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ETAPS Foreword

Welcome to the 24th ETAPS! ETAPS 2021 was originally planned to take place in
Luxembourg in its beautiful capital Luxembourg City. Because of the Covid-19 pan-
demic, this was changed to an online event.

ETAPS 2021 was the 24th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronised conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops take place that
attract many researchers from all over the globe.

ETAPS 2021 received 260 submissions in total, 115 of which were accepted,
yielding an overall acceptance rate of 44.2%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2021 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers Isil Dillig (University of Texas at Austin) for ESOP and Willem Visser
(Stellenbosch University) for FASE. Inivited tutorials were provided by Erika Abrahdm
(RWTH Aachen University) on analysis of hybrid systems and Madhusudan
Parthasararathy (University of Illinois at Urbana-Champaign) on combining machine
learning and formal methods.

ETAPS 2021 was originally supposed to take place in Luxembourg City, Luxem-
bourg organized by the SnT - Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg. University of Luxembourg was founded in 2003.
The university is one of the best and most international young universities with 6,700
students from 129 countries and 1,331 academics from all over the globe. The local
organisation team consisted of Peter Y.A. Ryan (general chair), Peter B. Roenne (or-
ganisation chair), Joaquin Garcia-Alfaro (workshop chair), Magali Martin (event
manager), David Mestel (publicity chair), and Alfredo Rial (local proceedings chair).

ETAPS 2021 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).
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The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara Konig
(Duisburg), Gerald Liittgen (Bamberg), Caterina Urban (INRIA), Tarmo Uustalu
(Reykjavik and Tallinn), and Lenore Zuck (Chicago).

Other members of the steering committee are: Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Jan Friso Groote (Eindhoven), Esther
Guerra (Madrid), Reiko Heckel (Leicester), Joost-Pieter Katoen (Aachen and Twente),
Stefan Kiefer (Oxford), Fabrice Kordon (Paris), Jan Kfetinsky (Munich), Kim G.
Larsen (Aalborg), Tiziana Margaria (Limerick), Andrew M. Pitts (Cambridge), Grigore
Rosu (Illinois), Peter Ryan (Luxembourg), Don Sannella (Edinburgh), Lutz Schroder
(Erlangen), Ilya Sergey (Singapore), Mariélle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Anton Wijs (Eindhoven), Manuel Wimmer (Linz), and Nobuko Yoshida (London).

I’d like to take this opportunity to thank all the authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2021.

Finally, a big thanks to Peter, Peter, Magali and their local organisation team for all
their enormous efforts to make ETAPS a fantastic online event. I hope there will be a
next opportunity to host ETAPS in Luxembourg.

February 2021 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

TACAS 2021 was the 27th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2021 was part of the 24th European Joint Conferences on Theory and Practice of
Software (ETAPS 2021), which although originally planned to take place in
Luxembourg City, was held as an online event on March 27 to April 1 due the the
COVID-19 pandemic.

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building computer-controlled systems. There were
four types of submissions for TACAS:

— Research papers advancing the theoretical foundations for the construction and
analysis of systems.

— Case study papers with an emphasis on a real-world setting.

— Regular tool papers presenting a new tool, a new tool component, or novel
extensions to an existing tool and requiring an artifact submission.

— Tool demonstration papers focusing on the usage aspects of tools, also subject to the
artifact submission requirement.

This year 141 papers were submitted to TACAS, consisting of 90 research papers,
29 regular tool papers, 16 tool demo papers, and 6 case study papers. Authors were
allowed to submit up to four papers. Each paper was reviewed by three Program
Committee (PC) members, who made extensive use of subreviewers.

Similarly to previous years, it was possible to submit an artifact alongside a paper,
which was mandatory for regular tool and tool demo papers. An artifact might consist
of a tool, models, proofs, or other data required for validation of the results of the
paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the
artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardised virtual machine to ensure con-
sistency of the results, except for those artifacts that had special hardware requirements.

The evaluation consisted of two rounds. The first round was carried out in parallel
with the work of the PC. The judgment of the AEC was communicated to the PC and
weighed in their discussion. The second round took place after paper acceptance
notifications were sent out; authors of accepted research papers who did not submit an
artifact in the first round could submit their artifact here. In total, 72 artifacts were
submitted (63 in the first round and 9 in the second), of which 57 were accepted and 15
rejected. This corresponds to an acceptance rate of 79 percent. Papers with an accepted
artifact include a badge on the first page.
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Selected authors were requested to provide a rebuttal for both papers and artifacts in
case a review gave rise to questions. In total 166 rebuttals were provided. Using the
review reports and rebuttals the Programme and the Artifact Evaluation Committees
extensively discussed the papers and artifacts and ultimately decided to accept 32
research papers, 7 tool papers, 6 tool demos, and 2 case studies.

Besides the regular conference papers, this two-volume proceedings also contains 8
short papers that describe the participating verification systems and a competition
report presenting the results of the 10th SV-COMP, the competition on automatic
software verifiers for C and Java programs. These papers were reviewed by a separate
program committee (PC); each of the papers was assessed by at least three reviewers.
A total of 30 verification systems with developers from 11 countries entered the sys-
tematic comparative evaluation, including four submissions from industry. Two ses-
sions in the TACAS program were reserved for the presentation of the results: (1) a
summary by the competition chair and of the participating tools by the developer teams
in the first session, and (2) an open community meeting in the second session.

March/April 2021 Jan Friso Groote
Kim Guldstrand Larsen

Frédéric Lang

Thierry Lecomte

Thomas Neele

Peter Gjol Jensen

Dirk Beyer

Alfredo Rial
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Abstract We introduce a generalization of the bisimulation game that
can be employed to find all relevant distinguishing Hennessy—Milner logic
formulas for two compared finite-state processes. By measuring the use of
expressive powers, we adapt the formula generation to just yield formulas
belonging to the coarsest distinguishing behavioral preorders/equivalences
from the linear-time—branching-time spectrum. The induced algorithm
can determine the best fit of (in)equivalences for a pair of processes.

Keywords: Process equivalence spectrum - Distinguishing formulas -
Bisimulation games.

1 Introduction

Have you ever looked at two system models and wondered what would be the finest
notions of behavioral equivalence to equate them—or, conversely: the coarsest
ones to distinguish them? We run into this situation often when analyzing models
and, especially, when devising examples for teaching. We then find ourselves
fiddling around with whiteboards and various tools, each implementing different
equivalence checkers. Would it not be nice to decide all equivalences at once?

Ezample 1. Consider the following CCS process P; = a.(b+ ¢) + a.d. It describes
a machine that can be activated (a) and then either is in a state where one can
choose from b and ¢ or where it can only be deactivated again (d). Py shares
a lot of properties with P, = a.(b + d) + a.(c 4+ d). For example, they have the
same traces (and the same completed traces). Thus, they are (completed) trace
equivalent.

But they also have differences. For instance, P; has a run where it executes a
and then cannot do d, while P, does not have such a run. Hence, they are not
failure equivalent. Moreover, Py may perform a and then choose from b and c,
and P, cannot. This renders the two processes also not simulation equivalent.
Failure equivalence and simulation equivalence are incomparable—that is, neither
one follows from the other one. Both are coarsest ways of telling the processes
apart. Other inequivalences, like bisimulation inequivalence, are implied by both.

In the following, we present a uniform game-based way of finding the most fitting
notions of (in)equivalence for process pairs like in Ex. 1.

© The Author(s) 2021
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Our approach is based on the fact that notions of process equivalence can be
characterized by two-player games. The defender’s winning region in the game
corresponds to pairs of equivalent states, and the attacker’s winning strategies
correspond to distinguishing formulas of Hennessy—Milner logic (HML).

Each notion of equivalence in van Glabbeek’s famous linear-time—branch-
ing-time spectrum [10] can be characterized by a subset of HML with specific
distinguishing power. Some of the notions are incomparable. So, often a process
pair that is equivalent with respect to one equivalence, is distinguished by a
set of slightly coarser or incomparable equivalences, without any one of them
alone being the coarsest way to distinguish the pair. As with the spectrum of
light where a mix of wave lengths shows to us as a color, there is a “mix” of
distinguishing capabilities involved in establishing whether a specific equivalence
is finest. Our algorithm is meant to analyze what is in the mix.

Contributions. This paper makes the following contributions:

— We introduce a special bisimulation game that neatly characterizes the
distinguishing formulas of HML for pairs of states in finite transition systems
(Subsection 3.1 and 3.2).

— We show how to enumerate the relevant distinguishing formulas using the
attacker’s winning region (Subsection 3.3).

— We give a way of constructing a finite set of distinguishing formulas guaranteed
to contain observations of the weakest possible observation languages, which
can be seen as a “spectroscopy” of the differences between two processes
(Subsection 3.4).

— We present a small web tool that is able to run the algorithm on finite-state
processes and output a visual representation of the game (Section 4). We
also report on the distinctions it finds for all the finitary examples from the
report version of the linear-time-branching-time spectrum [12].

We frame the contributions by a roundtrip through the basics of HML, games and
the spectrum (Section 2), a discussion of related work (Section 5), and concluding
remarks on future lines of research (Section 6).

2 Preliminaries: HML, Games, and the Spectrum

We use the concepts of transition systems, games, observations, and notions of
equivalence, largely due to the wake of Hennessy and Milner’s seminal paper [14].

2.1 Transition Systems and Hennessy—Milner Logic

Labeled transition systems capture a discrete world view, where there is a current
state and a branching structure of possible state changes to future states.

Definition 1 (Labeled transition system). A labeled transition system is a
tuple S = (P, X, —) where P is the set of states, X is the set of actions, and
— C P x X x P is the transition relation.
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Hennessy—Milner logic [14] describes finite observations (or “tests”) that one can
perform on such a system.

Definition 2 (Hennessy—Milner logic). Given an alphabet X, the syntax of
Hennessy—Milner logic formulas, HML[X], is inductively defined as follows:

Observations If ¢ € HML[X] and a € X, then {(a)p € HML[X].

Conjunctions If ¢; € HML[Y] for all i from an index set I, then \;c i €
HML[].

Negations If ¢ € HML[Y], then —¢ € HML[X].

We often just write A{wo, @1,...} for A\,c;¢i. T denotes A(), the nil-element of
the syntax tree, and (a) is a short-hand for (a)T. Let us also implicitly assume
that formulas are flattened in the sense that conjunctions do not contain other
conjunctions as immediate subformulas. We will sometimes talk about the syntax
tree height of a formula and consider the height of T to equal 0.

Intuitively, (a)y means that one can observe a system transition labeled by a
and then continue to make observation(s) ¢. Conjunction and negation work as
known from propositional logic. We will provide a common game semantics for
HML in the following subsection.

2.2 Games Semantics of HML

Let us fix some notions for Gale-Stewart-style reachability games where the
defender wins all infinite plays.

Definition 3 (Games). A simple reachability game Glgo] = (G, G4, —, g0)
consists of

— a set of game positions G, partitioned into
e a set of defender positions G4 C G
e and attacker positions G, =G\ Gy,
— a graph of game moves — C G X G, and
— an initial position gy € G.

Definition 4 (Plays and wins). We call the paths gogi... € G with g; — gi+1
plays of Glgo]. The defender wins infinite plays. If a finite play go . .. gn # is
stuck, the stuck player loses: The defender wins if g, € G,, and the attacker wins
Zf gn € Gd-

Definition 5 (Strategies and winning strategies). A (positional, nondeter-
ministic) strategy is a subset of the moves, F' C . If (fairly) picking elements
of strateqy F ensures a player to win, F is called a winning strategy for this
player. The player with a winning strategy for Glgo| is said to win G|go].

Definition 6 (Winning regions). The set W, C G of all positions g where
the attacker wins Glg] is called the attacker winning region (defender winning
region W4 analogous).
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All Gale-Stewart-style reachability games are determined, that is, W, U W, = G.
The winning regions of finite simple reachability games can be computed in linear
time of the number of game moves (cf. [13]). This is why the spectroscopy game
of this paper can easily be used in algorithms. It derives from the following game.

Definition 7 (HML game). For a transition system S = (P, X, —), the HML
game Gy lgo] = (G,Ga,—,g0) is played on G = P x HML[X], where the
defender controls observations and negated conjunctions, that is (p, {a)p) € Gq4
and (p, = \;cri) € Ga (for all p,p, 1), and the attacker controls the rest. There
are five kinds of moves:

— (p,{a)p) — .9) ifp>p,
— (p,~la)p) — (@,—) ifpp,
= (0, Nierwi) — (i) withi€l,
(pv _‘/\161301) — (pv _'501') with 1 € I’ and
- @) = (D).

Like in other logical games in the Ehrenfeucht—Fraissé tradition, the attacker
plays the conjunctions and universal quantifiers, whereas the defender plays the
disjunctions and existential quantifiers. For instance, (p,(a)y) is declared as
defender position, since (a)p is meant to become true precisely if there exists a
state p’ reachable p = p’ where ¢ is true.

As every move strictly reduces the height of the formula, the game must be
finite-depth (and cycle-free), and, for image-finite systems and formulas, also
finite. It is determined and the following semantics is total.

Definition 8 (HML semantics). For a transition system S = (P, X, —), the
semantics of HML is given by defining that ¢ is true at p in S, written [[go]]i, iff
the defender wins G5y [(p, ¢)]-

Ezample 2. Continuing Ex. 1, [[<a>ﬂ<d>T]]§§S is false: No matter whether the
defender plays to (b+d, —(d)T) or to (c+d, ~(d)T), the attacker wins by moving
to the stuck defender position (0,—T). (Recall that T is the empty conjunction
and that 0 is the completed process!)

2.3 The Spectrum of Behavioral Equivalences

Definition 9 (Distinguishing formula). A formula ¢ distinguishes state p
from q iff [¢],, is true and [¢], is not.!

Ezample 3. (a)—(d)T distinguishes P; from P, in Ex. 1 (but not the other way
around). (a) A{(b)T, (d)T} distinguishes P, from P;.

Definition 10 (Observational preorders and equivalences). A set of 0b-
servations, Ox C HML[X], preorders two states p,q, written p Cx q, iff no
formula ¢ € Ox distinguishes p from q. If p Cx q and q Cx p, then the two are
X -equivalent, written p =x q.

! In the following, we usually leave the transition system S implicit.
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Definition 11 (Linear-time—branching-time languages [12]). The linear-
time—branching-time spectrum is a lattice of observation languages (and of entailed
process preorders and equivalences). Every observation language Ox can perform
trace observations, that is, T € Ox and, if ¢ € Ox, then {a)p € Ox. At the
more linear-time side of the spectrum we have:

— trace observations Or: Just trace observations,

— failure observations Op: A, ;~(a;) € Op,

— readiness observations Or: A\, ;i € Or with each @; of form —=(a;) or {(a;),

— failure trace observations O pyp: /\ieﬂ’i € Opr with pg € Opr and, fori > 0,
PYi = _'<ai>7

— ready trace observations Ogyp: /\z’eI‘Pi € Orr with wg € Orr and, fori >0,
wi of form —(a;) or {(a;),

— impossible futures Op: /\ielﬁ% € Orr with all p; € O, and

— possible futures Opp: \;c;0: € Opp with all p; € {—, i} and ¥; € Orp.2

At the more branching-time side, we have simulation observations. Every simula-
tion observation language Oxs, has full conjunctive capacity, that is, if p; € Oxs
foralli € I, then \,c;¢i € Oxs.

— simulation observations O;g: Just simulation (and trace) observations,

— n-nested simulation observations O,s: =9 € Ops with ¢ € O,_1)s,

— ready simulation observations Ogg: —(a) € Ogs, and

— bisimulation observations Op: The same as Oxg, which is exactly HML[Z].

The observation languages of the spectrum differ in how many of the syntactic
features of HML one will encounter when descending into a formula’s syntax tree.
We will come back to this in Subsection 3.4.

Note that we consider A{p} to be an alias for ¢. With this aliasing, all the
listed observation languages are closed in the sense that all subformulas of an
observation are themselves part of that language. They thus are inductive in the
sense that all observations must be built from observations of the same language
with lower syntax tree height.

3 Distinguishing Formula Games

This section introduces our main contribution: the spectroscopy game (Def. 13),
and how to build all interesting distinguishing HML formulas from its winning
region (Def. 14). To justify our construction and to prove that we indeed find
distinguishing formulas (Thm. 1), let us first examine the formula preorder game
(Def. 12), which is closer to the problem whether formulas are (non-)distinguishing.

2 Like Kucera and Esparza [17], who studied the properties of “good” observation
languages, we glimpse over completed trace, completed simulation and possible worlds
observations here, because these observations need a special exhaustive A, cop- While
it could be provided for with additional operators, it would add another case in each
of the upcoming definitions and would break the closure property of observation
languages, without giving much in return.
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3.1 The Formula Preorder Game

Def. 10 entails a straightforward way of turning the problem whether a set of
observations O C Ox preorders two states p, q into a game: Have the attacker
pick a supposedly distinguishing formula ¢ € O, and then have the defender
choose whether to play the HML game (Def. 7) for [=¢],, or for [],. This direct
route will yield infinite games for infinite O—and all the languages from Def. 11
are infinite!

To bypass the infinity issue, we will introduce a variation of this game where
the attacker gradually chooses their attacking formula. In particular, this means
that the attacker now decides which observations to play. In return, the defender
does not need to pick a side in the beginning and may postpone the decision where
(on the right-hand side) an observation leads. Postponing decisions here means
that the defender may play non-deterministically, moving to multiple states at
once. The mechanics are analogous to the standard powerset construction when
transforming non-deterministic finite automata into deterministic ones.

Definition 12 (Formula preorder game). For a transition system S =
(P,X,—) and a set of observations Ox, the formula preorder game G$ [go] =
(G,Gq,—,go) consists of

— attacker positions (p, @, 0), € G, withp € P, Q € 27, and O C Ox,

— defender conjunction positions (p,QJ’))Q € G4 where the defender has to

answer to conjunction challenges, and
— defender negation positions (p, @, 0), € G4 where the defender has to answer
to negation challenges,

and five kinds of moves

— observation moves (p,Q,0), — (p,Q,0),

ifp=p withQ ={q |39 € Q.q ¢} and 0" ={p| (a)p € O},
— conjunct challenges (p,Q,0), — (p,Q,{yilic I})Q

if Niertpi € O,
— conjunct answers  (p,@,0)y — (p,{q},0),

ifq€Q,

— negation challenges (p,Q,0), — (0,Q,{¢})4
if ~¢p € O, and

— negation answers (p,Q,O); — (g, {p},0),
ifq€Q.

The formula preorder game precisely characterizes whether an observation lan-
guage is distinguishing:

Lemma 1. For a closed observation language Ox, the formula preorder game
g;%[(p,Q,O)a} with O C Ox is won by the defender precisely if, for every
observation ¢ € O with [] ,, there is a ¢ € Q such that [],.

Proof (Sketch). By induction over the height of formulas in Oy with arbitrary
p and @, and strengthening the induction predicate to not only consider ¢ but
also partial conjunctions AO” with O” C O’ whenever ¢ = AO’. To prove the
right-to-left direction, exploiting the determinacy of the game is convenient.
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——————————————

* (o, b,

|
| I

q€Q

Figurel. Schematic spectroscopy game Ga of Def. 13. Boxes stand for attacker
positions, circles for defender positions, arrows for moves. From the dashed boxes, the
moves are analogous to the ones of the connected solid positions.

3.2 The Spectroscopy Game

Let us now remove the formulas from the formula game (Def. 12). The idea is
to look at the game for the whole of HML, called Gp. Only attack moves in the
formula game change the current set of observations, and they are completely
guided by the context-free grammar of HML (Def. 2). Therefore, we can® assume
O to equal HML[X] in every reachable position of Gg. Effectively, O can be
canceled out of the game, without losing any information. We call the remaining

game the “spectroscopy game.” Figure 1 gives a graphical representation.

Definition 13 (Spectroscopy game). For a transition system S = (P, X, —),
the L-labeled spectroscopy game G2 [go] = (G, Ga, >'—>,go) with L = {—, A, %, (a)}
consists of

— attacker positions (p,Q), € G, withp € P, Q € 27,
— defender positions (p, Q), € Gq where the defender has to answer to conjunc-
tion challenges,

and four kinds of moves:

. (a) )
— observation moves (p,Q), - W {d |3¢€Q.q> Y. ifp S

— conjunct challenges (p, @), 2 (P, Q)45
conjunct answers  (p, Q)4 - (»,{a}), if g € Q, and
negation moves (p, {q}), — (g, {P}),-

We have already introduced two tricks in this definition to ease formula recon-
struction in the next subsection. (1) The attack moves are labeled with the

3 To be precise: Finite conjunctions may only lead to arbitrarily large subsets of
HML[X]. If the attacker has a way of winning by playing a conjunction, we can as
well approximate this move as playing AHML.
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syntactic constructs from which they originate. This does not change expressive
power. (2) Negation moves are restricted to situations where Q@ = {q}. After all,
winning attacker strategies will pay attention to only playing a negation after
minimizing the odds of being put on a bad position, anyways.

Note that, like in the formula game with arbitrary-depth formulas, the attacker
could force infinite plays by cycling through conjunction moves (and also negation
moves). However, they will not do this, as infinite plays are won by the defender.

Lemma 2. The spectroscopy game Ga[(p, {q}),] is won by the defender precisely
if p and q are bisimilar.

This fact is a corollary of the well-known Hennessy—Milner theorem (HML char-
acterizes bisimilarity), given that G is constructed as a simplification of Gp.
Comparing Ga to the standard bisimulation game from the literature (with
symmetry moves, see e.g. [3]), we can easily transfer attacker strategies from there.
In the standard game, the attacker will play (p,q) — (a,p’,q) with p = p’ and

the defender has to answer by (a,’,q) — (p',¢') with ¢ ¢’. In the spectroscopy
game, the attacker can enforce analogous moves by playing (p, {q}), ><i>> ,Q", .
(»',Q")4, which will make the defender pick (p’,Q’), - @' A{d'}).-

The opposite direction of transfer is not so easy, as the attacker has more
ways of winning in Ga. But this asymmetry is precisely why we have to use the
spectroscopy game instead of the standard bisimulation game if we want to learn
about, for example, interesting failure-trace attacks.

Due to the subset construction over P, the game size clearly is exponential in
the size of the state space. Going exponential is necessary, as we want to also
characterize weaker preorders like the trace preorder, where exponential P-subset
or X*-word constructions cannot be circumvented. However, for moderate real-
world systems, such constructions will not necessarily show their full exponential
blow-up (cf. [6]).

For concrete implementations, the subset construction also means that the
costs of storing game nodes and of comparing two nodes is linear in the state space
size. Complexity-wise this factor is dominated by the overall exponentialities.

3.3 Building Distinguishing Formulas from Attacker Strategies

Definition 14 (Strategy formulas). Given an attacker strategy F C (G, x
L x G) for the spectroscopy game Ga, the set of strategy formulas, Stratp(g,),
18 inductively defined by:

— If ¢ € Stratp(g),) and (ga, (b),9g,) € F, then (b)¢ € Stratr(ga),
— if ¢ € Stratp(g,,) and (gq, . g,) € F, then =p € Stratp(g,), and

— if ¢y, € Stratp(g,) for all g € I ={g, | ga—n g}, and (ga, A, a) € F,
then /\g‘,zelcpg;l € Stratp(g,)-
(a) A % = (d) A
Ezample 4. The attacks (P1,{P2}),—(b+ ¢, {b+d,c+ d}) ————(0,0),—
give rise to the formula (a) A{—(d)T}, which can be written as (a)—(d).
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Definition 15 (Winning strategy graph). Given the attacker winning region
W, and a starting position gy € W,, the attacker winning strategy graph Fj is
the subset of the —-graph that can be visited from go when following all —-edges
unless they lead out of W,,.

This graph can be cyclic. However, if the attacker plays inside their winning region
according to F,, they will always have paths to their final winning positions. So
even though the attacker could loop (and thus lose), they can always end the
game and win in the sense of Def. 5.

Theorem 1. If W, is the attacker winning region of the spectroscopy game Ga,
every ¢ € Stratg, ((p, {q}),) distinguishes p from q.

Proof. Due to Lem. 1, it suffices to show that ¢ € Stratp, ((p, @),) implies that
the attacker wins Gp[(p, @, {¢})]. We proceed by induction on the structure of
Stratp, with arbitrary p, Q.

— Assume ¢ € Stratg, ((p/,Q’),) and ((p,Q),, (b), (»',Q"),) € F,. By induction
hypothesis, the attacker wins Gg[(p’, @', {})]. By moving there, the attacker
also wins Gg|(p, @, {(b)¢)}], which must be a valid move as F, is a strategy
for Ga.

— Assume ¢ € Stratg, ((p',Q’),) and ((p,Q),,—, (?',Q’),) € F,. By induction
hypothesis, the attacker wins Gg[(p, @', {¢})]. By the construction of Ga,
Q = {p'}. So the attacker can win Gg[(p, @, {—¢})] by moving to this position
(with the defender having no choice when picking from Q).

— Assume ¢, € Stratp, (g,) for all g, = (', {¢'}), € I = {g, | 9a .
g.}, and ((p,@),, N\ 9d) € Fa. Due to the construction of Ga, Q = {¢' |
(v, {d'}), € I} and p’ = p. By induction hypothesis, the attacker wins all
Gel(¥' . {d'}, {wy })] and, as they can always focus on consuming just one
formula, also all Gg[(p, {q'}, {wgr | g, € I})]. This matches all the positions
the defender can move to after (p,Q,{wg | g4 € I}),- Moving there, the

attacker wins Gg[(p, Q, {/\ggeI‘ng Dl

Note that the theorem is only one-way, as every distinguishing formula can
neutrally be extended by saying that some additional clause that is true for both
processes does hold. Def. 14 will not find such bloated formulas.

Due to cycles in the game graph, Stratp, will usually yield infinitely many
formulas. But we can become finite by injecting some way of discarding long
formulas that unfold negation cycles or recursions of the underlying transition
system. The next section will discuss how to do this without discarding the
formulas that are interesting from the point of view of the spectrum.

3.4 Retrieving Cheapest Distinguishing Formulas

In our quest for the coarsest behavioral preorders (or equivalences) distinguishing
two states, we actually are only interested in the ones that are part of the smallest
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observation languages from the spectrum (Def. 11). We can think of the amount
of HML-expressiveness used by a formula as its price.

Let us look at the price structure of the spectrum from Def. 11. Table 1
gives an overview of how many syntactic HML-features the observation languages
may use at most. (If formulas use fewer, they still are considered part of that
observation language.) So, we are talking budgets, in the price analogy.

Conjunctions: How often may one run into a conjunction when descending
down the syntax tree. Negations in the beginning or following an observation
are counted as implicit conjunctions.

Positive deep branches: How many positive deep branches may appear in
each conjunction? We call subformulas of the form (a) or —(a) flat branches,
and the others deep branches.

Positive flat branches: How many positive flat branches may appear in each
conjunction?*

Negations: How many negations may be visited when descending?

Negations height: How high can the syntax trees under each negation be?

We say that a formula ¢ dominates @o if 1 has lower or equal values than o
in each dimension of the metrics with at least one entry strictly lower. Let us
note the following facts:

4 There is a special case for failure-traces where 1 positive flat branch may be counted
as deep, if there are no other deep branches. Hence the * in Table 1.

Table 1. Dimensions of observation expressiveness.

& S
~ 5
¢ & 9 &

.9 & > Nz

& ks X & o

5 L 2 .9 Q

X ~ ~ X X
N B B > >
§ & § S

Observations O o R S S
trace O 0 0 0 0
failure Op 1 0 0 1 1
readiness Or 1 0 00 1 1
failure-trace Opr 00 1 0* 1 1
ready-trace Opr 00 1 00 1 1
impossible-future Orp 1 0 0 1 o)
possible-future Opp 1 [ee) 00 1 [ee)
ready-simulation Ogrg 00 o) 00 1 1
(n+1)-nested-simulation O¢,41)s o0 0 00 n 0
bisimulation Og 00 0 00 0 0
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1 def game spectroscopy(S, po, qo):
2 G2 = (G,Gq,—) 1= construct _spectroscopy _game(S)
3 W, := compute_winning_region(G2)
a | if (po,{q0}), € Wa :
5 F, := winning_graph(G2, Wa, (po, {¢0}),)
6 strats|] := ()
7 todo := [(po, {q0}),]
8 while todo # [|:
9 g := todo.dequeue()
10 sg := strats[g]
11 if sg = undefined :
12 | strats[sg] := ()
13 gg' :={4d' | (g,-,9') € Fu Astrats(g') = undefined}
14 if gg' =0:
15 sg’ = nonDominatedOrIF (Strat’, qais(8))
16 if sg £ sg’ :
17 strats(g) := sg’
18 todo.enqueueEachEnd({g" | (¢*,-,8) € Fa AN g* ¢ todo})
19 else:
20 ‘ todo.enqueueEachFront(gg’)
21 return strats((po, {qo}),)
22 else:
23 R:={(p,a) | (p.{a}), € Ga \ Wa}
24 return R

Algorithm 1: Spectroscopy procedure.

1. When formulas are constructed recursively, like the strategy formulas in
Def. 14, they can only contribute to dominating (i.e. more expensive) or
equivalently valued formulas with respect to the metrics.

2. Formulas can be incomparable. For example, (a) \{(b), (¢)} and (a)—(a),
corresponding to coordinates (1,0,2,0,0) and (1,0,0,1,1), are incomparable.

3. A locally more expensive formula may pay off as part of a bigger global
formula. For example, if two states are distinguished by —(a) and (b), the
dominated formula —(a) may later be handy to construct a (comparably
cheap) failure formula.

These observations justify our algorithm to prune all formulas from the set
Stratp, (g) that are dominated with respect to the metrics by any other formula
in this set, unless they are impossible trace futures of the form —(aq)(as).... We
moreover add formula height in terms of observations as a dimension in the
metric, which leads to loop unfoldings being dominated by the shorter paths.
Algorithm 1 shows all the elements in concert. It constructs the spectroscopy
game G2 (Def. 13) and computes its attacker winning strategy graph F, (Def. 15).
If the attacker cannot win, the algorithm returns a bisimulation relation. Other-
wise, it constructs the distinguishing formulas: It keeps a map strats of strategy
formulas that have been found so far and a list of game positions todo that have
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preorder by (a)A{{c)T, (b)T}
P1 distinguished from P2 under failure preorder by (a)~(d)T
« 1: P2 distinguished from P1 under readiness,failure-trace
preorder by (a)A{(b)T,~(c)T}
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by (a)A{{d)T,(c)T}
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preorder by (a)A{~(b)T,(c)T}
« 2: P1 preordered to P2 by traces
« 3: P2 preordered to P1 by impossible-future

a.d.0)

+
+a.(c.0 +d.0))

Figure 2. Screenshot of a linear-time—branching-time spectroscopy of the processes
from Ex. 1.

to be updated. In every round, we take a game position g from todo. If some
of its successors have not been visited yet, we add them to the top of the work
list. Otherwise we call Straty, . ..(g) to compute distinguishing formulas using
the follow-up formulas found so far strats. This function mostly corresponds
to Def. 14 with the twist, that partial follow-ups are used instead of recursion,
and that the construction for conjunctions is split onto attacker and defender
positions. Of the found formulas, we keep only the non-dominated ones and
impossible future traces. If the result changes strats(g), we enqueue each game
predecessor to propagate the update there.

The algorithm structure is mostly usual fixed point machinery. It terminates
because, for each state in a finite transition system, there must be a bound on the
distinguishing mechanisms necessary with respect to our metrics, and Strat” will
only generate finitely many formulas under this bound. Keeping the impossible
future formulas unbounded is alright, because they have to be constructed from
trace formulas, which are subject to the bound.

4 A Webtool for Equivalence Spectroscopy

We have implemented the game and the generation of minimal distinguishing for-
mulas in the “Linear-time-Branching-time Spectroscope”, a Scala.js program that
can be run in the browser on https://concurrency-theory.org/ltbt-spectroscope/ .

The tool (screenshot in Fig. 2) consists of a text editor to input basic CCS-style
processes and a view of the transition system graph. When queried to compare
two processes, the tool yields the cheapest distinguishing HML-formulas it can
find for both directions. Moreover, it displays the attacker-winning part of the
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spectroscopy game overlayed over the transition system. The latter can also
enlighten matters, at least for small and comparably deterministic transition
systems. From the found formulas, the tool can also infer the finest fitting
preorders for pairs of processes (Fig. 3).

To “benchmark” the quality of the distinguishing formulas, we have run the
algorithm on all the finitary counterexample processes from the report version
of “The Linear-time-Branching-time Spectrum” [12]|. Table 2 reports the output
of our tool, on how to distinguish certain processes. The results match the
(in)equivalences given in [12]. In some cases, the tool finds slightly better ways of
distinction using impossible futures equivalence, which was not known at the time
of the original paper. All the computed formulas are quite elegant / minimal.

For each of the examples (from papers) we have considered, the browser’s
capacities sufficed to run the algorithm in 30 to 250 milliseconds. This does not
mean that one should expect the algorithm to work for systems with thousands
of states. There, the exponentialities of game and formula construction would
hit. However, such big instances would usually stem from preexisting models
where one would very much hope for the designers to already know under which
semantics to interpret their model. The practical applications of our browser tool
are more on the research side: When devising compiler optimizations, encodings,
or distributed algorithms, it can be very handy to fully grasp the equivalence
structure of isolated instances. The Linear-time-Branching-time Spectroscope
supports this process.

Table 2. Formulas found by our implementation for some interesting processes from [12].

D q Cheapest distinguishing formulas found |From
P1 P2 (a)A\{{(c), (b)} € Or N Os, Ex. 1
(a)~(d) € Or
ab+a a.b (a)—(b) € OF p. 13
ab+a.(b+c) a.(b+c) (a)y—(c) € Op p. 16
a.(b+cd) + a.(b+ce)+ (a)N{{c)(d),(b)} € Orr N Opr N Os, p- 21
a.(f +c.e) a.(f +c.d) (a) AN{{c){d), =(f)} € Orr N Okpr,
(@Y N{=(b), ~(c)(d)} € Orr (+3 variants)
a.b+a.(b+c)+a.cla.b+ a.c (a)A\{{c), ()} € Or N Osg p. 24
a.(b+a.(b+c.d)Ha.(a.(b+ c.d) + Eai b), (a) A{{c)(d), (b)}} € Orr N Og, |p. 27

A
A=), (@A) {d), ~(0)}} € Orr

a.c.e) + a.(a.c.d +Ha.c.e) + a.(a.c.d H(a

a.(c.e +b)) a.(c.e+b)+b)

a.(b.c+b.d) a.b.c+a.b.d (@) AN{{b){c), (b){d)} € Opr N Osg p. 31
a.b.ct+a.(b.c+b.d)|a.(b.c + b.d) (a)y—(b)(d) € Orr p. 34
a.b+a+a.c a.b+a.(b+c)+a.cl{a) AN{—(b),—(c)} € OF p. 38
a.b.c+ a.(b.c+0)la.(b.c+b) (a)y—(b)—(c) € Op p. 42
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Figure 3. Tool output of finest preorders for transition systems. (Left: Ex. 1; right:
ab+a.(b+c)+acvs ab+a+a.c.

5 Related Work and Alternatives

The game and the algorithm presented fill a blank spot in between the following
previous directions of work:

Distinguishing formulas in general. Cleaveland [5]| showed how to restore
(non-minimal) distinguishing formulas for bisimulation equivalence from the
execution of a bisimilarity checker based on the splitting of blocks. There, it has
been named as possible future work to extend the construction to other notions of
the spectrum. We are not aware of any place where this has previously been done
completely. But there are related islands like the encoding between CTL and
failure traces by Bruda and Zhang [7]. There is also more recent work like Jasper
et. al [15] extending to the generation of characteristic invariant formulas for
bisimulation classes. Previous algorithms for bisimulation in-equivalence tend to
generate formulas that alternate (a) and [b] observations while pushing negation
to the innermost level. Such formulas can not as easily be linked to the spectrum
as ours.

Game-characterizations of the spectrum. After Shukla et al. [18] had shown
how to characterize many notions of equivalence by HORNSAT games, Chen and
Deng [4] presented a hierarchy of games characterizing all the equivalences of the
linear-time—branching-time spectrum. The games from [4] cannot be applied as
easily as ours in algorithms because they allow word moves and thus are infinite
already for finite transition systems with cycles. Constructing distinguishing
formulas from attacker strategies of these games would be less convenient than
in our solution. Their parametric approach is comparable to fixing maximal price
budgets ex ante. Our on-the-fly picking of minimal prices is more flexible.
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Using game-characterizations for distinguishing formulas. There is
recent work by Mika-Michalski et al. [16] on constructing distinguishing formulas
using games in a more abstract coalgebraic setting focussed on the absence of
bisimulation. The game and formula generation there, however, cannot easily be
adapted for our purpose of performing a spectroscopy also for weaker notions.

Alternatives. One can also find the finest notion of equivalence between two
states by gradually minimizing the transition system with ever coarser equiv-
alences from bisimulation to trace equivalence until the states are conflated
(possibly also trying branches). Within a big tool suite of highly optimized algo-
rithms this should be quite efficient. We preferred the game approach, because it
can uniformly be extended to the whole spectrum and also has the big upside of
explaining the in-equivalences by distinguishing formulas.

An avenue of optimization for our approach, we have already tried, is to run
the formula search on a directed acyclic subgraph of the winning strategy graph.
For our purpose of finding most fitting equivalences, DAG-ification may preclude
the algorithm from finding the right formulas. On the other hand, if one is mainly
interested in a short distinguishing formula for instance, one can speed up the
process with DAG-ification by the order of remaining game rounds.

6 Conclusion

In this paper, we have established a convenient way of finding distinguishing
formulas that use a minimal amount of expressiveness.

System analysis tools can employ the algorithm to tell their users in more
detail how equivalent two process models are. While the generic approach is
costly, instantiations to more specific, symbolic, compositional, on-the-fly or
depth-bounded settings may enable wider applications. There are also some
algorithmic tricks (like building the concrete formulas only after having found the
price bounds and heuristics in handling the game graph) we have not explored in
this paper.

So far, we have only looked at strong notions of equivalence [10]. We plan to
verify the game in Isabelle/HOL and to extend our algorithm, so it also deals
with weak notions of equivalence [11]. These equivalences abstract over T-actions
representing “internal activity” and correspond to observation languages with a
special temporal (e)-observation (cf. [9]). This would generalize work on weak
game characterizations such as de Frutos-Escrig et al.’s [8] and our own [2,3]. The
vision is to arrive at one certifying algorithm that can yield finest equivalences
and cheapest distinguishing formulas as witnesses for the whole discrete spectrum.

On a different note, our group is also working on an educational computer
game about process equivalences.® The (theoretical) game of this paper can likely

5 A prototype featuring equivalences between strong bisimulation and coupled sim-
ulation (result of Dominik Peacock’s bachelor thesis) can be played on https:
/ /www.concurrency-theory.org/rvg-game/.
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be adapted to go in the other direction: from formulas to distinguished transition
systems. It may thereby synthesize levels for the (computer) game. So, in the
end, all this might actually contribute to actual people having actual fun.
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Abstract. Several problems in planning and reactive synthesis can be
reduced to the analysis of two-player quantitative graph games. Opti-
mization is one form of analysis. We argue that in many cases it may be
better to replace the optimization problem with the satisficing problem,
where instead of searching for optimal solutions, the goal is to search for
solutions that adhere to a given threshold bound.

This work defines and investigates the satisficing problem on a two-player
graph game with the discounted-sum cost model. We show that while the
satisficing problem can be solved using numerical methods just like the
optimization problem, this approach does not render compelling bene-
fits over optimization. When the discount factor is, however, an integer,
we present another approach to satisficing, which is purely based on au-
tomata methods. We show that this approach is algorithmically more
performant — both theoretically and empirically — and demonstrates the
broader applicability of satisficing over optimization.

1 Introduction

Quantitative properties of systems are increasingly being explored in automated
reasoning [4,14,16,20,21,26]. In decision-making domains such as planning and
reactive synthesis, quantitative properties have been deployed to describe soft
constraints such as quality measures [11], cost and resources [18,22], rewards [31],
and the like. Since these constraints are soft, it suffices to generate solutions that
are good enough w.r.t. the quantitative property.

Existing approaches on the analysis of quantitative properties have, however,
primarily focused on optimization of these constraints, i.e., to generate optimal
solutions. We argue that there may be disadvantages to searching for optimal
solutions, where good enough ones may suffice. First, optimization may be more
expensive than searching for good-enough solutions. Second, optimization re-
stricts the search-space of possible solutions, and thus could limit the broader
applicability of the resulting solutions. For instance, to generate solutions that
operate within battery life, it is too restrictive to search for solutions with mini-
mal battery consumption. Besides, solutions with minimal battery consumption
may be limited in their applicability, since they may not satisfy other goals, such
as desirable temporal tasks.

To this end, this work focuses on directly searching for good-enough solu-
tions. We propose an alternate form of analysis of quantitative properties in
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which the objective is to search for a solution that adheres to a given thresh-
old bound, possibly derived from a physical constraint such as battery life. We
call this the satisficing problem, a term popularized by H.A.Simon in economics
to mean satisfy and suffice, implying a search for good-enough solutions [1].
Through theoretical and empirical investigation, we make the case that satis-
ficing is algorithmically more performant than optimization and, further, that
satisficing solutions may have broader applicability than optimal solutions.

This work formulates and investigates the satisficing problem on two-player,
finite-state games with the discounted-sum (DS) cost model, which is a standard
cost-model in decision-making domains [24,25,28]. In these games, players take
turns to pass a token along the transition relation between the states. As the
token is pushed around, the play accumulates costs along the transitions using
the DS cost model. The players are assumed to have opposing objectives: one
player maximizes the cost, while the other player minimizes it. We define the
satisficing problem as follows: Given a threshold value v € Q, does there exist a
strategy for the minimizing (or maximizing) player that ensures the cost of all
resulting plays is strictly or non-strictly lower (or greater) than the threshold v?

Clearly, the satisficing problem is decidable since the optimization prob-
lem on these quantitative games is known to be solvable in pseudo-polynomial
time [17,23,32]. To design an algorithm for satisficing, we first adapt the cele-
brated value-iteration (VI) based algorithm for optimization [32] (§ 3). We show,
however, that this algorithm, called VISatisfice, displays the same complexity as
optimization and hence renders no complexity-theoretic advantage. To obtain
worst-case complexity, we perform a thorough worst-case analysis of VI for op-
timization. It is interesting that a thorough analysis of VI for optimization had
hitherto been absent from the literature, despite the popularity of VI. To ad-
dress this gap, we first prove that VI should be executed for O(|V]) iterations
to compute the optimal value, where V' and E refer to the sets of states and
transitions in the quantitative game. Next, to compute the overall complexity,
we take into account the cost of arithmetic operations as well, since they appear
in abundance in VI. We demonstrate an orders-of-magnitude difference between
the complexity of VI under different cost-models of arithmetic. For instance,
for integer discount factors, we show that VI is O(|V|- |E|) and O(|V|? - |E|)
under the unit-cost and bit-cost models of arithmetic, respectively. Clearly, this
shows that VI for optimization, and hence VISatisfice, does not scale to large
quantitative games.

We then present a purely automata-based approach for satisficing (§ 4). While
this approach applies to integer discount factors only, it solves satisficing in
O(|V| + |E|) time. This shows that there is a fundamental separation in com-
plexity between satisficing and VI-based optimization, as even the lower bound
on the number of iterations in VI is higher. In this approach, the satisficing prob-
lem is reduced to solving a safety or reachability game. Our core observation is
that the criteria to fulfil satisficing with respect to threshold value v € Q can be
expressed as membership in an automaton that accepts a weight sequence A iff
DS(A,d) R v holds, where d > 1 is the discount factor and R € {<, >, <, >}. In
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existing literature, such automata are called comparator automata (comparators,
in short) when the threshold value v = 0 [6,7]. They are known to have a com-
pact safety or co-safety automaton representation [9,19], which could be used to
reduce the satisficing problem with zero threshold value. To solve satisficing for
arbitrary threshold values v € @, we extend existing results on comparators to
permit arbitrary but fixed threshold values v € Q. An empirical comparison be-
tween the performance of VlISatisfice, VI for optimization, and automata-based
solution for satisficing shows that the latter outperforms the others in efficiency,
scalability, and robustness.

In addition to improved algorithmic performance, we demonstrate that satis-
ficing solutions have broader applicability than optimal ones (§ 5). We examine
this with respect to their ability to extend to temporal goals. That is, the prob-
lem is to find optimal/satisficing solutions that also satisfy a given temporal goal.
Prior results have shown this to not be possible with optimal solutions [13]. In
contrast, we show satisficing extends to temporal goals when the discount factor
is an integer. This occurs because both satisficing and satisfaction of temporal
goals are solved via automata-based techniques, which can be easily integrated.

In summary, this work contributes to showing that satisficing has algorith-
mic and applicability advantages over optimization in (deterministic) quanti-
tative games. In particular, we have shown that the automata-based approach
for satisficing have advantages over approaches in numerical methods like value-
iteration. This gives yet another evidence in favor of automata-based quantitative
reasoning and opens up several compelling directions for future work.

2 Preliminaries

2.1 Two-player graph games

Reachability and safety games. Both reachability and safety games are defined
over the structure G = (V = Vo W Vi, vinit, E, F) [30]. It consists of a directed
graph (V| E), and a partition (Vp, V1) of its states V. State vinit is the initial state
of the game. The set of successors of state v is designated by vE. For convenience,
we assume that every state has at least one outgoing edge, i.e, vE # () for all
v e V. F CV is a non-empty set of states. F is referred to as accepting and
rejecting states in reachability and safety games, respectively.

A play of a game involves two players, denoted by Py and P;, to create an
infinite path by moving a token along the transitions as follows: At the beginning,
the token is at the initial state. If the current position v belongs to V;, then P;
chooses the successor state from vE. Formally, a play p = vgvivs ... is an infinite
sequence of states such that the first state vg = vinit, and each pair of successive
states is a transition, i.e., (vg,vk41) € E for all k > 0. A play is winning for
player Py in a reachability game if it visits an accepting state, and winning for
player Py otherwise. The opposite holds in safety games, i.e., a play is winning
for player P if it does not visit any rejecting state, and winning for Py otherwise.

A strategy for a player is a recipe that guides the player on which state to go
next to based on the history of the play. A strategy is winning for a player P; if
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for all strategies of the opponent player P;_;, the resulting plays are winning for
P;. To solve a graph game means to determine whether there exists a winning
strategy for player P;. Reachability and safety games are solved in O(|V|+|E|).

Quantitative graph games. A quantitative graph game (or quantitative game, in
short) is defined over a structure G = (V = VoWV, vini, £, 7). V, Vo, Vi, Uinit, E,
plays and strategies are defined as earlier. Each transition of the game is associ-
ated with a cost determined by the cost function v : E — Z. The cost sequence
of a play p is the sequence of costs wowyws ... such that w, = v((vg, vgy1)) for
all 7 > 0. Given a discount factor d > 1, the cost of play p, denoted wt(p), is the
discounted sum of its cost sequence, i.e., wt(p) = DS(p,d) = wo+ 4+ 43 +....

2.2 Automata and formal languages

Biichi automata. A Biichi automaton is a tuple A = (S, X, ¢, sz, F), where
S is a finite set of states, X' is a finite input alphabet, 6 C (S x X' x §) is the
transition relation, state sz € § is the initial state, and F C S is the set of
accepting states [30]. A Biichi automaton is deterministic if for all states s and
inputs a, [{s'|(s,a,s") € § for some s'}| < 1. For a word w = wow; --- € ¥, a
run p of w is a sequence of states sgsi ... s.t. so = sz, and 7; = (85, Wy, S;01) € §
for all i. Let inf(p) denote the set of states that occur infinitely often in run p.
A run p is an accepting run if inf (p) NF # (. A word w is an accepting word if it
has an accepting run. The language of Biichi automaton A is the set of all words
accepted by A. Languages accepted by Biichi automata are called w-regular.

Safety and co-safety languages. Let L C X be a language over alphabet 3. A
finite word w € X* is a bad prefiz for L if for all infinite words y € X, z-y ¢ L.
A language L is a safety language if every word w ¢ L has a bad prefix for
L [3]. A co-safety language is the complement of a safety language [19]. Safety
and co-safety languages that are w-regular are represented by specialized Biichi
automata called safety and co-safety automata, respectively.

Comparison language and comparator automata. Given integer bound p > 0, dis-
count factor d > 1, and relation R € {<, >, <, >, =, #} the comparison language
with upper bound i, relation R, discount factor d is the language of words over
the alphabet X' = {—pu, ..., u} that accepts A € X¥ iff DS(A,d) R 0 holds [5,9].
The comparator automata with upper bound u, relation R, discount factor d is the
automaton that accepts the corresponding comparison language [6]. Depending
on R, these languages are safety or co-safety [9]. A comparison language is said
to be w-regular if its automaton is a Biichi automaton. Comparison languages
are w-regular iff the discount factor is an integer [7].

3 Satisficing via Optimization

This section shows that there are no complexity-theoretic benefits to solving the
satisficing problem via algorithms for the optimization problem.
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§ 3.1 formally defines the satisficing problem and reviews the celebrated value-
iteration (VI) algorithm for optimization by Zwick and Patterson (ZP). While
ZP claim without proof that the algorithm runs in pseudo-polynomial time [32],
its worst-case analysis is absent from literature. This section presents a detailed
account of the said analysis, and exposes the dependence of VI's worst-case
complexity on the discount factor d > 1 and the cost-model for arithmetic oper-
ations i.e. unit-cost or bit-cost model. The analysis is split into two parts: First,
§ 3.2 shows it is sufficient to terminate after a finite-number of iterations. Next,
§ 3.3 accounts for the cost of arithmetic operations per iteration to compute VI’s
worst-case complexity under unit- and bit-cost cost models of arithmetic Finally,
§ 3.4 presents and analyzes our VI-based algorithm for satisficing VISatisfice.

3.1 Satisficing and Optimization

Definition 1 (Satisficing problem). Given a quantitative graph game G and
a threshold value v € Q, the satisficing problem is to determine whether the
minimizing (or mazimizing) player has a strategy that ensures the cost of all
resulting plays is strictly or non-strictly lower (or greater) than the threshold v.

The satisficing problem can clealy be solved by solving the optimization prob-
lem. The optimal cost of a quantitative game is that value such that the max-
imizing and minimizing players can guarantee that the cost of plays is at least
and at most the optimal value, respectively.

Definition 2 (Optimization problem). Given a quantitative graph game G,
the optimization problem is to compute the optimal cost from all possible plays
from the game, under the assumption that the players have opposing objectives
to maximize and minimize the cost of plays, respectively.

Seminal work by Zwick and Patterson showed the optimization problem is
solved by the value-iteration algorithm presented here [32]. Essentially, the al-
gorithm plays a min-max game between the two players. Let wty(v) denote
the optimal cost of a k-length game that begins in state v € V. Then wiy(v)
can be computed using the following equations: The optimal cost of a 1-length
game beginning in state v € V is max{y(v,w)|(v,w) € E} if v € V; and
min{y(v,w)|(v,w) € E} if v € V;. Given the optimal-cost of a k-length game,
the optimal cost of a (k + 1)-length game is computed as follows:

whsr (v) = maz{y(v,w) + I - wtp(w)|(v,w) € E} if v eV
+ mm{W(v,w) + é . wtk(w)|(v7w) c E} ifvel

Let W be the optimal cost. Then, W = limy_, o0 wig(vinit). [27,32].

3.2 VI: Number of iterations

The VI algorithm described above terminates at infinitum. To compute the al-
gorithms’ worst-case complexity, we establish a linear bound on the number of
iterations that is sufficient to compute the optimal cost. We also establish a
matching lower bound, showing that our analysis is tight.
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Upper bound on number of iterations. The upper bound computation utilizes one
key result from existing literature: There exist memoryless strategies for both
players such that the cost of the resulting play is the optimal cost [27]. Then,
there must exists an optimal play in the form of a simple lasso in the quantitative
game, where a lasso is a play represented as vgvy ... v, (S0S2 - .. $m)*. We call the
initial segment vgvy ... v, its head, and the cycle segment sgs; ... S, its loop. A
lasso is simple if each state in {vg . .. v, So, . . . S } is distinet. We begin our proof
by assigning constraints on the optimal cost using the simple lasso structure of
an optimal play (Corollary 1 and Corollary 2).

Let I = ag...an(by...by)Y be the cost sequence of a lasso such that [ =
ag...a, and Iy = by...b, are the cost sequences of the head and the loop,
respectively. Then the following can be said about DS(I; - 1§, d),

Lemma 1. Letl =1 - (I2)¥ represent an integer cost sequence of a lasso, where
Iy and ly are the cost sequences of the head and loop of the lasso. Let d = %

be the discount factor. Then, DS(l,d) is a rational number with denominator at
most (pl'2! —gl'2l) - (plh]).

Lemma 1 is proven by unrolling DS(ly - 14, d). Then, the first constraint on
the optimal cost is as follows:

Corollary 1. Let G = (V,vini, E,7) be a quantitative graph game. Let d = £ be
the discount factor. Then the optimal cost of the game is a rational number with
denominator at most (p!V!1 — ¢!Vl . (plV1)

Proof. Recall, there exists a simple lasso that computes the optimal cost. Since a
simple lasso is of [V|-length at most, the length of its head and loop are at most
|V| each. So, the expression from Lemma 1 simplifies to (p!V1 —¢!V1)- (V). O

The second constraint has to do with the minimum non-zero difference be-
tween the cost of simple lassos:

Corollary 2. Let G = (V,vinit, E,7) be a quantitative graph game. Let d = %
be the discount factor. Then the minimal non-zero difference between the cost of
simple lassos is a rational with denominator at most (p{IV1) — q(UVD)2. (pZ VD),

Proof. Given two rational numbers with denominator at most a, an upper bound
on the denominator of minimal non-zero difference of these two rational numbers
is a?. Then, using the result from Corollary 1, we immediately obtain that the
minimal non-zero difference between the cost of two lassos is a rational number
with denominator at most (p(IVD — ¢(IVD)2. (p(IVD), O

For notational convenience, let boundy, = (p‘V| qu) . (p'V‘) and boundgif =
(pIVD — gVD2 . (pZIVD). Wlog, |V| > 1. Since, omndyr < Boundyy there is at
most one rational number with denominator boundy or less in any interval of
size m. Thus, if we can identify an interval of size less than | L 7— around

Ndditf . . oundgiff .
the optimal cost, then due to Corollary 1, the optimal cost will be the unique

rational number with denominator boundy or less in this interval.
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Fig. 1. Sketch of game graph which requires 2(|V|) iterations

Thus, the final question is to identify a small enough interval (of size m
or less) such that the optimal cost lies within it. To find an interval around the
optimal cost, we use a finite-horizon approximation of the optimal cost:

Lemma 2. Let W be the optimal cost in quantitative game G. Let > 0 be the
mazimum of absolute value of cost on transitions in G. Then, for all k € N,
1 " 1 "
Wtk (Vinit) — P < W < wtg(vinit) + 1 g1
Proof. Since W is the limit of wig(vinit) as k — oo, W must lie in between the
minimum and maximum cost possible if the k-length game is extended to an
infinite-length game. The minimum possible extension would be when the k-
length game is extended by iterations in which the cost incurred in each round
is —p. Therefore, the minimum possible value is wt (vinit) — dk%l - 7#5 . Similarly,

the maximum possible value is wity (vinit) + dk{l g O

Now that we have an interval around the optimal cost, we can compute the
number of iterations of VI required to make it smaller than 1/boundg.

Theorem 1. Let G = (V,Vinit, E,7) be a quantitative graph game. Let p > 0
be the maximum of absolute value of costs along transitions. The number of
iterations required by the value-iteration algorithm is

1. O(|V|) when discount factor d > 2,
2. O(log + |V|) when discount factor 1 < d < 2.

Proof (Sketch). As discussed in Corollary 1-2 and Lemma 2, the optimal cost is
the unique rational number with denominator m or less within the interval

(Wt (Vinie) — 7= * 7275 Wt (vinit) + 51 - 757) for a large enough k > 0 such that

the interval’s size is less than
k > 0 such that 2 - d—1~ud’€*1 < bourl]ddm holds. The case d > 2 is easy to simplify.

The case 1 < d < 2 involves approximations of logarithms of small values. ]

—L—_ Thus, our task is to determine the value of
boundg;s ’

Lower bound on number of iterations of VI. We establish a matching lower
bound of 2(|V|) iterations to show that our analysis is tight.

Consider the sketch of a quantitative game in Fig 1. Let all states belong
to the maximizing player. Hence, the optimization problem reduces to searching
for a path with optimal cost. Now let the loop on the right-hand side (RHS) be
larger than the loop on the left-hand side (LHS). For carefully chosen values of



On Satisficing in Quantitative Games 27

w and lengths of the loops, one can show that the path for optimal cost of a
k-length game is along the RHS loop when £ is small, but along the LHS loop
when k is large. This way, the correct maximal value can be obtained only at a
large value for k. Hence the VI algorithm runs for at least enough iterations that
the optimal path will be in the LHS loop. By meticulous reverse engineering of
the size of both loops and the value of w, one can guarantee that k = Q2(|V]).

3.3 Worst-case complexity analysis of VI for optimization

Finally, we complete the worst-case complexity analysis of VI for optimization.
We account for the the cost of arithmetic operations since they appear in abun-
dance in VI. We demonstrate that there are orders-of-magnitude of difference in
complexity under different models of arithmetic, namely unit-cost and bit-cost.

Unit-cost model. Under the unit-cost model of arithmetic, all arithmetic opera-
tions are assumed to take constant time.

Theorem 2. Let G = (V,Vinit, E,7) be a quantitative graph game. Let p > 0
be the maximum of absolute value of costs along transitions. The worst-case
complexity of the optimization problem under unit-cost model of arithmetic is

1. O(|V|- |E|) when discount factor d > 2,
2. O(log L2 v |E |) when discount factor 1 < d < 2.

Proof. Each iteration takes O(FE) cost since every transition is visited once. Thus,
the complexity is O(|E|) multiplied by the number of iterations (Theorem 1).
0

Bit-cost model. Under the bit-cost model, the cost of arithmetic operations de-
pends on the size of the numerical values. Integers are represented in their bit-
wise representation. Rational numbers Z are represented as a tuple of the bit-wise
representation of integers r and s. For two integers of length n and m, the cost
of their addition and multiplication is O(m + n) and O(m - n), respectively.

Theorem 3. Let G = (V, Vinit, E,v) be a quantitative graph game. Let > 0 be
the maximum of absolute value of costs along transitions. Let d = 2 > 1 be the
discount factor. The worst-case complexity of the optimization problem under
the bit-cost model of arithmetic is

1. O(|V|?- |E| - logp max{log i, logp}) when d > 2,
2. O((log(”) + IVI) - |E| - log p - max{log s, 1ng}) when 1 < d < 2.

Proof (Sketch). Since arithmetic operations incur a cost and the length of repre-
sentation of intermediate costs increases linearly in each iteration, we can show
that the cost of conducting the j-th iteration is O(|E| - j - log - log p). Their
summation will return the given expressions. O
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Remarks on integer discount factor. Our analysis shows that when the discount
factor is an integer (d > 2), VI requires ©(|V]) iterations. Its worst-case com-
plexity is, therefore, O(|V|-|E|) and O(|V'|?+| E|) under the unit-cost and bit-cost
models for arithmetic, respectively. From a practical point of view, the bit-cost
model is more relevant since implementations of VI will use multi-precision li-
braries to avoid floating-point errors. While one may argue that the upper bounds
in Theorem 3 could be tightened, they would not improve significantly due to
the £2(|V|) lower bound on number of iterations.

3.4 Satisficing via value-iteration

We present our first algorithm for the satisficing problem. It is an adaptation of
VI. However, we see that it does not fare better than VI for optimization.
VI-based algorithm for satisficing is described as follows: Perform VI for
optimization. Terminate as soon as one of these occurs: (a). VI completes as many
iterations from Theorem 1, or (b). The threshold value falls outside the interval
defined in Lemma 2. Either way, one can tell how the threshold value relates
to the optimal cost to solve satisficing. Clearly, (a) needs as many iterations as
optimization; (b) does not reduce the number of iterations since it is inversely
proportional to the distance between optimal cost and threshold value:

Theorem 4. Let G = (V, Vi, E,7) be a quantitative graph game with optimal
cost W. Let v € Q be the threshold value. Then number of iterations taken by a
VI-based algorithm for the satisficing problem is min{O(|V]), log ﬁ} ifd>2

and min{O(E4 + V) log =} if 1 < d < 2.

Observe that this bound is tight since the lower bounds from optimization
apply here as well. The worst-case complexity can be completed using similar
computations from § 3.3. Since, the number of iterations is identical to Theo-
rem 1, the worst-case complexity will be identical to Theorem 2 and Theorem 3,
showing no theoretical improvement. However, its implementations may termi-
nate soon for threshold values far from the optimal but it will retain worst-case
behavior for ones closer to the optimal. The catch is since the optimal cost is
unknown apriori, this leads to a highly variable and non-robust performance.

4 Satisficing via Comparators

Our second algorithm for satisficing is purely based on automata-methods. While
this approach operates with integer discount factors only, it runs linearly in
the size of the quantitative game. This is lower than the number of iterations
required by VI, let alone the worst-case complexities of VI. This approach reduces
satisficing to solving a safety or reachability game using comparator automata.

The intuition is as follows: Given threshold value v € Q and relation R, let
the satisficing problem be to ensure cost of plays relates to v by R. Then, a play p
is winning for satisficing with v and R if its cost sequence A satisfies DS(A,d) R
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v, where d > 1 is the discount factor. When d is an integer and v = 0, this simply
checks if A is in the safety/co-safety comparator, hence yielding the reduction.

The caveat is the above applies to v = 0 only. To overcome this, we extend
the theory of comparators to permit arbitrary threshold values v € Q. We find
that results from v = 0 transcend to v € Q, and offer compact comparator
constructions (§ 4.1). These new comparators are then used to reduce satisficing
to develop an efficient and scalable algorithm (§ 4.2). Finally, to procure a well-
rounded view of its performance, we conduct an empirical evaluation where we
see this comparator-based approach outperform the VI approaches § 4.3.

4.1 Foundations of comparator automata with threshold v € Q

This section extends the existing literature on comparators with threshold value
v =0 [6,5,9] to permit non-zero thresholds. The properties we investigate are of
safety/co-safety and w-regularity. We begin with formal definitions:

Definition 3 (Comparison language with threshold v € Q). For an in-
teger upper bound p > 0, discount factor d > 1, equality or inequality relation
R e {<,> <,> = #}, and a threshold value v € Q the comparison language
with upper bound p, relation R, discount factor d and threshold value v is a lan-
guage of infinite words over the alphabet X = {—p, ..., p} that accepts A € X¥
iff DS(A,d) R v holds.

Definition 4 (Comparator automata with threshold v € Q). For an in-
teger upper bound p > 0, discount factor d > 1, equality or inequality relation
R e {<,> <,>,=,#}, and a threshold value v € Q the comparator automata
with upper bound g, relation R, discount factor d and threshold value v is an
automaton that accepts the DS comparison language with upper bound p, relation
R, discount factor d and threshold value v.

Safety and co-safety of comparison languages. The primary observation
is that to determine if DS(A,d) R v holds, it should be sufficient to examine
finite-length prefixes of A since weights later on get heavily discounted. Thus,

Theorem 5. Let u > 1 be the integer upper bound. For arbitrary discount factor
d > 1 and threshold value v € Q

1. Comparison languages are safety languages for relations R € {<,>,=}.
2. Comparison language are co-safety languages for relations R € {<,>,#}.

Proof. The proof is identical to that for threshold value v = 0 from [9]. O

Regularity of comparison languages. Prior work on threshold value v =0
shows that a comparator is w-regular iff the discount factor is an integer [7]. We
show the same result for arbitrary threshold values v € Q.

First of all, trivially, comparators with arbitrary threshold value are not w-
regular for non-integer discount factors, since that already holds when v = 0.
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The rest of this section proves w-regularity with arbitrary threshold val-
ues for integer discount factors. But first, let us introduce some notations:
Since v € Q, w.l.o.g. we assume that the it has an n-length representation
v =o[0]v[1]...v[m](vIm+ 1jJv[m+2]...v[n])*. By abuse of notation, we denote
both the expression v[0]v[1]...v[m](v[m + 1v[m + 2]...v[n])* and the value
DS(v[0]v[1]...v[m](v[m + 1Jvm + 2] ...v[n])¥,d) by v.

We will construct a Biichi automaton for the comparison language L< for
relation <, threshold value v € Q and an integer discount factor. This is sufficient
to prove w-regularity for all relations since Biichi automata are closed.

From safety/co-safety of comparison languages, we argue it is sufficient to
examine the discounted-sum of finite-length weight sequences to know if their
infinite extensions will be in L<. For instance, if the discounted-sum of a finite-
length weight-sequence W is very large, W could be a bad-prefix of L<. Similarly,
if the discounted-sum of a finite-length weight-sequence W is very small then
for all of its infinite-length bounded extensions Y, DS(W -Y,d) < v. Thus, a
mathematical characterization of wvery large and very small would formalize a
criterion for membership of sequences in L< based on their finite-prefixes.

To this end, we use the concept of a recoverable gap (or gap value), which is a
measure of distance of the discounted-sum of a finite-sequence from 0 [12]. The
recoverable gap of a finite weight-sequences W with discount factor d, denoted
gap(W,d), is defined as follows: If W = ¢ (the empty sequence), gap(e,d) = 0,
and gap(W,d) = d"W!=1 . DS(W, d) otherwise. Then, Lemma 3 formalizes very
large and very small in Item 1 and Item 2, respectively, w.r.t. recoverable gaps.
As for notation, given a sequence A, let A[...1i| denote its i-length prefix:

Lemma 3. Let p > 0 be the integer upper bound, d > 1 be the discount factor.
Let v € Q be the threshold value s.t. v =v[0]...v[m|(v[m +1]...v[n])¥. Let W
be a non-empty, bounded, finite-length weight-sequence.

1. gap(W —v[---|[W|],d) > L-DS[|[W|---],d)+ 5. iff for all infinite-length,
bounded extensions Y, DS(W -Y d) > v

2. gap(W —v[--- |W|],d) < 3-DS([|W|---],d)— 25 iff For all infinite-length,
bounded extensions Y, DS(W -Y d) <wv

Proof. We present proof of one direction of Item 1. The others follow simi-
larly. Let W be s.t for every infinite-length, bounded Y, DS(W -Y,d) > v
holds. Then DS(W,d) 4+ —igr - DS(Y,d) > DS(v[--- W] - v[[W]|---],d) implies
DS(W,d) — DS(v[---[W|,d) > w7 - (DS(u[|W]---],d) — DS(Y,d)) implies
gap(W —v[--- [W|},d) > Z(DS(u[|W]---],d) + £5). 0

This segues into the state-space of the Biichi automaton. We define the state
space so that state s represents the gap value s. The idea is that all finite-length
weight sequences with gap value s will terminate in state s. To assign transition
between these states, we observe that gap value is defined inductively as follows:
gap(e,d) = 0 and gap(W -w, d) = d-gap(W, d)+w, where w € {—p, ..., u}. Thus
there is a transition from state s to state t on a € {—p,...,u}t if t =d- s+ a.
Since gap(e,d) = 0, state 0 is assigned to be the initial state.
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The issue with this construction is it has infinite states. To limit that, we
use Lemma 3. Since Item 1 is a necessary and sufficient criteria for bad prefixes
of safety language L<, all states with value larger than Item 1 are fused into
one non-accepting sink. For the same reason, all states with gap value less than
Item 1 are accepting states. Due to Item 2, all states with value less than Item 2
are fused into one accepting sink. Finally, since d is an integer, gap values are
integral. Thus, there are only finitely many states between Item 2 and Item 1.

Theorem 6. Let ;1 > 0 be an integer upper bound, d > 1 an integer discount
factor, R an equality or inequality relation, and v € Q the threshold value with an
n-length representation given by v = v[0Jv[l]...v[m](vm + 1v[m +2]...v[n])*.

1. The DS comparator automata for p,d,R,v is w-reqular iff d is an integer.
2. For integer discount factors, the DS comparator is a safety or co-safety au-

tomaton with O(£75) states.

Proof. To prove Item 1 we present the construction of an w-regular compara-
tor automaton for integer upper bound p > 0, integer discount factor d > 1,
inequality relation <, and threshold value v € Q s.t. v = v[0]v[1]...v[m](v[m +
1v[m +2]...v[n])*. , denoted by A = (S, sr, X, §, F) where:
For i€ {0,...,n}, let U; = - DS(vli---],d) + 2 (Lemma 3, Item 1)
For i€ {0,...,n}, let Ly =% - DS(v[i---],d) — 225 (Lemma 3, Item 2)
— S =, SiU{bad,veryGood} where S; = {(s,%)|s € {|Li] +1,...,[U;]}}
— Initial state s; = (0,0), Accepting states F = S\ {bad}
— Alphabet ¥ ={—p,—p+1,...,0— 1, u}
— Transition function 6 C S x X' — S where (s,a,t) € § then:
1. If s € {bad, veryGood}, then t = s for all a € X
2. If s is of the form (p,i), and a € X
(a) fd-p+a—wo[i] > |U;], then t = bad
(b) If d-p+a—wo[i] < |[L;], then t = veryGood
(c) I |Li] <d-p+a—0o[i] < |U;],
i. fi==mn,thent=(d-p+a—o[i],m+1)
ii. Else, t =(d-p+a—v[i,i+1)

We skip proof of correctness as it follows from the above discussion. Observe, A
is deterministic. It is a safety automaton as all non-accepting states are sinks.
To prove Item 2, observe that since the comparator for < is a determinis-
tic safety automaton, the comparator for > is obtained by simply flipping the
accepting and non-accepting states. This is a co-safety automaton of the same
size. One can argue similarly for the remaining relations. a

4.2 Satisficing via safety and reachability games

This section describes our comparator-based linear-time algorithm for satisficing
for integer discount factors.
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As described earlier, given discount factor d > 1, a play is winning for satis-
ficing with threshold value v € Q and relation R if its cost sequence A satisfies
DS(A,d) R v. We now know from Theorem 6, that the winning condition for
plays can be expressed as a safety or co-safety automaton for any v € QQ as long
as the discount factor is an integer. Therefore, a synchronized product of the
quantitative game with the safety or co-safety comparator denoting the winning
condition completes the reduction to a safety or reachability game, respectively.

Theorem 7. Let G = (V,vinit, E,7) be a quantitative game, d > 1 the inleger
discount factor, R the equality or inequality relation, and v € Q the threshold
value with an n-length representation. Let p > 0 be the maximum of absolute
values of costs along transitions in G. Then,

1. The satisficing problem reduces to solving a safety game if R € {<, >}
2. The satisficing problem reduces to solving a reachability game if R € {<, >}
3. The satisficing problem is solved in O((|V| + |E|) - u-n) time.

Proof. The first two points use a standard synchronized product argument on the
following formal reduction [15]: Let G = (V' = VoWV, vinit, E, ¥) be a quantitative
game, d > 1 the integer discount factor, R the equality or inequality relation,
and v € Q the threshold value with an n-length representation. Let p > 0 be
the maximum of absolute values of costs along transitions in G. Then, the first
step is to construct the safety/co-safety comparator A = (S, sy, X, 4§, F) for u,
d, R and v. The next is to synchronize the product of G and A over weights to
construct the game GA = (W = Wy U Wy, s¢ X init, dw, Fw ), where

— W =V x §. In particular, Wy =V x S and W; =V} x S. Since Vj and V3
are disjoint, Wy and W; are disjoint too.

— Let sg x init be the initial state of GA.

Transition relation oy = W xW is defined such that transition ((v, s), (v/, s'))

€ dy synchronizes between transitions (v,v’) € § and (s,a,s’) € d¢ if

a = ~((v,v")) is the cost of transition in G.

— Fw =V x F. The game is a safety game if the comparator is a safety au-
tomaton and a reachability game if the comparator is a co-safety automaton.

We need the size of GA to analyze the worst-case complexity. Clearly, GA
consists of O(|V] -y - n) states. To establish the number of transitions in GA,
observe that every state (v,s) in GA has the same number of outgoing edges as
state v in G because the comparator A is deterministic. Since GA has O(u - n)
copies of every state v € G, there are a total of O(|E| - - n) transitions in GA.
Since GA is either a safety or a reachability game, it is solved in linear-time to
its size. Thus, the overall complexity is O((|V| + |E|) - - n). O

With respect to the value u, the VI-based solutions are logarithmic in the
worst case, while comparator-based solution is linear due to the size of the com-
parator. From a practical perspective, this may not be a limitation since weights
along transitions can be scaled down. The parameter that cannot be altered is
the size of the quantitative game. With respect to that, the comparator-based
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Fig. 2. Cactus plot. © = 5,v = 3. Total Fig. 3. Single counter scalable benchmark.
benchmarks = 291 w=>5,v = 3. Timeout = 500s.

solution displays clear superiority. Finally, the comparator-based solution is af-
fected by n, length of the representation of the threshold value while the VI-based
solution does not. It is natural to assume that the value of n is small.

4.3 Implementation and Empirical Evaluation

The goal of the empirical analysis is to determine whether the practical perfor-
mance of these algorithms resonate with our theoretical discoveries.

For an apples-to-apples comparison, we implement three algorithms: (a)
VIOptimal: Optimization via value-iteration, (b)VISatisfice: Satisficing via value-
iteration, and (c). CompSatisfice: Satisficing via comparators. All tools have been
implemented in C++. To avoid floating-point errors in VIOptimal and VISatisfice,
the tools invoke the open-source GMP (GNU Multi-Precision) [2]. Since all arith-
metic operations in CompSatisfice are integral only, it does not use GMP.

To avoid completely randomized benchmarks, we create ~290 benchmarks
from LTL¢ benchmark suite [29]. The state-of-the-art LTL¢-to-automaton tool
Lisa [8] is used to convert LTL¢ to (non-quantitative) graph games. Weights are
randomly assigned to transitions. The number of states in our benchmarks range
from 3 to 50000+. Discount factor d = 2, threshold v € [0 — 10]. Experiments
were run on 8 CPU cores at 2.4GHz, 16GB RAM on a 64-bit Linux machine.

Observations and Inferences Overall, we see that VISatisfice is efficient and
scalable, and exhibits steady and predictable performance.

CompSatisfice outperforms VIOptimal in both runtime and number of bench-
marks solved, as shown in Fig 2. It is crucial to note that all benchmarks solved
by VIOptimal had fewer than 200 states. In contrast, CompSatisfice solves much
larger benchmarks with 3-50000+ number of states.

To test scalability, we compared both tools on a set of scalable benchmarks.
For integer parameter i > 0, the i-th scalable benchmark has 3 - 2% states. Fig 3
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Fig. 4. Robustness. Fix benchmark, vary v. p = 5. Timeout = 500s.

plots number-of-states to runtime in log-log scale. Therefore, the slope of the
straight line will indicate the degree of polynomial (in practice). It shows us
that CompSatisfice exhibits linear behavior (slope ~1), whereas VIOptimal is
much more expensive (slope >> 1) even in practice.

CompSatisfice is more robust than VISatisfice. We compare CompSatisfice and
VISatisfice as the threshold value changes. This experiment is chosen due to
Theorem 4 which proves that VISatisfice is non-robust. As shown in Fig 4, the
variance in performance of VISatisfice is very high. The appearance of peak close
to the optimal value is an empirical demonstration of Theorem 4. On that other
hand, CompSatisfice stays steady in performance owning to its low complexity.

5 Adding Temporally Extended Goals

Having witnessed algorithmic improvements of comparator-based satisficing over
VI-based algorithms, we now shift focus to the question of applicability. While
this section examines this with respect to the ability to extend to temporal
goals, this discussion highlights a core strength of comparator-based reasoning
in satisficing and shows its promise in a broader variety of problems.

The problem of extending optimal/satisficing solutions with a temporal goal
is to determine whether there exists an optimal/satisficing solution that also
satisfies a given temporal goal. Formally, given a quantitative game G, a labeling
function £ : V — 247 which assigns states V of G to atomic propositions from
the set AP, and a temporal goal ¢ over AP, we say a play p = vgvy ... satisfies
¢ if its proposition sequence given by L(vg)L(v1)... satisfies the formula ¢.
Then to solve optimization/satisficing with a temporal goal is to determine if
there exists a solutions that is optimal /satisficing and also satisfies the temporal
goal along resulting plays. Prior work has proven that the optimization problem
cannot be extended to temporal goals [13] unless the temporal goals are very
simple safety properties [10,31]. In contrast, our comparator-based solution for
satisficing can naturally be extended to temporal goals, in fact to all w-regular
properties, owing to its automata-based underpinnings, as shown below:



On Satisficing in Quantitative Games 35

Theorem 8. Let G a quantitative game with state set V, L : V — 247 be a
labeling function over set of atomic propositions AP, and ¢ be a temporal goal
over AP and A, be its equivalent deterministic parity automaton. Let d > 1 be
an integer discount factor, p be the maximum of the absolute values of costs along
transitions, and v € Q be the threshold value with an n-length representation.
Then, solving satisficing with temporal goals reduces to solving a parity game of
size linear in |V|, u, n and |A,|.

Proof. The reduction involves two steps of synchronized products. The first re-
duces the satisficing problem to a safety/reachability game while preserving
the labelling function. The second synchronization product is between the safe-
ty/reachability game with the DPA A,. These will synchronize on the atomic
propositions in the labeling function and DPA transitions, respectively. There-
fore, resulting parity game will be linear in |V, p and n, and |Ay|. O

Broadly speaking, our ability to solve satisficing via automata-based meth-
ods is a key feature as it propels a seamless integration of quantitative prop-
erties (threshold bounds) with qualitative properties, as both are grounded in
automata-based methods. VI-based solutions are inhibited to do so since numeri-
cal methods are known to not combine well with automata-based methods which
are so prominent with qualitative reasoning [5,20]. This key feature could be ex-
ploited in several other problems to show further benefits of comparator-based
satisficing over optimization and VI-based methods.

6 Concluding remarks

This work introduces the satisficing problem for quantitative games with the
discounted-sum cost model. When the discount factor is an integer, we present
a comparator-based solution for satisficing, which exhibits algorithmic improve-
ments — better worst-case complexity and efficient, scalable, and robust per-
formance — as well as broader applicability over traditional solutions based on
numerical approaches for satisficing and optimization. Other technical contri-
butions include the presentation of the missing proof of value-iteration for opti-
mization and the extension of comparator automata to enable direct comparison
to arbitrary threshold values as opposed to zero threshold value only.

An undercurrent of our comparator-based approach for satisficing is that it
offers an automata-based replacement to traditional numerical methods. By do-
ing so, it paves a way to combine quantitative and qualitative reasoning without
compromising on theoretical guarantees or even performance. This motivates
tackling more challenging problems in this area, such as more complex environ-
ments, variability in information availability, and their combinations.
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Abstract. It is well-known that the winning region of a parity game
with n nodes and k priorities can be computed as a k-nested fixpoint
of a suitable function; straightforward computation of this nested fix-
point requires O(n%) iterations of the function. Calude et al.’s recent
quasipolynomial-time parity game solving algorithm essentially shows
how to compute the same fixpoint in only quasipolynomially many itera-
tions by reducing parity games to quasipolynomially sized safety games.
Universal graphs have been used to modularize this transformation of
parity games to equivalent safety games that are obtained by combin-
ing the original game with a universal graph. We show that this ap-
proach naturally generalizes to the computation of solutions of systems
of any fixpoint equations over finite lattices; hence, the solution of fix-
point equation systems can be computed by quasipolynomially many
iterations of the equations. We present applications to modal fixpoint
logics and games beyond relational semantics. For instance, the model
checking problems for the energy p-calculus, finite latticed p-calculi, and
the graded and the (two-valued) probabilistic p-calculus — with numbers
coded in binary — can be solved via nested fixpoints of functions that
differ substantially from the function for parity games but still can be
computed in quasipolynomial time; our result hence implies that model
checking for these p-calculi is in QP. Moreover, we improve the exponent
in known exponential bounds on satisfiability checking.

games, energy games, p-calculus

1 Introduction

Fixpoints are pervasive in computer science, governing large portions of recur-
sion theory, concurrency theory, logic, and game theory. One famous example
are parity games, which are central, e.g., to networks and infinite processes [5],
tree automata [43], and p-calculus model checking [17]. Winning regions in parity
games can be expressed as nested fixpoints of particular set functions (e.g. [8,16]).
In recent breakthrough work on the solution of parity games in quasipolynomial
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time, Calude et al. [9] essentially show how to compute this particular fixpoint
in quasipolynomial time, that is, in time 2€(1°27)%) for some constant ¢. Subse-
quently, it has been shown [13,14,28] that universal graphs (that is, even graphs
into which every even graph of a certain size embeds by a graph morphism) can
be used to transform parity games to equivalent safety games obtained by pairing
the original game with a universal graph; the size of these safety games is deter-
mined by the size of the employed universal graphs and it has been shown [13,14]
that there are universal graphs of quasipolynomial size. This yields a uniform
algorithm for solving parity games to which all currently known quasipolynomial
algorithms for parity games have been shown to instantiate using appropriately
defined universal graphs [13,14].

Briefly, our contribution in the present work is to show that the method of
using universal graphs to solve parity games generalizes to the computation of
nested fixpoints of arbitrary functions over finite lattices. That is, given functions
fi : P(U)**1 — P(U), 0 < i < k on a finite lattice U, we give an algorithm that
uses universal graphs to compute the solutions of systems of equations

Xi =y, fi(Xo,..., Xg) 0<i<k

where 7; = GFP (greatest fixpoint) or n; = LFP (least fixpoint). Since there are
universal graphs of quasipolynomial size, the algorithm requires only quasipoly-
nomially many iterations of the functions f; and hence runs in quasipolynomial
time, provided that all f; are computable in quasipolynomial time. While it
seems plausible that this time bound may also be obtained by translating equa-
tion systems to equivalent standard parity games by emulating Turing machines
to encode the functions f; as Boolean circuits (leading to many additional states
but avoiding exponential blowup during the process), we emphasize that the
main point of our result is not so much the ensuing time bound but rather the
insight that universal graphs and hence many algorithms for parity games can
be used on a much more general level which yields a precise (and relatively low)
quasipolynomial bound on the number of function calls that are required to
obtain solutions of fixpoint equation systems.

In more detail, the method of Calude et al. can be described as annotating
nodes of a parity game with histories of quasipolynomial size and then solving
this annotated game, but with a safety winning condition instead of the much
more involved parity winning condition. It has been shown that these histories
can be seen as nodes in universal graphs, in a more general reduction of parity
games to safety games in which nodes from the parity game are annotated with
nodes from a universal graph. This method has also been described as pairing
separating automata with safety games [14]. It has been shown [13,14] that there
are exponentially sized universal graphs (essentially yielding the basis for e.g. the
fixpoint iteration algorithm [8] or the small progress measures algorithm [27]) and
quasipolynomially sized universal graphs (corresponding, e.g., to the succinct
progress measure algorithm [28], or to the recent quasipolynomial variant of
Zielonka’s algorithm [38]).

Hasuo et al. [22], and more generally, Baldan et al. [4] show that nested
fixpoints in highly general settings can be computed by a technique based on



40 D. Hausmann and L. Schroder

progress measures, implicitly using exponentially sized universal graphs, obtain-
ing an exponential bound on the number of iterations. Our technique is based
on showing that one can make explicit use of universal graphs, correspondingly
obtaining a quasipolynomial upper bound on the number of iterations. In both
cases, computation of the nested fixpoint is reduced to a single (least or greatest
depending on exact formulation) fixpoint of a function that extends the given
set function to keep track of the exponential and quasipolynomial histories, re-
spectively, in analogy to the previous reduction of parity games to safety games.
Our central result can then be phrased as saying that the method of trans-
forming parity conditions to safety conditions using universal graphs generalizes
from solving parity games to solving systems of equations that use arbitrary
functions over finite lattices. We use fizpoint games [4,42] to obtain the cru-
cial result that the solutions of equation systems have history-free witnesses,
in analogy to history-freeness of winning strategies in parity games. These fix-
point games have exponential size but we show how to extract polynomial-size
witnesses for winning strategies of Eloise, and use these witnesses to show that
any node won by Eloise is also won in the safety game obtained by a universal
graph. For the backwards direction, we show that a witness for satisfaction of
the safety condition regarding the universal graph induces a winning strategy
in the fixpoint game. This proves that universal graphs can be used to compute
nested fixpoints of arbitrary functions over finite lattices and hence yields the
quasipolynomial upper bound for computation of nested fixpoints. Moreover, we
present a progress measure algorithm that uses the nodes of a quasipolynomial
universal graph to measure progress and that can be used to efficiently compute
nested fixpoints of arbitrary functions over finite lattices.

As an immediate application of these results, we improve known deterministic
algorithms for solving energy parity games [10], that is, parity games in which
edges have additional integer weights and for which the winning condition is
a combined parity condition and a (quantitative) positivity condition on the
sum of the accumulated weights. Our results also show that the model checking
problem for the associated energy p-calculus [2] is in QP. In a similar fashion,
we obtain quasipolynomial algorithms for model checking in latticed p-calculi [7]
in which the truth values of formulae are computed over arbitrary finite lattices,
and for solving associated latticed parity games [30].

Furthermore, our results improve generic upper complexity bounds on model
checking and satisfiability checking in the coalgebraic p-calculus [12], which
serves as a generic framework for fixpoint logics beyond relational semantics.
Well-known instances of the coalgebraic pu-calculus include the alternating-
time p-calculus [1], the graded p-calculus [32], the (two-valued) probabilistic
p-calculus [12,34], and the monotone p-calculus [18] (the ambient fixpoint logic
of concurrent dynamic logic CPDL [39] and Parikh’s game logic [37]). This level
of generality is achieved by abstracting system types as set functors and sys-
tems as coalgebras for the given functor following the paradigm of universal
coalgebra [40]. It was previously shown [24] that the model checking problem
for coalgebraic p-calculi reduces to the computation of a nested fixpoint. This
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fixpoint may be seen as a coalgebraic generalization of a parity game winning
region but can be literally phrased in terms of small standard parity games
(implying quasipolynomial run time) only in restricted cases. Our results show
that the relevant nested fixpoint can be computed in quasipolynomial time in
all cases of interest. Notably, we thus obtain as new specific upper bounds that
even under binary coding of numbers, the model checking problems of both the
graded p-calculus and the probabilistic p-calculus are in QP, even when the
syntax is extended to allow for (monotone) polynomial inequalities.

Similarly, the satisfiability problem of the coalgebraic p-calculus has been
reduced to a computation of a nested fixpoint [25], and our present results imply
a marked improvement in the exponent of the associated exponential time bound.
Specifically, the nesting depth of the relevant fixpoint is exponentially smaller
than the basis of the lattice. Our results imply that this fixpoint is computable in
polynomial time so that the complexity of satisfiability checking in coalgebraic
p-calculi drops from 20(n*klogn) 1 90(nklogn) for formulae of size n and with
alternation depth k.

Related Work The quasipolynomial bound on parity game solving has in the
meantime been realized by a number of alternative algorithms. For instance, Ju-
rdzinski and Lazic [28] use succinct progress measures to improve to quasilinear
(instead of quasipolynomial) space; Fearnley et al. [19] similarly achieve quasilin-
ear space. Lehtinen [33] and Boker and Lehtinen [6] present a quasipolynomial
algorithm using register games. Parys [38] improves Zielonka’s algorithm [43]
to run in quasipolynomial time. In particular the last algorithm is of interest
as an additional candidate for generalization to nested fixpoints, due to the
known good performance of Zielonka’s algorithm in practice. Daviaud et al. [15]
generalize quasipolynomial-time parity game solving by providing a pseudo-
quasipolynomial algorithm for mean-payoff parity games. On the other hand,
Czerwinski et al. [14] give a quasipolynomial lower bound on universal trees, im-
plying a barrier for prospective polynomial-time parity game solving algorithms.
Chatterjee et al. [11] describe a quasipolynomial time set-based symbolic algo-
rithm for parity game solving that is parametric in a lift function that determines
how ranks of nodes depend on the ranks of their successors, and thereby unifies
the complexity and correctness analysis of various parity game algorithms. Al-
though part of the parity game structure is encapsulated in a set operator CPre,
the development is tied to standard parity games, e.g. in the definition of the
best function, which picks minimal or maximal ranks of successors depending on
whether a node belongs to Abelard or Eloise.

Early work on the computation of unrestricted nested fixpoints has shown
that greatest fixpoints require less effort in the fixpoint iteration algorithm, which
can hence be optimized to compute nested fixpoints with just O(ng) calls of
the functions at hand [35,41], improving the previously known (straightforward)
bound O(n*); here, n denotes the size of the basis of the lattice and & the number
of fixpoint operators. Recent progress in the field has established the above-
mentioned approaches using progress measures [22] and fixpoint games [4] in
general settings, both with a view to applications in coalgebraic model checking
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like in the present paper. In comparison to the present work, the respective
bounds on the required number of function iterations in the above unrestricted
approaches all are exponential.

A preprint of our present results, specifically the quasipolynomial upper
bound on function iteration in fixpoint computation, has been available as an
arXiv preprint for some time [23]. Subsequent to this preprint, Arnold, Niwin-
ski and Parys [3] have improved the actual run time by reducing the overhead
incurred per iteration (and they give a form of quasipolynomial lower bound for
universal-tree-based algorithms), working (like [23]) in the less general setting of
directly nested fixpoints over powerset lattices; we show in Section 6 how such
an improvement can be incorporated also in our lattice-based algorithm.

2 Notation and Preliminaries

Let U and V be sets, and let R C U x U be a binary relation on U. For
u € U, we then put R(u) := {v € U | (u,v) € R}. We put [k] = {0,...,k} for
k € N. Labelled graphs G = (W, R) consist of a set W together with a relation
R C W x Ax W where A is some set of labels; typically, we use A = [k]
for some k € N. An R-path in a labelled graph is a finite or infinite sequence
Vg, G0, V1, a1,V . .. (ending in a node from W if finite) such that (v;, a;,v;41) € R
for all i. For v € W and a € A, we put R,(v) = {w € W | (v,a,w) € R} and
sometimes write |G| to refer to |W|. As usual, we write U* and U¥ for the sets of
finite sequences or infinite sequences, respectively, of elements of U. The domain
dom(f) of a partial function f : U — V is the set of elements on which f is
defined. As usual, the (forward) image of A’ C A under a function f: A — B
is f[A'] = {b € B|3a € A" f(a) = b} and the preimage f~'[B'] of B C B
under f is defined by f~![B] = {a € A | 3b € B'. f(a) = b}. Projections
A X ... x Ay = Aj for 1 < j < m are given by m;(a1,...,an) = a;. We
often regard (finite) sequences 7 = wg,uy,... € U* U U of elements of U as
partial functions of type N — U and then write 7(i) to denote the element w;,
for i € dom(7). For 7 € U* UU%, we define the set Inf(7) = {u € U | Vi >
0.3j > i.7(j) = u} of elements that occur infinitely often in 7 (so Inf(7) = 0
for 7 € U*). An infinite R-path vy, po,v1,p1,... in a labelled graph G = (W, R)
with labels from [k] is even if max(Inf(pg,p1,...)) is even, and G is even if every
infinite R-path in G is even. We write P(U) for the powerset of U, and U™ for
the m-fold Cartesian product U x --- x U.

Finite Lattices and Fixpoints A finite lattice (L, C) (often written just as L)
consists of a non-empty finite set L together with a partial order C on L, such
that there is, for all subsets X C L, a join | | X and a meet [ ] X. The least and
greatest elements of L are defined as T = | |0 and element T = []{), respectively.
A set By, C L such that | = | [{b € B | b C I} is a basis of L. Given a finite
lattice L, a function g : L¥ — L is monotone if g(Vi,..., Vi) E g(Wy,..., W)
whenever V; C W; for all 1 < ¢ < k. For monotone f : L — L, we put

GFPf=|{VEL|VEf(V)} LFPf=[{V EL]| f(V)EV}



Quasipolynomial Computation of Nested Fixpoints 43

which, by the Knaster-Tarski fixpoint theorem, are the greatest and the least
fixpoint of f, respectively. Furthermore, we define fO(V) =V and fm*4(V) =
f(f™(V)) for m > 0, V C L; since L is finite, we have GFP f = f™(T) and
LFP f = f™(L) by Kleene’s fixpoint theorem. Given a finite set U and a natural
number n, (nY,C) is a finite lattice, where n¥ = {f : U — [n — 1]} denotes the
function space from U to [n—1] and f C gif and only if for all u € U, f(u) < g(u).
For n = 2, we obtain the powerset lattice (2V, C), also denoted by P(U), with
least and greatest elements () and U, respectively, and basis {{u} | u € U}.

Parity games A parity game (V, E, §2) consists of a set of nodes V', a left-total
relation £ C V x V of moves encoding the rules of the game, and a priority
function 2 : V — N, which assigns priorities 2(v) € N to nodes v € V.
Moreover, each node belongs to exactly one of the two players Eloise or Abelard,
where we denote the set of Eloise’s nodes by V3 and that of Abelard’s nodes
by V. A play p € V¥ is an infinite sequence of nodes that follows the rules
of the game, that is, such that for all ¢« > 0, we have (p(i),p(i + 1)) € E. We
say that an infinite play p = vg,v1,... is even if the largest priority that occurs
infinitely often in it (i.e. max(Inf({2 0 p))) is even, and odd otherwise, and call
this property the parity of p. Player Eloise wins exactly the even plays and
player Abelard wins all other plays. A (history-free) Eloise-strategy s : V3 — V
is a partial function that assigns single moves s(z) to Eloise-nodes @ € dom(s).
Given an Eloise-strategy s, a play p is an s-play if for all ¢ € dom(p) such that
p(i) € Va, we have p(i + 1) = s(p(i)). An Eloise-strategy wins a node v € V' if
Eloise wins all s-plays that start at v. We have a dual notion of Abelard-strategies;
solving a parity game consists in computing the winning regions wing and winy
of the two players, that is, the sets of states that they respectively win by some
strategy.

It is known that solving parity games is in NP NCONP (and, more specifi-
cally, in UP N co-UP). Recently it has also been shown [9] that for parity games
with n nodes and k priorities, wing and winy can be computed in quasipolyno-
mial time O(n'°2#+6). Another crucial property of parity games is that they are
history-free determined [21], that is, that every node in a parity game is won by
exactly one of the two players and then there is a history-free strategy for the
respective player that wins the node.

3 Systems of Fixpoint Equations

We now introduce our central notion, that is, systems of fixpoint equations over
a finite lattice. Throughout, we fix a finite lattice (L,C) and a basis By, of L
such that | ¢ By, and k 4+ 1 monotone functions f; : L**! — L, 0 <i < k.

Definition 3.1. A system of equations consists of k + 1 equations of the form

Xi =y, fi(Xo,..., Xk)
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where 7; € {LFP, GFP}, briefly referred to as f. For a partial valuation o : [k] —
L, we inductively define

[[X’L]]U = niXi‘figv
where the function f/ is given by
FO(A) = £i([X0]7 s [Xica]” Ayev(a’ i+ 1), ... ev(a', k)

for A € L, where (o[i — A])(j) = o(j) for j # i and (o[i — A])(i) = A,
o' = ofi — A] and where ev(o,j) = o(j) if j € dom(o) and ev(o,j) = [X;]?
otherwise (the latter clause handles free variables). Then, the solution of the
system of equations is [X]¢ where € : [k] — L denotes the empty valuation
(i.e. dom(e) = ). Similarly, we can obtain solutions for the other components
as [X;]¢ for 0 < i < k; we drop the valuation index if no confusion arises, and
sometimes write [X;] ; to make the equation system f explicit. We denote by Efo
the solution [X}] for the canonical system of equations of the particular shape

Xi=n; Xia Xo =crp fo(Xo, ..., Xk),
where 0 < ¢ < k, n; = LFP for odd ¢ and n; = GFP for even .

Example 3.2. (1) Parity games and the modal p-calculus: Let (V, E, 2) be a
parity game with priorities 0 to k, take L = P(V), and consider the canonical
system of fixpoint equations E/2 for the function f5: P(V)k*+t — P(V) given by

Vo, ..., Vi) ={v e V5| E(v)N V_Q(v) * @} U{velw|E@)C VQ(U),}

for (Vg,..., Vi) € P(V)EFTL Tt is well known that wing = E/3, i.e. parity games
can be solved by solving fixpoint equation systems. Intuitively, v € f3(Vo,..., V)
iff Eloise can enforce that some node in Vi, is reached in the next step. The
nested fixpoint expressed by E/3 (in which least (greatest) fixpoints correspond
to odd (even) priorities) is constructed in such a way that Eloise only has to rely
infinitely often on an argument V; for odd 7 if she can also ensure that some
argument V; for j > ¢ is used infinitely often.

Model checking for the modal p-calculus [29] and solving parity games are
linear-time equivalent problems. Formulae of the p-calculus are evaluated over
Kripke frames (U, R) with set of states U and transition relation R. Formulae
¢ of the p-calculus can be directly represented as equation systems over the
lattice P(U) by recursively translating ¢ to equations, mapping subformulae
uX;. ¥(Xo, ..., Xg) and vX;. (X, ..., Xi) to equations

Xi —pu ¢(X077Xk> Xj v X(X07"'an>7
and interpreting the modalities ¢ and [J by functions

fo(X) ={ueU]| R(u)nX #0} foX) ={ueU]| R(u) € X}
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The solution of the resulting system of equations then is the truth set of the
formula ¢, that is, model checking for the model p-calculus reduces to solving
fixpoint equation systems. Furthermore, satisfiability checking for the modal p-
calculus can be reduced to solving so-called satisfiability games [20], that is,
parity games that are played over the set of states of a determinized parity
automaton. These satisfiability games can be expressed as systems of fixpoint
equations, where the functions track transitions in the determinized automaton.

(2) Energy parity games and the energy u-calculus: Energy parity games [10] are
two-player games played over weighted game arenas (V, E,w, {2), where w : E —
7 assigns integer weights to edges. The winning condition is the combination
of a parity condition with a (quantitative) positivity condition on the sum of
the accumulated weights. It has been shown [2,10], that b = n-d-W is a
sufficient upper bound on energy level accumulations in energy parity games
with n nodes, k priorities and maximum absolute weight W. We define a function
5 (b+1)Y)R — (b+1)Y over the finite lattice (b+1)" (whose elements are
functions from V' to the set {0,...,b+ 1}) by putting

min(en(v, Vo)) ifve Vi
max(en(v, Vo)) ifvely,

(FS(Vo, ..., Vi) () :{

for (Vo,..., Vi) € (b+1)V) ! and v € V, using en(v, o) as abbreviation for

en(v,0) ={n € {0,...,b} | Ju € E(v).n = max{0,0(u) — w(v,u)}} U
{b+1]|3Fue EWw).o(u) —w(v,u) >bora(u) > b},

where 0 : V' — {0,...,b+ 1}. Then it follows from the results of [2] that player
Eloise wins a node v in the energy parity game with minimal initial credit ¢ < b+1
if (Ef3)(v) = ¢, that is, if the solution of the canonical equation system over f5
maps v to a value ¢ that is at most b.

The energy p-calculus [2] is the fixpoint logic that corresponds to energy par-
ity games. Its formulae are evaluated over weighted game structures and involve
operators Op¢ and Og¢ that are evaluated depending on the energy function
[¢] : V— {0,...,b+ 1} that is obtained by first evaluating the argument for-
mula ¢. The semantics of the diamond operator then is an energy function that
assigns, to each state v, the least energy value ¢ € {0,...,b+ 1} such that there
is a move from v to some node w such that the credit ¢ suffices to take the
move from v to u and retain an energy level of at least [¢](u). Formulae can be
translated to equation systems over the finite lattice (b + 1)V, where the func-
tions for modal operators are defined according to their semantics as presented
in [2]. Solving these equation systems then amounts to model checking energy
pu-calculus formulae over weighted game structures.

(3) Latticed p-calculi: In latticed p-calculi [7], formulae are evaluated over com-
plete lattices L rather than the powerset lattice; for finite lattices L, formulae of
latticed p-calculi hence can be translated to fixpoint equation systems over L, so
that model checking reduces to solving equation systems. An associated latticed
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variant of games has been introduced in [30] and for finite lattices L, solving
latticed parity games over L reduces to solving equation systems over L.

(4) The coalgebraic p-calculus and coalgebraic parity games: The coalgebraic
p-calculus [12] supports generalized modal branching types by using predicate
liftings to interpret formulae over T-coalgebras, that is, over structures whose
transition type is specified by an endofunctor T on the category of sets. For
instance the functors T = P, T = D and T = G map sets X to their pow-
erset P(X), the set of probability distributions D(X) = {f : X — [0,...,1]}
over X, and to the set of multisets G(X) = {f : X — N} over X, respectively.
The corresponding T-coalgebras then are Kripke frames (for 7' = P), Markov
chains (for 7' = D) and graded transition systems (for 7' = G), respectively. In-
stances of the coalgebraic p-calculus comprise, e.g. the two-valued probabilistic
p-calculus [12, 34] with modalities (,¢ for p € [0,...,1], expressing ‘the next
state satisfies ¢ with probability more than p’; the graded p-calculus [32] with
modalities Q4¢ for g € N, expressing ‘there are more than ¢ successor states
that satisfy ¢’; or the alternating-time p-calculus [1] that is interpreted over
concurrent game frames and uses modalities (D)¢ for finite D C N (encoding a
coalition) that express that ‘coalition D has a joint strategy to enforce ¢’.

It has been shown in previous work [24] that model checking for coalgebraic
p-calculi against coalgebras with state space U reduces to solving a canonical
fixpoint equation system over the powerset lattice P(U), where the involved func-
tion interprets modal operators using predicate liftings, as described in [12,24].
This canonical equation system can alternatively be seen as the winning region
of Eloise in coalgebraic parity games, a highly general variant of parity games
where the game structure is a coalgebra and nodes are annotated with modal-
ities. Examples include two-valued probabilistic parity games and graded parity
games in which nodes and edges are annotated with probabilities or grades, re-
spectively. In order to win a node v, player Eloise then has to have a strategy
that picks a set of moves to nodes that in turn are all won by Eloise, and such
that the joint probability (joint grade) of the picked moves is greater than the
probability (grade) that is assigned to v. It is known that solving coalgebraic
parity games reduces to solving fixpoint equation systems [24].

Furthermore, the satisfiability problem of the coalgebraic u-calculus has
been reduced to solving canonical fixpoint equations systems over lattices P(U),
where U is the state set of a determinized parity automaton and where the inner-
most equation checks for joint one-step satisfiability of sets of coalgebraic modal-
ities [25]. By interpreting coalgebraic formulae over finite lattices dV rather than
over powerset lattices, one obtains the finite-valued coalgebraic p-calculus (with
values {0,...,d}), which has the finite-valued probabilistic u-calculus (e.g. [36])
as an instance. Model checking for the finite-valued probabilistic p-calculus hence
reduces to solving equation systems over the finite lattice d!V!, where {0,...,d}
encodes a finite set of probabilities.
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4 Fixpoint Games and History-free Witnesses

We instantiate the existing notion of fixpoint games [4,42], which characterize
solutions of equation systems, to our setting (that is, to finite lattices), and then
use these games as a technical tool to establish our crucial notion of history-
freeness for systems of fixpoint equations.

Definition 4.1 (Fixpoint games). Let X; =,, fi(Xo,...,Xk), 0 <i <k, be
a system of fixpoint equations. The associated fizpoint game is a parity game
(V, E, 2) with set of nodes V = (B, x [k]) U LF*1, where nodes from By, x [k]
belong to player Eloise and nodes from L¥*! belong to player Abelard. For nodes
(u,i) € By, x [k], we put

E(u,i) = {(Uy,...,Ux) € L* ' |u C f;(Uo,...,Us)},
and for nodes (Uy,...,Us) € L**1, we put
E(U, ..., Uy) = {(u,i) € By, x [K] | w C U;}.

The alternation depth ad(i) of an equation X; =,, fi(Xo,...,X1) is defined as
ad! if n; = p and as ady if n; = v, where ad!’, ad; are recursively defined by

ad? i>0,m1=pn ad | +1 i>0,m-1=p
ad=<dad/ ;+1 i>0,m_1=v adf =<ad/, i>0,m_1=v
1 1=0 0 1=0

for 0 < ¢ < k. The priority function §2 : V' — [ad(k)] then is defined by £2(u,i) =
ad(i) and Q2(Us, ..., Uy) = 0.

Remark 4.2. In [4], an alternative priority function 2’ : V' — [2k + 1] with

2i if n; = GFP
Q=9
2i+1 ifn, =LFP

and 2'(Up,...,U;) = 0 is used. Since ad(7) is even if and only if 7; is even, and
moreover ad(i) < ad(j) for ¢ < j, and ¢ < j whenever ad(i) < ad(j), it is easy to
see that £2 and (2’ in fact assign identical parities to all plays. In the following,
we will use the more economic parity function §2 so that fixpoint games have
only d := ad(k) < k priorities.

We import the associated characterization theorem [4, Theorem 4.8]:

Theorem 4.3 ([4]). We have u T [X;]; if and only if Eloise wins the node
(u,4) in the fixpoint game for the given system f of equations.

Remark 4.4. While this shows that parity game solving can be used to solve
equation systems, the size of fixpoint games is exponential in |By|, so they do
not directly yield a quasipolynomial algorithm for solving equation systems.
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Next we define our notion of history-freeness for systems of fixpoint equations.

Definition 4.5 (History-free witness). A history-free witness for v C [X;] ¢
is an even labelled graph (W, R) with labels from [d] such that W C By x
[d], (u,i) € W, and for all (v,p) € W, we have v T f,(Up,...,U;) where
Uj = |Umi[Raagj)(v,p)] for 0 < j < k, noting that Ruq(;)(v,p) € W so that
T [Rad(j)(v,p)] C By, and Uj € L.

In analogy to history-free strategies for parity games, history-free witnesses as-
sign tuples (R1(v,p), ..., Ra(v,p)) of sets R;(v,p) € W to pairs (v, p) € W with-
out relying on a history of previously visited pairs. We have |W| < (d + 1)|By|
and |R| < (d+1)|[W|?, that is, the size of history-free witnesses is polynomial in
|Bp|. Crucially, history-free witnesses always exist:

Lemma 4.6. For all u € Br, and i € [k], we have
u C [X;]y if and only if there is a history-free witness for u C [X;]¢.

Proof. In one direction, we have u T [X;]; so that Eloise wins the node (u,1)
in the according fixpoint game by Lemma 4.3. Let s be a corresponding history-
Jfree winning strategy (such strategies always exists, see e.g. [21]). We inductively
construct a witness for u C [X;]y, starting at (u,4). When at (v,p) € B x [k]
with s(v, p) = (Uo, ..., Ux), we put R;(v,p) = Ujjaq(j)=i(Us x {j}) for 0 <i < d
and hence have ad(j) = i for all ((v,p),i,(u,j)) € R. Since s is a winning
strategy, the resulting graph (W, R) is a history-free witness for v T [X;]; by
construction; in particular, (W, R) is even. For the converse direction, the witness
for u C [X;] s directly yields a winning Eloise-strategy for the node (u,4) in the
associated fixpoint game. This implies v C [X;]; by Lemma 4.3. O

5 Solving Equation Systems using Universal Graphs

We go on to prove our main result. To this end, we fix a system f of fixpoint
equations f; : LF*1 — L, 0 <4 < k, and put n := |Br| and d := ad(k) for the
remainder of the paper.

Definition 5.1 (Universal graphs [13, 14]). Let G = (W,R) and G' =
(W', R') be labelled graphs with labels from [d]. A homomorphism of labelled
graphs from G to G’ is a function @ : W — W' such that for all (v,p,w) € R,
we have (®(v),p,P(w)) € R'. An (n,d + 1)-universal graph S is an even graph
with labels from [d] such that for all even graphs G with labels from [d] and with
|G| < n, there is a homomorphism from G to S.

We fix an (n(d + 1), (d + 1))-universal graph S = (Z, K), noting that there
are (n(d + 1), (d + 1))-universal graphs (obtained from universal trees) of size
quasipolynomial in n and d [14]. We now combine the system f with the uni-
versal graph S to turn the parity conditions associated to general systems of
fixpoint equations into a safety condition, associated to a single greatest fixpoint
equation.
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Definition 5.2 (Chained-product fixpoint). We define a function
g: P(B x [k] x Z) — P(Br x [k] x Z)
U = {(pqg) €BLx[klxZ|vC f(P,....P")}

where
P =| |{u€ By | 3s € Kagy(q)- (u,i,s) € U},

We refer to Yy =grp 9(Y0) as the chained-product fizpoint (equation) of f and S.

We now show our central result: apart from the annotation with states from the
universal graph, the chained-product fixpoint g is the solution of the system f.

Theorem 5.3. For allu € By, and 0 <i < k, we have
u C [Xi]s if and only if there is g € Z such that (u,i,q) € [Yol,.

Proof. For the forward direction, let v C [X;] ;. By Lemma 4.6, there is a history-
free witness G = (W, R) for u C [X;];. Since S is a (n(d + 1), d + 1)-universal
graph and since G is a witness and hence an even labelled graph of suitable
size |G| < n(d + 1), there is a graph homomorphism & from G to S. Start-
ing at (u,4,®(u,i),0), we inductively construct a witness for containment of
(u,1,P(u,i)) in [Yp],. When at (vi,p1,P(v1,p1),0) with (vi,p1) € W, we put

R/O(’Ulaplvds(vlapl)ao) :{(Uz,pg,ds(vg,pz),O) S BL X [d] X Z X [O] |
(v2,P2) € Rad(py) (v1,11), P(v2,p2) € Kad(py) (P(v1,p1)) }

and continue the inductive construction with all these (vg, p2, @(va, p2),0), hav-
ing (vg,p2) € W. The resulting structure G’ = (W', R’) indeed is a witness
for containment of (u,i,q) in [Yy]s: G’ is even by construction. Moreover, we
need to show that for (vy,p1, P(v1,p1),0) € W, we have (v1,p1,P(v1,p1),0) €
g(mi[Rh(v1,p1, P(v1,p1),0)]), ie. vy T fp (Péj’ds(vl’pl), o P,g’(p(vl’pl)) where
U = m[R}(v1, p1,P(v1,p1),0)]. Since G is a witness and (vy,p1) € W by con-
struction of W', we have v; C f,, (U, ..., Ug) where U; = | |(7j[Raq(i)(v1,p1)])-

By monotonicity of f,,, it thus suffices to show that U; T PjU’@(vl’p D for

0 < j < k; by definition of P{"*"**) this follows if

71 [Raa(jy (v1,01)] S{u € Br | 3s € Kagy)(P(v1,p1))-(u, 4, 8) € W},

where W = 7[R (v1,p1,q1,0)]. So let w € By, such that w € 71 [Ryq(;y(v1,p1)]-
Since R is a witness that is constructed as in the proof of Lemma 4.6, we
have i = ad(i') for all ((v',p’),4,(w’,7")) € R. Thus (w,j) € Raq(j)(vi,p1)
for some j such that ad(j) = 4, that is, ((vi,p1),ad(j),(w,7)) € R, hence
(D(v1,p1),2d(j), P(w,j)) € K because ¥ is a graph homomorphism. By
definition of R{, we have (w,j, ®(w,5),0) € R,(vi,p1,P(v1,p1),0) so that
(w,7,P(w, 7)) € m[Ry(v1,p1,P(v1,p1),0)]. We are done since P(w,j) €
Kaq(j) ((v1,p1))-
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For the converse implication, let (ug,po,qo) € [Yo], for some gy € Z. Let
G = (W, R) be a history-free witness for this fact. By Lemma 4.3, it suffices
to provide a strategy in the fixpoint game for the system f with which Eloise
wins the node (ug, pg). We inductively construct a history-dependent strategy s
as follows: For ¢ > 0, we abbreviate U; = Ro(u;, pi, ¢i,0). We put s(ug,po) =
(POUO’qO, e P,g‘”qo). For the inductive step, let

U,

Uos, Uo, Un—1,qn— 13—
T:(UOapo)v(POOqov"'aPkoqo)a"'?(PO i 17"'7Pk;n b 1)a(unapn)

be a partial play of the fixpoint game that follows the strat-
egy that has been constructed so far. Then we have an R-path
(uo, oy 90,0), (u1,01,q1,0), ..., (Un,Pn, @n,0), where, for 0 < i < n, we
have (¢, pit1,¢i+1) € K since u;11 Pg;fl by the inductive construction.
Put s(r) = (P ..., P/™). Since G is a witness, the strategy uses only
moves that are available to Eloise (i.e. ones with u,, T f,, (s(7))). Also, s is a
winning strategy as can be seen by looking at the K-paths that are induced by
complete plays 7 that follow s, as described (for partial plays) above. Since S is
a universal graph and hence even, every such K-path is even and the sequence
of priorities in 7 is just the sequence of priorities of one of these K-paths. 0O

Remark 5.4. Since the set [Yp], is the greatest fixpoint of g, it can be computed
by simple approximation from above, that is, as ¢" (B, x [k] X Z) where m =
|Br, x [k] x Z|. However, each iteration of the function g may require up to |Z|
evaluations of an equation. In the next section, we will show how this additional
iteration factor in the computation of [Y;], can be avoided.

6 A Progress Measure Algorithm

We next introduce a lifting algorithm that computes the set [Yy], efficiently,
following the paradigm of the progress measure approach for parity games
(e.g. [27,28]). Our progress measures will map pairs (u,) € By, X [k] to nodes in
a universal graph that is equipped with a simulation order, that is, a total order
that is suitable for measuring progress.

Definition 6.1 (Simulation order). For natural numbers 4, i’, we put ¢ = @’
if and only if either ¢ is even and 7 = 4/, or both ¢ and i’ are odd and 7 > /. A
total order < on Z is a simulation order if for all q,¢' € Z,

q < ¢ implies that for all 0 <4 < k and s € K;(q), there are
i’ =i and s € Ky (q') such that s < s'.

Lemma 6.2. There is an (n(d + 1),d + 1)-universal graph (Z,K) of size
quasipolynomial in n and d, and over which a simulation order < exists.

Proof (Sketch). Tt has been shown [14, Theorem 2.2] (originally, in different
terminology, [28]) that there are (I, h)-universal trees (a concept similar to, but
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slightly more concrete than universal graphs) with set of leaves T such that
IT| < 2l(1°glzh+1). Leaves in universal trees are identified by navigation paths,
that is, sequences of branching directions, so that the leaves are linearly ordered
by the lexicographic order < on navigation paths (which orders leafs from the
left to the right). As described in [13], one can obtain a universal graph (7, K)
over T in which transitions (¢,4,¢") € K for odd i (the crucial case) move to
the left, that is, ¢’ is a leaf that is to the left of ¢ in the universal tree (so
that ¢’ < ¢), ensuring universality. As it turns out, the lexicographic ordering
on T is a simulation order. Adapting this construction to our setting, we put
l=n(d+1) and h = d+ 1 and obtain a (n(d+ 1),d + 1)-universal graph (along
with a simulation order <) of size at most 2n(d + 1) (log("(d(;_ll)Hd*z) which is
quasipolynomial in n and d. 0O

We fix an (n(d+1),d+ 1)-universal graph (Z, K') and a simulation order < on Z
for the remainder of the paper (these exist by the above lemma).

Definition 6.3 (Progress measure, lifting function). We let gnin € Z de-
note the least node w.r.t. < and fix a distinguished top element * ¢ Z, and
extend > to Z U {%} by putting x > ¢ for all ¢ € Z. A measure is a map
w: Br x [k] = Z U {x}, i.e. assigns nodes in the universal graph or x to pairs
(v,p) € Br x [k]. A measure p is a progress measure if whenever p(v,p) # *,
then v C f,,(U[",...,Uf"?) where ¢ = p(v, p) and

Ukt = |_|{u € Br, | 3s € Kuai)(q)- p(u, i) < s}

We define a function Lift : (By X [k] = ZU{x}) — (Br x [k] = ZU {x}) on
measures by

(Lift(1))(v,p) =min{g € Z | v C f,(U?, ..., UM}

where min(Z’) denotes the least element of Z' w.r.t. <, for ) £ Z' C Z; also we
put min(()) = *.

The lifting algorithm then starts with the least measure my,;, that maps all pairs
(v,p) € B x [k] to the minimal node (i.e. Muyin(v,P) = ¢min) and repeatedly
updates the current measure using Lift until the measure stabilizes.

Lifting algorithm

(1) Initialize: Put p := muyip.

(2) If Lift(p) # p, then put p:= Lift(x) and go to 2. Otherwise go to 3.

(3) Return the set E = {(v,p) € Br, x [k] | u(v,p) # x}.

Lemma 6.4 (Correctness). For allv € By, and 0 < p < k, we have

(v,p) € E if and only if v € [Xp];.
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Proof (Sketch). Let p denote the progress measure that the algorithm computes.
For one direction of the proof, let (v, p) € E. By Lemma 4.6 it suffices to construct
a witness for v € [X,];. We extract such a witness (E, R) from the progress
measure j, relying on the properties of the simulation order < that is used
to measure the progress of p to ensure that any infinite sequence of measures
that p assigns to some R-path induces an infinite (and hence even) path in the
employed universal graph. This shows that (E, R) indeed is an even graph and
hence a witness. For the converse direction, let v € [X,]; so that there is, by
Theorem 5.3, some ¢ € Z such that (v,p,q) € [Yo],. For (u,i) such that there is
q' € Z such that (u,i,q") € [Yoly, let qu,;) € Z denote the minimal such node
w.r.t. <. It now suffices that u(u,4) < q(,,;) for all such (u,4), which is shown by
induction on the number of iterations of the lifting algorithm. ]

Corollary 6.5. Solutions of systems of fixpoint equations can be computed with
quasipolynomially many evaluations of equations.

Proof. Given an (n(d+ 1),d + 1)-universal graph (Z, K) and a simulation order
on Z, the lifting algorithm terminates and returns the solution of f after at
most n(d + 1) - |Z] many iterations. This is the case since each iteration (except
the final iteration) increases the measure for at least one of the n(d + 1) nodes
and the measure of each node can be increased at most |Z| times. Using the
universal graph and the simulation order from the proof of Lemma 6.2, we have

|Z] < 2n(d + 1)(1°g("(d(;r11))+d+2) so that the algorithm terminates after at most

2(n(d + 1))2(1°g("(dd++11))+d+2) € O((n(d + 1))os(d+1) iterations of the function
Lift. Each iteration can be implemented to run with at most n(d+ 1) evaluations

of an equation. O

Corollary 6.6. The number of function calls required for the solution of systems
of fizpoint equations with d < logmn is bounded by a polynomial in n and d.

Proof. Following the insight of Theorem 2.8 in [9], Theorem 2.2. in [14] implies
that if d < logn, then there is an (n(d+1), d+1)-universal tree of size polynomial
in n and d. In the same way as in the proof of Lemma 6.2, one obtains a universal
graph of polynomial size and a simulation order on it. O

Example 6.7. Applying Corollary 6.5 and Corollary 6.6 to Example 3.2, we
obtain the following results:

(1) The model checking problems for the energy p-calculus and finite latticed
p-calculi are in QP. For energy parity games with sufficient upper bound b on
energy level accumulations, we obtain a progress measure algorithm that termi-
nates after a number of iterations that is quasipolynomial in b.

(2) Under mild assumptions on the modalities (see [24]), the model checking
problem for the coalgebraic p-calculus is in QP; in particular, this yields QP
model checking algorithms for the graded p-calculus and the two-valued prob-
abilistic p-calculus (equivalently: QP progress measure algorithms for solving
graded and two-valued probabilistic parity games).
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(3) Under mild assumptions on the modalities (see [25]), we obtain a novel upper
bound 2€(ndlogn) for the satisfiability problems of coalgebraic p-calculi, in par-
ticular including the monotone p-calculus, the alternating-time p-calculus, the
graded p-calculus and the (two-valued) probabilistic p-calculus, even when the
latter two are extended with (monotone) polynomial inequalities. This improves
on the best previous bounds in all cases.

7 Conclusion

We have shown how to use universal graphs to compute solutions of systems of
fixpoint equations X; = ;. fi(Xo, ..., Xx) (with the n; marking least or greatest
fixpoints) that use functions f; : L*¥*' — L (over a finite lattice L with basis
By) and involve up to k + 1-fold nesting of fixpoints. Our progress measure
algorithm needs quasipolynomially many evaluations of equations, and runs in
time O(q-t(f)), where ¢ is a quasipolynomial in |Br| and the alternation depth
of the equation system, and where ¢(f) is an upper bound on the time it takes
to compute f; for all i.

As a consequence of our results, the upper time bounds for the evaluation
of various general parity conditions improve. Example domains beyond solv-
ing parity games to which our algorithm can be instantiated comprise model
checking for latticed p-calculi and solving latticed parity games [7,30], solving
energy parity games and model checking for the energy p-calculus [2,10], and
model checking and satisfiability checking for the coalgebraic p-calculus [12].
The resulting model checking algorithms for latticed p-calculi and the energy
p~calculus run in time quasipolynomial in the provided basis of the respective
lattice. In terms of concrete instances of the coalgebraic p-calculus, we obtain,
e.g., quasipolynomial-time model checking for the graded [32] and the prob-
abilistic u-calculus [12,34] as new results (corresponding results for, e.g., the
alternating-time p-calculus [1] and the monotone p-calculus [18] follow as well
but have already been obtained in our previous work [24]), as well as improved
upper bounds for satisfiability checking in the graded p-calculus, the probabilis-
tic p-calculus, the monotone p-calculus, and the alternating-time p-calculus. We
foresee further applications, e.g. in the computation of fair bisimulations and fair
equivalence [26,31] beyond relational systems, e.g. for probabilistic systems.

As in the case of parity games, a natural open question that remains is
whether solutions of fixpoint equations can be computed in polynomial time
(which would of course imply that parity games can be solved in polynomial
time). A more immediate perspective for further investigation is to generalize
the recent quasipolynomial variant [38] of Zielonka’s algorithm [43] for solving
parity games to solving systems of fixpoint equations, with a view to improving
efficiency in practice.
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Abstract. We introduce FRAT, a new proof format for unsatisfiable
SAT problems, and its associated toolchain. Compared to DRAT, the
FRAT format allows solvers to include more information in proofs to re-
duce the computational cost of subsequent elaboration to LRAT. The
format is easy to parse forward and backward, and it is extensible to
future proof methods. The provision of optional proof steps allows SAT
solver developers to balance implementation effort against elaboration
time, with little to no overhead on solver time. We benchmark our FRAT
toolchain against a comparable DRAT toolchain and confirm >84% me-
dian reduction in elaboration time and >94% median decrease in peak
memory usage.
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1 Introduction

The Boolean satsifiability problem is the problem of determining, for a given
Boolean formula consisting of Boolean variables and connectives, whether there
exists a variable assignment under which the formula evaluates to true. Boolean
satisfiability (SAT) is interesting in part because there are surprisingly diverse
types of problems that can be encoded as Boolean formulas and solved efficiently
by checking their satisfiability. SAT solvers, programs that automatically solve
SAT problems, have been successfully applied to a wide range of areas, including
hardware verification [2], planning [14], and combinatorics [12].

The performance of SAT solvers has taken great strides in recent years,
and modern solvers can often solve problems involving millions of variables and
clauses, which would have been unthinkable a mere 20 years ago [15]. But this
improvement comes at the cost of significant increase in the code complexity
of SAT solvers, which makes it difficult to either assume their correctness on
faith, or certify their program correctness directly. As a result, the ability of
SAT solvers to produce independently verifiable certificates has become a press-
ing necessity. Since there is an obvious certificate format (the satisfying boolean
assignment) for satisfiable problems, the real challenge in proof-producing SAT
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solving is in devising a compact proof format for unsatisfiable problems, and
developing a toolchain that efficiently produces and verifies it.

The current de facto standard proof format for unsatisfiable SAT problems
is DRAT [10]. The format, as well as its predecessor DRUP, were designed with
a strong focus on quick adaptation by the community, emphasizing easy proof
emission, practically zero overhead, and reasonable validation speed [11]. The
DRAT format has become the only supported proof format in SAT Competition
and Races since 2014 due to entrants losing interest in alternatives.

DRAT is a clausal proof format [6], which means that a DRAT proof consists
of a sequence of instructions for adding and deleting clauses. It is helpful to think
of a DRAT proof as a program for modifying the ‘active multiset’ of clauses: the
initial active multiset is the clauses of the input problem, and this multiset grows
and shrinks over time as the program is executed step by step. The invariant
throughout program execution is that the active multiset at any point of time is
at least as satisfiable as the initial active multiset. This invariant holds trivially
in the beginning and after a deletion; it is also preserved by addition steps by
either RUP or RAT, which we explain shortly. The last step of a DRAT proof
is the addition of the empty clause, which ensures the unsatisfiability of the
final active multiset, and hence that of the initial active multiset, i.e. the input
problem.

Every addition step in DRAT is either a reverse unit propagation (RUP)
step [6] or a resolution asymmetric tautology (RAT) [13] step. A clause C has the
property AT (asymmetric tautology) with respect to a formula F if F,C -y L,
which is to say, there is a proof of the empty clause by unit propagation using F'
and the negated literals in C'. A RUP step that adds C' to the active multiset F'
is valid if C' has property AT with respect to F'. A clause [V C has property RAT
with respect to F if for every clause [ V D € F, the clause C'V D has property
AT with respect to F'. In this case, C is not logically entailed by F', but F' and
F A C are equisatisfiable, and a RAT step will add C' to the active multiset if C'
has property RAT with respect to F. (See [10] for more about the justification
for this proof system.)

DRAT has a number of advantages over formats based on more traditional
proof calculi, such as resolution or analytic tableaux. For SAT solvers, DRAT
proofs are easier to emit because CNF clauses are the native data structures
that the solvers store and manipulate internally. Whenever a solver obtains a new
clause, the clause can be simply streamed out to a proof file without any further
modification. Also, DRAT proofs are more compact than resolution proofs, as
the latter can become infeasibly large for some classes of SAT problems [7].

There is, however, room for further improvement in the DRAT format due to
the information loss incurred by DRAT proofs. Consider, for instance, the SAT
problem and proofs shown in Figure 1. The left column is the input problem
in the DIMACS format, the center column is its DRAT proof, and the right
column is the equivalent proof in the LRAT format, which can be thought of
as an enriched version of DRAT with more information. The numbers before
the first zero on lines without a “d” represent literals: positive numbers denote
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positive literals, while negative numbers denote negative literals. The first clause
of the input formula is (z1 V 23 V T3), or equivalently 1 2 -3 0 in DIMACS.

The first lines of both DRAT and LRAT proofs are RUP steps for adding the
clause (z1 V z3), written 1 2 0. When an LRAT checker verifies this step, it is
informed of the IDs of active clauses (the trailing numbers 1 6 3) relevant for
unit propagation, in the exact order they should be used. Therefore, the LRAT
checker only has to visit the first, sixth, and third clauses and confirm that,
starting with unit literals 77, T3, they yield the new unit literals T3, x4, L. In
contrast, a DRAT checker verifying the same step must add the literals 77,72
to the active multiset (in this case, the eight initial clauses) and carry out a
blind unit propagation with the whole resulting multiset until contradiction. This
omission of RUP information in DRAT proofs introduces significant overheads
in proof verification. Although the exact figures vary from problem to problem,
checking a DRAT proof typically takes approximately twice as long as solving the
original problem, whereas the verification time for an LRAT proof is negligible
compared to its solution time. This additional cost of checking DRAT proofs also
represents a lost opportunity: when a SAT solver emits a RUP step, it knows
exactly how the new clause was obtained, and this knowledge can (in theory)
be turned into an LRAT-style RUP annotation, which can cut down verification
costs significantly if conveyed to the verifier.

For the DRAT format, a design choice was made not to include such informa-
tion since demanding explicit proofs for all steps turned out to be impractical.
Although it is theoretically possible to always glean the correct RUP annotation
from the solver state, computing this information can be intricate and costly
for some types of inferences (e.g. conflict-clause minimization [22]), making it
harder to support proof logging [25]. Reducing such overheads is particularly
important for solving satisfiable formulas, as proofs are superfluous for them
and the penalty for maintaining such proofs should be minimized. We should
note, however, that proof elaboration need not be an all-or-nothing business; if
it is infeasible to demand 100% elaborated proofs, we can still ask solvers to fill
in as many gaps as it is convenient for them to do so, which would still be a
considerable improvement over handling all of it from the verifier side.

Inclusion of final clauses is another potential area for improvement over the
DRAT format. A DRAT proof typically includes many addition steps that do
not ultimately contribute to the derivation of the empty clause. This is unavoid-
able in the proof emission phase, since a SAT solver cannot know in advance
whether a given clause will be ultimately useful, and must stream out the clause
before it can find out. All such steps, however, should be dropped in the post-
processing phase in order to compress proofs and speed up verification. The
most straightforward way of doing this is processing the proof in reverse order
[6]: when processing a clause Cj 1, identify all the clauses used to derive C 1,
mark them as ‘used’, and move on to clause C}. For each clause, process it if it
is marked as used, and skip it otherwise. The only caveat of this method is that
the postprocessor needs to know which clauses were present at the very end of
the proof, since there is no way to identify which clauses were used to derive the
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DIMACS DRAT LRAT
p cnf 4 120 9120 1630
1 2-30 d 1-320 9 d10
-1 -2 30 130 10130 9860
2 3-40 d 1430 10 d 60
-2 -3 40 10 11 10 109480
-1-3-40 d 130 11 d 10
1 3 40 d 120 9
-1 2 40 d1-4-20 8 0
1-2-40 20 12 20 117530
d -1420 12 d7
d 2-430 30
0 13 011122450

Fig. 1. DRAT and LRAT proofs of a SAT problem. All whitespace and alignment is
not significant; we have aligned lines of the DRAT proof with the corresponding LRAT
lines (d steps in LRAT may correspond to multiple DRAT d steps).

empty clause otherwise. Although it is possible to enumerate the final clauses
by a preliminary forward pass through a DRAT proof, this is clearly unnecessary
work since SAT solvers know exactly which clauses are present at the end, and
it is desirable to put this information in the proof in the first place.

2 The FRAT format

To address the above issues, we introduce FRAT, a new proof format designed
to allow fine-grained communication between SAT solvers and elaborators. The
main differences between FRAT and DRAT are:

(1) optional annotation of RUP steps,
(2) inclusion of final clauses, and
(3) identification of clauses by unique IDs.

We've already explained the rationale for (1) and (2); (3) is necessary for concise
references to clauses in deletions and RUP step annotations. More specifically,
a FRAT proof consists of the following six types of proof steps:

o: An original step; a clause from the input file. The purpose of these lines is
to name the clauses from the input with identifiers; they are not required
to come in the same order as the file, they are not required to be numbered
in order, and not all steps in the input need appear here. Proof may also
progress (with a and d steps) before all o steps are added.

a, 1: An addition step, and an optional LRAT-style unit propagation proof
of the step. The proof, if provided, is a sequence of clauses in the current
formula in the order that they become unit. For solver flexibility, they are
allowed to come out of order, but the elaborator is optimized for the case
where they are correctly ordered. For a RAT step, the negative numbers in
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the proof refer to the clauses in the active set that contain the negated pivot
literal, followed by the unit propagation proof of the resolvent. See [3] for
more details on the LRAT checking algorithm.

d: A deletion step for deleting the clause with the given ID from the formula.
The literals given must match the literals in the corresponding addition step
up to permutation.

r: A relocation step. The syntax is r (ids) 0, where (ids) has the form s, t,

.., Sk, t and must consist of an even number of clause IDs. It indicates
that the active clause with ID s; is re-labeled and now has ID ¢;, for each
0 < < k. (This is used for solvers that use pointer identity for clauses, but
also do garbage collection to decrease memory fragmentation.)

f: A finalization step. These steps come at the end of a proof, and provide the
list of all active clauses at the end of the proof. The clauses may come in any
order, but every step that has been added and not deleted must be present.
(For best results, clauses should be finalized in roughly reverse order of when
they were added.)

(Our modified version of CADICAL also outputs a seventh kind of step,
t (todo_id) 0, to collect statistics on code paths that produce a steps without
proofs. See Section 3 for how this information is used.)

Figure 1 is an example from [3], which includes a SAT problem in DIMACS
format, and the proofs of its unsatisfiability in DRAT and LRAT formats. It
shows how proofs are produced and elaborated via the DRAT toolchain. Figure
2 shows the corresponding problem and proofs for the FRAT toolchain. Notice
how the FRAT proof is more verbose than its DRAT counterpart and includes all
the hints for addition steps, which are reused in the subsequent LRAT proof.

Binary FRAT The files shown in Figure 2 are in the text version of the FRAT
format, but for efficiency reasons solvers may also wish to use a binary encoding.
The binary FRAT format is exactly the same in structure, but the integers are
encoded using the same variable-length integer encoding used in binary DRAT [9].
Unsigned numbers are encoded in 7-bit little endian, with the high bit set on
each byte except the last. That is, the number

n:x0+27w1+~-~+27kxk
(with each z; < 27) is encoded as
1zg 1z ... Ox).
Signed numbers are encoded by mapping n > 0 to f(n) := 2n and —n (with
n > 0) to f(n) :=2n + 1, and then using the unsigned encoding. (Incidentally,

the mapping f is not surjective, as it misses 1. But it is used by other formats
so we have decided not to change it.)
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FRAT
o1l 12-30 f1 12-30
o 2 -1-230 £f2 -2-130
o3 23-40 f3 23-40
o 4 -2-340 £f4 -2-340
o5 -1-3-40 £f5-1-3-40
o6 1340 f6 1340
o7 -1240 £7 -1240
o8 1-2-40 £f8 1-2-40
a9-3-401 5180 £f9 -3 -40
a 10 -4 01 93280 f 10 -4 0
a 11 30 f 11 30
a 12 -2 0 f 12 -2 0
a 13 101 1271110 f 13 10
a 14 011312 107 0 f 14 0
LRAT

9-3-40 5180

9 d50

10 -4 0 93280

10 d 8390

11 30 106 720

11 d260

12 -2 0 11 104 0

12 d40

13 10 121110

13 d1110

14 013 12 10 7 0

Fig. 2. FRAT and LRAT proofs of a SAT problem. To illustrate that proofs are optional,
we have omitted the proofs of steps 11 and 12 in this example. The steps must still be
legal RAT steps but the elaborator will derive the proof rather than the solver.

2.1 Flexibility and extensibility

The purpose of the FRAT format is for solvers to be able to quickly write down
what they are doing while they are doing it, with the elaborator stage “picking
up the pieces” and preparing the proof for consumption by simpler mechanisms
such as certified LRAT checkers. As such, it is important that we are able to
concisely represent all manner of proof methods used by modern SAT solvers.

The high level syntax of a FRAT file is quite simple: A sequence of “segments”,
each of which begins with a character, followed by zero or more nonzero numbers,
followed by a 0. In the binary version, each segment similarly begins with a
printable character, followed by zero or more nonzero bytes, followed by a zero
byte. (Note that continuation bytes in an unsigned number encoding are always
nonzero.) This means that it is possible to jump into a FRAT file and find segment
boundaries by searching for a nearby zero byte.
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(proof) < (line)”
(line) « (orig) | (add) | (del) | (final) | (reloc)
(add) < (add_seg) | (add_seg) (hint)
(orig) < o (id) (literal)™ 0
(add_seg) < a (id) (literal)”™ O
(del) < d (id) (literal)™ 0
(final) < £ (id) (literal)™ 0O
(reloc) < r ((id) (id))* 0
(hint) <1 ((id) | —(id))* 0
(id)y  (pos)
(literal) < (pos) | (neg)
(neg) = —(pos)
(pos)  [1-9] [o-9]"

Fig. 3. Context-free grammar for the FRAT format.

text|]a 9 -3 -4 0 1 5 1 8 0
binary |61 09 07 09 00 6C 0A 02 10 00

Fig. 4. Comparison of binary and text formats for a step. Note that the step ID 9 uses
the unsigned encoding, but literals and LRAT style proof steps use signed encoding.

This is in contrast to binary LRAT, in which add steps are encoded as
a (id) (literal)*0 (£(id))* 0, because a random zero byte could either be the
end of a segment or the middle of an add step. Since 0x61, the ASCII repre-
sentation of a, is also a valid step ID (encoding the signed number —48), in a
sequence such as (a (nonzero)* 0)*, the literals and the steps cannot be locally
disambiguated.

The local disambiguation property is important for our FRAT elaborator,
because it means that we can efficiently parse FRAT files generated by solvers
backward, reading the segments in reverse order so that we can perform backward
checking in a single pass.

DRAT is based on adding clauses that are RAT with respect to the active
formula. It is quite versatile and sufficient for most common cases, covering
CDCL steps, hyper-resolution, unit propagation, blocked clause elimination and
many other techniques. However, we recognize that not all methods can be cast
into this format, or are too expensive to translate into this proof system. In
this work we define only six segment characters (a, d, f, 1, o, r), that suffice
to cover methods used by SAT solvers targeting DRAT. However, the format is
forward-compatible with new kinds of proof steps, that can be indicated with
different characters.
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For example, CRYPTOMINISAT [21] is a SAT solver that also supports XOR
clause extraction and reasoning, and can derive new XOR, clauses using proof
techniques such as Gaussian elimination. Encoding this in DRAT is quite compli-
cated: The XOR clauses must be Tseitin transformed into CNF, and Gaussian
elimination requires a long resolution proof. Participants in SAT competitions
therefore turn this reasoning method off as producing the DRAT proofs is either
too difficult or the performance gains are canceled out by the overhead.

FRAT resolves this impasse by allowing the solver to express itself with min-
imal encoding overhead. A hypothetical extension to FRAT would add new seg-
ment characters to allow adding and deleting XOR clauses, and a new proof
method for proof by linear algebra on these clauses. The FRAT elaborator would
be extended to support the new step kinds, and it could either perform the
expensive translation into DRAT at that stage (only doing the work when it is
known to be needed for the final proof), or it could pass the new methods on
to some XLRAT backend format that understands these steps natively. Since the
extension is backward compatible, it can be done without impacting any other
FRAT-producing solvers.

3 FRAT-producing solvers

The FRAT proof format is designed to allow conversion of DRAT-producing
solvers into FRAT-producing solvers at minimal cost, both in terms of implemen-
tation effort and impact on runtime efficiency. In order to show the feasibility of
such conversions, we chose two popular SAT solvers, CADICAL' and MINISAT?,
to modify as case studies. The solvers were chosen to demonstrate two different
aspects of feasibility: since MINISAT forms the basis of the majority of modern
SAT solvers, an implementation using MINISAT shows that the format is widely
applicable, and provides code which developers can easily incorporate into a
large number of existing solvers. CADICAL, on the other hand, is a cutting-
edge modern solver which employs a wide range of sophisticated optimizations.
A successful conversion of CADICAL shows that the technology is scalable, and
is not limited to simpler toy examples.

As mentioned in Section 2, the main solver modifications required for FRAT
production are inclusions of clause IDs, finalization steps, and LRAT proof traces.
The provision of IDs requires some non-trivial modification as many solvers, in-
cluding CADICAL and MINISAT, do not natively keep track of clause IDs, and
DRAT proofs use literal lists up to permutation for clause identity. In CADICAL,
we added IDs to all clauses, leading to 8 bytes overhead per clause. Additionally,
unit clauses are tracked separately, and ensuring proper ID tracking for unit
clauses resulted in some added code complexity. In MINISAT, we achieved 0 byte
overhead by using the pointer value of clauses as their ID, with unit clauses hav-
ing computed IDs based on the literal. This requires the use of relocation steps
during garbage collection. The output of finalization steps requires identifying

! https://github.com/digama0/cadical
2 https://github.com/digama0/minisat
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the active set from the solver state, which can be subtle depending on the solver
architecture, but is otherwise a trivial task assuming knowledge of the solver.

LRAT trace production is the heart of the work, and requires the solver to
justify each addition step. This modification is relatively easier to apply to MINI-
SAT, as it only adds clauses in a few places, and already tracks the “reasons” for
each literal in the current assignment, which makes the proof trace straightfor-
ward. In contrast, CADICAL has over 30 ways to add clauses; in addition to the
main CDCL loop, there are various in-processing and optimization passes that
can create new clauses.

To accommodate this complexity, we leverage the flexibility of the FRAT
format which allows optional hints to focus on the most common clause addi-
tion steps, to reap the majority of runtime advantage with only a few changes.
The FRAT elaborator falls back on the standard elaboration-by-unit propagation
when proofs are not provided, so future work can add more proofs to CADICAL
without any changes to the toolchain.

To maximize the efficacy of the modification, we used a simple method to find
places to add proofs. In the first pass, we added support for clause ID tracking
and finalization, and changing the output format to FRAT syntax. Since CAD1-
CAL was already producing DRAT proofs, we can easily identify the addition
and removal steps and replace them with a and d steps. Once this is done, CA-
DiCAL is producing valid FRAT files which can pass through the elaborator and
get LRAT results, but it will be quite slow since the FRAT elaborator is essentially
acting as a less-optimized version of DRAT-trim at this point.

We then find all code paths that lead to an a step being emitted, and add
an extra call to output a step of the form t (todo_id) 0, where (todo_id) is some
unique identifier of this position in the code. The FRAT elaborator is configured
to ignore these steps, so they have no effect, but by running the solver on bench-
marks we can count how many t steps of each kind appear, and so see which
code paths are hottest.

The basic idea is that elaborating a step that has a proof is much faster than
elaborating a step that doesn’t, but the distribution of code paths leading to
add steps is highly skewed, so adding proofs to to the top 3 or 4 paths already
decreases the elaboration time by over 70%. At the time of writing, about one
third of CADICAL code paths are covered, and median elaboration time is
about 15% that of DRAT-trim (see Section 5). (This is despite the fact that our
elaborator could stand to improve on low level optimizations, and runs about
twice as slow as DRAT-trim when no proofs are provided.)

4 Elaboration

The main tasks of the FRAT-to-LRAT elaborator® are provision of missing RUP
step hints, elimination of irrelevant clause additions, and re-labeling clauses with
new IDs. These tasks are performed in two separate ‘passes’ over files, writing

3 The elaborator used for this paper can be found at https://github.com/digama0/
frat/tree/tacas.
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Algorithm 1 First pass (elaboration): FRAT to elaborated reversed FRAT
1: function ELABORATE(cert)

2: F <« 0, revcert < |] > F'is a map ID — clause with a bool marking
3: for step in reverse(cert) do
4 case step of
5 o(i,C) =
6: C' « F.remove(i); assert C' ~ C
T if ¢’.marked then revcert < revcert, o(i, C)
8 a(i, C, proof’) =
9: C’ + F.remove(i); assert C' ~ C
10: if C'.marked then
11: steps’ < case proof’ of
12: ¢ = PROVERAT(F, C)
13: 1(steps) = CHECKHINT(F, C, steps)
14: for j in {j | =j € steps’} do
15: if —F;.marked then
16: Fj.marked + true
17: revcert <— revcert, d(step, F})
18: revcert < revcert, a(i, C, 1(steps’))
19: d(i,C') = F.insert(i, C, marked: false)
20: £(2,C) = F.insert(z, C, marked: C' = 1)
21: r(R) =
22: R « {(s,t) € R| Jo.(t,x) € F}
23: F+ F—{tF)|(st)e R} +{(s,Fy) | (s,t) € R'}
24: revcert < revcert,r(R’)
25: return revcert

and reading directly to disk (so the entire proof is never in memory at once). In
the first pass, the elaborator reads the FRAT file and produces a temporary file
(which may be stored on disk or in memory depending on configuration). The
temporary file is essentially the original FRAT file with the steps put in reverse
order, while satisfying the following additional conditions:

— All a steps have annotations.

— Every clause introduced by an o, a, or r step ultimately contributes to the
proof of 1. Note that we consider an r step as using an old clause with the
old ID and introducing a new clause with the new ID.

— There are no f steps.

Algorithm 1 shows the pseudocode of the first pass, ELABORATE(cert). Here,
cert is the FRAT proof obtained from the SAT solver, and the pass works by
iterating over its steps in reverse order, producing the temporary file revcert.
The map F maintains the active formula as a map with unique IDs for each
clause (double inserts and removes to F' are always error conditions), and the
effect of each step is replayed backwards to reconstruct the solver’s state at the
point each step was produced.
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Algorithm 2 Second pass (renumbering): elaborated reversed FRAT to LRAT

1: function RENUMBER (Forig, reveert)

2: M 0, k< |Forig|, lrat + || > M is a map ID — ID
3 for step in reverse(revcert) do

4 case step of

5: o(z,C) = find j such that C' >~ (Forig);; M.insert(i, )
6: a(i, C, 1(steps)) =
7
8

k < k+1; M.insert(i, k)
: lrat < lrat,add(k, C, [£M; | £i € steps])
9: if C = 1 then return lrat

10: d(i,C) = lrat < lrat,del(k, M.remove(z))
11: r(R) = M « M — {(s, Ms) | (s,t) € R} + {(t, Ms) | (s,t) € R}
12: assert false > no proof of L found

— All d or £ clauses are immediately inserted to F', but (with the exception of
the empty clause) are marked as not necessarily required for the proof, and
the d step is deferred until just before its first use (or rather, just after the
last use).

— PROVERAT(F, (), not given here, checks that C has property RAT with re-
spect to F', and produces a step list in LRAT format (where positive numbers
are clause references in a unit propagation proof, and negative numbers are
used in RAT steps, indicating the clauses to resolve against).

— CHECKHINT(F, C, steps) does the same thing, but it has been given a candi-
date proof, steps. It will check that steps is a valid proof, and if so, returns
it, but the steps in the unit propagation proof may be out of order (in which
case they are reordered to LRAT conformity), and if the given proof is not
salvageable, it falls back on PROVERAT(F, C) to construct the proof.

In the second pass, RENUMBER (Fuig, revcert) reads the input DIMACS file
and the temporary file from the first pass, and produces the final result in LRAT
format. Not much checking happens in this pass, but we ensure that the o steps
in the FRAT file actually appear (up to permutation) in the input. The state that
is maintained in this pass is a list of all active clause IDs, and the corresponding
list of LRAT IDs (in which original steps are always numbered sequentially in
the file, and add/delete steps use a monotonic counter that is incremented on
each addition step).

The resulting LRAT file can then be verified by any of the verified LRAT
checkers [26] (and our toolchain also includes a built-in LRAT checker for verifi-
cation).

The 2-pass algorithm is used in order to optimize memory usage. The result
of the first pass is streamed out so that the intermediate elaboration result does
not have to be stored in memory simultaneously. Once the temporary file is
streamed out, we need at least one more pass to reverse it (even if the labels did
not need renumbering) since its steps are in reverse order.
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5 Test results

We performed benchmarks comparing our FRAT toolchain (modified CADICAL
+ FRAT-to-LRAT elaborator written in Rust) against the DRAT toolchain (stan-
dard CADICAL + DRAT-trim) and measured their execution times, output file
sizes, and peak memory usages while solving SAT instances in the DIMACS
format and producing their LRAT proofs. All tests were performed on Amazon
EC2 rb5a.xlarge instances, running Ubuntu Server 20.04 LTS on 2.5 GHz AMD
EPYC 7000 processors with 32 GB RAM and 512 GB SSD.

The instances used in the benchmark were chosen by selecting all 97 instances
for which default-mode CADICAL returned ‘UNSAT” in the 2019 SAT Race
results. One of these instances was excluded because DRAT-trim exhausted the
available 32GB memory and failed during elaboration. Although this instance
was not used for comparisons below, we note that it offers further evidence of the
FRAT toolchain’s efficient use of memory, since the FRAT-to-LRAT elaboration
of this instance succeeded on the same system. The remaining 96 instances were
used for performance comparison of the two toolchains. *

Figures 5 and 6 show the time and memory measurements from the bench-
mark. We can see from Figure 5 that the FRAT toolchain is significantly faster
than DRAT toolchain. Although the modified CADICAL tends to be slightly
(6%) slower than standard CADICAL, that overhead is more than compensated
by a median 84% decrease in elaboration time (the sum over all instances are
1700.47 s in the DRAT toolchain vs. 381.70 s in the FRAT toolchain, so the
average is down by 77%). If we include the time of the respective solvers, the
FRAT + modified CADICAL toolchain takes 53.6% of the DRAT + CADICAL
toolchain on median. The difference in the toolchains’ time budgets is clear: the
DRAT toolchain spends 42% of its time in solving and 58% in elaboration, while
FRAT spends 85% on solving and only 15% on elaboration.

Figure 6 shows a dramatic difference in peak memory usage between the
FRAT and DRAT toolchains. On median, the FRAT toolchain used only 5.4% as
much peak memory as DRAT. (The average is 318.62 MB, which is 11.98% that
of the DRAT toolchain’s 2659.07 MB, but this is dominated by the really large
instances. The maximum memory usage was 2.99 GB for FRAT and 21.5 GB
for DRAT, but one instance exhausted the available 32 GB in DRAT and is not
included in this figure.) This result is in agreement with our initial expectations:
the FRAT toolchain’s 2-pass elaboration method allows it to limit the number of
clauses held in memory to the size of the active set used by the solver, whereas
the DRAT toolchain loads all clauses in a DRAT file into memory at once during
elaboration. This difference suggests that the FRAT toolchain can be used to
verify instances that would otherwise require more memory than the system
limit on the DRAT toolchain.

There were no noticeable differences in the sizes or verification times of LRAT
proofs produced by the two toolchains. On average, LRAT proofs produced by

4 A CSV of detailed benchmark results can be found at https://github.com /digama0/
frat/blob/tacas/benchmark /benchmark-results.csv.
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Fig. 5. FRAT vs. DRAT time comparison. The datapoints of ‘FRAT total’ and ‘DRAT
total’ show the number of instances that each toolchain could generate LRAT proofs
for within the given time limit. The datapoints of ‘FRAT elab’ and ‘DRAT elab’ show
the number of instances whose intermediate format proof files (FRAT or DRAT) could
be elaborated to LRAT within the given time limit.

the FRAT toolchain were 1.873% smaller and 3.314% faster® to check than those
from the DRAT toolchain.

One minor downside of the FRAT toolchain is that it requires the storage of a
temporary file during elaboration, but we do not expect this to be a problem in
practice since the temporary file is typically much smaller than either the FRAT
or LRAT file. In our test cases, the average temporary file size was 28.68% and
47.60% that of FRAT and LRAT files, respectively. In addition, users can run the
elaborator with the -m option to bypass temporary files and write the temporary
data to memory instead, which further improves performance but foregoes the
memory conservation that comes with 2-pass elaboration.

The CADICAL modification is only a prototype, and some of its weaknesses
show in the data. The general pattern we observed is that on problems for which
the predicted CADICAL code paths were taken, the generated files have a large
number of hints and the elaboration time is negligible (the “FRAT elab” line in
fig. 5); but on problems which make use of the more unusual in-processing op-
erations, many steps with no hints are given to the elaborator, and performance
becomes comparable to DRAT-trim. For solver developers, this means that there

5 One instance was omitted from the LRAT verification time comparison due to what
seems to be a bug in the standard LRAT checker included in DRAT-trim. Detailed
information regarding this instance can be found at https://github.com/digama0/
frat/blob/tacas/benchmark/README.md.
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Fig. 6. FRAT vs. DRAT peak memory usage comparison. Each datapoint shows the
number of instances that each toolchain could successfully generate LRAT proofs for
within the given peak memory usage limit.

is a very direct relationship between proof annotation effort and mean solution
+ elaboration time. Currently, elaboration of FRAT files with no annotations
(the worst-case scenario for the FRAT toolchain) typically takes slightly more
than twice as long as elaboration of DRAT files with DRAT-trim, likely due to
missing optimizations from DRAT-trim that could be incorporated, but this only
underscores the effectiveness of adding hints to the format.

6 Related works

As already mentioned, the FRAT format is most closely related to the DRAT
format [8], which it seeks to replace as an intermediate output format for SAT
solvers. It is also dependent on the LRAT format and related tools [3], as the
FRAT toolchain targets LRAT as the final output format.

The GRAT format [16] and toolchain also aims to improve elaboration of
SAT unsatisfiability proofs, but takes a different approach from that of FRAT. It
retains DRAT as the intermediate format, but uses parallel processing and targets
a new final format with more information than LRAT in order to improve overall
performance. GRAT also comes with its own verified checker [17].

Specifying and verifying the program correctness of SAT solvers (sometimes
called the autarkic method, as opposed to the proof-producing skeptical method)
is a radically different approach to ensuring the correctness of SAT solvers. There
have been various efforts to verify nontrivial SAT solvers [18,20,19,4,5]. Although
these solvers have become significantly faster, they cannot compete with the
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(unverified) state-of-the-art solvers. It is also difficult to maintain and modify
certified solvers. Proving the correctness of nontrivial SAT solvers can provide
new insights about key invariants underlying the used techniques [5].

Generally speaking, devising proof formats for automated reasoning tools
and augmenting the tools with proof output capability is an active research area.
Notable examples outside SAT solving include the LESC format for SMT solving
[23] and the TSTP format for classical first-order ATPs [24]. In particular, the
recent work on the VERIT SMT solver [1] is motivated by similar rationales as
that for the FRAT toolchain; the key insight is that a proof production pipeline
is often easier to optimize on the solver side than on the elaborator side, as the
former has direct access to many types of useful information.

7 Conclusion

The test results show that the FRAT format and toolchain made significant per-
formance gains relative to their DRAT equivalents in both elaboration time and
memory usage. We take this as confirmation of our initial conjectures that (1)
there is a large amount of useful and easily extracted information in SAT solvers
that is left untapped by DRAT proofs, and (2) the use of streaming verification
is the key to verifying very large proofs that cannot be held in memory at once.

The practical ramification is that, provided that solvers produce well-anno-
tated FRAT proofs, the elaborator is no longer a bottleneck in the pipeline.
Typically, when DRAT-trim hangs it does so either by taking excessive time, or
by attempting to read in an entire proof file at once and exhausting memory
(the so-called “uncheckable” proofs that can be produced but not verified). But
FRAT-to-LRAT elaboration is typically faster than FRAT production, and the
memory consumption of the FRAT-to-LRAT elaborator at any given point is
proportional to the memory used by the solver at the same point in the proof.
Since LRAT verification is already efficient, the only remaining limiting factor is
essentially the time and memory usage of the solver itself.

In addition to performance, the other main consideration in the design of the
FRAT format and toolchain was flexibility of use and extension. The encoding
of FRAT files allows them to be read and parsed both backward and forward,
and the format can be modified to include more advanced inferences, as we
have discussed in the example of XOR steps. The optional 1 steps allow SAT
solvers to decide precisely when they will provide explicit proofs, thereby pro-
moting a workable compromise between implementation complexity and runtime
efficiency. SAT solver developers can begin using the format by producing the
most bare-bones FRAT proofs with no annotations (essentially DRAT proofs with
metadata for original/final clauses) and gradually work toward providing more
complete hints. We hope that this combination of efficiency and flexibility will
motivate performance-minded SAT solver developers to adopt the format and
support more robust proof production, which is presently only an afterthought
in most SAT solvers.
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Abstract. In 2006, Biere, Jussila, and Sinz made the key observation that the
underlying logic behind algorithms for constructing Reduced, Ordered Binary
Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended
resolution logical framework. Through this, a BDD-based Boolean satisfiability
(SAT) solver can generate a checkable proof of unsatisfiability. Such proofs indi-
cate that the formula is truly unsatisfiable without requiring the user to trust the
BDD package or the SAT solver built on top of it.

We extend their work to enable arbitrary existential quantification of the for-
mula variables, a critical capability for BDD-based SAT solvers. We demonstrate
the utility of this approach by applying a prototype solver to obtain polynomi-
ally sized proofs on benchmarks for the mutilated chessboard and pigeonhole
problems—ones that are very challenging for search-based SAT solvers.

Keywords: extended resolution, binary decision diagrams, mutilated chessboard,
pigeonhole problem

1 Introduction

When a Boolean satisfiability (SAT) solver returns a purported solution to a Boolean
formula, its validity can easily be checked by making sure that the solution indeed satis-
fies the formula. When the formula is unsatisfiable, on the other hand, having the solver
simply declare this to be the case requires the user to have faith in the solver, a complex
piece of software that could well be flawed. Indeed, modern solvers employ a number
of sophisticated techniques to reduce the search space. If one of those techniques is
invalid or incorrectly implemented, the solver may overlook actual solutions and label
a formula as unsatisfiable, even when it is not.

With SAT solvers providing the foundation for a number of different real-world
tasks, this “false negative” outcome could have unacceptable consequences. For exam-
ple, when used as part of a formal verification system, the usual strategy is to encode
some undesired property of the system as a formula. The SAT solver is then used to
determine whether some operation of the system could lead to this undesirable prop-
erty. Having the solver declare the formula to be unsatisfiable is an indication that the
undesirable behavior cannot occur, but only if the formula is truly unsatisfiable.
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Rather than requiring users to place their trust in a complex software system, a
proof-generating solver constructs a proof that the formula is indeed unsatisfiable. The
proof has a form that can readily be checked by a simple proof checker. Initial work of
checking unsatisfiability results was based on resolution proofs, but modern checkers
are based on stronger proof systems [16,33]. The checker provides an independent val-
idation that the formula is indeed unsatisfiable. The checker can even be simple enough
to be formally verified [9,23,29]. Such a capability has become an essential feature for
modern SAT solvers.

In their 2006 papers [21,28], Jussila, Sinz and Biere made the key observation that
the underlying logic behind algorithms for constructing Reduced, Ordered Binary Deci-
sion Diagrams (BDDs) [4] can be encoded as steps in a proof in the extended resolution
logical framework [30]. Through this, a BDD-based Boolean satisfiability solver can
generate checkable proofs of unsatisfiability for a set of clauses. Such proofs indicate
that the formula is truly unsatisfiable without requiring the user to trust the BDD pack-
age or the SAT solver built on top of it.

In this paper, we refine these ideas to enable a full-featured, BDD-based SAT solver.
Chief among these is the ability to perform existential quantification on arbitrary vari-
ables. (Jussila, Sinz, and Biere [21] extended their original work [28] to allow exis-
tential quantification, but only for the root variable of a BDD.) In addition, we allow
greater flexibility in the choice of variable ordering and the order in which conjunction
and quantification operations are performed. This combination allows a wide range of
strategies for creating a sequence of BDD operations that, starting with a set of input
clauses, yield the BDD representation of the constant function 0, indicating that the for-
mula is unsatisfiable. Using the extended-resolution proof framework, these operations
can generate a proof showing that the original set of clauses logically implies the empty
clause, providing a checkable proof that the formula is unsatisfiable.

As the experimental results demonstrate, our refinements enable a proof-generating
BDD-based SAT solver to achieve polynomial performance on several classic “hard”
problems [1,15]. Since the performance of a proof-generating SAT solver affects not
only the runtime of the program, but also the length of the proofs generated, achieving
polynomial performance is an important step forward. Our results for these benchmarks
rely on a novel approach to ordering the conjunction and quantification operations,
inspired by symbolic model checking [7].

This paper is structured as follows. First, it provides a brief introduction to the res-
olution and extended resolution logical frameworks and to BDDs. Then we show how
a BDD-based SAT solver can generate proofs by augmenting algorithms for comput-
ing the conjunction of two functions represented as BDDs, and for checking that one
function logically implies another. We then describe our prototype implementation and
evaluate its performance on several classic problems. We conclude with some general
observations and suggestions for further work.

2 Preliminaries

Given a Boolean formula over a set of variables {1, x2, ..., Z, }, a SAT solver attempts
to find an assignment to these variables that will satisfy the formula, or it declares
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that the formula is unsatisfiable. As is standard practice, we use the term literal to
refer to either a variable or its complement. Most SAT solvers use Boolean formulas
expressed in conjunctive normal form, where the formula consists of a set of clauses,
each consisting of a set of literals. Each clause is a disjunction: if an assignment sets
any of its literals to true, the clause is considered to be satisfied. The overall formula is
a conjunction: a satisfying assignment must satisfy all of the clauses.

We write T to denote both tautology and logical truth, and _L to represent both an
empty clause and logical falsehood. When writing clauses, we omit disjunction symbols
and use overlines to denote negation, writing @ vV v V W as v .

2.1 (Extended) Resolution Proofs

Robinson [26] observed that a single inference rule could form the basis for a refutation
theorem-proving technique for first-order logic. Here, we consider its specialization to
propositional logic. For clauses of the form C'V z, and TV D, the resolution rule derives
the new clause C' V D. This inference is written with a notation showing the required
conditions above a horizontal line, and the resulting inference (the resolvent) below:

CVax TV D
CvVvD

Resolution provides a mechanism for proving that a set of clauses is unsatisfiable. Sup-
pose the input consists of m clauses. A resolution proof is given as a tfrace consisting of
a series of steps S, where each step s; consists of a clause C; and a (possibly empty) list
of antecedents A;, where each antecedent is the index of one of the previous steps. The
first set of steps, denoted S,,,, consists of the input clauses without any antecedents.
Each successive step then consists of a clause and a set of antecedents, such that the
clause can be derived from the clauses in the antecedents by one or more resolution
steps. It follows by transitivity that for each step s;, with ¢ > m, clause C; is logically
implied by the input clauses, written .S,,, = C;. If, through a series of steps, we can reach
a step s; where C} is the empty clause, then the trace provides a proof that S,, - L,
i.e., the set of input clauses is not satisfiable.

Tseitin [30] introduced the extended-resolution proof framework in 1966. It allows
the addition of new extension variables to a resolution proof in a manner that preserves
the integrity of the proof. In particular, in introducing variable e, there must be an ac-
companying set of clauses that encode e <+ F', where F' is a formula over variables
(both original and extension) that were introduced earlier. These are referred to as the
defining clauses for extension variable e. Variable e then provides a shorthand notation
by which F’' can be referenced multiple times. Doing so can reduce the size of a clausal
representation of a problem by an exponential factor.

An extension variable e is introduced into the proof by including its defining clauses
in the list of clauses being generated. The proof checker must ensure that these added
clauses do not artificially restrict the set of satisfying solutions. The checker can do this
by making sure that the defining clauses are blocked with respect to variable e [22]. That
is, for each defining clause C' containing literal e and each defining clause D containing
literal €, there must be some literal [ in C' such that its complement [ is in D. As a result,
resolving clauses C' and D will yield a tautology.
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Tseitin transformations are commonly used to encode a logic circuit or formula as a
set of clauses without requiring the formulas to be “flattened” into a conjunctive normal
form over the circuit inputs or formula variables. These introduced variables are called
Tseitin variables and are considered to be part of the input formula. An extended reso-
lution proof takes this concept further by introducing additional variables as part of the
proof. Some problems for which the minimum resolution proof must be of exponential
size can be expressed with polynomial-sized proofs in extended resolution [8].

To validate the proofs, we use a clausal proof system, known as Resolution Asym-
metric Tautology (RAT), that generalizes extended resolution [32]. RAT is used in in-
dustry and to validate the results of the SAT competitions [18]. There are various fast
and formally-verified RAT proof checkers [10,23,29].

Clausal proofs also allow the removal of clauses. In our use, we delete clauses when
the program can determine that they will not be referenced as antecedents for any suc-
ceeding clauses. As the experimental results of Section 4 demonstrate, deleting clauses
that are no longer needed can substantially reduce the number of clauses the checker
must track while processing a proof.

2.2 Binary Decision Diagrams

Reduced, Ordered Binary Decision Diagrams (which we refer to as simply “BDDs”)
provide a canonical form for representing Boolean functions, and an associated set of
algorithms for constructing them and testing their properties. A number of tutorials have
been published [2,5,6]. providing a background on BDDs and their algorithms.

With BDDs, functions are defined over a set of variables X = {x1,x2,...,2,}.
We let L; and L denote the two leaf nodes, representing the constant functions 1 and
0, respectively. Each nonterminal node u has an associated variable Var(u) and children
Hi(u), indicating the case where the node variable has value 1, and Lo(u), indicating
the case where the node variable has value 0.

Nodes are stored in a unique table, indexed by the key (Var(u), Hi(u),Lo(u)), so
that isomorphic nodes are never created. The nodes are shared across all of the gener-
ated BDDs [24]. In presenting algorithms, we assume a function GETNODE(z, u1, ug)
that checks the unique table for a node with variable = and children u; and uy. It ei-
ther returns the node stored there, or it creates a new node and enters it into the table.
With this table, we can guarantee that the subgraphs with root nodes » and v represent
the same Boolean function if and only if v = v. We can therefore identify Boolean
functions with their BDD root nodes.

BDD packages support multiple operations for constructing and testing the prop-
erties of Boolean functions represented by BDDs. A number of these are based on the
Apply algorithm [4]. Given BDDs « and v representing functions f and g, respectively,
and a Boolean operation (e.g., AND), the algorithm generates the BDD representation
w of the operation applied to those functions (e.g., f A g.) For each operation, the pro-
gram maintains an operation cache indexed by the argument nodes u and v, mapping
to the result node w. With this cache, the worst case number of recursive steps required
by the algorithm is bounded by the product of the sizes (in nodes) of the arguments.

We use the term APPLYAND to refer to the Apply algorithm for Boolean operation
A and APPLYOR to refer to the Apply algorithm for Boolean operation V.
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3 Proof Generation During BDD Construction

In our formulation, every newly created BDD node w is assigned an extension variable.
(As notation, we use the same name for the node and for its extension variable.) We
then extend the Apply algorithm to generate proofs based on the recursive structure of
the BDD operations.

Let .S,,, denote the set of input clauses. Our goal is to generate a proof that S,,, +
1, i.e., there is no satisfying assignment for these clauses. Our BDD-based approach
generates a sequence of BDDs with root nodes w1, uo, ..., u:, where u; = Lg, based
on a combination of the following operations. (The exact sequencing of operations is
determined by the evaluation mechanism, as is described in Section 4.)

1. For input clause C; generate its BDD representation u; using a series of APPLYOR
operations.

2. For roots u; and uy, generate the BDD representation of their conjunction u; =
u; A uy, using the APPLYAND operation.

3. For root u; and some set of variables Y C X, perform existential quantification:
up = 3Y u;.

Although the existential quantification operation is not mandatory for a BDD-based
SAT solver, it can greatly improve its performance [13]. It is the BDD counterpart to
Davis-Putnam variable elimination on clauses [11]. As the notation indicates, there are
often multiple variables that can be eliminated simultaneously. Although the operation
can cause a BDD to increase in size, it generally causes a reduction. Our experimental
results demonstrate the importance of this operation.

As these operations proceed, we simultaneously generate a set of proof steps. The
details of each step are given later in the presentation. For each BDD generated, we
maintain the proof invariant that its root node u; satisfies .S, - u;.

1. Following the generation of the BDD wu; for clause C;, we also generate a proof
that C; - u;. This is described in Section 3.1.
2. Justifying the conjunctions requires two parts:
(a) Using a modified version of the APPLYAND algorithm we follow the structure
of its recursive calls to generate a proof that the algorithm preserves implica-
tion: u; A uy — ;. This is described in Section 3.2.
(b) This implication can be combined with the earlier proofs that S,,, - u; and
Sm I ug to prove Sy, F .
3. Justifying the quantification also requires two parts:
(a) Following the generation of wu, via existential quantification, we perform a sep-
arate check that u; — wuy. This check uses a proof-generating version of the
Apply algorithm for implication testing that we refer to as PROVEIMPLICATION.
This is described in Section 3.3.
(b) This implication can be combined with the earlier proof that S,,, - u; to prove
Sm F Uk .

As case 3(a) states, we do not attempt to track the detailed logic underlying the
quantification operation. Instead, we run a separate check that the quantification pre-
serves implication. As is the case with many BDD packages, our implementation can
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perform existential quantification of an arbitrary set of variables in a single pass over
the argument BDD. A single implication test suffices for the entire quantification.

Sinz and Biere’s formulation of proof generation by a BDD-based SAT solver [28]
introduces special extension variables nq and ng to represent the BDD leaves L, and
L. Their proof then includes unit clauses n1 and 7 to force these variables to be set to
1 and 0, respectively. This formulation greatly reduces the number of special cases to
consider in the proof-generating version of the APPLYAND operation, but it complicates
the generation of resolution proofs for the implication test. Instead, we directly associate
leaves Ly and Ly with T and L, respectively.

The n variables in the input clauses all have associated BDD variables. The proof
then introduces an extension variable every time a new BDD node is created. In the fol-
lowing presentation, we use the node name (e.g., u) to indicate the associated extension
variable. In the actual implementation, the extension variable identifier (an integer) is
stored as one of the fields in the node representation.

When creating a new node, the GETNODE function adds (up to) four defining
clauses for the associated extension variable. For node u with variable Var(u) = =z,
Hi(u) = w1, and Lo(u) = ug, the clauses are:

Notation Formula Clause
HD(u) x— (u—w) Tuu
LD(u) T — (u—up) TTWug
HU(u) «— (up —u) ZTuwu
LU(w) T — (up —u) zTou

The names for these clauses combine an indication of whether they correspond to vari-
able z being 1 (H) or 0 (L) and whether they form an implication from the node down
to its child (D) or from the child up to its parent (U). When either node ug or u; is a leaf
node, some of these clauses degenerate to tautologies. Such clauses are omitted from
the proof. Each clause is numbered according to its position in the sequence of clauses
comprising the proof. These defining clauses encode the assertion u <> ITE(x, uy,uq),
where ITE denotes the if-then-else operation, defined as ITE(x,y, z) = (xAy)V (TN z).
As can be seen, the defining clauses are blocked with respect to extension variable u.

3.1 Generating BDD Representations of Clauses

The BDD representation « of a clause C' is generated by using the APPLYOR operation
on the BDD representations of its literals. This BDD has a simple, linear structure with
one node for each literal. Each successive node has a branch to leaf node L; when the
literal is true and to the next node in the chain when the literal is false. The proof that
C' | wu is based on this linear structure, employing the upward defining clauses HU and
LU for the nodes in the chain [28].

3.2 The APPLYAND Operation

The key idea in generating proofs for the AND operation is to follow the recursive
structure of the Apply algorithm. We do this by integrating proof generation into the
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Terminal Cases APPLYANDRECUR(u, v)

Case Result Je—{}
x <— min(Var(u), Var(v))
U= (u, T) if 2 = Var(u):
u = Lo (LO, T) UL, Up <— Hl(u), LO(’LL)
v=Lo (Lo, T) J +— J U {HD(u),LD(u)}
u =1L (v, T) else: w1, up «— u,u
v=1 (u, T) if = Var(v):

vy, vo <— Hi(v), Lo(v)
J +— JU{HD(v),LD(v)}
else:  vi,v0 <— v,V
w1, S1 <— APPLYAND(u1,v1)
wo, So <— APPLYAND(uo, o)
J+— JU {81780}
if w1 = wo:
w <— W1
else:
w <— GETNODE(x, w1, wo)
J +— JU{HU(w),LU(w)}
s <— JUSTIFYAND((u, v, w), J)
AndCache({u,v)) +— (w,s)
return (w, s)

Fig. 1. Terminal cases and recursive step of APPLYAND operation, modified for proof generation.
Each call returns both a node and a proof step.

APPLYAND procedure. The overall control flow is identical to the standard version,
except the function returns both a BDD node w and a step number s. For arguments u
and v, the generated step s has clause u v w along with antecedents defining a resolution
proof of the implication uAv — w. We refer to this as the justification for the operation.
The operation cache is modified to hold both the returned node and the justifying step
number as values.

Figure 1 shows the main components of the implementation. When the two ar-
guments are equal or one of the leaves is a terminal node, then the recursion termi-
nates (left). These cases have tautologies as their justification. Failing a terminal case,
the code checks in the operation cache for matching arguments u and v, returning the
cached result if found.

Failing the terminal case tests and the cache lookup, the program proceeds as shown
in the procedure APPLYANDRECUR (right). Here, the procedure branches on the vari-
able z that is the minimum of the two root variables. The procedure accumulates a set
of steps .J to be used in the implication proof. These include the two steps (possibly
tautologies) from the two recursive calls. At the end, it invokes a function JUSTIFYAND
to generate the required proof. It stores both the result node w and the proof step s in
the operation cache, and it provides these values as the return values.

Proof Generation for the General Case. Proving the nodes generated by APPLYAND
satisfy the implication property proceeds by inducting on the structure of the argument
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WHU ANDH ANDL WLU
UHD T wiw U1 U1 W1 U Vo Wo T Wo w ULD
VHD TUUL TU VW T Uo Vo W T U U VLD
TU V1 TUVL W T UV W T U Vo
TUvw TUVW
uvw

Fig. 2. Resolution proof for general step of the APPLYAND operation

and result BDDs. That is, it can assume that the results w; and wg of the recursive calls
to arguments uq and v; and to ug and vy satisfy the implications u; A v; — w; and
ug A\ vg — wp, and that these calls generated proof steps s; and sg justifying these
implications. Figure 2 shows the structure of the resolution proof for the general case,
where none of the equalities hold and the recursive calls do not yield tautologies. The
proof relies on the following clauses as antecedents, arising from the recursive calls and
from the defining clauses for nodes w, v, and w:

Term Formula Clause Term Formula Clause
ANDH w1 Avy — wp U U1 w1y ANDL wug Avg — wg  Ug Vg Wo
WHU 2z — (wp 5 w) ZTwiw WLU T — (wg = w) zWow
UHD z— (u—uy) Tuu ULD T — (u—wug) xTug
VHD x— (v—wv1) Tou VLD T — (v—wvy) Ty

Along the left, the clauses cover the case of x = 1, first resolving clause ANDH and
WHU, then resolving the result first with clause UHD and then clause VHD. A similar
progression occurs along the right covering the case of x = 0. The two chains are
then merged by resolving on variable x to yield the final implication. As this figure
illustrates, a total of seven resolution steps are required. These can be merged into two
linear resolution chains, and so the proof generator produces at most two clauses per
APPLYAND operation.

Proof Generation for Special Cases. The proof structure shown in Figure 2 only holds
for the most general form of the recursion. However, there are many special cases, such
as when the recursive calls yield tautologous results, when some of the child nodes are
equal, and when the two recursive calls return the same node.

Our method for handling both the general and special cases relies on the V-shaped
structure of the proofs, as is illustrated in Figure 2. That is, there are two linear chains,
one along the left and one along the right consisting of some subsequence of the fol-
lowing clauses:

Ap = ANDH, WHU, UHD, VHD
Ay, = ANDL, WLU, ULD, VLD
These will be proper subsequences when some of the clauses are not included in the

set JJ in APPLYAND (Figure 1), or they are tautologies. In addition, some of the clauses
may be extraneous and therefore must not occur as antecedents.
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Rather than trying to enumerate the special cases, we found it better to create a
general-purpose linear chain resolver that handles all of the cases in a uniform way. This
resolver is called on the each of the clause sequences Ay and Ay . It proceeds through
a sequence of clauses, discarding any tautologies and any clauses that do not resolve
with the result so far. It then emits the proof clauses with the selected antecedents.

3.3 Testing Implication

Terminal Cases PROVEIMPLICATIONRECUR (u, v)

Case Result Je— 1}
z +— min(Var(u), Var(v))
u="v T if z = Var(u):
u= Lo T w1, up <— Hi(u), Lo(u)
v=1IL T J +— J U {HD(u), LD(u)}
u=Li,v# L1 Error else: w1, up «— u,u
v = Lo,u# Lo  Error if z = Var(v):

vy, v <— Hi(v), Lo(v)

J «— JU{HU(v),LU(v)}
else:  vi,v0 — v,V
$1 — PROVEIMPLICATION (u1, v1)
s0 ¢— PROVEIMPLICATION (g, vo)
J<+— JUuU {81,80}
s <— JUSTIFYIMPLICATION ({u, v), J)
ImplyCache((u,v)) <— s
return s

Fig. 3. Terminal cases and recursive step of PROVEIMPLICATION operation

When the existential quantification operation applied to node u generates node v,
the program generates a proof that u — v, by calling procedure PROVEIMPLICATION
with v and v as arguments. This procedure has the same recursive structure as the
Apply algorithm, except that it does not generate any new nodes. It only returns the
step number for a proof of the clause w v. It uses an operation cache, but only to hold
proof step numbers. Figure 3 shows the terminal cases for this procedure, as well as the
recursion that occurs when neither a terminal case applies nor are the arguments found
in the operation cache. A failure of the implication test indicates an error in the solver,
and so it signals a fatal error if the implication does not hold.

Each recursive step accumulates up to six proof steps as the set J to be used in the
implication proof:

Term Formula Clause Term Formula Clause
IMH Uy — U1 uyp vy IML ug — Vo U Vo
UHD 2z — (u—wuy) Tuu ULD T — (u—up) TTug

VHU 2 — (v =) TULv VLU T — (vg = ) T Vo v
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UHD IMH IML ULD
VHU TUUL u1 U1 up Vo T U U VLU
TULV TUuv T UV T Uy U
TUV TUV
uv

Fig. 4. Resolution proof for general step of the PROVEIMPLICATION operation

The resolution proof for the general case is shown in Figure 4. It has a similar structure
to the proof for the APPLYAND operation, with two linear chains combined by a res-
olution on variable z. Our same general-purpose linear chain resolver can handle both
the general case and the many special cases that arise.

4 Experimental Results

We implemented the proof-generating, SAT solver PGBDD (for Proof-Generating BDD).
It is written entirely in Python and consists of around 2000 lines of code, including a
BDD package, support for generating extended-resolution proofs, and the overall SAT
solver framework.!

Although slow, it can handle large enough benchmarks to provide useful insights
into the potential for a BDD-based SAT solver to generate proofs of challenging prob-
lems, especially when quantification is supported. It generates proofs in the LRAT for-
mat [9].

Our BDD package supports mark-and-sweep garbage collection. It starts the mark-
ing using the root nodes for all active terms in the sequence of root nodes u, ua, . . ..
Following the marking phase, it traverses the unique table and eliminates the unmarked
nodes. It also traverses the operation caches and eliminates any entries for which one of
the argument nodes or the result node is unmarked. When a node is deleted, the solver
can also direct the proof checker to delete its defining clauses. Similarly, when an entry
is deleted from the operation cache, the solver can direct the proof checker to delete
those clauses added while generating the justification for the entry.

In addition to the input CNF file, the program can accept a variable-ordering file,
mapping the input variables in the CNF to their levels in the BDD.

The solver supports three different evaluation mechanisms:

Linear: Form the conjunction of the clauses, according to their order in the input file.
No quantification is performed. This matches the operation described in [28].

Bucket Elimination: Place the BDDs representing the clauses into buckets according
to the level of their topmost variable. Then process the buckets from lowest to high-
est. While a bucket has more than one element, repeatedly remove two elements,
form their conjunction, and place the result in the bucket designated by the topmost
variable. Once the bucket has a single element, existentially quantify the topmost

" The solver, along with code for generating and testing a set of benchmarks, is available at
https://github.com/rebryant/pgbdd-artifact.
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variable and place the result in the appropriate bucket [12]. This matches the oper-
ation described in [21].

Scheduled: Perform operations as specified by a scheduling file. This file contains a
sequence of lines, each providing a command in a simple, stack-based notation:

cecy, ... ¢, Generate and push the BDDs for the specified clauses.
am Pop and conjoin the top m elements. Push the result.
guvi,...,v; Quantify the top element by the specified variables.

In generating benchmarks, we wrote programs to generate the CNF files, the variable
orderings, and the schedules in a unified framework.

For all of our benchmarks we report the total number of clauses in the proof, in-
cluding the input clauses, the defining clauses for the extension variables (up to four
per BDD node generated) and the derived clauses (one per input clause and up to two
per result inserted into either AndCache or ImplyCache.)

We compare the performance of our BDD-based SAT solver with that of KISSAT,
the winner of the 2020 SAT competition [3], representing the state of the art in search-
based SAT solvers.

4.1 Mutilated Chessboard

The mutilated chessboard problem considers an n X n chessboard, with the corners on
the upper left and the lower right removed. It attempts to tile the board with dominos,
with each domino covering two squares. Since the two removed squares had the same
color, and each domino covers one white and one black square, no tiling is possible.
This problem has been well studied in the context of resolution proofs, for which it can
be shown that any proof must be of exponential size [1].

A standard CNF encoding involves defining Boolean variables to represent the
boundaries between adjacent squares, set to 1 when a domino spans the two squares,
and set to 0 otherwise. The clauses then encode an Exactly1 constraint for each square,
requiring each square to share a domino with exactly one of its neighbors. We label the
variables representing a horizontal boundary between a square and the one below as
Yi,j» with 1 < i < nand1 < j < n. The variables representing the vertical boundaries
are labeled x; ;, with 1 < ¢ < nand 1 < j < n. With a mutilated chessboard, we have
Y1,1 = T1,1 = Yn—1,n = Tnpn—1 = 0.

As the log-log plot in Figure 5 shows, PGBDD has exponential performance when
using linear conjunction or bucket elimination. Indeed, KISSAT outperforms PGBDD
when operating in these modes. However, KISSAT can also be seen to have exponential
performance—to reach n = 22, it generates a proof with over 136 million clauses.

On the other hand, another approach, inspired by symbolic model checking [7]
yields polynomial performance. It is based on the following observation: when pro-
cessing the columns from left to right, the only information required to place dominos
in column 7 is the identity of those rows ¢ for which a domino crosses horizontally from
j — 1 to j. This information is encoded in the values of z; ;_; for 1 <14 < n.
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Mutilated Chessboard Clauses
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10 F —e— No Quantification E
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4 | —— Linear h
107 —6— KISSAT E
F —— Column Scan .
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3
10 4 8 16 32 64 128

n
Fig. 5. Total number of clauses in proofs of n x n mutilated chess boards. The proofs using the

column scanning approach grow as n%5%,

Let us group the variables into columns, with X; denoting variables x1 j, ..., %y ;,
and Y denoting variables ¥ j, ..., Yn—1,;. Scanning the board from left to right, con-
sider X; to encode the “state” of processing after completing column j. As the scanning
process reaches column j, there is a characteristic function o;_1(X;_1) describing the
set of allowed crossings of horizontally-oriented dominos from column j — 1 into col-
umn j. No other information about the configuration of the board to the left is required.
The characteristic function after column 5 can then be computed as:

0j(X;) = 3X; 1 [oj1(X;0) A Y T3(X5-1, Y, X)) M

where T;(X;_1,Y;, X;) is a “transition relation” consisting of the conjunction of the
Exactly1 constraints for column j. From this, we can existentially quantify the variables
Y; to obtain a BDD encoding all compatible combinations of the variables X;_; and
X ;. By conjuncting this with the characteristic function for column j — 1 and existen-
tially quantifying the variables X;_;, we obtain the characteristic function for column
7. With a mutilated chessboard, we generate leaf node L in attempting the final con-
junction. Note that Equation (1) does not represent a reformulation of the mutilated
chessboard problem. It simply defines a way to schedule the conjunction and quantifi-
cation operations over the input clauses and variables.

In our experiments, we found that this scanning reaches a fixed point after pro-
cessing n/2 columns. That is, from that column onward, the characteristic functions
become identical, except for a renaming of variables. This indicates that the set of all
possible horizontal configurations stabilizes halfway across the board. Moreover, the
BDD representations of the states grow as O(n?). For n = 124, the largest has just
3,969 nodes.
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One important rule-of-thumb in symbolic model checking is that the successive
values of the next-state variables must be adjacent in the variable ordering. Furthermore,
the vertical variables in Y; must be close to their counterparts in X;_; and X;. Both
objectives can be achieved by ordering the variables row-wise, interleaving the variables
2,7 and y; ;, ordering first by row index 4 and then by column index j. This requires
the quantification operations of Equation 1 to be performed on non-root variables.

Figure 5 shows that the “column-scanning” approach yields performance scaling as
n?%9  allowing us to handle cases up to n = 124. Keep in mind that the problem size
here should be measured as n2, the number of squares in the board. Thus, a problem
instance with n = 124 is over 31 times larger than one with n = 22 (the upper limit
reached by KISSAT), in terms of the number of input variables and clauses. Indeed,
the case of n = 22 is straightforward for PGBDD, requiring only a few seconds and
generating a proof with 161,694 clauses.? By contrast, KISSAT requires 12.6 hours and
generates over 136 million clauses.

The plot labeled “No Quantification” demonstrates the importance of including ex-
istential quantification in solving this problem. These data were generated by using the
same schedule as with column scanning, but with all quantification operations omitted.
As can be seen, this approach could not scale beyond n = 14.

Most attempts to generate propositional proofs of the mutilated chessboard have
exponential performance. No solver in the 2018 SAT competition could handle the in-
stance with n = 20. Heule, Kiesl, and Biere [19] devised a problem-specific approach
that could generate proofs up to n = 50 by exploiting special symmetries in the prob-
lem, using a set of rewriting rules to dramatically reduce the search space. Our approach
also exploits symmetries in the problem, but by exploiting a way to compactly encode
the set of possible configurations between successive columns. Other than these two,
we know of no other approach for generating polynomially-sized propositional proofs
for the problem.

4.2 Pigeonhole Problem

The pigeonhole problem is one of the most studied problems in propositional reasoning.
Given a set of n holes and a set of n+1 pigeons, it asks whether there is an assignment of
pigeons to holes such that 1) every pigeon is in some hole, and 2) every hole contains at
most one pigeon. The answer is no, of course, but any resolution proof for this must be
of exponential length [15]. Groote and Zantema have shown that any BDD-based proof
of the principle that only uses the Apply algorithm must be of exponential size [14]. On
the other hand, Cook constructed an extended resolution proof of size O(n*), in part to
demonstrate the expressive power of extended resolution [8].

We consider two encodings of the problem. Both are based on a set of variables p; ;
for1 <i <nand1l < j < n+ 1, with the interpretation that pigeon j is assigned
to hole 7. Encoding the property that each pigeon j is assigned to some hole can be
expressed as a single clause:

n
Pigeon; = \/ Dij
i=1

% All times reported here were measured on a 3 GHz Intel i7-9700 CPU with 16GB of memory.
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Pigeonhole Clauses
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Fig. 6. Total number of clauses in proofs of pigeonhole problem for n holes. Using a direct en-
coding led to exponential performance, but using a Tseitin encoding and column scanning gives
proofs that grow as n*-%,

Encoding the property that each hole ¢ contains at most one pigeon can be done in
two different ways. A direct encoding simply states that for any pair of pigeons j and
k, at least one of them must not be in hole i:

n+1 n+1
Direct; = /\ /\ Pi; VDPik
J=1k=j+1

This encoding requires ©(n?) clauses for each hole, yielding a total CNF size of ©(n?).

A second, Tseitin encoding introduces Tseitin variables to track which holes are
occupied, starting with pigeon 1 and working upward. We use an encoding published
by Sinz [27] that uses Tseitin variables s; ; for 1 <7 < mnand1 < j < n, where s; ;
equals 1 if a pigeon j' occupies hole 7 for some 7' < j. It requires 3n — 1 clauses and
n Tseitin variables per hole, yielding an overall CNF size of ©(n?).

As is illustrated by the log-log plots of Figure 6, this choice of encoding not only
affects the CNF size, it dramatically affects the size of the proofs generated by PGBDD.
With a direct encoding, we could not find any combination of evaluation strategy or
variable ordering that could go beyond n = 16. Similarly, the Tseitin encoding did
not help when using linear evaluation or bucket elimination. Indeed, we see KISSAT,
using the Tseitin encoding, matching or exceeding our program for these cases, but all
of these have exponential performance. (KISSAT could only reach n = 15 when using
a direct encoding.)

On the other hand, the column scanning approach used for the mutilated checker-
board can also be applied to the pigeonhole problem when the Tseitin encoding is used.
Consider an array with hole i represented by row ¢ and pigeon j represented by col-
umn j. Let S; represent the Tseitin variables s; ; for 1 < 7 < n. The “state” is then
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encoded in these Tseitin variables. In processing pigeon j, we can assume that the pos-
sible combinations of values of Tseitin variables S;_; is encoded by a characteristic
function oj_1(S;—1). In addition, we incorporate into this characteristic function the
requirement that each pigeon k, for 1 < k < j — 1 is assigned to some hole. Letting P;
denote the variables p; ; for 1 < ¢ < n, the characteristic function at column j can then
be expressed as:

0j(S;) =381 [05-1(Sj-1) A3P; Tj(Sj-1, P}, S;)] (2)

where the “transition relation” T; consists of the clauses associated with the Tseitin
variables, plus the clause encoding constraint Pigeon ;. As with the mutilated chess-
board, having a proper variable ordering is critical to the success of a column scanning
approach. We interleave the ordering of the variables p; ; and s; ;, ordering them first
by ¢ (holes) and then by 7 (pigeons.)

Figure 6 demonstrates the effectiveness of the column-scanning approach. We were
able to handle instances up to n = 150, and with an overall performance trend of 133,
Our achieved performance therefore improves on Cook’s bound of O(n?). A SAT-
solving method developed by Heule, Kiesl, Seidl, and Biere can generate short proofs of
multiple encodings of pigeon hole formulas, including the direct encoding [20]. These
proofs are similar to ours after transforming them into the same proof format and the
size is also O(n?) [17].

Unlike with the mutilated chessboard, the scanning does not reach a fixed point.
Instead, the BDDs start very small, because they must encode the locations of only
a small number of occupied holes. They reach their maximum size at pigeon n/2, as
the number of combinations for occupied and unoccupied holes reaches its maximum.
Then the BDD sizes drop off as the encoding needs to track the positions of a decreasing
number of unoccupied holes. Fortunately, all of these BDDs grow quadratically with n,
reaching a maximum of 5,702 nodes for n = 150.

4.3 Evaluation

Overall, our results demonstrate the potential for generating small proofs of unsatisfia-
bility using BDDs. We have achieved polynomial performance for problems for which
search-based SAT solvers have exponential performance.

Other studies have compared BDDs to search-based SAT on a variety of bench-
mark problems. Several of these observed exponential performance for BDD-based
solvers for problems for which we have obtained polynomial performance. Uribe and
Stickel [31] ran experiments with the mutilated chessboard problem, but they did not
do any variable quantification. Pan and Vardi [25] applied a variety of scheduling and
variable ordering strategies for the mutilated chessboard and pigeonhole problems. Al-
though they were able to get better performance than with a search-based SAT solver,
they still observed exponential scaling. Obtaining polynomial performance for these
problems requires more problem-specific approaches than the ones they considered.

Table 1 provides some performance data for the largest instances solved for the two
benchmark problems. A first observation is that these problems are very large, with tens
of thousands of input variables and clauses.
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Table 1. Summary data for the largest problems solved

Chessboard Pigeonhole
Instance Chess-124 Pigeon-Tseitin-150
Input variables 30,500 45,150
Total BDD nodes 3,409,112 17,861,833
Maximum live nodes 198,967 225,446
Input clauses 106,136 67,501
Defining clauses 12,127,031 62,585,397
Derived clauses 5,348,303 81,019,084
Maximum live clauses 751,944 1,297,039
SAT time (secs) 5,366 5,206
Checking time (secs) 30 240

The total number of BDD nodes indicates the total number generated by the function
GETNODE, and for which extension variables are created. These are numbered in the
millions, and far exceed the number of input variables. On the other hand, the maximum
number of live nodes shows the effectiveness of garbage collection—at any given point
in the program, at most 6% of the total number of nodes must be stored in the unique
table and tracked in the operation caches. Garbage collection also keeps the number
of clauses that must be tracked by the proof checker below 5% of the total number
of clauses. The elapsed time for the SAT solver ranges up to 1.5 hours. We believe,
however, that an implementation in a more performant language would reduce these
times greatly. The checking times are shown for an LRAT proof checker written in the
C programming language. The proofs have also been checked with a formally verified
proof checker based on the HOL theorem prover [29].

5 Conclusion

Biere, Sinz, and Jussila [21,28] made the critical link between BDDs and extended
resolution proofs. We have shown that adding the ability to perform arbitrary existential
quantification can greatly increase the performance of a proof-generating, BDD-based
SAT solver.

Generating proofs for the two benchmarks problems required special insights into
their structure and then crafting evaluation mechanisms to exploit their properties. We
believe, however, that the column scanning approach we employed could be generalized
and made more automatic.

The ability to generate correctness proofs in a BDD-based SAT solver invites us to
consider generating proofs for other tasks to which BDDs are applied, including QBF
solving, model checking, and model counting. Perhaps a proof of unsatisfiability could
provide a useful building block for constructing correctness proofs for these other tasks.
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Abstract. This paper introduces a bounded model checking (BMC)
algorithm for hyperproperties expressed in HyperLTL, which — to the
best of our knowledge — is the first such algorithm. Just as the classic
BMC technique for LTL primarily aims at finding bugs, our approach
also targets identifying counterexamples. BMC for LTL is reduced to
SAT solving, because LTL describes a property via inspecting individual
traces. Our BMC approach naturally reduces to QBF solving, as Hyper-
LTL allows explicit and simultaneous quantification over multiple traces.
We report on successful and efficient model checking, implemented in our
tool called HyperQube, of a rich set of experiments on a variety of case
studies, including security, concurrent data structures, path planning for
robots, and mutation testing.

1 Introduction

Hyperproperties [10] have been shown to be a powerful framework for specifying
and reasoning about important classes of requirements that were not possible
with trace-based languages such as the classic temporal logics. Examples include
information-flow security, consistency models in concurrent computing [6], and
robustness models in cyber-physical systems [5,35]. The temporal logic Hyper-
LTL [9] extends LTL by allowing explicit and simultaneous quantification over
execution traces, describing the property of multiple traces. For example, the
security policy observational determinism can be specified by the following Hy-
perLTL formula: V74 .¥Vrp.(0r, < 0zp) W —(ix, < ir,) which stipulates that
every pair of traces m4 and 7 have to agree on the value of the (public) output
o as long as they agree on the value of the (secret) input 4, where ‘W’ denotes
the weak until operator.

There has been a recent surge of model checking techniques for HyperLTL
specifications [9, 12,22, 24|. These approaches employ various techniques (e.g.,
alternating automata, model counting, strategy synthesis, etc) to verify hyper-
properties. However, they generally fall short in proposing a general push-button
method to deal with identifying bugs with respect to HyperLTL formulas involv-
ing quantifier alternation. Indeed, quantifier alternation has been shown to gen-
erally elevate the complexity class of model checking HyperLTL specifications in
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different shapes of models [2,9]. For example, consider the simple Kripke struc-
ture K in Fig. 1 and HyperLTL formulas ¢; = Va4 .Vrp.0O(pr, < Pry) and
o = V1 a.3mp. O0(Pr, ¥ Prp). Proving that K [~ o1 (where traces for ma
and 7 are taken from K) can be reduced to building the self-composition of K
and applying standard LTL model checking, resulting in worst-case complexity
|K|? in the size of the system. On the contrary, proving that K = ¢ is not as
straightforward. In the worst case, this requires a subset generation to encode
the existential quantifier within the Kripke structure, resulting in | K| -21K1 blow
up. In addition, the quantification is over traces rather than states, adding to
the complexity of reasoning.
Following the great success of bounded 50 51 5
@ {r}

model checking (BMC) for LTL specifica- ~ —\"} /\/

tions [8], in this paper, we propose a BMC

algorithm for HyperLTL. To the best of s: ;

our knowledge this is the first such algo-
rithm. Just as BMC for LTL is reduced

to SAT solving to search for a counterex- Fig. 1: A Kripke structure.
ample trace whose length is bounded by some integer k, we reduce BMC for
HyperLTL to QBF solving to be able to deal with quantified counterexam-
ple traces in the input model. More formally, given a HyperLTL formula, e.g.,
¢ = Vmu.Imp.1p, and a family of Kripke structures KK = (K 4, Kp) (one per trace
variable), the reduction involves three main components. First, the transition re-
lation of K (for every m) is represented by a Boolean encoding [K]. Secondly,
the inner LTL subformula v is translated to a Boolean representation [¢] in
a similar fashion to the BMC unrolling technique for LTL. This way, the QBF
encoding for a bound k > 0 roughly appears as:

[€, ~¢li = FTaVT5.[Kalk A ([KB]k — [-9]k) (1)

where the vector of Boolean variables T4 (respectively, T5) are used to represent
the states and propositions of K4 (resp. Kp) for steps from 0 to k. Formulas
[K A]x and [K g are the unrollings K 4 (using T4) and K (using T5), and [-¢/]
(that uses both T4 and Z5) is the fixpoint Boolean encoding of —¢). The proposed
technique in this paper does not incorporate a loop condition, as implementing
such a condition for multiple traces is not straightforward. This, of course, comes
at the cost of lack of a completeness result.

While our QBF encoding is a natural generalization of BMC for HyperLTL,
the first contribution of this paper is a more refined view of how to interpret
the behavior of the formula beyond the unrolling depth k. Consider LTL for-
mula V7.0dp,. BMC for LTL attempts to find a counterexample by unrolling
the model and check for satisfiability of d7.<> —p, up-to bound k. Now consider
LTL formula V7. < p, whose negation is 3m.[J—p,. In the classic BMC, due to
its pessimistic handling of [J, the unsatisfiability of the formula cannot be estab-
lished in the finite unrolling (handling these formulas requires either a looping
condition or to reach the diameter of the system). This is because [J—p, is not
sometimes finitely satisfiable (SFS), in the terminology introduced by Havelund
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and Peled [27], meaning that not all satisfying traces of (Jp, have a finite prefix
that witness the satisfiability.

We propose a method that allows to interpret a wide range of outcomes of
the QBF solver and relate these to the original model checking decision problem.
To this end, we propose the following semantics for BMC for HyperLTL:

— Pessimistic semantics (like in LTL BMC) under which pending eventuali-
ties are considered to be unfulfilled. This semantics works for SF'S temporal
formulas and paves the way for bug hunting.

— Optimistic semantics considers the dual case, where pending eventualities
are assumed to be fulfilled at the end of the trace. This semantics works
for sometimes finitely refutable (SFR) formulas, and allows us to interpret
unsatisfiability of QBF as proof of correctness even with bounded traces.

— Halting variants of the optimistic and pessimistic semantics, which allow
sound and complete decision on a verdict for terminating models.

We have fully implemented our technique in the tool HyperQube. Our exper-
imental evaluation includes a rich set of case studies, such as information-flow
security, linearizability in concurrent data structures, path planning in robotic
applications, and mutation testing. Our evaluation shows that our technique is
effective and efficient in identifying bugs in several prominent examples. We also
show that our QBF-based approach is certainly more efficient than a brute-force
SAT-based approach, where universal and existential quantifiers are eliminated
by combinatorial expansion to conjunctions and disjunctions. We also show that
in some cases our approach can also be used as a tool for synthesis. Indeed, a
witness to an existential quantifier in a HyperLTL formula is an execution path
that satisfies the formula. For example, our experiments on path planning for
robots showcase this feature of HyperQube.

In summary, the contributions of this paper are as follows. We (1) propose a
QBF-based BMC approach for verification and falsification of HyperLTL spec-
ifications; (2) introduce complementary semantics that allow proving and dis-
proving formulas, given a finite set of finite traces, and (3) rigorously analyze the
performance of our technique by case studies from different areas of computing.

2 Preliminaries

2.1 Kripke Structures

Let AP be a finite set of atomic propositions and ¥ = 2P be the alphabet. A
letter is an element of ¥. A trace t € X* over alphabet X is an infinite sequence
of letters: ¢ = t(0)t(1)t(2) - -

Definition 1. A Kripke structure is a tuple K = (S, Sinit, 0, L), where
— S is a finite set of states;
— Sinit € S is the set of initial states;
— 0 C S xS is a transition relation, and
— L:S — ¥ is alabeling function on the states of K.
We require that for each s € S, there exists s' € S, such that (s,s") € §.
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Fig. 1 shows a Kripke structure, where Sinit = {so}, L(so) = {p}, L(s4) =
{q, halt}, etc. The size of the Kripke structure is the number of its states. A loop
in K is a finite sequence s(0)s(1)---s(n), such that (s(i),s(i +1)) € 4, for all
0 <i<n,and (s(n),s(0)) € 6. We call a Kripke frame acyclic, if the only loops
are self-loops on otherwise terminal states, i.e., on states that have no other
outgoing transition. Since Definition 1 does not allow terminal states, we only
consider acyclic Kripke structures with such added self-loops. We also label such
states by atomic proposition halt.

A path of a Kripke structure is an infinite sequence of states s(0)s(1)--- € S,
such that s(0) € Sinit, and (s(i),s(i+1)) € 6, for all i > 0. A trace of a
Kripke structure is a trace t(0)¢(1)¢(2)--- € 3¢, such that there exists a path
s(0)s(1)--- € S with t(i) = L(s(7)) for all i > 0. We denote by Traces(K, s) the
set of all traces of K with paths that start in state s € S, and use Traces(K) as

a shorthand for (J,cg = Traces(K, s).

2.2 The Temporal Logic HyperLTL

Syntaz. HyperLTL [9] is an extension of the linear-time temporal logic (LTL)
for hyperproperties. The syntax of HyperLTL formulas is defined inductively by
the following grammar:

pu=3m.p | V.| ¢
pu=truelar | 29[ dVP[dNG[dU G[IR ¢[O¢

where a € AP is an atomic proposition and 7 is a trace variable from an infinite
supply of variables V. The Boolean connectives —, V, and A have the usual
meaning, U is the temporal until operator, R is the temporal release operator,
and Q is the temporal nexzt operator. We also consider other derived Boolean
connectives, such as —, and «», and the derived temporal operators eventually
O = true U p and globally Oy = =< —p. Even though the set of operators
presented is not minimal, we have introduced this set to uniform the treatment
with the variants in Section 3. The quantified formulas 37 and V7 are read as
“along some trace 7”7 and “along all traces 77, respectively. A formula is closed
(i.e., a sentence) if all trace variables used in the formula are quantified. We
assume, without loss of generality, that no variable is quantified twice. We use
Vars(p) for the set of path variables used in formula .

Semantics. An interpretation 7 = (Tr)re vars(p) Of a formula ¢ consists of a
tuple of sets of traces, with one set T} per trace variable 7 in Vars(y), denoting
the set of traces assigned to w. Note that we allow quantifiers to range over
different models. We will use this feature in the verification of hyperproperties
such as linearizability, where different quantifiers are associated with different
sets of executions (in this case one for the concurrent implementation and one
for the sequential implementation). That is, each set of traces comes from a
Kripke structure and we use K = (K )revars(y) to denote a family of Kripke
structures, so T, = Traces(K ) is the traces that 7 can range over, which comes
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from K. Abusing notation, we write 7 = Traces(K). Note that picking a single
K and letting K, = K for all 7 is a particular case, which leads to the original
semantics of HyperLTL [9].

Our semantics of HyperLTL is defined with respect to a trace assignment,
which is a partial map IT: Vars(p) — 3“. The assignment with the empty
domain is denoted by Ily. Given a trace assignment I, a trace variable 7, and
a concrete trace t € 3¢, we denote by IT[r — t] the assignment that coincides
with IT everywhere but at w, which is mapped to trace ¢t. The satisfaction of
a HyperLTL formula ¢ is a binary relation = that associates a formula to the
models (7, I1,i) where i € Z>¢ is a pointer that indicates the current evaluating
position. The semantics is defined as follows:

,0) E3m. ¢ ifft  thereis at € Ty, such that (7, [r — t],0) = ¥,
'THO)I:VWw ift  for all t € Ty, such that (7, II[r — t],0) = 1,

(7T,

(

(T, 1I1,i) = true

(T.I1.i) = a i q e IT(m)(0),

(T3 b i (T.Li) o,

(Tvﬂvi) |:1/11\/7JJ2 iff (THZ)':wl or (T’H’i)):'d)%

(T,H,i) ':1/11/\1/)2 iff (THZ)':’L/Jl and (T,H7i)|:’lb2,

(T EOv (T Li+1) =y,

(T,II,i) Ev1Urpy iff  thereis a j > i for which (7,11, 7) | 1o and
for all k € [i, 7), (T, IT, k) = 1,

(T,I1,i) Evy Ry iff  either for all j >4, (T,11,7) = e, or,

for some j >, (7,11, j) = ¢ and
for all k € [4,4] : (T, I, k) = .

This semantics is slightly different from the definition in [9], but equiv-
alent (see [30]). We say that an interpretation 7 satisfies a sentence ¢, de-
noted by T | o, if (T,1I,0) = ¢. We say that a family of Kripke structures
K satisfies a sentence ¢, denoted by K |= o, if (Traces(Kxr))recvars(e) F -
When the same Kripke structure K is used for all path variables we write
K E ¢. For example, the Kripke structure in Fig. 1 satisfies HyperLTL for-
mula ¢ = V4. 31 OOPrs ¥ Dry)-

3 Bounded Semantics for HyperLTL

We introduce now the bounded semantics of HyperLTL, used in Section 4 to
generate queries to a QBF solver to aid solving the model checking problem.

3.1 Bounded Semantics

We assume the HyperLTL formula is closed and of the form
Qama.Qprp...Qzrz.9p, where Q € {V,3} and it has been converted into
negation-normal form (NNF) so that the negation symbol only appears in front
of atomic propositions, e.g., mar,. Without loss of generality and for the sake of
clarity from other numerical indices, we use roman alphabet as indices of trace
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variables. Thus, we assume that Vars(¢) C {ma,7p,...,7z}. The main idea of
BMC is to perform incremental exploration of the state space of the systems by
unrolling the systems and the formula up-to a bound. Let k£ > 0 be the unrolling
bound and let T = (Ta...Tz) be a tuple of sets of traces, one per trace vari-
able. We start by deﬁnlng a satisfaction relation between HyperLTL formulas
for a bounded exploration k and models (7, II,4), where T is the tuple of set of
traces, IT is a trace assignment mapping (as defined in Section 2), and i € Z>
that points to the position of traces. We will define different finite satisfaction
relations for general models (for x = pes, opt, hpes, hopt):
— =}, the common satisfaction relation among all semantics,
— 2%, called pessimistic semantics,
- B, 3 called optimistic semantics, and
- |:hp “* and I:h°p ! variants of =1 and =" ! for Kripke structures that encode
termination of traces (modeled as self-loops to provide infinite traces).
All these semantics coincide in the interpretation of quantifiers, Boolean connec-
tives, and temporal operators up-to instant k — 1, but differ in their assumptions
about unseen future events after the bound of observation k.

Quantifiers. The satisfaction relation for the quantifiers is the following:

(T,11,0) =5 3m. o iff thereisat e Ty : (T,IH[m — t],0) =5 ¥, (1)
(T,I1,0) = V. o iff forall  teTy: (T,H[r —t],0) =} . (2)

Boolean operators. For every i < k, we have:

(T, 11,i) =}, true, (3)
(T,1,1) =5 ax it ae II(m)(7), (4)
(T, 11,4) 'ZZ Tarx iff a¢ H(m)(i), (5)
(T,I1,i) =5 v Vb i (T, I,4) =5 41 or (T,1I1,4) =5 o, (6)
(Ta I, 7’) ':Z Y1 Ao iff (T7 I, Z) ':It 1 and (T’ H’i) ':It ¢2~ (7)

Temporal connectives. The case where (i < k) is common between the opti-
mistic and pessimistic semantics:

(T, 11,7) |=}, O¢ ift (7,110 +1) = 9, (8)
(T, I1,i) =f yn Uy iff (T, I1,0) =5, 1o, or

(Ta H7i) 'ZZ (a1 and (T’ H’i+1) ':Z Y1Ups, (9)
(T, H, Z) ':z ’lﬁl RwQ iff (T,H,i) ):z wg, and

(T, II,i) =5 1 or (T, 11,0 + 1) =5 ¥1 R )a. (10)
For (i = k), in the pessimistic semantics the eventualities (including O) are

assumed to never be fulfilled in the future, so the current instant % is the last
chance:
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(T, I,7) =2 O iff never happens, (Py)
(T, 11,1) I—pef VU HE (T I16) =7 o, (F2)
(T, I, i) B3~ b Rpa iff (T, I,0) =77 b1 At (Ps)

On the other hand, in the optimistic semantics the eventualities are assumed to
be fulfilled in the future:

(T, I1,7) —Opt Oy iff  always happens, (Oy)
(T, IL3) =P o Unpe iff (T, IL4) 7P 41 Vs, (02)
(TLi) = by Ry i (T2 L) =07 (0s)

To capture the halting semantics, we use the predicate halt that is true
if the state corresponds to a halting state (self-loop), and define halted def
A~ Vars(p) Maltz which holds whenever all traces have halted (and their final state
will be repeated ad infinitum). Then, the halted semantics of the temporal case
for ¢ = k in the pessimistic case consider the halting case to infer the actual
value of the temporal operators on the (now fully known) trace:

(T, I1,i) =17 O iff (7,101,i) k=5 halted and (T, 11,4) =17 ¢ (HPy)
(T, 11,%) hf’“ LUy iff (T, I,0) =7 4 (HPy)
(T, I,7) ’”’“ Y Ry it (T, 10,4) hpes 0 AwQ, or

(T,11,1) )zk halted and (T, IT,7) =7 )y (HP3)

Dually, in the halting optimistic case:

(T, I1,i) W} halted or (T, I1,i) ="' (HOy)
(T, 11,%) h"pt 9, OT
(T, IT,) gék halted and (T, IT,7) =" ¢y (HO,)
(T, I1,0) =17 by Rpy iff (T, I1,4) =17 o) (HOs)

(T, 11,i) =r°P O iff
(T, I0,i) ’wpt Uy U py iff

Complete semantics. We are now ready to define the four semantics:

— Pessimistic semantics: =1 use rules (1)-(10) and (P1)-(Ps).
— Optimistic semantics: 2P' use rules (1)-(10) and (O1)-(03).
— Halting pessimistic semantics: =7 use rules (1)-(10) and (HP;)-(HP3).
— Halting optimistic semantics: =°"* use rules (1)-(10) and (HO;)-(HO3).

3.2 The Logical Relation between Different Semantics

Observe that the pessimistic semantics is the semantics in the traditional BMC
for LTL.In the pessimistic semantics a formula is declared false unless it is wit-
nessed to be true within the bound explored. In other words, formulas can only
get “truer” with more information obtained by a longer unrolling. Dually, the
optimistic semantics considers a formula true unless there is evidence within the
bounded exploration on the contrary. Therefore, formulas only get “falser” with
further unrolling. For example, formula (Jp always evaluates to false in the pes-
simistic semantics. In the optimistic semantics, it evaluates to true up-to bound
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k if p holds in all states of the trace up-to and including k. However, if the for-
mula evaluates to false at some point before k, then it evaluates to false for all
j > k. The following lemma formalizes this intuition in HyperLTL.

Lemma 1. Let k < j. Then,

1. If (T, I1,0) E;°° @, then (T, 11,0) = ¢

2. If (T, 11,0) =7 o, then (T, I1,0) psopt ©.
3. If (T, I1,0) =7 o, then (T, IT,0) |:’”’“ ©
4. If (T, I1,0) ’“’Pt @, then (T, II,0) wom 0.

In turn, the verdict obtained from the exploration up-to & can (in some cases)
be used to infer the verdict of the model checking problem. As in classical BMC,
if the pessimistic semantics find a model, then it is indeed a model. Dually, if
our optimistic semantics fail to find a model, then there is no model. The next
lemma formally captures this intuition.

Lemma 2 (Infinite inference). The following hold for every k,
1 If (T, I1,0) =2°° o, then (T, I1,0) = .
If (T, IT,0) ¥ o, then (T, 11,0) b .
3 If (T, I1,0) =17 o, then (T, I1,0) |= .
4. If (T, 11,0) ’w”f @, then (T, I1,0) [~ .

Ezample 1. Consider the Kripke structure in Fig. 1, bound k£ = 3, and formula
Y1 = VTFA.HWB.((pﬂ-A b Dap) R —\qm). It is easy to see that instantiating w4
with trace sgsisasy falsifies ¢ in the pessimistic semantics. By Lemma 2, this
counterexample shows that the Kripke structure is a model of = in the infinite
semantics as well. That is, K E5“° =1 and, hence, K = —¢1, so K [~ ¢;.

Consider again the same Kripke structure, bound k& = 3, and formula s =
Vra.3rg. OPr, < grp)- To disprove ¢a, we need to find a trace w4 such that
for all other 7, proposition ¢ in 7z always disagrees with p in m4. It is straight-
forward to observe that such a trace m4 does not exist. By Lemma 2, proving
the formula is not satisfiable up-to bound 3 in the optimistic semantics implies
that K is not a model of =9 in the infinite semantics. That is, K %Opt V2
implies K [~ —p9. Hence, we conclude K = ¢s.

Consider again the same Kripke structure which has two terminating states,
s3 and s4, labeled by atomic proposition halt with only a self-loop. Let k = 3,
and @3 = Vma.31p.(7¢r, U —pr ). Instantiating w4 by trace sps1ss, which is of
the form {p}* satisfies —p3. By Lemma 2, the fulfillment of formula implies that
in infinite semantics it will be fulfilled as well. That is, K )::},fp “ <3 implies
K | —ps. Hence, K [~ 3.

Consider again the same Kripke structure with halting states and formula
oy = VA 3. O0Pr, ¥ Prp)- A counterexample is an instantiation of w4
such that for all 75, both traces will always eventually agree on p. Trace sgs15254,
which is of the form {p}{p}H{p}{q, halt}* with k = 3. This trace never agrees
with a trace that ends in state s3 (which is of the form {p}*) and vice versa. By
Lemma 2, the absence of counterexample up-to bound 3 in the halting optimistic
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semantics implies that K is not a model of =, in the infinite semantics. That
is, K 5Pt =, implies K [~ —p4. Hence, we conclude K |= ¢y. 0

4 Reducing BMC to QBF Solving

Given a family of Kripke structures K, a HyperLTL formula ¢, and bound k > 0,
our goal is to construct a QBF formula [K, ¢]; whose satisfiability can be used
to infer whether or not K |= ¢.

In the following paragraphs, we first describe how to encode the model and
the formula, and then how to combine the two to generate the QBF query. We
will illustrate the constructions using formula ¢; in Example 1 in Section 3,
whose negation is Ir4.Vrp.—) with 1) = (pr, < D) U @y

Encoding the models. The unrolling of the transition relation of a Kripke struc-
ture K4 = (S, Sinit, 9, L) up to bound k is analogous to the BMC encoding for
LTL [8]. First, note that the state space S can be encoded with a (logarithmic)
number of bits in |S|. We introduce additional variables ng,ni,... to encode
the state of the Kripke structure and use AP* = AP U {ng,n1,...} for the ex-
tended alphabet that includes the encoding of S. In this manner, the set of initial
states of a Kripke structure is a Boolean formula over AP*. For example, for the
Kripke structure K4 in Fig. 1 the set of initial states (in this case Sini = {s0})
corresponds to the following Boolean formula:

Iy :=(—mp A—mnqg A—n2) ApA—gA —halt

assuming that (—ng A —np A —ng) represents state sp (we need three bits to
encode five states.) Similarly, R4 is a binary relation that encodes the transition
relation ¢ of K4 (representing the relation between a state and its successor). The
encoding into QBF works by introducing fresh Boolean variables (a new copy of
AP™ for each Kripke structure K4 and position), and then producing a Boolean
formula that encodes the unrolling up-to k. We use x4 for the set of fresh copies
of the variables AP* of K 4 corresponding to position i € [0, k|. Therefore, there
are k|z 4| = k|AP%| Boolean variables to represent the unrolling of K 4. We use
I4(z) for the Boolean formula (using variables from ) that encodes the initial
states, and R4 (x,a’) (for two copies of the variables 2 and 2’) for the Boolean
formula whether ' encodes a successor states of x. For example, for k = 3, we
unroll the transition relation up-to 3 as follows,

[Kals = La(eh) A Ra(aly, ) A R(wy, 0%) A R(2%, 23

which is the Boolean formula representing valid traces of length 4, using four
copies of the variables AP that represent the Kripke structure K 4.

Encoding the inner LTL formula. The idea of the construction of the inner LTL
formula is analogous to standard BMC as well, except for the choice of differ-
ent semantics described in Section 3. In particular, we introduce the following

inductive construction and define four different unrollings for a given k: [-]¥9,

t h hopt
[15% > [Iik™, and [I53"
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— Inductive Case: Since the semantics only differ on the temporal opera-
tors at the end of the unrolling, the inductive case is common to all un-
rollings and we use [];, to mean any of the choices of semantic (for * =
pes, opt, hpes, hopt). For all i < k:

[p=17 = Pr
[=p=]ix = TP
[ Voliy = [nlis Vv [¥2i s
[ Aol = [alis A ey

[ U bl = [l v ([die A [0 U 0l )
[1 Rl = [elin A (Dl v [ R valfy )
OVl = [l

Note that, for a given path variable 74, the atom p , that results from
[P 4l x is one of the Boolean variables in z'.

— For the base case, the formula generated is different depending on the
intended semantics:

Wﬂgfl,k = false . . [[1&]],2{':1’,C = true . .
es es es opt opt opt
[[wﬂk;il,k = [[haltedﬂk;f)k A [W’]]lfk W]]kﬂ,k = [[ha'lted]]k,lf - [[wﬂk,lf

Note that the base case defines the value to be assumed for the formula after
the end k of the unrolling, which is spawned in the temporal operators in
the inductive case at k. The pessimistic semantics assume the formula to
be false, and the optimistic semantics assume the formula to be true. The
halting cases consider the case at which the traces have halted (using in this
case the evaluation at k) and using the unhalting choice otherwise.

Ezample 2. Consider again the formula =) = (pr, < Prp) U ¢r,. Using the
pessimistic semantics [-¢]§% with three steps is

a2, v (00, = p0) A (g v (k< ph) A (a2, v 02, < 2,0 0 d, ).

In this encoding, the collection 2%, contains all variables of AP* of K4 (that is
{p? A,q?r »+--}) connecting to the corresponding valuation for p,, in the trace
of K4 at step 2 in the unrolling of K 4. In other words, the formula [[ﬂﬁ]]&e?f uses

variables from 29, 2}, 2%, 2% and 2%, 2}, 2%, 2% (that is, from 74 and Tg). O

Combining the encodings. Now, let ¢ be a HyperLTL formula of the form
0 =Qama.Qpmp..... Qzmzp and K = (K4, Kp,...,Kz). Combining all the
components, the encoding of the HyperLTL BMC problem in QBF is the follow-
ing (for x = pes, opt, hpes, hopt):

K, ol = Quza.QpTH - - - QZ@([[KAHIC oa [Kplkop - [Kz]koz Wﬂak)

where [¢]5 ;. is the choice of semantics, o; = A if Q; = 3, and o; = — if Q; =V,
for j € Vars(yp).
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Ezxample 3. Consider again Example 2. To combine the model description with
the encoding of the HyperLTL formula, we use two identical copies of the given
Kripke structure to represent different paths 74 and 7 on the model, denoted
as K4 and Kpg. The final resulting formula is:

K, ~¢ls := ZaVTE.([Kals A ([Ks]s — [~¢]5%))

The sequence of assignments (—ng, —n1, —ng, p, g, ~halt)? (—na, —=n1,n9,p, q,
—halt)!  (=na,n1, —ng,p, ~q, —halt)?  (ng, —ny, —ng, —p,q, halt)> on K,
corresponding to the path sgsis2sy, satisfies [~@]§% for all traces on Kp. The
satisfaction result shows that [, =5 is true, indicating that a witness of vio-
lation is found. Theorem 1, by a successful detection of a counterexample witness,
and the use of the pessimistic semantics, allows to conclude that I £ . 0

The main result of this section is Theorem 1 that connects the output of the
solver to the original model checking problem. We first show an auxiliary lemma.

Lemma 3. Let ¢ be a closed HyperLTL formula and T = Traces(KC) be an
interpretation. For x = pes, opt, hpes, hopt, it holds that

[, ol is satisfiable if and only if (T, IIy,0) =i .

Proof (sketch). The proof proceeds in two steps. First, let ¢ be the largest
quantifier-free sub-formula of . Then, every tuple of traces of length k (one
for each 7) is in one-to-one correspondence with the collection of variables p,
that satisfies that the tuple is a model of % (in the choice semantics) if and
only if the corresponding assignment makes [¢]j. Then, the second part shows
inductively in the stack of quantifiers that each subformula obtained by adding
a quantifier is satisfiable if and only if the semantics hold. O

Lemma 3, together with Lemma 2, allows to infer the outcome of the model
checking problem from satisfying (or unsatisfying) instances of QBF queries,
summarized in the following theorem.

Theorem 1. Let ¢ be a HyperLTL formula. Then,
1. For % = pes, hpes, if [IC, ~¢l} is satisfiable, then K }= .
2. For x = opt, hopt, if [IC, ~¢] is unsatisfiable, then K |= ¢.

Table 1 illustrates what Theorem 1 allows to soundly conclude from the
output of the QBF solver about the model checking problem of formulas from
Example 1 in Section 3.

5 Evaluation and Case Studies

We now evaluate our approach by a rich set of case studies on information-flow
security, concurrent data structures, path planning for robots, and mutation
testing. In this section, we will refer to each property in HyperLTL as in Table 2.
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Semantics
‘ Formula ‘ ‘ Bound pessimistic optimistic halting
k=2 UNSAT (inconclusive) SAT (inconclusive) UNSAT (inconclusive)
o k=3 | SAT (counterexample) SAT (inconclusive) UNSAT (inconclusive)
k=2 UNSAT (inconclusive) SAT (inconclusive) UNSAT (inconclusive)
o k=3 UNSAT (inconclusive) UNSAT (proved) UNSAT (inconclusive)
k=2 UNSAT (inconclusive) UNSAT (inconclusive) non-halted (inconclusive)
o k=3 UNSAT (inconclusive) UNSAT (inconclusive) halted (counterexample)
k=2 UNSAT (inconclusive) UNSAT (inconclusive) non-halted (inconclusive)
o k=3 UNSAT (inconclusive) UNSAT (inconclusive) halted (proved)

Table 1: Comparison of Properties with Different Semantics

We have implemented the technique described in Section 4 in our tool HyperQube.
Given a transition relation, the tool automatically unfolds it up to & > 0 by a
home-grown procedure written in Ocaml, called gengbf. Given the choice of the
semantics (pessimistic, optimistic, and halting variants) the unfolded transition
relation is combined with the QBF encoding of the input HyperLTL formula to
form a complete QBF instance which is then fed to the QBF solver QuAbS [28].
All experiments in this section are run on an iMac desktop with Intel i7 CPU
@3.4 GHz and 32 GB of RAM. A full description of the systems and formulas
used can be accessed in the longer version of this paper [30].

Case Study 1: Symmetry in Lamport’s Bakery algorithm [12]. Symme-
try states that no specific process has special privileges in terms of a faster access
to the critical section (see different symmetry formulas in Table 2). In these for-
mulas, each process P, has a program counter denoted by pc(P,,), select indicates
which process is selected to process next, pause if both processes are not selected,
sym__break is which process is selected after a tie, and sym(select, ,, select, ) in-
dicates if two traces are selecting two opposite processes. The Bakery algorithm
does not satisfy symmetry (i.e. gpsyml), because when two or more processes are
trying to enter the critical section with the same ticket number, the algorithm al-
ways gives priority to the process with the smaller process ID. HyperQube returns
SAT using the pessimistic semantics, indicating that there exists a counterex-
ample in the form of a falsifying witness to 74 in formula ¢gm, . Table 3 includes
our result on other symmetry formulas presented in Table 2.

Case Study 2: Linearizability in SNARK [14]. SNARK implements a
concurrent double-ended queue using double-compare-and-swap (DCAS) and a
doubly linked-list that stores values in each node. Linearizability [29] requires
that any history of execution of a concurrent data structure (i.e., sequence of
invocation and response by different threads) matches some sequential order of
invocations and responses (see formula ¢y, in Table 2). SNARK is known to
have two linearizability bugs and HyperQube returns SAT using the pessimistic
semantics, identifying both bugs as two counterexamples. The bugs we identified
are precisely the same as the ones reported in [14].
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Property H Property in HyperLTL
pg1 = VWA.VTFB.(—'Sym(SEZECtﬂ-A, selectry) V =(pause, , = pausewB))R
((pe(Po)ra = pe(Pr)np) A (pe(Pr)xa = pe(Po)rg )
5o = Vmwa ¥mp.(msym(selecty , , selectry,) V —(pause, , = pause, ) V
—(selectr, < 3)V ~(selectr, < 3))R
((pe(Po)ra = pe(Pi)ny ) A (pe(Pr)rn = pe(Po)rs )
Symmetry  ||#S3 = V7 a.Vrp. (msym(selectr , , selectx,) V =(pause, | = pause, ) V

—(selectr, < 3) V —(selectr, < 3)V

ﬁsym(sym_br’eakWA7 sym_breaka ))’R

((pe(Po)ra = pe(P)ng) A (pe(Pr)ry = pe(Po)ry))
sym, = Vma.Inp.Osym(selectr,, selectr,) A (pause, , = pause, ) A

(pC(PO)ﬂ'A = pC(Pl)"rB> A (pC(Pl)ﬂ'A = pC(PO)WB)
Psym, = Vma.Inp.Osym(selectr,, selectr,) A (pause, , = pause, ) A

(selectr, < 3) A (selectr, < 3) A

(pc(PO)ﬂ'A = pC(Pl)WB) A (pC(Pl)ﬂ'A = pC(PO)WB)
Linearizability ||¢in = Vma.37p. O(history, , « history, )

on =V7a.3rp.(PIN,, # PIN=,) A ((—haltx, V —halt )
u ((haltﬂA A haltzy) A (Resultr,, = ResultﬂB)))

NI

Prair = ITANTE. (O, ) A (ONRRA,) A (ONROR,) A
Fairness (@Aserenct,, Aty < actry) = (ONRRzy) < (ONROxp)))A
((D /\autEAuf,Q acty, < aCt""B) - ((ONRR‘"B) e (ONRO""B)))

psp = ImaVrE.(mgoal .. U goal, )
Path Planning i L A

i = AT (strategy,. , < strategy, ) U (goal, , A goal, )

Mutant Omue = ITAVTE(MUtr, A —Mutzy) A ((ine, < ingy) U (outr, ¥ outry))

Table 2: Hyperproperties investigated in case studies.

Case Study 3: Non-interference in multi-threaded Programs. Non-
interference [25] states that low-security variables are independent from the
high-security variables, thus preserving secure information flow. We consider
the concurrent program example in [32], where PIN is high security input and
Result is low security output. HyperQube returns SAT in the halting pessimistic
semantics, indicating that there is a trace that we can detect the difference of a
high-variable by observing a low variable, that is, violating non-interference. We
also verified the correctness of a fix to this algorithm, proposed in [32] as well.
HyperQube uses the UNSAT results from the solver (with halting optimistic se-
mantics) to infer the absence of violation, that is, verification of non-interference.

Case Study 4: Fairness in non-repudiation protocols. A non-repudiation
protocol ensures that a receiver obtains a receipt from the sender, called non-
repudiation of origin (NRO), and the sender ends up having an evidence, named
non-repudiation of receipt (NRR), through a trusted third party. A
non-repudiation protocol is fair if both NRR and NRO are either received or not
received by the parties (see formula ¢, in Table 2). We verified two different
protocols from [31], namely, Tincorrect that chooses not to send out NRR after
receiving NRO, and a correct implementation T.pprect Which is fair. For Tooppect
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(respectively, Tincorrect)s HyperQube returns UNSAT in the halting optimistic se-
mantics (respectively, SAT in the halting pessimistic semantics), which indicates
that the protocol satisfies (respectively, violates) fairness.

Case Study 5: Path planning for robots. We have
used HyperQube beyond verification, to synthesize strate-
gies for robotic planning [34]. Here, we focus on produc-
ing a strategy that satisfies two control requirements for a
robot to reach a goal in a grid. First, the robot should take
the shortest path (see formula @), in Table 2). Fig. 2 shows t
a 10 x 10 grid, where the red, green, and black cells are ini-
tial, goal, and blocked cells, respectively. HyperQube returns
SAT and the synthesized path is shown by the blue arrows.
We also used HyperQube to solve the path robustness prob-
lem, meaning that starting from an arbitrary initial state,
a robot reaches the goal by following a single strategy (see
formula @, in Table 2). Again, HyperQube returns SAT for
the grid shown in Fig. 3. [

Fig. 2: Shortest Path

Case Study 6: Mutation testing. We adopted the Fig.3: Robust path
model from [15] and apply the original formula that de-

scribes a good test mutant together with the model (see formula @, in Table 2).
HyperQube returns SAT, indicating successful finding of a qualified mutant. We
note that in [15] the authors were not able to generate test cases via @mut, as
the model checker MCHyper is not able to handle quantifier alternation in push-
button fashion.

Results and analysis. Table 3 summarizes our results including running times,
the bounded semantics applied, the output of the QBF solver, and the resulting
infinite inference conclusion using Theorem 1. As can be seen, our case studies
range over model checking of different fragments of HyperLTL. It is important
to note that HyperQube run time consists of generating a QBF formula by genqbf
and then checking its satisfiability by QuAbS. It is remarkable that in some cases,
QBF formula generation takes longer than checking its satisfiability. The models
in our experiments also have different sizes. The most complex case study is
arguably the SNARK algorithm, where we identify both bugs in the algorithm
in 472 and 1497 seconds. In cases 5.1 — 6.2, we also demonstrate the ability of
HyperQube to solve synthesis problems by leveraging the existential quantifier in
a HyperLTL formula.

Finally, we elaborate more on scalability of the path planning problem for
robots. This problem was first studied in [34], where the authors reduce the
problem to SMT solving using Z3 [13] and by eliminating the trace quantifiers
through a combinatorial enumeration of conjunctions and disjunctions. Table 4
compares our approach with the brute-force technique employed in [34] for differ-
ent grid sizes. Our QBF-based approach clearly outperforms the solution in [34],
in some cases by an order of magnitude.
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l # l Model K [Formula bound &k [AP*[ QBF semantics gengbf [s] QuAbS [s]“Total [s]‘

0.1| Bakery.3proc »s1 7 27 SAT pes 0.44 0.04 0.48 | X
0.2| Bakery.3proc ©52 12 27 SAT pes 1.31 0.15 1.46 | X
0.3| Bakery.3proc ©s3 20 27 UNSAT opt 2.86 4.87 7.73 |/
1.1| Bakery.3proc Psym1 10 27 SAT pes 0.86 0.11 0.97 |X
1.2| Bakery.3proc | @sym2 10 27 SAT pes 0.76 0.17 0.93 |X
1.3| Bakery.5proc Psym1 10 45 SAT pes 23.57 1.08 24.65 | X
1.4| Bakery.bproc | @symo2 10 45 SAT pes 29.92 1.43 31.35 | X
2.1 SNARK-bugl Plin 26 160 SAT pes 88.42 383.60 472.02 | X
2.2| SNARK-bug2 Plin 40 160  SAT pes 718.09 779.76 ||1497.85| X
3.1\3-Threadincorrect|  ¥NI 57 31 SAT h-pes 19.56 46.66 66.22 | X
3.2| 3-Thread correct ©NI 57 31 UNSAT  h-opt 23.91 33.54 57.45 |/
4.1| NRP : Tincorrect | Pfair 15 15 SAT h-pes 0.10 0.27 0.37 |X
4.2| NRP : Teorrect Prair 15 15 UNSAT  h-opt 0.08 0.12 0.20 |V
5.1 Shortest Path @
59 Initial State (see Table 4) :ffzj

Robustness %
6.1/  Mutant Pt 8 6 SAT  h-pes  1.40 0.35 H 1.75

Table 3: Performance of HyperQube, where column case# identifies the artifact, v/
denotes satisfaction, and X denotes violation of the formula. AP* is the set of Boolean
variables encoding K.

| HyperQube ‘ [34]

‘Formula‘grid size‘bound k‘|AP*| gengbf [s] QuAbS [s]HTotal [S]ngnsmt [s] Z3 ] HTotal[s]

107 20 12 1.30 0.57 1.87 8.31 0.33 8.64

207 40 14 4.53 12.16 16.69 124.66 6.41 || 131.06
s 407 80 16 36.04 35.75 71.79 1093.12  72.99 ||1166.11
607 120 16 105.82 120.84 226.66 || 4360.75 532.11(|4892.86

102 20 12 1.40 0.35 1.75 11.14 0.45 11.59

©rb 207 40 14 15.92 15.32 31.14 49.59 2.67 52.26
407 80 16 63.16 20.13 83.29 216.16  19.81 || 235.97

Table 4: Path planning for robots and comparison to [34]. All cases use the halting
pessimistic semantics and QBF solver returns SAT, meaning successful path synthesis.

6 Related Work

There has been a lot of recent progress in automatically verifying [12,22-24] and
monitoring [1,6,7,20,21,26,33] HyperLTL specifications. HyperLTL is also sup-
ported by a growing set of tools, including the model checker MCHyper [12,24], the
satisfiability checkers EAHyper [19] and MGHyper [17], and the runtime monitor-
ing tool RVHyper [20]. The complexity of model checking for HyperLTL for tree-
shaped, acyclic, and general graphs was rigorously investigated in [2]. The first
algorithms for model checking HyperLTL and HyperCTL* using alternating au-
tomata were introduced in [24]. These techniques, however, were not able to deal
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in practice with alternating HyperLTL formulas in a fully automated fashion.
We also note that previous approaches that reduce model checking HyperLTL—
typically of formulas without quantifier alternations—to model checking LTL
can use BMC in the LTL model checking phase. However, this is a different
approach than the one presented here, as these approaches simply instruct the
model checker to use a BMC after the problem has been fully reduced to an
LTL model checking problem while we avoid this translation. These algorithms
were then extended to deal with hyperliveness and alternating formulas in [12]
by finding a winning strategy in V3 games. In this paper, we take an alterna-
tive approach by reducing the model checking problem to QBF solving, which
is arguably more effective for finding bugs (in case a finite witness exists).

The satisfiability problem for HyperLTL is shown to be undecidable in general
but decidable for the 3*V* fragment and for any fragment that includes a V3
quantifier alternation [16]. The hierarchy of hyperlogics beyond HyperLTL were
studied in [11]. The synthesis problem for HyperLTL has been studied in [3] in
the form of program repair, in [4] in the form of controller synthesis, and in [18|
for the general case.

7 Conclusion and Future Work

We introduced the first bounded model checking (BMC) technique for verifi-
cation of hyperproperties expressed in HyperLTL. To this end, we proposed
four different semantics that ensure the soundness of inferring the outcome of
the model checking problem. To handle trace quantification in HyperLTL, we re-
duced the BMC problem to checking satisfiability of quantified Boolean formulas
(QBF). This is analogous to the reduction of BMC for LTL to the simple propo-
sitional satisfiability problem. We have introduced different classes of semantics,
beyond the pessimistic semantics common in LTL model checking, namely op-
timistic semantics that allow to infer full verification by observing only a finite
prefix and halting variations of these semantics that additionally exploit the ter-
mination of the execution, when available. Through a rich set of case studies, we
demonstrated the effectiveness and efficiency of our approach in verification of
information-flow properties, linearizability in concurrent data structures, path
planning in robotics, and fairness in non-repudiation protocols.

As for future work, our first step is to solve the loop condition problem. This
is necessary to establish completeness conditions for BMC and can help cover
even more examples efficiently. The application of QBF-based techniques in the
framework of abstraction/refinement is another unexplored area. Success of BMC
for hyperproperties inherently depends on effectiveness of QBF solvers. Even
though QBF solving is not as mature as SAT/SMT solving techniques, recent
breakthroughs on QBF have enabled the construction of our tool HyperQube, and
more progress in QBF solving will improve its efficiency.
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Abstract. We develop a framework for model checking infinite-state
systems by automatically augmenting them with auxiliary variables, en-
abling quantifier-free induction proofs for systems that would other-
wise require quantified invariants. We combine this mechanism with a
counterexample-guided abstraction refinement scheme for the theory of
arrays. Our framework can thus, in many cases, reduce inductive rea-
soning with quantifiers and arrays to quantifier-free and array-free rea-
soning. We evaluate the approach on a wide set of benchmarks from the
literature. The results show that our implementation often outperforms
state-of-the-art tools, demonstrating its practical potential.

1 Introduction

Model checking is a widely-used and highly-effective technique for automated
property checking. While model checking finite-state systems is a well-established
technique for hardware and software systems, model checking infinite-state sys-
tems is more challenging. One challenge, for example, is that proving properties
by induction over infinite-state systems often requires the use of universally
quantified invariants. While some automated reasoning tools can reason about
quantified formulas, such reasoning is typically not very robust. Furthermore,
just discovering these quantified invariants remains very challenging.

Previous work (e.g., [52]) has shown that prophecy variables can some-
times play the same role as universally quantified variables, making it possible
to transform a system that would require quantified reasoning into one that
does not. However, to the best of our knowledge, there has been no automatic
method for applying such transformations. In this paper, we introduce a tech-
nique we call counterezample-guided prophecy. During the refinement step of an
abstraction-refinement loop, our technique automatically introduces prophecy
variables, which both help with the refinement step and may also reduce the
need for quantified reasoning. We demonstrate the technique in the context of
model checking for infinite-state systems with arrays, a domain which is known
for requiring quantified reasoning. We show how a standard abstraction for arrays
can be augmented with counterexample-guided prophecy to obtain an algorithm
that reduces the model checking problem to quantifier-free, array-free reasoning.
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The paper makes the following contributions: i) we introduce an algorithm
called Prophecize which uses history and prophecy variables to target a spe-
cific term at a specific time step of an execution, producing a new transition
system that can effectively reason universally about that term; ii) we develop
an automatic abstraction-refinement procedure for arrays, which leverages the
Prophecize algorithm during the refinement step, and show that it is sound
and produces no false positives; iii) we develop a prototype implementation of
our technique; and iv) we evaluate our technique on four sets of model checking
benchmarks containing arrays and show that our implementation outperforms
state-of-the-art tools on a majority of the benchmark sets.

2 Background

We assume the standard many-sorted first-order logical setting with the usual
notions of signature, term, formula, and interpretation. A theory is a pair T =
(X,I) where X is a signature and I is a class of Y-interpretations, the models of
T. A Y-formula ¢ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. Given an interpretation M, a variable assignment
s over a set of variables X is a mapping that assigns each variable x € X of sort
o to an element of o™, denoted x°*. We write M[s] for the interpretation that
is equivalent to M except that each variable x € X is mapped to x°. Let x be
a variable, ¢ a term, and ¢ a formula. We denote with ¢{x — ¢} the formula
obtained by replacing every free occurrence of z in ¢ with ¢t. We extend this
notation to sets of variables and terms in the usual way. If f and g are two
functions, we write fog to mean functional composition, i.e., fog(x) = f(g(z)).
Let T4 be the standard theory of arrays [50] with extensionality, extended
with constant arrays. Concretely, we assume sorts for arrays, indices, and ele-
ments, and function symbols read, write, and constarr. Here and below, we use
a and b to refer to arrays, ¢ and j to refer to array indices, and e and ¢ to refer
to array elements, where c is also restricted to be an interpreted constant. The
theory contains the class of all interpretations satisfying the following axioms:

Va,i,j.e.i=j = read(write(a,j, e),i) =e A

it
i #j = read(write(a,j,e),i) = read(a, i) (write)
Va,b. (Vi. read(a,i) = read(b, 1)) = a=1b (ext)
Vi. read(constarr(c),i) = ¢ (const)

Symbolic Transition Systems and Model Checking. For generality, as-
sume a background theory 7 with signature Y. We will assume that all terms
and formulas are Y-terms and Y-formulas, that entailment is entailment mod-
ulo 7, and interpretations are 7 -interpretations. A symbolic transition system
(STS) S is a tuple S := (X, I, T), where X is a finite set of state variables, I(X)
is a formula denoting the initial states of the system, and T(X, X') is a formula
expressing a transition relation. Here, X’ is the set obtained by replacing each
variable z € X with a new variable 2’ of the same sort. Let prime(x) = z’ be the
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bijection corresponding to this replacement. We say that a variable z is frozen
if T |= 2’ = 2. When the state variables are obvious, we will often drop X.

A state s of S is a variable assignment over X. An ezecution of S of length
k is a pair (M, m), where M is an interpretation and 7 := s, $1,...,8,-1 IS a
path of length k, a sequence of states such that M[so] = I(X) and M[s;][s;41 0
prime™ '] = T(X,X') for all 0 < i < k — 1. When reasoning about paths, it is
often convenient to have multiple copies of the state variables X. We use X @Qn to
denote the set of variables obtained by replacing each variable z € X with a new
variable called x@n of the same sort. We refer to these as timed variables. A state
s is reachable in S if it appears in a path of some execution of S. We say that a
formula P(X) is an invariant of S, denoted by S = P(X), if P(X) is satisfied
in every reachable state of S (i.e., for every execution (M, m), M(s] = P(X) for
each s in 7). The invariant checking problem is, given S and P(X), to determine
if S | P(X). A counterezample is an execution (M, ) of S of length k such that
Mlsi_1] I P(X). IE I(X) b= 6(X) and 6(X) AT(X, X') = 6(X"), then 6(X)
is an inductive invariant. Every inductive invariant is an invariant (by induction
over path length). In this paper we focus on model checking problems where I,
T and P are quantifier-free. However, a quantified inductive invariant might still
be necessary to prove a property of the system.

Bounded Model Checking (BMC) is a bug-finding technique which attempts
to find a counterexample for a property, P(X), of length & for some finite k [9]. A
single BMC query at bound k for an invariant property uses a constraint solver
to check the satisfiability of the following formula: BMC(S, P, k) := I(XQ0) A
(/\f:_o1 T(X@Qi, XQ(i+1))) A—P(XQk). If the query is satisfiable, there is a bug.

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR
is a general technique in which a difficult conjecture is tackled iteratively [44].
Algorithm 1 shows a simple CEGAR loop for checking an invariant P for an STS
S. Tt is parameterized by three functions. The Abstract function produces an
initial abstraction of the problem. It must satisfy the contract that if (S, P) =
Abstract(S, P), then § = P = & |= P. The next function is the Prove
function. This can be any (unbounded) model-checking algorithm that can return
counterexamples. It checks whether a given property P is an invariant of a
given STS §. If it is, it returns with proven set to true. Otherwise, it returns a
bound k at which a counterexample exists. The final function is Refine. It takes
the abstracted STS and property together with a bound k at which a known
counterexample for the abstract STS exists. Its job is to refine the abstraction
until there is no longer a counterexample of size k. If it succeeds, it returns the
new STS and property. It fails if there is an actual counterexample of size k for
the concrete system. In this case, it sets the return value refined to false.

Auxiliary variables. We finish this section with relevant background on auxil-
iary variables, a crucial part of the refinement step described in Sec. 4. Auxiliary
variables are new variables added to the system which do not influence its be-
havior (i.e., the reduct to the old set of variables of any reachable state in the
new system is a reachable state in the old system), but may assist in proofs.
There are two main categories of auxiliary variables we consider: history and
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Algorithm 1 STS-CEGAR(S = (X,I,T), P)

1: ((X,I,T),P) + Abstract(S, P)
2: while true do

3 (k, proven) <+ Prove((X,I,T), P) // try to prove
4 if proven then return true // property proved
5. ((X,1,T), P, refined) + Refine((X,1,T), P, k) // try to refine
6 if —refined then return false // found counterexample
7: end while

prophecy. History variables, also known as ghost state, preserve a value, mak-
ing its past value available in future states. Prophecy variables are the dual of
history variables and provide a way to refer to a value that occurs in a future
state. Abadi and Lamport formally characterized soundness conditions for the
introduction of history and prophecy variables [1]. Here, we consider a simple,
structured form of history variables.

Definition 1. Let § = (X,I1,T) be an STS, t a term whose free variables
are in X, and n > 0, then Delay(S,t,n) returns a new STS and variable
(XM, 10, T, B, where X = Xw{hl,... b}, I" =1, and T" = TU{h} =
thu U?:2{hi/ = hg_l }-

The Delay operator makes the current value of a term ¢ available for the next
n states in a path. This is accomplished by adding n new history variables and
creating an assignment chain that passes the value to the next history variable
at each state. Thus, hF contains the value that ¢ had k states ago. The initial
value of each history variable is unconstrained.

Theorem 1. Let S = (X,I,T) be an STS, P a property, and Delay(S,v,n) =
(8" k™). Then S = P iff S" |= P.

We refer to [1] for a general proof which subsumes Theorem 1. In contrast to the
general approach for history variables, we use a version of prophecy that only
requires a single frozen variable. The motivation for this is that a frozen variable
can be used in place of a universal quantifier, as the following theorem adapted
from [52] shows.

Theorem 2. Let S = (X, I,T) be an STS, x a variable in formula P(X), and
v a fresh variable (i.e., not in X or X'). Let S = (X U{v},,T U {v' = v}).
Then S EVx. P(X) iff S? = P(X){z — v}.

Theorem 2 shows that a universally quantified variable in an invariant can be
replaced with a fresh symbol in a process similar to skolemization. The intuition
is as follows. The frozen variable has the same value in all states, but it is
uninitialized by I. Thus, for each path in S, there is a corresponding path (i.e.,
identical except at v) in SP for every possible value of v. This proliferation of
paths plays the same role as the quantified variable in P. We mention here one
more theorem from [52]. This one allows us to introduce a universal quantifier.
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Algorithm 2 Prophecize((X,I,T), P(X),t,n)

if n = 0 then
return (X W {p},I,TU{p; =pi}),pt =t = P(X),pt)
else

(X" 1T, by = Delay (X, I,T),t,n)
return (X" @ {p{'}, ,TU{p}" =pi'}),ps = b’ = P(X),p}")
end if

Theorem 3. Let S = (X,1,T) be an STS, P(X) a formula, and t a term.
Then, S E P(X) iff SEVy.(y=t = P(X)), where y is not free in P(X).

Theorems 2 and 3 are special cases of Theorems 3 and 4 of [52]. The original
theorems handle the more general case where P(X) can be a temporal formula.

3 Using Auxiliary Variables to Assist Induction

We can use Theorem 3 followed by Theorem 2 to introduce frozen prophecy
variables that predict the value of a term ¢ when the property P is being checked.
We refer to t as the prophecy target and the process as universal prophecy. If we
also use Delay, we can target a term at some finite number of steps before the
property is checked. This is captured by Algorithm 2, which takes a transition
system, property P(X), term ¢, and n > 0. If n = 0, it introduces a universal
prophecy variable for ¢. Otherwise, it first introduces history variables for ¢ and
then applies universal prophecy to the delayed ¢. In either case it returns the
augmented system, augmented property, and the prophecy variable.

We will use the STS shown in Fig. 1(a) as a running example throughout
the paper (it is inspired by the hardware example from [10]). We assume the
background theory 7 includes integer arithmetic and arrays of integers indexed
by integers. The variables in this STS include an array and four integer variables,
representing the read index, write index, read data, and write data, respectively.
The system starts with an array of all zeros. At every step, if the write data is
less than 200, it writes that data to the array at the write index. Otherwise, the
array stays the same. Additionally, the read data is updated with the current
value of a at i,. This effectively introduces a one-step delay between when the
value is read from a and when the value is present in d,.. The property is that
d, < 200. This property is clearly true, but it is not straightforward to prove
with standard model checking techniques because it is not inductive. Note that
it is also not k-inductive for any k [59]. The primary issue is that it does not
constrain the value of a at all, so in an inductive proof, the value of a could be
anything in the induction hypothesis.

One way to prove the property is to strengthen it with the quantified invari-
ant: Vi. read(a, i) < 200. Remarkably, observe that by augmenting the system
using Prophecize, it is possible to prove the property using only a quantifier-
free invariant. In this case, the relevant prophecy target is the value of i, one
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I == a = constarr(0) A dr < 200
T = a' = ite(dy, < 200,

write(a, iy, dw),a)\

I := a = constarr(0) A d» < 200
T = a' = ite(dy, < 200,

write(a, iw, dw), a)\

d, = read(a, i) dy =read(a, i) /\pzlrl = pzlr A hi/ = 1
P = d, < 200 P:=p, =hl = d <200
(a) (b)

Fig. 1: (a) Running example. (b) Running example with prophecy variable.

step before checking the property. We run Prophecize((X,I,T), P,i,,1) and it
returns the system and property shown in Fig. 1(b), along with the prophecy
variable p} This augmented system has a simple, quantifier-free invariant which
can be used to strengthen the property, making it inductive: read(a, p;, ) < 200.
This formula holds in the initial state because of the constant array, and if we
start in a state where it holds, it still holds after a transition.

Notice that the invariant learned over the prophecy variable has the same
form as the original quantified invariant. However, we have instantiated that uni-
versal quantifier with a fresh, frozen prophecy variable. Intuitively, the prophecy
variable captures a proof by contradiction: assume the property does not hold,
consider the value of i, one step before the first failure of the property, and then
use this value to show the property holds. This example shows that auxiliary
variables can be used to transform an STS without a quantifier-free inductive
invariant into an STS with one. However, it is not yet clear how to identify good
targets for history and prophecy variables. In the next section, we show how this
can be done as part of an abstraction refinement scheme for symbolic transition
systems over the theory of arrays.

4 Abstraction Refinement for Arrays

We now introduce our main contribution. Given a background theory 75 and
a model checking algorithm for STS’s over Tp, we use an instantiation of the
CEGAR loop in Algorithm 1 to check properties of STS’s over the theory that
combines 7p and the theory of arrays, 74. The key idea is to abstract all array
operators and then add array lemmas as needed during refinement.

Abstract and Prove. We use a standard abstraction for the theory of arrays,
which we denote Abstract-Arrays. Every array sort is replaced with an unin-
terpreted sort, and the array variables are abstracted accordingly. Each constant
array is replaced by a fresh abstract array variable, which is then constrained to
be frozen (because constant arrays do not change over time). Additionally, we
replace the read and write array operations with uninterpreted functions. Note
that if the system contains multiple array sorts, we need to introduce a separate
read and write function for each uninterpreted abstract array sort. Using unin-
terpreted sorts and functions for abstracting arrays is a common technique in
Satisfiability Modulo Theories [7] (SMT) solvers [32]. Intuitively, our initial ab-
straction starts with memoryless arrays. We then incrementally refine the arrays’
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T=a= con/stﬁrﬂ/\dr < 200

T =@ = ite(dw < 200, write(@, iv, dw), @)A
dy = @(&, i) A constarr0’ = constarr0

P = d, < 200

Fig. 2: Result of calling Abstract on the example from Fig. 1(a)

memory as needed. Fig. 2 shows the result of running Abstract-Arrays on the
example from Fig. 1(a). Prove can be instantiated with any (unbounded) model
checker that can accept expressions over the background theory 75 combined
with the theory of uninterpreted functions. In particular, due to our abstraction,
the model checker does not need to support the theory of arrays.

Refine. Here, we explain the refinement approach for our array abstraction. At
a high level, we solve a BMC problem over the abstract STS at bound k. We
then look for violations of array axioms in the returned counterexample, and
instantiate each violated axiom (this is essentially the same as the lazy array
axiom instantiation approach used in SMT solvers [13,14,17,27]). We then [lift
these axioms to the STS-level by modifying the STS. It is this step that may
require introducing auxiliary variables. The details are shown in Algorithm 3.

We start by computing a set Z of index terms with Computelndices — this
set is used in the lazy axiom instantiation step below. We add to Z every
term that appears in a read or write operation in BMC(g, }3,/{) We also
add a witness index for every array equality - the witness corresponds to a
skolemized existential variable in the contrapositive of axiom (ext). For sound-
ness, we must add an extra variable A\, for each index sort ¢ and constrain
it to be different from all the other index variables of the same sort (this is
based on the approach in [13]). Intuitively, this variable represents an arbi-
trary index different from those mentioned in the STS. We assume that the
index sorts are from an infinite domain so that a distinct element is guaran-
teed. For simplicity of presentation, we also assume from now on that there
is only a single index sort (e.g. integers). Otherwise, Z must be partitioned
by sort. For the abstract STS in Fig. 2, with £ = 1, the index set would be
7 = {4,@0, 4,,Q0, wy@Q0, w; Q0, A\ 1,,; @0, 4,@Q1, 4, Q1, weQ1, w; @1, A\f,,; @1}, where
wp and wy are witness indices.

After computing indices, the algorithm enters the main loop. We first check
the BMC(S, P,k) query. The result p is either a counterexample, or the dis-
tinguished value L, indicating that the query is unsatisfiable. If it is the latter,
then we return the refined STS and property, as the property now holds on the
STS up to bound k. Otherwise, we continue. The next step (line 5) is to find
violations of array axioms in the execution p based on the index set Z.

CheckArrayAzioms takes two arguments, a counterexample and an index set,
and returns instantiated array axioms that do not hold over the counterexample.
This works as follows. We first look for occurrences of write in the BMC formula.
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Algorithm 3 Refine-Arrays (§ = ()ﬁﬁf), P, k)
1: T+ Computelndices(g, ﬁ, k)

2: loop L

3:  p<« BMC(S, P, k)

4: if p = 1 then return <()/f, 1, f% P, true)  // Property holds up to bound &
5. (ca,nca) < CheckArrayAzioms(p,T)

6: if ca =0 A nca = () then return ((X,1,7), P, false) // True counterexample
7: // Go through non-consecutive array axiom instantiations

8:  for (az,i@Qn;) € nca do

9: let nmin == min(r(ax)\{n:})

10: ((XP,IP, TP), PP pF~mi) Prophecize(()?, f,f), Pik— n;)

11: az. + ax{iQn; — pffni@nmm}

12: ca < ca W {axcQnpn } // add consecutive version of axiom
13: T« Tw{p, ™Q0,...,pF "ak}

14: X« XP; T I?; T « T?; P < P?

15:  end for

16:  // Go through consecutive array axiom instantiations

17 for ax € ca do

18: let npyin == min(7(az)), Nmas = maz(7(azx))

19: assert(Nmaz = Nmin V Nmaz = Nmin + 1)
20: if k=0 then
21: I+ I Naz{XQnun — X}
22: elsg if Nmin = Nmaz then
23: T+ T AN az{XQnin — X} A az{XQnpin — X'}
24: else
25: T T A az{XQnpmin = XH{XQ(npin +1) = X'}
26: end if
27:  end for
28: end loop

For each such occurrence, we instantiate the (write) axiom so that the write
term in the axiom matches the term in the formula (i.e., we use the write term
as a trigger). This instantiates all quantified variables except for i. We then
instantiate ¢ once for each variable in the index set. We evaluate each of the
instantiated axioms using the values from the counterexample and keep those
instantiations that reduce to false. We do the same thing for the (const) axiom,
using each constant array term in the BMC formula as a trigger. Finally, for each
array equality a@m = b@n in the BMC formula, we check an instantiation of the
contrapositive of (ext): a@m # b@Qn — read(a@m, w;Qn) # read(bQn, w;@n).
We add instantiated formulas that do not hold in p to the set of violated axioms.

CheckArrayAzioms sorts the collected axiom instantiations into two sets
based on which timed variables they contain. The consecutive set contains for-
mulas with timed variables whose timing differs by at most one; whereas the
timed variables in the formulas contained in the non-consecutive set may differ
by more. Formally, let 7 be a function which takes a single timed variable and
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returns its time (e.g., 7(i@2) = 2). We lift this to formulas by having 7(¢) re-
turn the set of all time-steps for variables in ¢. A formula ¢ is consecutive iff
maz(7(¢)) —min(7(¢)) < 1. Note that instantiations of (ext) are consecutive by
construction. Additionally, because constant arrays have the same value in all
time steps, we can always choose a representative time step for instantiations of
(const) that results in a consecutive formula. However, instantiations of (write)
may be non-consecutive, because the variable from the index set may be from
a time step that is different from that of the trigger term. CheckArrayAzioms
returns the pair (ca, nca), where ca is a set of consecutive axiom instantiations
and nca is a set of pairs — each of which contains a non-consecutive axiom in-
stantiation and the index-set variable that was used to create that instantiation.

At line 6, we check if the returned sets are empty. If so, then there are no array
axiom violations and p is a concrete counterexample. In this case, the system,
property, and false are returned. Otherwise, we process the two sets. In lines
8-15, we process the non-consecutive formulas. Given a non-consecutive formula
ax together with its index-set variable {@Qn;, we first compute the minimum time-
step of the axiom’s other variables, n,,;,. We then use the Prophecize method
to create a prophecy variable p?_”", that is effectively a way to refer to i@Qn; at
time-step N,y (line 10). This allows us to create a consecutive formula az. that
is semantically equivalent to ax (line 11). This new consecutive formula is added
to ca in line 12, and in line 13 the introduced prophecy variables (one for each
time-step) are added to the index set. Then, line 14 updates the abstraction.

At line 17, we are left with a set of consecutive formulas to process. For each
consecutive formula ax, we compute the minimum and maximum time-step of
its variables (line 18), which must differ by no more than 1 (line 19). There are
three cases to consider: i) when k = 0, the counterexample consists of only the
initial state-we thus refine the initial state by adding the untimed version of ax
to I (line 21); ii) if ax contains only variables from a single time step, then we
add the untimed version of ax as a constraint for both X and X’, ensuring that
it will hold in every state (line 23); iii) finally, if ax contains variables from two
adjacent time steps, we can translate this directly into a transition formula to
be added to T (line 25). The loop then repeats with the newly refined STS.

Ezample. Cons1der agam the example from Fig. 2, and suppose Refine-Arrays

is called on S and P with k = 3. At this unrolling, one possible abstract coun-
terexample violates the following nonconsecutive axiom instantiation:

(4,@2 = i,@0 = read(write(a@0, i, @0, d,,@0), i,@2) = d,,@0) A
(i,@2 # ,@0 = read(write(a@0, i, @0, d,,@0), i,@2) = read(aQ0, i, @2))

Calling Prophecize(S, P, i,, 1) returns the new STS ((XU{hZ NI I, T/\h1

i /\pg = pzlvT> and the new property pllvT = h,i —> d, < 200. The history Varlable
hl makes the previous value of 4, available at each time-step, and the prophecy
variable pZ mimics a universally quantified variable. We substitute p1 @0 for
@2 to obtain a consecutive formula. Its untimed version (and a primed Verblon)
is added to the transition relation.
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We stress that processing nonconsecutive axioms using Prophecize is how
we automatically discover the universal prophecy variable pllvT, and it is exactly
the universal prophecy variable that was needed in Sec. 3 to prove correctness of
the running example. An alternative approach could avoid nonconsecutive ax-
ioms using Craig interpolants [26] so that only consecutive axioms are found [15].
However, quantifier-free interpolants are not guaranteed to exist for the standard
theory of arrays, and the auxiliary variables found using nonconsecutive axioms
are needed to improve the chances of finding a quantifier-free inductive invariant.

It is important to have enough prophecy variables to assist in constructing
inductive invariants. We found that we could often obtain a larger, richer set of
prophecy variables by weakening our array abstraction. We do this by replacing
equality between arrays by an uninterpreted predicate, and also checking the con-
gruence axiom, the converse of (ext). Since more axioms are checked, there are
more opportunities to introduce auxiliary variables. We call this weak abstrac-
tion (WA) as opposed to strong abstraction (SA), which uses regular equality
between abstract arrays and guarantees congruence through UF axioms.

On the other hand, an excessive number of unnecessary auxiliary variables
could overwhelm the Prove step. Thus, an improvement not shown in Algorithm
3 is to check consecutive axioms first and only add nonconsecutive ones when
necessary. This is the motivation behind the custom array solver implementation
CheckArrayAzioms based on [13]. In principle, we could have used an SMT solver
to find array axioms, but it would give no preference to consecutive axioms. Sim-
ilarly, we could overwhelm the algorithm with unnecessary consecutive axioms.
CheckArrayAxzioms can still produce hundreds or even thousands of (consecu-
tive) axiom instantiations. Once these are lifted to the transition system, some
may be redundant. To mitigate this issue, when the BMC check returns | and
we are about to return (line 4), we keep only axioms that appear in the unsat
core of the BMC formula [22].

Correctness. We now state two important correctness theorems. Note that here
and below, proofs are omitted due to space constraints. An extended version with
proofs is available at: https://arxiv.org/abs/2101.06825.

Theorem 4. Algorithm 1, instantiated with Abstract-Arrays, a model-check-
er Prove as described above, and Refine-Arrays is sound.

Theorem 5. If Algorithm 1, instantiated with Abstract-Arrays, Prove as
described above, and Refine-Arrays, returns false, there is a concrete coun-
terexample of length k in the concrete transition system.

5 Expressiveness and Limitations

We now address the expressiveness of counterexample-guided prophecy with
regard to the introduction of auxiliary variables. For simplicity, we ignore the
array abstraction, relying on the correctness theorems. An inductive invariant
using auxiliary variables can be converted to one without auxiliary variables
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by first universally quantifying over the prophecy variables, then existentially
quantifying over the history variables. The details are captured by this theorem:

Theorem 6. Let S = (X, I,T) be an STS, and P(X) be a property such
that S | P(X). Let H be the set of history variables, and P be the set of
prophecy variables introduced by Refine-Arrays. Let S = (XUHU 'P,I,T)
and P = (Apepp = t(p)) = P(X) be the system and property with auil-
iary variables. The function t maps prophecy variables to their target term from
Prophecize. If Inv(X, H,P) is an inductive invariant for S and entails P, then
JHVYPInv(X, H, P) is an inductive invariant for S and entails P, where 3H and
VP bind each variable in the set with the corresponding quantifier.

Although the invariants found using counterexample-guided prophecy corre-
spond to 3V invariants over the unmodified system, we must acknowledge that
the existential power is very weak. The existential quantifier is only used to re-
move history variables. While history variables can certainly be employed for
existential power in an invariant [55], these specific history variables are intro-
duced solely to target a term for prophecy and only save a term for some fixed,
finite number of steps. Thus, we do not expect to gain much existential power in
finding invariants on practical problems. This use of history and prophecy vari-
ables can be thought of as quantifier instantiation at the model checking level,
where the instantiation semantically uses a term appearing in an execution of
the system. Consequently, our technique performs well on systems where there is
only a small number of instantiations needed over terms that are not too distant
in time from a potential property violation that must be disproved (i.e., not
many history variables are required). This appears to be a common situation for
invariant-finding benchmarks, as we show empirically in Sec. 6.

Limitations. If our CEGAR loop terminates, it either terminates with a proof or
with a true counterexample. However, it is possible that the procedure may not
terminate. In particular, while we can always refine the abstraction for a given
bound k, there is no guarantee that this will eventually result in a refinement
that rules out all spurious counterexamples (of any length).

This failure mode occurs, for instance, when no finite number of instantiations
can capture all the relevant indices of the array. Consider an example system
with I = a = constarr(0), T = a’ = write(a, ip, read(a,i;) + 1), and P =
read(a,i,) > 0. The array a is initialized with 0 at every index, and at every
step, a is updated at a single index by reading from an arbitrary index of a and
adding 1 to the result. Note that the index variables are unconstrained: they
can range over the integers freely at each time step. Then, the property is that
every element of a is positive. This property clearly holds because of a quantified
invariant maintained by the system: Vi . read(a,i) > 0.

However, the initial abstraction is a memoryless array which can easily vi-
olate the property by returning negative values from reads. Since the array is
updated in each step at an arbitrary index based on a read from another arbi-
trary index, no finite number of prophecy variables can capture all the relevant
indices. It will successively rule out longer finite spurious counterexamples, but
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will never be refined enough to prove the property unboundedly. We believe that
this limitation can be addressed in future work, perhaps by adapting techniques
from [52]. However, it is not yet clear how to automate that process. Note that
an even simpler system which does not add 1 in the update would already be
problematic; however, for that case, it is straightforward to extend our algorithm
to have it learn that the array does not change.

A related, but less fundamental issue is that the index set might not contain
the best choice of targets for prophecy. While the index set is sufficient for ruling
out bounded counterexamples, it is possible there is a better target for universal
prophecy that does not appear in the index set. However, based on the evaluation
in Sec. 6, it appears that the index set does work well in practice.

6 Experiments

Implementation. In this section, we evaluate a prototype implementation
of counterexample-guided prophecy, which instantiates Prove with ic3ia [34]
(downloaded Apr 27, 2020), an open-source C+-+ implementation of IC3 via
Implicit Predicate Abstraction (IC3IA) [20], which is itself a CEGAR loop that
uses implicit predicate abstraction to perform IC3 [12] on infinite-state systems
and uses interpolants to find new predicates. ic3ia uses MathSAT [21] (version
5.6.3) as the backend SMT solver and interpolant producer. We call our proto-
type prophic3 [48]. In our implementation, we also include a simple abstraction-
refinement wrapper which abstracts large constant integers and refines them with
the actual values if that fails. This is especially useful for dealing with software
benchmarks with large constant loop bounds. Otherwise, the system might need
to be unrolled to a very large bound to reach an abstract counterexample.

Setup. We evaluate our tool against three state-of-the-art tools for inferring uni-
versally quantified invariants over linear arithmetic and arrays: freqhorn, quic3,
and gspacer. All these tools are Constrained Horn Clause (CHC) solvers built
on Z3 [54]. The algorithm implemented in freghorn [28] is a syntax-guided syn-
thesis [4] approach for inferring universally quantified invariants over arrays [29].
quic3 is built on Spacer [40], the default CHC engine in Z3, and extends IC3
over linear arithmetic and arrays to allow universally quantified frames (frames
are candidates for inductive invariants maintained by the IC3 algorithm). It also
maintains a set of quantifier instantiations which are provided to the underly-
ing SMT solver. quic3 was recently incorporated into Z3. We used Z3 version
4.8.9 with parameters suggested by the quic3 authors.* Finally, gspacer is an
extension of Spacer which adds three new inference rules for improving local
generalizations with global guidance. While this last technique does not specifi-
cally target universally quantified invariants, it can be used along with the quic3
options in Spacer and potentially executes a much different search. The gspacer

4 fp.spacer.q3.use_qgen=true fp.spacer.ground pobs=false
fp.spacer.mbqgi=false fp.spacer.use_euf_gen=true
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group [freqhorn (81)[quic3 (42)[Vizel (32) [chc—comp (501) [tool total ‘
prophic3 67/1 42/0 | 20/3 1] 43/159  59] 172/166 60
prophic3-SA|  62/4 37/0 10/3 1| 36/160 67| 154/167 68
freghorn 65/4 0/0 0/1 0 5/46 1] 70/51 1
quic3 55/4 34/0 15/4 1| 74/137 75| 178/145 76
gspacer 35/5 27/0 18/4 1| 66/138 94| 146/147 95
ic3ia 0/4 0/0 0/3 1 0/158 59| 0/165 60
spacer 0/5 0/0 0/4 1 0/134 77 0/143 78

Fig. 3: Experimental results. The safe results are reported as # @ / # QF. The second
column per group shows unsafe results, the first two groups had only safe benchmarks.

submission [43] won the arrays category in CHC-COMP 2020 [58]. We also in-
clude ic3ia and the default configuration of Spacer in our results, neither of
which can produce universally quantified invariants. Our default configuration
of prophic3 uses weak abstraction, but we also include a version running strong
abstraction (prophic3-SA) in our experiments. We chose to build our prototype
on ic3ia instead of Spacer, in part because we needed uninterpreted functions
for our array abstraction, and Spacer does not handle them in a straightforward
way, due to the semantics of CHC [11].

We compare these solvers on four benchmark sets: i) freghorn - benchmarks
from the freghorn paper [29]; ii) quic3 - benchmarks from the quic3 paper [37]
(these were C programs from SV-COMP (8] that were modified to require uni-
versally quantified invariants); iii) wvizel - additional benchmarks provided to us
by the authors of [37]; and iv) chc-comp-2020 - the array category benchmarks
of CHC-COMP 2020 [57]. Additionally, we sort the benchmarks into three cate-
gories: 1) Q - safe benchmarks solved by some tool supporting quantified invari-
ants but none of the solvers that do not; 2) QF - those solved by at least one of
the tools that do not support quantified invariants, plus any unsafe benchmarks;
and 3) U - unsolved benchmarks. Because not all of the benchmark sets were
guaranteed to require quantifiers, this is an approximation of which benchmarks
required quantified reasoning to prove safe.

Both prophic3 and ic3ia take a transition system and property specified
in the Verification Modulo Theories (VMT) format [23], which is a transition
system format built on SMT-LIB [6]. All other solvers read the CHC format.
We translated benchmark sets i and iv from CHC to VMT using the horn2vmt
program which is distributed with ic3ia. For benchmark sets ii and iii, we
started with the C programs and generated both VMT and CHC using Kratos2
(an updated version of Kratos [19]). We ran all experiments on a 3.5GHz Intel
Xeon E5-2637 v4 CPU with a timeout of 2 hours and a memory limit of 32Gb.
An artifact for reproducing these results is publicly available [49,38].

Results. The results are shown in Fig. 3. We first observe that prophic3 solves
the most benchmarks in each of the first three sets, both overall and in category
Q. The quic3 (and most of the freqhorn) benchmarks require quantified invari-
ants; thus, ic3ia and Spacer cannot solve any of them. On solved instances in
the Q category, prophic3 introduced an average of 1.2 prophecy variables and a
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median of 1. This makes sense because, upon inspection, most benchmarks only
require one quantifier and we are careful to only introduce prophecy variables
when needed. On benchmarks it cannot solve, ic3ia either times out or fails
to compute an interpolant. This is expected because quantifier-free interpolants
are not guaranteed over the standard theory of arrays. Even without arrays, it is
also possible for prophic3 to fail to compute an interpolant, because MathSAT’s
interpolation procedure is incomplete for combinations with non-convex theories
such as integers. However, this was rarely observed in practice.

We also observe that prophic3-SA solves fewer benchmarks in the first three
sets. However, it is faster on commonly solved instances. This makes sense be-
cause it needs to check fewer axioms (it uses built-in equality and thus does not
check equality axioms). We suspect that it solves fewer benchmarks in the first
three sets because it was unable to find the right prophecy variable. For exam-
ple, for the standard find_true-unreach-call_ground benchmark in the quic?
set, a prophecy variable is needed to find a quantifier-free invariant. However,
because of the stronger reasoning power of SA, the system can be sufficiently re-
fined without introducing auxiliary variables. ic3ia is then unable to prove the
property on the resulting system without the prophecy variable, instead timing
out. Interestingly, notice that prophic3-SA solves the most benchmarks in the
QF category overall, suggesting that there are practical performance benefits of
the CEGAR approach even when quantified reasoning is not needed.

There was one discrepancy on the CHC-COMP 2020 benchmarks: gspacer
disagrees with quic3, Spacer, and prophic3 on che-LIA-lin-arrays_381. This is
the same discrepancy mentioned in the CHC-COMP 2020 report [58]. prophic3
proved this benchmark safe without introducing any auxiliary variables and we
used both CVC4 [5] and MathSAT to verify that the solution was indeed an in-
ductive invariant for the concrete system. We are confident that this benchmark
is safe and thus do not count it as a solved instance for gspacer.

Some of the tools are sensitive to the encoding. Since it is syntax-guided,
freghorn is sensitive to the encoding syntax. The freqhorn benchmarks were
hand-written to be syntactically simple, an encoding which is also good for
prophic3. However, prophic3 can be sensitive to other encodings. For example,
the quic3 benchmarks are also included in the chc-comp-2020 set, but trans-
lated by SeaHorn [35] instead of Kratos2. prophic3 does much worse on the
SeaHorn encoding (6 vs 42). We stress that the CHC solvers performed similarly
on both encodings, so we did not compare against disadvantaged solvers. In fact,
quic3 and freghorn solved exactly the same number in both translations. How-
ever, gspacer solved fewer using the Kratos2 encoding (27 vs 34). Importantly,
prophic3 on the Kratos2 encoding solved more benchmarks than any other tool
and encoding pair.

There are two main reasons why prophic3 fails on the SeaHorn encodings.
First, due to the LLVM-based encoding, some of the SeaHorn translations have
index sets which are insufficient for finding the right prophecy variable. This has
to do with the memory encoding and the way that fresh variables and guards
are used. SeaHorn also splits memories into ranges which is problematic for our
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technique. Second, the SeaHorn translation is optimized for CHC, not for transi-
tion systems. For example, it introduces many new variables, and the argument
order between different predicates may not match. In the transition system, this
essentially has the effect of interchanging the values of variables between each
loop. SeaHorn has options that address some of these issues, and these helped
prophic3 solve more benchmarks, but none of these options produce encod-
ings that work as well as the Kratos2 encodings. The difference between good
CHC and transition system encodings could also explain the overall difference
in performance on che-comp-2020 benchmarks, most of which were translated
by SeaHorn. Both of these issues are practical, not fundamental, and we believe
they can be resolved with additional engineering effort.

7 Related Work

There are two important related approaches for abstracting arrays in horn clauses
[53] and memories in hardware [10]. Both make a similar observation that ar-
rays can be abstracted by modifying the property to maintain values at only a
finite set of symbolic indices. We differ from the former by using a refinement
loop that automatically adjusts the precision and targets relevant indices. The
latter is also a refinement loop that adjusts precision, but differs in the domain
and the refinement approach, which uses a multiplexer tree. We differ from both
approaches in our use of array axioms to find and add auxiliary variables.

A similar lazy array axiom instantiation technique is proposed in [15]. How-
ever, their technique utilizes interpolants for finding violated axioms and cannot
infer universally quantified invariants. The work of [18] also uses lazy axiom-
based refinement, abstracting non-linear arithmetic with uninterpreted func-
tions. We differ in the domain and the use of auxiliary variables. In [55], prophecy
variables defined by temporal logic formulas are used for liveness and temporal
proofs, with the primary goal of increasing the power of a temporal proof sys-
tem. In contrast, we use prophecy variables here for a different purpose, and we
also find them automatically. The work of [24] includes an approach for synthe-
sizing auxiliary variables for modular verification of concurrent programs. Our
approach differs significantly in the domain and details.

There is a substantial body of work on automated quantified invariant gen-
eration for arrays using first-order theorem provers [42,16,41,51]. These include
extensions to saturation-based theorem proving to analyze specific kinds of pred-
icates, and an extension to paramodulation-based theorem proving to produce
universally quantified interpolants. In [46], the authors propose an abstract in-
terpretation approach to synthesize universally quantified array invariants. Our
method also uses abstraction, but in a CEGAR framework.

Two other notable approaches capable of proving properties over arrays that
require invariants with alternating quantifiers are [30,56]. The former proposes
trace logic for extending first-order theorem provers to software verification, and
the latter takes a counterezample-guided inductive synthesis approach. Our ap-
proach takes a model checking perspective and differs significantly in the details.
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While these approaches are more general, we compared against state-of-the-art
tools that focus specifically on universally quantified invariants.

MCMT [31,33,25] and its derivatives [2,3] are backward-reachability algo-
rithms for proving properties over “array-based systems,” which are typically
used to model parameterized protocols. These approaches target syntactically
restricted functional transition systems with universally quantified properties,
whereas our approach targets general transition systems. Two other approaches
for solving parameterized systems modeled with arrays are [36] and [47]. The
former iteratively fixes the number of expected universal quantifiers, then ea-
gerly instantiates them and encodes the invariant search to nonlinear CHC. The
latter first uses a finite-state model checker to discover an inductive invariant for
a specific parameterization and then applies a heuristic generalization process.
We differ from all these techniques in domain and the use of auxiliary variables.
Due to the limitations explained in Sec. 5, we do not expect our approach to
work well for parameterized protocol verification without improvements.

In [45], heuristics are proposed for finding predicates with free indices that
can be universally quantified in a predicate abstraction-based inductive invariant
search. Our approach is counterexample-guided and does not utilize predicate
abstraction directly (although IC3IA does). The authors of [39] propose a tech-
nique for Java programs that associates heap memory with the program location
where it was allocated and generates CHC verification conditions. This enables
the discovery of invariants over all heap memory allocated at that location, which
implicitly provides quantified invariants. This is similar to our approach in that
it gives quantification power without explicitly using quantifiers and in that
their encoding removes arrays. However, we differ in that we focus on transition
systems and utilize a different paradigm to obtain this implicit quantification.

8 Conclusion

We presented a novel approach for model checking transition systems containing
arrays. We observed that history and prophecy variables can be extremely useful
for reducing quantified invariants to quantifier-free invariants. We demonstrated
that an initially weak abstraction in our CEGAR loop can help us to automati-
cally introduce relevant auxiliary variables. Finally, we evaluated our approach
on four sets of interesting array-manipulating benchmarks. In future work, we
hope to improve performance, explore a tighter integration with the underly-
ing model checker, address the limitations described in Sec. 5, and investigate
applications of counterexample-guided prophecy to other theories.
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Abstract. Since 2013, the leading SAT solvers in the SAT competition all use in-
processing, which unlike preprocessing, interleaves search with simplifications.
However, applying inprocessing frequently can still be a bottle neck, i.e., for hard
or large formulas. In this work, we introduce the first attempt to parallelize in-
processing on GPU architectures. As memory is a scarce resource in GPUs, we
present new space-efficient data structures and devise a data-parallel garbage col-
lector. It runs in parallel on the GPU to reduce memory consumption and im-
proves memory access locality. Our new parallel variable elimination algorithm
is twice as fast as previous work. In experiments our new solver PARAFROST
solves many benchmarks faster on the GPU than its sequential counterparts.

Keywords: Satisfiability - Variable Elimination - Eager Redundancy Elimination
- Parallel SAT Inprocessing - Parallel Garbage Collection - GPU.

1 Introduction

During the past decade, SAT solving has been used extensively in many applications,
such as combinational equivalence checking [27], automatic test pattern generation [33,
40], automatic theorem proving [14], and symbolic model checking [7, 13]. Simplifying
SAT problems prior to solving them has proven its effectiveness in modern conflict-
driven clause learning (CDCL) SAT solvers [5, 6, 17], particularly when applied on
real-world applications relevant to software and hardware verification [16,20,22,24].
Since 2013, simplification techniques [8, 16, 19,21, 41] are also used periodically
during SAT solving, which is known as inprocessing [3—6,23]. Applying inprocessing
iteratively to large problems can be a performance bottleneck in SAT solving procedure,
or even increase the size of the formula, negatively impacting the solving time.
Graphics processors (GPUs) have become attractive for general-purpose computing
with the availability of the Compute Unified Device Architecture (CUDA) program-
ming model. CUDA is widely used to accelerate applications that are computation-
ally intensive w.r.t. data processing. For instance, we have applied GPUs to accelerate
explicit-state model checking [11,43], bisimilarity checking [42], the reconstruction of
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genetic networks [12], wind turbine emulation [30], metaheuristic SAT solving [44],
and SAT-based test generation [33]. Recently, we introduced SIGmA [34, 35] as the
first SAT simplification preprocessor to exploit GPUs.

Contributions. Embedding GPU inprocessing in a SAT solver is highly non-trivial and
has never been attempted before, according to the best of our knowledge. Efficient data
structures are needed that allow parallel processing, and that support efficient adding
and removing of clauses. For this purpose, we contribute the following:
1. We propose a new dynamically expanded data structure for clauses supporting both
32-bit [17] and 64-bit references with a minimum of 20 bytes per clause.
2. A new parallel garbage collector is presented, tailored for GPU inprocessing.
3. Our new parallel variable elimination algorithm is twice as fast as [34] and together
with other improvements yields much higher performance and robustness.
4. Our parallel inprocessing is deterministic (i.e., results are reproducible).
In addition, we propose a new preprocessing technique targeted towards data-parallel
execution, called Eager Redundancy Elimination (ERE), which is applicable on both
original and learnt clauses. All contributions have been implemented in our solver
PARAFROST and benchmarked on a larger set than considered previously in [34],
using 493 application problems. We discuss the potential performance gain of the GPU
inprocessing and its impact on SAT solving, compared to a sequential version of our
solver as well as CADICAL [6], a state-of-the-art solver developed by the last author.

2 Preliminaries

All SAT formulas in this paper are in conjunctive normal form (CNF). A CNF formula
is a conjunction of mn clauses A\ ;| C;, where each clause C is a disjunction of k literals
\/;?:1 /5, and a literal is a Boolean variable z or its complement —z, which we refer to
as T. We represent clauses by sets of literals, i.e., {1, ..., ¢y} represents the formula
¢4V ...V, and a SAT formula by a set of clauses, i.e., {C1, ..., C,,} represents the
formula Cy A ... A Cy,. With Sy, we refer to the set of clauses containing literal /, i.e.,
S¢ = {C € § | ¢ € C}. If for a variable x, we have either S,, = () or Sz = () (but
not both), then the literal T or x, respectively, is called a pure literal. A clause C is a
tautology iff there exists a variable z with {x,z} C C, and C'is unit iff |C| = 1.

In this paper we integrate GPU-accelerated inprocessing and CDCL [28, 32, 36].
One important aspect of CDCL is to learn from previous assignments to prune the
search space and make better decisions in the future. This learning process involves the
periodic adding of new learnt clauses to the input formula while CDCL is running.

In this paper, clauses are either considered to be LEARNT or ORIGINAL (redundant
and irredundant in [23] and in the SAT solver CADICAL [6]). A LEARNT clause is
added to the formula by the CDCL clause learning process, and an ORIGINAL clause is
part of the formula from the very start. Furthermore, each assignment is associated with
a decision level that acts as a time stamp, to monitor the order in which assignments are
performed. The first assignment is made at decision level one.

Variable Elimination (VE). Variables can be removed from clauses by either applying
the resolution rule or substitution (also known as gate equivalence reasoning) [16,23].
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Concerning the former, we represent application of the resolution rule w.r.t. some vari-
able x using a resolving operator @, on clauses C; and C5. The result of applying
the rule is called the resolvent [41]. Tt is defined as C ®, Cy = Cy U Cy \ {z,Z},
and can be applied iff z € C;, T € Cs. The ®, operator can be extended to re-
solve sets of clauses w.r.t. variable =. For a formula S, let £ C S be the set of learnt
clauses when we apply the resolution rule. The set of new resolvents is then defined as
R;C(S) = {Cl Ry Coy | Ch €8, \ LNCy € Sz \ LN —Ely{y,y} C O] ®y CQ}
Notice that the learnt clauses can be ignored [23] (i.e., in practice, it is not effective to
apply resolution on learnt clauses). The last condition avoids that a resolvent should not
be a tautology. After eliminating variable  in S, the resulting formula S’ is defined as
S"'= R, (S)U(S\ (S; USz)), i.e., the new resolvents are combined with the original
and learnt clauses that do not reference x.

Substitution detects patterns encoding logical gates, and substitutes the involved
variables with their gate-equivalent counterparts. Previously [34], we only considered
AND gates. In the current work, we add support for Inverter, If-Then-Else and XOR gate
extractions. For all logical gates, substitution can be performed by resolving non-gate
clauses (i.e., clauses not contributing to the gate itself) with gate clauses [23].

For instance, the first three clauses in the formula {{z, @, b}, {Z,a}, {Z,b}, {z,c}}
together encode a logical AND-gate, hence the final clause can be resolved with the sec-
ond and the third clauses, producing the simplified formula {{a, ¢}, {b, ¢} }. Combining
gate equivalence reasoning with the resolution rule tends to result in smaller formulas
compared to only applying the resolution rule [16,23,37].

Subsumption elimination. SUB performs self-subsuming resolution followed by sub-
sumption elimination [16]. The former can be applied on clauses Cy, Cs iff for some
variable x, we have C; = C] U {z}, Co = C, U {z}, and C}, C CY. In that case, x
can be removed from C7. The latter is applied on clauses C, C5 with Cy C 4. In that
case, (' is redundant and can be removed. If Cs is a LEARNT clause, it must be consid-
ered as ORIGINAL in the future, to prevent deleting it during learnt clause reduction, a
procedure which attempts to reduce the number of learnt clauses [6, 23]. For instance,
consider the formula S = {{a, b, ¢}, {a, b}, {b, ¢,d}}. The first clause is self-subsumed
by the second clause w.r.t. variable a and can be strengthened to {b, ¢} which in turn
subsumes the last clause {b, ¢, d}. The latter clause is then removed from S and the
simplified formula becomes {{b, ¢}, {a, b} }.

Blocked clause elimination. BCE [25] can remove clauses for which variable elimi-
nation always results in tautologies. Consider the formula {{a, b, c}, {@, b}, {a@, ¢} }. All
three literals a, b and ¢ are blocking the first clause, since resolving a produces the tau-
tologies {{b, c,b}, {b, c,}}, resolving b produces {a, a, c}, and resolving ¢ produces
{@, a,b}. Hence the blocked clause {a, b, c} can be removed from S. Again, as for VE,
only original clauses are considered.

Eager Redundancy Elimination. ERE is a new elimination technique that we propose,
which repeats the following until a fixpoint has been reached: for a given formula S and
clauses Cq € §,C5 € S with x € C; and T € (s for some variable z, if there exists a
clause C' € S for which C' = Cy ®, Cs, then let S := S\ {C'}. In this work, we restrict
removing C' to the condition (Cy is LEARNT V (5 is LEARNT) = ('is LEARNT.
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If the condition holds, C' is called a redundancy and can be removed without alter-
ing the original satisfiability. For example, consider S = {{a, ¢}, {c, b}, {d, ¢}, {b,a},
{a, d}}. Resolving the first two clauses gives the resolvent {a, b} which is equivalent to
the fourth clause in S. Also, resolving the third clause with the last clause yields {a, ¢}
which is equivalent to the first clause in S. ERE can remove either {a, ¢} or {a, b} but
not both. Note that this method is entirely different from Asymmetric Tautology Elimi-
nation in [21]. The latter requires adding so-called hidden literals to all clauses to check
which is a hidden tautology. ERE can operate on learnt clauses and does not require
literals addition, making it more effective and adequate to data parallelism.

3 GPU Memory and Data Structures

GPU Architecture. Since 2007, NVIDIA has been developing a parallel computing
platform called CUDA [31] that allows developers to use GPU resources for general
purpose processing. A GPU contains multiple streaming multiprocessors (SMs), each
SM consisting of an array of streaming processors (SPs). Every SM can execute multi-
ple threads grouped together in 32-thread scheduling units called warps.

A GPU computation can be launched in a program by the host (CPU side of a
program) by calling a GPU function called a kernel, which is executed by the device
(GPU side of a program). When a kernel is called, it is specified how many threads need
to execute it. These threads are partitioned into thread blocks of up to 1,024 threads
(or 32 warps). Each block is assigned to an SM. All threads together form a grid. A
hardware warp scheduler evenly distributes the launched blocks to the available SMs.
Concerning the memory hierarchy, a GPU has multiple types of memory:

— Global memory with high bandwidth but also high latency is accessible by both

GPU threads and CPU threads and thus acts as interface between CPU and GPU.

— Constant memory is read-only for all GPU threads. It has a lower latency than
global memory, and can be used to store any pre-defined constants.

— Shared memory is on-chip memory shared by the threads in a block. Each SM has
its own shared memory. It is much smaller in size than global and constant memory

(in the order of tens of kilobytes), but has a much lower latency. It can be used to

efficiently communicate data between threads in a block.

— Registers are used for on-chip storage of thread-local data. It is very small, but

provides the fastest memory.

To hide the latency of global memory, ensuring that the threads perform coalesced
accesses is one of the best practices. When the threads in a warp try to access a con-
secutive block of 32-bit words, their accesses are combined into a single (coalesced)
memory access. Uncoalesced memory accesses can, for instance, be caused by data
sparsity or misalignment. Furthermore, we use unified memory [31] to store the main
data structures that need to be regularly accessed by both the CPU and the GPU. Unified
memory creates a pool of managed memory that is shared between the CPU and GPU.
This pool is accessible to both sides using the same addresses. Regarding atomicity, a
GPU can run atomic instructions on both global and shared memory. Such an instruc-
tion performs a read-modify-write memory operation on one 32-bit or 64-bit word.
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class CNF {
class SCLAUSE { struct {
char state, flag; uint32* memory;
char added, used; uint64 size, cap;
int size, 1lbd; } clauses;
uint32 sig; struct {
union { uint64* memory;
uint32 literals[1]; uint32 size, cap;
}s } references;
} }

(a) container for a clause (b) container for a formula

Fig. 1: Data structures to store a SAT formula on a GPU

Data Structures. To efficiently implement inprocessing techniques for GPU archi-
tectures, we designed a new data structure from scratch to count the number of learnt
clauses, and store other relevant clause information, while keeping the memory con-
sumption as low as possible. Fig. 1 shows the proposed structures to store a clause
(denoted by scrausk) and the SAT formula represented in CNF form (denoted by
CNF). The state member in Fig. 1a stores the current clause state. A clause is either
ORIGINAL, LEARNT (see Section 2) or DELETED. A GPU thread is not allowed to deal-
locate memory, however, a clause can be set to DELETED and freed later during garbage
collection. The members added and f£lag mark the clause for being resolvent (when
applying the resolution rule) and contributing to a gate (for substitution), respectively.
The 1bd entry denotes the literal block distance (LBD), i.e., the number of decision
levels contributing to a conflict [2]. The used counter is used to keep track of how long
a LEARNT clause should be used before it gets deleted during database reduction [6,38].
Both used and 1bd can be altered via clause strengthening [6] in SUB.

The signature (sig) of a clause is computed by hashing its literals to a 32-bit
value [16]. It is used to quickly compare clauses. The first literal in a clause is preallo-
cated and stored in the fixed array literals[1]. As has been done for the MINISAT
solver, we adapted the union structure to allow dynamically expanding the 1iterals
array. This is accepted by NVIDIA’s compiler (NVCC). In our previous work [34], we
stored a pointer in each clause referencing the first literal, with the literals being in a
separate array. This consumes 8 bytes of the clause space. However, SCLAUSE only
needs 4 bytes for the 1iterals array, resulting in the clause occupying 20 bytes in
total, including the extra information of the learnt clause, compared to 24 bytes in our
previous work.

As implemented in MINISAT, we use the clauses field in CNF (Fig. 1b) to store
the raw bytes of SCLAUSE instances with any extra literals in 4-byte buckets with 64-
bit reference support. The cap variable indicates the total memory capacity available
for the storage of clauses, and size reflects the current size of the list of clauses. We
always have size < cap. The references field is used to directly access the clauses
by saving for each clause a reference to their first bucket. The mechanism for storing
references works in the same way as for clauses.

In addition, in a similar way, an occurrence table structure, denoted by OT, is created
which has a raw pointer to store the 64-bit clause references for each literal in the



138 M. Osama et al.

formula and a member structure OL. The creation of an OL instance is done in parallel
on the GPU for each literal using atomic instructions. For each clause C, a thread is
launched to insert the occurrences of C’s literals in the associated lists.

Initially, we pre-allocate unified memory for clauses and references which is in
size twice as large as the input formula, to guarantee enough space for the original and
learnt clauses. This amount is guaranteed to be enough as we enforce that the number
of resolvents never exceeds the number of ORIGINAL clauses. The 0T memory is real-
located dynamically if needed after each variable elimination. Furthermore, we check
the amount of free available GPU memory before allocation is done. If no memory is
available, the inprocessing step is skipped and the solving continues on the CPU.

4 Parallel Garbage Collection

Modern sequential SAT solvers implement a garbage collection (GC) algorithm to re-
duce memory consumption and maintain data locality [2,6, 17].

Since GPU global memory is a scarce resource and coalesced accesses are essential
to hide the latency of global memory (see Section 2), we decided to develop an efficient
and parallel GC algorithm for the GPU without adding overhead to the GPU computa-
tions.

Fig. 2 demonstrates the proposed
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{d,b}}, in which {a,b,c} is to be zef.| 0 1420 (sza b —c X

CNF

<
<

EEQ——Q‘ ~1 [ 4nn

deleted. The figure shows, in addition, y €3{d -b}

where the constant « is the number of
buckets needed to store SCLAUSE, in compact |
our case 20 bytes / 4 bytes, and k is  onr YV Step 4
the clause size in terms of the number cie [C1 ]3[4 ] (Clauses Copy)
of literals. Given the number of buck-
ets needed for Oy, the next clause (Cy) Fig.2: An example of parallel GC on a GPU
must be stored starting from position 7
in the list of clauses. This position plus the size of C'; determines in a similar way the
starting position for C'3, and so on.

The first step towards compacting the CNF instance when C is to be deleted is
to compute a stencil and a list of corresponding clause sizes in terms of numbers of
buckets. In this step, each clause C; is inspected by a different thread that writes a ‘0’

how the references and clauses ole Cll Cl3 C.4| C1{=d b}

lists in Fig. 1b are updated for the given tencit Step 1

formula. The reference for each clause

C' is calculated based on the sum of buckets 6][¢]

the sizes (in buckets) of all clauses pre- o  Step2

ceding C in the list of clauses. For buckets E?Qé (Exclusive Scan)

example, the first clause (C) requires lTT_]

o+ (k—1) = 542 = 7 buckets,  stenci @ e o 22
13

]
]
H
<
N




SAT Solving with GPU Accelerated Inprocessing 139

Algorithm 1: Parallel Garbage Collection

Input :__global _S;,, stencil, buckets, _constant__ v, _shared__ shCls, shLits
Output: numCls, numLits

numCls, numLits <— COUNTSURVIVED(S;,);

Sowut  ALLOCATE(numCls, numlLits);

stencil, buckets <— COMPUTESTENCIL(S;);

buckets ¢— EXCLUSIVESCAN(buckets);
references(Soqyt) ¢ COMPACTREFS(buckets, stencil);
COPYCLAUSES(Sowt, Sin, buckets, stencil);

7 TNV SR

7 kernel COUNTSURVIVED (S;, ):
8 register rCls < 0, rLits < 0;
9 foralli € [0, |S;n|] in parallel
register C' < Sy, [i];
if state(C) # DELETED then
| rCls < rCls + 1, rLits < rLits + |C|;

13 if tid < |S;, | then

14 | shCls[tid] = rCls, shLits[tid) = rLits;

15 else

16 | shCls[tid] = 0, shLits[tid] = 0;

17 SYNCTHREADS( );

18 for b : blockDim/Q7 b/2 —-1do // b will be blockDim/2, (blockDim/2)/2, ..., 1

if fid < b then
| shCls[tid] < shCls|tid] + shCls[tid + b], shLits|tid] < shLits[tid) + shLits[tid + b];

21 SYNCTHREADS();

22 if tid = 0 then

23 | ATOMICADD(numCls, shCls[tid]), ATOMICADD(numLits, shLits[tid));
24 kernel COMPUTESTENCIL (S;, ):

25 foralli € [0, |S;,| ] in parallel

26 register C' < S, [i];

27 if state(C) = DELETED then

28 | stencilli] < 0, buckets[i] - 0;

29 else

30 | stencilli] - 1, buckets[i] +- a+ (|C] — 1);

31 kernel COPYCLAUSES (Sout, Sin, buckets, stencil):

32 foralli € [0, |S;,| ] in parallel

33 if stencil[i] then

34 register & Cle — (SCLAUSE &)(clauses(Sout) + bucketsli]);
35 Clest +— Sinlil;

at position ¢ of a list named stencil if the clause must be deleted, and a ‘1’ otherwise.
The size of stencil is equal to the number of clauses. In a list of the same size called
buckets, the thread writes at position ¢ ‘0’ if the clause will be deleted, and otherwise
the size of the clause in terms of the number of buckets.

At step 2, a parallel exclusive-segmented scan operation is applied on the buckets
array to compute the new references. In this scan, the value stored at position ¢, masked
by the corresponding stencil, is the sum of the values stored at positions 0 up to, but
not including, 7. An optimised GPU implementation of this operation is available via
the CUDA CUB library [29], which transforms a list of size n in log(n) iterations. In
the example, this results in C'3 being assigned reference 7, thereby replacing Cs.

At step 3, the stencil list is used to update references in parallel, which are
be kept together in consecutive positions. The standard DeviceSelect::Flagged
function of the CUB library can be used for this, which uses stream compaction [10].
Finally, the actual clauses are copied to their new locations in clauses.

Alg. 1 describes in detail the GPU implementation of the parallel GC. As input,
Alg. 1 requires a SAT formula S;,, as an instance of CNF. The constant « is kept in
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GPU constant memory for fast access. The highlighted lines in grey are executed on
GPU. To begin GC, we count the number of clauses and literals in the S;,, formula after
simplification has been applied (line 1). The counting is done via the parallel reduction
kernel COUNTSURVIVED, listed at lines 7-23. In kernels, we use two conventions. First
of all, with #id, we refer to the block-local ID of the executing thread. By using this ID,
we can achieve that different threads in the same block work on different data, as for
instance at lines 13-16. Second of all, we use so-called grid-stride loops to process data
elements in parallel. An example of this starts at line 9. The statement for all i € [0, N]
in parallel expresses that all natural numbers in the range [0, N) must be considered
in the loop, and that this is done in parallel by having each executing thread start with
element tid, i.e., © = tid, and before starting each additional iteration through the loop,
the thread adds to 7 the total number of threads on the GPU. If the updated 7 is smaller
than N, the next iteration is performed with this updated i. Otherwise, the thread exits
the loop. A grid-stride loop ensures that when the range of numbers to consider is larger
than the number of threads, all numbers are still processed.

The values rCls and rLits at line 8 will hold the current number of clauses and
literals, respectively, counted by the executing thread. The register keyword indicates
that the variables are stored in the thread-local register memory. Within the loop at lines
9-12, the counters rCls, rLits are updated incrementally if the clause at position 7 in
clauses is not deleted. Once a thread has checked all its assigned clauses, it stores the
counter values in the (block-local) shared memory arrays (shCls, shLits) at lines 13-14.

A non-participating thread simply writes zeros (line 16). Next, all threads in the
block are synchronised by the SYNCTHREADS call. The loop at lines 18-21 performs the
actual parallel reduction to accumulate the number of non-deleted clauses and literals
in shared memory within thread blocks. In the for loop, b is initially set to the number
of threads in the block (blockDim), and in each iteration, this value is divided by 2 until
itis equal to 1 (note that blocks always consist of a power of two number of threads).

The total number of clauses and threads is in the end stored by thread 0, and this
thread adds those numbers using atomic instructions to the globally stored counters
numCls and numlLits at line 23, resulting in the final output. In the procedure described
here, we prevent having each thread perform atomic instructions on the global memory,
by which we avoid a potential performance bottleneck. The computed numbers are used
to allocate enough memory for the output formula at line 2 on the CPU side.

The kernel COMPUTESTENCIL, called at line 3, is responsible for checking clause
states and computing the number of buckets for each clause. The COMPUTESTENCIL
kernel is given at lines 24-30. If a clause C' is set to DELETED (line 27), the correspond-
ing entries in stencil and buckets are cleared at line 28, otherwise the stencil
entry is set to 1 and the buckets entry is updated with the number of clause buckets.

The EXCLUSIVESCAN routine at line 4 calculates the new references to store the
remaining clauses based on the collected buckets. For that, we use the exclusive scan
method offered by the CUB library. The COMPACTREFS routine called at line 5 groups
the valid references, i.e., those flagged by stencil, into consecutive values and stores
them in references(S,yt), Which refers to the references field of the output for-
mula S,,;. Finally, copying clause contents (literals, state, etc.) is done in the COPY-
CLAUSES kernel, called at line 6. This kernel is described at lines 31-35. If a clause in
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Sin is flagged by stencil via thread 7, then a new SCLAUSE reference is created in
clauses(Syyt), Which refers to the clauses field in S, offset by bucketsli].

The GC mechanism described above resulted from experimenting with several less
efficient mechanisms first. In the first attempt, two atomic additions per thread were
performed for each clause, one to move the non-deleted clause buckets and the other
for moving the corresponding reference. However, the excessive use of atomics resulted
in a performance bottleneck and produced a different simplified formula on each run,
that is, the order in which the new clauses were stored depended on the outcome of
the atomic instructions. The second attempt was to maintain stability by moving the
GC to the host side. However, accessing unified memory on the host side results in a
performance penalty, as it implicitly results in copying data to the host side.

5 Parallel Inprocessing Procedure

To exploit parallelism in simplifications, each elimination method is applied on mul-
tiple variables simultaneously. Doing so is non-trivial, since variables may depend
on each other; two variables = and y are dependent iff there exists a clause C' with
(xeCvzeC)AN(yeCVvye C). If both x and y were to be processed for sim-
plification, two threads might manipulate C' at the same time. To guarantee soundness
of the parallel simplifications, we apply our least constrained variable elections algo-
rithm (LCVE) [34] prior to simplification. It is responsible for electing a set of mutually
independent variables (candidates) from a set of authorised candidates. The remaining
variables relying on the elected ones are frozen. These notions are defined by Defs. 1-4.

Definition 1 (Authorised candidates). Given a CNF formula S, we call A the set of
authorised candidates: A = {z | 1 < hlz] < pV 1 < hlz] < p}, where
— h s a histogram array (h|x] is the number of occurrences of x in S).
— W denotes a given maximum number of occurrences allowed for both x and its
negation T, representing the cut-off point for the LCVE algorithm.

Definition 2 (Candidate Dependency Relation). We call a relation D : A x A a
candidate dependency relation iff Va,y € A, x Dy implies that 3C € S.(x € CV T €
C)N(yeCvyel)

Definition 3 (Elected candidates). Given a set of authorised candidates A, we call a
set o € A a set of elected candidates iff Va,y € ¢. —(x D y)

Definition 4 (Frozen candidates). Given the sets A and ¢, the set of frozen candi-
dates F C Aisdefinedas F ={x | € ANTy € p. 2 Dy}

A top-level description of GPU parallel inprocessing is shown in Alg. 2. The blue-
colored lines highlight new contributions of the current work compared to our prepro-
cessing algorithm presented in [34]. As input, it takes the current formula Sy, from the
solver (executed on the host) and copies it to the device global memory as S, (line 1).

Initially, before simplification, we compute the clause signatures and order variables
via concurrent streams at lines 2-3. A stream is a sequence of instructions that are exe-
cuted in issue-order on the GPU [31]. The use of concurrent streams allows the running
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Algorithm 2: Parallel Inprocessing
Input :Sj, p, phases

1 S4 < COPYTODEVICE (Sp);

2 CALCSIGNATURES (S, stream0);

3 A < ORDERVARIABLES (Sg4, streaml);

4 whilep : 0 — phases do

5 SYNCALL (); // Synchronize all streams
6

7

8

T < CREATEOT (Sy);
PROPAGATE (Up,, Sa, T);
¢ + LCVE (Sa, T, A, p);

9 if p = phases then

10 ERE (Sa, T, ¢);

11 break;

12 SORTOT (T, ¢, LISTKEY);

13 Ug < ELIMINATE (Sq, T, ¢) ; // Applies VE, SUB, and BCE
14 Uy, < COPYTOHOSTASYNC (U, streaml);

15 COLLECT (Sgq, stream2);

16 o= X 25

17 device function LISTKEY (a, b):

18 Co + Sala], Co < Salb]; // Co=A{z1,22,...,2k},Cp = {y1,y2,- - -, Yr }
19 if |C,,| # |Cp| then return C, < Cj ;

20 if 1 # y1 then return z1 < y; ;

21 if o # yo then return z2 < ys ;

2 if |Co| > 2 A (zk # yr) then return z;, < yi ;

23 else return sig(C,) < sig(Cyp) ;

of multiple GPU kernels concurrently, if there are enough resources. The ORDERVARI-
ABLES routine produces an ordered array of authorised candidates A following Def. 1.
The while loop at lines 4-16 applies VE, SUB, and BCE, for a configured number
of iterations (indicated by phases), with increasingly large values of the threshold .
Increasing 1. exponentially allows LCVE to elect additional variables in the next elim-
ination phase since after a phase is executed on the GPU, many elected variables are
eliminated. The ERE method is computationally expensive. Therefore, it is only exe-
cuted once in the final iteration, at line 10. At line 5, SYNCALL is called to synchronize
all streams being executed. At line 6, the occurrence table 7 is created. The LCVE
routine produces on the host side an array of elected mutually independent variables ¢,
in line with Def. 3.

The parallel creation of the occurrence lists in 7 results in the order of these lists be-
ing chosen non-deterministically. This results in the ELIMINATE procedure called at line
13, which performs the parallel simplifications, to produce results non-deterministically
as well. To remedy this effect, the lists in 7 are sorted according to a unique key in as-
cending order. Besides the benefit of stability, this allows SUB to abort early when
performing subsumption checks. The sorting key function is given as the device func-
tion LISTKEY at lines 17-24. It takes two references a, b and fetches the corresponding
clauses C,, Cp, from Sy (line 18). First, clause sizes are tested at line 19. If they are
equal, the first, the second, and the last literal in each clause are checked, respectively,
at lines 20-22. Otherwise, clause signatures are tested at line 23. CADICAL implements
a similar function, but only considers clause sizes [6]. The SORTOT routine launches a
kernel to sort the lists pointed to by the variables in ¢ in parallel. Each thread runs an
insertion sort to in-place swap clause references using LISTKEY.
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The ELIMINATE procedure at line 13 calls SUB to remove any subsumed clauses
or strengthen clauses if possible, after which VE is applied, followed by BCE. The
SUB and BCE methods call kernels that scan the occurrence lists of all variables in ¢
in parallel. For more information on this, see [34]. The VE method uses a new parallel
approach, which is explained in Section 6. Both the VE and SUB methods may add new
unit clauses atomically to a separate array (/4. The propagation of these units cannot be
done immediately on the GPU due to possible data races, as multiple variables in a
clause may occur in unit clauses. For instance, if we have unit clauses {a} and {b},
and these would be processed by different threads, then a clause {a,b,c} could be
updated by both threads simultaneously. Thus, this propagation is delayed until the
next iteration, and performed by the host at line 7. Note that 7 must be recreated first
to consider all resolvents added by VE during the previous phase. The ERE method at
line 10 is executed only once at the last phase (phases) before the loop is terminated.
Section 7 explains in detail how ERE can be effective in simplifying both ORIGINAL
and LEARNT clauses in parallel. At line 14, new units are copied from the device to the
host array U}, asynchronously via streaml. The COLLECT procedure does the GC as
described by Alg. 4 via stream2. Both streams are synchronized at line 5.

6 Three-Phase Parallel Variable Elimination

The BVIPE algorithm in our previous work [34] had a main shortcoming due to the
heavy use of atomic operations to add new resolvents. Per eliminated variable, two
atomic instructions were performed, one for adding new clauses and the other for
adding new literals. Besides performance degradation, this also resulted in the order
of added clauses being chosen non-deterministically, which impacted reproducibility
(even though the produced formula would always at least be logically the same).

The approach to avoiding the excessive use of atomic instructions when adding
new resolvents is to perform parallel VE in three phases. The first phase scans the
constructed list ¢ to identify the elimination type (e.g., resolution or gate substitution) of
each variable and to calculate the number of resolvents and their corresponding buckets.

The second phase computes an exclusive scan to determine the new references for
adding resolvents, as is done in our GC mechanism (Section 4). At the last phase, we
store the actual resolvents in their new locations in the simplified formula. For solution
reconstruction, we use an atomic addition to count the resolved literals. The order in
which they are resolved is irrelevant. The same is done for adding units. For the latter,
experiments show that the number of added units is relatively small compared to the
eliminated variables, hence the penalty of using atomic instructions is almost negligible.
It would be overkill to use a segmented scan for adding literals or units.

At line 1 of Alg. 3, phase 1 is executed by the VARIABLESWEEP kernel (given at
lines 15-27). Every thread scans the clause set of its designated literals x and x (line 17).
References to these clauses are stored at 7, and 7z. Moreover, register variables ¢, 3,y
are created to hold the current rype, number of added clauses, and number of added
literals of x, respectively. If x is pure at line 19, then there are no resolvents to add and
the clause sets of x and z are directly marked as DELETED by the routine TOBLIVION.
Moreover, this routine adds the marked literals atomically to resolved. At line 22, we
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Algorithm 3: Three-Phase Parallel Variable Elimination

Input :__global__ ¢, Sy, T,U4, resolved, type, buckets, added, —constant__ o

1 resolved, type, buckets, added < VARIABLESWEEP(p, Sq, T);

2 lastaagea <— —1, lastigy < —1, lastey < —1, lastc < 0;

3 forj:|e|—1,j—1—0do // find index and # resolvents of last eliminated =z
4 if type[j] # O then

5 | lastiac < J, lastaddea < added[j]; break;

6 buckets < EXCLUSIVESCAN (buckets, SIZE(clauses), stream0);

7 added — EXCLUSIVESCAN (added, SIZE(references), streaml);

8 SYNCALL();

9 numCls <— lastyageq + added|lastiz];

10 lastes < references[numCls — 1], lastc < clauses|lastef];

11 numBuckets <— laster + (o + SIZE(lastc) — 1);

12 RESIZE(clauses, numBuckets), RESIZE(references, numCls);

13 S4, U4 + VARIABLERESOLVENT(p, Sq, T, type, buckets, added);

15 kernel VARIABLESWEEP (¢, Sg, T ):

16 foralli € [0, || ] in parallel

17 register © < ¢li], Tx < T[z], Tx < T[z],t < NONE, B < 0, <+ 0;

18 typeli] - 0,bucketsli] + 0, added]i] + 0; // initially reset
19 if 7. = 0V Tz = () then // check if z is a pure literal
20 | resolved ¢ TOBLIVION(z, Sq, Tz, T );

21 else

2 t, 8, <+ GATEREASONING (2, Sq, Tz, Ts,0);

23 if t # GATE then

24 | t, B,y < MAYRESOLVE (z, Sq, Tz, Tz) ; // t may set to RESOLUTION
25 if ¢ # 0 then // x can be eliminated
26 typeli] < t, added[i] < B,bucketsli] « a x 8+ (v — B);

27 resolved <— TOBLIVION(z, S, Tz, T3);

28 kernel VARIABLERESOLVENT (@, Sg, T, type, buckets, added):

29 foralli € [0, || ] in parallel

30 register v < oli], T, + T[z], Tz < Tlz];

31 register ¢t < typeli], cref < buckets]i], rpos = added]i];

32 if t = RESOLUTION then

33 | (Sa,Ua) < (Sa,Ua) URESOLVE(x, S4, Tz, Tz, 1pos, cref);

34 if t = GATE then

35 | (Sa,Ua) < (Sa,Ua) U SUBSTITUTE(x, Sg, Tz, Tz, 1p0s, cref);

check first if x contributes to a logical gate using the routine GATEREASONING, and
save the corresponding [ and ~. If this is the case, the type ¢ is set to GATE, otherwise
we try resolution at line 24. The condition 5 < (|7;| + |7z|) is tested implicitly by
MAYRESOLVE to limit the number of resolvents per x. If ¢ is set to a nonzero value
(line 25), the type and added arrays are updated correspondingly. The total number of
buckets needed to store all added clauses is calculated by the formula (c x 8+ (v — )
and stored in buckets(i] at line 26. After type and added have been completely
constructed, the loop at lines 3-4 identifies the index of the last variable eliminated
starting from position || — 1. If the condition at line 4 holds, index j and the number of
underlying resolvents are saved to last;;, and last,gq.q, respectively. These values will
be used later to set the new size of the simplified formula Sy on the host side.

Phase 2 is now ready to apply EXCLUSIVESCAN on the added and buckets lists.
Both clauses and references refer to the structural members of Sy, as described
in Fig. 1b. The procedure at line 6 takes the old size of clauses to offset the calcu-
lated references of the added resolvents. The SIZE routine returns the size of the input
structure. Similarly, the second call at line 7 takes the old size of references and cal-
culates the new indices for storing new references. Both scans are executed concurrently
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Algorithm 4: Parallel Eager Redundancy Elimination for Inprocessing
Input :__global _ ¢, Sq, T

kernel ERE (¢, Sq, T):

1

2 foralli € [ 0, |¢| ]Y in parallel

3 z + olil;

4 for C € S4[7T [z]] do

5 for C' € S4[T[x]] do

6 if (Cp, <—RESOLVE (z, C, C")) # () then

7 if state(C') = LEARNT V state(C’) = LEARNT then
8 | st <+ LEARNT

9 else

10 | st ORIGINAL

11 FORWARDEQUALITY (C,,, Sa, T, st);

12 device function FORWARDEQUALITY (C,,,, Sq, T, st):

13 minList <~ FINDMINLIST (7, C,,);

14 foralli € [ 0, |minList| |* in parallel

15 C <« Sq[minList[i]];

16 if C = C,,, A (state(C) = LEARNT V state(C) = st) then state(C) < DELETED ;

via stream0 and streaml, and are synchronized by the SYNCALL call at line 8. After
the exclusive scan, the last element in added gives the total number of clauses in Sy
minus the resolvents added by the last eliminated variable. Therefore, adding this value
to last,yqeq gives the total number of clauses in Sy (line 9). At line 10, the last clause
lastc and its reference last.,.s are fetched. At line 11, the number of buckets of lastc
is added to last.s to get the total number of buckets numBuckets. The numBuckets and
numCls are used to resize clauses and references, respectively, at line 12.

Finally, in phase 3, we use the calculated indices in added and buckets to guide
the new resolvents to their locations in S,. The kernel is described at lines 28-35. Each
thread either calls the procedure RESOLVE or SUBSTITUTE, based on the type stored
for the designated variables. Any produced units are saved into U{; atomically. The cref
and rpos variables indicate where resolvents should be stored in S, per variable x.

7 Eager Redundancy Elimination

Alg. 4 describes a two-dimensional kernel, in which from each thread ID, an x and y
coordinate is derived. This allows us to use two nested grid-stride loops. In the loops, we
specify which of the two coordinates should be used to initialise ¢ in the first iteration.

Based on the kernel’s y-dimension ID (line 2), each thread merges where possible
two clauses of its designated variable = and its complement Z (lines 3-6), and writes the
result in shared memory as C,,. This new clause is produced by the routine RESOLVE
at line 6. At lines 7-10, we check if one of the resolved clauses is LEARNT, and if so, the
state st of C,,, is set to LEARNT as well, otherwise it is set to ORIGINAL. This state of
C,,, will guide the FORWARDEQUALITY routine called at line 11 to search for redundant
clauses of the same type. This routine is a device function, as it can only be called from
a kernel, and is described at lines 12-17. In this function, the z-dimension of the thread
ID is used to search the clauses referenced by the minimum occurrence list minList,
which is produced by FINDMINLIST at line 13. It has the minimum size among the lists
of all literals in C',. If a clause C' is found that is equal to C,, and is either LEARNT or
has a state equal to the one of C,,,, it is set to DELETED (lines 16).
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Fig. 3: Speedup of the proposed VE and GC algorithms on the benchmark suite

8 Experiments

We implemented the proposed algorithms in PFROST-GPU? with CUDA C++ version
11.0 [31]. We evaluated all GPU experiments on an NVIDIA Titan RTX GPU. This
GPU has 72 SMs (64 cores each), 24 GB global memory and 48 KB shared memory.
The GPU operates at a base clock of 1.3 GHz (boost: 1.7 GHz). The GPU machine was
running Linux Mint v20 with an Intel Core i5-7600 CPU of 3.5 GHz base clock speed
(turbo: 4.1 GHz) and a system memory of 32 GB.

We selected 493 SAT problems from the 2013-2020 SAT competitions. All formu-
las larger than 5 MB in size are chosen, excluding redundancies (repeated CNFs across
competitions). For very small problems, the GPU is not really needed, as only few vari-
ables and clauses can be removed. The selected problems encode around 70+ different
real-world applications, with various logical properties.

In the experiments, besides the implementations of our new GPU algorithms, we in-
volved a CPU-only version of PARAFROST (PFROST-CPU), and the CADICAL [6]
SAT solver for the solving of problems, and executed these on the compute nodes of
the Lisa CPU cluster*. Each problem was analysed in isolation on a separate computing
node. Each computing node had an Intel Xeon Gold 6130 CPU running at a base clock
speed of 2.1 (turbo: 3.7) GHz with 96 GB of system memory, and runs on Debian Linux
operating system. With this information, we adhere to all five principles laid out in the
SAT manifesto (version 1) [9], noting that we also included problems older than three
years, to have a sufficient number of large problems to work with.

SAT-Simplification Speedup. Figure 3 discusses the performance evaluation of the
GPU Algorithms 1 and 3 compared to their previous implementations in SIGMA [34].
For these experiments, we set p and phases initially to 32 and 5, respectively. Prepro-
cessing is only enabled to measure the speedup. Fig. 3a shows the speedup of running
parallel GC against a sequential version on the host. Clearly, for almost all cases, Alg. 1
achieved a drastic acceleration when executed on the device with a maximum speed
up of 93x and an average of 48x. Fig. 3b reveals how fast the 3-phase parallel VE is

3 Solvers/formulas are available at https:/gears.win.tue.nl/software/parafrost.
* This work was carried out on the Dutch national e-infrastructure with the support of SURF
Cooperative.
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compared to version using more atomic instructions. On average, the new algorithm is
twice as fast as the old BVIPE algorithm [34]. In addition, we get reproducible results.

SAT-Solving. These experiments provide a thorough assessment of our CPU/GPU
solver, the CPU-only version, and CADICAL on SAT solving with preprocessing +
inprocessing turned on. The features walksat, vivification and probing [6] are disabled
in CADICAL as they are not yet supported in PARAFROST. As in PARAFROST,
all elimination methods in CADICAL are turned on with a bound on the occurrence
list size set to 30,000. The same parameters for the search heuristics are used for all
experiments. However, we delay the scheduling of inprocessing in PARAFROST until
4,000 of the fixed (root) variables are removed. The occurrence limit x is bounded by
32 in CADICAL. On the other hand, we start with 32 and double this value every new
phase as shown in Alg. 2. These extensions increase the likelihood of doing more work
on the GPU. The timeout for all experiments is set to 5,000 seconds. The timeout for
the sequential solvers has a 6% tolerance (i.e., is 5,300 seconds in total) to compensate
for the different CPU frequencies of the GPU machine and the cluster nodes.

Figure 4 demonstrates the runtime results for all solvers over the benchmark suite.
Subplot (a) shows the total time (simplify + solving) for all formulas. Data are sorted
w.r.t. the z-axis. The simplify time accounts data transfers in PFROST-GPU. Overall,
PFROST-GPU dominates over PFROST-CPU and CADICAL. Subplot (b) demon-
strates the solving impact of PFROST-GPU versus CADICAL on SAT/UNSAT for-
mulas. PFROST-GPU seems more effective on UNSAT formulas than CADICAL. Col-
lectively, PFROST-GPU performed faster on 196 instances (58% out of all solved), in
which 18 formulas were unsolved by CADICAL.

Subplots (c) and (d) show simplification time and its percentage of the total process-
ing time, respectively. Clearly, the CPU/GPU solver outperforms its sequential counter-
part due to the parallel acceleration. Plot (d) tells us that PFROST-GPU keeps the
workload in the region between 0 and 20% as the elimination methods are scheduled
on a bulk of mutually independent variables in parallel. In CADICAL, variables and
clauses are simplified sequentially, which takes more time. Plot (e) shows the effective-
ness of ERE on formulas with successful clause reductions. The last plot (f) reflects the
overall efficiency of parallel inprocessing on variables and clauses (learnt clauses are
included). Data are sorted in descending order. Reductions can remove up to 90% and
80% of the variables and clauses, respectively.

9 Related Work

A simple GC monitor for GPU term rewriting has been proposed by van Eerd et al. [18].
The monitor tracks deleted terms and stores their indices in a list. New terms can be
added at those indices. The authors in [1, 26] investigated the challenges for offload-
ing garbage collectors to an Accelerated Processing Unit (APU). Matthias et al. [39]
introduced a promising alternative for stream compaction [10] via parallel defragmen-
tation on GPUs. Our GC, on the other hand, is tailored to SAT solving, which allows
it to be simple yet efficient. Regarding inprocessing, Jarvisalo et al. [23] introduced
certain rules to determine how and when inprocessing techniques can be applied. Ac-
celeration of the DPLL SAT solving algorithm on a GPU has been done in [15], where
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some parts of the search were performed on a GPU and the remainder is handled by
the CPU. Incomplete approaches are more amenable to be executed entirely on a GPU,
e.g., an approach using metaheuristic algorithms [44]. We are the first to work on GPU
inprocessing in modern CDCL solvers.

10 Conclusion

We have shown that GPU-accelerated inprocessing significantly reduces simplification
time in SAT solving, allowing more problems to be solved. Parallel ERE and VE can be
performed efficiently on many-core systems, producing impactful reductions on both
original and learnt clauses in a fraction of a second, even for large problems. The pro-
posed parallel GC achieves a substantial speedup in compacting SAT formulas on a
GPU, while stimulating coalesced accessing of clauses.

Concerning future work, the results suggest to continue taking the capabilities of
GPU inprocessing further by supporting more simplification techniques.
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Abstract Form validators based on regular expressions are often used
on digital forms to prevent users from inserting data in the wrong format.
However, writing these validators can pose a challenge to some users.
We present FOREST, a regular expression synthesizer for digital form
validations. FOREST produces a regular expression that matches the de-
sired pattern for the input values and a set of conditions over capturing
groups that ensure the validity of integer values in the input. Our syn-
thesis procedure is based on enumerative search and uses a Satisfiability
Modulo Theories (SMT) solver to explore and prune the search space. We
propose a novel representation for regular expressions synthesis, multi-
tree, which induces patterns in the examples and uses them to split the
problem through a divide-and-conquer approach. We also present a new
SMT encoding to synthesize capture conditions for a given regular ex-
pression. To increase confidence in the synthesized regular expression,
we implement user interaction based on distinguishing inputs.

We evaluated FOREST on real-world form-validation instances using reg-
ular expressions. Experimental results show that FOREST successfully
returns the desired regular expression in 70% of the instances and out-
performs REGEL, a state-of-the-art regular expression synthesizer.

1 Introduction

Regular expressions (also known as regexes) are powerful mechanisms for de-
scribing patterns in text with numerous applications. One notable use of regexes
is to perform real-time validations on the input fields of digital forms. Regexes
help filter invalid values, such as typographical mistakes (‘typos’) and format
inconsistencies. Aside from validating the format of form input strings, regular
expressions can be coupled with capturing groups. A capturing group is a sub-
regex within a regex that is indicated with parenthesis and captures the text

* This work was supported by NSF award CCF-1762363 and through FCT under
project UIDB/50021/2020, and project ANI 045917 funded by FEDER and FCT.
© The Author(s) 2021
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matched by the sub-regex inside them. Capturing groups are used to extract in-
formation from text and, in the domain of form validation, they can be used to
enforce conditions over values in the input string. In this paper, we focus on the
capture of integer values in input strings, and we use the notation $i,7 € {0, 1, ...}
to refer to the integer value of the text captured by the (i + 1) group.

Form validations often rely on complex regexes which require programming
skills that not all users possess. To help users write regexes, prior work has pro-
posed to synthesize regular expressions from natural language [1,9,12,27] or from
positive and negative examples [1,7,10,26]. Even though these techniques assist
users in writing regexes for search and replace operations, they do not specifi-
cally target digital form validation and do not take advantage of the structured
format of the data.

In this paper, we propose FOREST, a new program synthesizer for regular ex-
pressions that targets digital form validations. FOREST takes as input a set of ex-
amples and returns a regex validation. FOREST accepts three types of examples:
(i) valid examples: correct values for the input field, (ii) invalid examples:
incorrect values for the input field due to their format, and (iii) conditional
invalid examples (optional): incorrect values for the input field due to their
values. FOREST outputs a regex validation, consisting of two components: (i) a
regular expression that matches all valid and none of the invalid examples
and (ii) capture conditions that express integer conditions that are satisfied
by the values on all the valid but none of the conditional invalid examples.

Motivating Example. Suppose a user is writing a form where one of the fields
is a date that must respect the format DD/MM/YYYY. The user wants to accept:

19/08/1996 22/09,/2000 29/09,/2003

26/10/1998 01/12/2001 31/08/2015
But not:

19/08/96 22.09.2000 29/9,/2003

26-10-1998 1/12/2001 2015/08/31

A regular expression can be used to enforce this format. Instead of writing it, the
user may simply use the two sets of values as valid and invalid input examples
to FOREST, who will output the regex [0-9]1{2}/[0-9]1{2}/[0-9]1{4}.

Additionally, if the user wants to validate not only the format, but also the
values in the date, we can consider as conditional invalid the examples:

33/08/1996 22/13/2000 12/31/2003
26,/00/1998 00/12/2001 52/03/2015

FOREST will output a regex validation complete with conditions over captur-
ing groups that ensures only valid values are inserted as the day and month:
([0-91{2})/([0-91{2})/[0-91{4}, 30 <31A$0>1ASL1 <12A8$1> 1.

As we can see in the motivating example, data inserted into digital forms is
usually structured and shares a common pattern among the valid examples. In
this example, the data has the shape dd/dd/dddd where d represents a digit. This
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contrasts with general regexes for search and replace operations that are often
performed over unstructured text. FOREST takes advantage of this structure by
automatically detecting these patterns and using a divide-and-conquer approach
to split the expression into simpler sub-expressions, solving them independently,
and then merging their information to obtain the final regular expression. Addi-
tionally, FOREST computes a set of capturing groups over the regular expression,
which it then uses to synthesize integer conditions that further constrain the ac-
cepted values for that form field.

Input-output examples do not require specialized knowledge and are accessi-
ble to users. However, there is one downside to using examples as a specification:
they are ambiguous. There can be solutions that, despite matching the exam-
ples, do not produce the desired behavior in situations not covered in them.
The ambiguity of input-output examples raises the necessity of selecting one
among multiple candidate solutions. To this end, we incorporate a user interac-
tion model based on distinguishing inputs for both the synthesis of the regular
expressions and the synthesis of the capture conditions.

In summary, this paper makes the following contributions:

— We propose a multi-tree SMT representation for regular expressions that
leverages the structure of the input to apply a divide-and-conquer approach.

— We propose a new method to synthesize capturing groups for a given regular
expression and integer conditions over the resulting captures.

— We implemented a tool, FOREST, that interacts with the user to disam-
biguate the provided specification. FOREST is evaluated on real-world in-
stances and its performance is compared with a state-of-the-art synthesizer.

2 Synthesis Algorithm Overview

The task of automatically generating a program that satisfies some desired be-
havior expressed as a high-level specification is known as Program Synthesis.
Programming by Example (PBE) is a branch of Program Synthesis where the
desired behavior is specified using input-output examples.

Our synthesis procedure is split into two stages, each relative to an output
component. First, FOREST synthesizes the regular expression, which is the basis
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for the synthesis of capturing groups. Secondly, FOREST synthesizes the capture
conditions, by first computing a set of capturing groups and then the conditions
to be applied to the resulting captures. The synthesis stages are detailed in sec-
tions 3 and 4. Figure 1 shows the regex validation synthesis pipeline. Both stages
of our synthesis algorithm employ enumerative search, a common approach to
solve the problem of program synthesis [4,5,10,17,21]. The enumerative search
cycle is depicted in Figure 2.

There are two key components for program enumeration: the enumerator
and the verifier. The enumerator successively enumerates programs from the
a predefined Domain Specific Language (DSL). Following the Occam’s razor
principle, programs are enumerated in increasing order of complexity. The DSL
defines the set of operators that can be used to build the desired program.
FOREST dynamically constructs its DSL to fit the problem at hand: it is as
restricted as possible, without losing the necessary expressiveness. The regular
expression DSL construction procedure is detailed in section 3.1.

For each enumerated program, the verifier subsequently checks whether it
satisfies the provided examples. Program synthesis applications generate very
large search spaces; nevertheless, the search space can be significantly reduced by
pruning several infeasible expressions along with each incorrect expression found.
In the first stage of the regex validation synthesis, the enumerated programs
are regular expressions. The enumeration and pruning of regular expressions is
described in section 3.2. In the second stage of regex validation synthesis, we deal
with the enumeration of capturing groups over a pre-existing regular expression.
This process is described in section 4.1.

To circumvent the ambiguity of input-output examples, FOREST implements
an interaction model. A new component, the distinguisher, ascertains, for any two
given programs, whether they are equivalent. When FOREST finds two different
validations that satisfy all examples, it creates a distinguishing input: a new
input that has a different output for each validation. To disambiguate between
two programs, FOREST shows the new input to the user, who classifies it as valid
or invalid, effectively choosing one program over the other. The new input-output
pair is added to the examples, and the enumeration process continues until there
is only one solution left. This interactive cycle is described for the synthesis of
regular expressions in section 3.3 and capture conditions in section 4.3.
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concat

concat

Figure 3: [0-9]1{2}/[0-9]1{2}/[0-9]{4} represented as a k-tree with k = 2

3 Regular Expressions Synthesis

In this section we describe the enumerative synthesis procedure that generates
a regular expression that matches all valid examples and none of the invalid.

3.1 Regular Expressions DSL

Before the synthesis procedure starts, we define which operators can be used
to build the desired regular expression and the values each operator can take
as argument. FOREST’s regular expression DSL includes the regex union and
concatenation operators, as well as several regular expression quantifiers:

— Kleene closure: r* matches r zero or more times,

positive closure: 7+ matches » one or more times,

— option: 7 matches r zero or one times,

ranges: r{m} matches r exactly m times, and r{m,n} matches r at least m
times and at most n times.

The possible values for the range operators are limited depending on the valid
examples provided by the user. For the single-valued range operator, r{m}, we
consider only the integer values such that 2 < m < [, where [ is the length of
the longest valid example string. In the two-valued range operator, r{m,n}, the
values of m and n are limited to integers such that 0 < m < n < [. The tuple
(0,1) is not considered, since it is equivalent to the option quantifier: {0, 1} = r?.

All operators can be applied to regex literals or composed with each other
to form more complex expressions. The regex literals considered in the syn-
thesis procedure include the individual letters, digits or symbols present in the
examples and all character classes that contain them. The character classes con-
templated in the DSL are [0-9], [A-Z], [a-z] and all combinations of those,
such as [A-Za-z] or [0-9A-Za-z]. Additionally, [0-9A-F] and [0-9a-f] are
used to represent hexadecimal numbers.

3.2 Regex Enumeration

To enumerate regexes, the synthesizer requires a structure capable of represent-
ing every feasible expression. We use a tree-based representation of the search
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Figure4: [0-91{2}/[0-91{2}/[0-9]1{4} represented as a multi-tree with n =5
and k = 2, resulting from the concatenation of 5 simpler regexes

space. A k-tree of depth d is a tree in which every internal node has exactly
k children and every leaf node is at depth d. A program corresponds to an as-
signment of a DSL construct to each tree node, the node’s descendants are the
construct’s arguments. If k is the greatest arity among all DSL constructs, then
a k-tree of depth d can represent all programs of depth up to d in that DSL.
The arity of constructs in FOREST’s regex DSLs is at most 2, so all regexes in
the search space can be represented using 2-trees. To allow constructs with arity
smaller than k, some children nodes are assigned the empty symbol, €. In Fig-
ure 3, the regex from the motivating example, [0-91{2}/[0-91{2}/[0-91{4},
is represented as a 2-tree of depth 5.

To explore the search space in order of increasing complexity, we enumerate
k-trees of lower depths first and progressively increase the depth of the trees
as previous depths are exhausted. The enumerator encodes the k-tree as an
SMT formula that ensures the program is well-typed. A model that satisfies the
formula represents a valid regex. Due to space constraints we omit the k-tree
encoding but further details can be found in the literature [2,17].

Multi-tree representation. We considered several validators for digital forms
and observed that many regexes in this domain are the concatenation of rela-
tively simple regexes. However, the successive concatenation of simple regexes
quickly becomes complex in its k-tree representation. Recall the regex for date
validation presented in the motivating example: [0-9]1{2}/[0-9]1{2}/[0-9]{4}.
Even though this is the concatenation of 5 simple sub-expressions, each of depth
at most 2, its representation as a k-tree has depth 5, as shown in Figure 3.

The main idea behind the multi-tree constructs is to allow the number of
concatenated sub-expressions to grow without it reflecting exponentially on the
encoding. The multi-tree structure consists of n k-trees, whose roots are con-
nected by an artificial root node, interpreted as an n-ary concatenation opera-
tor. This way, we are able to represent regexes using fewer nodes. Figure 4 is
the multi-tree representation of the same regex as Figure 3, and shows that the
multi-tree construct can represent this expression using half the nodes.

The k-tree enumerator successively explores k-trees of increasing depth. How-
ever, multi-tree has two measures of complexity: the depth of the trees, d, and
the number of trees, n. FOREST employs two different methods for increasing
these values: static multi-tree and dynamic multi-tree.



158 M. Ferreira et al.

Static multi-tree. In the static multi-tree method, the synthesizer fixes n
and progressively increases d. To find the value of n, there is a preprocessing
step, in which FOREST identifies patterns in the valid examples. This is done by
first identifying substrings common to all examples. A substring is considered a
dividing substring if it occurs exactly the same number of times and in the same
order in all examples. Then, we split each example before and after the dividing
substrings. Each example becomes an array of n strings.

FEzample 1. Consider the valid examples from the motivating example. In these
examples, ‘/’ is a dividing substring because it occurs in every example, and
exactly twice in each one. ‘0’ is a common substring but not a dividing substring
because it does not occur the same number or times in all examples. After
splitting on ‘/’; each example becomes a tuple of 5 strings:

(419?, 4/77 ‘087, 4/7’ 41996?) (401?7 4/7’ 11277 4/77 42001))
(4267, 4/7, 41077 4/7’ 41998’) <L29?, 4/77 1097) 4/7, 420035)
(4227, 4/7, 4097’ 4/77 420007) (4317, 4/57 ‘087, 4/7, 42015))

Then, we apply the multi-tree method with n trees. For every i € {1,...,n},
the i" sub-tree represents a regex that matches all strings in the i*" position
of the split example tuples and the concatenation of the n regexes will match
the original example strings. Since each tree is only synthesizing a part of the

original input strings, a reduced DSL is recomputed for each tree.

Dynamic multi-tree. The dynamic multi-tree method is employed when the
examples cannot be split because there are no dividing substrings. In this sce-
nario, the enumerator will still use a multi-tree construct to represent the regex.
However, the number of trees is not fixed and all trees use the original, complete
DSL. A multi-tree structure with n k-trees of depth d has n x (k% — 1) nodes.
FOREST enumerates trees with different values of (n,d) in increasing order of
number of nodes, starting with n =1 and d = 2, a simple k-tree of depth 2.

Pruning. We prune regexes which are provably equivalent to others in the
search space by using algebraic rules of regular expressions like the following;:

(r+)x = rx (rt)y?=r? (r+)+=r+

+ =rx (r?)x = (r*)? = rx (r)+ = (r+)? = r«

r{m})x (r+){m} = (r{m})+ (r7){m} = (r{m})?
r{n}{m} =r{m}{n} =r{m x n}

To prevent the enumeration of equivalent regular expressions, we add SMT
constraints that block all but one possible representation of each regex. Take,
for example, the equivalence (77)+ = rx. We want to consider only one way to
represent this regex, so we add a constraint to block the construction (r7)+ for
any regex r. Another such equivalence results from the idempotence of union:

—~ —

(r+){m} =
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r|r = r. To prevent the enumeration of expressions of the type r|r, every time
the union operator is assigned to a node 7, we force the sub-tree underneath
i’s left child to be different from the sub-tree underneath i’s right child by at
least one node. When we enumerate a regex that is not consistent with the
examples, it is eliminated from the search space. Along with the incorrect regex,
we want to eliminate regexes that are equivalent to it. The union operator in
the regular expressions DSL is commutative: r|s = s|r, for any regexes r and
s. Thus, whenever an expression containing r|s is discarded, we eliminate the
expression that contains s|r in its place as well.

3.3 Regex Disambiguation

To increase confidence in the synthesizer’s solution, FOREST disambiguates the
specification by interacting with the user. We employ an interaction model based
on distinguishing inputs, which has been successfully used in several synthesizers
[11,24,25,14]. To produce a distinguishing input, we require an SMT solver with
a regex theory, such as Z3 [15,23]. Upon finding two regexes that satisfy the
user-provided examples, 1 and ro, we use the SMT solver to solve the formula:

s : r(s) #£ ra(s), (1)

where 71(s) (resp. r2(s)) is True if and only if r; (resp. r3) matches the string s.
A string s that satisfies (1) is a distinguishing input. FOREST asks the user to
classify this input as valid or invalid, and s is added to the respective set of
examples, thus eliminating either r1 or 7o from the search space. After the first
interaction, the synthesis procedure continues only until the end of the current
depth and number of trees.

4 Capturing Groups Synthesis

In this section we describe the synthesis procedure of the second component
of a regex validation: a set of integer conditions over captured values that are
satisfied by all valid examples but none of the conditional invalid examples.

4.1 Capturing Groups Enumeration

To enumerate capturing groups, FOREST starts by identifying the regular expres-
sion’s atomic sub-regexes: the smallest sub-regexes whose concatenation results
in the original complete regex. For example, [0-91{2} is an atomic sub-regex:
there are no smaller sub-regexes whose concatenation results in it. It does not
make sense to place a capturing group inside atomic sub-regexes: ([0-9]1){2}
does not have a clear meaning. Once identified, the atomic sub-regexes are placed
in an ordered list. Enumerating capturing groups over the regular expression is
done by enumerating non-empty disjoint sub-lists of this list. The elements inside
each sub-list form a capturing group.



160 M. Ferreira et al.

Ezxample 2. Recall the date regex: [0-9]1{2}/[0-9]1{2}/[0-9]1{4}. The respec-
tive list of atomic sub-regexes is [[0-91{2}, /, [0-91{2}, /, [0-91{4}]|. The
following are examples of sub-lists of the atomic sub-regexes list and their re-
sulting capturing groups:

[[[0-91{2}], /, [0-9142}, /, [0-91{4}] — ([0-91{2})/[0-91{2}/[0-91{4}
[[[0-91{2}], /, [[0-9142}], /, [[0-91{4}]] — ([0-91{2})/([0-91{2})/([0-91{4})

4.2 Capture Conditions Synthesis

To compute capture conditions, we need all conditional invalid examples to be
matched by the regular expression. After, capturing groups are enumerated as
described in section 4.1. The number of necessary capturing groups is not known
beforehand, so we enumerate capturing groups in increasing number.

A capture condition is a 3-tuple: it contains the captured text, an integer com-
parison operator and an integer argument. FOREST considers only two integer
comparison operators, < and >. However, the algorithm can be easily expanded
to include other operators. Let C be a set of capturing groups and C(z) the in-
teger captures that result from applying C to example string x. Let D¢ be the
set of all possible capture conditions over capturing groups C. D¢ results from
combining each capturing group with each integer operator. Finally, let VV be
the set of all valid examples, Z the set of all conditional invalid examples, and
X =V UZ the union of these two sets.

Given capturing groups C, FOREST uses Maximum Satisfiability Modulo The-
ories (MaxSMT) to select from D¢ the minimum set of conditions that are sat-
isfied by all valid examples and none of the conditional invalid. To encode the
problem, we define two sets of Boolean variables. First, we define sqp . for every
cap € C(z) and © € X. 5¢qp» = True if capture cap in example = satisfies all
used conditions that refer to it. We also define u.ypnq for all cond € De. Ucong =
True means condition cond is used in the solution. Additionally, we define a set
of integer variables b,y g4, for all conditions cond € D¢ that represent the integer
argument present in each condition.

Let SMT(cond, z) be the SMT representation of condition cond for example
x: the capture is an integer value, and the integer argument is the corresponding
beond variable. Let D.,, C D¢ be the set of capture conditions that refer to
capture cap. Constraint (2) states that a capture cap in example x satisfies all
conditions if and only if for every condition that refers to cap either it is not used
in the solution or it is satisfied for the value of that capture in that example:

Scap,z /\ Ueond — SMT(cond, ). (2)
cond€D cqp

Ezxample 3. Recall the first valid string from the motivating example: zg =
“19/08/1996”. Suppose FOREST has already synthesized the desired regular ex-
pression and enumerated a capturing group that corresponds to the day:

([0-91{2})/[0-91{2}/[0-91{4}. Let condy and cond; be the conditions that
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refer to the first (and only) capturing group, $0, and operators < and > respec-
tively. The SMT representation for condy and z¢ is SMT(condy, z9) = 19 <
beond,- Constraint (2) is:

50,0 — (ucondg — 19 é bcondg) A (ucondl — 19 2 bcond1)~

Then, we ensure the used conditions are satisfied by all valid examples and
none of the conditional invalid examples:

/\ /\ Scap,x A /\ \/ TScap,x- (3)

€V capel(x) z€Z capeC(x)

Since we are looking for the minimum set of capture conditions, we add soft
clauses to penalize the usage of capture conditions in the solution:

/\ T Ucond- (4)

cond€De

We consider part of the solution only the capture conditions whose uconqg
is True in the resulting SMT model. We also extract the values of the integer
arguments in each condition from the model values of the b.,,q variables.

4.3 Capture Conditions Disambiguation

To ensure the solution meets the user’s intent, FOREST disambiguates the spec-
ification using, once again, a procedure based on distinguishing inputs. Once
FOREST finds two different sets of capture conditions §; and Ss that satisfy the
specification, we look for a distinguishing input: a string ¢ which satisfies all
capture conditions in Sy, but not those in Sy, or vice-versa. First, to simplify
the problem, FOREST eliminates from &7 and Sy conditions which are present
in both: these are not relevant to compute a distinguishing input. Let S; (resp.
S3) be the subset of Sy (resp. Sz) containing only the distinguishing conditions,
i.e., the conditions that differ from those in Sy (resp. Sy).

We do not compute the distinguishing string ¢ directly. Instead, we com-
pute the integer value of the distinguishing captures in ¢, i.e., the captures that
result from applying the regular expression and its capturing groups to the dis-
tinguishing input string. We define |C| integer variables, ¢;, which correspond to
the values of the distinguishing captures: co, c1, ..., ¢jc| = C(c).

As before, let SMT(cond, ¢) be the SMT representation of each condition
cond. Each capture in C(c) is represented by its respective ¢;, the operator main-
tains it usual semantics and the integer argument is its value in the solution to
which the condition belongs. Constraint (5) states that ¢ satisfies the conditions
in one solution but not the other.

/\ SMT(cond,c) # /\ SMT(cond, c). (5)

cond € SF cond € S5
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In the end, to produce the distinguishing string ¢, FOREST picks an example
from the valid set, applies the regular expression with the capturing groups to
it, and replaces its captures with the model values for ¢;.

FOREST asks the user to classify ¢ as valid or invalid. Depending on the
user’s answer, c¢ is added as a valid or conditional invalid example, effectively
eliminating either S; or S from the search space.

Ezxample 4. Recall the examples from the motivating example. No example in-
validates a date with the day 32, so FOREST will find two correct sets of cap-
ture conditions over the regular expression ([0-9]1{2})/([0-91{2})/[0-9]1{4}:
S = {%0 < 31,%0 > 1,81 < 12,81 > 1}, and S; = {$0 < 32,$0 > 1,$1 <
12,$1 > 1}. First, we define two sets containing only the distinguishing cap-
tures: S§ = {$0 < 31} and S5 = {$0 < 32}. Then, to find ¢y, the value of the
distinguishing capture for these solutions, we solve the constraint:

Jeg i ep < 31 # ¢ < 32

and get the value ¢y = 32 which satisfies §; (and Ss), but not S; (or &y).

If we pick the first valid example, “19/08,/1996” as basis for ¢, the respective
distinguishing input is ¢ = “32/08/1996”. Once the user classifies ¢ as invalid, ¢
is added as a conditional invalid example and Sy is removed from consideration.

5 Related Work

Program synthesis has been successfully used in many domains such as string
processing [8,19,7,26], query synthesis [11,25,17], data wrangling |2,5], and func-
tional synthesis [3,6]. In this section, we discuss prior work on the synthesis of
regular expressions [10,1] that is most closely related to our approach.
Previous approaches that perform general string processing [7,20] restrict the
form of the regular expressions that can be synthesized. In contrast, we support
a wide range of regular expressions operators, including the Kleene closure, pos-
itive closure, option, and range. More recent work that targets the synthesis of
regexes is done by ALPHAREGEX [10] and REGEL [1]. ALPHAREGEX performs
an enumerative search and uses under- and over-approximations of regexes to
prune the search space. However, ALPHAREGEX is limited to the binary alpha-
bet and does not support the kind of regexes that we need to synthesize for
form validations. REGEL [1] is a state-of-the-art synthesizer of regular expres-
sions based on a multi-modal approach that combines input-output examples
with a natural language description of user intent. They use natural language
to build hierarchical sketches that capture the high-level structure of the regex
to be synthesized. In addition, they prune the search space by using under- and
over-approximations and symbolic regexes combined with SMT-based reasoning.
REGEL’s evaluation [1] has shown that their PBE engine is an order of magni-
tude faster than ALPHAREGEX. While REGEL targets more general regexes that
are suitable for search and replace operations, we target regexes for form vali-
dation which usually have more structure. In our approach, we take advantage
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of this structure to split the problem into independent subproblems. This can
be seen as a special case of sketching [22] where each hole is independent. Our
pruning techniques are orthogonal to the ones used by REGEL and are based on
removing equivalent regexes prior to the search and to remove equivalent failed
regexes during search. To the best of our knowledge, no previous work focused
on the synthesis of conditions over capturing groups.

Instead of using input-output examples, there are other approaches that syn-
thesize regexes solely from natural language [9,12,27]. We see these approaches as
orthogonal to ours and expect that FOREST can be improved by hints provided
by a natural language component such as was done in REGEL.

6 Experimental Results

Implementation. FOREST is open-source and publicly available at https://github.
com/Marghrid/FOREST. FOREST is implemented in Python 3.8 on top of TRIN-

ITY, a general-purpose synthesis framework [13]. All SMT formulas are solved

using the Z3 SMT solver, version 4.8.9 [15]. To find distinguishing inputs in reg-

ular expression synthesis, FOREST uses Z3’s theory of regular expressions [23].

To check the enumerated regexes against the examples, we use Python’s regex li-

brary [18]. The results presented herein were obtained using an Intel(R) Xeon(R)

Silver 4110 CPU @ 2.10GHz, with 64GB of RAM, running Debian GNU /Linux 10.
All processes were run with a time limit of one hour.

Benchmarks. To evaluate FOREST, we used 64 benchmarks based on real-world
form-validation regular expressions. These were collected from regular expres-
sion validators in validation frameworks and from regexlib [20], where users
can upload their own regexes. Among these 64 benchmarks there are different
formats: national IDs, identifiers of products, date and time, vehicle registration
numbers, postal codes, email and phone numbers. For each benchmark, we gen-
erated a set of string examples. All 64 benchmarks require a regular expression
to validate the examples, but only 7 require capture conditions. On average,
each instance is composed of 13.2 valid examples (ranging from 4 to 33) and 9.3
invalid (ranging from 2 to 38). The 7 instances that target capture conditions
have on average 6.3 conditional invalid examples (ranging from 4 to 8).

The goal of this experimental evaluation is to answer the following questions:

Q1: How does FOREST compare against REGEL? (section 6.1)

Q2: How does pruning affect multi-tree’s time performance? (section 6.2)

Q3: How does static multi-tree improve on dynamic multi-tree? (section 6.2)

Q4: How does multi-tree compare against other encodings? (section 6.3)

Q5: How many examples are required to return a correct solution? (section 6.4)
FOREST, by default, uses static multi-tree (when possible) with pruning. It

correctly solves 31 benchmarks (48%) in under 10 seconds. In one hour, FOREST

solves 47 benchmarks (73%), with 96% accuracy: only two solutions did not

correspond to the desired regex validation. FOREST disambiguates only among

programs at the same depth, and so if the first solution is not at the same depth
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Table 1: Comparison of time performance using different synthesis methods

Timeout (s) 10 60 3600
FoREST (with interaction) 31 39 47
FOREST’s 1°° regex (no interaction) 40 46 50
Multi-tree w/o pruning 20 32 38
Dynamic-only multi-tree 5 10 18
k-tree 4 9 5
Line-based (w/o pruning) 4 4 12
ReceL 29 38 47
REGEL PBE 5 7 23
3,600
3,000 — Line-based
—— k-tree
2,400 —+— Dynamic multi-tree
= —— REGEL PBE
Y 1,800 . .
g —e— Multi-tree w/o pruning
&= 1,200 REGEL
—— FOREST

600

——  FOREST’s 1°" regex

0
8 16 24 32 40 48 56 64

Instances solved

Figure 5: Instances solved using different methods

as the correct one, the correct solution is never found. After 1 hour of running
time, FOREST is interrupted, but it prints its current best validation before
terminating. After the timeout, FOREST returned 3 more regexes, 2 of which the
correct solution for the benchmark. In all benchmarks to which FOREST returns
a solution, the first matching regular expression is found in under 10 minutes. In
40 benchmarks, the first regex is found in under 10 seconds. The rest of the time
is spent disambiguating the input examples. FOREST interacts with the user to
disambiguate the examples in 27 benchmarks. Overall, it asks 1.8 questions and
spends 38.6 seconds computing distinguishing inputs, on average.

Regarding the synthesis of capture conditions, in 5 of the benchmarks, we
need only 2 capturing groups and at most 4 conditions. In these instances, the
conditions’ synthesis takes under 2 seconds. The remaining 2 benchmarks need 4
capturing groups and take longer: 99 seconds to synthesize 4 conditions and 1068
seconds for 6 conditions. During capture conditions synthesis, FOREST interacts
7.14 times and takes 0.1 seconds to compute distinguishing inputs, on average.

Table 1 shows the number of instances solved in under 10, 60 and 3600
seconds using FOREST, as well as using the different variations of the synthesizer
which will be described in the following sections. The cactus plot in Figure 5
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shows the cumulative synthesis time on the y-axis plotted against the number of
benchmarks solved by each variation of FOREST (on the x-axis). The synthesis
methods that correspond to lines more to the right of the plot are able to solve
more benchmarks in less time. We also compare solving times with REGEL [1].
REGEL takes as input examples and a natural description of user intent. We
consider not only the complete REGEL synthesizer, but also the PBE engine of
REGEL by itself, which we denote by REGEL PBE.

6.1 Comparison with REGEL

As mentioned in section 5, REGEL’s synthesis procedure is split into two steps:
sketch generation (using a natural language description of desired behavior) and
sketch completion (using input-output examples). To compare REGEL and FOR-
EST, we extended our 64 form validation benchmarks with a natural language
description. To assess the importance of the natural language description, we
also ran REGEL using only its PBE engine. Sketch generation took on average
60 seconds per instance, and successfully generated a sketch for 63 instances.
The remaining instance was run without a sketch. We considered only the high-
est ranked sketch for each instance. In Table 1 we show how many instances can
be solved with different time limits for sketch completion; note that these values
do not include the sketch generation time. REGEL returned a regular expression
for 47 instances within the time limit. Since REGEL does not implement a dis-
ambiguation procedure, the returned regular expression does not always exhibit
the desired behavior, even though it correctly classifies all examples. Of the 47
synthesized expressions, 31 exhibit the desired intent. This is a 66% accuracy,
which is the same as FOREST without disambiguation (FOREST’s 15! regex) but
it is much lower than FOREST with disambiguation at 96%. We also observe that
REGEL’s performance is severely impaired when using only its PBE engine.

51 out of the 63 generated sketches are of the form 00{Si, ..., S, }, where each
S; is a concrete sub-regex, i.e., has no holes. This construct indicates the desired
regex must contain at least one of S, ..., S,, and contains no information about
the top-level operators that are used to connect them. 22 of the 47 synthesized
regexes are based on sketches of that form, and they result from the direct
concatenation of all components in the sketch. No new components are generated
during sketch completion. Thus, most of REGEL’s sketches could be integrated
into FOREST, whose multi-tree structure holds precisely those top-level operators
that were missing from REGEL’s sketches.

6.2 Impact of pruning the search space and splitting examples

To evaluate the impact of pruning the search space as described in section 3.2, we
ran FOREST with all pruning techniques disabled. In the scatter plot in Figure 6a,
we can compare the solving time on each benchmark with and without pruning.
Each mark in the plot represents an instance. The value on the y-axis shows
the synthesis time of multi-tree with pruning disabled and the value on the x-
axis the synthesis time with pruning enabled. The marks above the y = x line
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Figure 6: Comparison of synthesis time using different variations of FOREST.

(also represented in the plot) represent problems that took longer to synthesize
without pruning than with pruning. On average, with pruning, FOREST can
synthesize regexes in 42% of the time and enumerates about 15% of the regexes
before returning. There is no significant change in the number of interactions
before returning the desired solution.

FOREST is able to split the examples and use static multi-tree as described in
section 3.2 in 52 benchmarks (81%). The remaining 12 are solved using dynamic
multi-tree. To assess the impact of using static multi-tree we ran FOREST with a
version of the multi-tree enumerator that does not split the examples, and jumps
directly to dynamic multi-tree solving. In the scatter plot in Figure 6b, we com-
pare the solving times of each benchmark. Using static multi-tree when possible,
FOREST requires, on average, less than two thirds of the time (59.1%) to return
the desired regex for benchmarks solved by both methods. Furthermore, with
static multi-tree FOREST can synthesize more complex regexes: the maximum
number of nodes in a solution returned by dynamic multi-tree is 12 (avg. 6.7),
while complete multi-tree synthesizes regexes of up to 24 nodes (avg. 10.3).

6.3 Multi-tree versus k-tree and line-based encodings

To evaluate the performance of multi-tree enumeration, we ran FOREST with two
other enumeration encodings: k-tree and line-based. The latter is a state of the
art encoding for the synthesis of SQL queries [17]. k-tree is the default enumera-
tor in TRINITY [13], and the line-based enumerator is available in SQUARES [16].
The k-tree encoding has a very similar structure to that of multi-tree, so our
pruning techniques were easily applied to this encoding. On the other hand,
line-based encoding is intrinsically different, so the pruning techniques were not
implemented. We compare the line-based encoding to multi-tree without prun-
ing. In every other aspect, the three encodings were run in the same conditions,
using FOREST’s regex DSL. k-tree is able to synthesize programs with up to
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10 nodes, while the line-based encoding synthesizes programs of up to 9 nodes.
Neither encoding outperforms multi-tree.

As seen in Table 1, line-based encoding does not outperform the tree-based
encodings for the domain of regexes while it was much better for the domain of
SQL queries [17]. We conjecture this disparity arises from the different nature
of DSLs. Most SQL queries, when represented as a tree, leave many branches of
the tree unused, which results in a much larger tree and SMT encoding.

6.4 Impact of fewer examples

To assess the impact of providing fewer examples on the accuracy of the solution,
we ran FOREST with modified versions of each benchmark. First, each benchmark
was run with at most 10 valid and 10 invalid examples, chosen randomly among
all examples. Conditional invalid examples are already very few per instance, so
these were not altered. The accuracy of the returned regexes is slightly lower.
With only 10 valid and 10 invalid examples, FOREST returns the correct regex
in 93.5% of the benchmarks, which represents a decrease of only 2.5% relative
to the results with all examples. We also saw an increase in the number of inter-
actions before returning, since fewer examples are likely to be more ambiguous.
With only 10 examples, FOREST interacts on average 2.2 times per benchmark,
which represents an increase of about a fifth. The increase in the number of
interactions reflects on a small increase in the synthesis time (less than 1%).
After, we reduced the number of examples even further: only 5 valid and 5
invalid. The accuracy of FOREST in this setting was reduced to 71%. On average,
it interacted 4.3 times per benchmark, which is over two times more than before.

7 Conclusions and Future Work

Regexes are commonly used to enforce patterns and validate the input fields of
digital forms. However, writing regex validations requires specialized knowledge
that not all users possess. We have presented a new algorithm for synthesis of
regex validations from examples that leverages the common structure shared
between valid examples. Our experimental evaluation shows that the multi-tree
representation synthesizes three times more regexes than previous representa-
tions in the same amount of time and, together with the user interaction model,
FOREST solves 70% of the benchmarks with the correct user intent. We verified
that FOREST maintains a very high accuracy with as few as 10 examples of each
kind. We also observed that our approach outperforms REGEL, a state-of-the-art
synthesizer, in the domain of form validations.

As future work, we would like to explore the synthesis of more complex
capture conditions, such as conditions depending on more than one capture.
This would allow more restrictive validations; for example, in a date, the possible
values for the day could depend on the month. Another possible extension to
FOREST is to automatically separate invalid from conditional invalid examples,
making this distinction imperceptible to the user.



168

M. Ferreira et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular

expressions. In: PLDI. ACM (2020)

Chen, Y., Martins, R., Feng, Y.: Maximal multi-layer specification synthesis. In:
ESEC/SIGSOFT FSE. pp. 602-612. ACM (2019)

Fedyukovich, G., Gupta, A.: Functional synthesis with examples. In: CP. Lecture
Notes in Computer Science, vol. 11802, pp. 547-564. Springer (2019)

. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-

driven learning. In: PLDI. pp. 420-435. ACM (2018)

Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-based
synthesis of table consolidation and transformation tasks from examples. In: PLDI.
pp. 422-436. ACM (2017)

Golia, P., Roy, S., Meel, K.S.: Manthan: A data driven approach for boolean func-
tion synthesis. In: CAV. Springer (2020)

Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: POPL. pp. 317-330. ACM (2011)

Kini, D., Gulwani, S.: Flashnormalize: Programming by examples for text normal-
ization. In: IJCAL pp. 776-783. AAAI Press (2015)

Kushman, N., Barzilay, R.: Using semantic unification to generate regular expres-
sions from natural language. In: HLT-NAACL. pp. 826-836. The Association for
Computational Linguistics (2013)

Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for intro-
ductory automata assignments. In: GPCE. pp. 70-80. ACM (2016)

Li, H., Chan, C., Maier, D.: Query from examples: An iterative, data-driven ap-
proach to query construction. Proc. VLDB Endow. 8(13), 2158-2169 (2015)
Locascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R.: Neural gen-
eration of regular expressions from natural language with minimal domain knowl-
edge. In: EMNLP. pp. 1918-1923. The Association for Computational Linguistics
(2016)

Martins, R., Chen, J., Chen, Y., Feng, Y., Dillig, I.: Trinity: An Extensible Syn-
thesis Framework for Data Science. PVLDB 12(12), 1914-1917 (2019)

Mayer, M., Soares, G., Grechkin, M., Le, V., Marron, M., Polozov, O., Singh, R.,
Zorn, B.G., Gulwani, S.: User interaction models for disambiguation in program-
ming by example. In: UIST. pp. 291-301. ACM (2015)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337-340. Springer (2008)

Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.M.: Squares.
https://squares-sql.github.io, accessed on May 27, 2020

Orvalho, P., Terra-Neves, M., Ventura, M., Martins, R., Manquinho, V.M.: Encod-
ings for enumeration-based program synthesis. In: CP. Lecture Notes in Computer
Science, vol. 11802, pp. 583-599. Springer (2019)

Python Software Foundation: Python3’s regular expression module re. https://
docs.python.org/3/library /re.html, accessed on October 11, 2020

Raza, M., Gulwani, S.: Automated data extraction using predictive program syn-
thesis. In: AAAL pp. 882-890. AAAI Press (2017)

Regular Expression Library: www.regexlib.com, accessed on May 27, 2020
Reynolds, A., Barbosa, H., Notzli, A., Barrett, C.W., Tinelli, C.: cvcdsy: Smart
and fast term enumeration for syntax-guided synthesis. In: CAV. Lecture Notes in
Computer Science, vol. 11562, pp. 74-83. Springer (2019)


https://squares-sql.github.io
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
www.regexlib.com

22.

23.

24.

25.

26.

27.

ForEsST: An Interactive Multi-Tree Synthesizer for Regular Expressions 169

Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5-6),
475-495 (2013)

Stanford, C., Veanes, M., Bjgrner, N.: Symbolic boolean derivatives for efficiently
solving extended regular expression constraints. Tech. Rep. MSR-TR-2020-25, Mi-
crosoft (August 2020), updated November 2020.

Wang, C., Cheung, A., Bodik, R.: Interactive query synthesis from input-output
examples. In: SIGMOD Conference. pp. 1631-1634. ACM (2017)

Wang, C., Cheung, A., Bodik, R.: Synthesizing highly expressive SQL queries from
input-output examples. In: PLDI. pp. 452-466. ACM (2017)

Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-
ples. In: OOPSLA. pp. 195-213. ACM (2016)

Zhong, Z., Guo, J., Yang, W., Peng, J., Xie, T., Lou, J., Liu, T., Zhang, D.: Sem-
regex: A semantics-based approach for generating regular expressions from natural
language specifications. In: EMNLP. pp. 1608-1618. Association for Computational
Linguistics (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses,/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

Probabilities



t')

Check for
updates

Finding Provably Optimal Markov Chains

Jip Spel' ®)®, Sebastian Junges?®, and Joost-Pieter Katoen'®

L RWTH Aachen University, Aachen, Germany*
jip.spel@cs.rwth-aachen.de
2 University of California, Berkeley, California, USA**

Abstract. Parametric Markov chains (pMCs) are Markov chains with
symbolic (aka: parametric) transition probabilities. They are a convenient
operational model to treat robustness against uncertainties. A typical
objective is to find the parameter values that maximize the reachability
of some target states. In this paper, we consider automatically proving
robustness, that is, an e-close upper bound on the maximal reachability
probability. The result of our procedure actually provides an almost-
optimal parameter valuation along with this upper bound.

We propose to tackle these ETR-hard problems by a tight combination
of two significantly different techniques: monotonicity checking and pa-
rameter lifting. The former builds a partial order on states to check
whether a pMC is (local or global) monotonic in a certain parameter,
whereas parameter lifting is an abstraction technique based on the itera-
tive evaluation of pMCs without parameter dependencies. We explain our
novel algorithmic approach and experimentally show that we significantly
improve the time to determine almost-optimal synthesis.

1 Introduction

Background and problem setting. Probabilistic model checking [3,20] is a well-
established field and has various applications but assumes probabilities to be
fixed constants. To deal with uncertainties, symbolic parameters are used. Para-
metric Markov chains (pMCs, for short) define a family of Markov chains with
uncountably many family members, called instantiations, by having symbolic
(aka: parametric) transition probabilities [10,22]. We are interested in determining
optimal parameter settings: which instantiation meets a given objective the best?
The typical objective is to maximize the reachability probability of a set of target
states. This question is inspired by practical applications such as: what are the
optimal parameter settings in randomised controllers to minimise power consump-
tion?, and what is the optimal bias of coins in a randomised distributed algorithm
to maximise the chance of achieving mutual exclusion? For most applications,
it suffices to achieve parameters that attain a given quality of service that is
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e-close to the unknown optimal solution. More precisely, this paper concentrates
on automatically proving e-robustness, i.e., determine an upper bound which is
e-close to the maximal reachability probability. The by-product of our procedure
actually provides an almost-optimal parameter valuation too.

Ezisting parameter synthesis techniques. Efficient techniques have been developed
in recent years for the feasibility problem: given a parametric Markov chain, and
a reachability objective, find an instantiation that reaches the target with at
least a given probability. To solve this problem, it suffices to “guess” a correct
family member, i.e., a correct parameter instantiation. Verifying the “guessed”
instantiation against the reachability objective is readily done using off-the-
shelf Markov chain model-checking algorithms. Most recent progress is based on
advanced techniques that make informed guesses: This ranges from using sampling
techniques [14], guided sampling such as particle swarm optimisation [7], by greedy
search [24], or by solving different variants of a convex optimisation problem
around a sample [8,9]. Sampling has been accelerated by reusing previous model
checking results [25], or by just in time compilation of the parameter function [12].
These methods are inherently inadequate for finding optimal parameter settings.
To the best of our knowledge, optimal parameter synthesis has received scant
attention so far. A notable exception is the analysis (e.g., using SMT techniques) of
rational functions, typically obtained by some form of state elimination [10,12,15],
that symbolically represent reachability probabilities in terms of the parameters.
These functions are exponential in the number of parameters [16] and become
infeasible for more than two parameters. Parameter lifting [5,6,25] remedies this
by using an abstraction technique, but due to an exponential blow-up of region
splitting, is limited to a handful of parameters. The challenge is to solve optimal
parameter synthesis problems with more parameters.

Approach. We propose to tackle the optimal synthesis problem by a deep inte-
gration of two seemingly unrelated techniques: monotonicity checking [27] and
parameter lifting [25]. The former builds a partial order on the state space to
check whether a pMC is (local or global) monotonic in a certain parameter, while
the latter is an abstraction technique that “lifts” the parameter dependencies, ob-
taining interval MCs [17,21], and solves them in an iterative manner. To construct
an efficient combination, we extend both methods such that they profit from
each other. This is done by combining them with a tailored divide-and-conquer
component, see Fig. 1. To prove bounds on the induced reachability probability,
parameter lifting has been the undisputed state-of-the-art, despite the increased
attention that parameter synthesis has received over recent years. This paper
improves parameter lifting with more advanced reasoning capabilities that involve
properties of the derivative, rather than the actual probabilities. These reason-
ing methods enable reducing the exponent of the inherently exponential-time
procedure. This conceptual advantage is joined with various engineering efforts.
Parameter lifting is accelerated by using side products of monotonicity analysis
such as local monotonicity and shrinked parameter regions. Furthermore, bounds
obtained by parameter lifting are used to obtain a cheap rule accelerating the
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region region
Parameter Lifting Divide and Conquer Monotonicity Checking
Sect. 5 region value Sect. 6 monotone pars. Sect. 4
Tl state bounds T‘

local monotonicity

Fig. 1. The symbiosis of parameter lifting and monotonicity checking. Red are new
interactions, compared to earlier work. Details are given in Sect. 3.

monotonicity checker. The interplay between the two advanced techniques is
tricky and requires a careful treatment.

Note that we are not the first to exploit monotonicity in the context of
pMCs. Hutschenreiter et al. [16] showed that the complexity of model checking (a
monotone fragment of) PCTL on monotonic pMC is lower than on general pMCs.
Pathak et al. [24] provided an efficient greedy approach to repair monotonic
pMCs. Recently, Gouberman et al. [13] used monotonicity for hitting probabilities
in perturbed continuous-time MCs.

Experimental results. We realised the integrated approached on top of the
Storm [11] model checker. Experiments on several benchmarks show that opti-
mal synthesis is possible: (1) on benchmarks with up to about a few hundred
parameters, (2) on benchmarks that cannot be handled without monotonicity,
(3) while accelerating pure parameter lifting by up to two orders of magnitude.
Our approach induces a bit of overhead on small instances for some benchmarks,
and starts to pay off when increasing the number of parameters.

Main contribution. In summary, the main contribution of this paper is a tight
integration of parameter lifting and monotonicity checking. Experiments indicate
that this novel combination substantially improves upon the state-of-the-art in
optimal parameter synthesis.

Organisation of the paper. Section 2 provides the necessary technical background
and formalises the problem. Section 3 explains the approach—in particular the
meaning of the arrows in Fig. 1. Section 4 discusses how to state bounds can
be exploited in the monotonicity checker. Section 5 details how to exploit local
monotonicity in parameter lifting. Section 6 then considers the tight interplay via
the divide-and-conquer method. Section 7 reports on the experimental results of
our prototypical implementation in Storm while Section 8 concludes the paper.

2 Problem Statement

A probability distribution over a finite or countably infinite set X is a function
p: X — [0, 1] € R with >y u(z) = 1. The set of all distributions on X is
denoted by Distr(X). Let @ € R™ denote (ay,...,ay). The set of multivariate
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polynomials over ordered variables ¥ = (z1,...,x,) is denoted Q[Z]. For a
polynomial f and variable x, we write = € f if the variable occurs in the
polynomial f. An instantiation for a finite set V' of real-valued variables is a
function u: V' — R. We often denote u as a vector ¢ € R with w; := u(x;) for
x; € V. A polynomial f can be interpreted as a function f: R™ — R, where f(u)
is obtained by substitution, i.e., f[Z + ], where each occurrence of z; in f is
replaced by u(x;).

Definition 1 (pMC). A parametric Markov Chain (pMC) is a tuple M =
(S,s1,T,V,P) with a finite set S of states, an initial state s; € S, a finite set
T C S of target states, a finite set V' of real-valued variables (parameters) and
a transition function P: S x S — Q[V].

A pMC M is a (discrete-time) Markov chain (MC) if the transition function
yields well-defined probability distributions, i.e., P(s,-) € Distr(S) for each s € S.
Applying an instantiation @ to a pMC M yields M[i] by replacing each f € Q[V]
in M by f(u@). An instantiation @ is well-defined (for M) if M[ud] is an MC.
A well-defined instantiation @ is graph-preserving (for M) if the topology is
preserved, i.e., P(s,s’) # 0 implies P(s, s") (@) # 0 for all states s and s'. A set
of instantiations is called a region. A region R is well-defined (graph-preserving)
if @ is well-defined (graph-preserving) for all @ € R. In this paper, we consider
only graph-preserving regions.

For a parameter-free MC M, Pri(0T') € [0,1] C R denotes the probability
that from state s the target T is eventually reached. For a formal definition, we
refer to, e.g., [4, Ch. 10]. For pMC M, Pr{((0T) is not a constant, but rather a

function PrSHT V — [0,1], with PrSHT( i) = Priz(0T). The closed-form of

Pri~T on a graph-preserving region is a rational function over V, i.e., a fraction

of two polynomials over V. On a graph-preserving region, the function Pr¥=7T
is continuously differentiable [25]. We call Pri/” the solution function, and for
conciseness, we often omit the subscript /\/l Graph-preserving instantiations
i, @ preserve zero-one probabilities, i.e., Pr*”7 (@) = 0 implies Pr* =7 (@) = 0,
and analogous for =1. We snnply write Prg_’T =0 (or =1). Let £ (%) denote all
states s € S with Pr*~7 =1 (Pr*”" = (). By a standard preprocessing [4], we

may safely assume a single £ and X state.

Problem statement. This paper is concerned with the following questions for a
given pMC M with target states T, and region R:

Optimal synthesis. Find the instantiation u* such that

%

Ut = Pr 1z (0T
U arg max T () (OT)

e-Robustness. Given tolerance € > 0, find an instantiation «* such that

max Pr 7 ((}T) e < Per*](OT) < max Pry g ((}T)
deR GER
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@ BEEEO OO
P 1/3 1—p

(a) Ma (b) Muld], © = {p — 1/3} (c) M2

Fig. 2. Toy examples for pMCs.

The optimal synthesis problem is ETR-hard [28], i.e., as hard as finding a
root of a multivariate polynomial. It is thus NP-hard and in PSPACE. The same
applies to e-robustness. The value of A can be viewed as the optimal reachability
probability of 7' — up to the robustness tolerance € — over all possible parameter
values while #* is the instantiation that maximises the probability to reach T

Like [28], we assume pMCs to be simple, i.e., P(s,s') € {z,1—z |2 € V}UQ
for all s,s" € S and ), P(s,s’) = 1. Theoretically, the above problem for simple
pMCs is as hard as for general pMCs, and practically, most pMCs are simple.
For simple pMCs, the graph-preserving instantiations are in (0, 1)|V‘. Regions are
assumed to be well-defined, rectangular and closed, i.e., a region is a Cartesian
product of closed intervals, R = X__,[lz,u;]. Let R(z) denote the interval
[0y, u;] and occur(s) the set of variables {x € V | 3¢’ € S. x € P(s,s’)}. For
simple pMCs, this set has cardinality at most one. A state s is called parametric,
if occur(s) # ); we write occur(s) = z if {z} = occur(s).

Ezample 1. Fig. 2(a) depicts a pMC. A region R is given by p € [1/4,1/2]. An
instantiation @ = {p — 1/3} € R yields the pMC in Fig. 2(b). The solution
function is Prig " = p- (1 — p). Indeed Pri¢ " (@) = /o = Pryy, 15 (0T).

3 Main Ingredients in a Nutshell

To solve the problem statement, we consider an iterative method which analyzes
regions, and, if necessary, splits these regions. In particular, we combine two
approaches — parameter lifting and monotonicity checking — as shown in Fig. 1.

3.1 The Monotonicity Checker

We consider local and global monotonicity. We start with defining the latter.

Definition 2 (Global monotonicity). A continuously differentiable function f
o

on region R is monotonic increasing in variable z, denoted f1%£, if a—f(ﬁ) >0 for
xT

all i € R®. The pMC M = (S,s7,T,V,P) is monotonic increasing in parameter

x € V on graph-preserving region R, written M1E, if PrS’HTTf.

3 To be precise, on the interior of the closed set R.
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1 2 1 1 1 3
W 1—q @ " [1/2, /ﬂé[/& /2}/81\[/4, /5]©

a [2/s./4]
() My (b) M3, Rs.t. p € [1/3,1/2], q € [2/5, /4]

Fig. 3. Simple pMC that indeed is an iMC.

Monotonic decreasing, written M, is defined analogously. Let succ(s) = {s’ €
S| P(s,s") # 0} be the set of direct successors of s. Given the recursive equation

Pri—T = Y sresuce(s) P(8:8') - Pr' =T for state s # &, 2, we have

R i 3 / .PS/*)T 7 >
MY . Z )P(s,s) r (@) >0,

s’ €succ(s

for all « € R. Rather than checking global monotonicity, the monotonicity checker
determines a subset of the locally monotone state-parameter pairs. Such pairs
intuitively capture monotonicity of a parameter only locally at a state s.

Definition 3 (Local monotonicity). Function Pr*"" is locally monotonic
increasing in parameter x (at state s) on region R, written PrS%TTi’R, if

Vi € R. (iP(s, $) - Pr=T | (@) = 0,
s'E;cc(s) Ou

Thus, while global monotonicity considers the derivative of the entire solution
function, local monotonicity (in s) only considers the derivative of the first
transition (emanating from s). Local monotonicity of parameter = in every state
implies global monotonicity of , as shown in [27]. As checking global monotonicity
is co-ETR hard [27], a practical approach is to check sufficient conditions for
monotonicity. These conditions are based on constructing a pre-order on the
states of the pMC; this is explained in detail in Section 4.

Ezample 2. For R = {u(p) € [}/10,9/10]}, pMC M; in Fig. 2(a) is locally mono-
tonic increasing in p at sg and locally monotonic decreasing in p at s;. From
this, we cannot conclude anything about global monotonicity of p on R. In-
deed, the pMC is not globally monotonic on R. M; is globally monotonic on
R’ = {u(p) € [Y/10,1/2]}, but this cannot be concluded from the statement above.
Contrarily, the pMC M, in Fig. 2(c) is locally monotonic increasing in p at both
sp and s, and is therefore globally monotonic increasing in p.

3.2 The Parameter Lifter

The key idea of parameter lifting [25] is to drop all parameter dependencies—
parameters that occur at multiple states in a pMC—by introducing fresh param-
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eters. The outcome is an interval Markov chain [17,21], which can be considered
a special case of pMCs in which no parameter occurs at multiple states.

Definition 4 (Interval MC). A pMC is a (simple) interval MC (iMC), if
occur(s) Noccur(s’) =0 for all states s # s'.

All iMCs in this paper are simple. We typically label transitions emanating from
state s in an iMC with @ = occur(s) by R(z) = [(4, ug].

Ezample 3. The pMC in Fig. 3(a) is an iMC. For a fixed R, the typical notation
is given in Fig. 3(b). For the pMC M, in Fig. 2(a), the parameter p occurs at
states sg and s1, so that this pMC is not an iMC.

Definition 5 (Relaxation). The relaxation of simple pMC M=(S,s;,T,V,P)
is the iMC relax(M) = (S,s;,T,V',P') with V' = {xs | s € S,occur(s) # 0},
P'(s,s") = P(s,s)occur(s) < xs].

For state s with occur(s) = x, let relax(R)(xs) = R(occur(s)). Likewise, an
instantiation in 4 € R is mapped to relax(w@) by relax(@)(xs) = w(occur(s)).

Extremal reachability probabilities on iMCs are reached at the extremal
values of a region. Formally [25], for each state s and region R in pMC M:

max Priy" (@) < | max Prig oy (@). (1)
This result is a direct consequence of local monotonicity at all states implying
global monotonicity. The extremal values for the reachability probabilities in the
obtained iMCs are obtained by interpreting the iMCs as MDPs and applying
off-the-shelf MDP model checking. We denote the right-hand side of (1) as upper
bound on R, denoted Ugr(s). Analogously we define a lower bound Lg(s).

Ezample 4. The pMC Mj in Fig. 3(a) is the relaxation of the pMC M; in
Fig. 2(a). Indeed, for R = {u(p) € [V/4,3/4]}:

ax Préo =T 1y < 916 = a Prio T (7).
Iupel}?,( M ( ) / / uerrfellaiER) Ms (U)

3.3 Divide and Conquer

Figure 4 shows how the extremal value for region R,, pMC M, reachability
property ¢ and precision € can be computed using only parameter lifting [25]:
This paper extends this iterative approach to include monotonicity checking. The
main idea is to analyze regions and split them if the result is inconclusive. The
approach uses a queue of regions that need to be checked and the current extremal
value CurMax found so far. In particular, we maintain a lower bound on CurMax
and know a (potentially trivial) upper bound: (CurMax+e) > maxp o Ug(sr).
We iteratively check regions and improve both bounds until a satisfactory solutlon
is found. Initially, the queue only contains R,. For a selected R from the queue
we compute an upper bound Ug with parameter lifting. If Ur at the initial state
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Ri,...,Rn R
@ l
Split R i Ug (sr) < Clzrp_/[a;:@—j Parameter Lifting ‘
else, R Guess 4 € R
update CurMax else, R

if CurMax+e > maxpeqy(ny Ug(s1)

Result: CurMax

Fig. 4. Divide and conquer with pure parameter lifting

is below the current optimum, we can safely discard R. Otherwise, we want
attempt to improve CurMax by guessing u € R and computing Prf\,?T(a’) using
model checking?. If Per’T(d) exceeds CurMax, we update CurMax. Now, we check
whether we can terminate:

In particular, let the maximum so far be bounded by MaXpe o R} Ug(sr). If
the upper bound is below CurMax+-e¢, we are done, and return CurMax together
with the u associated with CurMax. Otherwise, we continue and split R into
smaller regions. By default, parameter lifting splits R along all dimensions. This

algorithm converges in the limit [25].

Ezample 5. Reconsider Ex. 4, and assume we want to show maxgze g Prf&?T(ﬁ) <
1/4, with ¢ = 1/8. We sample in (the middle of) R and obtain CurMax = 1/4,
while the upper bound Ug(s;) from Ex. 4 is 9/16. We split R into two regions
Ry = {u(p) € [V/4,Y/2]} and Ry = {i(p) € [1/2,3/4]}. Parameter lifting reveals
that for both regions the bound is 3/8. Thus, /4 is an epsilon-close instance.

The remainder of this paper integrates monotonicity checking in this loop.

This paper addresses three challenges: (Sect. 4): Using state bounds in
the monotonicity checker. (Sect. 5): Using local monotonicity in parameter
lifting. (Sect. 6) Integrating monotonicity in the divide and conquer loop.

4 A New Rule for Sufficient Monotonicity

As discussed in Section 3.1, we aim to analyse whether for a given region R,
parameter z is locally monotonic at state s. The key ingredient is a pre-order
on the states of the pMC at hand that is used for checking sufficient conditions
for being local monotonic. We define the pre-order and recap the “cheap” rules
for efficiently determining the pre-order as adopted from [27]. We add a new,
simple rule to this repertoire that lets us avoid the computationally “expensive”

1 Using an instantiation checker that reuses model-checking results from the last guess.
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rules using assumptions from [27]. The information needed to apply this new rule
readily comes from parameter lifting as we will see.

Ordering states for local monotonicity. Let us consider a conceptual example
showing how a pre-order on states can be used for determining local monotonicity.

Ezample 6. Consider the pMC My in Fig. 2(c). We reason backwards that both
states are locally monotone increasing in p. First, observe that £ has a higher
probability to reach the target (1) than X (0). Now, in s, increasing p will move
more probability mass to £, and hence, it is locally monotone. Furthermore, we
know that the probability from s; is between £ and A. Now, for sg we can use
that increasing p moves more probability mass to s;, which we know has a higher

probability to reach the target than X.

As in [27], we determine local monotonicity by ordering states according to their
reachability probability.

Definition 6 (Reachability order). A relation <pr C S xS is a reachability
order with respect to T" C S and region R if for all s,t € S:

s 2prt implies (Vi€ R. Pri~T (@) < PrtﬁT(ﬁ)).
The order =g is called exhaustive if the reverse implication also holds.

The relation =g is a reflexive (aka: non-strict) pre-order. The exhaustive
reachability order is the union of all reachability orders, and always exists. Unless
stated differently, let < denote the exhaustive reachability order. If the successor
states of a state s are ordered, we can conclude local monotonicity in s:

Lemma 1. Let s,s1,52 € S with P(s,s1) =« and P(s,s2) = 1—x. Then:
for each region R: so g s1 implies PrS%TTi’R-
This result suggests to look for a so-called “sufficient” reachability order:

Definition 7 (Sufficient reachability order). A reachability order < is
sufficient for parameter x if for all states s with occur(s) = {x} and s1,s2 €
succ(s) it holds: (s1 < sa V s9 = s1).

Phrased differently, the reachability order < is sufficient for x € V' if (succ(s), <)
is a total order for all s that have transitions labelled with . Observe that in
contrast to an exhaustive order, a sufficient order does not need to exist.

Ordering states efficiently. Def. 6 provides a conceptually simple scheme to order
states s1 and so: compute the rational functions Pr® =7 and Pr2~7  and compare
them. As the size of these multivariate rational functions can be exponential in
the number of parameters [16], this is not practically viable. To avoid this, [27]
has identified a set of rules that provide sufficient criteria to order states. Some
of these rules are conceptually based on the underlying graph of a pMC and are
computationally cheap; other rules reason about (a partial representation of) the
full rational function Pr®*~7 and are computationally expensive.
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(a) My

Fig. 5. Non-trivial pMCs for deducing monotonicity.

Ezample 7. Using bounds avoids expensive rules: See M, in Fig. 5(a). Let
R = {ii(q) € [V/2,3/4],d(p) € [\/2,2/3]}. Using the solution functions p* + (1—p) - q
and ¢ - (1—q) for s1 and s, yields s < s1 on R. Such a rule is expensive, but the
cheaper graph-based rules analogous to Ex. 6 are not applicable. However, when
we use bounds from parameter lifting, we obtain Ug(sz2) = 3/s and Lg(s1) = 1/2,
we observe Ug(s2) < Lg(s1) and thus s < s1 on R. Bounds also just simplify
graph-based reasoning, in particular in the presence of cycles. Consider Mj: As
Lgr(s3) > Ugr(ss), with reasoning similar to Ex. 6, it follows that sy < s1, and
we immediately get results about monotonicity.

Our aim is to avoid applying the expensive rules from [27] by imposing a new —
and thanks to parameter lifting — cheap rule. To obtain this rule, we assume for
state s and region R to have bounds Lr(s) and Ur(s) at our disposal satisfying

Lr(s) < Pr7T(@) < Ugr(s) foralldieR .

Such bounds can be trivially assumed to be 0 and 1 respectively, but the idea is
to obtain tighter bounds by exploiting the parameter lifter. This will be further
detailed in Section 5. A simple observation on these bounds yields a cheap rule
(provided these bounds can be easily obtained).

Lemma 2. For si,s9 € S and region R: Lr(s1) > Ur(s2) implies ss <p1 1.

In the remainder of this section, we elaborate some technical details.

Algorithmic reasoning. The pre-order < is stored by a representation of its Hasse
diagram, referred to as RO-graph. Evaluating whether two states are ordered
amounts to a graph search in the RO-graph. We start off with the initial order
A =X L. Then we attempt to apply one of the cheap rules to a state s. Lemma 2
provides us with more potential to apply a cheap rule. The typical approach
is to do this in a reverse topological order over the RO-graph, such that the
successors of s are already ordered as much as possible. If the successor states
of s are ordered, then s can be added as a vertex and directed edges can be
added between s and its successors. Otherwise, state s is added between X and C.
This often allows for reasoning analogous to the example. To deal with strongly
connected components, rules exist [27] that add states to the order even when not
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all successors are in the graph. If no cheap rule can be applied, more expensive
rules using the rational functions from above or SMT-solvers are applied®.

5 Parameter Lifting with Monotonicity Information

Recall that our aim is to compute some A > maxger Prj;’T(ﬂ') — ¢ for some fixed
region R. In order to do so, we compute \i= MAaXerelax(R) Prfe?azzM)(ﬁ) on the
iMC relax(M) obtained by relaxing the pMC M. We discuss how to speed up
this computation using local monotonicity information. In the remainder, let D
denote relax(M) and I denote relax(R). As we consider simple iMCs, let state s
with P(s,s1) = zs and P(s, s2) = 1—x5 where the parameter 4 does not occur
on other transitions. Assume the lower (upper) bound on xs is ls (us).

Analyzing (simple) iMCs. An iMC induces a maximal reachability bound by
substituting every x, with either I or us. Formally, let V(I) denote the corner
points of the interval I. Then,

max Priy T (@) = max Priy’ T (@).

ier P (@) aev(n)y ° (@)
Thus, to maximise the probability to reach T, in every state s either the lower or
the upper bound of parameter x, has to be chosen. This induces O(2/1) choices.
They can be efficiently navigated by interpreting these choices as nondeterministic
choices, interpreting the iMC as a Markov decision process (MDP) [25].

Local monotonicity helps. Assume local monotonicity establishes s; < so, i.e., the
reachability probability from ss is at least as high as from s;. To maximise the
reachability probability from s, the parameter x4 should be minimised. Contrary,
if so < s1, parameter x5 should be maximised. Thus, every local monotonicity
result halves the amount of vertices that we are maximising over.

Ezample 8. Consider the iMC M3 in Fig. 3(a), which is the relaxation of the pMC
M, in Fig. 2(a). There are four combinations of lower and upper bounds that
need to be investigated to compute the upper bound. Using local monotonicity,
we deduce that g should be as low as possible and p as high as possible. Rather
than evaluating a MDP, we thus obtain the same upper bound on the reachability
probability in M; by evaluating a single parameter-free Markov chain.

Accelerating value iteration. Parameter lifting [25] creates a single MDP — a
comparatively expensive operation — and instantiates this MDP based on the
region R to be checked. For computing the bound )\, specifically, it uses value
iteration. Roughly, this means that for each state we start with either its lower
or upper bound. The instantiated MC is then checked. Then, all bounds that can

5 In an attempt to reduce the cost of these rules, the algorithm allows for deferring
proof obligations in the form of assumptions. This is detailed in [27]. For this paper,
however, the only relevant aspect is that these rules are computationally expensive.



184 J. Spel et al.

e RO-grapl
Ry, Ly, Ups sraph
B, L, Ups Queue Q (1) B, Lr,Ur (2) Monotonicity Checking R, Xy, Xy
N f5) o Sect. 4 1
T~ & (s, R (3) Shrink
s
(8) Split R’ RS \ll\rMaxj 9 " local mon.

-~ o
’

(6) Guess @ € R’ else, ', L/, Ups (4) Parameter Lifting

update CurMax Sect. 5 R’

l(7) if CurMax + & > maxpeou(n/) Ug(sr)

else, R', Ly, Ug

Result: CurMax

Fig. 6. The symbiosis of monotonicity checking and parameter lifting. Red are new
elements compared to the vanilla approach in Fig. 4.

be improved by switching from lower to upper bound or vice versa are swapped.
This procedure terminates with the optimal assignment to all bounds. We exploit
the local monotonicity in this value iteration procedure by fixing the chosen
bounds at locally monotonic states.

6 Lifting and Monotonocity, Together

In this section, we give a more detailed account of our approach, i.e., we will zoom
in into Fig. 1 resulting in Fig. 6. In particular, we detail the divide-and-conquer
block. This loop is a refinement (indicated in red in Fig. 6) of Fig. 4. We first
give an overview, before discussing some aspects in greater detail.

Overall algorithm The approach considers ezxtended regions, i.e., a region R
is equipped with state bounds Lr(s) and Ug(s) such that Lg(s) < Pri/” (i) <
Ug(s) for every state s, and with monotonicity information about the monotonic
increasing (and decreasing) parameters on R. Initially the input region R is
extended with Lg(s) = 0,Ug(s) = 1 for every s, and empty monotonicity
information. Additionally, we initialize a conservative approximation for the
maximum probability CurMax so far as 0. Extended regions are stored in the
priority queue @) where Ug(s) are used as priority. We discuss details below. Once
initialised, we start an iterative process to update the conservative approximation
of Lr and Ug.

First, (1) a region R and the associated reachability order stored as RO-graph
is taken from the queue @ and (2) its monotonicity is computed while using the
annotated bounds Lr and Ugr. Let XTR denote globally monotonic increasing
parameters on R, and similarly, X f denote decreasing parameters on R. For
brevity, we omit the superscript R in the following.

As a next step, we (3) shrink a region based on global monotonicity. We
define the region Shrinkx, x, (R) as follows: Shrinkx, x (R)(x) = {, if v € X,
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Shrink(R)(z) = u, if € X4, and Shrink(R)(z) = R(x) otherwise. In the
remainder of this section, let R’ denote Shrinkx, x (R). Observe that we can
safely discard instantiations in R\ R', as maxgep Priyy " (@) = maxge s Privg” ().

Next, we (4) analyse the region R’ to get bounds Lg/,Ug/ using parameter
lifting and using the local monotonicity information from the monotonicity
check. We make two observations: First, it holds that Lgr(s) < Lg/(s) and
Ur/(s) < Ug(s) for every s: Thus, there is no regret in analysing R’ rather than
R. Also, consider that if all parameters are globally monotone, the region R’ is a
singleton and straightforward to analyse.

If (5) Ur/(sy) < CurMax, then we discard R’ altogether and go to (1). Other-
wise, we (6) guess a candidate @ € R, and set CurMax to max(CurMax, Priy;” (1)).
If (7) CurMax + & > MaX pe o pry Ug(sr), then we have solved our problem
statement by returning CurMax. Otherwise, we cannot yet give a conclusive
answer, and need to refine our analysis. To that end, we (8) split the region R’
into smaller (rectangular) regions Ry, ..., R,. Note that these sub-regions first
inherit the bounds of the region R’; their bounds are refined in a subsequent
iteration (if any). Termination in the limit (i.e., convergence of the lower and
upper bound to the limit) follows from the termination of monotonicity checking
and the termination of the loop in Fig. 4.

Incrementality A key aspect in tuning iterative approaches is the concept of
incrementality; i.e., reusing previously computed information in later computation
steps. Parameter lifting is already incremental [25] by reusing the MDP structure
in an efficient manner. Let us address incrementality for the monotonicity checker.
Notice that all monotonicity information and all bounds that are computed for
region R carry over to any R C R. In particular, s =g ¢ implies s e s’

Furthermore, our monotonicity checker may give up in an iteration if no
cheap rules to determine monotonicity can be applied. In that case, we annotate
the current reachability order such that after refining bounds, in a subsequent
iteration, we can quickly check where we gave up in a last iteration, and whether
refined bounds allow progress in constructing the reachability order. Notice that
in principle, we have to duplicate the order for each region. However, we do this
only until the monotonicity checker does not stabilize. The checker stabilizes,
e.g., if an order is sufficient. Once the checker stabilized, we do not duplicate the
order anymore (as no more local or global monotonicity can be deduced).

Heuristics Our approach allows for several choices in the implementation.
Whereas the correctness of the approach does not depend on how to resolve these
choices, they have a significant influence on the performance. We discuss (what
we believe to be) the most important choices, and how we resolved these choices
in the current implementation.

Initialising CurMaz. Previously Storm was applicable only to few parameters and
generously initialized CurMax by sampling all vertices V(R), which is exponential
in the number of parameters. To scale to more parameters, we discard this
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sampling. Instead, we sample for each parameter independently to find out which
parameters are definitely not monotone. Naturally, we skip parameters already
known to be monotone. We select sample points as follows. We distribute the
50 points evenly along the dimension of the parameter. All other parameter
values are fixed: Non-monotonic parameters are set to their middle point in their
interval (as described by the region). Monotone parameters are set at the upper
(lower) bound when possibly monotone increasing (decreasing).

Updating CurMaz. To prove that CurMax is close to the maximum, it is essential to
find a large value for CurMax fast. In our experience, sampling at too many places
within regions yields significant overhead, but taking L(sy) is a too pessimistic
way to update CurMax. To update CurMax, we select a single @ € R’ in the middle
of region R’. As we may have shrunk the region R, the middle of R’ does not
need to coincide with the middle of R, which yields behavior different from the
vanilla refinement loop.

How and where to split? There are two important splitting decisions to be made.
First, we need to select the dimensions (aka: parameters) in which we split.
Second, we need to decide where to split along these dimensions. We had little
success with trivial attempts to split at better places, so the least informative
split in the middle remains our choice for splitting. However, we have changed
where (in which parameter or dimensions) to split. Naturally, we do not (need
to) split in monotonic parameters. Previously, parameter lifting split in every
dimension at once. Let us illustrate that this quickly becomes infeasible: Assume
10 parameters. Splitting the initial region once yields 1024 regions. Splitting half
of them again yields > 500,000 regions. Instead, we use region estimates, which
are heuristic values for every parameter, based on the implementation of [19].
These estimates, provided by the parameter lifter, essentially consider how well
the policy on the MDP (selecting upper or lower bounds in the iMC) agrees with
the dependencies induced by a parameter: The more it agrees, the lower the
value. The key idea is that one obtains tighter bounds if the policy adheres to
the dependencies induced by the parameters®. We split in the dimension with
the largest estimate. If the region estimate is smaller than 10~4, then we split in
the dimension of R with the widest interval.

Priorities in the region queue. Contrary to [25], we want to find the extremal value
within the complete region, rather than partitioning the state space. Consequently,
the standard technique splits based on the size of the region, and de-facto, a
breadth-first search. When we split a region, we prioritize the subregions RCR
with Ug/(s7), as Up(sr) < Ur/(s7). We use the age of a region to break ties.
Here, a wild range of exploration strategies is possible. To avoid overfitting, we
refrain in the experiments from weighting different aspects of the region, but the
current choice is likely not the final answer.

6 Technically, the value is computed as the sum of the differences between the local
lower and upper bound on the reachability probability over all states with this
parameter.
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Table 1. Overview of the experimental results comparing vanilla parameter lifting to
the integrated approach

e: 0.1 e: 0.05

integrated vanilla integrated vanilla
name instance|#states #trans |V] #i# i t #i ot #i# i t #i ot
NRP (5,1) 56 75 5 469 2 <1 2575 <1 5143 2 <1|48701 3
(10,1) 186 250 10 66219 2 11| 512909 857168029 2 1594 TO
(12,1) 259 348 12| 425643 2 98|3304325 757 TO TO
(13,1) 300 403  13{{1103811 2 299 TO TO TO
(14,1) 344 462 14(/2608869 2718 MO MO MO
(15,1) 391 525 15 TO MO MO MO
EVADE (1,2,0,1) 129 249 40 0 2 <1 2410 2 0 2 <1 4619 4
(1,2,3,1) 513 993 160 0 2 3 MO 0 2 3 MO
(1,2,0,2) 425 842 141 0 2 2 MO 0 2 2 MO
(1,2,3,2) 1697 3362 561 0 2 21 MO 0 2 22 MO
Herman (11,10) 21500 242926 1 3 3 3 3 2 9 3 14 9 3
(11,15) 31740 369706 1 5 3 14 5 3 11 3 25 11 5
(13,15) 126888 1713246 1 7 5 44 7 18 11 6 440 11 24
(13,25) | 208808 2889206 1 7 5 91 7 31 11 6 1415 11 41
(13,35) | 290728 4065166 1 5 4 128 5 35 TO 11 54
Maze (25) 360 660 24 0 2 <1 1 <1 0 2 <1 40 <1
(1000) 14985 26985 999 0 2 1 1 <1 0 2 1 MO
(10000) | 149985 269985 9999 0 2 166 1 <1 0 2 182 TO

Obtaining bounds for the monotonicity checker. While the baseline loop only
computes upper-bounds, we use lower bounds to boost the monotonicity checking.
We currently run these bounds until the monotonicity checker has stabilized. We
observe that, mostly due to numerical computations, the time that the lower
bounds take can be significant, but the overhead and the merits of getting larger
lower bounds are hard to forecast.

7 Empirical Evaluation

Setup. We investigate the performance of the extended divide-and-conquer
approach presented in Fig. 6. We have implemented the algorithm explained
above in the probabilistic model checker Storm [11]. We compare its performance
with vanilla parameter lifting, outlined in Fig. 4, as baseline. Both versions use
the same underlying data structures and version of Storm. All experiments were
executed on a single core Intel Xeon Platinum 8160 CPU. We did neither use
any parallel processing nor randomization. We used a time out of 1800s and a
memory limit of 32GB. We exclude model-building times from all experiments
and emphasize that they coincide for the vanilla and new implementations.

Benchmarks and results. The common benchmarks Crowds, BRP, and Zeroconf
have only globally monotonic parameters (and only two). Using monotonicity,
they become trivial. The structure of NAND and Consensus makes them not
amenable to monotonicity checking, and the performance mostly resembles the
baseline. We selected additional benchmarks from [2], [23], and [18], see below.
The models from the latter two sources are originally formulated as partially
observable MDPs and were translated into pMC using the approach in [19].
Table 1 summarizes the results for benchmarks identified by their name and
instance. We list the number of states, transitions and parameters of the pMC.
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For each benchmark, we consider two values for £: e=0.05 and €=0.1. For each
e, we consider the time ¢ required and the number (i) of iterations that the
integrated loop and the baseline require. For the integrated loop, we additionally
provide the number (i) of extra (lower bound) parameter lifting invocations
needed to assist the monotonicity checker.

Discussion of the results. We make the following observations.

— NRP: this model is globally monotonic in all its parameters. Our monotonicity
checker can find this one parameter. The integrated approach is an order of
magnitude faster on all instances, scaling to more parameters.

— Evade: this model is globally monotonic in some of its parameters. Our
monotonicity check can find this monotonicity for a subset. The integrated
approach is faster on all instances, as a better initial CurMax is guessed based
on the results from the monotonicity checker.

— Herman’s protocol: this is a less favourable benchmark for the integrated
approach as only one parameter is not globally monotonic. The calculation
of the bounds for the monotonicity checking yields significant overhead.

— Maze: this model is globally monotonic in all its parameters. This can be
found directly by the monotonicity checker, so we are left to check a single
valuation. This valuation is also provably the optimal valuation.

In general, for e=0.1, the number of regions that need to be considered is relatively
small and guessing an (almost) optimal value is not that important. This means
that the results are less volatile to changes in the heuristic. For £=0.05, it is
significantly trickier to get this right. Monotonicity helps us in guessing a good
initial point. Furthermore, it tells us in which parameters we should and should
not split. Therefore, we prevent unnecessary splitting in some of the parameters.

8 Conclusion and Future Work

This paper has presented a new technique for tackling the optimal synthesis
problem: what is the instance of a parametric Markov chain that satisfies a
reachability objective in an optimal manner? The key concept is a deep interplay
between parameter lifting, the favourable technique so far for this problem, and
monotonicity checking. Experiments showed encouraging results: speed ups of up
to two orders of magnitude for various benchmarks, and an increased number
of parameters. Future work consists including advanced sampling techniques
and applying this approach to other application areas such as optimal synthesis
and monotonicity in probabilistic graphical models [26] and hyper-properties in
security [1].
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Abstract. This paper presents a novel method for the automated syn-
thesis of probabilistic programs. The starting point is a program sketch
representing a finite family of finite-state Markov chains with related but
distinct topologies, and a reachability specification. The method builds on
a novel inductive oracle that greedily generates counter-examples (CEs)
for violating programs and uses them to prune the family. These CEs
leverage the semantics of the family in the form of bounds on its best-
and worst-case behaviour provided by a deductive oracle using an MDP
abstraction. The method further monitors the performance of the synthe-
sis and adaptively switches between inductive and deductive reasoning.
Our experiments demonstrate that the novel CE construction provides
a significantly faster and more effective pruning strategy leading to an
accelerated synthesis process on a wide range of benchmarks. For challeng-
ing problems, such as the synthesis of decentralized partially-observable
controllers, we reduce the run-time from a day to minutes.

1 Introduction

Background and motivation. Controller synthesis for Markov decision processes
(MDPs [35]) and temporal logic constraints is a well-understood and tractable
problem, with a plethora of mature tools providing efficient solving capabilities.
However, the applicability of these controllers to a variety of systems is limited:
Systems may be decentralized, controllers may not be able to observe the complete
system state, cost constraints may apply, and so forth. Adequate operational
models for these systems exist in the form of decentralized partially-observable
MDPs (DEC-POMDPs [33]). The controller synthesis problem for these models
is undecidable [30], and tool support (for verification tasks) is scarce.

This paper takes a different approach: the controller together with the en-
vironment can be modelled as probabilistic program sketches where “holes” in
the probabilistic program model choices that the controller may make. Concep-
tually, the controllers of the DEC-POMDP are described by a user-defined finite
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family M of Markov chains. The synthesis problem that we consider is to find
a Markov chain M (i.e., a probabilistic program) in the family M, such that
M |= @, where ¢ is the specification. To allow efficient algorithms, the family must
have some structure. In particular, in our setting, the family is parameterized
by a set of discrete parameters K; an assignment K — V of these parameters
with concrete values V from its associated domain yields a family member, i.e.,
a Markov chain (MC). Such a parameterization is naturally obtained from the
probabilistic program sketch, where some constants (or program parts) can be
left open. The search for a family member can thus be considered as the search
for a hole-assignment. This approach fits within the realm of syntax-guided
synthesis [2].

Motivating example. Herman’s protocol [24] is a well-studied randomized dis-
tributed algorithm aimed to obtain fast stabilization on average. In [26], a
family M of MCs is used to model different protocol instances. They considered
each instance separately, and found which of the controllers for Herman’s protocol
performs best. Let us consider the protocol in a bit more detail: It considers
self-stabilization of a unidirectional ring of network stations where all stations
have to behave similarly—an anonymous network. Each station stores a single bit,
and can read the internal bit of one (say left) neighbour. To achieve stabilization,
a station for which the two legible bits coincide updates its own bit based on
the outcome of a coin flip. The challenge is to select a controller that flips this
coin with an optimal bias, i.e., minimizing the expected time until stabilization.
In a setting where the probabilities range over 0.1,0.2,...,0.9, this results in
analyzing nine different MCs. Does the expected time until stabilization reduce
if the controllers are additionally allowed to have a single bit of memory? In
every step, there are 9-9 combinations for selecting the coin flip and for each
memory cell and coin flip outcome, the memory can now be updated, yielding
2-2-2 possibilities. This one-bit extension thus results in a family of 648 models.
If, in addition, one allows stations to make decisions depending on the token-bits,
both the coin flips and the memory updates are multiplied by a factor 4, yielding
10, 368 models. Eventually, analyzing all individual MCs is infeasible.

Oracle-guided synthesis. To tackle the synthesis problem, we introduce an oracle-
guided inductive synthesis approach [25,39]. A learner selects a family member and
passes it to the oracle. The oracle answers whether the family member satisfies ¢,
and crucially, gives additional information in case this is not the case. Inspired
by [9], if the family member violates the specification ¢, our oracle returns a set
K’ of parameters such that all family members obtained by changing only the
values assigned to K’ violate ¢. We argue that such an oracle must (1) induce
little overhead in providing K’, (2) be aware of the existence of parameters in
the family, and (3) have (resemblance of) awareness about the semantics of the
parameters and their values.

Oracles. With these requirements in mind, we construct a counterexample (CE)-
based oracle from scratch. We do so by carefully exploiting existing methods.
We construct critical subsystems as CEs [1]. Critical subsystems are parts of
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the MC that suffice to refute the specification. If a hole is absent in a CE,
its value is irrelevant. To avoid the cost of finding optimal CEs—an NP-hard
problem [19]—we consider greedy CEs that are similar to [9]. However, our greedy
CEs are aware of the parameters, and try to limit the occurrence of parameters
in the CE. Finally, to provide awareness of the semantics of parameter values,
we provide lower and upper bounds on all states: Their difference indicates how
much varying the value at a hole may change the overall reachability probability.
These bounds are efficiently computed by another oracle. This oracle analyses a
quotient MDP obtained by employing an abstraction method that is part of the
abstraction-refinement loop in [10].

A hybrid variant. The two oracles are significantly different. Abstraction refine-
ment is deductive: it argues about single family members by considering (an
aggregation of) all family members. The critical subsystem oracle is inductive:
by examining a single family member, it infers statements about other family
members. This suggests a middle ground: a hybrid strategy monitors the per-
formance of the two oracles during the synthesis and suggests their best usage.
More precisely, the hybrid strategy integrates the counterexample-based oracle
into the abstraction-refinement loop.

Magjor results. We present a novel and dedicated oracle deployed in an efficacious
synthesis loop. We use model-checking results on an abstraction to tailor smaller
CEs. Our greedy and family-aware CE construction is substantially faster than
the use of optimal CEs. Together, these two improvements yield CEs that are on
par with optimal CEs, but are found much faster. The integration of multiple
abstraction-refinement steps yields a superior performance:x We compare our
performance with the abstraction-refinement loop from [10] using benchmarks
from [10]. Benchmarks can be classified along two dimensions: (A) Benchmarks
with a structure good for CE-generation. (B) Benchmarks with a structure good
for abstraction-refinement. A-benchmarks are a natural strength of our novel
oracle. Our simple, efficient hybrid strategy significantly outperforms the state-of-
the-art on A-benchmarks, while it only yields limited overhead for B-benchmarks.
Most importantly, the novel hybrid strategy can solve benchmarks that are
out of reach for pure abstraction-refinement or pure CE-based reasoning. In
particular, our hybrid method is able to synthesize the optimal Herman protocol
with memory—the synthesis time on a design space with 3.1 millions of candidate
programs reduces from a day to minutes.

Related work The synthesis problems for parametric probabilistic systems can
be divided into the following two categories.

Topology synthesis, akin to the problem considered in this paper, assumes a finite
set of parameters affecting the MC topology. Finding an instantiation satisfying
a reachability property is NP-complete in the number of parameters [12], and
can naively be solved by analyzing all individual family members. An alternative
is to model the MC family by an MDP and resort to standard MDP model-
checking algorithms. Tools such as ProFeat [13] or QFLan [40] take this approach
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to quantitatively analyze alternative designs of software product lines [21,28].
These methods are limited to small families. This motivated (1) abstraction-
refinement over the MDP representation [10], and (2) counterexample-guided
inductive synthesis (CEGIS) for MCs [9], mentioned earlier. The alternative
problem of sketching for probabilistic programs that fit given data is studied,
e.g., in [32,38].

Parameter synthesis considers models with uncertain parameters associated to
transition probabilities, and analyses how the system behaviour depends on
the parameter values. The most promising techniques are based on parameter
lifting that treats identical parameters in different transitions independently [8,36]
and has been implemented in the state-of-the-art probabilistic model checkers
Storm [18] and PRISM [27]. An alternative approach based on building rational
functions for the satisfaction probability has been proposed in [15] and further
improved in [22,17,4]. This approach has been also applied to different problems
such as model repair [5,34,11].

Both synthesis problems can be also attacked by search-based techniques that
do not ensure an exhaustive exploration of the parameter space. These include
evolutionary techniques [23,31] and genetic algorithms [20]. Combinations with
parameter synthesis have been used [7] to synthesize robust systems.

2 Problem Statement

We formalize the essential ingredients and the problem statement. See [3] for
more material.

Sets of Markov chains. A (discrete) distribution over a finite set X is a function
p:S —[0,1] s.t. > p(x) = 1. The set Distr(X) contains all distributions over
X. The support of u € Distr(X) is supp(p) = {z € X | p(z) > 0}.

Definition 1 (MC). A Markov chain (MC) is a tuple D = (S, so, P), where
S is a finite set of states, so € S is an initial state, and P: S — Distr(S) is
a transition probability function. We write P(s,t) to denote P(s)(t). The state s
is absorbing if P(s,s) = 1.

Let K denote a finite set of discrete parameters with finite domain V. For
brevity, we often assume that all domains are the same, and omit the subscript
k. A realization r maps parameters to values in their domain, i.e., r: K — V.
Let RP denote the set of all realizations of a set D of MCs. A K-parameterized
set of MCs D(K) contains the MCs D,., for every r € RP. In Sect. 3, we give an
operational model for such sets. In particular, realizations will fix the targets of
transitions. In our experiments, we describe these sets using the PRISM modelling
language where parameters are described by undefined integer values.

Properties and specifications. For simplicity, we consider (unbounded) reach-
ability properties'. For a set T' C S of target states, let P[D,s = OT] denote

L Our implementation also supports expected reachability rewards.
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the probability in MC D to eventually reach some state in 7" when starting
in the state s € S. A property ¢ = Pu\[0T] with A € [0,1] and e {<,>}
expresses that the probability to reach T does relate to A according to . If
1= <, then ¢ is a safety property; otherwise, it is a liveness property. Formally,
state s in MC D satisfies ¢ if P[D, s |= OT] > A. The MC D satisfies ¢ if the
above holds for its initial state. A specification is a set of properties @ = {; }icr,
and D =@ ifViel:D | y;.

Problem statement. The key problem statement in this paper is feasibility:

Given a parameterized set of Markov chains D(K) over parameters K and
a specification @, find a realization r: K — V such that D, = &.

When D is clear from the context, we often write r = @ to denote D, = .

We additionally consider the optimizing variant of the synthesis problem.
The mazimal synthesis problem asks: given a maximizing property @max =
Poar[0OT], identify r* € argmax, g {P[D, = 0T | D, = ¢} provided it exists.
The minimal synthesis problem is defined analogously.

As the state space S, the set K of parameters, and their domains are all finite,
the above synthesis problems are decidable. One possible solution, called the
one-by-one approach [14], considers each realization r € RP. The state-space and
parameter-space explosion renders this approach unusable for large problems,
necessitating the usage of advanced techniques that exploit the family structure.

3 Counterexample-Guided Inductive Synthesis

In this section, we recap a baseline for a counterexample-guided inductive syn-
thesis (CEGIS) loop, as put forward in [9]. In particular, we first instantiate an
oracle-guided synthesis method, discuss an operational model for families, giving
structure to the parameterized set of Markov chains, and finally detail the usage
of CEs to create an oracle.

Consider Fig. 1. A learner takes a

set R of realizations, and has to find a R D,
realization D, satisfying the specifica- l reR l
tion @. The learner maintains (a sym- Learner [ Oracle
bolic representation of) a set QQ C R ]

of realizations that need to be checked. l reR CR, l

It iteratively asks the oracle whether — no r = @ R all violate &, =

a particular r € @ is a solution. If it is

a solution, the oracle reports success. Fig. 1. Oracle-guided synthesis
Otherwise, the oracle returns a set R’ containing r and potentially more realiza-
tions all violating @. The learner then prunes R’ from Q. In Section 4, we focus
on creating an efficient oracle that computes a set R’ (with r € R') of realizations
that are all violating @. In Section 5, we provide a more advanced framework
that extends this method. The remainder of this section lays the groundwork for
these sections.
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Families of Markov chains To avoid the need to iterate over all realizations,
an efficient oracle exploits some structure of the family. In this paper, we focus on
sets of Markov chains having different topologies. We explain our concepts using
the operational model of families given in [10]. Our implementation supports
(more expressive) PRISM programs with undefined integer constants.

Definition 2 (Family of MCs). A family of MCs is a tuple D = (S, so, K, B)
with S and sqg as before, K is a finite set of parameters with domains Vi, C S for
each k € K, and B : S — Distr(K) is a family of transition probability functions.

Function B of a family D of MCs maps each state to a distribution over parame-
ters K. In the context of the synthesis of probabilistic models, these parameters
represent unknown options or features of a system under design. Realizations are
now defined as follows.

Definition 3 (Realization). A realization of a family D = (S, so, K, B) of MCs
is a functionr: K — S s.t. r(k) € Vi, for all k € K. We say that realization r
induces MC Dy = (8,50, By) iff Br(s,5") = X pcic riy=s B(8)(k) for any pair of
states s,s' € S. The set of all realizations of D is denoted as RP.

The set RP = [1.cx Vi of all possible realizations is exponential in K.

Counterexample-guided oracles We first consider the feasibility synthesis for
a single-property specification and later, cf. Remark 1, generalize this to multiple
properties and to optimal synthesis. The notion of counterexamples is at the
heart of the oracle from [9] and Sect. 4.

If an MC D £ ¢, a counterezample (CE) based on a critical subsystem can
serve as diagnostic information about the source of the failure. We consider the
following CE, motivated by the notion of critical subsystem in [37].

Definition 4 (Counterexample). Let D = (S, sg, P) be an MC with s; ¢ S.
The sub-MC of D induced by C C S is the MC DJC = (SU{s_}, so, P"), where
the transition probability function P’ is defined by:

P(s) = {P(s) ifseC,

[si. — 1]  otherwise.

The set C and the sub-MC D|C' are called a counterexample (CE) for the property
P<x[0T] on MC D, if DIC [ P<;[O(T N (C'U{so}))].

Let D, be an MC violating the specification ¢. To compute other realizations
violating ¢, the oracle computes a critical subsystem D,.[C', which is then used
to deduce a so-called conflict for D, and .

Definition 5 (Conflict). For family of MCs D = (S, so, K, B) and C C S, the
set Ko of relevant parameters (called conflict) is given by |, supp(B(s)).
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Fig. 2. Counterexamples for smaller conflicts.

It is straightforward to compute a set of violating realizations from a conflict. A
generalization of realization r induced by the set Ko C K of relevant parameters
is the set K¢ = {r' € R | Vk € K¢ : r(k) = r'(k)}. We often use the term
conflict to refer to its generalization. The size of a conflict, i.e., the number
|Kc| of relevant parameters K¢ is crucial. Small conflicts potentially lead to
generalizing r to larger subfamilies r{K¢. It is thus important that the CEs
contain as few parameterized transitions as possible. The size of a CE in terms
of the number of states is not of interest. Furthermore, the overhead of providing
CEs should be bounded from below by the payoff: Finding a large generalization
may take some time, but small generalizations should be returned quickly. The
CE-based oracle in [9] uses an off-the-shelf CE procedure [16,41], and mostly
does not provide small CEs.

4 A Smart Oracle with Counterexamples and Abstraction

This section develops an oracle based on CEs, tailored for the use in an oracle-
guided inductive synthesis loop described in Sect. 3. Its main features are:
— a fast greedy approach to compute CEs that provide small conflicts: We
achieve this by taking into account the position of the parameters.
— awareness about the semantics of parameters by using model-checking results
from an abstraction of the family.
Before going into details, we provide some illustrative examples.

A motivating example First, we illustrate what it means to take CEs that
lead to small conflicts. Consider Fig. 2, with a family member D, (left), where
the superscript of a state identifier s; denotes parameters relevant to s;. Consider
the safety property ¢ = P<o.4[0{t}]. Clearly, D, ~ ¢, and we can construct
two CEs: Cy = {sq, s3,t} (center) and Cy = {so, $1, $2,t} (right) with conflicts
Ko, = {X,Y} and K¢, = {X}, respectively. It illustrates that a smaller CE
does not necessarily induce a smaller conflict.

We now illustrate awareness of the semantics of parameters. Consider the
family D = (S, so, K’, B), where S = {sq, $1, 82,t, [}, the parameters are K’ =
{X,Y, T, F'} with domains Vx = {s1,s2}, Vyr = {¢t, [}, Vr = {t}, V = {[},
and a family B of transition probability functions defined in Fig. 3 (left). As the
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Do
()

0.4
B(so) = [X — 1], (2 —(F )0
B(s1) = [T"+— 0.6,Y — 0.2, F" + 0.2], Pyt X s 59,Y s t
B5(

O
O
)0

rg: X+ 89, Y = f

B(t) = [T" 1],

) =1
) =1
s2) = [T'+ 0.2,Y + 0.2, F' = 0.6],
) =1
)=[F' 1]

Fig. 3. A family D of four Markov chains (unreachable states are grayed out).

parameters 7" and F’ each can take only one value, we consider K = {X,Y’}
as the set of parameters. There are |Vx| x |Vy| = 4 family members, depicted
in Fig. 3(right). For conciseness, we omit some of the transition probabilities
(recall that transition probabilities sum to one). Only realization r3 satisfies the
safety property ¢ = P<( 3[0{t}].

CEGIS [9] illustrated: Consider running CEGIS, and assume the oracle gets
realization 7o first. A model checker reveals P[D,,, sy = ¢T] = 0.8 > 0.3. The
CE for D,, and ¢ contains the (only) path to the target: sp—s1— ¢ having
probability 0.8 > 0.3. The corresponding CE C' = {sq, s1,t} induces the conflict
Ko = {X,Y}. None of the parameters is generalized. The same argument applies
to any subsequent realization: the constructed CEs do not allow for generalization,
the oracle returns only the passed realization, and the learner keeps iterating
until accidentally guessing r3.

Can we do better? To answer this, consider CE generation as a game: The
Pruner creates a critical subsystem C. The Adversary wins if it finds a MC
satisfying ¢ containing C, thus refuting that C' is a counterexample. In our
setting, we change the game: The Adversary must select a family member rather
than an arbitrary MC. Analogously, off-the-shelf CE generators construct a
critical subsystem C that for every possible extension of C' is a CE. These
are CEs without context. In our game, the Adversary may not extend the MC
arbitrarily, but must choose a family member. These are CEs modulo a family.

Back to the example: Observe that for a CE for D,,, we could omit states ¢
and s; from the set C of critical states: we know for sure that, once D,, takes
transition (sg, s1), it will reach target state ¢t with probability at least 0.6. This
exceeds the threshold 0.3, regardless of the value of the parameter Y. Hence, for
family D, the set C" = {s¢} is a critical subsystem. The immediate advantage is
that this set induces conflict Ko = {X} (parameter Y has been generalized).
This enables us to reject all realizations from the set 7ot K¢ = {ro,r1}. It is
‘easier’ to construct a CE for a (sub)family than for arbitrary MCs. More generally,
a successful oracle needs to have access to useful bounds, and effectively integrate
them in the CE generation.
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Counterexample construction We develop an algorithm using bounds on
reachability probabilities, similar to the bounds used above. Let us assume that for
some set, of realizations R and for every state s, we have bounds Ib™(s), ub™(s),
such that for every r € R we have Ib™(s) < P[D,,s = OT] < ub™(s). Such
bounds always exist (take 0 and 1). We see later how we compute these bounds.
In what follows, we fix r and denote D, = (.5, sg, P). Let us assume D, violates
a safety property ¢ = P<,[0T]. The following definition is central:

Definition 6 (Rerouting). Let MC D = (S, sy, P) with st,s, ¢ S, C C S
a set of expanded states and vv: S\ C' — [0,1] a rerouting vector. The rerouting
of MC D w.r.t. C and = is the MC D]C[y] = (SU {SL,ST},S(),PS) with:

P(s) if s € C,
PY(s) = { [sT = (s), 51 = (1=7(s))]  if s € S\C,
[s — 1] if s € {sT,s.L}.

Essentially, D|C[v] extends the MC D with additional sink states st and s
and replaces all outgoing transitions of any non-expanded state s € S\C by
a transition leading to s (with probability «(s)) and a complementary one to s, .
We consider st to be the new target and let ¢’ denote the updated property. The

transition s ﬁ) sT may be considered a ‘shortcut’ that by-passes successors of
s and leads straight to target s+ with probability v(s). To ensure that D]C|v]
is a CE, the value v(s) must be a lower bound on the reachability probability
from s in D. When constructing a CE for a singular MC, we pick v = 0, whereas
when this MC is induced by a realization r € R, we can safely pick v = Ib. The
CE will be valid for every r’ € R. It is a CE-modulo-R.

Algorithmically, we employ a state-exploration approach and therefore start
with C© = §, i.e., all states are initially rerouted. If this is a CE, we are
done. Otherwise, if the rerouting D/C(?)[] satisfies ¢/, then we ‘expand’ some
states to obtain a CE. Naturally, we must expand reachable states to change the
satisfaction of ¢. By expanding some state s € S, we abandon the abstraction

associated with the shortcut s ﬂ) st and replace it with concrete behavior that
was inherent to state s in MC D. Expanding a state cannot decrease the induced
reachability probability as IR is a valid lower bound. This gradual expansion
of the reachable state space continues until for some C' C S the corresponding
rerouting D|C[y] violates ¢’. This gradual expansion process terminates as
D]S[v] = D and our assumption is D [~ . We show this process on an example.

Ezample 1. Reconsider D in Fig. 3 with ¢ = P<(3[0{t}]. Using the method
outlined below we get: Ib® = [so — 0.2, 51 > 0.6, 55 — 0.2, — 1, f = 0]. In
absence of any bounds, the CE is {sg,s1,t}. Consider the gradual rerouting
approach: We set v = IbX, C(©) = ) and have D(© := D,y L O[], see Fig. 4(a).
Verifying this MC against ¢’ = P<o 3[0TU{sT}] yields P[D©) 55 = OTU{sT}] =
~(s0) = 0.2 < 0.3, i.e., the set C?) is not a CE. We now expand the initial state,
ie.,, O = {50} and let D) =D, |CMV[4], sce Fig. 4(b). Verifying D) yields
PIDW sy = OT U {st}] = 1-~(s1) = 0.6 > 0.3. Thus, the set C(V) is critical
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Fig. 4. Finding a CE to D,, and ¢ from Fig. 3 using the rerouting vector v = Ib~®.

Algorithm 1: Counterexample construction based on rerouting.

Input :An MC D, a property ¢ = Puar[0T] s.t. D, (= ¢, a rerouting vector ~.
Output: A conflict K for D, and ¢.

100, K9«

2 while true do

3 C H® « reachableViaHoles(D,, K V)

4 DY« D, CY[y]

5 if P[D@ = 0T U {s7}] %4 X then return K;
6 5 + chooseToExpand(H®, K¥)

7 K@D = KO U supp(B(3))

8 1 i+1

9 end while

and the corresponding conflict is Ka) = supp(sg) = {X }. This is smaller than
the naively computed conflict {X,Y}.

Greedy state expansion strategy Recall from Fig. 2 that for an MC D,
with D, }£ ¢, multiple CEs may exist inducing different conflicts. An efficient
expansion strategy should yield a CE that induces a small amount of relevant
parameters (to prune more family members) and this CE is preferably obtained
by a small number of model-checking queries. The method presented in Alg. 1
meets these criteria. The algorithm expands multiple states between subsequent
model checks, while expanding only states that are associated with parameters
that are relevant. In particular, in each iteration, we keep track of the set K ()
of relevant parameters optimistically starting with K (® = ). We compute (see
line 3) the set C'()) of states that are reachable from the initial state via states
which are associated only with relevant parameters in K (), i.e., via states for
which supp(B(s)) € K®). Here, H®) represents a state exploration ‘horizon’: the
set of states reachable from C*) but containing some (still) irrelevant parameters.
We then construct the corresponding rerouting D|C*) [v] and check whether it is
a CE. Otherwise, we greedily choose a state 3 from the horizon H?) containing
the least number of irrelevant parameters and add these parameters to our
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D, o R D,d
l R'CR l r € R+bounds l
Abstr-Oracle S Learner C CE-Oracle
l bounds or R’ violates l R’ C R violate & l
eachr e R, rE=® norfE=ao rEo

Fig. 5. Conceptual hybrid (dual-oracle) synthesis

conflict (see line 7). The resulting conflict may not be minimal, but is computed
fast. Our algorithm applies to probabilistic liveness properties? too using v = ub®.

Computing bounds We compute Ib® and ub® using an abstraction [10]. The
method considers some set R of realizations and computes the corresponding
quotient Markov decision process (MDP) that over-approximates the behavior of
all MCs in the family R. Model checking this MDP yields an upper and a lower
bound of the induced probabilities for all states over all realizations in R. That
is, Bound(D, R) computes Ib® € RS and ub®™ € RS such that for each s € S:

bR(s) < minP[D,, 5 = 0T] < maxP[Dy, s |= 0T] < ub®(s).
re re
To allow for refinement, two properties are crucial (with point-wise inequalities):

LIR <R Aub® > ub® for R“ CR and 2. b1} = ubl™} for r € R.

In [10], the abstraction and refinement together define an abstraction-refinement
loop (AR) that addresses the feasibility problem. In the worst case, this loop
analyses 2 - |R| quotient MDPs, which (as of now) may be arbitrarily larger than
the number of family members they represent.

5 Hybrid Dual-Oracle Synthesis

We introduce an extended synthesis loop in which the abstraction-based reasoning
is used to prune the family R, and to accelerate the CE-based oracle from Sect. 4.
The intuitive idea is outlined in Fig. 5. Note that if the CE-based oracle is not
exploited, we emulate AR (explained in computing bounds above), whereas if
the abstraction oracle is not used, we emulate CEGIS (with the novel oracle).
Let us motivate combining these oracles in a flexible way. The naive version
outlined in the previous section assumed a single abstraction step, and invokes
CEGIS with the bounds obtained from that step. Evidently, the better (tighter)
the bounds -y, the better the CEs. However, the abstraction-based bounds for R
may be very loose. These bounds can be improved by splitting the set R and
using the bounds on the two sub-families. The idea is to run a limited number of

2 Some care is required regarding loops, see [9].
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Algorithm 2: Hybrid (dual-oracle) synthesis.

Input :A family D, a reachability property .
Output : Either a member r in D with r |= ¢, or no such r exists in D
R+ {RP}; // each analysed (sub-)family also holds bounds
dcears < 1; // time allocation factor for CEGIS
while true do

result,ﬁ/, AR, tar —AR.run(R, ©)

if result.decided() then return result;

CEGIS.setTimeout(tar - dcecrs)

result,ccpagirs, R’ CEGIS.run(ﬁ/7 ®)

if result.decided() then return result;

dcEGIs < 0cEGIs/oAR

R+«TR'
end while

© 0N O Tk W N

e
= O

AR steps and then invoke CEGIS. Our experiments reveal that it can be crucial
to be adaptive, i.e., the integrated method must be able to detect at run time
when to switch.

The proposed hybrid method switches between AR and CEGIS, where we
allow for refining during the AR phase and use the obtained refined bounds
during CEGIS. Additionally, we estimate the efficiency o (e.g., the number of
pruned MCs per time unit) of the two methods and allocate more time ¢ to the
method with superior performance. That is, if we detect that CEGIS prunes
sub-families twice as fast as AR, we double the time in the next round for
CEGIS. The resulting algorithm is summarized in Alg. 2. Recall that AR (at
line 5) takes one family from R, either solves it or splits it and returns the set
of undecided families R . In contrast, CEGIS processes multiple families from
R’ until the timeout and then returns the set of undecided families R . This
workflow is motivated by the fact that one iteration of AR (i.e., the involved
MDP model-checking) is typically significantly slower that one CEGIS iteration.

Remark 1. Although the developed framework for integrated synthesis has been
discussed in the context of feasibility with respect to a single property ¢, it
can be easily generalized to handle multiple-property specifications as well as
to treat optimal synthesis. Regarding multiple properties, the idea remains the
same: Analyzing the quotient MDP with respect to multiple properties yields
multiple probability bounds. After initiating a CEGIS-loop and obtaining an
unsatisfiable realization, we can construct a separate conflict for each unsatisfied
property, while using the corresponding probability bound to enhance the CE
generation process. Optimal synthesis is handled similarly to feasibility, but, after
obtaining a satisfiable solution, we update the optimizing property to exclude this
solution: e.g., for maximal synthesis this translates to increasing the threshold of
the maximizing property. Having exhausted the search space of family members,
the last obtained solution is declared to be the optimal one.
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modelHKmRDHMDP size‘avg. MC sizeHmodel ‘|K|‘|RD| ‘MDP size‘avg. MC size

Grid | 8 | 65k 11.5k 1.2k Pole 17 [1.3M 6.6k 5.6k
Maze | 20 | 1M 9k 5.4k Herman | 8 | 0.5k 48k 5.2k
DPM | 16 |43M 9.5k 2.2k Herman™| 7 |3.1M 6k 1k

Table 1. Summary of the benchmarks and their statistics
6 Experimental evaluation

Implementation. We implemented the hybrid oracle on top of the probabilistic
model checker Storm [18]. While the high-performance parts were implemented
in C++, we used a python API to flexibly construct the overall synthesis loop.
For SMT solving, we used Z3 [29]. The tool chain takes a PRISM [27] or JANTI [6]
sketch and a set of temporal properties, and returns a satisfying realization, if
such exists, or outputs that such realization does not exist. The implementation
in the form of an artefact is available at https://zenodo.org/record/4422543.

Set-up. We compare the adaptive oracle-guided synthesis with two state-of-the-art
synthesis methods: program-level CEGIS [9] using a MaxSat CE generation [16,41]
and AR [10]. These use the same architecture and data structures from Storm.
All experiments are run on an Ubuntu 19.04 machine with Intel i5-8300H (4
cores at 2.3 GHz) and using up to 8 GB RAM, with all the algorithms being
executed on a single thread. The benchmarks consists of five different models,
see Table 1, from various domains that were used in [9,10]. As opposed to the
benchmark considered in [9,10], we use larger variants of Grid and Herman to
better demonstrate differences in the performance of individual methods.

To investigate the scalability of the methods, we consider a new variant of the
Herman model, that allows us to scale the number of randomization strategies
and thus the family size. In particular, we will compare performance on two
instances of different sizes: small Herman* (5k members) and large Herman*
(3.1M members, other statistics are reported in Table 1).

To reason about the pruning efficiency of different synthesis methods, we
want to avoid feasible synthesis problems, where the order of family exploration
can lead to inconsistent performance. Instead, we will primarily focus on non-
feasible problems, where all realizations need to be explored in order to prove
unsatisfiability. The experimental evaluation is presented in three parts. (1) We
evaluate the novel CE construction method and compare it with the MaxSat-based
oracle from [9]. (2) We compare the hybrid synthesis loop with the two baselines
AR and CEGIS. (3) We consider novel hard synthesis instances (multi-property
synthesis, finding optimal programs) on instances of the model Herman®*.

Comparing CE construction methods We consider the quality of the CEs
and their generation time. In particular, we want to investigate (1) whether using
CEs-modulo-families yields better CEes, (2) how the quality of CEs from the smart
oracle compares to the MaxSat-based oracle, and how their time consumption
compares. As a measure of quality of a CE, the average number of its relevant
parameters w.r.t. the total number of its parameters is taken. That is, smaller
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CE quality performance

model MaxSat [16] stat(? (?Xpansion (n.cvy) QEGIS 9] 'AR [10] Hybrid (ncva)
trivial non-trivial|iters| time |iters|time iters time

Grid 0.59 (0.025)]0.50 (0.001) 0.50 613 | 30 |5325/486 | (285, 11) | 6
x/0.74 (0.026) |0.65 (0.001) 0.65 1801| 93 |6139| 540 [(2100, 127)| 33

Maze 0.21 (0.247)]0.55 (0.009) 0.38 290 |5449| 49 | 17 | (105,13) | 7
x/0.24 (2.595)|0.63 (0.012) 0.46 301 |6069| 63 | 26 | (146,17) | 9

DPM 0.32 (0.447)]0.61 (0.007) 0.53 2906(2488|299 | 25 | (631, 143) | 23
%/0.33 (0.525)|0.49 (0.006) 0.42 3172|2782 |1215| 81 |(2374, 545)| 76

Pole - 0.87 (0.062) 0.16 - - 1309 12 (3, 5) 1
- 0.54 (0.041) 0.29 - - | 615 23 | (80, 61) 6

Herman - 0.91 (0.011) 0.50 - - | 171 86 (24, 1) 9
* - 0.88 (0.016) 0.87 - - 1643|269 | (485, 13) | 29

Table 2. CE quality for different methods and performance of three synthesis methods.
For each model/property, we report results for two different thresholds where the
symbol ‘«’ marks the one closer to the feasibility threshold, representing the more
difficult synthesis problem. Symbol ‘-’ marks a two-hour timeout. CE quality: The
presented numbers give the CE quality (i.e., the smaller, the better). The numbers in
parentheses represent the average run-time of constructing one CE in seconds (run-times
for constructing CE using non-trivial bounds are similar as for trivial ones and are thus
not reported). Performance: for each method, we report the number of iterations (for
the hybrid method, the reported values are iterations of the CEGIS and AR oracle,
respectively) and the run-time in seconds.

ratios imply better CEs. To measure the influence of using CEs-modulo-families,
two types of bounds are used: (i) trivial bounds (i.e., v = 0 for safety and v =1
for liveness properties), and (ii) non-trivial bounds corresponding to the entire
family RP representing the most conservative estimate. The results are reported
in (the left part of) Table 2. In the next subsection, we investigate this same
benchmark from the point of view of the performance of the synthesis methods,
which also shows the immediate effect of the new CE generation strategy.

The first observation is that using non-trivial bounds (as opposed to trivial
ones) for the state expansion approach can drastically decrease the conflict
size. It turns out that the CEs obtained using the greedy approach are mostly
larger than those obtained with the MaxSat method. However (see Grid), even
for trivial bounds, we may obtain smaller CEs than for MaxSat: computing
a minimal-command CE does not necessarily induce an optimal conflict. On
the other hand, comparing the run-times in the parentheses, one can see that
computing CEs via the greedy state expansion is orders of magnitude faster than
computing command-optimal ones using MaxSat. It is good to realize that the
greedy method makes at most | K| model-checking queries to compute CEs, while
the MaxSat method may make exponentially many such queries. Overall, the
greedy method using the non-trivial bounds is able to obtain CEs of comparable
quality as the MaxSat method, while being orders of magnitude faster.
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Performance comparison with AR/CEGIS We compare the hybrid synthe-
sis loop from Sect. 5 with two state-of-the-art baselines: CEGIS and AR. The
results are displayed in (the right half of) Table 2. In all 10 cases, the hybrid
method outperforms the baselines. It is up to an order of magnitude faster.

Let us discuss the performance of the hybrid method. We classify benchmarks
along two dimensions: (1) the performance of CEGIS and (2) the performance of
AR. Based on the empirical performance, we classify (Grid) as good-for-CEGIS
(and not for AR), Maze, Pole and DPM as good-for-AR (and not for CEGIS),
and Herman as hard (for both). Roughly, AR works well when the quotient
MDP does not blow up and its analysis is precise due to consistent schedulers,
i.e., when the parameter dependencies are not crucial for a precise analysis.
CEGIS performs well when the CEs are small and fast to compute. On the other
hand, synthesis problems for which neither pure CEGIS nor pure AR are able to
effectively reason about non-trivial subfamilies, inherently profit from a hybrid
method. The main point we want to discuss is how the hybrid method reinforces
the strengths of both methods, rather than their weaknesses.

In the hybrid method, there are two factors that determine the efficiency:
(i) how fast do we get bounds on the reachability probability that are tight enough to
enable construction of good counterexamples? and (ii) how good are the constructed
counterexamples? The former factor is attributed to the proposed adaptive scheme
(see Alg. 2), where the method will prefer AR-like analysis and continue refinement
until the computed bounds allow construction of small counterexamples. The
latter is reflected above. Let us now discuss how these two aspects are reflected
in the benchmarks.

In good-for-CEGIS benchmarks like Grid, after analyzing a quotient MDP
for the whole family, the hybrid method mostly profits from better CEs yielding
better bounds, thus outperforming CEGIS. Indeed, the CEs are found so fast
that the bottleneck is no longer their generation. This also explains why the
speedup is not immediately translated to the speedup on the overall synthesis
loop. In the good-for-AR benchmark DPM, the hybrid method provides only a
minor improvement as it has to perform a large number of AR-iterations before
the novel CE-based pruning can be effectively used. This can be considered as the
worst-case scenario for the hybrid method. On other good-for-AR benchmarks
like Maze and Pole, the good performance on AR allows to quickly obtain tight
bounds which can then be exploited by CEGIS. Finally, in hard models like
Herman, abstraction-refinement is very expensive, but even the bounds from the
first round yield bounds that, as opposed to the trivial bounds, now enable good
CEs: CEGIS can keep using these bounds to quickly prune the state space.

More complicated synthesis problems Our new approach can push the
limits of synthesis benchmarks significantly. We illustrate this by considering a
new variant of the Herman model, Herman®, and a property imposing an upper
bound on the expected number of rounds until stabilization. We put this bound
just below the optimal (i.e., the minimal) value, yielding a hard non-feasible
problem. The synthesis results are summarized in Table 3. As CEGIS performs
poorly on Herman, it is excluded here.
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synthesis AR Hybrid synthesis AR Hybrid
problem iters‘time iters ‘time problem iters‘time iters ‘ time
feasibility 81 | 30s [(274, 1)| 7s feasibility 69k | 47h |(14280, 2)|13.4m

two properties| 97 | 38s |(274, 1)| 8s optimality 83k | 55h (16197, 3)|16.8m
optimality 531 [150s|(571, 7)|12s 5%-optimality| 60k | 42h | (6421, 7) | 5.1m

Table 3. The impact of scaling the family size (of the Herman® model) and handling
more complex synthesis problems. The left part shows the results for the smaller variant
(5k members), the right part for the larger one (3.1M members).

First, we investigate on small Herman® how the methods can handle the
synthesis for multi-property specifications. We add one feasible property to the
(still non-feasible) specification (row ‘two properties’). While including more
properties typically slows down the AR computation, the performance of the
hybrid method is not affected as the corresponding overhead is mitigated by
additional pruning opportunities. Second, we consider optimal synthesis for the
property as used in the feasibility synthesis. The hybrid method requires only
a minor overhead to find an optimal solution compared to checking feasibility.
This overhead is significantly larger for AR.

Next, we consider larger Herman® model having significantly more randomiza-
tion strategies (3.1M members) that include solutions leading to a considerably
faster stabilization. This model is out of reach for existing synthesis approaches:
one-by-one enumeration takes more than 27 hours and the AR performs even
worse—solving the feasibility and optimality problems requires 47 and 55 hours,
respectively. On the other hand, the proposed hybrid method is able to solve
these problems within minutes. Finally, we consider a relaxed variant of optimal
synthesis (5%-optimality) guaranteeing that the found solution is up to 5% worse
than the optimal. Relaxing the optimally criterion speeds up the hybrid synthesis
method by about a factor three.

These experiments clearly demonstrate that scaling up the synthesis problem
several orders of magnitude renders existing synthesis methods infeasible: they
need tens of hours to solve the synthesis problems. Meanwhile, the hybrid method
tackles these difficult synthesis problems without significant penalty and is capable
of producing a solution within minutes.

7 Conclusion

We present a novel method for the automated synthesis of probabilistic programs.
Pairing the counterexample-guided inductive synthesis with the deductive oracle
using an MDP abstraction, we develop a synthesis technique enabling faster
construction of smaller counterexamples. Evaluating the method on case studies
from different domains, we demonstrate that the novel CE construction and the
adaptive strategy lead to a significant acceleration of the synthesis process. The
proposed method is able to reduce the run-time for challenging problems from
days to minutes. In our future work, we plan to investigate counterexamples on
the quotient MDPs and improve the abstraction refinement strategy.
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Abstract. Many probabilistic inference problems such as stochastic fil-
tering or the computation of rare event probabilities require model anal-
ysis under initial and terminal constraints. We propose a solution to
this bridging problem for the widely used class of population-structured
Markov jump processes. The method is based on a state-space lumping
scheme that aggregates states in a grid structure. The resulting approxi-
mate bridging distribution is used to iteratively refine relevant and trun-
cate irrelevant parts of the state-space. This way, the algorithm learns
a well-justified finite-state projection yielding guaranteed lower bounds
for the system behavior under endpoint constraints. We demonstrate the
method’s applicability to a wide range of problems such as Bayesian
inference and the analysis of rare events.

Keywords: Bayesian Inference - Bridging problem - Smoothing - Lump-
ing - Rare Events.

1 Introduction

Discrete-valued continuous-time Markov Jump Processes (MJP) are widely used
to model the time evolution of complex discrete phenomena in continuous time.
Such problems naturally occur in a wide range of areas such as chemistry [16],
systems biology [49,46], epidemiology [36] as well as queuing systems [10] and
finance [39]. In many applications, an MJP describes the stochastic interaction
of populations of agents. The state variables are counts of individual entities of
different populations.

Many tasks, such as the analysis of rare events or the inference of agent
counts under partial observations naturally introduce terminal constraints on
the system. In these cases, the system’s initial state is known, as well as the
system’s (partial) state at a later time-point. The probabilities corresponding
to this so-called bridging problem are often referred to as bridging probabilities
[17,19]. For instance, if the exact, full state of the process X; has been observed
at time 0 and 7', the bridging distribution is given by

Pr(Xy =2 | Xy =0, X1 =1z4)
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for all states « and times t € [0, T]. Often, the condition is more complex, such
that in addition to an initial distribution, a terminal distribution is present.
Such problems typically arise in a Bayesian setting, where the a priori behavior
of a system is filtered such that the posterior behavior is compatible with noisy,
partial observations [11,25]. For example, time-series data of protein levels is
available while the mRNA concentration is not [1,25]. In such a scenario our
method can be used to identify a good truncation to analyze the probabilities
of mRNA levels.

Bridging probabilities also appear in the context of rare events. Here, the rare
event is the terminal constraint because we are only interested in paths contain-
ing the event. Typically researchers have to resort to Monte-carlo simulations in
combination with variance reduction techniques in such cases [14,26].

Efficient numerical approaches that are not based on sampling or ad-hoc
approximations have rarely been developed.

Here, we combine state-of-the-art truncation strategies based on a forward
analysis [28,4] with a refinement approach that starts from an abstract MJP with
lumped states. We base this lumping on a grid-like partitioning of the state-space.
Throughout a lumped state, we assume a uniform distribution that gives an
efficient and convenient abstraction of the original MJP. Note that the lumping
does not follow the classical paradigm of Markov chain lumpability [12] or its
variants [15]. Instead of an approximate block structure of the transition-matrix
used in that context, we base our partitioning on a segmentation of the molecule
counts. Moreover, during the iterative refinement of our abstraction, we identify
those regions of the state-space that contribute most to the bridging distribution.
In particular, we refine those lumped states that have a bridging probability
above a certain threshold ¢ and truncate all other macro-states. This way, the
algorithm learns a truncation capturing most of the bridging probabilities. This
truncation provides guaranteed lower bounds because it is at the granularity of
the original model.

In the rest of the paper, after presenting related work (Section 2) and back-
ground (Section 3), we discuss the method (Section 4) and several applications,
including the computation of rare event probabilities as well as Bayesian smooth-
ing and filtering (Section 5).

2 Related Work

The problem of endpoint constrained analysis occurs in the context of Bayesian
estimation [41]. For population-structured MJPs, this problem has been ad-
dressed by Huang et al. [25] using moment closure approximations and by Wild-
ner and Koppl [48] further employing variational inference. Golightly and Sher-
lock modified stochastic simulation algorithms to approximatively augment gen-
erated trajectories [17]. Since a statistically exact augmentation is only possible
for few simple cases, diffusion approximations [18] and moment approximations
[35] have been employed. Such approximations, however, do not give any guaran-
tees on the approximation error and may suffer from numerical instabilities [43].
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The bridging problem also arises during the estimation of first passage times
and rare event analysis. Approaches for first-passage times are often of heuristic
nature [42,22.8]. Rigorous approaches yielding guaranteed bounds are currently
limited by the performance of state-of-the-art optimization software [6]. In bi-
ological applications, rare events of interest are typically related to the reach-
ability of certain thresholds on molecule counts or mode switching [45]. Most
methods for the estimation of rare event probabilities rely on importance sam-
pling [26,14]. For other queries, alternative variance reduction techniques such
as control variates are available [5]. Apart from sampling-based approaches, dy-
namic finite-state projections have been employed by Mikeev et al. [34], but are
lacking automated truncation schemes.

The analysis of countably infinite state-spaces is often handled by a pre-
defined truncation [27]. Sophisticated state-space truncations for the (uncondi-
tioned) forward analysis have been developed to give lower bounds and rely on a
trade-off between computational load and tightness of the bound [37,28,4,24,31].

Reachability analysis, which is relevant in the context of probabilistic veri-
fication [8,38], is a bridging problem where the endpoint constraint is the visit
of a set of goal states. Backward probabilities are commonly used to compute
reachability likelihoods [2,50]. Approximate techniques for reachability, based
on moment closure and stochastic approximation, have also been developed in
[8,9], but lack error guarantees. There is also a conceptual similarity between
computing bridging probabilities and the forward-backward algorithm for com-
puting state-wise posterior marginals in hidden Markov models (HMMs) [40].
Like MJPs, HMMSs are a generative model that can be conditioned on obser-
vations. We only consider two observations (initial and terminal state) that are
not necessarily noisy but the forward and backward probabilities admit the same
meaning.

3 Preliminaries

3.1 Markov Jump Processes with Population Structure

A population-structured Markov jump process (MJP) describes the stochastic
interactions among agents of distinct types in a well-stirred reactor. The assump-
tion of all agents being equally distributed in space, allows to only keep track
of the overall copy number of agents for each type. Therefore the state-space is
S C N™$ where ng denotes the number of agent types or populations. Interac-
tions between agents are expressed as reactions. These reactions have associated
gains and losses of agents, given by non-negative integer vectors v, and v;-r for

reaction j, respectively. The overall effect is given by v; = U;_ —v; . A reaction
between agents of types Si,..., Sy is specified in the following form:

ns ( ) ns
ZU;ZSZ Rt Z’U;;Sg (1)
(=1 =1
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The propensity function o; gives the rate of the exponentially distributed firing
time of the reaction as a function of the current system state z € S. In population
models, mass-action propensities are most common. In this case the firing rate
is given by the product of the number of reactant combinations in x and a rate

constant c;, i.e.
ns
xg
o) = TL (). @)

In this case, we give the rate constant in (1) instead of the function ¢;. For a
given set of np reactions, we define a stochastic process {X;};>o describing the
evolution of the population sizes over time ¢. Due to the assumption of exponen-
tially distributed firing times, X is a continuous-time Markov chain (CTMC) on
S with infinitesimal generator matrix ), where the entries of @) are

Doty —y @i (@), AT Fy,
Q;c,y = '

- Z?ﬁl aj(x), otherwise.

(3)

The probability distribution over time can be analyzed as an initial value prob-
lem. Given an initial state xg, the distribution®

m(xi,t) = Pr(Xe =2 | Xo =20), t>0 (4)

evolves according to the Kolmogorov forward equation

d
L) = (1)@, )
where 7(t) is an arbitrary vectorization (m(x1,t),m(z2,t),...,7(z|s),t)) of the

states.
Let 24 € S be a fixed goal state. Given the terminal constraint Pr(X, = z)
for some T' > 0, we are interested in the so-called backward probabilities

B(Q?i,t):PI‘(XTZZ‘g |Xt:1‘i)7 tST (6)

Note that B(-,t) is a function of the conditional event and thus is no probability
distribution over the state-space. Instead (-, ) gives the reaching probabilities
for all states over the time span of [t,T]. To compute these probabilities, we can
employ the Kolmogorov backward equation

L8 =) ™)

where we use the same vectorization to construct 5(t) as we used for w(t). The
above equation is integrated backwards in time and yields the reachability prob-
ability for each state x; and time ¢t < 7" of ending up in z, at time 7".

L In the sequel, ; denotes a state with ind