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ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Işil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Ábrahám
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).



The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbrücken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara König
(Duisburg), Gerald Lüttgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Křetínský (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Roșu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schröder
(Erlangen), Ilya Sergey (Singapore), Mariëlle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

February 2021 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President
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Preface

TACAS 2021 was the 27th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2021 was part of the 24th European Joint Conferences on Theory and Practice of
Software (ETAPS 2021), which although originally planned to take place in
Luxembourg City, was held as an online event on March 27 to April 1 due the the
COVID-19 pandemic.

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building computer-controlled systems. There were
four types of submissions for TACAS:

– Research papers advancing the theoretical foundations for the construction and
analysis of systems.

– Case study papers with an emphasis on a real-world setting.
– Regular tool papers presenting a new tool, a new tool component, or novel

extensions to an existing tool and requiring an artifact submission.
– Tool demonstration papers focusing on the usage aspects of tools, also subject to the

artifact submission requirement.

This year 141 papers were submitted to TACAS, consisting of 90 research papers,
29 regular tool papers, 16 tool demo papers, and 6 case study papers. Authors were
allowed to submit up to four papers. Each paper was reviewed by three Program
Committee (PC) members, who made extensive use of subreviewers.

Similarly to previous years, it was possible to submit an artifact alongside a paper,
which was mandatory for regular tool and tool demo papers. An artifact might consist
of a tool, models, proofs, or other data required for validation of the results of the
paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the
artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardised virtual machine to ensure con-
sistency of the results, except for those artifacts that had special hardware requirements.

The evaluation consisted of two rounds. The first round was carried out in parallel
with the work of the PC. The judgment of the AEC was communicated to the PC and
weighed in their discussion. The second round took place after paper acceptance
notifications were sent out; authors of accepted research papers who did not submit an
artifact in the first round could submit their artifact here. In total, 72 artifacts were
submitted (63 in the first round and 9 in the second), of which 57 were accepted and 15
rejected. This corresponds to an acceptance rate of 79 percent. Papers with an accepted
artifact include a badge on the first page.



Selected authors were requested to provide a rebuttal for both papers and artifacts in
case a review gave rise to questions. In total 166 rebuttals were provided. Using the
review reports and rebuttals the Programme and the Artifact Evaluation Committees
extensively discussed the papers and artifacts and ultimately decided to accept 32
research papers, 7 tool papers, 6 tool demos, and 2 case studies.

Besides the regular conference papers, this two-volume proceedings also contains 8
short papers that describe the participating verification systems and a competition
report presenting the results of the 10th SV-COMP, the competition on automatic
software verifiers for C and Java programs. These papers were reviewed by a separate
program committee (PC); each of the papers was assessed by at least three reviewers.
A total of 30 verification systems with developers from 11 countries entered the sys-
tematic comparative evaluation, including four submissions from industry. Two ses-
sions in the TACAS program were reserved for the presentation of the results: (1) a
summary by the competition chair and of the participating tools by the developer teams
in the first session, and (2) an open community meeting in the second session.

March/April 2021 Jan Friso Groote
Kim Guldstrand Larsen

Frédéric Lang
Thierry Lecomte
Thomas Neele

Peter Gjøl Jensen
Dirk Beyer

Alfredo Rial
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Benjamin Bisping(�) and Uwe Nestmann
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Abstract We introduce a generalization of the bisimulation game that
can be employed to find all relevant distinguishing Hennessy–Milner logic
formulas for two compared finite-state processes. By measuring the use of
expressive powers, we adapt the formula generation to just yield formulas
belonging to the coarsest distinguishing behavioral preorders/equivalences
from the linear-time–branching-time spectrum. The induced algorithm
can determine the best fit of (in)equivalences for a pair of processes.

Keywords: Process equivalence spectrum · Distinguishing formulas ·
Bisimulation games.

1 Introduction

Have you ever looked at two system models and wondered what would be the finest
notions of behavioral equivalence to equate them—or, conversely: the coarsest
ones to distinguish them? We run into this situation often when analyzing models
and, especially, when devising examples for teaching. We then find ourselves
fiddling around with whiteboards and various tools, each implementing different
equivalence checkers. Would it not be nice to decide all equivalences at once?

Example 1. Consider the following CCS process P1 = a.(b+ c) + a.d. It describes
a machine that can be activated (a) and then either is in a state where one can
choose from b and c or where it can only be deactivated again (d). P1 shares
a lot of properties with P2 = a.(b+ d) + a.(c+ d). For example, they have the
same traces (and the same completed traces). Thus, they are (completed) trace
equivalent.

But they also have differences. For instance, P1 has a run where it executes a
and then cannot do d, while P2 does not have such a run. Hence, they are not
failure equivalent. Moreover, P1 may perform a and then choose from b and c,
and P2 cannot. This renders the two processes also not simulation equivalent.
Failure equivalence and simulation equivalence are incomparable—that is, neither
one follows from the other one. Both are coarsest ways of telling the processes
apart. Other inequivalences, like bisimulation inequivalence, are implied by both.

In the following, we present a uniform game-based way of finding the most fitting
notions of (in)equivalence for process pairs like in Ex. 1.
© The Author(s) 2021
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Our approach is based on the fact that notions of process equivalence can be
characterized by two-player games. The defender’s winning region in the game
corresponds to pairs of equivalent states, and the attacker’s winning strategies
correspond to distinguishing formulas of Hennessy–Milner logic (HML).

Each notion of equivalence in van Glabbeek’s famous linear-time–branch-
ing-time spectrum [10] can be characterized by a subset of HML with specific
distinguishing power. Some of the notions are incomparable. So, often a process
pair that is equivalent with respect to one equivalence, is distinguished by a
set of slightly coarser or incomparable equivalences, without any one of them
alone being the coarsest way to distinguish the pair. As with the spectrum of
light where a mix of wave lengths shows to us as a color, there is a “mix” of
distinguishing capabilities involved in establishing whether a specific equivalence
is finest. Our algorithm is meant to analyze what is in the mix.

Contributions. This paper makes the following contributions:

– We introduce a special bisimulation game that neatly characterizes the
distinguishing formulas of HML for pairs of states in finite transition systems
(Subsection 3.1 and 3.2).

– We show how to enumerate the relevant distinguishing formulas using the
attacker’s winning region (Subsection 3.3).

– We give a way of constructing a finite set of distinguishing formulas guaranteed
to contain observations of the weakest possible observation languages, which
can be seen as a “spectroscopy” of the differences between two processes
(Subsection 3.4).

– We present a small web tool that is able to run the algorithm on finite-state
processes and output a visual representation of the game (Section 4). We
also report on the distinctions it finds for all the finitary examples from the
report version of the linear-time–branching-time spectrum [12].

We frame the contributions by a roundtrip through the basics of HML, games and
the spectrum (Section 2), a discussion of related work (Section 5), and concluding
remarks on future lines of research (Section 6).

2 Preliminaries: HML, Games, and the Spectrum

We use the concepts of transition systems, games, observations, and notions of
equivalence, largely due to the wake of Hennessy and Milner’s seminal paper [14].

2.1 Transition Systems and Hennessy–Milner Logic

Labeled transition systems capture a discrete world view, where there is a current
state and a branching structure of possible state changes to future states.

Definition 1 (Labeled transition system). A labeled transition system is a
tuple S = (P, Σ,→) where P is the set of states, Σ is the set of actions, and
→ ⊆ P ×Σ × P is the transition relation.
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Hennessy–Milner logic [14] describes finite observations (or “tests”) that one can
perform on such a system.

Definition 2 (Hennessy–Milner logic). Given an alphabet Σ, the syntax of
Hennessy–Milner logic formulas, HML[Σ], is inductively defined as follows:

Observations If ϕ ∈ HML[Σ] and a ∈ Σ, then 〈a〉ϕ ∈ HML[Σ].
Conjunctions If ϕi ∈ HML[Σ] for all i from an index set I, then

∧
i∈Iϕi ∈

HML[Σ].
Negations If ϕ ∈ HML[Σ], then ¬ϕ ∈ HML[Σ].

We often just write
∧
{ϕ0, ϕ1, ...} for

∧
i∈Iϕi. T denotes

∧
∅, the nil-element of

the syntax tree, and 〈a〉 is a short-hand for 〈a〉T. Let us also implicitly assume
that formulas are flattened in the sense that conjunctions do not contain other
conjunctions as immediate subformulas. We will sometimes talk about the syntax
tree height of a formula and consider the height of T to equal 0.

Intuitively, 〈a〉ϕ means that one can observe a system transition labeled by a
and then continue to make observation(s) ϕ. Conjunction and negation work as
known from propositional logic. We will provide a common game semantics for
HML in the following subsection.

2.2 Games Semantics of HML

Let us fix some notions for Gale-Stewart-style reachability games where the
defender wins all infinite plays.

Definition 3 (Games). A simple reachability game G[g0] = (G,Gd,�, g0)
consists of

– a set of game positions G, partitioned into
• a set of defender positions Gd ⊆ G
• and attacker positions Ga :=G \Gd,

– a graph of game moves � ⊆ G×G, and
– an initial position g0 ∈ G.

Definition 4 (Plays and wins). We call the paths g0g1... ∈ G∞ with gi� gi+1

plays of G[g0]. The defender wins infinite plays. If a finite play g0 . . . gn �� is
stuck, the stuck player loses: The defender wins if gn ∈ Ga, and the attacker wins
if gn ∈ Gd.

Definition 5 (Strategies and winning strategies). A (positional, nondeter-
ministic) strategy is a subset of the moves, F ⊆�. If (fairly) picking elements
of strategy F ensures a player to win, F is called a winning strategy for this
player. The player with a winning strategy for G[g0] is said to win G[g0].

Definition 6 (Winning regions). The set Wa ⊆ G of all positions g where
the attacker wins G[g] is called the attacker winning region (defender winning
region Wd analogous).
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All Gale-Stewart-style reachability games are determined, that is, Wa ∪Wd = G.
The winning regions of finite simple reachability games can be computed in linear
time of the number of game moves (cf. [13]). This is why the spectroscopy game
of this paper can easily be used in algorithms. It derives from the following game.

Definition 7 (HML game). For a transition system S = (P, Σ,→), the HML
game GS

HML[g0] = (G,Gd,�, g0) is played on G = P × HML[Σ], where the
defender controls observations and negated conjunctions, that is (p, 〈a〉ϕ) ∈ Gd

and (p,¬
∧
i∈Iϕi) ∈ Gd (for all ϕ, p, I), and the attacker controls the rest. There

are five kinds of moves:

– (p, 〈a〉ϕ) � (p′, ϕ) if p a→ p′,
– (p,¬〈a〉ϕ) � (p′,¬ϕ) if p a→ p′,
– (p,

∧
i∈Iϕi) � (p, ϕi) with i ∈ I,

– (p,¬
∧
i∈Iϕi) � (p,¬ϕi) with i ∈ I, and

– (p,¬¬ϕ) � (p, ϕ).

Like in other logical games in the Ehrenfeucht–Fraïssé tradition, the attacker
plays the conjunctions and universal quantifiers, whereas the defender plays the
disjunctions and existential quantifiers. For instance, (p, 〈a〉ϕ) is declared as
defender position, since 〈a〉ϕ is meant to become true precisely if there exists a
state p′ reachable p a→ p′ where ϕ is true.

As every move strictly reduces the height of the formula, the game must be
finite-depth (and cycle-free), and, for image-finite systems and formulas, also
finite. It is determined and the following semantics is total.

Definition 8 (HML semantics). For a transition system S = (P, Σ,→), the
semantics of HML is given by defining that ϕ is true at p in S, written �ϕ�Sp , iff
the defender wins GS

HML[(p, ϕ)].

Example 2. Continuing Ex. 1, �〈a〉¬〈d〉T�CCSP2
is false: No matter whether the

defender plays to (b+ d,¬〈d〉T) or to (c+ d,¬〈d〉T), the attacker wins by moving
to the stuck defender position (0,¬T). (Recall that T is the empty conjunction
and that 0 is the completed process!)

2.3 The Spectrum of Behavioral Equivalences

Definition 9 (Distinguishing formula). A formula ϕ distinguishes state p
from q iff �ϕ�p is true and �ϕ�q is not.1

Example 3. 〈a〉¬〈d〉T distinguishes P1 from P2 in Ex. 1 (but not the other way
around). 〈a〉

∧
{〈b〉T, 〈d〉T} distinguishes P2 from P1.

Definition 10 (Observational preorders and equivalences). A set of ob-
servations, OX ⊆ HML[Σ], preorders two states p, q, written p 
X q, iff no
formula ϕ ∈ OX distinguishes p from q. If p 
X q and q 
X p, then the two are
X-equivalent, written p ≡X q.
1 In the following, we usually leave the transition system S implicit.
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Definition 11 (Linear-time–branching-time languages [12]). The linear-
time–branching-time spectrum is a lattice of observation languages (and of entailed
process preorders and equivalences). Every observation language OX can perform
trace observations, that is, T ∈ OX and, if ϕ ∈ OX , then 〈a〉ϕ ∈ OX . At the
more linear-time side of the spectrum we have:

– trace observations OT : Just trace observations,
– failure observations OF :

∧
i∈I¬〈ai〉 ∈ OF ,

– readiness observations OR:
∧
i∈Iϕi ∈ OR with each ϕi of form ¬〈ai〉 or 〈ai〉,

– failure trace observations OFT :
∧
i∈Iϕi ∈ OFT with ϕ0 ∈ OFT and, for i > 0,

ϕi = ¬〈ai〉,
– ready trace observations ORT :

∧
i∈Iϕi ∈ ORT with ϕ0 ∈ ORT and, for i > 0,

ϕi of form ¬〈ai〉 or 〈ai〉,
– impossible futures OIF :

∧
i∈I¬ϕi ∈ OIF with all ϕi ∈ OT , and

– possible futures OPF :
∧
i∈Iϕi ∈ OPF with all ϕi ∈ {¬ψi, ψi} and ψi ∈ OT .2

At the more branching-time side, we have simulation observations. Every simula-
tion observation language OXS , has full conjunctive capacity, that is, if ϕi ∈ OXS

for all i ∈ I, then
∧
i∈Iϕi ∈ OXS .

– simulation observations O1S : Just simulation (and trace) observations,
– n-nested simulation observations OnS : ¬ϕ ∈ OnS with ϕ ∈ O(n−1)S ,
– ready simulation observations ORS : ¬〈a〉 ∈ ORS , and
– bisimulation observations OB : The same as O∞S , which is exactly HML[Σ].

The observation languages of the spectrum differ in how many of the syntactic
features of HML one will encounter when descending into a formula’s syntax tree.
We will come back to this in Subsection 3.4.

Note that we consider
∧
{ϕ} to be an alias for ϕ. With this aliasing, all the

listed observation languages are closed in the sense that all subformulas of an
observation are themselves part of that language. They thus are inductive in the
sense that all observations must be built from observations of the same language
with lower syntax tree height.

3 Distinguishing Formula Games

This section introduces our main contribution: the spectroscopy game (Def. 13),
and how to build all interesting distinguishing HML formulas from its winning
region (Def. 14). To justify our construction and to prove that we indeed find
distinguishing formulas (Thm. 1), let us first examine the formula preorder game
(Def. 12), which is closer to the problem whether formulas are (non-)distinguishing.
2 Like Kučera and Esparza [17], who studied the properties of “good” observation

languages, we glimpse over completed trace, completed simulation and possible worlds
observations here, because these observations need a special exhaustive

∧
a∈Σϕ. While

it could be provided for with additional operators, it would add another case in each
of the upcoming definitions and would break the closure property of observation
languages, without giving much in return.
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3.1 The Formula Preorder Game

Def. 10 entails a straightforward way of turning the problem whether a set of
observations O ⊆ OX preorders two states p, q into a game: Have the attacker
pick a supposedly distinguishing formula ϕ ∈ O, and then have the defender
choose whether to play the HML game (Def. 7) for �¬ϕ�p or for �ϕ�q. This direct
route will yield infinite games for infinite O—and all the languages from Def. 11
are infinite!

To bypass the infinity issue, we will introduce a variation of this game where
the attacker gradually chooses their attacking formula. In particular, this means
that the attacker now decides which observations to play. In return, the defender
does not need to pick a side in the beginning and may postpone the decision where
(on the right-hand side) an observation leads. Postponing decisions here means
that the defender may play non-deterministically, moving to multiple states at
once. The mechanics are analogous to the standard powerset construction when
transforming non-deterministic finite automata into deterministic ones.

Definition 12 (Formula preorder game). For a transition system S =
(P, Σ,→) and a set of observations OX , the formula preorder game GS

X [g0] =
(G,Gd,�, g0) consists of
– attacker positions (p,Q,O)a ∈ Ga with p ∈ P, Q ∈ 2P , and O ⊆ OX ,
– defender conjunction positions (p,Q,O)

∧
d ∈ Gd where the defender has to

answer to conjunction challenges, and
– defender negation positions (p,Q,O)

¬
d ∈ Gd where the defender has to answer

to negation challenges,

and five kinds of moves
– observation moves (p,Q,O)a � (p′, Q′,O′)a

if p a→ p′ with Q′ = {q′ | ∃q ∈ Q. q
a→ q′} and O′ = {ϕ | 〈a〉ϕ ∈ O},

– conjunct challenges (p,Q,O)a � (p,Q, {ϕi | i ∈ I})∧d
if
∧
i∈Iϕi ∈ O,

– conjunct answers (p,Q,O)
∧
d � (p, {q},O)a

if q ∈ Q,
– negation challenges (p,Q,O)a � (p,Q, {ϕ})¬d

if ¬ϕ ∈ O, and
– negation answers (p,Q,O)

¬
d � (q, {p},O)a

if q ∈ Q.

The formula preorder game precisely characterizes whether an observation lan-
guage is distinguishing:

Lemma 1. For a closed observation language OX , the formula preorder game
GS
X [(p,Q,O)a] with O ⊆ OX is won by the defender precisely if, for every

observation ϕ ∈ O with �ϕ�p, there is a q ∈ Q such that �ϕ�q.

Proof (Sketch). By induction over the height of formulas in OX with arbitrary
p and Q, and strengthening the induction predicate to not only consider ϕ but
also partial conjunctions

∧
O′′ with O′′ ⊆ O′ whenever ϕ =

∧
O′. To prove the

right-to-left direction, exploiting the determinacy of the game is convenient.
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(p,Q)a (p, {q})a

(p′, Q′)a

(p,Q)d

(q, {p})a

p
a→ p′∧

Q′ = {q′ | ∃q ∈ Q. q
a→ q′}

q ∈ Q

Q = {q}

Figure 1. Schematic spectroscopy game G� of Def. 13. Boxes stand for attacker
positions, circles for defender positions, arrows for moves. From the dashed boxes, the
moves are analogous to the ones of the connected solid positions.

3.2 The Spectroscopy Game

Let us now remove the formulas from the formula game (Def. 12). The idea is
to look at the game for the whole of HML, called GB . Only attack moves in the
formula game change the current set of observations, and they are completely
guided by the context-free grammar of HML (Def. 2). Therefore, we can3 assume
O to equal HML[Σ] in every reachable position of GB. Effectively, O can be
canceled out of the game, without losing any information. We call the remaining
game the “spectroscopy game.” Figure 1 gives a graphical representation.

Definition 13 (Spectroscopy game). For a transition system S = (P, Σ,→),
the L-labeled spectroscopy game GS

�[g0] = (G,Gd,
·
�, g0) with L = {¬,∧, ∗, 〈a〉}

consists of

– attacker positions (p,Q)a ∈ Ga with p ∈ P, Q ∈ 2P ,
– defender positions (p,Q)d ∈ Gd where the defender has to answer to conjunc-

tion challenges,

and four kinds of moves:

– observation moves (p,Q)a
〈a〉
� (p′, {q′ | ∃q ∈ Q. q

a→ q′})a if p a→ p′

– conjunct challenges (p,Q)a
∧
� (p,Q)d,

– conjunct answers (p,Q)d
∗
� (p, {q})a if q ∈ Q, and

– negation moves (p, {q})a
¬
� (q, {p})a.

We have already introduced two tricks in this definition to ease formula recon-
struction in the next subsection. (1) The attack moves are labeled with the
3 To be precise: Finite conjunctions may only lead to arbitrarily large subsets of
HML[Σ]. If the attacker has a way of winning by playing a conjunction, we can as
well approximate this move as playing

∧
HML.
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syntactic constructs from which they originate. This does not change expressive
power. (2) Negation moves are restricted to situations where Q = {q}. After all,
winning attacker strategies will pay attention to only playing a negation after
minimizing the odds of being put on a bad position, anyways.

Note that, like in the formula game with arbitrary-depth formulas, the attacker
could force infinite plays by cycling through conjunction moves (and also negation
moves). However, they will not do this, as infinite plays are won by the defender.

Lemma 2. The spectroscopy game G�[(p, {q})a] is won by the defender precisely
if p and q are bisimilar.

This fact is a corollary of the well-known Hennessy–Milner theorem (HML char-
acterizes bisimilarity), given that G� is constructed as a simplification of GB .

Comparing G� to the standard bisimulation game from the literature (with
symmetry moves, see e.g. [3]), we can easily transfer attacker strategies from there.
In the standard game, the attacker will play (p, q)� (a, p′, q) with p

a→ p′ and
the defender has to answer by (a, p′, q)� (p′, q′) with q

a→ q′. In the spectroscopy

game, the attacker can enforce analogous moves by playing (p, {q})a
〈a〉
�(p′, Q′)a

∧
�

(p′, Q′)d, which will make the defender pick (p′, Q′)d
∗
� (p′, {q′})a.

The opposite direction of transfer is not so easy, as the attacker has more
ways of winning in G�. But this asymmetry is precisely why we have to use the
spectroscopy game instead of the standard bisimulation game if we want to learn
about, for example, interesting failure-trace attacks.

Due to the subset construction over P , the game size clearly is exponential in
the size of the state space. Going exponential is necessary, as we want to also
characterize weaker preorders like the trace preorder, where exponential P-subset
or Σ∗-word constructions cannot be circumvented. However, for moderate real-
world systems, such constructions will not necessarily show their full exponential
blow-up (cf. [6]).

For concrete implementations, the subset construction also means that the
costs of storing game nodes and of comparing two nodes is linear in the state space
size. Complexity-wise this factor is dominated by the overall exponentialities.

3.3 Building Distinguishing Formulas from Attacker Strategies

Definition 14 (Strategy formulas). Given an attacker strategy F ⊆ (Ga ×
L×G) for the spectroscopy game G�, the set of strategy formulas, StratF (ga),
is inductively defined by:

– If ϕ ∈ StratF (g
′
a) and (ga, 〈b〉, g′a) ∈ F , then 〈b〉ϕ ∈ StratF (ga),

– if ϕ ∈ StratF (g
′
a) and (ga,¬, g′a) ∈ F , then ¬ϕ ∈ StratF (ga), and

– if ϕg′a ∈ StratF (g
′
a) for all g′a ∈ I = {g′a | gd

∗
�� g′a}, and (ga,∧, gd) ∈ F ,

then
∧
g′a∈Iϕg′a ∈ StratF (ga).

Example 4. The attacks (P1, {P2})a
〈a〉
�(b+ c, {b+ d, c+ d})a

∧
�

∗
�

¬
�

〈d〉
�(0, ∅)a

∧
�

give rise to the formula 〈a〉
∧
{¬〈d〉T}, which can be written as 〈a〉¬〈d〉.
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Definition 15 (Winning strategy graph). Given the attacker winning region
Wa and a starting position g0 ∈Wa, the attacker winning strategy graph Fa is
the subset of the �-graph that can be visited from g0 when following all �-edges
unless they lead out of Wa.

This graph can be cyclic. However, if the attacker plays inside their winning region
according to Fa, they will always have paths to their final winning positions. So
even though the attacker could loop (and thus lose), they can always end the
game and win in the sense of Def. 5.

Theorem 1. If Wa is the attacker winning region of the spectroscopy game G�,
every ϕ ∈ StratFa

((p, {q})a) distinguishes p from q.

Proof. Due to Lem. 1, it suffices to show that ϕ ∈ StratFa
((p,Q)a) implies that

the attacker wins GB [(p,Q, {ϕ})]. We proceed by induction on the structure of
StratFa

with arbitrary p,Q.

– Assume ϕ ∈ StratFa
((p′, Q′)a) and ((p,Q)a, 〈b〉, (p′, Q′)a) ∈ Fa. By induction

hypothesis, the attacker wins GB [(p′, Q′, {ϕ})]. By moving there, the attacker
also wins GB [(p,Q, {〈b〉ϕ)}], which must be a valid move as Fa is a strategy
for G�.

– Assume ϕ ∈ StratFa((p
′, Q′)a) and ((p,Q)a,¬, (p′, Q′)a) ∈ Fa. By induction

hypothesis, the attacker wins GB[(p′, Q′, {ϕ})]. By the construction of G�,
Q = {p′}. So the attacker can win GB [(p,Q, {¬ϕ})] by moving to this position
(with the defender having no choice when picking from Q).

– Assume ϕg′a ∈ StratFa
(g′a) for all g′a = (p′, {q′})a ∈ I = {g′a | gd

∗
��

g′a}, and ((p,Q)a,∧, gd) ∈ Fa. Due to the construction of G�, Q = {q′ |
(p′, {q′})a ∈ I} and p′ = p. By induction hypothesis, the attacker wins all
GB[(p′, {q′}, {ϕg′a})] and, as they can always focus on consuming just one
formula, also all GB [(p, {q′}, {ϕg′′a | g′′a ∈ I})]. This matches all the positions
the defender can move to after (p,Q, {ϕg′′a | g′′a ∈ I})

d
. Moving there, the

attacker wins GB [(p,Q, {
∧
g′a∈Iϕg′a})].

Note that the theorem is only one-way, as every distinguishing formula can
neutrally be extended by saying that some additional clause that is true for both
processes does hold. Def. 14 will not find such bloated formulas.

Due to cycles in the game graph, StratFa
will usually yield infinitely many

formulas. But we can become finite by injecting some way of discarding long
formulas that unfold negation cycles or recursions of the underlying transition
system. The next section will discuss how to do this without discarding the
formulas that are interesting from the point of view of the spectrum.

3.4 Retrieving Cheapest Distinguishing Formulas

In our quest for the coarsest behavioral preorders (or equivalences) distinguishing
two states, we actually are only interested in the ones that are part of the smallest
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observation languages from the spectrum (Def. 11). We can think of the amount
of HML-expressiveness used by a formula as its price.

Let us look at the price structure of the spectrum from Def. 11. Table 1
gives an overview of how many syntactic HML-features the observation languages
may use at most. (If formulas use fewer, they still are considered part of that
observation language.) So, we are talking budgets, in the price analogy.

Conjunctions: How often may one run into a conjunction when descending
down the syntax tree. Negations in the beginning or following an observation
are counted as implicit conjunctions.

Positive deep branches: How many positive deep branches may appear in
each conjunction? We call subformulas of the form 〈a〉 or ¬〈a〉 flat branches,
and the others deep branches.

Positive flat branches: How many positive flat branches may appear in each
conjunction?4

Negations: How many negations may be visited when descending?
Negations height: How high can the syntax trees under each negation be?

We say that a formula ϕ1 dominates ϕ2 if ϕ1 has lower or equal values than ϕ2

in each dimension of the metrics with at least one entry strictly lower. Let us
note the following facts:
4 There is a special case for failure-traces where 1 positive flat branch may be counted

as deep, if there are no other deep branches. Hence the * in Table 1.

Table 1. Dimensions of observation expressiveness.

Observations C
on

ju
nc

tio
ns

Po
sit

iv
e

de
ep

br
.

Po
sit

iv
e

fla
t
br

.
N
eg

at
io

ns
N
eg

at
io

n
he

ig
ht

trace OT 0 0 0 0 0

failure OF 1 0 0 1 1

readiness OR 1 0 ∞ 1 1

failure-trace OFT ∞ 1 0* 1 1

ready-trace ORT ∞ 1 ∞ 1 1

impossible-future OIF 1 0 0 1 ∞

possible-future OPF 1 ∞ ∞ 1 ∞

ready-simulation ORS ∞ ∞ ∞ 1 1

(n+1)-nested-simulation O(n+1)S ∞ ∞ ∞ n ∞

bisimulation OB ∞ ∞ ∞ ∞ ∞
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1 def game_spectroscopy(S, p0, q0):
2 GS

� = (G,Ga,�) := construct_spectroscopy_game(S)
3 Wa := compute_winning_region(GS

�)
4 if (p0, {q0})a ∈ Wa :
5 Fa := winning_graph(GS

�,Wa, (p0, {q0})a)
6 strats[] := ∅
7 todo := [(p0, {q0})a]
8 while todo �= []:
9 g := todo.dequeue()

10 sg := strats[g]
11 if sg = undefined :
12 strats[sg] := ∅
13 gg′ := {g′ | (g, ·, g′) ∈ Fa ∧ strats(g′) = undefined}
14 if gg′ = ∅ :
15 sg′ = nonDominatedOrIF(Strat′Fa,strats(g))
16 if sg �= sg′ :
17 strats(g) := sg′

18 todo.enqueueEachEnd({g∗ | (g∗, ·, g) ∈ Fa ∧ g∗ /∈ todo})
19 else:
20 todo.enqueueEachFront(gg′)
21 return strats((p0, {q0})a)
22 else:
23 R := {(p, q) | (p, {q})a ∈ Ga \Wa}
24 return R

Algorithm 1: Spectroscopy procedure.

1. When formulas are constructed recursively, like the strategy formulas in
Def. 14, they can only contribute to dominating (i.e. more expensive) or
equivalently valued formulas with respect to the metrics.

2. Formulas can be incomparable. For example, 〈a〉
∧
{〈b〉, 〈c〉} and 〈a〉¬〈a〉,

corresponding to coordinates (1,0,2,0,0) and (1,0,0,1,1), are incomparable.
3. A locally more expensive formula may pay off as part of a bigger global

formula. For example, if two states are distinguished by ¬〈a〉 and 〈b〉, the
dominated formula ¬〈a〉 may later be handy to construct a (comparably
cheap) failure formula.

These observations justify our algorithm to prune all formulas from the set
StratFa(g) that are dominated with respect to the metrics by any other formula
in this set, unless they are impossible trace futures of the form ¬〈a1〉〈a2〉.... We
moreover add formula height in terms of observations as a dimension in the
metric, which leads to loop unfoldings being dominated by the shorter paths.

Algorithm 1 shows all the elements in concert. It constructs the spectroscopy
game GS

� (Def. 13) and computes its attacker winning strategy graph Fa (Def. 15).
If the attacker cannot win, the algorithm returns a bisimulation relation. Other-
wise, it constructs the distinguishing formulas: It keeps a map strats of strategy
formulas that have been found so far and a list of game positions todo that have
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Figure 2. Screenshot of a linear-time–branching-time spectroscopy of the processes
from Ex. 1.

to be updated. In every round, we take a game position g from todo. If some
of its successors have not been visited yet, we add them to the top of the work
list. Otherwise we call Strat′Fa,strats(g) to compute distinguishing formulas using
the follow-up formulas found so far strats. This function mostly corresponds
to Def. 14 with the twist, that partial follow-ups are used instead of recursion,
and that the construction for conjunctions is split onto attacker and defender
positions. Of the found formulas, we keep only the non-dominated ones and
impossible future traces. If the result changes strats(g), we enqueue each game
predecessor to propagate the update there.

The algorithm structure is mostly usual fixed point machinery. It terminates
because, for each state in a finite transition system, there must be a bound on the
distinguishing mechanisms necessary with respect to our metrics, and Strat′ will
only generate finitely many formulas under this bound. Keeping the impossible
future formulas unbounded is alright, because they have to be constructed from
trace formulas, which are subject to the bound.

4 A Webtool for Equivalence Spectroscopy

We have implemented the game and the generation of minimal distinguishing for-
mulas in the “Linear-time–Branching-time Spectroscope”, a Scala.js program that
can be run in the browser on https://concurrency-theory.org/ltbt-spectroscope/.

The tool (screenshot in Fig. 2) consists of a text editor to input basic CCS-style
processes and a view of the transition system graph. When queried to compare
two processes, the tool yields the cheapest distinguishing HML-formulas it can
find for both directions. Moreover, it displays the attacker-winning part of the

https://concurrency-theory.org/ltbt-spectroscope/
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spectroscopy game overlayed over the transition system. The latter can also
enlighten matters, at least for small and comparably deterministic transition
systems. From the found formulas, the tool can also infer the finest fitting
preorders for pairs of processes (Fig. 3).

To “benchmark” the quality of the distinguishing formulas, we have run the
algorithm on all the finitary counterexample processes from the report version
of “The Linear-time–Branching-time Spectrum” [12]. Table 2 reports the output
of our tool, on how to distinguish certain processes. The results match the
(in)equivalences given in [12]. In some cases, the tool finds slightly better ways of
distinction using impossible futures equivalence, which was not known at the time
of the original paper. All the computed formulas are quite elegant / minimal.

For each of the examples (from papers) we have considered, the browser’s
capacities sufficed to run the algorithm in 30 to 250 milliseconds. This does not
mean that one should expect the algorithm to work for systems with thousands
of states. There, the exponentialities of game and formula construction would
hit. However, such big instances would usually stem from preexisting models
where one would very much hope for the designers to already know under which
semantics to interpret their model. The practical applications of our browser tool
are more on the research side: When devising compiler optimizations, encodings,
or distributed algorithms, it can be very handy to fully grasp the equivalence
structure of isolated instances. The Linear-time–Branching-time Spectroscope
supports this process.

Table 2. Formulas found by our implementation for some interesting processes from [12].

p q Cheapest distinguishing formulas found From

P1 P2 〈a〉
∧
{〈c〉, 〈b〉} ∈ OR ∩ OS ,

〈a〉¬〈d〉 ∈ OF

Ex. 1

a.b+ a a.b 〈a〉¬〈b〉 ∈ OF p. 13

a.b+ a.(b+ c) a.(b+ c) 〈a〉¬〈c〉 ∈ OF p. 16

a.(b+ c.d) +
a.(f + c.e)

a.(b+ c.e) +
a.(f + c.d)

〈a〉
∧
{〈c〉〈d〉, 〈b〉} ∈ ORT ∩ OPF ∩ OS ,

〈a〉
∧
{〈c〉〈d〉,¬〈f〉} ∈ OFT ∩ OPF ,

〈a〉
∧
{¬〈b〉,¬〈c〉〈d〉} ∈ OIF (+3 variants)

p. 21

a.b+a.(b+c)+a.c a.b+ a.c 〈a〉
∧
{〈c〉, 〈b〉} ∈ OR ∩ OS p. 24

a.(b+a.(b+ c.d)+
a.c.e) + a.(a.c.d+
a.(c.e+ b))

a.(a.(b+ c.d) +
a.c.e) + a.(a.c.d+
a.(c.e+ b) + b)

〈a〉
∧
{〈b〉, 〈a〉

∧
{〈c〉〈d〉, 〈b〉}} ∈ ORT ∩ OS ,

〈a〉
∧
{¬〈b〉, 〈a〉

∧
{〈c〉〈d〉,¬〈b〉}} ∈ OFT

p. 27

a.(b.c+ b.d) a.b.c+ a.b.d 〈a〉
∧
{〈b〉〈c〉, 〈b〉〈d〉} ∈ OPF ∩ OS p. 31

a.b.c+a.(b.c+b.d) a.(b.c+ b.d) 〈a〉¬〈b〉〈d〉 ∈ OIF p. 34

a.b+ a+ a.c a.b+a.(b+c)+a.c 〈a〉
∧
{¬〈b〉,¬〈c〉} ∈ OF p. 38

a.b.c+ a.(b.c+ b) a.(b.c+ b) 〈a〉¬〈b〉¬〈c〉 ∈ OB p. 42
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Figure 3. Tool output of finest preorders for transition systems. (Left: Ex. 1; right:
a.b+ a.(b+ c) + a.c vs. a.b+ a+ a.c.

5 Related Work and Alternatives

The game and the algorithm presented fill a blank spot in between the following
previous directions of work:

Distinguishing formulas in general. Cleaveland [5] showed how to restore
(non-minimal) distinguishing formulas for bisimulation equivalence from the
execution of a bisimilarity checker based on the splitting of blocks. There, it has
been named as possible future work to extend the construction to other notions of
the spectrum. We are not aware of any place where this has previously been done
completely. But there are related islands like the encoding between CTL and
failure traces by Bruda and Zhang [7]. There is also more recent work like Jasper
et. al [15] extending to the generation of characteristic invariant formulas for
bisimulation classes. Previous algorithms for bisimulation in-equivalence tend to
generate formulas that alternate 〈a〉 and [b] observations while pushing negation
to the innermost level. Such formulas can not as easily be linked to the spectrum
as ours.

Game-characterizations of the spectrum. After Shukla et al. [18] had shown
how to characterize many notions of equivalence by HORNSAT games, Chen and
Deng [4] presented a hierarchy of games characterizing all the equivalences of the
linear-time–branching-time spectrum. The games from [4] cannot be applied as
easily as ours in algorithms because they allow word moves and thus are infinite
already for finite transition systems with cycles. Constructing distinguishing
formulas from attacker strategies of these games would be less convenient than
in our solution. Their parametric approach is comparable to fixing maximal price
budgets ex ante. Our on-the-fly picking of minimal prices is more flexible.
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Using game-characterizations for distinguishing formulas. There is
recent work by Mika-Michalski et al. [16] on constructing distinguishing formulas
using games in a more abstract coalgebraic setting focussed on the absence of
bisimulation. The game and formula generation there, however, cannot easily be
adapted for our purpose of performing a spectroscopy also for weaker notions.

Alternatives. One can also find the finest notion of equivalence between two
states by gradually minimizing the transition system with ever coarser equiv-
alences from bisimulation to trace equivalence until the states are conflated
(possibly also trying branches). Within a big tool suite of highly optimized algo-
rithms this should be quite efficient. We preferred the game approach, because it
can uniformly be extended to the whole spectrum and also has the big upside of
explaining the in-equivalences by distinguishing formulas.

An avenue of optimization for our approach, we have already tried, is to run
the formula search on a directed acyclic subgraph of the winning strategy graph.
For our purpose of finding most fitting equivalences, DAG-ification may preclude
the algorithm from finding the right formulas. On the other hand, if one is mainly
interested in a short distinguishing formula for instance, one can speed up the
process with DAG-ification by the order of remaining game rounds.

6 Conclusion

In this paper, we have established a convenient way of finding distinguishing
formulas that use a minimal amount of expressiveness.

System analysis tools can employ the algorithm to tell their users in more
detail how equivalent two process models are. While the generic approach is
costly, instantiations to more specific, symbolic, compositional, on-the-fly or
depth-bounded settings may enable wider applications. There are also some
algorithmic tricks (like building the concrete formulas only after having found the
price bounds and heuristics in handling the game graph) we have not explored in
this paper.

So far, we have only looked at strong notions of equivalence [10]. We plan to
verify the game in Isabelle/HOL and to extend our algorithm, so it also deals
with weak notions of equivalence [11]. These equivalences abstract over τ -actions
representing “internal activity” and correspond to observation languages with a
special temporal 〈ε〉-observation (cf. [9]). This would generalize work on weak
game characterizations such as de Frutos-Escrig et al.’s [8] and our own [2,3]. The
vision is to arrive at one certifying algorithm that can yield finest equivalences
and cheapest distinguishing formulas as witnesses for the whole discrete spectrum.

On a different note, our group is also working on an educational computer
game about process equivalences.5 The (theoretical) game of this paper can likely

5 A prototype featuring equivalences between strong bisimulation and coupled sim-
ulation (result of Dominik Peacock’s bachelor thesis) can be played on https:
//www.concurrency-theory.org/rvg-game/.

https://www.concurrency-theory.org/rvg-game/
https://www.concurrency-theory.org/rvg-game/
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be adapted to go in the other direction: from formulas to distinguished transition
systems. It may thereby synthesize levels for the (computer) game. So, in the
end, all this might actually contribute to actual people having actual fun.
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Abstract. Several problems in planning and reactive synthesis can be
reduced to the analysis of two-player quantitative graph games. Opti-
mization is one form of analysis. We argue that in many cases it may be
better to replace the optimization problem with the satisficing problem,
where instead of searching for optimal solutions, the goal is to search for
solutions that adhere to a given threshold bound.
This work defines and investigates the satisficing problem on a two-player
graph game with the discounted-sum cost model. We show that while the
satisficing problem can be solved using numerical methods just like the
optimization problem, this approach does not render compelling bene-
fits over optimization. When the discount factor is, however, an integer,
we present another approach to satisficing, which is purely based on au-
tomata methods. We show that this approach is algorithmically more
performant – both theoretically and empirically – and demonstrates the
broader applicability of satisficing over optimization.

1 Introduction

Quantitative properties of systems are increasingly being explored in automated
reasoning [4,14,16,20,21,26]. In decision-making domains such as planning and
reactive synthesis, quantitative properties have been deployed to describe soft
constraints such as quality measures [11], cost and resources [18,22], rewards [31],
and the like. Since these constraints are soft, it suffices to generate solutions that
are good enough w.r.t. the quantitative property.

Existing approaches on the analysis of quantitative properties have, however,
primarily focused on optimization of these constraints, i.e., to generate optimal
solutions. We argue that there may be disadvantages to searching for optimal
solutions, where good enough ones may suffice. First, optimization may be more
expensive than searching for good-enough solutions. Second, optimization re-
stricts the search-space of possible solutions, and thus could limit the broader
applicability of the resulting solutions. For instance, to generate solutions that
operate within battery life, it is too restrictive to search for solutions with mini-
mal battery consumption. Besides, solutions with minimal battery consumption
may be limited in their applicability, since they may not satisfy other goals, such
as desirable temporal tasks.

To this end, this work focuses on directly searching for good-enough solu-
tions. We propose an alternate form of analysis of quantitative properties in
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which the objective is to search for a solution that adheres to a given thresh-
old bound, possibly derived from a physical constraint such as battery life. We
call this the satisficing problem, a term popularized by H.A.Simon in economics
to mean satisfy and suffice, implying a search for good-enough solutions [1].
Through theoretical and empirical investigation, we make the case that satis-
ficing is algorithmically more performant than optimization and, further, that
satisficing solutions may have broader applicability than optimal solutions.

This work formulates and investigates the satisficing problem on two-player,
finite-state games with the discounted-sum (DS) cost model, which is a standard
cost-model in decision-making domains [24,25,28]. In these games, players take
turns to pass a token along the transition relation between the states. As the
token is pushed around, the play accumulates costs along the transitions using
the DS cost model. The players are assumed to have opposing objectives: one
player maximizes the cost, while the other player minimizes it. We define the
satisficing problem as follows: Given a threshold value v ∈ Q, does there exist a
strategy for the minimizing (or maximizing) player that ensures the cost of all
resulting plays is strictly or non-strictly lower (or greater) than the threshold v?

Clearly, the satisficing problem is decidable since the optimization prob-
lem on these quantitative games is known to be solvable in pseudo-polynomial
time [17,23,32]. To design an algorithm for satisficing, we first adapt the cele-
brated value-iteration (VI) based algorithm for optimization [32] (§ 3). We show,
however, that this algorithm, called VISatisfice, displays the same complexity as
optimization and hence renders no complexity-theoretic advantage. To obtain
worst-case complexity, we perform a thorough worst-case analysis of VI for op-
timization. It is interesting that a thorough analysis of VI for optimization had
hitherto been absent from the literature, despite the popularity of VI. To ad-
dress this gap, we first prove that VI should be executed for Θ(|V |) iterations
to compute the optimal value, where V and E refer to the sets of states and
transitions in the quantitative game. Next, to compute the overall complexity,
we take into account the cost of arithmetic operations as well, since they appear
in abundance in VI. We demonstrate an orders-of-magnitude difference between
the complexity of VI under different cost-models of arithmetic. For instance,
for integer discount factors, we show that VI is O(|V | · |E|) and O(|V |2 · |E|)
under the unit-cost and bit-cost models of arithmetic, respectively. Clearly, this
shows that VI for optimization, and hence VISatisfice, does not scale to large
quantitative games.

We then present a purely automata-based approach for satisficing (§ 4). While
this approach applies to integer discount factors only, it solves satisficing in
O(|V | + |E|) time. This shows that there is a fundamental separation in com-
plexity between satisficing and VI-based optimization, as even the lower bound
on the number of iterations in VI is higher. In this approach, the satisficing prob-
lem is reduced to solving a safety or reachability game. Our core observation is
that the criteria to fulfil satisficing with respect to threshold value v ∈ Q can be
expressed as membership in an automaton that accepts a weight sequence A iff
DS (A, d) R v holds, where d > 1 is the discount factor and R ∈ {≤,≥, <,>}. In
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existing literature, such automata are called comparator automata (comparators,
in short) when the threshold value v = 0 [6,7]. They are known to have a com-
pact safety or co-safety automaton representation [9,19], which could be used to
reduce the satisficing problem with zero threshold value. To solve satisficing for
arbitrary threshold values v ∈ Q, we extend existing results on comparators to
permit arbitrary but fixed threshold values v ∈ Q. An empirical comparison be-
tween the performance of VISatisfice, VI for optimization, and automata-based
solution for satisficing shows that the latter outperforms the others in efficiency,
scalability, and robustness.

In addition to improved algorithmic performance, we demonstrate that satis-
ficing solutions have broader applicability than optimal ones (§ 5). We examine
this with respect to their ability to extend to temporal goals. That is, the prob-
lem is to find optimal/satisficing solutions that also satisfy a given temporal goal.
Prior results have shown this to not be possible with optimal solutions [13]. In
contrast, we show satisficing extends to temporal goals when the discount factor
is an integer. This occurs because both satisficing and satisfaction of temporal
goals are solved via automata-based techniques, which can be easily integrated.

In summary, this work contributes to showing that satisficing has algorith-
mic and applicability advantages over optimization in (deterministic) quanti-
tative games. In particular, we have shown that the automata-based approach
for satisficing have advantages over approaches in numerical methods like value-
iteration. This gives yet another evidence in favor of automata-based quantitative
reasoning and opens up several compelling directions for future work.

2 Preliminaries

2.1 Two-player graph games

Reachability and safety games. Both reachability and safety games are defined
over the structure G = (V = V0 � V1, vinit, E,F) [30]. It consists of a directed
graph (V,E), and a partition (V0, V1) of its states V . State vinit is the initial state
of the game. The set of successors of state v is designated by vE. For convenience,
we assume that every state has at least one outgoing edge, i.e, vE �= ∅ for all
v ∈ V . F ⊆ V is a non-empty set of states. F is referred to as accepting and
rejecting states in reachability and safety games, respectively.

A play of a game involves two players, denoted by P0 and P1, to create an
infinite path by moving a token along the transitions as follows: At the beginning,
the token is at the initial state. If the current position v belongs to Vi, then Pi
chooses the successor state from vE. Formally, a play ρ = v0v1v2 . . . is an infinite
sequence of states such that the first state v0 = vinit, and each pair of successive
states is a transition, i.e., (vk, vk+1) ∈ E for all k ≥ 0. A play is winning for
player P1 in a reachability game if it visits an accepting state, and winning for
player P0 otherwise. The opposite holds in safety games, i.e., a play is winning
for player P1 if it does not visit any rejecting state, and winning for P0 otherwise.

A strategy for a player is a recipe that guides the player on which state to go
next to based on the history of the play. A strategy is winning for a player Pi if
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for all strategies of the opponent player P1−i, the resulting plays are winning for
Pi. To solve a graph game means to determine whether there exists a winning
strategy for player P1. Reachability and safety games are solved in O(|V |+ |E|).

Quantitative graph games. A quantitative graph game (or quantitative game, in
short) is defined over a structure G = (V = V0�V1, vinit, E, γ). V , V0, V1, vinit, E,
plays and strategies are defined as earlier. Each transition of the game is associ-
ated with a cost determined by the cost function γ : E → Z. The cost sequence
of a play ρ is the sequence of costs w0w1w2 . . . such that wk = γ((vk, vk+1)) for
all i ≥ 0. Given a discount factor d > 1, the cost of play ρ, denoted wt(ρ), is the
discounted sum of its cost sequence, i.e., wt(ρ) = DS (ρ, d) = w0+

w1

d + w2

d2 + . . . .

2.2 Automata and formal languages

Büchi automata. A Büchi automaton is a tuple A = (S , Σ, δ, sI , F), where
S is a finite set of states, Σ is a finite input alphabet, δ ⊆ (S × Σ × S ) is the
transition relation, state sI ∈ S is the initial state, and F ⊆ S is the set of
accepting states [30]. A Büchi automaton is deterministic if for all states s and
inputs a, |{s′|(s, a, s′) ∈ δ for some s′}| ≤ 1. For a word w = w0w1 · · · ∈ Σω, a
run ρ of w is a sequence of states s0s1 . . . s.t. s0 = sI , and τi = (si, wi, si+1) ∈ δ
for all i. Let inf (ρ) denote the set of states that occur infinitely often in run ρ.
A run ρ is an accepting run if inf (ρ)∩F �= ∅. A word w is an accepting word if it
has an accepting run. The language of Büchi automaton A is the set of all words
accepted by A. Languages accepted by Büchi automata are called ω-regular.

Safety and co-safety languages. Let L ⊆ Σω be a language over alphabet Σ. A
finite word w ∈ Σ∗ is a bad prefix for L if for all infinite words y ∈ Σω, x · y /∈ L.
A language L is a safety language if every word w /∈ L has a bad prefix for
L [3]. A co-safety language is the complement of a safety language [19]. Safety
and co-safety languages that are ω-regular are represented by specialized Büchi
automata called safety and co-safety automata, respectively.

Comparison language and comparator automata. Given integer bound μ > 0, dis-
count factor d > 1, and relation R ∈ {<,>,≤,≥,=, �=} the comparison language
with upper bound μ, relation R, discount factor d is the language of words over
the alphabet Σ = {−μ, . . . , μ} that accepts A ∈ Σω iff DS (A, d) R 0 holds [5,9].
The comparator automata with upper bound μ, relation R, discount factor d is the
automaton that accepts the corresponding comparison language [6]. Depending
on R, these languages are safety or co-safety [9]. A comparison language is said
to be ω-regular if its automaton is a Büchi automaton. Comparison languages
are ω-regular iff the discount factor is an integer [7].

3 Satisficing via Optimization

This section shows that there are no complexity-theoretic benefits to solving the
satisficing problem via algorithms for the optimization problem.



24

§ 3.1 formally defines the satisficing problem and reviews the celebrated value-
iteration (VI) algorithm for optimization by Zwick and Patterson (ZP). While
ZP claim without proof that the algorithm runs in pseudo-polynomial time [32],
its worst-case analysis is absent from literature. This section presents a detailed
account of the said analysis, and exposes the dependence of VI’s worst-case
complexity on the discount factor d > 1 and the cost-model for arithmetic oper-
ations i.e. unit-cost or bit-cost model. The analysis is split into two parts: First,
§ 3.2 shows it is sufficient to terminate after a finite-number of iterations. Next,
§ 3.3 accounts for the cost of arithmetic operations per iteration to compute VI’s
worst-case complexity under unit- and bit-cost cost models of arithmetic Finally,
§ 3.4 presents and analyzes our VI-based algorithm for satisficing VISatisfice.

3.1 Satisficing and Optimization

Definition 1 (Satisficing problem). Given a quantitative graph game G and
a threshold value v ∈ Q, the satisficing problem is to determine whether the
minimizing (or maximizing) player has a strategy that ensures the cost of all
resulting plays is strictly or non-strictly lower (or greater) than the threshold v.

The satisficing problem can clealy be solved by solving the optimization prob-
lem. The optimal cost of a quantitative game is that value such that the max-
imizing and minimizing players can guarantee that the cost of plays is at least
and at most the optimal value, respectively.

Definition 2 (Optimization problem). Given a quantitative graph game G,
the optimization problem is to compute the optimal cost from all possible plays
from the game, under the assumption that the players have opposing objectives
to maximize and minimize the cost of plays, respectively.

Seminal work by Zwick and Patterson showed the optimization problem is
solved by the value-iteration algorithm presented here [32]. Essentially, the al-
gorithm plays a min-max game between the two players. Let wtk(v) denote
the optimal cost of a k-length game that begins in state v ∈ V . Then wtk(v)
can be computed using the following equations: The optimal cost of a 1-length
game beginning in state v ∈ V is max{γ(v, w)|(v, w) ∈ E} if v ∈ V0 and
min{γ(v, w)|(v, w) ∈ E} if v ∈ V1. Given the optimal-cost of a k-length game,
the optimal cost of a (k + 1)-length game is computed as follows:

wtk+1(v) =

{
max{γ(v, w) + 1

d · wtk(w)|(v, w) ∈ E} if v ∈ V0

min{γ(v, w) + 1
d · wtk(w)|(v, w) ∈ E} if v ∈ V1

Let W be the optimal cost. Then, W = limk→∞ wtk(vinit). [27,32].

3.2 VI: Number of iterations

The VI algorithm described above terminates at infinitum. To compute the al-
gorithms’ worst-case complexity, we establish a linear bound on the number of
iterations that is sufficient to compute the optimal cost. We also establish a
matching lower bound, showing that our analysis is tight.

S. Bansal et al.
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Upper bound on number of iterations. The upper bound computation utilizes one
key result from existing literature: There exist memoryless strategies for both
players such that the cost of the resulting play is the optimal cost [27]. Then,
there must exists an optimal play in the form of a simple lasso in the quantitative
game, where a lasso is a play represented as v0v1 . . . vn(s0s2 . . . sm)ω. We call the
initial segment v0v1 . . . vn its head, and the cycle segment s0s1 . . . sm its loop. A
lasso is simple if each state in {v0 . . . vn, s0, . . . sm} is distinct. We begin our proof
by assigning constraints on the optimal cost using the simple lasso structure of
an optimal play (Corollary 1 and Corollary 2).

Let l = a0 . . . an(b0 . . . bm)ω be the cost sequence of a lasso such that l1 =
a0 . . . an and l2 = b0 . . . bm are the cost sequences of the head and the loop,
respectively. Then the following can be said about DS (l1 · lω2 , d),

Lemma 1. Let l = l1 · (l2)ω represent an integer cost sequence of a lasso, where
l1 and l2 are the cost sequences of the head and loop of the lasso. Let d = p

q

be the discount factor. Then, DS (l, d) is a rational number with denominator at
most (p|l2| − q|l2|) · (p|l1|).

Lemma 1 is proven by unrolling DS (l1 · lω2 , d). Then, the first constraint on
the optimal cost is as follows:

Corollary 1. Let G = (V, vinit, E, γ) be a quantitative graph game. Let d = p
q be

the discount factor. Then the optimal cost of the game is a rational number with
denominator at most (p|V | − q|V |) · (p|V |)

Proof. Recall, there exists a simple lasso that computes the optimal cost. Since a
simple lasso is of |V |-length at most, the length of its head and loop are at most
|V | each. So, the expression from Lemma 1 simplifies to (p|V |− q|V |) · (p|V |). ��

The second constraint has to do with the minimum non-zero difference be-
tween the cost of simple lassos:

Corollary 2. Let G = (V, vinit, E, γ) be a quantitative graph game. Let d = p
q

be the discount factor. Then the minimal non-zero difference between the cost of
simple lassos is a rational with denominator at most (p(|V |)− q(|V |))2 · (p(2·|V |)).

Proof. Given two rational numbers with denominator at most a, an upper bound
on the denominator of minimal non-zero difference of these two rational numbers
is a2. Then, using the result from Corollary 1, we immediately obtain that the
minimal non-zero difference between the cost of two lassos is a rational number
with denominator at most (p(|V |) − q(|V |))2 · (p(2·|V |)). ��

For notational convenience, let boundW = (p|V |−q|V |) ·(p|V |) and bounddiff =
(p(|V |) − q(|V |))2 · (p(2·|V |)). Wlog, |V | > 1. Since, 1

bounddiff
< 1

boundW
, there is at

most one rational number with denominator boundW or less in any interval of
size 1

bounddiff
. Thus, if we can identify an interval of size less than 1

bounddiff
around

the optimal cost, then due to Corollary 1, the optimal cost will be the unique
rational number with denominator boundW or less in this interval.
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Fig. 1. Sketch of game graph which requires Ω(|V |) iterations

Thus, the final question is to identify a small enough interval (of size 1
bounddiff

or less) such that the optimal cost lies within it. To find an interval around the
optimal cost, we use a finite-horizon approximation of the optimal cost:

Lemma 2. Let W be the optimal cost in quantitative game G. Let μ > 0 be the
maximum of absolute value of cost on transitions in G. Then, for all k ∈ N,

wtk(vinit)−
1

dk−1
· μ

d− 1
≤W ≤ wtk(vinit) +

1

dk−1
· μ

d− 1

Proof. Since W is the limit of wtk(vinit) as k → ∞, W must lie in between the
minimum and maximum cost possible if the k-length game is extended to an
infinite-length game. The minimum possible extension would be when the k-
length game is extended by iterations in which the cost incurred in each round
is −μ. Therefore, the minimum possible value is wtk(vinit)− 1

dk−1 · μ
d−1 . Similarly,

the maximum possible value is wtk(vinit) +
1

dk−1 · μ
d−1 . ��

Now that we have an interval around the optimal cost, we can compute the
number of iterations of VI required to make it smaller than 1/bounddiff .

Theorem 1. Let G = (V, vinit, E, γ) be a quantitative graph game. Let μ > 0
be the maximum of absolute value of costs along transitions. The number of
iterations required by the value-iteration algorithm is

1. O(|V |) when discount factor d ≥ 2,

2. O
(

log(μ)
d−1 + |V |

)
when discount factor 1 < d < 2.

Proof (Sketch). As discussed in Corollary 1-2 and Lemma 2, the optimal cost is
the unique rational number with denominator 1

boundW
or less within the interval

(wtk(vinit)− 1
dk−1 · μ

d−1 ,wtk(vinit)+
1

dk−1 · μ
d−1 ) for a large enough k > 0 such that

the interval’s size is less than 1
bounddiff

. Thus, our task is to determine the value of

k > 0 such that 2 · μ
d−1·dk−1 ≤ 1

bounddiff
holds. The case d ≥ 2 is easy to simplify.

The case 1 < d < 2 involves approximations of logarithms of small values. ��

Lower bound on number of iterations of VI. We establish a matching lower
bound of Ω(|V |) iterations to show that our analysis is tight.

Consider the sketch of a quantitative game in Fig 1. Let all states belong
to the maximizing player. Hence, the optimization problem reduces to searching
for a path with optimal cost. Now let the loop on the right-hand side (RHS) be
larger than the loop on the left-hand side (LHS). For carefully chosen values of

S. Bansal et al.
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w and lengths of the loops, one can show that the path for optimal cost of a
k-length game is along the RHS loop when k is small, but along the LHS loop
when k is large. This way, the correct maximal value can be obtained only at a
large value for k. Hence the VI algorithm runs for at least enough iterations that
the optimal path will be in the LHS loop. By meticulous reverse engineering of
the size of both loops and the value of w, one can guarantee that k = Ω(|V |).

3.3 Worst-case complexity analysis of VI for optimization

Finally, we complete the worst-case complexity analysis of VI for optimization.
We account for the the cost of arithmetic operations since they appear in abun-
dance in VI. We demonstrate that there are orders-of-magnitude of difference in
complexity under different models of arithmetic, namely unit-cost and bit-cost.

Unit-cost model. Under the unit-cost model of arithmetic, all arithmetic opera-
tions are assumed to take constant time.

Theorem 2. Let G = (V, vinit, E, γ) be a quantitative graph game. Let μ > 0
be the maximum of absolute value of costs along transitions. The worst-case
complexity of the optimization problem under unit-cost model of arithmetic is

1. O(|V | · |E|) when discount factor d ≥ 2,

2. O
(

log(μ)·|E|
d−1 + |V | · |E|

)
when discount factor 1 < d < 2.

Proof. Each iteration takesO(E) cost since every transition is visited once. Thus,
the complexity is O(|E|) multiplied by the number of iterations (Theorem 1).

��

Bit-cost model. Under the bit-cost model, the cost of arithmetic operations de-
pends on the size of the numerical values. Integers are represented in their bit-
wise representation. Rational numbers r

s are represented as a tuple of the bit-wise
representation of integers r and s. For two integers of length n and m, the cost
of their addition and multiplication is O(m+ n) and O(m · n), respectively.

Theorem 3. Let G = (V, vinit, E, γ) be a quantitative graph game. Let μ > 0 be
the maximum of absolute value of costs along transitions. Let d = p

q > 1 be the
discount factor. The worst-case complexity of the optimization problem under
the bit-cost model of arithmetic is

1. O(|V |2 · |E| · log p ·max{log μ, log p}) when d ≥ 2,

2. O
((

log(μ)
d−1 + |V |

)2

· |E| · log p ·max{log μ, log p}
)
when 1 < d < 2.

Proof (Sketch). Since arithmetic operations incur a cost and the length of repre-
sentation of intermediate costs increases linearly in each iteration, we can show
that the cost of conducting the j-th iteration is O(|E| · j · log μ · log p). Their
summation will return the given expressions. ��
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Remarks on integer discount factor. Our analysis shows that when the discount
factor is an integer (d ≥ 2), VI requires Θ(|V |) iterations. Its worst-case com-
plexity is, therefore, O(|V |·|E|) and O(|V |2 ·|E|) under the unit-cost and bit-cost
models for arithmetic, respectively. From a practical point of view, the bit-cost
model is more relevant since implementations of VI will use multi-precision li-
braries to avoid floating-point errors. While one may argue that the upper bounds
in Theorem 3 could be tightened, they would not improve significantly due to
the Ω(|V |) lower bound on number of iterations.

3.4 Satisficing via value-iteration

We present our first algorithm for the satisficing problem. It is an adaptation of
VI. However, we see that it does not fare better than VI for optimization.

VI-based algorithm for satisficing is described as follows: Perform VI for
optimization. Terminate as soon as one of these occurs: (a). VI completes as many
iterations from Theorem 1, or (b). The threshold value falls outside the interval
defined in Lemma 2. Either way, one can tell how the threshold value relates
to the optimal cost to solve satisficing. Clearly, (a) needs as many iterations as
optimization; (b) does not reduce the number of iterations since it is inversely
proportional to the distance between optimal cost and threshold value:

Theorem 4. Let G = (V, vinit, E, γ) be a quantitative graph game with optimal
cost W . Let v ∈ Q be the threshold value. Then number of iterations taken by a
VI-based algorithm for the satisficing problem is min{O(|V |), log μ

|W |−v} if d ≥ 2

and min{O
(

log(μ)
d−1 + |V |

)
, log μ

|W |−v} if 1 < d < 2.

Observe that this bound is tight since the lower bounds from optimization
apply here as well. The worst-case complexity can be completed using similar
computations from § 3.3. Since, the number of iterations is identical to Theo-
rem 1, the worst-case complexity will be identical to Theorem 2 and Theorem 3,
showing no theoretical improvement. However, its implementations may termi-
nate soon for threshold values far from the optimal but it will retain worst-case
behavior for ones closer to the optimal. The catch is since the optimal cost is
unknown apriori, this leads to a highly variable and non-robust performance.

4 Satisficing via Comparators

Our second algorithm for satisficing is purely based on automata-methods. While
this approach operates with integer discount factors only, it runs linearly in
the size of the quantitative game. This is lower than the number of iterations
required by VI, let alone the worst-case complexities of VI. This approach reduces
satisficing to solving a safety or reachability game using comparator automata.

The intuition is as follows: Given threshold value v ∈ Q and relation R, let
the satisficing problem be to ensure cost of plays relates to v by R. Then, a play ρ
is winning for satisficing with v and R if its cost sequence A satisfies DS (A, d) R
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v, where d > 1 is the discount factor. When d is an integer and v = 0, this simply
checks if A is in the safety/co-safety comparator, hence yielding the reduction.

The caveat is the above applies to v = 0 only. To overcome this, we extend
the theory of comparators to permit arbitrary threshold values v ∈ Q. We find
that results from v = 0 transcend to v ∈ Q, and offer compact comparator
constructions (§ 4.1). These new comparators are then used to reduce satisficing
to develop an efficient and scalable algorithm (§ 4.2). Finally, to procure a well-
rounded view of its performance, we conduct an empirical evaluation where we
see this comparator-based approach outperform the VI approaches § 4.3.

4.1 Foundations of comparator automata with threshold v ∈ Q

This section extends the existing literature on comparators with threshold value
v = 0 [6,5,9] to permit non-zero thresholds. The properties we investigate are of
safety/co-safety and ω-regularity. We begin with formal definitions:

Definition 3 (Comparison language with threshold v ∈ Q). For an in-
teger upper bound μ > 0, discount factor d > 1, equality or inequality relation
R ∈ {<,>,≤,≥,=, �=}, and a threshold value v ∈ Q the comparison language
with upper bound μ, relation R, discount factor d and threshold value v is a lan-
guage of infinite words over the alphabet Σ = {−μ, . . . , μ} that accepts A ∈ Σω

iff DS (A, d) R v holds.

Definition 4 (Comparator automata with threshold v ∈ Q). For an in-
teger upper bound μ > 0, discount factor d > 1, equality or inequality relation
R ∈ {<,>,≤,≥,=, �=}, and a threshold value v ∈ Q the comparator automata
with upper bound μ, relation R, discount factor d and threshold value v is an
automaton that accepts the DS comparison language with upper bound μ, relation
R, discount factor d and threshold value v.

Safety and co-safety of comparison languages. The primary observation
is that to determine if DS (A, d) R v holds, it should be sufficient to examine
finite-length prefixes of A since weights later on get heavily discounted. Thus,

Theorem 5. Let μ > 1 be the integer upper bound. For arbitrary discount factor
d > 1 and threshold value v ∈ Q

1. Comparison languages are safety languages for relations R ∈ {≤,≥,=}.
2. Comparison language are co-safety languages for relations R ∈ {<,>, �=}.

Proof. The proof is identical to that for threshold value v = 0 from [9]. ��

Regularity of comparison languages. Prior work on threshold value v = 0
shows that a comparator is ω-regular iff the discount factor is an integer [7]. We
show the same result for arbitrary threshold values v ∈ Q.

First of all, trivially, comparators with arbitrary threshold value are not ω-
regular for non-integer discount factors, since that already holds when v = 0.
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The rest of this section proves ω-regularity with arbitrary threshold val-
ues for integer discount factors. But first, let us introduce some notations:
Since v ∈ Q, w.l.o.g. we assume that the it has an n-length representation
v = v[0]v[1] . . . v[m](v[m+1]v[m+2] . . . v[n])ω. By abuse of notation, we denote
both the expression v[0]v[1] . . . v[m](v[m + 1]v[m + 2] . . . v[n])ω and the value
DS (v[0]v[1] . . . v[m](v[m+ 1]v[m+ 2] . . . v[n])ω, d) by v.

We will construct a Büchi automaton for the comparison language L≤ for
relation ≤, threshold value v ∈ Q and an integer discount factor. This is sufficient
to prove ω-regularity for all relations since Büchi automata are closed.

From safety/co-safety of comparison languages, we argue it is sufficient to
examine the discounted-sum of finite-length weight sequences to know if their
infinite extensions will be in L≤. For instance, if the discounted-sum of a finite-
length weight-sequenceW is very large,W could be a bad-prefix of L≤. Similarly,
if the discounted-sum of a finite-length weight-sequence W is very small then
for all of its infinite-length bounded extensions Y , DS (W · Y , d) ≤ v. Thus, a
mathematical characterization of very large and very small would formalize a
criterion for membership of sequences in L≤ based on their finite-prefixes.

To this end, we use the concept of a recoverable gap (or gap value), which is a
measure of distance of the discounted-sum of a finite-sequence from 0 [12]. The
recoverable gap of a finite weight-sequences W with discount factor d, denoted
gap(W,d), is defined as follows: If W = ε (the empty sequence), gap(ε, d) = 0,
and gap(W,d) = d|W |−1 · DS (W,d) otherwise. Then, Lemma 3 formalizes very
large and very small in Item 1 and Item 2, respectively, w.r.t. recoverable gaps.
As for notation, given a sequence A, let A[. . . i] denote its i-length prefix:

Lemma 3. Let μ > 0 be the integer upper bound, d > 1 be the discount factor.
Let v ∈ Q be the threshold value s.t. v = v[0] . . . v[m](v[m+ 1] . . . v[n])ω. Let W
be a non-empty, bounded, finite-length weight-sequence.

1. gap(W −v[· · · |W |], d) > 1
d ·DS (v[|W | · · · ], d)+ μ

d−1 . iff for all infinite-length,
bounded extensions Y , DS (W · Y , d) > v

2. gap(W −v[· · · |W |], d) ≤ 1
d ·DS (v[|W | · · · ], d)− μ

d−1 iff For all infinite-length,
bounded extensions Y , DS (W · Y , d) ≤ v

Proof. We present proof of one direction of Item 1. The others follow simi-
larly. Let W be s.t for every infinite-length, bounded Y , DS (W · Y , d) > v
holds. Then DS (W,d) + 1

d|W | · DS (Y, d) ≥ DS (v[· · · |W |] · v[|W | · · · ], d) implies

DS (W,d) − DS (v[· · · |W |], d) > 1
d|W | · (DS (v[|W | · · · ], d) − DS (Y, d)) implies

gap(W − v[· · · |W |], d) > 1
d (DS (v[|W | · · · ], d) + μ·d

d−1 ). ��

This segues into the state-space of the Büchi automaton. We define the state
space so that state s represents the gap value s. The idea is that all finite-length
weight sequences with gap value s will terminate in state s. To assign transition
between these states, we observe that gap value is defined inductively as follows:
gap(ε, d) = 0 and gap(W ·w, d) = d ·gap(W,d)+w, where w ∈ {−μ, . . . , μ}. Thus
there is a transition from state s to state t on a ∈ {−μ, . . . , μ} if t = d · s + a.
Since gap(ε, d) = 0, state 0 is assigned to be the initial state.
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The issue with this construction is it has infinite states. To limit that, we
use Lemma 3. Since Item 1 is a necessary and sufficient criteria for bad prefixes
of safety language L≤, all states with value larger than Item 1 are fused into
one non-accepting sink. For the same reason, all states with gap value less than
Item 1 are accepting states. Due to Item 2, all states with value less than Item 2
are fused into one accepting sink. Finally, since d is an integer, gap values are
integral. Thus, there are only finitely many states between Item 2 and Item 1.

Theorem 6. Let μ > 0 be an integer upper bound, d > 1 an integer discount
factor, R an equality or inequality relation, and v ∈ Q the threshold value with an
n-length representation given by v = v[0]v[1] . . . v[m](v[m+1]v[m+2] . . . v[n])ω.

1. The DS comparator automata for μ, d,R, v is ω-regular iff d is an integer.
2. For integer discount factors, the DS comparator is a safety or co-safety au-

tomaton with O( μ·nd−1 ) states.

Proof. To prove Item 1 we present the construction of an ω-regular compara-
tor automaton for integer upper bound μ > 0, integer discount factor d > 1,
inequality relation ≤, and threshold value v ∈ Q s.t. v = v[0]v[1] . . . v[m](v[m+
1]v[m+ 2] . . . v[n])ω. , denoted by A = (S, sI , Σ, δ,F) where:

For i ∈ {0, . . . , n}, let Ui = 1
d ·DS (v[i · · · ], d) + μ

d−1 (Lemma 3, Item 1)

For i ∈ {0, . . . , n}, let Li = 1
d ·DS (v[i · · · ], d)− μ

d−1 (Lemma 3, Item 2)

– S =
⋃n
i=0 Si ∪ {bad, veryGood} where Si = {(s, i)|s ∈ {�Li�+ 1, . . . , �Ui�}}

– Initial state sI = (0, 0), Accepting states F = S \ {bad}
– Alphabet Σ = {−μ,−μ+ 1, . . . , μ− 1, μ}
– Transition function δ ⊆ S ×Σ → S where (s, a, t) ∈ δ then:

1. If s ∈ {bad, veryGood}, then t = s for all a ∈ Σ
2. If s is of the form (p, i), and a ∈ Σ

(a) If d · p+ a− v[i] > �Ui�, then t = bad
(b) If d · p+ a− v[i] ≤ �Li�, then t = veryGood
(c) If �Li� < d · p+ a− v[i] ≤ �Ui�,

i. If i == n, then t = (d · p+ a− v[i],m+ 1)
ii. Else, t = (d · p+ a− v[i], i+ 1)

We skip proof of correctness as it follows from the above discussion. Observe, A
is deterministic. It is a safety automaton as all non-accepting states are sinks.

To prove Item 2, observe that since the comparator for ≤ is a determinis-
tic safety automaton, the comparator for > is obtained by simply flipping the
accepting and non-accepting states. This is a co-safety automaton of the same
size. One can argue similarly for the remaining relations. ��

4.2 Satisficing via safety and reachability games

This section describes our comparator-based linear-time algorithm for satisficing
for integer discount factors.
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As described earlier, given discount factor d > 1, a play is winning for satis-
ficing with threshold value v ∈ Q and relation R if its cost sequence A satisfies
DS (A, d) R v. We now know from Theorem 6, that the winning condition for
plays can be expressed as a safety or co-safety automaton for any v ∈ Q as long
as the discount factor is an integer. Therefore, a synchronized product of the
quantitative game with the safety or co-safety comparator denoting the winning
condition completes the reduction to a safety or reachability game, respectively.

Theorem 7. Let G = (V, vinit, E, γ) be a quantitative game, d > 1 the integer
discount factor, R the equality or inequality relation, and v ∈ Q the threshold
value with an n-length representation. Let μ > 0 be the maximum of absolute
values of costs along transitions in G. Then,

1. The satisficing problem reduces to solving a safety game if R ∈ {≤,≥}
2. The satisficing problem reduces to solving a reachability game if R ∈ {<,>}
3. The satisficing problem is solved in O((|V |+ |E|) · μ · n) time.

Proof. The first two points use a standard synchronized product argument on the
following formal reduction [15]: Let G = (V = V0�V1, vinit, E, γ) be a quantitative
game, d > 1 the integer discount factor, R the equality or inequality relation,
and v ∈ Q the threshold value with an n-length representation. Let μ > 0 be
the maximum of absolute values of costs along transitions in G. Then, the first
step is to construct the safety/co-safety comparator A = (S, sI , Σ, δ,F) for μ,
d, R and v. The next is to synchronize the product of G and A over weights to
construct the game GA = (W = W0 ∪W1, s0 × init, δW ,FW ), where

– W = V × S. In particular, W0 = V0 × S and W1 = V1 × S. Since V0 and V1

are disjoint, W0 and W1 are disjoint too.
– Let s0 × init be the initial state of GA.
– Transition relation δW = W×W is defined such that transition ((v, s), (v′, s′))
∈ δW synchronizes between transitions (v, v′) ∈ δ and (s, a, s′) ∈ δC if
a = γ((v, v′)) is the cost of transition in G.

– FW = V × F . The game is a safety game if the comparator is a safety au-
tomaton and a reachability game if the comparator is a co-safety automaton.

We need the size of GA to analyze the worst-case complexity. Clearly, GA
consists of O(|V | · μ · n) states. To establish the number of transitions in GA,
observe that every state (v, s) in GA has the same number of outgoing edges as
state v in G because the comparator A is deterministic. Since GA has O(μ · n)
copies of every state v ∈ G, there are a total of O(|E| · μ · n) transitions in GA.
Since GA is either a safety or a reachability game, it is solved in linear-time to
its size. Thus, the overall complexity is O((|V |+ |E|) · μ · n). ��

With respect to the value μ, the VI-based solutions are logarithmic in the
worst case, while comparator-based solution is linear due to the size of the com-
parator. From a practical perspective, this may not be a limitation since weights
along transitions can be scaled down. The parameter that cannot be altered is
the size of the quantitative game. With respect to that, the comparator-based
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solution displays clear superiority. Finally, the comparator-based solution is af-
fected by n, length of the representation of the threshold value while the VI-based
solution does not. It is natural to assume that the value of n is small.

4.3 Implementation and Empirical Evaluation

The goal of the empirical analysis is to determine whether the practical perfor-
mance of these algorithms resonate with our theoretical discoveries.

For an apples-to-apples comparison, we implement three algorithms: (a)
VIOptimal: Optimization via value-iteration, (b)VISatisfice: Satisficing via value-
iteration, and (c). CompSatisfice: Satisficing via comparators. All tools have been
implemented in C++. To avoid floating-point errors in VIOptimal and VISatisfice,
the tools invoke the open-source GMP (GNU Multi-Precision) [2]. Since all arith-
metic operations in CompSatisfice are integral only, it does not use GMP.

To avoid completely randomized benchmarks, we create ∼290 benchmarks
from LTLf benchmark suite [29]. The state-of-the-art LTLf -to-automaton tool
Lisa [8] is used to convert LTLf to (non-quantitative) graph games. Weights are
randomly assigned to transitions. The number of states in our benchmarks range
from 3 to 50000+. Discount factor d = 2, threshold v ∈ [0 − 10]. Experiments
were run on 8 CPU cores at 2.4GHz, 16GB RAM on a 64-bit Linux machine.

Observations and Inferences Overall, we see that VISatisfice is efficient and
scalable, and exhibits steady and predictable performance.

CompSatisfice outperforms VIOptimal in both runtime and number of bench-
marks solved, as shown in Fig 2. It is crucial to note that all benchmarks solved
by VIOptimal had fewer than 200 states. In contrast, CompSatisfice solves much
larger benchmarks with 3-50000+ number of states.

To test scalability, we compared both tools on a set of scalable benchmarks.
For integer parameter i > 0, the i-th scalable benchmark has 3 · 2i states. Fig 3
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plots number-of-states to runtime in log-log scale. Therefore, the slope of the
straight line will indicate the degree of polynomial (in practice). It shows us
that CompSatisfice exhibits linear behavior (slope ∼1), whereas VIOptimal is
much more expensive (slope >> 1) even in practice.

CompSatisfice is more robust than VISatisfice. We compare CompSatisfice and
VISatisfice as the threshold value changes. This experiment is chosen due to
Theorem 4 which proves that VISatisfice is non-robust. As shown in Fig 4, the
variance in performance of VISatisfice is very high. The appearance of peak close
to the optimal value is an empirical demonstration of Theorem 4. On that other
hand, CompSatisfice stays steady in performance owning to its low complexity.

5 Adding Temporally Extended Goals

Having witnessed algorithmic improvements of comparator-based satisficing over
VI-based algorithms, we now shift focus to the question of applicability. While
this section examines this with respect to the ability to extend to temporal
goals, this discussion highlights a core strength of comparator-based reasoning
in satisficing and shows its promise in a broader variety of problems.

The problem of extending optimal/satisficing solutions with a temporal goal
is to determine whether there exists an optimal/satisficing solution that also
satisfies a given temporal goal. Formally, given a quantitative game G, a labeling
function L : V → 2AP which assigns states V of G to atomic propositions from
the set AP , and a temporal goal ϕ over AP , we say a play ρ = v0v1 . . . satisfies
ϕ if its proposition sequence given by L(v0)L(v1) . . . satisfies the formula ϕ.
Then to solve optimization/satisficing with a temporal goal is to determine if
there exists a solutions that is optimal/satisficing and also satisfies the temporal
goal along resulting plays. Prior work has proven that the optimization problem
cannot be extended to temporal goals [13] unless the temporal goals are very
simple safety properties [10,31]. In contrast, our comparator-based solution for
satisficing can naturally be extended to temporal goals, in fact to all ω-regular
properties, owing to its automata-based underpinnings, as shown below:
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Theorem 8. Let G a quantitative game with state set V , L : V → 2AP be a
labeling function over set of atomic propositions AP, and ϕ be a temporal goal
over AP and Aϕ be its equivalent deterministic parity automaton. Let d > 1 be
an integer discount factor, μ be the maximum of the absolute values of costs along
transitions, and v ∈ Q be the threshold value with an n-length representation.
Then, solving satisficing with temporal goals reduces to solving a parity game of
size linear in |V |, μ, n and |Aϕ|.

Proof. The reduction involves two steps of synchronized products. The first re-
duces the satisficing problem to a safety/reachability game while preserving
the labelling function. The second synchronization product is between the safe-
ty/reachability game with the DPA Aϕ. These will synchronize on the atomic
propositions in the labeling function and DPA transitions, respectively. There-
fore, resulting parity game will be linear in |V |, μ and n, and |Aϕ|. ��

Broadly speaking, our ability to solve satisficing via automata-based meth-
ods is a key feature as it propels a seamless integration of quantitative prop-
erties (threshold bounds) with qualitative properties, as both are grounded in
automata-based methods. VI-based solutions are inhibited to do so since numeri-
cal methods are known to not combine well with automata-based methods which
are so prominent with qualitative reasoning [5,20]. This key feature could be ex-
ploited in several other problems to show further benefits of comparator-based
satisficing over optimization and VI-based methods.

6 Concluding remarks

This work introduces the satisficing problem for quantitative games with the
discounted-sum cost model. When the discount factor is an integer, we present
a comparator-based solution for satisficing, which exhibits algorithmic improve-
ments – better worst-case complexity and efficient, scalable, and robust per-
formance – as well as broader applicability over traditional solutions based on
numerical approaches for satisficing and optimization. Other technical contri-
butions include the presentation of the missing proof of value-iteration for opti-
mization and the extension of comparator automata to enable direct comparison
to arbitrary threshold values as opposed to zero threshold value only.

An undercurrent of our comparator-based approach for satisficing is that it
offers an automata-based replacement to traditional numerical methods. By do-
ing so, it paves a way to combine quantitative and qualitative reasoning without
compromising on theoretical guarantees or even performance. This motivates
tackling more challenging problems in this area, such as more complex environ-
ments, variability in information availability, and their combinations.
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Abstract. It is well-known that the winning region of a parity game
with n nodes and k priorities can be computed as a k-nested fixpoint
of a suitable function; straightforward computation of this nested fix-

point requires O(n
k
2 ) iterations of the function. Calude et al.’s recent

quasipolynomial-time parity game solving algorithm essentially shows
how to compute the same fixpoint in only quasipolynomially many itera-
tions by reducing parity games to quasipolynomially sized safety games.
Universal graphs have been used to modularize this transformation of
parity games to equivalent safety games that are obtained by combin-
ing the original game with a universal graph. We show that this ap-
proach naturally generalizes to the computation of solutions of systems
of any fixpoint equations over finite lattices; hence, the solution of fix-
point equation systems can be computed by quasipolynomially many
iterations of the equations. We present applications to modal fixpoint
logics and games beyond relational semantics. For instance, the model
checking problems for the energy μ-calculus, finite latticed μ-calculi, and
the graded and the (two-valued) probabilistic μ-calculus – with numbers
coded in binary – can be solved via nested fixpoints of functions that
differ substantially from the function for parity games but still can be
computed in quasipolynomial time; our result hence implies that model
checking for these μ-calculi is in QP. Moreover, we improve the exponent
in known exponential bounds on satisfiability checking.

Keywords: Fixpoint theory, model checking, satisfiability checking, parity
games, energy games, μ-calculus

1 Introduction

Fixpoints are pervasive in computer science, governing large portions of recur-
sion theory, concurrency theory, logic, and game theory. One famous example
are parity games, which are central, e.g., to networks and infinite processes [5],
tree automata [43], and μ-calculus model checking [17]. Winning regions in parity
games can be expressed as nested fixpoints of particular set functions (e.g. [8,16]).
In recent breakthrough work on the solution of parity games in quasipolynomial
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time, Calude et al. [9] essentially show how to compute this particular fixpoint
in quasipolynomial time, that is, in time 2O((log n)c) for some constant c. Subse-
quently, it has been shown [13,14,28] that universal graphs (that is, even graphs
into which every even graph of a certain size embeds by a graph morphism) can
be used to transform parity games to equivalent safety games obtained by pairing
the original game with a universal graph; the size of these safety games is deter-
mined by the size of the employed universal graphs and it has been shown [13,14]
that there are universal graphs of quasipolynomial size. This yields a uniform
algorithm for solving parity games to which all currently known quasipolynomial
algorithms for parity games have been shown to instantiate using appropriately
defined universal graphs [13,14].

Briefly, our contribution in the present work is to show that the method of
using universal graphs to solve parity games generalizes to the computation of
nested fixpoints of arbitrary functions over finite lattices. That is, given functions
fi : P(U)k+1 → P(U), 0 ≤ i ≤ k on a finite lattice U , we give an algorithm that
uses universal graphs to compute the solutions of systems of equations

Xi =ηi fi(X0, . . . , Xk) 0 ≤ i ≤ k

where ηi = GFP (greatest fixpoint) or ηi = LFP (least fixpoint). Since there are
universal graphs of quasipolynomial size, the algorithm requires only quasipoly-
nomially many iterations of the functions fi and hence runs in quasipolynomial
time, provided that all fi are computable in quasipolynomial time. While it
seems plausible that this time bound may also be obtained by translating equa-
tion systems to equivalent standard parity games by emulating Turing machines
to encode the functions fi as Boolean circuits (leading to many additional states
but avoiding exponential blowup during the process), we emphasize that the
main point of our result is not so much the ensuing time bound but rather the
insight that universal graphs and hence many algorithms for parity games can
be used on a much more general level which yields a precise (and relatively low)
quasipolynomial bound on the number of function calls that are required to
obtain solutions of fixpoint equation systems.

In more detail, the method of Calude et al. can be described as annotating
nodes of a parity game with histories of quasipolynomial size and then solving
this annotated game, but with a safety winning condition instead of the much
more involved parity winning condition. It has been shown that these histories
can be seen as nodes in universal graphs, in a more general reduction of parity
games to safety games in which nodes from the parity game are annotated with
nodes from a universal graph. This method has also been described as pairing
separating automata with safety games [14]. It has been shown [13,14] that there
are exponentially sized universal graphs (essentially yielding the basis for e.g. the
fixpoint iteration algorithm [8] or the small progress measures algorithm [27]) and
quasipolynomially sized universal graphs (corresponding, e.g., to the succinct
progress measure algorithm [28], or to the recent quasipolynomial variant of
Zielonka’s algorithm [38]).

Hasuo et al. [22], and more generally, Baldan et al. [4] show that nested
fixpoints in highly general settings can be computed by a technique based on
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progress measures, implicitly using exponentially sized universal graphs, obtain-
ing an exponential bound on the number of iterations. Our technique is based
on showing that one can make explicit use of universal graphs, correspondingly
obtaining a quasipolynomial upper bound on the number of iterations. In both
cases, computation of the nested fixpoint is reduced to a single (least or greatest
depending on exact formulation) fixpoint of a function that extends the given
set function to keep track of the exponential and quasipolynomial histories, re-
spectively, in analogy to the previous reduction of parity games to safety games.
Our central result can then be phrased as saying that the method of trans-
forming parity conditions to safety conditions using universal graphs generalizes
from solving parity games to solving systems of equations that use arbitrary
functions over finite lattices. We use fixpoint games [4, 42] to obtain the cru-
cial result that the solutions of equation systems have history-free witnesses,
in analogy to history-freeness of winning strategies in parity games. These fix-
point games have exponential size but we show how to extract polynomial-size
witnesses for winning strategies of Eloise, and use these witnesses to show that
any node won by Eloise is also won in the safety game obtained by a universal
graph. For the backwards direction, we show that a witness for satisfaction of
the safety condition regarding the universal graph induces a winning strategy
in the fixpoint game. This proves that universal graphs can be used to compute
nested fixpoints of arbitrary functions over finite lattices and hence yields the
quasipolynomial upper bound for computation of nested fixpoints. Moreover, we
present a progress measure algorithm that uses the nodes of a quasipolynomial
universal graph to measure progress and that can be used to efficiently compute
nested fixpoints of arbitrary functions over finite lattices.

As an immediate application of these results, we improve known deterministic
algorithms for solving energy parity games [10], that is, parity games in which
edges have additional integer weights and for which the winning condition is
a combined parity condition and a (quantitative) positivity condition on the
sum of the accumulated weights. Our results also show that the model checking
problem for the associated energy μ-calculus [2] is in QP. In a similar fashion,
we obtain quasipolynomial algorithms for model checking in latticed μ-calculi [7]
in which the truth values of formulae are computed over arbitrary finite lattices,
and for solving associated latticed parity games [30].

Furthermore, our results improve generic upper complexity bounds on model
checking and satisfiability checking in the coalgebraic μ-calculus [12], which
serves as a generic framework for fixpoint logics beyond relational semantics.
Well-known instances of the coalgebraic μ-calculus include the alternating-
time μ-calculus [1], the graded μ-calculus [32], the (two-valued) probabilistic
μ-calculus [12,34], and the monotone μ-calculus [18] (the ambient fixpoint logic
of concurrent dynamic logic CPDL [39] and Parikh’s game logic [37]). This level
of generality is achieved by abstracting system types as set functors and sys-
tems as coalgebras for the given functor following the paradigm of universal
coalgebra [40]. It was previously shown [24] that the model checking problem
for coalgebraic μ-calculi reduces to the computation of a nested fixpoint. This
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fixpoint may be seen as a coalgebraic generalization of a parity game winning
region but can be literally phrased in terms of small standard parity games
(implying quasipolynomial run time) only in restricted cases. Our results show
that the relevant nested fixpoint can be computed in quasipolynomial time in
all cases of interest. Notably, we thus obtain as new specific upper bounds that
even under binary coding of numbers, the model checking problems of both the
graded μ-calculus and the probabilistic μ-calculus are in QP, even when the
syntax is extended to allow for (monotone) polynomial inequalities.

Similarly, the satisfiability problem of the coalgebraic μ-calculus has been
reduced to a computation of a nested fixpoint [25], and our present results imply
a marked improvement in the exponent of the associated exponential time bound.
Specifically, the nesting depth of the relevant fixpoint is exponentially smaller
than the basis of the lattice. Our results imply that this fixpoint is computable in
polynomial time so that the complexity of satisfiability checking in coalgebraic
μ-calculi drops from 2O(n2k2 log n) to 2O(nk log n) for formulae of size n and with
alternation depth k.

Related Work The quasipolynomial bound on parity game solving has in the
meantime been realized by a number of alternative algorithms. For instance, Ju-
rdzinski and Lazic [28] use succinct progress measures to improve to quasilinear
(instead of quasipolynomial) space; Fearnley et al. [19] similarly achieve quasilin-
ear space. Lehtinen [33] and Boker and Lehtinen [6] present a quasipolynomial
algorithm using register games. Parys [38] improves Zielonka’s algorithm [43]
to run in quasipolynomial time. In particular the last algorithm is of interest
as an additional candidate for generalization to nested fixpoints, due to the
known good performance of Zielonka’s algorithm in practice. Daviaud et al. [15]
generalize quasipolynomial-time parity game solving by providing a pseudo-
quasipolynomial algorithm for mean-payoff parity games. On the other hand,
Czerwinski et al. [14] give a quasipolynomial lower bound on universal trees, im-
plying a barrier for prospective polynomial-time parity game solving algorithms.
Chatterjee et al. [11] describe a quasipolynomial time set-based symbolic algo-
rithm for parity game solving that is parametric in a lift function that determines
how ranks of nodes depend on the ranks of their successors, and thereby unifies
the complexity and correctness analysis of various parity game algorithms. Al-
though part of the parity game structure is encapsulated in a set operator CPre,
the development is tied to standard parity games, e.g. in the definition of the
best function, which picks minimal or maximal ranks of successors depending on
whether a node belongs to Abelard or Eloise.

Early work on the computation of unrestricted nested fixpoints has shown
that greatest fixpoints require less effort in the fixpoint iteration algorithm, which
can hence be optimized to compute nested fixpoints with just O(n

k
2 ) calls of

the functions at hand [35,41], improving the previously known (straightforward)
bound O(nk); here, n denotes the size of the basis of the lattice and k the number
of fixpoint operators. Recent progress in the field has established the above-
mentioned approaches using progress measures [22] and fixpoint games [4] in
general settings, both with a view to applications in coalgebraic model checking
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like in the present paper. In comparison to the present work, the respective
bounds on the required number of function iterations in the above unrestricted
approaches all are exponential.

A preprint of our present results, specifically the quasipolynomial upper
bound on function iteration in fixpoint computation, has been available as an
arXiv preprint for some time [23]. Subsequent to this preprint, Arnold, Niwin-
ski and Parys [3] have improved the actual run time by reducing the overhead
incurred per iteration (and they give a form of quasipolynomial lower bound for
universal-tree-based algorithms), working (like [23]) in the less general setting of
directly nested fixpoints over powerset lattices; we show in Section 6 how such
an improvement can be incorporated also in our lattice-based algorithm.

2 Notation and Preliminaries

Let U and V be sets, and let R ⊆ U × U be a binary relation on U . For
u ∈ U , we then put R(u) := {v ∈ U | (u, v) ∈ R}. We put [k] = {0, . . . , k} for
k ∈ N. Labelled graphs G = (W,R) consist of a set W together with a relation
R ⊆ W × A × W where A is some set of labels; typically, we use A = [k]
for some k ∈ N. An R-path in a labelled graph is a finite or infinite sequence
v0, a0, v1, a1, v2 . . . (ending in a node fromW if finite) such that (vi, ai, vi+1) ∈ R
for all i. For v ∈ W and a ∈ A, we put Ra(v) = {w ∈ W | (v, a, w) ∈ R} and
sometimes write |G| to refer to |W |. As usual, we write U∗ and Uω for the sets of
finite sequences or infinite sequences, respectively, of elements of U . The domain
dom(f) of a partial function f : U ⇀ V is the set of elements on which f is
defined. As usual, the (forward) image of A′ ⊆ A under a function f : A → B
is f [A′] = {b ∈ B | ∃a ∈ A′. f(a) = b} and the preimage f−1[B′] of B′ ⊆ B
under f is defined by f−1[B′] = {a ∈ A | ∃b ∈ B′. f(a) = b}. Projections
πj : A1 × . . . × Am → Aj for 1 ≤ j ≤ m are given by πi(a1, . . . , am) = aj . We
often regard (finite) sequences τ = u0, u1, . . . ∈ U∗ ∪ Uω of elements of U as
partial functions of type N ⇀ U and then write τ(i) to denote the element ui,
for i ∈ dom(τ). For τ ∈ U∗ ∪ Uω, we define the set Inf(τ) = {u ∈ U | ∀i ≥
0. ∃j > i. τ(j) = u} of elements that occur infinitely often in τ (so Inf(τ) = ∅
for τ ∈ U∗). An infinite R-path v0, p0, v1, p1, . . . in a labelled graph G = (W,R)
with labels from [k] is even if max(Inf(p0, p1, . . . )) is even, and G is even if every
infinite R-path in G is even. We write P(U) for the powerset of U , and Um for
the m-fold Cartesian product U × · · · × U .

Finite Lattices and Fixpoints A finite lattice (L,
) (often written just as L)
consists of a non-empty finite set L together with a partial order 
 on L, such
that there is, for all subsets X ⊆ L, a join

⊔
X and a meet

�
X. The least and

greatest elements of L are defined as � =
⊔
∅ and element � =

�
∅, respectively.

A set BL ⊆ L such that l =
⊔
{b ∈ BL | b 
 l} is a basis of L. Given a finite

lattice L, a function g : Lk → L is monotone if g(V1, . . . , Vk) 
 g(W1, . . . ,Wk)
whenever Vi 
Wi for all 1 ≤ i ≤ k. For monotone f : L→ L, we put

GFP f =
⊔
{V 
 L | V 
 f(V )} LFP f =

�
{V 
 L | f(V ) 
 V },
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which, by the Knaster-Tarski fixpoint theorem, are the greatest and the least
fixpoint of f , respectively. Furthermore, we define f0(V ) = V and fm+1(V ) =
f(fm(V )) for m ≥ 0, V 
 L; since L is finite, we have GFP f = fn(�) and
LFP f = fn(⊥) by Kleene’s fixpoint theorem. Given a finite set U and a natural
number n, (nU ,
) is a finite lattice, where nU = {f : U → [n− 1]} denotes the
function space from U to [n−1] and f 
 g if and only if for all u ∈ U , f(u) ≤ g(u).
For n = 2, we obtain the powerset lattice (2U ,⊆), also denoted by P(U), with
least and greatest elements ∅ and U , respectively, and basis {{u} | u ∈ U}.

Parity games A parity game (V,E,Ω) consists of a set of nodes V , a left-total
relation E ⊆ V × V of moves encoding the rules of the game, and a priority
function Ω : V → N, which assigns priorities Ω(v) ∈ N to nodes v ∈ V .
Moreover, each node belongs to exactly one of the two players Eloise or Abelard,
where we denote the set of Eloise’s nodes by V∃ and that of Abelard’s nodes
by V∀. A play ρ ∈ V ω is an infinite sequence of nodes that follows the rules
of the game, that is, such that for all i ≥ 0, we have (ρ(i), ρ(i + 1)) ∈ E. We
say that an infinite play ρ = v0, v1, . . . is even if the largest priority that occurs
infinitely often in it (i.e. max(Inf(Ω ◦ ρ))) is even, and odd otherwise, and call
this property the parity of ρ. Player Eloise wins exactly the even plays and
player Abelard wins all other plays. A (history-free) Eloise-strategy s : V∃ ⇀ V
is a partial function that assigns single moves s(x) to Eloise-nodes x ∈ dom(s).
Given an Eloise-strategy s, a play ρ is an s-play if for all i ∈ dom(ρ) such that
ρ(i) ∈ V∃, we have ρ(i + 1) = s(ρ(i)). An Eloise-strategy wins a node v ∈ V if
Eloise wins all s-plays that start at v. We have a dual notion of Abelard-strategies;
solving a parity game consists in computing the winning regions win∃ and win∀
of the two players, that is, the sets of states that they respectively win by some
strategy.

It is known that solving parity games is in NP∩coNP (and, more specifi-
cally, in UP∩co-UP). Recently it has also been shown [9] that for parity games
with n nodes and k priorities, win∃ and win∀ can be computed in quasipolyno-
mial time O(nlog k+6). Another crucial property of parity games is that they are
history-free determined [21], that is, that every node in a parity game is won by
exactly one of the two players and then there is a history-free strategy for the
respective player that wins the node.

3 Systems of Fixpoint Equations

We now introduce our central notion, that is, systems of fixpoint equations over
a finite lattice. Throughout, we fix a finite lattice (L,
) and a basis BL of L
such that ⊥ /∈ BL, and k + 1 monotone functions fi : L

k+1 → L, 0 ≤ i ≤ k.

Definition 3.1. A system of equations consists of k + 1 equations of the form

Xi =ηi fi(X0, . . . , Xk)
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where ηi ∈ {LFP,GFP}, briefly referred to as f . For a partial valuation σ : [k] ⇀
L, we inductively define

[[Xi]]
σ = ηiXi.f

σ
i ,

where the function fσi is given by

fσi (A) = fi([[X0]]
σ′
, . . . , [[Xi−1]]

σ′
, A, ev(σ′, i+ 1), . . . , ev(σ′, k))

for A ∈ L, where (σ[i �→ A])(j) = σ(j) for j �= i and (σ[i �→ A])(i) = A,
σ′ = σ[i �→ A] and where ev(σ, j) = σ(j) if j ∈ dom(σ) and ev(σ, j) = [[Xj ]]

σ

otherwise (the latter clause handles free variables). Then, the solution of the
system of equations is [[Xk]]

ε where ε : [k] ⇀ L denotes the empty valuation
(i.e. dom(ε) = ∅). Similarly, we can obtain solutions for the other components
as [[Xi]]

ε for 0 ≤ i < k; we drop the valuation index if no confusion arises, and
sometimes write [[Xi]]f to make the equation system f explicit. We denote by Ef0

the solution [[Xk]] for the canonical system of equations of the particular shape

Xi =ηi Xi−1 X0 =GFP f0(X0, . . . , Xk),

where 0 < i ≤ k, ηi = LFP for odd i and ηi = GFP for even i.

Example 3.2. (1) Parity games and the modal μ-calculus: Let (V,E,Ω) be a
parity game with priorities 0 to k, take L = P(V ), and consider the canonical
system of fixpoint equations Ef∃ for the function f∃ : P(V )k+1 → P(V ) given by

f∃(V0, . . . , Vk) ={v ∈ V∃ | E(v) ∩ VΩ(v) �= ∅} ∪ {v ∈ V∀ | E(v) ⊆ VΩ(v), }

for (V0, . . . , Vk) ∈ P(V )k+1. It is well known that win∃ = Ef∃ , i.e. parity games
can be solved by solving fixpoint equation systems. Intuitively, v ∈ f∃(V0, . . . , Vk)
iff Eloise can enforce that some node in VΩ(v) is reached in the next step. The

nested fixpoint expressed by Ef∃ (in which least (greatest) fixpoints correspond
to odd (even) priorities) is constructed in such a way that Eloise only has to rely
infinitely often on an argument Vi for odd i if she can also ensure that some
argument Vj for j > i is used infinitely often.

Model checking for the modal μ-calculus [29] and solving parity games are
linear-time equivalent problems. Formulae of the μ-calculus are evaluated over
Kripke frames (U,R) with set of states U and transition relation R. Formulae
φ of the μ-calculus can be directly represented as equation systems over the
lattice P(U) by recursively translating φ to equations, mapping subformulae
μXi. ψ(X0, . . . , Xk) and νXj . ψ(X0, . . . , Xk) to equations

Xi =μ ψ(X0, . . . , Xk) Xj =ν χ(X0, . . . , Xk),

and interpreting the modalities ♦ and � by functions

f♦(X) = {u ∈ U | R(u) ∩X �= ∅} f�(X) = {u ∈ U | R(u) ⊆ X}
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The solution of the resulting system of equations then is the truth set of the
formula φ, that is, model checking for the model μ-calculus reduces to solving
fixpoint equation systems. Furthermore, satisfiability checking for the modal μ-
calculus can be reduced to solving so-called satisfiability games [20], that is,
parity games that are played over the set of states of a determinized parity
automaton. These satisfiability games can be expressed as systems of fixpoint
equations, where the functions track transitions in the determinized automaton.

(2) Energy parity games and the energy μ-calculus: Energy parity games [10] are
two-player games played over weighted game arenas (V,E,w,Ω), where w : E →
Z assigns integer weights to edges. The winning condition is the combination
of a parity condition with a (quantitative) positivity condition on the sum of
the accumulated weights. It has been shown [2, 10], that b = n · d · W is a
sufficient upper bound on energy level accumulations in energy parity games
with n nodes, k priorities and maximum absolute weightW . We define a function
f e
∃ : ((b+1)V )k+1 → (b+1)V over the finite lattice (b+1)V (whose elements are
functions from V to the set {0, . . . , b+ 1}) by putting

(f e
∃(V0, . . . , Vk))(v) =

{
min(en(v, VΩ(v))) if v ∈ V∃
max(en(v, VΩ(v))) if v ∈ V∀,

for (V0, . . . , Vk) ∈ ((b+ 1)V )k+1 and v ∈ V , using en(v, σ) as abbreviation for

en(v, σ) = {n ∈ {0, . . . , b} | ∃u ∈ E(v). n = max{0, σ(u)− w(v, u)}}∪
{b+ 1 | ∃u ∈ E(v). σ(u)− w(v, u) > b or σ(u) > b},

where σ : V → {0, . . . , b+ 1}. Then it follows from the results of [2] that player
Eloise wins a node v in the energy parity game with minimal initial credit c < b+1
if (Ef

e
∃)(v) = c, that is, if the solution of the canonical equation system over f e

∃
maps v to a value c that is at most b.

The energy μ-calculus [2] is the fixpoint logic that corresponds to energy par-
ity games. Its formulae are evaluated over weighted game structures and involve
operators ♦Eφ and �Eφ that are evaluated depending on the energy function
[[φ]] : V → {0, . . . , b + 1} that is obtained by first evaluating the argument for-
mula φ. The semantics of the diamond operator then is an energy function that
assigns, to each state v, the least energy value c ∈ {0, . . . , b+1} such that there
is a move from v to some node u such that the credit c suffices to take the
move from v to u and retain an energy level of at least [[φ]](u). Formulae can be
translated to equation systems over the finite lattice (b + 1)V , where the func-
tions for modal operators are defined according to their semantics as presented
in [2]. Solving these equation systems then amounts to model checking energy
μ-calculus formulae over weighted game structures.

(3) Latticed μ-calculi: In latticed μ-calculi [7], formulae are evaluated over com-
plete lattices L rather than the powerset lattice; for finite lattices L, formulae of
latticed μ-calculi hence can be translated to fixpoint equation systems over L, so
that model checking reduces to solving equation systems. An associated latticed
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variant of games has been introduced in [30] and for finite lattices L, solving
latticed parity games over L reduces to solving equation systems over L.

(4) The coalgebraic μ-calculus and coalgebraic parity games: The coalgebraic
μ-calculus [12] supports generalized modal branching types by using predicate
liftings to interpret formulae over T -coalgebras, that is, over structures whose
transition type is specified by an endofunctor T on the category of sets. For
instance the functors T = P, T = D and T = G map sets X to their pow-
erset P(X), the set of probability distributions D(X) = {f : X → [0, . . . , 1]}
over X, and to the set of multisets G(X) = {f : X → N} over X, respectively.
The corresponding T -coalgebras then are Kripke frames (for T = P), Markov
chains (for T = D) and graded transition systems (for T = G), respectively. In-
stances of the coalgebraic μ-calculus comprise, e.g. the two-valued probabilistic
μ-calculus [12, 34] with modalities ♦pφ for p ∈ [0, . . . , 1], expressing ‘the next
state satisfies φ with probability more than p’; the graded μ-calculus [32] with
modalities ♦gφ for g ∈ N, expressing ‘there are more than φ successor states
that satisfy φ’; or the alternating-time μ-calculus [1] that is interpreted over
concurrent game frames and uses modalities 〈D〉φ for finite D ⊆ N (encoding a
coalition) that express that ‘coalition D has a joint strategy to enforce φ’.

It has been shown in previous work [24] that model checking for coalgebraic
μ-calculi against coalgebras with state space U reduces to solving a canonical
fixpoint equation system over the powerset lattice P(U), where the involved func-
tion interprets modal operators using predicate liftings, as described in [12, 24].
This canonical equation system can alternatively be seen as the winning region
of Eloise in coalgebraic parity games, a highly general variant of parity games
where the game structure is a coalgebra and nodes are annotated with modal-
ities. Examples include two-valued probabilistic parity games and graded parity
games in which nodes and edges are annotated with probabilities or grades, re-
spectively. In order to win a node v, player Eloise then has to have a strategy
that picks a set of moves to nodes that in turn are all won by Eloise, and such
that the joint probability (joint grade) of the picked moves is greater than the
probability (grade) that is assigned to v. It is known that solving coalgebraic
parity games reduces to solving fixpoint equation systems [24].

Furthermore, the satisfiability problem of the coalgebraic μ-calculus has
been reduced to solving canonical fixpoint equations systems over lattices P(U),
where U is the state set of a determinized parity automaton and where the inner-
most equation checks for joint one-step satisfiability of sets of coalgebraic modal-
ities [25]. By interpreting coalgebraic formulae over finite lattices dU rather than
over powerset lattices, one obtains the finite-valued coalgebraic μ-calculus (with
values {0, . . . , d}), which has the finite-valued probabilistic μ-calculus (e.g. [36])
as an instance. Model checking for the finite-valued probabilistic μ-calculus hence
reduces to solving equation systems over the finite lattice d|U |, where {0, . . . , d}
encodes a finite set of probabilities.
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4 Fixpoint Games and History-free Witnesses

We instantiate the existing notion of fixpoint games [4, 42], which characterize
solutions of equation systems, to our setting (that is, to finite lattices), and then
use these games as a technical tool to establish our crucial notion of history-
freeness for systems of fixpoint equations.

Definition 4.1 (Fixpoint games). Let Xi =ηi fi(X0, . . . , Xk), 0 ≤ i ≤ k, be
a system of fixpoint equations. The associated fixpoint game is a parity game
(V,E,Ω) with set of nodes V = (BL × [k]) ∪ Lk+1, where nodes from BL × [k]
belong to player Eloise and nodes from Lk+1 belong to player Abelard. For nodes
(u, i) ∈ BL × [k], we put

E(u, i) = {(U0, . . . , Uk) ∈ Lk+1 | u 
 fi(U0, . . . , Uk)},

and for nodes (U0, . . . , Uk) ∈ Lk+1, we put

E(U0, . . . , Uk) = {(u, i) ∈ BL × [k] | u 
 Ui}.

The alternation depth ad(i) of an equation Xi =ηi fi(X0, . . . , X1) is defined as
adμi if ηi = μ and as adνi if ηi = ν, where adμi , ad

ν
i are recursively defined by

adμi =

⎧⎪⎨⎪⎩
adμi−1 i > 0, ηi−1 = μ

adνi−1 + 1 i > 0, ηi−1 = ν

1 i = 0

adνi =

⎧⎪⎨⎪⎩
adμi−1 + 1 i > 0, ηi−1 = μ

adνi−1 i > 0, ηi−1 = ν

0 i = 0

for 0 ≤ i ≤ k. The priority function Ω : V → [ad(k)] then is defined by Ω(u, i) =
ad(i) and Ω(U0, . . . , Uk) = 0.

Remark 4.2. In [4], an alternative priority function Ω′ : V → [2k + 1] with

Ω′(u, i) =

{
2i if ηi = GFP

2i+ 1 if ηi = LFP

and Ω′(U0, . . . , Uk) = 0 is used. Since ad(i) is even if and only if ηi is even, and
moreover ad(i) ≤ ad(j) for i ≤ j, and i < j whenever ad(i) < ad(j), it is easy to
see that Ω and Ω′ in fact assign identical parities to all plays. In the following,
we will use the more economic parity function Ω so that fixpoint games have
only d := ad(k) ≤ k priorities.

We import the associated characterization theorem [4, Theorem 4.8]:

Theorem 4.3 ([4]). We have u 
 [[Xi]]f if and only if Eloise wins the node
(u, i) in the fixpoint game for the given system f of equations.

Remark 4.4. While this shows that parity game solving can be used to solve
equation systems, the size of fixpoint games is exponential in |BL|, so they do
not directly yield a quasipolynomial algorithm for solving equation systems.
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Next we define our notion of history-freeness for systems of fixpoint equations.

Definition 4.5 (History-free witness). A history-free witness for u 
 [[Xi]]f
is an even labelled graph (W,R) with labels from [d] such that W ⊆ BL ×
[d], (u, i) ∈ W , and for all (v, p) ∈ W , we have v 
 fp(U0, . . . , Uk) where
Uj =

⊔
π1[Rad(j)(v, p)] for 0 ≤ j ≤ k, noting that Rad(j)(v, p) ⊆ W so that

π1[Rad(j)(v, p)] ⊆ BL and Uj ∈ L.

In analogy to history-free strategies for parity games, history-free witnesses as-
sign tuples (R1(v, p), . . . , Rd(v, p)) of sets Rj(v, p) ⊆W to pairs (v, p) ∈W with-
out relying on a history of previously visited pairs. We have |W | ≤ (d+ 1)|BL|
and |R| ≤ (d+1)|W |2, that is, the size of history-free witnesses is polynomial in
|BL|. Crucially, history-free witnesses always exist:

Lemma 4.6. For all u ∈ BL and i ∈ [k], we have

u 
 [[Xi]]f if and only if there is a history-free witness for u 
 [[Xi]]f .

Proof. In one direction, we have u 
 [[Xi]]f so that Eloise wins the node (u, i)
in the according fixpoint game by Lemma 4.3. Let s be a corresponding history-
free winning strategy (such strategies always exists, see e.g. [21]). We inductively
construct a witness for u 
 [[Xi]]f , starting at (u, i). When at (v, p) ∈ BL × [k]
with s(v, p) = (U0, . . . , Uk), we put Ri(v, p) =

⋃
j|ad(j)=i(Uj × {j}) for 0 ≤ i ≤ d

and hence have ad(j) = i for all ((v, p), i, (u, j)) ∈ R. Since s is a winning
strategy, the resulting graph (W,R) is a history-free witness for u 
 [[Xi]]f by
construction; in particular, (W,R) is even. For the converse direction, the witness
for u 
 [[Xi]]f directly yields a winning Eloise-strategy for the node (u, i) in the
associated fixpoint game. This implies u 
 [[Xi]]f by Lemma 4.3. ��

5 Solving Equation Systems using Universal Graphs

We go on to prove our main result. To this end, we fix a system f of fixpoint
equations fi : L

k+1 → L, 0 ≤ i ≤ k, and put n := |BL| and d := ad(k) for the
remainder of the paper.

Definition 5.1 (Universal graphs [13, 14]). Let G = (W,R) and G′ =
(W ′, R′) be labelled graphs with labels from [d]. A homomorphism of labelled
graphs from G to G′ is a function Φ : W → W ′ such that for all (v, p, w) ∈ R,
we have (Φ(v), p, Φ(w)) ∈ R′. An (n, d + 1)-universal graph S is an even graph
with labels from [d] such that for all even graphs G with labels from [d] and with
|G| ≤ n, there is a homomorphism from G to S.

We fix an (n(d + 1), (d + 1))-universal graph S = (Z,K), noting that there
are (n(d + 1), (d + 1))-universal graphs (obtained from universal trees) of size
quasipolynomial in n and d [14]. We now combine the system f with the uni-
versal graph S to turn the parity conditions associated to general systems of
fixpoint equations into a safety condition, associated to a single greatest fixpoint
equation.
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Definition 5.2 (Chained-product fixpoint). We define a function

g : P(BL × [k]× Z)→ P(BL × [k]× Z)

U �→ {(v, p, q) ∈ BL × [k]× Z | v 
 fp(P
U,q
0 , . . . , PU,q

k )}

where

PU,q
i =

⊔
{u ∈ BL | ∃s ∈ Kad(i)(q). (u, i, s) ∈ U}.

We refer to Y0 =GFP g(Y0) as the chained-product fixpoint (equation) of f and S.

We now show our central result: apart from the annotation with states from the
universal graph, the chained-product fixpoint g is the solution of the system f .

Theorem 5.3. For all u ∈ BL and 0 ≤ i ≤ k, we have

u 
 [[Xi]]f if and only if there is q ∈ Z such that (u, i, q) ∈ [[Y0]]g.

Proof. For the forward direction, let u 
 [[Xi]]f . By Lemma 4.6, there is a history-
free witness G = (W,R) for u 
 [[Xi]]f . Since S is a (n(d + 1), d + 1)-universal
graph and since G is a witness and hence an even labelled graph of suitable
size |G| ≤ n(d + 1), there is a graph homomorphism Φ from G to S. Start-
ing at (u, i, Φ(u, i), 0), we inductively construct a witness for containment of
(u, i, Φ(u, i)) in [[Y0]]g. When at (v1, p1, Φ(v1, p1), 0) with (v1, p1) ∈W , we put

R′
0(v1, p1, Φ(v1, p1), 0) ={(v2, p2, Φ(v2, p2), 0) ∈ BL × [d]× Z × [0] |

(v2, p2) ∈ Rad(p2)(v1, p1), Φ(v2, p2) ∈ Kad(p2)(Φ(v1, p1)) }

and continue the inductive construction with all these (v2, p2, Φ(v2, p2), 0), hav-
ing (v2, p2) ∈ W . The resulting structure G′ = (W ′, R′) indeed is a witness
for containment of (u, i, q) in [[Y0]]g: G

′ is even by construction. Moreover, we
need to show that for (v1, p1, Φ(v1, p1), 0) ∈ W ′, we have (v1, p1, Φ(v1, p1), 0) ∈
g(π1[R

′
0(v1, p1, Φ(v1, p1), 0)]), i.e. v1 
 fp1(P

U,Φ(v1,p1)
0 , . . . , P

U,Φ(v1,p1)
k ) where

U = π1[R
′
0(v1, p1, Φ(v1, p1), 0)]. Since G is a witness and (v1, p1) ∈ W by con-

struction of W ′, we have v1 
 fp1(U0, . . . , Uk) where Uj =
⊔
(πj [Rad(i)(v1, p1)]).

By monotonicity of fp1 , it thus suffices to show that Uj 
 P
U,Φ(v1,p1)
j for

0 ≤ j ≤ k; by definition of P
U,Φ(v1,p1)
j this follows if

π1[Rad(j)(v1, p1)] ⊆{u ∈ BL | ∃s ∈ Kad(j)(Φ(v1, p1)).(u, j, s) ∈W},

where W = π1[R
′
0(v1, p1, q1, 0)]. So let w ∈ BL such that w ∈ π1[Rad(j)(v1, p1)].

Since R is a witness that is constructed as in the proof of Lemma 4.6, we
have i = ad(i′) for all ((v′, p′), i, (w′, i′)) ∈ R. Thus (w, j) ∈ Rad(j)(v1, p1)
for some j such that ad(j) = i, that is, ((v1, p1), ad(j), (w, j)) ∈ R, hence
(Φ(v1, p1), ad(j), Φ(w, j)) ∈ K because Φ is a graph homomorphism. By
definition of R′

0 we have (w, j, Φ(w, j), 0) ∈ R′
0(v1, p1, Φ(v1, p1), 0) so that

(w, j, Φ(w, j)) ∈ π1[R
′
0(v1, p1, Φ(v1, p1), 0)]. We are done since Φ(w, j) ∈

Kad(j)(Φ(v1, p1)).
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For the converse implication, let (u0, p0, q0) ∈ [[Y0]]g for some q0 ∈ Z. Let
G = (W,R) be a history-free witness for this fact. By Lemma 4.3, it suffices
to provide a strategy in the fixpoint game for the system f with which Eloise
wins the node (u0, p0). We inductively construct a history-dependent strategy s
as follows: For i ≥ 0, we abbreviate Ui = R0(ui, pi, qi, 0). We put s(u0, p0) =

(PU0,q0
0 , . . . , PU0,q0

k ). For the inductive step, let

τ =(u0, p0), (P
U0,q0
0 , . . . , PU0,q0

k ), . . . , (P
Un−1,qn−1

0 , . . . , P
Un−1,qn−1

k ), (un, pn)

be a partial play of the fixpoint game that follows the strat-
egy that has been constructed so far. Then we have an R-path
(u0, p0, q0, 0), (u1, p1, q1, 0), . . . , (un, pn, qn, 0), where, for 0 ≤ i < n, we
have (qi, pi+1, qi+1) ∈ K since ui+1 
 PUi,qi

pi+1
by the inductive construction.

Put s(τ) = (PUn,qn
0 , . . . , PUn,qn

k ). Since G is a witness, the strategy uses only
moves that are available to Eloise (i.e. ones with un 
 fpn(s(τ))). Also, s is a
winning strategy as can be seen by looking at the K-paths that are induced by
complete plays τ that follow s, as described (for partial plays) above. Since S is
a universal graph and hence even, every such K-path is even and the sequence
of priorities in τ is just the sequence of priorities of one of these K-paths. ��

Remark 5.4. Since the set [[Y0]]g is the greatest fixpoint of g, it can be computed
by simple approximation from above, that is, as gm(BL × [k] × Z) where m =
|BL × [k]× Z|. However, each iteration of the function g may require up to |Z|
evaluations of an equation. In the next section, we will show how this additional
iteration factor in the computation of [[Y0]]g can be avoided.

6 A Progress Measure Algorithm

We next introduce a lifting algorithm that computes the set [[Y0]]g efficiently,
following the paradigm of the progress measure approach for parity games
(e.g. [27,28]). Our progress measures will map pairs (u, i) ∈ BL× [k] to nodes in
a universal graph that is equipped with a simulation order, that is, a total order
that is suitable for measuring progress.

Definition 6.1 (Simulation order). For natural numbers i, i′, we put i � i′

if and only if either i is even and i = i′, or both i and i′ are odd and i ≥ i′. A
total order ≤ on Z is a simulation order if for all q, q′ ∈ Z,

q ≤ q′ implies that for all 0 ≤ i ≤ k and s ∈ Ki(q), there are

i′ � i and s′ ∈ Ki′(q
′) such that s ≤ s′.

Lemma 6.2. There is an (n(d + 1), d + 1)-universal graph (Z,K) of size
quasipolynomial in n and d, and over which a simulation order ≤ exists.

Proof (Sketch). It has been shown [14, Theorem 2.2] (originally, in different
terminology, [28]) that there are (l, h)-universal trees (a concept similar to, but
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slightly more concrete than universal graphs) with set of leaves T such that
|T | ≤ 2l

(
log l+h+1

h

)
. Leaves in universal trees are identified by navigation paths,

that is, sequences of branching directions, so that the leaves are linearly ordered
by the lexicographic order ≤ on navigation paths (which orders leafs from the
left to the right). As described in [13], one can obtain a universal graph (T,K)
over T in which transitions (q, i, q′) ∈ K for odd i (the crucial case) move to
the left, that is, q′ is a leaf that is to the left of q in the universal tree (so
that q′ < q), ensuring universality. As it turns out, the lexicographic ordering
on T is a simulation order. Adapting this construction to our setting, we put
l = n(d+1) and h = d+1 and obtain a (n(d+1), d+1)-universal graph (along

with a simulation order ≤) of size at most 2n(d+ 1)
(
log(n(d+1))+d+2

d+1

)
which is

quasipolynomial in n and d. ��

We fix an (n(d+1), d+1)-universal graph (Z,K) and a simulation order ≤ on Z
for the remainder of the paper (these exist by the above lemma).

Definition 6.3 (Progress measure, lifting function). We let qmin ∈ Z de-
note the least node w.r.t. ≤ and fix a distinguished top element � /∈ Z, and
extend ≥ to Z ∪ {�} by putting � ≥ q for all q ∈ Z. A measure is a map
μ : BL × [k] → Z ∪ {�}, i.e. assigns nodes in the universal graph or � to pairs
(v, p) ∈ BL × [k]. A measure μ is a progress measure if whenever μ(v, p) �= �,
then v 
 fp(U

μ,q
0 , . . . , Uμ,q

k ) where q = μ(v, p) and

Uμ,q
i =

⊔
{u ∈ BL | ∃s ∈ Kad(i)(q). μ(u, i) ≤ s}.

We define a function Lift : (BL × [k] → Z ∪ {�}) → (BL × [k] → Z ∪ {�}) on
measures by

(Lift(μ))(v, p) = min{q ∈ Z | v 
 fp(U
μ,q
0 , . . . , Uμ,q

k )}

where min(Z ′) denotes the least element of Z ′ w.r.t. ≤, for ∅ �= Z ′ ⊆ Z; also we
put min(∅) = �.

The lifting algorithm then starts with the least measure mmin that maps all pairs
(v, p) ∈ BL × [k] to the minimal node (i.e. mmin(v, p) = qmin) and repeatedly
updates the current measure using Lift until the measure stabilizes.

Lifting algorithm

(1) Initialize: Put μ := mmin.

(2) If Lift(μ) �= μ, then put μ := Lift(μ) and go to 2. Otherwise go to 3.

(3) Return the set E = {(v, p) ∈ BL × [k] | μ(v, p) �= �}.

Lemma 6.4 (Correctness). For all v ∈ BL and 0 ≤ p ≤ k, we have

(v, p) ∈ E if and only if v ∈ [[Xp]]f .
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Proof (Sketch). Let μ denote the progress measure that the algorithm computes.
For one direction of the proof, let (v, p) ∈ E. By Lemma 4.6 it suffices to construct
a witness for v ∈ [[Xp]]f . We extract such a witness (E, R) from the progress
measure μ, relying on the properties of the simulation order ≤ that is used
to measure the progress of μ to ensure that any infinite sequence of measures
that μ assigns to some R-path induces an infinite (and hence even) path in the
employed universal graph. This shows that (E, R) indeed is an even graph and
hence a witness. For the converse direction, let v ∈ [[Xp]]f so that there is, by
Theorem 5.3, some q ∈ Z such that (v, p, q) ∈ [[Y0]]g. For (u, i) such that there is
q′ ∈ Z such that (u, i, q′) ∈ [[Y0]]g, let q(u,i) ∈ Z denote the minimal such node
w.r.t. ≤. It now suffices that μ(u, i) ≤ q(u,i) for all such (u, i), which is shown by
induction on the number of iterations of the lifting algorithm. ��

Corollary 6.5. Solutions of systems of fixpoint equations can be computed with
quasipolynomially many evaluations of equations.

Proof. Given an (n(d+1), d+1)-universal graph (Z,K) and a simulation order
on Z, the lifting algorithm terminates and returns the solution of f after at
most n(d+ 1) · |Z| many iterations. This is the case since each iteration (except
the final iteration) increases the measure for at least one of the n(d + 1) nodes
and the measure of each node can be increased at most |Z| times. Using the
universal graph and the simulation order from the proof of Lemma 6.2, we have
|Z| ≤ 2n(d+ 1)

(
log(n(d+1))+d+2

d+1

)
so that the algorithm terminates after at most

2(n(d + 1))2
(
log(n(d+1))+d+2

d+1

)
∈ O((n(d + 1))log(d+1)) iterations of the function

Lift. Each iteration can be implemented to run with at most n(d+1) evaluations
of an equation. ��

Corollary 6.6. The number of function calls required for the solution of systems
of fixpoint equations with d ≤ log n is bounded by a polynomial in n and d.

Proof. Following the insight of Theorem 2.8 in [9], Theorem 2.2. in [14] implies
that if d < log n, then there is an (n(d+1), d+1)-universal tree of size polynomial
in n and d. In the same way as in the proof of Lemma 6.2, one obtains a universal
graph of polynomial size and a simulation order on it. ��

Example 6.7. Applying Corollary 6.5 and Corollary 6.6 to Example 3.2, we
obtain the following results:

(1) The model checking problems for the energy μ-calculus and finite latticed
μ-calculi are in QP. For energy parity games with sufficient upper bound b on
energy level accumulations, we obtain a progress measure algorithm that termi-
nates after a number of iterations that is quasipolynomial in b.

(2) Under mild assumptions on the modalities (see [24]), the model checking
problem for the coalgebraic μ-calculus is in QP; in particular, this yields QP
model checking algorithms for the graded μ-calculus and the two-valued prob-
abilistic μ-calculus (equivalently: QP progress measure algorithms for solving
graded and two-valued probabilistic parity games).
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(3) Under mild assumptions on the modalities (see [25]), we obtain a novel upper
bound 2O(nd log n) for the satisfiability problems of coalgebraic μ-calculi, in par-
ticular including the monotone μ-calculus, the alternating-time μ-calculus, the
graded μ-calculus and the (two-valued) probabilistic μ-calculus, even when the
latter two are extended with (monotone) polynomial inequalities. This improves
on the best previous bounds in all cases.

7 Conclusion

We have shown how to use universal graphs to compute solutions of systems of
fixpoint equations Xi = ηi. fi(X0, . . . , Xk) (with the ηi marking least or greatest
fixpoints) that use functions fi : L

k+1 → L (over a finite lattice L with basis
BL) and involve up to k + 1-fold nesting of fixpoints. Our progress measure
algorithm needs quasipolynomially many evaluations of equations, and runs in
time O(q · t(f)), where q is a quasipolynomial in |BL| and the alternation depth
of the equation system, and where t(f) is an upper bound on the time it takes
to compute fi for all i.

As a consequence of our results, the upper time bounds for the evaluation
of various general parity conditions improve. Example domains beyond solv-
ing parity games to which our algorithm can be instantiated comprise model
checking for latticed μ-calculi and solving latticed parity games [7, 30], solving
energy parity games and model checking for the energy μ-calculus [2, 10], and
model checking and satisfiability checking for the coalgebraic μ-calculus [12].
The resulting model checking algorithms for latticed μ-calculi and the energy
μ-calculus run in time quasipolynomial in the provided basis of the respective
lattice. In terms of concrete instances of the coalgebraic μ-calculus, we obtain,
e.g., quasipolynomial-time model checking for the graded [32] and the prob-
abilistic μ-calculus [12, 34] as new results (corresponding results for, e.g., the
alternating-time μ-calculus [1] and the monotone μ-calculus [18] follow as well
but have already been obtained in our previous work [24]), as well as improved
upper bounds for satisfiability checking in the graded μ-calculus, the probabilis-
tic μ-calculus, the monotone μ-calculus, and the alternating-time μ-calculus. We
foresee further applications, e.g. in the computation of fair bisimulations and fair
equivalence [26,31] beyond relational systems, e.g. for probabilistic systems.

As in the case of parity games, a natural open question that remains is
whether solutions of fixpoint equations can be computed in polynomial time
(which would of course imply that parity games can be solved in polynomial
time). A more immediate perspective for further investigation is to generalize
the recent quasipolynomial variant [38] of Zielonka’s algorithm [43] for solving
parity games to solving systems of fixpoint equations, with a view to improving
efficiency in practice.
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23. Hausmann, D., Schröder, L.: Computing nested fixpoints in quasipolynomial time.
CoRR abs/1907.07020 (2019), http://arxiv.org/abs/1907.07020
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Abstract. We introduce FRAT, a new proof format for unsatisfiable
SAT problems, and its associated toolchain. Compared to DRAT, the
FRAT format allows solvers to include more information in proofs to re-
duce the computational cost of subsequent elaboration to LRAT. The
format is easy to parse forward and backward, and it is extensible to
future proof methods. The provision of optional proof steps allows SAT
solver developers to balance implementation effort against elaboration
time, with little to no overhead on solver time. We benchmark our FRAT
toolchain against a comparable DRAT toolchain and confirm >84% me-
dian reduction in elaboration time and >94% median decrease in peak
memory usage.

Keywords: Satisfiability · Proof format · DRAT · LRAT · FRAT.

1 Introduction

The Boolean satsifiability problem is the problem of determining, for a given
Boolean formula consisting of Boolean variables and connectives, whether there
exists a variable assignment under which the formula evaluates to true. Boolean
satisfiability (SAT) is interesting in part because there are surprisingly diverse
types of problems that can be encoded as Boolean formulas and solved efficiently
by checking their satisfiability. SAT solvers, programs that automatically solve
SAT problems, have been successfully applied to a wide range of areas, including
hardware verification [2], planning [14], and combinatorics [12].

The performance of SAT solvers has taken great strides in recent years,
and modern solvers can often solve problems involving millions of variables and
clauses, which would have been unthinkable a mere 20 years ago [15]. But this
improvement comes at the cost of significant increase in the code complexity
of SAT solvers, which makes it difficult to either assume their correctness on
faith, or certify their program correctness directly. As a result, the ability of
SAT solvers to produce independently verifiable certificates has become a press-
ing necessity. Since there is an obvious certificate format (the satisfying boolean
assignment) for satisfiable problems, the real challenge in proof-producing SAT
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solving is in devising a compact proof format for unsatisfiable problems, and
developing a toolchain that efficiently produces and verifies it.

The current de facto standard proof format for unsatisfiable SAT problems
is DRAT [10]. The format, as well as its predecessor DRUP, were designed with
a strong focus on quick adaptation by the community, emphasizing easy proof
emission, practically zero overhead, and reasonable validation speed [11]. The
DRAT format has become the only supported proof format in SAT Competition
and Races since 2014 due to entrants losing interest in alternatives.

DRAT is a clausal proof format [6], which means that a DRAT proof consists
of a sequence of instructions for adding and deleting clauses. It is helpful to think
of a DRAT proof as a program for modifying the ‘active multiset’ of clauses: the
initial active multiset is the clauses of the input problem, and this multiset grows
and shrinks over time as the program is executed step by step. The invariant
throughout program execution is that the active multiset at any point of time is
at least as satisfiable as the initial active multiset. This invariant holds trivially
in the beginning and after a deletion; it is also preserved by addition steps by
either RUP or RAT, which we explain shortly. The last step of a DRAT proof
is the addition of the empty clause, which ensures the unsatisfiability of the
final active multiset, and hence that of the initial active multiset, i.e. the input
problem.

Every addition step in DRAT is either a reverse unit propagation (RUP)
step [6] or a resolution asymmetric tautology (RAT) [13] step. A clause C has the
property AT (asymmetric tautology) with respect to a formula F if F,C �1 ⊥,
which is to say, there is a proof of the empty clause by unit propagation using F
and the negated literals in C. A RUP step that adds C to the active multiset F
is valid if C has property AT with respect to F . A clause l∨C has property RAT
with respect to F if for every clause l ∨D ∈ F , the clause C ∨D has property
AT with respect to F . In this case, C is not logically entailed by F , but F and
F ∧C are equisatisfiable, and a RAT step will add C to the active multiset if C
has property RAT with respect to F . (See [10] for more about the justification
for this proof system.)

DRAT has a number of advantages over formats based on more traditional
proof calculi, such as resolution or analytic tableaux. For SAT solvers, DRAT
proofs are easier to emit because CNF clauses are the native data structures
that the solvers store and manipulate internally. Whenever a solver obtains a new
clause, the clause can be simply streamed out to a proof file without any further
modification. Also, DRAT proofs are more compact than resolution proofs, as
the latter can become infeasibly large for some classes of SAT problems [7].

There is, however, room for further improvement in the DRAT format due to
the information loss incurred by DRAT proofs. Consider, for instance, the SAT
problem and proofs shown in Figure 1. The left column is the input problem
in the DIMACS format, the center column is its DRAT proof, and the right
column is the equivalent proof in the LRAT format, which can be thought of
as an enriched version of DRAT with more information. The numbers before
the first zero on lines without a “d” represent literals: positive numbers denote
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positive literals, while negative numbers denote negative literals. The first clause
of the input formula is (x1 ∨ x2 ∨ x3), or equivalently 1 2 -3 0 in DIMACS.

The first lines of both DRAT and LRAT proofs are RUP steps for adding the
clause (x1 ∨ x2), written 1 2 0. When an LRAT checker verifies this step, it is
informed of the IDs of active clauses (the trailing numbers 1 6 3) relevant for
unit propagation, in the exact order they should be used. Therefore, the LRAT
checker only has to visit the first, sixth, and third clauses and confirm that,
starting with unit literals x1, x2, they yield the new unit literals x3, x4,⊥. In
contrast, a DRAT checker verifying the same step must add the literals x1, x2
to the active multiset (in this case, the eight initial clauses) and carry out a
blind unit propagation with the whole resulting multiset until contradiction. This
omission of RUP information in DRAT proofs introduces significant overheads
in proof verification. Although the exact figures vary from problem to problem,
checking a DRAT proof typically takes approximately twice as long as solving the
original problem, whereas the verification time for an LRAT proof is negligible
compared to its solution time. This additional cost of checking DRAT proofs also
represents a lost opportunity: when a SAT solver emits a RUP step, it knows
exactly how the new clause was obtained, and this knowledge can (in theory)
be turned into an LRAT-style RUP annotation, which can cut down verification
costs significantly if conveyed to the verifier.

For the DRAT format, a design choice was made not to include such informa-
tion since demanding explicit proofs for all steps turned out to be impractical.
Although it is theoretically possible to always glean the correct RUP annotation
from the solver state, computing this information can be intricate and costly
for some types of inferences (e.g. conflict-clause minimization [22]), making it
harder to support proof logging [25]. Reducing such overheads is particularly
important for solving satisfiable formulas, as proofs are superfluous for them
and the penalty for maintaining such proofs should be minimized. We should
note, however, that proof elaboration need not be an all-or-nothing business; if
it is infeasible to demand 100% elaborated proofs, we can still ask solvers to fill
in as many gaps as it is convenient for them to do so, which would still be a
considerable improvement over handling all of it from the verifier side.

Inclusion of final clauses is another potential area for improvement over the
DRAT format. A DRAT proof typically includes many addition steps that do
not ultimately contribute to the derivation of the empty clause. This is unavoid-
able in the proof emission phase, since a SAT solver cannot know in advance
whether a given clause will be ultimately useful, and must stream out the clause
before it can find out. All such steps, however, should be dropped in the post-
processing phase in order to compress proofs and speed up verification. The
most straightforward way of doing this is processing the proof in reverse order
[6]: when processing a clause Ck+1, identify all the clauses used to derive Ck+1,
mark them as ‘used’, and move on to clause Ck. For each clause, process it if it
is marked as used, and skip it otherwise. The only caveat of this method is that
the postprocessor needs to know which clauses were present at the very end of
the proof, since there is no way to identify which clauses were used to derive the
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DIMACS DRAT LRAT

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

1 2 0

d 1 -3 2 0

1 3 0

d 1 4 3 0

1 0

d 1 3 0

d 1 2 0

d 1 -4 -2 0

2 0

d -1 4 2 0

d 2 -4 3 0

0

9 1 2 0 1 6 3 0

9 d 1 0

10 1 3 0 9 8 6 0

10 d 6 0

11 1 0 10 9 4 8 0

11 d 10

9

8 0

12 2 0 11 7 5 3 0

12 d 7

3 0

13 0 11 12 2 4 5 0

Fig. 1. DRAT and LRAT proofs of a SAT problem. All whitespace and alignment is
not significant; we have aligned lines of the DRAT proof with the corresponding LRAT
lines (d steps in LRAT may correspond to multiple DRAT d steps).

empty clause otherwise. Although it is possible to enumerate the final clauses
by a preliminary forward pass through a DRAT proof, this is clearly unnecessary
work since SAT solvers know exactly which clauses are present at the end, and
it is desirable to put this information in the proof in the first place.

2 The FRAT format

To address the above issues, we introduce FRAT, a new proof format designed
to allow fine-grained communication between SAT solvers and elaborators. The
main differences between FRAT and DRAT are:

(1) optional annotation of RUP steps,
(2) inclusion of final clauses, and
(3) identification of clauses by unique IDs.

We’ve already explained the rationale for (1) and (2); (3) is necessary for concise
references to clauses in deletions and RUP step annotations. More specifically,
a FRAT proof consists of the following six types of proof steps:

o: An original step; a clause from the input file. The purpose of these lines is
to name the clauses from the input with identifiers; they are not required
to come in the same order as the file, they are not required to be numbered
in order, and not all steps in the input need appear here. Proof may also
progress (with a and d steps) before all o steps are added.

a, l: An addition step, and an optional LRAT-style unit propagation proof
of the step. The proof, if provided, is a sequence of clauses in the current
formula in the order that they become unit. For solver flexibility, they are
allowed to come out of order, but the elaborator is optimized for the case
where they are correctly ordered. For a RAT step, the negative numbers in
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the proof refer to the clauses in the active set that contain the negated pivot
literal, followed by the unit propagation proof of the resolvent. See [3] for
more details on the LRAT checking algorithm.

d: A deletion step for deleting the clause with the given ID from the formula.
The literals given must match the literals in the corresponding addition step
up to permutation.

r: A relocation step. The syntax is r 〈ids〉 0, where 〈ids〉 has the form s0, t0,
. . . , sk, tk and must consist of an even number of clause IDs. It indicates
that the active clause with ID si is re-labeled and now has ID ti, for each
0 ≤ i ≤ k. (This is used for solvers that use pointer identity for clauses, but
also do garbage collection to decrease memory fragmentation.)

f: A finalization step. These steps come at the end of a proof, and provide the
list of all active clauses at the end of the proof. The clauses may come in any
order, but every step that has been added and not deleted must be present.
(For best results, clauses should be finalized in roughly reverse order of when
they were added.)

(Our modified version of CaDiCaL also outputs a seventh kind of step,
t 〈todo id〉 0, to collect statistics on code paths that produce a steps without
proofs. See Section 3 for how this information is used.)

Figure 1 is an example from [3], which includes a SAT problem in DIMACS
format, and the proofs of its unsatisfiability in DRAT and LRAT formats. It
shows how proofs are produced and elaborated via the DRAT toolchain. Figure
2 shows the corresponding problem and proofs for the FRAT toolchain. Notice
how the FRAT proof is more verbose than its DRAT counterpart and includes all
the hints for addition steps, which are reused in the subsequent LRAT proof.

Binary FRAT The files shown in Figure 2 are in the text version of the FRAT
format, but for efficiency reasons solvers may also wish to use a binary encoding.
The binary FRAT format is exactly the same in structure, but the integers are
encoded using the same variable-length integer encoding used in binary DRAT [9].
Unsigned numbers are encoded in 7-bit little endian, with the high bit set on
each byte except the last. That is, the number

n = x0 + 27x1 + · · ·+ 27kxk

(with each xi < 27) is encoded as

1x0 1x1 . . . 0xk.

Signed numbers are encoded by mapping n ≥ 0 to f(n) := 2n and −n (with
n > 0) to f(n) := 2n + 1, and then using the unsigned encoding. (Incidentally,
the mapping f is not surjective, as it misses 1. But it is used by other formats
so we have decided not to change it.)
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FRAT

o 1 1 2 -3 0

o 2 -1 -2 3 0

o 3 2 3 -4 0

o 4 -2 -3 4 0

o 5 -1 -3 -4 0

o 6 1 3 4 0

o 7 -1 2 4 0

o 8 1 -2 -4 0

a 9 -3 -4 0 l 5 1 8 0

a 10 -4 0 l 9 3 2 8 0

a 11 3 0

a 12 -2 0

a 13 1 0 l 12 11 1 0

a 14 0 l 13 12 10 7 0

f 1 1 2 -3 0

f 2 -2 -1 3 0

f 3 2 3 -4 0

f 4 -2 -3 4 0

f 5 -1 -3 -4 0

f 6 1 3 4 0

f 7 -1 2 4 0

f 8 1 -2 -4 0

f 9 -3 -4 0

f 10 -4 0

f 11 3 0

f 12 -2 0

f 13 1 0

f 14 0

LRAT

9 -3 -4 0 5 1 8 0

9 d 5 0

10 -4 0 9 3 2 8 0

10 d 8 3 9 0

11 3 0 10 6 7 2 0

11 d 2 6 0

12 -2 0 11 10 4 0

12 d 4 0

13 1 0 12 11 1 0

13 d 1 11 0

14 0 13 12 10 7 0

Fig. 2. FRAT and LRAT proofs of a SAT problem. To illustrate that proofs are optional,
we have omitted the proofs of steps 11 and 12 in this example. The steps must still be
legal RAT steps but the elaborator will derive the proof rather than the solver.

2.1 Flexibility and extensibility

The purpose of the FRAT format is for solvers to be able to quickly write down
what they are doing while they are doing it, with the elaborator stage “picking
up the pieces” and preparing the proof for consumption by simpler mechanisms
such as certified LRAT checkers. As such, it is important that we are able to
concisely represent all manner of proof methods used by modern SAT solvers.

The high level syntax of a FRAT file is quite simple: A sequence of “segments”,
each of which begins with a character, followed by zero or more nonzero numbers,
followed by a 0. In the binary version, each segment similarly begins with a
printable character, followed by zero or more nonzero bytes, followed by a zero
byte. (Note that continuation bytes in an unsigned number encoding are always
nonzero.) This means that it is possible to jump into a FRAT file and find segment
boundaries by searching for a nearby zero byte.
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〈proof〉 ← 〈line〉∗

〈line〉 ← 〈orig〉 | 〈add〉 | 〈del〉 | 〈final〉 | 〈reloc〉
〈add〉 ← 〈add seg〉 | 〈add seg〉 〈hint〉
〈orig〉 ← o 〈id〉 〈literal〉∗ 0

〈add seg〉 ← a 〈id〉 〈literal〉∗ 0

〈del〉 ← d 〈id〉 〈literal〉∗ 0

〈final〉 ← f 〈id〉 〈literal〉∗ 0

〈reloc〉 ← r (〈id〉 〈id〉)∗ 0

〈hint〉 ← l (〈id〉 | −〈id〉)∗ 0

〈id〉 ← 〈pos〉
〈literal〉 ← 〈pos〉 | 〈neg〉

〈neg〉 ← −〈pos〉
〈pos〉 ← [1-9] [0-9]∗

Fig. 3. Context-free grammar for the FRAT format.

text a 9 -3 -4 0 l 5 1 8 0

binary 61 09 07 09 00 6C 0A 02 10 00

Fig. 4. Comparison of binary and text formats for a step. Note that the step ID 9 uses
the unsigned encoding, but literals and LRAT style proof steps use signed encoding.

This is in contrast to binary LRAT, in which add steps are encoded as
a 〈id〉 〈literal〉∗0 (±〈id〉)∗ 0, because a random zero byte could either be the
end of a segment or the middle of an add step. Since 0x61, the ASCII repre-
sentation of a, is also a valid step ID (encoding the signed number −48), in a
sequence such as (a 〈nonzero〉∗ 0)∗, the literals and the steps cannot be locally
disambiguated.

The local disambiguation property is important for our FRAT elaborator,
because it means that we can efficiently parse FRAT files generated by solvers
backward, reading the segments in reverse order so that we can perform backward
checking in a single pass.

DRAT is based on adding clauses that are RAT with respect to the active
formula. It is quite versatile and sufficient for most common cases, covering
CDCL steps, hyper-resolution, unit propagation, blocked clause elimination and
many other techniques. However, we recognize that not all methods can be cast
into this format, or are too expensive to translate into this proof system. In
this work we define only six segment characters (a, d, f, l, o, r), that suffice
to cover methods used by SAT solvers targeting DRAT. However, the format is
forward-compatible with new kinds of proof steps, that can be indicated with
different characters.
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For example, CryptoMiniSat [21] is a SAT solver that also supports XOR
clause extraction and reasoning, and can derive new XOR clauses using proof
techniques such as Gaussian elimination. Encoding this in DRAT is quite compli-
cated: The XOR clauses must be Tseitin transformed into CNF, and Gaussian
elimination requires a long resolution proof. Participants in SAT competitions
therefore turn this reasoning method off as producing the DRAT proofs is either
too difficult or the performance gains are canceled out by the overhead.

FRAT resolves this impasse by allowing the solver to express itself with min-
imal encoding overhead. A hypothetical extension to FRAT would add new seg-
ment characters to allow adding and deleting XOR clauses, and a new proof
method for proof by linear algebra on these clauses. The FRAT elaborator would
be extended to support the new step kinds, and it could either perform the
expensive translation into DRAT at that stage (only doing the work when it is
known to be needed for the final proof), or it could pass the new methods on
to some XLRAT backend format that understands these steps natively. Since the
extension is backward compatible, it can be done without impacting any other
FRAT-producing solvers.

3 FRAT-producing solvers

The FRAT proof format is designed to allow conversion of DRAT-producing
solvers into FRAT-producing solvers at minimal cost, both in terms of implemen-
tation effort and impact on runtime efficiency. In order to show the feasibility of
such conversions, we chose two popular SAT solvers, CaDiCaL1 and MiniSat2,
to modify as case studies. The solvers were chosen to demonstrate two different
aspects of feasibility: since MiniSat forms the basis of the majority of modern
SAT solvers, an implementation using MiniSat shows that the format is widely
applicable, and provides code which developers can easily incorporate into a
large number of existing solvers. CaDiCaL, on the other hand, is a cutting-
edge modern solver which employs a wide range of sophisticated optimizations.
A successful conversion of CaDiCaL shows that the technology is scalable, and
is not limited to simpler toy examples.

As mentioned in Section 2, the main solver modifications required for FRAT
production are inclusions of clause IDs, finalization steps, and LRAT proof traces.
The provision of IDs requires some non-trivial modification as many solvers, in-
cluding CaDiCaL and MiniSat, do not natively keep track of clause IDs, and
DRAT proofs use literal lists up to permutation for clause identity. In CaDiCaL,
we added IDs to all clauses, leading to 8 bytes overhead per clause. Additionally,
unit clauses are tracked separately, and ensuring proper ID tracking for unit
clauses resulted in some added code complexity. In MiniSat, we achieved 0 byte
overhead by using the pointer value of clauses as their ID, with unit clauses hav-
ing computed IDs based on the literal. This requires the use of relocation steps
during garbage collection. The output of finalization steps requires identifying

1 https://github.com/digama0/cadical
2 https://github.com/digama0/minisat

https://github.com/digama0/cadical
https://github.com/digama0/minisat
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the active set from the solver state, which can be subtle depending on the solver
architecture, but is otherwise a trivial task assuming knowledge of the solver.

LRAT trace production is the heart of the work, and requires the solver to
justify each addition step. This modification is relatively easier to apply to Mini-
Sat, as it only adds clauses in a few places, and already tracks the “reasons” for
each literal in the current assignment, which makes the proof trace straightfor-
ward. In contrast, CaDiCaL has over 30 ways to add clauses; in addition to the
main CDCL loop, there are various in-processing and optimization passes that
can create new clauses.

To accommodate this complexity, we leverage the flexibility of the FRAT
format which allows optional hints to focus on the most common clause addi-
tion steps, to reap the majority of runtime advantage with only a few changes.
The FRAT elaborator falls back on the standard elaboration-by-unit propagation
when proofs are not provided, so future work can add more proofs to CaDiCaL
without any changes to the toolchain.

To maximize the efficacy of the modification, we used a simple method to find
places to add proofs. In the first pass, we added support for clause ID tracking
and finalization, and changing the output format to FRAT syntax. Since CaDi-
CaL was already producing DRAT proofs, we can easily identify the addition
and removal steps and replace them with a and d steps. Once this is done, Ca-
DiCaL is producing valid FRAT files which can pass through the elaborator and
get LRAT results, but it will be quite slow since the FRAT elaborator is essentially
acting as a less-optimized version of DRAT-trim at this point.

We then find all code paths that lead to an a step being emitted, and add
an extra call to output a step of the form t 〈todo id〉 0, where 〈todo id〉 is some
unique identifier of this position in the code. The FRAT elaborator is configured
to ignore these steps, so they have no effect, but by running the solver on bench-
marks we can count how many t steps of each kind appear, and so see which
code paths are hottest.

The basic idea is that elaborating a step that has a proof is much faster than
elaborating a step that doesn’t, but the distribution of code paths leading to
add steps is highly skewed, so adding proofs to to the top 3 or 4 paths already
decreases the elaboration time by over 70%. At the time of writing, about one
third of CaDiCaL code paths are covered, and median elaboration time is
about 15% that of DRAT-trim (see Section 5). (This is despite the fact that our
elaborator could stand to improve on low level optimizations, and runs about
twice as slow as DRAT-trim when no proofs are provided.)

4 Elaboration

The main tasks of the FRAT-to-LRAT elaborator3 are provision of missing RUP
step hints, elimination of irrelevant clause additions, and re-labeling clauses with
new IDs. These tasks are performed in two separate ‘passes’ over files, writing

3 The elaborator used for this paper can be found at https://github.com/digama0/
frat/tree/tacas.

https://github.com/digama0/frat/tree/tacas
https://github.com/digama0/frat/tree/tacas
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Algorithm 1 First pass (elaboration): FRAT to elaborated reversed FRAT

1: function Elaborate(cert)
2: F ← ∅, revcert ← [] � F is a map ID → clause with a bool marking
3: for step in reverse(cert) do
4: case step of
5: o(i, C) ⇒
6: C ′ ← F.remove(i); assert C′ � C
7: if C′.marked then revcert ← revcert, o(i, C)

8: a(i, C, proof?) ⇒
9: C′ ← F.remove(i); assert C′ � C
10: if C′.marked then
11: steps′ ← case proof? of

12: ε ⇒ ProveRAT(F,C)
13: l(steps) ⇒ CheckHint(F,C, steps)

14: for j in {j | ±j ∈ steps′} do
15: if ¬Fj .marked then
16: Fj .marked ← true
17: revcert ← revcert, d(step, Fj)

18: revcert ← revcert, a(i, C, l(steps′))

19: d(i, C) ⇒ F.insert(i, C,marked: false)
20: f(i, C) ⇒ F.insert(i, C,marked: C = ⊥)
21: r(R) ⇒
22: R′ ← {(s, t) ∈ R | ∃x.(t, x) ∈ F}
23: F ← F − {(t, Ft) | (s, t) ∈ R′}+ {(s, Ft) | (s, t) ∈ R′}
24: revcert ← revcert, r(R′)

25: return revcert

and reading directly to disk (so the entire proof is never in memory at once). In
the first pass, the elaborator reads the FRAT file and produces a temporary file
(which may be stored on disk or in memory depending on configuration). The
temporary file is essentially the original FRAT file with the steps put in reverse
order, while satisfying the following additional conditions:

– All a steps have annotations.
– Every clause introduced by an o, a, or r step ultimately contributes to the

proof of ⊥. Note that we consider an r step as using an old clause with the
old ID and introducing a new clause with the new ID.

– There are no f steps.

Algorithm 1 shows the pseudocode of the first pass, Elaborate(cert). Here,
cert is the FRAT proof obtained from the SAT solver, and the pass works by
iterating over its steps in reverse order, producing the temporary file revcert.
The map F maintains the active formula as a map with unique IDs for each
clause (double inserts and removes to F are always error conditions), and the
effect of each step is replayed backwards to reconstruct the solver’s state at the
point each step was produced.
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Algorithm 2 Second pass (renumbering): elaborated reversed FRAT to LRAT

1: function Renumber(Forig, revcert)
2: M ← ∅, k ← |Forig|, lrat ← [] � M is a map ID → ID
3: for step in reverse(revcert) do
4: case step of
5: o(i, C) ⇒ find j such that C � (Forig)j ; M.insert(i, j)
6: a(i, C, l(steps)) ⇒
7: k ← k + 1; M.insert(i, k)
8: lrat ← lrat, add(k, C, [±Mi | ±i ∈ steps])
9: if C = ⊥ then return lrat
10: d(i, C) ⇒ lrat ← lrat, del(k,M.remove(i))
11: r(R) ⇒ M ← M − {(s,Ms) | (s, t) ∈ R}+ {(t,Ms) | (s, t) ∈ R}
12: assert false � no proof of ⊥ found

– All d or f clauses are immediately inserted to F , but (with the exception of
the empty clause) are marked as not necessarily required for the proof, and
the d step is deferred until just before its first use (or rather, just after the
last use).

– ProveRAT(F,C), not given here, checks that C has property RAT with re-
spect to F , and produces a step list in LRAT format (where positive numbers
are clause references in a unit propagation proof, and negative numbers are
used in RAT steps, indicating the clauses to resolve against).

– CheckHint(F,C, steps) does the same thing, but it has been given a candi-
date proof, steps. It will check that steps is a valid proof, and if so, returns
it, but the steps in the unit propagation proof may be out of order (in which
case they are reordered to LRAT conformity), and if the given proof is not
salvageable, it falls back on ProveRAT(F,C) to construct the proof.

In the second pass, Renumber(Forig, revcert) reads the input DIMACS file
and the temporary file from the first pass, and produces the final result in LRAT
format. Not much checking happens in this pass, but we ensure that the o steps
in the FRAT file actually appear (up to permutation) in the input. The state that
is maintained in this pass is a list of all active clause IDs, and the corresponding
list of LRAT IDs (in which original steps are always numbered sequentially in
the file, and add/delete steps use a monotonic counter that is incremented on
each addition step).

The resulting LRAT file can then be verified by any of the verified LRAT
checkers [26] (and our toolchain also includes a built-in LRAT checker for verifi-
cation).

The 2-pass algorithm is used in order to optimize memory usage. The result
of the first pass is streamed out so that the intermediate elaboration result does
not have to be stored in memory simultaneously. Once the temporary file is
streamed out, we need at least one more pass to reverse it (even if the labels did
not need renumbering) since its steps are in reverse order.
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5 Test results

We performed benchmarks comparing our FRAT toolchain (modified CaDiCaL
+ FRAT-to-LRAT elaborator written in Rust) against the DRAT toolchain (stan-
dard CaDiCaL + DRAT-trim) and measured their execution times, output file
sizes, and peak memory usages while solving SAT instances in the DIMACS
format and producing their LRAT proofs. All tests were performed on Amazon
EC2 r5a.xlarge instances, running Ubuntu Server 20.04 LTS on 2.5 GHz AMD
EPYC 7000 processors with 32 GB RAM and 512 GB SSD.

The instances used in the benchmark were chosen by selecting all 97 instances
for which default-mode CaDiCaL returned ‘UNSAT’ in the 2019 SAT Race
results. One of these instances was excluded because DRAT-trim exhausted the
available 32GB memory and failed during elaboration. Although this instance
was not used for comparisons below, we note that it offers further evidence of the
FRAT toolchain’s efficient use of memory, since the FRAT-to-LRAT elaboration
of this instance succeeded on the same system. The remaining 96 instances were
used for performance comparison of the two toolchains. 4

Figures 5 and 6 show the time and memory measurements from the bench-
mark. We can see from Figure 5 that the FRAT toolchain is significantly faster
than DRAT toolchain. Although the modified CaDiCaL tends to be slightly
(6%) slower than standard CaDiCaL, that overhead is more than compensated
by a median 84% decrease in elaboration time (the sum over all instances are
1700.47 s in the DRAT toolchain vs. 381.70 s in the FRAT toolchain, so the
average is down by 77%). If we include the time of the respective solvers, the
FRAT + modified CaDiCaL toolchain takes 53.6% of the DRAT + CaDiCaL
toolchain on median. The difference in the toolchains’ time budgets is clear: the
DRAT toolchain spends 42% of its time in solving and 58% in elaboration, while
FRAT spends 85% on solving and only 15% on elaboration.

Figure 6 shows a dramatic difference in peak memory usage between the
FRAT and DRAT toolchains. On median, the FRAT toolchain used only 5.4% as
much peak memory as DRAT. (The average is 318.62 MB, which is 11.98% that
of the DRAT toolchain’s 2659.07 MB, but this is dominated by the really large
instances. The maximum memory usage was 2.99 GB for FRAT and 21.5 GB
for DRAT, but one instance exhausted the available 32 GB in DRAT and is not
included in this figure.) This result is in agreement with our initial expectations:
the FRAT toolchain’s 2-pass elaboration method allows it to limit the number of
clauses held in memory to the size of the active set used by the solver, whereas
the DRAT toolchain loads all clauses in a DRAT file into memory at once during
elaboration. This difference suggests that the FRAT toolchain can be used to
verify instances that would otherwise require more memory than the system
limit on the DRAT toolchain.

There were no noticeable differences in the sizes or verification times of LRAT
proofs produced by the two toolchains. On average, LRAT proofs produced by

4 A CSV of detailed benchmark results can be found at https://github.com/digama0/
frat/blob/tacas/benchmark/benchmark-results.csv.

https://github.com/digama0/frat/blob/tacas/benchmark/benchmark-results.csv
https://github.com/digama0/frat/blob/tacas/benchmark/benchmark-results.csv
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Fig. 5. FRAT vs. DRAT time comparison. The datapoints of ‘FRAT total’ and ‘DRAT
total’ show the number of instances that each toolchain could generate LRAT proofs
for within the given time limit. The datapoints of ‘FRAT elab’ and ‘DRAT elab’ show
the number of instances whose intermediate format proof files (FRAT or DRAT) could
be elaborated to LRAT within the given time limit.

the FRAT toolchain were 1.873% smaller and 3.314% faster5 to check than those
from the DRAT toolchain.

One minor downside of the FRAT toolchain is that it requires the storage of a
temporary file during elaboration, but we do not expect this to be a problem in
practice since the temporary file is typically much smaller than either the FRAT
or LRAT file. In our test cases, the average temporary file size was 28.68% and
47.60% that of FRAT and LRAT files, respectively. In addition, users can run the
elaborator with the -m option to bypass temporary files and write the temporary
data to memory instead, which further improves performance but foregoes the
memory conservation that comes with 2-pass elaboration.

The CaDiCaL modification is only a prototype, and some of its weaknesses
show in the data. The general pattern we observed is that on problems for which
the predicted CaDiCaL code paths were taken, the generated files have a large
number of hints and the elaboration time is negligible (the “FRAT elab” line in
fig. 5); but on problems which make use of the more unusual in-processing op-
erations, many steps with no hints are given to the elaborator, and performance
becomes comparable to DRAT-trim. For solver developers, this means that there

5 One instance was omitted from the LRAT verification time comparison due to what
seems to be a bug in the standard LRAT checker included in DRAT-trim. Detailed
information regarding this instance can be found at https://github.com/digama0/
frat/blob/tacas/benchmark/README.md.

https://github.com/digama0/frat/blob/tacas/benchmark/README.md
https://github.com/digama0/frat/blob/tacas/benchmark/README.md
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Fig. 6. FRAT vs. DRAT peak memory usage comparison. Each datapoint shows the
number of instances that each toolchain could successfully generate LRAT proofs for
within the given peak memory usage limit.

is a very direct relationship between proof annotation effort and mean solution
+ elaboration time. Currently, elaboration of FRAT files with no annotations
(the worst-case scenario for the FRAT toolchain) typically takes slightly more
than twice as long as elaboration of DRAT files with DRAT-trim, likely due to
missing optimizations from DRAT-trim that could be incorporated, but this only
underscores the effectiveness of adding hints to the format.

6 Related works

As already mentioned, the FRAT format is most closely related to the DRAT
format [8], which it seeks to replace as an intermediate output format for SAT
solvers. It is also dependent on the LRAT format and related tools [3], as the
FRAT toolchain targets LRAT as the final output format.

The GRAT format [16] and toolchain also aims to improve elaboration of
SAT unsatisfiability proofs, but takes a different approach from that of FRAT. It
retains DRAT as the intermediate format, but uses parallel processing and targets
a new final format with more information than LRAT in order to improve overall
performance. GRAT also comes with its own verified checker [17].

Specifying and verifying the program correctness of SAT solvers (sometimes
called the autarkic method, as opposed to the proof-producing skeptical method)
is a radically different approach to ensuring the correctness of SAT solvers. There
have been various efforts to verify nontrivial SAT solvers [18,20,19,4,5]. Although
these solvers have become significantly faster, they cannot compete with the
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(unverified) state-of-the-art solvers. It is also difficult to maintain and modify
certified solvers. Proving the correctness of nontrivial SAT solvers can provide
new insights about key invariants underlying the used techniques [5].

Generally speaking, devising proof formats for automated reasoning tools
and augmenting the tools with proof output capability is an active research area.
Notable examples outside SAT solving include the LFSC format for SMT solving
[23] and the TSTP format for classical first-order ATPs [24]. In particular, the
recent work on the veriT SMT solver [1] is motivated by similar rationales as
that for the FRAT toolchain; the key insight is that a proof production pipeline
is often easier to optimize on the solver side than on the elaborator side, as the
former has direct access to many types of useful information.

7 Conclusion

The test results show that the FRAT format and toolchain made significant per-
formance gains relative to their DRAT equivalents in both elaboration time and
memory usage. We take this as confirmation of our initial conjectures that (1)
there is a large amount of useful and easily extracted information in SAT solvers
that is left untapped by DRAT proofs, and (2) the use of streaming verification
is the key to verifying very large proofs that cannot be held in memory at once.

The practical ramification is that, provided that solvers produce well-anno-
tated FRAT proofs, the elaborator is no longer a bottleneck in the pipeline.
Typically, when DRAT-trim hangs it does so either by taking excessive time, or
by attempting to read in an entire proof file at once and exhausting memory
(the so-called “uncheckable” proofs that can be produced but not verified). But
FRAT-to-LRAT elaboration is typically faster than FRAT production, and the
memory consumption of the FRAT-to-LRAT elaborator at any given point is
proportional to the memory used by the solver at the same point in the proof.
Since LRAT verification is already efficient, the only remaining limiting factor is
essentially the time and memory usage of the solver itself.

In addition to performance, the other main consideration in the design of the
FRAT format and toolchain was flexibility of use and extension. The encoding
of FRAT files allows them to be read and parsed both backward and forward,
and the format can be modified to include more advanced inferences, as we
have discussed in the example of XOR steps. The optional l steps allow SAT
solvers to decide precisely when they will provide explicit proofs, thereby pro-
moting a workable compromise between implementation complexity and runtime
efficiency. SAT solver developers can begin using the format by producing the
most bare-bones FRAT proofs with no annotations (essentially DRAT proofs with
metadata for original/final clauses) and gradually work toward providing more
complete hints. We hope that this combination of efficiency and flexibility will
motivate performance-minded SAT solver developers to adopt the format and
support more robust proof production, which is presently only an afterthought
in most SAT solvers.
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Abstract. In 2006, Biere, Jussila, and Sinz made the key observation that the
underlying logic behind algorithms for constructing Reduced, Ordered Binary
Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended
resolution logical framework. Through this, a BDD-based Boolean satisfiability
(SAT) solver can generate a checkable proof of unsatisfiability. Such proofs indi-
cate that the formula is truly unsatisfiable without requiring the user to trust the
BDD package or the SAT solver built on top of it.
We extend their work to enable arbitrary existential quantification of the for-
mula variables, a critical capability for BDD-based SAT solvers. We demonstrate
the utility of this approach by applying a prototype solver to obtain polynomi-
ally sized proofs on benchmarks for the mutilated chessboard and pigeonhole
problems—ones that are very challenging for search-based SAT solvers.

Keywords: extended resolution, binary decision diagrams, mutilated chessboard,
pigeonhole problem

1 Introduction

When a Boolean satisfiability (SAT) solver returns a purported solution to a Boolean
formula, its validity can easily be checked by making sure that the solution indeed satis-
fies the formula. When the formula is unsatisfiable, on the other hand, having the solver
simply declare this to be the case requires the user to have faith in the solver, a complex
piece of software that could well be flawed. Indeed, modern solvers employ a number
of sophisticated techniques to reduce the search space. If one of those techniques is
invalid or incorrectly implemented, the solver may overlook actual solutions and label
a formula as unsatisfiable, even when it is not.

With SAT solvers providing the foundation for a number of different real-world
tasks, this “false negative” outcome could have unacceptable consequences. For exam-
ple, when used as part of a formal verification system, the usual strategy is to encode
some undesired property of the system as a formula. The SAT solver is then used to
determine whether some operation of the system could lead to this undesirable prop-
erty. Having the solver declare the formula to be unsatisfiable is an indication that the
undesirable behavior cannot occur, but only if the formula is truly unsatisfiable.
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Rather than requiring users to place their trust in a complex software system, a
proof-generating solver constructs a proof that the formula is indeed unsatisfiable. The
proof has a form that can readily be checked by a simple proof checker. Initial work of
checking unsatisfiability results was based on resolution proofs, but modern checkers
are based on stronger proof systems [16,33]. The checker provides an independent val-
idation that the formula is indeed unsatisfiable. The checker can even be simple enough
to be formally verified [9,23,29]. Such a capability has become an essential feature for
modern SAT solvers.

In their 2006 papers [21,28], Jussila, Sinz and Biere made the key observation that
the underlying logic behind algorithms for constructing Reduced, Ordered Binary Deci-
sion Diagrams (BDDs) [4] can be encoded as steps in a proof in the extended resolution
logical framework [30]. Through this, a BDD-based Boolean satisfiability solver can
generate checkable proofs of unsatisfiability for a set of clauses. Such proofs indicate
that the formula is truly unsatisfiable without requiring the user to trust the BDD pack-
age or the SAT solver built on top of it.

In this paper, we refine these ideas to enable a full-featured, BDD-based SAT solver.
Chief among these is the ability to perform existential quantification on arbitrary vari-
ables. (Jussila, Sinz, and Biere [21] extended their original work [28] to allow exis-
tential quantification, but only for the root variable of a BDD.) In addition, we allow
greater flexibility in the choice of variable ordering and the order in which conjunction
and quantification operations are performed. This combination allows a wide range of
strategies for creating a sequence of BDD operations that, starting with a set of input
clauses, yield the BDD representation of the constant function 0, indicating that the for-
mula is unsatisfiable. Using the extended-resolution proof framework, these operations
can generate a proof showing that the original set of clauses logically implies the empty
clause, providing a checkable proof that the formula is unsatisfiable.

As the experimental results demonstrate, our refinements enable a proof-generating
BDD-based SAT solver to achieve polynomial performance on several classic “hard”
problems [1,15]. Since the performance of a proof-generating SAT solver affects not
only the runtime of the program, but also the length of the proofs generated, achieving
polynomial performance is an important step forward. Our results for these benchmarks
rely on a novel approach to ordering the conjunction and quantification operations,
inspired by symbolic model checking [7].

This paper is structured as follows. First, it provides a brief introduction to the res-
olution and extended resolution logical frameworks and to BDDs. Then we show how
a BDD-based SAT solver can generate proofs by augmenting algorithms for comput-
ing the conjunction of two functions represented as BDDs, and for checking that one
function logically implies another. We then describe our prototype implementation and
evaluate its performance on several classic problems. We conclude with some general
observations and suggestions for further work.

2 Preliminaries

Given a Boolean formula over a set of variables {x1, x2, . . . , xn}, a SAT solver attempts
to find an assignment to these variables that will satisfy the formula, or it declares
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that the formula is unsatisfiable. As is standard practice, we use the term literal to
refer to either a variable or its complement. Most SAT solvers use Boolean formulas
expressed in conjunctive normal form, where the formula consists of a set of clauses,
each consisting of a set of literals. Each clause is a disjunction: if an assignment sets
any of its literals to true, the clause is considered to be satisfied. The overall formula is
a conjunction: a satisfying assignment must satisfy all of the clauses.

We write � to denote both tautology and logical truth, and ⊥ to represent both an
empty clause and logical falsehood. When writing clauses, we omit disjunction symbols
and use overlines to denote negation, writing u ∨ v ∨ w as u v w.

2.1 (Extended) Resolution Proofs

Robinson [26] observed that a single inference rule could form the basis for a refutation
theorem-proving technique for first-order logic. Here, we consider its specialization to
propositional logic. For clauses of the form C∨x, and x∨D, the resolution rule derives
the new clause C ∨ D. This inference is written with a notation showing the required
conditions above a horizontal line, and the resulting inference (the resolvent) below:

C ∨ x x ∨D
C ∨D

Resolution provides a mechanism for proving that a set of clauses is unsatisfiable. Sup-
pose the input consists of m clauses. A resolution proof is given as a trace consisting of
a series of steps S, where each step si consists of a clause Ci and a (possibly empty) list
of antecedents Ai, where each antecedent is the index of one of the previous steps. The
first set of steps, denoted Sm, consists of the input clauses without any antecedents.
Each successive step then consists of a clause and a set of antecedents, such that the
clause can be derived from the clauses in the antecedents by one or more resolution
steps. It follows by transitivity that for each step si, with i > m, clause Ci is logically
implied by the input clauses, written Sm � Ci. If, through a series of steps, we can reach
a step st where Ct is the empty clause, then the trace provides a proof that Sm � ⊥,
i.e., the set of input clauses is not satisfiable.

Tseitin [30] introduced the extended-resolution proof framework in 1966. It allows
the addition of new extension variables to a resolution proof in a manner that preserves
the integrity of the proof. In particular, in introducing variable e, there must be an ac-
companying set of clauses that encode e ↔ F , where F is a formula over variables
(both original and extension) that were introduced earlier. These are referred to as the
defining clauses for extension variable e. Variable e then provides a shorthand notation
by which F can be referenced multiple times. Doing so can reduce the size of a clausal
representation of a problem by an exponential factor.

An extension variable e is introduced into the proof by including its defining clauses
in the list of clauses being generated. The proof checker must ensure that these added
clauses do not artificially restrict the set of satisfying solutions. The checker can do this
by making sure that the defining clauses are blocked with respect to variable e [22]. That
is, for each defining clause C containing literal e and each defining clause D containing
literal e, there must be some literal l in C such that its complement l is in D. As a result,
resolving clauses C and D will yield a tautology.
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Tseitin transformations are commonly used to encode a logic circuit or formula as a
set of clauses without requiring the formulas to be “flattened” into a conjunctive normal
form over the circuit inputs or formula variables. These introduced variables are called
Tseitin variables and are considered to be part of the input formula. An extended reso-
lution proof takes this concept further by introducing additional variables as part of the
proof. Some problems for which the minimum resolution proof must be of exponential
size can be expressed with polynomial-sized proofs in extended resolution [8].

To validate the proofs, we use a clausal proof system, known as Resolution Asym-
metric Tautology (RAT), that generalizes extended resolution [32]. RAT is used in in-
dustry and to validate the results of the SAT competitions [18]. There are various fast
and formally-verified RAT proof checkers [10,23,29].

Clausal proofs also allow the removal of clauses. In our use, we delete clauses when
the program can determine that they will not be referenced as antecedents for any suc-
ceeding clauses. As the experimental results of Section 4 demonstrate, deleting clauses
that are no longer needed can substantially reduce the number of clauses the checker
must track while processing a proof.

2.2 Binary Decision Diagrams

Reduced, Ordered Binary Decision Diagrams (which we refer to as simply “BDDs”)
provide a canonical form for representing Boolean functions, and an associated set of
algorithms for constructing them and testing their properties. A number of tutorials have
been published [2,5,6]. providing a background on BDDs and their algorithms.

With BDDs, functions are defined over a set of variables X = {x1, x2, . . . , xn}.
We let L1 and L0 denote the two leaf nodes, representing the constant functions 1 and
0, respectively. Each nonterminal node u has an associated variable Var(u) and children
Hi(u), indicating the case where the node variable has value 1, and Lo(u), indicating
the case where the node variable has value 0.

Nodes are stored in a unique table, indexed by the key 〈Var(u),Hi(u), Lo(u)〉, so
that isomorphic nodes are never created. The nodes are shared across all of the gener-
ated BDDs [24]. In presenting algorithms, we assume a function GETNODE(x, u1, u0)
that checks the unique table for a node with variable x and children u1 and u0. It ei-
ther returns the node stored there, or it creates a new node and enters it into the table.
With this table, we can guarantee that the subgraphs with root nodes u and v represent
the same Boolean function if and only if u = v. We can therefore identify Boolean
functions with their BDD root nodes.

BDD packages support multiple operations for constructing and testing the prop-
erties of Boolean functions represented by BDDs. A number of these are based on the
Apply algorithm [4]. Given BDDs u and v representing functions f and g, respectively,
and a Boolean operation (e.g., AND), the algorithm generates the BDD representation
w of the operation applied to those functions (e.g., f ∧ g.) For each operation, the pro-
gram maintains an operation cache indexed by the argument nodes u and v, mapping
to the result node w. With this cache, the worst case number of recursive steps required
by the algorithm is bounded by the product of the sizes (in nodes) of the arguments.

We use the term APPLYAND to refer to the Apply algorithm for Boolean operation
∧ and APPLYOR to refer to the Apply algorithm for Boolean operation ∨.
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3 Proof Generation During BDD Construction

In our formulation, every newly created BDD node u is assigned an extension variable.
(As notation, we use the same name for the node and for its extension variable.) We
then extend the Apply algorithm to generate proofs based on the recursive structure of
the BDD operations.

Let Sm denote the set of input clauses. Our goal is to generate a proof that Sm �
⊥, i.e., there is no satisfying assignment for these clauses. Our BDD-based approach
generates a sequence of BDDs with root nodes u1, u2, . . . , ut, where ut = L0, based
on a combination of the following operations. (The exact sequencing of operations is
determined by the evaluation mechanism, as is described in Section 4.)

1. For input clause Ci generate its BDD representation ui using a series of APPLYOR
operations.

2. For roots uj and uk, generate the BDD representation of their conjunction ul =
uj ∧ uk using the APPLYAND operation.

3. For root uj and some set of variables Y ⊆ X , perform existential quantification:
uk = ∃Y uj .

Although the existential quantification operation is not mandatory for a BDD-based
SAT solver, it can greatly improve its performance [13]. It is the BDD counterpart to
Davis-Putnam variable elimination on clauses [11]. As the notation indicates, there are
often multiple variables that can be eliminated simultaneously. Although the operation
can cause a BDD to increase in size, it generally causes a reduction. Our experimental
results demonstrate the importance of this operation.

As these operations proceed, we simultaneously generate a set of proof steps. The
details of each step are given later in the presentation. For each BDD generated, we
maintain the proof invariant that its root node uj satisfies Sm � uj .

1. Following the generation of the BDD ui for clause Ci, we also generate a proof
that Ci � ui. This is described in Section 3.1.

2. Justifying the conjunctions requires two parts:
(a) Using a modified version of the APPLYAND algorithm we follow the structure

of its recursive calls to generate a proof that the algorithm preserves implica-
tion: uj ∧ uk → ul. This is described in Section 3.2.

(b) This implication can be combined with the earlier proofs that Sm � uj and
Sm � uk to prove Sm � ul.

3. Justifying the quantification also requires two parts:
(a) Following the generation of uk via existential quantification, we perform a sep-

arate check that uj → uk. This check uses a proof-generating version of the
Apply algorithm for implication testing that we refer to as PROVEIMPLICATION.
This is described in Section 3.3.

(b) This implication can be combined with the earlier proof that Sm � uj to prove
Sm � uk.

As case 3(a) states, we do not attempt to track the detailed logic underlying the
quantification operation. Instead, we run a separate check that the quantification pre-
serves implication. As is the case with many BDD packages, our implementation can
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perform existential quantification of an arbitrary set of variables in a single pass over
the argument BDD. A single implication test suffices for the entire quantification.

Sinz and Biere’s formulation of proof generation by a BDD-based SAT solver [28]
introduces special extension variables n1 and n0 to represent the BDD leaves L1 and
L0. Their proof then includes unit clauses n1 and n0 to force these variables to be set to
1 and 0, respectively. This formulation greatly reduces the number of special cases to
consider in the proof-generating version of the APPLYAND operation, but it complicates
the generation of resolution proofs for the implication test. Instead, we directly associate
leaves L1 and L0 with � and ⊥, respectively.

The n variables in the input clauses all have associated BDD variables. The proof
then introduces an extension variable every time a new BDD node is created. In the fol-
lowing presentation, we use the node name (e.g., u) to indicate the associated extension
variable. In the actual implementation, the extension variable identifier (an integer) is
stored as one of the fields in the node representation.

When creating a new node, the GETNODE function adds (up to) four defining
clauses for the associated extension variable. For node u with variable Var(u) = x,
Hi(u) = u1, and Lo(u) = u0, the clauses are:

Notation Formula Clause

HD(u) x→ (u→ u1) xuu1
LD(u) x→ (u→ u0) xuu0
HU(u) x→ (u1 → u) xu1 u
LU(u) x→ (u0 → u) xu0 u

The names for these clauses combine an indication of whether they correspond to vari-
able x being 1 (H) or 0 (L) and whether they form an implication from the node down
to its child (D) or from the child up to its parent (U). When either node u0 or u1 is a leaf
node, some of these clauses degenerate to tautologies. Such clauses are omitted from
the proof. Each clause is numbered according to its position in the sequence of clauses
comprising the proof. These defining clauses encode the assertion u↔ ITE(x, u1, u0),
where ITE denotes the if-then-else operation, defined as ITE(x, y, z) = (x∧y)∨(x∧z).
As can be seen, the defining clauses are blocked with respect to extension variable u.

3.1 Generating BDD Representations of Clauses

The BDD representation u of a clause C is generated by using the APPLYOR operation
on the BDD representations of its literals. This BDD has a simple, linear structure with
one node for each literal. Each successive node has a branch to leaf node L1 when the
literal is true and to the next node in the chain when the literal is false. The proof that
C � u is based on this linear structure, employing the upward defining clauses HU and
LU for the nodes in the chain [28].

3.2 The APPLYAND Operation

The key idea in generating proofs for the AND operation is to follow the recursive
structure of the Apply algorithm. We do this by integrating proof generation into the
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Terminal Cases
Case Result

u = v (u, �)
u = L0 (L0, �)
v = L0 (L0, �)
u = L1 (v, �)
v = L1 (u, �)

APPLYANDRECUR(u, v)
J ←− {}
x ←− min(Var(u),Var(v))
if x = Var(u):

u1, u0 ←− Hi(u), Lo(u)
J ←− J ∪ {HD(u), LD(u)}

else: u1, u0 ←− u, u
if x = Var(v):

v1, v0 ←− Hi(v), Lo(v)
J ←− J ∪ {HD(v), LD(v)}

else: v1, v0 ←− v, v
w1, s1 ←− APPLYAND(u1, v1)
w0, s0 ←− APPLYAND(u0, v0)
J ←− J ∪ {s1, s0}
if w1 = w0:

w ←− w1

else:
w ←− GETNODE(x,w1, w0)
J ←− J ∪ {HU(w), LU(w)}

s ←− JUSTIFYAND(〈u, v, w〉, J)
AndCache(〈u, v〉) ←− (w, s)
return (w, s)

Fig. 1. Terminal cases and recursive step of APPLYAND operation, modified for proof generation.
Each call returns both a node and a proof step.

APPLYAND procedure. The overall control flow is identical to the standard version,
except the function returns both a BDD node w and a step number s. For arguments u
and v, the generated step s has clause u v w along with antecedents defining a resolution
proof of the implication u∧v → w. We refer to this as the justification for the operation.
The operation cache is modified to hold both the returned node and the justifying step
number as values.

Figure 1 shows the main components of the implementation. When the two ar-
guments are equal or one of the leaves is a terminal node, then the recursion termi-
nates (left). These cases have tautologies as their justification. Failing a terminal case,
the code checks in the operation cache for matching arguments u and v, returning the
cached result if found.

Failing the terminal case tests and the cache lookup, the program proceeds as shown
in the procedure APPLYANDRECUR (right). Here, the procedure branches on the vari-
able x that is the minimum of the two root variables. The procedure accumulates a set
of steps J to be used in the implication proof. These include the two steps (possibly
tautologies) from the two recursive calls. At the end, it invokes a function JUSTIFYAND
to generate the required proof. It stores both the result node w and the proof step s in
the operation cache, and it provides these values as the return values.

Proof Generation for the General Case. Proving the nodes generated by APPLYAND
satisfy the implication property proceeds by inducting on the structure of the argument
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Fig. 2. Resolution proof for general step of the APPLYAND operation

and result BDDs. That is, it can assume that the results w1 and w0 of the recursive calls
to arguments u1 and v1 and to u0 and v0 satisfy the implications u1 ∧ v1 → w1 and
u0 ∧ v0 → w0, and that these calls generated proof steps s1 and s0 justifying these
implications. Figure 2 shows the structure of the resolution proof for the general case,
where none of the equalities hold and the recursive calls do not yield tautologies. The
proof relies on the following clauses as antecedents, arising from the recursive calls and
from the defining clauses for nodes u, v, and w:

Term Formula Clause Term Formula Clause

ANDH u1 ∧ v1 → w1 u1 v1 w1 ANDL u0 ∧ v0 → w0 u0 v0 w0

WHU x→ (w1 → w) xw1 w WLU x→ (w0 → w) xw0 w
UHD x→ (u→ u1) xuu1 ULD x→ (u→ u0) xuu0
VHD x→ (v → v1) x v v1 VLD x→ (v → v0) x v v0

Along the left, the clauses cover the case of x = 1, first resolving clause ANDH and
WHU, then resolving the result first with clause UHD and then clause VHD. A similar
progression occurs along the right covering the case of x = 0. The two chains are
then merged by resolving on variable x to yield the final implication. As this figure
illustrates, a total of seven resolution steps are required. These can be merged into two
linear resolution chains, and so the proof generator produces at most two clauses per
APPLYAND operation.

Proof Generation for Special Cases. The proof structure shown in Figure 2 only holds
for the most general form of the recursion. However, there are many special cases, such
as when the recursive calls yield tautologous results, when some of the child nodes are
equal, and when the two recursive calls return the same node.

Our method for handling both the general and special cases relies on the V-shaped
structure of the proofs, as is illustrated in Figure 2. That is, there are two linear chains,
one along the left and one along the right consisting of some subsequence of the fol-
lowing clauses:

AH = ANDH,WHU, UHD, VHD

AL = ANDL,WLU, ULD, VLD

These will be proper subsequences when some of the clauses are not included in the
set J in APPLYAND (Figure 1), or they are tautologies. In addition, some of the clauses
may be extraneous and therefore must not occur as antecedents.
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Rather than trying to enumerate the special cases, we found it better to create a
general-purpose linear chain resolver that handles all of the cases in a uniform way. This
resolver is called on the each of the clause sequences AH and AL. It proceeds through
a sequence of clauses, discarding any tautologies and any clauses that do not resolve
with the result so far. It then emits the proof clauses with the selected antecedents.

3.3 Testing Implication

Terminal Cases
Case Result

u = v �
u = L0 �
v = L1 �

u = L1, v �= L1 Error
v = L0, u �= L0 Error

PROVEIMPLICATIONRECUR(u, v)
J ←− {}
x ←− min(Var(u),Var(v))
if x = Var(u):

u1, u0 ←− Hi(u), Lo(u)
J ←− J ∪ {HD(u), LD(u)}

else: u1, u0 ←− u, u
if x = Var(v):

v1, v0 ←− Hi(v), Lo(v)
J ←− J ∪ {HU(v), LU(v)}

else: v1, v0 ←− v, v
s1 ←− PROVEIMPLICATION(u1, v1)
s0 ←− PROVEIMPLICATION(u0, v0)
J ←− J ∪ {s1, s0}
s ←− JUSTIFYIMPLICATION(〈u, v〉, J)
ImplyCache(〈u, v〉) ←− s
return s

Fig. 3. Terminal cases and recursive step of PROVEIMPLICATION operation

When the existential quantification operation applied to node u generates node v,
the program generates a proof that u → v, by calling procedure PROVEIMPLICATION
with u and v as arguments. This procedure has the same recursive structure as the
Apply algorithm, except that it does not generate any new nodes. It only returns the
step number for a proof of the clause u v. It uses an operation cache, but only to hold
proof step numbers. Figure 3 shows the terminal cases for this procedure, as well as the
recursion that occurs when neither a terminal case applies nor are the arguments found
in the operation cache. A failure of the implication test indicates an error in the solver,
and so it signals a fatal error if the implication does not hold.

Each recursive step accumulates up to six proof steps as the set J to be used in the
implication proof:

Term Formula Clause Term Formula Clause

IMH u1 → v1 u1 v1 IML u0 → v0 u0 v0
UHD x→ (u→ u1) xuu1 ULD x→ (u→ u0) xuu0
VHU x→ (v1 → v) x v1 v VLU x→ (v0 → v) x v0 v
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Fig. 4. Resolution proof for general step of the PROVEIMPLICATION operation

The resolution proof for the general case is shown in Figure 4. It has a similar structure
to the proof for the APPLYAND operation, with two linear chains combined by a res-
olution on variable x. Our same general-purpose linear chain resolver can handle both
the general case and the many special cases that arise.

4 Experimental Results

We implemented the proof-generating, SAT solver PGBDD (for Proof-Generating BDD).
It is written entirely in Python and consists of around 2000 lines of code, including a
BDD package, support for generating extended-resolution proofs, and the overall SAT
solver framework.1

Although slow, it can handle large enough benchmarks to provide useful insights
into the potential for a BDD-based SAT solver to generate proofs of challenging prob-
lems, especially when quantification is supported. It generates proofs in the LRAT for-
mat [9].

Our BDD package supports mark-and-sweep garbage collection. It starts the mark-
ing using the root nodes for all active terms in the sequence of root nodes u1, u2, . . ..
Following the marking phase, it traverses the unique table and eliminates the unmarked
nodes. It also traverses the operation caches and eliminates any entries for which one of
the argument nodes or the result node is unmarked. When a node is deleted, the solver
can also direct the proof checker to delete its defining clauses. Similarly, when an entry
is deleted from the operation cache, the solver can direct the proof checker to delete
those clauses added while generating the justification for the entry.

In addition to the input CNF file, the program can accept a variable-ordering file,
mapping the input variables in the CNF to their levels in the BDD.

The solver supports three different evaluation mechanisms:

Linear: Form the conjunction of the clauses, according to their order in the input file.
No quantification is performed. This matches the operation described in [28].

Bucket Elimination: Place the BDDs representing the clauses into buckets according
to the level of their topmost variable. Then process the buckets from lowest to high-
est. While a bucket has more than one element, repeatedly remove two elements,
form their conjunction, and place the result in the bucket designated by the topmost
variable. Once the bucket has a single element, existentially quantify the topmost

1 The solver, along with code for generating and testing a set of benchmarks, is available at
https://github.com/rebryant/pgbdd-artifact.

https://github.com/rebryant/pgbdd-artifact
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variable and place the result in the appropriate bucket [12]. This matches the oper-
ation described in [21].

Scheduled: Perform operations as specified by a scheduling file. This file contains a
sequence of lines, each providing a command in a simple, stack-based notation:

c c1, . . . , ck Generate and push the BDDs for the specified clauses.
am Pop and conjoin the top m elements. Push the result.
q v1, . . . , vk Quantify the top element by the specified variables.

In generating benchmarks, we wrote programs to generate the CNF files, the variable
orderings, and the schedules in a unified framework.

For all of our benchmarks we report the total number of clauses in the proof, in-
cluding the input clauses, the defining clauses for the extension variables (up to four
per BDD node generated) and the derived clauses (one per input clause and up to two
per result inserted into either AndCache or ImplyCache.)

We compare the performance of our BDD-based SAT solver with that of KISSAT,
the winner of the 2020 SAT competition [3], representing the state of the art in search-
based SAT solvers.

4.1 Mutilated Chessboard

The mutilated chessboard problem considers an n× n chessboard, with the corners on
the upper left and the lower right removed. It attempts to tile the board with dominos,
with each domino covering two squares. Since the two removed squares had the same
color, and each domino covers one white and one black square, no tiling is possible.
This problem has been well studied in the context of resolution proofs, for which it can
be shown that any proof must be of exponential size [1].

A standard CNF encoding involves defining Boolean variables to represent the
boundaries between adjacent squares, set to 1 when a domino spans the two squares,
and set to 0 otherwise. The clauses then encode an Exactly1 constraint for each square,
requiring each square to share a domino with exactly one of its neighbors. We label the
variables representing a horizontal boundary between a square and the one below as
yi,j , with 1 ≤ i < n and 1 ≤ j ≤ n. The variables representing the vertical boundaries
are labeled xi,j , with 1 ≤ i ≤ n and 1 ≤ j < n. With a mutilated chessboard, we have
y1,1 = x1,1 = yn−1,n = xn,n−1 = 0.

As the log-log plot in Figure 5 shows, PGBDD has exponential performance when
using linear conjunction or bucket elimination. Indeed, KISSAT outperforms PGBDD
when operating in these modes. However, KISSAT can also be seen to have exponential
performance—to reach n = 22, it generates a proof with over 136 million clauses.

On the other hand, another approach, inspired by symbolic model checking [7]
yields polynomial performance. It is based on the following observation: when pro-
cessing the columns from left to right, the only information required to place dominos
in column j is the identity of those rows i for which a domino crosses horizontally from
j − 1 to j. This information is encoded in the values of xi,j−1 for 1 ≤ i ≤ n.
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Fig. 5. Total number of clauses in proofs of n × n mutilated chess boards. The proofs using the
column scanning approach grow as n2.69.

Let us group the variables into columns, with Xj denoting variables x1,j , . . . , xn,j ,
and Yj denoting variables y1,j , . . . , yn−1,j . Scanning the board from left to right, con-
sider Xj to encode the “state” of processing after completing column j. As the scanning
process reaches column j, there is a characteristic function σj−1(Xj−1) describing the
set of allowed crossings of horizontally-oriented dominos from column j − 1 into col-
umn j. No other information about the configuration of the board to the left is required.
The characteristic function after column j can then be computed as:

σj(Xj) = ∃Xj−1

[
σj−1(Xj−1) ∧ ∃Yj Tj(Xj−1, Yj , Xj)

]
(1)

where Tj(Xj−1, Yj , Xj) is a “transition relation” consisting of the conjunction of the
Exactly1 constraints for column j. From this, we can existentially quantify the variables
Yj to obtain a BDD encoding all compatible combinations of the variables Xj−1 and
Xj . By conjuncting this with the characteristic function for column j − 1 and existen-
tially quantifying the variables Xj−1, we obtain the characteristic function for column
j. With a mutilated chessboard, we generate leaf node L0 in attempting the final con-
junction. Note that Equation (1) does not represent a reformulation of the mutilated
chessboard problem. It simply defines a way to schedule the conjunction and quantifi-
cation operations over the input clauses and variables.

In our experiments, we found that this scanning reaches a fixed point after pro-
cessing n/2 columns. That is, from that column onward, the characteristic functions
become identical, except for a renaming of variables. This indicates that the set of all
possible horizontal configurations stabilizes halfway across the board. Moreover, the
BDD representations of the states grow as O(n2). For n = 124, the largest has just
3,969 nodes.
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One important rule-of-thumb in symbolic model checking is that the successive
values of the next-state variables must be adjacent in the variable ordering. Furthermore,
the vertical variables in Yj must be close to their counterparts in Xj−1 and Xj . Both
objectives can be achieved by ordering the variables row-wise, interleaving the variables
xi,j and yi,j , ordering first by row index i and then by column index j. This requires
the quantification operations of Equation 1 to be performed on non-root variables.

Figure 5 shows that the “column-scanning” approach yields performance scaling as
n2.69, allowing us to handle cases up to n = 124. Keep in mind that the problem size
here should be measured as n2, the number of squares in the board. Thus, a problem
instance with n = 124 is over 31 times larger than one with n = 22 (the upper limit
reached by KISSAT), in terms of the number of input variables and clauses. Indeed,
the case of n = 22 is straightforward for PGBDD, requiring only a few seconds and
generating a proof with 161,694 clauses.2 By contrast, KISSAT requires 12.6 hours and
generates over 136 million clauses.

The plot labeled “No Quantification” demonstrates the importance of including ex-
istential quantification in solving this problem. These data were generated by using the
same schedule as with column scanning, but with all quantification operations omitted.
As can be seen, this approach could not scale beyond n = 14.

Most attempts to generate propositional proofs of the mutilated chessboard have
exponential performance. No solver in the 2018 SAT competition could handle the in-
stance with n = 20. Heule, Kiesl, and Biere [19] devised a problem-specific approach
that could generate proofs up to n = 50 by exploiting special symmetries in the prob-
lem, using a set of rewriting rules to dramatically reduce the search space. Our approach
also exploits symmetries in the problem, but by exploiting a way to compactly encode
the set of possible configurations between successive columns. Other than these two,
we know of no other approach for generating polynomially-sized propositional proofs
for the problem.

4.2 Pigeonhole Problem

The pigeonhole problem is one of the most studied problems in propositional reasoning.
Given a set of n holes and a set of n+1 pigeons, it asks whether there is an assignment of
pigeons to holes such that 1) every pigeon is in some hole, and 2) every hole contains at
most one pigeon. The answer is no, of course, but any resolution proof for this must be
of exponential length [15]. Groote and Zantema have shown that any BDD-based proof
of the principle that only uses the Apply algorithm must be of exponential size [14]. On
the other hand, Cook constructed an extended resolution proof of size O(n4), in part to
demonstrate the expressive power of extended resolution [8].

We consider two encodings of the problem. Both are based on a set of variables pi,j
for 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1, with the interpretation that pigeon j is assigned
to hole i. Encoding the property that each pigeon j is assigned to some hole can be
expressed as a single clause:

Pigeonj =

n∨
i=1

pi,j

2 All times reported here were measured on a 3 GHz Intel i7-9700 CPU with 16GB of memory.
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Fig. 6. Total number of clauses in proofs of pigeonhole problem for n holes. Using a direct en-
coding led to exponential performance, but using a Tseitin encoding and column scanning gives
proofs that grow as n3.03.

Encoding the property that each hole i contains at most one pigeon can be done in
two different ways. A direct encoding simply states that for any pair of pigeons j and
k, at least one of them must not be in hole i:

Direct i =
n+1∧
j=1

n+1∧
k=j+1

pi,j ∨ pi,k

This encoding requiresΘ(n2) clauses for each hole, yielding a total CNF size ofΘ(n3).
A second, Tseitin encoding introduces Tseitin variables to track which holes are

occupied, starting with pigeon 1 and working upward. We use an encoding published
by Sinz [27] that uses Tseitin variables si,j for 1 ≤ i ≤ n and 1 ≤ j ≤ n, where si,j
equals 1 if a pigeon j′ occupies hole i for some j′ ≤ j. It requires 3n − 1 clauses and
n Tseitin variables per hole, yielding an overall CNF size of Θ(n2).

As is illustrated by the log-log plots of Figure 6, this choice of encoding not only
affects the CNF size, it dramatically affects the size of the proofs generated by PGBDD.
With a direct encoding, we could not find any combination of evaluation strategy or
variable ordering that could go beyond n = 16. Similarly, the Tseitin encoding did
not help when using linear evaluation or bucket elimination. Indeed, we see KISSAT,
using the Tseitin encoding, matching or exceeding our program for these cases, but all
of these have exponential performance. (KISSAT could only reach n = 15 when using
a direct encoding.)

On the other hand, the column scanning approach used for the mutilated checker-
board can also be applied to the pigeonhole problem when the Tseitin encoding is used.
Consider an array with hole i represented by row i and pigeon j represented by col-
umn j. Let Sj represent the Tseitin variables si,j for 1 ≤ i ≤ n. The “state” is then
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encoded in these Tseitin variables. In processing pigeon j, we can assume that the pos-
sible combinations of values of Tseitin variables Sj−1 is encoded by a characteristic
function σj−1(Sj−1). In addition, we incorporate into this characteristic function the
requirement that each pigeon k, for 1 ≤ k ≤ j − 1 is assigned to some hole. Letting Pj
denote the variables pi,j for 1 ≤ i ≤ n, the characteristic function at column j can then
be expressed as:

σj(Sj) = ∃Sj−1

[
σj−1(Sj−1) ∧ ∃Pj Tj(Sj−1, Pj , Sj)

]
(2)

where the “transition relation” Tj consists of the clauses associated with the Tseitin
variables, plus the clause encoding constraint Pigeonj . As with the mutilated chess-
board, having a proper variable ordering is critical to the success of a column scanning
approach. We interleave the ordering of the variables pi,j and si,j , ordering them first
by i (holes) and then by j (pigeons.)

Figure 6 demonstrates the effectiveness of the column-scanning approach. We were
able to handle instances up to n = 150, and with an overall performance trend of n3.03.
Our achieved performance therefore improves on Cook’s bound of O(n4). A SAT-
solving method developed by Heule, Kiesl, Seidl, and Biere can generate short proofs of
multiple encodings of pigeon hole formulas, including the direct encoding [20]. These
proofs are similar to ours after transforming them into the same proof format and the
size is also O(n3) [17].

Unlike with the mutilated chessboard, the scanning does not reach a fixed point.
Instead, the BDDs start very small, because they must encode the locations of only
a small number of occupied holes. They reach their maximum size at pigeon n/2, as
the number of combinations for occupied and unoccupied holes reaches its maximum.
Then the BDD sizes drop off as the encoding needs to track the positions of a decreasing
number of unoccupied holes. Fortunately, all of these BDDs grow quadratically with n,
reaching a maximum of 5,702 nodes for n = 150.

4.3 Evaluation

Overall, our results demonstrate the potential for generating small proofs of unsatisfia-
bility using BDDs. We have achieved polynomial performance for problems for which
search-based SAT solvers have exponential performance.

Other studies have compared BDDs to search-based SAT on a variety of bench-
mark problems. Several of these observed exponential performance for BDD-based
solvers for problems for which we have obtained polynomial performance. Uribe and
Stickel [31] ran experiments with the mutilated chessboard problem, but they did not
do any variable quantification. Pan and Vardi [25] applied a variety of scheduling and
variable ordering strategies for the mutilated chessboard and pigeonhole problems. Al-
though they were able to get better performance than with a search-based SAT solver,
they still observed exponential scaling. Obtaining polynomial performance for these
problems requires more problem-specific approaches than the ones they considered.

Table 1 provides some performance data for the largest instances solved for the two
benchmark problems. A first observation is that these problems are very large, with tens
of thousands of input variables and clauses.
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Table 1. Summary data for the largest problems solved

Chessboard Pigeonhole
Instance Chess-124 Pigeon-Tseitin-150

Input variables 30,500 45,150
Total BDD nodes 3,409,112 17,861,833
Maximum live nodes 198,967 225,446

Input clauses 106,136 67,501
Defining clauses 12,127,031 62,585,397
Derived clauses 5,348,303 81,019,084
Maximum live clauses 751,944 1,297,039

SAT time (secs) 5,366 5,206
Checking time (secs) 30 240

The total number of BDD nodes indicates the total number generated by the function
GETNODE, and for which extension variables are created. These are numbered in the
millions, and far exceed the number of input variables. On the other hand, the maximum
number of live nodes shows the effectiveness of garbage collection—at any given point
in the program, at most 6% of the total number of nodes must be stored in the unique
table and tracked in the operation caches. Garbage collection also keeps the number
of clauses that must be tracked by the proof checker below 5% of the total number
of clauses. The elapsed time for the SAT solver ranges up to 1.5 hours. We believe,
however, that an implementation in a more performant language would reduce these
times greatly. The checking times are shown for an LRAT proof checker written in the
C programming language. The proofs have also been checked with a formally verified
proof checker based on the HOL theorem prover [29].

5 Conclusion

Biere, Sinz, and Jussila [21,28] made the critical link between BDDs and extended
resolution proofs. We have shown that adding the ability to perform arbitrary existential
quantification can greatly increase the performance of a proof-generating, BDD-based
SAT solver.

Generating proofs for the two benchmarks problems required special insights into
their structure and then crafting evaluation mechanisms to exploit their properties. We
believe, however, that the column scanning approach we employed could be generalized
and made more automatic.

The ability to generate correctness proofs in a BDD-based SAT solver invites us to
consider generating proofs for other tasks to which BDDs are applied, including QBF
solving, model checking, and model counting. Perhaps a proof of unsatisfiability could
provide a useful building block for constructing correctness proofs for these other tasks.
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Abstract. This paper introduces a bounded model checking (BMC)
algorithm for hyperproperties expressed in HyperLTL, which — to the
best of our knowledge — is the first such algorithm. Just as the classic
BMC technique for LTL primarily aims at finding bugs, our approach
also targets identifying counterexamples. BMC for LTL is reduced to
SAT solving, because LTL describes a property via inspecting individual
traces. Our BMC approach naturally reduces to QBF solving, as Hyper-
LTL allows explicit and simultaneous quantification over multiple traces.
We report on successful and efficient model checking, implemented in our
tool called HyperQube, of a rich set of experiments on a variety of case
studies, including security, concurrent data structures, path planning for
robots, and mutation testing.

1 Introduction

Hyperproperties [10] have been shown to be a powerful framework for specifying
and reasoning about important classes of requirements that were not possible
with trace-based languages such as the classic temporal logics. Examples include
information-flow security, consistency models in concurrent computing [6], and
robustness models in cyber-physical systems [5, 35]. The temporal logic Hyper-
LTL [9] extends LTL by allowing explicit and simultaneous quantification over
execution traces, describing the property of multiple traces. For example, the
security policy observational determinism can be specified by the following Hy-
perLTL formula: ∀πA.∀πB .(oπA

↔ oπB
) W ¬(iπA

↔ iπB
) which stipulates that

every pair of traces πA and πB have to agree on the value of the (public) output
o as long as they agree on the value of the (secret) input i, where ‘W ’ denotes
the weak until operator.

There has been a recent surge of model checking techniques for HyperLTL
specifications [9, 12, 22, 24]. These approaches employ various techniques (e.g.,
alternating automata, model counting, strategy synthesis, etc) to verify hyper-
properties. However, they generally fall short in proposing a general push-button
method to deal with identifying bugs with respect to HyperLTL formulas involv-
ing quantifier alternation. Indeed, quantifier alternation has been shown to gen-
erally elevate the complexity class of model checking HyperLTL specifications in
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different shapes of models [2,9]. For example, consider the simple Kripke struc-
ture K in Fig. 1 and HyperLTL formulas ϕ1 = ∀πA.∀πB . (pπA

↔ pπB
) and

ϕ2 = ∀πA.∃πB . (pπA
�↔ pπB

). Proving that K �|= ϕ1 (where traces for πA
and πB are taken from K) can be reduced to building the self-composition of K
and applying standard LTL model checking, resulting in worst-case complexity
|K|2 in the size of the system. On the contrary, proving that K |= ϕ2 is not as
straightforward. In the worst case, this requires a subset generation to encode
the existential quantifier within the Kripke structure, resulting in |K| ·2|K| blow
up. In addition, the quantification is over traces rather than states, adding to
the complexity of reasoning.

{p}
s0

{p}
s1

{p}
s2

{p, halt}
s3

{q, halt}
s4

Fig. 1: A Kripke structure.

Following the great success of bounded
model checking (BMC) for LTL specifica-
tions [8], in this paper, we propose a BMC
algorithm for HyperLTL. To the best of
our knowledge this is the first such algo-
rithm. Just as BMC for LTL is reduced
to SAT solving to search for a counterex-
ample trace whose length is bounded by some integer k, we reduce BMC for
HyperLTL to QBF solving to be able to deal with quantified counterexam-
ple traces in the input model. More formally, given a HyperLTL formula, e.g.,
ϕ = ∀πA.∃πB .ψ, and a family of Kripke structures K = (KA,KB) (one per trace
variable), the reduction involves three main components. First, the transition re-
lation of Kπ (for every π) is represented by a Boolean encoding �Kπ�. Secondly,
the inner LTL subformula ψ is translated to a Boolean representation �ψ� in
a similar fashion to the BMC unrolling technique for LTL. This way, the QBF
encoding for a bound k ≥ 0 roughly appears as:

�K,¬ϕ�k = ∃xA.∀xB .�KA�k ∧
(
�KB�k � �¬ψ�k

)
(1)

where the vector of Boolean variables xA (respectively, xB) are used to represent
the states and propositions of KA (resp. KB) for steps from 0 to k. Formulas
�KA�k and �KB�k are the unrollings KA (using xA) and KB (using xB), and �¬ψ�
(that uses both xA and xB) is the fixpoint Boolean encoding of ¬ψ. The proposed
technique in this paper does not incorporate a loop condition, as implementing
such a condition for multiple traces is not straightforward. This, of course, comes
at the cost of lack of a completeness result.

While our QBF encoding is a natural generalization of BMC for HyperLTL,
the first contribution of this paper is a more refined view of how to interpret
the behavior of the formula beyond the unrolling depth k. Consider LTL for-
mula ∀π. pπ. BMC for LTL attempts to find a counterexample by unrolling
the model and check for satisfiability of ∃π. ¬pπ up-to bound k. Now consider
LTL formula ∀π. pπ whose negation is ∃π. ¬pπ. In the classic BMC, due to
its pessimistic handling of , the unsatisfiability of the formula cannot be estab-
lished in the finite unrolling (handling these formulas requires either a looping
condition or to reach the diameter of the system). This is because ¬pπ is not
sometimes finitely satisfiable (SFS), in the terminology introduced by Havelund
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and Peled [27], meaning that not all satisfying traces of pπ have a finite prefix
that witness the satisfiability.

We propose a method that allows to interpret a wide range of outcomes of
the QBF solver and relate these to the original model checking decision problem.
To this end, we propose the following semantics for BMC for HyperLTL:
– Pessimistic semantics (like in LTL BMC) under which pending eventuali-

ties are considered to be unfulfilled. This semantics works for SFS temporal
formulas and paves the way for bug hunting.

– Optimistic semantics considers the dual case, where pending eventualities
are assumed to be fulfilled at the end of the trace. This semantics works
for sometimes finitely refutable (SFR) formulas, and allows us to interpret
unsatisfiability of QBF as proof of correctness even with bounded traces.

– Halting variants of the optimistic and pessimistic semantics, which allow
sound and complete decision on a verdict for terminating models.
We have fully implemented our technique in the tool HyperQube. Our exper-

imental evaluation includes a rich set of case studies, such as information-flow
security, linearizability in concurrent data structures, path planning in robotic
applications, and mutation testing. Our evaluation shows that our technique is
effective and efficient in identifying bugs in several prominent examples. We also
show that our QBF-based approach is certainly more efficient than a brute-force
SAT-based approach, where universal and existential quantifiers are eliminated
by combinatorial expansion to conjunctions and disjunctions. We also show that
in some cases our approach can also be used as a tool for synthesis. Indeed, a
witness to an existential quantifier in a HyperLTL formula is an execution path
that satisfies the formula. For example, our experiments on path planning for
robots showcase this feature of HyperQube.

In summary, the contributions of this paper are as follows. We (1) propose a
QBF-based BMC approach for verification and falsification of HyperLTL spec-
ifications; (2) introduce complementary semantics that allow proving and dis-
proving formulas, given a finite set of finite traces, and (3) rigorously analyze the
performance of our technique by case studies from different areas of computing.

2 Preliminaries

2.1 Kripke Structures

Let AP be a finite set of atomic propositions and Σ = 2AP be the alphabet. A
letter is an element of Σ. A trace t ∈ Σω over alphabet Σ is an infinite sequence
of letters: t = t(0)t(1)t(2) · · ·

Definition 1. A Kripke structure is a tuple K = 〈S, Sinit , δ, L〉, where
– S is a finite set of states;
– Sinit ⊆ S is the set of initial states;
– δ ⊆ S × S is a transition relation, and
– L : S � Σ is a labeling function on the states of K.

We require that for each s ∈ S, there exists s′ ∈ S, such that (s, s′) ∈ δ.
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Fig. 1 shows a Kripke structure, where Sinit = {s0}, L(s0) = {p}, L(s4) =
{q, halt}, etc. The size of the Kripke structure is the number of its states. A loop
in K is a finite sequence s(0)s(1) · · · s(n), such that (s(i), s(i+ 1)) ∈ δ, for all
0 ≤ i < n, and (s(n), s(0)) ∈ δ. We call a Kripke frame acyclic, if the only loops
are self-loops on otherwise terminal states, i.e., on states that have no other
outgoing transition. Since Definition 1 does not allow terminal states, we only
consider acyclic Kripke structures with such added self-loops. We also label such
states by atomic proposition halt .

A path of a Kripke structure is an infinite sequence of states s(0)s(1) · · · ∈ Sω,
such that s(0) ∈ Sinit , and (s(i), s(i+ 1)) ∈ δ, for all i ≥ 0. A trace of a
Kripke structure is a trace t(0)t(1)t(2) · · · ∈ Σω, such that there exists a path
s(0)s(1) · · · ∈ Sω with t(i) = L(s(i)) for all i ≥ 0. We denote by Traces(K, s) the
set of all traces of K with paths that start in state s ∈ S, and use Traces(K) as
a shorthand for

⋃
s∈Sinit

Traces(K, s).

2.2 The Temporal Logic HyperLTL

Syntax. HyperLTL [9] is an extension of the linear-time temporal logic (LTL)
for hyperproperties. The syntax of HyperLTL formulas is defined inductively by
the following grammar:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ
φ ::= true | aπ | ¬φ | φ ∨ φ | φ ∧ φ | φ U φ | φR φ | φ

where a ∈ AP is an atomic proposition and π is a trace variable from an infinite
supply of variables V. The Boolean connectives ¬, ∨, and ∧ have the usual
meaning, U is the temporal until operator, R is the temporal release operator,
and is the temporal next operator. We also consider other derived Boolean
connectives, such as �, and ↔, and the derived temporal operators eventually
ϕ ≡ true U ϕ and globally ϕ ≡ ¬ ¬ϕ. Even though the set of operators

presented is not minimal, we have introduced this set to uniform the treatment
with the variants in Section 3. The quantified formulas ∃π and ∀π are read as
“along some trace π” and “along all traces π”, respectively. A formula is closed
(i.e., a sentence) if all trace variables used in the formula are quantified. We
assume, without loss of generality, that no variable is quantified twice. We use
Vars(ϕ) for the set of path variables used in formula ϕ.

Semantics. An interpretation T = 〈Tπ〉π∈Vars(ϕ) of a formula ϕ consists of a
tuple of sets of traces, with one set Tπ per trace variable π in Vars(ϕ), denoting
the set of traces assigned to π. Note that we allow quantifiers to range over
different models. We will use this feature in the verification of hyperproperties
such as linearizability, where different quantifiers are associated with different
sets of executions (in this case one for the concurrent implementation and one
for the sequential implementation). That is, each set of traces comes from a
Kripke structure and we use K = 〈Kπ〉π∈Vars(ϕ) to denote a family of Kripke
structures, so Tπ = Traces(Kπ) is the traces that π can range over, which comes
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from Kπ. Abusing notation, we write T = Traces(K). Note that picking a single
K and letting Kπ = K for all π is a particular case, which leads to the original
semantics of HyperLTL [9].

Our semantics of HyperLTL is defined with respect to a trace assignment,
which is a partial map Π : Vars(ϕ) ⇀ Σω. The assignment with the empty
domain is denoted by Π∅. Given a trace assignment Π, a trace variable π, and
a concrete trace t ∈ Σω, we denote by Π[π � t] the assignment that coincides
with Π everywhere but at π, which is mapped to trace t. The satisfaction of
a HyperLTL formula ϕ is a binary relation |= that associates a formula to the
models (T , Π, i) where i ∈ Z≥0 is a pointer that indicates the current evaluating
position. The semantics is defined as follows:

(T , Π, 0) |= ∃π. ψ iff there is a t ∈ Tπ, such that (T , Π[π � t], 0) |= ψ,
(T , Π, 0) |= ∀π. ψ iff for all t ∈ Tπ, such that (T , Π[π � t], 0) |= ψ,
(T , Π, i) |= true
(T , Π, i) |= aπ iff a ∈ Π(π)(i),
(T , Π, i) |= ¬ψ iff (T , Π, i) �|= ψ,
(T , Π, i) |= ψ1 ∨ ψ2 iff (T , Π, i) |= ψ1 or (T , Π, i) |= ψ2,
(T , Π, i) |= ψ1 ∧ ψ2 iff (T , Π, i) |= ψ1 and (T , Π, i) |= ψ2,
(T , Π, i) |= ψ iff (T , Π, i+ 1) |= ψ,
(T , Π, i) |= ψ1 U ψ2 iff there is a j ≥ i for which (T , Π, j) |= ψ2 and

for all k ∈ [i, j), (T , Π, k) |= ψ1,
(T , Π, i) |= ψ1 R ψ2 iff either for all j ≥ i, (T , Π, j) |= ψ2, or,

for some j ≥ i, (T , Π, j) |= ψ1 and
for all k ∈ [i, j] : (T , Π, k) |= ψ2.

This semantics is slightly different from the definition in [9], but equiv-
alent (see [30]). We say that an interpretation T satisfies a sentence ϕ, de-
noted by T |= ϕ, if (T , Π∅, 0) |= ϕ. We say that a family of Kripke structures
K satisfies a sentence ϕ, denoted by K |= ϕ, if 〈Traces(Kπ)〉π∈Vars(ϕ) |= ϕ.
When the same Kripke structure K is used for all path variables we write
K |= ϕ. For example, the Kripke structure in Fig. 1 satisfies HyperLTL for-
mula ϕ = ∀πA.∃πB . (pπA

�↔ pπB
).

3 Bounded Semantics for HyperLTL

We introduce now the bounded semantics of HyperLTL, used in Section 4 to
generate queries to a QBF solver to aid solving the model checking problem.

3.1 Bounded Semantics

We assume the HyperLTL formula is closed and of the form
QAπA.QBπB . . .QZπZ .ψ, where Q ∈ {∀, ∃} and it has been converted into
negation-normal form (NNF) so that the negation symbol only appears in front
of atomic propositions, e.g., ¬aπA

. Without loss of generality and for the sake of
clarity from other numerical indices, we use roman alphabet as indices of trace
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variables. Thus, we assume that Vars(ϕ) ⊆ {πA, πB , . . . , πZ}. The main idea of
BMC is to perform incremental exploration of the state space of the systems by
unrolling the systems and the formula up-to a bound. Let k ≥ 0 be the unrolling
bound and let T = 〈TA . . . TZ〉 be a tuple of sets of traces, one per trace vari-
able. We start by defining a satisfaction relation between HyperLTL formulas
for a bounded exploration k and models (T , Π, i), where T is the tuple of set of
traces, Π is a trace assignment mapping (as defined in Section 2), and i ∈ Z≥0

that points to the position of traces. We will define different finite satisfaction
relations for general models (for ∗ = pes, opt, hpes, hopt):
– |=∗

k, the common satisfaction relation among all semantics,
– |=pes

k , called pessimistic semantics,
– |=opt

k , called optimistic semantics, and
– |=hpes

k and |=hopt
k , variants of |=pes

k and |=opt
k for Kripke structures that encode

termination of traces (modeled as self-loops to provide infinite traces).
All these semantics coincide in the interpretation of quantifiers, Boolean connec-
tives, and temporal operators up-to instant k−1, but differ in their assumptions
about unseen future events after the bound of observation k.

Quantifiers. The satisfaction relation for the quantifiers is the following:

(T , Π, 0) |=∗
k ∃π. ψ iff there is a t ∈ Tπ : (T , Π[π � t], 0) |=∗

k ψ, (1)
(T , Π, 0) |=∗

k ∀π. ψ iff for all t ∈ Tπ : (T , Π[π � t], 0) |=∗
k ψ. (2)

Boolean operators. For every i ≤ k, we have:

(T , Π, i) |=∗
k true, (3)

(T , Π, i) |=∗
k aπ iff a ∈ Π(π)(i), (4)

(T , Π, i) |=∗
k ¬aπ iff a �∈ Π(π)(i), (5)

(T , Π, i) |=∗
k ψ1 ∨ ψ2 iff (T , Π, i) |=∗

k ψ1 or (T , Π, i) |=∗
k ψ2, (6)

(T , Π, i) |=∗
k ψ1 ∧ ψ2 iff (T , Π, i) |=∗

k ψ1 and (T , Π, i) |=∗
k ψ2. (7)

Temporal connectives. The case where (i < k) is common between the opti-
mistic and pessimistic semantics:

(T , Π, i) |=∗
k ψ iff (T , Π, i+ 1) |=∗

k ψ, (8)
(T , Π, i) |=∗

k ψ1 U ψ2 iff (T , Π, i) |=∗
k ψ2, or

(T , Π, i) |=∗
k ψ1 and (T , Π, i+1) |=∗

k ψ1Uψ2, (9)
(T , Π, i) |=∗

k ψ1 R ψ2 iff (T , Π, i) |=∗
k ψ2, and

(T , Π, i) |=∗
k ψ1 or (T , Π, i+ 1) |=∗

k ψ1 R ψ2. (10)

For (i = k), in the pessimistic semantics the eventualities (including ) are
assumed to never be fulfilled in the future, so the current instant k is the last
chance:
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(T , Π, i) |=pes
k ψ iff never happens, (P1)

(T , Π, i) |=pes
k ψ1 U ψ2 iff (T , Π, i) |=pes

k ψ2, (P2)
(T , Π, i) |=pes

k ψ1 R ψ2 iff (T , Π, i) |=pes
k ψ1 ∧ ψ2. (P3)

On the other hand, in the optimistic semantics the eventualities are assumed to
be fulfilled in the future:

(T , Π, i) |=opt
k ψ iff always happens, (O1)

(T , Π, i) |=opt
k ψ1 U ψ2 iff (T , Π, i) |=opt

k ψ1 ∨ ψ2, (O2)

(T , Π, i) |=opt
k ψ1 R ψ2 iff (T , Π, i) |=opt

k ψ2. (O3)

To capture the halting semantics, we use the predicate halt that is true
if the state corresponds to a halting state (self-loop), and define halted def

=∧
πVars(ϕ) haltπ which holds whenever all traces have halted (and their final state

will be repeated ad infinitum). Then, the halted semantics of the temporal case
for i = k in the pessimistic case consider the halting case to infer the actual
value of the temporal operators on the (now fully known) trace:

(T , Π, i) |=hpes
k ψ iff (T , Π, i) |=∗

k halted and (T , Π, i) |=hpes
k ψ (HP1)

(T , Π, i) |=hpes
k ψ1 U ψ2 iff (T , Π, i) |=hpes

k ψ2 (HP2)

(T , Π, i) |=hpes
k ψ1 R ψ2 iff (T , Π, i) |=hpes

k ψ1 ∧ ψ2, or
(T , Π, i) |=∗

k halted and (T , Π, i) |=hpes
k ψ2 (HP3)

Dually, in the halting optimistic case:

(T , Π, i) |=hopt
k ψ iff (T , Π, i) �|=∗

k halted or (T , Π, i) |=hopt
k ψ (HO1)

(T , Π, i) |=hopt
k ψ1 U ψ2 iff (T , Π, i) |=hopt

k ψ2, or
(T , Π, i) �|=∗

k halted and (T , Π, i) |=hopt
k ψ1 (HO2)

(T , Π, i) |=hopt
k ψ1 R ψ2 iff (T , Π, i) |=hpes

k ψ2 (HO3)

Complete semantics. We are now ready to define the four semantics:
− Pessimistic semantics: |=pes

k use rules (1)-(10) and (P1)-(P3).
− Optimistic semantics: |=opt

k use rules (1)-(10) and (O1)-(O3).
− Halting pessimistic semantics: |=hpes

k use rules (1)-(10) and (HP1)-(HP3).
− Halting optimistic semantics: |=hopt

k use rules (1)-(10) and (HO1)-(HO3).

3.2 The Logical Relation between Different Semantics

Observe that the pessimistic semantics is the semantics in the traditional BMC
for LTL.In the pessimistic semantics a formula is declared false unless it is wit-
nessed to be true within the bound explored. In other words, formulas can only
get “truer” with more information obtained by a longer unrolling. Dually, the
optimistic semantics considers a formula true unless there is evidence within the
bounded exploration on the contrary. Therefore, formulas only get “falser” with
further unrolling. For example, formula p always evaluates to false in the pes-
simistic semantics. In the optimistic semantics, it evaluates to true up-to bound
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k if p holds in all states of the trace up-to and including k. However, if the for-
mula evaluates to false at some point before k, then it evaluates to false for all
j ≥ k. The following lemma formalizes this intuition in HyperLTL.

Lemma 1. Let k ≤ j. Then,
1. If (T , Π, 0) |=pes

k ϕ, then (T , Π, 0) |=pes
j ϕ.

2. If (T , Π, 0) �|=opt
k ϕ, then (T , Π, 0) �|=opt

j ϕ.
3. If (T , Π, 0) |=hpes

k ϕ, then (T , Π, 0) |=hpes
j ϕ.

4. If (T , Π, 0) �|=hopt
k ϕ, then (T , Π, 0) �|=hopt

j ϕ.

In turn, the verdict obtained from the exploration up-to k can (in some cases)
be used to infer the verdict of the model checking problem. As in classical BMC,
if the pessimistic semantics find a model, then it is indeed a model. Dually, if
our optimistic semantics fail to find a model, then there is no model. The next
lemma formally captures this intuition.

Lemma 2 (Infinite inference). The following hold for every k,
1. If (T , Π, 0) |=pes

k ϕ, then (T , Π, 0) |= ϕ.
2. If (T , Π, 0) �|=opt

k ϕ, then (T , Π, 0) �|= ϕ.
3. If (T , Π, 0) |=hpes

k ϕ, then (T , Π, 0) |= ϕ.
4. If (T , Π, 0) �|=hopt

k ϕ, then (T , Π, 0) �|= ϕ.

Example 1. Consider the Kripke structure in Fig. 1, bound k = 3, and formula
ϕ1 = ∀πA.∃πB .

(
(pπA

�↔ pπB
) R ¬qπA

)
. It is easy to see that instantiating πA

with trace s0s1s2s4 falsifies ϕ1 in the pessimistic semantics. By Lemma 2, this
counterexample shows that the Kripke structure is a model of ¬ϕ1 in the infinite
semantics as well. That is, K |=pes

3 ¬ϕ1 and, hence, K |= ¬ϕ1, so K �|= ϕ1.
Consider again the same Kripke structure, bound k = 3, and formula ϕ2 =

∀πA.∃πB . (pπA
↔ qπB

). To disprove ϕ2, we need to find a trace πA such that
for all other πB , proposition q in πB always disagrees with p in πA. It is straight-
forward to observe that such a trace πA does not exist. By Lemma 2, proving
the formula is not satisfiable up-to bound 3 in the optimistic semantics implies
that K is not a model of ¬ϕ2 in the infinite semantics. That is, K �|=opt

3 ¬ϕ2

implies K �|= ¬ϕ2. Hence, we conclude K |= ϕ2.
Consider again the same Kripke structure which has two terminating states,

s3 and s4, labeled by atomic proposition halt with only a self-loop. Let k = 3,
and ϕ3 = ∀πA.∃πB .(¬qπB

U ¬pπA
). Instantiating πA by trace s0s1s3, which is of

the form {p}ω satisfies ¬ϕ3. By Lemma 2, the fulfillment of formula implies that
in infinite semantics it will be fulfilled as well. That is, K |=hpes

3 ¬ϕ3 implies
K |= ¬ϕ3. Hence, K �|= ϕ3.

Consider again the same Kripke structure with halting states and formula
ϕ4 = ∀πA.∃πB . (pπA

�↔ pπB
). A counterexample is an instantiation of πA

such that for all πB , both traces will always eventually agree on p. Trace s0s1s2s4,
which is of the form {p}{p}{p}{q, halt}ω with k = 3. This trace never agrees
with a trace that ends in state s3 (which is of the form {p}ω) and vice versa. By
Lemma 2, the absence of counterexample up-to bound 3 in the halting optimistic
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semantics implies that K is not a model of ¬ϕ4 in the infinite semantics. That
is, K �|=hopt

3 ¬ϕ4 implies K �|= ¬ϕ4. Hence, we conclude K |= ϕ4. ��

4 Reducing BMC to QBF Solving

Given a family of Kripke structures K, a HyperLTL formula ϕ, and bound k ≥ 0,
our goal is to construct a QBF formula �K, ϕ�k whose satisfiability can be used
to infer whether or not K |= ϕ.

In the following paragraphs, we first describe how to encode the model and
the formula, and then how to combine the two to generate the QBF query. We
will illustrate the constructions using formula ϕ1 in Example 1 in Section 3,
whose negation is ∃πA.∀πB .¬ψ with ¬ψ = (pπA

↔ pπB
) U qπA

.

Encoding the models. The unrolling of the transition relation of a Kripke struc-
ture KA = 〈S, Sinit , δ, L〉 up to bound k is analogous to the BMC encoding for
LTL [8]. First, note that the state space S can be encoded with a (logarithmic)
number of bits in |S|. We introduce additional variables n0, n1, . . . to encode
the state of the Kripke structure and use AP∗ = AP ∪ {n0, n1, . . .} for the ex-
tended alphabet that includes the encoding of S. In this manner, the set of initial
states of a Kripke structure is a Boolean formula over AP∗. For example, for the
Kripke structure KA in Fig. 1 the set of initial states (in this case Sinit = {s0})
corresponds to the following Boolean formula:

IA := (¬n0 ∧ ¬n1 ∧ ¬n2) ∧ p ∧ ¬q ∧ ¬halt

assuming that (¬n0 ∧ ¬n1 ∧ ¬n2) represents state s0 (we need three bits to
encode five states.) Similarly, RA is a binary relation that encodes the transition
relation δ of KA (representing the relation between a state and its successor). The
encoding into QBF works by introducing fresh Boolean variables (a new copy of
AP∗ for each Kripke structure KA and position), and then producing a Boolean
formula that encodes the unrolling up-to k. We use xiA for the set of fresh copies
of the variables AP∗ of KA corresponding to position i ∈ [0, k]. Therefore, there
are k|xA| = k|AP∗

A| Boolean variables to represent the unrolling of KA. We use
IA(x) for the Boolean formula (using variables from x) that encodes the initial
states, and RA(x, x

′) (for two copies of the variables x and x′) for the Boolean
formula whether x′ encodes a successor states of x. For example, for k = 3, we
unroll the transition relation up-to 3 as follows,

�KA�3 = IA(x
0
A) ∧RA(x

0
A, x

1
A) ∧R(x1A, x

2
A) ∧R(x2A, x

3
A)

which is the Boolean formula representing valid traces of length 4, using four
copies of the variables AP∗

A that represent the Kripke structure KA.

Encoding the inner LTL formula. The idea of the construction of the inner LTL
formula is analogous to standard BMC as well, except for the choice of differ-
ent semantics described in Section 3. In particular, we introduce the following
inductive construction and define four different unrollings for a given k: �·�pesi,k ,
�·�opti,k , �·�hpesi,k , and �·�hopti,k .
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– Inductive Case: Since the semantics only differ on the temporal opera-
tors at the end of the unrolling, the inductive case is common to all un-
rollings and we use �·�∗i,k to mean any of the choices of semantic (for ∗ =
pes, opt, hpes, hopt). For all i ≤ k:

�pπ�∗i,k := piπ
�¬pπ�∗i,k := ¬piπ
�ψ1 ∨ ψ2�∗i,k := �ψ1�∗i,k ∨ �ψ2�∗i,k
�ψ1 ∧ ψ2�∗i,k := �ψ1�∗i,k ∧ �ψ2�∗i,k
�ψ1 U ψ2�∗i,k := �ψ2�∗i,k ∨

(
�ψ1�∗i,k ∧ �ψ1 U ψ2�∗i+1,k

)
�ψ1 R ψ2�∗i,k := �ψ2�∗i,k ∧

(
�ψ1�∗i,k ∨ �ψ1 R ψ2�∗i+1,k

)
� ψ�∗i,k := �ψ�∗i+1,k

Note that, for a given path variable πA, the atom piπA
that results from

�pπA
�∗i,k is one of the Boolean variables in xiA.

– For the base case, the formula generated is different depending on the
intended semantics:

�ψ�pesk+1,k := false �ψ�optk+1,k := true

�ψ�hpesk+1,k := �halted �hpesk,k ∧ �ψ�hpesk,k �ψ�hoptk+1,k := �halted �hoptk,k � �ψ�hoptk,k

Note that the base case defines the value to be assumed for the formula after
the end k of the unrolling, which is spawned in the temporal operators in
the inductive case at k. The pessimistic semantics assume the formula to
be false, and the optimistic semantics assume the formula to be true. The
halting cases consider the case at which the traces have halted (using in this
case the evaluation at k) and using the unhalting choice otherwise.

Example 2. Consider again the formula ¬ψ = (pπA
↔ pπB

) U qπA
. Using the

pessimistic semantics �¬ψ�pes0,3 with three steps is

q0πA
∨
(
(p0πA

↔ p0πB
) ∧

(
q1πA

∨
(
(p1πA

↔ p1πB
) ∧

(
q2πA

∨ (p2πA
↔ p2πB

) ∧ q3πA

))))
.

In this encoding, the collection x2A, contains all variables of AP∗ of KA (that is
{p2πA

, q2πA
, . . .}) connecting to the corresponding valuation for pπA

in the trace
of KA at step 2 in the unrolling of KA. In other words, the formula �¬ψ�pes0,3 uses
variables from x0A, x

1
A, x

2
A, x

3
A and x0B , x

1
B , x

2
B , x

3
B (that is, from xA and xB). ��

Combining the encodings. Now, let ϕ be a HyperLTL formula of the form
ϕ = QAπA.QBπB . . . . .QZπZ .ψ and K = 〈KA,KB , . . . ,KZ〉. Combining all the
components, the encoding of the HyperLTL BMC problem in QBF is the follow-
ing (for ∗ = pes, opt, hpes, hopt):

�K, ϕ�∗k = QAxA.QBxB · · · .QZxZ

(
�KA�k ◦A �KB�k ◦B · · · �KZ�k ◦Z �ψ�∗0,k

)
where �ψ�∗0,k is the choice of semantics, ◦j = ∧ if Qj = ∃, and ◦j = � if Qj = ∀,
for j ∈ Vars(ϕ).
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Example 3. Consider again Example 2. To combine the model description with
the encoding of the HyperLTL formula, we use two identical copies of the given
Kripke structure to represent different paths πA and πB on the model, denoted
as KA and KB . The final resulting formula is:

�K,¬ϕ�3 := ∃xA.∀xB .
(
�KA�3 ∧ (�KB�3 � �¬ϕ�pes0,3 )

)
The sequence of assignments (¬n2,¬n1,¬n0, p,¬q,¬halt)0 (¬n2,¬n1, n0, p,¬q,
¬halt)1 (¬n2, n1,¬n0, p,¬q,¬halt)2 (n2,¬n1,¬n0,¬p, q, halt)3 on KA,
corresponding to the path s0s1s2s4, satisfies �¬ϕ�pes0,3 for all traces on KB . The
satisfaction result shows that �K,¬ϕ�pes3 is true, indicating that a witness of vio-
lation is found. Theorem 1, by a successful detection of a counterexample witness,
and the use of the pessimistic semantics, allows to conclude that K �|= ϕ. ��

The main result of this section is Theorem 1 that connects the output of the
solver to the original model checking problem. We first show an auxiliary lemma.

Lemma 3. Let ϕ be a closed HyperLTL formula and T = Traces(K) be an
interpretation. For ∗ = pes, opt, hpes, hopt, it holds that

�K, ϕ�∗k is satisfiable if and only if (T , Π∅, 0) |=∗
k ϕ.

Proof (sketch). The proof proceeds in two steps. First, let ψ be the largest
quantifier-free sub-formula of ϕ. Then, every tuple of traces of length k (one
for each π) is in one-to-one correspondence with the collection of variables piπ,
that satisfies that the tuple is a model of ψ (in the choice semantics) if and
only if the corresponding assignment makes �ψ�∗0. Then, the second part shows
inductively in the stack of quantifiers that each subformula obtained by adding
a quantifier is satisfiable if and only if the semantics hold. ��

Lemma 3, together with Lemma 2, allows to infer the outcome of the model
checking problem from satisfying (or unsatisfying) instances of QBF queries,
summarized in the following theorem.

Theorem 1. Let ϕ be a HyperLTL formula. Then,
1. For ∗ = pes, hpes, if �K,¬ϕ�∗k is satisfiable, then K �|= ϕ.
2. For ∗ = opt , hopt , if �K,¬ϕ�∗k is unsatisfiable, then K |= ϕ.

Table 1 illustrates what Theorem 1 allows to soundly conclude from the
output of the QBF solver about the model checking problem of formulas from
Example 1 in Section 3.

5 Evaluation and Case Studies

We now evaluate our approach by a rich set of case studies on information-flow
security, concurrent data structures, path planning for robots, and mutation
testing. In this section, we will refer to each property in HyperLTL as in Table 2.
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Semantics

Formula Bound pessimistic optimistic halting

ϕ1
k = 2 UNSAT (inconclusive) SAT (inconclusive) UNSAT (inconclusive)

k = 3 SAT (counterexample) SAT (inconclusive) UNSAT (inconclusive)

ϕ2
k = 2 UNSAT (inconclusive) SAT (inconclusive) UNSAT (inconclusive)

k = 3 UNSAT (inconclusive) UNSAT (proved) UNSAT (inconclusive)

ϕ3
k = 2 UNSAT (inconclusive) UNSAT (inconclusive) non-halted (inconclusive)

k = 3 UNSAT (inconclusive) UNSAT (inconclusive) halted (counterexample)

ϕ4
k = 2 UNSAT (inconclusive) UNSAT (inconclusive) non-halted (inconclusive)

k = 3 UNSAT (inconclusive) UNSAT (inconclusive) halted (proved)

Table 1: Comparison of Properties with Different Semantics

We have implemented the technique described in Section 4 in our tool HyperQube.
Given a transition relation, the tool automatically unfolds it up to k ≥ 0 by a
home-grown procedure written in Ocaml, called genqbf. Given the choice of the
semantics (pessimistic, optimistic, and halting variants) the unfolded transition
relation is combined with the QBF encoding of the input HyperLTL formula to
form a complete QBF instance which is then fed to the QBF solver QuAbS [28].
All experiments in this section are run on an iMac desktop with Intel i7 CPU
@3.4 GHz and 32 GB of RAM. A full description of the systems and formulas
used can be accessed in the longer version of this paper [30].

Case Study 1: Symmetry in Lamport’s Bakery algorithm [12]. Symme-
try states that no specific process has special privileges in terms of a faster access
to the critical section (see different symmetry formulas in Table 2). In these for-
mulas, each process Pn has a program counter denoted by pc(Pn), select indicates
which process is selected to process next, pause if both processes are not selected,
sym_break is which process is selected after a tie, and sym(selectπA

, selectπB
) in-

dicates if two traces are selecting two opposite processes. The Bakery algorithm
does not satisfy symmetry (i.e. ϕsym1

), because when two or more processes are
trying to enter the critical section with the same ticket number, the algorithm al-
ways gives priority to the process with the smaller process ID. HyperQube returns
SAT using the pessimistic semantics, indicating that there exists a counterex-
ample in the form of a falsifying witness to πA in formula ϕsym1

. Table 3 includes
our result on other symmetry formulas presented in Table 2.

Case Study 2: Linearizability in SNARK [14]. SNARK implements a
concurrent double-ended queue using double-compare-and-swap (DCAS) and a
doubly linked-list that stores values in each node. Linearizability [29] requires
that any history of execution of a concurrent data structure (i.e., sequence of
invocation and response by different threads) matches some sequential order of
invocations and responses (see formula ϕlin in Table 2). SNARK is known to
have two linearizability bugs and HyperQube returns SAT using the pessimistic
semantics, identifying both bugs as two counterexamples. The bugs we identified
are precisely the same as the ones reported in [14].
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Property Property in HyperLTL

Symmetry

ϕS1 = ∀πA.∀πB .
(
¬sym(selectπA , selectπB ) ∨ ¬(pauseπA

= pauseπB
)
)
R((

pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

))
ϕS2 = ∀πA.∀πB .

(
¬sym(selectπA , selectπB ) ∨ ¬(pauseπA

= pauseπB
) ∨

¬(selectπA < 3) ∨ ¬(selectπB < 3)
)
R((

pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

))
ϕS3 = ∀πA.∀πB .

(
¬sym(selectπA , selectπB ) ∨ ¬(pauseπA

= pauseπB
) ∨

¬(selectπA < 3) ∨ ¬(selectπB < 3) ∨
¬sym(sym_breakπA

, sym_breakπB
)
)
R((

pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

))
ϕsym1

= ∀πA.∃πB . sym(selectπA , selectπB ) ∧ (pauseπA
= pauseπB

) ∧(
pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

)
ϕsym2

= ∀πA.∃πB . sym(selectπA , selectπB ) ∧ (pauseπA
= pauseπB

) ∧
(selectπA < 3) ∧ (selectπB < 3) ∧(
pc(P0)πA = pc(P1)πB

)
∧
(
pc(P1)πA = pc(P0)πB

)
Linearizability ϕlin = ∀πA.∃πB . (historyπA

↔ historyπB
)

NI ϕNI = ∀πA.∃πB .
(
PIN πA �= PIN πB

)
∧
(
(¬haltπA ∨ ¬haltπB )

U
(
(haltπA ∧ haltπB ) ∧ (ResultπA = ResultπB )

))

Fairness
ϕfair = ∃πA.∀πB . ( mπA) ∧ ( NRRπA) ∧ ( NROπA) ∧(

(
∧

act∈ActP
actπA ↔ actπB ) �

(
( NRRπB ) ↔ ( NROπB )

))
∧(

(
∧

act∈ActQ
actπA ↔ actπB ) �

(
( NRRπB ) ↔ ( NROπB )

))

Path Planning
ϕsp = ∃πA.∀πB .(¬goalπB

U goalπA
)

ϕrb = ∃πA.∀πB . (strategyπB
↔ strategyπA

) U (goalπA
∧ goalπB

)

Mutant ϕmut = ∃πA.∀πB(mutπA ∧ ¬mutπB ) ∧
(
(inπA ↔ inπB ) U (outπA �↔ outπB )

)
Table 2: Hyperproperties investigated in case studies.

Case Study 3: Non-interference in multi-threaded Programs. Non-
interference [25] states that low-security variables are independent from the
high-security variables, thus preserving secure information flow. We consider
the concurrent program example in [32], where PIN is high security input and
Result is low security output. HyperQube returns SAT in the halting pessimistic
semantics, indicating that there is a trace that we can detect the difference of a
high-variable by observing a low variable, that is, violating non-interference. We
also verified the correctness of a fix to this algorithm, proposed in [32] as well.
HyperQube uses the UNSAT results from the solver (with halting optimistic se-
mantics) to infer the absence of violation, that is, verification of non-interference.

Case Study 4: Fairness in non-repudiation protocols. A non-repudiation
protocol ensures that a receiver obtains a receipt from the sender, called non-
repudiation of origin (NRO), and the sender ends up having an evidence, named
non-repudiation of receipt (NRR), through a trusted third party. A
non-repudiation protocol is fair if both NRR and NRO are either received or not
received by the parties (see formula ϕfair in Table 2). We verified two different
protocols from [31], namely, Tincorrect that chooses not to send out NRR after
receiving NRO , and a correct implementation Tcorrect which is fair. For Tcorrect
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(respectively, Tincorrect ), HyperQube returns UNSAT in the halting optimistic se-
mantics (respectively, SAT in the halting pessimistic semantics), which indicates
that the protocol satisfies (respectively, violates) fairness.

Fig. 2: Shortest Path

Fig. 3: Robust path

Case Study 5: Path planning for robots. We have
used HyperQube beyond verification, to synthesize strate-
gies for robotic planning [34]. Here, we focus on produc-
ing a strategy that satisfies two control requirements for a
robot to reach a goal in a grid. First, the robot should take
the shortest path (see formula ϕsp in Table 2). Fig. 2 shows
a 10×10 grid, where the red, green, and black cells are ini-
tial, goal, and blocked cells, respectively. HyperQube returns
SAT and the synthesized path is shown by the blue arrows.
We also used HyperQube to solve the path robustness prob-
lem, meaning that starting from an arbitrary initial state,
a robot reaches the goal by following a single strategy (see
formula ϕrb in Table 2). Again, HyperQube returns SAT for
the grid shown in Fig. 3.

Case Study 6: Mutation testing. We adopted the
model from [15] and apply the original formula that de-
scribes a good test mutant together with the model (see formula ϕmut in Table 2).
HyperQube returns SAT, indicating successful finding of a qualified mutant. We
note that in [15] the authors were not able to generate test cases via ϕmut, as
the model checker MCHyper is not able to handle quantifier alternation in push-
button fashion.

Results and analysis. Table 3 summarizes our results including running times,
the bounded semantics applied, the output of the QBF solver, and the resulting
infinite inference conclusion using Theorem 1. As can be seen, our case studies
range over model checking of different fragments of HyperLTL. It is important
to note that HyperQube run time consists of generating a QBF formula by genqbf
and then checking its satisfiability by QuAbS. It is remarkable that in some cases,
QBF formula generation takes longer than checking its satisfiability. The models
in our experiments also have different sizes. The most complex case study is
arguably the SNARK algorithm, where we identify both bugs in the algorithm
in 472 and 1497 seconds. In cases 5.1 – 6.2, we also demonstrate the ability of
HyperQube to solve synthesis problems by leveraging the existential quantifier in
a HyperLTL formula.

Finally, we elaborate more on scalability of the path planning problem for
robots. This problem was first studied in [34], where the authors reduce the
problem to SMT solving using Z3 [13] and by eliminating the trace quantifiers
through a combinatorial enumeration of conjunctions and disjunctions. Table 4
compares our approach with the brute-force technique employed in [34] for differ-
ent grid sizes. Our QBF-based approach clearly outperforms the solution in [34],
in some cases by an order of magnitude.
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# Model K Formula bound k |AP∗| QBF semantics genqbf [s] QuAbS [s] Total [s]

0.1 Bakery.3proc ϕS1 7 27 SAT pes 0.44 0.04 0.48 �

0.2 Bakery.3proc ϕS2 12 27 SAT pes 1.31 0.15 1.46 �

0.3 Bakery.3proc ϕS3 20 27 UNSAT opt 2.86 4.87 7.73 �

1.1 Bakery.3proc ϕsym1 10 27 SAT pes 0.86 0.11 0.97 �

1.2 Bakery.3proc ϕsym2 10 27 SAT pes 0.76 0.17 0.93 �

1.3 Bakery.5proc ϕsym1 10 45 SAT pes 23.57 1.08 24.65 �

1.4 Bakery.5proc ϕsym2 10 45 SAT pes 29.92 1.43 31.35 �

2.1 SNARK-bug1 ϕlin 26 160 SAT pes 88.42 383.60 472.02 �

2.2 SNARK-bug2 ϕlin 40 160 SAT pes 718.09 779.76 1497.85 �

3.1 3-Thread incorrect ϕNI 57 31 SAT h-pes 19.56 46.66 66.22 �

3.2 3-Threadcorrect ϕNI 57 31 UNSAT h-opt 23.91 33.54 57.45 �

4.1 NRP : Tincorrect ϕfair 15 15 SAT h-pes 0.10 0.27 0.37 �

4.2 NRP : Tcorrect ϕfair 15 15 UNSAT h-opt 0.08 0.12 0.20 �

5.1 Shortest Path

(see Table 4)

sy
nt

he
si

s

5.2 Initial State
Robustness

6.1 Mutant ϕmut 8 6 SAT h-pes 1.40 0.35 1.75

Table 3: Performance of HyperQube, where column case# identifies the artifact, �

denotes satisfaction, and � denotes violation of the formula. AP∗ is the set of Boolean
variables encoding K.

HyperQube [34]
Formula grid size bound k |AP∗| genqbf [s] QuAbS [s] Total [s] gensmt [s] Z3 [s] Total[s]

ϕsp

102 20 12 1.30 0.57 1.87 8.31 0.33 8.64
202 40 14 4.53 12.16 16.69 124.66 6.41 131.06
402 80 16 36.04 35.75 71.79 1093.12 72.99 1166.11
602 120 16 105.82 120.84 226.66 4360.75 532.11 4892.86

ϕrb

102 20 12 1.40 0.35 1.75 11.14 0.45 11.59
202 40 14 15.92 15.32 31.14 49.59 2.67 52.26
402 80 16 63.16 20.13 83.29 216.16 19.81 235.97

Table 4: Path planning for robots and comparison to [34]. All cases use the halting
pessimistic semantics and QBF solver returns SAT, meaning successful path synthesis.

6 Related Work

There has been a lot of recent progress in automatically verifying [12,22–24] and
monitoring [1,6,7,20,21,26,33] HyperLTL specifications. HyperLTL is also sup-
ported by a growing set of tools, including the model checker MCHyper [12,24], the
satisfiability checkers EAHyper [19] and MGHyper [17], and the runtime monitor-
ing tool RVHyper [20]. The complexity of model checking for HyperLTL for tree-
shaped, acyclic, and general graphs was rigorously investigated in [2]. The first
algorithms for model checking HyperLTL and HyperCTL∗ using alternating au-
tomata were introduced in [24]. These techniques, however, were not able to deal
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in practice with alternating HyperLTL formulas in a fully automated fashion.
We also note that previous approaches that reduce model checking HyperLTL—
typically of formulas without quantifier alternations—to model checking LTL
can use BMC in the LTL model checking phase. However, this is a different
approach than the one presented here, as these approaches simply instruct the
model checker to use a BMC after the problem has been fully reduced to an
LTL model checking problem while we avoid this translation. These algorithms
were then extended to deal with hyperliveness and alternating formulas in [12]
by finding a winning strategy in ∀∃ games. In this paper, we take an alterna-
tive approach by reducing the model checking problem to QBF solving, which
is arguably more effective for finding bugs (in case a finite witness exists).

The satisfiability problem for HyperLTL is shown to be undecidable in general
but decidable for the ∃∗∀∗ fragment and for any fragment that includes a ∀∃
quantifier alternation [16]. The hierarchy of hyperlogics beyond HyperLTL were
studied in [11]. The synthesis problem for HyperLTL has been studied in [3] in
the form of program repair, in [4] in the form of controller synthesis, and in [18]
for the general case.

7 Conclusion and Future Work

We introduced the first bounded model checking (BMC) technique for verifi-
cation of hyperproperties expressed in HyperLTL. To this end, we proposed
four different semantics that ensure the soundness of inferring the outcome of
the model checking problem. To handle trace quantification in HyperLTL, we re-
duced the BMC problem to checking satisfiability of quantified Boolean formulas
(QBF). This is analogous to the reduction of BMC for LTL to the simple propo-
sitional satisfiability problem. We have introduced different classes of semantics,
beyond the pessimistic semantics common in LTL model checking, namely op-
timistic semantics that allow to infer full verification by observing only a finite
prefix and halting variations of these semantics that additionally exploit the ter-
mination of the execution, when available. Through a rich set of case studies, we
demonstrated the effectiveness and efficiency of our approach in verification of
information-flow properties, linearizability in concurrent data structures, path
planning in robotics, and fairness in non-repudiation protocols.

As for future work, our first step is to solve the loop condition problem. This
is necessary to establish completeness conditions for BMC and can help cover
even more examples efficiently. The application of QBF-based techniques in the
framework of abstraction/refinement is another unexplored area. Success of BMC
for hyperproperties inherently depends on effectiveness of QBF solvers. Even
though QBF solving is not as mature as SAT/SMT solving techniques, recent
breakthroughs on QBF have enabled the construction of our tool HyperQube, and
more progress in QBF solving will improve its efficiency.
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Abstract. We develop a framework for model checking infinite-state
systems by automatically augmenting them with auxiliary variables, en-
abling quantifier-free induction proofs for systems that would other-
wise require quantified invariants. We combine this mechanism with a
counterexample-guided abstraction refinement scheme for the theory of
arrays. Our framework can thus, in many cases, reduce inductive rea-
soning with quantifiers and arrays to quantifier-free and array-free rea-
soning. We evaluate the approach on a wide set of benchmarks from the
literature. The results show that our implementation often outperforms
state-of-the-art tools, demonstrating its practical potential.

1 Introduction

Model checking is a widely-used and highly-effective technique for automated
property checking. While model checking finite-state systems is a well-established
technique for hardware and software systems, model checking infinite-state sys-
tems is more challenging. One challenge, for example, is that proving properties
by induction over infinite-state systems often requires the use of universally
quantified invariants. While some automated reasoning tools can reason about
quantified formulas, such reasoning is typically not very robust. Furthermore,
just discovering these quantified invariants remains very challenging.

Previous work (e.g., [52]) has shown that prophecy variables can some-
times play the same role as universally quantified variables, making it possible
to transform a system that would require quantified reasoning into one that
does not. However, to the best of our knowledge, there has been no automatic
method for applying such transformations. In this paper, we introduce a tech-
nique we call counterexample-guided prophecy. During the refinement step of an
abstraction-refinement loop, our technique automatically introduces prophecy
variables, which both help with the refinement step and may also reduce the
need for quantified reasoning. We demonstrate the technique in the context of
model checking for infinite-state systems with arrays, a domain which is known
for requiring quantified reasoning. We show how a standard abstraction for arrays
can be augmented with counterexample-guided prophecy to obtain an algorithm
that reduces the model checking problem to quantifier-free, array-free reasoning.
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The paper makes the following contributions: i) we introduce an algorithm
called Prophecize which uses history and prophecy variables to target a spe-
cific term at a specific time step of an execution, producing a new transition
system that can effectively reason universally about that term; ii) we develop
an automatic abstraction-refinement procedure for arrays, which leverages the
Prophecize algorithm during the refinement step, and show that it is sound
and produces no false positives; iii) we develop a prototype implementation of
our technique; and iv) we evaluate our technique on four sets of model checking
benchmarks containing arrays and show that our implementation outperforms
state-of-the-art tools on a majority of the benchmark sets.

2 Background

We assume the standard many-sorted first-order logical setting with the usual
notions of signature, term, formula, and interpretation. A theory is a pair T =
(Σ, I) where Σ is a signature and I is a class of Σ-interpretations, the models of
T . A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. Given an interpretation M, a variable assignment
s over a set of variables X is a mapping that assigns each variable x ∈ X of sort
σ to an element of σM, denoted xs. We write M[s] for the interpretation that
is equivalent to M except that each variable x ∈ X is mapped to xs. Let x be
a variable, t a term, and φ a formula. We denote with φ{x �→ t} the formula
obtained by replacing every free occurrence of x in φ with t. We extend this
notation to sets of variables and terms in the usual way. If f and g are two
functions, we write f ◦g to mean functional composition, i.e., f ◦g(x) = f(g(x)).

Let TA be the standard theory of arrays [50] with extensionality, extended
with constant arrays. Concretely, we assume sorts for arrays, indices, and ele-
ments, and function symbols read , write, and constarr . Here and below, we use
a and b to refer to arrays, i and j to refer to array indices, and e and c to refer
to array elements, where c is also restricted to be an interpreted constant. The
theory contains the class of all interpretations satisfying the following axioms:

∀ a, i, j, e. i = j =⇒ read(write(a, j , e), i) = e ∧
i �= j =⇒ read(write(a, j , e), i) = read(a, i)

(write)

∀ a, b. (∀ i. read(a, i) = read(b, i)) =⇒ a = b (ext)

∀ i. read(constarr(c), i) = c (const)

Symbolic Transition Systems and Model Checking. For generality, as-
sume a background theory T with signature Σ. We will assume that all terms
and formulas are Σ-terms and Σ-formulas, that entailment is entailment mod-
ulo T , and interpretations are T -interpretations. A symbolic transition system
(STS) S is a tuple S := 〈X, I, T 〉, where X is a finite set of state variables, I(X)
is a formula denoting the initial states of the system, and T (X,X ′) is a formula
expressing a transition relation. Here, X ′ is the set obtained by replacing each
variable x ∈ X with a new variable x′ of the same sort. Let prime(x) = x′ be the
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bijection corresponding to this replacement. We say that a variable x is frozen
if T |= x′ = x. When the state variables are obvious, we will often drop X.

A state s of S is a variable assignment over X. An execution of S of length
k is a pair 〈M, π〉, where M is an interpretation and π := s0, s1, . . . , sk−1 is a
path of length k, a sequence of states such that M[s0] |= I(X) and M[si][si+1 ◦
prime−1] |= T (X,X ′) for all 0 ≤ i < k − 1. When reasoning about paths, it is
often convenient to have multiple copies of the state variables X. We use X@n to
denote the set of variables obtained by replacing each variable x ∈ X with a new
variable called x@n of the same sort. We refer to these as timed variables. A state
s is reachable in S if it appears in a path of some execution of S. We say that a
formula P (X) is an invariant of S, denoted by S |= P (X), if P (X) is satisfied
in every reachable state of S (i.e., for every execution 〈M, π〉, M[s] |= P (X) for
each s in π). The invariant checking problem is, given S and P (X), to determine
if S |= P (X). A counterexample is an execution 〈M, π〉 of S of length k such that
M[sk−1] �|= P (X). If I(X) |= φ(X) and φ(X) ∧ T (X,X ′) |= φ(X ′), then φ(X)
is an inductive invariant. Every inductive invariant is an invariant (by induction
over path length). In this paper we focus on model checking problems where I,
T and P are quantifier-free. However, a quantified inductive invariant might still
be necessary to prove a property of the system.

Bounded Model Checking (BMC) is a bug-finding technique which attempts
to find a counterexample for a property, P (X), of length k for some finite k [9]. A
single BMC query at bound k for an invariant property uses a constraint solver
to check the satisfiability of the following formula: BMC(S, P, k) := I(X@0) ∧
(
∧k−1
i=0 T (X@i,X@(i+1)))∧¬P (X@k). If the query is satisfiable, there is a bug.

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR
is a general technique in which a difficult conjecture is tackled iteratively [44].
Algorithm 1 shows a simple CEGAR loop for checking an invariant P for an STS
S. It is parameterized by three functions. The Abstract function produces an
initial abstraction of the problem. It must satisfy the contract that if 〈Ŝ, P̂ 〉 =
Abstract(S, P ), then Ŝ |= P̂ =⇒ S |= P . The next function is the Prove
function. This can be any (unbounded) model-checking algorithm that can return
counterexamples. It checks whether a given property P is an invariant of a
given STS S. If it is, it returns with proven set to true. Otherwise, it returns a
bound k at which a counterexample exists. The final function is Refine. It takes
the abstracted STS and property together with a bound k at which a known
counterexample for the abstract STS exists. Its job is to refine the abstraction
until there is no longer a counterexample of size k. If it succeeds, it returns the
new STS and property. It fails if there is an actual counterexample of size k for
the concrete system. In this case, it sets the return value refined to false.

Auxiliary variables. We finish this section with relevant background on auxil-
iary variables, a crucial part of the refinement step described in Sec. 4. Auxiliary
variables are new variables added to the system which do not influence its be-
havior (i.e., the reduct to the old set of variables of any reachable state in the
new system is a reachable state in the old system), but may assist in proofs.
There are two main categories of auxiliary variables we consider: history and
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Algorithm 1 STS-CEGAR(S := 〈X, I, T 〉, P )

1: 〈〈X̂, Î, T̂ 〉, P̂ 〉 ← Abstract(S, P )
2: while true do
3: 〈k, proven〉 ← Prove(〈X̂, Î, T̂ 〉, P̂ ) // try to prove
4: if proven then return true // property proved

5: 〈〈X̂, Î, T̂ 〉, P̂ , refined〉 ← Refine(〈X̂, Î, T̂ 〉, P̂ , k) // try to refine
6: if ¬refined then return false // found counterexample
7: end while

prophecy. History variables, also known as ghost state, preserve a value, mak-
ing its past value available in future states. Prophecy variables are the dual of
history variables and provide a way to refer to a value that occurs in a future
state. Abadi and Lamport formally characterized soundness conditions for the
introduction of history and prophecy variables [1]. Here, we consider a simple,
structured form of history variables.

Definition 1. Let S = 〈X, I, T 〉 be an STS, t a term whose free variables
are in X, and n > 0, then Delay(S, t, n) returns a new STS and variable

〈〈Xh, Ih, Th〉, hn
t 〉, where Xh = X �{h1

t , . . . , h
n
t }, Ih = I, and Th = T ∪{h1

t
′
=

t} ∪
⋃n
i=2{hi

t
′
= hi−1

t }.

The Delay operator makes the current value of a term t available for the next
n states in a path. This is accomplished by adding n new history variables and
creating an assignment chain that passes the value to the next history variable
at each state. Thus, hk

t contains the value that t had k states ago. The initial
value of each history variable is unconstrained.

Theorem 1. Let S = 〈X, I, T 〉 be an STS, P a property, and Delay(S, v, n) =
〈Sh, hn

v 〉. Then S |= P iff Sh |= P .

We refer to [1] for a general proof which subsumes Theorem 1. In contrast to the
general approach for history variables, we use a version of prophecy that only
requires a single frozen variable. The motivation for this is that a frozen variable
can be used in place of a universal quantifier, as the following theorem adapted
from [52] shows.

Theorem 2. Let S = 〈X, I, T 〉 be an STS, x a variable in formula P (X), and
v a fresh variable (i.e., not in X or X ′). Let Sp = 〈X ∪ {v}, I, T ∪ {v′ = v}〉.
Then S |= ∀x. P (X) iff Sp |= P (X){x �→ v}.

Theorem 2 shows that a universally quantified variable in an invariant can be
replaced with a fresh symbol in a process similar to skolemization. The intuition
is as follows. The frozen variable has the same value in all states, but it is
uninitialized by I. Thus, for each path in S, there is a corresponding path (i.e.,
identical except at v) in Sp for every possible value of v. This proliferation of
paths plays the same role as the quantified variable in P . We mention here one
more theorem from [52]. This one allows us to introduce a universal quantifier.
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Algorithm 2 Prophecize(〈X, I, T 〉, P (X), t, n)

1: if n = 0 then
2: return 〈〈X � {pt}, I, T ∪ {p′t = pt}〉, pt = t =⇒ P (X), pt〉
3: else
4: 〈〈Xh, Ih, Th〉, hn

t 〉 := Delay(〈X, I, T 〉, t, n)
5: return 〈〈Xh � {pnt }, I, T ∪ {pn′

t = pnt }〉, pt = hn
t =⇒ P (X), pnt 〉

6: end if

Theorem 3. Let S = 〈X, I, T 〉 be an STS, P (X) a formula, and t a term.
Then, S |= P (X) iff S |= ∀ y.(y = t =⇒ P (X)), where y is not free in P (X).

Theorems 2 and 3 are special cases of Theorems 3 and 4 of [52]. The original
theorems handle the more general case where P (X) can be a temporal formula.

3 Using Auxiliary Variables to Assist Induction

We can use Theorem 3 followed by Theorem 2 to introduce frozen prophecy
variables that predict the value of a term t when the property P is being checked.
We refer to t as the prophecy target and the process as universal prophecy. If we
also use Delay, we can target a term at some finite number of steps before the
property is checked. This is captured by Algorithm 2, which takes a transition
system, property P (X), term t, and n ≥ 0. If n = 0, it introduces a universal
prophecy variable for t. Otherwise, it first introduces history variables for t and
then applies universal prophecy to the delayed t. In either case it returns the
augmented system, augmented property, and the prophecy variable.

We will use the STS shown in Fig. 1(a) as a running example throughout
the paper (it is inspired by the hardware example from [10]). We assume the
background theory T includes integer arithmetic and arrays of integers indexed
by integers. The variables in this STS include an array and four integer variables,
representing the read index, write index, read data, and write data, respectively.
The system starts with an array of all zeros. At every step, if the write data is
less than 200, it writes that data to the array at the write index. Otherwise, the
array stays the same. Additionally, the read data is updated with the current
value of a at ir . This effectively introduces a one-step delay between when the
value is read from a and when the value is present in dr. The property is that
dr < 200. This property is clearly true, but it is not straightforward to prove
with standard model checking techniques because it is not inductive. Note that
it is also not k-inductive for any k [59]. The primary issue is that it does not
constrain the value of a at all, so in an inductive proof, the value of a could be
anything in the induction hypothesis.

One way to prove the property is to strengthen it with the quantified invari-
ant: ∀ i. read(a, i) < 200. Remarkably, observe that by augmenting the system
using Prophecize, it is possible to prove the property using only a quantifier-
free invariant. In this case, the relevant prophecy target is the value of ir one
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I := a = constarr(0 ) ∧ dr < 200

T := a′ = ite(dw < 200,

write(a, iw , dw ), a)∧
d ′
r = read(a, ir )

P := dr < 200

(a)

I := a = constarr(0 ) ∧ dr < 200

T := a′ = ite(dw < 200,

write(a, iw , dw ), a)∧

d ′
r =read(a, ir ) ∧ p1

′
ir = p1ir ∧ h1

ir

′
= ir

P := p1ir = h1
ir =⇒ dr < 200

(b)

Fig. 1: (a) Running example. (b) Running example with prophecy variable.

step before checking the property. We run Prophecize(〈X, I, T 〉, P, ir, 1) and it
returns the system and property shown in Fig. 1(b), along with the prophecy
variable p1ir . This augmented system has a simple, quantifier-free invariant which
can be used to strengthen the property, making it inductive: read(a, pir ) < 200.
This formula holds in the initial state because of the constant array, and if we
start in a state where it holds, it still holds after a transition.

Notice that the invariant learned over the prophecy variable has the same
form as the original quantified invariant. However, we have instantiated that uni-
versal quantifier with a fresh, frozen prophecy variable. Intuitively, the prophecy
variable captures a proof by contradiction: assume the property does not hold,
consider the value of ir one step before the first failure of the property, and then
use this value to show the property holds. This example shows that auxiliary
variables can be used to transform an STS without a quantifier-free inductive
invariant into an STS with one. However, it is not yet clear how to identify good
targets for history and prophecy variables. In the next section, we show how this
can be done as part of an abstraction refinement scheme for symbolic transition
systems over the theory of arrays.

4 Abstraction Refinement for Arrays

We now introduce our main contribution. Given a background theory TB and
a model checking algorithm for STS’s over TB , we use an instantiation of the
CEGAR loop in Algorithm 1 to check properties of STS’s over the theory that
combines TB and the theory of arrays, TA. The key idea is to abstract all array
operators and then add array lemmas as needed during refinement.

Abstract and Prove. We use a standard abstraction for the theory of arrays,
which we denote Abstract-Arrays. Every array sort is replaced with an unin-
terpreted sort, and the array variables are abstracted accordingly. Each constant
array is replaced by a fresh abstract array variable, which is then constrained to
be frozen (because constant arrays do not change over time). Additionally, we
replace the read and write array operations with uninterpreted functions. Note
that if the system contains multiple array sorts, we need to introduce a separate
read and write function for each uninterpreted abstract array sort. Using unin-
terpreted sorts and functions for abstracting arrays is a common technique in
Satisfiability Modulo Theories [7] (SMT) solvers [32]. Intuitively, our initial ab-
straction starts with memoryless arrays. We then incrementally refine the arrays’
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Î := â = ̂constarr0 ∧ dr < 200

T̂ := â′ = ite(dw < 200, ŵrite(â, iw , dw), â)∧

d ′
r = r̂ead(â, ir ) ∧ ̂constarr0

′
= ̂constarr0

P̂ := dr < 200

Fig. 2: Result of calling Abstract on the example from Fig. 1(a)

memory as needed. Fig. 2 shows the result of running Abstract-Arrays on the
example from Fig. 1(a). Prove can be instantiated with any (unbounded) model
checker that can accept expressions over the background theory TB combined
with the theory of uninterpreted functions. In particular, due to our abstraction,
the model checker does not need to support the theory of arrays.

Refine. Here, we explain the refinement approach for our array abstraction. At
a high level, we solve a BMC problem over the abstract STS at bound k. We
then look for violations of array axioms in the returned counterexample, and
instantiate each violated axiom (this is essentially the same as the lazy array
axiom instantiation approach used in SMT solvers [13,14,17,27]). We then lift
these axioms to the STS-level by modifying the STS. It is this step that may
require introducing auxiliary variables. The details are shown in Algorithm 3.

We start by computing a set I of index terms with ComputeIndices – this
set is used in the lazy axiom instantiation step below. We add to I every

term that appears in a r̂ead or ŵrite operation in BMC(Ŝ, P̂ , k). We also
add a witness index for every array equality - the witness corresponds to a
skolemized existential variable in the contrapositive of axiom (ext). For sound-
ness, we must add an extra variable λσ for each index sort σ and constrain
it to be different from all the other index variables of the same sort (this is
based on the approach in [13]). Intuitively, this variable represents an arbi-
trary index different from those mentioned in the STS. We assume that the
index sorts are from an infinite domain so that a distinct element is guaran-
teed. For simplicity of presentation, we also assume from now on that there
is only a single index sort (e.g. integers). Otherwise, I must be partitioned
by sort. For the abstract STS in Fig. 2, with k = 1, the index set would be
I := {ir@0, iw@0, w0@0, w1@0, λInt@0, ir@1, iw@1, w0@1, w1@1, λInt@1}, where
w0 and w1 are witness indices.

After computing indices, the algorithm enters the main loop. We first check
the BMC(Ŝ, P̂ , k) query. The result ρ is either a counterexample, or the dis-
tinguished value ⊥, indicating that the query is unsatisfiable. If it is the latter,
then we return the refined STS and property, as the property now holds on the
STS up to bound k. Otherwise, we continue. The next step (line 5) is to find
violations of array axioms in the execution ρ based on the index set I.

CheckArrayAxioms takes two arguments, a counterexample and an index set,
and returns instantiated array axioms that do not hold over the counterexample.

This works as follows. We first look for occurrences of ŵrite in the BMC formula.
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Algorithm 3 Refine-Arrays (Ŝ := 〈X̂, Î, T̂ 〉, P̂ , k)
1: I ← ComputeIndices(Ŝ, P̂ , k)
2: loop
3: ρ ← BMC(Ŝ, P̂ , k)

4: if ρ = ⊥ then return 〈〈X̂, Î, T̂ 〉, P̂ , true〉 // Property holds up to bound k
5: 〈ca,nca〉 ← CheckArrayAxioms(ρ, I)
6: if ca = ∅ ∧ nca = ∅ then return 〈〈X̂, Î, T̂ 〉, P̂ , false〉 // True counterexample
7: // Go through non-consecutive array axiom instantiations
8: for 〈ax, i@ni〉 ∈ nca do
9: let nmin := min(τ(ax)\{ni})
10: 〈〈Xp, Ip, T p〉, P p, pk−ni

i 〉 ← Prophecize(〈X̂, Î, T̂ 〉, P̂ , i, k − ni)
11: axc ← ax{i@ni �→ pk−ni

i @nmin}
12: ca ← ca � {axc@nmin} // add consecutive version of axiom
13: I ← I � {pk−ni

i @0, . . . , pk−ni
i @k}

14: X̂ ← Xp; Î ← Ip; T̂ ← T p; P̂ ← P p

15: end for
16: // Go through consecutive array axiom instantiations
17: for ax ∈ ca do
18: let nmin := min(τ(ax)), nmax := max (τ(ax))
19: assert(nmax = nmin ∨ nmax = nmin + 1)
20: if k = 0 then
21: Î ← Î ∧ ax{X@nmin �→ X}
22: else if nmin = nmax then
23: T̂ ← T̂ ∧ ax{X@nmin �→ X} ∧ ax{X@nmin �→ X ′}
24: else
25: T̂ ← T̂ ∧ ax{X@nmin �→ X}{X@(nmin + 1) �→ X ′}
26: end if
27: end for
28: end loop

For each such occurrence, we instantiate the (write) axiom so that the ŵrite

term in the axiom matches the term in the formula (i.e., we use the ŵrite term
as a trigger). This instantiates all quantified variables except for i. We then
instantiate i once for each variable in the index set. We evaluate each of the
instantiated axioms using the values from the counterexample and keep those
instantiations that reduce to false. We do the same thing for the (const) axiom,
using each constant array term in the BMC formula as a trigger. Finally, for each
array equality a@m = b@n in the BMC formula, we check an instantiation of the
contrapositive of (ext): a@m �= b@n → read(a@m,wi@n) �= read(b@n,wi@n).
We add instantiated formulas that do not hold in ρ to the set of violated axioms.

CheckArrayAxioms sorts the collected axiom instantiations into two sets
based on which timed variables they contain. The consecutive set contains for-
mulas with timed variables whose timing differs by at most one; whereas the
timed variables in the formulas contained in the non-consecutive set may differ
by more. Formally, let τ be a function which takes a single timed variable and
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returns its time (e.g., τ(i@2) = 2). We lift this to formulas by having τ(φ) re-
turn the set of all time-steps for variables in φ. A formula φ is consecutive iff
max (τ(φ))−min(τ(φ)) ≤ 1. Note that instantiations of (ext) are consecutive by
construction. Additionally, because constant arrays have the same value in all
time steps, we can always choose a representative time step for instantiations of
(const) that results in a consecutive formula. However, instantiations of (write)
may be non-consecutive, because the variable from the index set may be from
a time step that is different from that of the trigger term. CheckArrayAxioms
returns the pair 〈ca,nca〉, where ca is a set of consecutive axiom instantiations
and nca is a set of pairs – each of which contains a non-consecutive axiom in-
stantiation and the index-set variable that was used to create that instantiation.

At line 6, we check if the returned sets are empty. If so, then there are no array
axiom violations and ρ is a concrete counterexample. In this case, the system,
property, and false are returned. Otherwise, we process the two sets. In lines
8-15, we process the non-consecutive formulas. Given a non-consecutive formula
ax together with its index-set variable i@ni, we first compute the minimum time-
step of the axiom’s other variables, nmin. We then use the Prophecize method
to create a prophecy variable pk−ni

i , that is effectively a way to refer to i@ni at
time-step nmin (line 10). This allows us to create a consecutive formula axc that
is semantically equivalent to ax (line 11). This new consecutive formula is added
to ca in line 12, and in line 13 the introduced prophecy variables (one for each
time-step) are added to the index set. Then, line 14 updates the abstraction.

At line 17, we are left with a set of consecutive formulas to process. For each
consecutive formula ax, we compute the minimum and maximum time-step of
its variables (line 18), which must differ by no more than 1 (line 19). There are
three cases to consider: i) when k = 0, the counterexample consists of only the
initial state–we thus refine the initial state by adding the untimed version of ax
to Î (line 21); ii) if ax contains only variables from a single time step, then we
add the untimed version of ax as a constraint for both X and X ′, ensuring that
it will hold in every state (line 23); iii) finally, if ax contains variables from two
adjacent time steps, we can translate this directly into a transition formula to
be added to T̂ (line 25). The loop then repeats with the newly refined STS.

Example. Consider again the example from Fig. 2, and suppose Refine-Arrays

is called on Ŝ and P̂ with k = 3. At this unrolling, one possible abstract coun-
terexample violates the following nonconsecutive axiom instantiation:

(ir@2 = iw@0 =⇒ r̂ead(ŵrite(â@0, iw@0, dw@0), ir@2) = dw@0) ∧

(ir@2 �= iw@0 =⇒ r̂ead(ŵrite(â@0, iw@0, dw@0), ir@2) = r̂ead(â@0, ir@2))

Calling Prophecize(Ŝ, P̂ , ir , 1) returns the new STS 〈〈X̂�{h1
ir
, p1ir }, Î, T̂ ∧h

1 ′
ir

=

ir∧p1
′

ir
= p1ir 〉 and the new property p1ir = h1

ir
=⇒ dr < 200. The history variable

h1
ir
makes the previous value of ir available at each time-step, and the prophecy

variable p1ir mimics a universally quantified variable. We substitute p1ir@0 for
ir@2 to obtain a consecutive formula. Its untimed version (and a primed version)
is added to the transition relation.



122 M. Mann et al.

We stress that processing nonconsecutive axioms using Prophecize is how
we automatically discover the universal prophecy variable p1ir , and it is exactly
the universal prophecy variable that was needed in Sec. 3 to prove correctness of
the running example. An alternative approach could avoid nonconsecutive ax-
ioms using Craig interpolants [26] so that only consecutive axioms are found [15].
However, quantifier-free interpolants are not guaranteed to exist for the standard
theory of arrays, and the auxiliary variables found using nonconsecutive axioms
are needed to improve the chances of finding a quantifier-free inductive invariant.

It is important to have enough prophecy variables to assist in constructing
inductive invariants. We found that we could often obtain a larger, richer set of
prophecy variables by weakening our array abstraction. We do this by replacing
equality between arrays by an uninterpreted predicate, and also checking the con-
gruence axiom, the converse of (ext). Since more axioms are checked, there are
more opportunities to introduce auxiliary variables. We call this weak abstrac-
tion (WA) as opposed to strong abstraction (SA), which uses regular equality
between abstract arrays and guarantees congruence through UF axioms.

On the other hand, an excessive number of unnecessary auxiliary variables
could overwhelm the Prove step. Thus, an improvement not shown in Algorithm
3 is to check consecutive axioms first and only add nonconsecutive ones when
necessary. This is the motivation behind the custom array solver implementation
CheckArrayAxioms based on [13]. In principle, we could have used an SMT solver
to find array axioms, but it would give no preference to consecutive axioms. Sim-
ilarly, we could overwhelm the algorithm with unnecessary consecutive axioms.
CheckArrayAxioms can still produce hundreds or even thousands of (consecu-
tive) axiom instantiations. Once these are lifted to the transition system, some
may be redundant. To mitigate this issue, when the BMC check returns ⊥ and
we are about to return (line 4), we keep only axioms that appear in the unsat
core of the BMC formula [22].

Correctness. We now state two important correctness theorems. Note that here
and below, proofs are omitted due to space constraints. An extended version with
proofs is available at: https://arxiv.org/abs/2101.06825.

Theorem 4. Algorithm 1, instantiated with Abstract-Arrays, a model-check-
er Prove as described above, and Refine-Arrays is sound.

Theorem 5. If Algorithm 1, instantiated with Abstract-Arrays, Prove as
described above, and Refine-Arrays, returns false, there is a concrete coun-
terexample of length k in the concrete transition system.

5 Expressiveness and Limitations

We now address the expressiveness of counterexample-guided prophecy with
regard to the introduction of auxiliary variables. For simplicity, we ignore the
array abstraction, relying on the correctness theorems. An inductive invariant
using auxiliary variables can be converted to one without auxiliary variables

https://arxiv.org/abs/2101.06825
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by first universally quantifying over the prophecy variables, then existentially
quantifying over the history variables. The details are captured by this theorem:

Theorem 6. Let S := 〈X, I, T 〉 be an STS, and P (X) be a property such
that S |= P (X). Let H be the set of history variables, and P be the set of
prophecy variables introduced by Refine-Arrays. Let S̃ := 〈X ∪ H ∪ P, I, T̃ 〉
and P̃ := (

∧
p∈P p = t̃(p)) =⇒ P (X) be the system and property with auxil-

iary variables. The function t̃ maps prophecy variables to their target term from
Prophecize. If Inv(X,H,P) is an inductive invariant for S̃ and entails P̃ , then
∃H∀PInv(X,H,P) is an inductive invariant for S and entails P , where ∃H and
∀P bind each variable in the set with the corresponding quantifier.

Although the invariants found using counterexample-guided prophecy corre-
spond to ∃∀ invariants over the unmodified system, we must acknowledge that
the existential power is very weak. The existential quantifier is only used to re-
move history variables. While history variables can certainly be employed for
existential power in an invariant [55], these specific history variables are intro-
duced solely to target a term for prophecy and only save a term for some fixed,
finite number of steps. Thus, we do not expect to gain much existential power in
finding invariants on practical problems. This use of history and prophecy vari-
ables can be thought of as quantifier instantiation at the model checking level,
where the instantiation semantically uses a term appearing in an execution of
the system. Consequently, our technique performs well on systems where there is
only a small number of instantiations needed over terms that are not too distant
in time from a potential property violation that must be disproved (i.e., not
many history variables are required). This appears to be a common situation for
invariant-finding benchmarks, as we show empirically in Sec. 6.

Limitations. If our CEGAR loop terminates, it either terminates with a proof or
with a true counterexample. However, it is possible that the procedure may not
terminate. In particular, while we can always refine the abstraction for a given
bound k, there is no guarantee that this will eventually result in a refinement
that rules out all spurious counterexamples (of any length).

This failure mode occurs, for instance, when no finite number of instantiations
can capture all the relevant indices of the array. Consider an example system
with I := a = constarr(0 ), T := a′ = write(a, i0 , read(a, i1 ) + 1 ), and P :=
read(a, ir ) ≥ 0. The array a is initialized with 0 at every index, and at every
step, a is updated at a single index by reading from an arbitrary index of a and
adding 1 to the result. Note that the index variables are unconstrained: they
can range over the integers freely at each time step. Then, the property is that
every element of a is positive. This property clearly holds because of a quantified
invariant maintained by the system: ∀i . read(a, i) ≥ 0.

However, the initial abstraction is a memoryless array which can easily vi-
olate the property by returning negative values from reads. Since the array is
updated in each step at an arbitrary index based on a read from another arbi-
trary index, no finite number of prophecy variables can capture all the relevant
indices. It will successively rule out longer finite spurious counterexamples, but
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will never be refined enough to prove the property unboundedly. We believe that
this limitation can be addressed in future work, perhaps by adapting techniques
from [52]. However, it is not yet clear how to automate that process. Note that
an even simpler system which does not add 1 in the update would already be
problematic; however, for that case, it is straightforward to extend our algorithm
to have it learn that the array does not change.

A related, but less fundamental issue is that the index set might not contain
the best choice of targets for prophecy. While the index set is sufficient for ruling
out bounded counterexamples, it is possible there is a better target for universal
prophecy that does not appear in the index set. However, based on the evaluation
in Sec. 6, it appears that the index set does work well in practice.

6 Experiments

Implementation. In this section, we evaluate a prototype implementation
of counterexample-guided prophecy, which instantiates Prove with ic3ia [34]
(downloaded Apr 27, 2020), an open-source C++ implementation of IC3 via
Implicit Predicate Abstraction (IC3IA) [20], which is itself a CEGAR loop that
uses implicit predicate abstraction to perform IC3 [12] on infinite-state systems
and uses interpolants to find new predicates. ic3ia uses MathSAT [21] (version
5.6.3) as the backend SMT solver and interpolant producer. We call our proto-
type prophic3 [48]. In our implementation, we also include a simple abstraction-
refinement wrapper which abstracts large constant integers and refines them with
the actual values if that fails. This is especially useful for dealing with software
benchmarks with large constant loop bounds. Otherwise, the system might need
to be unrolled to a very large bound to reach an abstract counterexample.

Setup. We evaluate our tool against three state-of-the-art tools for inferring uni-
versally quantified invariants over linear arithmetic and arrays: freqhorn, quic3,
and gspacer. All these tools are Constrained Horn Clause (CHC) solvers built
on Z3 [54]. The algorithm implemented in freqhorn [28] is a syntax-guided syn-
thesis [4] approach for inferring universally quantified invariants over arrays [29].
quic3 is built on Spacer [40], the default CHC engine in Z3, and extends IC3
over linear arithmetic and arrays to allow universally quantified frames (frames
are candidates for inductive invariants maintained by the IC3 algorithm). It also
maintains a set of quantifier instantiations which are provided to the underly-
ing SMT solver. quic3 was recently incorporated into Z3. We used Z3 version
4.8.9 with parameters suggested by the quic3 authors.4 Finally, gspacer is an
extension of Spacer which adds three new inference rules for improving local
generalizations with global guidance. While this last technique does not specifi-
cally target universally quantified invariants, it can be used along with the quic3
options in Spacer and potentially executes a much different search. The gspacer

4 fp.spacer.q3.use qgen=true fp.spacer.ground pobs=false

fp.spacer.mbqi=false fp.spacer.use euf gen=true
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group freqhorn (81) quic3 (42) vizel (32) chc-comp (501) tool total

prophic3 67/4 42/0 20/3 1 43/159 59 172/166 60

prophic3-SA 62/4 37/0 19/3 1 36/160 67 154/167 68

freqhorn 65/4 0/0 0/1 0 5/46 1 70/51 1

quic3 55/4 34/0 15/4 1 74/137 75 178/145 76

gspacer 35/5 27/0 18/4 1 66/138 94 146/147 95

ic3ia 0/4 0/0 0/3 1 0/158 59 0/165 60

spacer 0/5 0/0 0/4 1 0/134 77 0/143 78

Fig. 3: Experimental results. The safe results are reported as # Q / # QF. The second
column per group shows unsafe results, the first two groups had only safe benchmarks.

submission [43] won the arrays category in CHC-COMP 2020 [58]. We also in-
clude ic3ia and the default configuration of Spacer in our results, neither of
which can produce universally quantified invariants. Our default configuration
of prophic3 uses weak abstraction, but we also include a version running strong
abstraction (prophic3-SA) in our experiments. We chose to build our prototype
on ic3ia instead of Spacer, in part because we needed uninterpreted functions
for our array abstraction, and Spacer does not handle them in a straightforward
way, due to the semantics of CHC [11].

We compare these solvers on four benchmark sets: i) freqhorn - benchmarks
from the freqhorn paper [29]; ii) quic3 - benchmarks from the quic3 paper [37]
(these were C programs from SV-COMP [8] that were modified to require uni-
versally quantified invariants); iii) vizel - additional benchmarks provided to us
by the authors of [37]; and iv) chc-comp-2020 - the array category benchmarks
of CHC-COMP 2020 [57]. Additionally, we sort the benchmarks into three cate-
gories: 1) Q - safe benchmarks solved by some tool supporting quantified invari-
ants but none of the solvers that do not; 2) QF - those solved by at least one of
the tools that do not support quantified invariants, plus any unsafe benchmarks;
and 3) U - unsolved benchmarks. Because not all of the benchmark sets were
guaranteed to require quantifiers, this is an approximation of which benchmarks
required quantified reasoning to prove safe.

Both prophic3 and ic3ia take a transition system and property specified
in the Verification Modulo Theories (VMT) format [23], which is a transition
system format built on SMT-LIB [6]. All other solvers read the CHC format.
We translated benchmark sets i and iv from CHC to VMT using the horn2vmt
program which is distributed with ic3ia. For benchmark sets ii and iii, we
started with the C programs and generated both VMT and CHC using Kratos2
(an updated version of Kratos [19]). We ran all experiments on a 3.5GHz Intel
Xeon E5-2637 v4 CPU with a timeout of 2 hours and a memory limit of 32Gb.
An artifact for reproducing these results is publicly available [49,38].

Results. The results are shown in Fig. 3. We first observe that prophic3 solves
the most benchmarks in each of the first three sets, both overall and in category
Q. The quic3 (and most of the freqhorn) benchmarks require quantified invari-
ants; thus, ic3ia and Spacer cannot solve any of them. On solved instances in
the Q category, prophic3 introduced an average of 1.2 prophecy variables and a
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median of 1. This makes sense because, upon inspection, most benchmarks only
require one quantifier and we are careful to only introduce prophecy variables
when needed. On benchmarks it cannot solve, ic3ia either times out or fails
to compute an interpolant. This is expected because quantifier-free interpolants
are not guaranteed over the standard theory of arrays. Even without arrays, it is
also possible for prophic3 to fail to compute an interpolant, because MathSAT’s
interpolation procedure is incomplete for combinations with non-convex theories
such as integers. However, this was rarely observed in practice.

We also observe that prophic3-SA solves fewer benchmarks in the first three
sets. However, it is faster on commonly solved instances. This makes sense be-
cause it needs to check fewer axioms (it uses built-in equality and thus does not
check equality axioms). We suspect that it solves fewer benchmarks in the first
three sets because it was unable to find the right prophecy variable. For exam-
ple, for the standard find true-unreach-call ground benchmark in the quic3
set, a prophecy variable is needed to find a quantifier-free invariant. However,
because of the stronger reasoning power of SA, the system can be sufficiently re-
fined without introducing auxiliary variables. ic3ia is then unable to prove the
property on the resulting system without the prophecy variable, instead timing
out. Interestingly, notice that prophic3-SA solves the most benchmarks in the
QF category overall, suggesting that there are practical performance benefits of
the CEGAR approach even when quantified reasoning is not needed.

There was one discrepancy on the CHC-COMP 2020 benchmarks: gspacer
disagrees with quic3, Spacer, and prophic3 on chc-LIA-lin-arrays 381. This is
the same discrepancy mentioned in the CHC-COMP 2020 report [58]. prophic3
proved this benchmark safe without introducing any auxiliary variables and we
used both CVC4 [5] and MathSAT to verify that the solution was indeed an in-
ductive invariant for the concrete system. We are confident that this benchmark
is safe and thus do not count it as a solved instance for gspacer.

Some of the tools are sensitive to the encoding. Since it is syntax-guided,
freqhorn is sensitive to the encoding syntax. The freqhorn benchmarks were
hand-written to be syntactically simple, an encoding which is also good for
prophic3. However, prophic3 can be sensitive to other encodings. For example,
the quic3 benchmarks are also included in the chc-comp-2020 set, but trans-
lated by SeaHorn [35] instead of Kratos2. prophic3 does much worse on the
SeaHorn encoding (6 vs 42). We stress that the CHC solvers performed similarly
on both encodings, so we did not compare against disadvantaged solvers. In fact,
quic3 and freqhorn solved exactly the same number in both translations. How-
ever, gspacer solved fewer using the Kratos2 encoding (27 vs 34). Importantly,
prophic3 on the Kratos2 encoding solved more benchmarks than any other tool
and encoding pair.

There are two main reasons why prophic3 fails on the SeaHorn encodings.
First, due to the LLVM-based encoding, some of the SeaHorn translations have
index sets which are insufficient for finding the right prophecy variable. This has
to do with the memory encoding and the way that fresh variables and guards
are used. SeaHorn also splits memories into ranges which is problematic for our
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technique. Second, the SeaHorn translation is optimized for CHC, not for transi-
tion systems. For example, it introduces many new variables, and the argument
order between different predicates may not match. In the transition system, this
essentially has the effect of interchanging the values of variables between each
loop. SeaHorn has options that address some of these issues, and these helped
prophic3 solve more benchmarks, but none of these options produce encod-
ings that work as well as the Kratos2 encodings. The difference between good
CHC and transition system encodings could also explain the overall difference
in performance on chc-comp-2020 benchmarks, most of which were translated
by SeaHorn. Both of these issues are practical, not fundamental, and we believe
they can be resolved with additional engineering effort.

7 Related Work

There are two important related approaches for abstracting arrays in horn clauses
[53] and memories in hardware [10]. Both make a similar observation that ar-
rays can be abstracted by modifying the property to maintain values at only a
finite set of symbolic indices. We differ from the former by using a refinement
loop that automatically adjusts the precision and targets relevant indices. The
latter is also a refinement loop that adjusts precision, but differs in the domain
and the refinement approach, which uses a multiplexer tree. We differ from both
approaches in our use of array axioms to find and add auxiliary variables.

A similar lazy array axiom instantiation technique is proposed in [15]. How-
ever, their technique utilizes interpolants for finding violated axioms and cannot
infer universally quantified invariants. The work of [18] also uses lazy axiom-
based refinement, abstracting non-linear arithmetic with uninterpreted func-
tions. We differ in the domain and the use of auxiliary variables. In [55], prophecy
variables defined by temporal logic formulas are used for liveness and temporal
proofs, with the primary goal of increasing the power of a temporal proof sys-
tem. In contrast, we use prophecy variables here for a different purpose, and we
also find them automatically. The work of [24] includes an approach for synthe-
sizing auxiliary variables for modular verification of concurrent programs. Our
approach differs significantly in the domain and details.

There is a substantial body of work on automated quantified invariant gen-
eration for arrays using first-order theorem provers [42,16,41,51]. These include
extensions to saturation-based theorem proving to analyze specific kinds of pred-
icates, and an extension to paramodulation-based theorem proving to produce
universally quantified interpolants. In [46], the authors propose an abstract in-
terpretation approach to synthesize universally quantified array invariants. Our
method also uses abstraction, but in a CEGAR framework.

Two other notable approaches capable of proving properties over arrays that
require invariants with alternating quantifiers are [30,56]. The former proposes
trace logic for extending first-order theorem provers to software verification, and
the latter takes a counterexample-guided inductive synthesis approach. Our ap-
proach takes a model checking perspective and differs significantly in the details.
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While these approaches are more general, we compared against state-of-the-art
tools that focus specifically on universally quantified invariants.

MCMT [31,33,25] and its derivatives [2,3] are backward-reachability algo-
rithms for proving properties over “array-based systems,” which are typically
used to model parameterized protocols. These approaches target syntactically
restricted functional transition systems with universally quantified properties,
whereas our approach targets general transition systems. Two other approaches
for solving parameterized systems modeled with arrays are [36] and [47]. The
former iteratively fixes the number of expected universal quantifiers, then ea-
gerly instantiates them and encodes the invariant search to nonlinear CHC. The
latter first uses a finite-state model checker to discover an inductive invariant for
a specific parameterization and then applies a heuristic generalization process.
We differ from all these techniques in domain and the use of auxiliary variables.
Due to the limitations explained in Sec. 5, we do not expect our approach to
work well for parameterized protocol verification without improvements.

In [45], heuristics are proposed for finding predicates with free indices that
can be universally quantified in a predicate abstraction-based inductive invariant
search. Our approach is counterexample-guided and does not utilize predicate
abstraction directly (although IC3IA does). The authors of [39] propose a tech-
nique for Java programs that associates heap memory with the program location
where it was allocated and generates CHC verification conditions. This enables
the discovery of invariants over all heap memory allocated at that location, which
implicitly provides quantified invariants. This is similar to our approach in that
it gives quantification power without explicitly using quantifiers and in that
their encoding removes arrays. However, we differ in that we focus on transition
systems and utilize a different paradigm to obtain this implicit quantification.

8 Conclusion

We presented a novel approach for model checking transition systems containing
arrays. We observed that history and prophecy variables can be extremely useful
for reducing quantified invariants to quantifier-free invariants. We demonstrated
that an initially weak abstraction in our CEGAR loop can help us to automati-
cally introduce relevant auxiliary variables. Finally, we evaluated our approach
on four sets of interesting array-manipulating benchmarks. In future work, we
hope to improve performance, explore a tighter integration with the underly-
ing model checker, address the limitations described in Sec. 5, and investigate
applications of counterexample-guided prophecy to other theories.
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Abstract. Since 2013, the leading SAT solvers in the SAT competition all use in-
processing, which unlike preprocessing, interleaves search with simplifications.
However, applying inprocessing frequently can still be a bottle neck, i.e., for hard
or large formulas. In this work, we introduce the first attempt to parallelize in-
processing on GPU architectures. As memory is a scarce resource in GPUs, we
present new space-efficient data structures and devise a data-parallel garbage col-
lector. It runs in parallel on the GPU to reduce memory consumption and im-
proves memory access locality. Our new parallel variable elimination algorithm
is twice as fast as previous work. In experiments our new solver PARAFROST
solves many benchmarks faster on the GPU than its sequential counterparts.

Keywords: Satisfiability · Variable Elimination · Eager Redundancy Elimination
· Parallel SAT Inprocessing · Parallel Garbage Collection · GPU.

1 Introduction

During the past decade, SAT solving has been used extensively in many applications,
such as combinational equivalence checking [27], automatic test pattern generation [33,
40], automatic theorem proving [14], and symbolic model checking [7,13]. Simplifying
SAT problems prior to solving them has proven its effectiveness in modern conflict-
driven clause learning (CDCL) SAT solvers [5, 6, 17], particularly when applied on
real-world applications relevant to software and hardware verification [16, 20, 22, 24].

Since 2013, simplification techniques [8, 16, 19, 21, 41] are also used periodically
during SAT solving, which is known as inprocessing [3–6, 23]. Applying inprocessing
iteratively to large problems can be a performance bottleneck in SAT solving procedure,
or even increase the size of the formula, negatively impacting the solving time.

Graphics processors (GPUs) have become attractive for general-purpose computing
with the availability of the Compute Unified Device Architecture (CUDA) program-
ming model. CUDA is widely used to accelerate applications that are computation-
ally intensive w.r.t. data processing. For instance, we have applied GPUs to accelerate
explicit-state model checking [11, 43], bisimilarity checking [42], the reconstruction of
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genetic networks [12], wind turbine emulation [30], metaheuristic SAT solving [44],
and SAT-based test generation [33]. Recently, we introduced SIGmA [34, 35] as the
first SAT simplification preprocessor to exploit GPUs.

Contributions. Embedding GPU inprocessing in a SAT solver is highly non-trivial and
has never been attempted before, according to the best of our knowledge. Efficient data
structures are needed that allow parallel processing, and that support efficient adding
and removing of clauses. For this purpose, we contribute the following:
1. We propose a new dynamically expanded data structure for clauses supporting both

32-bit [17] and 64-bit references with a minimum of 20 bytes per clause.
2. A new parallel garbage collector is presented, tailored for GPU inprocessing.
3. Our new parallel variable elimination algorithm is twice as fast as [34] and together

with other improvements yields much higher performance and robustness.
4. Our parallel inprocessing is deterministic (i.e., results are reproducible).

In addition, we propose a new preprocessing technique targeted towards data-parallel
execution, called Eager Redundancy Elimination (ERE), which is applicable on both
original and learnt clauses. All contributions have been implemented in our solver
PARAFROST and benchmarked on a larger set than considered previously in [34],
using 493 application problems. We discuss the potential performance gain of the GPU
inprocessing and its impact on SAT solving, compared to a sequential version of our
solver as well as CADICAL [6], a state-of-the-art solver developed by the last author.

2 Preliminaries

All SAT formulas in this paper are in conjunctive normal form (CNF). A CNF formula
is a conjunction of m clauses

∧m
i=1 Ci, where each clause Ci is a disjunction of k literals∨k

j=1 �j , and a literal is a Boolean variable x or its complement ¬x, which we refer to
as x̄. We represent clauses by sets of literals, i.e., {�1, . . . , �k} represents the formula
�1 ∨ . . . ∨ �k, and a SAT formula by a set of clauses, i.e., {C1, . . . , Cm} represents the
formula C1 ∧ . . . ∧ Cm. With S�, we refer to the set of clauses containing literal �, i.e.,
S� = {C ∈ S | � ∈ C}. If for a variable x, we have either Sx = ∅ or Sx̄ = ∅ (but
not both), then the literal x̄ or x, respectively, is called a pure literal. A clause C is a
tautology iff there exists a variable x with {x, x̄} ⊆ C, and C is unit iff |C| = 1.

In this paper we integrate GPU-accelerated inprocessing and CDCL [28, 32, 36].
One important aspect of CDCL is to learn from previous assignments to prune the
search space and make better decisions in the future. This learning process involves the
periodic adding of new learnt clauses to the input formula while CDCL is running.

In this paper, clauses are either considered to be LEARNT or ORIGINAL (redundant
and irredundant in [23] and in the SAT solver CADICAL [6]). A LEARNT clause is
added to the formula by the CDCL clause learning process, and an ORIGINAL clause is
part of the formula from the very start. Furthermore, each assignment is associated with
a decision level that acts as a time stamp, to monitor the order in which assignments are
performed. The first assignment is made at decision level one.

Variable Elimination (VE). Variables can be removed from clauses by either applying
the resolution rule or substitution (also known as gate equivalence reasoning) [16, 23].
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Concerning the former, we represent application of the resolution rule w.r.t. some vari-
able x using a resolving operator ⊗x on clauses C1 and C2. The result of applying
the rule is called the resolvent [41]. It is defined as C1 ⊗x C2 = C1 ∪ C2 \ {x, x̄},
and can be applied iff x ∈ C1, x̄ ∈ C2. The ⊗x operator can be extended to re-
solve sets of clauses w.r.t. variable x. For a formula S , let L ⊂ S be the set of learnt
clauses when we apply the resolution rule. The set of new resolvents is then defined as
Rx(S) = {C1 ⊗x C2 | C1 ∈ Sx \ L ∧ C2 ∈ Sx̄ \ L ∧ ¬∃y.{y, ȳ} ⊆ C1 ⊗x C2}.
Notice that the learnt clauses can be ignored [23] (i.e., in practice, it is not effective to
apply resolution on learnt clauses). The last condition avoids that a resolvent should not
be a tautology. After eliminating variable x in S, the resulting formula S ′ is defined as
S ′ = Rx(S) ∪ (S \ (Sx ∪ Sx̄)), i.e., the new resolvents are combined with the original
and learnt clauses that do not reference x.

Substitution detects patterns encoding logical gates, and substitutes the involved
variables with their gate-equivalent counterparts. Previously [34], we only considered
AND gates. In the current work, we add support for Inverter, If-Then-Else and XOR gate
extractions. For all logical gates, substitution can be performed by resolving non-gate
clauses (i.e., clauses not contributing to the gate itself) with gate clauses [23].

For instance, the first three clauses in the formula {{x, ā, b̄}, {x̄, a}, {x̄, b}, {x, c}}
together encode a logical AND-gate, hence the final clause can be resolved with the sec-
ond and the third clauses, producing the simplified formula {{a, c}, {b, c}}. Combining
gate equivalence reasoning with the resolution rule tends to result in smaller formulas
compared to only applying the resolution rule [16, 23, 37].

Subsumption elimination. SUB performs self-subsuming resolution followed by sub-
sumption elimination [16]. The former can be applied on clauses C1, C2 iff for some
variable x, we have C1 = C ′

1 ∪ {x}, C2 = C ′
2 ∪ {x̄}, and C ′

2 ⊆ C ′
1. In that case, x

can be removed from C1. The latter is applied on clauses C1, C2 with C2 ⊆ C1. In that
case, C1 is redundant and can be removed. If C2 is a LEARNT clause, it must be consid-
ered as ORIGINAL in the future, to prevent deleting it during learnt clause reduction, a
procedure which attempts to reduce the number of learnt clauses [6, 23]. For instance,
consider the formula S = {{a, b, c}, {ā, b}, {b, c, d}}. The first clause is self-subsumed
by the second clause w.r.t. variable a and can be strengthened to {b, c} which in turn
subsumes the last clause {b, c, d}. The latter clause is then removed from S and the
simplified formula becomes {{b, c}, {ā, b}}.

Blocked clause elimination. BCE [25] can remove clauses for which variable elimi-
nation always results in tautologies. Consider the formula {{a, b, c}, {ā, b̄}, {ā, c̄}}. All
three literals a, b and c are blocking the first clause, since resolving a produces the tau-
tologies {{b, c, b̄}, {b, c, c̄}}, resolving b produces {ā, a, c}, and resolving c produces
{ā, a, b}. Hence the blocked clause {a, b, c} can be removed from S. Again, as for VE,
only original clauses are considered.

Eager Redundancy Elimination. ERE is a new elimination technique that we propose,
which repeats the following until a fixpoint has been reached: for a given formula S and
clauses C1 ∈ S, C2 ∈ S with x ∈ C1 and x̄ ∈ C2 for some variable x, if there exists a
clause C ∈ S for which C ≡ C1⊗xC2, then let S := S \{C}. In this work, we restrict
removing C to the condition (C1 is LEARNT ∨ C2 is LEARNT) =⇒ C is LEARNT.
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If the condition holds, C is called a redundancy and can be removed without alter-
ing the original satisfiability. For example, consider S = {{a, c̄}, {c, b}, {d̄, c̄}, {b, a},
{a, d}}. Resolving the first two clauses gives the resolvent {a, b} which is equivalent to
the fourth clause in S. Also, resolving the third clause with the last clause yields {a, c̄}
which is equivalent to the first clause in S. ERE can remove either {a, c̄} or {a, b} but
not both. Note that this method is entirely different from Asymmetric Tautology Elimi-
nation in [21]. The latter requires adding so-called hidden literals to all clauses to check
which is a hidden tautology. ERE can operate on learnt clauses and does not require
literals addition, making it more effective and adequate to data parallelism.

3 GPU Memory and Data Structures

GPU Architecture. Since 2007, NVIDIA has been developing a parallel computing
platform called CUDA [31] that allows developers to use GPU resources for general
purpose processing. A GPU contains multiple streaming multiprocessors (SMs), each
SM consisting of an array of streaming processors (SPs). Every SM can execute multi-
ple threads grouped together in 32-thread scheduling units called warps.

A GPU computation can be launched in a program by the host (CPU side of a
program) by calling a GPU function called a kernel, which is executed by the device
(GPU side of a program). When a kernel is called, it is specified how many threads need
to execute it. These threads are partitioned into thread blocks of up to 1,024 threads
(or 32 warps). Each block is assigned to an SM. All threads together form a grid. A
hardware warp scheduler evenly distributes the launched blocks to the available SMs.
Concerning the memory hierarchy, a GPU has multiple types of memory:

– Global memory with high bandwidth but also high latency is accessible by both
GPU threads and CPU threads and thus acts as interface between CPU and GPU.

– Constant memory is read-only for all GPU threads. It has a lower latency than
global memory, and can be used to store any pre-defined constants.

– Shared memory is on-chip memory shared by the threads in a block. Each SM has
its own shared memory. It is much smaller in size than global and constant memory
(in the order of tens of kilobytes), but has a much lower latency. It can be used to
efficiently communicate data between threads in a block.

– Registers are used for on-chip storage of thread-local data. It is very small, but
provides the fastest memory.

To hide the latency of global memory, ensuring that the threads perform coalesced
accesses is one of the best practices. When the threads in a warp try to access a con-
secutive block of 32-bit words, their accesses are combined into a single (coalesced)
memory access. Uncoalesced memory accesses can, for instance, be caused by data
sparsity or misalignment. Furthermore, we use unified memory [31] to store the main
data structures that need to be regularly accessed by both the CPU and the GPU. Unified
memory creates a pool of managed memory that is shared between the CPU and GPU.
This pool is accessible to both sides using the same addresses. Regarding atomicity, a
GPU can run atomic instructions on both global and shared memory. Such an instruc-
tion performs a read-modify-write memory operation on one 32-bit or 64-bit word.
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(a) container for a clause (b) container for a formula

Fig. 1: Data structures to store a SAT formula on a GPU

Data Structures. To efficiently implement inprocessing techniques for GPU archi-
tectures, we designed a new data structure from scratch to count the number of learnt
clauses, and store other relevant clause information, while keeping the memory con-
sumption as low as possible. Fig. 1 shows the proposed structures to store a clause
(denoted by SCLAUSE) and the SAT formula represented in CNF form (denoted by
CNF). The state member in Fig. 1a stores the current clause state. A clause is either
ORIGINAL, LEARNT (see Section 2) or DELETED. A GPU thread is not allowed to deal-
locate memory, however, a clause can be set to DELETED and freed later during garbage
collection. The members added and flag mark the clause for being resolvent (when
applying the resolution rule) and contributing to a gate (for substitution), respectively.
The lbd entry denotes the literal block distance (LBD), i.e., the number of decision
levels contributing to a conflict [2]. The used counter is used to keep track of how long
a LEARNT clause should be used before it gets deleted during database reduction [6,38].
Both used and lbd can be altered via clause strengthening [6] in SUB.

The signature (sig) of a clause is computed by hashing its literals to a 32-bit
value [16]. It is used to quickly compare clauses. The first literal in a clause is preallo-
cated and stored in the fixed array literals[1]. As has been done for the MINISAT
solver, we adapted the union structure to allow dynamically expanding the literals
array. This is accepted by NVIDIA’s compiler (NVCC). In our previous work [34], we
stored a pointer in each clause referencing the first literal, with the literals being in a
separate array. This consumes 8 bytes of the clause space. However, SCLAUSE only
needs 4 bytes for the literals array, resulting in the clause occupying 20 bytes in
total, including the extra information of the learnt clause, compared to 24 bytes in our
previous work.

As implemented in MINISAT, we use the clauses field in CNF (Fig. 1b) to store
the raw bytes of SCLAUSE instances with any extra literals in 4-byte buckets with 64-
bit reference support. The cap variable indicates the total memory capacity available
for the storage of clauses, and size reflects the current size of the list of clauses. We
always have size ≤ cap. The references field is used to directly access the clauses
by saving for each clause a reference to their first bucket. The mechanism for storing
references works in the same way as for clauses.

In addition, in a similar way, an occurrence table structure, denoted by OT, is created
which has a raw pointer to store the 64-bit clause references for each literal in the
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formula and a member structure OL. The creation of an OL instance is done in parallel
on the GPU for each literal using atomic instructions. For each clause C, a thread is
launched to insert the occurrences of C’s literals in the associated lists.

Initially, we pre-allocate unified memory for clauses and references which is in
size twice as large as the input formula, to guarantee enough space for the original and
learnt clauses. This amount is guaranteed to be enough as we enforce that the number
of resolvents never exceeds the number of ORIGINAL clauses. The OT memory is real-
located dynamically if needed after each variable elimination. Furthermore, we check
the amount of free available GPU memory before allocation is done. If no memory is
available, the inprocessing step is skipped and the solving continues on the CPU.

4 Parallel Garbage Collection

Modern sequential SAT solvers implement a garbage collection (GC) algorithm to re-
duce memory consumption and maintain data locality [2, 6, 17].

Since GPU global memory is a scarce resource and coalesced accesses are essential
to hide the latency of global memory (see Section 2), we decided to develop an efficient
and parallel GC algorithm for the GPU without adding overhead to the GPU computa-
tions.

Fig. 2: An example of parallel GC on a GPU

Fig. 2 demonstrates the proposed
approach for a simple SAT for-
mula S = {{a, b̄, c}, {a, b, c̄}, {d, b̄},
{d̄, b}}, in which {a, b, c̄} is to be
deleted. The figure shows, in addition,
how the references and clauses

lists in Fig. 1b are updated for the given
formula. The reference for each clause
C is calculated based on the sum of
the sizes (in buckets) of all clauses pre-
ceding C in the list of clauses. For
example, the first clause (C1) requires
α + (k − 1) = 5 + 2 = 7 buckets,
where the constant α is the number of
buckets needed to store SCLAUSE, in
our case 20 bytes / 4 bytes, and k is
the clause size in terms of the number
of literals. Given the number of buck-
ets needed for C1, the next clause (C2)
must be stored starting from position 7
in the list of clauses. This position plus the size of C2 determines in a similar way the
starting position for C3, and so on.

The first step towards compacting the CNF instance when C2 is to be deleted is
to compute a stencil and a list of corresponding clause sizes in terms of numbers of
buckets. In this step, each clause Ci is inspected by a different thread that writes a ‘0’
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Algorithm 1: Parallel Garbage Collection
Input : global Sin, stencil, buckets, constant α , shared shCls, shLits
Output: numCls, numLits

1 numCls, numLits ← COUNTSURVIVED(Sin);
2

numCls, numLits ← COUNTSURVIVED(Sin);
Sout ← ALLOCATE(numCls, numLits);

3 stencil, buckets← COMPUTESTENCIL(Sin);
4 buckets← EXCLUSIVESCAN(buckets);
5 references(Sout) ← COMPACTREFS(buckets, stencil);
6 COPYCLAUSES(Sout, Sin, buckets, stencil);

7 kernel COUNTSURVIVED (Sin):
8 register rCls ← 0, rLits ← 0;
9 for all i ∈ � 0, |Sin| � in parallel

10 register C ← Sin[i];
11 if state(C) �= DELETED then

12 rCls ← rCls + 1, rLits ← rLits + |C|;
13 if tid < |Sin| then

14 shCls[tid] = rCls, shLits[tid] = rLits;
15 else

16 shCls[tid] = 0, shLits[tid] = 0;
17 SYNCTHREADS( );
18 for b : blockDim/2, b/2 → 1 do // b will be blockDim/2, (blockDim/2)/2, ..., 1
19 if tid < b then

20 shCls[tid] ← shCls[tid] + shCls[tid + b], shLits[tid] ← shLits[tid] + shLits[tid + b];
21 SYNCTHREADS( );
22 if tid = 0 then

23 ATOMICADD(numCls, shCls[tid]), ATOMICADD(numLits, shLits[tid]);
24 kernel COMPUTESTENCIL (Sin):
25 for all i ∈ � 0, |Sin| � in parallel

26 register C ← Sin[i];
27 if state(C) = DELETED then

28 stencil[i] ← 0 , buckets[i] ← 0;
29 else

30 stencil[i] ← 1 , buckets[i] ← α + (|C| − 1);
31 kernel COPYCLAUSES (Sout, Sin, buckets, stencil):
32 for all i ∈ � 0, |Sin| � in parallel

33 if stencil[i] then

34 register & Cdest ← (SCLAUSE &)(clauses(Sout) + buckets[i]);
35 Cdest ← Sin[i];

stencil, buckets← COMPUTESTENCIL(Sin);
buckets← EXCLUSIVESCAN(buckets);
references(Sout) ← COMPACTREFS(buckets, stencil);
COPYCLAUSES(Sout, Sin, buckets, stencil);

kernel COUNTSURVIVED (Sin):
register rCls ← 0, rLits ← 0;
for all i ∈ � 0, |Sin| � in parallel

register C ← Sin[i];
if state(C) �=�� DELETED then

rCls ← rCls + 1, rLits ← rLits + |C|;
if tid < |Sin| then

shCls[tid] = rCls, shLits[tid] = rLits;
else

shCls[tid] = 0, shLits[tid] = 0;
SYNCTHREADS( );
for b : blockDim/2, b/2 → 1 do // b will be blockDim/2, (blockDim/2)/2, ..., 1

if tid < b then

shCls[tid] ← shCls[tid] + shCls[tid + b], shLits[tid] ← shLits[tid] + shLits[tid + b];
SYNCTHREADS( );

if tid = 0 then

ATOMICADD(numCls, shCls[tid]), ATOMICADD(numLits, shLits[tid]);
kernel COMPUTESTENCIL (Sin):

for all i ∈ � 0, |Sin| � in parallel

register C ← Sin[i];
if state(C) = DELETED then

stencil[i] ← 0 , buckets[i] ← 0;
else

stencil[i] ← 1 , buckets[i] ← α + (|C| − 1);
kernel COPYCLAUSES (Sout, Sin, buckets, stencil):

for all i ∈ � 0, |Sin| � in parallel

if stencil[i] then

register & CdestCC ← (SCLAUSE &)(clauses(Sout) + buckets[i]);
CdestCC ← Sin[i];

at position i of a list named stencil if the clause must be deleted, and a ‘1’ otherwise.
The size of stencil is equal to the number of clauses. In a list of the same size called
buckets, the thread writes at position i ‘0’ if the clause will be deleted, and otherwise
the size of the clause in terms of the number of buckets.

At step 2, a parallel exclusive-segmented scan operation is applied on the buckets
array to compute the new references. In this scan, the value stored at position i, masked
by the corresponding stencil, is the sum of the values stored at positions 0 up to, but
not including, i. An optimised GPU implementation of this operation is available via
the CUDA CUB library [29], which transforms a list of size n in log(n) iterations. In
the example, this results in C3 being assigned reference 7, thereby replacing C2.

At step 3, the stencil list is used to update references in parallel, which are
be kept together in consecutive positions. The standard DeviceSelect::Flagged

function of the CUB library can be used for this, which uses stream compaction [10].
Finally, the actual clauses are copied to their new locations in clauses.

Alg. 1 describes in detail the GPU implementation of the parallel GC. As input,
Alg. 1 requires a SAT formula Sin as an instance of CNF. The constant α is kept in
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GPU constant memory for fast access. The highlighted lines in grey are executed on
GPU. To begin GC, we count the number of clauses and literals in the Sin formula after
simplification has been applied (line 1). The counting is done via the parallel reduction
kernel COUNTSURVIVED, listed at lines 7-23. In kernels, we use two conventions. First
of all, with tid, we refer to the block-local ID of the executing thread. By using this ID,
we can achieve that different threads in the same block work on different data, as for
instance at lines 13-16. Second of all, we use so-called grid-stride loops to process data
elements in parallel. An example of this starts at line 9. The statement for all i ∈ �0, N�
in parallel expresses that all natural numbers in the range [0, N) must be considered
in the loop, and that this is done in parallel by having each executing thread start with
element tid, i.e., i = tid, and before starting each additional iteration through the loop,
the thread adds to i the total number of threads on the GPU. If the updated i is smaller
than N , the next iteration is performed with this updated i. Otherwise, the thread exits
the loop. A grid-stride loop ensures that when the range of numbers to consider is larger
than the number of threads, all numbers are still processed.

The values rCls and rLits at line 8 will hold the current number of clauses and
literals, respectively, counted by the executing thread. The register keyword indicates
that the variables are stored in the thread-local register memory. Within the loop at lines
9-12, the counters rCls, rLits are updated incrementally if the clause at position i in
clauses is not deleted. Once a thread has checked all its assigned clauses, it stores the
counter values in the (block-local) shared memory arrays (shCls, shLits) at lines 13-14.

A non-participating thread simply writes zeros (line 16). Next, all threads in the
block are synchronised by the SYNCTHREADS call. The loop at lines 18-21 performs the
actual parallel reduction to accumulate the number of non-deleted clauses and literals
in shared memory within thread blocks. In the for loop, b is initially set to the number
of threads in the block (blockDim), and in each iteration, this value is divided by 2 until
it is equal to 1 (note that blocks always consist of a power of two number of threads).

The total number of clauses and threads is in the end stored by thread 0, and this
thread adds those numbers using atomic instructions to the globally stored counters
numCls and numLits at line 23, resulting in the final output. In the procedure described
here, we prevent having each thread perform atomic instructions on the global memory,
by which we avoid a potential performance bottleneck. The computed numbers are used
to allocate enough memory for the output formula at line 2 on the CPU side.

The kernel COMPUTESTENCIL, called at line 3, is responsible for checking clause
states and computing the number of buckets for each clause. The COMPUTESTENCIL
kernel is given at lines 24-30. If a clause C is set to DELETED (line 27), the correspond-
ing entries in stencil and buckets are cleared at line 28, otherwise the stencil

entry is set to 1 and the buckets entry is updated with the number of clause buckets.
The EXCLUSIVESCAN routine at line 4 calculates the new references to store the

remaining clauses based on the collected buckets. For that, we use the exclusive scan
method offered by the CUB library. The COMPACTREFS routine called at line 5 groups
the valid references, i.e., those flagged by stencil, into consecutive values and stores
them in references(Sout), which refers to the references field of the output for-
mula Sout. Finally, copying clause contents (literals, state, etc.) is done in the COPY-
CLAUSES kernel, called at line 6. This kernel is described at lines 31-35. If a clause in
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Sin is flagged by stencil via thread i, then a new SCLAUSE reference is created in
clauses(Sout), which refers to the clauses field in Sout, offset by buckets[i].

The GC mechanism described above resulted from experimenting with several less
efficient mechanisms first. In the first attempt, two atomic additions per thread were
performed for each clause, one to move the non-deleted clause buckets and the other
for moving the corresponding reference. However, the excessive use of atomics resulted
in a performance bottleneck and produced a different simplified formula on each run,
that is, the order in which the new clauses were stored depended on the outcome of
the atomic instructions. The second attempt was to maintain stability by moving the
GC to the host side. However, accessing unified memory on the host side results in a
performance penalty, as it implicitly results in copying data to the host side.

5 Parallel Inprocessing Procedure

To exploit parallelism in simplifications, each elimination method is applied on mul-
tiple variables simultaneously. Doing so is non-trivial, since variables may depend
on each other; two variables x and y are dependent iff there exists a clause C with
(x ∈ C ∨ x̄ ∈ C) ∧ (y ∈ C ∨ ȳ ∈ C). If both x and y were to be processed for sim-
plification, two threads might manipulate C at the same time. To guarantee soundness
of the parallel simplifications, we apply our least constrained variable elections algo-
rithm (LCVE) [34] prior to simplification. It is responsible for electing a set of mutually
independent variables (candidates) from a set of authorised candidates. The remaining
variables relying on the elected ones are frozen. These notions are defined by Defs. 1-4.

Definition 1 (Authorised candidates). Given a CNF formula S, we call A the set of
authorised candidates: A = {x | 1 ≤ h[x] ≤ μ ∨ 1 ≤ h[x̄] ≤ μ}, where

– h is a histogram array (h[x] is the number of occurrences of x in S).
– μ denotes a given maximum number of occurrences allowed for both x and its

negation x̄, representing the cut-off point for the LCVE algorithm.

Definition 2 (Candidate Dependency Relation). We call a relation D : A × A a
candidate dependency relation iff ∀x, y ∈ A, xD y implies that ∃C ∈ S.(x ∈ C ∨ x̄ ∈
C) ∧ (y ∈ C ∨ ȳ ∈ C)

Definition 3 (Elected candidates). Given a set of authorised candidates A, we call a
set ϕ ⊆ A a set of elected candidates iff ∀x, y ∈ ϕ. ¬(xD y)

Definition 4 (Frozen candidates). Given the sets A and ϕ, the set of frozen candi-
dates F ⊆ A is defined as F = {x | x ∈ A ∧ ∃y ∈ ϕ. xD y}

A top-level description of GPU parallel inprocessing is shown in Alg. 2. The blue-
colored lines highlight new contributions of the current work compared to our prepro-
cessing algorithm presented in [34]. As input, it takes the current formula Sh from the
solver (executed on the host) and copies it to the device global memory as Sd (line 1).

Initially, before simplification, we compute the clause signatures and order variables
via concurrent streams at lines 2-3. A stream is a sequence of instructions that are exe-
cuted in issue-order on the GPU [31]. The use of concurrent streams allows the running
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Algorithm 2: Parallel Inprocessing
Input : Sh, μ, phases

1 Sd ← COPYTODEVICE (Sh);
2 CALCSIGNATURES (Sd, stream0);
3 A ← ORDERVARIABLES (Sd, stream1);
4

CALCSIGNATURES (Sd, stream0);
A ← ORDERVR ARIABLESVV (Sd, stream1);
while p : 0 → phases do

5 SYNCALL ( ) ; // Synchronize all streams
6 T ← CREATEOT (Sd);
7

T ← CREATEOT (Sd);
PROPAGATE (Uh,Sd, T );

8 ϕ ← LCVE (Sd, T ,A, μ);
9 if p = phases then

10 ERE (Sd, T , ϕ);
11

p
ERE (Sd, T , ϕ);
break;

12 SORTOT (T , ϕ, LISTKEY);
13 Ud ← ELIMINATE (Sd, T , ϕ) ; // Applies VE, SUB, and BCE
14

SORTOT (T , ϕ, LISTKEY);
Ud ← ELIMINATE (Sd, T , ϕ) ; // Applies VE, SUB, and BCE
Uh ← COPYTOHOSTASYNC (Ud, stream1);

15 COLLECT (Sd, stream2);
16

,
COLLECT (Sd, stream2);
μ ← μ × 2;

17 device function LISTKEY (a, b):
18 Ca ← Sd[a], Ca ← Sd[b] ; // Ca = {x1, x2, . . . , xk}, Cb = {y1, y2, . . . , yk}
19 if |Ca| �= |Cb| then return Ca < Cb ;
20 if x1 �= y1 then return x1 < y1 ;
21 if x2 �= y2 then return x2 < y2 ;
22 if |Ca| > 2 ∧ (xk �= yk) then return xk < yk ;
23 else return sig(Ca) < sig(Cb) ;

device function LISTKEY (a, b):
Ca ← Sd[a], Ca ← Sd[b] ; // Ca = {x1, x2, . . . , xk}, Cb = {y1, y2, . . . , yk}
if |Ca| �=�� |Cb| then return Ca < Cb ;
if x1 �=�� y1 then return x1 < y1 ;
if x2 �=�� y2 then return x2 < y2 ;
if |Ca| > 2 ∧ (xk �=�� yk) then return xk < yk ;
else return sig(Ca) < sig(Cb) ;

of multiple GPU kernels concurrently, if there are enough resources. The ORDERVARI-
ABLES routine produces an ordered array of authorised candidates A following Def. 1.
The while loop at lines 4-16 applies VE, SUB, and BCE, for a configured number
of iterations (indicated by phases), with increasingly large values of the threshold μ.
Increasing μ exponentially allows LCVE to elect additional variables in the next elim-
ination phase since after a phase is executed on the GPU, many elected variables are
eliminated. The ERE method is computationally expensive. Therefore, it is only exe-
cuted once in the final iteration, at line 10. At line 5, SYNCALL is called to synchronize
all streams being executed. At line 6, the occurrence table T is created. The LCVE
routine produces on the host side an array of elected mutually independent variables ϕ,
in line with Def. 3.

The parallel creation of the occurrence lists in T results in the order of these lists be-
ing chosen non-deterministically. This results in the ELIMINATE procedure called at line
13, which performs the parallel simplifications, to produce results non-deterministically
as well. To remedy this effect, the lists in T are sorted according to a unique key in as-
cending order. Besides the benefit of stability, this allows SUB to abort early when
performing subsumption checks. The sorting key function is given as the device func-
tion LISTKEY at lines 17-24. It takes two references a, b and fetches the corresponding
clauses Ca, Cb from Sd (line 18). First, clause sizes are tested at line 19. If they are
equal, the first, the second, and the last literal in each clause are checked, respectively,
at lines 20-22. Otherwise, clause signatures are tested at line 23. CADICAL implements
a similar function, but only considers clause sizes [6]. The SORTOT routine launches a
kernel to sort the lists pointed to by the variables in ϕ in parallel. Each thread runs an
insertion sort to in-place swap clause references using LISTKEY.
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The ELIMINATE procedure at line 13 calls SUB to remove any subsumed clauses
or strengthen clauses if possible, after which VE is applied, followed by BCE. The
SUB and BCE methods call kernels that scan the occurrence lists of all variables in ϕ
in parallel. For more information on this, see [34]. The VE method uses a new parallel
approach, which is explained in Section 6. Both the VE and SUB methods may add new
unit clauses atomically to a separate array Ud. The propagation of these units cannot be
done immediately on the GPU due to possible data races, as multiple variables in a
clause may occur in unit clauses. For instance, if we have unit clauses {a} and {b},
and these would be processed by different threads, then a clause {ā, b̄, c} could be
updated by both threads simultaneously. Thus, this propagation is delayed until the
next iteration, and performed by the host at line 7. Note that T must be recreated first
to consider all resolvents added by VE during the previous phase. The ERE method at
line 10 is executed only once at the last phase (phases) before the loop is terminated.
Section 7 explains in detail how ERE can be effective in simplifying both ORIGINAL

and LEARNT clauses in parallel. At line 14, new units are copied from the device to the
host array Uh asynchronously via stream1. The COLLECT procedure does the GC as
described by Alg. 4 via stream2. Both streams are synchronized at line 5.

6 Three-Phase Parallel Variable Elimination

The BVIPE algorithm in our previous work [34] had a main shortcoming due to the
heavy use of atomic operations to add new resolvents. Per eliminated variable, two
atomic instructions were performed, one for adding new clauses and the other for
adding new literals. Besides performance degradation, this also resulted in the order
of added clauses being chosen non-deterministically, which impacted reproducibility
(even though the produced formula would always at least be logically the same).

The approach to avoiding the excessive use of atomic instructions when adding
new resolvents is to perform parallel VE in three phases. The first phase scans the
constructed list ϕ to identify the elimination type (e.g., resolution or gate substitution) of
each variable and to calculate the number of resolvents and their corresponding buckets.

The second phase computes an exclusive scan to determine the new references for
adding resolvents, as is done in our GC mechanism (Section 4). At the last phase, we
store the actual resolvents in their new locations in the simplified formula. For solution
reconstruction, we use an atomic addition to count the resolved literals. The order in
which they are resolved is irrelevant. The same is done for adding units. For the latter,
experiments show that the number of added units is relatively small compared to the
eliminated variables, hence the penalty of using atomic instructions is almost negligible.
It would be overkill to use a segmented scan for adding literals or units.

At line 1 of Alg. 3, phase 1 is executed by the VARIABLESWEEP kernel (given at
lines 15-27). Every thread scans the clause set of its designated literals x and x̄ (line 17).
References to these clauses are stored at Tx and Tx̄. Moreover, register variables t, β, γ
are created to hold the current type, number of added clauses, and number of added
literals of x, respectively. If x is pure at line 19, then there are no resolvents to add and
the clause sets of x and x̄ are directly marked as DELETED by the routine TOBLIVION.
Moreover, this routine adds the marked literals atomically to resolved. At line 22, we
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Algorithm 3: Three-Phase Parallel Variable Elimination
Input : global ϕ, Sd, T , Ud, resolved, type, buckets, added, constant α

1 resolved, type, buckets, added← VARIABLESWEEP(ϕ,Sd, T );
2

resolved, type, buckets, added← VARIABLESWEEP(ϕ,Sd, T );
lastadded ← −1, lastidx ← −1, lastcref ← −1, lastC ← ∅;

3 for j : |ϕ| − 1, j − 1 → 0 do // find index and # resolvents of last eliminated x
4 if type[j] �= 0 then

5 lastidx ← j, lastadded ← added[j]; break;
6 buckets← EXCLUSIVESCAN (buckets, SIZE(clauses), stream0);
7 added← EXCLUSIVESCAN (added, SIZE(references), stream1);
8

buckets← EXCLUSIVESCAN (buckets, SIZE(clauses), stream0);
added← EXCLUSIVESCAN (added, SIZE(references), stream1);
SYNCALL( );

9 numCls ← lastadded + added[lastidx];
10 lastcref ← references[numCls − 1], lastC ← clauses[lastcref];
11 numBuckets ← lastcref + (α + SIZE(lastC) − 1);
12 RESIZE(clauses, numBuckets), RESIZE(references, numCls);
13 Sd, Ud ← VARIABLERESOLVENT(ϕ,Sd, T , type, buckets, added);
14

Sd, Ud ← VARIABLERESOLVENT(ϕ,Sd, T , type, buckets, added);

15 kernel VARIABLESWEEP (ϕ,Sd, T ):
16 for all i ∈ � 0, |ϕ| � in parallel

17 register x ← ϕ[i], Tx ← T [x], Tx̄ ← T [x], t ← NONE, β ← 0, γ ← 0;
18 type[i] ← 0, buckets[i] ← 0, added[i] ← 0 ; // initially reset
19 if Tx = ∅ ∨ Tx̄ = ∅ then // check if x is a pure literal
20 resolved← TOBLIVION(x,Sd, Tx, Tx̄);
21 else

22 t, β, γ ← GATEREASONING (x,Sd, Tx, Tx̄, σ);
23 if t �= GATE then

24 t, β, γ ← MAYRESOLVE (x,Sd, Tx, Tx̄) ; // t may set to RESOLUTION
25 if t �= 0 then // x can be eliminated
26 type[i] ← t, added[i] ← β, buckets[i] ← α × β + (γ − β);
27 resolved← TOBLIVION(x,Sd, Tx, Tx̄);
28 kernel VARIABLERESOLVENT (ϕ,Sd, T , type, buckets, added):
29 for all i ∈ � 0, |ϕ| � in parallel

30 register x ← ϕ[i], Tx ← T [x], Tx̄ ← T [x];
31 register t ← type[i], cref ← buckets[i], rpos = added[i];
32 if t = RESOLUTION then

33 (Sd,Ud) ← (Sd,Ud) ∪ RESOLVE(x,Sd, Tx, Tx̄, rpos, cref);
34 if t = GATE then

35 (Sd,Ud) ← (Sd,Ud) ∪ SUBSTITUTE(x,Sd, Tx, Tx̄, rpos, cref);

kernel VARIABLESWEEP (ϕ,Sd, T )T :

for all i ∈ � 0, |ϕ| � in parallel

register x ← ϕ[i], TxTT ← T [x], T¯TTxTT ← T [x], t ← NONE, β ← 0, γ ← 0;
type[i] ← 0, buckets[i] ← 0, added[i] ← 0 ; // initially reset
if TxTT = ∅ ∨ T¯TTxTT = ∅ then // check if x is a pure literal

resolved← TOBLIVION(x,Sd, TxTT , T¯TTxTT );
else

t, β, γ ← GATEREASONING (x,Sd, TxTT , T¯TTxTT , σ);
if t �=�� GATE then

t, β, γ ← MAYRESOLVE (x,Sd, TxTT , T¯TTxTT ) ; // t may set to RESOLUTION
if t �= 0�� then // x can be eliminated

type[i] ← t, added[i] ← β, buckets[i] ← α × β + (γ − β);
resolved← TOBLIVION(x,Sd, TxTT , T¯TTxTT );

kernel VARIABLERESOLVENT (ϕ,Sd, T , type, buckets, added)d :

for all i ∈ � 0, |ϕ| � in parallel

register x ← ϕ[i], TxTT ← T [x], T¯TTxTT ← T [x];
register t ← type[i], cref ← buckets[i], rpos = added[i];
if t = RESOLUTION then

(Sd,Ud) ← (Sd,Ud) ∪ RESOLVE(x,Sd, TxTT , T¯TTxTT , rpos, cref);ff
if t = GATE then

(Sd,Ud) ← (Sd,Ud) ∪ SUBSTITUTE(x,Sd, TxTT , T¯TTxTT , rpos, cref);ff

check first if x contributes to a logical gate using the routine GATEREASONING, and
save the corresponding β and γ. If this is the case, the type t is set to GATE, otherwise
we try resolution at line 24. The condition β ≤ (|Tx| + |Tx̄|) is tested implicitly by
MAYRESOLVE to limit the number of resolvents per x. If t is set to a nonzero value
(line 25), the type and added arrays are updated correspondingly. The total number of
buckets needed to store all added clauses is calculated by the formula (α×β+(γ−β))
and stored in buckets[i] at line 26. After type and added have been completely
constructed, the loop at lines 3-4 identifies the index of the last variable eliminated
starting from position |ϕ|−1. If the condition at line 4 holds, index j and the number of
underlying resolvents are saved to lastidx and lastadded, respectively. These values will
be used later to set the new size of the simplified formula Sd on the host side.

Phase 2 is now ready to apply EXCLUSIVESCAN on the added and buckets lists.
Both clauses and references refer to the structural members of Sd, as described
in Fig. 1b. The procedure at line 6 takes the old size of clauses to offset the calcu-
lated references of the added resolvents. The SIZE routine returns the size of the input
structure. Similarly, the second call at line 7 takes the old size of references and cal-
culates the new indices for storing new references. Both scans are executed concurrently
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Algorithm 4: Parallel Eager Redundancy Elimination for Inprocessing
Input : global ϕ, Sd, T

1 kernel ERE (ϕ,Sd, T ):
2 for all i ∈ � 0, |ϕ| �y in parallel

3 x ← ϕ[i];
4 for C ∈ Sd[T [x]] do

5 for C′ ∈ Sd[T [x̄]] do

6 if (Cm ←RESOLVE (x,C,C′)) �= ∅ then

7 if state(C) = LEARNT ∨ state(C′) = LEARNT then

8 st ← LEARNT
9 else

10 st ← ORIGINAL
11 FORWARDEQUALITY (Cm,Sd, T , st);
12 device function FORWARDEQUALITY (Cm,Sd, T , st):
13 minList ← FINDMINLIST (T , Cm);
14 for all i ∈ � 0, |minList| �x in parallel

15 C ← Sd[minList[i]];
16 if C = Cm ∧ (state(C) = LEARNT ∨ state(C) = st) then state(C) ← DELETED ;

kernel ERE (ϕ,Sd, T )T :

for all i ∈ � 0, |ϕ| �y in parallel

x ← ϕ[i];
for C ∈ Sd[T [x]] do

for C′ ∈ Sd[T [x̄]] do

if (Cm ←RESOLVE (x,C,C′)) �=�� ∅ then

if state(C) = LEARNT ∨ state(C′) = LEARNT then

st ← LEARNT
else

st ← ORIGINAL
FORWARDEQUALITY (Cm,Sd, T , st);

device function FORWARDEQUALITY (Cm,Sd, T , st):
minList ← FINDMINLIST (T , Cm);
for all i ∈ � 0, |minList| �x in parallel

C ← Sd[minList[i]];
if C = Cm ∧ (state(C) = LEARNT ∨ state(C) = st) then state(C) ← DELETED ;

via stream0 and stream1, and are synchronized by the SYNCALL call at line 8. After
the exclusive scan, the last element in added gives the total number of clauses in Sd

minus the resolvents added by the last eliminated variable. Therefore, adding this value
to lastadded gives the total number of clauses in Sd (line 9). At line 10, the last clause
lastC and its reference lastcref are fetched. At line 11, the number of buckets of lastC
is added to lastcref to get the total number of buckets numBuckets. The numBuckets and
numCls are used to resize clauses and references, respectively, at line 12.

Finally, in phase 3, we use the calculated indices in added and buckets to guide
the new resolvents to their locations in Sd. The kernel is described at lines 28-35. Each
thread either calls the procedure RESOLVE or SUBSTITUTE, based on the type stored
for the designated variables. Any produced units are saved into Ud atomically. The cref
and rpos variables indicate where resolvents should be stored in Sd per variable x.

7 Eager Redundancy Elimination

Alg. 4 describes a two-dimensional kernel, in which from each thread ID, an x and y
coordinate is derived. This allows us to use two nested grid-stride loops. In the loops, we
specify which of the two coordinates should be used to initialise i in the first iteration.

Based on the kernel’s y-dimension ID (line 2), each thread merges where possible
two clauses of its designated variable x and its complement x̄ (lines 3-6), and writes the
result in shared memory as Cm. This new clause is produced by the routine RESOLVE
at line 6. At lines 7-10, we check if one of the resolved clauses is LEARNT, and if so, the
state st of Cm is set to LEARNT as well, otherwise it is set to ORIGINAL. This state of
Cm will guide the FORWARDEQUALITY routine called at line 11 to search for redundant
clauses of the same type. This routine is a device function, as it can only be called from
a kernel, and is described at lines 12-17. In this function, the x-dimension of the thread
ID is used to search the clauses referenced by the minimum occurrence list minList,
which is produced by FINDMINLIST at line 13. It has the minimum size among the lists
of all literals in Cm. If a clause C is found that is equal to Cm and is either LEARNT or
has a state equal to the one of Cm, it is set to DELETED (lines 16).
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Fig. 3: Speedup of the proposed VE and GC algorithms on the benchmark suite

8 Experiments

We implemented the proposed algorithms in PFROST-GPU3 with CUDA C++ version
11.0 [31]. We evaluated all GPU experiments on an NVIDIA Titan RTX GPU. This
GPU has 72 SMs (64 cores each), 24 GB global memory and 48 KB shared memory.
The GPU operates at a base clock of 1.3 GHz (boost: 1.7 GHz). The GPU machine was
running Linux Mint v20 with an Intel Core i5-7600 CPU of 3.5 GHz base clock speed
(turbo: 4.1 GHz) and a system memory of 32 GB.

We selected 493 SAT problems from the 2013-2020 SAT competitions. All formu-
las larger than 5 MB in size are chosen, excluding redundancies (repeated CNFs across
competitions). For very small problems, the GPU is not really needed, as only few vari-
ables and clauses can be removed. The selected problems encode around 70+ different
real-world applications, with various logical properties.

In the experiments, besides the implementations of our new GPU algorithms, we in-
volved a CPU-only version of PARAFROST (PFROST-CPU), and the CADICAL [6]
SAT solver for the solving of problems, and executed these on the compute nodes of
the Lisa CPU cluster4. Each problem was analysed in isolation on a separate computing
node. Each computing node had an Intel Xeon Gold 6130 CPU running at a base clock
speed of 2.1 (turbo: 3.7) GHz with 96 GB of system memory, and runs on Debian Linux
operating system. With this information, we adhere to all five principles laid out in the
SAT manifesto (version 1) [9], noting that we also included problems older than three
years, to have a sufficient number of large problems to work with.

SAT-Simplification Speedup. Figure 3 discusses the performance evaluation of the
GPU Algorithms 1 and 3 compared to their previous implementations in SIGMA [34].
For these experiments, we set μ and phases initially to 32 and 5, respectively. Prepro-
cessing is only enabled to measure the speedup. Fig. 3a shows the speedup of running
parallel GC against a sequential version on the host. Clearly, for almost all cases, Alg. 1
achieved a drastic acceleration when executed on the device with a maximum speed
up of 93× and an average of 48×. Fig. 3b reveals how fast the 3-phase parallel VE is

3 Solvers/formulas are available at https://gears.win.tue.nl/software/parafrost.
4 This work was carried out on the Dutch national e-infrastructure with the support of SURF

Cooperative.

https://gears.win.tue.nl/software/parafrost
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compared to version using more atomic instructions. On average, the new algorithm is
twice as fast as the old BVIPE algorithm [34]. In addition, we get reproducible results.
SAT-Solving. These experiments provide a thorough assessment of our CPU/GPU
solver, the CPU-only version, and CADICAL on SAT solving with preprocessing +
inprocessing turned on. The features walksat, vivification and probing [6] are disabled
in CADICAL as they are not yet supported in PARAFROST. As in PARAFROST,
all elimination methods in CADICAL are turned on with a bound on the occurrence
list size set to 30,000. The same parameters for the search heuristics are used for all
experiments. However, we delay the scheduling of inprocessing in PARAFROST until
4,000 of the fixed (root) variables are removed. The occurrence limit μ is bounded by
32 in CADICAL. On the other hand, we start with 32 and double this value every new
phase as shown in Alg. 2. These extensions increase the likelihood of doing more work
on the GPU. The timeout for all experiments is set to 5,000 seconds. The timeout for
the sequential solvers has a 6% tolerance (i.e., is 5,300 seconds in total) to compensate
for the different CPU frequencies of the GPU machine and the cluster nodes.

Figure 4 demonstrates the runtime results for all solvers over the benchmark suite.
Subplot (a) shows the total time (simplify + solving) for all formulas. Data are sorted
w.r.t. the x-axis. The simplify time accounts data transfers in PFROST-GPU. Overall,
PFROST-GPU dominates over PFROST-CPU and CADICAL. Subplot (b) demon-
strates the solving impact of PFROST-GPU versus CADICAL on SAT/UNSAT for-
mulas. PFROST-GPU seems more effective on UNSAT formulas than CADICAL. Col-
lectively, PFROST-GPU performed faster on 196 instances (58% out of all solved), in
which 18 formulas were unsolved by CADICAL.

Subplots (c) and (d) show simplification time and its percentage of the total process-
ing time, respectively. Clearly, the CPU/GPU solver outperforms its sequential counter-
part due to the parallel acceleration. Plot (d) tells us that PFROST-GPU keeps the
workload in the region between 0 and 20% as the elimination methods are scheduled
on a bulk of mutually independent variables in parallel. In CADICAL, variables and
clauses are simplified sequentially, which takes more time. Plot (e) shows the effective-
ness of ERE on formulas with successful clause reductions. The last plot (f) reflects the
overall efficiency of parallel inprocessing on variables and clauses (learnt clauses are
included). Data are sorted in descending order. Reductions can remove up to 90% and
80% of the variables and clauses, respectively.

9 Related Work

A simple GC monitor for GPU term rewriting has been proposed by van Eerd et al. [18].
The monitor tracks deleted terms and stores their indices in a list. New terms can be
added at those indices. The authors in [1, 26] investigated the challenges for offload-
ing garbage collectors to an Accelerated Processing Unit (APU). Matthias et al. [39]
introduced a promising alternative for stream compaction [10] via parallel defragmen-
tation on GPUs. Our GC, on the other hand, is tailored to SAT solving, which allows
it to be simple yet efficient. Regarding inprocessing, Järvisalo et al. [23] introduced
certain rules to determine how and when inprocessing techniques can be applied. Ac-
celeration of the DPLL SAT solving algorithm on a GPU has been done in [15], where
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some parts of the search were performed on a GPU and the remainder is handled by
the CPU. Incomplete approaches are more amenable to be executed entirely on a GPU,
e.g., an approach using metaheuristic algorithms [44]. We are the first to work on GPU
inprocessing in modern CDCL solvers.

10 Conclusion

We have shown that GPU-accelerated inprocessing significantly reduces simplification
time in SAT solving, allowing more problems to be solved. Parallel ERE and VE can be
performed efficiently on many-core systems, producing impactful reductions on both
original and learnt clauses in a fraction of a second, even for large problems. The pro-
posed parallel GC achieves a substantial speedup in compacting SAT formulas on a
GPU, while stimulating coalesced accessing of clauses.

Concerning future work, the results suggest to continue taking the capabilities of
GPU inprocessing further by supporting more simplification techniques.
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Abstract Form validators based on regular expressions are often used
on digital forms to prevent users from inserting data in the wrong format.
However, writing these validators can pose a challenge to some users.
We present Forest, a regular expression synthesizer for digital form
validations. Forest produces a regular expression that matches the de-
sired pattern for the input values and a set of conditions over capturing
groups that ensure the validity of integer values in the input. Our syn-
thesis procedure is based on enumerative search and uses a Satisfiability
Modulo Theories (SMT) solver to explore and prune the search space. We
propose a novel representation for regular expressions synthesis, multi-
tree, which induces patterns in the examples and uses them to split the
problem through a divide-and-conquer approach. We also present a new
SMT encoding to synthesize capture conditions for a given regular ex-
pression. To increase confidence in the synthesized regular expression,
we implement user interaction based on distinguishing inputs.
We evaluated Forest on real-world form-validation instances using reg-
ular expressions. Experimental results show that Forest successfully
returns the desired regular expression in 70% of the instances and out-
performs Regel, a state-of-the-art regular expression synthesizer.

1 Introduction

Regular expressions (also known as regexes) are powerful mechanisms for de-
scribing patterns in text with numerous applications. One notable use of regexes
is to perform real-time validations on the input fields of digital forms. Regexes
help filter invalid values, such as typographical mistakes (‘typos’) and format
inconsistencies. Aside from validating the format of form input strings, regular
expressions can be coupled with capturing groups. A capturing group is a sub-
regex within a regex that is indicated with parenthesis and captures the text
� This work was supported by NSF award CCF-1762363 and through FCT under
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matched by the sub-regex inside them. Capturing groups are used to extract in-
formation from text and, in the domain of form validation, they can be used to
enforce conditions over values in the input string. In this paper, we focus on the
capture of integer values in input strings, and we use the notation $i, i ∈ {0, 1, ...}
to refer to the integer value of the text captured by the (i+ 1)th group.

Form validations often rely on complex regexes which require programming
skills that not all users possess. To help users write regexes, prior work has pro-
posed to synthesize regular expressions from natural language [1,9,12,27] or from
positive and negative examples [1,7,10,26]. Even though these techniques assist
users in writing regexes for search and replace operations, they do not specifi-
cally target digital form validation and do not take advantage of the structured
format of the data.

In this paper, we propose Forest, a new program synthesizer for regular ex-
pressions that targets digital form validations. Forest takes as input a set of ex-
amples and returns a regex validation. Forest accepts three types of examples:
(i) valid examples: correct values for the input field, (ii) invalid examples:
incorrect values for the input field due to their format, and (iii) conditional
invalid examples (optional): incorrect values for the input field due to their
values. Forest outputs a regex validation, consisting of two components: (i) a
regular expression that matches all valid and none of the invalid examples
and (ii) capture conditions that express integer conditions that are satisfied
by the values on all the valid but none of the conditional invalid examples.

Motivating Example. Suppose a user is writing a form where one of the fields
is a date that must respect the format DD/MM/YYYY. The user wants to accept:

19/08/1996 22/09/2000 29/09/2003
26/10/1998 01/12/2001 31/08/2015

But not:
19/08/96 22.09.2000 29/9/2003
26-10-1998 1/12/2001 2015/08/31

A regular expression can be used to enforce this format. Instead of writing it, the
user may simply use the two sets of values as valid and invalid input examples
to Forest, who will output the regex [0-9]{2}/[0-9]{2}/[0-9]{4}.

Additionally, if the user wants to validate not only the format, but also the
values in the date, we can consider as conditional invalid the examples:

33/08/1996 22/13/2000 12/31/2003
26/00/1998 00/12/2001 52/03/2015

Forest will output a regex validation complete with conditions over captur-
ing groups that ensures only valid values are inserted as the day and month:
([0-9]{2})/([0-9]{2})/[0-9]{4}, $0 ≤ 31 ∧ $0 ≥ 1 ∧ $1 ≤ 12 ∧ $1 ≥ 1.

As we can see in the motivating example, data inserted into digital forms is
usually structured and shares a common pattern among the valid examples. In
this example, the data has the shape dd/dd/dddd where d represents a digit. This

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:
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Figure 1: Regex synthesis

contrasts with general regexes for search and replace operations that are often
performed over unstructured text. Forest takes advantage of this structure by
automatically detecting these patterns and using a divide-and-conquer approach
to split the expression into simpler sub-expressions, solving them independently,
and then merging their information to obtain the final regular expression. Addi-
tionally, Forest computes a set of capturing groups over the regular expression,
which it then uses to synthesize integer conditions that further constrain the ac-
cepted values for that form field.

Input-output examples do not require specialized knowledge and are accessi-
ble to users. However, there is one downside to using examples as a specification:
they are ambiguous. There can be solutions that, despite matching the exam-
ples, do not produce the desired behavior in situations not covered in them.
The ambiguity of input-output examples raises the necessity of selecting one
among multiple candidate solutions. To this end, we incorporate a user interac-
tion model based on distinguishing inputs for both the synthesis of the regular
expressions and the synthesis of the capture conditions.

In summary, this paper makes the following contributions:

– We propose a multi-tree SMT representation for regular expressions that
leverages the structure of the input to apply a divide-and-conquer approach.

– We propose a new method to synthesize capturing groups for a given regular
expression and integer conditions over the resulting captures.

– We implemented a tool, Forest, that interacts with the user to disam-
biguate the provided specification. Forest is evaluated on real-world in-
stances and its performance is compared with a state-of-the-art synthesizer.

2 Synthesis Algorithm Overview

The task of automatically generating a program that satisfies some desired be-
havior expressed as a high-level specification is known as Program Synthesis.
Programming by Example (PBE) is a branch of Program Synthesis where the
desired behavior is specified using input-output examples.

Our synthesis procedure is split into two stages, each relative to an output
component. First, Forest synthesizes the regular expression, which is the basis
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for the synthesis of capturing groups. Secondly, Forest synthesizes the capture
conditions, by first computing a set of capturing groups and then the conditions
to be applied to the resulting captures. The synthesis stages are detailed in sec-
tions 3 and 4. Figure 1 shows the regex validation synthesis pipeline. Both stages
of our synthesis algorithm employ enumerative search, a common approach to
solve the problem of program synthesis [4,5,10,17,21]. The enumerative search
cycle is depicted in Figure 2.

There are two key components for program enumeration: the enumerator
and the verifier. The enumerator successively enumerates programs from the
a predefined Domain Specific Language (DSL). Following the Occam’s razor
principle, programs are enumerated in increasing order of complexity. The DSL
defines the set of operators that can be used to build the desired program.
Forest dynamically constructs its DSL to fit the problem at hand: it is as
restricted as possible, without losing the necessary expressiveness. The regular
expression DSL construction procedure is detailed in section 3.1.

For each enumerated program, the verifier subsequently checks whether it
satisfies the provided examples. Program synthesis applications generate very
large search spaces; nevertheless, the search space can be significantly reduced by
pruning several infeasible expressions along with each incorrect expression found.
In the first stage of the regex validation synthesis, the enumerated programs
are regular expressions. The enumeration and pruning of regular expressions is
described in section 3.2. In the second stage of regex validation synthesis, we deal
with the enumeration of capturing groups over a pre-existing regular expression.
This process is described in section 4.1.

To circumvent the ambiguity of input-output examples, Forest implements
an interaction model. A new component, the distinguisher, ascertains, for any two
given programs, whether they are equivalent. When Forest finds two different
validations that satisfy all examples, it creates a distinguishing input : a new
input that has a different output for each validation. To disambiguate between
two programs, Forest shows the new input to the user, who classifies it as valid
or invalid, effectively choosing one program over the other. The new input-output
pair is added to the examples, and the enumeration process continues until there
is only one solution left. This interactive cycle is described for the synthesis of
regular expressions in section 3.3 and capture conditions in section 4.3.

Forest:
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3 Regular Expressions Synthesis

In this section we describe the enumerative synthesis procedure that generates
a regular expression that matches all valid examples and none of the invalid.

3.1 Regular Expressions DSL

Before the synthesis procedure starts, we define which operators can be used
to build the desired regular expression and the values each operator can take
as argument. Forest’s regular expression DSL includes the regex union and
concatenation operators, as well as several regular expression quantifiers:

– Kleene closure: r∗ matches r zero or more times,
– positive closure: r+ matches r one or more times,
– option: r? matches r zero or one times,
– ranges: r{m} matches r exactly m times, and r{m,n} matches r at least m

times and at most n times.

The possible values for the range operators are limited depending on the valid
examples provided by the user. For the single-valued range operator, r{m}, we
consider only the integer values such that 2 ≤ m ≤ l, where l is the length of
the longest valid example string. In the two-valued range operator, r{m,n}, the
values of m and n are limited to integers such that 0 ≤ m < n ≤ l. The tuple
(0,1) is not considered, since it is equivalent to the option quantifier: r{0, 1} = r?.

All operators can be applied to regex literals or composed with each other
to form more complex expressions. The regex literals considered in the syn-
thesis procedure include the individual letters, digits or symbols present in the
examples and all character classes that contain them. The character classes con-
templated in the DSL are [0-9], [A-Z], [a-z] and all combinations of those,
such as [A-Za-z] or [0-9A-Za-z]. Additionally, [0-9A-F] and [0-9a-f] are
used to represent hexadecimal numbers.

3.2 Regex Enumeration

To enumerate regexes, the synthesizer requires a structure capable of represent-
ing every feasible expression. We use a tree-based representation of the search
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Figure 4: [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a multi-tree with n = 5
and k = 2, resulting from the concatenation of 5 simpler regexes

space. A k-tree of depth d is a tree in which every internal node has exactly
k children and every leaf node is at depth d. A program corresponds to an as-
signment of a DSL construct to each tree node, the node’s descendants are the
construct’s arguments. If k is the greatest arity among all DSL constructs, then
a k-tree of depth d can represent all programs of depth up to d in that DSL.
The arity of constructs in Forest’s regex DSLs is at most 2, so all regexes in
the search space can be represented using 2-trees. To allow constructs with arity
smaller than k, some children nodes are assigned the empty symbol, ε. In Fig-
ure 3, the regex from the motivating example, [0-9]{2}/[0-9]{2}/[0-9]{4},
is represented as a 2-tree of depth 5.

To explore the search space in order of increasing complexity, we enumerate
k-trees of lower depths first and progressively increase the depth of the trees
as previous depths are exhausted. The enumerator encodes the k-tree as an
SMT formula that ensures the program is well-typed. A model that satisfies the
formula represents a valid regex. Due to space constraints we omit the k-tree
encoding but further details can be found in the literature [2,17].

Multi-tree representation. We considered several validators for digital forms
and observed that many regexes in this domain are the concatenation of rela-
tively simple regexes. However, the successive concatenation of simple regexes
quickly becomes complex in its k-tree representation. Recall the regex for date
validation presented in the motivating example: [0-9]{2}/[0-9]{2}/[0-9]{4}.
Even though this is the concatenation of 5 simple sub-expressions, each of depth
at most 2, its representation as a k-tree has depth 5, as shown in Figure 3.

The main idea behind the multi-tree constructs is to allow the number of
concatenated sub-expressions to grow without it reflecting exponentially on the
encoding. The multi-tree structure consists of n k-trees, whose roots are con-
nected by an artificial root node, interpreted as an n-ary concatenation opera-
tor. This way, we are able to represent regexes using fewer nodes. Figure 4 is
the multi-tree representation of the same regex as Figure 3, and shows that the
multi-tree construct can represent this expression using half the nodes.

The k-tree enumerator successively explores k-trees of increasing depth. How-
ever, multi-tree has two measures of complexity: the depth of the trees, d, and
the number of trees, n. Forest employs two different methods for increasing
these values: static multi-tree and dynamic multi-tree.

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:
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Static multi-tree. In the static multi-tree method, the synthesizer fixes n
and progressively increases d. To find the value of n, there is a preprocessing
step, in which Forest identifies patterns in the valid examples. This is done by
first identifying substrings common to all examples. A substring is considered a
dividing substring if it occurs exactly the same number of times and in the same
order in all examples. Then, we split each example before and after the dividing
substrings. Each example becomes an array of n strings.

Example 1. Consider the valid examples from the motivating example. In these
examples, ‘/’ is a dividing substring because it occurs in every example, and
exactly twice in each one. ‘0’ is a common substring but not a dividing substring
because it does not occur the same number or times in all examples. After
splitting on ‘/’, each example becomes a tuple of 5 strings:

(‘19’, ‘/’, ‘08’, ‘/’, ‘1996’)
(‘26’, ‘/’, ‘10’, ‘/’, ‘1998’)
(‘22’, ‘/’, ‘09’, ‘/’, ‘2000’)

(‘01’, ‘/’, ‘12’, ‘/’, ‘2001’)
(‘29’, ‘/’, ‘09’, ‘/’, ‘2003’)
(‘31’, ‘/’, ‘08’, ‘/’, ‘2015’)

Then, we apply the multi-tree method with n trees. For every i ∈ {1, ..., n},
the ith sub-tree represents a regex that matches all strings in the ith position
of the split example tuples and the concatenation of the n regexes will match
the original example strings. Since each tree is only synthesizing a part of the
original input strings, a reduced DSL is recomputed for each tree.

Dynamic multi-tree. The dynamic multi-tree method is employed when the
examples cannot be split because there are no dividing substrings. In this sce-
nario, the enumerator will still use a multi-tree construct to represent the regex.
However, the number of trees is not fixed and all trees use the original, complete
DSL. A multi-tree structure with n k-trees of depth d has n × (kd − 1) nodes.
Forest enumerates trees with different values of (n, d) in increasing order of
number of nodes, starting with n = 1 and d = 2, a simple k-tree of depth 2.

Pruning. We prune regexes which are provably equivalent to others in the
search space by using algebraic rules of regular expressions like the following:

(r∗)∗ ≡ r∗ (r?)? ≡ r? (r+)+ ≡ r+

(r+)∗ ≡ (r∗)+ ≡ r∗ (r?)∗ ≡ (r∗)? ≡ r∗ (r?)+ ≡ (r+)? ≡ r∗
(r∗){m} ≡ (r{m})∗ (r+){m} ≡ (r{m})+ (r?){m} ≡ (r{m})?

r{n}{m} ≡ r{m}{n} ≡ r{m× n}

To prevent the enumeration of equivalent regular expressions, we add SMT
constraints that block all but one possible representation of each regex. Take,
for example, the equivalence (r?)+ ≡ r∗. We want to consider only one way to
represent this regex, so we add a constraint to block the construction (r?)+ for
any regex r. Another such equivalence results from the idempotence of union:
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r|r = r. To prevent the enumeration of expressions of the type r|r, every time
the union operator is assigned to a node i, we force the sub-tree underneath
i’s left child to be different from the sub-tree underneath i’s right child by at
least one node. When we enumerate a regex that is not consistent with the
examples, it is eliminated from the search space. Along with the incorrect regex,
we want to eliminate regexes that are equivalent to it. The union operator in
the regular expressions DSL is commutative: r|s = s|r, for any regexes r and
s. Thus, whenever an expression containing r|s is discarded, we eliminate the
expression that contains s|r in its place as well.

3.3 Regex Disambiguation

To increase confidence in the synthesizer’s solution, Forest disambiguates the
specification by interacting with the user. We employ an interaction model based
on distinguishing inputs, which has been successfully used in several synthesizers
[11,24,25,14]. To produce a distinguishing input, we require an SMT solver with
a regex theory, such as Z3 [15,23]. Upon finding two regexes that satisfy the
user-provided examples, r1 and r2, we use the SMT solver to solve the formula:

∃s : r1(s) �= r2(s), (1)

where r1(s) (resp. r2(s)) is True if and only if r1 (resp. r2) matches the string s.
A string s that satisfies (1) is a distinguishing input. Forest asks the user to
classify this input as valid or invalid, and s is added to the respective set of
examples, thus eliminating either r1 or r2 from the search space. After the first
interaction, the synthesis procedure continues only until the end of the current
depth and number of trees.

4 Capturing Groups Synthesis

In this section we describe the synthesis procedure of the second component
of a regex validation: a set of integer conditions over captured values that are
satisfied by all valid examples but none of the conditional invalid examples.

4.1 Capturing Groups Enumeration

To enumerate capturing groups, Forest starts by identifying the regular expres-
sion’s atomic sub-regexes: the smallest sub-regexes whose concatenation results
in the original complete regex. For example, [0-9]{2} is an atomic sub-regex:
there are no smaller sub-regexes whose concatenation results in it. It does not
make sense to place a capturing group inside atomic sub-regexes: ([0-9]){2}
does not have a clear meaning. Once identified, the atomic sub-regexes are placed
in an ordered list. Enumerating capturing groups over the regular expression is
done by enumerating non-empty disjoint sub-lists of this list. The elements inside
each sub-list form a capturing group.

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:



160 M. Ferreira et al.

Example 2. Recall the date regex: [0-9]{2}/[0-9]{2}/[0-9]{4}. The respec-
tive list of atomic sub-regexes is [[0-9]{2}, /, [0-9]{2}, /, [0-9]{4}]. The
following are examples of sub-lists of the atomic sub-regexes list and their re-
sulting capturing groups:

[[[0-9]{2}], /, [0-9]{2}, /, [0-9]{4}] → ([0-9]{2})/[0-9]{2}/[0-9]{4}

[[[0-9]{2}], /, [[0-9]{2}], /, [[0-9]{4}]] → ([0-9]{2})/([0-9]{2})/([0-9]{4})

4.2 Capture Conditions Synthesis

To compute capture conditions, we need all conditional invalid examples to be
matched by the regular expression. After, capturing groups are enumerated as
described in section 4.1. The number of necessary capturing groups is not known
beforehand, so we enumerate capturing groups in increasing number.

A capture condition is a 3-tuple: it contains the captured text, an integer com-
parison operator and an integer argument. Forest considers only two integer
comparison operators, ≤ and ≥. However, the algorithm can be easily expanded
to include other operators. Let C be a set of capturing groups and C(x) the in-
teger captures that result from applying C to example string x. Let DC be the
set of all possible capture conditions over capturing groups C. DC results from
combining each capturing group with each integer operator. Finally, let V be
the set of all valid examples, I the set of all conditional invalid examples, and
X = V ∪ I the union of these two sets.

Given capturing groups C, Forest uses Maximum Satisfiability Modulo The-
ories (MaxSMT) to select from DC the minimum set of conditions that are sat-
isfied by all valid examples and none of the conditional invalid. To encode the
problem, we define two sets of Boolean variables. First, we define scap,x for every
cap ∈ C(x) and x ∈ X . scap,x = True if capture cap in example x satisfies all
used conditions that refer to it. We also define ucond for all cond ∈ DC . ucond =
True means condition cond is used in the solution. Additionally, we define a set
of integer variables bcond, for all conditions cond ∈ DC that represent the integer
argument present in each condition.

Let SMT(cond, x) be the SMT representation of condition cond for example
x: the capture is an integer value, and the integer argument is the corresponding
bcond variable. Let Dcap ⊆ DC be the set of capture conditions that refer to
capture cap. Constraint (2) states that a capture cap in example x satisfies all
conditions if and only if for every condition that refers to cap either it is not used
in the solution or it is satisfied for the value of that capture in that example:

scap,x ↔
∧

cond∈Dcap

ucond → SMT(cond, x). (2)

Example 3. Recall the first valid string from the motivating example: x0 =
“19/08/1996”. Suppose Forest has already synthesized the desired regular ex-
pression and enumerated a capturing group that corresponds to the day:
([0-9]{2})/[0-9]{2}/[0-9]{4}. Let cond0 and cond1 be the conditions that
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refer to the first (and only) capturing group, $0, and operators ≤ and ≥ respec-
tively. The SMT representation for cond0 and x0 is SMT(cond0, x0) = 19 ≤
bcond0

. Constraint (2) is:

s0,x0
↔ (ucond0

→ 19 ≤ bcond0
) ∧ (ucond1

→ 19 ≥ bcond1
).

Then, we ensure the used conditions are satisfied by all valid examples and
none of the conditional invalid examples:∧

x∈V

∧
cap∈C(x)

scap,x ∧
∧
x∈I

∨
cap∈C(x)

¬scap,x. (3)

Since we are looking for the minimum set of capture conditions, we add soft
clauses to penalize the usage of capture conditions in the solution:∧

cond∈DC

¬ucond. (4)

We consider part of the solution only the capture conditions whose ucond

is True in the resulting SMT model. We also extract the values of the integer
arguments in each condition from the model values of the bcond variables.

4.3 Capture Conditions Disambiguation

To ensure the solution meets the user’s intent, Forest disambiguates the spec-
ification using, once again, a procedure based on distinguishing inputs. Once
Forest finds two different sets of capture conditions S1 and S2 that satisfy the
specification, we look for a distinguishing input: a string c which satisfies all
capture conditions in S1, but not those in S2, or vice-versa. First, to simplify
the problem, Forest eliminates from S1 and S2 conditions which are present
in both: these are not relevant to compute a distinguishing input. Let S∗

1 (resp.
S∗
2 ) be the subset of S1 (resp. S2) containing only the distinguishing conditions,

i.e., the conditions that differ from those in S2 (resp. S1).
We do not compute the distinguishing string c directly. Instead, we com-

pute the integer value of the distinguishing captures in c, i.e., the captures that
result from applying the regular expression and its capturing groups to the dis-
tinguishing input string. We define |C| integer variables, ci, which correspond to
the values of the distinguishing captures: c0, c1, ..., c|C| = C(c).

As before, let SMT(cond, c) be the SMT representation of each condition
cond. Each capture in C(c) is represented by its respective ci, the operator main-
tains it usual semantics and the integer argument is its value in the solution to
which the condition belongs. Constraint (5) states that c satisfies the conditions
in one solution but not the other.∧

cond∈S∗
1

SMT(cond, c) �=
∧

cond∈S∗
2

SMT(cond, c). (5)

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:
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In the end, to produce the distinguishing string c, Forest picks an example
from the valid set, applies the regular expression with the capturing groups to
it, and replaces its captures with the model values for ci.

Forest asks the user to classify c as valid or invalid. Depending on the
user’s answer, c is added as a valid or conditional invalid example, effectively
eliminating either S1 or S2 from the search space.

Example 4. Recall the examples from the motivating example. No example in-
validates a date with the day 32, so Forest will find two correct sets of cap-
ture conditions over the regular expression ([0-9]{2})/([0-9]{2})/[0-9]{4}:
S1 = {$0 ≤ 31, $0 ≥ 1, $1 ≤ 12, $1 ≥ 1}, and S2 = {$0 ≤ 32, $0 ≥ 1, $1 ≤
12, $1 ≥ 1}. First, we define two sets containing only the distinguishing cap-
tures: S∗

1 = {$0 ≤ 31} and S∗
2 = {$0 ≤ 32}. Then, to find c0, the value of the

distinguishing capture for these solutions, we solve the constraint:

∃c0 : c0 ≤ 31 �= c0 ≤ 32

and get the value c0 = 32 which satisfies S∗
2 (and S2), but not S∗

1 (or S1).
If we pick the first valid example, “19/08/1996” as basis for c, the respective

distinguishing input is c = “32/08/1996”. Once the user classifies c as invalid, c
is added as a conditional invalid example and S2 is removed from consideration.

5 Related Work

Program synthesis has been successfully used in many domains such as string
processing [8,19,7,26], query synthesis [11,25,17], data wrangling [2,5], and func-
tional synthesis [3,6]. In this section, we discuss prior work on the synthesis of
regular expressions [10,1] that is most closely related to our approach.

Previous approaches that perform general string processing [7,26] restrict the
form of the regular expressions that can be synthesized. In contrast, we support
a wide range of regular expressions operators, including the Kleene closure, pos-
itive closure, option, and range. More recent work that targets the synthesis of
regexes is done by AlphaRegex [10] and Regel [1]. AlphaRegex performs
an enumerative search and uses under- and over-approximations of regexes to
prune the search space. However, AlphaRegex is limited to the binary alpha-
bet and does not support the kind of regexes that we need to synthesize for
form validations. Regel [1] is a state-of-the-art synthesizer of regular expres-
sions based on a multi-modal approach that combines input-output examples
with a natural language description of user intent. They use natural language
to build hierarchical sketches that capture the high-level structure of the regex
to be synthesized. In addition, they prune the search space by using under- and
over-approximations and symbolic regexes combined with SMT-based reasoning.
Regel’s evaluation [1] has shown that their PBE engine is an order of magni-
tude faster than AlphaRegex. While Regel targets more general regexes that
are suitable for search and replace operations, we target regexes for form vali-
dation which usually have more structure. In our approach, we take advantage
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of this structure to split the problem into independent subproblems. This can
be seen as a special case of sketching [22] where each hole is independent. Our
pruning techniques are orthogonal to the ones used by Regel and are based on
removing equivalent regexes prior to the search and to remove equivalent failed
regexes during search. To the best of our knowledge, no previous work focused
on the synthesis of conditions over capturing groups.

Instead of using input-output examples, there are other approaches that syn-
thesize regexes solely from natural language [9,12,27]. We see these approaches as
orthogonal to ours and expect that Forest can be improved by hints provided
by a natural language component such as was done in Regel.

6 Experimental Results

Implementation. Forest is open-source and publicly available at https://github.
com/Marghrid/FOREST. Forest is implemented in Python 3.8 on top of Trin-
ity, a general-purpose synthesis framework [13]. All SMT formulas are solved
using the Z3 SMT solver, version 4.8.9 [15]. To find distinguishing inputs in reg-
ular expression synthesis, Forest uses Z3’s theory of regular expressions [23].
To check the enumerated regexes against the examples, we use Python’s regex li-
brary [18]. The results presented herein were obtained using an Intel(R) Xeon(R)
Silver 4110 CPU @ 2.10GHz, with 64GB of RAM, running Debian GNU/Linux 10.
All processes were run with a time limit of one hour.

Benchmarks. To evaluate Forest, we used 64 benchmarks based on real-world
form-validation regular expressions. These were collected from regular expres-
sion validators in validation frameworks and from regexlib [20], where users
can upload their own regexes. Among these 64 benchmarks there are different
formats: national IDs, identifiers of products, date and time, vehicle registration
numbers, postal codes, email and phone numbers. For each benchmark, we gen-
erated a set of string examples. All 64 benchmarks require a regular expression
to validate the examples, but only 7 require capture conditions. On average,
each instance is composed of 13.2 valid examples (ranging from 4 to 33) and 9.3
invalid (ranging from 2 to 38). The 7 instances that target capture conditions
have on average 6.3 conditional invalid examples (ranging from 4 to 8).

The goal of this experimental evaluation is to answer the following questions:
Q1: How does Forest compare against Regel? (section 6.1)
Q2: How does pruning affect multi-tree’s time performance? (section 6.2)
Q3: How does static multi-tree improve on dynamic multi-tree? (section 6.2)
Q4: How does multi-tree compare against other encodings? (section 6.3)
Q5: How many examples are required to return a correct solution? (section 6.4)

Forest, by default, uses static multi-tree (when possible) with pruning. It
correctly solves 31 benchmarks (48%) in under 10 seconds. In one hour, Forest
solves 47 benchmarks (73%), with 96% accuracy: only two solutions did not
correspond to the desired regex validation. Forest disambiguates only among
programs at the same depth, and so if the first solution is not at the same depth
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Table 1: Comparison of time performance using different synthesis methods
Timeout (s) 10 60 3600

Forest (with interaction) 31 39 47
Forest’s 1st regex (no interaction) 40 46 50
Multi-tree w/o pruning 20 32 38
Dynamic-only multi-tree 5 10 18
k-tree 4 9 15
Line-based (w/o pruning) 4 4 12
Regel 29 38 47
Regel PBE 5 7 23
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Figure 5: Instances solved using different methods

as the correct one, the correct solution is never found. After 1 hour of running
time, Forest is interrupted, but it prints its current best validation before
terminating. After the timeout, Forest returned 3 more regexes, 2 of which the
correct solution for the benchmark. In all benchmarks to which Forest returns
a solution, the first matching regular expression is found in under 10 minutes. In
40 benchmarks, the first regex is found in under 10 seconds. The rest of the time
is spent disambiguating the input examples. Forest interacts with the user to
disambiguate the examples in 27 benchmarks. Overall, it asks 1.8 questions and
spends 38.6 seconds computing distinguishing inputs, on average.

Regarding the synthesis of capture conditions, in 5 of the benchmarks, we
need only 2 capturing groups and at most 4 conditions. In these instances, the
conditions’ synthesis takes under 2 seconds. The remaining 2 benchmarks need 4
capturing groups and take longer: 99 seconds to synthesize 4 conditions and 1068
seconds for 6 conditions. During capture conditions synthesis, Forest interacts
7.14 times and takes 0.1 seconds to compute distinguishing inputs, on average.

Table 1 shows the number of instances solved in under 10, 60 and 3600
seconds using Forest, as well as using the different variations of the synthesizer
which will be described in the following sections. The cactus plot in Figure 5
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shows the cumulative synthesis time on the y-axis plotted against the number of
benchmarks solved by each variation of Forest (on the x-axis). The synthesis
methods that correspond to lines more to the right of the plot are able to solve
more benchmarks in less time. We also compare solving times with Regel [1].
Regel takes as input examples and a natural description of user intent. We
consider not only the complete Regel synthesizer, but also the PBE engine of
Regel by itself, which we denote by Regel PBE.

6.1 Comparison with Regel

As mentioned in section 5, Regel’s synthesis procedure is split into two steps:
sketch generation (using a natural language description of desired behavior) and
sketch completion (using input-output examples). To compare Regel and For-
est, we extended our 64 form validation benchmarks with a natural language
description. To assess the importance of the natural language description, we
also ran Regel using only its PBE engine. Sketch generation took on average
60 seconds per instance, and successfully generated a sketch for 63 instances.
The remaining instance was run without a sketch. We considered only the high-
est ranked sketch for each instance. In Table 1 we show how many instances can
be solved with different time limits for sketch completion; note that these values
do not include the sketch generation time. Regel returned a regular expression
for 47 instances within the time limit. Since Regel does not implement a dis-
ambiguation procedure, the returned regular expression does not always exhibit
the desired behavior, even though it correctly classifies all examples. Of the 47
synthesized expressions, 31 exhibit the desired intent. This is a 66% accuracy,
which is the same as Forest without disambiguation (Forest’s 1st regex) but
it is much lower than Forest with disambiguation at 96%. We also observe that
Regel’s performance is severely impaired when using only its PBE engine.

51 out of the 63 generated sketches are of the form �{S1, ..., Sn}, where each
Si is a concrete sub-regex, i.e., has no holes. This construct indicates the desired
regex must contain at least one of S1, ..., Sn, and contains no information about
the top-level operators that are used to connect them. 22 of the 47 synthesized
regexes are based on sketches of that form, and they result from the direct
concatenation of all components in the sketch. No new components are generated
during sketch completion. Thus, most of Regel’s sketches could be integrated
into Forest, whose multi-tree structure holds precisely those top-level operators
that were missing from Regel’s sketches.

6.2 Impact of pruning the search space and splitting examples

To evaluate the impact of pruning the search space as described in section 3.2, we
ran Forest with all pruning techniques disabled. In the scatter plot in Figure 6a,
we can compare the solving time on each benchmark with and without pruning.
Each mark in the plot represents an instance. The value on the y-axis shows
the synthesis time of multi-tree with pruning disabled and the value on the x-
axis the synthesis time with pruning enabled. The marks above the y = x line

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:
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Figure 6: Comparison of synthesis time using different variations of Forest.

(also represented in the plot) represent problems that took longer to synthesize
without pruning than with pruning. On average, with pruning, Forest can
synthesize regexes in 42% of the time and enumerates about 15% of the regexes
before returning. There is no significant change in the number of interactions
before returning the desired solution.

Forest is able to split the examples and use static multi-tree as described in
section 3.2 in 52 benchmarks (81%). The remaining 12 are solved using dynamic
multi-tree. To assess the impact of using static multi-tree we ran Forest with a
version of the multi-tree enumerator that does not split the examples, and jumps
directly to dynamic multi-tree solving. In the scatter plot in Figure 6b, we com-
pare the solving times of each benchmark. Using static multi-tree when possible,
Forest requires, on average, less than two thirds of the time (59.1%) to return
the desired regex for benchmarks solved by both methods. Furthermore, with
static multi-tree Forest can synthesize more complex regexes: the maximum
number of nodes in a solution returned by dynamic multi-tree is 12 (avg. 6.7),
while complete multi-tree synthesizes regexes of up to 24 nodes (avg. 10.3).

6.3 Multi-tree versus k-tree and line-based encodings

To evaluate the performance of multi-tree enumeration, we ran Forest with two
other enumeration encodings: k-tree and line-based. The latter is a state of the
art encoding for the synthesis of SQL queries [17]. k-tree is the default enumera-
tor in Trinity [13], and the line-based enumerator is available in Squares [16].
The k-tree encoding has a very similar structure to that of multi-tree, so our
pruning techniques were easily applied to this encoding. On the other hand,
line-based encoding is intrinsically different, so the pruning techniques were not
implemented. We compare the line-based encoding to multi-tree without prun-
ing. In every other aspect, the three encodings were run in the same conditions,
using Forest’s regex DSL. k-tree is able to synthesize programs with up to
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10 nodes, while the line-based encoding synthesizes programs of up to 9 nodes.
Neither encoding outperforms multi-tree.

As seen in Table 1, line-based encoding does not outperform the tree-based
encodings for the domain of regexes while it was much better for the domain of
SQL queries [17]. We conjecture this disparity arises from the different nature
of DSLs. Most SQL queries, when represented as a tree, leave many branches of
the tree unused, which results in a much larger tree and SMT encoding.

6.4 Impact of fewer examples

To assess the impact of providing fewer examples on the accuracy of the solution,
we ran Forest with modified versions of each benchmark. First, each benchmark
was run with at most 10 valid and 10 invalid examples, chosen randomly among
all examples. Conditional invalid examples are already very few per instance, so
these were not altered. The accuracy of the returned regexes is slightly lower.

With only 10 valid and 10 invalid examples, Forest returns the correct regex
in 93.5% of the benchmarks, which represents a decrease of only 2.5% relative
to the results with all examples. We also saw an increase in the number of inter-
actions before returning, since fewer examples are likely to be more ambiguous.
With only 10 examples, Forest interacts on average 2.2 times per benchmark,
which represents an increase of about a fifth. The increase in the number of
interactions reflects on a small increase in the synthesis time (less than 1%).

After, we reduced the number of examples even further: only 5 valid and 5
invalid. The accuracy of Forest in this setting was reduced to 71%. On average,
it interacted 4.3 times per benchmark, which is over two times more than before.

7 Conclusions and Future Work

Regexes are commonly used to enforce patterns and validate the input fields of
digital forms. However, writing regex validations requires specialized knowledge
that not all users possess. We have presented a new algorithm for synthesis of
regex validations from examples that leverages the common structure shared
between valid examples. Our experimental evaluation shows that the multi-tree
representation synthesizes three times more regexes than previous representa-
tions in the same amount of time and, together with the user interaction model,
Forest solves 70% of the benchmarks with the correct user intent. We verified
that Forest maintains a very high accuracy with as few as 10 examples of each
kind. We also observed that our approach outperforms Regel, a state-of-the-art
synthesizer, in the domain of form validations.

As future work, we would like to explore the synthesis of more complex
capture conditions, such as conditions depending on more than one capture.
This would allow more restrictive validations; for example, in a date, the possible
values for the day could depend on the month. Another possible extension to
Forest is to automatically separate invalid from conditional invalid examples,
making this distinction imperceptible to the user.

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:



168 M. Ferreira et al.

References

1. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions. In: PLDI. ACM (2020)

2. Chen, Y., Martins, R., Feng, Y.: Maximal multi-layer specification synthesis. In:
ESEC/SIGSOFT FSE. pp. 602–612. ACM (2019)

3. Fedyukovich, G., Gupta, A.: Functional synthesis with examples. In: CP. Lecture
Notes in Computer Science, vol. 11802, pp. 547–564. Springer (2019)

4. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: PLDI. pp. 420–435. ACM (2018)

5. Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-based
synthesis of table consolidation and transformation tasks from examples. In: PLDI.
pp. 422–436. ACM (2017)

6. Golia, P., Roy, S., Meel, K.S.: Manthan: A data driven approach for boolean func-
tion synthesis. In: CAV. Springer (2020)

7. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: POPL. pp. 317–330. ACM (2011)

8. Kini, D., Gulwani, S.: Flashnormalize: Programming by examples for text normal-
ization. In: IJCAI. pp. 776–783. AAAI Press (2015)

9. Kushman, N., Barzilay, R.: Using semantic unification to generate regular expres-
sions from natural language. In: HLT-NAACL. pp. 826–836. The Association for
Computational Linguistics (2013)

10. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for intro-
ductory automata assignments. In: GPCE. pp. 70–80. ACM (2016)

11. Li, H., Chan, C., Maier, D.: Query from examples: An iterative, data-driven ap-
proach to query construction. Proc. VLDB Endow. 8(13), 2158–2169 (2015)

12. Locascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R.: Neural gen-
eration of regular expressions from natural language with minimal domain knowl-
edge. In: EMNLP. pp. 1918–1923. The Association for Computational Linguistics
(2016)

13. Martins, R., Chen, J., Chen, Y., Feng, Y., Dillig, I.: Trinity: An Extensible Syn-
thesis Framework for Data Science. PVLDB 12(12), 1914–1917 (2019)

14. Mayer, M., Soares, G., Grechkin, M., Le, V., Marron, M., Polozov, O., Singh, R.,
Zorn, B.G., Gulwani, S.: User interaction models for disambiguation in program-
ming by example. In: UIST. pp. 291–301. ACM (2015)

15. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

16. Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.M.: Squares.
https://squares-sql.github.io, accessed on May 27, 2020

17. Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.M.: Encod-
ings for enumeration-based program synthesis. In: CP. Lecture Notes in Computer
Science, vol. 11802, pp. 583–599. Springer (2019)

18. Python Software Foundation: Python3’s regular expression module re. https://
docs.python.org/3/library/re.html, accessed on October 11, 2020

19. Raza, M., Gulwani, S.: Automated data extraction using predictive program syn-
thesis. In: AAAI. pp. 882–890. AAAI Press (2017)

20. Regular Expression Library: www.regexlib.com, accessed on May 27, 2020
21. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart

and fast term enumeration for syntax-guided synthesis. In: CAV. Lecture Notes in
Computer Science, vol. 11562, pp. 74–83. Springer (2019)

https://squares-sql.github.io
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
www.regexlib.com


169

22. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5-6),
475–495 (2013)

23. Stanford, C., Veanes, M., Bjørner, N.: Symbolic boolean derivatives for efficiently
solving extended regular expression constraints. Tech. Rep. MSR-TR-2020-25, Mi-
crosoft (August 2020), updated November 2020.

24. Wang, C., Cheung, A., Bodík, R.: Interactive query synthesis from input-output
examples. In: SIGMOD Conference. pp. 1631–1634. ACM (2017)

25. Wang, C., Cheung, A., Bodík, R.: Synthesizing highly expressive SQL queries from
input-output examples. In: PLDI. pp. 452–466. ACM (2017)

26. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-
ples. In: OOPSLA. pp. 195–213. ACM (2016)

27. Zhong, Z., Guo, J., Yang, W., Peng, J., Xie, T., Lou, J., Liu, T., Zhang, D.: Sem-
regex: A semantics-based approach for generating regular expressions from natural
language specifications. In: EMNLP. pp. 1608–1618. Association for Computational
Linguistics (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

An Interactive Multi-Tree Synthesizer for Regular ExpressionsForest:

http://creativecommons.org/licenses/by/4.0/


Probabilities



C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
  Evaluated *

 T
A

C
A

S
 *

 A
rtifact  *  A

E
C

Finding Provably Optimal Markov Chains

Jip Spel1(�) , Sebastian Junges2 , and Joost-Pieter Katoen1

1 RWTH Aachen University, Aachen, Germany�

jip.spel@cs.rwth-aachen.de
2 University of California, Berkeley, California, USA��

Abstract. Parametric Markov chains (pMCs) are Markov chains with
symbolic (aka: parametric) transition probabilities. They are a convenient
operational model to treat robustness against uncertainties. A typical
objective is to find the parameter values that maximize the reachability
of some target states. In this paper, we consider automatically proving
robustness, that is, an ε-close upper bound on the maximal reachability
probability. The result of our procedure actually provides an almost-
optimal parameter valuation along with this upper bound.
We propose to tackle these ETR-hard problems by a tight combination
of two significantly different techniques: monotonicity checking and pa-
rameter lifting. The former builds a partial order on states to check
whether a pMC is (local or global) monotonic in a certain parameter,
whereas parameter lifting is an abstraction technique based on the itera-
tive evaluation of pMCs without parameter dependencies. We explain our
novel algorithmic approach and experimentally show that we significantly
improve the time to determine almost-optimal synthesis.

1 Introduction

Background and problem setting. Probabilistic model checking [3,20] is a well-
established field and has various applications but assumes probabilities to be
fixed constants. To deal with uncertainties, symbolic parameters are used. Para-
metric Markov chains (pMCs, for short) define a family of Markov chains with
uncountably many family members, called instantiations, by having symbolic
(aka: parametric) transition probabilities [10,22]. We are interested in determining
optimal parameter settings: which instantiation meets a given objective the best?
The typical objective is to maximize the reachability probability of a set of target
states. This question is inspired by practical applications such as: what are the
optimal parameter settings in randomised controllers to minimise power consump-
tion?, and what is the optimal bias of coins in a randomised distributed algorithm
to maximise the chance of achieving mutual exclusion? For most applications,
it suffices to achieve parameters that attain a given quality of service that is
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ε-close to the unknown optimal solution. More precisely, this paper concentrates
on automatically proving ε-robustness, i.e., determine an upper bound which is
ε-close to the maximal reachability probability. The by-product of our procedure
actually provides an almost-optimal parameter valuation too.

Existing parameter synthesis techniques. Efficient techniques have been developed
in recent years for the feasibility problem: given a parametric Markov chain, and
a reachability objective, find an instantiation that reaches the target with at
least a given probability. To solve this problem, it suffices to “guess” a correct
family member, i.e., a correct parameter instantiation. Verifying the “guessed”
instantiation against the reachability objective is readily done using off-the-
shelf Markov chain model-checking algorithms. Most recent progress is based on
advanced techniques that make informed guesses: This ranges from using sampling
techniques [14], guided sampling such as particle swarm optimisation [7], by greedy
search [24], or by solving different variants of a convex optimisation problem
around a sample [8, 9]. Sampling has been accelerated by reusing previous model
checking results [25], or by just in time compilation of the parameter function [12].
These methods are inherently inadequate for finding optimal parameter settings.
To the best of our knowledge, optimal parameter synthesis has received scant
attention so far. A notable exception is the analysis (e.g., using SMT techniques) of
rational functions, typically obtained by some form of state elimination [10,12,15],
that symbolically represent reachability probabilities in terms of the parameters.
These functions are exponential in the number of parameters [16] and become
infeasible for more than two parameters. Parameter lifting [5, 6, 25] remedies this
by using an abstraction technique, but due to an exponential blow-up of region
splitting, is limited to a handful of parameters. The challenge is to solve optimal
parameter synthesis problems with more parameters.

Approach. We propose to tackle the optimal synthesis problem by a deep inte-
gration of two seemingly unrelated techniques: monotonicity checking [27] and
parameter lifting [25]. The former builds a partial order on the state space to
check whether a pMC is (local or global) monotonic in a certain parameter, while
the latter is an abstraction technique that “lifts” the parameter dependencies, ob-
taining interval MCs [17,21], and solves them in an iterative manner. To construct
an efficient combination, we extend both methods such that they profit from
each other. This is done by combining them with a tailored divide-and-conquer
component, see Fig. 1. To prove bounds on the induced reachability probability,
parameter lifting has been the undisputed state-of-the-art, despite the increased
attention that parameter synthesis has received over recent years. This paper
improves parameter lifting with more advanced reasoning capabilities that involve
properties of the derivative, rather than the actual probabilities. These reason-
ing methods enable reducing the exponent of the inherently exponential-time
procedure. This conceptual advantage is joined with various engineering efforts.
Parameter lifting is accelerated by using side products of monotonicity analysis
such as local monotonicity and shrinked parameter regions. Furthermore, bounds
obtained by parameter lifting are used to obtain a cheap rule accelerating the
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Divide and Conquer
Sect. 6

Parameter Lifting
Sect. 5

Monotonicity Checking
Sect. 4

local monotonicity

state bounds

region value monotone pars.

region region

Fig. 1. The symbiosis of parameter lifting and monotonicity checking. Red are new
interactions, compared to earlier work. Details are given in Sect. 3.

monotonicity checker. The interplay between the two advanced techniques is
tricky and requires a careful treatment.

Note that we are not the first to exploit monotonicity in the context of
pMCs. Hutschenreiter et al. [16] showed that the complexity of model checking (a
monotone fragment of) PCTL on monotonic pMC is lower than on general pMCs.
Pathak et al. [24] provided an efficient greedy approach to repair monotonic
pMCs. Recently, Gouberman et al. [13] used monotonicity for hitting probabilities
in perturbed continuous-time MCs.

Experimental results. We realised the integrated approached on top of the
Storm [11] model checker. Experiments on several benchmarks show that opti-
mal synthesis is possible: (1) on benchmarks with up to about a few hundred
parameters, (2) on benchmarks that cannot be handled without monotonicity,
(3) while accelerating pure parameter lifting by up to two orders of magnitude.
Our approach induces a bit of overhead on small instances for some benchmarks,
and starts to pay off when increasing the number of parameters.

Main contribution. In summary, the main contribution of this paper is a tight
integration of parameter lifting and monotonicity checking. Experiments indicate
that this novel combination substantially improves upon the state-of-the-art in
optimal parameter synthesis.

Organisation of the paper. Section 2 provides the necessary technical background
and formalises the problem. Section 3 explains the approach—in particular the
meaning of the arrows in Fig. 1. Section 4 discusses how to state bounds can
be exploited in the monotonicity checker. Section 5 details how to exploit local
monotonicity in parameter lifting. Section 6 then considers the tight interplay via
the divide-and-conquer method. Section 7 reports on the experimental results of
our prototypical implementation in Storm while Section 8 concludes the paper.

2 Problem Statement

A probability distribution over a finite or countably infinite set X is a function
μ : X → [0, 1] ⊆ R with

∑
x∈X μ(x) = 1. The set of all distributions on X is

denoted by Distr(X). Let �a ∈ Rn denote (a1, . . . , an). The set of multivariate
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polynomials over ordered variables �x = (x1, . . . , xn) is denoted Q[�x]. For a
polynomial f and variable x, we write x ∈ f if the variable occurs in the
polynomial f . An instantiation for a finite set V of real-valued variables is a
function u : V → R. We often denote u as a vector �u ∈ Rn with ui := u(xi) for
xi ∈ V . A polynomial f can be interpreted as a function f : Rn → R, where f(�u)
is obtained by substitution, i.e., f [�x ← �u], where each occurrence of xi in f is
replaced by u(xi).

Definition 1 (pMC). A parametric Markov Chain (pMC) is a tuple M =
(S, sI , T , V ,P) with a finite set S of states, an initial state sI ∈ S, a finite set
T ⊆ S of target states, a finite set V of real-valued variables (parameters) and
a transition function P : S × S → Q[V ].

A pMC M is a (discrete-time) Markov chain (MC) if the transition function
yields well-defined probability distributions, i.e., P(s, ·) ∈ Distr(S) for each s ∈ S.
Applying an instantiation �u to a pMCM yieldsM[�u] by replacing each f ∈ Q[V ]
in M by f(�u). An instantiation �u is well-defined (for M) if M[�u] is an MC.
A well-defined instantiation �u is graph-preserving (for M) if the topology is
preserved, i.e., P(s, s′) �= 0 implies P(s, s′)(�u) �= 0 for all states s and s′. A set
of instantiations is called a region. A region R is well-defined (graph-preserving)
if �u is well-defined (graph-preserving) for all �u ∈ R. In this paper, we consider
only graph-preserving regions.

For a parameter-free MC M, PrsM(♦T ) ∈ [0, 1] ⊆ R denotes the probability
that from state s the target T is eventually reached. For a formal definition, we
refer to, e.g., [4, Ch. 10]. For pMC M, PrsM(♦T ) is not a constant, but rather a
function Prs→T

M : V → [0, 1], with Prs→T
M (�u) = PrsM[�u](♦T ). The closed-form of

Prs→T on a graph-preserving region is a rational function over V , i.e., a fraction
of two polynomials over V . On a graph-preserving region, the function Prs→T

is continuously differentiable [25]. We call Prs→T
M the solution function, and for

conciseness, we often omit the subscript M. Graph-preserving instantiations
�u, �u′ preserve zero-one probabilities, i.e., Prs→T (�u) = 0 implies Prs→T (�u′) = 0,
and analogous for =1. We simply write Prs→T = 0 (or =1). Let ( ) denote all
states s ∈ S with Prs→T = 1 (Prs→T = 0). By a standard preprocessing [4], we
may safely assume a single and state.

Problem statement. This paper is concerned with the following questions for a
given pMC M with target states T , and region R:

Optimal synthesis. Find the instantiation �u∗ such that

�u∗ = argmax
�u∈R

PrM[�u](♦T )

ε-Robustness. Given tolerance ε ≥ 0, find an instantiation �u∗ such that

max
�u∈R

PrM[�u](♦T )−ε ≤ PrM[�u∗](♦T ) ≤ max
�u∈R

PrM[�u](♦T ) .
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s0 s1
p 1−p1−p

p

(a) M1

s0 s1
1/3 2/32/3

1/3

(b) M1[�u], �u = {p �→ 1/3}

s0 s1
p p1−p

1−p

(c) M2

Fig. 2. Toy examples for pMCs.

The optimal synthesis problem is ETR-hard [28], i.e., as hard as finding a
root of a multivariate polynomial. It is thus NP-hard and in PSPACE. The same
applies to ε-robustness. The value of λ can be viewed as the optimal reachability
probability of T — up to the robustness tolerance ε — over all possible parameter
values while �u∗ is the instantiation that maximises the probability to reach T .

Like [28], we assume pMCs to be simple, i.e., P(s, s′) ∈ {x, 1−x | x ∈ V } ∪Q
for all s, s′ ∈ S and

∑
s′ P(s, s′) = 1. Theoretically, the above problem for simple

pMCs is as hard as for general pMCs, and practically, most pMCs are simple.
For simple pMCs, the graph-preserving instantiations are in (0, 1)|V |. Regions are
assumed to be well-defined, rectangular and closed, i.e., a region is a Cartesian
product of closed intervals, R =×x∈V [�x, ux]. Let R(x) denote the interval
[�x, ux] and occur(s) the set of variables {x ∈ V | ∃s′ ∈ S. x ∈ P(s, s′)}. For
simple pMCs, this set has cardinality at most one. A state s is called parametric,
if occur(s) �= ∅; we write occur(s) = x if {x} = occur(s).

Example 1. Fig. 2(a) depicts a pMC. A region R is given by p ∈ [1/4, 1/2]. An
instantiation �u = {p �→ 1/3} ∈ R yields the pMC in Fig. 2(b). The solution
function is Prs0→T

M1
= p · (1− p). Indeed Prs0→T

M1
(�u) = 2/9 = PrM1[�u](♦T ).

3 Main Ingredients in a Nutshell

To solve the problem statement, we consider an iterative method which analyzes
regions, and, if necessary, splits these regions. In particular, we combine two
approaches — parameter lifting and monotonicity checking — as shown in Fig. 1.

3.1 The Monotonicity Checker

We consider local and global monotonicity. We start with defining the latter.

Definition 2 (Global monotonicity). A continuously differentiable function f

on region R is monotonic increasing in variable x, denoted f↑Rx , if
∂

∂x
f(�u) ≥ 0 for

all �u ∈ R3. The pMC M = (S, sI , T , V ,P) is monotonic increasing in parameter
x ∈ V on graph-preserving region R, written M↑Rx , if PrsI→T ↑Rx .
3 To be precise, on the interior of the closed set R.
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s0 s1
p 1−q1−p

q

(a) M3

s0 s1
[1/3, 1/2] [1/4, 3/5][1/2, 2/3]

[2/5, 3/4]

(b) M3, R s.t. p ∈ [1/3, 1/2], q ∈ [2/5, 3/4]

Fig. 3. Simple pMC that indeed is an iMC.

Monotonic decreasing, written M↓Rx , is defined analogously. Let succ(s) = {s′ ∈
S | P(s, s′) �= 0} be the set of direct successors of s. Given the recursive equation

Prs→T =
∑

s′∈succ(s) P(s, s′) · Pr
s′→T for state s �= , , we have

M↑Rx iff
∂

∂x

⎛⎝ ∑
s′∈succ(s)

P(s, s′) · Prs
′→T

⎞⎠(�u) ≥ 0 ,

for all �u ∈ R. Rather than checking global monotonicity, the monotonicity checker
determines a subset of the locally monotone state-parameter pairs. Such pairs
intuitively capture monotonicity of a parameter only locally at a state s.

Definition 3 (Local monotonicity). Function Prs→T is locally monotonic
increasing in parameter x (at state s) on region R, written Prs→T ↑�,Rx , if

∀�u ∈ R.

⎛⎝ ∑
s′∈succ(s)

(
∂

∂x
P(s, s′)

)
· Prs

′→T

⎞⎠ (�u) ≥ 0.

Thus, while global monotonicity considers the derivative of the entire solution
function, local monotonicity (in s) only considers the derivative of the first
transition (emanating from s). Local monotonicity of parameter x in every state
implies global monotonicity of x, as shown in [27]. As checking global monotonicity
is co-ETR hard [27], a practical approach is to check sufficient conditions for
monotonicity. These conditions are based on constructing a pre-order on the
states of the pMC; this is explained in detail in Section 4.

Example 2. For R = {�u(p) ∈ [1/10, 9/10]}, pMC M1 in Fig. 2(a) is locally mono-
tonic increasing in p at s0 and locally monotonic decreasing in p at s1. From
this, we cannot conclude anything about global monotonicity of p on R. In-
deed, the pMC is not globally monotonic on R. M1 is globally monotonic on
R′ = {�u(p) ∈ [1/10, 1/2]}, but this cannot be concluded from the statement above.
Contrarily, the pMC M2 in Fig. 2(c) is locally monotonic increasing in p at both
s0 and s1, and is therefore globally monotonic increasing in p.

3.2 The Parameter Lifter

The key idea of parameter lifting [25] is to drop all parameter dependencies—
parameters that occur at multiple states in a pMC—by introducing fresh param-
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eters. The outcome is an interval Markov chain [17, 21], which can be considered
a special case of pMCs in which no parameter occurs at multiple states.

Definition 4 (Interval MC). A pMC is a (simple) interval MC (iMC), if
occur(s) ∩ occur(s′) = ∅ for all states s �= s′.

All iMCs in this paper are simple. We typically label transitions emanating from
state s in an iMC with x = occur(s) by R(x) = [�x, ux].

Example 3. The pMC in Fig. 3(a) is an iMC. For a fixed R, the typical notation
is given in Fig. 3(b). For the pMC M1 in Fig. 2(a), the parameter p occurs at
states s0 and s1, so that this pMC is not an iMC.

Definition 5 (Relaxation). The relaxation of simple pMC M=(S,sI , T , V ,P)
is the iMC relax(M) = (S, sI , T, V

′,P ′) with V ′ = {xs | s ∈ S, occur(s) �= ∅},
P ′(s, s′) = P(s, s′)[occur(s)← xs].

For state s with occur(s) = x, let relax(R)(xs) = R(occur(s)). Likewise, an
instantiation in �u ∈ R is mapped to relax(�u) by relax(�u)(xs) = �u(occur(s)).

Extremal reachability probabilities on iMCs are reached at the extremal
values of a region. Formally [25], for each state s and region R in pMC M:

max
�u∈R

Prs→T
M (�u) ≤ max

�u∈relax(R)
Prs→T

relax(M)(�u). (1)

This result is a direct consequence of local monotonicity at all states implying
global monotonicity. The extremal values for the reachability probabilities in the
obtained iMCs are obtained by interpreting the iMCs as MDPs and applying
off-the-shelf MDP model checking. We denote the right-hand side of (1) as upper
bound on R, denoted UR(s). Analogously we define a lower bound LR(s).

Example 4. The pMC M3 in Fig. 3(a) is the relaxation of the pMC M1 in
Fig. 2(a). Indeed, for R = {�u(p) ∈ [1/4, 3/4]}:

max
�u∈R

Prs0→T
M1

(�u) = 1/4 ≤ 9/16 = max
�u∈relax(R)

Prs0→T
M3

(�u).

3.3 Divide and Conquer

Figure 4 shows how the extremal value for region Rι, pMC M, reachability
property ϕ and precision ε can be computed using only parameter lifting [25]:
This paper extends this iterative approach to include monotonicity checking. The
main idea is to analyze regions and split them if the result is inconclusive. The
approach uses a queue of regions that need to be checked and the current extremal
value CurMax found so far. In particular, we maintain a lower bound on CurMax

and know a (potentially trivial) upper bound: (CurMax+ε) ≥ maxR̂∈Q UR̂(sI ).
We iteratively check regions and improve both bounds until a satisfactory solution
is found. Initially, the queue only contains Rι. For a selected R from the queue
we compute an upper bound UR with parameter lifting. If UR at the initial state
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Queue Q

Parameter Lifting

Guess �u ∈ R
update CurMax

Split R

Result: CurMax

R

if UR(sI ) ≤ CurMax, ∅

else, R

else, R

R1, . . . , Rn

if CurMax+ε ≥ maxR̂∈Q∪{R} UR̂(sI )

Fig. 4. Divide and conquer with pure parameter lifting

is below the current optimum, we can safely discard R. Otherwise, we want
attempt to improve CurMax by guessing u ∈ R and computing Prs→T

M (�u) using
model checking4. If Prs→T

M (�u) exceeds CurMax, we update CurMax. Now, we check
whether we can terminate:

In particular, let the maximum so far be bounded by maxR̂∈Q∪{R} UR̂(sI ). If
the upper bound is below CurMax+ε, we are done, and return CurMax together
with the u associated with CurMax. Otherwise, we continue and split R into
smaller regions. By default, parameter lifting splits R along all dimensions. This
algorithm converges in the limit [25].

Example 5. Reconsider Ex. 4, and assume we want to show max�u∈R Prs0→T
M1

(�u) ≤
1/4, with ε = 1/8. We sample in (the middle of) R and obtain CurMax = 1/4,
while the upper bound UR(sI ) from Ex. 4 is 9/16. We split R into two regions
R1 = {�u(p) ∈ [1/4, 1/2]} and R2 = {�u(p) ∈ [1/2, 3/4]}. Parameter lifting reveals
that for both regions the bound is 3/8. Thus, 1/4 is an epsilon-close instance.

The remainder of this paper integrates monotonicity checking in this loop.

This paper addresses three challenges: (Sect. 4): Using state bounds in
the monotonicity checker. (Sect. 5): Using local monotonicity in parameter
lifting. (Sect. 6) Integrating monotonicity in the divide and conquer loop.

4 A New Rule for Sufficient Monotonicity

As discussed in Section 3.1, we aim to analyse whether for a given region R,
parameter x is locally monotonic at state s. The key ingredient is a pre-order
on the states of the pMC at hand that is used for checking sufficient conditions
for being local monotonic. We define the pre-order and recap the “cheap” rules
for efficiently determining the pre-order as adopted from [27]. We add a new,
simple rule to this repertoire that lets us avoid the computationally “expensive”

4 Using an instantiation checker that reuses model-checking results from the last guess.



Finding Provably Optimal Markov Chains 181

rules using assumptions from [27]. The information needed to apply this new rule
readily comes from parameter lifting as we will see.

Ordering states for local monotonicity. Let us consider a conceptual example
showing how a pre-order on states can be used for determining local monotonicity.

Example 6. Consider the pMC M2 in Fig. 2(c). We reason backwards that both
states are locally monotone increasing in p. First, observe that has a higher
probability to reach the target (1) than (0). Now, in s1, increasing p will move
more probability mass to , and hence, it is locally monotone. Furthermore, we
know that the probability from s1 is between and . Now, for s0 we can use
that increasing p moves more probability mass to s1, which we know has a higher
probability to reach the target than .

As in [27], we determine local monotonicity by ordering states according to their
reachability probability.

Definition 6 (Reachability order). A relation (R,T ⊆ S×S is a reachability
order with respect to T ⊆ S and region R if for all s, t ∈ S:

s (R,T t implies
(
∀�u ∈ R. Prs→T (�u) ≤ Prt→T (�u)

)
.

The order (R,T is called exhaustive if the reverse implication also holds.

The relation (R,T is a reflexive (aka: non-strict) pre-order. The exhaustive
reachability order is the union of all reachability orders, and always exists. Unless
stated differently, let ( denote the exhaustive reachability order. If the successor
states of a state s are ordered, we can conclude local monotonicity in s:

Lemma 1. Let s, s1, s2 ∈ S with P(s, s1) = x and P(s, s2) = 1−x. Then:

for each region R: s2 (R,T s1 implies Prs→T ↑�,Rx .

This result suggests to look for a so-called “sufficient” reachability order:

Definition 7 (Sufficient reachability order). A reachability order ( is
sufficient for parameter x if for all states s with occur(s) = {x} and s1, s2 ∈
succ(s) it holds: (s1 ( s2 ∨ s2 ( s1).

Phrased differently, the reachability order ( is sufficient for x ∈ V if (succ(s),()
is a total order for all s that have transitions labelled with x. Observe that in
contrast to an exhaustive order, a sufficient order does not need to exist.

Ordering states efficiently. Def. 6 provides a conceptually simple scheme to order
states s1 and s2: compute the rational functions Prs1→T and Prs2→T , and compare
them. As the size of these multivariate rational functions can be exponential in
the number of parameters [16], this is not practically viable. To avoid this, [27]
has identified a set of rules that provide sufficient criteria to order states. Some
of these rules are conceptually based on the underlying graph of a pMC and are
computationally cheap; other rules reason about (a partial representation of) the
full rational function Prs1→T and are computationally expensive.
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Fig. 5. Non-trivial pMCs for deducing monotonicity.

Example 7. Using bounds avoids expensive rules: See M4 in Fig. 5(a). Let
R = {�u(q) ∈ [1/2, 3/4], �u(p) ∈ [1/2, 2/3]}. Using the solution functions p2 + (1−p) · q
and q · (1−q) for s1 and s2 yields s2 ( s1 on R. Such a rule is expensive, but the
cheaper graph-based rules analogous to Ex. 6 are not applicable. However, when
we use bounds from parameter lifting, we obtain UR(s2) = 3/8 and LR(s1) = 1/2,
we observe UR(s2) ≤ LR(s1) and thus s2 ( s1 on R. Bounds also just simplify
graph-based reasoning, in particular in the presence of cycles. Consider M5: As
LR(s3) ≥ UR(s4), with reasoning similar to Ex. 6, it follows that s2 ( s1, and
we immediately get results about monotonicity.

Our aim is to avoid applying the expensive rules from [27] by imposing a new —
and thanks to parameter lifting — cheap rule. To obtain this rule, we assume for
state s and region R to have bounds LR(s) and UR(s) at our disposal satisfying

LR(s) ≤ Prs→T (�u) ≤ UR(s) for all �u ∈ R .

Such bounds can be trivially assumed to be 0 and 1 respectively, but the idea is
to obtain tighter bounds by exploiting the parameter lifter. This will be further
detailed in Section 5. A simple observation on these bounds yields a cheap rule
(provided these bounds can be easily obtained).

Lemma 2. For s1, s2 ∈ S and region R: LR(s1) ≥ UR(s2) implies s2 (R,T s1.

In the remainder of this section, we elaborate some technical details.

Algorithmic reasoning. The pre-order ( is stored by a representation of its Hasse
diagram, referred to as RO-graph. Evaluating whether two states are ordered
amounts to a graph search in the RO-graph. We start off with the initial order
( . Then we attempt to apply one of the cheap rules to a state s. Lemma 2

provides us with more potential to apply a cheap rule. The typical approach
is to do this in a reverse topological order over the RO-graph, such that the
successors of s are already ordered as much as possible. If the successor states
of s are ordered, then s can be added as a vertex and directed edges can be
added between s and its successors. Otherwise, state s is added between and .
This often allows for reasoning analogous to the example. To deal with strongly
connected components, rules exist [27] that add states to the order even when not
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all successors are in the graph. If no cheap rule can be applied, more expensive
rules using the rational functions from above or SMT-solvers are applied5.

5 Parameter Lifting with Monotonicity Information

Recall that our aim is to compute some λ ≥ max�u∈R Prs→T
M (�u)− ε for some fixed

region R. In order to do so, we compute λ̂ := max�u∈relax(R) Pr
s→T
relax(M)(�u) on the

iMC relax(M) obtained by relaxing the pMC M. We discuss how to speed up
this computation using local monotonicity information. In the remainder, let D
denote relax(M) and I denote relax(R). As we consider simple iMCs, let state s
with P(s, s1) = xs and P(s, s2) = 1−xs where the parameter xs does not occur
on other transitions. Assume the lower (upper) bound on xs is ls (us).

Analyzing (simple) iMCs. An iMC induces a maximal reachability bound by
substituting every xs with either ls or us. Formally, let V(I) denote the corner
points of the interval I. Then,

max
�u∈I

Prs→T
D (�u) = max

�u∈V(I)
Prs→T

D (�u).

Thus, to maximise the probability to reach T , in every state s either the lower or
the upper bound of parameter xs has to be chosen. This induces O(2|S|) choices.
They can be efficiently navigated by interpreting these choices as nondeterministic
choices, interpreting the iMC as a Markov decision process (MDP) [25].

Local monotonicity helps. Assume local monotonicity establishes s1 ( s2, i.e., the
reachability probability from s2 is at least as high as from s1. To maximise the
reachability probability from s, the parameter xs should be minimised. Contrary,
if s2 ( s1, parameter xs should be maximised. Thus, every local monotonicity
result halves the amount of vertices that we are maximising over.

Example 8. Consider the iMCM3 in Fig. 3(a), which is the relaxation of the pMC
M1 in Fig. 2(a). There are four combinations of lower and upper bounds that
need to be investigated to compute the upper bound. Using local monotonicity,
we deduce that q should be as low as possible and p as high as possible. Rather
than evaluating a MDP, we thus obtain the same upper bound on the reachability
probability in M1 by evaluating a single parameter-free Markov chain.

Accelerating value iteration. Parameter lifting [25] creates a single MDP — a
comparatively expensive operation — and instantiates this MDP based on the
region R to be checked. For computing the bound λ̂, specifically, it uses value
iteration. Roughly, this means that for each state we start with either its lower
or upper bound. The instantiated MC is then checked. Then, all bounds that can

5 In an attempt to reduce the cost of these rules, the algorithm allows for deferring
proof obligations in the form of assumptions. This is detailed in [27]. For this paper,
however, the only relevant aspect is that these rules are computationally expensive.
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Queue Q (2) Monotonicity Checking
Sect. 4

(3) Shrink

(4) Parameter Lifting
Sect. 5

(6) Guess �u ∈ R′

update CurMax

(8) Split R′

Result: CurMax

(1) R,LR, UR R, X↓, X↑

R′

local mon.

(5) if U
R′ (sI ) ≤ CurMax, ∅

else, R′, LR′ , UR′else, R′, LR′ , UR′

R1, LR′ , UR′
. . .

Rn, LR′ , UR′

RO-graph

(7) if CurMax + ε ≥ maxR̂∈Q∪{R′} UR̂(sI )

Fig. 6. The symbiosis of monotonicity checking and parameter lifting. Red are new
elements compared to the vanilla approach in Fig. 4.

be improved by switching from lower to upper bound or vice versa are swapped.
This procedure terminates with the optimal assignment to all bounds. We exploit
the local monotonicity in this value iteration procedure by fixing the chosen
bounds at locally monotonic states.

6 Lifting and Monotonocity, Together

In this section, we give a more detailed account of our approach, i.e., we will zoom
in into Fig. 1 resulting in Fig. 6. In particular, we detail the divide-and-conquer
block. This loop is a refinement (indicated in red in Fig. 6) of Fig. 4. We first
give an overview, before discussing some aspects in greater detail.

Overall algorithm The approach considers extended regions, i.e., a region R
is equipped with state bounds LR(s) and UR(s) such that LR(s) ≤ Prs→T

M (�u) ≤
UR(s) for every state s, and with monotonicity information about the monotonic
increasing (and decreasing) parameters on R. Initially the input region R is
extended with LR(s) = 0, UR(s) = 1 for every s, and empty monotonicity
information. Additionally, we initialize a conservative approximation for the
maximum probability CurMax so far as 0. Extended regions are stored in the
priority queue Q where UR(sI ) are used as priority. We discuss details below. Once
initialised, we start an iterative process to update the conservative approximation
of LR and UR.

First, (1) a region R and the associated reachability order stored as RO-graph
is taken from the queue Q and (2) its monotonicity is computed while using the
annotated bounds LR and UR. Let X

R
↑ denote globally monotonic increasing

parameters on R, and similarly, XR
↓ denote decreasing parameters on R. For

brevity, we omit the superscript R in the following.
As a next step, we (3) shrink a region based on global monotonicity. We

define the region ShrinkX↑,X↓(R) as follows: ShrinkX↑,X↓(R)(x) = �x if x ∈ X↓,
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Shrink(R)(x) = ux if x ∈ X↑, and Shrink(R)(x) = R(x) otherwise. In the
remainder of this section, let R′ denote ShrinkX↑,X↓(R). Observe that we can

safely discard instantiations in R\R′, as max�u∈R Prs→T
M (�u) = max�u∈R′ Prs→T

M (�u).
Next, we (4) analyse the region R′ to get bounds LR′ , UR′ using parameter

lifting and using the local monotonicity information from the monotonicity
check. We make two observations: First, it holds that LR(s) ≤ LR′(s) and
UR′(s) ≤ UR(s) for every s: Thus, there is no regret in analysing R′ rather than
R. Also, consider that if all parameters are globally monotone, the region R′ is a
singleton and straightforward to analyse.

If (5) UR′(sI ) ≤ CurMax, then we discard R′ altogether and go to (1). Other-
wise, we (6) guess a candidate �u ∈ R′, and set CurMax to max(CurMax,Prs→T

M (�u)).
If (7) CurMax + ε ≥ maxR̂∈Q∪{R′} UR̂(sI ), then we have solved our problem
statement by returning CurMax. Otherwise, we cannot yet give a conclusive
answer, and need to refine our analysis. To that end, we (8) split the region R′

into smaller (rectangular) regions R1, . . . , Rn. Note that these sub-regions first
inherit the bounds of the region R′; their bounds are refined in a subsequent
iteration (if any). Termination in the limit (i.e., convergence of the lower and
upper bound to the limit) follows from the termination of monotonicity checking
and the termination of the loop in Fig. 4.

Incrementality A key aspect in tuning iterative approaches is the concept of
incrementality; i.e., reusing previously computed information in later computation
steps. Parameter lifting is already incremental [25] by reusing the MDP structure
in an efficient manner. Let us address incrementality for the monotonicity checker.
Notice that all monotonicity information and all bounds that are computed for
region R carry over to any R̂ ⊆ R. In particular, s (R,T s′ implies s (R̂,T s′

. Furthermore, our monotonicity checker may give up in an iteration if no
cheap rules to determine monotonicity can be applied. In that case, we annotate
the current reachability order such that after refining bounds, in a subsequent
iteration, we can quickly check where we gave up in a last iteration, and whether
refined bounds allow progress in constructing the reachability order. Notice that
in principle, we have to duplicate the order for each region. However, we do this
only until the monotonicity checker does not stabilize. The checker stabilizes,
e.g., if an order is sufficient. Once the checker stabilized, we do not duplicate the
order anymore (as no more local or global monotonicity can be deduced).

Heuristics Our approach allows for several choices in the implementation.
Whereas the correctness of the approach does not depend on how to resolve these
choices, they have a significant influence on the performance. We discuss (what
we believe to be) the most important choices, and how we resolved these choices
in the current implementation.

Initialising CurMax. Previously Storm was applicable only to few parameters and
generously initialized CurMax by sampling all vertices V(R), which is exponential
in the number of parameters. To scale to more parameters, we discard this
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sampling. Instead, we sample for each parameter independently to find out which
parameters are definitely not monotone. Naturally, we skip parameters already
known to be monotone. We select sample points as follows. We distribute the
50 points evenly along the dimension of the parameter. All other parameter
values are fixed: Non-monotonic parameters are set to their middle point in their
interval (as described by the region). Monotone parameters are set at the upper
(lower) bound when possibly monotone increasing (decreasing).

Updating CurMax. To prove that CurMax is close to the maximum, it is essential to
find a large value for CurMax fast. In our experience, sampling at too many places
within regions yields significant overhead, but taking L(sI ) is a too pessimistic
way to update CurMax. To update CurMax, we select a single �u ∈ R′ in the middle
of region R′. As we may have shrunk the region R, the middle of R′ does not
need to coincide with the middle of R, which yields behavior different from the
vanilla refinement loop.

How and where to split? There are two important splitting decisions to be made.
First, we need to select the dimensions (aka: parameters) in which we split.
Second, we need to decide where to split along these dimensions. We had little
success with trivial attempts to split at better places, so the least informative
split in the middle remains our choice for splitting. However, we have changed
where (in which parameter or dimensions) to split. Naturally, we do not (need
to) split in monotonic parameters. Previously, parameter lifting split in every
dimension at once. Let us illustrate that this quickly becomes infeasible: Assume
10 parameters. Splitting the initial region once yields 1024 regions. Splitting half
of them again yields > 500,000 regions. Instead, we use region estimates, which
are heuristic values for every parameter, based on the implementation of [19].
These estimates, provided by the parameter lifter, essentially consider how well
the policy on the MDP (selecting upper or lower bounds in the iMC) agrees with
the dependencies induced by a parameter: The more it agrees, the lower the
value. The key idea is that one obtains tighter bounds if the policy adheres to
the dependencies induced by the parameters6. We split in the dimension with
the largest estimate. If the region estimate is smaller than 10−4, then we split in
the dimension of R with the widest interval.

Priorities in the region queue. Contrary to [25], we want to find the extremal value
within the complete region, rather than partitioning the state space. Consequently,
the standard technique splits based on the size of the region, and de-facto, a
breadth-first search. When we split a region, we prioritize the subregions R̂ ⊆ R′

with UR′(sI ), as UR̂(sI ) ≤ UR′(sI ). We use the age of a region to break ties.
Here, a wild range of exploration strategies is possible. To avoid overfitting, we
refrain in the experiments from weighting different aspects of the region, but the
current choice is likely not the final answer.

6 Technically, the value is computed as the sum of the differences between the local
lower and upper bound on the reachability probability over all states with this
parameter.
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Table 1. Overview of the experimental results comparing vanilla parameter lifting to
the integrated approach

ε: 0.1 ε: 0.05
integrated vanilla integrated vanilla

name instance #states #trans |V | # i # ib t #i t # i # ib t #i t
NRP (5,1) 56 75 5 469 2 <1 2575 <1 5143 2 <1 48701 3

(10,1) 186 250 10 66219 2 11 512909 85 7168029 2 1594 TO
(12,1) 259 348 12 425643 2 98 3304325 757 TO TO
(13,1) 300 403 13 1103811 2 299 TO TO TO
(14,1) 344 462 14 2608869 2 718 MO MO MO
(15,1) 391 525 15 TO MO MO MO

EVADE (1,2,0,1) 129 249 40 0 2 <1 2410 2 0 2 <1 4619 4
(1,2,3,1) 513 993 160 0 2 3 MO 0 2 3 MO
(1,2,0,2) 425 842 141 0 2 2 MO 0 2 2 MO
(1,2,3,2) 1697 3362 561 0 2 21 MO 0 2 22 MO

Herman (11,10) 21500 242926 1 3 3 3 3 2 9 3 14 9 3
(11,15) 31740 369706 1 5 3 14 5 3 11 3 25 11 5
(13,15) 126888 1713246 1 7 5 44 7 18 11 6 440 11 24
(13,25) 208808 2889206 1 7 5 91 7 31 11 6 1415 11 41
(13,35) 290728 4065166 1 5 4 128 5 35 TO 11 54

Maze (25) 360 660 24 0 2 <1 1 <1 0 2 <1 40 <1
(1000) 14985 26985 999 0 2 1 1 <1 0 2 1 MO
(10000) 149985 269985 9999 0 2 166 1 <1 0 2 182 TO

Obtaining bounds for the monotonicity checker. While the baseline loop only
computes upper-bounds, we use lower bounds to boost the monotonicity checking.
We currently run these bounds until the monotonicity checker has stabilized. We
observe that, mostly due to numerical computations, the time that the lower
bounds take can be significant, but the overhead and the merits of getting larger
lower bounds are hard to forecast.

7 Empirical Evaluation

Setup. We investigate the performance of the extended divide-and-conquer
approach presented in Fig. 6. We have implemented the algorithm explained
above in the probabilistic model checker Storm [11]. We compare its performance
with vanilla parameter lifting, outlined in Fig. 4, as baseline. Both versions use
the same underlying data structures and version of Storm. All experiments were
executed on a single core Intel Xeon Platinum 8160 CPU. We did neither use
any parallel processing nor randomization. We used a time out of 1800s and a
memory limit of 32GB. We exclude model-building times from all experiments
and emphasize that they coincide for the vanilla and new implementations.

Benchmarks and results. The common benchmarks Crowds, BRP, and Zeroconf
have only globally monotonic parameters (and only two). Using monotonicity,
they become trivial. The structure of NAND and Consensus makes them not
amenable to monotonicity checking, and the performance mostly resembles the
baseline. We selected additional benchmarks from [2], [23], and [18], see below.
The models from the latter two sources are originally formulated as partially
observable MDPs and were translated into pMC using the approach in [19].

Table 1 summarizes the results for benchmarks identified by their name and
instance. We list the number of states, transitions and parameters of the pMC.
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For each benchmark, we consider two values for ε: ε=0.05 and ε=0.1. For each
ε, we consider the time t required and the number (i) of iterations that the
integrated loop and the baseline require. For the integrated loop, we additionally
provide the number (ib) of extra (lower bound) parameter lifting invocations
needed to assist the monotonicity checker.

Discussion of the results. We make the following observations.

– NRP: this model is globally monotonic in all its parameters. Our monotonicity
checker can find this one parameter. The integrated approach is an order of
magnitude faster on all instances, scaling to more parameters.

– Evade: this model is globally monotonic in some of its parameters. Our
monotonicity check can find this monotonicity for a subset. The integrated
approach is faster on all instances, as a better initial CurMax is guessed based
on the results from the monotonicity checker.

– Herman’s protocol: this is a less favourable benchmark for the integrated
approach as only one parameter is not globally monotonic. The calculation
of the bounds for the monotonicity checking yields significant overhead.

– Maze: this model is globally monotonic in all its parameters. This can be
found directly by the monotonicity checker, so we are left to check a single
valuation. This valuation is also provably the optimal valuation.

In general, for ε=0.1, the number of regions that need to be considered is relatively
small and guessing an (almost) optimal value is not that important. This means
that the results are less volatile to changes in the heuristic. For ε=0.05, it is
significantly trickier to get this right. Monotonicity helps us in guessing a good
initial point. Furthermore, it tells us in which parameters we should and should
not split. Therefore, we prevent unnecessary splitting in some of the parameters.

8 Conclusion and Future Work

This paper has presented a new technique for tackling the optimal synthesis
problem: what is the instance of a parametric Markov chain that satisfies a
reachability objective in an optimal manner? The key concept is a deep interplay
between parameter lifting, the favourable technique so far for this problem, and
monotonicity checking. Experiments showed encouraging results: speed ups of up
to two orders of magnitude for various benchmarks, and an increased number
of parameters. Future work consists including advanced sampling techniques
and applying this approach to other application areas such as optimal synthesis
and monotonicity in probabilistic graphical models [26] and hyper-properties in
security [1].
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Abstract. This paper presents a novel method for the automated syn-
thesis of probabilistic programs. The starting point is a program sketch
representing a finite family of finite-state Markov chains with related but
distinct topologies, and a reachability specification. The method builds on
a novel inductive oracle that greedily generates counter-examples (CEs)
for violating programs and uses them to prune the family. These CEs
leverage the semantics of the family in the form of bounds on its best-
and worst-case behaviour provided by a deductive oracle using an MDP
abstraction. The method further monitors the performance of the synthe-
sis and adaptively switches between inductive and deductive reasoning.
Our experiments demonstrate that the novel CE construction provides
a significantly faster and more effective pruning strategy leading to an
accelerated synthesis process on a wide range of benchmarks. For challeng-
ing problems, such as the synthesis of decentralized partially-observable
controllers, we reduce the run-time from a day to minutes.

1 Introduction

Background and motivation. Controller synthesis for Markov decision processes
(MDPs [35]) and temporal logic constraints is a well-understood and tractable
problem, with a plethora of mature tools providing efficient solving capabilities.
However, the applicability of these controllers to a variety of systems is limited:
Systems may be decentralized, controllers may not be able to observe the complete
system state, cost constraints may apply, and so forth. Adequate operational
models for these systems exist in the form of decentralized partially-observable
MDPs (DEC-POMDPs [33]). The controller synthesis problem for these models
is undecidable [30], and tool support (for verification tasks) is scarce.

This paper takes a different approach: the controller together with the en-
vironment can be modelled as probabilistic program sketches where “holes” in
the probabilistic program model choices that the controller may make. Concep-
tually, the controllers of the DEC-POMDP are described by a user-defined finite
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family M of Markov chains. The synthesis problem that we consider is to find
a Markov chain M (i.e., a probabilistic program) in the family M, such that
M |= ϕ, where ϕ is the specification. To allow efficient algorithms, the family must
have some structure. In particular, in our setting, the family is parameterized
by a set of discrete parameters K; an assignment K → V of these parameters
with concrete values V from its associated domain yields a family member, i.e.,
a Markov chain (MC). Such a parameterization is naturally obtained from the
probabilistic program sketch, where some constants (or program parts) can be
left open. The search for a family member can thus be considered as the search
for a hole-assignment. This approach fits within the realm of syntax-guided
synthesis [2].

Motivating example. Herman’s protocol [24] is a well-studied randomized dis-
tributed algorithm aimed to obtain fast stabilization on average. In [26], a
family M of MCs is used to model different protocol instances. They considered
each instance separately, and found which of the controllers for Herman’s protocol
performs best. Let us consider the protocol in a bit more detail: It considers
self-stabilization of a unidirectional ring of network stations where all stations
have to behave similarly—an anonymous network. Each station stores a single bit,
and can read the internal bit of one (say left) neighbour. To achieve stabilization,
a station for which the two legible bits coincide updates its own bit based on
the outcome of a coin flip. The challenge is to select a controller that flips this
coin with an optimal bias, i.e., minimizing the expected time until stabilization.
In a setting where the probabilities range over 0.1, 0.2, . . . , 0.9, this results in
analyzing nine different MCs. Does the expected time until stabilization reduce
if the controllers are additionally allowed to have a single bit of memory? In
every step, there are 9·9 combinations for selecting the coin flip and for each
memory cell and coin flip outcome, the memory can now be updated, yielding
2·2·2 possibilities. This one-bit extension thus results in a family of 648 models.
If, in addition, one allows stations to make decisions depending on the token-bits,
both the coin flips and the memory updates are multiplied by a factor 4, yielding
10, 368 models. Eventually, analyzing all individual MCs is infeasible.

Oracle-guided synthesis. To tackle the synthesis problem, we introduce an oracle-
guided inductive synthesis approach [25,39]. A learner selects a family member and
passes it to the oracle. The oracle answers whether the family member satisfies ϕ,
and crucially, gives additional information in case this is not the case. Inspired
by [9], if the family member violates the specification ϕ, our oracle returns a set
K ′ of parameters such that all family members obtained by changing only the
values assigned to K ′ violate ϕ. We argue that such an oracle must (1) induce
little overhead in providing K ′, (2) be aware of the existence of parameters in
the family, and (3) have (resemblance of) awareness about the semantics of the
parameters and their values.

Oracles. With these requirements in mind, we construct a counterexample (CE)-
based oracle from scratch. We do so by carefully exploiting existing methods.
We construct critical subsystems as CEs [1]. Critical subsystems are parts of
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the MC that suffice to refute the specification. If a hole is absent in a CE,
its value is irrelevant. To avoid the cost of finding optimal CEs—an NP-hard
problem [19]—we consider greedy CEs that are similar to [9]. However, our greedy
CEs are aware of the parameters, and try to limit the occurrence of parameters
in the CE. Finally, to provide awareness of the semantics of parameter values,
we provide lower and upper bounds on all states: Their difference indicates how
much varying the value at a hole may change the overall reachability probability.
These bounds are efficiently computed by another oracle. This oracle analyses a
quotient MDP obtained by employing an abstraction method that is part of the
abstraction-refinement loop in [10].

A hybrid variant. The two oracles are significantly different. Abstraction refine-
ment is deductive: it argues about single family members by considering (an
aggregation of) all family members. The critical subsystem oracle is inductive:
by examining a single family member, it infers statements about other family
members. This suggests a middle ground: a hybrid strategy monitors the per-
formance of the two oracles during the synthesis and suggests their best usage.
More precisely, the hybrid strategy integrates the counterexample-based oracle
into the abstraction-refinement loop.

Major results. We present a novel and dedicated oracle deployed in an efficacious
synthesis loop. We use model-checking results on an abstraction to tailor smaller
CEs. Our greedy and family-aware CE construction is substantially faster than
the use of optimal CEs. Together, these two improvements yield CEs that are on
par with optimal CEs, but are found much faster. The integration of multiple
abstraction-refinement steps yields a superior performance:x We compare our
performance with the abstraction-refinement loop from [10] using benchmarks
from [10]. Benchmarks can be classified along two dimensions: (A) Benchmarks
with a structure good for CE-generation. (B) Benchmarks with a structure good
for abstraction-refinement. A-benchmarks are a natural strength of our novel
oracle. Our simple, efficient hybrid strategy significantly outperforms the state-of-
the-art on A-benchmarks, while it only yields limited overhead for B-benchmarks.
Most importantly, the novel hybrid strategy can solve benchmarks that are
out of reach for pure abstraction-refinement or pure CE-based reasoning. In
particular, our hybrid method is able to synthesize the optimal Herman protocol
with memory—the synthesis time on a design space with 3.1 millions of candidate
programs reduces from a day to minutes.

Related work The synthesis problems for parametric probabilistic systems can
be divided into the following two categories.

Topology synthesis, akin to the problem considered in this paper, assumes a finite
set of parameters affecting the MC topology. Finding an instantiation satisfying
a reachability property is NP-complete in the number of parameters [12], and
can naively be solved by analyzing all individual family members. An alternative
is to model the MC family by an MDP and resort to standard MDP model-
checking algorithms. Tools such as ProFeat [13] or QFLan [40] take this approach
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to quantitatively analyze alternative designs of software product lines [21,28].
These methods are limited to small families. This motivated (1) abstraction-
refinement over the MDP representation [10], and (2) counterexample-guided
inductive synthesis (CEGIS) for MCs [9], mentioned earlier. The alternative
problem of sketching for probabilistic programs that fit given data is studied,
e.g., in [32,38].

Parameter synthesis considers models with uncertain parameters associated to
transition probabilities, and analyses how the system behaviour depends on
the parameter values. The most promising techniques are based on parameter
lifting that treats identical parameters in different transitions independently [8,36]
and has been implemented in the state-of-the-art probabilistic model checkers
Storm [18] and PRISM [27]. An alternative approach based on building rational
functions for the satisfaction probability has been proposed in [15] and further
improved in [22,17,4]. This approach has been also applied to different problems
such as model repair [5,34,11].

Both synthesis problems can be also attacked by search-based techniques that
do not ensure an exhaustive exploration of the parameter space. These include
evolutionary techniques [23,31] and genetic algorithms [20]. Combinations with
parameter synthesis have been used [7] to synthesize robust systems.

2 Problem Statement

We formalize the essential ingredients and the problem statement. See [3] for
more material.

Sets of Markov chains. A (discrete) distribution over a finite set X is a function
μ : S → [0, 1] s.t.

∑
x μ(x) = 1. The set Distr(X) contains all distributions over

X. The support of μ ∈ Distr(X) is supp(μ) = {x ∈ X | μ(x) > 0}.
Definition 1 (MC). A Markov chain (MC) is a tuple D = (S, s0,P ), where
S is a finite set of states, s0 ∈ S is an initial state, and P : S → Distr(S) is
a transition probability function. We write P (s, t) to denote P (s)(t). The state s
is absorbing if P (s, s) = 1.

Let K denote a finite set of discrete parameters with finite domain Vk. For
brevity, we often assume that all domains are the same, and omit the subscript
k. A realization r maps parameters to values in their domain, i.e., r : K → V .
Let RD denote the set of all realizations of a set D of MCs. A K-parameterized
set of MCs D(K) contains the MCs Dr, for every r ∈ RD. In Sect. 3, we give an
operational model for such sets. In particular, realizations will fix the targets of
transitions. In our experiments, we describe these sets using the PRISM modelling
language where parameters are described by undefined integer values.

Properties and specifications. For simplicity, we consider (unbounded) reach-
ability properties1. For a set T ⊆ S of target states, let P[D, s |= ♦T ] denote

1 Our implementation also supports expected reachability rewards.



Inductive Synthesis for Probabilistic Programs Reaches New Horizons 195

the probability in MC D to eventually reach some state in T when starting
in the state s ∈ S. A property ϕ ≡ P��λ[♦T ] with λ ∈ [0, 1] and ��∈ {≤,≥}
expresses that the probability to reach T does relate to λ according to ��. If
��= ≤, then ϕ is a safety property; otherwise, it is a liveness property. Formally,
state s in MC D satisfies ϕ if P[D, s |= ♦T ] ≥ λ. The MC D satisfies ϕ if the
above holds for its initial state. A specification is a set of properties Φ = {ϕi}i∈I ,
and D |= Φ if ∀i ∈ I : D |= ϕi.

Problem statement. The key problem statement in this paper is feasibility :

Given a parameterized set of Markov chains D(K) over parameters K and
a specification Φ, find a realization r : K → V such that Dr |= Φ.

When D is clear from the context, we often write r |= Φ to denote Dr |= Φ.
We additionally consider the optimizing variant of the synthesis problem.

The maximal synthesis problem asks: given a maximizing property ϕmax ≡
P��λ[♦T ], identify r∗ ∈ argmaxr∈RD {P[Dr |= ♦T ] | Dr |= Φ} provided it exists.
The minimal synthesis problem is defined analogously.

As the state space S, the set K of parameters, and their domains are all finite,
the above synthesis problems are decidable. One possible solution, called the
one-by-one approach [14], considers each realization r ∈ RD. The state-space and
parameter-space explosion renders this approach unusable for large problems,
necessitating the usage of advanced techniques that exploit the family structure.

3 Counterexample-Guided Inductive Synthesis

In this section, we recap a baseline for a counterexample-guided inductive syn-
thesis (CEGIS) loop, as put forward in [9]. In particular, we first instantiate an
oracle-guided synthesis method, discuss an operational model for families, giving
structure to the parameterized set of Markov chains, and finally detail the usage
of CEs to create an oracle.

Learner Oracle

R D, Φ

r ∈ R

r ∈ R′ ⊆ R,

R′ all violate Φ r |= Φno r |= Φ

Fig. 1. Oracle-guided synthesis

Consider Fig. 1. A learner takes a
set R of realizations, and has to find a
realization Dr satisfying the specifica-
tion Φ. The learner maintains (a sym-
bolic representation of) a set Q ⊆ R
of realizations that need to be checked.
It iteratively asks the oracle whether
a particular r ∈ Q is a solution. If it is
a solution, the oracle reports success.
Otherwise, the oracle returns a set R′ containing r and potentially more realiza-
tions all violating Φ. The learner then prunes R′ from Q. In Section 4, we focus
on creating an efficient oracle that computes a set R′ (with r ∈ R′) of realizations
that are all violating Φ. In Section 5, we provide a more advanced framework
that extends this method. The remainder of this section lays the groundwork for
these sections.
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Families of Markov chains To avoid the need to iterate over all realizations,
an efficient oracle exploits some structure of the family. In this paper, we focus on
sets of Markov chains having different topologies. We explain our concepts using
the operational model of families given in [10]. Our implementation supports
(more expressive) PRISM programs with undefined integer constants.

Definition 2 (Family of MCs). A family of MCs is a tuple D = (S, s0,K,B)
with S and s0 as before, K is a finite set of parameters with domains Vk ⊆ S for
each k ∈ K, and B : S → Distr(K) is a family of transition probability functions.

Function B of a family D of MCs maps each state to a distribution over parame-
ters K. In the context of the synthesis of probabilistic models, these parameters
represent unknown options or features of a system under design. Realizations are
now defined as follows.

Definition 3 (Realization). A realization of a family D = (S, s0,K,B) of MCs
is a function r : K → S s.t. r(k) ∈ Vk, for all k ∈ K. We say that realization r
induces MC Dr = (S, s0,Br) iff Br(s, s′) =

∑
k∈K,r(k)=s′ B(s)(k) for any pair of

states s, s′ ∈ S. The set of all realizations of D is denoted as RD.

The set RD =
∏
k∈K Vk of all possible realizations is exponential in |K|.

Counterexample-guided oracles We first consider the feasibility synthesis for
a single-property specification and later, cf. Remark 1, generalize this to multiple
properties and to optimal synthesis. The notion of counterexamples is at the
heart of the oracle from [9] and Sect. 4.

If an MC D �|= ϕ, a counterexample (CE) based on a critical subsystem can
serve as diagnostic information about the source of the failure. We consider the
following CE, motivated by the notion of critical subsystem in [37].

Definition 4 (Counterexample). Let D = (S, s0,P ) be an MC with s⊥ �∈ S.
The sub-MC of D induced by C ⊆ S is the MC D↓C = (S ∪ {s⊥}, s0,P ′), where
the transition probability function P ′ is defined by:

P ′(s) =

{
P (s) if s ∈ C,

[s⊥ �→ 1] otherwise.

The set C and the sub-MC D↓C are called a counterexample (CE) for the property
P≤λ[♦T ] on MC D, if D↓C �|= P≤λ[♦(T ∩ (C ∪ {s0}))].

Let Dr be an MC violating the specification ϕ. To compute other realizations
violating ϕ, the oracle computes a critical subsystem Dr↓C, which is then used
to deduce a so-called conflict for Dr and ϕ.

Definition 5 (Conflict). For family of MCs D = (S, s0,K,B) and C ⊆ S, the
set KC of relevant parameters (called conflict) is given by

⋃
s∈C supp(B(s)).
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Fig. 2. Counterexamples for smaller conflicts.

It is straightforward to compute a set of violating realizations from a conflict. A
generalization of realization r induced by the set KC ⊆ K of relevant parameters
is the set r↑KC = {r′ ∈ R | ∀k ∈ KC : r(k) = r′(k)}. We often use the term
conflict to refer to its generalization. The size of a conflict, i.e., the number
|KC | of relevant parameters KC is crucial. Small conflicts potentially lead to
generalizing r to larger subfamilies r↑KC . It is thus important that the CEs
contain as few parameterized transitions as possible. The size of a CE in terms
of the number of states is not of interest. Furthermore, the overhead of providing
CEs should be bounded from below by the payoff: Finding a large generalization
may take some time, but small generalizations should be returned quickly. The
CE-based oracle in [9] uses an off-the-shelf CE procedure [16,41], and mostly
does not provide small CEs.

4 A Smart Oracle with Counterexamples and Abstraction

This section develops an oracle based on CEs, tailored for the use in an oracle-
guided inductive synthesis loop described in Sect. 3. Its main features are:
– a fast greedy approach to compute CEs that provide small conflicts: We

achieve this by taking into account the position of the parameters.
– awareness about the semantics of parameters by using model-checking results

from an abstraction of the family.
Before going into details, we provide some illustrative examples.

A motivating example First, we illustrate what it means to take CEs that
lead to small conflicts. Consider Fig. 2, with a family member Dr (left), where
the superscript of a state identifier si denotes parameters relevant to si. Consider
the safety property ϕ ≡ P≤0.4[♦{t}]. Clearly, Dr �|= ϕ, and we can construct
two CEs: C1 = {s0, s3, t} (center) and C2 = {s0, s1, s2, t} (right) with conflicts
KC1

= {X,Y } and KC2
= {X}, respectively. It illustrates that a smaller CE

does not necessarily induce a smaller conflict.
We now illustrate awareness of the semantics of parameters. Consider the

family D = (S, s0,K
′,B), where S = {s0, s1, s2, t, f}, the parameters are K ′ =

{X,Y, T ′, F ′} with domains VX = {s1, s2}, VY = {t, f}, VT ′ = {t}, VF ′ = {f},
and a family B of transition probability functions defined in Fig. 3 (left). As the
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B(s0) = [X �→ 1],

B(s1) = [T ′ �→ 0.6, Y �→ 0.2, F ′ �→ 0.2],

B(s2) = [T ′ �→ 0.2, Y �→ 0.2, F ′ �→ 0.6],

B(t) = [T ′ �→ 1],

B(f) = [F ′ �→ 1]

0.8

0.4

0.8

0.4

0.6

0.2

0.6

0.2

Fig. 3. A family D of four Markov chains (unreachable states are grayed out).

parameters T ′ and F ′ each can take only one value, we consider K = {X,Y }
as the set of parameters. There are |VX | × |VY | = 4 family members, depicted
in Fig. 3(right). For conciseness, we omit some of the transition probabilities
(recall that transition probabilities sum to one). Only realization r3 satisfies the
safety property ϕ ≡ P≤0.3[♦{t}].

CEGIS [9] illustrated : Consider running CEGIS, and assume the oracle gets
realization r0 first. A model checker reveals P[Dr0 , s0 |= ♦T ] = 0.8 > 0.3. The
CE for Dr0 and ϕ contains the (only) path to the target: s0→s1→ t having
probability 0.8 > 0.3. The corresponding CE C = {s0, s1, t} induces the conflict
KC = {X,Y }. None of the parameters is generalized. The same argument applies
to any subsequent realization: the constructed CEs do not allow for generalization,
the oracle returns only the passed realization, and the learner keeps iterating
until accidentally guessing r3.

Can we do better? To answer this, consider CE generation as a game: The
Pruner creates a critical subsystem C. The Adversary wins if it finds a MC
satisfying ϕ containing C, thus refuting that C is a counterexample. In our
setting, we change the game: The Adversary must select a family member rather
than an arbitrary MC. Analogously, off-the-shelf CE generators construct a
critical subsystem C that for every possible extension of C is a CE. These
are CEs without context. In our game, the Adversary may not extend the MC
arbitrarily, but must choose a family member. These are CEs modulo a family.

Back to the example: Observe that for a CE for Dr0 , we could omit states t
and s1 from the set C of critical states: we know for sure that, once Dr0 takes
transition (s0, s1), it will reach target state t with probability at least 0.6. This
exceeds the threshold 0.3, regardless of the value of the parameter Y . Hence, for
family D, the set C ′ = {s0} is a critical subsystem. The immediate advantage is
that this set induces conflict KC′ = {X} (parameter Y has been generalized).
This enables us to reject all realizations from the set r0↑KC′ = {r0, r1}. It is
‘easier’ to construct a CE for a (sub)family than for arbitrary MCs. More generally,
a successful oracle needs to have access to useful bounds, and effectively integrate
them in the CE generation.



Inductive Synthesis for Probabilistic Programs Reaches New Horizons 199

Counterexample construction We develop an algorithm using bounds on
reachability probabilities, similar to the bounds used above. Let us assume that for
some set of realizations R and for every state s, we have bounds lbR(s), ubR(s),
such that for every r ∈ R we have lbR(s) ≤ P[Dr, s |= ♦T ] ≤ ubR(s). Such
bounds always exist (take 0 and 1). We see later how we compute these bounds.
In what follows, we fix r and denote Dr = (S, s0,P ). Let us assume Dr violates
a safety property ϕ ≡ P≤λ[♦T ]. The following definition is central:

Definition 6 (Rerouting). Let MC D = (S, s0,P ) with s�, s⊥ �∈ S, C ⊆ S
a set of expanded states and γ : S \C → [0, 1] a rerouting vector. The rerouting
of MC D w.r.t. C and γ is the MC D↓C[γ] = (S ∪ {s⊥, s�}, s0,PC

γ ) with:

PC
γ (s) =

⎧⎪⎨⎪⎩
P (s) if s ∈ C,

[s� �→ γ(s), s⊥ �→ (1−γ(s))] if s ∈ S\C,
[s �→ 1] if s ∈ {s�, s⊥}.

Essentially, D↓C[γ] extends the MC D with additional sink states s� and s⊥
and replaces all outgoing transitions of any non-expanded state s ∈ S\C by
a transition leading to s� (with probability γ(s)) and a complementary one to s⊥.
We consider s� to be the new target and let ϕ′ denote the updated property. The

transition s
γ(s)−−−→ s� may be considered a ‘shortcut’ that by-passes successors of

s and leads straight to target s� with probability γ(s). To ensure that D↓C[γ]
is a CE, the value γ(s) must be a lower bound on the reachability probability
from s in D. When constructing a CE for a singular MC, we pick γ = 0, whereas
when this MC is induced by a realization r ∈ R, we can safely pick γ = lbR. The
CE will be valid for every r′ ∈ R. It is a CE-modulo-R.

Algorithmically, we employ a state-exploration approach and therefore start
with C(0) = ∅, i.e., all states are initially rerouted. If this is a CE, we are
done. Otherwise, if the rerouting D↓C(0)[γ] satisfies ϕ′, then we ‘expand’ some
states to obtain a CE. Naturally, we must expand reachable states to change the
satisfaction of ϕ. By expanding some state s ∈ S, we abandon the abstraction

associated with the shortcut s
γ(s)−−−→ s� and replace it with concrete behavior that

was inherent to state s in MC D. Expanding a state cannot decrease the induced
reachability probability as lbR is a valid lower bound. This gradual expansion
of the reachable state space continues until for some C ⊆ S the corresponding
rerouting D↓C[γ] violates ϕ′. This gradual expansion process terminates as
D↓S[γ] ≡ D and our assumption is D �|= ϕ. We show this process on an example.

Example 1. Reconsider D in Fig. 3 with ϕ ≡ P≤0.3[♦{t}]. Using the method

outlined below we get: lbR = [s0 �→ 0.2, s1 �→ 0.6, s2 �→ 0.2, t �→ 1, f �→ 0]. In
absence of any bounds, the CE is {s0, s1, t}. Consider the gradual rerouting
approach: We set γ = lbR, C(0) = ∅ and have D(0) := Dr0↓C(0)[γ], see Fig. 4(a).
Verifying this MC against ϕ′ = P≤0.3[♦T ∪{s�}] yields P[D(0), s0 |= ♦T ∪{s�}] =
γ(s0) = 0.2 ≤ 0.3, i.e., the set C(0) is not a CE. We now expand the initial state,
i.e., C(1) = {s0} and let D(1) := Dr0↓C(1)[γ], see Fig. 4(b). Verifying D(1) yields
P[D(1), s0 |= ♦T ∪ {s�}] = 1 · γ(s1) = 0.6 > 0.3. Thus, the set C(1) is critical
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Fig. 4. Finding a CE to Dr0 and ϕ from Fig. 3 using the rerouting vector γ = lbR.

Algorithm 1: Counterexample construction based on rerouting.

Input :An MC Dr a property ϕ ≡ P��λ[♦T ] s.t. Dr �|= ϕ, a rerouting vector γ.
Output :A conflict K for Dr and ϕ.

1 i ← 0, K(i) ← ∅
2 while true do

3 C(i), H(i) ← reachableViaHoles(Dr,K
(i))

4 D(i) ← Dr↓C(i)[γ]

5 if P[D(i) |= ♦T ∪ {s�}] �
� λ then return K(i);

6 s ← chooseToExpand(H(i),K(i))

7 K(i+1) = K(i) ∪ supp(B(s))
8 i ← i+ 1

9 end while

and the corresponding conflict is KC(1) = supp(s0) = {X}. This is smaller than
the naively computed conflict {X,Y }.

Greedy state expansion strategy Recall from Fig. 2 that for an MC Dr
with Dr �|= ϕ, multiple CEs may exist inducing different conflicts. An efficient
expansion strategy should yield a CE that induces a small amount of relevant
parameters (to prune more family members) and this CE is preferably obtained
by a small number of model-checking queries. The method presented in Alg. 1
meets these criteria. The algorithm expands multiple states between subsequent
model checks, while expanding only states that are associated with parameters
that are relevant. In particular, in each iteration, we keep track of the set K(i)

of relevant parameters optimistically starting with K(0) = ∅. We compute (see
line 3) the set C(i) of states that are reachable from the initial state via states
which are associated only with relevant parameters in K(i), i.e., via states for
which supp(B(s)) ⊆ K(i). Here, H(i) represents a state exploration ‘horizon’: the
set of states reachable from C(i) but containing some (still) irrelevant parameters.
We then construct the corresponding rerouting D↓C(i)[γ] and check whether it is
a CE. Otherwise, we greedily choose a state s from the horizon H(i) containing
the least number of irrelevant parameters and add these parameters to our



Inductive Synthesis for Probabilistic Programs Reaches New Horizons 201

Learner CE-OracleAbstr-Oracle

R D, ΦD, Φ

r ∈ R+bounds

R′ ⊆ R violate Φ

R′ ⊆ R

bounds or R′ violates

r |= Φeach r ∈ R′, r |= Φ no r |= Φ

Fig. 5. Conceptual hybrid (dual-oracle) synthesis
.

conflict (see line 7). The resulting conflict may not be minimal, but is computed
fast. Our algorithm applies to probabilistic liveness properties2 too using γ = ubR.

Computing bounds We compute lbR and ubR using an abstraction [10]. The
method considers some set R of realizations and computes the corresponding
quotient Markov decision process (MDP) that over-approximates the behavior of
all MCs in the family R. Model checking this MDP yields an upper and a lower
bound of the induced probabilities for all states over all realizations in R. That
is, Bound(D,R) computes lbR ∈ RS and ubR ∈ RS such that for each s ∈ S:

lbR(s) ≤ min
r∈R

P[Dr, s |= ♦T ] ≤ max
r∈R

P[Dr, s |= ♦T ] ≤ ubR(s).

To allow for refinement, two properties are crucial (with point-wise inequalities):

1. lbR ≤ lbR
′
∧ ubR ≥ ubR

′
for R′ ⊆ R and 2. lb{r} = ub{r} for r ∈ R.

In [10], the abstraction and refinement together define an abstraction-refinement
loop (AR) that addresses the feasibility problem. In the worst case, this loop
analyses 2 · |R| quotient MDPs, which (as of now) may be arbitrarily larger than
the number of family members they represent.

5 Hybrid Dual-Oracle Synthesis

We introduce an extended synthesis loop in which the abstraction-based reasoning
is used to prune the family R, and to accelerate the CE-based oracle from Sect. 4.
The intuitive idea is outlined in Fig. 5. Note that if the CE-based oracle is not
exploited, we emulate AR (explained in computing bounds above), whereas if
the abstraction oracle is not used, we emulate CEGIS (with the novel oracle).

Let us motivate combining these oracles in a flexible way. The naive version
outlined in the previous section assumed a single abstraction step, and invokes
CEGIS with the bounds obtained from that step. Evidently, the better (tighter)
the bounds γ, the better the CEs. However, the abstraction-based bounds for R
may be very loose. These bounds can be improved by splitting the set R and
using the bounds on the two sub-families. The idea is to run a limited number of

2 Some care is required regarding loops, see [9].
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Algorithm 2: Hybrid (dual-oracle) synthesis.

Input :A family D, a reachability property ϕ.
Output :Either a member r in D with r |= ϕ, or no such r exists in D

1 R ← {RD} ; // each analysed (sub-)family also holds bounds

2 δCEGIS ← 1 ; // time allocation factor for CEGIS

3 while true do

4 result,R′
, σAR, tAR ←AR.run(R, ϕ)

5 if result.decided() then return result;
6 CEGIS.setTimeout(tAR · δCEGIS)

7 result, σCEGIS ,R
′′ ← CEGIS.run(R′

, ϕ)
8 if result.decided() then return result;
9 δCEGIS ← σCEGIS/σAR

10 R ← R′′

11 end while

AR steps and then invoke CEGIS. Our experiments reveal that it can be crucial
to be adaptive, i.e., the integrated method must be able to detect at run time
when to switch.

The proposed hybrid method switches between AR and CEGIS, where we
allow for refining during the AR phase and use the obtained refined bounds
during CEGIS. Additionally, we estimate the efficiency σ (e.g., the number of
pruned MCs per time unit) of the two methods and allocate more time t to the
method with superior performance. That is, if we detect that CEGIS prunes
sub-families twice as fast as AR, we double the time in the next round for
CEGIS. The resulting algorithm is summarized in Alg. 2. Recall that AR (at
line 5) takes one family from R, either solves it or splits it and returns the set

of undecided families R′
. In contrast, CEGIS processes multiple families from

R′
until the timeout and then returns the set of undecided families R′′

. This
workflow is motivated by the fact that one iteration of AR (i.e., the involved
MDP model-checking) is typically significantly slower that one CEGIS iteration.

Remark 1. Although the developed framework for integrated synthesis has been
discussed in the context of feasibility with respect to a single property ϕ, it
can be easily generalized to handle multiple-property specifications as well as
to treat optimal synthesis. Regarding multiple properties, the idea remains the
same: Analyzing the quotient MDP with respect to multiple properties yields
multiple probability bounds. After initiating a CEGIS-loop and obtaining an
unsatisfiable realization, we can construct a separate conflict for each unsatisfied
property, while using the corresponding probability bound to enhance the CE
generation process. Optimal synthesis is handled similarly to feasibility, but, after
obtaining a satisfiable solution, we update the optimizing property to exclude this
solution: e.g., for maximal synthesis this translates to increasing the threshold of
the maximizing property. Having exhausted the search space of family members,
the last obtained solution is declared to be the optimal one.
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model |K| |RD| MDP size avg. MC size

Grid 8 65k 11.5k 1.2k
Maze 20 1M 9k 5.4k
DPM 16 43M 9.5k 2.2k

model |K| |RD| MDP size avg. MC size

Pole 17 1.3M 6.6k 5.6k
Herman 8 0.5k 48k 5.2k
Herman∗ 7 3.1M 6k 1k

Table 1. Summary of the benchmarks and their statistics

6 Experimental evaluation

Implementation. We implemented the hybrid oracle on top of the probabilistic
model checker Storm [18]. While the high-performance parts were implemented
in C++, we used a python API to flexibly construct the overall synthesis loop.
For SMT solving, we used Z3 [29]. The tool chain takes a PRISM [27] or JANI [6]
sketch and a set of temporal properties, and returns a satisfying realization, if
such exists, or outputs that such realization does not exist. The implementation
in the form of an artefact is available at https://zenodo.org/record/4422543.

Set-up. We compare the adaptive oracle-guided synthesis with two state-of-the-art
synthesis methods: program-level CEGIS [9] using a MaxSat CE generation [16,41]
and AR [10]. These use the same architecture and data structures from Storm.
All experiments are run on an Ubuntu 19.04 machine with Intel i5-8300H (4
cores at 2.3 GHz) and using up to 8 GB RAM, with all the algorithms being
executed on a single thread. The benchmarks consists of five different models,
see Table 1, from various domains that were used in [9,10]. As opposed to the
benchmark considered in [9,10], we use larger variants of Grid and Herman to
better demonstrate differences in the performance of individual methods.

To investigate the scalability of the methods, we consider a new variant of the
Herman model, that allows us to scale the number of randomization strategies
and thus the family size. In particular, we will compare performance on two
instances of different sizes: small Herman∗ (5k members) and large Herman∗

(3.1M members, other statistics are reported in Table 1).
To reason about the pruning efficiency of different synthesis methods, we

want to avoid feasible synthesis problems, where the order of family exploration
can lead to inconsistent performance. Instead, we will primarily focus on non-
feasible problems, where all realizations need to be explored in order to prove
unsatisfiability. The experimental evaluation is presented in three parts. (1) We
evaluate the novel CE construction method and compare it with the MaxSat-based
oracle from [9]. (2) We compare the hybrid synthesis loop with the two baselines
AR and CEGIS. (3) We consider novel hard synthesis instances (multi-property
synthesis, finding optimal programs) on instances of the model Herman∗.

Comparing CE construction methods We consider the quality of the CEs
and their generation time. In particular, we want to investigate (1) whether using
CEs-modulo-families yields better CEes, (2) how the quality of CEs from the smart
oracle compares to the MaxSat-based oracle, and how their time consumption
compares. As a measure of quality of a CE, the average number of its relevant
parameters w.r.t. the total number of its parameters is taken. That is, smaller

https://zenodo.org/record/4422543
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model
CE quality performance

MaxSat [16]
state expansion (new) CEGIS [9] AR [10] Hybrid (new)

trivial non-trivial iters time iters time iters time

Grid
0.59 (0.025) 0.50 (0.001) 0.50 613 30 5325 486 (285, 11) 6

∗ 0.74 (0.026) 0.65 (0.001) 0.65 1801 93 6139 540 (2100, 127) 33

Maze
0.21 (0.247) 0.55 (0.009) 0.38 290 5449 49 17 (105, 13) 7

∗ 0.24 (2.595) 0.63 (0.012) 0.46 301 6069 63 26 (146, 17) 9

DPM
0.32 (0.447) 0.61 (0.007) 0.53 2906 2488 299 25 (631, 143) 23

∗ 0.33 (0.525) 0.49 (0.006) 0.42 3172 2782 1215 81 (2374, 545) 76

Pole
- 0.87 (0.062) 0.16 - - 309 12 (3, 5) 1

∗ - 0.54 (0.041) 0.29 - - 615 23 (80, 61) 6

Herman
- 0.91 (0.011) 0.50 - - 171 86 (24, 1) 9

∗ - 0.88 (0.016) 0.87 - - 643 269 (485, 13) 29

Table 2. CE quality for different methods and performance of three synthesis methods.
For each model/property, we report results for two different thresholds where the
symbol ‘∗’ marks the one closer to the feasibility threshold, representing the more
difficult synthesis problem. Symbol ‘-’ marks a two-hour timeout. CE quality: The
presented numbers give the CE quality (i.e., the smaller, the better). The numbers in
parentheses represent the average run-time of constructing one CE in seconds (run-times
for constructing CE using non-trivial bounds are similar as for trivial ones and are thus
not reported). Performance: for each method, we report the number of iterations (for
the hybrid method, the reported values are iterations of the CEGIS and AR oracle,
respectively) and the run-time in seconds.

ratios imply better CEs. To measure the influence of using CEs-modulo-families,
two types of bounds are used: (i) trivial bounds (i.e., γ = 0 for safety and γ = 1
for liveness properties), and (ii) non-trivial bounds corresponding to the entire
family RD representing the most conservative estimate. The results are reported
in (the left part of) Table 2. In the next subsection, we investigate this same
benchmark from the point of view of the performance of the synthesis methods,
which also shows the immediate effect of the new CE generation strategy.

The first observation is that using non-trivial bounds (as opposed to trivial
ones) for the state expansion approach can drastically decrease the conflict
size. It turns out that the CEs obtained using the greedy approach are mostly
larger than those obtained with the MaxSat method. However (see Grid), even
for trivial bounds, we may obtain smaller CEs than for MaxSat: computing
a minimal-command CE does not necessarily induce an optimal conflict. On
the other hand, comparing the run-times in the parentheses, one can see that
computing CEs via the greedy state expansion is orders of magnitude faster than
computing command-optimal ones using MaxSat. It is good to realize that the
greedy method makes at most |K| model-checking queries to compute CEs, while
the MaxSat method may make exponentially many such queries. Overall, the
greedy method using the non-trivial bounds is able to obtain CEs of comparable
quality as the MaxSat method, while being orders of magnitude faster.
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Performance comparison with AR/CEGIS We compare the hybrid synthe-
sis loop from Sect. 5 with two state-of-the-art baselines: CEGIS and AR. The
results are displayed in (the right half of) Table 2. In all 10 cases, the hybrid
method outperforms the baselines. It is up to an order of magnitude faster.

Let us discuss the performance of the hybrid method. We classify benchmarks
along two dimensions: (1) the performance of CEGIS and (2) the performance of
AR. Based on the empirical performance, we classify (Grid) as good-for-CEGIS
(and not for AR), Maze, Pole and DPM as good-for-AR (and not for CEGIS),
and Herman as hard (for both). Roughly, AR works well when the quotient
MDP does not blow up and its analysis is precise due to consistent schedulers,
i.e., when the parameter dependencies are not crucial for a precise analysis.
CEGIS performs well when the CEs are small and fast to compute. On the other
hand, synthesis problems for which neither pure CEGIS nor pure AR are able to
effectively reason about non-trivial subfamilies, inherently profit from a hybrid
method. The main point we want to discuss is how the hybrid method reinforces
the strengths of both methods, rather than their weaknesses.

In the hybrid method, there are two factors that determine the efficiency:
(i) how fast do we get bounds on the reachability probability that are tight enough to
enable construction of good counterexamples? and (ii) how good are the constructed
counterexamples? The former factor is attributed to the proposed adaptive scheme
(see Alg. 2), where the method will prefer AR-like analysis and continue refinement
until the computed bounds allow construction of small counterexamples. The
latter is reflected above. Let us now discuss how these two aspects are reflected
in the benchmarks.

In good-for-CEGIS benchmarks like Grid, after analyzing a quotient MDP
for the whole family, the hybrid method mostly profits from better CEs yielding
better bounds, thus outperforming CEGIS. Indeed, the CEs are found so fast
that the bottleneck is no longer their generation. This also explains why the
speedup is not immediately translated to the speedup on the overall synthesis
loop. In the good-for-AR benchmark DPM, the hybrid method provides only a
minor improvement as it has to perform a large number of AR-iterations before
the novel CE-based pruning can be effectively used. This can be considered as the
worst-case scenario for the hybrid method. On other good-for-AR benchmarks
like Maze and Pole, the good performance on AR allows to quickly obtain tight
bounds which can then be exploited by CEGIS. Finally, in hard models like
Herman, abstraction-refinement is very expensive, but even the bounds from the
first round yield bounds that, as opposed to the trivial bounds, now enable good
CEs: CEGIS can keep using these bounds to quickly prune the state space.

More complicated synthesis problems Our new approach can push the
limits of synthesis benchmarks significantly. We illustrate this by considering a
new variant of the Herman model, Herman∗, and a property imposing an upper
bound on the expected number of rounds until stabilization. We put this bound
just below the optimal (i.e., the minimal) value, yielding a hard non-feasible
problem. The synthesis results are summarized in Table 3. As CEGIS performs
poorly on Herman, it is excluded here.
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synthesis AR Hybrid
problem iters time iters time

feasibility 81 30s (274, 1) 7s
two properties 97 38s (274, 1) 8s
optimality 531 150s (571, 7) 12s

synthesis AR Hybrid
problem iters time iters time

feasibility 69k 47h (14280, 2) 13.4m
optimality 83k 55h (16197, 3) 16.8m
5%-optimality 60k 42h (6421, 7) 5.1m

Table 3. The impact of scaling the family size (of the Herman∗ model) and handling
more complex synthesis problems. The left part shows the results for the smaller variant
(5k members), the right part for the larger one (3.1M members).

First, we investigate on small Herman∗ how the methods can handle the
synthesis for multi-property specifications. We add one feasible property to the
(still non-feasible) specification (row ‘two properties’). While including more
properties typically slows down the AR computation, the performance of the
hybrid method is not affected as the corresponding overhead is mitigated by
additional pruning opportunities. Second, we consider optimal synthesis for the
property as used in the feasibility synthesis. The hybrid method requires only
a minor overhead to find an optimal solution compared to checking feasibility.
This overhead is significantly larger for AR.

Next, we consider larger Herman∗ model having significantly more randomiza-
tion strategies (3.1M members) that include solutions leading to a considerably
faster stabilization. This model is out of reach for existing synthesis approaches:
one-by-one enumeration takes more than 27 hours and the AR performs even
worse—solving the feasibility and optimality problems requires 47 and 55 hours,
respectively. On the other hand, the proposed hybrid method is able to solve
these problems within minutes. Finally, we consider a relaxed variant of optimal
synthesis (5%-optimality) guaranteeing that the found solution is up to 5% worse
than the optimal. Relaxing the optimally criterion speeds up the hybrid synthesis
method by about a factor three.

These experiments clearly demonstrate that scaling up the synthesis problem
several orders of magnitude renders existing synthesis methods infeasible: they
need tens of hours to solve the synthesis problems. Meanwhile, the hybrid method
tackles these difficult synthesis problems without significant penalty and is capable
of producing a solution within minutes.

7 Conclusion

We present a novel method for the automated synthesis of probabilistic programs.
Pairing the counterexample-guided inductive synthesis with the deductive oracle
using an MDP abstraction, we develop a synthesis technique enabling faster
construction of smaller counterexamples. Evaluating the method on case studies
from different domains, we demonstrate that the novel CE construction and the
adaptive strategy lead to a significant acceleration of the synthesis process. The
proposed method is able to reduce the run-time for challenging problems from
days to minutes. In our future work, we plan to investigate counterexamples on
the quotient MDPs and improve the abstraction refinement strategy.
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Abstract. Many probabilistic inference problems such as stochastic fil-
tering or the computation of rare event probabilities require model anal-
ysis under initial and terminal constraints. We propose a solution to
this bridging problem for the widely used class of population-structured
Markov jump processes. The method is based on a state-space lumping
scheme that aggregates states in a grid structure. The resulting approxi-
mate bridging distribution is used to iteratively refine relevant and trun-
cate irrelevant parts of the state-space. This way, the algorithm learns
a well-justified finite-state projection yielding guaranteed lower bounds
for the system behavior under endpoint constraints. We demonstrate the
method’s applicability to a wide range of problems such as Bayesian
inference and the analysis of rare events.

Keywords: Bayesian Inference · Bridging problem · Smoothing · Lump-
ing · Rare Events.

1 Introduction

Discrete-valued continuous-time Markov Jump Processes (MJP) are widely used
to model the time evolution of complex discrete phenomena in continuous time.
Such problems naturally occur in a wide range of areas such as chemistry [16],
systems biology [49,46], epidemiology [36] as well as queuing systems [10] and
finance [39]. In many applications, an MJP describes the stochastic interaction
of populations of agents. The state variables are counts of individual entities of
different populations.

Many tasks, such as the analysis of rare events or the inference of agent
counts under partial observations naturally introduce terminal constraints on
the system. In these cases, the system’s initial state is known, as well as the
system’s (partial) state at a later time-point. The probabilities corresponding
to this so-called bridging problem are often referred to as bridging probabilities
[17,19]. For instance, if the exact, full state of the process Xt has been observed
at time 0 and T , the bridging distribution is given by

Pr(Xt = x | X0 = x0, XT = xg)

c© The Author(s) 2021
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for all states x and times t ∈ [0, T ]. Often, the condition is more complex, such
that in addition to an initial distribution, a terminal distribution is present.
Such problems typically arise in a Bayesian setting, where the a priori behavior
of a system is filtered such that the posterior behavior is compatible with noisy,
partial observations [11,25]. For example, time-series data of protein levels is
available while the mRNA concentration is not [1,25]. In such a scenario our
method can be used to identify a good truncation to analyze the probabilities
of mRNA levels.

Bridging probabilities also appear in the context of rare events. Here, the rare
event is the terminal constraint because we are only interested in paths contain-
ing the event. Typically researchers have to resort to Monte-carlo simulations in
combination with variance reduction techniques in such cases [14,26].

Efficient numerical approaches that are not based on sampling or ad-hoc
approximations have rarely been developed.

Here, we combine state-of-the-art truncation strategies based on a forward
analysis [28,4] with a refinement approach that starts from an abstract MJP with
lumped states. We base this lumping on a grid-like partitioning of the state-space.
Throughout a lumped state, we assume a uniform distribution that gives an
efficient and convenient abstraction of the original MJP. Note that the lumping
does not follow the classical paradigm of Markov chain lumpability [12] or its
variants [15]. Instead of an approximate block structure of the transition-matrix
used in that context, we base our partitioning on a segmentation of the molecule
counts. Moreover, during the iterative refinement of our abstraction, we identify
those regions of the state-space that contribute most to the bridging distribution.
In particular, we refine those lumped states that have a bridging probability
above a certain threshold δ and truncate all other macro-states. This way, the
algorithm learns a truncation capturing most of the bridging probabilities. This
truncation provides guaranteed lower bounds because it is at the granularity of
the original model.

In the rest of the paper, after presenting related work (Section 2) and back-
ground (Section 3), we discuss the method (Section 4) and several applications,
including the computation of rare event probabilities as well as Bayesian smooth-
ing and filtering (Section 5).

2 Related Work

The problem of endpoint constrained analysis occurs in the context of Bayesian
estimation [41]. For population-structured MJPs, this problem has been ad-
dressed by Huang et al. [25] using moment closure approximations and by Wild-
ner and Köppl [48] further employing variational inference. Golightly and Sher-
lock modified stochastic simulation algorithms to approximatively augment gen-
erated trajectories [17]. Since a statistically exact augmentation is only possible
for few simple cases, diffusion approximations [18] and moment approximations
[35] have been employed. Such approximations, however, do not give any guaran-
tees on the approximation error and may suffer from numerical instabilities [43].
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The bridging problem also arises during the estimation of first passage times
and rare event analysis. Approaches for first-passage times are often of heuristic
nature [42,22,8]. Rigorous approaches yielding guaranteed bounds are currently
limited by the performance of state-of-the-art optimization software [6]. In bi-
ological applications, rare events of interest are typically related to the reach-
ability of certain thresholds on molecule counts or mode switching [45]. Most
methods for the estimation of rare event probabilities rely on importance sam-
pling [26,14]. For other queries, alternative variance reduction techniques such
as control variates are available [5]. Apart from sampling-based approaches, dy-
namic finite-state projections have been employed by Mikeev et al. [34], but are
lacking automated truncation schemes.

The analysis of countably infinite state-spaces is often handled by a pre-
defined truncation [27]. Sophisticated state-space truncations for the (uncondi-
tioned) forward analysis have been developed to give lower bounds and rely on a
trade-off between computational load and tightness of the bound [37,28,4,24,31].

Reachability analysis, which is relevant in the context of probabilistic veri-
fication [8,38], is a bridging problem where the endpoint constraint is the visit
of a set of goal states. Backward probabilities are commonly used to compute
reachability likelihoods [2,50]. Approximate techniques for reachability, based
on moment closure and stochastic approximation, have also been developed in
[8,9], but lack error guarantees. There is also a conceptual similarity between
computing bridging probabilities and the forward-backward algorithm for com-
puting state-wise posterior marginals in hidden Markov models (HMMs) [40].
Like MJPs, HMMs are a generative model that can be conditioned on obser-
vations. We only consider two observations (initial and terminal state) that are
not necessarily noisy but the forward and backward probabilities admit the same
meaning.

3 Preliminaries

3.1 Markov Jump Processes with Population Structure

A population-structured Markov jump process (MJP) describes the stochastic
interactions among agents of distinct types in a well-stirred reactor. The assump-
tion of all agents being equally distributed in space, allows to only keep track
of the overall copy number of agents for each type. Therefore the state-space is
S ⊆ NnS where nS denotes the number of agent types or populations. Interac-
tions between agents are expressed as reactions. These reactions have associated
gains and losses of agents, given by non-negative integer vectors v−j and v+j for

reaction j, respectively. The overall effect is given by vj = v+j − v−j . A reaction
between agents of types S1, . . . , SnS

is specified in the following form:

nS∑
�=1

v−j�S�
αj(x)−−−→

nS∑
�=1

v+j�S� . (1)
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The propensity function αj gives the rate of the exponentially distributed firing
time of the reaction as a function of the current system state x ∈ S. In population
models, mass-action propensities are most common. In this case the firing rate
is given by the product of the number of reactant combinations in x and a rate
constant cj , i.e.

αj(x) := cj

nS∏
�=1

(
x�
v−j�

)
. (2)

In this case, we give the rate constant in (1) instead of the function αj . For a
given set of nR reactions, we define a stochastic process {Xt}t≥0 describing the
evolution of the population sizes over time t. Due to the assumption of exponen-
tially distributed firing times, X is a continuous-time Markov chain (CTMC) on
S with infinitesimal generator matrix Q, where the entries of Q are

Qx,y =

{∑
j:x+vj=y

αj(x) , if x �= y,

−
∑nR

j=1 αj(x) , otherwise.
(3)

The probability distribution over time can be analyzed as an initial value prob-
lem. Given an initial state x0, the distribution1

π(xi, t) = Pr(Xt = xi | X0 = x0), t ≥ 0 (4)

evolves according to the Kolmogorov forward equation

d

dt
π(t) = π(t)Q , (5)

where π(t) is an arbitrary vectorization (π(x1, t), π(x2, t), . . . , π(x|S|, t)) of the
states.

Let xg ∈ S be a fixed goal state. Given the terminal constraint Pr(XT = xg)
for some T ≥ 0, we are interested in the so-called backward probabilities

β(xi, t) = Pr(XT = xg | Xt = xi), t ≤ T . (6)

Note that β(·, t) is a function of the conditional event and thus is no probability
distribution over the state-space. Instead β(·, t) gives the reaching probabilities
for all states over the time span of [t, T ]. To compute these probabilities, we can
employ the Kolmogorov backward equation

d

dt
β(t) = Qβ(t)� , (7)

where we use the same vectorization to construct β(t) as we used for π(t). The
above equation is integrated backwards in time and yields the reachability prob-
ability for each state xi and time t < T of ending up in xg at time T .

1 In the sequel, xi denotes a state with index i instead of its i-th component.
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The state-space of many MJPs with population structure, even simple ones,
is countably infinite. In this case, we have to truncate the state-space to a rea-
sonable finite subset. The choice of this truncation heavily depends on the goal of
the analysis. If one is interested in the most “common” behavior, for example, a
dynamic mass-based truncation scheme is most appropriate [32]. Such a scheme
truncates states with small probability during the numerical integration. How-
ever, common mass-based truncation schemes are not as useful for the bridging
problem. This is because trajectories that meet the specific terminal constraints
can be far off the main bulk of the probability mass. We solve this problem by
a state-space lumping in connection with an iterative refinement scheme.

Consider as an example a birth-death process. This model can be used to
model a wide variety of phenomena and often constitutes a sub-module of larger
models. For example, it can be interpreted as an M/M/1 queue with service rates
being linearly dependent on the queue length. Note, that even for this simple
model, the state-space is countably infinite.

Model 1 (Birth-Death Process). The model consists of exponentially dis-
tributed arrivals and service times proportional to queue length. It can be ex-
pressed using two mass-action reactions:

∅ 10−→ X and X
.1−→ ∅ .

The initial condition X0 = 0 holds with probability one.

3.2 Bridging Distribution

The process’ probability distribution given both initial and terminal constraints
is formally described by the conditional probabilities

γ(xi, t) = Pr(Xt = xi | X0 = x0, XT = xg), 0 ≤ t ≤ T (8)

for fixed initial state x0 and terminal state xg. We call these probabilities the
bridging probabilities. It is straight-forward to see that γ admits the factorization

γ(xi, t) = π(xi, t)β(xi, t)/π(xg, T ) (9)

due to the Markov property. The normalization factor, given by the reachability
probability π(xg, T ) = β(x0, 0), ensures that γ(·, t) is a distribution for all time
points t ∈ [0, T ]. We call each γ(·, t) a bridging distribution. From the Kolmogorov
equations (5) and (7) we can obtain both the forward probabilities π(·, t) and
the backward probabilities β(·, t) for t < T .

We can easily extend this procedure to deal with hitting times constrained
by a finite time-horizon by making the goal state xg absorbing.

In Figure 1 we plot the forward, backward, and bridging probabilities for
Model 1. The probabilities are computed on a [0, 100] state-space truncation. The
approximate forward solution π̂ shows how the probability mass drifts upwards
towards the stationary distribution Poisson(100). The backward probabilities
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Fig. 1. Forward, backward, and bridging probabilities for Model 1 with initial con-
straint X0 = 0 and terminal constraint X10 = 40 on a truncated state-space. Proba-
bilities over 0.1 in π̂ and β̂ are given full intensity for visual clarity. The lightly shaded
area (≥ 60) indicates a region being more relevant for the forward than for the bridging
probabilities.

are highest for states below the goal state xg = 40. This is expected because
upwards drift makes reaching xg more probable for “lower” states. Finally, the
approximate bridging distribution γ̂ can be recognized to be proportional to the
product of forward π̂ and backward probabilities β̂.

4 Bridge Truncation via Lumping Approximations

We first discuss the truncation of countably infinite state-spaces to analyze back-
ward and forward probabilities (Section 4.1). To identify effective truncations we
employ a lumping scheme. In Section 4.2, we explain the construction of macro-
states and assumptions made, as well as the efficient calculation of transition
rates between them. Finally, in Section 4.3 we present an iterative refinement
algorithm yielding a suitable truncation for the bridging problem.

4.1 Finite State Projection

Even in simple models such as a birth-death Process (Model 1), the reachable
state-space is countably infinite. Direct analyzes of backward (6) and forward
equations (4) are often infeasible. Instead, the integration of these differential
equations requires working with a finite subset of the infinite state-space [37]. If
states are truncated, their incoming transitions from states that are not trun-
cated can be re-directed to a sink state. The accumulated probability in this
sink state is then used as an error estimate for the forward integration scheme.
Consequently, many truncation schemes, such as dynamic truncations [4], aim
to minimize the amount of “lost mass” of the forward probability. We use the
same truncation method but base the truncation on bridging probabilities rather
than the forward probabilities.

4.2 State-Space Lumping

When dealing with bridging problems, the most likely trajectories from the initial
to the terminal state are typically not known a priori. Especially if the event in
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question is rare, obtaining a state-space truncation adapted to its constraints is
difficult. We devise a lumping scheme that groups nearby states, i.e. molecule
counts, into larger macro-states. A macro-state is a collection of states treated
as one state in a lumped model, which can be seen as an abstraction of the
original model. These macro-states form a partitioning of the state-space. In this
lumped model, we assume a uniform distribution over the constituent micro-
states inside each macro-state. Thus, given that the system is in a particular
macro-state, all of its micro-states are equally likely. This partitioning allows us
to analyze significant regions of the state-space efficiently albeit under a rough
approximation of the dynamics. Iterative refinement of the state-space after each
analysis moves the dynamics closer to the original model. In the final step of the
iteration, the considered system states are at the granularity of the original model
such that no approximation error is introduced by assumptions of the lumping
scheme. Computational efficiency is retained by truncating in each iteration
step those states that contribute little probability mass to the (approximated)
bridging distributions.

We choose a lumping scheme based on a grid of hypercube macro-states whose
endpoints belong to a predefined grid. This topology makes the computation
of transition rates between macro-states particularly convenient. Mass-action
reaction rates, for example, can be given in a closed-form due to the Faulhaber
formulae. More complicated rate functions such as Hill functions can often be
handled as well by taking appropriate integrals.

Our choice is a scheme that uses nS-dimensional hypercubes. A macro-state
x̄i(�

(i), u(i)) (denoted by x̄i for notational ease) can therefore be described by
two vectors �(i) and u(i). The vector �(i) gives the corner closest to the origin,
while u(i) gives the corner farthest from the origin. Formally,

x̄i = x̄i(�
(i), u(i)) = {x ∈ NnS | �(i) ≤ x ≤ u(i)}, (10)

where ’≤’ stands for the element-wise comparison. This choice of topology makes
the computation of transition rates between macro-states particularly conve-
nient: Suppose we are interested in the set of micro-states in macro-state x̄i that
can transition to macro-state x̄k via reaction j. It is easy to see that this set is
itself an interval-defined macro-state x̄

i
j−→k

. To compute this macro-state we can

simply shift x̄i by vj , take the intersection with x̄k and project this set back.
Formally,

x̄
i

j−→k
= ((x̄i + vj) ∩ x̄k)− vj , (11)

where the additions are applied element-wise to all states making up the macro-
states. For the correct handling of the truncation it is useful to define a general
exit state

x̄
i

j−→ = ((x̄i + vj) \ x̄i)− vj . (12)

This state captures all micro-states inside x̄i that can leave the state via reaction
j. Note that all operations preserve the structure of a macro-state as defined in
(10). Since a macro-state is based on intervals the computation of the transition
rate is often straight-forward. Under the assumption of polynomial rates, as
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Fig. 2. A lumping approximation of Model 1 on the state-space truncation to [0, 200]
on t ∈ [0, 50]. On the left-hand side solutions of a regular truncation approximation
and a lumped truncation (macro-state size is 5) are given. On the right-hand side the
respective terminal distributions Pr(X50 = xi) are contrasted.

it is the case for mass-action systems, we can compute the sum of rates over
this transition set efficiently using Faulhaber’s formula. We define the lumped
transition function

ᾱj(x̄) =
∑
x∈x̄

αj(x) (13)

for macro-state x̄ and reaction j. As an example consider the following mass-
action reaction 2X

c−→ ∅ . For macro-state x̄ = {0, . . . , n} we can compute the
corresponding lumped transition rate

ᾱ(x̄) =
c

2

n∑
i=1

i(i− 1) =
c

2

n∑
i=1

(i2 − i) =
c

2

(
2n3 + 3n2 + n

6
− n2 + n

2

)
eliminating the explicit summation in the lumped propensity function.

For polynomial propensity functions α such formulae are easily obtained au-
tomatically. For non-polynomial propensity functions, we can use the continuous
integral as an approximation. This is demonstrated on a case study in Section 5.2.

Using the transition set computation (11) and the lumped propensity func-
tion (13) we can populate the Q-matrix of the finite lumping approximation:

Q̄x̄i,x̄k
=

⎧⎨⎩
∑nR

j=1 ᾱj

(
x̄
i

j−→k

)
/vol (x̄i) , if x̄i �= x̄k

−
∑nR

j=1 ᾱj

(
x̄
i

j−→
)
/vol (x̄i) , otherwise

(14)

In addition to the lumped rate function over the transition state x̄
i

j−→k
, we need to

divide by the total volume of the lumped state x̄i. This is due to the assumption
of a uniform distribution inside the macro-states. Using this Q-matrix, we can
compute the forward and backward solution using the respective Kolmogorov
equations (5) and (7).

Interestingly, the lumped distribution tends to be less concentrated. This is
due to the assumption of a uniform distribution inside macro-states. This effect
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is illustrated by the example of a birth-death process in Figure 2. Due to this
effect, an iterative refinement typically keeps an over-approximation in terms of
state-space area. This is a desirable feature since relevant regions are less likely
to be pruned due to lumping approximations.

4.3 Iterative Refinement Algorithm

The iterative refinement algorithm (Alg. 1) starts with a set of large macro-states
that are iteratively refined, based on approximate solutions to the bridging prob-
lem. We start by constructing square macro-states of size 2m in each dimension
for some m ∈ N such that they form a large-scale grid S(0). Hence, each initial
macro-state has a volume of (2m)

nS . This choice of grid size is convenient be-
cause we can halve states in each dimension. Moreover, this choice ensures that
all states have equal volume and we end up with states of volume 20 = 1 which
is equivalent to a truncation of the original non-lumped state-space.

An iteration of the state-space refinement starts by computing both the for-
ward and backward probabilities (lines 2 and 3) via integration of (5) and (7),
respectively, using the lumped Q̂-matrix. Based on the resulting approximate
forward and backward probabilities, we compute an approximation of the bridg-
ing distributions (line 4). This is done for each time-point in an equispaced grid
on [0, T ]. The time grid granularity is a hyper-parameter of the algorithm. If

the grid is too fine, the memory overhead of storing backward β̂(i) and forward
solutions π̂(i) increases.2 If, on the other hand, the granularity is too low, too
much of the state-space might be truncated. Based on a threshold parameter
δ > 0 states are either removed or split (line 7), depending on the mass assigned

to them by the approximate bridging probabilities γ̂
(i)
t . A state can be split by

the split-function which halves the state in each dimension. Otherwise, it is
removed. Thus, each macro-state is either split into 2nS new states or removed
entirely. The result forms the next lumped state-space S(i+1). The Q-matrix is
adjusted (line 10) such that transition rates for S(i+1) are calculated accord-
ing to (14). Entries of truncated states are removed from the transition matrix.
Transitions leading to them are re-directed to a sink state (see Section 4.1). Af-
ter m iterations (we started with states of side lengths 2m) we have a standard
finite state projection scheme on the original model tailored to computing an
approximation of the bridging distribution.

In Figure 3 we give a demonstration of how Algorithm 1 works to refine the
state-space iteratively. Starting with an initial lumped state-space S(0) covering
a large area of the state-space, repeated evaluations of the bridging distributions
are performed. After five iterations the remaining truncation includes all states
that significantly contribute to the bridging probabilities over the times [0, T ].

It is important to realize that determining the most relevant states is the
main challenge. The above algorithm solves this problem by considering only

2 We denote the approximations with a hat (e.g. π̂) rather than a bar (e.g. π̄) to
indicate that not only the lumping approximation but also a truncation is applied
and similarly for the Q-matrix.
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Algorithm 1: Iterative refinement for the bridging problem

input : Initial partitioning S(0), truncation threshold δ
output: approximate bridging distribution γ̂

1 for i = 1, . . . ,m do

2 π̂
(i)
t ← solve approximate forward equation on S(i);

3 β̂
(i)
t ← solve approximate backward equation on S(i);

4 γ̂
(i)
t ← β̂(i)π̂(i)/π̂(xg, T ); /* approximate bridging distribution */

5 S(i+1) ← ∅;
6 foreach x̄ ∈ S(i) do

7 if ∃t.γ̂(i)
t (x̄) ≥ δ; /* refine based on bridging probabilities */

8 then

9 S(i+1) ← S(i+1) ∪ split(x̄);

10 update Q̂-matrix;

11 return γ̂(i);

Fig. 3. The state-space refinement algorithm on two parallel unit-rate arrival processes.
The bridging problem from (0, 0) to (64, 64) and T = 10 and truncation threshold
δ = 5e-3. States with a bridging probability below δ are light grey. The macro-state
containing the goal state is marked in black. The initial macro-states are of size 16×16.

those parts of the state-space that contribute most to the bridging probabilities.
The truncation is tailored to this condition and might ignore regions that are
likely in the unconditioned case. For instance, in Fig. 1 the bridging probabili-
ties mostly remain below a population threshold of #X = 60 (as indicated by
the lighter/darker coloring), while the forward probabilities mostly exceed this
bound. Hence, in this example a significant portion of the forward probabilities

π̂
(i)
t is captured by the sink state. However, the condition in line 7 in Algorithm 1

ensures that states contributing significantly to γ̂
(i)
t will be kept and refined in

the next iteration.

5 Results

We present four examples in this section to evaluate our proposed method.
A prototype was implemented in Python 3.8. For numerical integration we
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threshold δ 1e-2 1e-3 1e-4 1e-5

truncation size 1154 2354 3170 3898
overall states 2074 3546 4586 5450
estimate 8.8851e-30 1.8557e-29 1.8625e-29 1.8625e-29
rel. error 5.2297e-01 3.6667e-03 3.7423e-05 9.5259e-08

Table 1. Estimated reachability probabilities based on varying truncation thresholds
δ: The true probability is 1.8625e-29. We also report the size of the final truncation and
the accumulated size of all truncations during refinement iterations (overall states).

used the Scipy implementation [47] of the implicit method based on backward-
differentiation formulas [13]. The analysis as a Jupyter notebook is made avail-
able online3.

5.1 Bounding Rare Event Probabilities

We consider a simple model of two parallel Poisson processes describing the
production of two types of agents. The corresponding probability distribution
has Poisson product form at all time points t ≥ 0 and hence we can compare
the accuracy of our numerical results with the exact analytic solution. We use
the proposed approach to compute lower bounds for rare event probabilities. 4

Model 2 (Parallel Poisson Processes). The model consists of two parallel
independent Poisson processes with unit rates.

∅ 1−→ A and ∅ 1−→ B .

The initial condition X0 = (0, 0) holds with probability one. After t time units
each species abundance is Poisson distributed with rate λ = t.

We consider the final constraint of reaching a state where both processes exceed
a threshold of 64 at time 20. Without prior knowledge, a reasonable truncation
would have been 160×160. But our analysis shows that just 20% of the states are
necessary to capture over 99.6% of the probability mass reaching the target event
(cf. Table 1). Decreasing the threshold δ leads to a larger set of states retained
after truncation as more of the bridging distribution is included (cf. Figure 4).
We observe an increase in truncation size that is approximately logarithmic in δ,
which, in this example, indicates robustness of the method with respect to the
choice of δ.

3 https://www.github.com/mbackenkoehler/mjp bridging
4 These bounds are rigorous up to the approximation error of the numerical inte-
gration scheme. However, the forward solution could be replaced by an adaptive
uniformization approach [3] for a more rigorous integration error control.

https://www.github.com/mbackenkoehler/mjp_bridging


Analysis of Markov Jump Processes under Terminal Constraints 221

Fig. 4. State-space truncation for varying values of the threshold parameter δ: Two
parallel Poisson processes under terminal constraints X

(A)
20 ≥ 64 and X

(B)
20 ≥ 64. The

initial macro-states are 16 × 16 such that the final states are regular micro states.

Comparison to other methods The truncation approach that we apply is similar
to the one used by Mikeev et al. [34] for rare event estimation. However, they used
a given linearly biased MJP model to obtain a truncation. A general strategy
to compute an appropriate biasing was not proposed. It is possible to adapt
our truncation approach to the dynamic scheme in Ref. [34] where states are
removed in an on-the-fly fashion during numerical integration.

A finite state-space truncation covering the same area as the initial lumping
approximation would contain 25,600 states.5 The standard approach would be
to build up the entire state-space for such a model [27]. Even using a conser-
vative truncation threshold δ = 1e-5, our method yields an accurate estimate
using only about a fifth (5450) of this accumulated over all intermediate lumped
approximations.

5.2 Mode Switching

Mode switching occurs in models exhibiting multi-modal behavior [44] when a
trajectory traverses a potential barrier from one mode to another. Often, mode
switching is a rare event and occurs in the context of gene regulatory networks
where a mode is characterized by the set of genes being currently active [30].
Similar dynamics also commonly occur in queuing models where a system may
for example switch its operating behavior stochastically if traffic increases above
or decreases below certain thresholds. Using the presented method, we can get
both a qualitative and quantitative understanding of switching behavior without
resorting to Monte-Carlo methods such as importance sampling.

Exclusive Switch The exclusive switch [7] has three different modes of opera-
tion, depending on the DNA state, i.e. on whether a protein of type one or two
is bound to the DNA.

5 Here, the goal is not treated as a single state. Otherwise, it consists of 24,130 states.
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Model 3 (Exclusive Switch). The exclusive switch model consists of a pro-
moter region that can express both proteins P1 and P2. Both can bind to the
region, suppressing the expression of the other protein. For certain parameteri-
zations, this leads to a bi-modal or even tri-modal behavior.

D
ρ−→ D + P1 D

ρ−→ D + P2 P1
λ−→ ∅ P2

λ−→ ∅

D + P1
β−→ D.P1 D.P1

γ−→ D + P1 D.P1
α−→ D.P1 + P1

D + P2
β−→ D.P2 D.P2

γ−→ D + P2 D.P2
α−→ D.P2 + P2

The parameter values are ρ = 1e-1, λ = 1e-3, β = 1e-2, γ = 8e-3, and α = 1e-1.

Since we know a priori of the three distinct operating modes, we adjust the
method slightly: The state-space for the DNA states is not lumped. Instead
we “stack” lumped approximations of the P1-P2 phase space upon each other.
Special treatment of DNA states is common for such models [28].

To analyze the switching, we choose the transition from (variable order: P1,
P2, D, D.P1, D.P2) x1 = (32, 0, 0, 0, 1) to x2 = (0, 32, 0, 1, 0) over the time
interval t ∈ [0, 10]. The initial lumping scheme covers up to 80 molecules of P1

and P2 for each mode. Macro-states have size 8×8 and the truncation threshold
is δ = 1e-4.

In the analysis of biological switches, not only the switching probability but
also the switching dynamics is a central part of understanding the underlying
biological mechanisms. In Figure 5 (left), we therefore plot the time-varying
probabilities of the gene state conditioned on the mode. We observe a rapid un-
binding of P2, followed by a slow increase of the binding probability for P1. These
dynamics are already qualitatively captured by the first lumped approximation
(dashed lines).

Toggle Switch Next, we apply our method to a toggle switch model exhibiting
non-polynomial rate functions. This well-known model considers two proteins A
and B inhibiting the production of the respective other protein [29].

Model 4. Toggle Switch (Hill functions) We have population types A and B
with the following reactions and reaction rates.

∅ α1(·)−−−→ A , where α1(x) =
ρ

1 + xB
, A

λ−→ ∅

∅ α1(·)−−−→ B , where α1(x) =
ρ

1 + xA
, B

λ−→ ∅

The parameterization is ρ = 10, λ = 0.1.

Due to the non-polynomial rate functions α1 and α2, the transition rates between
macro-states are approximated by using the continuous integral

ᾱ1(x̄) ≈
∫ b+0.5

a−0.5

ρ

1 + x
dx = ρ (log (b+ 1.5)− log (a+ 0.5))
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Fig. 5. (left) Mode probabilities of the exclusive switch bridging problem over time for
the first lumped approximation (dashed lines) and the final approximation (solid lines)
with constraints X0 = (32, 0, 0, 1, 0) and X10 = (0, 32, 0, 0, 1). (right) The expected
occupation time (excluding initial and terminal states) for the switching problem of
the toggle switch using Hill-type functions. The bridging problem is from initial (0, 120)
to a first passage of (120, 0) in t ∈ [0, 10].

for a macro-state x̄ = {a, . . . , b}.
We analyze the switching scenario from (0, 120) to the first visit of state

(120, 0) up to time T = 10. The initial lumping scheme covers up to 352 molecules
of A and B and macro-states have size 32 × 32. The truncation threshold is
δ = 1e-4. The resulting truncation is shown in Figure 5 (right). It also illustrates
the kind of insights that can be obtained from the bridging distributions. For
an overview of the switching dynamics, we look at the expected occupation
time under the terminal constraint of having entered state (120, 0). Letting the
corresponding hitting time be τ = inf{t ≥ 0 | Xt = (120, 0)}, the expected
occupation time for some state x is E

(∫ τ
0
1=x(Xt) dt | τ ≤ 10

)
. We observe that

in this example the switching behavior seems to be asymmetrical. The main mass
seems to pass through an area where initially a small number of A molecules is
produced followed by a total decay of B molecules.

5.3 Recursive Bayesian Estimation

We now turn to the method’s application in recursive Bayesian estimation. This
is the problem of estimating the system’s past, present, and future behavior un-
der given observations. Thus, the MJP becomes a hidden Markov model (HMM).
The observations in such models are usually noisy, meaning that we cannot infer
the system state with certainty.

This estimation problem entails more general distributional constraints on
terminal β(·, T ) and initial π(·, 0) distributions than the point mass distributions
considered up until now. We can easily extend the forward and backward proba-
bilities to more general initial distributions and terminal distributions β(T ). For
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the forward probabilities we get

π(xi, t) =
∑
j

Pr(Xt = xi | X0 = xj)π(xj , 0), (15)

and similarly the backward probabilities are given by

β(xi, t) =
∑
j

Pr(XT = xj | Xt = xi)βT (xj) . (16)

We apply our method to an SEIR (susceptible-exposed-infected-removed) model.
This is widely used to describe the spreading of an epidemic such as the current
COVID-19 outbreak [23,20]. Temporal snapshots of the epidemic spread are
mostly only available for a subset of the population and suffer from inaccuracies
of diagnostic tests. Bayesian estimation can then be used to infer the spreading
dynamics given uncertain temporal snapshots.

Model 5 (Epidemics Model). A population of susceptible individuals can
contract a disease from infected agents. In this case, they are exposed, mean-
ing they will become infected but cannot yet infect others. After being infected,
individuals change to the removed state. The mass-action reactions are as fol-
lows.

S + I
λ−→ E + I E

μ−→ I I
ρ−→ R

The parameter values are λ = 0.5, μ = 3, ρ = 3. Due to the stoichiometric

invariant X
(S)
t + X

(E)
t + X

(I)
t + X

(R)
t = const., we can eliminate R from the

system.

We consider the following scenario: We know that initially (t = 0) one in-
dividual is infected and the rest is susceptible. At time t = 0.3 all individuals
are tested for the disease. The test, however, only identifies infected individuals
with probability 0.99. Moreover, the probability of a false positive is 0.05. We
like to identify the distribution given both the initial state and the measurement
at time t = 0.3. In particular, we want to infer the distribution over the latent
counts of S and E by recursive Bayesian estimation.

The posterior for nI infected individuals at time t, given measurement Yt =
n̂I can be computed using Bayes’ rule

Pr(X
(I)
t = nI | Yt = n̂I) ∝ Pr(Yt = n̂I | X(I)

t = nI) Pr(X
(I)
t = nI) . (17)

This problem is an extension of the bridging problem discussed up until now.
The difference is that the terminal posterior is estimated it using the result of the
lumped forward equation and the measurement distribution using (17). Based
on this estimated terminal posterior, we compute the bridging probabilities and
refine the truncation tailored to the location of the posterior distribution. In Fig-
ure 6 (left), we illustrate the bridging distribution between the terminal posterior
and initial distribution. In the context of filtering problems this is commonly re-
ferred to as smoothing. Using the learned truncation, we can obtain the posterior
distribution for the number of infected individuals at t = 0.3 (Figure 6 (middle)).
Moreover, can we infer a distribution over the unknown number of susceptible
and exposed individuals (Figure 6 (right)).
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Fig. 6. (left) A comparison of the prior dynamics and the posterior smoothing (bridg-
ing) dynamics. (middle) The prior, likelihood, and posterior of the number of infected
individuals nI at time t = 0.3 given the measurement n̂I = 30. (right) The prior and
posterior distribution over the latent types E and S.

6 Conclusion
The analysis of Markov Jump processes with constraints on the initial and ter-
minal behavior is an important part of many probabilistic inference tasks such
as parameter estimation using Bayesian or maximum likelihood estimation, in-
ference of latent system behavior, the estimation of rare event probabilities, and
reachability analysis for the verification of temporal properties. If endpoint con-
straints correspond to atypical system behaviors, standard analysis methods fail
as they have no strategy to identify those parts of the state-space relevant for
meeting the terminal constraint.

Here, we proposed a method that is not based on stochastic sampling and
statistical estimation but provides a direct numerical approach. It starts with an
abstract lumped model, which is iteratively refined such that only those parts of
the model are considered that contribute to the probabilities of interest. In the
final step of the iteration, we operate at the granularity of the original model
and compute lower bounds for these bridging probabilities that are rigorous up
to the error of the numerical integration scheme.

Our method exploits the population structure of the model, which is present
in many important application fields of MJPs. Based on experience with other
work based on truncation, the approach can be expected to scale up to at least
a few million states [33]. Compared to previous work, our method neither relies
on approximations of unknown accuracy nor additional information such as a
suitable change of measure in the case of importance sampling. It only requires
a truncation threshold and an initial choice for the macro-state sizes.

In future work, we plan to extend our method to hybrid approaches, in which
a moment representation is employed for large populations while discrete counts
are maintained for small populations. Moreover, we will apply our method to
model checking where constraints are described by some temporal logic [21].
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6. Backenköhler, M., Bortolussi, L., Wolf, V.: Bounding mean first passage times in
population continuous-time Markov chains. To appear in Proc. of QEST’20 (2020)

7. Barzel, B., Biham, O.: Calculation of switching times in the genetic toggle switch
and other bistable systems. Physical Review E 78(4), 041919 (2008)

8. Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability prob-
abilities of Markov population models. In: Computer Performance Engineering -
11th European Workshop, EPEW 2014, Florence, Italy, September 11-12, 2014.
Proceedings. pp. 224–239 (2014)

9. Bortolussi, L., Lanciani, R., Nenzi, L.: Model checking markov population models
by stochastic approximations. Inf. Comput. 262, 189–220 (2018)

10. Breuer, L.: From Markov jump processes to spatial queues. Springer Science &
Business Media (2003)

11. Broemeling, L.D.: Bayesian Inference for Stochastic Processes. CRC Press (2017)

12. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
applied probability pp. 59–75 (1994)

13. Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordi-
nary differential equations. ACM Transactions on Mathematical Software (TOMS)
1(1), 71–96 (1975)

14. Daigle Jr, B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of
rare event probabilities in biochemical systems. The Journal of Chemical Physics
134(4), 01B628 (2011)

15. Dayar, T., Stewart, W.J.: Quasi lumpability, lower-bounding coupling matrices,
and nearly completely decomposable Markov chains. SIAM Journal on Matrix
Analysis and Applications 18(2), 482–498 (1997)

16. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry 81(25), 2340–2361 (1977)

17. Golightly, A., Sherlock, C.: Efficient sampling of conditioned Markov jump pro-
cesses. Statistics and Computing 29(5), 1149–1163 (2019)

18. Golightly, A., Wilkinson, D.J.: Bayesian inference for stochastic kinetic models
using a diffusion approximation. Biometrics 61(3), 781–788 (2005)

19. Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic bio-
chemical network models using particle Markov chain monte carlo. Interface focus
1(6), 807–820 (2011)



Analysis of Markov Jump Processes under Terminal Constraints 227
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Abstract This paper presents an efficient procedure for multi-objective
model checking of long-run average reward (aka: mean pay-off) and to-
tal reward objectives as well as their combination. We consider this for
Markov automata, a compositional model that captures both traditional
Markov decision processes (MDPs) as well as a continuous-time variant
thereof. The crux of our procedure is a generalization of Forejt et al.’s
approach for total rewards on MDPs to arbitrary combinations of long-
run and total reward objectives on Markov automata. Experiments with
a prototypical implementation on top of the Storm model checker show
encouraging results for both model types and indicate a substantial im-
proved performance over existing multi-objective long-run MDP model
checking based on linear programming.

1 Introduction

MDP model checking In various applications, multiple decision criteria and un-
certainty frequently co-occur. Stochastic decision processes for which the ob-
jective is to achieve multiple—possibly partly conflicting—objectives occur in
various fields. These include operations research, economics, planning in AI, and
game theory, to mention a few. This has stimulated model checking of Markov de-
cision processes (MDPs) [46], a prominent model in decision making under uncer-
tainty, against multiple objectives. This development enlarges the rich plethora
of automated MDP verification algorithms against single objectives [7].

Multi-objective MDP Various types of objectives known from conventional—
single-objective—model checking have been lifted to the multi-objective case.
These objectives range over ω-regular specifications including LTL [26,27], ex-
pected (discounted and non-discounted) total rewards [21,27,28,52,22], step-
bounded and reward-bounded reachability probabilities [28,35], and—most rel-
evant for this work—expected long-run average (LRA) rewards [18,11,20], also
known as mean pay-offs. For the latter, all current approaches build upon lin-
ear programming (LP) which yields a theoretical time-complexity polynomial in
the model size. However, in practice, LP-based methods are often outperformed
by approaches based on value- or strategy iteration [28,1,42]. The LP-based
approach of [27] and the iterative approach of [28] are both implemented in
PRISM [45] and Storm [40]. The LP formulation of [11,20] is implemented in
MultiGain [12], an extension of PRISM for multi-objective LRA rewards.
c© The Author(s) 2021
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Contributions of this paper We present a computationally efficient procedure for
multi-objective model checking of LRA reward and total reward objectives as
well as their mixture. The crux of our procedure is a generalization of Forejt et
al.’s iterative approach [28] for total rewards on MDPs to expected LRA reward
objectives. In fact, our approach supports the arbitrary mixtures of expected
LRA and total reward objectives. To our knowledge, such mixtures have not
been considered so far. Experiments on various benchmarks using a prototypi-
cal implementation in Storm indicate that this generalized iterative algorithm
outperforms the LP approach implemented in MultiGain.

In addition, we extend this approach towards Markov automata (MA) [25,23],
a continuous-time variant of MDP that is amenable to compositional model-
ing. This model is well-suited, among others, to provide a formal semantics
for dynamic fault trees and generalized stochastic Petri nets [24]. Our multi-
objective LRA approach for MA builds upon the value-iteration approach for
single-objective expected LRA rewards on MA [17] which—on practical models—
outperforms the LP-based approach of [30]. To the best of our knowledge, this
is the first multi-objective expected LRA reward approach for MA. Experimental
results on MA benchmarks show that the treatment of a continuous-time variant
of LRA comes at almost no time penalty compared to the MDP setting.

Other related work Mixtures of various other objectives have been considered for
MDPs. This includes conditional expectations or ratios of reward functions [5,4].
[31] considers LTL formulae with probability thresholds while maximizing an
expected LRA reward. [35,41] address multi-objective quantiles on reachabil-
ity properties while [50,20] consider multi-objective combinations of percentile
queries on MDP and LRA objectives. [6] treats resilient systems ensuring con-
straints on the repair mechanism while maximizing the expected LRA reward
when being operational. The trade-off between expected LRA rewards and their
variance is analyzed in [13]. [33] studies multiple objectives on interval MDP,
where transition probabilities can be specified as intervals in cases where the con-
crete probabilities are unknown. Multiple LRA reward objectives for stochastic
games have been treated using LP [19] and value iteration over convex sets [8,9];
the latter is included in PRISM-games [44,43]. These approaches can also be
applied to MDPs when viewed as one-player stochastic games. Algorithms for
single-objective model checking of MA deal with objectives such as expected to-
tal rewards, time-bounded reachability probabilities, and expected long-run av-
erage rewards [38,29,30,15]. The only multi-objective approach for MA so far [47]
shows that any method for multi-objective MDP can be applied on (a discretized
version of) an MA for queries involving unbounded or time-bounded reachability
probabilities and expected total rewards, but no long-run average rewards.

2 Preliminaries

The set of probability distributions over a finite set Ω is given by Dist(Ω) =
{μ : Ω �→ [0, 1] |

∑
ω∈Ω μ(ω) = 1}. For a distribution μ ∈ Dist(Ω) we let

supp(μ) = {ω ∈ Ω | μ(ω) > 0} denote its support. μ is Dirac if |supp(μ)| = 1.
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Let R≥0 = {x ∈ R | x ≥ 0}, R>0 = {x ∈ R | x > 0}, and R̄ = R ∪ {−∞,∞}
denote the non-negative, positive, and extended real numbers, respectively. For
a point p = 〈p1, . . . , p�〉 ∈ R�, � ∈ N and i ∈ {1, . . . , �} we write p�i� for its ith
entry pi. For p,q ∈ R� let p·q denote the dot product. We further write p ≤ q iff
∀ i : p�i� ≤ q�i� and p � q iff p ≤ q∧p �= q. The closure of a set P ⊆ R� is the
union of P and its boundary, denoted by cl(P ). The convex hull of P is given by
conv(P ) =

{∑�
i=1 μ(i) · pi | μ ∈ Dist({1 , . . . , �}),p1, . . . ,p� ∈ P

}
. The down-

ward convex hull of P is given by dwconv(P ) =
{
q ∈ R� | ∃p ∈ conv(P ) : q ≤ p

}
.

2.1 Markov Automata

Markov automata (MA) [25,23] provide an expressive formalism that allows one
to model exponentially distributed delays, nondeterminism, probabilistic branch-
ing, and instantaneous (undelayed) transitions.

Definition 1. A Markov Automaton is a tuple M = 〈S,Act , Δ,P〉 where S is a
finite set of states, Act is a finite set of actions, Δ : S → R>0∪2Act is a transition
function assigning exit rates to Markovian states MSM = {s ∈ S | Δ(s) ∈ R>0}
and sets of enabled actions to probabilistic states PSM = {s ∈ S | Δ(s) ⊆ Act},
and P : MSM ∪ SAM → Dist(S ) with SAM = {〈s, α〉 ∈ PS × Act | α ∈ Δ(s)}
is a probability function that assigns a distribution over possible successor states
for each Markovian state and enabled state-action pair.

Let M = 〈S,Act , Δ,P〉 be an MA. If M is clear from the context, we may omit
the superscript from MSM, PSM, SAM, and further notations introduced be-
low. Intuitively, the time M stays in a Markovian state s ∈ MS is governed by
an exponential distribution with rate Δ(s) ∈ R>0, i.e., the probability to take a
transition from s within t ∈ R≥0 time units is 1− e−Δ(s)·t. Upon taking a tran-
sition, a successor state s′ ∈ S is drawn from the distribution P(s), i.e., P(s)(s′)
is the probability that the transition leads to s′ ∈ S. For probabilistic states
ŝ ∈ PS , an enabled action α ∈ Δ(ŝ) has to be picked and a successor state is
drawn from P(〈ŝ, α〉) (without any delay). Nondeterminism is thus only possible
at probabilistic states. We assume deadlock free MA, i.e., ∀ s ∈ PSM : Δ(s) �= ∅.

Remark 1. To enable more flexible modeling such as parallel compositions, the
literature (e.g., [25,30]) often considers a more liberal variant of MA where (i)
different successor distributions can be assigned to the same state-action pair and
(ii) states can be both, Markovian and probabilistic. MAs as in Definition 1—
also known as closed MA—are equally expressive: they can be constructed via
action renaming and by applying the so-called maximal progress assumption [25].

An infinite path in M is a sequence π = s0κ1s1κ2 . . . where for each i ≥ 0
either si ∈ MS , κi+1 ∈ R≥0, and P(si)(si+1) > 0 or si ∈ PS , κi+1 ∈ Δ(si),
and P(〈si, κi+1〉)(si+1) > 0. Intuitively, if si is Markovian, κi+1 ∈ R≥0 reflects
the time we have stayed in si until transitioning to si+1. If si is probabilistic,
κi+1 ∈ Act is the performed action via which we transition to si+1. A finite path
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π̂ = s0κ1s1κ2 . . . κnsn is a finite prefix of an infinite path π. We set last(π̂) = sn
and |π̂| = n for finite π̂ and |π| = ∞ for infinite π. For (finite or infinite) path
π̄ = s0κ1s1κ2 . . . let dur(π̄) =

∑|π̄|
i=1 dur(κi) be the total duration of π̄ where

dur(κ) = κ if κ ∈ R≥0 and 0 otherwise. If π̄ is infinite and dur(π̄) <∞, the path
is called Zeno. For k ∈ N with k ≤ |π̄| we let prefix steps(π̄, k) denote the unique
prefix π′ of π̄ with |π′| = k and for t ∈ R≥0 we let prefix time(π̄, t) denote the
largest prefix of π̄ with total duration at most t. The sets of infinite and finite
paths of M are given by PathsMinf and PathsMfin , respectively.

A component of M is a set C ⊆ MS ∪ SA. We set states(C) = (C ∩MS ) ∪
{s ∈ PS | ∃α : 〈s, α〉 ∈ C}. C is closed if ∀ c ∈ C : supp(P(c)) ⊆ states(C) and
connected if for all s, s′ ∈ states(C) there is s0κ1 . . . κnsn ∈ Pathsfin with s = s0,
s′ = sn, and for each i ≥ 0 either si ∈ C ∩MS or 〈si, κi+1〉 ∈ C ∩ SA. An end
component (EC) is a closed and connected component. An EC is maximal if it is
not a proper subset of another EC. MECS (M) denotes the maximal ECs of M.
For an EC C let exits(C) =

{
〈s, α〉 ∈ SAM | s ∈ states(C) and 〈s, α〉 /∈ C

}
.

Definition 2. The sub-MA of M induced by a closed component C is given by
M�C� = 〈states(C),Act , ΔC ,PC〉 where ΔC(s) = Δ(s) if s ∈ C ∩MSM and
otherwise ΔC(s) = {α ∈ Δ(s) | 〈s, α〉 ∈ C}, and PC is the restriction of P to C.

A strategy forM resolves the nondeterminism at probabilistic states by providing
probability distributions over enabled actions based on the execution history.

Definition 3. A (general) strategy for MA M = 〈S,Act , Δ,P〉 is a function
σ : Pathsfin → Dist(Act) ∪ {τ} such that for π̂ ∈ Pathsfin we have σ(π̂) ∈
Dist(Δ(last(π̂))) if last(π̂) ∈ PS and σ(π̂) = τ otherwise.

A strategy σ is called memoryless if the choice only depends on the current state,
i.e., ∀ π̂, π̂′ ∈ Pathsfin : last(π̂) = last(π̂′) implies σ(π̂) = σ(π̂′). If all assigned
distributions are Dirac, σ is called deterministic. Let ΣM and ΣM

md denote the
set of general and memoryless deterministic strategies of M, respectively. For
simplicity, we often interpret σ ∈ ΣM

md as a function σ : S → Act ∪ {τ}. The in-
duced sub-MA for σ ∈ ΣM

md is given by M�MS ∪ {〈s, σ(s)〉 | s ∈ PS } �. Strategy
σ ∈ ΣM and initial state sI ∈ S define a probability measure PrM,sI

σ that assigns
probabilities to sets of infinite paths [38]. The expected value of f : Paths inf → R̄
is given by the Lebesque integral ExM,sI

σ (f) =
∫
π∈Pathsinf

f(π) dPrM,sI
σ (π).

2.2 Reward-based Objectives

MA can be equipped with rewards to model various quantities like, e.g., energy
consumption or the number of produced units. We distinguish between transition
rewards Rtrans : MS ∪ SA × S → R that are collected when transitioning from
one state to another and state rewards Rstate : S → R that are collected over
time, i.e., staying in state s for t time units yields a reward of Rstate(s) · t. Since
no time passes in probabilistic states, state rewards Rstate(s) for s ∈ PS are not
relevant. A reward assignment combines the two notions.
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Definition 4. A reward assignment for MA M and Rstate,Rtrans as above is
a function R : (MS × R≥0) ∪ SA × S → R with

R(〈s, κ〉 , s′) =
{
Rstate(s) · κ+Rtrans(s, s

′) if s ∈ MS , κ ∈ R≥0

Rtrans(〈s, κ〉 , s′) if s ∈ PS , κ ∈ Δ(s).

We fix a reward assignment R for M. R can also be applied to any sub-MA
M�C� of M in a straightforward way. For a component C ⊆ MS ∪ SA we
write R(C) ≥ 0 if all rewards assigned within C are non-negative, formally
∀ 〈s, κ〉 ∈ (C ∩ SA) ∪ ((C ∩MS ) × R≥0) : ∀ s′ ∈ states(C) : R(〈C, κ〉 , s′) ≥ 0.
The shortcuts R(C) ≤ 0 and R(C) = 0 are similar. The reward of a finite path
π̂ = s0κ1s1κ2 . . . κnsn is denoted by R(π̂) =

∑|π̄|
i=1R(〈si−1, κi〉 , si).

Definition 5. The total reward objective for reward assignment R is given by
tot(R) : Paths inf → R̄ with tot(R)(π) = lim supk→∞R(prefix steps(π, k)).

Definition 6. The long-run average (LRA) reward objective for R is given by
lra(R) : Paths inf → R̄ with lra(R)(π) = lim supt→∞

1
t · R(prefix time(π, t)).

Sect. 4 considers assumptions under which the limit in both definitions can
be attained, i.e., lim sup can be replaced by lim. The incorporation of other
objectives such as reachability probabilities are discussed in Remark 3.

2.3 Markov Decision Processes

A Markov Decision Process (MDP) M is an MA with only probabilistic states,
i.e., MSM = ∅. All notions above also apply to MDP. However, since all paths
of an MDP have duration 0, there is no timing information available. For MDP,
we therefore usually consider steps instead of time. In particular, for reward as-
signment R we consider lrasteps(R) instead of lra(R), where lrasteps(R)(π) =
lim supk→∞

1
k · R(prefix steps(π, k)). Below, we focus on MA. Applying our re-

sults to step-based LRA rewards on MDPs is straightforward. Time-based LRA
reward objectives for MA can not straightforwardly be reduced to step-based
measures for MDP due to the interplay of delayed- and undelayed transitions.

3 Efficient Multi-objective Model Checking

We formalize common tasks in multi-objective model checking and sketch our so-
lution method based on [28]. We fix an MA M = 〈S,Act , Δ,P〉 with initial state
sI ∈ S and � > 0 objectives f1, . . . , f� : Paths inf → R with F = 〈f1, . . . , f�〉. The
notation for expected values is lifted to tuples: Exσ(F) = 〈Exσ(f1), . . . ,Exσ(f�)〉.

3.1 Multi-objective Model Checking Queries

Our aim is to maximize the expected value for each (potentially conflicting)
objective fj . We impose the following assumption which can be asserted using
single-objective model checking. We further discuss the assumption in Remark 2.
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Figure 1: MA with achievable points and Pareto front for F = 〈lra(R1), tot(R2)〉

Assumption 1 (Objective Finiteness) ∀ j : sup {Exσ(fj) | σ ∈ Σ} <∞.

Definition 7. For F as above, Ach (F) =
{
p ∈ R� | ∃σ ∈ Σ : p ≤ Exσ(F)

}
is the set of achievable points. The Pareto front is given by Pareto(F) =
{p ∈ cl(Ach (F)) | ∀p′ � p : p′ /∈ cl(Ach (F))} .
A point p ∈ Ach (F) is called achievable and there is a single strategy σ that for
each objective fj achieves an expected value of at least p�j�. Due to Assump-
tion 1, the Pareto front is the frontier of the set of achievable points, meaning
that it is the smallest set P ⊆ R� with dwconv(P ) = cl(Ach (F)). We can thus
interpret Pareto(F) as a representation for cl(Ach (F)) and vice versa. The set
of achievable points is closed iff all points on the Pareto front are achievable.

Example 1. Fig. 1a shows an MA with initial state s3. Transitions are annotated
with actions, rates (boldfaced), and successor probabilities. We also depict two
reward assignments R1 and R2 by labeling states and transitions with tuples
〈r1, r2〉 where, e.g., R2(s3, α, s1) = −1 and for t ∈ R≥0: R1(s2, t, s4) = 6 · t.

For σ1 ∈ Σmd with σ1 : s3, s4 �→ α, the EC {s2, 〈s4, α〉 , 〈s4, β〉 , s6} is reached
almost surely (with probability 1), yielding Exσ1

(lra(R1)) = 0.6 · 6 + 0.4 · 1 = 4
and Exσ1

(tot(R2)) =
∑∞

i=0−1 · (0.5)i = −2. It follows that the point p1 =
〈4,−2〉 as indicated in Fig. 1b is achievable. Similarly, σ2 ∈ Σmd with σ2 : s3 �→
β, s4 �→ α achieves the point p2 = 〈3, 0〉. With strategies that randomly pick
an action at s3, we can also achieve any point on the blue line in Fig. 1b that
connects p1 and p2. This line coincides with the Pareto front Pareto(F) for
F = 〈lra(R1), tot(R2)〉. The set of achievable points Ach (F) (indicated in green)
coincides with the downward convex hull of the Pareto front.

For multi-objective model checking we are concerned with the following queries:

Multi-objective Model Checking Queries
Qualitative Achievability: Given point p ∈ R�, decide if p ∈ Ach (F).

Quantitative Achievability: Given p2, p3, . . . , p� ∈ R, compute or approxi-
mate sup {p ∈ R | 〈p, p2, p3, . . . , p�〉 ∈ Ach (F)}.

Pareto: Compute or approximate Pareto(F).
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Input : MA M with initial state sI , objectives F = 〈f1, . . . , f�〉
Output : An approximation of Ach (F)

1 P ← ∅ // Collects achievable points found so far.
2 Q ← R� // Excludes points that are known to be unachievable.
3 repeat
4 Select weights w ∈ {w′ ∈ (R≥0)

� |
∑�

j=1 w
′�j� = 1} and ε > 0

5 Find vw ≥ sup {w · Exσ(F) | σ ∈ Σ}, σw ∈ Σ s.t. |vw −w · Exσw
(F)| ≤ ε

6 Compute pw ∈ R� with ∀ j : pw�j� = Exσw
(fj)

7 P ← P ∪ {pw}; Q ← Q ∩
{
p ∈ R� | w · p ≤ vw

}
8 until Approximation dwconv(P ) ⊆ Ach (F) ⊆ Q answers multi-obj. query

Algorithm 1: Approximating the set of achievable points

3.2 Approximation of Achievable Points

A practically efficient approach that tackles the above queries for expected total
rewards in MDP was given in [28]. It is based on so-called sandwich algorithms
known from convex multi-objective optimization [53,51]. We extend the algo-
rithm to arbitrary combinations of objectives fj on MA, including—and this is
the main algorithmic novelty—mixtures of total- and LRA reward objectives.

The idea is to iteratively refine an approximation of the set of achievable
points Ach (F). The refinement loop is outlined in Algorithm 1. At the start of
each iteration, the algorithm chooses a weight vector w and a precision parameter
ε after some heuristic (details below). Then, Line 5, considers the weighted sum
of the expected values of the objectives fj . More precisely, an upper bound vw
for sup {w · Exσ(F) | σ ∈ Σ} as well as a “near optimal” strategy σw need to
be found such that the difference between the bound vw and the weighted sum
induced by σw is at most ε. In Sect. 4, we outline the computation of vw and σw
for the case where F consists of total-and LRA reward objectives. Next, in Line 6
the algorithm computes a point pw that contains the expected values for each
individual objective fj under strategy σw. These values can be computed using
off-the-shelf single-objective model checking algorithms on the model induced
by σw. By definition, pw is achievable. Finally, Line 7 inserts the found point
into the initially empty set P and excludes points from the set Q (which initially
contains all points) that are known to be unachievable. The following theorem
establishes the correctness of the approach. We prove it using Lemmas 1 and 2.

Theorem 1. Algorithm 1 maintains the invariant dwconv(P ) ⊆ Ach (F) ⊆ Q.

Lemma 1. ∀p ∈ Ach (F),w ∈ (R≥0)
� : w · p ≤ sup {w · Exσ(F) | σ ∈ Σ}.

Proof. Let p ∈ Ach (F) be achieved by strategy σp ∈ Σ . The claim follows from

w ·p =
�∑

j=1

w�j� ·p�j� ≤
�∑

j=1

w�j� ·Exσp
(fj) ≤ sup

{ �∑
j=1

w�j� ·Exσ(fj)
∣∣∣σ ∈ Σ

}
.

Lemma 2. Ach (F) is convex, i.e., Ach (F) = conv(Ach (F)).
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Proof. We need to show that for two points p1,p2 ∈ Ach (F) with achieving
strategies σ1, σ2 ∈ Σ , any point p on the line connecting p1 and p2 is also
achievable. Formally, for w ∈ [0, 1] show that pw = w ·p1+(1−w) ·p2 ∈ Ach (F).
Consider the strategy σw that initially makes a coin flip1: With probability w it
mimics σ1 and otherwise it mimics σ2. We can show for all objectives fj :

pw�j� = w ·p1�j�+(1−w) ·p2�j� ≤ w ·Exσ1
(fj)+ (1−w) ·Exσ2

(fj) = Exσw
(fj).

We now show Theorem 1. A similar proof was given in [28].
Proof (of Theorem 1). All pw ∈ P are achievable, i.e., P ⊆ Ach (F). By Defini-
tion 7 and Lemma 2 we get dwconv(P ) ⊆ dwconv(Ach (F)) = conv(Ach (F)) =
Ach (F). Now let p ∈ Ach (F) and let w be an arbitrary weight vector consid-
ered in some iteration of Algorithm 1 with corresponding value vw computed in
Line 5. Lemma 1 yields w ·p ≤ sup {w · Exσ(F) | σ ∈ Σ} ≤ vw and thus p ∈ Q.
Algorithm 1 can be stopped at any time and the current approximation of
Ach (F) can be used to (i) decide qualitative achievability, (ii) provide a lower
and an upper bound for quantitative achievability, and (iii) obtain an approxi-
mative representation of the Pareto front.

The precision parameter ε can be decreased dynamically to obtain a gradually
finer approximation. If Ach (F) is closed, the supremum sup {w · Exσ(F) | σ ∈ Σ}
can be attained by some strategy σw, allowing us to set ε = 0.

We briefly sketch the selection of weight vectors as proposed in [28]. In the
first � iterations of Algorithm 1, we optimize each objective fj individually, i.e.,
we consider for all j the weight vector w with w�i� = 0 for i �= j and w�j� = 1.
After that, we consider weight vectors that are orthogonal to a facet of the
downward convex hull of the current set of points P . To approximate the Pareto
front, facets with a large distance to R� \ Q are considered first. To answer a
qualitative or quantitative achievability query, the selection can be guided further
based on the input point p ∈ R� or the input values p2, p3, . . . , p� ∈ R. More
details and further discussions on these heuristics can be found in [28].

Remark 2. Assumption 1 does not exclude Exσ(fj) = −∞ which occurs, e.g.,
when objectives reflect resource consumption and some (bad) strategies require
infinite resources. Moreover, if Assumption 1 is violated for an objective fj
we observe that for this objective, any (arbitrarily high) value p ∈ R can be
achieved with some strategy σ ∈ Σ such that p ≤ Exσ(fj). Similar to the proof
of Lemma 2, a strategy can be constructed that—with a small probability—
mimics a strategy inducing a very high expected value for fj and—with the
remaining (high) probability—optimizes for the other objectives. Let F−j be
the tuple F without fj and similarly for p ∈ R� let p−j ∈ R�−1 be the point p
without the jth entry. Assuming inf {Exσ(fj) | σ ∈ Σ} > −∞, we can show that
cl(Ach (F)) =

{
p ∈ R� | p−j ∈ cl(Ach (F−j))

}
. Put differently, cl(Ach (F)) can

be constructed from the achievable points obtained without the objective fj .
1 Strategies as in Definition 3 can not “store” the outcome of the initial coin flip. Thus,

given π̂ ∈ Pathsfin, strategy σw actually has to consider the conditional probability
for the outcome of the coin flip, given that π̂ has been observed. Alternatively, we
could have also introduced strategies with memory.
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4 Optimizing Weighted Combinations of Objectives

We now analyze weighted sums of expected values as in Line 5 of Algorithm 1.

Weighted Sum Optimi ation Problem
Input: MA M with initial state sI , objectives F = 〈f1, . . . , f�〉,

weight vector w ∈ {w′ ∈ (R≥0)
� |

∑�
j=1 w

′�j� = 1}, precision ε > 0

Output: Value vw ∈ R, with vw ≥ sup {w · Exσ(F) | σ ∈ Σ} and
strategy σw ∈ Σ such that |vw −w · Exσw

(F)| ≤ ε.

We only consider total- and LRA reward objectives. Remark 3 discusses other
objectives. We show that instead of a weighted sum of the expected values we can
consider weighted sums of the rewards. This allows us to combine all objectives
into a single reward assignment and then apply single-objective model checking.

4.1 Pure Long-run Average Queries

Initially, we restrict ourselves to LRA objectives and show a reduction of the
weighted sum optimization problem to a single-objective long-run average reward
computation. As usual for MA [38,29,17] we forbid so-called Zeno behavior.

Assumption 2 (Non-Zenoness) ∀σ ∈ ΣM : PrMσ ({π | dur(π) <∞}) = 0.

The assumption is equivalent to assuming that every EC of M contains at least
one Markovian state. If the assumption holds, the limit in Definition 6 can be
attained almost surely (with probability 1) and corresponds to a value v ∈ R.
Thus, Assumption 1 for LRA objectives is already implied by Assumption 2. Let
Flra = 〈lra(R1), . . . , lra(R�)〉 with reward assignments Rj . Moreover, for weight
vector w let Rw be the reward assignment with Rw(〈s, κ〉 , s′) =

∑�
j=1 w�j� ·

Rj(〈s, κ〉 , s′).
Theorem 2. ∀σ ∈ Σ : w · Exσ(Flra) = Exσ(lra(Rw)).

Proof. Due to Assumption 2 we have for almost all paths π ∈ Paths inf that for
all j ∈ {1, . . . , �} the limit limt→∞ 1

t · Rj(prefix time(π, t)) exists and

�∑
j=1

w�j� · lra(Rj)(π) = lim
t→∞

1

t
·

�∑
j=1

w�j� · Rj(prefix time(π, t)) = lra(Rw)(π).

The theorem follows with
�∑

j=1

w�j� · Exσ(lra(Rj)) =

∫
π

�∑
j=1

w�j� · lra(Rj) dPrσ(π) = Exσ(lra(Rw)).

Due to Theorem 2, it suffices to consider the expected LRA reward for the single
reward assignment Rw. The supremum sup {Exσ(lra(Rw)) | σ ∈ Σ} is attained
by some memoryless deterministic strategy σw ∈ Σmd [30]. Such a strategy and
the induced value vw = Exσw

(lra(Rw)) can be computed (or approximated)
with linear programming [30], strategy iteration [42] or value iteration [17,1].
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4.2 A Two-phase Approach for Single-objective LRA

The computation of single-objective expected LRA rewards for reward assign-
ment Rw can be divided in two phases [29,17,1]. First, each maximal end compo-
nent C ∈ MECS (M) is analyzed individually by computing for sub-MA M�C�
and some2 s ∈ states(C) the value vC = max{ExM�C�,s

σ (lra(Rw)) | σ ∈ Σ
M�C�
md }.

Secondly, we consider a quotient model M′ = M\MECS(M) of M that re-
places the states of each C ∈ MECS (M) by a single state.

Definition 8. For M = 〈S,Act , Δ,P〉 and a set of ECs C, the quotient is the
MA M\C =

〈
S\C ,Act\C , Δ\C ,P\C

〉
where

– S\C =
(
S \

⋃
C∈C states(C)

)
�C�{s⊥}, Act\C = Act�

(⋃
C∈C exits(C)

)
�{⊥},

– Δ\C(ŝ) =

⎧⎪⎨⎪⎩
Δ(ŝ) if ŝ ∈ S

exits(ŝ) ∪ {⊥} if ŝ ∈ C
1 if ŝ = s⊥, and

– P\C(c) =

⎧⎪⎨⎪⎩
P(c) if c ∈ MSM ∪ SAM

P(〈s, α〉) if c = 〈C, 〈s, α〉〉 for C ∈ C and 〈s, α〉 ∈ exits(C)

{s⊥ �→ 1} if c ∈ C × {⊥} ∪ {s⊥}

Intuitively, selecting action ⊥ at a state C ∈ MECS (M) in M′ reflects any
strategy of M that upon visiting the EC C will stay in this EC forever. We
can thus mimic any strategy of the sub-MA M�C�, in particular a memoryless
deterministic strategy that maximizes the expected value of lra(Rw) in M�C�.
Contrarily, selecting an action 〈s, α〉 at a state C of M′ reflects a strategy of
M that upon visiting the EC C enforces that the states of C will be left via
the exiting state-action pair 〈s, α〉. Let R∗ be the reward assignment for M′

that yields R∗(〈C,⊥〉 , s⊥) = vC and 0 in all other cases. It can be shown that
max{ExM,sI

σ (lra(Rw)) | σ ∈ ΣM} = max{ExM
′,s′I

σ (tot(R∗)) | σ ∈ ΣM′}, where
s′I = CI if sI is contained in some CI ∈ MECS (M) and s′I = sI otherwise.

The maximal total reward in M′ can be computed using standard tech-
niques such as value iteration and policy iteration [46] as well as the more
recent sound value iteration and optimistic value iteration [48,36]. The lat-
ter two provide sound precision guarantees for the output value v, i.e., |v −
max{ExM

′,s′I
σ (tot(R∗)) | σ ∈ ΣM′}| ≤ ε for a given ε > 0.

4.3 Combining Long-run Average and Total Rewards

We now consider arbitrary combinations of total- and long-run average reward
objectives F = 〈tot(R1), . . . , tot(Rk), lra(Rk+1), . . . , lra(R�)〉 with 0 < k < �.

The above-mentioned procedure for LRA reduces the analysis to an expected
total reward computation on the quotient model M\MECS(M). This approach
suggests to also incorporate other total-reward objectives for M in the quotient
2 The value vC does not depend on the selected state s. Intuitively, this is because

any other state s′ ∈ states(C) can be reached from s almost surely.
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model. However, special care has to be taken concerning total rewards collected
within ECs of M that would no longer be present in the quotient M\MECS(M).
We discuss how to deal with this issue by considering the quotient only for ECs
in which no (total) reward is collected. We start with restricting the (total)
rewards that might be assigned to transitions within EC.

Assumption 3 (Sign-Consistency) For all total reward objectives tot(Rj)
either ∀C ∈ MECS (M) : Rj(C) ≥ 0 or ∀C ∈ MECS (M) : Rj(C) ≤ 0.

The assumption implies that paths on which infinitely many positive and in-
finitely many negative reward is collected have probability 0. One consequence
is that the limit in Definition 5 exists for almost all paths [3]. A discussion on
objectives tot(Rj) that violate Assumption 3 for single-objective MDP is given
in [3]. Their multi-objective treatment is left for future work.

When Assumptions 1 and 3 hold, we get Rj(C) ≤ 0 for all objectives tot(Ri)
and EC C. Put differently, all non-zero total rewards collected in an EC have
to be negative. Strategies that induce a total reward of −∞ for some objective
tot(Ri) will not be taken into account for the set of achievable points. Therefore,
transitions within ECs that yield negative reward should only be taken finitely
often. These transitions can be disregarded when computing the expected LRA
rewards, i.e., only the 0-ECs [3] are relevant for the LRA computation.

Definition 9. A 0-EC of M and R1, . . . ,Rk is an EC C of M with Ri(C) = 0
for all Ri. The set of maximal 0-ECs is given by MECS 0(M, 〈R1, . . . ,Ri〉).

MECS 0(M, 〈R1, . . . ,Rk〉) can be computed by constructing the maximal ECs
of the sub-MA of M where transitions with a non-zero reward are erased.

We are ready to describe our approach that combines LRA rewards of 0-ECs
and the remaining total rewards into a single total-reward objective. Let Rtot

w

and Rlra
w be reward assignments with Rtot

w (〈s, κ〉 , s′) =
∑k

i=1 w�i� ·Ri(〈s, κ〉 , s′)
and Rlra

w (〈s, κ〉 , s′) =
∑�

j=kw�j� · Rj(〈s, κ〉 , s′). Moreover, for π ∈ Paths inf we
set (tot(Rtot

w ) + lra(Rlra
w ))(π) = tot(Rtot

w )(π) + lra(Rlra
w )(π).

Theorem 3. ∀σ ∈ Σ : w · Exσ(F) = Exσ(tot(Rtot
w ) + lra(Rlra

w )).

Proof. Using a similar reasoning as in the proof of Theorem 2, we get:

w · Exσ(F) =
( k∑
i=1

w�i� · Exσ(tot(Ri))
)
+
( �∑
j=k+1

w�j� · Exσ(lra(Rj))
)

= Exσ(tot(Rtot
w )) + Exσ(lra(Rlra

w )) = Exσ(tot(Rtot
w ) + lra(Rlra

w )).

Algorithm 2 outlines the procedure for solving the weighted sum optimization
problem. It first computes optimal LRA rewards and inducing strategies for
each maximal 0-EC (Lines 1 to 3). Then, a quotient model M∗ and a reward
assignment R∗ incorporating all total- and LRA rewards is build and analyzed
(Lines 4 to 6). M∗ might still contain ECs other than {s⊥}. Those ECs shall
be left eventually to avoid collecting infinite negative reward for a total reward
objective tot(Ri). Note that the weight w�i� for such an objective might be zero,
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Input : MA M with initial state sI , objectives
F = 〈tot(R1), . . . , tot(Rk), lra(Rk+1), . . . , lra(R�)〉, weight vector w

Output : Value vw, strategy σw as in the weighted sum optimization problem
1 C ← MECS0(M, 〈R1, . . . ,Ri〉) // Compute maximal 0-ECs and their LRA.
2 foreach C ∈ C do
3 Compute vC = max

{
Ex

M�C�
σ (lra(Rlra

w )) | σ ∈ Σ
M�C�
md

}
and inducing strategy σC ∈ Σ

M�C�
md

4 M∗ ← M\C // Build and analyze quotient model.
5 Build reward assignment R∗ with

R∗(〈s, κ〉 , s′) =

⎧⎪⎨
⎪⎩
vC if s = C, κ = ⊥, and s′ = s⊥
Rtot

w (〈ŝ, α〉 , s′) if s = C, κ = 〈ŝ, α〉 ∈ exits(C)

Rtot
w (〈s, α〉 , s′) otherwise

6 Compute vw = max
{
ExM∗

σ (tot(R∗))
∣∣∣σ ∈ ΣM∗

md , PrM
∗

σ (♦ {s⊥}) = 1
}

and inducing strategy σ∗ ∈ ΣM∗
md

7 Build strategy σw ∈ ΣM
md with

σw(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σC(s) if ∃C ∈ C : s ∈ states(C) and σ∗(C ∈ C) = ⊥
α if ∃C ∈ C : s ∈ states(C) and σ∗(C) = 〈s, α〉
σC♦{s′}(s) if ∃C ∈ C : s ∈ states(C) and σ∗(C) = 〈s′, α〉 for s′ �= s

σ∗(s) otherwise

Algorithm 2: Optimizing the weighted sum for total and LRA objectives

i.e., the rewards of Ri are not present in R∗. It is therefore necessary to explicitly
restrict the analysis to strategies that almost surely (i.e., with probability 1)
reach s⊥. To compute the maximal expected total reward in Line 6 with, e.g.,
standard value iteration, we can consider another quotient model for M∗ and
the 0-ECs of M∗ and R∗. In contrast to Definition 8, this quotient should not
introduce the ⊥ action since it shall not be possible to remain in an EC forever.
In Line 7, the strategies for the 0-ECs and for the quotient M∗ are combined
into one strategy σw for M. Here, σC♦s′ refers to a strategy of M�C� for which
every state s ∈ states(C) eventually reaches s′ ∈ states(C) almost surely.

Since Algorithm 2 produces a memoryless deterministic strategy σw, the
point pw ∈ R� in Line 6 of Algorithm 1 can be computed on the induced sub-MA
for σw. Assuming exact single-objective solution methods, the resulting value
vw and strategy σw ∈ ΣM

md of Algorithm 2 satisfy vw = w · Exσw
(F), yielding

an exact solution to the weighted sum optimization problem. As the number
of memoryless deterministic strategies is bounded, we conclude the following,
extending results for pure LRA queries [11] to mixtures with total rewards.

Corollary 1. For total- and LRA reward objectives F , Ach (F) is closed and is
the downward convex hull of at most |ΣM

md| =
∏
s∈PS |Δ(s)| points.

Remark 3. Our framework can be extended to support objectives beyond total-
and LRA rewards. Minimizing objectives where one is interested in a strategy σ
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that induces a small expected value can be considered by multiplying all rewards
with −1. Since we already allow negative values in reward assignments, no fur-
ther adaptions are necessary. We emphasize that our framework lifts a restriction
imposed in [28] that disabled a simultaneous analysis of maximizing and mini-
mizing total reward objectives. Reachability probabilities can be transformed to
expected total rewards on a modified model in which the information whether a
goal state has already been visited is stored in the state-space. Goal-bounded to-
tal rewards as in [30], where no further rewards are collected as soon as one of the
goal states is reached can be transformed similarly. For MDP, step- and reward-
bounded reachability probabilities can be converted to total reward objectives
by unfolding the current amount of steps (or rewards) into the state-space of the
model. Approaches that avoid such an expensive unfolding have been presented
in [28] for objectives with step-bounds and in [34,35] for objectives with one or
multiple reward-bounds. Time-bounded reachability probabilities for MA have
been considered in [47]. Finally, ω-regular specifications such as linear temporal
logic (LTL) formulae have been transformed to total reward objectives in [27].
However, the optimization of LRA rewards within the ECs of the model might
interfere with the satisfaction of one or more ω-regular specifications [31].

5 Experimental Evaluation

Implementation details Our approach has been implemented in the model checker
Storm [40]. Given an MA or MDP (specified using the PRISM language or
JANI [14]), the tool answers qualitative- and quantitative achievability as well as
Pareto queries. Beside of mixtures of total- and LRA reward objectives, Storm
also supports most of the extensions in Remark 3—with the notable exception of
LTL. We use LRA value iteration [17,1] and sound value iteration [48] for calls to
single-objective model checking. Both provide sound precision guarantees, i.e.,
the relative error of these computations is at most ε, where we set ε = 10−6.

Workstation cluster To showcase the capabilities of our implementation, we
present a workstation cluster—originally considered in [39] as a CTMC—now
modeled as an MA. The cluster considers two sub-clusters each consisting of one
switch and N workstations. Within each sub-cluster the workstations are con-
nected to the switch in a star topology and the two switches are connected with
a backbone. Each of the components may fail with a certain rate. A controller can
(i) acquire additional repair units (up to M) and (ii) control the movements of
the repair units. In Fig. 2a we depict the resulting sets of achievable points—as
computed by our implementation—for N = 16 and M = 4. As objectives, we
considered the long-run average number of operating workstations lra(R#op),
the long-run average probability that at least N workstations are operational
lra(R#op≥N ), and the total number of acquired repair units tot(R#rep).

Related tools MultiGain [12] is an extension of PRISM [45] that implements
the LP-based approach of [11] for multiple LRA objectives on MDP to answer
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Figure 2: Exemplary results and runtime comparison with MultiGain

qualitative and quantitative achievability as well as Pareto queries. For the latter,
it is briefly mentioned in [12] that ideas of [28] were used similar to our approach
but no further details are provided. MultiGain does not support MA, mixtures
with total reward objectives, and Pareto queries with � > 2 objectives. However,
it does support more general quantitative achievability queries.

PRISM-games [44,43] implements value iteration over convex sets [8,9] to
analyze multiple LRA reward objectives on stochastic games (SGs). By convert-
ing MDPs to 1-player SGs, PRISM-games could also be applied in our setting.
However, some experiments on 1-player SGs indicated that this approach is not
competitive compared to the dedicated MDP implementations in MultiGain
and Storm. We therefore do not consider PRISM-games in our evaluation.

Benchmarks We consider 10 different case studies including the workstation
cluster (clu) as well as benchmarks from QVBS [37] (dpm, rqs, res), from Multi-
Gain [12] (mut, phi, vir), from [42] (csn, sen), and from [47] (pol). For each case
study we consider 3 concrete instances resulting in 12 MAs and 18 MDPs. The
analyzed objectives range over LRA rewards, (goal-bounded) total rewards, and
time-, step- and unbounded reachability probabilities.

Set-up We evaluated the performance of Storm and MultiGain Version 1.0.23.
All experiments were run on 4 cores4 of an Intel Xeon Platinum 8160 CPU with
3 Obtained from http://qav.cs.ox.ac.uk/multigain and invoked with G robi [32].
4 Storm uses one core, M ltiGain uses multiple cores due to Java’s garbage collec-

tion and G robi’s parallel solving techniques.

http://qav.cs.ox.ac.uk/multigain
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Table 1: Results for pure LRA Pareto queries
Model Par. #lra |S| |MS | |Δ| |C| |SC| #iter Storm MultiGain

csn 3 3 177 427 38 158 9 1.23
csn 4 4 945 2753 176 880 30 109
csn 5 5 4833 2·104 782 4622 TO
mut 3 2 3·104 5·104 1 3·104 15 3.7 859
mut 4 2 7·105 1·106 1 7·105 14 91.4 TO
mut 5 2 1·107 3·107 1 1·107 12 3197 MO
phi 4 2 9440 4·104 1 9440 6 1.7 24.7
phi 5 2 9·104 4·105 1 9·104 18 24.5 TO
phi 6 2 2·106 1·107 1 2·106 12 1221 MO
res 5-5 2 2618 8577 1 2618 16 1.64 2.31
res 15-15 2 2·105 7·105 1 2·105 3 712 TO
res 20-20 2 8·105 2·106 1 8·105 7 299 TO
sen 2 3 7855 2·104 3996 6105 13 3.41
sen 3 3 8·104 3·105 5·104 7·104 14 274
sen 4 3 6·105 3·106 4·105 5·105 TO
vir 2 2 80 393 2 66 4 < 1 1.47
vir 3 2 2·104 2·105 2 2·104 2 1.3 29.3
vir 4 2 4·107 7·108 ? ? MO MO
clu 8-3 2 2·105 1·105 4·105 4 2·105 11 287
clu 16-4 2 2·106 9·105 4·106 5 2·106 10 4199
clu 32-3 2 2·106 1·106 5·106 4 2·106 TO
dpm 3-3 2 2640 1008 3240 1 2640 32 19.5
dpm 4-4 2 3·104 1·104 4·104 1 3·104 33 1179
dpm 5-5 2 6·105 2·105 7·105 1 6·105 TO
pol 3-3 2 9522 4801 2·104 1 9522 17 3.44
pol 4-3 2 5·104 3·104 1·105 1 5·104 19 19.2
pol 4-4 2 8·105 5·105 2·106 1 8·105 29 3350
rqs 2-2 2 1619 628 2296 1 1618 63 4.52
rqs 3-3 2 9·104 4·104 1·105 1 9·104 106 162
rqs 5-3 2 2·106 1·106 4·106 1 2·106 97 4345

a time limit of 2 hours and 32 GB RAM. For each experiment we measured the
total runtime (including model building) to solve one query. For qualitative and
quantitative achievability we consider thresholds close to the Pareto front. For
Pareto queries, the approximation precision 10−4 was set to both tools.

Results Fig. 2b visualizes the runtime comparison with MultiGain. A point
〈x, y〉 in the plot corresponds to a query that has been solved by Storm in x
seconds and by MultiGain in y seconds. Points on the solid diagonal mean
that both tools were equally fast. The two dotted lines indicate experiments
where Storm only required 1

10 resp. 1
100 of the time of MultiGain. TO and

MO indicate a time- or memory out. Tables 1 and 2 provide further data for
Pareto queries. The columns indicate model name and parameters, the number
of LRA reward, total reward, and bounded reachability objectives, the number of
states (|S|), Markovian states (|MS |), successor distributions (|Δ|), 0-ECs (|C|),
and states within 0-ECs (|SC |) of the MA or MDP, the number of iterations
(#iters) of Algorithm 1 performed by Storm, and the total runtime of Storm
and MultiGain in seconds. Runtimes are omitted if the tool does not support
the query. MDP (MA) benchmarks are at the top (bottom) of each table. Table 1
considers pure LRA queries, whereas Table 2 considers mixtures.
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Table 2: Results for Pareto queries with other objective types
Model Par. #lra/tot/bnd |S| |MS | |Δ| |C| |SC| #iter Storm

res 5-5 2-0-1 2618 8577 1 2618 17 4.27
res 5-5 2-1-0 2618 8577 1 1705 6 1.43
res 15-15 2-0-1 2·105 7·105 1 2·105 4 792
res 15-15 2-1-0 2·105 7·105 1 1·105 8 1061
res 20-20 2-0-1 8·105 2·106 1 8·105 8 641
res 20-20 2-1-0 8·105 2·106 1 4·105 4 101

clu 8-3 1-1-0 2·105 1·105 4·105 4 2·105 7 163
clu 16-4 1-1-0 2·106 9·105 4·106 5 2·106 9 3432
clu 32-3 1-1-0 2·106 1·106 5·106 4 2·106 7 3328
dpm 3-3 1-0-1 5232 1980 6408 46 3045 2 11.2
dpm 3-3 1-1-0 4584 1656 5562 25 2856 4 < 1
dpm 4-4 1-0-1 7·104 2·104 8·104 497 4·104 2 214
dpm 4-4 1-1-0 6·104 2·104 7·104 301 4·104 4 3.32
dpm 5-5 1-0-1 1·106 3·105 1·106 6476 6·105 TO
dpm 5-5 1-1-0 1·106 3·105 1·106 4321 6·105 4 329

pol 3-3 1-1-0 1·104 5309 2·104 1 9522 3 1.37
pol 4-3 1-1-0 6·104 3·104 1·105 1 5·104 3 2.52
pol 4-4 1-1-0 9·105 5·105 2·106 1 8·105 3 237
rqs 2-2 1-1-0 2805 1039 4159 1 1618 3 < 1
rqs 3-3 1-1-0 1·105 6·104 3·105 1 9·104 3 4.51
rqs 5-3 1-1-0 3·106 2·106 7·106 1 2·106 3 182

Discussion As indicated in Fig. 2b, our implementation outperforms MultiGain
on almost all benchmarks and for all types of queries and is often orders of
magnitude faster. According to MultiGain’s log files, the majority of its runtime
is spend for solving LPs, suggesting that the better performance of Storm is
likely due to the iterative approach presented in this work.

Table 1 shows that pure LRA queries on models with millions of states can
be handled. There were no significant runtime gaps between MA and MDP mod-
els. For csn, the increased number of objectives drastically increases the overall
runtime. This is partly due to our naive implementation of the geometric set
representations used in Algorithm 1. Table 2 indicates that the performance and
scalability for mixtures of LRA and other types of objectives is similar. One
exception are queries involving time-bounded reachability on MA (e.g., dpm).
Here, our implementation is based on the single-objective approach of [29] that
is known to be slower than more recent methods [16,15].

Data availability The implementation, models, and log files are available at [49].

6 Conclusion

The analysis of multi-objective model checking queries involving multiple long-
run average rewards can be incorporated into the framework of [28] enabling (i)
the use of off-the-shelf single-objective algorithms for LRA and (ii) the combina-
tion with other kinds of objectives such as total rewards. Our experiments indi-
cate that this approach clearly outperforms existing algorithms based on linear
programming. Future work includes lifting the approach to partially observable
MDP and stochastic games, potentially using ideas of [10] and [2], respectively.
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Abstract. We present a novel modular approach to infer upper bounds
on the expected runtimes of probabilistic integer programs automatically.
To this end, it computes bounds on the runtimes of program parts and on
the sizes of their variables in an alternating way. To evaluate its power, we
implemented our approach in a new version of our open-source tool KoAT.

1 Introduction

There exist several approaches and tools for automatic complexity analysis of
non-probabilistic programs, e.g., [2–6, 8, 9, 18, 20, 21, 27, 28, 30, 34–36, 51, 57, 58].
While most of them rely on basic techniques like ranking functions (see, e.g.,
[6, 12–14,17,53]), they usually combine these basic techniques in sophisticated
ways. For example, in [18] we developed a modular approach for automated
complexity analysis of integer programs, based on an alternation between finding
symbolic runtime bounds for program parts and using them to infer bounds on
the sizes of variables in such parts. So each analysis step is restricted to a small
part of the program. The implementation of this approach in KoAT [18] (which is
integrated in AProVE [30]) is one of the leading tools for complexity analysis [31].

While there exist several adaptions of basic techniques like ranking functions
to probabilistic programs (e.g., [1, 11, 15, 16, 22–26, 29, 32, 37, 38, 48, 62]), most
of the sophisticated full approaches for complexity analysis have not been adapted
to probabilistic programs yet, and there are only few powerful tools available
which analyze the runtimes of probabilistic programs automatically [10,50,61,62].

We study probabilistic integer programs (Sect. 2) and define suitable notions of
non-probabilistic and expected runtime and size bounds (Sect. 3). Then, we adapt
our modular approach for runtime and size analysis of [18] to probabilistic pro-
grams (Sect. 4 and 5). So such an adaption is not only possible for basic techniques
like ranking functions, but also for full approaches for complexity analysis.

For this adaption, several problems had to be solved. When computing
expected runtime or size bounds for new program parts, the main difficulty is to
determine when it is sound to use expected bounds on previous program parts and
when one has to use non-probabilistic bounds instead. Moreover, the semantics
of probabilistic programs is significantly different from classical integer programs.
Thus, the proofs of our techniques differ substantially from the ones in [18], e.g.,
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we have to use concepts from measure theory like ranking supermartingales.
In Sect. 6, we evaluate the implementation of our new approach in the tool

KoAT [18,43] and compare with related work. We refer to [47] for an appendix
of our paper containing all proofs, preliminaries from probability and measure
theory, and an overview on the benchmark collection used in our evaluation.

2 Probabilistic Integer Programs

For any set M ⊆ R (with R = R ∪ {∞}) and w ∈ M , let M≥w = {v ∈ M |
v ≥ w ∨ v =∞}. For a set PV of program variables, we first introduce the kind
of bounds that our approach computes. Similar to [18], our bounds represent
weakly monotonically increasing functions from PV → R≥0. Such bounds have
the advantage that they can easily be “composed”, i.e., if f and g are both weakly
monotonically increasing upper bounds, then so is f ◦ g.
Definition 1 (Bounds). The set of bounds B is the smallest set with PV∪R≥0

⊆ B, and where b1, b2 ∈ B and v ∈ R≥1 imply b1 + b2, b1 · b2 ∈ B and vb1 ∈ B.
Our notion of probabilistic programs combines classical integer programs (as in,

e.g., [18]) and probabilistic control flow graphs (see, e.g., [1]). A state s is a
variable assignment s : V → Z for the (finite) set V of all variables in the program,
where PV ⊆ V , V \ PV is the set of temporary variables, and Σ is the set of all
states. For any s ∈ Σ, the state |s| is defined by |s| (x) = |s(x)| for all x ∈ V.
The set C of constraints is the smallest set containing e1 ≤ e2 for all polynomials
e1, e2 ∈ Z[V] and c1 ∧ c2 for all c1, c2 ∈ C. In addition to “≤”, in examples we
also use relations like “>”, which can be simulated by constraints (e.g., e1 > e2 is
equivalent to e2 + 1 ≤ e1 when regarding integers). We also allow the application
of states to arithmetic expressions e and constraints c. Then the number s(e) resp.
s(c) ∈ {t, f} results from evaluating the expression resp. the constraint when
substituting every variable x by s(x). So for bounds b ∈ B, we have |s| (b) ∈ R≥0.

In the transitions of a program, a program variable x ∈ PV can also be updated
by adding a value according to a bounded distribution function d : Σ → Dist(Z).
Here, for any state s, d(s) is the probability distribution of the values that are
added to x. As usual, a probability distribution on Z is a mapping pr : Z→ R with
pr(v) ∈ [0, 1] for all v ∈ Z and

∑
v∈Z pr(v) = 1. Let Dist(Z) be the set of distri-

butions pr whose expected value E(pr) =
∑

v∈Z v · pr(v) is well defined and finite,
i.e., Eabs(pr) =

∑
v∈Z |v| · pr(v) <∞. A distribution function d : Σ → Dist(Z)

is bounded if there is a finite bound E(d) ∈ B with Eabs(d(s)) ≤ |s| (E(d)) for
all s ∈ Σ. Let D denote the set of all bounded distribution functions (our
implementation supports Bernoulli, uniform, geometric, hypergeometric, and
binomial distributions, see [43] for details).

Definition 2 (PIP). (PV ,L,GT , �0) is a probabilistic integer program with

1. a finite set of program variables PV ⊆ V
2. a finite non-empty set of program locations L
3. a finite non-empty set of general transitions GT . A general transition g is a

finite non-empty set of transitions t = (�, p, τ, η, �′), consisting of
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�0 �1 �2t0 ∈ g0

η(x) = x
η(y) = y

t1 ∈ g1

p = 1
2

η(x) = x− 1
τ = (x > 0) η(y) = y + x

t2 ∈ g1
p = 1

2
η(x) = x

τ = (x > 0) η(y) = y + x

t3 ∈ g2

η(x) = x
η(y) = y

t4 ∈ g3

η(x) = x
η(y) = y − 1
τ = (y > 0)

Fig. 1: PIP with non-deterministic and probabilistic branching

(a) the start and target locations �, �′ ∈ L of transition t,
(b) the probability p ≥ 0 that transition t is chosen when g is executed,
(c) the guard τ ∈ C of t, and
(d) the update function η : PV → Z[V]∪ D of t, mapping every program

variable to an update polynomial or a bounded distribution function.
All t ∈ g must have the same start location � and the same guard τ . Thus,
we call them the start location and guard of g, and denote them by �g and τg.
Moreover, the probabilities p of the transitions in g must add up to 1.

4. an initial location �0 ∈ L, where no transition has target location �0

PIPs allow for both probabilistic and non-deterministic branching and sam-
pling. Probabilistic branching is modeled by selecting a transition out of a
non-singleton general transition. Non-deterministic branching is represented by
several general transitions with the same start location and non-exclusive guards.
Probabilistic sampling is realized by update functions that map a program vari-
able to a bounded distribution function. Non-deterministic sampling is modeled
by updating a program variable with an expression containing temporary vari-
ables from V \ PV , whose values are non-deterministic (but can be restricted in
the guard). The set of initial general transitions GT0 ⊆ GT consists of all general
transitions with start location �0.

Example 3 (PIP). Consider the PIP in Fig. 1 with initial location �0 and the
program variables PV = {x, y}. Here, let p = 1 and τ = t if not stated ex-
plicitly. There are four general transitions: g0 = {t0}, g1 = {t1, t2}, g2 = {t3},
and g3 = {t4}, where g1 and g2 represent a non-deterministic branching. When
choosing the general transition g1, the transitions t1 and t2 encode a probabilistic
branching. If we modified the update η and the guard τ of t0 to η(x) = u ∈ V \PV
and τ = (u > 0), then x would be updated to a non-deterministically chosen
positive value. In contrast, if η(x) = GEO( 12 ), then t0 would update x by adding
a value sampled from the geometric distribution with parameter 1

2 .

In the following, we regard a fixed PIP P as in Def. 2. A configuration is a tuple
(�, t, s), with the current location � ∈ L, the current state s ∈ Σ, and the transition
t that was evaluated last and led to the current configuration. Let T =

⋃
g∈GT g.

Then Conf = (L�{�⊥})×(T �{tin, t⊥})×Σ is the set of all configurations, with a
special location �⊥ indicating the termination of a run, and special transitions tin
(used in the first configuration of a run) and t⊥ (for the configurations of the run

F. Meyer et al.
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after termination). The (virtual) general transition g⊥ = {t⊥} only contains t⊥.
A run of a PIP is an infinite sequence ϑ = c0 c1 · · · ∈ Confω. Let Runs = Confω

and let FPath = Conf∗ be the set of all finite paths of configurations.
In our setting, deterministic Markovian schedulers suffice to resolve all non-

determinism (see, e.g., [54, Prop. 6.2.1]). For c = (�, t, s) ∈ Conf, such a scheduler
S yields a pair S(c) = (g, s′) where g is the next general transition to be taken
(with � = �g) and s′ chooses values for the temporary variables where s′(τg) = t
and s(x) = s′(x) for all x ∈ PV . If GT contains no such g, we get S(c) = (g⊥, s).

For each scheduler S and initial state s0, we first define a probability mass
function prS,s0 . For all c ∈ Conf, prS,s0(c) is the probability that a run starts in
c. Thus, prS,s0(c) = 1 if c = (�0, tin, s0) and prS,s0(c) = 0, otherwise. Moreover,
for all c′, c ∈ Conf, prS,s0(c

′ → c) is the probability that the configuration c′ is
followed by the configuration c (see [47] for the formal definition of prS,s0).

For any f = c0 · · · cn ∈ FPath, let prS,s0(f) = prS,s0(c0) · prS,s0(c0 → c1) ·
. . . ·prS,s0(cn−1 → cn). We say that f is admissible for S and s0 if prS,s0(f) > 0.
A run ϑ is admissible if all its finite prefixes are admissible. A configuration
c ∈ Conf is admissible if there is some admissible finite path ending in c.

The semantics of PIPs can now be defined by giving a corresponding probabil-
ity space, which is obtained by a standard cylinder construction (see, e.g., [7,60]).
Let PS,s0 denote the corresponding probability measure which lifts prS,s0 to
cylinder sets: For any f ∈ FPath, we have prS,s0(f) = PS,s0(Pref ) for the set
Pref of all runs with prefix f . So PS,s0(Θ) is the probability that a run from
Θ ⊆ Runs is obtained when using the scheduler S and starting in s0.

We denote the associated expected value operator by ES,s0 . So for any random
variable X : Runs→ N = N∪ {∞}, we have ES,s0(X) =

∑
n∈N n ·PS,s0(X = n).

For details on the preliminaries from probability theory we refer to [47].

3 Complexity Bounds

In Sect. 3.1, we first recapitulate the concepts of (non-probabilistic) runtime and
size bounds from [18]. Then we introduce expected runtime and size bounds in
Sect. 3.2 and connect them to their non-probabilistic counterparts.

3.1 Runtime and Size Bounds

Again, let P denote the PIP which we want to analyze. Def. 4 recapitulates the
notions of runtime and size bounds from [18] in our setting. Recall that bounds
from B do not contain temporary variables, i.e., we always try to infer bounds in
terms of the initial values of the program variables. Let sup∅ = 0, as all occurring
sets are subsets of R≥0, whose minimal element is 0.

Definition 4 (Runtime and Size Bounds [18]). RB : T → B is a runtime
bound and SB : T × V → B is a size bound if for all transitions t ∈ T , all
variables x ∈ V, all schedulers S, and all states s0 ∈ Σ, we have

|s0| (RB(t)) ≥ sup { |{i | ti = t}| | f = ( , t0, ) · · · ( , tn, ) ∧ prS,s0(f) > 0 } ,
|s0| (SB(t, x)) ≥ sup { |s(x)| | f = · · · ( , t, s) ∧ prS,s0(f) > 0 } .
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So RB(t) is a bound on the number of executions of t and SB(t, x) over-
approximates the greatest absolute value that x ∈ V takes after the application
of the transition t in any admissible finite path. Note that Def. 4 does not apply
to tin and t⊥, since they are not contained in T .

We call a tuple (RB,SB) a (non-probabilistic) bound pair. We will use such
non-probabilistic bound pairs for an initialization of expected bounds (Thm. 10)
and to compute improved expected runtime and size bounds in Sect. 4 and 5.

Example 5 (Bound Pair). The technique of [18] computes the following bound
pair for the PIP of Fig. 1 (by ignoring the probabilities of the transitions).

RB(t) =

⎧⎪⎨⎪⎩
1, if t = t0 or t = t3

x, if t = t1

∞, if t = t2 or t = t4

SB(t, x) =
{
x, if t ∈ {t0, t1, t2}
3 · x, if t ∈ {t3, t4}

SB(t, y) =
{
y, if t = t0

∞, if t ∈ {t1, t2, t3, t4}
Clearly, t0 and t3 can only be evaluated once. Since t1 decrements x and no
transition increments it, t1’s runtime is bounded by |s0| (x). However, t2 can
be executed arbitrarily often if s0(x) > 0. Thus, the runtimes of t2 and t4 are
unbounded (i.e., P is not terminating when regarding it as a non-probabilistic
program). SB(t, x) is finite for all transitions t, since x is never increased. In
contrast, the value of y can be arbitrarily large after all transitions but t0.

3.2 Expected Runtime and Size Bounds

We now define the expected runtime and size complexity of a PIP P.
Definition 6 (Expected Runtime Complexity, PAST [15]). For g ∈ GT ,
its runtime is the random variable R(g) where R : GT → Runs→ N with

R(g)( ( , t0, ) ( , t1, ) · · · ) = | {i | ti ∈ g} | .

For a scheduler S and s0 ∈ Σ, the expected runtime complexity of g ∈ GT is
ES,s0(R(g)) and the expected runtime complexity of P is

∑
g∈GT ES,s0(R(g)).

If P’s expected runtime complexity is finite for every scheduler S and every
initial state s0, then P is called positively almost surely terminating (PAST).

So R(g)(ϑ) is the number of executions of a transition from g in the run ϑ.
While non-probabilistic size bounds refer to pairs (t, x) of transitions t ∈ T and

variables x ∈ V (so-called result variables in [18]), we now introduce expected size
bounds for general result variables (g, �, x), which consist of a general transition
g, one of its target locations �, and a program variable x ∈ PV. So x must not
be a temporary variable (which represents non-probabilistic non-determinism),
since general result variables are used for expected size bounds.

Definition 7 (Expected Size Complexity). The set of general result vari-
ables is GRV = { (g, �, x) | g ∈ GT , x ∈ PV , ( , , , , �) ∈ g }. The size of α =
(g, �, x) ∈ GRV is the random variable S(α) where S : GRV → Runs→ N with

S(g, �, x) ( (�0, t0, s0) (�1, t1, s1) · · · ) = sup { |si(x)| | �i = � ∧ ti ∈ g } .
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For a scheduler S and s0, the expected size complexity of α∈GRV is ES,s0(S(α)).
So for any run ϑ, S(g, �, x)(ϑ) is the greatest absolute value of x in location �,

whenever � was entered with a transition from g. We now define bounds for the
expected runtime and size complexity which hold independent of the scheduler.

Definition 8 (Expected Runtime and Size Bounds).

• RBE : GT → B is an expected runtime bound if for all g ∈ GT , all schedulers
S, and all s0 ∈ Σ, we have |s0| (RBE(g)) ≥ ES,s0(R(g)).

• SBE : GRV → B is an expected size bound if for all α ∈ GRV, all schedulers
S, and all s0 ∈ Σ, we have |s0| (SBE(α)) ≥ ES,s0(S(α)).

• A pair (RBE,SBE) is called an expected bound pair.

Example 9 (Expected Runtime and Size Bounds). Our new techniques from
Sect. 4 and 5 will derive the following expected bounds for the PIP from Fig. 1.

RBE(g) =

⎧⎪⎨⎪⎩
1, if g∈{g0, g2}
2 · x, if g = g1

6 · x2 + 2 · y, if g = g3

SBE(g, , x) =

⎧⎪⎨⎪⎩
x, if g = g0

2 · x, if g = g1

3 · x, if g∈{g2, g3}
SBE(g0, �1, y) = y SBE(g2, �2, y) = 6 · x2 + 2 · y
SBE(g1, �1, y) = 6 · x2 + y SBE(g3, �2, y) = 12 · x2 + 4 · y
While the runtimes of t2 and t4 were unbounded in the non-probabilistic case
(Ex. 5), we obtain finite bounds on the expected runtimes of g1 = {t1, t2} and
g3 = {t4}. For example, we can expect x to be non-positive after at most |s0| (2 ·x)
iterations of g1. Based on the above expected runtime bounds, the expected
runtime complexity of the PIP is at most |s0| (RBE(g0) + . . . + RBE(g3)) =
|s0| (2 + 2 · x+ 2 · y + 6 · x2), i.e., it is in O(n2) where n is the maximal absolute
value of the program variables at the start of the program.

The following theorem shows that non-probabilistic bounds can be lifted to
expected bounds, since they do not only bound the expected value of R(g) resp.
S(α), but the whole distribution. As mentioned, all proofs can be found in [47].

Theorem 10 (Lifting Bounds). For a bound pair (RB,SB), (RBE,SBE)
with RBE(g) =

∑
t∈gRB(t) and SBE(g, �, x) =

∑
t=( , , , ,�)∈g SB(t, x) is an

expected bound pair.

Here, we over-approximate the maximum of SB(t, x) for t = ( , , , , �) ∈ g by
their sum. For asymptotic bounds, this does not affect precision, since max(f, g)
and f + g have the same asymptotic growth for any non-negative functions f, g.

Example 11 (Lifting of Bounds). When lifting the bound pair of Ex. 5 to expected
bounds according to Thm. 10, one would obtain RBE(g0) = RBE(g2) = 1 and
RBE(g1) = RBE(g3) = ∞. Moreover, SBE(g0, �1, x) = x, SBE(g1, �1, x) = 2 · x,
SBE(g2, �2, x) = SBE(g3, �2, x) = 3 · x, SBE(g0, �1, y) = y, and SBE(g, , y) =∞
whenever g �= g0. Thus, with these lifted bounds one cannot show that P’s
expected runtime complexity is finite, i.e., they are substantially less precise than
the finite expected bounds from Ex. 9. Our approach will compute such finite
expected bounds by repeatedly improving the lifted bounds of Thm. 10.
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4 Computing Expected Runtime Bounds

We first present a new variant of probabilistic linear ranking functions in Sect. 4.1.
Based on this, in Sect. 4.2 we introduce our modular technique to infer expected
runtime bounds by using expected size bounds.

4.1 Probabilistic Linear Ranking Functions

For probabilistic programs, several techniques based on ranking supermartingales
have been developed. In this section, we define a class of probabilistic ranking
functions that will be suitable for our modular analysis.

We restrict ourselves to ranking functions r : L → R[PV ]lin that map every
location to a linear polynomial (i.e., of at most degree 1) without temporary
variables. The linearity restriction is common to ease the automated inference of
ranking functions. Moreover, this restriction will be needed for the soundness of
our technique. Nevertheless, our approach of course also infers non-linear expected
runtimes (by combining the linear bounds obtained for different program parts).

Let expr,g,s denote the expected value of r after an execution of g ∈ GT in
state s ∈ Σ. Here, sη(x) is the expected value of x ∈ PV after performing the
update η in state s. So if η(x) ∈ D, then x’s expected value after the update
results from adding the expected value of the probability distribution η(x)(s):

expr,g,s =
∑

(�,p,τ,η,�′)∈g
p · sη(r(�′)) with sη(x) =

{
s(η(x)), if η(x) ∈ Z[V]
s(x) + E(η(x)(s)), if η(x) ∈ D

Definition 12 (PLRF). Let GT> ⊆ GTni ⊆ GT . Then r : L → R[PV ]lin is a
probabilistic linear ranking function (PLRF) for GT> and GTni if for all g ∈
GTni \ GT> and c′ ∈ Conf there is a ��g,c′ ∈ {<,≥} such that for all finite
paths · · · c′ c that are admissible for some S and s0 ∈ Σ, and where c = (�, t, s)
(i.e., where t is the transition that is used in the step from c′ to c), we have:

Boundedness (a): If t ∈ g for a g ∈ GTni \ GT>, then s(r(�)) ��g,c′ 0.
Boundedness (b): If t ∈ g for a g ∈ GT>, then s(r(�)) ≥ 0.
Non-Increase: If � = �g for a g ∈ GTni and s(τg) = t, then s(r(�)) ≥ expr,g,s.
Decrease: If � = �g for a g ∈ GT> and s(τg) = t, then s(r(�))− 1 ≥ expr,g,s.

So if one is restricted to the sub-program with the non-increasing transitions
GTni, then r(�) is an upper bound on the expected number of applications of tran-
sitions from GT> when starting in �. Hence, a PLRF for GT> = GTni = GT would
imply that the program is PAST (see, e.g., [1, 16, 24, 25]). However, our PLRFs
differ from the standard notion of probabilistic ranking functions by considering
arbitrary subsets GTni ⊆ GT . This is needed for the modularity of our approach
which allows us to analyze program parts separately (e.g., GT \GTni is ignored when
inferring a PLRF). Thus, our “Boundedness” conditions differ slightly from the
corresponding conditions in other definitions. Condition (b) requires that g ∈ GT>
never leads to a configuration where r is negative. Condition (a) states that in
an admissible path where g = {t1, t2, . . .} ∈ GTni \ GT> is used for continuing in
configuration c′, if executing t1 in c′ makes r negative, then executing t2 must

F. Meyer et al.
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make r negative as well. Thus, such a g can never come before a general transition
from GT> in an admissible path and hence, g can be ignored when inferring upper
bounds on the runtime. This increases the power of our approach and it allows
us to consider only non-negative random variables in our correctness proofs.

We use SMT solvers to generate PLRFs automatically. Then for “Bounded-
ness”, we regard all s′ ∈ Σ with s′(τg) = t and require “Boundedness” for any
state s that is reachable from s′.

Example 13 (PLRFs). Consider again the PIP in Fig. 1 and the sets GT> =
GTni = {g1} and GT ′

> = GT ′
ni = {g3}, which correspond to its two loops.

The function r with r(�1) = 2 · x and r(�0) = r(�2) = 0 is a PLRF for
GT> = GTni: For every admissible configuration (�, t, s) with t ∈ g1 we have � = �1
and s(r(�1)) = 2 · s(x) ≥ 0, since x was positive before (due to g1’s guard) and it
was either decreased by 1 or not changed by the update of t1 resp. t2. Hence r is
bounded. Moreover, for s1(x) = s(x− 1) = s(x)− 1 and s2(x) = s(x) we have:

expr,g,s = 1
2 · s1(r(�1)) +

1
2 · s2(r(�1)) = 2 · s(x)− 1 = s(r(�1))− 1

So r is decreasing on g1 and as GT> = GTni, also the non-increase property holds.
Similarly, r′ with r′(�2) = y and r′(�0) = r′(�1) = 0 is a PLRF for GT ′

> = GT ′
ni.

In our implementation, GT> is always a singleton and we let GTni ⊆ GT be a
cycle in the call graph where we find a PLRF for GT> ⊆ GTni. The next subsection
shows how we can then obtain an expected runtime bound for the overall program
by searching for suitable ranking functions repeatedly.

4.2 Inferring Expected Runtime Bounds

Our approach to infer expected runtime bounds is based on an underlying (non-
probabilistic) bound pair (RB,SB) which is computed by existing techniques (in
our implementation, we use [18]). To do so, we abstract the PIP to a standard
integer transition system by ignoring the probabilities of transitions and replacing
probabilistic with non-deterministic sampling (e.g., the update η(x) = GEO( 12 )
would be replaced by η(x) = x+ u with u ∈ V \PV , where u > 0 is added to the
guard). Of course, we usually have RB(t) =∞ for some transitions t.

We start with the expected bound pair (RBE,SBE) that is obtained by
lifting (RB,SB) as in Thm. 10. Afterwards, the expected runtime bound RBE is
improved repeatedly by applying the following Thm. 16 (and similarly, SBE is
improved repeatedly by applying Thm. 23 and 25 from Sect. 5). Our approach
alternates the improvement of RBE and SBE, and it uses expected size bounds
on “previous” transitions to improve expected runtime bounds, and vice versa.

To improve RBE, we generate a PLRF r for a part of the program. To obtain
a bound for the full program from r, one has to determine which transitions can
enter the program part and from which locations it can be entered.

Definition 14 (Entry Locations and Transitions). For GTni ⊆ GT and � ∈
L, the entry transitions are ETGTni(�) = {g ∈ GT \ GTni | ∃t ∈ g. t = ( , , , , �)}.
Then the entry locations are all start locations of GTni whose entry transitions
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are not empty, i.e., ELGTni
= {� | ETGTni

(�) �= ∅ ∧ (�, , , , ) ∈
⋃
GTni}.1

Example 15 (Entry Locations and Transitions). For the PIP from Fig. 1 and
GTni = {g1}, we have ELGTni = {�1} and ETGTni(�1) = {g0}. So the loop formed
by g1 is entered at location �1 and the general transition g0 has to be executed
before. Similarly, for GT ′

ni = {g3} we have ELGT ′
ni
= {�2} and ETGT ′

ni
(�2) = {g2}.

Recall that if r is a PLRF for GT> ⊆ GTni, then in a program that is restricted
to GTni, r(�) is an upper bound on the expected number of executions of transitions
from GT> when starting in �. Since r(�) may contain negative coefficients, it is
not weakly monotonically increasing in general. To turn expressions e ∈ R[PV ]
into bounds from B, let the over-approximation +·, replace all coefficients by
their absolute value. So for example, +x− y, = +x+ (−1) · y, = x+ y. Clearly,
we have |s| (+e,) ≥ |s| (e) for all s ∈ Σ. Moreover, if e ∈ R[PV ] then +e, ∈ B.

To turn +r(�), into a bound for the full program, one has to take into account
how often the sub-program with the transitions GTni is reached via an entry
transition h ∈ ETGTni

(�) for some � ∈ ELGTni
. This can be over-approximated

by
∑

t=( , , , ,�)∈hRB(t), which is an upper bound on the number of times that
transitions in h to the entry location � of GTni are applied in a full program run.

The bound +r(�), is expressed in terms of the program variables at the entry
location � of GTni. To obtain a bound in terms of the variables at the start of the
program, one has to take into account which value a program variable x may have
when the sub-program GTni is reached. For every entry transition h ∈ ETGTni

(�),
this value can be over-approximated by SBE(h, �, x). Thus, we have to instan-
tiate each variable x in +r(�), by SBE(h, �, x). Let SBE(h, �, ·) : PV → B be
the mapping with SBE(h, �, ·)(x) = SBE(h, �, x). Hence, SBE(h, �, ·)(+r(�),) over-
approximates the expected number of applications of GT> if GTni is entered in loca-
tion �, where this bound is expressed in terms of the input variables of the program.
Here, weak monotonic increase of +r(�), ensures that instantiating its variables by
an over-approximation of their size yields an over-approximation of the runtime.

Theorem 16 (Expected Runtime Bounds). Let (RBE,SBE) be an expected
bound pair, RB a (non-probabilistic) runtime bound, and r a PLRF for GT> ⊆
GTni ⊆ GT . Then RB′

E : GT → B is an expected runtime bound where

RB′
E(g) =

⎧⎪⎨⎪⎩
∑

�∈ELGTni

h∈ETGTni
(�)

(
∑

t=( , , , ,�)∈h
RB(t)) · (SBE(h, �, ·) (+r(�),)) , if g ∈ GT>

RBE(g), if g �∈ GT>
Example 17 (Expected Runtime Bounds). For the PIP from Fig. 1, our approach
starts with (RBE,SBE) from Ex. 11 which results from lifting the bound pair from
Ex. 5. To improve the bound RBE(g1) =∞, we use the PLRF r for GT> = GTni =
{g1} from Ex. 13. By Ex. 15, we have ELGTni

= {�1} and ETGTni
(�1) = {g0} with

g0 = {t0}, whose runtime bound is RB(t0) = 1, see Ex. 5. Using the expected
size bound SBE(g0, �1, x) = x from Ex. 9, Thm. 16 yields

RB′
E(g1) = RB(t0) · SBE(g0, �1, ·) (+r(�1),) = 1 · 2 · x = 2 · x.

1 For a set of sets like GTni,
⋃

GTni denotes their union, i.e.,
⋃

GTni =
⋃

g∈GTni
g.
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To improve RBE(g3), we use the PLRF r′ for GT ′
> = GT ′

ni = {g3} from Ex. 13. As
ELGT ′

ni
= {�2} and ETGT ′

ni
(�2) = {g2} by Ex. 15, where g2 = {t3} and RB(t3) = 1

(Ex. 5), with the bound SBE(g2, �2, y) = 6 · x2 + 2 · y from Ex. 9, Thm. 16 yields

RB′
E(g3) = RB(t3) · SBE(g2, �2, ·) (+r′(�2),) = 1 · SBE(g2, �2, y) = 6 · x2 + 2 · y.

So based on the expected size bounds of Ex. 9, we have shown how to compute
the expected runtime bounds of Ex. 9 automatically.

Similar to [18], our approach relies on combining bounds that one has com-
puted earlier in order to derive new bounds. Here, bounds may be combined
linearly, bounds may be multiplied, and bounds may even be substituted into
other bounds. But in contrast to [18], sometimes one may combine expected
bounds that were computed earlier and sometimes it is only sound to combine
non-probabilistic bounds: If a new bound is computed by linear combinations of
earlier bounds, then it is sound to use the “expected versions” of these earlier
bounds. However, if two bounds are multiplied, then it is in general not sound to
use their “expected versions”. Thus, it would be unsound to use the expected run-
time bounds RBE(h) instead of the non-probabilistic bounds

∑
t=( , , , ,�)∈hRB(t)

on the entry transitions in Thm. 16 (a counterexample is given in [47]).2

In general, if bounds b1, . . . , bn are substituted into another bound b, then it
is sound to use “expected versions” of the bounds b1, . . . , bn if b is concave, see,
e.g., [10, 11, 40]. Since bounds from B do not contain negative coefficients, we
obtain that a finite3 bound b ∈ B is concave iff it is a linear polynomial (see [47]).

Thus, in Thm. 16 we may substitute expected size bounds SBE(h, �, x) into
+r(�),, since we restricted ourselves to linear ranking functions r and hence, +r(�),
is also linear. Note that in contrast to [11], where a notion of concavity was used
to analyze probabilistic term rewriting, a multilinear expression like x · y is not
concave when regarding both arguments simultaneously. Hence, it is unsound to
use such ranking functions in Thm. 16. See [47] for a counterexample to show
why substituting expected bounds into a non-linear bound is incorrect in general.

5 Computing Expected Size Bounds

We first compute local bounds for one application of a transition (Sect. 5.1).
To turn them into global bounds, we encode the data flow of a PIP in a graph.
Sect. 5.2 then presents our technique to compute expected size bounds.

5.1 Local Change Bounds and General Result Variable Graph

We first compute a bound on the expected change of a variable during an
update. More precisely, for every general result variable (g, �, x) we define a
bound CBE(g, �, x) on the change of the variable x that we can expect in one

2 An exception is the special case where r(�) is constant. Then, our implementation
indeed uses the expected bound RBE(h) instead of

∑
t=( , , , ,�)∈h RB(t) [47].

3 A bound is finite if it does not contain ∞. We always simplify expressions and thus,
a bound like 0 ·∞ is also finite, because it simplifies to 0, as usual in measure theory.
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execution of the general transition g when reaching location �. So we consider
all t = ( , p, , η, �) ∈ g and the expected difference between the current value
of x and its update η(x). However, for η(x) ∈ Z[V], η(x)− x is not necessarily
from B because it may contain negative coefficients. Thus, we use the over-
approximation +η(x)− x, (where we always simplify expressions before applying
+·,, e.g., +x− x, = +0, = 0). Moreover, +η(x)− x, may contain temporary
variables. Let tvt : V → B instantiate all temporary variables by the largest
possible value they can have after evaluating the transition t. Hence, we then use
tvt(+η(x)− x,) instead. For tvt, we have to use the underlying non-probabilistic
size bound SB for the program (since the scheduler determines the values of
temporary variables by non-deterministic (non-probabilistic) choice). If x is
updated according to a bounded distribution function d ∈ D, then as in Sect. 2,
let E(d) ∈ B denote a finite bound on d, i.e., Eabs(d(s)) ≤ |s| (E(d)) for all s ∈ Σ.

Definition 18 (Expected Local Change Bound). Let SB be a size bound.
Then CBE : GRV → B with CBE(g, �, x) =

∑
t=( ,p, ,η,�)∈g

p · cht(η(x), x), where

cht(η(x), x) =

{
E(d), if η(x) = d ∈ D
tvt(+η(x)− x,), otherwise and tvt(y) =

{
SB(t, y), if y /∈ PV
y, if y ∈ PV

Example 19 (CBE). For the PIP of Fig. 1, we have CBE(g0, , ) = CBE(g2, , ) =
CBE(g3, �2, x) = 0, since the respective updates are identities. Moreover,

CBE(g1, �1, x) = 1
2 · +(x− 1)− x,+ 1

2 · +x− x, = 1
2 · 1 +

1
2 · 0 = 1

2 .

In a similar way, we obtain CBE(g1, �1, y) = x and CBE(g3, �2, y) = 1.

The following theorem shows that for any admissible configuration in a state
s′, CBE(g, �, x) is an upper bound on the expected value of |s(x)− s′(x)| if s is
the next state obtained when applying g in state s′ to reach location �.

Theorem 20 (Soundness of CBE). For any (g, �, x) ∈ GRV, scheduler S,
s0 ∈ Σ, and admissible configuration c′ = ( , , s′), we have

|s′| (CBE(g, �, x)) ≥
∑

c=(�,t,s)∈Conf, t∈g prS,s0(c
′ → c) · |s(x)− s′(x)|.

To obtain global bounds from the local bounds CBE(g, �, x), we construct a
general result variable graph which encodes the data flow between variables. Let
pre(g) = ET∅(�g) be the the set of pre-transitions of g which lead into g’s start
location �g. Moreover, for α = (g, �, x) ∈ GRV let its active variables actV(α)
consist of all variables occurring in the bound x+ CBE(α) for α’s expected size.

Definition 21 (General Result Variable Graph). The general result vari-
able graph has the set of nodes GRV and the set of edges GRVE , where

GRVE = { ((g′, �′, x′), (g, �, x)) | g′ ∈ pre(g) ∧ �′ = �g ∧ x′ ∈ actV(g, �, x) }.

Example 22 (General Result Variable Graph). The general result variable
graph for the PIP of Fig. 1 is shown below. For CBE from Ex. 19, we have
actV(g1, �1, x) = {x}, as x+ CBE(α) = x+ 1

2 contains no variable except x.

F. Meyer et al.



Inferring Expected Runtimes Using Expected Sizes 261

(g0, �1, x)

(g1, �1, x)

(g2, �2, x)

(g3, �2, x)

(g1, �1, y)

(g2, �2, y)

(g3, �2, y)

(g0, �1, y)
Similarly, actV(g1, �1, y) = {x, y}, as x and

y are contained in y+CBE(g1, �1, y) = y+x. For
all other α ∈ GRV , we have actV( , , x) = {x}
and actV( , , y) = {y}. As pre(g1) = {g0, g1},
the graph captures the dependence of (g1, �1, x)
on (g0, �1, x) and (g1, �1, x), and of (g1, �1, y) on
(g0, �1, x), (g0, �1, y), (g1, �1, x), and (g1, �1, y).
The other edges are obtained in a similar way.

5.2 Inferring Expected Size Bounds

We now compute global expected size bounds for the general result variables by
considering the SCCs of the general result variable graph separately. As usual,
an SCC is a maximal subgraph with a path from each node to every other node.
An SCC is trivial if it consists of a single node without an edge to itself. We first
handle trivial SCCs in Sect. 5.2.1 and consider non-trivial SCCs in Sect. 5.2.2.

5.2.1 Inferring Expected Size Bounds for Trivial SCCs By Thm. 20,
x+ CBE(g, �, x) is a local bound on the expected value of x after applying g once
in order to enter �. However, this bound is formulated in terms of the values of
the variables immediately before applying g. We now want to compute global
bounds in terms of the initial values of the variables at the start of the program.

If g is initial (i.e., g ∈ GT0 since g starts in the initial location �0), then
x+ CBE(g, �, x) is already a global bound, as the values of the variables before
the application of g are the initial values of the variables at the program start.

Otherwise, the variables y occurring in the local bound x+ CBE(g, �, x) have
to be replaced by the values that they can take in a full program run before
applying the transition g. Thus, we have to consider all transitions h ∈ pre(g)
and instantiate every variable y by the maximum of the values that y can have
after applying h. Here, we again over-approximate the maximum by the sum.

If CBE(g, �, x) is concave (i.e., a linear polynomial), then we can instantiate
its variables by expected size bounds SBE(h, �g, y). However, this is unsound if
CBE(g, �, x) is not linear, i.e., not concave (see [47] for a counterexample). So in
this case, we have to use non-probabilistic bounds SB(t, y) instead.

As in Sect. 4.2, we use an underlying non-probabilistic bound pair (RB,SB)
and start with the expected pair (RBE,SBE) obtained by lifting (RB,SB) ac-
cording to Thm. 10. While Thm. 16 improves RBE, we now improve SBE. Here,
the SCCs of the general result variable graph should be treated in topological
order, since then one may first improve SBE for result variables corresponding to
pre(g), and use that when improving SBE for result variables of the form (g, , ).

Theorem 23 (Expected Size Bounds for Trivial SCCs). Let SBE be an
expected size bound, SB a (non-probabilistic) size bound, and let α = (g, �, x)
form a trivial SCC of the general result variable graph. Let sizeαE and sizeα be
mappings from PV → B with sizeαE(y) =

∑
h∈pre(g) SBE(h, �g, y) and sizeα(y) =∑

h∈pre(g), t=( , , , ,�g)∈h SB(t, y). Then SB
′
E : GRV → B is an expected size bound,
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where SB′
E(β) = SBE(β) for β �= α and

SB′
E(α) =

⎧⎪⎨⎪⎩
x+ CBE(α), if g ∈ GT0
sizeαE(x+ CBE(α)), if g �∈ GT0, CBE(α) is linear

sizeαE(x) + sizeα(CBE(α)), if g �∈ GT0, CBE(α) is not linear

Example 24 (SBE for Trivial SCCs). The general result variable graph in Ex. 22
contains 4 trivial SCCs formed by αx = (g0, �1, x), αy = (g0, �1, y), βx = (g2, �2, x),
and βy = (g2, �2, y). For all these general result variables, the expected local
change bound CBE is 0 (see Ex. 19). Thus, it is linear. Since g0 ∈ GT0, Thm. 23
yields SB′

E(αx) = x+ CBE(αx) = x and SB′
E(αy) = y + CBE(αy) = y.

By treating SCCs in topological order, when handling βx, βy, we can assume
that we already have SBE(αx) = x, SBE(αy) = y and SBE(g1, �1, x) = 2 · x,
SBE(g1, �1, y) = 6 · x2 + y (see Ex. 9) for the result variables corresponding to
pre(g2) = {g0, g1}. We will explain in Sect. 5.2.2 how to compute such expected
size bounds for non-trivial SCCs. Hence, by Thm. 23 we obtain SB′

E(βx) =

sizeβx

E (x+CBE(βx)) = SBE(αx)+SBE(g1, �1, x) = 3 ·x and SB′
E(βy) = size

βy

E (y+
CBE(βy)) = SBE(αy) + SBE(g1, �1, y) = 6 · x2 + 2 · y.

5.2.2 Inferring Expected Size Bounds for Non-Trivial SCCs Now we
handle non-trivial SCCs C of the general result variable graph. An upper bound
for the expected size of a variable x when entering C is obtained from SBE(β)
for all general result variables β = ( , , x) which have an edge to C.

To turn CBE(g, �, x) into a global bound, as in Thm. 23 its variables y have
to be instantiated by the values size(g,�,x)(y) that they can take in a full program
run before applying a transition from g. Thus, size(g,�,x)(CBE(g, �, x)) is a global
bound on the expected change resulting from one application of g. To obtain
an upper bound for the whole SCC C, we add up these global bounds for all
(g, , x) ∈ C and take into account how often the general transitions in the SCC
are expected to be executed, i.e., we multiply with their expected runtime bound
RBE(g). So while in Thm. 16 we improve RBE using expected size bounds for
previous transitions, we now improve SBE(C) using expected runtime bounds
for the transitions in C and expected size bounds for previous transitions.

Theorem 25 (Expected Size Bounds for Non-Trivial SCCs). Let (RBE,
SBE) be an expected bound pair, (RB,SB) a (non-probabilistic) bound pair, and
let C ⊆ GRV form a non-trivial SCC of the general result variable graph where
GTC = {g ∈ GT | (g, , ) ∈ C}. Then SB′

E is an expected size bound:

SB′
E(α) =

⎧⎪⎪⎨⎪⎪⎩
∑

(β,α)∈GRVE, β /∈C, α∈C, β=( , ,x) SBE(β) +∑
g∈GTC

RBE(g) · (
∑

α′=(g, ,x)∈C
sizeα

′
(CBE (α

′))), if α = ( , , x) ∈ C

SBE(α), otherwise

Here we really have to use the non-probabilistic size bound sizeα
′
instead of

sizeα
′

E , even if CBE(α
′) is linear, i.e., concave. Otherwise we would multiply the

expected values of two random variables which are not independent.

Example 26 (SBE for Non-Trivial SCCs). The general result variable graph in
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Ex. 22 contains 4 non-trivial SCCs formed by α′
x = (g1, �1, x), α

′
y = (g1, �1, y),

β′
x = (g3, �2, x), and β′

y = (g3, �2, y). By the results on SBE, RBE, CBE, and SB
from Ex. 24, 17, 19, and 5, Thm. 25 yields the expected size bound in Ex. 9:

SB′
E(α

′
x) = SBE(αx) +RBE(g1) · sizeα

′
x(CBE(α

′
x)) = x+ 2 · x · 1

2 = 2 · x
SB′

E(α
′
y) = SBE(αy) +RBE(g1) · sizeα

′
y (CBE(α

′
y)) = y + 2 · x · sizeα

′
y (x)

= y + 2 · x ·
∑

i∈{0,1,2} SB(ti, x) = 6 · x2 + y

SB′
E(β

′
x) = SBE(βx) +RBE(g3) · sizeβ

′
x(CBE(β

′
x)) = 3 · x+ (6x2 + 2y) · 0 = 3 · x

SB′
E(β

′
y) = SBE(βy) +RBE(g3) · sizeβ

′
y (CBE(β

′
y)) = 6 · x2 + 2 · y + (6x2 + 2y) · 1

= 12 · x2 + 4 · y

6 Related Work, Implementation, and Conclusion

Related Work Our approach adapts techniques from [18] to probabilistic programs.
As explained in Sect. 1, this adaption is not at all trivial (see our proofs in [47]).

There has been a lot of work on proving PAST and inferring bounds on
expected runtimes using supermartingales, e.g., [1, 11, 15, 16, 22–25,29, 32, 48, 62].
While these techniques infer one (lexicographic) ranking supermartingale to
analyze the complete program, our approach deals with information flow between
different program parts and analyzes them separately.

There is also work on modular analysis of almost sure termination (AST)
[1, 25, 26, 37, 38, 48], i.e., termination with probability 1. This differs from our
results, since AST is compositional, in contrast to PAST (see, e.g., [41, 42]).

A fundamentally different approach to ranking supermartingales (i.e., to
forward-reasoning) is backward-reasoning by so-called expectation transformers,
see, e.g., [10, 41, 42,44–46,50,52, 61]. In this orthogonal reasoning, [10, 41, 42,52]
consider the connection of the expected runtime and size. While expectation
transformers apply backward- instead of forward-reasoning, their correctness can
also be justified using supermartingales. More precisely, Park induction for upper
bounds on the expected runtime via expectation transformers essentially ensures
that a certain stochastic process is a supermartingale (see [33] for details).

To the best of our knowledge, the only available tools for the inference of upper
bounds on the expected runtimes of probabilistic programs are [10, 50, 61, 62].
The tool of [61] deals with data types and higher order functions in probabilistic
ML programs and does not support programs whose complexity depends on
(possibly negative) integers (see [55]). Furthermore, the tool of [48] focuses on
proving or refuting (P)AST of probabilistic programs for so-called Prob-solvable
loops, which do not allow for nested or sequential loops or non-determinism. So
both [61] and [48] are orthogonal to our work. We discuss [10,50,62] below.

Implementation We implemented our analysis in a new version of our tool
KoAT [18]. KoAT is an open-source tool written in OCaml, which can also be
downloaded as a Docker image and accessed via a web interface [43].

Given a PIP, the analysis proceeds as in Alg. 1. The preprocessing in Line 1
adds invariants to guards (using APRON [39] to generate (non-probabilistic)
invariants), unfolds transitions [19], and removes unreachable locations, transitions
with probability 0, and transitions with unsatisfiable guards (using Z3 [49]).
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Input: PIP (PV,L,GT , �0)
1 preprocess the PIP
2 (RB,SB) ← perform non-probabilistic analysis using [18]
3 (RBE,SBE) ← lift (RB,SB) to an expected bound pair with Thm. 10
4 repeat
5 for all SCCs C of the general result variable graph in topological order do
6 if C = {α} is trivial then SB′

E ← improve SBE for C by Thm. 23
7 else SB′

E ← improve SBE for C by Thm. 25
8 for all α ∈ C do SBE(α) ← min{SBE(α),SB′

E(α)}
9 for all general transitions g ∈ GT do

10 RB′
E ← improve RBE for GT> = {g} by Thm. 16

11 RBE(g) ← min{RBE(g),RB′
E(g)}

12 until no bound is improved anymore
Output:

∑
g∈GT RBE(g)

Algorithm 1: Overall approach to infer bounds on expected runtimes

We start by a non-probabilistic analysis and lift the resulting bounds to an
initial expected bound pair (Lines 2 and 3). Afterwards, we first try to improve
the expected size bounds using Thm. 23 and 25, and then we attempt to improve
the expected runtime bounds using Thm. 16 (if we find a PLRF using Z3). To
determine the “minimum” of the previous and the new bound, we use a heuristic
which compares polynomial bounds by their degree. While we over-approximated
the maximum of expressions by their sum to ease readability in this paper, KoAT
also uses bounds containing “min” and “max” to increase precision.

This alternating modular computation of expected size and runtime bounds is
repeated so that one can benefit from improved expected runtime bounds when
computing expected size bounds and vice versa. We abort this improvement of
expected bounds in Alg. 1 if they are all finite (or when reaching a timeout).

To assess the power of our approach, we performed an experimental evaluation
of our implementation in KoAT. We did not compare with the tool of [62], since [62]
expects the program to be annotated with already computed invariants. But for
many of the examples in our experiments, the invariant generation tool [56] used
by [62] did not find invariants strong enough to enable a meaningful analysis (and
we could not apply APRON [39] due to the different semantics of invariants).

Instead, we compare KoAT with the tools Absynth [50] and eco-imp [10] which
are both based on a conceptionally different backward-reasoning approach. We ran
the tools on all 39 examples from Absynth’s evaluation in [50] (except recursive,
which contains non-tail-recursion and thus cannot be encoded as a PIP), and on
the 8 additional examples from the artifact of [50]. Moreover, our collection has
29 additional benchmarks: 14 examples that illustrate different aspects of PIPs, 5
PIPs based on examples from [50] where we removed assumptions, and 10 PIPs
based on benchmarks from the TPDB [59] where some transitions were enriched
with probabilistic behavior. The TPDB is a collection of typical programs used in
the annual Termination and Complexity Competition [31]. We ran the experiments
on an iMac with an Intel i5-2500S CPU and 12GB of RAM under macOS Sierra
for Absynth and NixOS 20.03 for KoAT and eco-imp. A timeout of 5 minutes per
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Bound KoAT Absynth eco-imp

O(1) 6 6 6

O(n) 32 32 29

O(n2) 3 8 9

O(n>2) 0 0 0

EXP 0 0 0

∞ 5 0 2

TO 0 0 0

Fig. 2: Results on benchmarks from [50]

Bound KoAT Absynth eco-imp

O(1) 2 1 2

O(n) 10 3 6

O(n2) 12 1 6

O(n>2) 2 0 0

EXP 1 0 0

∞ 2 15 12

TO 0 9 3

Fig. 3: Results on our new benchmarks

example was applied for all tools. The average runtime of successful runs was
4.26 s for KoAT, 3.53 s for Absynth, and just 0.93 s for eco-imp.

Fig. 2 and 3 show the generated asymptotic bounds, where n is the maximal
absolute value of the program variables at the program start. Here, “∞” indicates
that no finite time bound could be computed and “TO” means “timeout”. The
detailed asymptotic results of all tools on all examples can be found in [43,47].

Absynth and eco-imp slightly outperform KoAT on the examples from Absynth’s
collection, while KoAT is considerably stronger than both tools on the additional
benchmarks. In particular, Absynth and eco-imp outperform our approach on
examples with nested probabilistic loops. While our modular approach can
analyze inner loops separately when searching for probabilistic ranking functions,
Thm. 16 then requires non-probabilistic time bounds for all transitions entering
the inner loop. But these bounds may be infinite if the outer loop has probabilistic
behavior itself. Moreover, in contrast to our work and [10], the approach of [50]
does not require weakly monotonic bounds.

On the other hand, KoAT is superior to Absynth and eco-imp on large exam-
ples with many loops, where only a few transitions have probabilistic behavior
(this might correspond to the typical application of randomization in practical
programming). Here, we benefit from the modularity of our approach which treats
loops independently and combines their bounds afterwards. Absynth and eco-imp
also fail for our leading example of Fig. 1, while KoAT infers a quadratic bound.
Hence, the tools have particular strengths on orthogonal kinds of examples.

KoAT’s source code is available at https://github.com/aprove-developers/
KoAT2-Releases/tree/probabilistic. To obtain a KoAT artifact, see https://
aprove-developers.github.io/ExpectedUpperBounds/ for a static binary and Dock-
er image. This web site also provides all examples from our evaluation, detailed
outputs of our experiments, and a web interface to run KoAT directly online.

Conclusion We presented a new modular approach to infer upper bounds on the
expected runtimes of probabilistic integer programs. To this end, non-probabilistic
and expected runtime and size bounds on parts of the program are computed in
an alternating fashion and then combined to an overall expected runtime bound.
In the evaluation, our tool KoAT succeeded on 91% of all examples, while the
main other related tools (Absynth and eco-imp) only inferred finite bounds for
68% resp. 77% of the examples. In future work, it would be interesting to consider
a modular combination of these tools (resp. of their underlying approaches).

Acknowledgements We thank Carsten Fuhs for discussions on initial ideas.
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Abstract. Software developers frequently check their code changes by
running a set of tests against their code. Tests that can nondeterministi-
cally pass or fail when run on the same code version are called flaky tests.
These tests are a major problem because they can mislead developers to
debug their recent code changes when the failures are unrelated to these
changes. One prominent category of flaky tests is order-dependent (OD)
tests, which can deterministically pass or fail depending on the order in
which the set of tests are run. By detecting OD tests in advance, de-
velopers can fix these tests before they change their code. Due to the
high cost required to explore all possible orders (n! permutations for n
tests), prior work has developed tools that randomize orders to detect
OD tests. Experiments have shown that randomization can detect many
OD tests, and that most OD tests depend on just one other test to fail.
However, there was no analysis of the probability that randomized or-
ders detect OD tests. In this paper, we present the first such analysis and
also present a simple change for sampling random test orders to increase
the probability. We finally present a novel algorithm to systematically
explore all consecutive pairs of tests, guaranteeing to detect all OD tests
that depend on one other test, while running substantially fewer orders
and tests than simply running all test pairs.

Keywords: Flaky tests · Order dependent · Test-pair coverage

1 Introduction

The most common way that developers check their software is through frequent
regression testing performed while they develop software. Developers run regres-
sion tests to check that recent code changes do not break existing functionality.
A major problem for regression testing is flaky tests [27], which can nondeter-
ministically pass or fail when run on the same code version. The failures from
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these tests can mislead developers to debug their recent changes while the fail-
ures can be due to a variety of reasons unrelated to the changes. Many software
organizations have reported flaky tests as one of their biggest problems in soft-
ware development, including Apple [18], Facebook [5,10], Google [8,30,31,43,48],
Huawei [16], Microsoft [11,12,20,21], and Mozilla [40].

These flaky tests are among the tests, called test suite, that developers run
during regression testing; a test suite is most often specified as a set, not a
sequence, of tests. Having a test suite as a set provides benefits for regression
testing techniques such as selection, prioritization, and parallelization [23,45].
The test execution platform can choose to run these tests in various test orders.
For example, for projects using Java, the most popular testing framework is
JUnit [17], and the most popular build system is Maven [28]. Tests in JUnit
are organized in a set of test classes, each of which has a set of test methods.
By default, Maven runs tests using the Surefire plugin [29], which does not
guarantee any order of test classes or test methods. However, the use of Surefire
and JUnit does not interleave the test methods from different test classes in a
test order. The same structure is common for many other testing frameworks
such as TestNG [41], Cucumber [4], and Spock [38].

One prominent category of flaky tests is deterministic order-dependent (OD)
tests [22,24,32,47], which can deterministically pass or fail in various test orders,
with at least one order in which these tests pass and at least one other order
in which they fail. Other flaky tests are non-deterministic (ND) tests, which
are flaky due to reasons other than solely the test order [24]; for at least one
test order, these tests can nondeterministically pass or fail even in that same
test order. Our iDFlakies work [22] has released the iDFlakies dataset [15] of
flaky tests in open-source Java projects. We obtained this dataset by running
test suites many times in randomized test orders, collecting test failures, and
classifying failed tests as OD or ND flaky tests. In total, 50.5% of the dataset
are OD tests, while the remaining 49.5% are ND tests.

Prior research has proposed multiple tools [2,6,9,14,22,47] to detect OD tests.
Some of the tools [9,14] search for potential OD tests and may therefore report
false alarms, i.e., tests that cannot fail in the current test suite (but may fail in
some extended test suite). The other tools [2,6,22,47] detect OD tests that actu-
ally fail by running multiple randomized orders of the test suite. Running tests in
random orders is also available in many testing platforms, e.g., Surefire for Java
has a mode to randomize the order of test classes, pytest [35] for Python has
the --random-order option, and rspec [36] for Ruby has the --order random

option. While these tools can detect many OD tests, the tools run random orders
and hence can miss running test orders in which OD tests would fail. The listed
prior work has not studied the flake rates, i.e., the probability that an OD test
would fail when run in (uniformly) sampled test orders.

Our iFixFlakies work [37] has studied the causes of failures for OD tests. We
find that the vast majority of OD tests are related to pairs of tests, i.e., each
OD test would pass or fail due to the sharing of some global state with just one
other test. Our iFixFlakies work has also defined multiple kinds of tests related
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to OD tests. Each OD test belongs to one of two kinds: (1) brittle, which is a
test that fails when run by itself but passes in a test order where the test is
preceded by a state-setter ; and (2) victim, which is a test that passes when run
by itself but fails in a test order where the test is preceded by a (state-)polluter
unless a (state-)cleaner runs in between the polluter and the victim. Most of the
work in this paper focuses on victim tests because most OD tests are victims
rather than brittles (e.g., 91% of the truly OD tests in the iDFlakies dataset are
victims [15]), and the analysis for brittles often follows as a simple special case
of the analysis for victims.

This paper makes the following two main contributions.

Probability Analysis. We develop a methodology to analytically obtain the
flake rates of OD tests and propose a simple change to the random sampling
of test orders to increase the probability of detecting OD tests. A flake rate is
defined as the ratio of the number of test orders in which an OD test fails divided
by the total number of orders. Flake rates can help researchers analytically com-
pare various algorithms (e.g., comparing reversing a passing order to sampling a
random order as shown in Section 4.4) and help practitioners prioritize the fixing
of flaky tests. Specifically, we study the following problem: determine the flake
rate for a given victim test with its set of polluters and a set of cleaners for each
polluter. We first derive simple formulas with two main assumptions: (A1) all
polluters have the same set of cleaners and (A2) all of the victim, polluters, and
cleaners are in the same test class. We then derive formulas that keep A1 but
relax A2. Our results on 249 real flaky tests show that our formulas are appli-
cable to 236 tests (i.e., only 13 tests violate A1). To relax both assumptions, we
propose an approach to estimate the flake rate without running test orders. Our
analysis finds that some OD tests have a rather low flake rate, as low as 1.2%.

Systematic Test-Pair Exploration. Because random sampling of test orders
may miss test orders in which OD tests fail, we propose a systematic approach to
cover all consecutive test pairs to detect OD tests. We present an algorithm that
systematically explores all consecutive test pairs, guaranteeing the detection of
all OD tests that depend on one other test, while running substantially fewer
tests than a naive exploration that runs every pair by itself. Our algorithm builds
on the concept of Tuscan squares [7], studied in the field of combinatorics. Given
a test suite, the algorithm generates a set of test orders, each consisting of at least
two distinct tests and at most all of the tests from the test suite, that cover all
of the consecutive test pairs, while trying to minimize the cost of running those
test orders. The algorithm can cover pairs of tests from the same and different
classes, while considering only the test orders that do not interleave tests from
different test classes, being a common constraint of testing frameworks such as
JUnit [17]. Our analysis shows that the algorithm runs substantially fewer tests
than naive exploration. To experiment with the new algorithm based on Tuscan
squares, we run some of the test orders generated by the algorithm for some of
the test suites in the iDFlakies dataset. Our experiments detect 44 new OD tests,
not detected in prior work [22,24,25], and we have added the newly detected tests
to the Illinois Dataset of Flaky Tests [19].
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1 public void testMRAppMasterSuccessLock() { // testV for short
2 ... // setup MapReduce job, e.g., set conf and userName
3 MRAppMaster appMaster =
4 new MRAppMasterTest("appattempt_...", "container_...", "host", -1,
5 -1, System.currentTimeMillis(), false, false);
6 try {
7 MRAppMaster.initAndStartAppMaster(appMaster, conf, userName);
8 } catch (IOException e) { ... }
9 ... // assert the state and some properties of appMaster

10 appMaster.stop();
11 }

Fig. 1. Victim OD test from Hadoop’s TestMRAppMaster class.

1 public void testSigTermedFunctionality() { // testP for short
2 JHEventHandlerForSigtermTest jheh =
3 new JHEventHandlerForSigtermTest(Mockito.mock(AppContext.class), 0);
4 jheh.addToFileMap(Mockito.mock(JobId.class));
5 ... // have jheh handle a few events
6 jheh.stop();
7 ... // assert whether the events were handled properly
8 }

Fig. 2. Polluter test from Hadoop’s TestJobHistoryEventHandler class.

2 Background and Example

We use an example to introduce some key concepts for OD tests and to illustrate
challenges in debugging these tests. We represent a test order as a sequence
of tests 〈t1, t2, . . . , tl〉. In Java, each test order is executed by a Java Virtual
Machine (JVM) that starts from the initial state (e.g., all shared pointer variables
initialized to null) and then runs each test, which potentially modifies the shared
state. Each test is run at most once in one JVM run. (Thus, covering test orders
and test pairs has to be done with a set of test orders and cannot be done with
just one very long order, e.g., using superpermutations [13].) A test v is a victim
if it passes in the order 〈v〉 but fails in another order; the other order usually
contains a single polluter test p (besides many other tests) such that v fails even
in the order 〈p, v〉. Moreover, the test suite may contain a cleaner test c such
that v passes in the order 〈p, c, v〉. Note that test orders may contain more tests
besides polluters and cleaners for a victim v, but these other tests do not modify
the relevant state and do not affect whether v passes or not in any order. Precise
definitions for these tests are in our previous work [37].

Figure 1 shows a snippet of a victim test, testMRAppMasterSuccessLock
(in short testV), from the widely used Hadoop project [1]. The test suite for
this test has 392 tests. This test is from the MapReduce (MR) framework and
aims to check an MR application. This test is a victim because it passes when
run by itself but has two polluter tests. If the victim is run after either one of its
polluter tests (and no cleaner runs in between the polluter and the victim), then
the victim fails with a NullPointerException. Figure 2 shows a snippet of one
of these two polluter tests, testSigTermedFunctionality (in short testP).

These tests form a polluter-victim pair because they share a global state,
namely all “active” jobs stored in a static map in the JobHistoryEventHandler



274 A. Wei et al.

class. (In JUnit 4, only the heap state reachable from the class fields declared
as static is shared across tests; JUnit does not automatically reset that state,
but developers can add setup and teardown methods to reset the state.) To
check an MR application, testV first sets up some state (Line 2), then cre-
ates an MR application (Line 3), and starts the application (Line 7). The
NullPointerException arises when the test tries to stop the MR application
(Line 10). Specifically, the appMaster accesses the shared map data structure
that tracks all jobs run by any application. When testV is run after testP, then
appMaster will attempt to stop a job created by the polluter, although the job
has already been stopped.

This static map is empty when the JVM starts running a test order, and
it is also explicitly cleared by some tests. In fact, we find 11 cleaner tests
that clear the map, and the victim passes when any one of these 11 tests
is run between testP and testV. Interestingly, for the other polluter test,
testTimelineEventHandling (in short testP’), the victim fails for the same
reason, but testP’ has 31 cleaners—the same 11 as testP and 20 other cleaners.
Our manual inspection finds that the testP’ polluter has other cleaners because
the job created by testP’ is named job 200 0001, while the job created by the
testP polluter is a mock object. The 20 other cleaners also create and stop
jobs named job 200 0001 and therefore act as cleaners for the testP’ polluter
but not the testP polluter. This example illustrates not only how victims and
polluters work but also the complexity in how these tests interact with cleaners.

In Section 4.2, we explore how to compute the flake rate for a victim test, i.e.,
the probability that the test fails in a randomly sampled test order of all tests
in the test suite. For this example, the 392 tests could, in theory, be run in 392!
(∼ 10848) test orders (permutations), but in practice, JUnit never interleaves
test methods from different test classes. These tests are split into 48 classes
that actually have ∼ 10234 test orders that JUnit could run. The relevant 34
tests (1 victim, 2 polluters, and 31 cleaners) belong to 8 test classes: 2 polluters
belong to one class (TestJobHistoryEventHandler), 11 cleaners belong to the
same class as the polluters, 1 cleaner belongs to the same class as the victim
(TestMRAppMaster), and the remaining 19 cleaners belong to six other classes.
For this victim, randomly sampling the orders that JUnit could run gives a
flake rate of 4.5%. In Section 4.4, we propose a simple change to increase the
probability of detecting OD tests by running a reverse of each passing test order.
For this victim, the conditional probability that the reverse order fails is 4.9%.

A commonly asked question is whether all detected OD tests should be fixed.
While ideally all flaky tests should be fixed, some are not fixed [21,23]. For the
majority of OD tests, fixing them is good to prevent flaky-test failures that
can mislead the developers into debugging the wrong parts of the code; also,
fixing OD tests enables tests to be run in any order, which then enables the use
of beneficial regression-testing techniques [23]. Some OD tests are intentionally
run in specific orders (e.g., using the @FixMethodOrder annotation in JUnit) to
speed up testing by reusing states. We have submitted fixes for a large number
of flaky tests in our prior work [19].
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3 Preliminaries

We next formalize the concepts that we have introduced informally and define
some new concepts. Let T = {t1, t2, . . . , tn} be a set of n tests partitioned in k
classes C = {C1, C2, . . . , Ck}. We use class(t) to denote the class of test t. Each
class Ci has ni = |{t ∈ T | class(t) = Ci}| tests.

We use ω(T ′) to denote a test order, i.e., a permutation of tests in T ′ ⊆ T ,
and drop T ′ when clear from the context. We use ωi to denote the i-th test
in the test order ω, and |ω| to denote the length of a test order as measured
by the number of tests. We use t ≺ω t′ to denote that test t is before t′ in
the test order ω. We will analyze some cases that allow all n! permutations,
potentially interleaving tests from different classes. We use ΩA(T ) to denote the
set of all test orders for T . Some testing tools [47] explore all these test orders,
potentially generating false alarms because most testing frameworks [4,17,38,41]
do not allow all these test orders.

We are primarily concerned with class-compatible test orders where all tests
from each class are consecutive, i.e., if class(ωi) = class(ωi′), then for all j
with i < j < i′, class(ωi) = class(ωj). We use ΩC(T ) to denote the set of all
class-compatible test orders for T . The number of such class-compatible test
orders is k!

∏k
i=1 ni!. Section 4.2 presents how to compute the flake rate, i.e.,

the percentage of test orders in which a given victim test (with its polluters and
cleaners) fails.

Section 5 presents how to systematically generate test orders to ensure that
all test pairs are covered. A test pair 〈t, t′〉 consists of two distinct tests t �= t′. We
say that a test order ω covers a test pair 〈t, t′〉, in notation cover(ω, 〈t, t′〉), iff the
two tests are consecutive in ω, i.e., ω = 〈. . . , t, t′, . . .〉. Considering consecutive
tests is important because a victim may not fail if not run right after a polluter,
i.e., when a cleaner is run between the polluter and the victim. A set of test
orders Ω covers the union of test pairs covered by each test order ω ∈ Ω. In
general, test orders in a set can be of different lengths. Each test order ω covers
|ω| − 1 test pairs.

We distinguish intra-class test pairs, where class(t) = class(t′), and inter-
class test pairs, where class(t) �= class(t′). Of the total n(n− 1) test pairs, each
class Ci has ni(ni − 1) intra-class test pairs, and the number of inter-class test
pairs is 2

∑
1≤i<j≤k ninj . Each class-compatible test order of all T tests covers

ni − 1 intra-class test pairs for each class Ci and k − 1 inter-class test pairs.
We aim to generate a set of test orders Ω that cover all test pairs3. If we

consider ΩA(T ) that allows all test orders, we need at least n test orders to
cover all n(n−1) test pairs. When we have only one class or all classes have only
one test, then all test orders are class-compatible. However, consider the more
common case when we have more than one class and some class has more than
one test. If we consider ΩC(T ) that allows only class-compatible test orders,
we need at least maxki=1 ni test orders to cover all intra-class test pairs and at

3 This problem should not be confused with pairwise testing [33], which typically aims
to cover pairs of values from different test parameters.
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least M = 2
∑

1≤i<j≤k ninj/(k− 1) test orders to cover all inter-class test pairs;

because M > maxki=1 ni, we need at least M class-compatible test orders to
cover all test pairs.

More precisely, we aim to generate a set of test orders Ω that has the lowest
cost for test execution. The cost for each test order ω can be modeled well as
a sum of a fixed cost Cost0 (e.g., corresponding to the time required to start a
JVM and load required classes) and a cost for each test (e.g., the time to execute
the test method): Cost(ω) = Cost0 +

∑
t∈ω Cost(t). The cost for a set of test

orders is then simply the sum of individual costs Cost(Ω) =
∑

ω∈Ω Cost(ω). For
example, a trivial way to cover all test pairs is with a set of test orders where
each test order is just a test pair: Ωp = {〈t, t′〉 | t, t′ ∈ T ∧ t �= t′}; however, the
cost is unnecessarily high: Cost(Ωp) = n(n− 1)Cost0 + 2(n− 1)Cost(T ), where
Cost(T ) =

∑
t∈T Cost(t).

To simplify, we can assume that each test in T has the same cost, say, Cost1,
and then Cost(Ωp) = n(n− 1)Cost0 +2n(n− 1)Cost1. In the optimal case, each
test order would be a permutation of n tests covering n − 1 test pairs, and the
number of test orders would be just n(n− 1)/(n− 1) = n. Therefore, the lowest
cost is Cost(Ωopt) = nCost0 + n2Cost1, demonstrating that the factor for Cost0
can be substantially reduced, while the factor for Cost1 is nearly halved ( n

2(n−1) ).

However, in most realistic cases, due to the constraints of class-compatible test
orders and the big differences in the number of tests across different classes, we
cannot reach the optimal case.

3.1 Dataset for Evaluation

Besides deriving some analytical results, we also run some empirical experiments
on flaky tests from Java projects. Our recent work [25] ran the iDFlakies tool
on most test suites in the projects from the iDFlakies dataset [15] using the
configurations recommended by our iDFlakies work [22]. Specifically, we ran 100
randomly sampled test orders from ΩC(T ) and 1 test order that is the reverse
order of what Maven Surefire [29] runs by default. Note that unlike our work in
Section 4.4, where we propose running a reverse test order of every test order
where all tests passed, the one reverse order that we ran in our recent work [25]
may or may not have been from a passing test order, and the reverse order is
run only once and not for every passing test order.

Each project in the iDFlakies dataset is a Maven-based, Java project orga-
nized into one or more modules, which are (sub)directories that organize code
under test and test code. Each module contains its own test suite. For the re-
mainder of the paper, we use the 121 modules in which our recent work [25]
found at least one flaky test (but not necessarily OD test). To illustrate diver-
sity among these 121 modules, the number of classes ranges from 1 to 2215, with
an average of 61, and the total number of tests ranges from 1 to 4781, with an
average of 287. The number of tests per class ranges from 1 to 200, with an
average of 4.8.

When we run some of the test orders generated by our systematic test-pair
exploration as described in Section 5.2, we detect a total of 249 OD tests in 44
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of the 121 modules. Of the 249 OD tests, 57 are brittles and 192 are victims.
Compared to the OD tests detected in our prior work [22,24,25] that used the
iDFlakies dataset, we find 44 new OD tests that have not been detected before.
Of the 44 OD tests, 1 is brittle and 43 are victims. One of the newly detected
victim tests (testMRAppMasterSuccessLock) is shown in Section 2.

4 Analysis of Flake Rate and Simple Algorithm Change

We next discuss how to compute the flake rate for each OD test. Let T be a test
suite with an OD test. Prior work [22,24,25,47] would run many test orders of T
and compute the flake rate for each test as a ratio of the number of test failures
and the number of test runs. However, failures of flaky tests are probabilistic,
and running even many test orders may not suffice to obtain the true flake rate
for each test. Running more test orders is rather costly in machine time; in the
limit, we may need to run all |T |! permutations to obtain the true flake rate for
OD tests. To reduce machine time needed for computing the flake rate for OD
tests, we first propose a new procedure, and then derive formulas based on this
procedure. We finally show a simple change for sampling random test orders to
increase the probability of detecting OD tests.

4.1 Determining Test Outcome without Running a Test Order

We use a two-step procedure to determine the test outcome for a given OD test.
We assume that some prior runs already detected the OD test, and the goal is
to determine the test outcome for some new test orders that were not run.

In Step 1, we classify how each test from T relates to each OD test in a simple
setting that runs only up to three tests. Specifically, we first determine whether
an OD test t is a victim or a brittle by running the test in isolation, i.e., just
〈t〉, by itself 10 times: if t always passes, it is considered a victim (although it
may be an ND test); if t always fails, it is considered a brittle (although it may
be an ND test); and if t sometimes passes and sometimes fails, it is definitely an
ND, not OD, test. This approach was proposed for iFixFlakies [37], and using
10 runs is a common industry practice to check whether a test is flaky [31,40].

We then find (1) for each victim, all its single polluters in T and also all
single cleaners for each polluter, and (2) for each brittle, all its single state-
setters in T . To find polluters (resp. state-setters) of a victim (resp. brittle) test,
iFixFlakies [37] takes as input a test order (of entire T ) where the test failed
(resp. passed) and then searches the prefix of the test in that test order using
delta debugging [46] (an extended version of binary search). While iFixFlakies
can find all polluters (resp. state-setters) in the prefix, it does not necessarily
find all polluters in T , and it takes substantial time to find these polluters using
delta debugging. The experiments show that in 98% of cases, binary search finds
one test to be a polluter, although some rare cases need a polluter group that
consists of two tests.
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We propose a simpler and faster approach to find polluters (resp. state-
setters) for the most common case: for each victim v (resp. brittle b) and each
test t ∈ T \{v} (resp. t ∈ T \{b}), we run a pair of the test and the victim (resp.
brittle), i.e., 〈t, v〉 (resp. 〈t, b〉). If the victim fails (resp. brittle passes), then the
test t is a polluter (resp. state-setter). Further, for each victim v, its polluter
p, and a test t ∈ T \ {v, p}, we run a triple of 〈p, t, v〉, and if v passes, then t
is a cleaner for the pair of v and p. Note that for the same victim v, different
polluters may have different cleaners such as the example presented in Section 2.

In Step 2, we determine whether each OD test passes or fails in a given test
order using only the abstraction from Step 1, without actually running the test
order. We focus on victims because they are more complex than brittles; brittles
can be viewed as special cases with slight changes (requiring a state-setter to
run before a brittle to pass, rather than requiring a polluter not to run before
a victim to pass). Without loss of generality, we consider one victim at a time.
Intuitively, the victim fails in a test order if a polluter is run before the victim
without a cleaner between the polluter and the victim. Formally, we define the
test outcome as follows.

Definition 1 (Test Outcome from Abstraction). Let T be a test suite with
one victim v ∈ T , polluters P ⊂ T , and a family of cleaners Cp ⊂ T indexed by
each polluter p ∈ P . The outcome of v in a test order ω is defined as follows:

fail(ω) ≡ ∃p ∈ P. p ≺ω v∧ � ∃c ∈ Cp. p ≺ω c ∧ c ≺ω v; pass(ω) ≡ ¬fail(ω).

This definition is an estimate of what one would obtain for all (repeated) runs
of |T |! permutations, for three main reasons: (1) tests may behave differently in
test orders than in isolation [24] (and an OD test may even be an ND test in
some orders [24]); (2) polluters, cleaners, and state-setters may not be single
tests but groups (iFixFlakies [37] reports that groups are rather rare); and (3) a
test that fails in some prefix may behave differently for the tests that come
after it in a test order than when the test passes (again, iFixFlakies [37] reports
this issue to be rare, finding just one such case). Despite these potential sources
of error, our evaluation shows that our use of abstraction obtains flake rates
similar to iDFlakies for orders that iDFlakies ran. Most importantly, our use of
abstraction allows us to evaluate many more orders without actually running
them, thus taking much less machine time.

4.2 Computing Flake Rate

We next define flake rate, derive formulas for computing flake rate for two cases,
and show why we need to sample test orders for other cases.

Definition 2 (Flake Rate). For a test suite T with exactly one victim, given
a set of test orders Ω(T ), the flake rate is defined as the ratio:

f(T ) = |{ω ∈ Ω(T ) | fail(ω)}| / |Ω(T )|;

we use the subscript fA and fC when we need to refer specifically to the flake
rate for ΩA(T ) and ΩC(T ) (defined in Section 3), respectively.
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We derive the formula for flake rate based on the number of polluters P and
cleaners C for two special cases. In general, computing the flake rate can ignore
tests that are not relevant, i.e., not in {v}∪P ∪

⋃
p∈P Cp. It is easy to prove that

f(T ) = f(T ′) if T and T ′ have the same victim, polluters, and cleaners—the
reason is that the tests from T \ T ′ are irrelevant in any order and do not affect
the outcome of v; we omit the proof due to space limit. The further analysis
thus focuses only on the relevant tests.
Special Case 1: Assume that (A1) all polluters have the same set C of cleaners:
C = Cp, ∀p ∈ P ; and (A2) all of the victim, polluters, and cleaners are in the
same class: ∀t, t′ ∈ {v}∪P ∪C.class(t) = class(t′); it means that ΩA(T ) = ΩC(T )
and fA = fC . Let π = |P | and γ = |C|. The total number of permutations of
the relevant tests is (π + γ + 1)!. While we can obtain |{ω ∈ Ω(T ) | fail(ω)}|
purely by definition, counting test orders where the victim fails, we prefer to
take a probabilistic approach that will simplify further proofs. A victim fails
if (1) it is not in the first position, with probability (π + γ)/(π + γ + 1), and
(2) its immediate predecessor is a polluter, with probability π/(π + γ), giving
the overall flake rate f(T ) = π/(π + γ + 1). This formula is simple, but real
test suites often violate A1 or A2. Of the 249 tests used in our experiments, 13
violate both A1 and A2, 207 violate only A2, and only 29 do not violate either.
Special Case 2: Keeping A1 but relaxing A2, assume that the victim is in class
C1 with π1 polluters and γ1 cleaners, and the other k−1 classes have πi polluters
and γi cleaners, 2 ≤ i ≤ k, where in general, either πi or γi, but not both, can be
zero for any class except for the victim’s own class where both π1 and γ1 can be
zero. Per Special Case 1, we have fA(T ) = (

∑k
i=1 πi)/(

∑k
i=1 πi +

∑k
i=1 γi + 1).

Next, consider class-compatible test orders, which do not interleave tests from
different classes. The victim fails if (1) it fails in its own class, with probability
π1/(π1 + γ1 + 1), or (2) the following three conditions hold: (2.1) the victim is
the first in its own class, with probability 1/(π1 + γ1 + 1), (2.2) the class is not
the first among classes, with probability (k − 1)/k, and (2.3) the immediately
preceding class ends with a polluter, with probability πi/(πi + γi) for each class

i and thus the probability
∑k

i=2(πi/(πi+ γi))/(k− 1) across all classes. Overall,

fC(T ) =
π1 +

1
k

∑k
i=2

πi

πi+γi

π1 + γ1 + 1
.

The formula is already more complex. It is important to note that we can have
either fA(T ) ≥ fC(T ) or fC(T ) ≥ fA(T ), based on the ratio of polluters and
cleaners in the victim’s own class vs. the ratio of polluters and victims in other
classes, i.e., neither set of test orders ensures a higher flake rate. We show in
Section 4.3 that both cases arise in practice.
General Case: In the most general case, relaxing A1 to allow different polluters
to have a different set of cleaners, while also having all these relevant tests in
different classes, it appears challenging to derive a closed-form expression for
fA(T ), let alone for fC(T ). We thus resort to estimating flake rates by sampling
orders from ΩA(T ) or ΩC(T ), and counting what ratio of them fail based on
Definition 1 in Section 4.3.
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Fig. 3. Distribution of flake rate for two sets of test orders.

4.3 Comparing Flake Rate for Different Sets of Test Orders

While tools such as iDFlakies [22] incorporate the requirement of not interleaving
tests from different classes in a test order, some other tools [47] do not incorporate
this requirement, so they allow all test orders. Recall that ΩA(T ) denotes the
set of all test orders and ΩC(T ) denotes the set of test orders that satisfy the
requirement. The reason to run ΩA(T ) is to try to maximize the detection of all
potential OD tests at the risk that some detected failures would be false positives.
In particular, a test failure observed in some non-class-compatible order may
not be reproducible in any class-compatible prefix of that order, e.g., due to
the various ways to customize JUnit [17] (with annotations such as @Before,
@BeforeClass, @Rule) or similar testing frameworks. The reason to run only
ΩC(T ) is to detect OD-test failures that developers can observe from running
the tests and are therefore motivated to fix.

While both sets of test orders can detect all true positive OD tests, it is not
clear which set of test orders are more likely to detect true positive OD tests.
Intuitively, running ΩA(T ) test orders can more likely detect failures if cleaners
and victims are in the same class, while polluters are in different classes; in such
cases, polluters are less likely to come in between cleaners and the victim. For
example, for the victim presented in Section 2, the ΩA(T ) flake rate is 10.5%,
while the ΩC(T ) flake rate is 4.5%. On the other hand, running ΩC(T ) test
orders can more likely detect failures if polluters and victims are in the same
class, while cleaners are in different classes. Similar reasoning applies to brittles:
if state-setters are more often in the same test class as the brittle, then the brittle
is less likely to fail than if state-setters are more often in other classes.

To compare these sets of test orders on real OD tests, we use the dataset of
192 victim and 57 brittle tests described in Section 3.1. We collect all single test
polluters for each victim and all single test cleaners for each polluter-victim pair.
We also collect all single test state-setters for the brittles. We then use either the
formulas presented in Section 4.2 or a large number of uniformly sampled test
orders to obtain the flake rates, fA(T ) and fC(T ), for each test. Specifically, our
formulas apply for 236 of the 249 tests. For the remaining 13 tests (all victims),
we sample 100,000 test orders from each of ΩA(T ) and ΩC(T ) to estimate their
flake rates.

Figure 3 summarizes the results. For each set of test orders, the figure shows
a boxplot that visualizes the distribution of flake rates for 249 OD tests. The
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fA(T ) flake rates have a slightly higher mean (38.4%) than the fC(T ) flake
rates (38.0%). Statistical tests for paired samples of the flake rates—specifically,
dependent Student’s t-test obtains a p-value of 0.47 and Wilcoxon signed-rank
test obtains a p-value of 0.01—show that the differences could be statistically
significant (at α = 0.05 level). However, if we omit the 13 tests that required
samplings, the means are 38.3% for fA(T ) and 38.6% for fC(T ), and the differ-
ence is not statistically significant (dependent Student’s t-test obtains a p-value
of 0.55, and Wilcoxon signed-rank test obtains a p-value of 0.19).

Prior work [6,22,24,47] has not performed any explicit comparison between
the two sets of test orders. Our results demonstrate that running ΩA(T ) might
be more likely to detect true positive OD tests. However, using such test orders
may contain false positives. Future work on detecting OD tests should explore
how to address false positives if ΩA(T ) test orders are run.

4.4 Simple Change to Increase Probability of Detecting OD Tests

Inspired by our probability analysis, we propose a simple change to increase
the probability of detecting OD tests. The standard algorithm for sampling S
random test orders simply repeats S times the following steps: (1) ω ← sample a
random test order from possible test orders (ΩA(T ) or ΩC(T )); (2) obtain result
r ← run(ω); (3) if r is FAIL, then print ω. (A variant [22] may store previously
sampled test orders to avoid repetition, but the number of possible test orders
is usually so large that sampling the same one is highly unlikely, so one can save
space and time by not tracking previously sampled test orders.)

Our key change is to select the next test order as a reverse of the prior test
order that passed: (4) if r is PASS, then ωR ← reverse(ω). The intuition for this
change is that a passing order may have the polluter after the victim. Therefore,
reversing the passing order would have the polluter before the victim, and thus
the reverse of the passing order should have a higher probability to fail than a
random order that may have the polluter before or after the victim. Note that
the reverse of a class-compatible test order is also a class-compatible test order,
so this change applies to ΩC(T ). The other changes are to run ωR, print if it fails,
and properly count the test orders to select exactly S samples of test orders.

We next compute the probability that the reverse of a passing order fails.
Special Case 1: Consider the Special Case 1 scenario from Section 4.2 with π
polluters and γ cleaners. For the standard algorithm, f(T ) = fA(T ) = fC(T ) =
π/(π + γ + 1). For our change, the conditional probability that the second
test order fails given that the first test order passes is P (fail(ωR)|pass(ω)) =
P (fail(ωR) ∧ pass(ω))/P (pass(ω)). We already have P (pass(ω)) = 1 − f(T ) =
(γ + 1)/(π + γ + 1).

To compute P (fail(ωR)∧pass(ω)), we consider two cases based on the position
of the victim in the passing test order ω. (1) If the victim is first, with the
probability of 1/(π+ γ + 1), then the second test should be a polluter, with the
probability of π/(π+γ), so we get π/((π+γ)(π+γ+1)) for this case. (2) If the
victim is not first, it cannot be the last in ω because otherwise, ωR would not
fail, so the victim is in the middle, with the probability of (π+γ−1)/(π+γ+1).
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We also need a cleaner right before the victim, with probability γ/(π + γ), and
a polluter right after the victim, with probability π/(π+ γ − 1). Overall, we get
the probability πγ/((π + γ)(π + γ + 1)) for this case. We can sum up the two
cases to get P (fail(ωR) ∧ pass(ω)) = π(γ + 1)/((π + γ)(π + γ + 1)).

Finally, the conditional probability that the reverse test order fails given

the first test order passes is P (fail(ωR)|pass(ω)) = ( π(γ+1)
(π+γ)(π+γ+1) )/(

γ+1
π+γ+1 ) =

π/(π+ γ). This probability is strictly larger than f(T ) = π/(π+ γ+1), because
π > 0 must be true for the victim to be a victim.

Special Case 2: For the Special Case 2 scenario from Section 4.2, the common
case is π1 + γ1 > 0 (i.e., the victim’s class C1 has at least one other relevant
test). Based on the relative position of the victim in class C1, we consider three
cases: the victim runs first, in the middle, or last in class C1. After calculating
the probability for the three cases separately and summing them up, we get the
probability that the reverse test order fails and the first test order passes as

P (fail(ωR) ∧ pass(ω)) =
π1+kπ1γ1+π1Sγ+γ1(π1+γ1+1)Sπ

k(π1+γ1)(π1+γ1+1) where Sπ =
∑k

i=2
πi

πi+γi

and Sγ =
∑k

i=2
γi

πi+γi
. In Section 4.2, we have computed P (pass(ω)), so dividing

P (fail(ωR) ∧ pass(ω)) by P (pass(ω)) gives the conditional probability that the
reverse test order fails given the first test order passes. Due to the complexity of
the formulas, it is difficult to show a detailed proof that P (fail(ωR)|pass(ω)) >
f(T ), so we sample test orders instead.

When we sample both ΩA(T ) and ΩC(T ) for 100,000 random test orders
on all 249 OD tests without reverse (i.e., the standard algorithm) and with
reverse when a test order passes (i.e., our change), we find that our change does
statistically significantly increase the chance to detect OD tests. Specifically, for
ΩA(T ), test orders without reverse obtain a mean of 38.6%, while test orders
with reverse of passing test orders obtain a mean of 45.3%. Statistical tests for
paired samples on the flake rates without and with reverse for ΩA(T ) show a
p-value of ∼ 10−38 for dependent Student’s t-test and a p-value of ∼ 10−43

for Wilcoxon signed-rank test. Similarly, for ΩC(T ), test orders without reverse
obtain a mean of 38.0%, while test orders with reverse of passing test orders
obtain a mean of 45.3%. Statistical tests for paired samples on the flake rates
without and with reverse for ΩC(T ) show a p-value of ∼ 10−42 for dependent
Student’s t-test and a p-value of ∼ 10−42 for Wilcoxon signed-rank test.

Based on these positive results, we have changed the iDFlakies tool [22] so
that, by default, it runs the reverse of the previous order, instead of running a
random order, if the previous order found no new flaky test.

5 Generating Test Orders to Cover Test Pairs

We next discuss our algorithm to generate test orders that systematically cover
all test pairs for a given set T with n tests. The motivation is that even with our
change to increase the probability to detect OD tests, the randomization-based
sampling remains inherently probabilistic and can fail to detect an OD test.
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5.1 Special Case: All Orders are Class-Compatible

We first focus on the special case where we have only one class, or many classes
that each have only one test, so all n! permutations are class-compatible. For ex-
ample, for n = 2 we can cover both pairs with Ω2 = {〈t1, t2〉, 〈t2, t1〉}, and for n =
4 we can cover all 12 pairs with 4 test orders Ω4 = {〈t1, t4, t2, t3〉, 〈t2, t1, t3, t4〉,
〈t3, t2, t4, t1〉, 〈t4, t3, t1, t2〉}. Recall that n is the minimum number of test orders
needed to cover all test pairs, so the cases for n = 2 and n = 4 are optimal. The
reader is invited to consider for n = 3 whether we can cover all 6 test pairs with
just 3 test orders. The answer is upcoming in this section.

To address this problem, we consider Tuscan squares [7], objects studied in
the field of combinatorics. Given a natural number n, a Tuscan square consists
of n rows, each of which is a permutation of the numbers {1, 2, . . . , n}, and every
pair 〈i, j〉 of distinct numbers occurs consecutively in some row. Tuscan squares
are sometimes called “row-complete Latin squares” [34], but note that Tuscan
squares need not have each column be a permutation of all numbers.

A Tuscan square of size n is equivalent to a decomposition of the complete
graph on n vertices, Kn, into n Hamiltonian paths [42]. The decomposition
for even n has been known since the 19th century and is often attributed to
Walecki [26]. The decomposition for odd n ≥ 7 was published in 1980 by Till-
son [42]. Tillson presented a beautiful construction for n = 4m+ 3 and a rather
involved construction for n = 4m + 1 with a recursive step and manually con-
structed base case for n = 9. In brief, Tuscan squares can be constructed for all
values of n except n = 3 or n = 5. We did not find a public implementation for
generating Tuscan squares, and considering the complexity of the case n = 4m+1
in Tillson’s construction, we have made our implementation public [44].

We can directly translate permutations from Tuscan squares into n test orders
that cover all test pairs in this special case (where all test pairs are either only
intra-class test pairs of one class or only inter-class test pairs of n classes).
These sets of test orders have the minimal possible cost: Cost(Ωn) = n(Cost0 +
Cost(T )), substantially lower than Cost(Ωp) for running all test pairs in isolation.
For n = 3 and n = 5, we have to use 4 and 6 test orders, respectively, to cover
all test pairs. For example, for n = 3 we can cover all 6 pairs with 4 orders
{〈t1, t2, t3〉, 〈t2, t1, t3〉, 〈t3, t1〉, 〈t3, t2〉}.

5.2 General Case

Algorithm 1 shows the pseudo-code algorithm to generate test orders that cover
all test pairs in the general case where we have more than one class and at
least one class has more than one test. The main function calls two functions to
generate test orders that cover intra-class and inter-class test pairs.

The function cover intra class pairs generates test orders that cover all
intra-class test pairs. For each class, the function compute tuscan square is
used to generate test orders of tests within the class to cover all intra-class
test pairs. These test orders for each class are then appended to form a test
order for the entire test suite T . The function pick, invoked on multiple lines,
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Algorithm 1: Generate test orders that cover all intra-test-class and
inter-test-class test-method pairs

1 Input: T # test suite, a set of test methods partitioned into test classes
2 Output: Ω # output is a set of test orders
3 Function cover all pairs():
4 Ω = {} # empty set
5 cover intra class pairs()
6 cover inter class pairs()

7 Function cover intra class pairs():
8 map = {} # map each class to all its intra-class orders
9 for C ∈ classes(T ) do

10 map = map ∪ {〈C,ωC〉 |ωC ∈ compute tuscan square(C)}
11 while map �= {} do
12 ω = 〈〉 # empty order
13 Cs = {C | ∃ωC . 〈C,ωC〉 ∈ map}
14 for C ∈ Cs do
15 ωC = pick({ωC | 〈C,ωC〉 ∈ map})
16 map = map \ {〈C,ωC〉}
17 ω = ω ⊕ ωC # append order

18 Ω = Ω ∪ {ω}

19 Function cover inter class pairs():
20 pairs = {〈t, t′〉 | t, t′ ∈ T ∧ class(t) �= class(t′)}\ # from all inter-class pairs..
21 {〈t, t′〉 | ∃ω ∈ Ω. cover(ω, 〈t, t′〉)} # ..remove covered by intra-class orders
22 while pairs �= {} do
23 ω = pick(pairs) # start with a randomly chosen not-covered pair
24 pairs = pairs \ {ω}
25 while true do
26 tp = ω|ω|−1 # previously last test
27 ts = {t | 〈tp, t〉 ∈ pairs ∧ class(t) /∈ classes(ω)}
28 if ts = {} then
29 break
30 tn = pick(ts) # next test to extend order
31 pairs = pairs\{〈tp, tn〉}
32 ω = ω ⊕ tn

33 Ω = Ω ∪ {ω}

chooses a random element from a set. The outer loop iterates as many times
as the maximum number of intra-class test orders for any class. When the loop
finishes, Ω contains a set of test orders that cover all intra-class and some inter-
class test pairs. Each test order that concatenates tests from l classes covers
l − 1 inter-class test pairs. (Using just these test orders, we already detected 44
new OD tests in the test suites from the iDFlakies dataset.) Each intra-class
test pair is covered by exactly one test order. Modulo the special cases for n = 3
and n = 5, each covered inter-class pair appears in exactly one test order in
Ω, because Tuscan squares satisfy the invariant that each element appears only
once as the first and once as the last in the permutations in a Tuscan square.
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The function cover inter class pairs generates more test orders to cover
the remaining inter-class test pairs. It uses a greedy algorithm to first initialize a
test order with a randomly selected not-covered test pair and then extend the test
order with a randomly selected not-covered test pair as long as an appropriate
test pair exists. Extending the test order as long as possible reduces both the
number of test orders and the number of times each test needs to be run.

We evaluate our randomized algorithm on 121 modules from the iDFlakies
dataset as described in Section 3.1. We use the total cost, which considers the
number of test orders and the number of tests in all of those test orders. The
number of test orders is related to Cost0, while the number of tests is related to
Cost1 as defined in Section 3. We run our algorithm 10 times for various random
seeds. The coefficient of variation [3] for each module shows that the algorithm
is fairly stable, with the average for all modules being only 1.1% and 0.25% for
the number of test orders and the number of tests, respectively.

Compared with Ωp that has all test orders of just test pairs, our randomized
algorithm’s average number of test orders and the average number of tests are
only 3.68% and 51.8%, respectively, that of all the Ωp test orders. The overall
cost of the test orders generated by our randomized algorithm is close to the
optimal, because the number of test orders is reduced by almost two orders of
magnitude, and 51.8% of the number of tests is close to the theoretical minimum
of 50% that of Ωp test orders for Cost1.

6 Conclusion

Order-dependent (OD) tests are one prominent category of flaky tests. Prior
work [22,24,47] has used randomized test orders to detect OD tests. In this
paper, we have presented the first analysis of the probability that randomized
test orders detect OD tests. We have also proposed a simple change for sampling
random test orders to increase the probability of detecting OD tests. We have
finally proposed a novel algorithm that systematically explores all consecutive
pairs of tests, guaranteeing to find all OD tests that depend on one other test.
Our experimental results show that our algorithm runs substantially fewer tests
than a naive exploration that runs all pairs of tests. Our runs of some test
orders generated by the algorithm detect 44 new OD tests, not detected in prior
work [22,24,25] on the same evaluation dataset.
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Probabilistic and Systematic Coverage of Test Pairs 287

27. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: FSE (2014)

28. Maven (2020), https://maven.apache.org
29. Maven Surefire plugin (2020), https://maven.apache.org/surefire/

maven-surefire-plugin
30. Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., Micco,

J.: Taming Google-scale continuous testing. In: ICSE SEIP (2017)
31. Micco, J.: The state of continuous integration testing at Google. In: ICST (2017)
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Abstract. Timed automata (TA) have shown to be a suitable formal-
ism for modeling real-time systems. Moreover, modern model-checking
tools allow a designer to check whether a TA complies with the system
specification. However, the exact timing constraints of the system are of-
ten uncertain during the design phase. Consequently, the designer is able
to build a TA with a correct structure, however, the timing constraints
need to be tuned to make the TA comply with the specification.
In this work, we assume that we are given a TA together with an exis-
tential property, such as reachability, that is not satisfied by the TA. We
propose a novel concept of a minimal sufficient reduction (MSR) that
allows us to identify the minimal set S of timing constraints of the TA
that needs to be tuned to meet the specification. Moreover, we employ
mixed-integer linear programming to actually find a tuning of S that
leads to meeting the specification.

Keywords: Timed Automata · Relaxation · Design · Reachability.

1 Introduction

A timed automaton (TA) [4] is a finite automaton extended with a set of real-time
variables, called clocks, which capture the time. The clocks enrich the semantics
and the constraints on the clocks restrict the behavior of the automaton, which
are particularly important in modeling time-critical systems. The examples of
TA models of critical systems include scheduling of real-time systems [30,29,33],
medical devices [43,38], and rail-road crossing systems [52].

Model-checking methods allow for verifying whether a given TA meets a given
system specification. Contemporary model-checking tools, such as UPPAAL [17]
or Imitator [9], have proved to be practically applicable on various industrial case
studies [17,10,34]. Unfortunately, during the system design phase, the system in-
formation is often incomplete. A designer is often able to build a TA with correct
structure, i.e., exactly capturing locations and transitions of the modeled system,
however the exact clock (timing) constraints that enable/trigger the transitions
are uncertain. Thus, the produced TA often does not meet the specification (i.e.,
it does not pass the model-checking) and it needs to be fixed. If the specification
declares universal properties, e.g., safety or unavoidability, that need to hold on
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each trace of the TA, a model-checker either returns “yes”, or it returns “no”
and generates a trace along which the property is violated. This trace can be
used to repair the model in an automated way [42]. However, in the case of ex-
istential properties, such as reachability, the property has to hold on a trace of
the TA. The model-checker either returns “yes” and generates a witness trace
satisfying the property, or returns just “no” and does not provide any additional
information that would help the designer to correct the TA.

Contribution. In this paper, we study the following problem: given a timed
automaton A and a reachability property that is not satisfied by A, relax clock
constraints of A such that the resultant automaton A1 satisfies the reachability
property. Moreover, the goal is to minimize the number of the relaxed clock
constraints and, secondary, also to minimize the overall change of the timing
constants used in the clock constraints. We propose a two step solution for this
problem. In the first step, we identify a minimal sufficient reduction (MSR) of A,
i.e., an automaton A2 that satisfies the reachability property and originates from
A by removing only a minimal necessary set of clock constraints. In the second
step, instead of completely removing the clock constraints, we employ mixed in-
teger linear programming (MILP) to find a minimal relaxation of the constraints
that leads to a satisfaction of the reachability property along a witness path.

The underlying assumption is that during the design the most suitable timing
constants reflecting the system properties are defined. Thus, our goal is to gen-
erate a TA satisfying the reachability property by changing a minimum number
of timing constants. Some of the constraints of the initial TA can be strict (no
relaxation is possible), which can easily be integrated to the proposed solution.
Thus, the proposed method can be viewed as a way to handle design uncertain-
ties: develop a TA A in a best-effort basis and apply our algorithm to find a A1
that is as close as possible to A and satisfies the given reachability property.

Related Work. Another way to handle uncertainties about timing constants
is to build a parametric timed automaton (PTA), i.e., a TA where clock con-
stants can be represented with parameters. Subsequently, a parameter synthesis
tool, such as [46,9,26], can be used to find suitable values of the parameters for
which the resultant TA satisfies the specification. However, most of the param-
eter synthesis problems are undecidable [6]. While symbolic algorithms without
termination guarantees exist for some subclasses [25,39,12], these algorithms are
computationally very expensive compared to model checking (see [5]). Moreover,
minimizing the number of modified clock constraints is not straightforward.

A related TA repair problem has been studied in a recent work [7], where the
authors also assumed that some of the constraints are incorrect. To repair the
TA, they parametrized the initial TA and generated parameters by analyzing
traces of the TA. However, the authors [7] do not focus on repairing the TA
w.r.t. reachability properties as we do. Instead, their goal is to make the TA
compliant with an oracle that decides if a trace of the TA belongs to a system
or not. Thus, their approach cannot handle reachability properties. Furthermore
in [7], the total change of the timing constraints is minimized, while we primarily
minimize the number of changed constraints, then the total change.
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x :“ 0, z :“ 0

e8 x ě 9 ^ u ě 35

x :“ 0, u :“ 0

y ď 15 ^ x ě 9

e9 t ď 45^

Fig. 1. An example of a timed automaton.

2 Preliminaries and Problem Formulation

2.1 Timed Automata

A timed automaton (TA) [3,4,44] is a finite-state machine extended with a finite
set C of real-valued clocks. A clock x P C measures the time spent after its last
reset. In a TA, clock constraints are defined for locations (states) and transitions.
A simple clock constraint is defined as x´y „ c where x, y P CYt0u, „ P tă,ďu
and c P ZYt8u.3 Simple clock constraints and constraints obtained by combining
these with conjunction operator (^) are called clock constraints. The sets of
simple and all clock constraints are denoted by ΦSpCq and ΦpCq, respectively.
For a clock constraint φ P ΦpCq, Spφq denotes the simple constraints from φ, e.g.,
Spx ´ y ă 10 ^ y ď 20q “ tx ´ y ă 10, y ď 20u. A clock valuation v : C Ñ R`
assigns non-negative real values to each clock. The notation v |ù φ denotes that
the clock constraint φ evaluates to true when each clock x is replaced with vpxq.
For a clock valuation v and d P R`, v ` d is the clock valuation obtained by
delaying each clock by d, i.e., pv ` dqpxq “ vpxq ` d for each x P C. For λ Ď C,
vrλ :“ 0s is the clock valuation obtained after resetting each clock from λ, i.e.,
vrλ :“ 0spxq “ 0 for each x P λ and vrλ :“ 0spxq “ vpxq for each x P Czλ.
Definition 1 (Timed Automata). A timed automaton A “ pL, l0, C,Δ, Invq
is a tuple, where L is a finite set of locations, l0 P L is the initial location, C is
a finite set of clocks, Δ Ď Lˆ 2C ˆ ΦpCq ˆL is a finite transition relation, and
Inv : L Ñ ΦpCq is an invariant function.

For a transition e “ pls, λ, φ, ltq P Δ, ls is the source location, lt is the
target location, λ is the set of clocks reset on e and φ is the guard (i.e., a clock
constraint) tested for enabling e. The semantics of a TA is given by a labelled
transition system (LTS). An LTS is a tuple T “ pS, s0, Σ,Ñq, where S is a set
of states, s0 P S is an initial state, Σ is a set of symbols, and Ñ Ď S ˆΣ ˆ S is
a transition relation. A transition ps, a, s1q P Ñ is also shown as s

aÑ s1.

Definition 2 (LTS semantics for TA). Given a TA A “ pL, l0, C,Δ, Invq,
the labelled transition system T pAq “ pS, s0, Σ,Ñq is defined as follows:

3 Simple constraints are only defined as upper bounds to ease the presentation. This
definition is not restrictive since x ´ y ě c and x ě c are equivalent to y ´ x ď ´c
and 0 ´ x ď ´c, respectively. A similar argument holds for strict inequality pąq.
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– S “ tpl, vq | l P L, v P R|C|
` , v |ù Invplqu,

– s0 “ pl0,0q, where 0pxq “ 0 for each x P C,
– Σ “ tactu Y R`, and
– the transition relation Ñ is defined by the following rules:

‚ delay transition: pl, vq dÑ pl, v ` dq if v ` d |ù Invplq
‚ discrete transition: pl, vq actÑ pl1, v1q if there exists pl, λ, φ, l1q P Δ such that
v |ù φ, v1 “ vrλ :“ 0s, and v1 |ù Invpl1q.

The notation sÑds
1 is used to denote a delay transition of duration d followed

by a discrete transition from s to s1, i.e., s dÑ s
actÑ s1. A run ρ of A is either a

finite or an infinite alternating sequence of delay and discrete transitions, i.e.,
ρ “ s0Ñd0s1Ñd1s2Ñd2 ¨ ¨ ¨ . The set of all runs of A is denoted by rrAss.

A path π of A is an interleaving sequence of locations and transitions, π “
l0, e1, l1, e2, . . ., where ei`1 “ pli, λi`1, φi`1, li`1q P Δ for each i ě 0. A path π “
l0, e1, l1, e2, . . . is said to be realizable if there exists a delay sequence d0, d1, . . .
such that pl0,0qÑd0pl1, v1qÑd1pl1, v2qÑd2 ¨ ¨ ¨ is a run of A and for every i ě 1,
the ith discrete transition is taken according to ei, i.e., ei “ pli´1, λi, φi, liq,
vi´1 ` di´1 |ù φi, vi “ pvi´1 ` di´1qrλi :“ 0s and vi |ù Inv 1pliq.

Given a TAA, a subset LT Ă L of its locations is reachable onA if there exists
ρ “ pl0,0qÑd0pl1, v1qÑd1 . . .Ñdn´1pln, vnq P rrAss such that ln P LT ; otherwise,
LT is unreachable. The reachability problem is decidable and implemented in
various verification tools, e.g., [17,9]. The verifier either returns “No” when the
location is unreachable, or it generates a run (witness) reaching the set LT .

Example 1. Figure 1 illustrates a TA with 8 locations: tl0, . . . , l7u, 9 transitions:
te1, . . . , e9u, an initial location l0, and an unreachable set of locations LT “ tl4u.

2.2 Timed Automata Relaxations and Reductions

For a timed automaton A “ pL, l0, C,Δ, Invq, the set of pairs of transition and
associated simple constraints is defined in (1) and the set of pairs of location
and associated simple constraints is defined in (2).

ΨpΔq “ tpe, ϕq | e “ pls, λ, φ, ltq P Δ,ϕ P Spφqu (1)

ΨpInvq “ tpl, ϕq | l P L,ϕ P SpInvplqqu (2)

Definition 3 (constraint-relaxation). Let φ P ΦpCq be a constraint over C,
Θ Ď Spφq be a subset of its simple constraints and r : Θ Ñ NY t8u be a positive
valued relaxation valuation. The relaxed constraint is defined as:

Rpφ,Θ, rq “
¨
˝ ľ
ϕPSpφqzΘ

ϕ

˛
‚^

˜ ľ
ϕ“x´y„cPΘ

x ´ y „ c ` rpϕq
¸

(3)

Intuitively, Rpφ,Θ, rq relaxes only the thresholds of simple constraints from Θ
with respect to r, e.g., Rpx ´ y ď 10 ^ y ă 20, ty ă 20u, rq “ x ´ y ď 10 ^
y ă 23, where rpy ă 20q “ 3. Setting a threshold to 8 implies removing the
corresponding simple constraint, e.g., Rpx ´ y ď 10 ^ y ă 20, ty ă 20u, rq “
x ´ y ď 10, where rpy ă 20q “ 8. Note that Rpφ,Θ, rq “ φ when Θ is empty.
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Definition 4 ((D, I, r)-relaxation). Let A “ pL, l0, C,Δ, Invq be a TA, D Ď
ΨpΔq and I Ď ΨpInvq be transition and location constraint sets, and r : DYI Ñ
NY t8u be a positive valued relaxation valuation. The (D, I, r)-relaxation of A,
denoted AăD,I,rą, is a TA A1 “ pL1, l10, C 1, Δ1, Inv1q such that:

– L “ L1, l0 “ l10, C “ C 1, and
– Δ1 originates from Δ by relaxing D via r. For e “ pls, λ, φ, ltq P Δ, let D|e “

tϕ | pe, ϕq P Du, and let r|epϕq “ rpe, ϕq, then Δ1 “ tpls, λ,Rpφ,D|e, r|eq, ltq |
e “ pls, λ, φ, ltq P Δu

– Inv1 originates from Inv by relaxing I via r. For l P L, let I|l “ tϕ | pl, ϕq P
Iu, and r|lpϕq “ rpl, ϕq, then Inv1plq “ RpInvplq, I|l, r|lq.
Intuitively, the TA AăD,I,rą emerges from A by relaxing the guards of the

transitions from the set D and relaxing invariants of the locations from I with
respect to r. In the special case of setting the threshold of each constraint from
D and I to 8, i.e., when rpaq “ 8 for each a P D Y I, the corresponding
simple constraints are effectively removed, which is called a (D,I)-reduction and
denoted by AăD,Ią. Note that A “ AăH,Hą.

Proposition 1. Let A “ pL, l0, C,Δ, Invq be a timed automaton, D Ď ΨpΔq
and I Ď ΨpInvq be sets of simple guard and invariant constraints, and r : D Y
I Ñ N Y t8u be a relaxation valuation. Then rrAss Ď rrAăD,I,rąss.
Proof. Observe that for a clock constraint φ P ΦpCq, a subset of its simple
constraints Θ Ď Spφq, a relaxation valuation r1 for Θ, and the relaxed constraint
Rpφ,Θ, r1q as in Definition 3, it holds that for any clock valuation v : v |ù φ ùñ
v |ù Rpφ,Θ, r1q. Now, consider a run ρ “ pl0,0qÑd0pl1, v1qÑd1pl2, v2qÑd2 ¨ ¨ ¨ P
rrAss. Let π “ l0, e1, l1, e2, . . . with ei “ pli´1, λi, φi, liq P Δ for each i ě 1 be
the path realized as ρ via delay sequence d0, d1, . . .. By Definition 4 for each
pl, λ, φ, l1q P Δ, there is pl, λ,Rpφ,D|e, r|eq, l1q P Δ1. We define a path induced by
π on AăD,I,rą as:

Mpπq “ l0, pl0, λ1, Rpφ1, D|e1 , r|e1q, l1q, l1, pl1, λ2, Rpφ2, D|e2 , r|e2q, l2q, . . . (4)

For each i “ 0, . . . , n ´ 1 it holds that vi |ù RpInvpliq, D|li , r|liq, vi ` di |ù
RpInvpliq, D|li , r|liq and vi`di |ù Rpφi`1, D|ei`1 , r|ei`1q. ThusMpπq is realizable
on AăD,I,rą via the same delay sequence and ρ P rrAăD,I,rąss. As ρ P rrAss is
arbitrary, we conclude that rrAss Ď rrAăD,I,rąss.

2.3 Problem Statement

Problem 1. Given a TA A “ pL, l0, C,Δ, Invq and a set of target locations LT Ă
L that is unreachable onA, find a (D, I, r)-relaxationAăD,I,rą ofA such that LT
is reachable on AăD,I,rą. Moreover, the goal is to identify a (D, I, r)-relaxation
that minimizes the number |D Y I| of relaxed constraints, and, secondary, we
tend to minimize the overall change of the clock constraints

ř
cPDYI rpcq.
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We propose a two step solution to this problem. In the first step, we identify
a subset D Y I of the simple constraints ΨpΔq Y ΨpInvq such that LT is reach-
able on the (D, I)-reduction AăD,Ią and |DYI| is minimized. Consequently, we
can obtain a witness path of the reachability on AăD,Ią from the verifier. The
path would be realizable on A if we remove the constraints DY I. In the second
step, instead of completely removing the constraints D Y I, we find a relaxation
valuation r : DYI Ñ NYt8u such that the path found in the first step is realiz-
able on AăD,I,rą. To find r, we introduce relaxation parameters for constraints
in D Y I. Subsequently, we solve an MILP problem to find a valuation of the
parameters, i.e., r, that makes the path realizable on AăD,I,rą and minimizesř
cPDYI rpcq. Note that it might be the case that the reduction AăD,Ią contains

multiple realizable paths that lead to LT , and another path might result in a
smaller overall change. Also, there might exist another candidate subset D1 Y I 1
with |D1 Y I 1| “ |D Y I| that would lead to a smaller overall change. While
our approach can be applied to a number of paths and a number of candidate
subsets D Y I, processing all of them can be practically intractable.

3 Minimal Sufficient (D,I)-Reductions

Throughout this section, we simply write a reduction when talking about a (D,I)-
reduction of A. To name a reduction, we either simply use capital letters, e.g.,
M,N,K, or we use the notation AăD,Ią to also specify the sets D, I of simple
clock constraints. Given a reduction N “ AăD,Ią, |N | denotes the cardinality
|D Y I|. Furthermore, RA denotes the set of all reductions. We define a partial
order relation Ď on RA as AăD,Ią Ď AăD1,I1ą iff DY I Ď D1 Y I 1. Similarly, we
write AăD,Ią Ĺ AăD1,I1ą iff DYI Ĺ D1 YI 1. We say that a reduction AăD,Ią is
a sufficient reduction (w.r.t. A and LT ) iff LT is reachable on AăD,Ią; otherwise,
AăD,Ią is an insufficient reduction. Crucial observation for our work is that the
property of being a sufficient reduction is monotone w.r.t. the partial order:

Proposition 2. Let AăD,Ią and AăD1,I1ą be reductions such that AăD,Ią Ď
AăD1,I1ą. If AăD,Ią is sufficient then AăD1,I1ą is also sufficient.

Proof. Note that AăD1,I1ą is a (D1zD,I 1zI)-reduction of AăD,Ią. By Proposi-
tion 1, rrAăD,Iąss Ď rrAăD1,I1ąss, i.e., the run of AăD,Ią that witnesses the
reachability of LT is also a run of AăD1,I1ą.

Definition 5 (MSR). A sufficient reduction AăD,Ią is a minimal sufficient
reduction (MSR) iff there is no c P DY I such that the reduction AăDztcu,Iztcuą
is sufficient. Equivalently, due to Proposition 2, AăD,Ią is an MSR iff there is
no sufficient reduction AăD1,I1ą such that AăD1,I1ą Ĺ AăD,Ią.

Recall that a reduction AăD,Ią is determined by D Ď ΨpΔq and I Ď ΨpInvq.
Consequently, |RA| “ 2|ΨpΔqYΨpInvq|. Moreover, there can be up to

`
k
k{2

˘
MSRs

where k “ |ΨpΔq Y ΨpInvq| (see Sperner’s theorem [51]). Also note, that the
minimality of a reduction does not mean a minimum number of simple clock
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Algorithm 1: Minimum MSR Extraction Scheme

1 N Ð AăΨpΔq,ΨpInvqą; M Ð H; I Ð H
2 while N ‰ null do
3 M, I Ð shrink(N ,I) // Algorithm 2

4 M Ð M Y tMu
5 N, I Ð findSeed(M , M, I) // Algorithm 3

6 return M

constraints that are reduced by the reduction; there can exist two MSRs, M and
N , such that |M | ă |N |. Since our overall goal is to relax A as little as possible,
we identify a minimum MSR, i.e., an MSR M such that there is no MSR M 1
with |M 1| ă |M |, and then use the minimum MSR for the MILP part (Section 4)
of our overall approach. There can be also up to

`
k
k{2

˘
minimum MSRs.

Example 2. Assume the TA A and LT “ tl4u from Example 1 (Fig. 1). There
are 24 MSRs and 4 of them are minimum. For example, AăD,Ią with D “
tpe5, x ě 25qu and I “ tpl3, u ď 26qu is a minimum MSR, and AăD1,I1ą with
D1 “ tpe9, y ď 15q, pe7, z ď 15qu and I 1 “ tpl6, x ď 10qu is a non-minimum MSR.

3.1 Base Scheme For Computing a Minimum MSR

Algorithm 1 shows a high-level scheme of our approach for computing a minimum
MSR. The algorithm iteratively identifies an ordered set of MSRs, |M1| ą |M2| ą
¨ ¨ ¨ ą |Mk|, such that the last MSR Mk is a minimum MSR. Each of the MSRs,
sayMi, is identified in two steps. First, the algorithm finds a seed, i.e., a reduction
Ni such that Ni is sufficient and |Ni| ă |Mi´1|. Second, the algorithm shrinks Ni

into an MSR Mi such that Mi Ď Ni (and thus |Mi| ď |Ni|). The initial seed N1

is AăΨpΔq,ΨpInvqą, i.e., the reduction that removes all simple clock constraints
(which makes all locations of A trivially reachable). Once there is no sufficient
reduction Ni with |Ni| ă |Mi´1|, we know that Mi´1 “ Mk is a minimum MSR.

Note that the algorithm also maintains two auxiliary sets, M and I, to store
all identified MSRs and insufficient reductions, respectively. The two sets are
used during the process of finding and shrinking a seed which we describe below.

3.2 Shrinking a Seed

Our approach for shrinking a seed N into an MSR M is based on two concepts:
a critical simple clock constraint and a reduction core.

Definition 6 (critical constraint). Given a sufficient reduction AăD,Ią, a
simple clock constraint c is critical for AăD,Ią iff AăDztcu,Iztcuą is insufficient.

Proposition 3. If c P D Y I is critical for a sufficient reduction AăD,Ią then
c is critical for every sufficient reduction AăD1,I1ą, AăD1,I1ą Ď AăD,Ią. More-
over, by Definitions 5 and 6, AăD,Ią is an MSR iff every c P D Y I is critical
for AăD,Ią.
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Algorithm 2: shrink(AăD,Ią, I)
1 X Ð H
2 while pD Y Iq ‰ X do
3 c Ð pick a simple clock constraint from pD Y IqzX
4 if AăDztcu,Iztcuą R I and AăDztcu,Iztcuą is sufficient then
5 ρ Ð a witness run of the sufficiency of AăDztcu,Iztcuą
6 AăD,Ią Ð the reduction core of AăDztcu,Iztcuą w.r.t. ρ

7 else
8 X Ð X Y tcu
9 I Ð I Y tN P RA |N Ď AăDztcu,Iztcuąu

10 return AăD,Ią, I

Proof. By contradiction, assume that c is critical forAăD,Ią but not forAăD1,I1ą,
i.e., AăDztcu,Iztcuą is insufficient and AăD1ztcu,I1ztcuą is sufficient. As AăD1,I1ą Ď
AăD,Ią, we have AăD1ztcu,I1ztcuą Ď AăDztcu,Iztcuą. By Proposition 2, if the re-
duction AăD1ztcu,I1ztcuą is sufficient then AăDztcu,Iztcuą is also sufficient.

Definition 7 (reduction core). Let AăD,Ią be a sufficient reduction, ρ a wit-
ness run of the sufficiency (i.e., reachability of LT on AăD,Ią), and π the path
corresponding to ρ. Futhermore, let Mpπq “ l0, e1, . . . , en, ln be the path cor-
responding to π on the original TA A defined as in (4). The reduction core of
AăD,Ią w.r.t. ρ is the reduction AăD1,I1ą where D1 “ tpe, ϕq | pe, ϕq P D^e “ ei
for some 1 ď i ď nu and I 1 “ tpl, ϕq | pl, ϕq P I ^ l “ li for some 0 ď l ď nu.

Intuitively, the reduction core of AăD,Ią w.r.t. ρ reduces from A only the
simple clock constraints that appear on the witness path in A.

Proposition 4. Let AăD,Ią be a sufficient reduction, ρ the witness of reach-
ability of LT on AăD,Ią, and AăD1,I1ą the reduction core of AăD,Ią w.r.t. ρ.
Then AăD1,I1ą is a sufficient reduction and AăD1,I1ą Ď AăD,Ią.

Proof. By Definition 7, D1 Ď D and I 1 Ď I, thus AăD1,I1ą Ď AăD,Ią. As for the
sufficiency of AăD1,I1ą, we only sketch the proof. Intuitively, both AăD,Ią and
AăD1,I1ą originate fromA by only removing some simple clock constraints (DYI,
and D1 Y I 1, respectively), i.e., the graph structure of AăD,Ią and AăD1,I1ą is
the same, however, some corresponding paths of AăD,Ią and AăD1,I1ą differ
in the constraints that appear on the paths. By Definition 7, the path π that
corresponds to the witness run ρ of AăD,Ią is also a path of AăD1,I1ą. Since
realizability of a path depends only on the constraints along the path, if π is
realizable on AăD,Ią then π is also realizable on AăD1,I1ą.

Our approach for shrinking a sufficient reduction N is shown in Algorithm 2.
The algorithm iteratively maintains a sufficient reduction AăD,Ią and a set
X of known critical constraints for AăD,Ią. Initially, AăD,Ią “ N and X “
H. In each iteration, the algorithm picks a simple clock constraint c P pD Y
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IqzX and checks the reduction AăDztcu,Iztcuą for sufficiency. If AăDztcu,Iztcuą is
insufficient, the algorithm adds c to X. Otherwise, if AăDztcu,Iztcuą is sufficient,
the algorithm obtains a witness run ρ of the sufficiency from the verifier and
reduces AăD,Ią to the corresponding reduction core. The algorithm terminates
when pD Y Iq “ X. An invariant of the algorithm is that every c P X is critical
for AăD,Ią. Thus, when pD Y Iq “ X, AăD,Ią is an MSR (Proposition 3).

Note that the algorithm also uses the set I of known insufficient reduc-
tions. In particular, before calling a verifier to check a reduction for sufficiency
(line 4), the algorithm first checks (in a lazy manner) whether the reduction
is already known to be insufficient. Also, whenever the algorithm determines a
reduction AăDztcu,Iztcuą to be insufficient, it adds AăDztcu,Iztcuą and every N ,
N Ď AăDztcu,Iztcuą to I (by Proposition 2, every such N is also insufficient).

3.3 Finding a Seed

We now describe the procedure findSeed. The input is the latest identified MSR
M , the set M of known MSRs, and the set I of known insufficient reductions.
The output is a seed, i.e., a sufficient reduction N such that |N | ă |M |, or
null if there is no seed. Let us denote by CAND the set of all candidates on a
seed, i.e., CAND “ tN P RA | |N | ă |M |u. A brute-force approach would be to
check individual reductions in CAND for sufficiency until a sufficient one is found,

however, this can be practically intractable since |CAND| “ ř|M |
i“1

`|ΨpΔqYΨpInvq|
i´1

˘
.

We provide three observations to prune the set CAND of candidates that need
to be tested for being a seed. The first observation exploits the set I of already
known insufficient reductions: no N P I can be a seed. The second observation
exploits the set M of already known MSRs. By the definition of an MSR, for
every M 1 P M and every N such that N Ĺ M 1, the reduction N is necessarily
insufficient and hence cannot be a seed. The third observation is stated below:

Observation 1. For every sufficient reduction N P CAND there exists a sufficient
reduction N 1 P CAND such that N Ď N 1 and |N 1| “ |M | ´ 1.

Proof. If |N | “ |M | ´ 1, then N “ N 1. For the other case, when |N | ă |M | ´ 1,
let N “ AăDN ,INą and M “ AăDM ,IMą. We construct N 1 “ AăDN1 ,IN1 ą by

adding arbitrary p|M |´|N |q´1 simple clock constraint from pDM YIM qzpDN Y
IN q to pDN Y IN q, i.e., DN Y IN Ď DN 1 Y IN

1 Ď pDM Y IM Y DN Y IN q and
|DN 1 YIN

1 | “ |M |´1. By definition of CAND, N 1 P CAND. Moreover, since N Ĺ N 1
and N is sufficient, then N 1 is also sufficient (Proposition 2).

Based on the above observations, we build a set C of indispensable candidates
on seeds that need to be tested for sufficiency:

C “ tN P RA |N R I ^ @M 1 P M. N Ę M 1 ^ |N | “ |M | ´ 1u (5)

The procedure findSeed, shown in Algorithm 3, in each iteration picks a
reduction N P C and checks it for sufficiency (via the verifier). If N is sufficient,
findSeed returns N as the seed. Otherwise, when N is insufficient, the algorithm
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first attempts to enlarge N into an insufficient reduction E such that N Ď E. By
Proposition 2, every reduction N 1 such that N 1 Ď E is also insufficient, thus all
these reductions are subsequently added to I and hence removed from C (note
that this includes also N). If C becomes empty, then there is no seed.

The purpose of enlarging N into E is to quickly prune the candidate set C. We
could just add all the insufficient reductions tN 1 |N 1 Ď Nu to I, but note that
|tN 1 |N 1 Ď Eu| is exponentially larger than |tN 1 |N 1 Ď Nu| w.r.t. |E| ´ |N |. The
enlargement, shown in Algorithm 4, works almost dually to shrinking. Let N “
AăD,Ią. The algorithm attempts to one by one add the constraints from ΨpΔqzD
and ΨpInvqzI to D and I, respectively, checking each emerged reduction for
sufficiency, and keeping only the changes that preserve AăD,Ią to be insufficient.

3.4 Representation of I and C
The final piece of the puzzle is how to efficiently manipulate with the sets I and
C. In particular, we are adding reductions to I and C, removing reductions from
C, checking if a reduction belongs to I, checking if C is empty, and picking a
reduction from C. The problem is that the size these sets can be expontential
w.r.t. |ΨpΔq Y ΨpInvq| (there are exponentially many reductions), and thus,
it is practically intractable to maintain the sets explicitly. Instead, we use a
symbolic representation. Given a TA A with simple clock constraints ΨpΔq “
tpe1, ϕ1q, . . . , pep, ϕpqu and ΨpInvq “ tpl1, ϕ1q, . . . , plq, ϕqqu, we introduce two
sets X “ tx1, . . . , xpu and Y “ ty1, . . . , yqu of Boolean variables. Note that every
valuation of the variables X YY one-to-one maps to the reduction AăD,Ią such
that pei, ϕiq P D iff xi is assigned True and plj , ϕjq P I iff yj is assigned True.

The set I is gradually built during the whole computation of Algorithm 1.
To represent I, we build a Boolean formula I such that a reduction N does
not belong to I iff N does correspond to a model of I. Initially, I “ H, thus
I “ True. To add an insufficient reduction AăD,Ią and all reductions N , N Ď
AăD,Ią, to I, we add to I the clause pŽ

pei,ϕiqPΨpΔqzD xiq_pŽ
plj ,ϕjqPΨpInvqzI yjq.

The set C is repeatedly built during each call of the procedure findSeed

based on Eq. 5 and it is encoded via a Boolean formula C such that every model
of C does correspond to a reduction N P C :

C “ I^
ľ

AăD,IąPM
pp

ł
pei,ϕiqPΨpΔqzD

xiq _ p
ł

plj ,ϕjqPΨpInvqzI
yjqq ^ truesp|M| ´ 1q (6)

where truesp|M| ´ 1q is a cardinality encoding forcing that exactly |M | ´ 1 vari-
ables from XYY are set to True. To check if C “ H or to pick a reduction N P C,
we ask a SAT solver for a model of C. To remove an insufficient reduction from
C, we update the formula I (and thus also C) as described above.

3.5 Related Work

Although the concept of minimal sufficient reductions (MSRs) is novel in the
context of timed automata, similar concepts appear in other areas of computer
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Algorithm 3: findSeed(M,M, I)
1 while tN P RA |N R I ^ @M 1 P M. N Ę M 1 ^ |N | “ |M | ´ 1u ‰ H do
2 N Ð pick from tN P RA |N R I ^ @M 1 P M. N Ę M 1 ^ |N | “ |M | ´ 1u
3 if N is sufficient then return N, I
4 else I Ð I Y tN 1 P RA |N 1 Ď enlarge(N) u
5 return null, I

Algorithm 4: enlarge(AăD,Ią)
1 foreach c P pΨpΔq Y ΨpInvqqzpD Y Iq do
2 if c P ΨpΔq and AăDYtcu,Ią is sufficient then D Ð D Y tcu
3 if c P ΨpInvq and AăD,IYtcuą is sufficient then I Ð I Y tcu
4 return AăD,Ią

science. For example, see minimal unsatisfiable subsets [15], minimal correction
subsets [47], minimal inconsistent subsets [16,18], or minimal inductive validity
cores [32]. All these concepts can be generalized as minimal sets over monotone
predicates (MSMPs) [48,49]. The input is a reference set R and a monotone
predicate P : PpRq Ñ t1, 0u, and the goal is to find minimal subsets of R that
satisfy the predicate. In the case of MSRs, the reference set is the set of all simple
constraints ΨpΔqYΨpInvq and, for every DYI Ď ΨpΔqYΨpInvq, the predicate is
defined as PpDYIq “ 1 iff AăD,Ią is sufficient. Many algorithms were proposed
(e.g., [45,14,19,22,20,47,21,37,32,23]) for finding MSMPs for particular instances
of the MSMP problem. However, the algorithms are dedicated to the particular
instances and extensively exploit specific properties of the instances (such as we
exploit reduction cores in case of MSRs). Consequently, the algorithms either
cannot be used for finding MSRs, or they would be rather inefficient.

4 Synthesis of Relaxation Parameters

The main objective of this study is to make the target locations LT of a given
TA A “ pL, l0, C,Δ, Invq reachable by only modifying the constants of sim-
ple constraints of A. In the previous section, we presented an efficient algo-
rithm to find a set of simple clock constraints D Ď ΨpΔq (1) (over transi-
tions) and I Ď ΨpInvq (2) (over locations) such that the target set is reach-
able when constraints D and I are removed from A. In other words, LT is
reachable on AăD,Ią. Consequently, a verifier generates a finite run ρ1

LT
“

pl0,0qÑd0pl1, v1qÑd1 . . .Ñdn´1pln, vnq of AăD,Ią such that ln P LT . Let π
1
LT

“
l0, e

1
1, l1, . . . , e

1
n´1, ln be the corresponding path on AăD,Ią, i.e., π1

LT
is realizable

on AăD,Ią due to the delay sequence d0, d1, . . . , dn´1 and the resulting run is
ρ1
LT

. The corresponding path on the original TA A defined as in (4) is:

π1
LT

“ MpπLT
q, and πLT

“ l0, e1, l1, . . . , en´1, ln, (7)
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While π1
LT

is realizable on AăD,Ią, πLT
is not realizable on A since LT is not

reachable on A. We present an MILP based method to find a relaxation valuation
r : DYI Ñ NYt8u such that the path induced by πLT

is realizable on AăD,I,rą.
Given an automaton path π “ l0, e1, l1, . . . , en´1, ln with ei “ pli´1, λi, φi, liq

for each i “ 1, . . . , n´1, we introduce real valued delay variables δ0, . . . , δn´1 that
represent the time spent in each location along the path. Since clocks measure the
time passed since their last resets, for a fixed path, a clock on a given constraint
(invariant or guard) can be mapped to a sum of delay variables:

Γ px, π, iq “ δk`δk`1`. . .`δi´1 where k “ maxptm | x P λm,m ă iuYt0uq (8)

The value of clock x equals to Γ px, π, iq on the i-th transition ei along π. In (8),
k is the index of the transition where x is last reset before ei along π, and it is
0 if it is not reset. Γ p0, π, iq is defined as 0 for notational convenience.

Guards. For transition ei, each simple constraint ϕ “ x ´ y „ c P Spφiq on
the guard φi is mapped to the new delay variables as:

Γ px, π, iq ´ Γ py, π, iq „ c ` pei,ϕ (9)

where pei,ϕ is a new integer valued relaxation variable if pei, ϕq P D, otherwise
it is set to 0.

Invariants. Each clock constraint ϕ “ x´ y „ c P SpInvpliqq of the invariant
of location li is mapped to arriving (10) and leaving (11) constraints over the
delay variables, since the invariant should be satisfied when arriving and leaving
the location (and hence, due to the invariant convexity, also in the location).

Γ px, π, iq ¨ Ipx R λiq ´ Γ py, π, iq ¨ Ipy R λiq „ c ` pli,ϕi
if i ą 0(arriving) (10)

Γ px, π, i ` 1q ´ Γ py, π, i ` 1q „ c ` pli,ϕi
(leaving) (11)

where I is a binary function mapping true to 1 and false to 0, pli,ϕi
is a new

integer valued variable if pli, ϕiq P I, otherwise it is set to 0.
Finally, we define an MILP (12) for the path π. The constraint relaxation

variables tpl,ϕ | pl, ϕq P Iu and tpe,ϕ | pe, ϕq P Du (integer valued), and the delay
variables δ0, . . . , δn´1 (real valued) are the decision variables of the MILP.

minimize
ÿ

pl,ϕqPI
pl,ϕ `

ÿ
pe,ϕqPD

pe,ϕ (12)

subject to (9) for each i “ 1, . . . , n ´ 1, and x ´ y „ c P Spφiq
(10) for each i “ 1, . . . , n, and x ´ y „ c P SpInvpliqq
(11) for each i “ 0, . . . , n ´ 1, and x ´ y „ c P SpInvpliqq
pl,ϕ P Z` for each pl, ϕq P I, and pe,ϕ P Z` for each pe, ϕq P D

Let tp‹
l,ϕ | pl, ϕq P Iu, tp‹

e,ϕ | pe, ϕq P Du, and δ‹
0 , . . . , δ

‹
n´1 denote the solution of

MILP (12). Define a relaxation valuation r with respect to the solution as

rpl, ϕq “ p‹
l,ϕ for each pl, ϕq P I, rpe, ϕq “ p‹

e,ϕ for each pe, ϕq P D. (13)
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Theorem 1. Let A “ pL, l0, C,Δ, Invq be a timed automaton, π “ l0, e1, l1, . . . ,
en, ln be a finite path of A, and D Ă ΨpΔq, I Ă ΨpIq be guard and invariant
constraint sets. If the MILP constructed from A, π, D and I as defined in (12)
is feasible, then ln is reachable on AăD,I,rą with r as defined in (13).

Proof sketch Let tp‹
l,ϕ | pl, ϕq P Iu, tp‹

e,ϕ | pe, ϕq P Du, and δ‹
0 , . . . , δ

‹
n´1 be

the optimal solution of MILP (12). Define clock value sequence v0, v1, . . . , vn
with respect to the path π with ei “ pli´1, λi, φi, liq and the delay sequence
δ‹
0 , . . . , δ

‹
n´1 iteratively as vi “ 0 and vi “ pvi´1 ` δ‹

i´1qrλi :“ 0s for each
i “ 1, . . . , n. Along the path π, vi is consistent with Γ p¨, π, iq (8) such that

aq vipxq “ Γ px, π, iq.Ipx R λiq and bq vipxq ` δ‹
i “ Γ px, π, i ` 1q (14)

MILP (12) constraints and (14) imply that the path Mpπq that end in ln is
realizable on AăD,I,rą via the delay sequence δ‹

0 , . . . , δ
‹
n´1.

A linear programming (LP) based approach was used in [27] to generate the
optimal delay sequence for a given path of a weighted timed automata. In our
case, the optimization problem is in MILP form since we find an integer valued
relaxation valuation (r) in addition to the delay variables.

Recall that we construct relaxation sets D and I via Algorithm 1, and define
πLT

(7) that reach LT such that the corresponding path π1
LT

is realizable on
AăD,Ią. Then, we define MILP (12) with respect to πLT

, D and I, and define
r (13) according to the optimal solution. Note that this MILP is always feasible
since π1

LT
is realizable on AăD,Ią. Finally, by Theorem 1, we conclude that LT

is reachable on AăD,I,rą.

Example 3. For the TA shown in Fig. 1, Algorithm 1 generates AăD,Ią withD “
tpe5, x ě 25qu and I “ tpl3, u ď 26qu such that π “ l0, e1, l1, e2, l2, e3, l1, e4, l3, e5,
l4 is realizable on AăD,Ią. The MILP is constructed for π, D and I with decision
variables pe5,xě25, pl3,uď26, δ0, δ1, δ2, δ3, δ4 and δ5 as in (12). The solution is
pe5,xě25 “ 3, pl3,uď26 “ 5, and the delay sequence is 9, 4, 0, 9, 9, 0. Consequently,
l4 is reachable on AăD,I,rą with rpe5, x ě 25q “ 3 and rpl3, u ď 26q “ 5.

5 Case Study

We implemented the proposed reduction and relaxation methods in a tool called
Tamus. We use UPPAAL for sufficiency checks and witness computation, and
CBC solver from Or-tools library [50] for the MILP part. All experiments were
run on a laptop with Intel i5 quad core processor at 2.5 GHz and 8 GB ram. The
tool and used benchmarks are available at https://github.com/jar-ben/tamus.

As discussed in Section 1, an alternative approach to solve our problem (Prob-
lem 1) is to parameterize each simple clock constraint of the TA. Then, we can
run a parameter synthesis tool on the parameterized TA to identify the set of
all possible valuations of the parameters for which the TA satisfies the reacha-
bility property. Subsequently, we can choose the valuations that assign non-zero
values (i.e., relax) to the minimum number of parameters, and out of these, we

https://github.com/jar-ben/tamus
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Table 1. Results for the scheduler TA, where |Ψ | “ |ΨpΔq YΨpIq| is the total number
of constraints, d “ |D Y U | is the minimum MSR size, v is the number of reachability
checks, t is the computation time in seconds (including the reachability checks), and
cm is the optimal cost of (12).

Model |Ψ | d v t cm Model |Ψ | d v t cm Model |Ψ | d v t cm
Ap3,1,12q 11 2 33 0.18 6 Ap5,1,12q 16 3 120 0.63 10 Ap7,1,12q 19 3 120 0.63 11
Ap3,2,12q 17 1 13 0.13 13 Ap5,2,12q 24 1 42 0.35 13 Ap7,2,12q 28 1 95 0.72 13

Ap3,1,18q 16 3 61 0.37 9 Ap5,1,18q 23 4 149 0.90 16 Ap7,1,18q 28 5 313 1.87 25
Ap3,2,18q 24 1 40 0.40 6 Ap5,2,18q 35 1 57 0.58 6 Ap7,2,18q 42 1 70 0.74 6

Ap3,1,24q 21 4 97 0.65 12 Ap5,1,24q 31 6 327 2.16 24 Ap7,1,24q 38 7 709 4.76 35
Ap3,2,24q 32 1 80 0.85 16 Ap5,2,24q 47 2 169 1.80 31 Ap7,2,24q 57 2 201 2.21 21

Ap3,1,30q 26 5 141 1.05 15 Ap5,1,30q 39 7 541 4.17 31 Ap7,1,30q 48 10 1680 14.12 47
Ap3,2,30q 40 1 65 0.84 9 Ap5,2,30q 59 2 330 3.95 14 Ap7,2,30q 72 2 403 5.01 14

can choose the one with a minimum cumulative change of timing constants. In
our experimental evaluation, we evaluate a state-of-the-art parameter synthesis
tool called Imitator [9] to run such analysis. Although Imitator is not tailored
for our problem, it allows us to measure the relative scalability of our approach
compared to a well-established synthesis technique.

We used two collections of benchmarks: one is obtained from literature, and
the other are crafted timed automata modeling a machine scheduling problem.
All experiments were run using a time limit of 20 minutes per benchmark.

Machine Scheduling A scheduler automaton is composed of a set of paths
from location l0 to location l1. Each path π “ l0eklkek`1 . . . lk`M´1ek`M l1 rep-
resents a particular scheduling scenario where an intermediate location, e.g. li
for i “ k, . . . , k ` M ´ 1, belongs to a unique path (only one incoming and one
outgoing transition). Thus, a TA that has p paths withM intermediate locations
in each path has M ¨p`2 locations and pM`1q¨p transitions. Each intermediate
location represents a machine operation, and periodic simple clock constraints
are introduced to mimic the limitations on the corresponding durations. For
example, assume that the total time to use machines represented by locations
lk`i and lk`i`1 is upper (or lower) bounded by c for i “ 0, 2, . . . ,M ´ 2. To
capture such a constraint with a period of t “ 2, a new clock x is introduced
and it is reset and checked on every tth transition along the path, i.e., for every
m P ti ¨ t ` k | i ¨ t ď M ´ 1u, let em “ plm, λm, φm, lm`1q, add x to λm, set
φm :“ φm ^ x ď c (x ě c for lower bound). A periodic constraint is denoted by
pt, c,„q, where t is its period, c is the timing constant, and „ P tă,ď,ą,ěu.
A set of such constraints are defined for each path to capture possible restric-
tions. In addition, a bound T on the total execution time is captured with the
constraint x ď T on transition ek`M over a clock x that is not reset on any
transition. A realizable path to l1 represents a feasible scheduling scenario, thus
the target set is LT “ tl1u. We have generated 24 test cases. A test case Apc,p,Mq
represents a timed automaton with c P t3, 5, 7u clocks, and p P t1, 2u paths
with M P t12, 18, 24, 30u intermediate locations in each path. Rc,i is the set of
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Table 2. Experimental results for the benchmarks, where |Ψ |, d, v t and cm are as
defined in Table 1, |Ψu| is the number of constraints considered in the analysis and m is
the number of mutated constraints. tI , tIT , tIc and tITc are the Imitator computation
times, where c indicates that the early termination flag (“counterexample”) is used,
otherwise the largest set of parameters is searched, and T indicates that only the con-
straints from the MSR identified by Tamus are parametrized, otherwise all constraints
from Ψu are parametrized. to shows that the timeout limit is reached (20 min.). We
ran the Imitator with the flag “incl”. Note that when run with the flag ”merge”, the
performance of Imitator increases on 2 benchmarks, however, it decreases on other 2
benchmarks.

Model Source Spec. |Ψ | |Ψu| d m v t cm tI tIT tIc tITc

accel1000 [11][35] reach. 7690 13 2 3 22 1.83 - 182.5 2.08 1.77 1.03

CAS [2] reach. 18 18 2 9 46 0.31 16 0.75 0.11 0.09 0.01

coffee [12] reach. 10 10 2 3 18 0.07 14 0.008 0.002 0.007 0.003

Jobshop4 [1] reach. 64 48 5 5 272 1.99 - to 949.5 to 942.3

Pipeline3-3 [41] reach. 41 41 1 12 42 0.37 - to 0.08 to 0.05

RCP [28] reach. 42 42 1 11 181 2.51 - to 0.02 24.23 0.02

SIMOP3 [8] reach. 80 80 6 40 903 10.65 - to 7.26 to 0.49

Fischer [36] safety 24 16 1 0 14 0.08 - to to 0.21 0.01

JLR13-3tasks [40][13] safety 42 36 1 0 40 0.41 - to 2.60 0.05 0.08

WFAS [24][31] safety 32 24 1 0 10 0.08 - 16.20 0.01 0.03 0.006

periodic restrictions defined for the ith path of an automaton with c clocks:

R3,1 “ tp2, 11,ěq, p3, 15,ďqu R3,2 “ tp4, 17,ěq, p5, 20,ďqu
R5,1 “ R3,1 Y tp4, 21,ěq, p5, 25,ďqu R5,2 “ R3,2 Y tp8, 33,ěq, p9, 36,ďqu
R7,1 “ R5,1 Y tp6, 31,ěq, p7, 35,ďqu R7,2 “ R5,2 Y tp12, 49,ěq, p12, 52,ďqu

Note that Apc,2,Mq emerges from Apc,1,Mq by adding a path with restrictions Rc,2.
Table 1 shows results achieved by Tamus on these models. Tamus solved all

models and the hardest one Ap7,1,30q took only 14.12 seconds. As expected, the
computation time t increases with the number |Ψ | of simple clock constraints in
the model. Moreover, the computation time highly correlates with the size d of
the minimum MSR. Especially, if we compare two generic models Apc,1,Mq and
Apc,2,Mq, although Apc,2,Mq has one more path and more constraints, Tamus is
faster on Apc,2,Mq since it quickly converges to the path with smaller MSRs.

Imitator solved Ap3,1,12q, Ap3,2,12q, Ap3,1,18q, and Ap5,1,12q within 0.08, 0.5,
61, and 67 seconds, and timeouted for the other models. In addition, we run
Imitator with a flag “counterexample” that terminates the computation when a
satisfying valuation is found. The use of this flag reduced the computation time
for the aforementioned cases, and it allowed to solve two more models: Ap3,2,18q
and Ap5,2,12q. However, using this flag, Imitator often did not provide a solution
that minimizes the number of relaxed simple clock constraints.

Benchmarks from Literature We collected 10 example models from litera-
ture that include models with a safety specification that requires avoiding a set
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of locations LA, and models with a reachability specification with a set of target
locations LT as considered in this paper. In both cases, the original models sat-
isfy the given specification. For the first case, we define LA as the target set and
apply our method. Here, we find the minimal number of timing constants that
should be changed to reach LA, i.e., to violate the original safety specification.
For the second case, inspired from mutation testing [2], we change a number of
constraints on the original model so that LT becomes unreachable. Eight of the
examples are networks of TAs, and while a network of TAs can be represented
as a single product TA and hence our approach can handle it, Tamus currently
supports only MSR computation for networks of TA, but not MILP relaxation.

The results are shown in Table 2. Tamus computed a minimum MSR for all
the models and also provided the MILP relaxation for the non-network models.
Note that the bottle-neck of our approach is the MSR computation and especially
the verifier calls; the MILP part always took only few milliseconds (including
models from Table 1), thus we believe that it would be also the case for the
networks of TAs. The base variant of Imitator that computes the set of all
satisfying parameter valuations solved only 4 of the 10 models. When run with
the early termination flag, Imitator solved 3 more models, however, as discussed
above, the provided solutions might not be optimal. We have also evaluated
a combination of Tamus and Imitator. In particular, we first run Tamus to
compute a minimum MSR AăD,Ią, then parameterized the constraints D Y I
in the original TA A, and run Imitator on the parameterized TA. In this case,
Imitator solved 9 out of 10 models. Moreover, we have the guarantee that we
found the optimal solution: the MSR ensures that we relax the minimum number
of simple clock constraints, and Imitator finds all satisfying parameterizations of
the constraints hence also the one with minimum cumulative change of timing
constants.

Conclusion In this work, we proposed the novel concept of a minimum MSR
for a TA, that is a minimum set of simple constraints that need to be relaxed
to satisfy a reachability specification. We developed efficient methods to find
a minimum MSR, and presented an MILP based solution to tune these con-
straints. Our analysis on benchmarks showed that our tool Tamus can generate
a minimum MSR within seconds even for large systems. In addition, we com-
pared our results with Imitator and observed that Tamus scales much better.
However, Tamus minimizes the cumulative change of the constraints from a min-
imum MSR by considering a single witness path. If the goal is to find a minimal
relaxation globally, i.e., w.r.t. all witness paths for the MSR, we recommend to
use the combined version of Tamus and Imitator, i.e., first run Tamus to find a
minimum MSR, parametrize each constraint from the MSR and run Imitator to
find all satisfying parameter valuations, including the global optimum.
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C., Ölveczky, P.C. (eds.) Formal Techniques for Safety-Critical Systems. pp. 75–
83. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-
3-030-12988-0 5
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réseau. Journal Européen des Systèmes Automatisés 43 (November 2009).
https://doi.org/10.3166/jesa.43.1049-1064
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12. André, É., Knapik, M., Lime, D., Penczek, W., Petrucci, L.: Parametric verifica-
tion: An introduction. Trans. Petri Nets Other Model. Concurr. 14, 64–100 (2019).
https://doi.org/10.1007/978-3-662-60651-3 3
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Abstract. We study semi-algorithms to synthesise the constraints un-
der which a Parametric Timed Automaton satisfies some liveness re-
quirement. The algorithms traverse a possibly infinite parametric zone
graph, searching for accepting cycles. We provide new search and prun-
ing algorithms, leading to successful termination for many examples. We
demonstrate the success and efficiency of these algorithms on a bench-
mark. We also illustrate parameter synthesis for the classical Bounded
Retransmission Protocol. Finally, we introduce a new notion of complete-
ness in the limit, to investigate if an algorithm enumerates all solutions.

Keywords: Parameter Synthesis, Liveness Properties, IMITATOR

1 Introduction

Many critical devices and processes in our society are controlled by software,
in which real-time aspects often play a crucial role. Timed Automata (TA [1])
are an important formalism to design and study real-time systems; they extend
finite automata with real-valued clocks. Their success is based on the decidability
of the basic analysis problems of checking reachability and liveness properties.

Precise timing information is often unknown during the design phase. There-
fore, Parametric Timed Automata (PTA [2]) extend TA with parameters, rep-
resenting unknown waiting times, deadlines, network speed, etc. A single PTA
represents an infinite class of TA. To facilitate design exploration, parameter
constraint synthesis aims at a description of all parameter values for which the
system meets some requirement. Unfortunately, it is already undecidable to check
if a PTA admits a parameter valuation for which a bad state can be reached [2,3].

In this paper, we study the parameter constraint synthesis problem for live-
ness properties of the full class of PTA. In particular, the goal is to compute
the parameter valuations for which a Parametric Timed Büchi Automaton has
a non-empty language. Note that this allows handling requirements in LTL and
MITL [24]. We represent the solution concisely as a disjunction of conjunctions
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of linear inequalities between the parameters (a set of convex polyhedra).

We will consider semi-algorithms that operate on the so-called parametric
zone graph (PZG), where a parametric zone is a conjunction of linear inequalities
over clock and parameter values. These semi-algorithms may not terminate since
the PZG can be infinite. However, even in that case, we are interested in the
soundness and completeness of the set of all enumerated solutions.

Our contributions to the parameter constraint synthesis for liveness of PTA are:
1) A definition of soundness and completeness for non-terminating algorithms.
2) A new synthesis algorithm, using bounded search with iterative deepening;
this is the first algorithm that enumerates all accepting cycles in the possibly
infinite PZG, in contrast to previous NDFS-based algorithms [25]. 3) An experi-
mental benchmark, comparing the successful termination and runtime efficiency
of all algorithms. 4) A case study on the Bounded Retransmission Protocol.

Related Work. Decidability for (subclasses of) PTA has been extensively stud-
ied [2,19,3]. We study the emptiness and related synthesis problem for Paramet-
ric Timed Büchi Automata with unrestricted use of rational parameters and
real-valued clocks. In this general case, the model checking problem is undecid-
able [2] and therefore exact synthesis is out of reach (in contrast to the setting
with bounded integers [20,11]). Decidability of liveness properties for a subclass
of PTA, where the occurrence of parameters is restricted, is discussed in [8].

Our approach inherits basic techniques from Timed Automata, in particular
the zone graph. For TA, the zone graph is finite after LU-abstraction [27,23,17].
Another technique prunes states that are subsumed by larger states. Subsump-
tion must be applied with care, in order to preserve liveness properties [22,18].

Previous semi-algorithms were based on Nested Depth-First Search (NDFS).
They search the (possibly infinite) parametric zone graph (PZG) for accepting
cycles. Their zones are projected onto the parameters and accumulated into the
global constraint. The basic cumulative algorithm [11] prunes states whose pro-
jected zone is already included in the accumulated constraint. The cumulative
algorithm was extended with subsumption and layering for PTA [25]. The prob-
lem with all NDFS-based algorithms is that the computation can diverge in one
branch, missing solutions for accepting cycles in other branches forever.

Our main improvement is a bounded approach, which can be combined with
breadth- and depth-first search. We check for accepting cycles up to a certain
bound, and keep increasing the bound to achieve completeness in the limit.
Eventually, this will enumerate all parametric constraints corresponding to all
accepting cycles in the PZG. Sometimes, the combination of bounded search
and subsumption can even identify infinite paths that do not form a cycle, but
this is not guaranteed. A previous proposal for Bounded Model Checking for
PTA [21] considers the region graph and has not been implemented. We will
provide several small illustrative examples inspired by the invited talk [26].

To evaluate our algorithms, we implemented them in the IMITATOR toolset
[6], extending its functionality from reachability to liveness properties. This way,
we can reuse its PTA benchmark [4]. We also reimplemented the algorithms
of [11,25] in a single NDFS framework. We illustrate our method on the Bounded
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Retransmission Protocol (BRP). We synthesize parameter constraints for live-
ness properties of BRP for the first time. Our constraints are more liberal than
the constraints reported in previous work [14,19].

2 PTA, Parametric Zone Graphs and Accepted Runs

Let X be a set of real-valued clocks (e.g. x, y) and let P be a set of rational
parameters (e.g. p, q). A linear term over parameters (plt) is an expression of
the form

∑
i αipi + β, where pi ∈ P , and coefficients αi, β ∈ Q. A (diagonal)

inequality is of the form x1−x2 �� plt , with xi ∈ X∪{0} and �� ∈ {<,≤,=,≥, >}.
Examples are x − y ≤ 2p + q, x > q − 1 and 2 ≤ p. A (convex) constraint (or
zone Z) is a conjunction of inequalities. We write C for the set of zones.

x≤1
y≤p

�0

�1

x≥1
x:=0

y≥2

True

Fig. 1. PTA A1

We define a PTA A = (L, �0, F, I, E), where L is
a finite set of locations, �0 ∈ L is the initial location
and F ⊆ L is the set of accepting locations. I : L→ C
denotes an invariant for each location and E is a set of
transitions of the form (�, g, R, �′), with source � ∈ L,
target �′ ∈ L, guard g ∈ C and clock reset R ⊆ X.

The concrete semantics of a PTA is defined in
terms of valuations. A parameter valuation is a func-
tion v : P → Q≥0 and a clock valuation is a function
w : X → R≥0. Let d ∈ R≥0 be a delay, then we define
the clock valuation w + d such that (w + d)(x) := w(x) + d. Let R ⊆ X be
a clock reset, then we define the clock valuation w[R](x) := 0 if x ∈ R and
w(x) otherwise. We write 0 for the clock valuation s.t. ∀x ∈ X : 0(x) = 0. We
extend parameter valuations to linear terms. We write v, w |= (xi − xj �� plt) iff
w(xi)− w(xj) �� v(plt), and v, w |= Z iff v, w |= e for all inequalities e in Z.

Given a parameter valuation v, we write v(A) for the timed automaton ob-
tained by replacing all parameters p in invariants and guards by v(p). The con-
crete semantics of a PTA A is derived from the TA v(A), and defined as a
timed transition system with states (�, w), initial state (�0,0) (we assume that
0 |= I(�0)), and transitions → =

d→ · e→, where continuous time delay (
d→) and

discrete transitions (
e→) are defined as

– If d ∈ R≥0 and w + d |= I(�), then (�, w)
d→ (�, w + d).

– If e = (�, g, R, �′) ∈ E and w |= g and w[R] |= I(�′) then (�, w)
e→ (�′, w[R]).

An infinite run (�0, w0) → (�1, w1) → · · · is accepted if it passes through an
accepting location infinitely often, i.e. the set {i | �i ∈ F} is infinite. We ignore
the problem of Zeno runs, which can be avoided by a syntactic transformation [9].

Example 1. The PTA A1 in Fig. 1 has locations {�0, �1}, clocks {x, y} and pa-
rameter p. Only �1 is accepting. The initial location �0 has an invariant consisting
of two inequalities. Its self-loop is enabled if x ≥ 1 and it resets clock x. Note
that clock y is never reset. For p = 2.5, we have the following example run:(

�0, (0, 0)
) 1→

(
(�0, (1, 1)

)
→

(
(�0, (0, 1)

) 1→
(
(�0, (1, 2)

)
→

(
(�1, (1, 2)

)
.

Note that the accepting location �1 would not be reachable for p < 2. On the
other hand, for all p ≥ 2, there exists an infinite accepted run through �1.
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We will now recall from [5,20] the parametric zone graph (PZG), providing
an abstract semantics to a PTA. A single PZG treats all parameter valuations
symbolically. Also, the PZG avoids the uncountably infinite timed transition
system. The PZG can still be (countably) infinite.

We first define some operations on zones, in terms of their valuations. It is
well known that convex polyhedra are closed under these operations, and our
implementation in IMITATOR uses the Parma Polyhedra Library [10].

– Time elapse: Z↗ corresponds to
{
(v, w + d) | d ∈ R≥0 ∧ v, w |= Z

}
.

– Clock reset: Z[R] corresponds to
{
(v, w[R]) | v, w |= Z

}
.

The PZG is a transition system where each abstract state consists of a lo-
cation and a non-empty zone. The PZG of A = (L, �0, F, I, E) is (S, s0,⇒, A),
with S ⊆ L × C, initial state s0 = (�0, (

∧
x∈X x = 0)↗ ∩ I(�0)), and accepting

states A = {(�, Z) | � ∈ F}. A transition step (�, Z)⇒ (�′, Z ′) exists if for some
(�, g, R, �′) ∈ E we have Z ′ = ((Z ∩ g)[R] ∩ I(�′))↗ ∩ I(�′) �= ∅. We write ⇒+

(⇒∗) for the transitive (reflexive) closure of ⇒.

Example 2. The PZG of A1 from Ex. 1 is shown in Fig. 2; it extends infinitely
to the right. We use that (x = 0 ∧ y = 0)↗ = (y − x = 0). The loop on �0 can
only be executed when x = 1, and it resets x := 0, while y is never reset. So after
n executions of the loop, y − x = n. These n steps are only possible if p ≥ n.

The PZG obeys two important properties (Prop. 1 and 2). First, the para-
metric constraint can only decrease along the transitions in the PZG. Second,
a state simulates the behaviour of any state that it subsumes. We first define
these notions. We write Z ⊆ Z ′ iff v, w |= Z implies v, w |= Z ′.

– Parametric constraint: (�, Z)↓P corresponds to {v | ∃w.v, w |= Z}.
– Subsumption: (�, Z) 
 (�′, Z ′) iff � = �′ and Z ⊆ Z ′.

Proposition 1 ([25]). If s1 ⇒ s2 then s2↓P ⊆ s1↓P .

Proposition 2 ([25]). If s1 ⇒ s2 and s1 
 s′1 then for some s′2, s
′
1 ⇒ s′2 and

s2 
 s′2.

Example 3. The first �1 state in Fig. 2 shows that there is an infinite loop when
p ≥ 2. By Prop. 1, the parametric zone of all states following the dashed red
edge are contained in p ≥ 2. So we can prune the PZG at the dashed red arrow,
since no new parameter valuations will be found.

�0,
x≤1
y≤p

y−x=0
p≥0

�0,
x≤1
y≤p

y−x=1
p≥1

�0,
x≤1
y≤p

y−x=2
p≥2

�0,
x≤1
y≤p

y−x=3
p≥3

· · ·

�1,
y−x=1
y≥2
p≥2

�1,
y−x=2
p≥2 �1,

y−x=3
p≥3

Fig. 2. PZG of the PTA A1 from Fig. 1
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y≤p

�0 x≥5
y:=0

(a) PTA A2

�0,
y≤p
x=y
p≥0

s0

�0,
y≤p

x−y≥5
x−y≤p
p≥5

s1

�0,
y≤p

x−y≥5
x−y≤2p

p≥5

s2

�0,
y≤p

x−y≥5
x−y≤3p

p≥5

s3

· · ·
�

(b) Its PZG with an infinite accepted run, but no loop

Fig. 3. PTA A2 with the corresponding PZG

Example 4. Fig. 3 shows PTA A2 and its infinite PZG. The transition can only
become enabled when p ≥ 5. Each transition must happen within the following
p time units, so after n > 0 iterations, 5 ≤ x− y ≤ n× p. Note that s1 ⇒ s2 and
s1 
 s2. By Prop. 2, for some s′, s2 ⇒ s′ and s2 
 s′. Repeating the argument, we
can construct an infinite trace. So, although the PZG has no cycle, the presence
of an infinite path can be deduced even if we prune the PZG at the dashed edge.

3 Sound and Complete Liveness Parameter Synthesis

Given a PTA A, we aim at synthesising the parameter valuations v for which the
TA v(A) contains an infinite accepted run. Our algorithms operate by searching
the PZG (S, s0,⇒, A) for accepting “lassos” or, as in Ex. 4, 6 and 7, even for
accepting “spirals”. We write⇒+ (⇒∗) for the transitive (reflexive) closure of⇒.
An accepting lasso on s1 consists of two finite paths s0 ⇒∗ s1 ⇒+ s1, such that
s1 ∈ A. More generally, an accepting spiral on s1 consists of two finite paths
s0 ⇒∗ s1 ⇒+ s2, with s1 ∈ A and s1 
 s2.

Proposition 3. If the PZG of PTA A contains an accepting spiral on s1, then
for all v ∈ s1↓P , v(A) contains an (infinite) accepted run.

Proof. Assume s0 ⇒∗ s1 ⇒+ s2 with s1 ∈ A and s1 
 s2. Note that s2 ∈ A,
since 
 only holds between states with the same location. Then by monotonicity,
s1↓P
 s2↓P and by Prop. 1, s2↓P
 s1↓P , so s1↓P= s2↓P . By Prop. 2, there
exists some s3 such that s2 ⇒ s3 and s2 
 s3. We can repeat this to construct
an infinite accepted run from s1, with the constant parametric constraint s1↓P .
The states from s0 ⇒∗ s1 have an even larger constraint (Prop. 1). By the
correspondence between runs in the PTA and runs in the PZG, we obtain an
infinite accepted run in v(A) for every v � s1↓P . ��

The reverse of Prop. 3 is not true. An infinite PZG could contain an infinite
path that does not form a lasso (or even a spiral). Such an infinite path in the
PZG may or may not correspond to a concrete TA run.

x≤1
y≤p

�0 x≥1
x:=0

Fig. 4. PTA A3.

Example 5. The situation of A3 in Fig. 4 is quite different
from Ex. 4. The PZG of A3 has an infinite path (�0, Zi),
where Zi contains the invariant x ≤ 1 ∧ y ≤ p and the
additional constraints y−x = i∧p ≥ i. Note that at most p
transitions can happen in A3, since we cannot wait longer
when y ≥ p. So v(A3) has only finite runs for any v. We call
this infinite path infeasible, since ∩i(Zi↓P ) = ∅.
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3.1 Soundness and Completeness

In contrast to TA, where both reachability and liveness properties are decid-
able [1], it is well-known that even reachability-emptiness for PTA is undecid-
able [2,3]. So in particular, we cannot expect a terminating, sound and complete
algorithm for liveness synthesis. Instead, our algorithms are semi-algorithms,
which enumerate a number of aggregate solutions, but may not terminate. Each
aggregate solution will be presented as a convex polyhedral constraint on the
parameters (“parametric zone”).

x≤1 x≥1
x:=0

x=1∧y=p

True

Fig. 5. PTA A4

Such semi-algorithms can either enumerate a finite num-
ber of aggregate solutions (after which they could termi-
nate or diverge), or enumerate an infinite number of aggre-
gates (and hence never terminate). Fig. 5 shows an example
where the set of solutions, p ∈ {1, 2, 3, . . .}, is not equivalent
to a finite disjunction of convex polyhedra, so no terminat-
ing algorithm can enumerate all aggregate solutions.1

In the rest of this section, we introduce and discuss various soundness and
completeness requirements for semi-algorithms. Assume that the algorithm is
run on an input PTA A and let Sol be the set of all solutions, i.e. Sol = {v |
v(A) has an accepted run}. Assume that the algorithm enumerates a finite or
infinite collection of aggregate solutions, in the form of parametric zones Zi.

Partial correctness: This traditional correctness criterion requires that if the
algorithm terminates, then

⋃
i Zi = Sol , i.e. the finite output characterizes ex-

actly all correct parameter valuations.

Soundness: This criterion also provides some guarantee when the algorithm
diverges. It requires that all enumerated solutions are correct, i.e.

⋃
i Zi ⊆ Sol .

Completeness: We call a semi-algorithm complete if it enumerates all solu-
tions, i.e. Sol ⊆

⋃
i Zi. Enumerating p = 1, p = 2, . . . is complete for A4.

Note that for reachability, a simple Breadth-First Search (BFS) over the PZG
would yield a sound and complete (but not always terminating) semi-algorithm.
For liveness, this is insufficient: the algorithm would miss infinite paths that do
not form a cycle. Still, the following trivial semi-algorithm, EnumQ, would be
sound and complete: “Enumerate all rational parameter valuations v, decide if
v(A) has an accepting loop [1] and, if so, emit {v}.” Although it is sound and
complete, this algorithm is quite unsatisfactory, since it will never terminate, and
it will never aggregate solutions in larger polyhedra. To distinguish PZG-based
algorithms, we need a weaker form of completeness.

Completeness for symbolic lassos: A semi-algorithm is complete for symbolic
lassos if it enumerates all parameter valuations leading to accepting lassos in the
PZG, i.e.

⋃
i Zi contains s↓P , when the PZG contains an accepting lasso on s.

Completeness for symbolic lassos is weaker than completeness, since it may
miss parameter valuations v for which v(A) has an accepted run, but this only
happens when the PZG has an infinite path that does not end in a cycle.

1It is not even obvious that ∩i(Zi↓P ) can be represented by a finite conjunction.
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4 Semi-Algorithms for Liveness Parameter Synthesis

In this section, we discuss three semi-algorithms for liveness parameter synthesis.
In Sec. 4.1, we discuss the previous approach [11,25], based on Nested Depth-
First Search (NDFS). All NDFS-based variants turn out to be incomplete for
symbolic lassos. In Sec. 4.2, we introduce a simple algorithm based on Breadth-
First Search (BFS), which analyses the Strongly Connected Components (SCC)
at each new level. We show that the BFS-based algorithm is complete for sym-
bolic lassos. Finally, Sec. 4.3 introduces our new Bounded Synthesis with Iter-
ative Deepening (BSID) algorithm. BSID is also complete for symbolic lassos,
and it is compatible with all NDFS enhancements.

4.1 Nested Depth-First Search with Enhancements

The NDFS algorithm (Alg. 1) is run on the PZG, with initial state s0, accepting
states A, and next-state(s) enumerating the ⇒-successors. We first explain
basic NDFS [13], cf. the uncoloured parts of Alg. 1. The goal of the outer blue
search (ll.4–13) is to visit all states in DFS order, and just before backtracking,
call the red search on all accepting states (l.12). Note that states on the DFS
stack are cyan (l.6), and states that are handled completely are blue (l.13). The
goal of the inner red search (ll.14–21) is to detect if there is an accepting cycle.
It colours visited states red (l.16), to ensure that states are visited at most once.
It reports an accepting cycle (l.20) when a cyan state is encountered.

Cumulative pruning (pink) [11,25]. For synthesis, we collect the Constraints
that lead to accepting cycles (l.20). We prune the search when the parametric
constraint of some state is included in Constraints (l.5,15). This is justified
by Prop. 1, since all successors of the pruned state will have an even smaller
parametric constraint. Prop. 1 also implies that all states on a cycle have the
same parametric constraint. So we also prune the red search, by restricting the
search for a cycle to the current parametric constraint (l.18).

Subsumption (grey) [22,25]. This pruning strategy takes advantage of the
subsumption relation between states. The accepting lassos reachable from red
states s are already included in Constraints . By Prop. 3, any lasso on state
t 
 t′ can be simulated by t′. Hence, we immediately prune the search when
we encounter a state t 
 Red, i.e. ∃t′. t 
 t′ ∈ Red (l.11,21). We exploit the
subsumption structure once more: if t . Cyan, i.e. ∃t′. t . t′ ∈ Cyan (l.19), we
have found an accepting spiral, which implies there is an accepted run, Prop. 3.

Lookahead (yellow) . The lookahead strategy is new (in this context) and
allows for early detection of accepting cycles in dfsBlue . It looks for a transition
to a cyan state (l.7), which is on the DFS stack. If the source or target of this
transition is accepting, then the cycle is accepting as well and reported at l.8.

Accepting First (blue). This is a new strategy, aimed at increasing the chance
of finding an accepting cycle early in the search, to promote more pruning. It
simply works by picking accepting successors before their siblings at l.10,17.
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Alg. 1 Collecting ndfs with strategies:
cumulative pruning subsumption lookahead accepting first

1: procedure NDFS
2: Cyan := Blue := Red := ∅ ; Constraints := ∅
3: dfsBlue (s0)

4: procedure dfsBlue (s)
5: if s↓P ⊆ Constraints then Blue := Blue ∪ {s} ; return

6: Cyan := Cyan ∪ {s}
7: if ∃s′ ∈ next-state(s) ∩ Cyan : (s ∈ A ∨ s′ ∈ A) then
8: Constraints := Constraints ∪ {s′↓P } 
 Report cycle at state s’
9: else
10: for all t ∈ Reordered-next-state(s) do
11: if t �∈ Blue ∪ Cyan ∧ t �� Red then dfsBlue (t)

12: if s ∈ A then dfsRed (s)

13: Blue := Blue ∪ {s}; Cyan := Cyan \ {s}

14: procedure dfsRed (s)
15: if s↓P �⊆ Constraints then
16: Red := Red ∪ {s}
17: for all t ∈ Reordered-next-state(s) do
18: if t↓P= s↓P then
19: if Cyan � t then
20: Constraints := Constraints ∪ t↓P 
 Report cycle at state t
21: else if t �� Red then dfsRed (t)

Layering (not shown here) [25]. The layering strategy gives priority to states
with large parametric constraints, since these potentially prune many other
states. To this end, successors in the next parametric layer are delayed, which is
sound, since every cycle must lie entirely in the same parametric layer (Prop. 1).

Proposition 4. All mentioned NDFS variants are sound and partially correct.

Proof. Partial correctness is shown in [25]. Soundness follows from Prop. 3, since
all collected constraints correspond to accepting spirals. ��

y≤p

�0

�1

x≥5
y:=0

y≥6
∧x:=0

True

Fig. 6. PTA A5

Example 6. None of the mentioned NDFS is complete for
symbolic lassos. Consider A5 in Fig. 6. Its PZG extends
Fig. 3(b) with a transition from all states to one additional
accepting state with self-loop, s = (�1, p+ x ≥ y ≥ 6 + x),
where s↓P= (p ≥ 6). All NDFS variants (including all com-
binations of cumulative pruning, subsumption, lookahead,
accept-first, and layering) allow the execution that diverges
on the infinite p ≥ 5 path, so they will never detect the ac-
cepting cycle on p ≥ 6.

318
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4.2 Breadth-First Search

We now describe a BFS-based synthesis algorithm for accepting cycle detection.
As in Alg. 1, our BFS algorithm maintains a parameter constraint Constraints ,
initially empty. The algorithm basically explores the newly computed symbolic
states in a breadth-first search manner, i.e. by iteratively computing all sib-
lings at a given depth level, before computing their own children states. Then,
whenever one of these new states is identical to a state already present in the
state space, a cycle may exist. In this case, we run an SCC-detection algorithm
(inspired by Tarjan) and, if there is indeed a cycle, we add the cycle parameter
constraint to the result Constraints . Remember that, from Prop. 1, all states in
such a cycle have the same parametric constraint.

Note that, in contrast to the algorithms in Sec. 4.1 and 4.3, we have to use
state equality, since using unrestricted subsumption could introduce spurious cy-
cles (cf. examples in [22]). However, we do use cumulative pruning, as in Sec. 4.1:
whenever the parametric constraint of a new state s is included in the current
result Constraints (i.e. s↓P ⊆ Constraints), we discard it, as no potential loop
starting from this state, or from its successors, can improve Constraints anyhow.

In contrast to the NDFS-based algorithms in Sec. 4.1, our BFS algorithm is
complete for symbolic lassos, since every lasso will appear at some level, and the
SCC algorithm will eventually detect it.

Proposition 5. The BFS+SCC algorithm is sound, partially correct, and com-
plete for symbolic lassos.

4.3 Bounded Synthesis with Iterative Deepening

One way to enforce termination is to explore the PZG up to a given depth
(Bounded Synthesis). However, this could make the result incomplete. Therefore,
as long as there are unexplored states, the bound should be increased (Iterative
Deepening), to synthesize parameter valuations for deeper accepting cycles.

Alg. 2 presents this procedure, called BSID. Although all strategies in Sec. 4.1
are compatible with this approach, only cumulative pruning and subsumption
are shown in the algorithm. It repeatedly explores the PZG from an initial
depth depthinit, incrementing the depth by depthstep at each iteration (l.8).
The termination criterion is that the current exploration did terminate without
reaching its current depth (l.7). In this case, the result is complete. Both dfsBlue
and dfsRed do not go beyond the current exploration depth (at l.10,20).

To avoid some duplicate work at different iterations, the set of blue states is
split using two colours: Green states have a descendent not completely processed
due to the depth limit, and should thus be considered in further iterations; Blue
states are those whose children have already been completely explored and thus
should not be considered anymore. Hence, at the beginning of an iteration, all
colours but blue are reset (l.5). States are coloured green when they are at the
depth limit (l.10) or if they have a green successor (l.16). Note that dfsBlue is
not called for blue states at l.14, but it may be called for states that have been
coloured green at the previous iteration but have been uncoloured.
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Proposition 6. The BSID algorithm is sound, partially correct, and complete
for symbolic lassos.

Proof. Soundness follows from Prop. 3, since every collected constraint corre-
sponds to an accepting spiral. Completeness for symbolic lassos follows, since
every accepting cycle in the PZG is entirely present at some depth. When NDFS
is run beyond that depth, it will report the constraint leading to that cycle. Par-
tial correctness follows, since the algorithm only terminates if the last run did
not reach the depth-bound, in which case the PZG is searched exhaustively. ��

Example 7. On bothA2 (Fig. 3, Ex. 4) andA5 (Fig. 6, Ex. 6), BSID will correctly
report p ≥ 5 and then terminate; for A5 it may first report p ≥ 6, depending
on the search order. It is actually the combination of bounded synthesis and
subsumption that makes the algorithm complete for this example. The bound
ensures that NDFS is run after the first iteration, and subsumption ensures that
an accepting spiral is found as explained in Ex. 4. At this point, the constraint
p ≥ 5 is discovered, which prunes the rest of the PZG, ensuring termination.

Alg. 2 Iterative deepening ndfs with cumulative constraint pruning and subsumption

1: procedure IterativeCollectNDFSsub(depthinit ,depthstep)
2: Cyan := Blue := Red := Green := ∅ ; Constraints := ∅
3: depth := depthinit ; again := true

4: while again do
5: Cyan := Red := Green := ∅ ; depthreached := false

6: dfsBlue (s0, 0)
7: if ¬depthreached then again := false

8: if again then depth := depth + depthstep

9: procedure dfsBlue (s ,ds )
10: if ds ≥ depth then depthreached := true ; Green := Green ∪ {s} ; return

11: if s↓P ⊆ Constraints then Blue := Blue ∪ {s} ; return

12: Cyan := Cyan ∪ {s}
13: for all t ∈ next-state(s) do
14: if t �∈ Blue ∪ Green ∪ Cyan ∧ t �� Red then dfsBlue (t ,ds+1)

15: if s ∈ A then dfsRed (s ,ds )
16: if ∃s′ ∈ Green ∩ next-state(s) then Green := Green ∪ {s}
17: else Blue := Blue ∪ {s}
18: Cyan := Cyan \ {s}

19: procedure dfsRed (s ,ds )
20: if ds < depth ∧ s↓P �⊆ Constraints then
21: Red := Red ∪ {s}
22: for all t ∈ next-state(s) do
23: if t↓P= s↓P then
24: if Cyan � t then
25: Constraints := Constraints ∪ t↓P 
 Report cycle at state t
26: else if t �� Red then dfsRed (t ,ds+1)

320
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5 Experimental Evaluation

We conducted some experiments, to compare all algorithms on the number of
cases they can solve and on their efficiency. In order to compare cases in which
an algorithm does not terminate, we also counted the number of reported cycles.

To this end, we implemented our new algorithms BFS and BSID in IMI-
TATOR 3,2 and we also reimplemented all NDFS-based algorithms [11,25] in
a unified DFS framework. We ran all algorithms on a benchmark, distributed
with IMITATOR [4] and also used in [25]. The size of the benchmarks is shown
in Tab. 1 (columns L,X,P). We used a timeout of 120 s.3

In Tab. 1, we compare some combinations of NDFS enhancements (Sec. 4.1),
extending the baseline (cumulative pruning). The results show that subsumption
alone performs worst, while lookahead solves more cases, e.g. ll.3–6 of Tab. 1. In-
terestingly, adding our new accepting first strategy succeeds to find cycles (l.12)
that are missed by all other strategies. Finally, adding the layering approach
leads to success in most cases and provides the fastest results on average, but it
finds no accepting cycles at all for five cases where others found some.

Tab. 2 compares the new algorithms BFS (Sec. 4.2) and BSID (Sec. 4.3),
including all enhancements (except layering) under various depth settings. BSID
is generally faster than BFS, in particular with an iterative depth-step of 5. The
performance of BFS is closest to BSID with depth-step 1. The first two columns
evaluate the effectiveness of using the green colour (ng = -no-green). Without
green, no information from previous iterations is reused. Avoiding recomputation
is faster, leading to a deeper exploration within the time limit (e.g. on l.2).

Comparing both tables, we notice that for ll.15–17 NDFS synthesised some
parameter values that are missed by BSID and BFS. BSID is generally faster
than its NDFS counterpart A+L+Sub, but NDFS with layering is even faster.

6 Case Study: the Bounded Retransmission Protocol

The Bounded Retransmission Protocol (BRP) has been analysed in [16,14,19],
but we now synthesise the most liberal parameter constraints to obtain some
reachability and liveness guarantees. For reachability, these constraints are more
liberal than proposed in previous work. Synthesising parameter constraints for
liveness properties is new, and our new algorithms were required to achieve this.

Our starting point is the PTA model from [14]. Each session starts with a
transmission request S in and is terminated by an indication S ok, S nok or S dk
(“don’t know”). The BRP is regulated by clocks, with some timing parameters:
TD is the delay in the communication channel, TS and TR indicate the time that
the sender (receiver) should wait. Finally, SYNC models the waiting time in case
sender and receiver get out of sync. The maximum number of retransmissions is
a discrete parameter, which we fixed in most experiments to MAX = 2.

2Algorithms are integrated in IMITATOR v.3. The artifact is at doi.org/10.5281/
zenodo.4115919 and can be run at: imitator.lipn.univ-paris13.fr/artifact.

3The experiment ran on a DELL PowerEdge FC640, 2 processors (Intel Xeon Silver
4114 @ 2.20 GHz), Debian GNU/Linux 10, 187.50 GiB memory.

https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0-beta
https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0-beta
https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0-beta
https://doi.org/10.5281/zenodo.4115919
https://doi.org/10.5281/zenodo.4115919
https://imitator.lipn.univ-paris13.fr/artifact
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É. André et al.

6.1 Synthesis for Reachability Properties: deriving sharper bounds

To illustrate synthesis for reachability properties, we first enhance the parametric
verification experiments from [14,19] in IMITATOR. The reachability properties
are: (C) the channels will never be used simultaneously; and (R) the receiver
gets a correct initial frame in each session. Property (C) is formalised as:

property := #synth AGnot(loc[channelK] = in transitK & loc[channelL] = in transitL)

We synthesise the safe parameter constraints for “unreachability” by:4

imitator -mergeq -comparison inclusion brp Channels.imi brp Channels.imiprop

IMITATOR derives within 2 s the exact constraint TS > 2*TD: The sender should
wait (TS) for the round-trip time of a message + acknowledgement (2*TD).

Property (R) is formalised by adding an error location FailureR to the
receiver, which should be unreachable. Since we learned the constraint TS>2*TD
in the previous run, we now include this constraint in the initial condition.
Within 1 s, IMITATOR synthesizes the exact constraint for this safety property:

imitator -mergeq -comparison inclusion brp RC.imi brp RC.imiprop
SYNC + TS >= TR + TD & TS > 2∗TD & TR > 4∗TS + 3∗TD

The fact that this can be computed is not surprising, but it is surprising that
this constraint is more liberal than the one derived in [14,19], which was:

SYNC >= TR & TS > 2∗TD & TR > 2∗MAX∗TS + 3∗TD

One can easily check that, for MAX = 2, their constraint is strictly stronger
than ours. So we found more parameter values for which BRP is correct. By con-
struction, we found the most liberal constraint for MAX = 2, and we confirmed
a similar result for up to MAX = 20. We cannot handle a parametric MAX.

6.2 Liveness: approximations by bounded synthesis

Next, we want to measure the overhead of liveness checking. To this end, we
make the failureR location an accepting cycle, and use a liveness property. Note
that in this case, the synthesised constraint will indicate the error condition.

accepting loc FailureR: invariant True when True goto FailureR;
init := ... & TS > 2 ∗ TD
property := #synth CycleThrough(accepting)

Since we search for an accepting loop, inclusion and merging are unsound, but
still complete. However, we can safely apply subsumption in NDFS. Without
inclusion, the zone graph is infinite, so we are forced to resort to bounded syn-
thesis, which only provides an under-approximation. Hence, we also use iterative
deepening (BSID, Sec. 4.3). The depth limit is reached in 6 s.

4Inclusion and merging are sound and complete for reachability [7]. Inclusion applies
maximal subsumption, while merging combines zones with exact convex hull.
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imitator brp RC.imi accepting.imiprop -depth-step=5 -depth-limit=25 -recompute-green
4∗TS + 3∗TD >= TR & TS > 2∗TD

OR TR + TD > SYNC + TS & TS > 2∗TD

We could have searched even deeper for more liberal constraints, but it can
be easily checked that this error constraint is equivalent to the complement of
the safety constraint (within the initial condition), see Sec. 6.1, property (R).
Hence, we can conclude that we have already synthesised the exact constraint.

6.3 Proper Liveness Properties

GF(S in). Next, we will synthesise constraints for an actual liveness property,
stating that the number of new sessions is infinite. We use Spot [15] to generate
a Büchi automaton for the negation of this formula, and add the result as a
monitor to the IMITATOR model, synchronising with the sender process. We add
the constraints on correctness that we learned before to the initial constraints:

init := ... & SYNC >= TR & TS > 2∗TD & TR > 4∗TS + 3∗TD

The following command tries to synthesize all parameters (within the initial
constraint) for which an accepting loop is reachable, i.e. GF S in is violated. We
replaced subsumption by full inclusion, since otherwise IMITATOR gets lost in
the infinite parametric zone graph. Recall that inclusion is complete but unsound
for NDFS, so this provides an over-approximation of the constraints.

imitator -no-subsumption -comparison inclusion brp GF S in RC.imi accepting.imiprop

IMITATOR replies False in 1 second, so there is no reachable accepting cycle.
Since this was an over-approximation, the result is conclusive: GF S in holds
under all parameter values inside this initial constraint. Note that, in principle,
the property could be violated outside this initial condition. We can rerun the
same experiment with the more general initial condition TS > 2*TD. IMITATOR
confirms that the property still holds, but checking this larger space takes 19 s.

G(S in⇒ F(S ok ∨ S nok ∨ S dk)). Using the same method, IMITATOR con-
firms in 16 s, that also this response property holds: every sessions start is fol-
lowed by some indication.

imitator -no-subsumption -comparison inclusion brp GSinFSdk.imi accepting.imiprop

G(S in⇒ F(S ok ∨ S nok)). Let us pretend that we forgot the indication S dk
(don’t know). This time, we search for a symbolic counter-example (using the
option -witness), under the initial condition TS > 2*TD.

property := #witness CycleThrough(accepting)
imitator brp GSinFSnok.imi accepting one.imiprop

As expected, IMITATOR finds a counter-example quickly (within 0.04s).
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7 Conclusion

We presented and evaluated new semi-algorithms solving the liveness parame-
ter synthesis problem for Parametric Timed Automata. We also introduced new
soundness and completeness notions for such semi-algorithms. The new algo-
rithms, based on BFS and Bounded Synthesis (BSID), at least enumerate all
parameters leading to accepting lassos in the parametric zone graph. We showed
that this property does not hold for all previous algorithms, which were based on
NDFS. Our new algorithms are less sensitive to the particular search order than
the previous NDFS algorithms, that could get stuck in some branch of the PZG.

Tab. 3 (left) shows the soundness and completeness status of all considered al-
gorithms. Full inclusion and BS-n can only provide an over-approximation (resp.
under-approximation). The enumQ algorithm is complete, but never terminates
(indicated by ××), so its partial soundness and completeness results are vacuous
(indicated by (�)). Although the problem is undecidable, one might still hope
for an algorithm that enumerates all possible solutions (like enumQ, generating
and testing all rational solutions) and produces a finite set of aggregate solutions
(if it exists). The algorithm should terminate for practical cases.

Tab. 3 (right) shows the results of our algorithms for examples A1–A6. They
either terminate with an exact (�) or partial ((�)) result, or diverge (×). In one
case the addition of the layers strategy is needed to obtain a partial result ((L)).

x≤q
y≤p

�0 x≥q
x:=0

Fig. 7. PTA A6.

Our last example shows another challenge to obtain a
complete approach. The PZG of PTA A6 has a non-cyclic
infinite path. It seems non-trivial to compute its limit con-
straint automatically. After n steps, the parametric con-
straint is p ≥ n× q. So the limit constraint is q = 0∧ p ≥ q.

In order to handle cases where the set of solutions is
not even a finite union of convex sets (Fig. 5), an entirely
different representation of the solutions would be required.

Finally, exploiting the component-based structure of networks of PTA using
a compositional approach, such as the one developed recently for fair paths in
infinite systems [12], would be an exciting extension.

Table 3. Soundness and completeness properties of various algorithms.
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A1 A2 A3 A4 A5 A6

NDFS (enhanced) × � � � × × � × × (�) (L) ×
NDFS + inclusion × × � × × × � × × (�) (L) ×
BFS + SCC × � � � × � � × × (�) (�) ×
BSID × � � � × � � � × (�) � ×
BS-n (fixed bound) � � × � × ×
Näıve enumQ ×× (�) (�) � � �
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5. André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905
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É. André et al.
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Spot 2.0 — A framework for LTL and ω-automata manipulation. In: ATVA.
Lecture Notes in Computer Science, vol. 9938, pp. 122–129. Springer (2016).
https://doi.org/10.1007/978-3-319-46520-3 8

16. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for large data pack-
ets. In: Wirsing, M., Nivat, M. (eds.) AMAST. Lecture Notes in Computer Science,
vol. 1101, pp. 536–550. Springer (1996). https://doi.org/10.1007/BFb0014338

17. Herbreteau, F., Srivathsan, B.: Efficient on-the-fly emptiness check for timed Büchi
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Abstract. We investigate efficient algorithms for the online monitor-
ing of properties written in metric temporal logic (MTL). We employ
an abstract algebraic semantics based on semirings. It encompasses the
Boolean semantics and a quantitative semantics capturing the robust-
ness of satisfaction, which is based on the max-min semiring over the
extended real numbers. We provide a precise equational characterization
of the class of semirings for which our semantics can be viewed as an ap-
proximation to an alternative semantics that quantifies the distance of a
system trace from the set of all traces that satisfy the desired property.

Keywords: Online Monitoring · Verification · Quantitative Semantics.

1 Introduction

Online monitoring is a lightweight verification technique for checking during run-
time that a system behaves as desired. It has proved to be effective for evaluating
the correctness of the behavior of complex systems, which includes cyber-physical
systems (CPSs) that consist of both computational and physical processes. An
online monitor is a program that observes the execution trace of the system and
emits values that indicate events of interest or other actionable information.

It is common to specify monitors using special-purpose formalisms such as
variants of temporal logic and domain-specific programming languages. In the
context of cyber-physical systems, logics that are interpreted over signals are
frequently used. This includes Metric Temporal Logic (MTL) [30] and Signal
Temporal Logic (STL) [33]. We focus here on properties specified with MTL
and interpreted over discrete-time signals. We do not restrict the outputs of the
monitor to Boolean (qualitative) verdicts, but allow for a quantitative interpre-
tation of property satisfaction that admits various degrees of truth or falsity.
Such quantitative interpretations of temporal logic have been considered before,
including several variants of the so-called robust semantics of MTL [22,20,5].

Our starting point is the widely-used spatial robust semantics of MTL [22].
This uses the set R±∞ = R ∪ {−∞,∞} of the extended real numbers as truth
values, where a positive number indicates truth, a negative number indicates
falsity, and zero is ambiguous. Disjunction is interpreted as max, and conjunction
is interpreted as min. Two quantitative semantic notions are considered in [22]:
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(1) the robustness degree degree(ϕ, u) of a trace u w.r.t. a formula ϕ, which
is defined in a global way using distances between signals, and (2) the robust
semantics ρ(ϕ, u) of a formula ϕ w.r.t. a trace u, which is defined by induction
on the structure of ϕ. The former notion is the primary definition that captures
the intuitive idea of the degree of satisfaction, whereas the latter is used as an
approximate estimate. The usefulness of this estimate is justified by establishing
a precise relationship between the two values [22]. The robust semantics of [22]
has been used in prior work on online monitoring [16,15].

We embark on an investigation of how to generalize the robustness frame-
work of [22] to other notions of quantitative truth values. Instead of focusing
exclusively on the concrete structure (R±∞, sup, inf,−∞,∞), we take an ab-
stract algebraic approach and look at classes of structures that are defined
axiomatically. We start by considering the class of semirings, algebraic struc-
tures of the form (V,+, ·, 0, 1) with an addition operation + (which models
disjunction) and a multiplication operation · (which models conjunction) sat-
isfying a set of equational laws. The class of semirings contains B = {⊥,�}
(the Boolean values), (R±∞,max,min,−∞,∞), the max-plus (tropical) semir-
ing (R∪{−∞},max,+,−∞, 0), and (R,+, ·, 0, 1). The semiring of intervals with
(semiring) addition given by [a, b]⊕ [c, d] = [max(a, c),max(b, d)] and (semiring)
multiplication given by [a, b] ⊗ [c, d] = [min(a, c),min(b, d)] is an especially in-
teresting example, as it can be used to model uncertainty in the truth value: an
element [a, b] indicates that the truth value lies somewhere within this interval.

We use an algebraic generalization of the inductively-defined robust seman-
tics of [22], as our goal is to obtain online monitors that are time- and space-
efficient. Our main results are the following:
– The theorem of [22] that relates degree(ϕ, u) and ρ(ϕ, u) is generalized from

R±∞ to a class of semirings. The class of semirings for which the theorem
holds admits a precise axiomatic characterization (Theorem 7). To obtain
this, we develop a notion of symbolic quantitative languages that forms a
semantic bridge between quantitative specifications and sets of traces.

– We propose a new algorithm for efficient online monitoring (Theorem 11)
that goes beyond existing algorithms. Prior monitors [16,15] compute max
or min over sliding-windows and therefore apply only to semirings that are
linear orders (e.g., B and R±∞). Our monitoring algorithm applies to values
V that are partial orders or more general semirings. In order to obtain this
algorithm, we reduce the monitoring of formulas of the form ϕ S[a,b] ψ and
ϕ U[a,b] ψ to a sliding-window aggregation (which is neither max nor min).

We provide an implementation of our algebraic monitoring framework in Rust.
Our experiments show that our monitors scale reasonably well and they compare
favorably against the state-of-the-art monitoring tool Reelay [40].

2 Algebraic Semantics using Semirings

A semiring is an algebraic structure (V,+, ·, 0, 1), where + is called addition and
· is called multiplication, that satisfies the following properties: (1) (V,+, 0) is a
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commutative monoid, (2) (V, ·, 1) is a monoid, (3) multiplication distributes over
addition, and (4) 0 is an annihilator for multiplication. The last two properties
say that x(y+z) = xy+xz, (x+y)z = xz+yz, and 0x = x0 = 0 for all x, y, z ∈ V .
We sometimes write xy to mean x·y. A semiring V is called idempotent if addition
is idempotent, that is, x+ x = x for every x ∈ V . For an idempotent semiring,
we define the partial order induced by + as follows: x ≤ y iff x + y = y. A
homomorphism from a semiring U to a semiring V is a function h : U → V
that commutes with the semiring operations. An epimorphism is a surjective
homomorphism. Let U and V be idempotent semirings and h : U → V be a
semiring homomorphism. Then, h is monotone (i.e., order-preserving).

Example 1. The set B = {⊥,�} of Boolean values with disjunction and conjuc-
tion is a semiring. The set T = {⊥, ?,�} can be endowed with semiring structure
as follows: x+⊥ = x, x+� = �, ? + ? = ?, x · ⊥ = ⊥, x · � = x, and ? · ? = ?,
where · is commutative. The structure T is used to give a three-valued interpre-
tation of formulas (? is inconclusive). The structure (R±∞,max,min,−∞,∞) is
the max-min semiring over the extended reals. The structure (R,+, ·, 0, 1) is a
semiring and Z (integers) and N (natural numbers) are subsemirings of it.

We interpret the max-min semiring R±∞ as degrees of truth, where positive
means true and negative means false. The value 0 is ambiguous. For this reason
we also consider a variant of R±∞, where the value 0 is refined into a positive +0
(true) and a negative −0 (false). We thus obtain the max-min semiring R±∞

±0 ,
which is isomorphic to B×R≥0, where R≥0 = {x ∈ R | x ≥ 0}.

For integers i, j ∈ Z we define the intervals [i, j] = {n ∈ Z | i ≤ n ≤ j}
and [i,∞) = {n ∈ Z | i ≤ n}. For a set I of integers and n ∈ Z, define
n+ I = {n+ i | i ∈ I} and n− I = {n− i | i ∈ I}.

For a semiring V , an interval I = [i, j] (where i, j are natural numbers) and
an I-indexed tuple x̄ = (xi)i∈I whose components are in V , we define

∑
x̄ =∑

k∈Ixk =
∑j

k=ixk = xi + · · ·+ xj and
∏
x̄ =

∏
k∈Ixk =

∏j
k=ixk = xi · · ·xj . If

the tuple x̄ is empty (i.e., I = ∅) then we define
∑

x̄ = 0 and
∏
x̄ = 1.

We will consider formulas of Metric Temporal Logic (MTL) interpreted over
traces that are finite or infinite sequences of data items from a set D. We write
D∗ (resp., D+) for the set of all finite (resp., non-empty finite) sequences over
D, and Dω = ω → D for the set of all infinite sequences over D, where ω
is the first infinite ordinal (i.e., the set of natural numbers). We also define
D∞ = D∗ ∪ Dω. We write ε for the empty sequence and |u| for the length of
a trace, where |u| = ω if u is infinite. A finite sequence u ∈ D∗ can be viewed
as a function from {0, . . . , |u| − 1} to D, that is, u = u(0)u(1) . . . u(|u| − 1). We
also consider a semiring V whose elements represent quantitative truth values,
and unary quantitative predicates p : D → V . We write 1, 0 : D → V for the
predicates given by 1(d) = 1 and 0(d) = 0 for every d ∈ D.

The set MTL(D,V ) of temporal formulas is built from the atomic pred-
icates p : D → V using the Boolean connectives ∨ and ∧, the unary temporal
connectives PI , HI , FI , GI , and the binary temporal connectives SI , S̄I , UI , ŪI ,
where I is an interval of the form [i, j] or [i,∞) with i, j < ω. For every temporal
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ρ(p, u, i) = p(u(i))

ρ(ϕ ∨ ψ, u, i) = ρ(ϕ, u, i) + ρ(ψ, u, i) ρ(ϕ ∧ ψ, u, i) = ρ(ϕ, u, i) · ρ(ψ, u, i)
ρ(PIϕ, u, i) =

∑
j∈i−I, j≥0 ρ(ϕ, u, j) ρ(HIϕ, u, i) =

∏
j∈i−I, j≥0 ρ(ϕ, u, j)

ρ(FIϕ, u, i) =
∑

j∈i+I, j<|u| ρ(ϕ, u, j) ρ(GIϕ, u, i) =
∏

j∈i+I, j<|u| ρ(ϕ, u, j)

ρ(ϕ SI ψ, u, i) =
∑

j∈i−I, j≥0

(
ρ(ψ, u, j) · ∏i

k=j+1ρ(ϕ, u, k)
)

ρ(ϕ S̄I ψ, u, i) =
∏

j∈i−I, j≥0

(
ρ(ψ, u, j) +

∑i
k=j+1ρ(ϕ, u, k)

)

ρ(ϕ UI ψ, u, i) =
∑

j∈i+I, j<|u|
(∏j−1

k=iρ(ϕ, u, k)
)
· ρ(ψ, u, j)

ρ(ϕ ŪI ψ, u, i) =
∏

j∈i+I, j<|u|
(∑j−1

k=iρ(ϕ, u, k) + ρ(ψ, u, j)
)

Fig. 1: Semiring-based quantitative semantics for MTL.

connective X ∈ {P,H, S, S̄,F,G,U, Ū}, we write Xi as an abbreviation for X[i,i]

and X as an abbreviation for X[0,∞).
Since we focus in this paper on online monitoring, we restrict attention to the

future-bounded fragment of MTL, where the future-time temporal connectives
are bounded. That is, every UI connective is of the form U[a,b] for a ≤ b < ω

(and similarly for FI , GI , ŪI). We always assume this restriction on formulas.
We interpret the formulas in MTL(D,V ) over traces from D∞ and at specific

time points. The interpretation function ρ : MTL(D,V )×D∞ × ω → V , where
ρ(ϕ, u, i) is defined when i < |u|, is shown in Fig. 1. We say that the formulas
ϕ and ψ are equivalent, and we write ϕ ≡ ψ, if ρ(ϕ, u, i) = ρ(ψ, u, i) for every
u ∈ D∞ and i < |u|. For every formula ϕ and every interval I, it holds that
PIϕ ≡ 1 SI ϕ, HIϕ ≡ 0 S̄I ϕ, FIϕ ≡ 1 UI ϕ, and GIϕ ≡ 0 ŪI ϕ.

We say that a semiring V refines B if there is a semiring homomorphism
h : V → B. Notice that h is necessarily an epimorphism because h(0) = ⊥ and
h(1) = �. Informally, we think of h−1(⊥) as the subset of “false” values and
h−1(�) as the subset of “true” values. In particular, this means that V can be
partitioned into true and false values. There are semirings that cannot refine B.
For example, the semiring (Z,+, ·, 0, 1) of the integers cannot refine B.

Let h : V → B. For a predicate p : D → V , we say that d ∈ D h-satisfies
p, and we write d |=h p, if h(p(d)) = �. For u ∈ D∞ and i < |u| we define the
satisfaction relation |=h as usual (for atomic formulas: u, i |=h p iff u(i) |=h p).

Lemma 2. Let D be a set of data items, V be a semiring, and h : V → B. The
following are equivalent:
(1) The function h is a semiring homomorphism.
(2) u, i |=h ϕ iff h(ρ(ϕ, u, i)) = � for every ϕ : MTL(D,V ), u ∈ D∞ and i < |u|.

Lemma 2 says that the qualitative semantics |=h agrees with the quantitative
semantics ρ exactly when h : V → B is a semiring homomorphism. In this case,
ρ is more fine-grained and loses no information regarding Boolean satisfaction.

Lemma 3. Let D be a set of data items and V be a semiring. The identities of
Fig. 2 hold for all formulas ϕ, ψ ∈ MTL(D,V ).
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Pϕ ≡ P1(Pϕ) ∨ ϕ and Hϕ ≡ H1(Hϕ) ∧ ϕ

ϕ S ψ ≡ (P1(ϕ S ψ) ∧ ϕ) ∨ ψ

P[a,∞)ϕ ≡ PaPϕ and H[a,∞)ϕ ≡ HaHϕ

ϕ S[a,∞) ψ ≡ Pa(ϕ S ψ) ∧ H[0,a−1]ϕ, for a ≥ 1

P[a,b]ϕ ≡ PaP[0,b−a]ϕ and H[a,b]ϕ ≡ HaH[0,b−a]ϕ

ϕ S[a,b] ψ ≡ Pa(ϕ S[0,b−a] ψ) ∧ H[0,a−1]ϕ, for a ≥ 1

F[0,b]ϕ ≡ FbP[0,b]ϕ and G[0,b]ϕ = GbH[0,b]ϕ

F[a,b]ϕ ≡ FbP[0,b−a]ϕ and G[a,b]ϕ ≡ GbH[0,b−a]ϕ

ϕ U[a,b] ψ ≡ G[0,a−1]ϕ ∧ Fa(ϕ U[0,b−a] ψ), for a ≥ 1

Fig. 2: Equivalences between temporal formulas.

The identities of Fig. 2 are all shown using the semiring axioms. The identity
below can be used to reduce the monitoring of S[0,a] to P[0,a].

ϕ S[0,a] ψ ≡ (ϕ S ψ) ∧ P[0,a]ψ (1)

An early occurrence of this idea is in [19], where they consider the more general
(future-time) form ϕ U[a,b] ψ ≡ (ϕ U[a,∞) ψ) ∧ F[a,b]ψ. Prior work on efficient
monitoring [15] uses an algorithm based on it. Specifically, [15] uses a sliding-max
algorithm [32], which can be applied to the max-min semiring R±∞ and other
similar linear orders, but is not applicable to partial orders or other semirings.

Proposition 4. For a set D with at least two elements and a semiring V , the
following are equivalent:
(1) The semiring V is a bounded distributive lattice.
(2) Equivalence (1) holds for all formulas ϕ, ψ ∈ MTL(D,V ).

Proposition 4 gives a precise characterization of when the identity (1) applies.
This characterization is axiomatic and identifies the class of bounded distributive
lattices as the most general class for which the identity is valid. One important
implication is that monitors that are based on this identity cannot be used for
other semirings such as (R,+, ·, 0, 1) and (N,+, ·, 0, 1).

Example 5 (Uncertainty). We want to identify a notion of quantitative truth
values in situations where we interpret formulas over a signal x[n] that is not
known with perfect accuracy, but we can put an upper and lower bound on each
sample, i.e., a ≤ x[n] ≤ b. For example, suppose that we know that 99.9 ≤ x[0] ≤
100.1 and we want to evaluate the atomic predicate p = “x ≥ 99” at time 0. The
truth value can be taken to be the interval [0.9, 1.1] in this case, since there is
uncertainty in the distance of signal value from the threshold.

More concretely, this situation of uncertain input signal can arise in the mon-
itoring of systems where the raw signal is captured at one site, then compressed
and transmitted to another site for monitoring. In many resource-constrained
settings (e.g., certain IoT systems), the signal has to be compressed with a lossy
compression scheme in order to meet network bandwidth constraints. So, at the
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monitoring site, the exact signal values are not known but can possibly be placed
within intervals (depending on the used compression scheme).

In order to model this kind of uncertainty, we consider the set I(R±∞) of in-
tervals of the form [a, b] with a ≤ b and a, b ∈ R±∞. An interval [a, b] ⊆ R±∞ can
be thought of as an uncertain truth value (it can be any one of those contained in
[a, b]). For intervals [a, b] and [c, d] we define [a, b]⊕ [c, d] = [max(a, c),max(b, d)]
and [a, b]⊗ [c, d] = [min(a, c),min(b, d)]. An interval of the form [a, a] is equal to
the singleton set {a}. The structure (I(R±∞),⊕,⊗, {−∞}, {∞}) is a semiring.

The semiring I(R±∞) is a partial order (more specifically, it is a bounded
distributive lattice) and therefore does not fit existing monitoring frameworks
that consider only linear orders (e.g., the max-min semiring R±∞ of the extended
reals and the associated sliding-max/min algorithms).

3 Symbolic Quantitative Traces and Languages

In this section we start with our investigation of how to generalize the “robust-
ness degree” of [22] to our abstract algebraic setting. The result of [22] that
relates the robustness degree with the robust semantics is an inequality. For this
reason, we focus on idempotent semirings, for which there is a natural partial
order ≤ that is induced by semiring addition (x ≤ y iff x + y = y). Since our
approach is abstract algebraic (i.e., axiomatic), we have no notion of real-valued
distance between elements of D. Moreover, V does not need to be a semiring
of real numbers. Instead, we rely on the intuition that for an atomic predicate
p : D → V and a data item d ∈ D, the value p(d) gives a degree of truth or
falsity. We propose using symbolic traces x = p0p1 . . . pn−1, which are sequences
of atomic predicates, in order to compactly represent sets of concrete traces,
which are sequences of data items. If each pi represents a subset Si ⊆ D, then x
represents the set L = S0×S1× · · ·×Sn−1 = {v0v1 . . . vn−1 | vi ∈ Si for each i}
of concrete traces. Moreover, given a concrete trace u = u0u1 . . . un−1 ∈ Dn, we
can use the value p0(u0) · p1(u1) · · · pn−1(un−1) ∈ V as a quantitative measure
of how close the trace u is to the set of traces L. We propose the interpretation
of a formula ϕ as a language of symbolic traces. This will allow us to define the
“closeness” of a trace u ∈ Dn to the specification ϕ as a (semiring) sum of all the
closeness values w.r.t. each symbolic trace in the symbolic language of ϕ. We will
also see that this interpretation of a formula ϕ as a symbolic language is com-
patible with the standard interpretation of ϕ as a set of concrete traces. Using
these definitions we obtain a generalization of the theorem of [22] that relates
the robustness degree with the robust semantics. Additionally, we characterize
precisely the class of semirings for which this generalization is possible.

Let V be an idempotent semiring. For predicates p, q : D → V we define p ≤ q
if p(d) ≤ q(d) for every d ∈ D. The intuition for p ≤ q is that p is a stronger
predicate than q. We write F(D,V ) to denote the set of atomic quantitative
predicates, which always includes the predicates 1 and 0. For symbolic traces
x,y ∈ F(D,V )∞ with λ = |x| = |y| we define x ≤ y if x(i) ≤ y(i) for every
i < λ. These relations ≤ on predicates and traces are partial orders. We define
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the symbolic satisfaction relation |=, where x, i |= ϕ says that the formula ϕ :
MTL(D,V ) is satisfied by the symbolic trace x ∈ F(D,V )∞ at position i < |x|.
For atomic formulas, we put x, i |= p iff x(i) ≤ p. The definition is given by
induction on ϕ in the usual way. For a formula ϕ : MTL(D,V ), length λ ∈
ω∪{ω} and a position i < λ, we define the symbolic language SL(ϕ, λ, i) = {x ∈
F(D,V )λ | x, i |= ϕ}. For nonempty finite traces x ∈ F(D,V )n and u ∈ Dn of
the same length, we define x[u] =

∏n
i=1x(i)(u(i)), where n = |x| = |u|. Since

the semiring multiplication is monotone w.r.t. ≤, we see that x ≤ y implies
x[u] ≤ y[u] for every u ∈ Dn. Informally, the value x[u] quantifies how close the
concrete trace u is to the symbolic trace x.

Example 6. Let D = R and V = R±∞. For c ∈ R, the predicate p = “x ≥ c”
is defined by p(d) = d− c for every d ∈ D. The predicate q = “x ≤ c” is given by
q(d) = c−d for every d ∈ D. For the symbolic trace x = “x ≥ 1” “x ≤ 5” “x ≥ 2”
and the concrete trace u = 3 6 8 we get that x[u] = min(2,−1, 6) = −1.

Let c, d ∈ R. For the predicates p = “x ≥ c” and q = “x ≥ d” we have that
p ≤ q iff d ≤ c. Similarly, for the predicates p = “x ≤ c” and q = “x ≤ d” it holds
that p ≤ q iff c ≤ d. Finally, notice that the predicates “x ≥ c” and “x ≤ d” are
incomparable. Consider y = “x ≥ 0” “x ≤ 7” “x ≥ 1” and observe that x ≤ y.

For the formula ϕ = p ∧ F1q, where p and q are atomic predicates, we have
that SL(ϕ, 2, 0) = {p′q′ ∈ F(D,V )2 | p′ ≤ p and q′ ≤ q}.

The definition of the robustness degree in [22] involves the value −dist(u, L) =
− infv∈L dist(u, v) = supv∈L −dist(u, v), where u is a trace, L is a set of traces,
and dist is a metric. Notice that this is a supremum over a potentially infinite
set. The semirings that we have considered so far have an addition operation
that can model a finitary supremum. In order to model an infinitary supremum,
we need to consider semirings that have an infinitary addition operation. A
complete semiring is an algebraic structure (V,+,

∑
, ·, 0, 1), where

∑
i∈Ixi is the

sum of the I-indexed tuple of elements (xi)i∈I , that satisfies: (1)
∑

i∈∅xi = 0,∑
i∈{j}xi = xj ,

∑
i∈{j,k}xi = xj + xk for j �= k, and

∑
k∈K

∑
i∈Ik

xi =
∑

i∈Ixi

where I =
⋃

k∈KIk and the index sets (Ik)k∈K are pairwise disjoint, (2) (V, ·, 1)
is a monoid, (3) the infinite distributivity properties (

∑
i∈Ixi) · y =

∑
i∈I(xiy)

and x · (
∑

i∈Iyi) =
∑

i∈I(xyi) hold for every index set I and all xi, y ∈ V , and
(4) 0 is an annihilator for multiplication. A complete semiring V is idempotent
if
∑

i∈Ixi = x for every non-empty index set I with xi = x for every i ∈ I. For
example, (R±∞,max, sup,min,−∞,+∞) is an idempotent complete semiring.
For a formula ϕ : MTL(D,V ), a trace u ∈ D+ and i < n = |u|, we define

val(ϕ, u, i) =
∑

x∈SL(ϕ,n,i) x[u]. (2)

Informally, val(ϕ, u, i) is a measure of how close the trace u is to satisfying ϕ at
position i. It is an abstract algebraic variant of the robustness degree [22].

Theorem 7 (Approximation). Let D be a set of data items and V be an
idempotent complete semiring. Then, the following are equivalent:
(1) The multiplication of V is idempotent and 1 is the top element of V .
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(2) For every ϕ : MTL(D,V ), u ∈ D+ and i < |u|, val(ϕ, u, i) ≤ ρ(ϕ, u, i).

Proof. Assume that (1) holds. Let n ≥ 1 be an integer. For a symbolic language
L ⊆ F(D,V )n and for u ∈ Dn, we define val(L, u) =

∑
x∈Lx(u). Let {Li}i∈I be

a collection of languages with Li ⊆ F(D,V )n. Then,

val(
⋃

i∈ILi, u) =
∑

x∈
⋃

i∈I
Li
x[u] ≤

∑
i∈I

∑
x∈Li

x[u] =
∑

i∈Ival(Li, u). (3)

For symbolic languages L1,L2 ⊆ F(D,V )n, define L = L1 ∩ L2, L′
1 = L1 \ L2

and L′
2 = L2 \L1. Then, L1 = L′

1 ∪L and L2 = L′
2 ∪L. The languages L′

1,L′
2,L

are pairwise disjoint. So, we have that val(L1, u) = x+ z and val(L2, u) = y+ z,
where x = val(L′

1, u), y = val(L′
2, u) and z = val(L, u). It follows that

val(L1 ∩ L2, u) = z = zz ≤ (x+ z)(y + z) = val(L1, u) · val(L2, u) (4)

by the idempotence of multiplication. This property extends to val(L1 ∩ · · · ∩
Lk, u) ≤ val(L1, u) · · · val(Lk, u). Now, we will prove (2) by induction on ϕ.
− For the base case we have SL(p, n, i) = {x ∈ F(D,V )n | x(i) ≤ p}. Define

y ∈ F(D,V )n by y(i) = p and y(j) = 1 for every j �= i. That is, y =
1i p 1n−i−1. For every x ∈ SL(p, n, i) we have x(i) ≤ p and therefore x ≤ y
(since 1 is the top element of V ). It follows that x[u] ≤ y[u] = p(u(i)). So,
val(p, u, i) =

∑
x∈SL(p,n,i)x[u] ≤ p(u(i)) = ρ(p, u, i).

− For the case of disjunction, we have SL(ϕ∨ψ, n, i) = SL(ϕ, n, i)∪SL(ψ, n, i). It
follows that val(ϕ∨ψ, u, i) ≤ val(ϕ, u, i)+val(ψ, u, i) ≤ ρ(ϕ, u, i)+ρ(ψ, u, i) =
ρ(ϕ ∨ ψ, u, i) by the induction hypothesis and (3).

− For the case of conjunction we observe that val(ϕ∧ψ, u, i) = val(SL(ϕ, n, i)∩
SL(ψ, n, i), u) ≤ val(ϕ, u, i) · val(ψ, u, i) ≤ ρ(ϕ, u, i) · ρ(ψ, u, i) = ρ(ϕ ∧ ψ, u, i)
by the induction hypothesis and (4).

The rest of the cases S, S̄, U, Ū can be dealt with similarly using (3) and (4).
The proof that (2) implies (1) is not too difficult, and we therefore omit it. ��

Theorem 7 could be considered an abstract algebraic counterpart of the re-
sult of [22] (page 4268, Theorem 13) for discrete finite traces. We will discuss
later how it can be used to obtain the original result (for the max-min semiring
R±∞) as a corollary. Additionally, Theorem 7 gives a precise equational char-
acterization of the class of semirings for which the relationship between the two
semantics holds.

LetD be a set of data items, V be a semiring and h : V → B. For a formula ϕ :
MTL(D,V ), length λ ∈ ω∪{ω} and i < λ, we define the concrete trace language
CLh(ϕ, λ, i) = {u ∈ Dλ | u, i |=h ϕ}. For a symbolic trace x ∈ F(D,V )λ, we
define its (concrete) trace language by CLh(x) = {u ∈ Dλ | u |=h x}, where
u |=h x means that u(i) |=h x(i) for every i < n. Lemma 8 below establishes
a correspondence between the symbolic and concrete language of a formula ϕ,
which we need to connect Theorem 7 to the concrete setting of [22].

Lemma 8 (Concrete and Symbolic Languages). Let D be a set of data
items, V be an idempotent semiring with top element 1, and h : V → B be a
semiring homomorphism. For every formula ϕ : MTL(D,V ), length λ ∈ ω∪{ω},
and position i < λ, it holds that CLh(ϕ, λ, i) =

⋃
x∈SL(ϕ,λ,i)CLh(x).
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4 Relationship with robust semantics

In this section, we consider the concrete quantitative setting where V is the max-
min semiring R±∞. We will obtain the result of [22] that relates the robustness
degree with the robust semantics as a consequence of Theorem 7.

Ametric space is a setM together with a function dist : M×M → R≥0, called
metric, satisfying: (1) dist(x, y) = 0 iff x = y for all x, y ∈ M , (2) dist(x, y) =
dist(y, x) for all x, y ∈ M , and (3) dist(x, z) ≤ dist(x, y)+dist(y, z) for all x, y, z ∈
M . Given a metric dist on M we define the distance function Dist as follows:

dist : M × P(M) → R∞
≥0

dist(x, S) = infy∈S dist(x, y)

dist(x, ∅) = ∞

Dist : M × P(M) → R±∞

Dist(d, S) =

{
−dist(d, S), if d /∈ S

dist(d,∼S), if d ∈ S

where ∼S = M \ S is the complement of S. Notice that Dist(x, ∅) = −∞.
Let D be a metric space of points (data items). Let p be a propositional

letter (symbol), and O(p) ⊆ D be its interpretation, that is, the set of points
for which p is true. The corresponding quantitative predicate is p : D → R±∞

given by p(d) = Dist(d,O(p)) for every d ∈ D. Given the metric dist on D, we
obtain a metric dist : Dλ ×Dλ → R∞

≥0 (on the set of traces of length λ, where
λ ∈ ω ∪ {ω}) as follows: dist(u, v) = supi<λ dist(u(i), v(i)). Let CLO(ϕ, n, i) =
{u ∈ Dn | u, i |=O ϕ} be the set of traces (of length n) that satisfy ϕ at i (defined
using the interpretation function O). Corollary 9 below was proved in [22]. We
will give a proof that relies on the algebraic variant that we presented earlier.

Corollary 9. Let D be a set of data items, and V = R±∞. Let ϕ : MTL(D,V ),
u ∈ Dn and i < n (where n ≥ 1). Then, −dist(u,CLO(ϕ, n, i)) ≤ ρ(ϕ, u, i).

Proof. We will use the semiring R±∞
±0

∼= B × R∞
≥0 instead of R±∞, so that the

value 0 is not ambiguous (it can be either true or false when we use R±∞).
That is, we will have a positive zero +0 (true) and a negative zero −0 (false).
The semiring homomorphism h : R±∞

±0 → B sends the positive (resp., negative)
elements to � (resp., ⊥). We will interpret a predicate symbol p as the quan-
titative predicate p : D → R±∞

±0 given by p(d) = −dist(d,O(p)) if d /∈ O(p)
and p(d) = +dist(d,∼O(p)) if d ∈ O(p). Using these definitions, the satisfaction
relations |=O and |=h are the same, hence CLO and CLh are the same. Now,

dist(u,CLh(ϕ, n, i)) = dist(u,
⋃

x∈SL(ϕ,n,i)CLh(x)) [Lemma 8]

= inf
x∈SL(ϕ,n,i)

inf
v∈CLh(x)

sup
i<n

dist(u(i), v(i)) [def. of dist]

≥ inf
x∈SL(ϕ,n,i)

sup
i<n

inf
v∈CLh(x)

dist(u(i), v(i)) [sup inf ≤ inf sup]

= inf
x∈SL(ϕ,n,i)

sup
i<n

inf
v(i)∈O(x(i))

dist(u(i), v(i)) [def. of CL]

= inf
x∈SL(ϕ,n,i)

sup
i<n

dist(u(i),O(x(i))). [def. of dist]
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By negating the above inequality we get that

−dist(u,CLh(ϕ, n, i)) ≤ supx∈SL(ϕ,n,i)infi<n − dist(u(i),O(x(i))),

which is ≤
∑

x∈SL(ϕ,n,i)x[u] = val(ϕ, u, i). From Theorem 7 we get val(ϕ, u, i) ≤
ρ(ϕ, u, i) and therefore −dist(u,CLO(ϕ, n, i)) ≤ ρ(ϕ, u, i). ��

From Corollary 9 we can also obtain ρ(ϕ, u, i) ≤ dist(u,∼CLO(ϕ, n, i)). This
inequality is equivalent to −dist(u,∼CLO(ϕ, n, i)) ≤ −ρ(ϕ, u, i), which in turn is
equivalent to −dist(u,CLO(∼ϕ, n, i)) ≤ ρ(∼ϕ, u, i). The operation ∼ on formulas
is a pseudo-negation, that is, ∼ϕ is the formula that results by “dualizing” all
connectives and negating the atomic predicates. This operation is meaningful
for the semiring R±∞. The final inequality is an instance of Corollary 9 for ∼ϕ.

Theorem 7 and Corollary 9 are not used later for the monitoring algorithm.
The significance of our theorem is that it can be instantiated to give the existing
result from [22]. This serves as a sanity check for our algebraic framework and
it supports the semiring-based semantics of Sect. 2.

5 Online Monitoring

For an infinite input trace u ∈ Dω, the output of the monitor for the time instant
t should be ρ(ϕ, u, t), but the monitor has to compute it by observing only a
finite prefix of u. In order for the output value of the monitor to agree with the
standard temporal semantics over infinite traces we may need to delay an output
item until some part of the future input is seen. For example, in the case of F1p
we need to wait for one time unit: the output at time t is given after the input
item at time t+ 1 is seen. In other words, the monitor for F1p has a delay (the
output is falling behind the input) of one time unit. Symmetrically, we can allow
monitors to emit output early when the correct value is known. For example,
the output value for P1p is 0 in the beginning and the value at time t is already
known from time t − 1. So, we also allow monitors to have negative delay (the
output is running ahead of the input). The function dl : MTL → Z gives the
amount of delay required to monitor a formula. It is defined by dl(p) = 0 and

dl(ϕ ∧ ψ) = max(dl(ϕ), dl(ψ)) dl(ϕ S[a,b] ψ) = max(dl(ϕ), dl(ψ))− a

dl(ϕ S[a,∞) ψ) = max(dl(ϕ), dl(ψ))− a dl(ϕ U[a,b] ψ) = max(dl(ϕ), dl(ψ)) + b.

The monitor TL(ϕ) for a formula ϕ is a variant of a Mealy machine. If dl(ϕ) = 0,
the TL(ϕ) is precisely a Mealy machine (one output item per input item) with
inputs D and outputs V . If � = dl(ϕ) > 0, then TL(ϕ) emits no output for the
first � steps and then behaves like a Mealy machine. If � = dl(ϕ) < 0, then TL(ϕ)
emits � items upon initialization and continues to behave like a Mealy machine.

Let A and B be sets. A monitor of type M(A,B) is a state machine G =
(St, init, o, next, out), where St is a set of states, init ∈ St is the initial state,
o ∈ B∗ is the initial output, next : St × A → St is the transition function, and
out : St×A → Opt(B) is the output function, where Opt(B) = B ∪ {nil}.
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map(op) : M(A,B)

St = Unit

init = u

o = ε

next(s, a) = s

out(s, a) = op(a)

aggr(b, op) : M(A,B)

St = B

init = b

o = ε

next(s, a) = op(s, a)

out(s, a) = op(s, a)

emit(n, v) : M(A,A)

St = Unit

init = u

o = vn

next(s, a) = s

out(s, a) = a

ignore(n) : M(A,A)

St = [0, n]

init = 0

o = ε

next(s, a) = s + 1, if s < n

next(s, a) = s, if s = n

out(s, a) = nil, if s < n

out(s, a) = a, if s = n

wnd(n, v, op) : M(A,A)

St = Buf(A)

init = Buf(n, v)

o = ε

next(s, a) = s.ins(a)

out(s, a) = s.ins(a).agg(op)

wndV(n, op) : M(A,A)

St = Buf(A)

init = Buf()

o = ε

next(s, a) = s.ins(a)

out(s, a) = ε, if size(s) < n − 1

out(s, a) = s.ins(a).agg(op), o/w

Fig. 3: Basic building blocks for constructing temporal quantitative monitors.

In Fig. 3 we give several examples of simple monitors that can be used as
building blocks. The monitor map(op) applies the function op : A → B ele-
mentwise. The monitor aggr(b, op) applies a running aggregation to the input
trace that is specified by the initial aggregate b : B and the aggregation function
op : B×A → B (similar to the fold combinator used in functional programming).
The monitor emit(n, v) emits n copies of the value v ∈ A upon initialization and
then echoes the input trace. The monitor ignore(n) discards the first n items of
the trace and proceeds to echo the rest of the trace. The monitor wnd(n, v, op)
performs an aggregation, given by the associative function op : A×A → A, over
a sliding window of size n. It initializes the window using the value v : A and
emits output at the arrival of every item. The monitor wndV(n, op) is different
in that it starts with an empty window and it only starts emitting output when
the window fills up with n items. We will combine monitors using the operations
serial composition >> and parallel composition par. In the serial composition
G >>H the output trace of G is propagated as input trace to H. In the parallel
composition par(G,H) the input trace to copied to two concurrently executing
monitors G and H and their output traces are combined. Both combinators >>
and par are given by variants of the product construction on state machines.
In the case of par the output traces of G and H may not be synchronized (one
may be ahead of the other), which requires some bounded buffering in order to
properly align them. The construction for par is described in [37]. Some variants
of the combinators of Figure 3 are part of the StreamQL language [29], which
has been proposed for the processing of streaming time series.

The identities of Fig. 2 suggest that MTL monitoring can be reduced to a
small set of computational primitives. In fact, the primitives described earlier are
sufficient to specify the monitors, as shown in Fig. 4. We write π1 : A×B → A
for the left projection and π2 : A×B → B for the right projection.

Let u ∈ D+ and n = |u|. If n > a then ρ(ϕ S[0,a] ψ, u, n− 1) = ρ(ϕ S ψ, v, a),
where v is the suffix of u with a+ 1 items. If n ≤ a then ρ(ϕ S[0,a] ψ, u, n− 1) =
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TL(p) = map(p)

TL(ϕ ∨ ψ) = par(TL(ϕ), TL(ψ)) >> map(+)

TL(Pϕ) = TL(ϕ) >> aggr(0,+)

TL(Paϕ) = TL(ϕ) >> emit(a, 0)

TL(P[a,∞)ϕ) = TL(PaPϕ)

TL(ϕ S ψ) = par(TL(ϕ), TL(ψ)) >> aggr(0, opS)

opS : V × (V × V ) → V , where

opS(s, 〈x, y〉) = (s · x) + y

TL(ϕ S[a,∞) ψ) = TL(Pa(ϕ S ψ) ∧ H[0,a−1]ϕ)

TL(ϕ S[0,b] ψ) = par(TL(ϕ), TL(ψ)) >>

wnd(b + 1, 0,⊗S) >> map(π2)

TL(ϕ S[a,b] ψ) = TL(Pa(ϕ S[0,b−a] ψ) ∧ H[0,a−1]ϕ)

TL(Faϕ) = TL(ϕ) >> ignore(a)

TL(F[a,b]ϕ) = TL(FbP[0,b−a]ϕ)

TL(ϕ U[0,b] ψ) = par(TL(ϕ), TL(ψ)) >>

wndV(b + 1,⊗U) >> map(π2)

TL(ϕ U[a,b] ψ) = TL(G[0,a−1]ϕ ∧ Fa(ϕ U[0,b−a] ψ))

// fill buffer with v (initial values)
T [n] buf ← [n; v]
// calculate partial aggregates
for i ← n − 2 to 0 do

buf [i] ← buf [i] ⊗ buf [i + 1]
// initial total aggregate
T agg ← buf [0]
Nat m ← 0 // size of new block
T z ← nil // aggregate of new block
Function Add(T d):

if m = n then // full new block
// convert new block to old
for i ← n − 2 to 1 do

buf [i] ← buf [i] ⊗ buf [i + 1]
m ← 0 // empty new block
z ← nil

// evict oldest item, replace with d
buf [m] ← d
m ← m + 1 // new block enlarged
z ← z ⊗ d // where nil ⊗ d = d
if m < n then

agg ← buf [m] ⊗ z
else // m = n

agg ← z

Fig. 4: Online monitors for bounded-future MTL formulas & sliding aggregation.

ρ(ϕ S ψ, 0a+1−nu, a). So, we can implement a monitor for the connective S[0,a]
by computing S over a window of exactly a+ 1 data items.

Proposition 10 (Aggregation for S, U). Let V be a semiring. For every trace
u = u0u1 . . . un−1 ∈ (V ×V )+ of length n = |u|, the values ρ(π1Sπ2, u, n−1) and
ρ(π1Uπ2, u, 0) can be written as aggregates of the form π2(u0⊗u1⊗· · ·⊗un−1).

Proposition 10 justifies the translation of S[0,b]/U[0,b] into monitors (Fig. 4).
Now, we will describe the data structure that performs the sliding aggregation.
It is used in Fig. 3 in the monitors wnd and wndV. The implementation is shown
in Fig. 4. Suppose that the current window (of size n) is [x0, x1, . . . , xn−1]. We
maintain a buffer of the form [xn−m, . . . , xn−1, y0, . . . , yn−1−m], where the part
[xn−m, . . . , xn−1] is the block of newer elements (“new block”) and the part
[y0, . . . , yn−1−m] contains aggregates of the older elements (“old block”). They
satisfy the invariant yi = xi⊗· · ·⊗xn−1−m for every i = 0, . . . , n−1−m. We also
maintain the aggregate z = xn−m ⊗ · · · ⊗ xn−1 of the new block. So, the overall
aggregate of the window is agg = y0⊗z. When a new item d arrives, we evict the
aggregate y0 corresponding to the oldest item x0 and replace it by d. Thus, the
new block is expanded with the additional item d and therefore we also update
the aggregates z and agg . When the new block becomes full (i.e., m = n) then
we convert it to an old block by performing all partial aggregations from right
to left. This conversion requires n−1 applications of ⊗, but it is performed once
every n items. So, the algorithm needs O(1) amortized time-per-item.

Theorem 11. LetD be a set of data items, V be a semiring, and ϕ : MTL(D,V )
be a bounded-future formula. The monitor TL(ϕ) : M(D,V ) is a streaming algo-
rithm that needs O(2|ϕ|) space and O(|ϕ|) amortized time-per-item.
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Proof. The algorithm needs space that is exponential in the size of ϕ because of
the connectives of the form X[a,∞) and X[a,b]. The monitor uses buffers of size a
or b − a. Since the constants a, b are written in binary notation, we need space
that is exponential in the size. The O(|ϕ|) amortized time per element hinges on
the algorithm of Fig. 4, which is used for S[0,b] and U[0,b]. As discussed earlier,
this algorithm needs O(1) amortized time-per-item.

6 Experimental Evaluation

We have implemented our semiring-based monitoring framework in Rust. We
compare our implementation with the verified lattice-based monitors of [13]
and the monitoring tool Reelay [40]. We perform our experiments using the
(R±∞,max,min) semiring for truth values, which are approximately represented
using 64-bit floating-point numbers.

We have observed that all three tools process items at a roughly constant
rate. We summarize the performance of a monitor with the average time it
takes to process one data item (i.e., amortized time-per-item). In Fig. 5, we
consider formulas X[0,n], Xn, X[n,2n], X[n,∞) where X ∈ {S,P}. We show the
time-per-item for the monitors for n = 1, 10, 102, 103, 104, 105, 106. We have also
evaluated how the monitors for future temporal connectives scale with respect to
the constants in the intervals. In Fig. 6, we benchmark all tools using formulas
from the Timescales benchmark [39]. Our monitors are generally more than 100
(resp., 10) times faster than Reelay (resp., the lattice-based tool of [13]).

The profiling tools Valgrind [38] and Heaptrack [41] are used to analyze the
memory consumption of the monitors. Our Rust implementation, given a for-
mula, begins by allocating a fixed amount of memory and does not allocate
any more memory during the rest of the computation. Reelay allocates and
de-allocates memory throughout its execution. The lattice-based monitor is im-
plemented in OCaml (which is a garbage-collected language) and consumes a
larger amount of memory. In Fig. 5, we plot the peak memory usage of the
monitors. We note that our tool does not seem to be allocating an increasing
amount of memory for Pn and similar formulas. This is because the correspond-
ing monitor for Pn emits output as early as possible and therefore does not
need to use a buffer. In the case of the lattice-based monitor and our tool, we
observe that the memory consumption does not depend on the input trace (it
only depends on the formula). In the case of Reelay, it appears that the mem-
ory consumption depends on the input trace. We have plotted the behavior for
two different input traces: one that consists of an increasing sequence of values
(“reelay-ascending”), and another one that is decreasing (“reelay-descending”).
We have only measured the memory usage of Reelay for up to n = 213, as the
execution becomes very slow beyond this value.

We use case studies from the automotive domain, which have been sug-
gested as benchmarks for hybrid system verification [25]. The Automatic Trans-
mission System has two input signals (a throttle and a break) and three output
signals: the gear sequence (gi for each gear i), the engine rotation speed (in
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Fig. 5: Microbenchmark

rpm, denoted ω) and the vehicle speed (denoted v). Based on the suggestions
in [25], we consider five properties: A1 = ω < ω, A2 = (ω < ω) ∧ (v < v),
A3 = g1 ∧ Y(g2) → YH[0,2.5]g2 (where Y is notation for P1), A4 = H[0,5](ω <

ω) → H[0,2.5](v < v) and A5 = (v > v) S̄[0,1] ((ω > ω) S̄[0,2] ((¬g4) S̄[0,10] ((¬g3) S̄
((¬g2) S̄ (¬g1))))). All constants in the temporal connectives are in seconds, and
we choose the constants v = 120 and ω = 4500. Formula A3 says that before
changing from the second to the first gear, at least 2.5 seconds must first pass.
Formula A4 says that keeping the engine speed low enough should ensure that
the vehicle does not exceed a certain speed. Formula A5 says that changing the
gear from the first to the fourth within 10 seconds, and then having the engine
speed exceed ω will cause the vehicle speed to exceed v. The other case study is
a Fault-Tolerant Fuel Control System. We monitor two properties. The first is
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Fig. 6: Macrobenchmarks

that the fuel flow rate should frequently become and remain non-zero for a suffi-
cient amount of time. We encode this as F1 = H[0,10]P[0,1](FuelF lowRate > 0).
The other property is to ensure that whenever the air-to-fuel ratio goes out of
bounds, then within 1 second it should settle back and stay there for a second.
This is written as F2 = (H[0,1]airFuelRatio < 1) S̄[0,2] airFuelRatio < 1. The
experimental results are shown in Fig. 6.

All of our experiments were executed on a laptop with an Intel Core i7
10610U CPU clocked at 2.30GHz and 16GB of memory. Each value reported is
the mean of 20 executions of the experiment. The whiskers in the plots indicate
the standard deviation across all executions.

7 Related Work

Fainekos and Pappas [22] define the robustness degree of satisfaction in terms
of the distance of the signal from the set of desirable ones (or its complement).
They also suggest an under-approximation of the robustness degree which can
be effectively monitored. This is called the robust semantics and is defined by
induction on STL formulas, by interpreting conjunction (resp., disjunction) as
min (resp., max) of R±∞. Our paper explores this robust semantics (and the
related approximation guarantee) in the general algebraic setting of semirings.

In [27], the authors study a generalization of the robustness degree by consid-
ering idempotent semirings of real numbers. They also propose an online mon-
itoring algorithm that uses symbolic weighted automata. While this approach
computes the precise robustness degree in the sense of [22], the construction
of the relevant automata incurs a doubly exponential blowup if one considers
STL specifications. In [13], it is observed that an extension of the robust seman-
tics to bounded distributive lattices can be effectively monitored. In this paper,
we generalize this semantics by considering semirings (bounded distributive lat-
tices are semirings). Semirings are also used in [9], where the authors consider
a spatio-temporal logic. They consider the class of constraint semirings, which
require the semiring order to induce a complete lattice. Efforts have been made
to define notions of robustness that take temporal discrepancies into account.
In [20], we see a definition of temporal robustness by considering the effect of
shifting the signal in time. The “edit distance” between discretized signals is pro-
posed as a measure of robustness in [26]. Abbas et al. [3] define a notion of (τ, ε)
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closeness between signals, which considers temporal and value-based guarantees
separately. In [2], a metric based on conformance is put forward for applications
in cardiac electrophysiology. Averaging temporal operators are used in [5], which
assign a higher value to temporal obligations that are satisfied earlier.

A key ingredient for the efficient monitoring of STL is a streaming algo-
rithm for sliding-window maximum [19,15]. The tool Breach [17,18], which is
used for the falsification of temporal specifications over hybrid systems, uses the
sliding-maximum algorithm of [32]. In contrast, we use a more general sliding
aggregation which applies to any associative operation (not only max/min) and
does not require the truth values to be totally ordered.

Different approaches for interpreting future temporal connectives in the con-
text of online monitoring have been studied. While [16] assumes the availability
of a predictor to interpret future connectives, [21] considers robustness inter-
vals: the tightest intervals which cover the robustness for all possible extensions
of the available trace prefix. Reelay [40] exclusively uses past-time connectives.
The transducer-based framework of [37] can be used to monitor rich temporal
properties which depend on bounded future input by allowing some bounded
delay in the output.

There is a large amount of work on formalisms, domain-specific languages and
associated tools for quantitative online monitoring and, more generally, for data
stream processing. The synchronous language LOLA [14] has served as the basis
for the StreamLAB tool [23], which is used for monitoring cyber-physical sys-
tems. Quantitative Regular Expressions [36] and associated automata-theoretic
models with registers [7,8,6] have been used to express complex online detection
algorithms for medical monitoring [1,4]. There are many synchronous languages
and models of computation based on Kahn’s dataflow model [28] that have been
used for signal processing [31] and embedded controller design [12,11,10]. The
construction of online monitors described in Sect. 5 relies on a set of combina-
tors that constitute a simple domain-specific language for stream processing. Our
focus here, however, is on providing efficient monitors for MTL formulas with
a quantitative semantics, rather than designing a general-purpose language for
monitor specification. The compositional construction of automata-based moni-
tors from temporal specifications has also been considered in [34,35,24].

8 Conclusion

We have presented a new efficient algorithm for the online monitoring of MTL
properties over discrete traces. We have used an abstract algebraic semantics
based on semirings, which can be instantiated to the widely-used Boolean (qual-
itative) and robustness (quantitative) semantics, as well as to other partially
ordered semirings. We also provide a theorem that relates our quantitative se-
mantics with an algebraic generalization of the robustness degree of [22]. We
have provided an implementation of our algebraic monitoring framework, and
we have shown experimentally that our monitors scale reasonably well and are
competitive against the state-of-the-art tool Reelay [40].
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20. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

21. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

22. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

23. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: StreamLAB: Stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24
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Abstract. We present an algorithm for extracting a subclass of the
context free grammars (CFGs) from a trained recurrent neural network
(RNN). We develop a new framework, pattern rule sets (PRSs), which
describe sequences of deterministic finite automata (DFAs) that approxi-
mate a non-regular language. We present an algorithm for recovering the
PRS behind a sequence of such automata, and apply it to the sequences
of automata extracted from trained RNNs using the L∗ algorithm. We
then show how the PRS may converted into a CFG, enabling a familiar
and useful presentation of the learned language.
Extracting the learned language of an RNN is important to facilitate
understanding of the RNN and to verify its correctness. Furthermore, the
extracted CFG can augment the RNN in classifying correct sentences, as
the RNN’s predictive accuracy decreases when the recursion depth and
distance between matching delimiters of its input sequences increases.

Keywords: Model Extraction · Learning Context Free Grammars ·
Finite State Machines · Recurrent Neural Networks

1 Introduction

Recurrent Neural Networks (RNNs) are a class of neural networks adapted to
sequential input, enjoying wide use in a variety of sequence processing tasks. Their
internal process is opaque, prompting several works into extracting interpretable
rules from them. Existing works focus on the extraction of deterministic or
weighted finite automata (DFAs and WFAs) from trained RNNs [18,6,26,3].

However, DFAs are insufficient to fully capture the behavior of RNNs, which
are known to be theoretically Turing-complete [20], and for which there exist
architecture variants such as LSTMs [14] and features such as stacks [9,23]
or attention [4] increasing their practical power. Several recent investigations
explore the ability of different RNN architectures to learn Dyck, counter, and
other non-regular languages [19,5,28,21], with mixed results.

While the data indicates that RNNs can generalize and achieve high accuracy,
they do not learn hierarchical rules, and generalization deteriorates as the length
and ‘depth’ of the input grows [19,5,28]. Sennhauser and Berwick conjecture that
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Fig. 1. Overview of steps in algorithm to synthesize the hidden language L

“what the LSTM has in fact acquired is sequential statistical approximation to
this solution” instead of “the ‘perfect’ rule-based solution” [19]. Similarly, Yu et.
al. conclude that “the RNNs can not truly model CFGs, even when powered by
the attention mechanism” [28]. This is line with Hewitt et. al., who note that a
fixed precision RNN can only learn a language of fixed depth strings [13].

Goal of this paper We wish to extract a CFG from a trained RNN. In particular,
we wish to find the CFG that not only explains the finite language learnt by the
RNN, but generalizes it to strings of unbounded depth and distance.

Our approach Our method builds on the DFA extraction work of Weiss et al.
[26], which uses the L∗ algorithm [2] to learn the DFA of a given RNN. As part
of the learning process, L∗ creates a sequence of hypothesis DFAs approximating
the target language. Our main insight is in treating these hypothesis DFAs as
coming from a set of underlying rules, that recursively improve each DFA’s
approximation of the target CFG by increasing the distance and embedded depth
of the sequences it can recognize. In this light, synthesizing the target CFG
becomes the problem of recovering these rules.

We propose the framework of pattern rule sets (PRSs) for describing such
rule applications, and present an algorithm for recovering a PRS from a sequence
of DFAs. We also provide a method for converting a PRS to a CFG, and
test our method on RNNs trained on several PRS languages. Pattern rule sets
are expressive enough to cover several variants of the Dyck languages, which
are prototypical context-free languages (CFLs): the Chomsky–Schützenberger
representation theorem shows that any CFL can be expressed as a homomorphic
image of a Dyck language intersected with a regular language[16].

A significant issue we address is that the extracted DFAs are often inexact,
either through inaccuracies in the RNN, or as an artifact of the L∗ algorithm.

To the best of our knowledge, this is the first work on synthesizing a CFG
from a general RNN (though some works extract push-down automata [23,9]
from RNNs with an external stack, they do not apply to plain RNNs). The overall
steps in our technique are given in Figure 1.

Contributions The main contributions of this paper are:

– Pattern Rule Sets (PRSs), a framework for describing a sequence of DFAs
approximating a CFL.

– An algorithm for recovering the PRS generating a sequence of DFAs, that
may also be applied to noisy DFAs elicited from an RNN using L∗ .

– An algorithm converting a PRS to a CFG.
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– An implementation of our technique1, and an evaluation of its success on
recovering various CFLs from trained RNNs.

2 Definitions and Notations

2.1 Deterministic Finite Automata

Definition 1 (Deterministic Finite Automata). A deterministic finite au-
tomaton (DFA) over an alphabet Σ is a 5-tuple 〈Σ, q0, Q, F, δ〉 such that Q is a
finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of final (accepting)
states and δ : Q×Σ → Q is a (possibly partial) transition function.

Unless stated otherwise, we assume each DFA’s states are unique to itself, i.e.,
for any two DFAs A,B – including two instances of the same DFA – QA∩QB = ∅.
A DFA A is said to be complete if δ is complete, i.e., the value δ(q, σ) is defined
for every q, σ ∈ Q×Σ. Otherwise, it is incomplete.

We define the extended transition function δ̂ : Q×Σ∗ → Q and the language
L(A) accepted by A in the typical fashion. We also associate a language with

intermediate states of A: L(A, q1, q2) � {w ∈ Σ∗ | δ̂(q1, w) = q2}. The states
from which no sequence w ∈ Σ∗ is accepted are known as the sink reject states.

Definition 2. The sink reject states of a DFA A = 〈Σ, q0, Q, F, δ〉 are the
maximal set QR ⊆ Q satisfying: QR ∩ F = ∅, and for every q ∈ QR and σ ∈ Σ,
either δ(q, σ) ∈ QR or δ(q, σ) is not defined.

Definition 3 (Defined Tokens). Let A = 〈Σ, q0, Q, F, δ〉 be a complete DFA
with sink reject states QR. For every q ∈ Q, its defined tokens are def(A, q) �
{σ ∈ Σ | δ(q, σ) /∈ QR}. When the DFA A is clear from context, we write def(q).

All definitions for complete DFAs are extended to incomplete DFAs A by
considering their completion - an extension of A in which all missing transitions
are connected to a (possibly new) sink reject state.

Definition 4 (Set Representation of δ). A (possibly partial) transition func-
tion δ : Q×Σ → Q may be equivalently defined as the set Sδ = {(q, σ, q′) | δ(q, σ) =
q′}. We use δ and Sδ interchangeably.

Definition 5 (Replacing a State). For a transition function δ : Q×Σ → Q,
state q ∈ Q, and new state qn /∈ Q, we denote by δ[q←qn] : Q

′ × Σ → Q′ the
transition function over Q′ = (Q \ {q})∪ {qn} and Σ that is identical to δ except
that it redirects all transitions into or out of q to be into or out of qn.

1 The implementation for this paper, and a link to all trained RNNs, is available at
https://github.com/tech-srl/RNN to PRS CFG.
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2.2 Dyck Languages

A Dyck language of order N is expressed by the grammar D ::= ε | L1 D

R1 | ... | LN D RN | D D with unique symbols L1,...,LN,D1,...,DN . A
common measure of complexity for a Dyck word is its maximum distance (number
of characters) between matching delimiters and embedded depth (number of
unclosed delimiters) [19]. We generalize and refer to Regular Expression Dyck
(RE-Dyck) languages as languages expressed by the same CFG, except that each
Li and each Ri derive some regular expression.

We present regular expressions as is standard, for example: L({a|b}·c) �
{ac,bc}.

3 Patterns

Patterns are DFAs with a single exit state qX in place of a set of final states, and
with no cycles on their initial or exit states unless q0 = qX .

Definition 6 (Patterns). A pattern p = 〈Σ, q0, Q, qX , δ〉 is a DFA Ap =
〈Σ, q0, Q, {qX}, δ〉, satisfying: 1. L(Ap) �= ∅, and 2. either q0 = qX , or def(qX) = ∅
and L(A, q0, q0) = {ε}. If q0 = qX then p is called circular, otherwise, it is non-
circular. Patterns are always given in minimal incomplete presentation.

We refer to a pattern’s initial and exit states as its edge states. All the
definitions for DFAs apply to patterns through Ap. We denote each pattern p’s
language Lp � L(p), and if it is marked by some superscript i, we refer to all of
its components with superscript i: pi = 〈Σ, qi0, Qi, qiX , δ

i〉.

3.1 Pattern Composition

We can compose two non-circular patterns p1, p2 by merging the exit state of p1

with the initial state of p2, creating a new pattern p3 satisfying Lp3 = Lp1 ·Lp2 .

Definition 7 (Serial Composition). Let p1, p2 be two non-circular patterns.
Their serial composite is the pattern p1 ◦ p2 = 〈Σ, q10 , Q, q2X , δ〉 in which Q =
Q1 ∪Q2 \ {q1X} and δ = δ1

[q1X←q20 ]
∪ δ2. We call q20 the join state of this operation.

If we additionally merge the exit state of p2 with the initial state of p1, we
obtain a circular pattern p which we call the circular composition of p1 and p2.
This composition satisfies Lp = {Lp1 ·Lp2}∗.

Definition 8 (Circular Composition). Let p1, p2 be two non-circular patterns.
Their circular composite is the circular pattern p1◦cp2 = 〈Σ, q10 , Q, q10 , δ〉 in which
Q = Q1 ∪Q2 \ {q1X , q2X} and δ = δ1

[q1X←q20 ]
∪ δ2

[q2X←q10 ]
. We call q20 the join state

of this operation.

Figure 2 shows 3 examples of serial and circular compositions of patterns.
Patterns do not carry information about whether or not they have been

composed from other patterns. We maintain such information using pattern pairs.
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Fig. 2. Examples of the composition operator

Definition 9 (Pattern Pair). A pattern pair is a pair 〈P, Pc〉 of pattern sets,
such that Pc ⊂ P and for every p ∈ Pc there exists exactly one pair p1, p2 ∈ P
satisfying p = p1 0 p2 for some 0 ∈ {◦, ◦c}. We refer to the patterns p ∈ Pc as
the composite patterns of 〈P, Pc〉, and to the rest as its base patterns.

We will often discuss patterns that have been composed into larger DFAs.

Definition 10 (Pattern Instances). Let A = 〈Σ, qA0 , QA, F, δA〉 be a DFA,
p = 〈Σ, q0, Q, qX , δ〉 be a pattern, and p̂ = 〈Σ, q′0, Q′, q′X , δ

′〉 be a pattern ‘inside’
A, i.e., Q′ ⊆ QA and δ′ ⊆ δA. We say that p̂ is an instance of p in A if p̂ is
isomorphic to p.

A pattern instance in a DFA A is uniquely determined by its structure and
initial state: (p, q). If p is a composite pattern with respect to some pattern pair
〈P, Pc〉, the join state of its composition within A is also uniquely defined.

Definition 11. For every pattern pair 〈P, Pc〉, for each composite pattern p ∈ Pc,
DFA A, and initial state q of an instance p̂ of p in A, join(p, q, A) returns the
join state of p̂ with respect to its composition in 〈P, Pc〉.

4 Pattern Rule Sets

For any infinite sequence S = A1, A2, ... of DFAs satisfying L(Ai) ⊂ L(Ai+1), for
all i, we define the language of S as the union of the languages of all these DFAs:
L(S) = ∪iL(Ai). Such sequences may be used to express CFLs.

In this work we take a finite sequence A1, A2, ..., An of DFAs, and assume it
is a (possibly noisy) finite prefix of an infinite sequence of approximations for a
language, as above. We attempt to reconstruct the language by guessing how the
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sequence may continue. To allow such generalization, we must make assumptions
about how the sequence is generated. For this we introduce pattern rule sets.

Pattern rule sets (PRSs) create sequences of DFAs with a single accepting
state. Each PRS is built around a pattern pair 〈P, Pc〉, and each rule application
connects a new pattern instance to the current DFA Ai, at the join state of
a composite-pattern inserted into Ai at some earlier point. To define where a
pattern can be connected to Ai, we introduce an enabled instance set I.
Definition 12. An enabled DFA over a pattern pair 〈P, Pc〉 is a tuple 〈A, I〉
such that A = 〈Σ, q0, Q, F, δ〉 is a DFA and I ⊆ Pc ×Q marks enabled instances
of composite patterns in A.

Intuitively, for every enabled DFA 〈A, I〉 and (p, q) ∈ I, we know: (i) there is
an instance of pattern p in A starting at state q, and (ii) this instance is enabled ;
i.e., we may connect new pattern instances to its join state join(p, q, A).

Definition 13. A PRS P is a tuple 〈Σ,P, Pc, R〉 where 〈P, Pc〉 is a pattern pair
over the alphabet Σ and R is a set of rules. Each rule has one of the following
forms, for some p, p1, p2, p3, pI ∈ P , with p1 and p2 non-circular:

(1) ⊥� pI

(2) p �c (p
1 0 p2)◦= p3, where p = p1 0 p2 for 0 ∈ {◦, ◦c}, and p3 is circular

(3) p �s (p
1 ◦ p2)◦= p3, where p = p1 ◦ p2 and p3 is non-circular

A PRS derives sequences of enabled DFAs as follows: first, a rule of type (1)
creates 〈A1, I1〉 according to pI . Then, for every 〈Ai, Ii〉, each rule may connect
a new pattern instance to Ai, specifically at a state determined by Ii.
Definition 14 (Initial Composition). D1 = 〈A1, I1〉 is generated from a rule

⊥� pI as follows: A1 = Ap
I

, and Ii = {(pI , qI0)} if pI ∈ Pc and otherwise I1 = ∅.

Let Di = 〈Ai, Ii〉 be the enabled DFAat step i and denote Ai = 〈Σ, q0, Q, F, δ〉.
Note that for A1, |F | = 1, and for all Ai+1, F is unchanged (by future definitions).

Rules of type (1) extend Ai by grafting a circular pattern to q0, and then
enabling that pattern if it is composite.

Definition 15 (Rules of type (1)). A rule ⊥� pI with circular pI may extend
〈Ai, Ii〉 at the initial state q0 of Ai iff def(q0)∩def(qI0) = ∅. This creates the DFA
Ai+1 = 〈Σ, q0, Q∪QI \{qI0}, F, δ∪δI[qI0←q0]

〉. If pI ∈ Pc then Ii+1 = Ii∪{(pI , q0)},
else Ii+1 = Ii.

Rules of type (2) graft a circular pattern p3 = 〈Σ, q30 , q3x, F, δ3〉 onto the join
state qj of an enabled pattern instance p̂ in Ai, by merging q30 with qj . In doing
so, they also enable the patterns composing p̂, if they are composite.

Definition 16 (Rules of type (2)). A rule p �c (p
1 0 p2)◦= p3 may extend

〈Ai, Ii〉 at the join state qj = join(p, q, Ai) of any instance (p, q) ∈ Ii, provided
def(qj) ∩ def(q30) = ∅. This creates 〈Ai+1, Ii+1〉 as follows: Ai+1 = 〈Σ, q0, Q ∪
Q3 \ q30 , F, δ ∪ δ3[q30←qj ]

〉, and Ii+1 = Ii ∪ {(pk, qk) | pk ∈ Pc, k ∈ {1, 2, 3}}, where
q1 = q and q2 = q3 = qj.
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Fig. 3. Structure of DFA after applying rule of type 2 or type 3

Example applications of rule (2) are shown in Figures 3(i) and 3(ii).
We also wish to graft a non-circular pattern p3 between p1 and p2, but this

time we must avoid connecting the exit state q3X to qj lest we loop over p3

multiple times. We therefore replicate the outgoing transitions of qj in p1 ◦ p2 to
the inserted state q3X so that they may act as the connections back into the DFA.

Definition 17 (Rules of type (3)). A rule p �s (p1 ◦ p2)◦= p3 may extend
〈Ai, Ii〉 at the join state qj = join(p, q, Ai) of any instance (p, q) ∈ Ii, provided
def(qj) ∩ def(q30) = ∅. This creates 〈Ai+1, Ii+1〉 as follows: Ai+1 = 〈Σ, q0, Q ∪
Q3 \ q30 , F, δ ∪ δ3

[q30←qj ]
∪ C〉 where C = { (q3X , σ, δ(qj , σ))| σ ∈ def(p2, q20)}, and

Ii+1 = Ii ∪ {(pk, qk) | pk ∈ Pc, k ∈ {1, 2, 3}} where q1 = q and q2 = q3 = qj.

We call C the connecting transitions. We depict this rule application in
example in Fig. 3 (iii), in which a member of C is labeled ‘c’.

Multiple applications of rules of type (3) to the same instance p̂ will create
several equivalent states in the resulting DFAs, as all of their exit states will
have the same connecting transitions. These states are merged in a minimized
representation, as depicted in Diagram (iv) of Figure 3.

We write A ∈ G(P) if there exists a sequence of enabled DFAs derived from
P s.t. A = Ai for some Ai in this sequence.

Definition 18 (Language of a PRS). The language of a PRS P is the union
of the languages of the DFAs it can generate: L(P) = ∪A∈G(P)L(A).

4.1 Examples

Example 1: Let p1 and p2 be the patterns accepting ‘a’ and ‘b’ respectively.
Consider the PRS Rab with rules, ⊥� p1 ◦ p2 and p1 ◦ p2 �s (p

1 ◦ p2)◦= (p1 ◦ p2).
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This PRS creates only one sequence of DFAs. Once the first rule creates the initial
DFA, by continuously applying the second rule we obtain the infinite sequence of
DFAs each satisfying L(Ai) = {ajbj : 1 ≤ j ≤ i}, and so L(Rab) = {aibi : i > 0}.
Figure 2(i) presents A1, while A2 and A3 appear in Figure 4(i). We can substitute
any non-circular patterns for p1 and p2, creating the language {xiyi : i > 0} for
any non-circular pattern regular expressions x and y.
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Fig. 4. DFA sequences for Rab and RDyck2

Example 2: Let p1,p2,p4, and p5 be the non-circular patterns accepting ‘(’, ‘)’,
‘[’, and ‘]’ respectively. Let p3 = p1 ◦c p2 and p6 = p4 ◦c p5. Let RDyck2 be the PRS
containing rules ⊥ � p3, ⊥ � p6, p3 �c (p1 ◦c p2)◦= p3, p3 �c (p1 ◦c p2)◦= p6,
p6 �c (p4 ◦c p5)◦= p3, and p6 �c (p4 ◦c p5)◦= p6. RDyck2 defines the Dyck
language of order 2. Figure 4 (ii) shows one of its possible DFA-sequences.

5 PRS Inference Algorithm

A PRS can generate a sequence of DFAs defining, in the limit, a context-free
language. We are now interested in inverting this process: given a sequence of DFAs
generated by a PRS P, can we reconstruct P? Coupled with an L∗ extraction of
DFAs from a trained RNN, solving this problem will enable us to extract a PRS
from an RNN – provided the extraction follows a PRS (as we often find it does).

We present an algorithm for this problem, and show its correctness. In practice
the DFAs we are given are not “perfect”; they contain noise that deviates from
the PRS. We therefore augment this algorithm, allowing it to operate smoothly
even on imperfect DFA sequences created from RNN extraction.

In the following, for each pattern instance p̂ in Ai, we denote by p the pattern
that it is an instance of. We use similar notation p̂1, p̂2, and p̂I to refer to specific
instances of patterns p1, p2 and pI . Additionally, for each consecutive DFA pair
Ai and Ai+1, we refer by p̂3 to the new pattern instance in Ai+1.

Main steps of inference algorithm. Given a sequence of DFAs S = A1 · · ·An, the
algorithm infers P = 〈Σ,P, Pc, R〉 in the following stages:

1. Discover the initial pattern instance p̂I in A1. Insert p
I into P and mark p̂I

as enabled. Insert the rule ⊥ → pI into R.
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2. For i, 1 ≤ i ≤ n− 1:
(a) Discover the new pattern instance p̂3 in Ai+1 that extends Ai.
(b) If p̂3 starts at the state q0 of Ai+1, then it is an application of a rule of

type (1). Insert p3 into P , mark p̂3 as enabled, and add ⊥� p3 to R.
(c) Otherwise (p̂3 does not start at q0), find the unique enabled pattern

p̂ = p̂1 0 p̂2 in Ai s.t. p̂
3’s initial state q is the join state of p̂. Add p1, p2,

and p3 to P , p to Pc, and mark p̂1,p̂2, and p̂3 as enabled. If p̂3 is non-
circular, add p �s (p

1 ◦ p2)◦= p3 to R; otherwise add p �c (p
1 0 p2)◦= p3.

3. Define Σ to be the set of symbols used by the patterns P .

We now elaborate on how we determine the patterns p̂I , p̂3, and p̂.

Discovering new patterns p̂I and p̂3 A1 provides an initial pattern pI . For
subsequent DFAs, we need to identify which states in Ai+1 = 〈Σ, q′0, Q′, F ′, δ′〉
are ‘new’ relative to Ai = 〈Σ, q0, Q, F, δ〉. From the PRS definitions, we know
that there is a subset of states and transitions in Ai+1 that is isomorphic to Ai:

Definition 19. (Existing states and transitions) For every q′ ∈ Q′, we say that
q′ exists in Ai with parallel state q ∈ Q iff there exists a sequence w ∈ Σ∗ such
that q = δ̂(q0, w), q

′ = δ̂′(q0, w), and neither is a sink reject state. Additionally,
for every q′1, q

′
2 ∈ Q′ with parallel states q1, q2 ∈ Q, we say that (q′1, σ, q

′
2) ∈ δ′

exists in Ai iff (q1, σ, q2) ∈ δ. We denote Ai+1’s existing states and transitions
by QE ⊆ Q′ and δE ⊆ δ′, and the new ones as QN = Q′ \QE and δN = δ′ \ δE.

By construction of PRSs, each state in Ai+1 has at most one parallel state in
Ai, which can be found in one simultaneous traversal of the two DFAs.

The new states and transitions form a new pattern instance p̂ in Ai+1,
excluding its initial and possibly its exit state. The initial state of p̂ is the existing
state q′s ∈ QE that has outgoing new transitions. The exit state q′X of p̂ is
identified by the Exit State Discovery algorithm:

1. If there exists a (q, σ, q′s) ∈ δN , then p̂ is circular: q′X = q′s. (Fig. 3(i), (ii)).
2. Otherwise, p̂ is non-circular. If it is the first (with respect to S) non-circular

pattern grafted onto q′s, then q′X is the unique new state whose transitions
into Ai+1 are the connecting transitions from Definition 17 (Fig. 3 (iii)).

3. If there is no such state, then p̂ is not the first non-circular pattern grafted
onto q′s, and q′X is the unique existing state q′X �= q′s with new incoming
transitions. (Fig. 3(iv)).

Finally, the new pattern instance is p = 〈Σ, q′s, Qp, q
′
X , δp〉, where Qp = QN ∪

{q′s, q′X} and δp is the restriction of δN to the states of Qp.

Discovering the pattern p̂ (step 2c) In [27] we show that no two enabled
pattern instances in a DFA can share a join state, that if they share any non-edge
states, then one is contained in the other, and finally that a pattern’s join states
is never one of its edge states. This makes finding p̂ straightforward: denoting qj
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as the parallel of p̂3’s initial state in Ai, we seek the enabled composite pattern
instance (p, q) ∈ Ii for which join(p, q, Ai) = qj . If none is present, we seek the
only enabled instance (p, q) ∈ Ii that contains qj as a non-edge state, but is not
yet marked as a composite. (Note that if two enabled instances share a non-edge
state, then the containing one is already marked as a composite: otherwise we
would not have found and enabled the other).

In [27] we define the concept of a minimal generator and prove the following:

Theorem 1. Let A1, A2, ...An be a finite sequence of DFAs that has a minimal
generator P. Then the PRS Inference Algorithm will discover P.

5.1 Deviations from the PRS framework

Given a sequence of DFAs generated by the rules of PRS P, the inference
algorithm given above will faithfully infer P. In practice however, we want to
apply the algorithm to a sequence of DFAs extracted from a trained RNN using
the L∗ algorithm (as in [26]). Such a sequence may contain noise: artifacts from
an imperfectly trained RNN, or from the behavior of L∗ . The major deviations
are incorrect pattern creation, simultaneous rule applications, and slow initiation.

Incorrect pattern creation Whether due to inaccuracies in the RNN classification,
or as artifacts of the L∗ process, incorrect patterns are often inserted into the
DFA sequence. Fortunately, these patterns rarely repeat, and so we can discern
between them and ‘legitimate’ patterns using a voting and threshold scheme.

The vote for each discovered pattern p ∈ P is the number of times it has
been inserted as the new pattern between a pair of DFAs Ai, Ai+1 in S. We set a
threshold for the minimum vote a pattern needs to be considered valid, and only
build rules around the connection of valid patterns onto the join states of other
valid patterns. To do this, we modify the flow of the algorithm: before discovering
rules, we first filter invalid patterns by splitting step 2 into two phases. Phase 1:
Mark all the inserted patterns between each pair of DFAs, and compute their
votes. Add to P those whose vote is above the threshold. Phase 2: Consider each
DFA pair Ai, Ai+1 in order. If the new pattern in Ai+1 is valid, and its initial
state’s parallel state in Ai also lies in a valid pattern, then synthesize the rule
according to the original algorithm. If a pattern is discovered to be composite,
add its composing patterns to P .

As almost every DFA sequence produced by our method has some noise, the
voting scheme greatly extended the reach of our algorithm.

Simultaneous rule applications In the theoretical framework, Ai+1 differs from
Ai by applying a single PRS rule, and therefore q′s and q′X are uniquely defined.
L∗ however does not guarantee such minimal increments between DFAs. In
particular, it may apply multiple PRS rules between two subsequent DFAs,
extending Ai with several patterns. To handle this, we expand the initial and
exit state discovery methods given above.

1. Mark the new states and transitions QN and δN as before.
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2. Identify the set of new pattern instance initial states (pattern heads): the set
H ⊆ Q′ \QN of states in Ai+1 with outgoing new transitions.

3. For each pattern head q′ ∈ H, compute the relevant sets δN |q′ ⊆ δN and
QN |q′ ⊆ QN of new transitions and states: the members of δN and QN that
are reachable from q′ without passing through any existing transitions.

4. For each q′ ∈ H , restrict to QN |q′ and δN |q′ and compute q′X and p as before.

If Ai+1’s new patterns have no overlap and do not create an ambiguity around
join states, then they may be handled independently and in arbitrary order. They
are used to discover rules and then enabled, as in the original algorithm.

Simultaneous but dependent rule applications – such as inserting a pattern
and then grafting another onto its join state – are more difficult to handle, as it is
not always possible to determine which pattern was grafted onto which. However,
there is a special case which appeared in several of our experiments (examples
L13 ad L14 of Section 7) for which we developed a technique as follows.

Suppose we discover a rule r1 : p0 �s (pl ◦ pr)◦= p and p contains a cycle c
around some internal state qj . If later another rule inserts a pattern pn at the
state qj , we understand that p is in fact a composite pattern, with p = p1 ◦ p2
and join state qj . However, as patterns do not contain cycles at their edge states,
c cannot be a part of either p1 or p2. We conclude that the addition of p was
in fact a simultaneous application of two rules: r′1 : p0 �s (pl ◦ pr)◦= p′ and
r2 : p′ �c (p1 ◦ p2)◦= c, where p′ is p without the cycle c, and update our PRS
and our DFAs’ enabled pattern instances accordingly. The case when p is circular
and r1 is of rule type (2) is handled similarly.

Slow initiation Ideally, A1 directly supplies an initial rule ⊥� pI to our PRS.
In practice, the first few DFAs generated by L∗ have almost random structure.
We solve this by leaving discovery of the initial rules to the end of the algorithm,
at which point we have a set of ‘valid’ patterns that we are sure are part of the
PRS. From there we examine the last DFA An generated in the sequence, note all
the enabled instances (pI , q0) at its initial state, and generate a rule ⊥� pI for
each of them. This technique has the weakness that it will not recognise patterns
pI that do not also appear as extending patterns p3 elsewhere in the sequence,
unless the threshold for patterns is minimal.

6 Converting a PRS to a CFG

We present an algorithm to convert a given PRS to a context free grammar
(CFG), making the rules extracted by our algorithm more accessible.

A restriction: Let P = 〈Σ,P, Pc, R〉 be a PRS. For simplicity, we restrict the
PRS so that every pattern p can only appear on the LHS of rules of type (2) or
only on the LHS of rules of type (3) but cannot only appear on the LHS of both
types of rules. Similarly, we assume that for each rule ⊥→ pI , the RHS patterns
pI are all circular or non-circular. This restriction is natural: all of the examples
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in Sections 4.1 and 7.3 conform to it. Still, in [27] we show how to remove this
restriction.

We create a CFG G = 〈Σ,N, S, Prod〉. Σ is the same alphabet of P and
we take S as a special start symbol. For every pattern p ∈ P , let Gp =
〈Σp, Np, Zp, P rodp〉 be a CFG describing L(p). Let PY ⊆ PC be those com-
posite patterns that appear on the LHS of a rule of type (2). Create the non-
terminal CS and for each p ∈ PY , create an additional non-terminal Cp. We set
N = {S,CS}

⋃
p∈P

{Np}
⋃

p∈PY

{Cp}.

Let ⊥� pI be a rule in P. If pI is non-circular, create a production S ::= ZpI .
If pI is circular, create the productions S ::= SC , SC ::= SCSC and SC ::= ZpI .
For each rule p �s (p1 ◦ p2)◦= p3 create a production Zp ::= Zp1Zp3Zp2 . For each
rule p �c (p1 ◦ p2)◦= p3 create productions Zp ::= Zp1CpZp2 , Cp ::= CpCp, and
Cp ::= Zp3 . Let Prod

′ be the all the productions defined by the above process.
We set Prod = {

⋃
p∈P

Prodp} ∪ Prod′.

Theorem 2. Let G and P be as above. Then L(P) = L(G).

The proof is given in the extended version of this paper [27].

Expressibility Every RE-Dyck language (Section 2.2) can be expressed by a PRS,
but the converse is not true; RE-Dyck languages nest delimiters arbitrarily, while
PRS grammars may not. For instance, language L12 of Section 7.3 is not a Dyck
language. Meanwhile, not every CFL can be expressed by a PRS [27].

Succinctness The construction above does not necessarily yield a minimal CFG
G. For a PRS defining the Dyck language of order 2 – which can be expressed by
a CFG with 4 productions and 1 non-terminal – our construction yields a CFG
with 10 non-terminals and 12 productions. In this case, and often in others, we
can recognise and remove the spurious productions from the generated grammar.

7 Experimental results

7.1 Methodology

We test the algorithm on several PRS-expressible context free languages, attempt-
ing to extract them from trained RNNs using the process outlined in Figure 1.
For each language, we create a probabilistic CFG generating it, train an RNN
on samples from this grammar, extract a sequence of DFAs from the RNN, and
apply our PRS inference algorithm. Finally, we convert the extracted PRS back
to a CFG, and compare it to our target CFG.

In all of our experiments, we use a vote-threshold s.t. patterns with less than
2 votes are not used to form any PRS rules (Section 5.1). Using no threshold
significantly degraded the results by including too much noise, while higher
thresholds often caused us to overlook correct patterns and rules.
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7.2 Generating a sequence of DFAs

We obtain a sequence of DFAs for a given CFG using only positive samples[11,1] by
training a language-model RNN (LM-RNN) on these samples and then extracting
DFAs from it with the aid of the L∗ algorithm [2], as described in [26]. To apply
L∗ we must treat the LM-RNN as a binary classifier. We set an ‘acceptance
threshold’ t and define the RNN’s language as the set of sequences s satisfying:
1. the RNN’s probability for an end-of-sequence token after s is greater than t,
and 2. at no point during s does the RNN pass through a token with probability
< t. This is identical to the concept of locally t-truncated support defined in [13].

To create the samples for the RNNs, we write a weighted version of the CFG,
in which each non-terminal is given a probability over its rules. We then take
N samples from the weighted CFG according to its distribution, split them into
train and validation sets, and train an RNN on the train set until the validation
loss stops improving. In our experiments, we used N = 10, 000. For our languages,
we used very small 2-layer LSTMs: hidden dimension 10 and input dimension 4.

In some cases, especially when all of the patterns in the rules are several
tokens long, the extraction of [26] terminates too soon: neither L∗ nor the RNN
abstraction consider long sequences, and equivalence is reached between the
L∗ hypothesis and the RNN abstraction despite neither being equivalent to the
‘true’ language of the RNN. In these cases we push the extraction a little further
using two methods: first, if the RNN abstraction contains only a single state,
we make an arbitrary initial refinement by splitting 10 hidden dimensions, and
restart the extraction. If this is also not enough, we sample the RNN according
to its distribution, in the hope of finding a counterexample to return to L∗ . The
latter approach is not ideal: sampling the RNN may return very long sequences,
effectively increasing the next DFA by many rule applications. We place a time
limit of 1, 000 seconds (∼ 17 minutes) on the extraction.

7.3 Languages

We experiment on 15 PRS-expressible languages L1−L15, grouped into 3 classes:

1. Languages of the form XnYn, for various regular expressions X and Y. In
particular, the languages L1 through L6 are Xni Y

n
i for: (X1,Y1)=(a,b),

(X2,Y2)=(a|b,c|d), (X3,Y3)=(ab|cd,ef|gh), (X4,Y4)=(ab,cd),
(X5,Y5)=(abc,def), and (X6,Y6)=(ab|c,de|f).

2. Dyck and RE-Dyck languages. In particular, languages L7 through L9 are
the Dyck languages of order 2 through 4, and L10 and L11 are RE-Dyck
languages of order 1 with the delimiters (L10,R10)=(abcde,vwxyz) and
(L11,R11)=(ab|c,de|f).

3. Variations of the Dyck languages. L12 is the language of alternating single-
nested delimiters, generating only sequences of the sort ([([])]) or [([])].
L13 and L14 are Dyck-1 and Dyck-2 with additional neutral tokens a,b,c
that may appear multiple times anywhere in the sequence. L15 is like L13

except that the neutral additions are the token d and the sequence abc, eg:
(abc()())d is in L15, but a(bc()())d is not.
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LG DFAs Init Final Min/Max CFG LG DFAs Init Final Min/Max CFG
Pats Pats Votes Correct Pats Pats Votes Correct

L1 18 1 1 16/16 Correct L9 30 6 4 5/8 Correct
L2 16 1 1 14/14 Correct L10 6 2 1 3/3 Correct
L3 14 6 4 2/4 Incorrect L11 24 6 3 5/12 Incorrect
L4 8 2 1 5/5 Correct L12 28 2 2 13/13 Correct
L5 10 2 1 7/7 Correct L13 9 6 1 2/2 Correct
L6 22 9 4 3/16 Incorrect L14 17 5 2 5/7 Correct
L7 24 2 2 11/11 Correct L15 13 6 4 3/6 Incorrect
L8 22 5 4 2/9 Partial

Table 1. Results of experiments on DFAs extracted from RNNs

7.4 Results

Table 1 shows the results. The 2nd column shows the number of DFAs extracted
from the RNN. The 3rd and 4th columns present the number of patterns found
by the algorithm before and after applying vote-thresholding to remove noise.
The 5th column gives the minimum and maximum votes received by the final
patterns (we count only patterns introduced as a new pattern p3 in some Ai+1).
The 6th column notes whether the algorithm found a correct CFG, according
to our manual inspection. For languages where our algorithm only missed or
included 1 or 2 valid/invalid productions, we label it as partially correct.

Alternating Patterns Our algorithm struggled on the languages L3, L6, and
L11, which contained patterns whose regular expressions had alternations (such
as ab|cd in L3, and ab|c in L6 and L11). Investigating their DFA sequences
uncovered the that the L∗ extraction had ‘split’ the alternating expressions,
adding their parts to the DFAs over multiple iterations. For example, in the
sequence generated for L3, ef appeared in A7 without gh alongside it. The next
DFA corrected this mistake but the inference algorithm could not piece together
these two separate steps into a single rule. It will be valuable to expand the
algorithm to these cases.

Simultaneous Applications Originally our algorithm failed to accurately generate
L13 and L14 due to simultaneous rule applications. However, using the technique
described in Section 5.1 we were able to correctly infer these grammars. However,
more work is needed to handle simultaneous rule applications in general.

Additionally, sometimes a very large counterexample was returned to L∗ ,
creating a large increase in the DFAs: the 9thiteration of the extraction on
L3 introduced almost 30 new states. The algorithm does not manage to infer
anything meaningful from these nested, simultaneous applications.

Missing Rules For the Dyck languages L7−L9, the inference algorithm was mostly
successful. However, due to the large number of possible delimiter combinations,
some patterns and nesting relations did not appear often enough in the DFA
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sequences. As a result, for L8, some productions were missing in the generated
grammar. L8 also created one incorrect production due to noise in the sequence
(one erroneous pattern was generated two times,passing the threshold).

RNN Noise In L15, the extracted DFAs for some reason always forced that a
single character d be included between every pair of delimiters. Our inference
algorithm of course maintained this peculiarity. It correctly allowed the allowed
optional embedding of “abc” strings. But due to noisy (incorrect) generated
DFAs, the patterns generated did not maintain balanced parenthesis.

8 Related work

Training RNNs to recognize Dyck Grammars. Recently there has been a surge
of interest in whether RNNs can learn Dyck languages [5,19,21,28]. While these
works report very good results on learning the language for sentences of similar
distance and depth as the training set, with the exception of [21], they report
significantly lower accuracy for out-of-sample sentences.

Among these, Sennhauser and Berwick [19] use LSTMs, and show that in
order to keep the error rate within a 5 percent tolerance, the number of hidden
units must grow exponentially with the distance or depth of the sequences
(though Hewitt et. al. [13] find much lower theoretical bounds). They conclude
that LSTMs do not learn rules, but rather statistical approximations. Bernardy
[5] experimented with various RNN architectures, finding in particular that the
LSTM has more difficulty in predicting closing delimiters in the middle of a
sentence than at the end. Based on this, he conjectures that the RNN is using
a counting mechanism, but has not truly learnt the Dyck language (its CFG).
For the simplified task of predicting only the final closing delimiter of a legal
sequence, Skachkova, Trost and Klakow [21] find that LSTMs have nearly perfect
accuracy across words with large distances and embedded depth.

Yu, Vu and Kuhn [28] compare the three works above, and note that the task
of predicting only the closing bracket of a balanced Dyck word is not sufficient
for checking if an RNN has learnt the language, as it can be computed by only a
counter. In their experiments, they present a prefix of a Dyck word and train
the RNN to predict the next valid closing bracket. They experiment with an
LSTM using 4 different models, and show that the generator-attention model
[17] performs the best, and is able to generalize quite well at the tagging task .
However, they find that it degrades rapidly with out-of-domain tests. They also
conclude that RNNs do not really learn the Dyck language. These experimental
results are reinforced by the theoretical work in [13], who remark that no finite
precision RNN can learn a Dyck language of unbounded depth, and give precise
bounds on the memory required to learn a Dyck language of bounded depth.

Despite these findings, our algorithm nevertheless extracts a CFG from a
trained RNN, discovering rules based on DFAs synthesized from the RNN using
the algorithm in [26]. Because we can use a short sequence of DFAs to extract
the rules, and because the first DFAs in the sequence describe Dyck words with
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increasing but limited distance and depth, we are often able to extract the
CFG perfectly even when the RNN does not generalize well. Moreover, we show
that our approach works with more complex types of delimiters, and on Dyck
languages with expressions between delimiters.

Extracting DFAs from RNNs. There have been many approaches to extract higher
level representations from a neural network (NN), both to facilitate comprehension
and to verify correctness. One of the oldest approaches is to extract rules from
a NN [24,12]. In particular, several works attempt to extract FSAs from RNNs
[18,15,25]. We base our work on [26]. Its ability to generate sequences of DFAs
providing increasingly better approximations of the CFL is critical to our method.

There has been less research on extracting a CFG from an RNN. One exception
is [23], where they develop a Neural Network Pushdown Automata (NNPDA)
framework, a hybrid system augmenting an RNN with external stack memory.
They show how to extract a push-down automaton from an NNPDA, however,
their technique relies on the PDA-like structure of the inspected architecture. In
contrast, we extract CFGs from RNNs without stack augmentation.

Learning CFGs from samples. There is a wide body of work on learning CFGs
from samples. An overview is given in [10] and a survey of work for grammatical
inference applied to software engineering tasks can be found in [22].

Clark et. al. studies algorithms for learning CFLs given only positive examples
[11]. In [7], Clark and Eyraud show how one can learn a subclass of CFLs called
CF substitutable languages. There are many languages that can be expressed by a
PRS but are not substitutable, such as xnbn. However, there are also substitutable
languages that cannot be expressed by a PRS (wxwR - see [27]). In [8], Clark,
Eyraud and Habrard present Contextual Binary Feature Grammars. However,
it does not include Dyck languages of arbitrary order. None of these techniques
deal with noise in the data, essential to learning a language from an RNN.

9 Future Directions

Currently, for each experiment, we train the RNN on that language and then
apply the PRS inference algorithm on a single DFA sequence generated from that
RNN. Perhaps the most substantial improvement we can make is to extend our
technique to learn from multiple DFA sequences. We can train multiple RNNs
and generate DFA sequences for each one. We can then run the PRS inference
algorithm on each of these sequences, and generate a CFG based upon rules
that are found in a significant number of the runs. This would require care to
guarantee that the final rules form a cohesive CFG. It would also address the
issue that not all rules are expressed in a single DFA sequence, and that some
grammars may have rules that are executed only once per word of the language.

Our work generates CFGs for generalized Dyck languages, but it is possible
to generalize PRSs to express a greater range of languages. Work will then be
needed to extend the PRS inference algorithm.
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Abstract. We introduce an automated, formal, counterexample-based
approach to synthesise Barrier Certificates (BC) for the safety verification
of continuous and hybrid dynamical models. The approach is underpinned
by an inductive framework: this is structured as a sequential loop between
a learner, which manipulates a candidate BC structured as a neural
network, and a sound verifier, which either certifies the candidate’s
validity or generates counter-examples to further guide the learner. We
compare the approach against state-of-the-art techniques, over polynomial
and non-polynomial dynamical models: the outcomes show that we can
synthesise sound BCs up to two orders of magnitude faster, with in
particular a stark speedup on the verification engine (up to three orders
less), whilst needing a far smaller data set (up to three orders less) for
the learning part. Beyond improvements over the state of the art, we
further challenge the new approach on a hybrid dynamical model and on
larger-dimensional models, and showcase the numerical robustness of our
algorithms and codebase.

1 Introduction

Barrier Certificates (BC) are an effective and powerful technique to prove safety
properties on models of continuous dynamical systems, as well as hybrid models
(featuring both continuous and discrete states) [21,22]. Whenever found, a BC
partitions the state space of the model into two parts, ensuring that all trajectories
starting from a given initial set, located within one side of the BC, cannot reach
a given set of states (deemed to be unsafe), located on the other side. Thus a
successful synthesis of a BC (which is in general not a unique object) represents
a formal proof of safety for the dynamical model. BC find various applications
spanning robotics, multi-agent systems, and biology [7,32].

This work addresses the safety of dynamical systems modelled in general by
non-linear ordinary differential equations (ODE), and presents a novel method for
the automated and formal synthesis of BC. The approach leverages Satisfiability
Modulo Theory (SMT) and inductive reasoning (CEGIS, Figure 1, introduced
later), to guarantee the correctness of the automated synthesis procedure: this
rules out both algorithmic and numerical errors related to BC synthesis [10].
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Background and Related Work A few techniques have been developed to
synthesise BC. For polynomial models, sum-of-squares (SOS) and semi-definite
programming relaxations [14,16,29] convert the BC synthesis problem into con-
straints expressed as linear or bilinear matrix inequalities: these are numerically
solved as a convex optimisation problem, however unsoundly. To increase scalabil-
ity and to enhance expressiveness, numerous barrier formats have been considered:
BC based on exponential conditions are presented in [14]; BC based on Darboux
polynomials are outlined in [33]; [30] newly introduces a multi-dimensional gen-
eralisation of BC, thus broadening their scope and applicability. BC can also be
used to verify safety of uncertain (e.g. parametric) models [20]. Let us remark
that SOS approaches are typically unsound, namely they rely on iterative and
numerical methods to synthesise the BC. [10] a-posteriori verifies SOS candidates
via computer-aided design (CAD) techniques [15].

Model invariants (namely, regions that provably contain model trajectories,
such as basins of attractions [28]) can be employed as BC, though their synthesis
is less general, as it does not comprise an unsafe set and tacitly presupposes the
initial set to be “well placed” within the state space (that is, within the aforemen-
tioned basin): [19] introduces a fixpoint algorithm to find algebraic-differential
invariants for hybrid models; invariants can be characterised analytically [4] or
synthesised computationally [8]. Invariants can be alternatively studied by Lya-
punov theory [5], which provides stability guarantees for dynamical models, and
thus can characterise invariants (and barriers) as side products: however this again
requires that initial conditions are positioned around stable equilibria, and does
not explicitly encompass unsafe sets in the synthesis. Whilst Lyapunov theory is
classically approached either analytically (explicit synthesis) or numerically (with
unsound techniques), an approach that is relevant for the results of this work
looks at automated and sound Lyapunov function synthesis: in [27] Lyapunov
functions are soundly found within parametric templates, by constructing a sys-
tem of linear inequality constraints over unknown coefficients. [23,24,25] employ a
counterexample-based approach to synthesise control Lyapunov functions, which
inspires this work, using a combination of SMT solvers and convex optimisation
engines: however unlike this work, SMT solvers are never used for verification,
which is instead handled by solving optimisation problems that are numerically
unsound. As argued above, let us emphasise again that the BC synthesis problem,
as studied in this work, cannot in general be reduced to a problem of Lyapunov
stability analysis, and is indeed more general.

Learner
NN

Verifier
SMT

counter-example

candidate BC

B
valid

Fig. 1. Schematic representation of the CEGIS loop.
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Core approach We introduce a method that efficiently exploits machine
learning, whilst guaranteeing formal proofs of correctness via SMT. We leverage
a CounterExample-Guided Inductive Synthesis (CEGIS) procedure [31], which is
structured as an inductive loop between a Learner and a Verifier (cf. Fig. 1).
A learner numerically (and unsoundly) trains a neural network (NN) to fit over
a finite set of samples the requirements for a BC, which are expressed through
a loss function; then a verifier either formally proves the validity of the BC or
provides (a) counter-example(s) through an SMT solver: the counter-examples
indicate where the barrier conditions are violated, and are passed back to the
learner for further training. This synthesis method for neural BC is formally
sound and fully automated, and thanks to its specific new features, is shown to
be much faster and to clearly require less data than state-of-the-art results.

Contributions beyond the State of the Art Cognate work [34] presents a
method to compute BC using neural networks and to verify their correctness
a-posteriori: as such, it does not generate counter-examples within an inductive
loop, as in this work. [34] considers large sample sets that are randomly divided
into batches and fed to a feed-forward NN; the verification at the end of the
(rather long) training either validates the candidate, or invalidates it and the
training starts anew on the same dataset. In Section 4 the method in [34] is shown
to be slower (both in the training and in the verification), and to require more
data than the CEGIS-based approach of this work, which furthermore introduces
numerous bespoke optimisations, as outlined in Section 3: our CEGIS-based
technique exploits fast learning, verification simplified by the candidates passed
by the Learner, and an enhanced communication between Learner and Verifier.
Our approach further showcases numerical robustness and scalability features.

Related to the work on BC is the synthesis of Lyapunov functions, mentioned
above. The construction of Lyapunov Neural Networks (LNNs) has been studied
with approaches based on simulations and numerical optimisation, which are in
general unsound [26]. Formal methods for Lyapunov synthesis are introduced in
[5], together with a counterexample-based approach using polynomial candidates.
The work is later extended in [2], which employs NN as candidates over poly-
nomial dynamical models. The generation of control Lyapunov functions using
counterexample-based NN is similarly considered in [9], however this is done
by means of differing architectural details and does not extend to BC synthesis.
Beyond the work in [5], this contribution is not limited to a specific polynomial
template, since it supports more general mixtures of polynomial functions ob-
tained through the NN structure, as well as the canonical tanh, sigmoid, ReLU
activations (we provide one example of BC using tanh activations). Compared to
[5], where we use LP programming to synthesise Lyapunov functions, in this work:
a) we use a template-free procedure, thanks to the integration of NNs - these
are needed since template-based SOS-programming approaches are not sufficient
to provide BCs for several of the presented benchmarks (see Section 4 and [34]);
b) we provide an enhanced loss function (naturally absent from [5]), enriched
counter-example generation, prioritised check of the verification constraints, and
c) we newly synthesise verified barrier certificates for hybrid models, which are
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generated using counterexample-based, neural architectures. Finally, beyond [5]
the new approach is endowed with numerical robustness features.

SOS programming solutions [14,16,29] are not quite comparable to this work.
Foremostly, they are not sound, i.e. do not offer a formal guarantee of numerical
and algorithmic correctness. The exception is [10], which verifies SOS candidates
a-posteriori by means of CAD [15] techniques that are known not to scale
well. Furthermore, they can be hardly embedded within a CEGIS loop - we
experimentally show that SOS candidates are handled with difficulty by SMT
solvers. Finally, they hardly cope with the experiments we have considered, as
already observed in [34]. We instead use SMT solvers (Z3 [11] and dReal [13])
within CEGIS to provide sound outcomes based on NN candidates, proffering a
new approach that synthesises and formally verifies candidate BCs altogether,
with minimum effort from the user.

Organisation The remainder of the paper is organised as follows: Section 2
presents preliminary notions on BCs and outlines the problem. Section 3 describes
the approach: training of the NN in Sec. 3.1 and verification in Sec. 3.2. Section
4 presents case studies, Section 5 delineates future work.

2 Safety Analysis with Barrier Certificates

We address the safety verification of continuous-time dynamical models by de-
signing barrier certificates (BC) over the continuous state space X of the model.
We consider n-dimensional dynamical models described by

ẋ(t) =
dx

dt
= f(x), x(0) = x0 ∈ X0 ⊂ X, (1)

where f : X → Rn is a continuous vector field, X ⊆ Rn is an open set defining
the state space of the system, and X0 represents the set of initial states. Given
model (1) and an unsafe set Xu ⊂ X, the safety verification problem concerns
checking whether or not all trajectories of the model originating from X0 reach
the unsafe region Xu. BC offer a sufficient condition asserting the safety of the
model, namely when no trajectory enters the unsafe region.

Definition 1. The Lie derivative of a continuously differentiable scalar function
B : X → R, with respect to a vector field f , is defined as follows

Ḃ(x) = ∇B(x) · f(x) =
n∑
i=1

∂B

∂xi

dxi
dt

=
n∑
i=1

∂B

∂xi
fi(x). (2)

Intuitively, this derivative denotes the rate of change of function B along the
model trajectories.

Proposition 1 (Barrier Certificate for Safety Verification, [21]). Let the
model in (1) and the sets X, X0 and Xu be given. Suppose there exists a function
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B : X → R that is differentiable with respect to its argument and satisfies the
following conditions:

B(x) ≤ 0 ∀x ∈ X0, B(x) > 0 ∀x ∈ Xu, Ḃ(x) < 0 ∀x ∈ X s.t. B(x) = 0,
(3)

then the safety of the model is guaranteed. That is, there is no trajectory of the
model contained in X, starting from the initial set X0, that ever enters set Xu.

Consider a trajectory x(t) starting in x0 ∈ X0 and the evolution of B(x(t)) along
this trajectory. Whilst the first of the three conditions guarantees that B(x0) ≤ 0,
the last condition asserts that the value of B(x(t)) along a trajectory x(t) must
decrease. Hence such a trajectory x(t) cannot enter the set Xu, where B(x) > 0
(second condition), thus ensuring the safety of the model.

3 Synthesis of Neural Barrier Certificates via Learning
and Verification

We introduce an automated and formal approach for the construction of barrier
certificates (BC) that are expressed as feed-forward neural networks (NN). The
procedure leverages CEGIS (see Fig. 1) [31], an automated and sound procedure
for solving second-order logic synthesis problems, which comprises two interacting
parts. The first component is a Learner, which provides candidate BC functions
by training a NN over a finite set of sample inputs. The network is then translated
into a logical formula in an appropriate theory, by evaluating it with symbolic
inputs, instead of canonical floating point numbers. The details of this conversion
are outlined in [2]. This encoded candidate is passed to the second component,
a Verifier, which acts as an oracle: either it proves that the solution is valid, or
it finds one (or more) instance (called a counter-example) where the candidate
BC does not comply with required conditions. The verifier consists of an SMT
solver [15], namely an algorithmic decision procedure that extends Boolean SAT
problems to richer, more expressive theories, such as non-linear arithmetics.

More precisely, the learner trains a NN composed of n input neurons (this
matches the dimension of the model f), k hidden layers, and one output neuron
(recall that B(x) is a scalar function): this NN candidate B is required to closely
match the conditions in Eq. (3) over a discrete set of samples S, which is
initialised randomly. The verifier checks whether the candidate B violates any
of the conditions in Eq. (3) over the entire set X and, if so, produces one (or
more, as in this work) counter-examples c. We add c to the samples set S as the
loop restarts, hence forcing the NN to be trained also over the generated counter-
examples c. Note that the NN retains its old weights, and restarts the training
from the weights obtained at the end of the previous session. This loop repeats
until the SMT verifier proves that no counter-examples exist or until a timeout is
reached. CEGIS offers a scalable and flexible alternative for BC synthesis: on the
one hand, the learner does not require soundness, and ensures a rapid synthesis
exploiting the training of NN architectures; on the other, the algorithm is sound,
i.e. a valid output from the SMT-based verifier is provably correct; of course we
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cannot claim any completeness, since CEGIS might in general not terminate with
a solution because it operates over a continuous model.

The performance of the CEGIS algorithm in practice hinges on the effective
exchange of information between the learner and the verifier [3]. A core contri-
bution of this work is to tailor the CEGIS architecture to the problem of BC
synthesis: we devise several improvements to NN training, such as a bespoke loss
function and a multi-layer NN architecture that ensures robustness and outputs
a function that is tailored to the verification engine. Over consecutive loops, the
verifier may return similar counter-examples: we thus propose a more informative
counter-examples generation by the SMT verifier that is adapted to the candidate
BC and the underlying dynamical model. These tailored architectural details
generate in practice a rapid, efficient, and robust CEGIS loop, which is shown in
this work to clearly outperform state-of-the-art methods.

3.1 Training of the Barrier Neural Network

The learner instantiates the candidate BC using the hyper-parameters k and h
(depth and width of the NN), trains it over the N samples in the set S, and later
refines its training whenever the verifier adds counter-examples to the set S. The
class of candidate BC comprises multi-layered, feed-forward NN with polynomial
and non-polynomial activation functions. Unlike most learning applications, the
choice of polynomial activations comes from the need for interpretable outputs
from the NN, whose analytical expression must be readily processed by the
verifier. The order γ of the polynomial activations is a hyper-parameter fed at
the start of the procedure: we split the i-th hidden layer into γ portions and
apply polynomial activations of order j to the neurons of the j-th portion.

Example 1 (Polynomial Activations). Assume a NN composed of an input x,
3 hidden neurons and 1 activation-free output, with γ-th order polynomial
activation, γ = 3. We split the hidden layer in γ sub-vectors, each containing one
neuron. The hidden layer after the activation results in

z =
[
W

(1)
1 x+ b1 (W

(1)
2 x+ b2)

2 (W
(1)
3 x+ b3)

3
]T

,

where the W (1)
i are the i-th row of the first-layer weight matrix, and the bi form

the bias vector. ��
The learning process updates the NN parameters to improve the satisfaction of
the BC conditions in (3): B(x) ≤ 0 for x ∈ X0, B(x) > 0 for x ∈ Xu, and a
negative Lie derivative Ḃ (Eq. (2)) over the set implicitly defined by B(x) = 0.
The training minimises a loss comprising three terms, namely

L = L0 + Lu + Ld =
1

N

N∑
i=1

(
max
si∈X0

{τ0, B(si)}+ max
si∈Xu

{τu,−B(si)}

+ max
si:B(si)=0

{τd, Ḃ(si)}
)
, (4)
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where si, i = 1, . . . , N are the samples taken from the set S. The constants
τ0, τu, τd are offsets, added to improve the numerical stability of the training.
Notably, B(x) = 0 can be a set with small volume, thus it is highly unlikely
that a single sample s will satisfy B(s) = 0. We thus relax this last condition
and consider a belt B around B(s) = 0, namely B = |B(x)| ≤ β, which depends
on the hyper-parameter β. Note that we must use continuously differentiable
activations throughout, as we require the existence of Lie derivatives (cf. Eq. (2)),
and thus cannot leverage simple ReLUs.

Enhanced Loss Functions The loss function in Eq. (4) experimentally yields
possible drawbacks, which suggests a few ameliorations. Terms L0 and Lu solely
penalise samples with incorrect value of B(x) without further providing a reward
for samples with a correct value. The NN thus stops learning when the samples
return correct values of B(x) without further increasing the positivity of B over
Xu or the negativity over X0. As such, the training often returns a candidate
B(x) with values just below τ0 in X0 or above τu in Xu. These candidates are
easily falsified, thus potentially leading to a large number of CEGIS iterations.

We improve the learning by adopting a (saturated) Leaky ReLU, hence
rewarding samples that evaluate to a correct value of B(x). Noting that

LeakyReLU(α, x) = ReLU(x)− αReLU(−x), (5)

where α is a small positive constant, we rewrite term L0 as

L0 =
1

N

∑
si∈X0

ReLU(B(si)− τ0)− α · satReLU(−B(si) + τ0), (6)

where satReLU is the saturated ReLU function3. The term Lu is similarly modi-
fied. The composite loss function works as follows. Incorrect samples account for
the main contribution to the loss function, leading the NN to correct those first
via the ReLU term in Eq. (6). At a second stage, the network finds a direction of
improvement by following the leaky portion of the loss function. This is saturated
to prevent the training from following only one of these directions, without
improving the other loss terms.

Another possible drawback of the loss function in (4) derives from the term Ld:
it solely accounts for a penalisation of the sample points within B. To quickly and
myopically improve the loss function, the training can generate a candidate BC
for which no samples are within B - we experimentally find that this behaviour
persists, regardless of the value of β. Similarly to L0 and Lu, we reward the points
within a belt fulfilling the BC condition: namely, we solely apply the satReLU
function to reward samples s with a negative Ḃ(s), whilst not penalising values
Ḃ(s) ≥ 0. The training is driven to include more samples in B, guiding towards
a negative Ḃ(s), and finally enhancing learning. The expression of Ld results in

Ld = − 1

N

∑
s∈B

satReLU(−Ḃ(s) + τd). (7)

3 Let us define M to be an arbitrary upper bound, then
satReLU(x) = min(max(0, x),M).
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Finally, we choose an asymmetric belt B = −β1 ≤ B(s) ≤ β2, with β2 > β1 > 0
to both ensure a wider sample set and a stronger safety certificate.

Multi-layer Networks Polynomial activation functions generate interpretable
barrier certificates with analytical expressions that are readily verifiable by an
SMT solver. However, when considering polynomial networks, the use of multi-
layer architectures quickly increases the order of the barrier function: a k-layer
network with γ-th order activations returns a polynomial of kγ degree. We have
experienced that deep NN provide numerical robustness to our method, although
the verification complexity increases with the order of the polynomial activation
functions used and with the depth of the NN. As a consequence, our procedure
leverages a deep architecture whilst maintaining a low-order polynomial by
interchanging linear and polynomial activations over adjacent layers. We have
observed that the use of linear activations, particularly in the output layer,
positively affects the training: they provide robustness that is needed to the
synthesis of BC (see Experimental results), without increasing the order of the
network with new polynomial terms.

Learning in Separate Batches The structure of the conditions in (3) and the
learning loss in (4) naturally suggests a separate approach to training. We then
split the dataset S into three batches S0, Su and Sx, each including samples
belonging to X0, Xu and X, respectively. For training, we compute the loss
function in a parallel fashion. Similarly, for the verifier, generated counter-
examples are added to the relevant batch.

3.2 Certification of the Barrier Neural Network, or Falsification via
Counter-examples

Every candidate BC function B(x) which the learner generates requires to be
certified by the verifier. Equivalently, in practice the SMT-based verifier aims at
finding states that violate the barrier conditions in (3) over the continuous domain
X. To this end, we express the negation of such requirements, and formulate a
nonlinear constrained problem over real numbers, as

(x ∈ X0 ∧B(x) > 0) ∨ (x ∈ Xu ∧B(x) ≤ 0) ∨ (B(x) = 0 ∧ Ḃ(x) ≥ 0). (8)

The verifier searches for solutions of the constraints in Eq. (8), which in general
requires manipulating non-convex functions. This can be cumbersome and time-
consuming, hence simple expressions of B can enhance the verification procedure.
On the one hand, the soundness of our CEGIS procedure heavily relies on the
correctness of SMT solving: an SMT solver never fails to assert the absence of
solutions for (8). As a result, when it states that formula (8) is unsatisfiable, i.e.
returns unsat, B(x) is formally guaranteed to fulfil the BC conditions in Eq.
(3). On the other hand, the CEGIS algorithm offers flexibility in the choice of
the verifier, hence we implement and discuss two SMT solvers: dReal [13] and
Z3 [11]. dReal is a δ-complete solver, namely the unsat decision is correct [12],
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whereas when a solution for (8) is found, this comes with a δ-error bound. The
value of δ characterises the procedure precision. In our setting, it is acceptable
to return spurious counter-examples: indeed, these are then used as additional
samples and do not invalidate the sound outcomes of the procedure, but rather
help synthesising a more robust barrier candidate. dReal is capable of handling
non-polynomial terms, such as exponentials or trigonometric vector fields f for
some of the models considered in Section 4. Z3 is a powerful, sound and complete
SMT solver, namely its conclusions are provably correct both when it determines
the validity of a BC candidate and when it provides counter-examples. The
shortcoming of Z3 is that it is unable to handle non-polynomial formulae.

Prioritisation and Relaxation of Constraints The effectiveness of the
CEGIS framework is underpinned by rapid exchanges between the learner and
the verifier, as well as by quick NN training and SMT verification procedures.
We have experienced that the bottleneck resides in the handling of the constraint
ηd = (B(x) = 0 ∧ Ḃ(x) ≥ 0) by the SMT solver, since the formula contains the
high-order expression Ḃ(x) and because it is defined over the thin region of the
state space implicitly characterised by B(x) = 0. As a consequence, we have
prioritised constraints η0 = (x ∈ X0 ∧B(x) > 0) and ηu = (x ∈ Xu ∧B(x) ≤ 0):
that is, if either clauses is satisfied, i.e. a counter-example is found for at least one
of them, the verifier omits testing ηd whilst the obtained counter-examples are
passed to the learner. The constraint ηd is thus checked solely if η0 and ηu are both
deemed to be unsat. Whenever this occurs, and the verification of ηd times out,
the solver searches for a solution of a relaxed constraint (|B(x)| < τv ∧ Ḃ(x) ≥ 0),
similarly to the improved learning conditions discussed in Eq. (7). Whilst this
constraint is arguably easier to solve in general, it may generate spurious counter-
examples, namely a sample x̄ that satisfy the relaxed constraint, but such that
B(x̄) �= 0. The generation of these samples does not contradict the soundness of
the procedure, and indeed improve the robustness of the next candidate BC –
this of course comes with the cost of increasing the number of CEGIS iterations.

Increased Information from Counter-examples The verification task
encompasses an SMT solver attempting to generate a counter-example, namely
a (single) instance satisfying Eq. (8). However, a lone sample might not always
provide insightful information for the learner to process. Naïvely asking the SMT
solver to generate more than one counter-example can be in general expensive.
Specifically, the verifier solves Eq. (8) to find a first counter-example x̄; then, to
find any additional sample, we include the statement (x �= x̄) and solve again for
the resulting formula. We are interested in finding numerous points invalidating
the BC conditions and feed them to the learner as a batch, or in increasing
the information generated by the verifier by finding a sample that maximises
the violation of the BC conditions. To this end, firstly we randomly generate a
cloud of points around the generated counter-example: in view of the continuity
of the candidate function B, samples around a counter-example are also likely
to invalidate the BC conditions. Secondly, for the original counter-example, we
compute the gradient of B (or of Ḃ) and follow the direction that maximises the



Formal Synthesis of Neural Barrier Certificates 379

violation of the BC constraints. As such, we follow the B (resp. Ḃ) maximisation
when considering x ∈ X0 (x s.t. |B(x)| < τv), and vice versa when x ∈ Xu. This
gradient computation is extremely fast as it exploits the neural architecture, and
it provides more informative samples for further use by the learner.

Algorithm 1 Synthesis of Neural Barrier Certificate

function Learner(S, f)
repeat

B(S) ← NN(S)
Ḃ(S) ← ∇B(S) · f(S)
compute loss L, update NN

until convergence
return NN

end function

function Verifier(B, Ḃ)
encode conditions in (8)
Cex or unsat ← SMTcheck(B, Ḃ)
return Cex or unsat

end function

function CEGIS(f)
initialise NN, S
repeat

NN ← Learner(S, f)
B(x), Ḃ(x) ← Translate(NN, f)
Cex or unsat ← Verifier(B, Ḃ)
S ← S ∪ Cex

until unsat
return B(x), Ḃ(x)

end function

4 Case Studies and Experimental Results

All experiments are performed on a laptop workstation with 8 GB RAM, running
on Ubuntu 18.04. We demonstrate that the proposed method finds provably
correct BCs on benchmarks from literature comprising both polynomial and
non-polynomial dynamics: we compare our approach against the work [34], as
this is the only work on sound synthesis of BCs with NNs to the best of our
knowledge, and against the SOS optimisation software SOSTOOLS [18]. Beyond
the benchmarks proposed in [34], we newly tackle a hybrid model as well as
larger, (up to) 8-dimensional models, which push the boundaries of the verification
engine and display a significant extension to the state of the art. To confirm
the flexibility of our architecture, we employ SMT-solver dReal in the first four
benchmarks, whereas we study the last four using Z3. In all the examples, we
use a learning rate of 0.1 for the NN and the loss function in Section 3.1 with
α = 10−4, τ0 = τu = τd = 0.1. The region in Eq. (7) is limited by β1 = 0.1, whilst
β2 = ∞. Accordingly, the training over a large set B results in a candidate B
with a negative derivative over this large region, which validity is more likely to
be certified by the verifier. We set a verification parameter τv = 0.05 (cf. Sec.
3.2), a timeout (later denoted as OOT) of 60 seconds and the precision for dReal
to δ = 10−6. Table 1 summarises the outcomes. We emphasise that our approach
supports any network depth and width. The presented results seek a tradeoff
between speed (low order, small networks) and expressiveness (high order, larger
networks): a different architecture may result in a slower or faster synthesis.
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For the first four benchmarks, we compare our procedure, denoted as CEGIS,
with the repeated results from [34], which however does not handle the hybrid
model in the fifth benchmark. We have run the algorithm in [34] and reported
the cumulative synthesis time under the ‘Learn’ column. However the verification
is not included in the repeatability package, hence we report the results from
[34], which are generated with much more powerful hardware. Due to this issue
of lack of repeatability, we have not run [34] on the larger models. Compared to
[34], the outcomes suggest that we obtain much faster synthesis and verification
times, whilst requiring up to only 0.1% (see Obstacle Avoidance Problem) of the
training data: [34] performs a uniform sampling of the space X, hence suffers
especially in the 3-D case, where the learning runs two orders of magnitude faster.
Evidently this gap in performance derives from the different synthesis procedure:
it appears to be more advantageous to employ a smaller, randomly sampled
initial dataset that is progressively augmented with counter-examples, rather
than to uniformly sample the state space to then train the neural network.

Next, we have implemented the SOS optimisation problems in [10] within the
software SOSTOOLS [18] to generate barrier candidates, which are polynomials
up to order 4 (this is the maximum order of the polynomial candidates generated
by our Learner). In a few instances we ought to conservatively approximate the
expression of X0 or Xu in order to encode them as SOS program - this makes
their applicability less general. SOSTOOLS has successfully found BC candidates
for five of the eight benchmarks, and they were generated consistently fast, in
view of the convex structure of the underlying optimisation problem. However,
recall that these techniques lack soundness (also due to numerical errors), which
is instead a core asset of our approach. Consequently, we have passed them to
the Z3 SMT solver, which should easily handle polynomial formulae: only one of
them (‘Hybrid Model’) has been successfully verified; instead, the candidate for
the ‘Polynomial Model’ has been invalidated (namely Z3 has found a counter-
example for it), whereas the verification of the remaining BC candidates has
run out of time. For the latter instances, we have experienced that SOSTOOLS
generally returns numerically ill-conditioned expressions, namely candidates with
coefficients of rather different magnitude, with many decimal digits: even after
rounding, expressions with this structure are known to be hardly handled by
SMT solvers [2,5], which results in long time needed to return an answer - this
explains the experienced timeouts. These experiments suggest that the use of
SOS programs within a CEGIS loop appears hardly attainable.

Notice that all the case studies are solved with a small number of iterations
(up to 9) of the CEGIS loop: this feature, along with the limited runtimes, is
promising towards tackling synthesis problems over larger models.

For the eight case studies, we report below the full expressions of the dynamics
of the models, the spatial domain X (as a set of constrains), the set of initial
conditions X0 ⊂ X, and the unsafe set Xu ⊂ X. We add a detailed analysis of
the CEGIS iterations involved in the synthesis of the corresponding BCs.
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Benchmark CEGIS (this work) BC from [34] SOS from [18]

Darboux
Exponential

Obstacle
Polynomial

Hybrid
4-d ODE
6-d ODE
8-d ODE

Learn Verify Samples Iters
31.6 0.01 0.5 k 2
15.9 0.07 1.5 k 2
55.5 1.83 2.0 k 9
64.5 4.20 2.3 k 2
0.58 2.01 0.5 k 1
29.31 0.07 1 k 1
89.52 1.61 1 k 3
104.5 82.51 1 k 3

Learn Verify Samples
54.9 20.8 65 k
234.0 11.3 65 k
3165.3 1003.3 2097 k
1731.0 635.3 65 k

– – –
– – –
– – –
– – –

Synth Verify
× –
× –
× –

8.10 ×
12.30 0.11
12.90 OOT
16.60 OOT
26.10 OOT

Table 1. Outcomes of the case studies: Cumulative time for Learning and Verification
steps are given in seconds; ‘Samples’ indicates the size of input data for the Learner (in
thousands); ‘Iters’ is the number of iterations of the CEGIS loop (which is specific to
our work); × indicates a synthesis or verification failure; OOT denotes a verification
timeout. The Hybrid and the three ODE Models are newly introduced in this work.

Darboux Model This 2-dimensional model is approached using polynomial
BCs. Its analytical expression is

{
ẋ = y + 2xy,

ẏ = −x+ 2x2 − y2,
with domains

X = {−2 ≤ x, y ≤ 2},
X0 = {0 ≤ x ≤ 1, 1 ≤ y ≤ 2},
Xu = {x+ y2 ≤ 0}.

The work [33] reports that methods based on linear matrix inequalities fail to
verify this model using polynomial templates of degree 6. Our approach generates
the BC shown in Fig. 2 (left) in approximately 30 seconds, roughly half as much
as in [34], and using only 500 initial samples vs more than 65000. The initial
and unsafe sets are depicted in green and red, respectively, whereas the level set
B(x) = 0 is outlined in black. The BC is derived from a single-layer architecture
of 10 nodes, with linear activations.

Exponential Model This model from [17] shows that our approach extends to
non-polynomial systems encompassing exponential and trigonometric functions:

{
ẋ = e−x + y − 1,

ẏ = − sin2 x,
with domains

X = {−2 ≤ x, y ≤ 2},
X0 = {(x+ 0.5)2 + (y − 0.5)2 ≤ 0.16},
Xu = {(x− 0.7)2 + (y + 0.7)2 ≤ 0.09}.

Our algorithm provides a valid BC in 16 seconds, around 7% of the results in [34],
again using solely 1500 initial samples. The BC, depicted in Fig.2 (centre), results
from a single-layer neural architecture of 10 nodes, with polynomial (γ = 3)
activation function.

Obstacle Avoidance Problem This 3-dimensional model, originally presented
in [6], describes a robotic application: the control of the angular velocity of a
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Fig. 2. The BC for the Darboux (top left), Exponential (middle left), and Obstacle
Avoidance (the 3-D study, bottom left) models with corresponding vector fields (right
column). Initial and unsafe sets are represented in green and red, respectively; the black
line outlines the level curve B(x) = 0.

two-dimensional airplane, aimed at avoiding a still obstacle. The details are⎧⎪⎪⎨⎪⎪⎩
ẋ = v sinϕ,

ẏ = v cosϕ,

ϕ̇ = u, where u = − sinϕ+ 3 · x sinϕ+ y cosϕ

0.5 + x2 + y2
, with domains
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X = {−2 ≤ x, y ≤ 2,−π/2 < ϕ < π/2},
X0 = {−0.1 ≤ x ≤ 0.1,−2 ≤ y ≤ −1.8,−π/6 < ϕ < π/6},
Xu = {x2 + y2 ≤ 0.04}.

The BC is obtained from a single-layer NN comprising 10 neurons, using (γ = 3)
polynomial activations. Fig. 2 (right) plots the vector field on the plane z = 0.
Our procedure takes 1% of the computational time in [34], providing a valid BC
with 9 iteration starting from an initial dataset of 2000 samples.

Polynomial Model This model describes a polynomial system [22] and presents
initial and unsafe sets with complex, non convex shapes [34], as follows:{

ẋ = y,

ẏ = −x+ 1/3x3 − y, with domains

X = {−3.5 ≤ x ≤ 2,−2 ≤ y ≤ 1},
X0 = {(x− 1.5)2 + y2 ≤ 0.25 ∨ (x ≥ −1.8 ∧ x ≤ −1.2 ∧ y ≥ −0.1 ∧ y ≤ 0.1)

∨ (x ≥ −1.4 ∧ x ≤ −1.2 ∧ y ≥ −0.5 ∧ y ≤ 0.1)},
Xu = {(x+ 1)2 + (y + 1)2 ≤ 0.16 ∨ (x ≥ 0.4 ∧ x ≤ 0.6 ∧ y ≥ 0.1 ∧ y ≤ 0.5)

∨ (x ≥ 0.4 ∧ x ≤ 0.8 ∧ y ≥ 0.1 ∧ y ≤ 0.3)}.

SOS-based procedures [16,29], have required high-order polynomial templates,
which has suggested the use of alternative activation functions. The BC, shown
in Fig. 3, is generated using a 10-neuron, two-layer NN with polynomial (γ = 3)
and tanh activations. Needing just around 1 min and only 2300 initial samples,
the overall procedure is 30 times faster than that in [34].

Hybrid Model We challenge our procedure with a 2-dimensional hybrid model,
which extends beyond the capability of the results in [34]. This hybrid framework
partitions the set X into two non-overlapping subsets, X1 and X2. Each subset
is associated to different model dynamics, respectively f1 and f2. In other words,
the model trajectories evolve according to the f1 dynamics when in X1, and
according to f2 when in X2.

f1 =

{
ẋ = y,

ẏ = −x− 0.5x3,
f2 =

{
ẋ = y,

ẏ = x− 0.25y2,

with domain for f1 = {(x, y) : x < 0}, domain for f2 = {(x, y) : x ≥ 0}, and sets

X = {x2 + y2 ≤ 4}, X0 = {(x+ 1)2 + (y + 1)2 ≤ 0.25},
Xu = {(x− 1)2 + (y − 1)2 ≤ 0.25}.

The structure of this model represents a non-trivial task for the verification
engine, for which we employ the Z3 SMT solver. The learning phase has instead
been quite fast. The BC (Fig.3) is obtained from a single-layer NN comprising 3
neurons, using polynomial activations with γ = 2, overall in less than 3 seconds,
starting with an initial dataset of 500 samples.
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Fig. 3. The BC for the polynomial model (top left) and the hybrid model (top right)
with the respective vector field (below).

Larger-dimensional Models We finally challenge our procedure with three
high-order ODEs, respectively of order four, six and eight, to display the general
applicability of our counter-example guided BC synthesis. We consider dynamical
models described by the following differential equations:

x(4) + 3980x(3) + 4180x(2) + 2400x(1) + 576 = 0, (9)

x(6) + 800x(5) + 2273x(4) + 3980x(3) + 4180x(2) + 2400x(1) + 576 = 0, (10)

x(8) + 20x(7) + 170x(6) + 800x(5) + 2273x(4)

+ 3980x(3) + 4180x(2) + 2400x(1) + 576 = 0, (11)

where we denote the i-th derivative of variable x by x(i). We translate the ODE
into a state-space model with variables x1, . . . , xj , where j = {4, 6, 8}, respectively.
In all three instances, we select as spatial domain X an hyper-sphere centred at
the origin of radius 4; an initial set X0 as hyper-sphere4 centred at +1[j] of radius
0.25; an unsafe set Xu as an hyper-sphere centred at −2[j] of radius 0.16. For
the synthesis, we employ for all case studies a single-layer, 5-node architecture
with polynomial (γ = 1) activation function. Whilst in particular the verification
engine is challenged from the high dimensionality of the models, the CEGIS
procedure returns a valid barrier certificate in up to 3 iterations and with very
reasonable run times.

4 We denote 1[j] the point of a j-dimensional state-space that has all its components
equal to 1. For instance, 1[3] is the 3-dimensional point [1, 1, 1]. Similarly for 2[j].



Formal Synthesis of Neural Barrier Certificates 385

Codebase Robustness The results in Table 1 are obtained setting the NN
initialisation seed manually for repeatability. We now test the robustness of the
overall algorithm by randomising the initialisation seed. We report in Table 2
the percentage of successful runs, the average time and iterations count, along
with minimum and maximum values, over 50 runs. We set timeouts as a max
running time of 10 minutes, or as 12 CEGIS loops. Notice that small architectures
are highly susceptible to initialisations, which renders this test rather challeng-
ing. Compared to Table 1, we notice similar performances for the Darboux,
Exponential and Hybrid models, vouching for the robustness of our approach.
However, the performance decreases when tackling the most challenging models.
Still, we highlight that the procedure can synthesise a valid BC very rapidly for
every benchmark (notice the lower bounds of the computational times). This
outcome suggests that a parallel approach - i.e. the procedure running on several
networks simultaneously - may be suited to quickly synthesise candidates. Overall,
the table shows a high degree of variance, possibly indicating the need for larger
architectures to enhance robustness.

Benchmark Success [%] Iters Avg Time
Darboux Model 84.0 4.76 [1, 12] 75.33 [15.00, 189.25]

Exponential Model 76.0 5.20 [1, 12] 9.50 [3.17, 21.59]
Obstacle Avoidance 28.0 9.88 [1, 11] 129.24 [16.17, 549.41]
Polynomial Model 8.0 5.56 [5, 9] 335.32 [230.86, 377.91]

Hybrid Model 84.0 4.20 [1, 12] 36.75 [0.43, 102.03]
4-d ODE Model 32.0 9.00 [1, 12] 362.14 [29.42, 681.41]
6-d ODE Model 40.0 8.60 [1, 12] 310.45 [30.65, 562.67]
8-d ODE Model 12.0 11.00 [2, 12] 495.23 [111.50, 698.93]

Table 2. Percentage of successful runs, average number of iterations and average
computational times (in seconds) of the CEGIS procedure, over 50 runs. The square
brackets contain the minimum and maximum values obtained.

5 Conclusions and Future Work

We have presented a new inductive, formal, automated technique to synthesise
neural-based barrier certificates for polynomial and non-polynomial, continuous
and hybrid dynamical models. Thanks to a number of architectural choices for
the new procedure, our method requires less training data and thus displays faster
learning, as well as quicker verification time, than state-of-the-art techniques.

Ongoing work is porting presented and related [5,2] theoretical results into
a software tool [1]. Towards increased automation, future work includes the
development of an automated selection of activation functions that are tailored
to the dynamical models of interest.
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Abstract. We propose a spurious region guided refinement approach for robust-
ness verification of deep neural networks. Our method starts with applying the
DeepPoly abstract domain to analyze the network. If the robustness property can-
not be verified, the result is inconclusive. Due to the over-approximation, the
computed region in the abstraction may be spurious in the sense that it does not
contain any true counterexample. Our goal is to identify such spurious regions
and use them to guide the abstraction refinement. The core idea is to make use of
the obtained constraints of the abstraction to infer new bounds for the neurons.
This is achieved by linear programming techniques. With the new bounds, we
iteratively apply DeepPoly, aiming to eliminate spurious regions. We have im-
plemented our approach in a prototypical tool DeepSRGR. Experimental results
show that a large amount of regions can be identified as spurious, and as a result,
the precision of DeepPoly can be significantly improved. As a side contribution,
we show that our approach can be applied to verify quantitative robustness prop-
erties.

1 Introduction

In the seminal work [34], deep neural networks (DNN) have been successfully applied
in Go to play against expert humans. Afterwards, they have achieved exceptional per-
formance in many other applications such as image, speech and audio recognition, self-
driving cars, and malware detection. Despite the success of solving these problems,
DNNs have also been shown to be often lack of robustness, and are vulnerable to ad-
versarial samples [39]. Even for a well-trained DNN, a small (and even imperceptible)
perturbation may fool the network. This is arguably one of the major obstacles when
we deploy DNNs in safety-critical applications like self-driving cars [42], and medical
systems [33].

It is thus important to guarantee the robustness of DNNs for safety-critical appli-
cations. In this work, we focus on (local) robustness, i.e., given an input and a ma-
nipulation region around the input (which is usually specified according to a certain
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norm), we verify that a given DNN never makes any mistake on any input in the region.
The first work on DNN verification was published in [30], which focuses on DNNs
with sigmoid activation functions with a partition-refinement approach. In 2017, Katz
et al. [20] and Ehlers [10] independently implemented Reluplex and Planet, two SMT
solvers to verify DNNs with the ReLU activation function on properties expressible
with SMT constraints. Since 2018, abstract interpretation has been one of the most pop-
ular methods for DNN verification in the lead of AI2 [13], and subsequent works like
[36,37,23,1,35,28,24] have improved AI2 in terms of efficiency, precision and more ac-
tivation functions (like sigmoid and tanh) so that abstract interpretation based approach
can be applied to DNNs of larger size and more complex structures.

Among the above methods, DeepPoly [37] is a most outstanding one regarding
precision and scalability. DeepPoly is an abstract domain specially developed for DNN
verification. It sufficiently considers the structures and the operators of a DNN, and
it designs a polytope expression which not only fits for these structures and operators
to control the loss of precision, but also works with a very small time overhead to
achieve scalability. However, as an abstraction interpretation based method, it provides
very little insight if it fails to verify the property. In this work, we propose a method
to improve DeepPoly by eliminating spurious regions through abstraction refinement.
A spurious region is a region computed using abstract semantics, conjuncted with the
negation of the property to be verified. This region is spurious in the sense that if the
property is satisfied, then this region, although not empty, does not contain any true
counterexample which can be realized in the original program. In this case, we propose
a refinement strategy to rule out the spurious region, i.e., to prove that this region does
not contain any true counterexamples.

Our approach is based on DeepPoly and improves it by refinement of the spuri-
ous region through linear programming. The core idea is to intersect the abstraction
constructed by abstract interpretation with the negation of the property to generate a
spurious region, and perform linear programming on the constraints of the spurious re-
gion so that the bounds of the ReLU neurons whose behaviors are uncertain can be
tightened. As a result, some of these neurons can be determined to be definitely acti-
vated or deactivated, which significantly improves the precision of the abstraction given
by abstract interpretation. This procedure can be performed iteratively and the precision
of the abstraction are gradually improved, so that we are likely to rule out this spurious
region in some iteration. If we successfully rule out all the possible spurious regions
through such an iterative refinement, the property is soundly verified. Our method is
similar in spirit to counterexample guided abstraction refinement (CEGAR) [6], i.e.,
we apply abstract interpretation for abstraction and linear programming for refinement.
A fundamental difference is that we use the constraints of the spurious region, instead
of a concrete counterexample (which is challenging to construct in our setting), as the
guidance of refinement.

The same spurious region guided refinement approach is also effective in quanti-
tative robustness verification. Instead of requiring that all inputs in the region should
be correctly classified, a certain probability of error in the region is allowed. Quantita-
tive robustness is more realistic and general compared to the ordinary robustness, and a
DNN verified against quantitative robustness is useful in practice as well. The spurious
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region guided refinement approach naturally fits for this setting, since a comparatively
precise over-approximation of the spurious region implies a sound robustness confi-
dence. To the best of our knowledge, for DNNs, this is the first work to verify quantita-
tive robustness with strict soundness guarantee, which distinguishes our approach from
the previous sampling based methods like [45,46,3].

In summary, our main contributions are as follows:

– We propose spurious region guided refinement to verify robustness properties of
deep neural networks. This approach significantly improves the precision of Deep-
Poly and it can verify more challenging properties than DeepPoly.

– We implement the algorithms as a prototype and run them on networks trained on
popular datasets like MNIST and ACAS Xu. The experimental results show that our
approach significantly improves the precision of DeepPoly in successfully verifying
much stronger robustness properties (larger maximum radius) and determining the
behaviors of a great proportion of uncertain ReLU neurons.

– We apply our approach to solve quantitative robustness verification problem with
strict soundness guarantee. In the experiments, we observe that, comparing to using
only DeepPoly, the bounds by our approach can be up to two orders of magnitudes
better in the experiments.

Organisations of the paper. We provide preliminaries in Section 2. DeepPoly is recalled
in Section 3. We present our overall verification framework and the algorithm in Sec-
tion 4, and discuss quantitative robustness verification in Section 5. Section 6 evaluates
our algorithms through experiments. Section 7 reviews related works and concludes the
paper.

2 Preliminaries

In this section we recall some basic notions on deep neural networks, local robustness
verification, and abstract interpretation. Given a vector x ∈ Rm, we write xi to denote
its i-th entry for 1 ≤ i ≤ m.

2.1 Robustness verification of deep neural networks

In this work, we focus on deep feedforward neural networks (DNNs), which can be
represented as a function f : Rm → Rn, mapping an input x ∈ Rm to its output y =
f(x) ∈ Rn. A DNN f often classifies an input x by obtaining the maximum dimension
of the output, i.e., argmax1≤i≤n f(x)i. We denote such a DNN by Cf : Rm → C
which is defined by Cf (x) = argmax1≤i≤n f(x)i where C = {1, . . . , n} is the set of
classification classes.

A DNN has a sequence of layers, including an input layer at the beginning, followed
by several hidden layers, and an output layer in the end. The output of a layer is the input
of the next layer. Each layer contains multiple neurons, the number of which is known
as the dimension of the layer. The DNN f is the composition of the transformations
between layers. Typically an affine transformation followed by a non-linear activation
function is performed. For an affine transformation y = Ax + b, if the matrix A is not
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sparse, we call such a layer fully connected. A DNN with only fully connected layers
and activation functions is a fully connected neural network (FNN). In this work, we
focus on the rectified linear unit (ReLU) activation function, defined as ReLU(x) =
max(x, 0) for x ∈ R. Typically, a DNN verification problem is defined as follows:

Definition 1. Given a DNN f : Rm → Rn, a set of inputs X ⊆ Rm, and a property
P ⊆ Rn, we need to determine whether f(X) := {f(x) | x ∈ X} ⊆ P holds.

Local robustness describes the stability of the behaviour of a normal input under a
perturbation. The range of input under this perturbation is the robustness region. For a
DNN Cf (x) which performs classification tasks, a robustness property typically states
that Cf outputs the same class on the robustness region.

There are various ways to define a robustness region, and one of the most popular
ways is to use the Lp norm. For x ∈ Rm and 1 ≤ p < ∞, we define the Lp norm of

x to be ‖x‖p = (
∑m

i=1 |xi|p)
1
p , and its L∞ norm ‖x‖∞ = max1≤i≤m |xi|. We write

B̄p(x, r) := {x′ ∈ Rm | ‖x−x′‖p ≤ r} to represent a (closed) Lp ball for x ∈ Rm and
r > 0, which is a neighbourhood of x as its robustness region. If we set X = B̄p(x, r)
and P = {y ∈ Rn | argmaxi yi = Cf (x)} in Def. 1, it is exactly the robustness
verification problem. Hereafter, we set p =∞.

2.2 Abstract interpretation for DNN verification

Abstract interpretation [7] is a static analysis method and it is aimed to find an over-
approximation of the semantics of programs and other complex systems so as to verify
their correctness. Generally we have a function f : Rm → Rn representing the concrete
program, a setX ⊆ Rm representing the property that the input of the program satisfies,
and a set P ⊆ Rn representing the property to verify. The problem is to determine
whether f(X) ⊆ P holds. However, in many cases it is difficult to calculate f(X) and
to determine whether f(X) ⊆ P holds. Abstract interpretation uses abstract domains
and abstract transformations to over-approximate sets and functions so that an over-
approximation of the output can be obtained efficiently.

Now we have a concrete domain C, which includes X as one of its elements. To
make computation efficient, we need an abstract domain A to abstract elements in the
concrete domain. We assume that there is a partial order ≤ on C and A, which in our
settings is the subset relation ⊆. We also have a concretization function γ : A → C
which assigns an abstract element to its concrete semantics, and γ(a) is the least upper
bounds of the concrete elements that can be soundly abstracted by a ∈ A. Naturally
a ∈ A is a sound abstraction of c ∈ C if and only if c ≤ γ(a).

The design of an abstract domain is one of the most important problems in abstract
interpretation because it determines the efficiency and precision. In practice, we use
a certain type of constraints to represent the abstract elements in an abstract domain.
Classical abstract domains for Euclidean spaces include Box, Zonotope [14,15], and
Polyhedra [38].

Not only do we need abstract domains to over-approximate sets, but we are also
required to adopt over-approximation to functions. Here we consider the lifting of the
function f : Rm → Rn defined as Tf (X) : P(Rm) → P(Rn), Tf (X) := f(X) =
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{f(x) | x ∈ X}. Now we have an abstract domain Ak for the k-dimension Euclidean
space and the corresponding concretization γ. A function T#

f : Am → An is a sound
abstract transformer of Tf , if Tf ◦ γ ⊆ γ ◦ T#

f .
When we have a sound abstraction X# ∈ A of X and a sound abstract transformer

T#
f , we can use the concretization of T#

f (X#) to over-approximate f(X) since we
have f(X) = Tf (X) ⊆ Tf (γ(X

#)) ⊆ γ ◦ T#
f (X#). If γ ◦ T#

f (X#) ⊆ P , the prop-
erty P is successfully verified. Obviously, verification through abstract interpretation is
sound but not complete. Hereafter, we write f# to represent T#

f for simplicity.
AI2 [13] first adopted abstract interpretation to verify DNNs, and many subsequent

works like [36,37,23] focused on improving its efficiency and precision through, e.g.,
defining new abstract domains. As a deep neural network, the function f : Rm → Rn
can be regarded as a composition f = fl ◦ · · · ◦ f1 of its l+1 layers, where fj performs
the transformation between the j-th and the (j + 1)-th layer, i.e., it can be an affine
transformation, or a ReLU operation. If we choose Box, Zonotope, or Polyhedra as the
abstract domain, then for linear transformations and the ReLU functions, their abstract
transformers have been developed in [13]. After we have abstract transformers f#

j for
these fj , we can conduct abstract interpretation layer by layer as f#

l ◦ · · · ◦ f#
1 (X#).

3 A Brief Introduction to DeepPoly

Our approach relies on the abstract domain DeepPoly [37], which is the state-of-the-art
abstract domain for DNN verification. It defines the abstract transformers of multiple
activation functions and layers used in DNNs. The core idea of DeepPoly is to give
every variable an upper and a lower bound in the form of an affine expression using
only variables that appear before it. It can express a polyhedron globally. Moreover,
experimentally, it often has better precision than Box and Zonotope domains.

We denote the n-dimensional DeepPoly abstract domain with An. Formally an ab-
stract element a ∈ An is a tuple (a≤, a≥, l, u), where a≤ and a≥ give the i-th variable
xi a lower bound and an upper bound, respectively, in the form of a linear combina-
tion of variables which appear before it, i.e.

∑i−1
k=1 wkxk + w0, for i = 1, . . . , n, and

l, u ∈ Rn give the lower bound and upper bound of each variable, respectively. The
concretization of a is defined as

γ(a) = {x ∈ Rn | a≤i ≤ xi ≤ a≥i , i = 1, . . . , n}. (1)

The abstract domain An also requests that its abstract elements a should satisfy the
invariant γ(a) ⊆ [l, u]. This invariant helps construct efficient abstract transformers.

For an affine transformation xi =
∑i−1

k=1 wkxk + w0, we set

a≤i = a≥i =

i−1∑
k=1

wkxk + w0.

By substituting the variables xj appearing in a≤i with a≤j or a≥j according to its coef-
ficient at most i − 1 times, we can obtain a sound lower bound in the form of linear
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Fig. 1. Framework of spurious region guided refinement

combination on input variables only, and li can be computed immediately from the
range of input variables. A similar procedure also works for computing ui.

For a ReLU transformation xi = ReLU(xj), we consider two cases:

– If lj ≥ 0 or uj ≤ 0, this ReLU neuron is definitely activated or deactivated,
respectively. In this case, this ReLU transformation actually performs an affine
transformation, and thus its abstract transformer can be defined as above.

– If lj < 0 and uj > 0, the behavior of this ReLU neuron is uncertain, and we
need to over-approximate this relation with a linear upper/lower bound. The best
upper bound is a≥i =

uj(xj−lj)
uj−lj . For the lower bound, there are multiple choices

a≤i = λxj where λ ∈ [0, 1]. We choose λ ∈ {0, 1} which minimizes the area of the
constraints. Basically we have two abstraction modes here, corresponding to the
two choices of λ.

Note that for a DNN with only ReLU as non-linear operators, over-approximation oc-
curs only when there are uncertain ReLU neurons, which are over-approximated using
a triangle. The key of improving the precision is thus to compute the bounds of the
uncertain ReLU neurons as precisely as possible, and to determine the behaviors of the
most uncertain ReLU neurons.

DeepPoly also supports activation functions which are monotonically increasing,
convex on (−∞, 0] and concave on [0,+∞), like sigmoid and tanh, and it supports
max pooling layers. Readers can refer to [37] for details.

4 Spurious Region Guided Refinement

We explain the main steps of our algorithm, as depicted in Fig. 1. For the input property
and network, we first employ DeepPoly as the initial step to compute f#(X#). The
concretization of f#(X#) is the conjunction of many linear inequities given in Eq. 1,
and for the robustness property P , the negation ¬P is the disjunction of several linear
inequities ¬P =

∨
t �=Cf (x)

(yCf (x) − yt ≤ 0).
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1. We check whether f#(X#) ∩# (yCf (x) − yt ≤ 0) = ⊥ holds for each t, which
follows the same method as DeepPoly, i.e., we compute the lower bound of yCf (x)−
yt and see whether it is larger than 0. In case of yes, it indicates that the label t
cannot be classified, as it is dominated by Cf (x). Otherwise, we have f#(X#)∩#

¬P �= ⊥, we have the conjunction γ(f#(X#))∧¬P as a potential spurious region,
which represents the intersection of the abstraction of the real semantics and the
negation of the property to verify. We call such a region spurious because if the
property is satisfied, then this region does not contain a true counterexample, i.e., a
pair of input and output (x∗, y∗) such that y∗ = f(x∗) and y∗ violates the property
P . In this case, this region is spuriously constructed due to the abstraction of the
real semantics, where the counterexamples cannot be realized, and thus we aim to
rule out the spurious region.

2. If no potential spurious region is found, our algorithm safely returns yes.
3. Assume now that we have a the potential spurious region. The core idea is to use

the constraints of the spurious region to refine this spurious region. Here a natural
way to refine the spurious region is linear programming, since all the constraints
here are linear inequities. If the linear programming is infeasible, it indicates that
the region is spurious, and thus we can return an affirmative result. Otherwise, our
refinement will tighten the bounds of variables involved in the DNN, especially
the input variables and uncertain ReLU neurons, and these tightened bounds help
further give a more precise abstraction.

4. As our approach is based on DeepPoly, similarly, we cannot guarantee complete-
ness. We set a threshold N of the number of iterations as a simple termination
condition. If the termination condition is not reached, we run DeepPoly again, and
return to the first step.

Below we give an example, illustrating how refinement can help in robustness veri-
fication.

Example 1. Consider the network f(x) = ReLU

((
1 −1
1 1

)
x+

(
0
2.5

))
and the re-

gion B̄∞((0, 0)T, 1). The robustness property P here is y2 − y1 > 0. We invoke first
DeepPoly: the lower bound of y2 − y1 given by DeepPoly is −0.5. As a result, the
robustness property cannot be verified directly. Fig. 2(a) shows details of the example.

We fail to verify the property in Example 1 because for the uncertain ReLU relation
y1 = ReLU(x3), the abstraction is imprecise, and the key to making the abstraction
more precise here is to obtain as tight a bound as possible for x3.

Example 2. We use the constraints in Fig. 2(a) and additionally the constraint y2−y1 ≤
0 (i.e., ¬P ) as the input of linear programming. Our aim is to obtain a tighter bound of
the input neurons x1 and x2, as well as the uncertain ReLU neuron x3, so the objective
functions of the linear programming are minxi and min−xi for i = 1, 2, 3. All the
three neurons have a tighter bound after the linear programming (see the red part in
Fig. 2(b)). Fig. 2(b) shows the running of DeepPoly under these new bounds, where the
input range and the abstraction of the uncertain ReLU neuron are both refined. Now the
lower bound of y2 − y1 is 0.25, so DeepPoly successfully verifies the property.
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Fig. 2. Example 1 (left) and Example 2 (right): where the red parts are introduced through linear
programming based refinement and the blue parts are introduced by a second run of DeepPoly.

4.1 Main algorithm

Alg. 1 presents our algorithm. First we run abstract interpretation to find the uncertain
neurons and the spurious regions (Line 2–5). For each possible spurious region, we have
a while loop which iteratively refines the abstraction. In each iteration we perform linear
programming to renew the bounds of the input neurons and uncertain ReLU neurons;
when we find that the bound of an uncertain ReLU neuron becomes definitely non-
negative or non-positive, then the ReLU behavior of this neuron is renewed (Line 14–
20). We use them to guide abstract interpretation in the next step (Line 21–22). Here in
Line 22, we make sure that during the abstract interpretation, the abstraction of previous
uncertain neurons (namely the uncertain neurons before the linear programming step in
the same iteration) compulsorily follows the new bounds and new ReLU behaviors
given by the current C≥0, C≤0, l, and u, where these bounds will not be renewed by
abstract interpretation, and the concretization of Y is defined as

γ(Y ) = {x | ∀i. Y ≤
i ≤ xi ≤ Y ≥

i } ∩ [l, u]. (2)

The while loop ends when (i) either we find that the spurious region is infeasible
(Line 11, 24) and we proceed to refine the next spurious region, with a label Verified
True, (ii) or we reach the terminating condition and fail to rule out this spurious region,
in which case we return UNKNOWN. If every while loop ends with the label Verified
True, we successfully rule out all the spurious regions and return YES. An observation
is that, if some spurious regions have been ruled out, we can add the constraints of their
negation to make the current spurious region smaller so as to improve the precision
(Line 9).

Here we discuss the soundness of Alg. 1. We focus on the while loop and claim that
it has the following loop invariant:

Invariant 1 The abstract element Y over-approximates the intersection of the seman-
tics of f on B̄∞(x, r) and the spurious region, i.e., f(B̄∞(x, r)) ∩ Spu ⊆ γ(Y ).
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Algorithm 1 Spurious region guided robustness verification
Input:

DNN f , input x, radius r.
Output:

Return “YES” if verified, or “UNKNOWN” otherwise.
1: function VERIFY(f , x, r)
2: Y0 ← f#(B̄∞(x, r)) 
 abstract interpretation with DeepPoly
3: Vu ← {v | v was marked as uncertain in Line 2}
4: A = {t | Y0 ∩# (yCf (x) − yt ≤ 0) �= ⊥}
5: if A = ∅ then return YES 
 otherwise A = {t1, . . . , tl}
6: for i ← 1 to l do

7: Verified ← False, V ← Vu, Y ← Y0 
 denote Y = (Y ≤, Y ≥, l, u)
8: C≥0 ← ∅, C≤0 ← ∅ 
 set of new activated/deactivated neurons
9: Spu ← (yCf (x) − yti ≤ 0) ∧

∧i−1
j=1(yCf (x) − ytj ≥ 0) 
 spurious region

10: while terminating condition not satisfied do

11: if Y ∧ Spu is infeasible then

12: Verified ← True
13: break

14: for v ∈ V ∪ V0 do 
 V0: set of input neurons
15: (lv, uv) ← LP(Y ∧ Spu, v)

16: for v ∈ V do

17: if lv ≥ 0 then

18: C≥0 ← C≥0 ∪ {v}, V ← V \ {v}
19: else if uv ≤ 0 then

20: C≤0 ← C≤0 ∪ {v}, V ← V \ {v}
21: X ←

⋂
v∈V0

{lv ≤ v ≤ uv}
22: Y ← f#(X) according to C≥0, C≤0, l, and u
23: V ← {v | v was marked as uncertain in Line 22} \ (C≥0 ∪ C≤0)
24: if Y ∩# (yCf (x) − yti ≤ 0) = ⊥ then

25: Verified ← True
26: break

27: if Verified = False then return UNKNOWN
28: return YES

The initialization of Y is f#(B̄∞(x, r)) and it is naturally an over-approximation.
The box X is obtained by linear programming on Y ∧ Spu, and f#(X) is calcu-
lated through abstract interpretation and the bounds given by linear programming on
Y ∧ Spu, and thus it remains an over-approximation. It is worth mentioning that, when
we run DeepPoly in Line 22, we are using the bounds obtained by linear programming
to guide DeepPoly, and this may violate the invariant γ(a) ⊆ [l, u] mentioned in Sect. 3.
Nonotheless, soundness still holds since the concretization of Y is newly defined in
Eq. 2, where both items in the intersection over-approximate f(B̄∞(x, r))∩ Spu. With
Invarient 1, Alg. 1 returns YES if for any possible spurious region Spu, the over-
approximation of f(B̄∞(x, r)) ∩ Spu is infeasible, which implies the soundness of
Alg. 1.
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4.2 Iterative refinement of the spurious region

Here we present more theoretical insight on the iterative refinement of the spurious
region. An iteration of the while loop in Alg. 1 can be represented as a functionL : A →
A, where A is the DeepPoly domain. An interesting observation is that, the abstract
transformer f# in the DeepPoly domain is not necessarily increasing, because different
input ranges, even if they have inclusion relation, may lead to different choices of the
abstraction mode of some uncertain ReLU neurons, which may violate the inclusion
relation of abstraction. We have found such examples during our experiment, which is
illustrated in the following example.

Example 3. Let f(x) = ReLU(x) with input ranges I1 = [−2, 1] and I2 = [−2, 3].
We have f#(I1) = {(x1, x2)T ∈ R2 | −2 ≤ x1 ≤ 1, x2 ≥ 0, x2 ≤ 1

3x1 +
2
3} and

f#(I2) = {(x1, x2)T ∈ R2 | −2 ≤ x1 ≤ 3, x2 ≥ x1, x2 ≤ 3
5x1 +

6
5}. We observe

(1, 0)T ∈ f#(I1) but (1, 0)T /∈ f#(I2), which implies that the transformer f# is not
increasing.

This fact also implies that L is not necessarily increasing, which violates the condition
of Kleene’s Theorem on fixed point [4].

Now we turn to the analysis of the sequence {Yk = Lk(f#(B̄∞(x, r)))}∞k=1, where
L1 := L and Lk := L ◦ Lk−1 for k ≥ 2. First we have the following lemma showing
that in our settings every decreasing chain S in the DeepPoly domain A has a meet⋂#

S ∈ A.

Lemma 1. Let An be the n-dimensional DeepPoly domain and {a(k)} ⊆ An a de-
creasing bounded sequence of non-empty abstract elements. If the coefficients in a(k),≤i

and a
(k),≥
i are uniformly bounded, then there exists an abstract element a∗ ∈ An s.t.

γ(a∗) =
⋂∞
k=1 γ(a

(k)).

Remark: The condition that the coefficients in a(k),≤i and a(k),≥i are uniformly bounded
are naturally satisfied in our setting, since in a DNN the coefficients and bounds in-
volved have only finitely many values. Readers can refer to [50] for a formal proof.

Lemma 1 implies that if our sequence {Yk} is decreasing, then the iterative refine-
ment converges to an abstract element in DeepPoly, which is the greatest fixed point of
L that is smaller than f#(B̄∞(x, r)). A sufficient condition for {Yk} being decreasing
is that during the abstract interpretation in every Yk, every initial uncertain neuron main-
tains its abstraction mode, i.e. its corresponding λ does not change, before its ReLU
behavior is determined. A weaker sufficient condition for convergence is that change in
abstraction mode of uncertain neurons never happens after finitely many iterations.

If the abstraction mode of uncertain neurons changes infinitely often, generally the
sequence {Yk} does not converge. In this case, we can consider its subsequence in
which every Yk is obtained with the same abstraction mode. It is easy to see that such
a subsequence must be decreasing and thus have a meet, as it is an accumulative point
of the sequence {Yk}. Since there are only finitely many choices of abstraction modes,
such a accumulative points exists in {Yk}, and there are only finitely many accumu-
lative points. We conclude these results in the following theorem which describes the
convergence behavior of our iterative refinement of the spurious region:
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Theorem 2. There exists a subsequence {Ynk
} of {Yk} s.t. {Ynk

} is decreasing and
thus has a meet

⋂#{Ynk
}. Moreover, the set{⋂

#{Ynk
} | {Ynk

} is a decreasing subsequence of {Yk}
}

is finite, and it is a singleton if exact one abstraction mode of uncertain ReLU neurons
happens infinitely often.

Proof. Since the abstraction modes of uncertain ReLU neurons have only finitely many
choices, there must be one which happens infinitely often in the computation of the
sequence {Yk}, and we choose the subsequence {Ynk

} in which every item is computed
through this abstraction mode. Obviously {Ynk

} is decreasing and thus has a meet.
For a decreasing subsequence {Ynk

}, we can find its subsequnce in which the ab-
straction mode of uncertain ReLU neurons does not change, and they have the same
meet. Since there are only finitely many choices of abstraction modes of uncertain
ReLU neurons, such accumulative points of {Yk} also have finitely many values. If
exact one abstraction mode of uncertain ReLU neurons happens infinitely often, obvi-
ously there is only one accumulative point in {Yk}. ��

4.3 Optimizations

In the implementation of our main algorithm, we propose the following optimizations
to improve the precision of refinement.

Optimization 1: More precise constraints in linear programming. In Line 15 of Alg. 1,
it is not the best choice to take the linear constraints in the abstract element Y into linear
programming, because the abstraction of uncertain ReLU neurons in DeepPoly is not
the best. Planet [10] has a component which gives a more precise linear approximation
for uncertain ReLU relations, where it uses the linear constraints y ≤ u(x−l)

u−l , y ≥
x, y ≥ 0 to over-approximate the relation y = ReLU(x) with x ∈ [l, u].

Optimization 2: Priority to work on small spurious regions. In Line 6 of Alg. 1,we
determine the order of refining the spurious regions based on their sizes, i.e., a smaller
region is chosen earlier. This is based on the intuition that Alg. 1 works effectively if the
spurious region is small. After the small spurious regions are ruled out, the constraints of
large spurious regions can be tightened with the conjunction

∧i−1
j=1(yCf (x) − ytj ≥ 0).

It is difficult to strictly determine which spurious region is the smallest, and thus we
refer to the lower bound of yCf (x) − yti given by DeepPoly, i.e., the larger this lower
bound is, the smaller the spurious region is likely to be, and we perform the for loop in
Line 6 of Alg. 1 in this order.

5 Quantitative Robustness Verification

In this section we recall the notion of quantitative robustness and show how to verify a
quantitative robustness property of a DNN with spurious region guided refinement.



400 P. Yang et al.

In practice, we may not need a strict condition of robustness to ensure that an input x
is not an adversarial example. A notion of mutation testing is proposed in [44,43], which
requires that an input x is normal if it has a low label change rate on its neighbourhood.
They follow a statistical way to estimate the label change rate of an input, which moti-
vates us to give a formal definition of the property showing a low label change rate, and
to consider the verification problem for such a property. Below we recall the definition
of quantitative robustness [27], where we have a parameter 0 < η ≤ 1 representing the
confidence of robustness.

Definition 2. Given a DNN Cf : Rm → C, an input x ∈ Rm, r > 0, 0 < η ≤ 1, and
a probability measure μ on B̄∞(x, r), f is η-robust at x, if

μ({x′ ∈ B̄∞(x, r) | Cf (x′) = Cf (x)}) ≥ η.

Def. 2 has a tight association with label change rate, i.e., if x is η-robust, then the label
change rate should be smaller than, or close to 1 − η. Hereafter, we set μ to be the
uniform distribution on B̄∞(x, r).

It is natural to adapt spurious region guided refinement to quantitative robustness
verification. In Alg. 1, we do not return UNKNOWN when we cannot rule out a spurious
region, but record the volume of the box X as an over-approximation of the Lebesgue
measure of the spurious region. After we work on all the spurious regions, we calculate
the sum of these volume, and obtain a sound robustness confidence. Here we do not
calculate the volume of the spurious region because precise calculation of volume of
a high-dimensional polytope remains open, and we do not choose to use randomized
algorithms because it may not be sound.

We further improve the algorithm through the powerset technique [13]. Powerset
technique is a classical and effective way to enhance the precision of abstract interpre-
tation. We split the input region into several subsets, and run abstract interpretation on
these subsets, In our quantitative robustness verification setting, powerset technique not
only improves the precision, but also accelerates the algorithm in some situations: If the
subsets have the same volume, and the percentage of the subsets on which we may fail
to verify robustness is already smaller than 1 − η, then we have successfully verified
the η-robustness property.

6 Experimental Evaluation

We implement our approach as a prototype called DeepSRGR. The implementation
is based on a re-implementation of the ReLU and the affine abstract transformers of
DeepPoly in Python 3.7 and we amend it accordingly to implement Alg. 1. We use
CVXPY [8] as our modeling language for convex optimization problems and CBC [18]
as the LP solver. It is worth mentioning that we ignore the floating point error in our
re-implementation of DeepPoly because sound linear programming currently does not
scale in our experiments. In the terminating condition, we set N = 5. The two op-
timizations in Sect. 4.3 are adopted in all the experiments. All the experiments are
conducted on a CentOS 7.7 server with 16 Intel Xeon Platinum 8153 @2.00GHz (16
cores) and 512G RAM, and they use 96 sub-processes concurrently at most. Readers
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can find all the source code and other experimental materials in https://iscasmc.ios.ac.
cn/ToolDownload/?Tool=DeepSRGR.

Datasets. We use MNIST [22] and ACAS Xu [12,17] as the datasets in our experi-
ments. MNIST contains 60 000 grayscale handwritten digits of the size 28×28. We can
train DNNs to classify the images by the written digits on them. The ACAS Xu system
is aimed to avoid airborne collisions for unmanned aircrafts and it uses an observation
table to make decisions for the aircraft. In [19], the observation table is realized by
training DNNs instead of storing it.

Networks. On MNIST, we trained seven fully connected networks of the size 6 × 20,
3 × 50, 3 × 100, 6 × 100, 6 × 200, 9 × 200, and 6 × 500, where m × n refers m
hidden layers and n neurons in each hidden layer, and we name them from FNN2 to
FNN8, respectively (we also have a small network FNN1 for testing). On ACAS Xu,
we randomly choose three networks used in [20], all of the size 6× 50.

6.1 Improvement in precision

First we compare DeepPoly and DeepSRGR in terms of their precision of robustness
verification. We consider the following two indices: (i) the maximum radius that the two
tools can verify, and (ii) the number of uncertain ReLU neurons whose behaviors can be
further determined by DeepSRGR. For each network, we randomly choose three images
from the MNIST dataset, and calculate their maximum radius that the two tools can ver-
ify through a binary search on the seven FNNs. In column “# uncertin ReLU” we record
the number of the uncertain ReLU neurons when first applying DeepPoly, and also
count how many of them are renewed, namely become definitely activated/deactivated
in later iterations when applying DeepSRGR.

Table 1 shows the results. We can see from Table 1 that DeepSRGR can verify
much stronger (i.e., larger maximum radius) robustness properties than DeepPoly. The
average number of iterations for ruling out a spurious region is 2.875, and about half
of the spurious regions can be ruled out within 2 iterations. DeepSRGR sometimes
determines behaviors of a large proportion of uncertain ReLU neurons on large net-
works: Considering the last picture of the most challenging network FNN8, more than
ninety percent (92.6% ≈ 1269

1371 ) of the uncertain neurons are renewed. Improvement
in precision evaluated in this experiment works for verification of both robustness and
quantitative robustness, and this is why our method is effective in both tasks.

6.2 Robustness verification performance

In this setting, we randomly choose 50 samples from the MNIST dataset. We fix four
radii, 0.037, 0.026, 0.021, and 0.015 for the four networks FNN4 – FNN7 respectively,
and verify the robustness property with the corresponding radius on the 50 inputs. The
radius chosen here is very challenging for the corresponding network.

Table 2 presents the results. As we can see, DeepSRGR can verify significantly more
properties than DeepPoly. Linear programming in DeepSRGR takes a large amount of
time in the experiment, and thus DeepSRGR is less efficient (a DeepPoly run takes no

https://iscasmc.ios.ac.cn/ToolDownload/?Tool=DeepSRGR
https://iscasmc.ios.ac.cn/ToolDownload/?Tool=DeepSRGR
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Maximum radius # spurious
regions

# uncertain ReLU % renewed # iterations
DeepPoly DeepSRGR Original Renewed MAX AVG MAX GT

0.034 0.047 6 51 38 74.5% 48.4% 5 17
FNN2 0.017 0.023 3 47 37 78.7% 51.8% 4 9

0.017 0.023 1 34 25 73.5% 73.5% 4 4

0.049 0.066 6 88 69 78.4% 60.9% 5 15
FNN3 0.025 0.033 7 94 85 90.4% 46.0% 5 18

0.045 0.058 3 98 45 45.1% 27.2% 5 9

0.045 0.060 6 180 102 56.7% 35.2% 5 19
FNN4 0.024 0.030 6 199 144 72.4% 36.5% 4 15

0.035 0.046 2 155 103 66.5% 42.9% 5 7

0.034 0.042 7 305 245 80.3% 37.8% 5 20
FNN5 0.016 0.019 5 315 204 64.8% 34.0% 4 14

0.021 0.027 7 337 256 76.0% 34.9% 5 18

0.022 0.026 7 683 271 39.7% 19.8% 4 18
FNN6 0.011 0.013 6 657 483 73.5% 36.7% 3 14

0.021 0.025 8 723 169 23.4% 12.2% 5 21

0.021 0.023 9 987 297 30.1% 10.0% 5 29
FNN7 0.010 0.011 5 877 648 73.9% 26.8% 3 11

0.017 0.019 7 913 352 38.6% 24.3% 3 16

0.037 0.044 9 1 504 976 64.9% 45.9% 5 36
FNN8 0.020 0.022 9 1 213 818 67.4% 33.3% 3 21

0.033 0.040 9 1 371 1 269 92.6% 51.1% 5 37

Table 1. Maximum radius which can be verified by DeepPoly and DeepSRGR, and details of
DeepSRGR running on its maximum radius, where in the number of renewed uncertain nuerons,
we show the largest one among the spurious regions. MAX, AVG, and GT means the maximum,
the average, and the grant total among the spurious regions, respectively. The indices of the three
images are 414, 481, and 65 in the MNIST dataset.

more than 100 seconds on FNN7). Furthermore, we again run the 15 running examples
which are not verified by DeepSRGR on FNN4, by resetting the maximum number of
iterations to 20 and 50. We have the following observations:

– Two more properties (out of 15) are successfully verified when we change N to 20.
No more properties can be verified even if we change N from 20 to 50.

– In this experiment, 13 more spurious regions are ruled out, six of which takes 6
iterations, one takes 7, two takes 8, and the other four takes 13, 22, 27, and 32
iterations, respectively. In these running examples, the average number of renewed
ReLU behaviors is 102.8, and a large proportion are renewed in the last iteration
(47.4% on average). Fig. 3 shows the detailed results.

– As for the 13 spurious regions which cannot be ruled out within 50 iterations, the
average number of renewed ReLU behaviors is only 8.54, which is significantly
lower than the average of the 13 spurious regions which are newly ruled out. In
these running examples, changes in ReLU behaviors and ReLU abstraction modes
do not happen after the 9th iteration, and the average number is 4.4.
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Model Size Radius
# verified Time (s)

DeepPoly DeepSRGR MAX AVG

FNN4 3× 100 0.037 14 35 3 384 781
FNN5 6× 100 0.026 19 31 7 508 1 689
FNN6 6× 200 0.021 14 25 23 157 6 178
FNN7 9× 200 0.015 25 36 61 760 8 960

Table 2. The number that DeepPoly and DeepSRGR verifies among the 50 inputs, and the maxi-
mum/average running time of DeepSRGR.
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Fig. 3. Number of renewed ReLU behaviors in the spurious regions newly ruled out.

We observe that, by increasing the termination threshold N from 5 to 50, only two
more properties out of 15 can be verified additionally. This suggests that our method
can effectively identify these spurious regions which are relevant to verification of the
property, in a small number of iterations.

6.3 Quantitative robustness verification on ACAS Xu networks

We evaluate DeepSRGR for quantitative robustness verification on ACAS Xu networks.
We randomly choose five inputs, and compute the maximum robustness radius for each
input on the three networks with DeepPoly through a binary search. In our experiment,
the radius for a running example is the maximum robustness radius plus 0.02, 0.03,
0.04, 0.05, and 0.06. We use the powerset technique and the number of splits is 32. For
DeepPoly, the robustness confidence it gives is the proportion of the splits on which
DeepPoly verifies the property.

Fig. 4 shows the results. We can see that DeepSRGR gives significantly better over-
approximation of 1−η than DeepPoly. That is, in more than 90% running examples, our
over-approximation is no more than one half of that given by DeepPoly, and in more
than 75% of the cases, our over-approximation is even smaller than one tenth of that
given by DeepPoly.
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Fig. 4. Quantitative robustness verification using DeepPoly and DeepSRGR

7 Related Works and Conclusion

We have already discussed papers mostly related to our paper. Here we add some more
new results. Marabou [21] has been developed as the next generation of Reluplex. Re-
cently, verification approach based on abstraction of DNN models has been proposed
in [11,2]. In addition, alternative approaches based on constraint-solving [26,29,5,25],
layer-by-layer exhaustive search [16], global optimization [31,9,32], functional approx-
imation [47], reduction to two-player games [48,49], and star set abstraction [41,40]
have been proposed as well.

In this work, we propose a spurious region guided refinement approach for robust-
ness and quantitative robustness verification of deep neural networks, where abstract
interpretation calculates an abstraction, and linear programming performs refinement
with the guidance of the spurious region. Our experimental results show that our tool
can significantly improve the precision of DeepPoly, verify more robustness properties,
and often provide a quantitative robustness with strict soundness guarantee.

Abstraction interpretation based framework is quite extensive to different DNN
models, different properties, and incorporate different verification methods. As future
work, we will investigate how to increase the precision further by using more precise
linear over-approximation like [35].
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Montréal, Canada. pp. 10825–10836 (2018)
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Abstract. To ensure a high availability, communication networks pro-
vide resilient routing mechanisms that quickly change routes upon fail-
ures. However, a fundamental algorithmic question underlying such mech-
anisms is hardly understood: how to verify whether a given network
reroutes flows along feasible paths, without violating capacity constraints,
for up to k link failures? We chart the algorithmic complexity landscape
of resilient routing under link failures, considering shortest path routing
based on link weights as e.g. deployed in the ECMP protocol. We study
two models: a pessimistic model where flows interfere in a worst-case
manner along equal-cost shortest paths, and an optimistic model where
flows are routed in a best-case manner, and we present a complete picture
of the algorithmic complexities.We further propose a strategic search al-
gorithm that checks only the critical failure scenarios while still providing
correctness guarantees. Our experimental evaluation on a benchmark of
Internet and datacenter topologies confirms an improved performance of
our strategic search by several orders of magnitude.

1 Introduction

Routing and traffic engineering are most fundamental tasks in a communica-
tion network. Internet Service Providers (ISPs) today use several sophisticated
strategies to efficiently provision their backbone network to serve intra-domain
traffic. This is challenging as in addition to simply providing reachability, rout-
ing protocols should also account for capacity constraints: to meet quality-of-
service guarantees, congestion must be avoided. Intra-domain routing protocols
are usually based on shortest paths, and in particular the Equal-Cost-MultiPath
(ECMP) protocol [24]. Flows are split at nodes where several outgoing links are
on shortest paths to the destination, based on per-flow static hashing [7, 30]. In
addition to default routing, most modern communication networks also provide
support for resilient routing : upon the detection of a link failure, the network
nodes quickly and collaboratively recompute the new shortest paths [21].

However, today, we still do not have a good understanding of the algorithmic
complexity of shortest path routing subject to capacity constraints, especially
under failures. In particular, in this paper we are interested in the basic question:
“Given a capacitated network based on shortest path routing (defined by link
weights), can the network tolerate up to k link failures without violating capacity
constraints?” Surprisingly only little is known about the complexity aspects.
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Ppos.

always safe

neg. Opos. neg.

sometimes safe never safe

Fig. 1: Classification of possible network situations

Pessimistic Optimistic

Splittable NL-complete P-complete

Nonsplit. NL-complete NP-complete

(a) Without link failures (k = 0)

Pessimistic Optimistic

Splittable co-NP-complete co-NP-complete

Nonsplit. co-NP-complete ΠP
2 -complete

(b) With link failures (k ≥ 0)

Fig. 2: Summary of complexity results for capacity problems

Our Contributions. We provide a complete characterization of the algorithmic
complexity landscape of resilient routing and introduce two basic models of how
traffic is distributed across the multiple shortest paths. A pessimistic (P) one
where flows add up in a worst-case manner; if a network is resilient in the pes-
simistic model, it is guaranteed that routing succeeds along any shortest path
without overloading links. In the optimistic (O) model flows add up in a best-
case manner; if a network is resilient in the optimistic model, it may be that the
specific routing does not overload the links. The two models hence cover the two
extremes in the spectrum and alternative routing schemes, e.g., (pseudo)random
routing hence lies in between. Figure 1 illustrates the situations that can arise
in a network: depending on the scenario, pessimistic (P) or optimistic (O), and
whether the routing feasibility test is positive or negative, we can distinguish
between three regimes. (1) If routing is feasible even in the pessimistic case,
then flows can be safely forwarded by any routing policy without violating any
capacity constraints. (2) If the pessimistic test is negative but positive in the
optimistic case, then further considerations are required to ensure that flows use
the feasible paths (e.g., a clever routing algorithm to find the suitable paths is
needed). (3) If even the optimistic test is negative then no feasible routing solu-
tion exists; to be able to successfully route flows in this case, we need to change
the network characteristics, e.g., to increase the link capacities.

We further distinguish between splittable (S) and nonsplittable (N)
flows, and refer to the four possible problems by PS, PN, ON, and OS. Our
main complexity results are summarized in Figure 2. We can see that without
link failures (Figure 2a), the problems are solvable in polynomial time, except
for the ON problem that becomes NP-complete. Moreover, the pessimistic vari-
ants of the problem can be solved even in nondeterministic logarithmic space,
implying that they allow for efficient parallelization [33]. On the other hand, the
optimistic splittable problem is hard for the class P. For the problems with link
failures (Figure 2b) the complexity increases and the problems become co-NP-
complete, apart from the ON problem that becomes more difficult to solve and
is complete for the second level of the polynomial hierarchy [33].
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The high computational complexity of the instances with link failures may
indicate that a brute-force search algorithm exploring all failure scenarios is
needed to verify whether routing is feasible. However, we present a more effi-
cient solution, by defining a partial ordering on the possible failure scenarios
with the property that for the pessimistic model, we only need to explore the
minimum failure scenarios, and for the optimistic model, it is sufficient to explore
the maximum failure scenarios. We present an efficient strategic search algorithm
implementing these ideas, formally prove its correctness, and demonstrate the
practical applicability of strategic search on a benchmark of Internet and data-
center topologies. In particular, we find that our algorithm achieves up to several
orders of magnitude runtime savings compared to the brute-force search.

Related Work. Efficient traffic routing has received much attention in the liter-
ature, and there also exist empirical studies on the efficiency of ECMP deploy-
ments, e.g., in Internet Service Provider Networks [17] or in datacenters [22]. A
systematic algorithmic study of routing with ECMP is conducted by Chiesa et al.
in [10]. The authors show that in the splittable-flow model [16], even approximat-
ing the optimal link-weight configuration for ECMP within any constant factor
is computationally intractable. Before their work, it was only known that mini-
mizing congestion is NP-hard (even to just provide “satisfactory” quality [2] and
also under path cardinality constraints [5]) and cannot be approximated within
a factor of 3/2 [19]. For specific topologies the authors further show that traf-
fic engineering with ECMP remains suboptimal and computationally hard for
hypercube networks. We significantly extend these insights into the algorithmic
complexity of traffic engineering and introduce the concept of pessimistic and
optimistic variants of routing feasibility and provide a complete characterization
of the complexity of routing subject to capacity constraints, also in scenarios
with failures. Accounting for failures is an important aspect in practice [13, 31]
but has not been studied rigorously in the literature before; to the best of our
knowledge, so far there only exist heuristic solutions [18] with some notable ex-
ceptions such as Lancet [8] (which however does not account for congestion). We
propose to distinguish between optimistic and pessimistic flow splitting; existing
literature typically revolves around the optimistic scenario.

We note that while we focus on IP networks (and in particular shortest path
routing and ECMP), there exist many interesting results on the verification and
reachability testing in other types of networks and protocols, including BGP [4,
15], MPLS [25, 38], OpenFlow [1] networks, or stateful networks [29, 32, 41].
While most existing literature focuses on verifying logical properties, such as
reachability without considering capacity constraints, there also exist first works
dealing with quantitative properties [20,26,29].

2 Network with Capacities and Demands

We shall now define the model of network with link capacities and flow demands
and formally specify the four variants of the resilient routing problem. Let N be
the set of natural numbers and N0 the set of nonnegative integers.
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Definition 1 (Network with Capacities and Demands). A Network with
Capacities and Demands (NCD) is a triple N = (V,C,D) where V is a finite
set of nodes, C : V × V �→ N0 is the capacity function for each network edge
(capacity 0 implies the absence of a network link), and D : V × V �→ N0 is the
end-to-end flow demand between every pair of nodes such that D(v, v) = 0 for
all v ∈ V (demand 0 means that there is no flow).

Let N = (V,C,D) be an NCD. A path from v1 to vn where v1, vn ∈ V is any
nonempty sequence of nodes v1v2 · · · vn ∈ V + such that C(vi, vi+1) > 0 for all i,
1 ≤ i < n. Let s, t ∈ V . By Paths(s, t) we denote the set of all paths from s to t.
Let π ∈ Paths(s, t) be a path in N such that π = v1v2 . . . vn. An edge is a pair
of nodes (v, v′) ∈ V × V such that C(v, v′) > 0. We write (v, v′) ∈ π whenever
(v, v′) = (vi, vi+1) for some i, 1 ≤ i < n.

Routes in an NCD are traditionally determined by annotating the links with
weights and employing shortest path routing (e.g. ECMP). In case of multiple
shortest paths, traffic engineers select either one of the shortest paths or decide
to split the flow among the different shortest paths for load-balancing purposes.
When one or multiple links fail, the set of shortest paths may change and the
routes need to be updated. The weight assignment is usually provided by the
network operators and is primarily used for traffic engineering purposes.

Definition 2 (Weight Assignment). Let N = (V,C,D) be an NCD. A weight
assignment on N is a function W : V × V �→ N ∪ {∞} that assigns each link a
positive weight where C(v, v′) = 0 implies that W (v, v′) =∞ for all v, v′ ∈ V .

Assume now a fixed weight assignment for a given NCD N = (V,C,D). Let
π = v1v2 · · · vn ∈ V + be a path from v1 to vn. The weight of the path π is
denoted by W (π) and defined by W (π) =

∑n−1
i=1 W (vi, vi+1). Let s, t ∈ V . The

set of shortest paths from s to t is defined by SPaths(s, t) = {π ∈ Paths(s, t) |
W (π) �= ∞ and W (π) ≤ W (π′) for all π′ ∈ Paths(s, t)}. As the weights are
positive, all shortest paths in the set SPaths(s, t) are acyclic and hence the set
is finite (though of possibly exponential size).

For a given NCD N and a set of failed links F , we can now define the NCD
NF where all links from F are removed.

Definition 3. Let N = (V,C,D) be an NCD with weight assignment W , and let
F ⊆ V ×V be a set of failed links. We define the pruned NCD NF = (V,CF , D)
with an updated weight assignment WF by

– CF (v, v′) = C(v, v′) and WF (v, v′) = W (v, v′) if (v, v′) �∈ F , and
– CF (v, v′) = 0 and WF (v, v′) =∞ if (v, v′) ∈ F .

By PathsF (s, t) and SPathsF (s, t) we denote the sets of the paths and short-
est paths between s and t in the network NF = (V,CF , D) with WF .

We shall now define a flow assignment that for each nonempty flow demand
between s and t and every failure scenario, determines the amount of traffic that
should be routed through the shortest paths between s and t.
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Definition 4 (Flow Assignment). A flow assignment f in a capacity network
N = (V,C,D) with weight assignment W and with the set F ⊆ V × V of failed
links is a family of functions fFs,t : SPathsF (s, t) �→ [0, 1] for all s, t ∈ V

where D(s, t) > 0 such that
∑

π∈SPathsF (s,t) f
F
s,t(π) = 1. A flow assignment f

is nonsplittable if fFs,t(π) ∈ {0, 1} for all s, t ∈ V and all π ∈ SPathsF (s, t).
Otherwise the flow assignment is splittable.

The notation [0, 1] denotes the interval of all rational numbers between 0
and 1 and it determines how the load demand between the nodes s and t is split
among the routing paths between the two nodes. A nonsplittable flow assignment
assigns the value 1 to exactly one routing path between any two nodes s and t.
If for a given failure scenario F there is no path between s and t for two nodes
with D(s, t) > 0, then there is no flow assignment as the network is disconnected.

Definition 5. An NCD N = (V,C,D) is connected for the set of failed links
F ⊆ V × V if SPathsF (s, t) �= ∅ for every s, t ∈ V where D(s, t) > 0.

For a connected NCD, we now define a feasible flow assignment that avoids
congestion: the sum of portions of flow demands (determined by the flow assign-
ment) that are routed through each link, may not exceed the link capacity.

Definition 6 (Feasible Flow Assignment). Let N = (V,C,D) be an NCD
with weight assignment W . Let F ⊆ V × V be the set of failed links s.t. the
network remains connected. A flow assignment f is feasible if every link (v, v′) ∈
V × V with C(v, v′) > 0 satisfies

∑
s,t∈V

π∈SPathsF (s,t)
(v,v′)∈π

fFs,t(π) ·D(s, t) ≤ C(v, v′).

We consider four different variants of the capacity problem.

Definition 7 (Pessimistic Splittable/Nonsplittable (PS/PN)). Given an
NCD N with a weight assignment and nonnegative integer k, is it the case that
for every set F of failed links of cardinality at most k, the network remains
connected and every splittable/nonsplittable flow assignment on N with the set
F of failed links is feasible?

Definition 8 (Optimistic Splittable/Nonsplittable (OS/ON)). Given an
NCD N with a weight assignment and a nonnegative integer k, is there a feasible
splittable/nonsplittable flow assignment on N for every set of failed links F of
cardinality at most k?

PN

PS ON

OS

Fig. 3: Hierarchy

A positive answer to the PN capacity problem implies
positive answers to both PS and ON problems. A positive
answer to either the PS or ON problem implies a positive
answer to the OS problem. This is summarized in Figure 3
and it is easy to argue that the hierarchy is strict.

3 Analysis of Algorithmic Complexity

We now provide the arguments for the upper and lower bounds from Figure 2.
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Algorithm 1 Computation of the shortest path graph function spgs,t

Input: NCD N = (V,C,D), weight assignment W and s, t ∈ V
Output: Shortest path graph function spgs,t : V × V → {0, 1}
if dist(s, t) = ∞ then spgs,t(v, v′) := 0 for all v, v′ ∈ V
else

for v, v′ ∈ V do
if dist(s, t) = dist(s, v) +W (v, v′) + dist(v′, t) then spgs,t(v, v′) := 1
else spgs,t(v, v′) := 0

return spgs,t

Complexity Upper Bounds. We present first a few useful observations. Be-
cause network connectivity can be checked independently for each source s and
target t where D(s, t) > 0 by computing the maximum flow [14] between s and
t, we obtain the following lemma.

Lemma 1. Given an NCD N = (V,C,D) and a nonnegative integer k, it is
polynomial-time decidable if N remains connected for all sets of failed links F ⊆
V × V where |F | ≤ k.

Next, we present an algorithm that for an NCD N = (V,C,D) with the
weight assignment W : V × V �→ N ∪ {∞} and a given pair of nodes s, t ∈ V
computes in polynomial time the function spgs,t : V × V → {0, 1} that assigns
the value 1 to exactly all edges that appear on at least one shortest path (w.r.t.
to the weight assignment W ) between s and t. The edges that get assigned the
value 1 hence form the shortest path subgraph between s and t. The algorithm
uses the function dist(v, v′) that for every two nodes v, v′ ∈ V returns the length
of the shortest path (again w.r.t. to the assignment W ) from v to v′ and if v and
v′ are not connected then it returns ∞. Such an all-pairs shortest path function
can be precomputed in polynomial time using e.g. the Johnson’s algorithms [27].
The function spgs,t is defined by Algorithm 1.

Lemma 2. Let N = (V,C,D) be an NCD with weight assignment W and
s, t ∈ V . Algorithm 1 runs in polynomial time and the value of spgs,t(v, v′) can
be returned in nondeterministic logarithmic space. Moreover, there is an edge
(v, v′) ∈ π for some π ∈ SPaths(s, t) iff spgs,t(v, v′) = 1.

We first present results for k = 0 (no link failures) and start by showing
that the optimistic splittable variant of the capacity problem is decidable in
polynomial time by reducing it to the feasibility of a linear program. Let N =
(V,C,D) be an NCD with weight assignment W and let spgs,t be precomputed
for all pairs of s and t. We construct a linear program over the variables xs,t(v, v′)
for all s, t, v, v′ ∈ V where the variable xs,t(v, v′) represents the percentage of the
total demand D(s, t) between s and t that is routed through the link (v, v′). In
the equations below, we let s and t range over all nodes that satisfy D(s, t) > 0.
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1 ≥ xs,t(v, v′) ≥ 0 for s, t, v, v′ ∈ V (1)∑
v∈V

xs,t(s, v) · spgs,t(s, v) = 1 for s, t ∈ V (2)∑
v∈V

xs,t(v, t) · spgs,t(v, t) = 1 for s, t ∈ V (3)∑
v′∈V

xs,t(v′, v) · spgs,t(v′, v) =∑
v′∈V

xs,t(v, v′) · spgs,t(v, v′) for s, t, v ∈ V, v /∈ {s, t} (4)∑
s,t∈V

xs,t(v, v′) · spgs,t(v, v′) ·D(s, t) ≤ C(v, v′) for v, v′ ∈ V (5)

Equation 1 imposes that the flow portion on any link must be between 0
and 1. Equation 2 makes sure that portion of the demand D(s, t) must be split
along all outgoing links from s that belong to the shortest path graph. Similarly
Equation 3 guarantees that the flows on incoming links to t in the shortest
path graph deliver the total demand. Equation 4 is a flow preservation equation
among all incoming and outgoing links (in the shortest path graph) connected
to every node v. The first four equations define all possible splittings of the flow
demands for all s and t such that D(s, t) > 0. Finally, Equation 5 checks that
for every link in the network, the total sum of the flows for all s-t pairs does not
exceed the link capacity. The size of the constructed system is quadratic in the
number of nodes and its feasibility, that can be verified in polynomial time [39],
corresponds to the existence of a solution for the OS problem.

Theorem 1. The OS capacity problem without any link failures is decidable in
polynomial time.

If we now restrict the variables to nonnegative intergers, we get an instance
of integer linear program where feasibility checking is NP-complete [39], and
corresponds to the solution for the nonsplittable optimistic problem.

Theorem 2. The ON capacity problem without any link failures is decidable in
nondeterministic polynomial time.

Next, we present a theorem stating that both the splittable and nonsplittable
variants of the pessimistic capacity problem are decidable in polynomial time and
in fact also in nondeterministic logarithmic space (the complexity class NL).

Theorem 3. The PS and PN capacity problems without any link failures are
decidable in nondeterministic logarithmic space.

Proof. Let N = (V,C,D) be a given NCD with a weight assignment W . Let us
consider the shortest path graph represented by spgs,t as defined by Algorithm 1.
Clearly, if the set SPaths(s, t) for some s, t ∈ V where D(s, t) > 0 is empty, the
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answer to both the splittable and nonsplittable problem is negative. Otherwise,
for each pair s, t ∈ V where D(s, t) > 0, the entire demand D(s, t) can be routed
(both in the splittable and nonsplittable case) through any edge (v, v′) that
satisfies spgs,t(v, v′) = 1. Hence we can check whether for every edge (v, v′) ∈
V × V it holds ∑

s,t∈V
D(s,t)>0

D(s, t) · spgs,t(v, v′) ≤ C(v, v′) .

If this is the case, then the answer to both the splittable and the nonsplittable
pessimistic problem is positive as there is no flow assignment that can exceed
the capacity of any link. On the other hand, if for some link (v, v′) the sum of all
demands that can be possibly routed through (v, v′) exceeds the link capacity,
the answer to the problem (both splittable and nonsplittable) is negative. The
algorithm can be implemented to run in nondeterministic logarithmic space.

Let us now turn our attention to the four variants of the problem under
the assumption that up to k links can fail (where k is part of the input to the
decision problem). Given an NCD N = (V,C,D) with a weight assignment W ,
we are asked to check, for all (exponentially many) failure scenarios F ⊆ V × V
where |F | ≤ k, whether the pruned NCD NF with the weight assignmentWF (as
defined in Definition 3) satisfies that the network NF is connected and every flow
assignment is feasible (in case of the pessimistic case) or there exists a feasible
flow assignment (in case of the optimistic case). As these problems are decidable
in polynomial time for PN, PS and OS, we can conclude that the variants of the
problems with failures belong to the complexity class co-NP: for the negation of
the problems we can guess the failure scenario F for which the problem does not
have a solution—this can be verified in polynomial time by Theorems 1 and 3.

Theorem 4. The PN, PS and OS problems with link failures are in co-NP.

Finally, the same arguments can be used also for the optimistic nonsplittable
problem with failures. However, as deciding the ON problem without failures
is solvable only in nondeterministic polynomial time, the extra quantification
of all failure scenarios means that the problem belongs to the class ΠP

2 on the
second level of the polynomial hierarchy [33]. This complexity class is believed
to be computationally more difficult than the problems on the first level of the
hierarchy (where the NP and co-NP problems belong to).

Theorem 5. The ON problem with link failures is in the complexity class ΠP
2 .

Complexity Lower Bounds. We now prove the complexity lower bounds.

Theorem 6. The OS capacity problem without any link failures is P-hard under
NC-reducibility.

Proof sketch. By NC-reduction from the P-complete maximum flow problem for
directed acyclic graphs [35]: given a directed acyclic graph G with nonnegative
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edge capacities, two nodes s and t and a number m, is there a flow between s
and t that preserves the capacity of all edges and has the volume of at least
m? This problem can be rephrased as our OS problem by setting the demand
D(s, t) = m and defining a weight assignment so that every relevant edge in
G is on some shortest path from s to t. This can be achieved by topologically
sorting the nodes (in NC2 [11, 12]) and assigning the weights accordingly.

Theorem 7. The PS/PN problems without any link failures are NL-hard.

Proof sketch. Follows from NL-hardness of reachability in digraphs [33].

Next, we show that the ON problem is NP-hard, even with no failures.

Theorem 8. The ON capacity problem without any link failures is NP-hard,
even for the case where all weights are equal to 1.

Proof. By a polynomial-time reduction from the NP-complete problem CNF-
SAT [33]. Let ϕ = c1 ∧ c2 ∧ . . . ∧ cn be a CNF-SAT instance where every clause
ci, 1 ≤ i ≤ n, is a disjunction of literals. A literal is either a variable x1, . . . , xk
or its negation x1, . . . , xk. If a literal �j ∈ {xj , xj} appears in the disjunction
for the clause ci, we write �j ∈ ci. A formula ϕ is satisfiable if there is an
assignment of the variables x1, . . . , xk to true or false, so that the formula ϕ is
satisfied (evaluates to true under this assignment). For a given formula ϕ we
now construct an NCD N = (V,C,D) where

– V = {s0, s1, . . . , sk} ∪ {x1, . . . , xk} ∪ {x1, . . . , xk} ∪ {csi , cei | 1 ≤ i ≤ n},
– C(si−1, xi) = C(si−1, xi) = C(xi, si) = C(xi, si) = n for all i, 1 ≤ i ≤ k,
– C(csi , �j) = C(sj , c

e
i ) = 1 for all i, 1 ≤ i ≤ n and every literal �j ∈ {xj , xj}

such that �j ∈ ci,
– D(s0, sk) = n, and D(csi , c

e
i ) = 1 for all i, 1 ≤ i ≤ n.

The capacities of edges and flow demands that are not mentioned above are
all set to 0 and the weights of all edges are equal to 1. In Figure 4a we give
an example of the reduction for a given satisfiable formula. As we consider the
nonsplittable problem, the flow demand from s0 to sk means that the whole
demand of n units must go through either the link (xi, si) or (xi, si), for every
i. This corresponds to choosing an assignment of the variables to true or false.
For every clause ci we now have a unit flow from csi to cei that goes through the
link (�j , sj) for every literal �j appearing in the clause ci. This is only possible if
this link is not already occupied by the flow demand from s0 to sk; otherwise we
exceed the capacity of the link. For each clause ci we need to find at least one
literal �j so that the flow can go through the edge (�j , sj). As the capacity of the
edge (�j , sj) is n, it is possible to use this edge for all n clauses if necessary. We
can observe that the capacity network can be constructed in polynomial time
and we shall argue for the correctness of the reduction.

We can now observe that if ϕ is satisfiable, we can define a feasible flow
assignment f by routing the flow demand of n between s0 and sk so that it does
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D(s0, s3) = 2

D(cs1, c
e
1) = 1 D(cs2, c

e
2) = 1

s0

x1 x1

s1

x2 x2

s2

x3 x3

s3

cs1

ce1

cs2

ce2

2 2

2 2

2 2

2 2

2 2

2 2

(a) NCD for the formula (x1 ∨ x3) ∧
(x1 ∨ x2 ∨ x3). The capacity of un-
labelled links is 1, otherwise 2; link
weights are 1. Thick lines show a fea-
sible nonsplittable flow assignment.
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(b) Additional construction for the for-
mula ∀y1, y2. ∃x1, x2, x3. (x1 ∨ x3 ∨ y1 ∨
y1 ∨ y2) ∧ (x1 ∨ x2 ∨ x3 ∨ y2). Capacity
of all links is 4 and weight of links is 1.
Double arrows are 2-unbreakable links.
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•
•
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•
•

n

n
n

n

n
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(c) Definition of m-unbreakable link of capacity n with m+ 1 intermediate nodes

Fig. 4: Reduction to ON capacity problem without/with failures

not use the links corresponding to the satisfying assignment for ϕ and then every
clause in ϕ can be routed through the links corresponding to one of the satisfied
literals. For the other direction where ϕ is not satisfieable, we notice that any
routing of the flow demand between s0 and sk (corresponding to some truth
assignment of ϕ) leaves at least one clause unsatisfied and it is then impossible
to route the flow for such a clause without violating the capacity constraints.

We now extend the reduction from Theorem 8 to the OS case with link
failures and prove its hardness for the second level of the polynomial hierarchy.

Theorem 9. The ON problem with link failures is ΠP
2 -hard.

Proof. By reduction from the validity of the quantified Boolean formula of the
form ∀y1, y2, . . . , ym. ∃x1, x2, . . . , xk. ϕ where ϕ = c1 ∧ c2 ∧ . . .∧ cn is a Boolean
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formula in CNF over the variables y1, . . . , ym, x1, . . . , xk. The validity problem
of such quantified formula is ΠP

2 -hard (see e.g. [33]). For a given quantified for-
mula, we shall construct an instance of the ON problem such that the formula
is valid if and only if the ON problem with up to m link failures (where m is the
number of y-variables) has a positive answer. The reduction uses the construc-
tion from Theorem 8 where we described a reduction from the validity of the
formula ∃x1, x2, . . . , xk. ϕ. The construction is further enhanced by introducing
new nodes yj , yj , ej and new edges of capacity 2n (where n is the number of
clauses) such that C(yj , yj) = C(yj , ej) = 2n, for all i, 1 ≤ j ≤ m.

Now for every clause ci we add the so-called m-unbreakable edge of capacity
n from csi to yj and from ej to cei for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Moreover,
whenever the literal yj appears in the clause ci, we also add an m-unbreakable
edge from yj to cei and whenever the literal yj appears in the clause ci, we add
m-unbreakable edge from csi to yj . The construction of m-unbreakable edges
(denoted by double arrows) is given in Figure 4c where the capacity of each link
is set to n. Finally, for each j, 1 ≤ j ≤ m, we add the unbreakable edges from
s1 to yj and from ej to sk. The flow demands in the newly constructed network
are identical to those from the proof of Theorem 8 and the weights of all newly
added edges are set to 1 and we set the weight of the two links s0 to x1 and
s0 to x1 to 6. The reduction can be clearly done in polynomial time. Figure 4b
demonstrates an extension of the construction from Figure 4a with additional
nodes and links that complete the reduction. Observe, that even in case of m
link failures, the unbreakable links that consist of m+ 1 edge disjoint paths are
still capable of carrying all the necessary flow traffic.

We shall now argue that if the formula ∀y1, y2, . . . , ym. ∃x1, x2, . . . , xk. ϕ is
valid then the constructed instance of the ON problem with up to m link failures
has a solution. We notice that any subset of up to m failed links either breaks
exactly one of the newly added edges (yj , yj) and (yj , ej) for all j, 1 ≤ j ≤ m, in
which case this determines a valid truth assignment for the y-variables and as
in the previous proof, the flow from s0 to sk can now be routed so that for each
clause there is at least one satisfied literal. Otherwise, there is a variable yj such
that both of the edges (yj , yj) and (yj , ej) are present and all flow demands can
now be routed through these two edges (that have sufficient capacity for this)
by using the m-unbreakable edges. The opposite direction where the formula
is not valid means that there is a truth assignment to the y-variables so that
irrelevant of the assignment for x-variables there is at least one clause that is
not satisfied. We simply fail the edges that correspond to such a y-variables
assigment and the same arguments as in the previous proof imply that there is
not any feasible flow assignment for this failure scenario.

Theorem 10. The PN, PS and OS problems with link failures are co-NP-hard.

Proof sketch. By reduction from the NP-complete shortest path most vital edges
problem (SP-MVE) [3,36]. The input to SP-MVE is a directed graph G = (V,E)
with positive edge weights, two nodes s, t ∈ V and two positive numbers k and
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Algorithm 2 Brute-force search

1: Input: NCD N = (V,C,D) with weigth assignment W , a number k ≥ 0 and type
of the capacity problem τ ∈ {PS,PN,ON,OS}

2: Output: true if the answer to the τ -problem is positive, else false
3: for all F ⊆ V × V s.t. |F | ≤ k and C(v, v′) > 0 for all (v, v′) ∈ F do
4: construct network NF and weight assignment WF by Definition 3
5: switch τ do
6: case OS: use Theorem 1 on NF and WF (without failed links)

7: case ON: use Theorem 2 on NF and WF (without failed links)

8: case PS/PN: use Theorem 3 on NF and WF (without failed links)

9: if the answer to the τ -problem on NF and WF is negative then return false

10: endfor
11: return true

H. The question is whether there exist at most k edges in E such that their
removal creates a graph with the length of the shortest path between s and t
being at least H. We reduce the SP-MVE to the negation of the PN/PS in order
to demonstrate co-NP-hardness.

We modify the G by inserting a new edge between s and t of weight H and
capacity 1, while setting the capacity 2 for all other edges in G. If the SP-MVE
problem has a solution F ⊆ E where |F | ≤ k, then the added edge (s, t) becomes
one of the shortest paths between s and t under the failure scenario F and a flow
demand of size 2 between s and t can be routed through this edge, violating the
capacity constraints. If the SP-MVE problem does not have a solution, then after
the removal of at most k links, the length of the shortest path between s and t
remains strictly less than H and any flow assignment along the shortest paths
is feasible. We hence conclude that PN/PS problems are co-NP-hard. A small
modification of the construction is needed for hardness of the OS problem.

4 A Fast Strategic Search Algorithm

In order to solve the PS, PN, ON and OS problems, we can enumerate all
failure scenarios for up to k failed links (omitting the links with zero capacity),
construct the pruned network for each such failure scenario and then apply our
algorithms in Theorems 1, 2 and 3. This brute-force search approach is formalized
in Algorithm 2 and its worst-case running time is exponential.

Our complexity results indicate that the exponential behavior of any algo-
rithm solving a co-NP-hard (or even ΠP

2 -hard) problem is unavoidable (unless
P=NP). However, in practice many concrete instances can be solved fast if more
refined search algorithms are used. To demonstrate this, we present a novel
strategic search algorithm for verifying the feasibility of shortest path routing
under failures. At the heart of our algorithm lies the idea to reduce the number
of explored failure scenarios by skipping the “uninteresting” ones. Let us fix an
NCD N = (V,C,D) with the weight assignment W . We define a relation ≺ on
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failure scenarios such that F ≺ F ′ iff for all flow demands we preserve in F ′ at
least one of the shortest paths that are present under the failure scenario F .

Definition 9. Let F, F ′ ∈ V × V . We say that F preceeds F ′, written F ≺ F ′,
if SPathsF (s, t) ⊇ SPathsF

′
(s, t) and SPathsF (s, t) ∩ SPathsF

′
(s, t) �= ∅ for all

s, t ∈ V where D(s, t) > 0.

We first show that if F ≺ F ′ and the failure scenario F has a feasible routing
solution for the pessimistic problem, then F ′ also has a solution. Thus instead
of exploring all possible failure scenarios like in the brute-force algorithm, it is
sufficient to explore only failure scenarios that are minimal w.r.t. ≺ relation.

Lemma 3. Let F, F ′ ∈ V × V where F ≺ F ′. A positive answer to the PS/PN
problem for the network NF with weight assignment WF implies a positive an-
swer to the PS/PN problem for the network NF ′

with weight assignment WF ′
.

For the optimistic scenario, the implication is valid in the opposite direction:
it is sufficient to explore only the maximum failure scenarios w.r.t. ≺.
Lemma 4. Let F, F ′ ∈ V × V where F ≺ F ′. A positive answer to the OS/ON
problem for the network NF ′

with weight assignment WF ′
implies a positive

answer to the OS/ON problem for the network NF with weight assignment WF .

Hence for the pessimistic scenario, the idea of strategic search is to ignore
failure scenarios that remove only some of the shortest paths but preserve at least
one of such shortest paths. For the optimistic scenario, we on the other hand
explore only the maximal failure scenarios where removing one additional link
causes the removal of all shortest paths for at least one source and destination.

In our algorithm, we use the notation spgs,tF for the shortest path graph as
defined in Algorithm 1 for the input graph NF with weight assignment WF . The
function min cuts(spgs,tF , s, t) returns the set of all minimum cuts separating the
nodes s and t (sets of edges that disconnect the source node s from the target
node t in the shortest-path graph spgs,tF ). This function can be computed e.g.
using the Provan and Shier algorithm [34], assuming that each edge has a unit
weight and hence minimizing the number of edges in the minimum cut. There
can be several incomparable minimum cuts (with the same number of edges) and
by mincut size(spgs,tF , s, t) we denote the number of edges in each the minimum

cuts from the set min cuts(spgs,tF , s, t).
Algorithm 3 now presents our fast search strategy, called strategic search.

The input to the algorithm is the same as for the brute-force search. The algo-
rithm initializes the pending set of failure scenarios to be explored to the empty
failure scenario and it remembers the set of passed failure scenarios that were
already verified. In the main while loop, a failure scenario F is removed from the
pending set and depending on the type τ of the problem, we either directly verify
the scenario F in the case of the pessimistic problems, or we call the function
MaxFailureCheck(F ) that instead verifies all maximal failure scenarios F ′ such
that F ≺ F ′. The correctness of Algorithm 3 is formally stated as follows.

Theorem 11. Algorithm 3 terminates and returns true iff the answer to the
τ -problem is positive.
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Algorithm 3 Strategic search

1: Input: NCD N = (V,C,D) with weigth assignment W , a number k ≥ 0 and type
of capacity problem τ ∈ {PS,PN,ON,OS}

2: Output: true if the answer to the τ -problem is positive, else false
3: pending := {∅} \* initialize the pending set with the empty failure scenario *\
4: passed := ∅ \* already processed failure scenarios *\
5: while pending �= ∅ do
6: let F ∈ pending ; pending := pending \ {F}
7: switch τ do
8: case τ ∈ {PS,PN}: Build NF and WF by Definition 3, use Theorem 3
9: if the answer to the τ -problem was negative then return false

10: case τ ∈ {OS,ON}: call MaxFailureCheck(F )

11: passed := passed ∪ {F}
12: for s, t ∈ V such that D(s, t) > 0 do
13: if |F |+mincut size(spgs,t

F , s, t) ≤ k then
14: succ := {F ∪C | C ∈ min cuts(spgs,t

F , s, t), F ∪C /∈ (pending ∪ passed)}
15: pending := pending ∪ succ

16: endwhile
17: return true
18:
19: procedure MaxFailureCheck(F ) \* to be run only for the optimistic cases *\
20: for s, t ∈ V such that D(s, t) > 0 do
21: for C ∈ min cuts(spgs,t

F , s, t) do
22: for all C′ ⊂ C such that |F ∪ C′| = min(k, |F ∪ C| − 1) do
23: if F ∪ C′ /∈ passed then
24: construct NF∪C′

and WF∪C′
by Definition 3

25: switch τ do
26: case τ = OS: use Theorem 1 and if negative then return false

27: case τ = ON: use Theorem 2 and if negative then return false

28: passed := passed ∪ {F ∪ C ′}
29: endfor
30: endfor
31: endfor

5 Experiments

To evaluate the practical performance of our strategic search algorithms, we con-
ducted experiments on various wide-area and datacenter network topologies. The
reproducibility package with our Python implementation can be found at [37].

We study the algorithms’ performance on a range of network topologies,
and consider both sparse and irregular wide-area networks (using the Internet
Topology Zoo [28] data set) as well as dense and regular datacenter topologies
(namely fat-tree [9], BCube [23], and Xpander [40]). To model demands, for
each topology, we consider certain nodes to serve as core nodes which have
significant pairwise demands. Overall, we created 24,388 problem instances for
our experimental benchmark, out of which we were able to solve 23,934 instances
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Topology Problem B.iter B.time S.iter S.time Speedup

BCube ON 105 79.5 1 1.7 47.1

BCube OS 2081 348.2 768 125.1 2.8

BCube PS/PN 5051 170.0 1 0.1 4684.0

Fat-tree ON 105 59.4 1 1.2 47.6

Fat-tree OS 41 2.0 1 0.2 8.5

Fat-tree PS/PN 43745 562.6 1 0.1 66976.3

Xpander ON 254 407.3 1 3.0 137.7

Xpander OS 170 124.1 1 1.6 78.0

Xpander PS/PN - >7200.0 1 5.4 >1340.6

Topology Zoo ON 127 59.6 8 4.6 12.9

Topology Zoo OS 596 35.3 46 2.6 13.4

Topology Zoo PS/PN 86 4.3 2 0.1 82.7

Fig. 5: Median results, time in seconds (B: brute-force search, S: strategic search)

within a 2-hour timeout. In our evaluation, we filter out the trivial instances
where the runtime is less than 0.1 second for both the brute-force and strategic
search (as some of the instances e.g. contain a disconnected flow demand already
without any failed links). The benchmark contains a mixture of both positive
and negative instances for each problem for increasing number k of failed links.

Table 5 shows the median times for each series of experiments for the different
scenarios. All experiments for each topology and given problem instance are
sorted by the speedup ratio, i.e. B.time divided by S.time; we display the result
for the experiment in the middle of each table. Clearly, our strategic search
algorithm always outperforms the brute-force one by a significant factor in all
the scenarios. We also report on the number of iterations (B.iter and S.iter) of
the two algorithms, showing the number of failure scenarios to be explored.

Let us first discuss the pessimistic scenarios in more detail. Figure 6 shows a
cactus plot [6] for the wide-area network setting (on the left) and for the data-
center setting (on the right). We note that y-axis in the figure is logarithmic. For
example, to solve the 1500th fastest instances in the wide-area network (left),
the brute-force algorithm uses more than 100 seconds, while the strategic algo-
rithm solves the problem in less than a second; this corresponds to a speedup of
more than two orders of magnitude. For more difficult instances, the difference
in runtime continues to grow exponentially, and becomes several orders of mag-
nitude. For datacenter networks (right), the difference is even larger. The latter
can be explained by the fact that datacenters provide a higher path diversity
and multiple shortest paths between source and target nodes and hence more op-
portunities for a clever skipping of “uninteresting instances”. As the pessimistic
problems we aim to solve are co-NP-hard, there are necessarily some hard in-
stances also for our strategic search; this is demonstrated by the S-shaped curve
showing a significantly increased runtime for the most difficult instances.

We next discuss the optimistic scenarios, including the experiments both for
splittable and nonsplittable cases. Figure 7 shows a cactus plot for the wide-area
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Fig. 6: Pessimistic scenario. Left: wide-area networks, right: datacenter networks
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Fig. 7: Optimistic scenario. Left: wide-area networks, right: datacenter networks

network setting (on the left) and for the datacenter setting (on the right). Again,
our strategic algorithm significantly outperforms the baseline in both scenarios.
Interestingly, in the optimistic scenario, the relative performance benefit is larger
for wide-area networks as the optimistic strategic search explores all the maxi-
mum failure scenarios and there are significantly more of such scenarios in the
highly connected datacenter topologies. Hence, while for datacenters (right) the
strategic search maintains about one order of magnitude better performance,
the performance for the wide-area networks improves exponentially.

6 Conclusion

We presented a comprehensive study of the algorithmic complexity of verifying
feasible routes under failures without violating capacity constraints, covering
both optimistic and pessimistic, as well as splittable and nonsplittable scenarios.
We further presented algorithms, based on strategic failure scenario enumera-
tions, which we proved efficient in realistic scenarios. While our paper charts the
complete landscape, there remain several interesting avenues for future research
like further scalability improvements and a parallelization of the algorithm.
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Abstract. Writing classification rules to identify interesting network
traffic is a time-consuming and error-prone task. Learning-based classi-
fication systems automatically extract such rules from positive and neg-
ative traffic examples. However, due to limitations in the representation
of network traffic and the learning strategy, these systems lack both ex-
pressiveness to cover a range of applications and interpretability in fully
describing the traffic’s structure at the session layer. This paper presents
Sharingan system, which uses program synthesis techniques to generate
network classification programs at the session layer. Sharingan accepts
raw network traces as inputs and reports potential patterns of the target
traffic in NetQRE, a domain specific language designed for specifying
session-layer quantitative properties. We develop a range of novel op-
timizations that reduce the synthesis time for large and complex tasks
to a matter of minutes. Our experiments show that Sharingan is able
to correctly identify patterns from a diverse set of network traces and
generates explainable outputs, while achieving accuracy comparable to
state-of-the-art learning-based systems.

Keywords: Program synthesis · Network traffic analysis · Supervised
learning.

1 Introduction

Network monitoring systems are essential for network infrastructure manage-
ment. These systems require classification of network traffic at their core. Today,
network operators and equipment vendors write classification programs or pat-
terns upfront in order to differentiate target flows such as attacks or undesired
application traffic from normal ones. The process of writing these classification
programs often requires deep operator insights, can be error prone, and is not
easy to extend to handle new scenarios.

There have been a number of recent attempts at automated generation
of classifiers for malicious traffic using machine learning[16,38,5,12] and data
mining[6,28,34,39,19] techniques. These classifiers have not gained much traction
in production systems, in part due to unavoidable false positive reports and the
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gap between the learning output and explainable operational insights[31]. The
challenges call for a more expressive, interpretable and maintainable learning-
based classification system.

To be specific, such challenges first come from the extra difficulties learning-
based systems face in network applications compared to traditional use cases
such as recommendation systems, spam mail filtering or OCR [31]. Misclassi-
fications in network systems have tangible cost such as the need for operators
to manually verify potential false reports. Due to the diverse nature and large
data volumes of networks in production environments, entirely avoiding these
costly mistakes by one training stage is unlikely. Therefore explainability and
maintainability plays a core role in a usable learning system.

Properly representing network traffic and learnt patterns is another major
difficulty. As a data point for classification purposes, a network trace is a se-
quence of packets of varying lengths listed in increasing timestamp order. Ex-
isting approaches frequently compress it into a regular expression or a feature
vector for input. Such compression will eliminate session-layer details and inter-
mediate states in network protocols, making it hard to learn application-layer
protocols or multi-stage transactions. These representations also require labo-
rious task-specific feature engineering to get effective learning results, which
undermines the systems’ advantages of automation. It can also be hard to in-
terpret the learning results to understand the intent and structure of the traffic,
due to the blackbox model of many machine-learning approaches and the lack
of expressiveness in the inputs and outputs to these learning systems.

To address the above limitations, we introduce Sharingan, which uses pro-
gram synthesis techniques to auto-generate network classification programs from
labeled examples of network traffic traces. Sharingan aims to bridge the gap be-
tween learning systems and operator insights, by identifying properties of the
traffic that can help inform the network operators on its nature, and provide a ba-
sis for automated generation of the classification rules. Sharingan does not aim
to outperform state-of-the-art learning systems in accuracy, but rather match
their accuracy, while generating output that is more explainable and easier to
maintain.

To achieve these goals, we adopt techniques from syntax guided program syn-
thesis [1] to generate a NetQRE [37] program that distinguishes the positive and
negative examples. NetQRE, which stands for Network Quantitative Regular
Expressions, enables quantitative queries for network traffic, based on flow-level
regular pattern matching. Given an input network trace, a NetQRE program
generates a numerical value that quantifies the matching of the trace with the
described pattern. The classification is done by comparing the synthesized pro-
gram’s output for each example with a learnt threshold T . Positive examples fall
above T . The synthesized NetQRE program serves the role of network classifier,
identifying flows which match the program specifications.

Sharingan has the following key advantages over prior approaches, which
either rely on keyword and regular expression generation [6,28,34,39,19] or sta-
tistical traffic analysis [16,38,5,12].
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Requires minimal feature engineering: NetQRE [37] is an expressive lan-
guage, and allows succinct description of a wide range of tasks ranging from
detecting security attacks to enforcing application-layer network management
policies. Sharingan can synthesize any network task on raw traffic expressible
as a NetQRE program, without any additional feature engineering. This is an
improvement over systems based on manually extracted feature vectors. Also,
one outstanding feature of search-based program synthesis is that the only a pri-
ori knowledge it needs is information about the language itself. No task-specific
heuristics are required.

Efficient implementation: The NetQRE program synthesized by Sharingan
can be compiled, as has been shown in prior work [37], to efficient low-level
implementations that can be integrated into routers and other network devices.
On the other hand, traditional statistical classifiers are not directly usable or
executable in network filtering systems.

Easy to decipher and edit: Finally, Sharingan generates NetQRE programs
that can be read and edited. Since they are generic executable programs with
high expressiveness, the patterns in the program reveal the stateful protocol
structure that is used for the classification, which blackbox statistical models,
packet-level regular expressions and feature vectors have difficulty describing.
The programs are also amenable to calibration by a network operator, for ex-
ample, to mix in local policies or debug.

The key technical challenge in design and implementation of Sharingan is
the computationally demanding problem of finding a NetQRE expression that is
able to separate positive network traffic examples from the negative ones. This
search problem is an instance of the syntax-guided synthesis. While this problem
has received a lot of attention in recent years, no existing tools and techniques
can solve the instances of interest in our context due to the unique semantics
of NetQRE programs, the complexity of the expressions to be synthesized and
the scale of the data set of network traffic examples used in training. To address
this challenge, we devised two novel techniques for optimizing the search – par-
tial execution and merge search, which effectively achieve orders of magnitude
reduction in synthesis time. We summarize our key contributions:

Synthesis-based classification architecture. We propose the methodology
of reducing a network traffic classification problem to a synthesis from examples
instance.

Efficient synthesis algorithm We devise two efficient algorithms: partial
execution and merge search, which efficiently explore the program space and
enable learning from very large data sets. Independent of our network traffic
classification use cases, these algorithms advance the state-of-the-art in program
synthesis.

Implementation and evaluation. We have implemented Sharingan and eval-
uated it for a rich set of metrics using the CICIDS2017 [25,7] intrusion detection
benchmark database. Sharingan is able to synthesize a large range of network
classification programs in a matter of minutes with accuracy comparable to
state-of-the-art systems. Moreover, the generated NetQRE program is easy to
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interpret, tune, and can be compiled into configurations usable by existing net-
work monitoring systems.

2 Overview

Sharingan’s workflow is largely similar to a statistical supervised learning system,
although the underlying mechanism is different. Sharingan takes labeled positive
and negative network traces as input and outputs a classifier that can classify
any new incoming trace. To preserve most of the information from input data
and minimize the need for feature engineering, Sharingan considers three kinds
of properties in a network trace: (1) all available packet-level header fields, (2)
position information of each packet within the sequence, and (3) time information
associated with each packet.

Specifically, Sharingan represents a network trace as a stream of feature vec-
tors: S = v0, v1, v2, . . .. Each vector represents a packet. Vectors are listed in
timestamp order. Contents of the vector are parsed field values of that packet.
For example, we can define

v[0] = ip.src, v[1] = tcp.sport , v[2] = ip.dst , . . ..
Depending on the information available, different sets of fields can be used

to represent a packet. By default, we extract all header fields at the TCP/IP
level. To make use of the timestamp information, we also append time interval
since the previous packet in the same flow to a packet’s feature vector. Feature
selection is not necessary for Sharingan.

The output classifier is a NetQRE program p that takes in a stream of feature
vectors. Instead of giving a probability score that the data point is positive, it
outputs an integer that quantifies the matching of the stream and the pattern.
The program includes a learnt threshold T . Sharingan aims to ensure that p’s
outputs for positive and negative traces fall on different sides of the threshold
T . Comparing p’s output for a data point with T generates a label. It is possible
to translate p and T into executable rules using a compilation step.

Given the above usage model, a network operator can use Sharingan to gen-
erate a NetQRE program trained to distinguish normal and suspected abnormal
traffic generated from unsupervised learning systems. The synthesized programs
themselves, as we will later show, form the basis for deciphering each unknown
trace. Consequently, traces whose patterns look interesting can be subjected to
a detailed manual analysis by the network operator. Moreover, the generated
NetQRE programs can be further refined and compiled into filtering system’s
rules.

3 Background on NetQRE

NetQRE [37] is a high-level declarative language for querying network traffic.
Streams of tokenized packets are matched against regular expressions and ag-
gregated by multiple types of quantitative aggregators. The NetQRE language
is defined by the BNF grammar in Listing 1.1.
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<classifier >::= <program> > <value>
<program> ::= <group-by>
<group-by> ::= (<group-by>)<op>|<

feats>
| <qre>

<qre> ::= (<qre> <qre>)<op>
| (<qre>)*<op>
| <unit>

<unit> ::= /<re>/
<re> ::= <re> <re>

| (<re>)*
| <pred>

| _
<pred> ::= <pred> && <pred>

| <pred> || <pred>
| [<feat> == <value >]
| [<feat> >= <value >]
| [<feat> <= <value >]
| [<feat> -> <prefix >]

<feats> ::= <feat>
| <feats>, <feat>

<feat> ::= 0 | 1 | 2 | ......
<op> ::= max | min | sum

Listing 1.1: NetQRE Grammar

As an example, if we want to find out if any single source is sending more than
100 TCP packets, the following classifier based on a NetQRE program describes
the desired classifier:

( ( / [ip.type = TCP] / )*sum )max|ip.src_ip > 100

At the top level, there are two parts of the classifier. A processing program on
the left that maps a network trace to an output number, and a threshold against
which this value is compared on the right. They together form the classifier.
Inputs fall into different classes based on the results of the comparison.

Group-by expression (<group-by>) splits the trace into sub-flows based on the
value of the specified field (source IP address in this example):

( ............ )max|ip.src_ip

Packets sharing the same value in the field will be assigned to the same sub-flow.
Sub-flows are processed individually, and the outputs of which are aggregated
according to the aggregation operator (<op>) (maximum in this example).

In each sub-flow, we want to count the number of TCP packets. This can be
broken down into three operations: (1) specifying a pattern that a single packet
is a TCP packet, (2) specifying that this pattern repeats arbitrary number of
times, and (3) adding 1 to a counter each time this pattern is matched.

(1) is achieved by a plain regular expression involving predicates. A predicate
describes properties of a packet that can match or mismatch one packet in the
trace. Four types of properties frequently used in networks can be described:

1. It equals a value. For example: [tcp.syn == 1]
2. It is not less than a value. For example: [ip.len >= 200]
3. It is not greater a value. For example: [tcp.seq <= 15]
4. It matches a prefix. For example: [ip.src_ip -> 192.168]

Predicates combined by concatenation and Kleene-star form a plain regular ex-
pression, which matches a network trace considered as a string of packets.

A unit expression indicates that a plain regular expression should be viewed
as atomic for quantitative aggregation (in this case a single TCP packet):

/ [ip.type = TCP] /

It either matches a substring of the trace and outputs the value 1, or does not
match.

To achieve (2) and (3), we need a construct to both connect the regular
patterns to match the entire flow and also aggregate outputs bottom up from
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units at the same time. We call it quantitative regular expression (<qre>). In this
example, we use the iteration operator:

( / [ip.type = TCP] / )*sum

It matches exactly like the Kleene-star operator, and at the same time, for each
repetition of the sub-pattern, the sub-expression’s output is aggregated by the
aggregation operator. In this case, the sum is taken, which acts as a counter for
the number of TCP packets. The aggregation result for this expression will in
turn be returned as an output for higher-level aggregations.

The language also supports the concatenation operator:

(<qre> <qre>)<op>

which works analogous to concatenation for regular matching. It aggregates the
quantity by applying the <op> on the outputs of two sub-expressions that match
the prefix and suffix.

In addition to this core language, there is a specialization for the synthesis
purpose. We observe that comparing a field with values that do not appear in any
of the given examples is expensive but will not produce any meaningful informa-
tion. Therefore we use the relative position in the examples’ value space instead
of a specific value, for example, 50% instead of 3 in value space {1, 3, 12, 15}.

4 Synthesis Algorithm

Given a set of positive and negative examples Ep and En, respectively, the goal
of our synthesis algorithm is to derive a NetQRE program pf and a threshold T
that differentiates Ep apart from En. We start with notations to be used in this
section:
Notation. p and q denote individual programs, and P and Q denote sets of
programs. p1 → p2 denotes it is possible to mutate p1 following production rules
in NetQRE’s grammar to get p2. The relation → is transitive. We assume the
starting symbol is always <program>.

p(x) denotes program p’s output on input x, where x is a sequence of packets
and p(x) is a numerical value. If p is an incomplete program, i.e., if p contains
some non-terminals, then p(x) = {q(x) | p → q} is a set of numerical values,
containing x’s output through all possible programs p can mutate into. We de-
fine p(x).max to be the maximum value in this set. Similarly, p(x).min is the
minimum value.

The synthesis goal can be formally defined as: ∀e ∈ Ep, pf (e) > T and
∀e ∈ En, pf (e) < T .

4.1 Overview

Our design needs to address two key challenges. First, NetQRE’s rich grammar
allows a large possible program space and many possible thresholds for search.
Second, the need to check each possible program against a large data set collected
from network monitoring tasks poses scalability challenge to the synthesis.
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Fig. 1: Synthesizer Overview

We propose two techniques for addressing these challenges: partial execution
(Section 4.2) and merge search (Section 4.3). Figure 1 shows an overview of the
synthesizer.

The top-level component is the search planner, that assigns search tasks over
subsets of the entire training data to the enumerator in a divide-and-conquer
manner. Each such task is a search-based synthesis instance, where the enu-
merator enumerates all possible programs starting from s0, expanded using the
productions in NetQRE grammar, until one that can distinguish the assigned
subset of Ep and En is found.

The enumerator optimizes for the first challenge by querying the distributed
oracle about each partial program’s feasibility and doing pruning early. The
oracle evaluates partial programs using partial execution. The search planner
optimizes for the second challenge by merging search results from subsets of the
large training data, so as to save unnecessary checking, which we call the merge
search strategy.

We next explain each technique in detail in the rest of this section.

4.2 Partial Execution

A partial program is an incomplete program with non-terminals. Similar to prior
work making overestimation on regular expressions and imperative languages
for early pruning in the search process [14,29,30], we want to evaluate a partial
NetQRE program for the feasibility of all possible completions of it, so as to
decide early if any of them can serve as a proper classifier for Ep and En.

This process includes three main steps: (1) finding an equivalent completion
p̂ of a partial program p so that evaluating p̂ on any input x is equivalent to
evaluating the combination of all possible completions of p on x, (2) efficiently
evaluating p̂(x), (3) deciding whether to discard p based on the evaluation result.

Equivalent Completion: Recall that we define p(x) of a partial program p to
be the union of all q(x) such that p → q. Since we mainly care about outputs
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of positive and negative examples on different sides of a threshold, the essential
information is the upper and lower bounds for p(x). Therefore, the criterion for
finding an equivalent completion is the bounds of p̂(x) should include p(x) for
any input x.

Many non-terminals have a straightforward equivalent completion. We re-
place (1) any uncertain numerical value with the largest or smallest possible
value depending on the context, (2) any unknown predicate with unknown, (3)
any unknown regular expression with _* and (4) any unknown quantitative reg-
ular expression with (/_ _*/)*sum. We skip the formal proof of correctness of
this approach. Intuitively, the first two include all possible values at the position,
and the latter two include all possible matching and aggregation strategies for a
trace.

There are some non-terminals that do not have an equivalent completion,
such as <group-by> and <op>. While doing enumeration, we put a complexity
penalty over these non-terminals if they are not expanded, therefore encouraging
earlier expansion of them so that partial execution is possible.

Computing Ambiguity: Notice that regular patterns naturally allow multiple
matching strategies if a character(packet) in the input can match more than
one predicate in the program, which is why we can estimate a set of NetQRE
programs by one equivalent completion p̂. The goal and also the major challenge
in evaluating p̂(x) on arbitrary input x is to compute the quantitative outputs
from all valid matching strategies, which can grow exponentially with the input
trace’s length.

A A

B1 23 4 5
iter iter

concat
max = 0 max = 2 max = 2

sum = 0 sum = 2sum +1
sum +1

sum +1sum = 0 sum = 1

Fig. 2: Illustration of an unambiguous program.
Predicate A matches packet C’s while predicate
B matches packet D.

A A

_
1 2 3

iter iter

concat
max = 0 max = 0

sum = 0 sum = 0
sum +1
sum +1

sum +1sum = 0

Fig. 3: Illustration of the first 3 steps of strategy
one when predicate B is not yet explored.

To solve the problem of too many matching strategies, we use an approxi-
mation: merging “close” matching strategies. Two strategies are defined to be
“close” if at some step of their matching process (1) they have matched the same
number of packets in the trace and (2) the last predicate they have matched is
exactly the same. We explore all matching strategies simultaneously and do a
merging whenever two strategies can be identified to be close. Notice that each
matching strategy maintains a distinct copy of aggregation states for every <qre>
expression. States for a same expression as well as the final results are merged
into one interval.

As an example, Figure 2,3,4,5 illustrates the evaluation process of a partial
program during the search for the following pattern with CCCCD as input:

( ( /AA/ )*sum ( /B/ )*sum )max
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Fig. 4: Illustration of the first 3 steps of strategy
two
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_
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max = [0,1] max = [3,5]

sum +[1,1]

sum = [1,3]

sum = [3,5]

sum +[1,1]

4

Fig. 5: Illustration of the last 2 steps of merged
strategy one & two

By the properties of interval arithmetic and regular expressions, it can be
proven that the approximation result strictly contains the true output range. Or
more formally, p̂(x).min ≤ p(x).min ≤ p(x).max ≤ p̂(x).max.

Intuitively, the proposed evaluation scheme works well because we only care
about the boundary of outputs, which are represented by intervals as the abstract
data type. We implement the execution and approximation process by the Data
Transducer model proposed by [2], which consumes a small constant memory
and linear time to the input trace’s length given a specific program.

Make Decision: To make a decision regarding a partial program p, let q be
a complete program and assume there is only one pair of examples ep and en.
For q to accept ep and en, there must be a threshold T such that q(en).max <
T < q(ep).min. Therefore, given a pair of examples ep and en, a program q
is correct if and only if q(en).max < q(ep).min. When this holds, any value
between q(en).max and q(ep).min can be used as the threshold.

Lemma 1: There exists a correct program q such that p→ q only if p̂(en).min <
p̂(ep).max
Lemma 2: If p̂(en).max < p̂(ep).min then any program q such that p → q is
correct.

From Lemma 1, we can decide if p must be rejected. From Lemma 2, we can
decide if p must be accepted. These criteria can be extended to more than 1
pair of examples. We will not give formal proof to the lemmas. Figures 6 and
7 show two intuitive examples for explanations of the decision making process.
(but do not necessarily represent properties of real data sets). Each vertical bar
represents the output range of the corresponding data point produced by the
program under investigation.
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Fig. 6: A correct program found. No negative
output can ever be greater than any positive out-
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4.3 Merge Search

In the rest of this subsection, we describe three heuristics for scaling up synthesis
to large data sets, namely divide and conquer, simulated annealing, and parallel
processing. We call the combination of these the merge search technique.

Divide and Conquer. Enumerating and verifying programs on large data sets
is expensive. Our core strategy to improve performance is to learn patterns on
small subsets and merge them into a global pattern with low overhead.

It is based on two observations: First, the pattern of the entire data set is
usually shaped by a few extreme data points. Looking at these extreme data
points locally is enough to figure out critical properties of the global pattern.
Second, conflicts in local patterns are mostly describing different aspects of a
same target rather than fundamental differences, thus can be resolved by simple
merge operations such as disjunction, truncation or concatenation.

This divide and conquer strategy is captured in the following algorithm:

def d&c(dataset)

if dataset.size > threshold

subsetL,subsetR = split(dataset)

candidateL = d&c(subsetL)

candidateR = d&c(subsetR)

return merge(dataset, candidateL , candidateR)

else

return synthesize(dataset, s0)

The “split” step corresponds to evenly splitting positive and negative ex-
amples. Then sub-patterns are synthesized on smaller subsets. The conquer, or
“merge” step requires synthesizing the pattern again on the combined dataset.
But sub-patterns are reused in two ways to speedup this search.

First, if we see a sub-pattern as an AST, then its low-level sub-trees up to
certain depth threshold are added to the syntax as a new production option for
the corresponding non-terminal at the sub-tree’s root. They can then serve as
shortcuts for likely building blocks. Second, the sub-patterns’ skeletons left after
removing these sub-trees are used as seeds for higher-level searches, which serve
as shortcuts for likely overall structures. Both are given complexity rewards to
encourage the reuse.

In practice, many search results can be directly reused from cached results
generated from previous tasks on similar subsets. This optimization can further
reduce the synthesis time.

Simulated Annealing When searching for local patterns at lower levels, we
require the Enumerator to find not 1 but t candidate patterns for each subset.
Such searches are fast for smaller data sets and can cover a wider range of possible
patterns. As the search goes to higher levels for larger data sets, we discard the
least accurate local patterns and also reduce t. The search will focus on refining
the currently optimal global pattern. This idea is based on traditional simulated
annealing algorithms and helps to improve the synthesizer’s performance in many
cases.
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Parallelization. Most steps in the synthesis process are inherently paralleliz-
able. They include (1) doing synthesis on different subsets of data, (2) exploring
different programs in the enumeration, (3) verifying different programs found so
far, (4) executing a program on different data points during the verification.

We focus less on optimizing (1) and (2) since they are not the performance
bottlenecks. We instead focus on parallelizing (3) and (4) over multiple cores. In
our implementation, using 5 machines with 32 cores each, we devote one thread
each to run task (1) and (2) on one machine, 64 threads on the same machine to
run task (3), and 512 threads distributed over the remaining four machines to
run task (4). The distributed version is approximately two orders of magnitude
faster than the single-threaded version for complex tasks. Given more computing
power, a proportional speedup can be expected.

5 Evaluation

We implemented Sharingan in 10K lines of C++ code. Our experiments are
carried out in a cluster of five machines directly connected by Ethernet cables,
each with 32 Intel(R) Xeon(R) E5-2450 CPUs. The frequency for each core is
2.10GHz. Arrangements of tasks are explained in the last part of Sec 4.3. We
will evaluate the minimal feature engineering(5.1), accuracy(5.2), interpretabil-
ity and editability(5.3), efficient implementation(5.4), and synthesis algorithm
efficiency(5.5) aspects of Sharingan in order.

5.1 Data Preparation

We utilize eight types of attacks from the CICIDS2017 database[25,7], a public
repository of benign and attack traffic used for evaluating intrusion detection
systems. They cover a wide range of attack traffic including botnets, Denial of
service (DoS), port scanning, and password cracking.

The data is labelled per flow by an attack type or “Benign”. We learn each
type of attack against benign traffic separately. To use as much data as possible,
for each attack type, we use 1500 positive (attack) flows and 10000 negative (be-
nign) flows for training, and another distinct data set of similar size for testing.

The main benefit of Sharingan in this step is the minimal need for feature
engineering. We simply use all header fields of TCP and IP, and the inter-packet
arrival time between adjacent packets in the same flow as features. In total, there
are 19 features per packet and N × 19 features per trace of length N .

In contrast, other state-of-the-art systems rely on a carefully designed fea-
ture extraction step to work well. For example, the feature vectors included in
CICIDS2017 database contain 84 features extracted by the CICFlowMeter [9,13]
tool for each flow, characterizing performance metrics of the entire flow such as
duration, mean forward packet length, min activation time, etc. Kitsune [16]
extracts bandwidth information over the past short periods as packet-level fea-
tures. DECANTeR [6] uses HTTP-level properties such as constant header fields,
language, amount of outgoing information, etc. as flow-level features.
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5.2 Learning Accuracy

We next validate Sharingan’s learning accuracy using the following evaluation
methodology. For each individual attack type, we use the training data (attack
and normal traffic) as input to Sharingan to learn a NetQRE program. The
NetQRE program is then validated on the corresponding testing set for accu-
racy. The output of Sharingan includes a NetQRE program that maps a network
trace to an integer output and a recommended range for the threshold. By mod-
ifying the threshold, true positive rate (TP) and false positive rate (FP) can
be adjusted, as we will later explain in Section 5.3. We use AUC (Area under
Curve) - ROC (Receiver Operating Characteristics) metric, which is a standard
statistical measure of classification performance.

1

0

0.84

0 0 0

1

0

1

0.186

1 1 1

0

1 11 1 1 1 1

0

1 11 0.985 0.999 0.997 0.994

0.88

1 0.9941 0.997 0.998 0.97 0.988 0.997 1 0.99

0

0.2

0.4

0.6

0.8

1

Slowloris Slowhttps DoS Hulk SSH Patator FTP Patator Botnet ARES DDoS Port Scan

True Positive - 0.001 True Positive - 0.01 True Positive - 0.03 AUC-ROC Learning Rate

Fig. 8: Sharingan’s true positive rate under low false positive rate, AUC-ROC and learning rate for
8 attacks in CICIDS2017 (higher is better)

Figure 8 contains results for eight types of attacks. Apart from AUC-ROC
values, we also show the true positive rates when false positive rate is adjusted to
3 different levels: 0.001, 0.01, and 0.03. Given that noise is common in most net-
work traffic, the last metric shown in Figure 8 is the highest achievable learning
rate.

Overall, we observe that Sharingan performs well across a range of attacks
with accuracy numbers on par with prior state-of-the-art systems such as Kit-
sune, which has an average AUC-ROC value of 0.924 on nine types of IoT-based
attacks, and DECANTeR, which has an average detection rate of 97.7% and a
false positive rate of 0.9% on HTTP-based malware. In six out of eight attacks,
Sharingan achieves above 0.994 of AUC-ROC and 100% of true positive rate at
1% false positive rate. The major exception is Botnet ARES, which consists of a
mix of malicious attack vectors. Handling such multi-vector attacks is an avenue
for our future work.

5.3 Post-processing and Interpretation

One of the benefits of Sharingan is that it generates an actual classification
program that can be further adapted and tuned by a network operator. The
program itself is also close to the stateful nature of session-layer protocols and
attacks, and thus is readable and provides a basis for the operator to understand
the attack cause. We briefly illustrate these capabilities in this section.
FP-TP Tradeoff Network operators need to occasionally tune a classifier’s
sensitivity to false positives and true positives. Sharingan generates a NetQRE
program with a threshold T . This threshold can be adjusted to vary the false
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positive and true positive rate. Figures 9 and 10 show the output distribution
from positive and negative examples in the DoS Hulk attack. A denotes the
largest negative output and B denotes the smallest positive output. When A >
B, there is some unavoidable error. We can slide the threshold T from B to A
and obtain an ROC curve for the test data, as illustrated in Figure 11.

Interpretation We describe a learnt NetQRE program to demonstrate how a
network operator can interpret the classifiers. 3 The NetQRE program synthe-
sized by Sharingan for DDoS task above is:

( ( /_* A _* B _*/ )*sum /_* C _*/ )sum > 4

Where

A = [ip.src_ip ->[0%,50%]] B = [tcp.rst==1]

C = [time_since_last_pkt <=50%]

DDoS is a flood attack from a botnet of machines to exhaust memory re-
sources on the victim server. The detected pattern consists of packets that start
with source IP in a certain range, followed by a packet with the reset bit set to
1, and then a packet with a short time interval from its predecessor. Finally, the
program considers the flow a match if the patterns show up with a total count
of over 4.

The range of source IP addresses specified in the pattern possibly contains
botnet IP addresses. Attack flows are often reset when the load cannot be han-
dled or the flows’ states cannot be recognized, which indicates the attack is suc-
cessfully launched. Packets with short intervals further support a flood attack.
Unique properties of DDoS attack are indeed captured by this program!

Refinement by Human Knowledge Finally, an advantage of generating a
program for classification is that it enables the operator to augment the gener-
ated NetQRE program with domain knowledge before deployment. For example,
in the DDoS case, if they know that the victim service is purely based on TCP,
they can append [ip.type = TCP] to all predicates. Alternatively, if they know
that the victim service is designed for 1000 requests per second, they can ex-
plicitly replace the arrival time interval with 1ms. The modified program then
is:

( ( /_* A _* B _*/ )*sum /_* C _*/ )sum > 4

Where

3 A full list of learnt NetQRE programs can be found in our tech report https:
//arxiv.org/abs/2010.06135.

https://arxiv.org/abs/2010.06135
https://arxiv.org/abs/2010.06135
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A = [ip.type = TCP]&&[ip.src_ip ->[0%,50%]]

B = [ip.type = TCP]&&[tcp.rst==1]

C = [ip.type = TCP]&&[time_since_last_pkt <=1ms]

5.4 Deployment Scenarios

We now describe three ways for network operators to deploy the output of
Sharingan: (1) taking action hinted by the interpretation; (2) directly executing
the NetQRE program as a monitoring system; and (3) translating the NetQRE
program to rules in other monitoring systems.

Revisiting the DDoS example in Section 5.3, in the first case, the operator
may refine the source IP part to find out the accurate range of attacker machines
and block them.

If the NetQRE program itself is to be used as a monitoring system, its runtime
system can be directly deployed on any general purpose machine. Prior work [37]
has shown that NetQRE generates performance that is comparable to optimized
low-level implementations. Moreover, these programs can be easily compiled into
other formats acceptable to existing monitoring systems.

5.5 Program Synthesis Performance

Synthesis time: In our final experiment, the performance of Sharingan is mea-
sured, in terms of time needed for program synthesis.

Figure 12 shows the program complexity (Y-axis) and synthesis (learning)
time (in minutes). Not surprisingly, complex programs require more time to
synthesize. We further observe that Sharingan is able to synthesize complex
programs with at least 20-30 terms, mostly within minutes to an hour, which
is practical for many real-world use cases and can be further reduced through
parallelism over more machines. As a comparison, Kitsune reports training times
between 8 minutes and 52 minutes on individual attacks [16], and DECANTeR
reports training times between 5 hours and 10 hours on individual users’ data
[6].
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Effectiveness of Optimizations. We explore the effectiveness of the indi-
vidual optimization strategies described in Section 4. In Figure 13, we compare
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the synthesis time and the number of programs searched for a fully optimized
Sharingan against results from disabling each optimization. SSH Patator is used
as the demonstrating example since it is moderately complex.

We observe that disabling partial execution optimization makes both metrics
significantly worse. Being able to prune early can indeed greatly reduce time
wasted on unnecessary exploration and checking. By disabling merge search,
although the number of programs searched decreases, the total synthesis time
increases given the overhead of having to check each program against the entire
data set. The synthesis cannot finish within reasonable time if both are disabled.

In summary, all optimization strategies are effective to speed up the synthesis
process. A synthesis task that is otherwise impossible to finish within practical
time can now be done in less than 15 minutes.

6 Related Work

Auto-Generation of Network Configurations. Broadly speaking, network
traffic classification rule is a type of network configuration. There are other lines
of research that aim at the automatic generation of different categories of network
configurations. EasyACL [15] aims at synthesis of access control lists(ACL) from
natural language descriptions. NetGen [24], NetComplete [10] and Genesis [32]
synthesize data plane routing configurations based on SMT solvers given policy
specifications. NetEgg [36] instead takes examples provided by user to generate
routing configurations in an interactive way. Sharingan focuses on network traffic
classification and has a different target from them.
Other Learning-based Systems. Apart from competing systems we explic-
itly compared to above, there are other learning-based systems under different
settings from Sharingan.

Unsupervised learning systems are useful for recognizing outliers and other
types of “abnormal” flows [17,38,35], most notably in intrusion detection sys-
tems. Its ability to differentiate unknown types of traffic from the known cannot
be replaced by Sharingan. Sharingan can augment unsupervised learning systems
by reducing the effort required for analyzing the reported traces.

Learning systems using state machine[18] or regular expressions for payload
strings[34] as models both share the advantage of requiring minimal feature
engineering. The former generates less succinct models compared to Sharingan
and is typically used for verification of network protocols. The latter learns
patterns at individual packet level rather than session level.

There are state-of-the-art point solutions focusing on specific scenarios rather
than general-purpose network traffic classification. For example, PrivateEye fo-
cuses on detecting privacy breaches in the cloud[4]. RFDIDS solves intrusion
detection challenges unique to power systems[26].
Syntax-Guided Synthesis. Sharingan builds on a large body of work on
syntax-guided synthesis [11,21,23,20,22,29,27]. However, synthesis techniques pro-
posed in this paper go beyond the state of the art, and have the potential to be
applied to other applications of program synthesis.
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Partial execution share similarity to the overestimation idea in [14] (see also
follow-ups [29,30,33]), where the system learns plain regular expressions and
overestimates the feasibility of a non-terminal with a Kleene-star. But no prior
work proposed an overestimation algorithm for quantitative stream query lan-
guages similar to NetQRE. Nor do they consider the specification format for a
classifier program with unknown numerical thresholds.

[3] proposed a divide-and-conquer strategy similar to merge search for opti-
mizing program synthesis. It is focused on standard SyGuS tasks based on logical
constraints and uses decision tree to combine sub-patterns instead of trying to
merge them into one compact program. Merge search proposed in this work is
not specific to Sharingan, and can be used in other synthesis tasks to allow the
handling of large data sets.

Finally, there is no prior work that solely uses program synthesis to perform
accurate real-world large-scale classification. The closest work concerns simple
low-accuracy programs synthesized as weak learners [8], and requires a separate
SVM to assemble them into a classifier.

7 Conclusion

This paper presents Sharingan, which develops syntax-guided synthesis tech-
niques to automatically generate NetQRE programs for classifying session-layer
network traffic. Sharingan can be used for generating network monitoring queries
or signatures for intrusion detection systems from labeled traces. Our results
demonstrate three key value propositions for Sharingan, namely minimal fea-
ture engineering, efficient implementation, and interpretability as well as ed-
itability. While achieving accuracy comparable to state-of-the-art statistical and
signature-based learning systems, Sharingan is significantly more usable and re-
quires synthesis time practical for real-world tasks. 4
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Abstract. The model of asynchronous programming arises in many con-
texts, from low-level systems software to high-level web programming.
We take a language-theoretic perspective and show general decidability
and undecidability results for asynchronous programs that capture all
known results as well as show decidability of new and important classes.
As a main consequence, we show decidability of safety, termination and
boundedness verification for higher-order asynchronous programs—such
as OCaml programs using Lwt—and undecidability of liveness verifica-
tion already for order-2 asynchronous programs. We show that under
mild assumptions, surprisingly, safety and termination verification of
asynchronous programs with handlers from a language class are decidable
iff emptiness is decidable for the underlying language class. Moreover,
we show that configuration reachability and liveness (fair termination)
verification are equivalent, and decidability of these problems implies de-
cidability of the well-known “equal-letters” problem on languages. Our
results close the decidability frontier for asynchronous programs.

Keywords: Higher-order asynchronous programs · Decidability

1 Introduction

Asynchronous programming is a common way to manage concurrent requests in
a system. In this style of programming, rather than waiting for a time-consuming
operation to complete, the programmer can make asynchronous procedure calls
which are stored in a task buffer pending later execution. Each asynchronous
procedure, or handler, is a sequential program. When run, it can change the
global shared state of the program, make internal synchronous procedure calls,
and post further instances of handlers to the task buffer. A scheduler repeatedly
and non-deterministically picks pending handler instances from the task buffer
and executes their code atomically to completion. Asynchronous programs ap-
pear in many domains, such as operating system kernel code, web programming,

� This research was sponsored in part by the Deutsche Forschungsgemeinschaft project
389792660 TRR 248–CPEC and by the European Research Council under the Grant
Agreement 610150 (ERC Synergy Grant ImPACT).

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12651, pp. 449–467, 2021.
https://doi.org/10.1007/978-3-030-72016-2 24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72016-2_24&domain=pdf
http://orcid.org/0000-0003-2136-0542
http://orcid.org/0000-0002-9926-0931
http://orcid.org/0000-0002-6421-4388
https://doi.org/10.1007/978-3-030-72016-2_24


450 R. Majumdar et al.

or user applications on mobile platforms. This style of programming is supported
natively or through libraries for most programming environments. The interleav-
ing of different handlers hides latencies of long-running operations: the program
can process a different handler while waiting for an external operation to finish.
However, asynchronous scheduling of tasks introduces non-determinism in the
system, making it difficult to reason about correctness.

An asynchronous program is finite-data if all program variables range over
finite domains. Finite-data programs are still infinite state transition systems:
the task buffer can contain an unbounded number of pending instances and the
sequential machine implementing an individual handler can have unboundedly
large state (e.g., if the handler is given as a recursive program, the stack can
grow unboundedly). Nevertheless, verification problems for finite-data programs
have been shown to be decidable for several kinds of handlers [12,30,20,6]. Sev-
eral algorithmic approaches have been studied, which tailor to (i) the kinds of
permitted handler programs and (ii) the properties that are checked.

State of the art We briefly survey the existing approaches and what is known
about the decidability frontier. The Parikh approach applies to (first-order) re-
cursive handler programs. Here, the decision problems for asynchronous pro-
grams are reduced to decision problems over Petri nets [12]. The key insight is
that since handlers are executed atomically, the order in which a handler posts
tasks to the buffer is irrelevant. Therefore, instead of considering the sequential
order of posted tasks along an execution, one can equivalently consider its Parikh
image. Thus, when handlers are given pushdown systems, the behaviors of an
asynchronous program can be represented by a (polynomial sized) Petri net.
Using the Parikh approach, safety (formulated as reachability of a global state),
termination (whether all executions terminate), and boundedness (whether there
is an a priori upper bound on the task buffer) are all decidable for asynchronous
programs with recursive handlers, by reduction to corresponding problems on
Petri nets [30,12]. Configuration reachability (reachability of a specific global
state and task buffer configuration), fair termination (termination under a fair
scheduler), and fair non-starvation (every pending handler instance is eventually
executed) are also decidable, by separate ad hoc reductions to Petri net reach-
ability [12]. A “reverse reduction” shows that Petri nets can be simulated by
polynomial-sized asynchronous programs (already with finite-data handlers).

In the downclosure approach, one replaces each handler with a finite-data
program that is equivalent up to “losing” handlers in the task buffer. Of course,
this requires that one can compute equivalent finite-data programs for given
handler programs. This has been applied to checking safety for recursive han-
dler programs [3]. Finally, a bespoke rank-based approach has been applied to
checking safety when handlers can perform restricted higher-order recursion [6].

Contribution Instead of studying individual kinds of handler programs, we
consider asynchronous programs in a general language-theoretic framework. The
class of handler programs is given as a language class C: An asynchronous pro-
gram over a language class C is one where each handler defines a language from
C over the alphabet of handler names, as well as a transformer over the global
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state. This view leads to general results: we can obtain simple characterizations
of which classes of handler programs permit decidability. For example, we do
not need the technical assumptions of computability of equivalent finite-data
programs from the Parikh and the downclosure approach.

Our first result shows that, under a mild language-theoretic assumption,
safety and termination are decidable if and only if the underlying language class
C has decidable emptiness problem.1 Similarly, we show that boundedness is
decidable iff finiteness is decidable for the language class C. These results are
the best possible: decidability of emptiness (resp., finiteness) is a requirement
for safety and termination verification already for verifying the safety or termi-
nation (resp., boundedness) of one sequential handler call. As corollaries, we get
new decidability results for all these problems for asynchronous programs over
higher-order recursion schemes, which form the language-theoretic basis for pro-
gramming in higher-order functional languages such as OCaml [21,28], as well
as other language classes (lossy channel languages, Petri net languages, etc.).

Second, we show that configuration reachability, fair termination, and fair
starvation are mutually reducible; thus, decidability of any one of them implies
decidability of all of them. We also show decidability of these problems implies
the decidability of a well-known combinatorial problem on languages: given a
language over the alphabet {a, b}, decide if it contains a word with an equal
number of as and bs. Viewed contrapositively, we conclude that all these deci-
sion problems are undecidable already for asynchronous programs over order-2
pushdown languages, since the equal-letters problem is undecidable for this class.

Together, our results “close” the decidability frontier for asynchronous pro-
grams, by demonstrating reducibilities between decision problems heretofore
studied separately and connecting decision problems on asynchronous programs
with decision problems on the underlying language classes of their handlers.

While our algorithms do not assume that downclosures are effectively com-
putable, we use downclosures to prove their correctness. We show that safety,
termination, and boundedness problems are invariant under taking downclosures
of runs; this corresponds to taking downclosures of the languages of handlers.

The observation that safety, termination, and boundedness depend only on
the downclosure suggests a possible route to implementation. If there is an effec-
tive procedure to compute the downclosure for class C, then a direct verification
algorithm would replace all handlers by their (regular) downclosures, and in-
voke existing decision procedures for this case. Thus, we get a direct algorithm
based on downclosure constructions for higher order recursion schemes, using
the string of celebrated recent results on effectively computing the downclosure
of word schemes [33,15,7].

We find our general decidability result for asynchronous programs to be sur-
prising. Already for regular languages, the complexity of safety verification jumps

1 The “mild language-theoretic assumption” is that the class of languages forms an
effective full trio: it is closed under intersections with regular languages, homomor-
phisms, and inverse homomorphisms. Many language classes studied in formal lan-
guage theory and verification satisfy these conditions.
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from NL (NFA emptiness) to EXPSPACE (Petri net coverability): asynchronous
programs are far more expressive than individual handler languages. It is there-
fore surprising that safety and termination verification remains decidable when-
ever it is decidable for individual handler languages.

Full proofs of our results are available here [25].

2 Preliminaries

Basic Definitions We assume familiarity with basic definitions of automata the-
ory (see, e.g., [18,31]). The projection of word w onto some alphabet Σ′, written
ProjΣ′(w), is the word obtained by erasing from w each symbol which does not
belong to Σ′. For a language L, define ProjΣ′(L) = {ProjΣ′(w) | w ∈ L}. The
subword order 
 on Σ∗ is defined as w 
 w′ for w,w′ ∈ Σ∗ if w can be ob-
tained from w′ by deleting some letters from w′. For example, abba 
 bababa
but abba �
 baaba. The downclosure ↓w with respect to the subword order of a
word w ∈ Σ∗ is defined as ↓w := {w′ ∈ Σ∗ | w′ 
 w}. The downclosure ↓L of
a language L ⊆ Σ∗ is given by ↓L := {w′ ∈ Σ∗ | ∃w ∈ L : w′ 
 w}. Recall that
the downclosure ↓L of any language L is a regular language [17].

A multiset m : Σ → N over Σ maps each symbol of Σ to a natural number.
Let M[Σ] be the set of all multisets over Σ. We treat sets as a special case
of multisets where each element is mapped onto 0 or 1. As an example, we
write m = �a, a, c� for the multiset m ∈ M[{a, b, c, d}] such that m(a) = 2,
m(b) = m(d) = 0, and m(c) = 1. We also write |m| =

∑
σ∈Σ m(σ).

Given two multisets m,m′ ∈ M[Σ] we define the multiset m ⊕ m′ ∈ M[Σ]
for which, for all a ∈ Σ, we have (m ⊕m′)(a) = m(a) +m′(a). We also define
the natural order ( on M[Σ] as follows: m ( m′ iff there exists mΔ ∈ M[Σ]
such that m⊕mΔ = m′. We also define m′4m for m (m′ analogously: for all
a ∈ Σ, we have (m4m′)(a) = m(a)−m′(a). For Σ ⊆ Σ′ we regard m ∈M[Σ]
as a multiset of M[Σ′] where undefined values are sent to 0.

Language Classes and Full Trios A language class is a collection of languages,
together with some finite representation. Examples are the regular (e.g. rep-
resented by finite automata) or the context-free languages (e.g. represented by
pushdown automata or PDA). A relatively weak and reasonable assumption on a
language class is that it is a full trio, that is, it is closed under each of the follow-
ing operations: taking intersection with a regular language, taking homomorphic
images, and taking inverse homomorphic images. Equivalently, a language class
is a full trio iff it is closed under rational transductions [5].

We assume that all full trios C considered in this paper are effective: Given
a language L from C, a regular language R, and a homomorphism h, we can
compute a representation of the languages L ∩R, h(L), and h−1(L) in C.

Many classes of languages studied in formal language theory form effective
full trios. Examples include the regular and the context-free languages [18], the
indexed languages [2,10], the languages of higher-order pushdown automata [26],
higher-order recursion schemes (HORS) [16,9], Petri nets [14,19], and lossy chan-
nel systems (see Section 4.1). (While HORS are usually viewed as representing
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a tree or collection of trees, one can also view them as representing a word
language, as we explain in Section 5.)

Informally, a language class defined by non-deterministic devices with a finite-
state control that allows ε-transitions and imposes no restriction between input
letter and performed configuration changes (such as non-deterministic pushdown
automata) is always a full trio: The three operations above can be realized by
simple modifications of the finite-state control. The deterministic context-free
languages are a class that is not a full trio.

Asynchronous Programs: A Language-Theoretic View We use a language-
theoretic model for asynchronous shared-memory programs.

Definition 1. Let C be an (effective) full trio. An asynchronous program (AP)
over C is a tuple P = (D,Σ, (Lc)c∈C, d0,m0), where D is a finite set of global
states, Σ is an alphabet of handler names, (Lc)c∈C is a family of languages from
C, one for each c ∈ C where C = D×Σ ×D is the set of contexts, d0 ∈ D is the
initial state, and m0 ∈M[Σ] is a multiset of initial pending handler instances.

A configuration (d,m) ∈ D ×M[Σ] of P consists of a global state d and a
multiset m of pending handler instances. For a configuration c, we write c.d and
c.m for the global state and the multiset in the configuration respectively. The
initial configuration c0 of P is given by c0.d = d0 and c0.m = m0. The semantics
of P is given as a labeled transition system over the set of configurations, with
the transition relation

σ−→⊆ (D ×M[Σ])× (D ×M[Σ]) given by

(d,m⊕ �σ�) σ−→ (d′,m⊕m′) iff ∃w ∈ Ldσd′ : Parikh(w) = m′

We use →∗ for the reflexive transitive closure of the transition relation. A con-
figuration c is said to be reachable in P if (d0,m0)→∗ c.

Intuitively, the set Σ of handler names specifies a finite set of procedures
that can be invoked asynchronously. The shared state takes values in D. When
a handler is called asynchronously, it gets added to a bag of pending handler
calls (the multiset m in a configuration). The language Ldσd′ captures the effect
of executing an instance of σ starting from the global state d, such that on
termination, the global state is d′. Each word w ∈ Ldσd′ captures a possible
sequence of handlers posted during the execution.

Suppose the current configuration is (d,m). A non-deterministic scheduler
picks one of the outstanding handlers σ ∈ m and executes it. Executing σ
corresponds to picking one of the languages Ldσd′ and some word w ∈ Ldσd′ .
Upon execution of σ, the new configuration has global state d′ and the new bag
of pending calls is obtained by taking m, removing an instance of σ from it,
and adding the Parikh image of w to it. This reflects the current set of pending
handler calls—the old ones (minus an instance of σ) together with the new ones
added by executing σ. Note that a handler is executed atomically; thus, we
atomically update the global state and the effect of executing the handler.

Let us see some examples of asynchronous programs. It is convenient to
present these examples in a programming language syntax, and to allow each
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1 global var turn = ref 0 and x = ref 0;
2 let rec s1 () = if * then begin post a; s1(); post b end
3 let rec s2 () = if * then begin post a; s2(); post b end else post b
4 let a () = if !turn = 0 then begin turn := 1; x := !x + 1 end else post a
5 let b () = if !turn = 1 then begin turn := 0; x := !x - 1 end else post b
6

7 let s3 () = post s3; post s3
8

9 global var t = ref 0;
10 let c () = if !t = 0 then t := 1 else post c
11 let d () = if !t = 1 then t := 2 else post d
12 let f () = if !t = 2 then t := 0 else post f
13

14 let cc x = post c; x
15 let dd x = post d; x
16 let ff x = post f; x
17 let id x = x
18 let h g y = cc (g (dd y))
19 let rec produce g x = if * then produce (h g) (ff x) else g x
20 let s4 () = produce id ()

Fig. 1. Examples of asynchronous programs

handler to have internal actions that perform local tests and updates to the
global state. As we describe informally below, and formally in the full version,
when C is a full trio, internal actions can be “compiled away” by taking an in-
tersection with a regular language of internal actions and projecting the internal
actions away. Thus, we use our simpler model throughout.

Examples Figure 1 shows some simple examples of asynchronous programs in an
OCaml-like syntax. Consider first the asynchronous program in lines 1–5. The
alphabet of handlers is s1, s2, a, and b. The global states correspond to possible
valuations to the global variables turn and x; assuming turn is a Boolean and
x takes values in N, we have that D = {0, 1} × {0, 1, ω}, where ω abstracts
all values other than {0, 1}. Since s1 and s2 do not touch any variables, for
d, d′ ∈ D, we have Ld,s1,d = {anbn | n ≥ 0}, Ld,s2,d = {anbn+1 | n ≥ 0}, and
Ld,s1,d′ = Ld,s2,d′ = ∅ if d′ �= d.

For the languages corresponding to a and b, we use syntactic sugar in the
form of internal actions ; these are local tests and updates to the global state. For
our example, we have, e.g., L(0,0),a,(1,1) = {ε}, L(1,x),a,(1,x) = {a} for all values
of x, and similarly for b. The meaning is that, starting from a global state (0, 0),
executing the handler will lead to the global state (1, 1) and no handlers will be
posted, whereas starting from a global state in which turn is 1, executing the
handler will keep the global state unchanged but post an instance of a. Note
that all the languages are context-free.

Consider an execution of the program from the initial configuration
((0, 0), �s1�). The execution of s1 puts n as and n bs into the bag, for some
n ≥ 0. The global variable turn is used to ensure that the handlers a and b

alternately update x. When turn is 0, the handler for a increments x and sets
turn to 1, otherwise it re-posts itself for a future execution. Likewise, when turn

is 1, the handler for b decrements x and sets turn back to 0, otherwise it re-posts
itself for a future execution. As a result, the variable x never grows beyond 1.
Thus, the program satisfies the safety property that no execution sets x to ω.
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It is possible that the execution goes on forever: for example, if s1 posts
an a and a b, and thereafter only b is chosen by the scheduler. This is not an
“interesting” infinite execution as it is not fair to the pending a. In the case
of a fair scheduler, which eventually always picks an instance of every pending
task, the program terminates: eventually all the as and bs are consumed when
they are scheduled in alternation. However, if instead we started with �s2�, the
program will not terminate even under a fair scheduler: the last remaining b will
not be paired and will keep executing and re-posting itself forever.

Now consider the execution of s3. It has an infinite fair run, where the
scheduler picks an instance of s3 at each step. However, the number of pend-
ing instances grows without bound. We shall study the boundedness problem,
which checks if the bag can become unbounded along some run. We also study
a stronger notion of fair termination, called fair non-starvation, which asks that
every instance of a posted handler is executed under any fair scheduler. The
execution of s3 is indeed fair, but there can be a specific instance of s3 that is
never picked: we say s3 can starve an instance.

The program in lines 9–20 is higher-order (produce and h take functions as
arguments). The language of s4 is the set {cndnfn | n ≥ 0}, that is, it posts an
equal number of cs, ds, and fs. It is an indexed language; we shall see (Section 5)
how this and other higher-order programs can be represented using higher-order
recursion schemes (HORS). Note the OCaml types of produce : (o→ o)→ o→ o

and h : (o→ o)→ o→ o are higher-order.
The program is similar to the first: the handlers c, d, and f execute in “round

robin” fashion using the global state t to find their turns. Again, we use internal
actions to update the global state for readability. We ask the same decision
questions as before: does the program ever reach a specific global state and
does the program have an infinite (fair) run? We shall see later that safety and
termination questions remain decidable, whereas fair termination does not.

3 Decision Problems on Asynchronous Programs

We now describe decision problems on runs of asynchronous programs.

Runs, preruns, and downclosures A prerun of an APP = (D,Σ, (Lc)c∈C, d0,m0)
is a finite or infinite sequence ρ = (e0,n0), σ1, (e1,n1), σ2, . . . of alternating el-
ements of tuples (ei,ni) ∈ D ×M[Σ] and symbols σi ∈ Σ. The set of preruns
of P will be denoted Preruns(P). Note that if two asynchronous programs P
and P′ have the same D and Σ, then Preruns(P) = Preruns(P′). The length,
denoted |ρ|, of a finite prerun ρ is the number of configurations in ρ. The ith

configuration of a prerun ρ will be denoted ρ(i).
We define an order 	 on preruns as follows: For preruns ρ =

(e0,n0), σ1, (e1,n1), σ2, . . . and ρ′ = (e′0,n
′
0), σ

′
1, (e

′
1,n

′
1), σ

′
2, . . ., we define ρ 	 ρ′

if |ρ| = |ρ′| and ei = e′i, σi = σ′
i and ni ( n′

i for each i ≥ 0. The downclosure ↓R
of a set R of preruns of P is defined as ↓R = {ρ ∈ Preruns(P) | ∃ρ′ ∈ R. ρ 	 ρ′}.

A run of an AP P = (D,Σ, (Lc)c∈C, d0,m0) is a prerun ρ =
(d0,m0), σ1, (d1,m1), σ2, . . . starting with the initial configuration (d0,m0),
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where for each i ≥ 0, we have (di,mi)
σi+1−−−→ (di+1,mi+1). The set of runs of

P is denoted Runs(P) and ↓Runs(P) is its downclosure with respect to 	.

An infinite run c0
σ0−→ c1

σ1−→ . . . is fair if for all i ≥ 0, if σ ∈ ci.m then
there is some j ≥ i such that cj

σ−→ cj+1. That is, whenever an instance of a
handler is posted, some instance of the handler is executed later. Fairness does
not preclude that a specific instance of a handler is never executed. An infinite
fair run starves handler σ if there exists an index J ≥ 0 such that for each j ≥ J ,
we have (i) cj .m(σ) ≥ 1 and (ii) whenever cj

σ−→ cj+1, we have cj .m(σ) ≥ 2. In
this case, even if the run is fair, a specific instance of σ may never be executed.

Now we give the definitions of the various decision problems.

Definition 2 (Properties of finite runs). The Safety (Global state
reachability) problem asks, given an asynchronous program P and a global
state df ∈ D, is there a reachable configuration c such that c.d = df? If so, df
is said to be reachable (in P) and unreachable otherwise. The Boundedness
(of the task buffer) problem asks, given an asynchronous program P, is there
an N ∈ N such that for every reachable configuration c, we have |c.m| ≤ N?
If so, the asynchronous program P is bounded; otherwise it is unbounded. The
Configuration reachability problem asks, given an asynchronous program P
and a configuration c, is c reachable?

Definition 3 (Properties of infinite runs). All the following problems take
as input an asynchronous program P. The Termination problem asks if all runs
of P are finite. The Fair Non-termination problem asks if P has some fair
infinite run. The Fair Starvation problem asks if P has some fair run that
starves some handler.

Our main result in this section shows that many properties of an asyn-
chronous program P only depend on the downclosure ↓Runs(P) of the set
Runs(P) of runs of the program P. The proof is by induction on the length
of runs. For any AP P = (D,Σ, (Lc)c∈C, d0,m0), we define the AP ↓P =
(D,Σ, (↓Lc)c∈C, d0,m0), where ↓Lc is the downclosure of the language Lc under
the subword order.

Proposition 1. Let P = (D,Σ, (Lc)c∈C, d0,m0) be an asynchronous program.
Then ↓Runs(↓P) = ↓Runs(P). In particular, the following holds. (1) For every
d ∈ D, P can reach d if and only if ↓P can reach d. (2) P is terminating if and
only if ↓P is terminating. (3) P is bounded if and only if ↓P is bounded.

Intuitively, safety, termination, and boundedness is preserved when the mul-
tiset of pending handler instances is “lossy”: posted handlers can get lost. This
corresponds to these handlers never being scheduled by the scheduler. However,
if a run demonstrates reachability of a global state, or non-termination, or un-
boundedness, in the lossy version, it corresponds also to a run in the original
problem (and conversely). In contrast, simple examples show that configura-
tion reachability, fair termination, and fair non-starvation properties are not
preserved under downclosures.
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4 General Decidability Results

In this section, we characterize those full trios C for which particular problems
for asynchronous programs over C are decidable. Our decision procedures will
use the following theorem, summarizing the results from [12], as a subprocedure.

Theorem 1 ([12]). Safety, boundedness, configuration reachability, termi-
nation, fair non-termination, and fair non-starvation are decidable for asyn-
chronous programs over regular languages.

4.1 Safety and termination

Our first main result concerns the problems of safety and termination.

Theorem 2. Let C be a full trio. The following are equivalent:

(i) Safety is decidable for asynchronous programs over C.
(ii) Termination is decidable for asynchronous programs over C.
(iii) Emptiness is decidable for C.

We begin with “(i)⇒(iii)”. Let K ⊆ Σ∗ be given. We construct P =
(D,Σ, (Lc)c∈C, d0,m0) such that m0 = �σ�, D = {d0, d1}, Ld0,σ,d1 = K and
Lc = ∅ for c �= (d0, σ, d1). We see that P can reach d1 iff K is non-empty. Next
we show “(ii)⇒(iii)”. Consider the alphabet Γ = (Σ ∪ {ε})× {0, 1} and the ho-
momorphisms g : Γ ∗ → Σ∗ and h : Γ ∗ → {σ}∗, where for x ∈ Σ ∪ {ε}, we have
g((x, i)) = x for i ∈ {0, 1}, h((x, 1)) = σ, and h((x, 0)) = ε. If R ⊆ Γ ∗ is the
regular set of words in which exactly one position belongs to the subalphabet
(Σ ∪ {ε}) × {1}, then the language K ′ := h(g−1(K) ∩ R) belongs to C. Note
that K ′ is ∅ or {σ}, depending on whether K is empty or not. We construct
P = (D,Σ, (Lc)c∈C, d0,m0) with D = {d0}, m0 = �σ�, Ld0,σ,d0 = K ′ and all
languages Lc = ∅ for c �= (d0, σ, d0). Then P is terminating iff K is empty.

To prove “(iii)⇒(i)”, we design an algorithm deciding safety assuming decid-
ability of emptiness. Given asynchronous program P and state d as input, the
algorithm consists of two semi-decision procedures: one which searches for a run
of P reaching the state d, and the second which enumerates regular overapprox-
imations P′ of P and checks the safety of P′ using Theorem 1. Each P′ consists
of a regular language Ac overapproximating Lc for each context c of P. We use
decidability of emptiness to check that Lc ∩ (Σ∗ \ Ac) = ∅ to ensure that P′ is
indeed an overapproximation.

The algorithm clearly gives a correct answer if it terminates. Hence, we only
have to argue that it always does terminate. Of course, if d is reachable, the first
semi-decision procedure will terminate. In the other case, termination is due to
the regularity of downclosures: if d is not reachable in P, then Proposition 1
tells us that ↓P cannot reach d either. But ↓P is an asynchronous program over
regular languages; this means there exists a safe regular overapproximation and
the second semi-decision procedure terminates.

Like the algorithm for safety, the algorithm for termination consists of two
semi-decision procedures. By standard well-quasi-ordering arguments, an infinite
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run of an asynchronous program P is witnessed by a finite self-covering run.
The first semi-decision procedure enumerates finite self-covering runs (trying to
show non-termination). The second procedure enumerates regular asynchronous
programs P′ that overapproximate P. As before, to check termination of P′, it
applies the procedure from Theorem 1. Clearly, the algorithm’s answer is always
correct. Moreover, it gives an answer for every input. If P does not terminate, it
will find a self-covering sequence. If P does terminate, then Proposition 1 tells
us that ↓P is a terminating finite-state overapproximation. This implies that the
second procedure will terminate in that case.

Let us point out a particular example. The class L of languages of lossy chan-
nel systems is defined like the class of languages of WSTS with upward-closed sets
of accepting configurations as in [13], except that we only consider lossy channel
systems [1] instead of arbitrary Well-Structured Transition Systems (WSTS).
Then L forms a full trio with decidable emptiness. Although downclosures of
lossy channel languages are not effectively computable (an easy consequence of
[27]), our algorithm employs Theorem 2 to decide safety and termination.

4.2 Boundedness

Theorem 3. Let C be a full trio. The following are equivalent:

(i) Boundedness is decidable for asynchronous programs over C.
(ii) Finiteness is decidable for C.

Clearly, the construction for “(i)⇒(iii)” of Theorem 2 also works for “(i)⇒(ii)”:
P is unbounded iff K is infinite.

For the converse, we first note that if finiteness is decidable for C then so is
emptiness. Given L ⊆ Σ∗ from C, consider the homomorphism h : (Σ ∪{λ})∗ →
Σ∗ with h(a) = a for every a ∈ Σ and h(λ) = ε. Then h−1(L) belongs to C and
h−1(L) is finite if and only if L is empty: in the inverse homomorphism, λ can
be arbitrarily inserted in any word. By Theorem 2, this implies that we can also
decide safety. As a consequence of considering only full trios, it is easy to see that
the problem of context reachability reduces to safety: a context ĉ = (d̂, σ̂, d̂′) ∈ C

is reachable in P if there is a reachable configuration (d̂,m) in P with m(σ̂) ≥ 1.
We now explain our algorithm for deciding boundedness of a given

aysnchronous program P = (D,Σ, (Lc)c∈C, d0,m0). For every context c, we
first check if Lc is infinite (feasible by assumption). This paritions the set of con-
texts of P into sets I and F which are the contexts for which the corresponding
language Lc is infinite and finite respectively. If any context in I is reachable,
then P is unbounded. Otherwise, all the reachable contexts have a finite lan-
guage. For every finite language Lc for some c ∈ F , we explicitly find all the
members of Lc. This is possible because any finite set A can be checked with Lc
for equality. Lc ⊆ A can be checked by testing whether Lc ∩ (Σ∗ \ A) = ∅ and
Lc ∩ (Σ∗ \A) effectively belongs to C. On the other hand, checking A ⊆ Lc just
means checking whether Lc ∩ {w} �= ∅ for each w ∈ A, which can be done the
same way. We can now construct asynchronous program P′ which replaces all
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languages for contexts in I by ∅ and replaces those corresponding to F by the
explicit description. Clearly P′ is bounded iff P is bounded (since no contexts
from I are reachable) and the former can be decided by Theorem 1.

We observe that boundedness is strictly harder than safety or termination:
There are full trios for which emptiness is decidable, but finiteness is undecidable,
such as the languages of reset vector addition systems [11] (see [32] for a definition
of the language class) and languages of lossy channel systems.

4.3 Configuration reachability and liveness properties

Theorems 2 and 3 completely characterize for which full trios safety, termina-
tion, and boundedness are decidable. We turn to configuration reachability, fair
termination, and fair starvation. We suspect that it is unlikely that there is a
simple characterization of those language classes for which the latter problems
are decidable. However, we show that they are decidable for a limited range of
infinite-state systems. To this end, we prove that decidability of any of these
problems implies decidability of the others as well, and also implies the decid-
ability of a simple combinatorial problem that is known to be undecidable for
many expressive classes of languages.

Let Z ⊆ {a, b}∗ be the language Z = {w ∈ {a, b}∗ | |w|a = |w|b}. The Z-
intersection problem for a language class C asks, given a language K ⊆ {a, b}∗
from C, whether K ∩ Z �= ∅. Informally, Z is the language of all words with an
equal number of as and bs and the Z-intersection problem asks if there is a word
in K with an equal number of as and bs.

Theorem 4. Let C be a full trio. The following statements are equivalent:

(i) Configuration reachability is decidable for asynchronous programs over C.
(ii) Fair termination is decidable for asynchronous programs over C.
(iii) Fair starvation is decidable for asynchronous programs over C.

Moreover, if decidability holds, then Z-intersection is decidable for C.

We prove Theorem 4 by providing reductions among the three problems
and showing that Z-intersection reduces to configuration reachability. We use
diagrams similar to automata to describe asynchronous programs. Here, circles

represent global states of the program and we draw an edge d d′
σ|L

in

case we have Ld,σ,d′ = L in our asynchronous program P. Furthermore, we
have Ld,σ,d′ = ∅ whenever there is no edge that specifies otherwise. To simplify

notation, we draw an edge d
w|L−−→ d′ in an asynchronous program for a word

w ∈ Σ∗, w = σ1 . . . σn with σ1, . . . , σn ∈ Σ, to symbolize a sequence of states

d 2 · · · n d′
σ1|{ε} σ2|{ε} σn−1|{ε} σn|L

which removes �σ1, . . . , σn� from the task buffer and posts a multiset of handlers
specified by L.
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Proof of “(ii)⇒(i)” Given an asynchronous programP = (D,Σ, (Lc)c∈C, d0,m0)
and a configuration (df ,mf ) ∈ D ×M[Σ], we construct asynchronous program
P′ as follows. Let z be a fresh letter and let mf = �σ1, . . . , σn�. We obtain P′

from P by adding a new state d′f and including the following edges:

df d′f
zσ1 · · ·σn|{z}

z|{z}

Starting from (d0,m0 ⊕ �z�), the program P′ has a fair infinite run iff (df ,mf )
is reachable in P. The ‘if’ direction is obvious. Conversely, z has to be executed
in any fair run ρ of P′ which implies that d′f is reached by P′ in ρ. Since only z

can be executed at d′f in ρ, this means that the multiset is exactly mf when df
is reached during ρ. Clearly this initial segment of ρ corresponds to a run of P
which reaches the target configuration.
Proof of “(iii)⇒(ii)” We construct P′ = (D,Σ′, (L′

c)c∈C′ , d0,m
′
0) given P =

(D,Σ, (Lc)c∈C, d0,m0) over C as follows. Let Σ′ = Σ ∪ {s}, where s is a fresh
handler. Replace each edge

d d′
σ|L by d d′

σ|L ∪ Ls
s|ε

at every state d ∈ D. Moreover, we set m′
0 = m0⊕�s, s�. Then P′ has an infinite

fair run that starves some handler if and only if P has an infinite fair run. From
an infinite fair run ρ of P, we obtain an infinite fair run of P′ which starves
s, by producing s while simulating ρ and consuming it in the loop. Conversely,
from an infinite fair run ρ′ of P′ which starves some τ , we obtain an infinite fair
run ρ of P by omitting all productions and consumptions of s and removing two
extra instances of s from all configurations.
Proof of “(i)⇒(iii)” From P = (D,Σ, (Lc)c∈C, d0,m0) over C, for each sub-
set Γ ⊆ Σ and τ ∈ Σ, we construct an asynchronous program PΓ,τ =
(D′, Σ′, (Lc)c∈C′ , d′0,m

′
0) over C such that a particular configuration is reach-

able in PΓ,τ if and only if P has a fair infinite run ρΓ,τ , where Γ is the set of
handlers that is executed infinitely often in ρΓ,τ and ρΓ,τ starves τ . Since there
are only finitely many choices for Γ and τ , decidability of configuration reach-
ability implies decidability of fair starvation. The idea is that run ρΓ,τ exists if
and only if there exists a run

(d0,m0)
σ1−→ · · · σn−−→ (dn,mn) = (e0,n0)

γ1−→ (e1,n1)
γ2−→ · · · γk−→ (ek,nk), (1)

where
⋃k
i=1{γi} = Γ , for each 1 ≤ i ≤ k ni ∈ M[Γ ], mn ( nk, and for each i ∈

{1, . . . , k} with γi = τ , we have ni−1(τ) ≥ 2. In such a run, we call (d0,m0)
σ1−→

· · · σn−−→ (dn,mn) its first phase and (e0,n0)
γ1−→ · · · γk−→ (ek,nk) its second phase.

Let us explain how PΓ,τ reflects the existence of a run as in Eq. (1). The

set Σ′ of handlers of PΓ,τ includes Σ, Σ̄ and Σ̂, where Σ̄ = {σ̄ | σ ∈ Σ} and

Σ̂ = {σ̂ | σ ∈ Σ} are disjoint copies of Σ. This means, a multiset M[Σ′] contains
multisets m′ = m⊕m̄⊕m̂ with m ∈M[Σ], m̄ ∈M[Σ̄], and m̂ ∈M[Σ̂]. A run of
PΓ,τ simulates the two phases of ρ. While simulating the first phase, PΓ,τ keeps
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two copies of the task buffer, m and m̄. The copying is easily accomplished by a
homomorphism with σ �→ σσ̄ for each σ ∈ Σ. At some point, PΓ,τ switches into
simulating the second phase. There, m̄ remains unchanged, so that it stores the
value of mn in Eq. (1) and can be used in the end to make sure that mn ( nk.

Hence, in the second phase, PΓ,τ works, like P, only with Σ. However, when-
ever a handler σ ∈ Σ is executed, it also produces a task σ̂. These handlers are
used at the end to make sure that every γ ∈ Γ has been executed at least once
in the second phase. Also, whenever τ is executed, PΓ,τ checks that at least two
instances of τ are present in the task buffer, thereby ensuring that τ is starved.

In the end, a distinguished final state allows PΓ,τ to execute handlers in Γ
and Γ̄ simultaneously to make sure that mn ( nk. In its final state, PΓ,τ can

execute handlers γ̂ ∈ Γ̂ and γ ∈ Γ (without creating new handlers). In the final
configuration, there can be no σ̂ with σ ∈ Σ \Γ , and there has to be exactly one
γ̂ for each γ ∈ Γ . This guarantees that (i) each handler in Γ is executed at least
once during the second phase, (ii) every handler executed in the second phase is
from Γ , and (iii) mn contains only handlers from Γ (because handlers from Σ̄
cannot be executed in the second phase).
Decidability of Z-intersection To complete the proof of Theorem 4, we reduce
Z-intersection to configuration reachability. Given K ⊆ {a, b}∗ from C, we con-
struct the asynchronous program P = (D,Σ, (Lc)c∈C, d0,m0) over C where
D = {d0, 0, 1}, Σ = {a, b, c}, by including the following edges:

d0 0 1
c|K

a|{ε}

b|{ε}

The initial task buffer is m0 = �c�. Then clearly, the configuration (0, ��) is
reachable in P if and only if K ∩ Z �= ∅.

Theorem 4 is useful in the contrapositive to show undecidability. For example,
one can show undecidability of Z-intersection for languages of lossy channel
systems (see Section 4.1): One expresses reachability in a non-lossy FIFO system
by making sure that the numbers of enqueue- and dequeue-operations match.
Thus, for asynchronous programs over lossy channel systems, the problems of
Theorem 4 are undecidable. We also use Theorem 4 in Section 5 to conclude
undecidability for higher-order asynchronous programs, already at order 2.

5 Higher-Order Asynchronous Programs

We apply our general decidability results to asynchronous programs over (deter-
ministic) higher-order recursion schemes (HORS). Kobayashi [21] has shown how
higher-order functional programs can be modeled using HORS. In his setting, a
program contains instructions that access certain resources. For Kobayashi, the
path language of the HORS is the set of possible sequences of instructions. For
us, the input program contains post instructions and we translate higher-order
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programs with post instructions into a HORS whose path language is used as
the language of handlers.
We recall some definitions from [21]. The set of types is defined by the grammar
A := o | A → A. The order ord(A) of a type A is inductively defined as
ord(o) = 0 and ord(A → B) := max(ord(A) + 1, ord(B)). The arity of a type
is inductively defined by arity(o) = 0 and arity(A → B) = arity(B) + 1. We
assume a countably infinite set Var of typed variables x : A. For a set Θ of typed
symbols, the set Θ̃ of terms generated from Θ is the least set which contains Θ
such that whenever s : A → B and t : A belong to Θ̃, then also s t : B belongs
to Θ̃. By convention the type o→ . . . (o→ (o→ o)) is written o→ . . .→ o→ o

and the term ((t1t2)t3 · · · )tn is written t1t2 · · · tn. We write x̄ for a sequence
(x1, x2, . . . , xn) of variables.

A higher-order recursion scheme (HORS) is a tuple S = (Σ,N ,R, S) where
Σ is a set of typed terminal symbols of types of order 0 or 1, N is a set of
typed non-terminal symbols (disjoint from terminal symbols), S : o is the start
non-terminal symbol and R is a set of rewrite rules Fx1x2 · · ·xn � t where
F : A1 → · · · → An → o is a non-terminal in N , xi : Ai for all i are variables
and t : o is a term generated from Σ ∪ N ∪ Var. The order of a HORS is the
maximum order of a non-terminal symbol. We define a rewrite relation � on
terms over Σ ∪ N as follows: F ā � t[x̄/ā] if Fx̄ � t ∈ R, and if t � t′ then
ts � t′s and st � st′. The reflexive, transitive closure of � is denoted �∗. A
sentential form t of S is a term over Σ ∪N such that S �∗ t.

IfN is the maximum arity of a symbol in Σ, then a (possibly infinite) tree over
Σ is a partial function tr from {0, 1, . . . , N − 1}∗ to Σ that fulfills the following
conditions: ε ∈ dom(tr), dom(tr) is closed under prefixes, and if tr(w) = a and
arity(a) = k then {j | wj ∈ dom(tr)} = {0, 1, . . . , k − 1}.

A deterministic HORS is one where there is exactly one rule of the form
Fx1x2 · · ·xn → t for every non-terminal F . Following [21], we show how a de-
terministic HORS can be used to represent a higher-order pushdown language
arising from a higher-order functional program.

Sentential forms can be seen as ranked trees over Σ∪N ∪Var. A sequence Π
over {0, 1, . . . , n−1} is a path of tr if every finite prefix of Π ∈ dom(tr). The set
of paths in a tree tr will be denoted Paths(tr). Note that we are only interested
in finite paths in our context. Associated with any path Π = n1, n2, . . . , nk is the
word wΠ = tr(n1)tr(n1n2) · · · tr(n1n2 · · ·nk). Let Σ1 := {a ∈ Σ | arity(a) = 1}.
The path language Lp(S ) of a deterministic HORS S is defined as {ProjΣ1

(wΠ) |
Π ∈ Paths(TS )}. The tree language Lt(S ) associated with a HORS is the set of
finite trees over Σ generated by S .
The deterministic HORS corresponding to the higher-order function s3 from
Figure 1 is given by S = (Σ,N ,R, S), where

Σ ={br : o→ o→ o, c, d, f : o→ o, e : o}
N ={S : o, F : (o→ o)→ o→ o, H : (o→ o)→ o→ o, I : o→ o}
R ={S � F I e, I x � x, F G x � br(F (H G) (fx)) (G x),

H G x � c(G(dx))}
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The path language Lp(S ) = {cndnfn | n ≥ 0}. To see this, apply the reduction
rules to get the value tree TS shown on the right:

S � F I e � br (F (HI) (fe)) (Ie)

� br (F (HI) (fe)) e

� br (br (F (H2I) (f2e)) (HI)(fe)) e

� br (br (F (H2I) (f2e)) c(I(dfe)) e

� br (br (F (H2I) (f2e)) cdfe) e

� · · ·

br

e br

c br

d

f

e

.. ..

A HORS S is called a word scheme if it has exactly one nullary terminal
symbol e and all other terminal symbols Σ̃ are of arity one. The word language
Lw(S ) ⊆ Σ̃∗ defined by S is Lw(S ) = {a1a2 · · · an | (a1(a2 · · · (an(e)) · · · )) ∈
Lt(S )}. We denote by H the class of languages Lw(S ) that occur as the word
language of a higher-order recursion scheme S . Note that path languages and
languages of word schemes are both word languages over the set Σ̃ of unary
symbols considered as letters. They are connected by the following proposition.2

Proposition 2. For every order-n HORS S = (Σ,N , S,R) there exists an
order-n word scheme S ′ = (Σ′,N ′, S′,R′) such that Lp(S ) = Lw(S ′).

A consequence of [21] and Prop. 2 is that the “post” language of higher-order
functional programs can be modeled as the language of a word scheme. Hence,
we define an asynchronous program over HORS as an asynchronous program over
the language class H and we can use the following results on word schemes.

Theorem 5. HORS and word schemes form effective full trios [7]. Emptiness
[23] and finiteness [29] of order-n word schemes are (n− 1)-EXPTIME-complete.

Now Theorems 2 and 3, together with Proposition 2 imply the decidability
results in Corollary 1. The undecidability result is a consequence of Theorem 4
and the undecidability of the Z-intersection problem for indexed languages or
equivalently, order-2 pushdown automata as shown in [33]. Order-2 pushdown
automata can be effectively turned into order-2 OI grammars [10], which in turn
can be translated into order-2 word schemes [9]. See also [22, Theorem 4].

Corollary 1. For asynchronous programs over HORS: (1) Safety, termination,
and boundedness are decidable. (2) Configuration reachability, fair termination,
and fair starvation are undecidable already at order-2.

A Direct Algorithm We say that downclosures are computable for a language
class C if for a given description of a language L in C, one can compute an
automaton for the regular language ↓L. From Proposition 1 and Theorem 1,

2 The models of HORS (used in model checking higher order programs [21]) and word
schemes (used in language-theoretic exploration of downclosures [15,7]) are some-
what different. Thus, we show an explicit reduction between the two formalisms.
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if one can compute downclosures for a language class, then one can avoid the
enumerative approaches of Section 4 and get a “direct algorithm.” The algorithm
replaces each handler by its downclosure and then invokes the decision procedure
summarized in Theorem 1. The direct algorithm for asynchronous programs over
HORS relies on the recent breakthrough results on computing downclosures.

Theorem 6 ([33,15,7]). Downclosures are effectively computable for H.

Unfortunately, current techniques for computing downclosures do not yet pro-
vide a complexity upper bound as we describe below. In [33], it was shown that in
a full trio, downclosures are computable if and only if the diagonal problem for C
is decidable. The latter asks, given a language L ⊆ Σ∗, whether for every k ∈ N,
there is a word w ∈ L with |w|σ ≥ k for every σ ∈ Σ. The diagonal problem was
then shown to be decidable for higher-order pushdown automata [15] and then
for word schemes [7]. The algorithm from [33] to compute downclosures using an
oracle for the diagonal problem employs enumeration to compute a downclosure
automaton, thus we have hidden the enumeration into the downclosure compu-
tation. We conjecture that downclosures can be computed in elementary time
for word schemes of fixed order. This would imply an elementary time procedure
for asynchronous programs over HORS of fixed order.

For handlers over context-free languages, given as PDAs, Ganty and Majum-
dar [12] show an EXPSPACE upper bound for safety, termination, and bound-
edness. Their algorithm constructs for each handler a polynomial-size Petri net
with certain guarantees (forming so-called adequate family of Petri nets) that
accepts a Parikh equivalent language. These Petri nets are then used to construct
a larger Petri net, polynomial in the size of the asynchronous program and the
adequate family of Petri nets, in which safety, termination, or boundedness can
be phrased as a query decidable in EXPSPACE.

A natural question is whether a downclosure-based algorithm matches the
same complexity. We can replace the Parikh-equivalent Petri nets of [12] with
Petri nets recognizing the downclosure of a language. It is an easy consequence of
Proposition 1 that the resulting Petri nets can be used in place of the adequate
families of Petri nets in the procedures for safety, termination, and boundedness
of [12]. Unfortunately, a finite automaton for ↓L may require exponentially many
states in the PDA [4], so a naive approach gives a 2EXPSPACE algorithm.

In the full version of this paper, we show that that for each context-free lan-
guage L, one can construct in polynomial time a 1-bounded Petri net accepting
↓L. (Recall that a 1-bounded Petri net if every reachable marking has at most
one token in each place.) When used in the construction of [12], this matches the
EXPSPACE upper bound for safety, termination, and boundedness verification.

As a byproduct, we get a simple direct construction of a finite automaton
for ↓L when L is given as a PDA. This is of independent interest because ear-
lier constructions of ↓L always start from a context-free grammar and produce
(necessarily!) exponentially large NFAs [24,8,4]. The key observation is that the
downclosure of the language of a PDA can be represented, after some simple
modifications, as the language accepted by the PDA with a bounded stack.
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