachment to knowledge of subject-matter. It has to be elaborated and acquired in relative
independence from subject-matter, and then applied.

Now the body of knowledge which constitutes the subject-matter of the student teacher must,
by the very nature of the case, be organized subject-matter. It is not a separate miscellaneous
heap of scraps. Even if (as in the case of history and literature), it be not technically termed
“science,” it is none the less material which has been subjected tomethod—has been selected
and arranged with reference to controlling intellectual principles. There is, therefore, method
in subject-matter itself—method indeed of the highest order which the human mind has yet
evolved, scientific method.

It cannot be too strongly emphasized that this scientific method is the method of the mind
itself. The classifications, interpretations, explanations, and generalizations which make
subject-matter a branch of study do not lie externally in facts apart from mind. They reflect
the attitudes and workings of mind in its endeavor to bring raw material of experience to a
point where it at once satisfies stimulates the needs of active thought. Such being the case,
there is something wrong with the “academic” side of professional training, if by means of
it the student does not constantly get object-lessons of the finest type in the kind of mental
activity which characterizes mental growth and, hence, the educative process. (. . .)

Only a teacher thoroughly trained in the higher levels of intellectual method and who thus
has constantly in his own mind a sense of what adequate and genuine intellectual activity
means, will be likely, in deed, not in mere word, to respect the mental integrity and force of
children.

For the teaching practice this view is of fundamental importance: The ancient
Greeks understood ‘theory’ as view. The Greek word for theory, θεωρια is derived
from θεωρειν, which means viewing, regarding, observing. In this original sense a
theory provides a comprehensive view of some area that allows for acting purpose-
fully in this area while taking some circumstances and contingencies in this area into
account. The natural theories of teaching and learning embedded in subject matter
serve exactly this purpose: they represent practicable theories for the teacher, and
they supply him or her with profound information or knowledge on which to base her
or his actions.Whether it is to introduce children tomultiplication, or to practice long
addition, or to determine the nets of the cube; or to estimate students’ prerequisite
knowledge, to activate their thinking, to interact and communicate with them; or to
interpret students’ oral and written utterings, to assess their learning progress or to
start remedial work—all this is essentially determined by the teacher’s “comprehen-
sive view” of the topic to be learned. That teaching does not proceed smoothly, that
there are breaks and obstacles in the learning processes, that students make mistakes,
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have difficulties in understanding some points, forget what they have learned before,
and so on: This knowledge is an essential part of the implicit theories of teaching
and learning arising from an active mastery of subject matter.

What therefore counts most in teacher preparation is not an explicit didactical
component (i.e., method courses), but the mathematical component, given that in
this component mathematical activities are offered that stimulate and provide student
teachers with relevant experiences in regard to learning processes, including learning
difficulties, phases of confusion, confidence in overcoming difficulties and so on.

Mathematical courses organized in this way also provide the most effective theo-
retical basis for teaching. This is not to say that theories imported from other disci-
plines are of no use. Theymaybe. This is also not to say thatmethod courses are super-
fluous. Rather, both imported theories and method courses can significantly enhance
structure-genetic didactical analyses. However, they should not replace them.

5 Conclusion

This paper is a plea for structure-genetic didactical analyses, the empirical research
of the first kind. It must not be misunderstood as a plea against empirical studies of
the second kind. On the contrary, such studies are indispensible, when new topics
are to be introduced, for which no information on students’ prerequisite knowledge
is available, and when new approaches or new means of representations are used.
Examples are the introduction of stochastics at the primary level or the use of digital
media. Empirical research of the second kind is also very useful for investigating the
processes more closely that occur when a learning environment is “staged” in the
classroom. Of course these studies are all the more revealing and more meaningful,
the closer they are attached to structure-genetic analyses.

It has also to be acknowledged that a wider perspective in mathematics educa-
tion including imports from related disciplines significantly contributes to a better
understanding of mathematics and therefore supports structure-genetic didactical
analyses. In this sense the present author has greatly profited from Jean Piaget’s
genetic epistemology. It is no accident that the term “genetic” is a constituent of the
term “structure-genetic didactical analysis”.

In a position paper on the nature of mathematics education Heinz Griesel con-
tended that in his sense “didactical analyses” would not differ from the “logical
analyses” of mathematics (Griesel 1974). Heinz Steinbring rightly rejected this nar-
row view (Steinbring 2011). With structure-genetic didactical analyses the situation
is completely different. These analyses include logical analyses, it is true, however,
they involve also knowledge about mathematical processes, about the curriculum,
about students’ prerequisite knowledge at different levels, and about the boundary
conditions of teaching. A mere knowledge of (elementary) mathematics is by far
not sufficient. To put oneself in the place of a child who takes his or her first steps
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in early mathematics, to look at the multiplication tab1e with the eyes of a second
grader, to find the nets of a cube with the means that are available to students at the
secondary level, or to make the concept of a limit accessible to high school students,
all this requires a special didactical approach and a special sensitivity for the genesis
of knowledge and for the mathematical practice at the level in question.

Mathematics education has certainly been enriched enormously by contributions
from other disciplines. Structure-genetic didactical analyses are nevertheless the key
for developing mathematics teaching and teacher education. Without them mathe-
matics education is in danger to degenerate into a self-referential system. Jeremy
Kilpatrick’s warning of the “reasonable ineffectiveness of research in mathematics
education” should, thus, be taken seriously (Kilpatrick 1981).
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Chapter 14
Understanding and Organizing
Mathematics Education as a Design
Science–Origins and New Developments

Abstract The objective of this paper is

(1) to revisit briefly the conception of mathematics education as a design science as
it has been evolving alongside the developmental research in the project Mathe
2000 from 1987 to 2012

(2) to report in some detail on recent developments, as concerns both conceptual
and practical issues.

The paper is a plea for appreciating and (re-)installing “well-understood mathemat-
ics” as the natural foundation for teaching and learning mathematics.

Keywords Design science · Learning environments · Well-understood
mathematics · Structure-genetic didactical analyses · Productive practice ·
Collective teaching experiments

1 Origins

It is no accident that in the 1960s, when the traditional content and methods of teach-
ing mathematics were being questioned and there was a call for new content and
methods, the very discipline that had been responsible for the teaching of mathe-
matics for centuries, namely mathematics education (didactics of mathematics), was
also questioned by a growing number of mathematics educators (didacticians) and
considered to be no longer adequate.

Since at that time many mathematicians, among them prominent ones, were also
committed to mathematics teaching, the discrepancy between the solid scientific
foundation of mathematics and its missing counterpart in mathematics education
was felt as painful, particularly by those, including the present author, who had
moved from mathematics to mathematics education in order to specialize in this
rapidly developing field.

In the subsequent discussions about the scientific status ofmathematics education,
the following questions were foremost:

(1) What is the relationship between mathematics and mathematics education?
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(2) What distinguishes mathematics education from mathematics?
(3) How can mathematics education establish a scientific basis that preserves its

close and necessary connections with mathematics and that at the same time
reflects its special mission with respect to the teaching practice and to teacher
education?

At a conference organized by the Institute of Didactics of Mathematics (IDM) at
the University of Bielefeld in 1975, Jeremy Kilpatrick made a crucial point when
he distinguished between “theories imported from other disciplines” and “theories
developed within mathematics education,” or “homegrown theories,” as he referred
to the latter.

Since the early 1970s, the present author has been convinced that mathemat-
ics education would be far better served by “homegrown” theories, and so he has
been looking for a framework appropriate for developing such theories. His idea to
conceive of mathematics education as a design science was inspired by new develop-
ments in other fields and in mathematics education itself as will briefly be described
in this section.

1.1 The Rise of the Sciences of the Artificial

In 1970, Herbert A. Simon, who in 1978 was awarded the Nobel Prize in economics,
published a booklet in which he coined the term “design science” (Simon 1970). His
intention was to delineate disciplines in which he was active (economics, admin-
istration, computer science, cognitive psychology) and disciplines like engineering
from the established sciences and to provide these disciplines with a scientific status
of their own. He identified the difference by highlighting “design” as the “principal
mark” of design sciences (Simon 1970, 55):

Historically and traditionally, it has been the task of the science disciplines to teach about
natural things: how they are and how they work. It has been the task of engineering schools
to teach about artificial things: how to make artifacts that have desired properties and how
to design (. . .) Design, so construed, is the core of all professional training; it is the principal
mark that distinguishes the professions from the sciences. Schools of engineering, as well as
schools of architecture, business, education, law and medicine, are all centrally concerned
with the process of design.

As “education” was mentioned explicitly here, it was only natural to consider
mathematics education as a “design science.” The question, however, remained what
the “artificial objects” of mathematics education might be. In Wittmann (1984), a
proposal was made to consider “teaching units” as these artificial objects. Later this
term was replaced by “learning environments.”
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1.2 Developments in Management Theory

It is clear that there is a basic difference between a technical artifact, like a machine,
which functions according to natural laws, and a “teaching unit” that cannot be
used mechanically but requires the intelligent application by human beings as well
as adaptation to the momentary social context. This difference is not restricted to
education but is also typical of other design sciences, in particular economics.

In 1976, the Swiss management theorist Malik published a book in which he
distinguished two classes of design sciences (Malik 1986):

– Mechanistic-technomorph design sciences based on the natural sciences
– Systemic-evolutionary design sciences dealing with complex systems that, in con-
trast with a machine, cannot be completely controlled from outside.

It was equally clear that mathematics education as a design science belongs to the
latter class.

1.3 Prototypes of Design in Mathematics Education

The discussion about mathematics education in the 1970s was also very much influ-
enced by fresh contributions to mathematics education that transcended the tradi-
tional scope.

In the preface of his book “Basic Notions in Algebra,” the eminent Russian math-
ematician Igor Shafarevics (1989, 4) states:

The meaning of a mathematical notion is by no means confined to its formal definition;
in fact, it may be rather better expressed by a (generally fairly small) sample of the basic
examples, which serve the mathematician as the motivation and the substantive definition,
and at the same time as the real meaning of the notion.

In the same sense, typical projects in developmental research explain the notion
of mathematics education as a design science much better than general descriptions.

In 1965 and 1967, two groups of English mathematics educators published books
that consisted of the description of teaching ideas and teaching units combined with
the explanation of themathematical background aswell as hints for teaching (Fletcher
1965; ATM 1967).

The same approach was pursued on a larger scale at the Dutch Instituut voor
Ontwikkeling Wiskunde Oderwijs (IOWO), founded in 1971 under the direction of
Hans Freudenthal. A good summary of the developmental research conducted at the
IOWO is provided by Freudenthal et al. (1976).

A third important impetus came from Japan. Here again, the progress in math-
ematics education was communicated by means of carefully formulated teaching
units (Becker and Shimada 1997).

Last not least, the work of Heinrich Winter, the “German Freudenthal”, must be
mentioned as a major inspiration. In Winter’s seminal paper on general objectives of
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Fig. 1 Mathematics education as a design science and its interdisciplinary relationships

mathematics teaching, these objectiveswere illustrated by teaching examples (Winter
1975).

1.4 The Map of Mathematics Education as a Design Science

InWittmann (1995, 89), the conception ofmathematics education as a design science
was summarized in a diagram that is shown with some modifications in Fig. 1.

The core of mathematics education (didactics of mathematics) represents the
design, the empirical research and the implementation of learning environments. It
is surrounded by “related disciplines” and “fields of application.” The related areas
are the intersections of mathematics education with the related disciplines.

In Wittmann (2001), this conception was elaborated on with respect to systemic
constraints.

Themap in Fig. 1 was intended to give a foundation to the developmental research
undertaken in the projects mentioned in Sect. 1.3. However, as it has turned out, this
map can also be interpreted differently. As the related disciplines on the right side
of the diagram have offered and continue to offer advanced theories of teaching
and learning as well as theories on the educational system’s societal background,
it has been and continues to be tempting for mathematics educators to take these
theories as starting points for establishing a scientific basis of mathematics teaching.
In the decades since, the mainstream of mathematics education has been moving in
this direction to the extent that this approach now enjoys a near monopoly. As this
movement has more or less been ignoring the tradition of mathematics education in a
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similar way in which “NewMath” has ignored the tradition of mathematics teaching,
the present author suggests calling it “New Math Education.” Although “New Math
Education” haswidened and refined the scope of research and led to progress inmany
fields, it is clear that it has weakened the connections of mathematics education with
both mathematics and the teaching practice.

In recent years, an attempt has been made to include “design” in “New Math
Education”. The result has been termed “design research” (Cobb et al. 2003; Prediger
2015). However, this direction of research, which follows the paradigms of applied
science, differs from what was originally intended by conceiving of mathematics
education as a design science.

In order to make the difference explicit, it is necessary to highlight the singular
role of mathematics among the related disciplines in Fig. 1.

2 Conceptual Developments

The 25th anniversary of the project Mathe 2000 was the right time to rethink the
concept on which this project had been based and to formulate a revised concept
for further research. It turned out that it was precisely those questions that had been
addressed in the discussion about the scientific status ofmathematics education in the
1970s that had to be taken up again (see Sect. 1.1 above). The answers at which we
have arrived will be described in this section. In Sect. 3, some practical consequences
will be illustrated by means of typical examples from the project.

2.1 The Natural Theory of Teaching: “Well-Understood
Mathematics”

There is no disagreement that mathematics provides the subject matter of teaching
and that therefore teachers must “know mathematics” in order to teach the subject
properly. A closer look at the problem, however, reveals that there are quite different
interpretations of this general statement and that, as a consequence, there are quite
different views of the roles that mathematics should play in mathematics education
and in teacher education.

At the 1975 Bielefeld conference, John LeBlanc described the basic issue in full
clarity (LeBlanc 1975):

The content of manymathematics courses was felt to be irrelevant to many of the prospective
teachers. The new requirements for the preparation of elementary teachers left mathemat-
ics departments looking for materials appropriate for such courses. At the same time, the
mathematicians selecting the books were also under some pressure to make sure that the
content was mathematically honest. Few, if any, materials existed that met both criteria of
educational appropriateness and of mathematical honesty. The latter requirement usually
was the winning criterion. The effect of inappropriate but mathematically honest materials
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was often just the opposite of that which was desired. The prospective teachers seemed to be
even less confident than ever in mathematics and their attitude toward it became increasingly
negative.

This description might well apply to the present situation in many parts of the
world, particularly in the U.S. The “math war” in this country was definitely driven
by different views held by mathematics educators and mathematicians. The books
by Jensen (2003) and Wu (2011), both published by the American Mathematical
Society, represent the intention to bemathematically honest and suggest that this kind
of mathematics is not only necessary but also sufficient for teaching mathematics
properly at the elementary level.

However, as early as in 1986, this view was fundamentally challenged by Lee
Shulman in a seminal paper in which he contrasted mere “content knowledge” with
“pedagogical content knowledge” and “curricular knowledge” (Shulman 1986). His
proposal to look at content in a comprehensive way was taken up and elaborated on
in mathematics education in a series of papers (see, for example, Ball et al. 2008).

In the European and Asian contexts, this broader view on content has always been
present in teacher education, including teacher education for the elementary level.
So it was only in the context of the U.S. that the book by Liping Ma (1999) could be
presented as a revelation.

Our attempts in the project Mathe 2000 to better understand the impact of math-
ematics on mathematics education were greatly influenced by three papers that John
Dewey, one of the greatest minds of all time in the area of education, had published
as early as 1903–1904.

In Dewey (1903a, 285), an important distinction is made between two different
views of a subject:

Every study or subject has two aspects: one for the scientist as a scientist, the other for the
teacher as a teacher (. . .) For the scientist the subject-matter represents simply a given body of
truth to be employed in locating new problems, instituting new researches, and carrying them
through to a verified outcome. To him the subject-matter of the science is self-contained (. . .)
He is not, as a scientist, called upon to travel outside its particular bonds. (. . .) The problem
of the teacher is a different one. As a teacher he is not concerned with adding new facts to
the science he teaches. (. . .) He is not concerned with the subject matter as such, but with
the subject matter as a related factor in a total and growing experience. Thus to see it is to
psychologize it.

The connections and the differences between logically and psychologically orga-
nized subject matter were clarified in another eye-opening paper of Dewey’s in great
detail where Dewey arrived at the following conclusion (Dewey 1903b, 227–228):

The serious problem of instruction in any branch is to acquire the habit of viewing in a
twofold way which is taught day by day. It needs to be viewed as a development out of the
present habits and experiences of emotion, thought, and action; it needs to be viewed also
as a development into the most orderly intellectual system possible. These two sides, which
I venture to term the psychological and the logical, are the limits of a continuous movement
rather than opposite forces or even independent elements.

In Dewey (1904), a whole chapter is devoted to the role that courses on the subject
matter of teaching should play in teacher education. Dewey insists on seeing subject
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matter not only as a fixed body of knowledge but also as a developing process that
involves methods of teaching as well (Dewey 1904, 263–264):

Scholastic knowledge is sometimes regarded as if it were something quite irrelevant to
method. When this attitude is even unconsciously assumed, method becomes an external
attachment to knowledge of subject-matter. It has to be elaborated and acquired in relative
independence from subject-matter, and then applied.

Now the body of knowledge which constitutes the subject-matter of the student teacher must,
by the very nature of the case, be organized subject-matter. It is not a separate miscellaneous
heap of scraps. Even if (as in the case of history and literature), it be not technically termed
“science,” it is none the less material which has been subjected tomethod—has been selected
and arranged with reference to controlling intellectual principles. There is, therefore, method
in subject-matter itself—method indeed of the highest order which the human mind has yet
evolved, scientific method.

It cannot be too strongly emphasized that this scientific method is the method of the mind
itself. The classifications, interpretations, explanations, and generalizations which make
subject-matter a branch of study do not lie externally in facts apart from mind. They reflect
the attitudes and workings of mind in its endeavor to bring raw material of experience to a
point where it at once satisfies and stimulates the needs of active thought. Such being the
case, there is somethingwrongwith the “academic” side of professional training, if bymeans
of it the student does not get constantly get object-lessons of the finest type in the kind of
mental activity which characterizes mental growth and, hence, the educative process. (. . .)
Only a teacher thoroughly trained in the higher levels of intellectual method and who thus
has constantly in his own mind a sense of what adequate and genuine intellectual activity
means, will be likely, in deed, not in mere word, to respect to the mental integrity and force
of children.

Shulman (1986, 6–7) elaborates on the fact that in antiquity and in the Middle
Ages therewas no distinction between research and teaching. It is no accident that the
term “mathematics” is derived from the Greek μαθηματικη τεχνη (mathematike
techne), which denotes the “art of teaching and learning.” Even in modern Greek,
μαθαινω (mathaino) means “learning.”

Later on, “knowledge” and “learning”becamemore andmore separated.However,
at the forefront of research, the connection between research and teaching has always
been close, right up to the present day.WilliamThurston, whowas awarded the Fields
Medal in 1982, defended his use of broadermeans of representationwith his intention
to support understanding (Thurston 1994, 162):

It may sound almost circular to say that whatmathematicians are accomplishing is to advance
human understanding of mathematics (. . .) If what we are doing is constructing better ways
of thinking, then psychological and social dimensions are essential to a good model for
mathematical progress.

From these descriptions we have drawn the following conclusion: If mathematics
is understood and practiced as a living and developing organism including guiding
problems, heuristic strategies for solving problems, different types of representation
(enactive, iconic, symbolic), different ways of communication, exercises at different
levels, the search for structures and patterns, proofs, and applications to internal
or real-world problems, then the organization of knowledge in order to make it
understandable to students is part and parcel of this “well-understood mathematics”
at any level, beginning with early math (Kinnear and Wittmann 2018).
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Mathematics has grown historically, and this growth provides a good starting
point for appreciating “well-understood mathematics.” This is not to say that teach-
ing should follow the historical order. However, history gives valuable information
about how to develop mathematics genetically and shows that the lower stages of
development are indispensable for the higher stages and must be appreciated in their
specific manifestations. It is a fundamental mistake to believe that formal mathemat-
ical analyses of the subject matter can replace elementary formulations (see Dewey
1903b). “Mathematical honesty” must not be reserved for formal analyses, which
nevertheless are indispensable as an orientation for the development of coherent
curricula (see Sect. 2.2).1

Ifmathematics education is based on “well-understoodmathematics,” then there is
no compelling reason to look exclusively for theories of teaching and learning outside
of mathematics in order to secure a scientific basis. The natural theory of teaching
and learning mathematics is implicit in “well-understood mathematics.” The liter-
ature on elementary mathematics offers a veritable goldmine for “well-understood
mathematics” waiting to be exploited in the design of learning environments and in
teacher education. Research on the history of mathematics and on the philosophy of
mathematics is of great help in elaborating on this natural theory.

2.2 Structure-Genetic Didactical Analyses

In traditional mathematics education, didactical analyses have been the main method
for shaping conceptions for teaching certain areas. This method is taken up in the
design science approach but further specified in the following way: Subject matter is
considered in its development with respect to the development of learners at different
levels. Both “mathematical honesty” and “educational appropriateness” are taken
seriously and brought to a natural synthesis. In order to express this extended method
properly, the term “structure-genetic didactical analyses” has been coined (Wittmann
2018).

Structure-genetic didactical analyses represent a “bottom-up” view of teaching
and learning that fundamentally differs from a “top-down” view. In this respect,
Freudenthal’s critique of Chevallard’s demand for a “didactical transposition” from
the knowledge of scholars to the school environment is enlightening (Freudenthal
1986, 326–327).

Structure-genetic didactical analyses offer important advantages (Wittmann 2018,
145):

1. They emerge from mathematical practice, that is, from doing mathematics at
various levels.

2. They foster an active relationship with mathematics.

1In the eyes of the present author, U.S. mathematicians lost the “math war” because of their inappro-
priate top-down perspective. It is a pity that they failed to refer to “well-understood mathematics.”.
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3. They are constructive and therefore absolutely essential for designing substantial
learning environments and coherent curricula.

4. They are natural guidelines for teachers, as they bring to fruition the implicit the-
ories of teaching and learning mathematics and “unfreeze the didactical moments
frozen in the subject” (Heintel 1978, 46).

Point 3 is most important, as success in learning greatly depends on linking new
knowledge to old knowledge in a coherent way. This is in line with David Ausubel’s
famous statement (Ausubel 1968):

The most important single factor influencing learning is what the learner already knows.
Ascertain this and teach him accordingly.

What the learner knows, however, is mainly determined by prior learning. There-
fore, a coherent and consistent curriculum in which care is taken to establish solid
knowledge continuously plays a decisive role in teaching and learning. In order to
design such curricula a thorough knowledge of mathematics across all levels, includ-
ing logical analyses, is crucial.

2.3 A Differentiated Conception of Practicing Skills

While Sects. 2.1 and 2.2 are concerned with connecting mathematics education to
mathematics, that is, to “well-understood mathematics,” this subsection and the next
one are devoted to linking mathematics education to teacher education and to the
teaching practice.

One of the oldest principles of learning is summarized in the Latin saying, “Repe-
titio mater studiorum” (practice makes perfect). While this principle is unquestioned
in fields like music or sports, it is often woefully neglected when it comes to learning.
It is indicative that in contemporary mathematics education, notably in “New Math
Education,” “practice” is hardly a topic of research. In the Western world, “practice”
is most commonly understood as “drill and practice” and therefore rejected in prin-
ciple, in marked contrast with Asia. However, even teachers in Western countries
know that without extensive “practice,” no real and lasting progress is possible.

TheMathe 2000projectmade deliberate attempts to overcome the seeming contra-
diction between “practice” and “understanding” or between “genuine mathematics”
and the “basics.” The result was a differentiated conception of practicing skills. In
Wittmann&Müller (2017, 141) a distinction ismade between three types of practice:

“Introductory practice” aims at making students familiar with a new topic, that is
with new problems, newmeans of representation, new vocabulary, new symbols, new
methods, etc. The main objective is to firmly link new knowledge to prior knowl-
edge. According to Wittgenstein’s language game, students acquire new knowledge
through its repeated use in meaningful contexts.
“Basic practice” refers to the extended practice of a small set of skills that occur
frequently, the so-called basic competences, which must be mastered automatically.
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“Productive practice” is a kind of magic wand: It integrates the practice of skills with
the exploration and explanation of patterns, with the solution of problems and with
applications. The term “productive practice” was coined by Heinrich Winter, who
wanted to emphasize that students are expected to “produce” something on their own
in this type of practice. Productive practice represents the view of mathematics as
the science of patterns in full manifestation, and, at the same time, it offers a number
of practical advantages (little preparation on the part of teachers, self-monitoring on
the part of students, natural differentiation between students, time saved).

2.4 Awareness of Systemic Constraints

It is a tacit assumption in “NewMath Education” that teaching and learning represent
realities that can be investigated and controlled roughly in the same way as physical
realities. This assumption is a mere fiction. Of course, there are momentary local
realities of teaching and learning. However, these are not given and enduring but
rather shaped by former (formal or informal) teaching and learning, in whatever
form this may have taken place, and they are fluid and shaky. Donald Schön has
convincingly shown that in complex systems, themethods of “applied science” are of
limited value and that therefore the professionals in these fields must make decisions
on their own in their local environment (for more details see Wittmann 2016).

As it is the communication with teachers that counts, it has been a conscious
decision in our project to provide them with a robust theory for teaching that can
be communicated in understandable language and to empower teachers to act in a
self-reliant way. Here again, the design science approach and “NewMath Education”
differ fundamentally. The results of research in “NewMath Education” are extremely
diverse and formulated in a technical language. Their sheer mass is excessive, and it
is hard to imagine how they can reach the practice of teaching.

The most promising way for taking systemic constraints into account seems to be
introducing teachers to “well-understood mathematics” and connecting it to substan-
tial learning environments. In our view, it is first-hand knowledge in this area that is
the most important asset in terms of professional knowledge. This knowledge greatly
facilitates work with students, including communication and social interaction, and
it provides teachers with the necessary flexibility in subject matter that is needed for
meeting the demands of individual students.

The natural theory of teaching and learning as implicit in “well-understood math-
ematics” might appear “naïve” in comparison to the grand theories offered by “New
Math education.” However, from the systemic perspective this is a decisive advan-
tage.

From this perspective, there is another important point: Although international
exchange in mathematics education has made huge progress compared to the pre-
1970s situation, its impact on schools can only be effective at a local level. In this
respect, the involvement of teachers is crucial (Fung 2016).
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3 Practical Consequences

In this section, some practical consequences of the new conceptual basis will be
illustrated bymeans of examples that are taken from the new“Handbook of Practicing
Skills in a ProductiveWay” (Wittmann andMüller 2017/2018). The choice of the title
was a deliberate decision with respect to our systemic credo. In fact, this handbook
is not just about practice but rather offers a comprehensive introduction to teaching
arithmetic in the first four years based on “well-understood” mathematics.

The following four subsections are only loosely linked to the subsections in Sect. 2
as the various points discussed in this section overlap and, as a rule, each learning
environment exemplifies several of them.

3.1 Integrating “Well-Understood Mathematics”

In a letter submitted to the working group on proof at ICME 7, Québec 1992, Yuri
I. Manin introduced the term “mathscape” for the mathematical landscape research
mathematicians see in their mind’s eye and explore.2 It is only natural to combine this
metaphor with the term “learning environment” and, in a further step, to compare the
role of the teacher with the role of a mountain guide. The job of the latter is to select
tours that are appropriate for a certain group of hikers and to guide them to certain
summits. In order to act professionally, the guide must have first-hand experience of
mountainous landscapes, know how demanding certain tours are and have options
for changing or abridging tours it if this should be advisable or even necessary. In a
similar way, teachers must have first-hand experience of the “mathscape” on which
a learning environment is based, and they must have different hiking options at their
disposal.

In the new handbook, the subject matter is ordered in chapters devoted to subject
areas. For each area, several learning environments are offered. Each chapter starts
with an introduction into the mathematical structure of the area in question. The
description of each individual learning environment also begins by laying out the
mathematical structure of this environment in more detail. Teachers are invited to
first “go on tour” for themselves in order to become familiar with the “mathscape”
involved.

Example: The Learning Environment “Guessing Dice”
This environment is part of the subject area “Productive practice of addition and

subtraction” in grade 1 (Wittmann and Müller 2017, 125–127).
The guiding problem is as follows: The teacher rolls three dice behind a barrier

and announces only the total of the three numbers. In order to find out which numbers
were rolled, the children are allowed to ask questions which can be answered with
“yes” or “no,” for example, “Is there a 6?” or “Is there a 4?”

2Manin’s letter is reprinted in Wittmann 2002b, 546.
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Table 1 Partitions of the numbers 3 to 18 in three parts ≤ 6.

Total Decompositions

3 1+1+1

4 2+1+1

5 3+1+1,2+2+1

6 4+1+1,3+2+1,2+2+2

7 5+1+1,4+2+1,3+3+1,3+2+2

8 6+1+1,5+2+1,4+3+1, 4+2+2,3+3+2

9 6+2+1, 5+3+1,5+2+2,4+4+1,4+3+2 3+3+3

10 6+3+1 , 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3

11 6+4+1 ,6+3+2,5+5+1,5+4+2,5+3+3, 4+4+3

12 6+5+1, 6+4+2, 6+3+3, 5+5+2, 5+4+3, 4+4+4

13 6+6+1, 6+5+2, 6+4+3, 5+5+3, 5+4+4

14 6+6+2, 6+5+3, 6+4+4,5+5+4

15 6+6+3, 6+5+4, 5+5+5

16 6+6+4 ,6+5+5

17 6+6+5

18 6+6+6

Any answer provides additional information so that the numbers can be deter-
mined step by step.

Like all environments for productive practice, this learning environment requires
a certainmastery of the skills that are involved—in this case, the addition and subtrac-
tion tables. However, these skills are applied in various ways and thus corroborated
and consolidated.

For some totals (for example, 3, 4, 17, 18), no questions are needed, as there is
only one triple of numbers with this total. For other totals there are up to six triples of
numbers. Table 1 shows the combinatorial possibilities. These are called partitions,
as the order of the summands does not matter. In order to avoid multiplicity, it
makes sense to write the three summands in decreasing order. Listing the partitions
in lexicographic order is a way to determine them systematically. This method can
also be applied to determining partitions for which the size of the biggest part is not
restricted, unlike in this case, where the limit is 6.3

Teachers who are familiar with the structure in Table 1 will be well prepared for
guiding children through this learning environment.

In order to activate the readers of the handbook beyond the mathematics in the
learning environments, each chapter ends with a section called “Search and Find for
the Reader.” The problems that are offered for investigation here use only the math-
ematics and means of representation of this chapter and so contribute to enhancing

3Partitions are well suited as a field of study in mathematical courses for teachers.
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the professional knowledge of teachers. Although the problems are somewhat more
demanding, they are nevertheless accessible experimentally and can also be tackled
by talented students.

Example:
In the chapter “Introduction to the Thousand Space,” digit cards for the numbers 0,
1, 2, 3, 4, 5, 6, 7, 8, 9 are used as one of the standard teaching aids. The problem in
the corresponding section “Search and Find for the Reader” is as follows:

Take the nine digit cards

and arrange them into three 3-digit numbers so that

(a) the difference between the biggest and the smallest number is as big as possible,
(b) the difference between the biggest and the smallest number is as small as possible,
(c) the difference between the biggest and the middle number and the difference

between the middle number and the smallest number are equal.
(d) Try to make the difference in (c) as small as possible.

Hint: The smallest possible difference is smaller than 100.

3.2 Designing a Consistent and Coherent Curriculum

In the revision of the handbook, structure-genetic didactical analyses were used both
globally and locally.

Local analyses were applied for designing “mathscapes” that invite students (and
teachers) to mathematical activities (see the examples in 3.1 and 3.3).

The dominantglobal objectivewas to design a consistent and coherent curriculum.
“Consistent” means that the language, the means of representation and the problems
to be addressed should fit together over the grades. “Coherent” means that there
should be a seamless sequence of learning environments that build on one another.

The main instrument for achieving curricular consistency and coherence was
the following list of seven fundamental ideas of arithmetic that allow for a genetic
development of the subject matter (Wittmann and Müller 2017, 144):

1. Number as a synthesis of the ordinal and the cardinal aspect
2. Arithmetical laws
3. The structure of the decimal system
4. Algorithms
5. Arithmetical patterns
6. Numbers in the environment
7. Applications

Special attention was paid to the idea in No. 2, as Heinrich Winter’s demand for
an “algebraic penetration of arithmetic” should be put into practice. To this end, the
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arithmetical laws had to be introduced as early as possible. Addition and subtraction
presented no problem as the associative and the commutative laws of addition can
easily be based on operationswith counters. Formultiplication and division,we chose
rectangular arrays of counters and dots for the simple reason that this representation
is the only one which allows for establishing the associative and commutative laws
of multiplication as well as the distributive law at an elementary level (Freudenthal
1983, 109).

In Wittmann and Müller (2017, 71, 202–204), operative proofs of the five laws
are presented that rest on the following invariance principle: The cardinal number of
a set of counters (or dots) is independent of the location of the counters (dots).

The proofs run as follows:
Addition means that two sets of counters are united to form one set. Whether this

operation is executed in one or several steps does not affect the result. In algebraic
formulation: a + (b + c) = (a + b) + c.

Also the result does not depend on the order in which the two sets are put together:
a + b = b + a.

The commutative law of multiplication is easily derived from the fact that rows
and columns in a rectangular array a · b of dots change roles when the array is rotated
by 90◦. No dot is taken away, no dot is added. Therefore a · b = b · a.

Any array a · b can be separated into two arrays by means of a vertical or a
horizontal segment or into four arrays bymeans of a horizontal and a vertical segment.
In this way, the distributive law is established:

a · (b1 + b2) = a · b1 + a · b2, (a1 + a2) · b = a1 · b + a2 · b
(a1 + a2) · (b1 + b2) = a1 · b1 + a1 · b2 + a2 · b1 + a2 · b2

If we take an array a · b and arrange c copies of it consecutively, we get a large
array with c · (a · b) = (a · b) · c dots. As this array has a rows and c · b = b · c dots
in each row, we get (a · b) · c = a · (b · c).

Table 2 gives an overview of the curricular structure of arithmetic for grades 1
to 4 at which we have arrived. The coherence of the topic areas is expressed with
arrows.

The table contains bars running from left to right that indicate the continuous
development of the two fundamental ideas “Decimal system” and “Arithmetical
laws” over the grades.

In addition, there is a third bar: “Calculightning” (in German “Blitzrechnen”).
This word is an artificial combination of the words “calculating” and “lightning” and
denotes a course with 40 basic competences that have to be mastered so they can be
performed automatically (see Table 3).4

4“Calculightning” (“Blitzrechnen”) is available in the form of four apps (corresponding to grades
1–4) that offer also an option for English.
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Table 2 The curricular structure of arithmetic in grades 1–4

As the names of the modules indicate, these competences are not independent
but build on one another, both horizontally across the number spaces and vertically
within each number space.

“Calculightning” is important for two reasons: It secures not only a firm mastery
of a small set of basic competences, but it also serves as a remedial program for
students who need additional support. At first glance, these two objectives might
appear contradictory. However, a closer look at “Calculightning” reveals that this
course which is derived from the fundamental ideas of arithmetic contains exercises
that are crucial for understanding the decimal systemand for establishing connections
between number facts. Moreover, all modules of “Calculightning” are introduced
in the context of introductory practice, which aims at facilitating understanding.
Automation then comes in as the very final step inmastering these basic competences.

For the multiplication table this means:
This table is introduced by means of rectangular arrays of dots, whereby the

connections provided by the arithmetical laws are used for effective learning.
It is only after extensive introductory practice that basic practice of the table

begins with the ultimate goal of automation.
Learning environments for productive practice are investigated in parallel to this

and include operative proofs based on rectangular arrays of dots (for details see
Wittmann and Müller (Wittmann and Müller, 2017), Chaps. 4–6).
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Table 3 Overview of the course “Calculightning”

Twenty Space Hundred Space Thousand Space Million Space

How many? how many? Which
number?

Multiplication and
division table

Reading and writing
big numbers

Row of twenty counting in steps Doubling /Halving in
the hundred space

Complementing to 1
million

Power of five complementing to the
next ten

How many? which
number?

Dividing powers of
10in equal parts

Decomposing complementing to 100 Counting in steps subtracting powers of
ten

Complementing to
10/20

Dividing 100 in equal
parts

Complementing to
1000

Reading numbers
differently

Doubling Doubling/halving Dividing 1000 in equal
parts

Counting in steps

Addition table Easy addition
problems

Doubling/Halving in
the thousand space

Doubling/halving in
the million space

Subtraction table Easy subtraction
problems

Easy addition and
Subtraction problems

Easy addition and
Subtraction problems

3.3 Including Operative Proofs

Proofs are “the very heart of mathematics” (Günter Ziegler). At lower levels, it is
appropriate to include “operative proofs” that use mathematical structures integral
to informal means of representation (Wittmann 2002, 545–548). The conception of
productive practice is well suited to combine the practice of skills with mathematical
investigations, including proofs, and thus reflects “well-understood mathematics” in
a particularly significant way.

A typical example is provided by the learning environment “ANNA numbers”
(Wittmann andMüller 2018, Sect. 2.2.3). In this environment, the practice of column
subtraction is combined with a mathematical investigation.

ANNA numbers are 4-digit numbers like 4114, 7887, 3003, etc. For any pair of
different digits, there are two ANNA numbers, and the smaller number of each pair
can be subtracted from the larger one: 4114 − 1441, 8778 − 7887, 3003 − 0330, etc.

During the calculations, the following patterns emerge and can be discovered by
students (and teachers):

(a) Only the results 891, 1782, 2673, 3564, 4455, 5346, 6237, 7128, and 8019 are
possible, and they show conspicuous patterns.

(b) ANNA numbers with the same difference of digits have the same result.
(c) All results are multiples of the smallest result 891.

One proof of these patterns uses the place value chart (Fig. 2) and runs as follows:
Usually subtraction is defined as “taking away.” A second, mathematically more
advanced interpretation is “complementing.” Here a − b means finding the number
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Fig. 2 Operative proof based on the place value chart

c which added to b yields a. In other words: b is complemented by c to yield a, and
c is the difference a − b.

The left place value chart in Fig. 2 shows how the number 1221 is complemented
to equal 2112. One counter is moved from the tens column to the ones column,
and one counter from the hundreds column is moved to the thousands column. This
operation increases the number 1221 by +1000 + 1 − 100 − 10 = 891.

In the place value chart on the right side of Fig. 2, two pairs of counters must
be moved correspondingly. Therefore, the difference between 3113 and 1331 is
2 · 891 = 1782.

In order to go from 4994 to 9449, five pairs of counters must be moved. The
difference is 5 · 891 = 4455. Clearly, the difference of the digits determines how
many pairs of counters must be moved.

A second proof uses the semiformal strategy “separate place values” that is intro-
duced as early as grade 2 with 2-digit numbers (Fig. 3).5

Fig. 3 Operative proof based on the semiformal strategy “separate place values”.

The calculations show that the results depend only on the difference of the digits
and that all results are multiples of the smallest result 1000 − 100 − 10 + 1 = 891.6

A third operative proof starts with the fact that a difference remains unchanged if
both the minuend and the subtrahend are increased by the same number.

Starting from 1001 − 0110 = 891 and increasing both digits by 1 step by step
increases both numbers by 1111 and leads to 2112 − 1221, 3223 − 2332, 4334 −
3443, etc. All these differences have the same result of 891.

5The calculations run as follows: First the problem is written down. Then a line is drawn, and under
it, the subtractions for the different place values are executed. Finally, the partial results are mentally
combined for the final result, which is then entered in the first line.
6This proof is close to the algebraic proof where a pair of ANNA numbers is represented by A ·
1000 + B · 100 + B · 10 + A · 1 and B · 1000 + A · 100 + A · 10 + B · 1, A > B. The difference
of the two numbers is (A − B) · (1000 − 100 − 10 + 1) = (A − B) · 891.
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Starting from 2002 − 0220 = 1782 and increasing the digits by 1 step by step
leads to 3223 − 2332, 4334 − 3443, etc. Again, the result 1782 does not change.

In an analogous way, we can start with 3003 − 0330 = 2673 or 4004 − 0440 =
3564 etc. In all cases, the results remain invariant.

In order to show that all results are multiples of 891, we start from 1001 − 0110 =
891 and pass over to 2002 − 0220, 3003 − 0330, . . ., 9009 − 0990. At each step,
the minuend increases by 1000 + 1, the subtrahend by 100 + 10. Therefore the
difference grows by 1000 + 1 − 100 − 10 = 891. So 1728 = 891 + 891, 2637 =
1782 + 891, etc.

A fourth operative proof, which is preferable in the context of practicing column
subtraction, rests on an analysis of the subtraction algorithm. In Germany the “com-
plementing method” is still widespread (although unfortunately the mathematically
less advanced method common in English-speaking countries is gaining ground).
Figure 4 shows some calculations according to the “complementing method.” As the
name indicates, this method consists of complementing the subtrahend such that the
subtrahend and the complement add up to the minuend. The notation is minimalistic,
and the connection with column addition is obvious.

Fig. 4 Operative proof based on column subtraction (complementing method)

In all results of Fig. 4, the tens digit and the ones digits add up to 10, the hundreds
digit is 1 less than the tens digit, and the thousands digit is 1 less than the ones digit.
As a consequence, the ones digit of the result, which is the difference of the digits
of the ANNA number, determines the whole result.

All operative proofs are rigorous as they rest on generally applicable operations
independently of the examples by which they are demonstrated.

This learning environment is well suited to illustrate three general points:
(1) Teaching aids must be selected carefully, and the decisive criterion is how well

they incorporate the mathematical structure and can be used for operative proofs
(Wittmann 1998).

(2) Decisions about which methods of calculating are preferable can only be made
by looking at the whole curriculum. Otherwise, not only will the consistency
and the coherence be adversely affected but so will the mathematical impact.

(3) In guiding students through a learning environment, the teacher has mainly to
follow the natural flow of the mathematical activity rooted essentially in “well-
understood mathematics” as it is perfectly captured in Guy Brousseau’s theory
of didactical situations: introduction, action, communication, validation, insti-
tutionalization (Brousseau 1997).
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3.4 Addressing Teachers as “Reflective Practitioners”

The new handbook stimulates readers to become active not only mathematically but
also didactically. In this regard, the most important new feature in the handbook is
an adaptation of the Japanese lesson study method (see Becker and Shimada 1997;
Hirabayashi 2002). Each chapter of the handbook ends with some proposals for
conducting “collective teaching experiments.” This term was inspired by the French
philosopher Bruno Latour, who introduced it in environmental sociology (for details
see Wittmann 2016).

Teachersmust bemade aware that for systemic reasons, researchers cannot collect
and communicate all knowledge that is needed for teaching. So teachersmust sensibly
implement what is proposed to them, adapt it to their experiences and routines, and
collect further information in the classroom themselves.7

The following is a typical example for a collective teaching experiment: Readers
are invited to compare the proposal for guiding students through the learning envi-
ronment “ANNA numbers” with another approach in which a similar environment
about “UHU Numbers” is first explored.8 It is interesting to observe to which extent
students are able to transfer what they have learned about UHU numbers to ANNA
numbers.

All collective teaching experiments in the handbook are numbered to facilitate an
exchange about students’ experiences.

4 Final Remarks

1. “Well-understood mathematics” should not only be integrated into didactical
courses, textbooks and materials for teachers. To organize mathematical courses
in teacher education accordingly would greatly contribute to improving the image
ofmathematics, both with teachers and student teachers, and to provide themwith
highly effective professional knowledge. This knowledge could be further devel-
oped in didactical courses (“methods courses”).
It seems promising to design mathematical courses for primary teachers starting
with the mathematics that is integrated in the handbook. To rephrase Dewey: In
this way, student teachers would “constantly get object-lessons of the finest type
in the kind of mental activity which characterizes mental growth and, hence, the
educative process.”

7Hiro Ninomiya has sensibly pointed to the importance of Japanese teachers’ “implicit” knowledge
for conducting lessons. The present author has often found that the systemic thinking for which he
has to plea fervently in his context is implicit in Japanese education in many ways—so implicit that
in Japanese there is not even a word for “systemic.”.
8UHU numbers are numbers like 343, 727, etc. “Uhu” is the German name for eagle owl. For any
two pairs of different digits, there are two UHU numbers which can be subtracted: 434 − 343,
727 − 272, . . .. The results 91, 182, 273, . . ., 819 also show a conspicuous pattern and are multiples
of 91.
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2. Although structure-genetic didactical analyses provide a great deal of empirical
evidence for teaching, it is worthwhile to conduct controlled teaching experiments
and to document the processes that can be observed. Documentation of this kind
is very valuable in teacher education (Hirabayashi 2002). Here, young researchers
will find ample opportunities.
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Appendix
Excerpts from The Book of Numbers (BN)

This: Combining thinking and doing
This: Inducing students to combine thinking and doing

is the source point of any productive education.

Friedrich Froebel 1821

The following pages should provide some impression of how learning environments
developed in Mathe 2000 have been implemented in a textbook. The e-Book version
of this volume shows these pages in color.

The pages have also been selected with the intention to convey an idea of the
coherent and consistent mathematical structure of the textbook The Book of Numbers
which is a truly mathematical book. In line with the quotation from page 1, which is
repeated above, the readers are invited to solve the problems offered on these pages
themselves. This will give them a real impression of the conception of the Book of
Numbers in which the choice and the sequence of problems are well-considered.

© The Author(s) 2021
E. C. Wittmann, Connecting Mathematics and Mathematics Education,
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Pages Content Source Reference
p. 290 Game for developing the knowledge

of the number line, and first experi-
ences with random experiments

BN Early Math. vol. 2, p. 22 Chapter3

p. 287 Investigation and operative proof
of the well-known relationship
between triangular and square num-
bers

BN 2, p. 116 Chapter5

pp. 292–293 Introduction of arithmogons in
grade 1, using counters that allow
for experimental solutions

BN 1, pp. 74–75 Chapter 6

pp. 294–295 Continuing work with arithmogons,
using counters for solving the diffi-
cult case

BN 1, pp. 106–107

p. 296 Arithmogons: Systematic solution
of the difficult case

BN 3, p. 120 Chapter6

pp. 297–300 Introduction of the addition table
in grade 1. The commutative and
the associative law of addition are
used for deriving the results of
more difficult problems from easy
ones. Counters and the Twenty
frame allow for making relation-
ships explicit.

BN 1, pp. 52–55 Chapter8

pp. 301–305 Introduction of the multiplication
table in grade 2. The commutative
and associative law of multiplica-
tion and the distributive law are used
for deriving the results ofmore diffi-
cult problems from easy ones. Hun-
dred array and angle card allow for
making relationships explicit.

BN 2, pp. 67–71 Chapter13

pp. 306–309 Holistic introduction of the thou-
sand space in grade 3. Teaching
aids: Thousand book and Thousand
array

BN 3, pp. 32–35 Chapter8

p. 310 Investigation of a number pat-
tern within the multiplication table,
operative proof of the pattern with
dot arrays

BN 2, p. 117 Chapter9
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Pages Content Source Reference
pp. 311–312 Investigation and operative proof of

patterns with arrow strings in
grade 3

BN 3, p. 3, p. 113 Chapter 11

p. 313 The strategy “Tens minus Tens,
Ones minus Ones” introduced in
grade 2 (see the solution of Tim,
exercise 3, at the bottom)

BN 2, p. 50 Chapter 12

p. 314 The strategy “Tens minus Tens,
Ones minus Ones” continued in
grade 3 (see the solution of Mika)

BN 3, p. 68

p. 315 Tessellations with polyominoes as a
preparation of the nets of a cube

BN 3, p. 11 Chapter 13

pp. 316–317 Operative proof of the rule “Cast-
ing out Nines” with the place value
chart and counters

BN 3, p. 122–123 Chapter 13

p. 318 Investigation of the patterns with
“ANNA numbers”

BN 4, p. 118 Chapter 14

The textbook pages BN 1, p. 55, BN 2, 71, BN 3, pp. 33, 35, contain references to
the course Calculightning (s. Chap. 14). This course is available also in the form of
Apps with an option in English. There are 5 Apps: Calculightning 0 for Early Math,
Calculightning 1 – 4 for the vols. 1 – 4 of the Book of Numbers. These Apps can be
found in the App Store or at Google Play by entering “Klett Calculightning”.

Readers who are interested in learning more about the project Mathe 2000 and
about the materials developed in this project are referred to the website www.
Mathe2000.de that contains a section in English.

www.Mathe2000.de
www.Mathe2000.de
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