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Foreword

In the last 40 years, polarimetric Synthetic Aperture Radar (SAR) has evolved from an
experimental concept to the implementation of many airborne and spaceborne SAR systems.
In the meantime, many hard-working and dedicated researchers have developed theories and
algorithms for efficient information extraction in relevant applications. These advancements
have established SAR polarimetry as one of the principal remote sensing instruments for higher
resolution imaging and more precise monitoring of Earth resources.

SAR is an active radar system, transmitting and receiving microwave pulses, and provides
the desirable capability of all-weather, day and night imaging. For fully polarimetric SAR, also
known as quad-polarization (HH, HV, VH, and VV) SAR, scatterers’ dielectric properties and
structures can be detected by their scattering mechanisms. With additional interferometric
measurements, topography, building, and vegetation and forest height information can be
retrieved. It is no wonder that a plethora of applications has flourished ranging from agriculture,
forest, ocean, city buildings, terrain, cryosphere (glacier, ice, and snow), and environmental
protection. Of course, military and other applications are too numerous to mention here. Some
applications are well established and others are continuously advancing. Good survey papers on
applications are scarce and in pressing demand.

This book contains five comprehensive survey papers written by well-known PolSAR
researchers covering the application areas of forestry, agriculture and wetland, soil moisture
retrieval, cryosphere, urban, and ocean. In addition, a chapter on the principle of polarimetry is
given to provide a quick reference. The forest application chapter covers the techniques of
forest classification, polarimetric SAR interferometry for forest height estimation, and polari-
metric SAR tomography for 3D sensing. Due to the page limit, fine details could not be given.
This chapter could be easily expanded to a book on polarimetric SAR forest sensing, and so can
other chapters. The ocean application chapter details oil slick and ship detection. It could be
extended to include the important and interesting topics of coastal remote sensing, and ocean
current and wave measurements.

In summary, this book on polarimetric SAR applications is well written and timely. We
congratulate the book’s editors and authors for their dedicated effort and oversight in assem-
bling such a long overdue book on polarimetric SAR applications.

Wolfgang-Martin Boerner Ph.D., IEEE, IEICE Life Fellow, OSA, SPIE, AAAS Fellow,
Professor Emeritus & Distinguished Radar Scientist, The University of Illinois at Chicago

Jong-Sen Lee, Ph.D., IEEE Life Fellow, co-author of Polarimetric Radar Imaging (jointly
with Prof. Eric Pottier), published by CRC/Taylor and Francis
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Preface

Dear readers and colleagues,

Welcome to the scientific publication Principles and Applications of Polarimetric Synthetic
Aperture Radar! This publication is open-access and has been co-authored by over 50 of the
worlds’ leading scientists, working in the relevant thematic domains. This book is also a
comprehensive resource for training and education that includes theory, examples of key
applications, and do-it-yourself tutorials. Following current trends in Earth Observation
(EO) open science, the key application examples provided in the various chapters may be
reproduced by the reader using the Synthetic Aperture Radar (SAR) data provided and the
algorithms implemented in the open-source PolSARpro toolbox.

In order for the (young) readers to fully understand the background of this collective,
collaborative and innovative publication, I would like to guide you through the genesis of
ideas, initiatives and events that led to its preparation, which spans over the last 35 years, and
can be summarised in several key periods presented below.

Pioneering Space-Borne SAR Interferometry

The first period of SAR interferometry started with the European Remote Sensing Satellite
(ERS-1), developed by the European Space Agency (ESA), which was launched in July 1991.
ERS-1 was equipped with a Synthetic Aperture Radar operating at C-band and single VV
polarisation. Although not known at the time (and therefore not specified in ERS-1 radar
development), scientists discovered, during preparation for the ERS-1 mission’s scientific
exploitation, that it was possible to exploit the phase difference from repeat pass acquisitions
to measure topography and ground deformation. The technique, known as SAR interferometry,
was demonstrated in orbit with ERS-1 data in August 1991 by the Politecnico di Milano team,
allowing to generate interferometric fringes and to measure centimetre deformation of the
terrain. ERS-1 was followed by the ERS-2 mission (launched in April 1995) after which
scientists proposed the first tandem experiment to ESA. The objective of this experiment,
which lasted 9 months, was to create a unique data set from highly coherent interferometric
pairs in order to generate digital elevation models with high accuracy.

It was during this period that ESA prepared the Advanced Synthetic Aperture Radar (ASAR)
to be put on-board ENVISAT. ASAR was an active array antenna with beam steering and
multi-polarisation capability (HH/HV or VV/VH) and was launched in March 2002. As a
lesson learned from the ERS-1 mission, the instrument was specified to perform repeat pass
interferometry and the ground processor was developed for phase preservation of the ASAR
signals. ASAR was the first active array SAR instrument that operated flawlessly for 10 consec-
utive years in space. The ASAR instrument, thanks to its experimental alternating polarisation
mode, demonstrated the usefulness and importance of multi-polarisation radar for scientific and
application purposes. In addition, the ASAR instrument, although not designed for it,
demonstrated the capability of wide swath ScanSAR interferometry in orbit.
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Organising Airborne Polarimetric SAR Campaigns and Scientific Studies

During the ERS and ENVISAT missions period (1991–2012), airborne campaigns continued to
play an important role in supporting the development of future SAR missions – helping the
validation of new space-borne SAR products as well as providing key open data to the scientific
community. ESA, NASA, ONERA and DLR organised several multifrequency SAR
campaigns demonstrating the interest of full polarimetric and interferometric SAR data sets
for scientific research (e.g. MAESTRO, INDREX, AGRISAR, BIOSAR, AfriSAR, etc.). In
2000, reaping the full benefits of the available airborne campaign data, and in order to assess the
benefits and capabilities of the newly published “polarimetric interferometry technique” by
K. Papathanassiou and S. Cloude, ESA launched two SAR polarimetry studies. The objectives
of these studies were to investigate radar capability to penetrate ground cover and to “see” the
underlying terrain, as well as to assess the possible use of SAR imagery to characterise forest
structure and height. Since then, the collection of multi-frequency and multi-baseline polari-
metric SAR data via dedicated airborne campaigns continue to play an essential role in the
demonstration and development of innovative algorithms for potential bio-/ geophysical
product derivation and support the preparation for new space-borne missions.

Dialoguing with POLinSAR Scientists and Training the Next Generation

In 2003, the first POLinSAR workshop was organised to gather this new community, to present
the findings of ESA-funded studies of SAR Polarimetry and Polarimetric Interferometry
applications, and to prepare recommendations for future research work. ESA also implemented
the first recommendations from the POLinSAR community to provide a state-of-the art, open-
source educational software in the field of Polarimetric SAR data analysis. The Polarimetric
SAR Data Processing and Educational Toolbox (PolSARpro) was developed under ESA
contract by I.E.T.R at the University of Rennes 1, under the scientific leadership of
Prof. E. Pottier. To date, PolSARpro provides the most comprehensive set of functions for
the scientific exploitation of fully and partially polarimetric multi-data sets, and is used
worldwide.

Additionally, as a second recommendation from the POLinSAR community, a multi-year
programme of advanced thematic training courses and summer schools was organised for
training the next generation of ESA Principal Investigators in SAR Polarimetry. These training
events host about 60–70 scientists (i.e. Ph.D. students, young postdoctoral researchers) for a
one week duration, that include formal lectures on theory to advanced concepts, as well as
hands-on computing exercises, exposing students to EO data and the usage of ESA toolboxes.
In 2019, ESA is organising the 5th Advanced Course on Radar Polarimetry dedicated to
training the next generation of Earth Observation (EO) scientists to exploit dual and fully
polarimetric data for science and applications development.

At the end of 2017, ESA launched, jointly with University of Jena and DLR, the first
Massive Open Online Course (MOOC) on SAR that was followed by over 6000 participants
and included modules on SAR polarimetry theory and applications using open-source
toolboxes. In 2019, ESA organised the 9th International Workshop on Science and
Applications of SAR Polarimetry and Polarimetric Interferometry, and the re-run of the SAR
MOOC with the participation of the Canadian Space Agency.

Pioneering Space-Borne SAR Polarimetric Interferometry

Recently, satellites with SAR polarimetric capability and different frequencies have been
launched (e.g. SIR-C/X-SAR, ALOS-2, RADARSAT-2 and TerraSAR-X, TanDEM-X) and
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operated successfully. Following the recommendations of scientists at POLinSAR, campaigns
were organised by Space Agencies to collect SAR data time series over a wide range of
validation sites. In addition, dedicated and successive Announcement of Opportunities to
research on spaceborne SAR polarimetry at different frequencies were opened to European
PIs by ESA for ALOS with JAXA (2005), with CSA for RADARSAT 2 SOAR EU (2009 and
2013), and with DLR for TerraSAR X –TanDEM-X.

Having acquired the suitable time series of space-borne data over proper validation tests
sites, and benefiting from expertise developed in Europe, we were in a position to advance from
demonstrations to applications and, as a result, identify key areas for which polarimetric data
provides unique benefits. For instance, the polarimetric interferometric forest height
measurements were demonstrated successfully using ALOS data in 2008, despite the long
repeat pass intervals, and were validated using airborne data.

Future Missions

In 2013, the BIOMASS mission became the first ESA SAR mission with fully polarimetric
capabilities selected to be the 7th Earth Explorer mission for launch in 2022. The primary
scientific objectives of the mission are to determine the distribution of above-ground biomass in
the world forests and to measure its annual changes, to help improve our understanding of the
land carbon cycle. The BIOMASS radar sensor is a fully polarimetric space-borne SAR
operating at P-band. During the first year of the mission, a tomographic phase will provide a
full global coverage. The remaining 4 years will be an interferometric phase, providing full
global coverage every 6 months. Though the prime objective is to collect data over forest, it is
also foreseen to collect additional data over land, ice caps and the ocean, as appropriate. The
data collected by this mission will allow advanced retrieval concepts based on polarimetric
interferometry and polarimetric tomography, developed since 2003 via several ESA and DLR
studies, to be put in practice.

Other SAR satellite missions are currently under study to provide fully polarimetric
capabilities in future, such as the German Tandem-L, the European Commission Copernicus
Sentinel-1 Next Generation and the Copernicus L-band candidate mission. The need for
polarimetric SAR satellite missions and global coverage is now being well recognised.

From Science to Applications

In 2011, ESA launched the PolSAR-Ap project, aimed at evaluating and demonstrating the
importance and unique benefits of fully polarimetric SAR data for a wide range of remote
sensing applications. The project was awarded to DLR and coordinated by Prof. Irena Hajnsek.
The main study objective was the identification of applications for which the availability of
fully polarimetric SAR data brings unique benefits and/or significant performance
improvements when compared to single or dual polarimetric data. In addition, the demonstra-
tion of the improvements induced by polarimetry was to be performed by implementing the
applications algorithms, applying them on suitable space-borne SAR data (if available) and
validating their performance against reference data available for each case. In order to cover a
whole range of remote sensing applications, the study was organised into thematic domains:
Forest, Agriculture, Cryosphere, Urban, Ocean and Hazard applications.

This publication aims to present the outcome of the PolSAR-Ap project and to introduce key
research results, authored by scientific experts participating in the study. Some of the relevant
applications are also implemented in the ESA open-source software PolSARpro allowing the
easy generation and replication of key examples.

Pioneering Space-Borne SAR Interferometry ix



Outlook

Today, ESA is developing fully polarimetric space-borne SAR missions at P-band, whilst
studying L-band and C-band mission concepts and preparing for their scientific exploitation.
ESA data are freely and openly available for further exploitation by the community. ESA is
supporting the emerging EO “open science” practices, taking full advantage of the digital age
and addressing new ways to do research for society and in society. ESA “open science”
activities will include open access publications, open-source scientific toolboxes, new ways
to educate via MOOCs, enhanced research using applications platforms and virtual research
environments, increased collaboration using social networks, as well as innovative citizen
science projects.

We sincerely wish the reader a good journey through the Principles and Applications of
Polarimetric Synthetic Aperture Radar. You are kindly invited to use the sample data and the
ESA toolbox for demonstration and educational purposes. We would like to acknowledge the
contribution of all co-authors and special thanks to the Chapter Leads Dr. Carlos Lopez
Martinez, Prof. Eric Pottier, Dr. Shane Cloude, Dr. Kostas Papathanassiou, Dr. Juan Manuel
Lopez Sanchez, Prof. Maurizio Migliaccio and Dr Elise Colin Koeniger.

Sincerely,

Yves-Louis Desnos and Irena Hajnsek

In Memoriam

This book is dedicated to our beloved colleague and friend Prof. Wolfgang Boerner, age
80, who passed away on May 25, 2018, during the development of the book. Wolfgang was
one of the strongest promoters for establishing a polarimetric SAR framework and applying it to
a variety of applications. We have known Wolfgang attending countless workshops,
conferences and meetings, promoting radar polarimetry and networking alongside scientists
and researchers all around the world, with endless energy and passion. His presentations and
talks were legendary, unpredictable, and nothing short of memorable!

For the upcoming scientists, Wolfgang was the one to introduce them to the famous
polarimetry experts whose names could be found on papers they have read many times. He
was integrating everyone into the “polarimetric family” and he appeared as the “grandfather” of
this international family. In this way, he was opening a new perspective on the scientific world
but also on the real world for us. He followed the progress of young scientists from workshop to
workshop and from conference to conference. He praised the progress, encouraged the
overcoming of problems and urged to continue to work hard. He never allowed us to resign
in difficult moments. He himself, with his energetic and tireless promotion and his confidence
on the importance of polarimetry, has been the best example of resilience to students and young
professionals. He was a real mentor, at a time when the importance of mentoring was not yet
well established. We – all his co-strugglers – got formed and stand by his idea that polarimetric
radar and remote sensing collaboration will improve the world.

Oberpfaffenhofen, Germany Irena Hajnsek
Frascati, Roma, Italy Yves-Louis Desnos
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Basic Principles of SAR Polarimetry 1
C. López-Martínez and E. Pottier

Abstract

This chapter critically summarizes the main theoretical
aspects necessary for a correct processing and interpreta-
tion of the polarimetric information towards the develop-
ment of applications of synthetic aperture radar (SAR)
polarimetry. First of all, the basic principles of wave
polarimetry (which deals with the representation and the
understanding of the polarization state of an electromag-
netic wave) and scattering polarimetry (which concerns
inferring the properties of a target given the incident and
the scattered polarized electromagnetic waves) are given.
Then, concepts regarding the description of polarimetric
data are reviewed, covering statistical and scattering
aspects, the latter in terms of coherent and incoherent
decomposition techniques. Finally, polarimetric SAR
interferometry and tomography, two acquisition modes
that enable the extraction of the 3-D scatterer position
and separation, respectively, and their polarimetric char-
acterization, are described.

1.1 Theory of Radar Polarimetry

1.1.1 Wave Polarimetry

Polarimetry refers specifically to the vector nature of the
electromagnetic waves, whereas radar polarimetry is the sci-
ence of acquiring, processing and analysing the polarization
state of an electromagnetic wave in radar applications. This
section summarizes the main theoretical aspects necessary for
a correct processing and interpretation of the polarimetric

information. As a result, the first part presents the so-called
wave polarimetry that deals with the representation and the
understanding of the polarization state of an electromagnetic
wave. The second part introduces the concept of scattering
polarimetry. This concept collects the topic of inferring the
properties of a given target, from a polarimetric point of view,
given the incident and the scattered polarized electromagnetic
waves.

1.1.1.1 Electromagnetic Waves and Wave
Polarization Descriptors

The generation, the propagation and the interaction with
matter of the electric and the magnetic waves are governed
by Maxwell’s equations (Balanis 1989). For an electromag-
netic wave that is propagating in the bz direction, the real
electric wave can be decomposed into two orthogonal
components bx and by , admitting the following vector
formulation:

E
!

z, tð Þ ¼
Ex

Ey

Ez

264
375 ¼

E0x cos ωt � kzþ δxð Þ
E0y cos ωt � kzþ δy

� �
0

264
375 ð1:1Þ

which may be also considered in a complex form

E
!

z, tð Þ ¼
Ex

Ey

Ez

264
375 ¼

E0xe jδx e�jkzejωt

E0ye jδy e�jkzejωt

0

264
375, ð1:2Þ

where E0x and E0y are the amplitudes of the waves in each
coordinate. The electric wave in (1.1) and (1.2) presents a
harmonic time dependence of the type e jωt, where ω ¼ 2πf is
the angular frequency and f is the time frequency. The propa-
gation direction of an electromagnetic wave is determined by
the propagation vector bk that in case of (1.1) and (1.2) is
considered parallel to bz . The amplitude of the propagation
vector is represented by k ¼ 2π/λ, where λ is the wavelength.

C. López-Martínez (*)
Signal Theory and Communications Department, Universitat
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Finally, δx and δy represent the wave phases in each compo-

nent. The magnetic wave H
!

z, tð Þ can be also represented in
the same form.

According to the IEEE Standard Definitions for Antennas
(IEEE standard number 145 1983), the polarization of a
radiated wave is defined as that property of the radiated
electromagnetic wave describing a time-varying direction
and relative magnitude of the electric wave vector, specifi-
cally the figure traced as a function of time by the extremity
of the vector at a fixed location in space and the sense in
which it is traced as observed along the direction of propaga-
tion. Hence, polarization is the curve traced out by the end
point of the arrow representing the instantaneous
electric wave.

Let us consider the geometric locus described by the
electric wave, as a function of time, for a particular point in
space, which can be assumed z ¼ z0, without loss of general-
ity. Under these hypotheses, the wave components Ex and Ey

satisfy the following equation:

Ex

E0x

� �2

� 2
ExEy

E0xE0y
cos δy � δx
� �þ Ey

E0y

� �2

¼ sin δy � δx
� �

: ð1:3Þ

The previous equation describes an ellipse that is called
polarization ellipse. As one may deduce from the previous
equation, the electric wave, as a function of time, describes in
the most general case an ellipse, whose shape does depend
neither on time nor on space. The polarization ellipse, for
some particular configurations, may reduce to a circle or to
a line.

As it may be deduced from (1.3), the polarization state is
completely characterized by three independent parameters:
the wave amplitudes E0x and E0y and the phase difference
δ ¼ δy � δx. Figure 1.1 presents the polarization ellipse for a
general polarization state. In addition to the previous three
parameters, it is also possible to describe the polarization
ellipse by a different set of parameters:

• Orientation or tilt angle ϕ. This angle gives the orientation
of the ellipse major axis with respect to the bx axis in such a
way that ϕ 2 [�π/2, π/2]. This angle may be obtained as
follows:

tan 2ϕ ¼ 2
E0xE0y

E2
0x � E2

0y

cos δ: ð1:4Þ

• Ellipticity angle τ. This angle represents the ellipse aper-
ture in such a way that τ 2 [�π/4, π/4]. This angle may be
obtained as follows:

sin 2τj j ¼ 2
E0xE0y

E2
0x þ E2

0y

sin δj j ð1:5Þ

• The polarization sense or handedness. This determines the
sense in which the polarization ellipse is described. This
parameter is given by the sign of the ellipticity angle τ.
Following the IEEE convention (IEEE standard number
145 1983), the polarization ellipse is right-handed if the
electric vector tip rotates clockwise for a wave observed in

the direction of propagation, given by bk. On the contrary,
it is said to be left-handed. Therefore, for τ < 0 the polari-
zation sense is right-handed, whereas for τ > 0 it is left-
handed.

• The polarization ellipse amplitude A. For a major and

minor ellipse axes amplitudes a and b, respectively, A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. This amplitude may be also obtained as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0x þ E2

0y

q
ð1:6Þ

• The absolute phase ζ. This phase represents the initial
phase with respect to the phase origin for t ¼ 0 in such a
way that ζ 2 [�π, π]. This term corresponds to the com-
mon phase in δx and δy. This absolute phase cannot be
directly measured as it corresponds to the exit phase from
the radar system at t ¼ 0.

Fig. 1.1 Polarization ellipse
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Considering the previous sets of parameters describing the
polarization state of a wave, one can identify some important
polarization states that can be considered as canonical polari-
zation states:

• Linear polarization state. Considering the expression for
the real electric wave in (1.1), two canonical linear polari-
zation states can be identified. Table 1.1 details the orien-
tation and the ellipticity angles for these polarization
states. These are the linear polarization states according
to the bx and to the by axes, respectively. The linear polari-
zation states are characterized by presenting a phase dif-
ference of

δ ¼ δy � δx ¼ mπ,m ¼ 0, � 1, � 2, . . . ð1:7Þ

As it may be seen, the linear nature of the polarization
state is independent of the phase ζ.

• Circular polarization state. In this particular case, also two
canonical circular polarization states can be defined.
Table 1.1 details the orientation and the ellipticity angles
for these polarization states. When the ellipticity angle
takes a value of �π/4, the circular polarization state is
right-handed, whereas this value is equal to π/4 when it is
left-handed. The circular polarization states are
characterized by presenting a phase difference of

δ ¼ δy � δx ¼ m
π
2

m ¼ �1, � 3, � 5, . . . ð1:8Þ

and equal amplitudes for the components of the electric wave
E0 ¼ E0x ¼ E0y. Also for circular polarization states, the
polarization state is independent of the absolute phase ζ.

• Elliptical polarization state. When there are not
restrictions on the orientation and ellipticity angle values,
the electric wave is said to present an elliptical polariza-
tion state.

As observed, the polarization ellipse may be completely
described by two equivalent sets of three independent
parameters: the set of wave parameters {E0x, E0y, δ} or the
set of ellipse parameters {ϕ, τ, A}. In addition to these, there
exist additional equivalent descriptors that are detailed in the
following.

Considering (1.1), the real electric wave vector can be
directly obtained from the complex electric wave vector

E
!

z,tð Þ¼
E0xcos ωt�kzþδxð Þ
E0ycos ωt�kzþδy

� �
" #

¼ℜ
E0xe jδx

E0ye jδy

" #
e�jkzejωt

( )
¼

¼ℜ Ε
!

zð Þejωt
n o

ð1:9Þ

where ℜ{�} denotes the real part. The time dependence has
been removed from the wave description. This is possible as
the polarization state of the wave does not change with time.
In order to derive a simple and concise description of the
polarization state, it is also possible to remove the space

dependence of Ε
!

zð Þ by considering the polarization state in
a particular point of the space. Without loss of generality, this

point can be z ¼ 0. Hence, Ε
!

0ð Þ reduces to

E ¼ E
!

0ð Þ ¼ E0xe jδx

E0ye jδy

" #
: ð1:10Þ

The two-dimensional complex vector Ε is referred to as
the Jones vector, and it is a concise representation of a
monochromatic, uniform plane wave with a constant polari-
zation (Jones 1941a; Jones 1941b; Jones 1941c).

In the rectangular coordinate system, the Jones vector can
be written as a function of the parameters that describe the
polarization ellipse (Huynen 1970):

E ¼ Aejζ
cosϕ � sinϕ

sinϕ cosϕ

� �
cos τ

j sin τ

� �
: ð1:11Þ

The Jones vector, considering the unitary vectors bx and by,
may be also expressed as

E bx,by,	 
 ¼ A
cosϕ � sinϕ

sinϕ cosϕ

� �
cos τ j sin τ

j sin τ cos τ

� �
� ejζ 0

0 e�jζ

� �bx ð1:12Þ

where the sub-index bx, by,f g indicates that the Jones vector is
expressed in the linear basis bx, by,f g. The Jones vector
describes completely the polarization ellipse shape, as well
as the rotation sense of the electric wave vector. On the
contrary, handedness information cannot be included within
the Jones vector as propagation information has been
removed. The use of the Jones vector to describe the polari-
zation state is of enormous importance as it allows to define a
polarization algebra that makes possible to perform a mathe-
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matical treatment and analysis of the wave polarization. This
treatment allows, for instance, the correct definition of
orthogonal polarization states. Finally, Table 1.2 details the
Jones vector, in the rectangular basis, i.e. E bx,by,	 
, for some

particular polarization states.
Another equivalent description of the wave polarization

state is the so-called complex polarization ratio:

ρ ¼ Ey

Ex
¼ E0y

E0x
e j δy�δyð Þ: ð1:13Þ

As in the case of the Jones vector, the complex polariza-
tion ratio is not able to determine the handedness of the
polarization state as propagation information is removed.

The Jones vectors, as well as the complex polarization
ratio, are complex quantities that describe the polarization
state of a wave. Sir G. Stokes introduced a wave polarization
and wave amplitude description based on four real quantities
in polarization wave optics (Stokes 1852). The Stokes vector,
in the rectangular coordinate system, is defined as (Stokes
1852)

g ¼

g0
g1
g2
g3

26664
37775 ¼

Exj j2 þ Ey

�� ��2
Exj j2 � Ey

�� ��2
2ℜ ExE�

y

n o
�2ℑ ExE�

y

n o

266666664

377777775 ð1:14Þ

where the elements of the vector g are simply called Stokes

parameters. Consequently, the Stokes vector is a four-
dimensional real vector. Since the Stokes vector describes
the polarization state of an electromagnetic wave, it can be
directly obtained from the geometrical parameters that
describe the polarization ellipse, i.e. {ϕ, τ, A}:

g ¼

A

A cos 2ϕð Þ cos 2τð Þ
A sin 2ϕð Þ cos 2τð Þ

A sin 2τð Þ

26664
37775: ð1:15Þ

The polarization state of an electromagnetic wave is
completely characterized by means of three independent
parameters. These statements also hold for the Stokes

parameters, since, as it may be deduced from (1.15), the
following relation applies

g20 ¼ g21 þ g22 þ g23: ð1:16Þ

Table 1.3 details the Stokes vector, in the rectangular
basis, i.e. g bx,by,	 
, for some particular polarization states.

1.1.1.2 Totally and Partially Polarized Waves
Single-frequency or monochromatic waves are completely
polarized, that is, the tip of the electric wave vector describes
an ellipse in the plane orthogonal to the propagation direc-
tion. The shape of this ellipse, neglecting attenuation propa-
gation effects which affect only the overall power, does not
change in time or space, and hence, the wave polarization is
constant. Completely polarized waves appear when the dif-
ferent parameters of the wave ω, E0x, E0y, δx and δy are
constant. Nevertheless, many waves present in the nature
are characterized by the fact that the previous parameters
depend on time or on space randomly. Hence, the tip of the
electric wave vector no longer describes an ellipse. These
waves are referred to as partially polarized waves. This loss
of polarization is due to the randomness of the illuminated
scene, to the presence of noise, etc.

The different parameters that characterize the electric
wave, i.e. ω, E0x, E0y, δx and δy, may vary randomly. This
type of variation makes the electric wave to be modulated and
therefore to present a finite bandwidth, so waves can no
longer be considered as being monochromatic, but polychro-
matic. Under this circumstance, it would be also desirable to
have a complex representation of the electromagnetic wave
as shown in (1.10). Nevertheless, in most of the applications,
we are interested into electromagnetic waves that will only
have appreciable values in a frequency range which is small
compared to the mean frequency ω. Under this situation,
waves are referred to as quasi-monochromatic waves. For
such signals, the phase terms Θx(z, t) and Θy(z, t) change
slowly when compared to the mean frequency. Then, one
may represent the Jones vector of a quasi-monochromatic
wave as

Ε ¼ Ex tð Þe jΘx r
!
,tð Þ

Ey tð Þe jΘy r
!
,tð Þ

" #
: ð1:17Þ

Table 1.1 Geometrical parameters of the polarization ellipse for canonical polarization states in the rectangular coordinate system

Linear x Linear y Linear π/4 Linear 3π/4 Right hand circ. Left hand circ.

φ 0 π/2 π/4 3π/4 [�π/2, π/2] [�π/2, π/2]

τ 0 0 0 0 -π/4 π/4
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As one may see, the Jones vector of a quasi-
monochromatic electric wave depends on time and on
space; thus, this vector is no longer constant. When the time
dependence of the Jones vector is deterministic, the polari-
metric properties of the wave also change in a deterministic
way through time. In this case, the description of the wave
polarization is not problematic and may be performed con-
sidering the different descriptors detailed in Sect. 1.1.1.1.
Nevertheless, if the time dependence is random, the analysis
of the polarization state of the electromagnetic wave must be
carefully addressed, as this description must take into account
the stochastic nature of the electric wave.

As previously mentioned, the variation of the parameters
E0x, E0y, δx and δymay be random, so the Jones vector will be
also random. In order to characterize the polarization of the
quasi-monochromatic electromagnetic wave expressed by
the variable Jones vector in (1.17), it is necessary to address
this characterization from a stochastic point of view. In the
frame of radar remote sensing, the wave transmitted by the
radar system may be considered monochromatic and hence
totally polarized. Nevertheless, the scattered wave
represented by the Jones vector in (1.17) results from the
combination of many different waves originated by the dif-
ferent elementary scatterers that form the scattering media.
The complex addition of these elementary waves resulting
from the scattering process for one component of the electric
wave can be represented as

Aejθ ¼ 1ffiffiffiffi
N

p
XN
n¼1

ane
jθn ð1:18Þ

where A represents the total wave and ane jθn is originated
from the scattering from every elementary scatterer. Under
the assumption of N, i.e. the total number of scattered waves,
to be large enough and certain relations that may be
established between the amplitude and the phase of the ele-
mentary waves (Chandrasekhar 1960; Goodman 1976), it is
possible to demonstrate that the mean value of the electric
wave and the Jones vector are zero. Consequently, the Jones
vector cannot be employed to characterize the polarization

state of a quasi-monochromatic wave. This characterization
shall be performed considering higher statistical moments.

The second-order moments may be arranged in a vector
form, giving rise to the so-called coherency vector of a quasi-
monochromatic vector, which is defined in the following
way:

J ¼ E Ε
O

Ε�
n o

¼

E ExE�
x

	 

E ExE�

y

n o
E EyE�

x

	 

E EyE�

y

n o

26666664

37777775 ¼

Jxx

Jxy
Jyx
Jyy

26664
37775 ð1:19Þ

where J stands for the temporal averaging, assuming the
wave is stationary,

N
is the Kronecker product, (�)�

represents complex conjugation and E{�} is the ensemble
average. This vector is not zero for quasi-monochromatic
waves. The arrangement of the second-order moments can
be also done in a matrix, giving rise to the coherency matrix
of the wave:

J ¼ E Ε � ΕT�	 
 ¼
E ExE�

x

	 

E ExE�

y

n o
E EyE�

x

	 

E EyE�

y

n o
264

375
¼ Jxx Jxy

Jyx Jyy

� �
ð1:20Þ

where the superscript (�)T denotes vector transposition.
In the previous section, it was mentioned that monochro-

matic waves are completely polarized. This is not the case for
quasi-monochromatic waves. Indeed, completely polarized
waves present a polarization state that can be considered as
a limit in the sense that it is constant. The opposed extreme is
a completely unpolarized wave for which the polarization
state is completely random. Between both extremes, waves
are said to present a partial polarization state. In order to
characterize the degree of polarization, one may consider
the degree of polarization defined as a function of the trace
of matrix J as

Table 1.2 Jones vector for some polarization states in the rectangular coordinate system, for A ¼ 1

Linear x Linear y Linear π/4 Linear 3π/4 Right hand circ. Left hand circ.

E bx,by	 
 1

0

� �
0

1

� �
1ffiffi
2

p
1

1

� �
1ffiffi
2

p
1

�1

� �
1ffiffi
2

p
1

�j

� �
1ffiffi
2

p
1

j

� �

Table 1.3 Stokes vector for some polarization states in the rectangular coordinate system, for A ¼ 1

Linear x Linear y Linear π/4 Linear 3π/4 Right hand circ. Left hand circ.

g bx,by	 
 1

1

0

0

26664
37775

1

�1

0

0

26664
37775

1

0

1

0

26664
37775

1

0

�1

0

26664
37775

1

0

0

�1

26664
37775

1

0

0

1

26664
37775
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DoP ¼ 1� 4
Jj j

trace Jð Þ
� �1

2

: ð1:21Þ

1.1.1.3 Change of Polarization Basis
As seen in Sect. 1.1.1.1, an electromagnetic wave, consider-
ing the coordinate system bx, by, bzf g, that propagates in bzmay
be decomposed as the sum of two orthogonal components.
Separately, the electromagnetic wave of each component can
be considered as linearly polarized. Therefore, it is possible
to consider that the total electromagnetic wave results from
the sum of two orthogonal linear polarized waves. Indeed,
this representation must be extended in the sense that any
electromagnetic wave propagating in an infinite, lossless,
isotropic media can be decomposed as the sum of two orthog-
onal elliptically polarized waves. The advantage of this rep-
resentation is that the electric wave is decomposed in a pair of
orthogonal polarization states, so it is possible, through a
deterministic transformation, to obtain the electric wave for
any other pair of orthogonal polarization states. This process
is referred to as change of polarization basis or polarization
synthesis.

Given two vectors a and b, they are considered orthogonal
if they verify

a, bh i ¼ aT � b� ¼ 0 ð1:22Þ

that is, the scalar (Hermitian) product of both vectors is zero.
In case of two electromagnetic waves, expressed in terms of
the corresponding Jones vectors, they are said to be orthogo-
nal if the scalar product of the Jones vectors is zero, consid-
ering that both Jones vectors refer to waves propagating in
the same direction and sense. The polarization ellipses
corresponding to two orthogonal Jones vectors presents the
same ellipticity angle, opposite polarization sense and mutu-
ally orthogonal polarization axis. That is, for a Jones vector
representing a polarization state characterized by an orienta-
tion angle ϕ, an ellipticity angle τ and an absolute phase ζ, its
orthogonal Jones vector presents an orientation angle of
value ϕ + π, an ellipticity angle of value �τ and an absolute
phase �ζ. In terms of (1.12), the corresponding orthogonal
vector is

E
⊥ bx,by,	 
¼A

�sinϕ �cosϕ

cosϕ �sinϕ

" #
cosτ �jsinτ

�jsinτ cosτ

" #
e�jζ 0

0 ejζ

" #bx
¼A

cosϕ �sinϕ

sinϕ cosϕ

� �
cosτ jsinτ

jsinτ cosτ

� �
� ejζ 0

0 e�jζ

� �by : ð1:23Þ

The symbol ⊥ denotes orthogonal Jones vector.

Considering what has been indicated, an electromagnetic
wave propagating in an infinite, lossless, isotropic media may
be described in the following way:

E ¼ Exbxþ Eyby ¼ Exbux þ Eybuy ð1:24Þ

where the notation referring to the unitary vectors has been
generalized. If (1.23) and (1.24) are considered, it may be
seen that the unitary Jones vectors corresponding to the linear
orthogonal polarization states bx and by are transformed to the
Jones vector of any polarization state and the corresponding
orthogonal Jones vector through the transformation matrix U:

bu,bu⊥f g¼
cosϕ �sinϕ

sinϕ cosϕ

" #
cosτ jsinτ

jsinτ cosτ

" #
e�jζ 0

0 ejζ

" # bx, by,f g

¼U bu,bu⊥	 
 bx, by,f g :

ð1:25Þ

In the previous case, the matrix U bu,bu⊥	 
 indicates the

transformation matrix from the orthogonal basis bx, by,f g to
the arbitrary basis bu,bu⊥f g. Considering (1.24), the electro-
magnetic wave expressed in the orthogonal basis bu,bu⊥f g
takes the form

E ¼ Eubuþ Eu⊥bu⊥: ð1:26Þ

Therefore, the Jones vector in the new basis bu,bu⊥f g ,
expressed in terms of the Jones vector in the basis bx, by,f g, is

Eu

Eu⊥

� �
¼ U�1bu,bu⊥	 
 Ex

Ey

� �
: ð1:27Þ

The previous equation indicates that if an electromagnetic
wave has been measured in the linear orthogonal basis, it is
possible to calculate the same electromagnetic wave, but
measured in a different polarization basis, just multiplying
by the matrix U�1bu,bu⊥	 
. That is, it is possible to synthesize the
electromagnetic wave for any arbitrary polarization basis just
measuring it in a particular polarization basis.

Table 1.4 and Table 1.5 detail the polarization ellipse
parameters, the Jones vector and the Stokes vector for differ-
ent polarization states for the rotated and the linear polariza-
tion bases, respectively.

1.1.2 Scattering Polarimetry

The previous section was concerned with the characterization
and the representation of the polarization state of an electro-
magnetic wave. Although this characterization is important
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when a radar system is considered, as it transmits and
receives electromagnetic waves, nevertheless, the interest is
on the scattering process itself. The radar system transmits an
electromagnetic wave, with a given polarization state, that
reaches the scatterer of interest. The energy of the incident
wave interacts with the scatterer, and as a result part of this
energy is reradiated to the space. The way this energy is
reradiated depends on the properties of the incident wave,
as well as on the scatterer itself. Consequently, it is possible
to infer some information of the scatterer under consideration
considering the properties of the scattered electromagnetic
wave with respect to the incident wave, which is basically the
transmitted wave by the radar. One possibility that can be
studied to characterize distant targets is to consider the
change of the polarization state that a scatterer may induce
to an incident wave.

In order to analyse the scattering problem, it is worth to
start describing the scattering process that occurs when an
incident wave reaches a flat transition between two dielectric,
infinite, lossless and homogeneous media in oblique inci-
dence. This scattering situation is exemplified in Fig. 1.2. In
this case, the incident wave that propagates in the first media
reaches the transition between media where part of the inci-
dent energy is scattered in the same media and part of the
energy is transmitted to the second media. In order to charac-
terize the scattering process, it is necessary to introduce the
concept of plane of scattering, which is defined as the plane
generated by the propagating vectors of the incident and the
scattered waves.

In order to examine specifically reflections at oblique
angles of incidence for a general wave polarization, it is
convenient to decompose the electric wave into its perpen-
dicular and parallel components, relative to the plane of
scattering. The total scattered and transmitted waves will be
the vector sum from each of these two polarizations. When
the wave is perpendicular to the plane of scattering, the
polarization of the wave is referred to as perpendicular polar-
ization or horizontal polarization as the electric wave is
parallel to the interface. When the electromagnetic wave is
parallel to the plane of scattering, the polarization is referred
to as parallel polarization or vertical polarization as the elec-
tromagnetic wave is also perpendicular to the interface. As

indicated in Fig. 1.2, the total incident wave E
!i

can be
decomposed into two orthogonal components in the plane

orthogonal to the incident propagation vector bki . These are

the parallel E
!i

k and the perpendicular E
!i

⊥ components,

which can be written as

Ei��� ¼ Ei���e�j bki ,rD Ebx0, ð1:28Þ

E
!i

⊥ ¼ Ei
⊥e

�j ki ,rh iby0: ð1:29Þ

As observed, the incident wave has been defined with
respect to the coordinate system bx0,by0,bz0	 


in such a way

Table 1.4 Polarization states expressed in the rotated linear polarization basis bu�π=4,buπ=4	 

, when A ¼ 1

Linear x Linear y Linear π/4 Linear 3π/4 Right hand circ. Left hand circ.

φ - π/4 π/4 0 π/2 ? ?

τ 0 0 0 0 π/4 -π/4

E bu�π=4,buπ=4	 

1ffiffi
2

p
1

�1

� �
1ffiffi
2

p
1

1

� �
1

0

� �
0

1

� �
1
2

1þ j

�1þ j

� �
1
2

1� j

�1� j

� �
g bu�π=4 ,buπ=4	 
 1

0

�1

0

26664
37775

1

0

1

0

26664
37775

1

1

0

0

26664
37775

1

�1

0

0

26664
37775

1

0

0

1

26664
37775

1

0

0

�1

26664
37775

Table 1.5 Polarization states expressed in the circular polarization basis bulc, burcf g, for A ¼ 1

Linear x Linear y Linear π/4 Linear 3π/4 Right hand circ. Left hand circ.

φ ? ? π/4 3π/4 0 π/2

τ - π/4 π/4 0 0 0 0

E bulc ,burc	 

1ffiffi
2

p
1

�j

� �
1ffiffi
2

p
�j

1

� �
1
2

1� j

1� j

� �
1
2

�1� j

1þ j

� �
1

0

� �
0

1

� �
g bulc ,burc	 
 1

0

0

�1

26664
37775

1

0

0

1

26664
37775

1

0

1

0

26664
37775

1

0

�1

0

26664
37775

1

1

0

0

26664
37775

1

�1

0

0

26664
37775

1 Basic Principles of SAR Polarimetry 7



that bki ¼ bz0 . It may be shown that the scattered wave
components can be written similarly

E
!s��� ¼ Es���e�j ks,rh ibx00, ð1:30Þ

E
!s

⊥ ¼ Es
⊥e

�j ks,rh iby00, ð1:31Þ

but in this case according to bx00,by00,bz00n o
.

Considering the equations of the incident and the scattered
wave, the question rising at this point is to determine whether
it is possible or not to express mathematically the scattering
process that occurs at the interface between both media. First
of all, it is of crucial importance to take into consideration
where, in the space, the expressions of the incident and
scattered waves are valid. The expressions in (1.28), (1.29),
(1.30) and (1.31) make reference to uniform plane waves. In
the case of the incident wave on the scatterer, such a descrip-
tion for the wave, i.e. the wave originated at the transmitting
antenna, is only valid if the scatter is in the far-field zone of
the transmitting antenna. In the case of the scattered wave,
this wave admits a uniform plane wave formulation if the
point where the wave is considered is in the far field of the
scatterer. In both cases, the waves in the far-field zone may be
considered spherical waves, which locally may be considered
as uniform plane waves. Considering a spherical coordinate
system centred in the scatterer and under the previous
assumptions, the incident wave on the scatter can be
expressed vectorially, in the far-field zone, as

Ei ¼
Ei���
Ei
⊥

264
375, Es ¼

Es���
Es
⊥

24 35 ð1:32Þ

As observed, there are different points that need to be
considered in the analysis of this problem. The first one is
the use of different coordinate systems to characterize, in an
unambiguous way, the polarization state of the different
waves involved in the scattering process. The second aspect,
coupled to the previous one, is to determine the way the
scatterer under study changes the different components of
the wave. This section has studied this entire problem con-
sidering the analytical expressions of the waves.

1.1.2.1 The Scattering Matrix
This section will address the generalization of the previous
scattering problem, and it will introduce those concepts nec-
essary to address it in a vector form. The first aspect that
needs to be fixed is to determine the different coordinate
systems necessary to characterize the scattering problem
and the description of the incident and the reflected waves.
In the scattering problem, three coordinate systems must be
chosen. The first one is the coordinate system located at the
centre of the scatterer under consideration and referred to asbx, by, bzf g . This coordinate system may be considered as a
kind of absolute or global coordinate system. In addition to it,
it is necessary to define two additional local coordinate
systems in order to determine, in an unambiguous way, the
polarization states of the incident and the scattered or
reflected waves, respectively. These two coordinate systems,
associated with the waves, are defined in terms of the global
coordinate system.

Let us consider an object illuminated by an electromag-
netic plane wave which may be described as

E
!i ¼ Exbx0 þ Eyby0 ¼ Ex

bhi þ Eybvi ð1:33Þ

where the unitary vectors bx0 and by0 are arbitrarily defined.
Hence, the propagation direction of the incident wave is

conveniently selected to be bki ¼ bz0 . The incident wave
reaches the object of interest and induces currents on it,
which in turn reradiates a wave. This reradiated wave, as
shown, is referred to as the scattered wave. In the far-field
zone, the scattered wave is an outgoing spherical wave that in
the area occupied by the receiving antenna can be

E
!s ¼ Exbx00 þ Eyby00 ¼ Ex

bhs þ Eybvs: ð1:34Þ

The propagation direction of the scattered wave is there-
fore bks ¼ bz00 . The scattering process is finally analysed in
terms of the plane of scattering, which is the plane that
contains both the incident and the scattering propagating
vectors. The concepts of perpendicular and parallel wave
components, or horizontal and vertical wave components,
are defined with respect to the plane of scattering.
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Fig. 1.2 Oblique incidence
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Consequently, and as indicated in (1.33), the perpendicular
component of the wave admits to be considered as a horizon-
tal component, i.e. bx0 ¼ bhi, whereas the parallel one admits to
be considered as a vertical one, i.e. by0 ¼ bvi. In the case of the
scattered wave, the perpendicular component of the wave
admits to be considered as a horizontal component,
i.e. bx00 ¼ bhs, whereas the parallel one admits to be considered
as a vertical one, i.e. by00 ¼ bvs.

The incident and scattered waves in (1.33) and (1.34),
respectively, may be also vectorially expressed by means of
the Jones vectors:

Ei ¼ Ei
h

Ei
v

" #
,Es ¼ Es

h

Es
v

� �
ð1:35Þ

In the definition of the previous two Jones vectors, the
coordinate systems defined previously are assumed. By using
this vector notation for the electromagnetic waves, it is pos-
sible to relate the scattered wave with the one of the incident
wave by means of a 2 � 2 complex matrix:

Es ¼ e�jkr

r
SEi: ð1:36Þ

Here, r is the distance between the scatterer and the
receiving antenna, and k is the wavenumber of the
illuminating wave. The coefficient 1/r represents the attenua-
tion between the scatterer and the receiving antenna, which is
produced by the spherical nature of the scattered wave. On
the other hand, the phase factor represents the delay of the
travel of the wave from the scatterer to the antenna. Equation
(1.36) may be written as

Es
h

Es
v

� �
¼ e�jkr

r
Shh Shv
Svh Svv

� �
Ei
h

Ei
v

" #
: ð1:37Þ

The matrix S is referred to as scattering matrix, whereas
its components are known as complex scattering amplitudes.
The arrangement of the scattering matrix indicates how these
complex scattering amplitudes are measured. The first col-
umn of S is measured by transmitting a horizontally polarized
wave and employing two antennas horizontally and vertically
polarized to record the scattered waves. The second column
is measured in the same form, but transmitting a vertically
polarized wave.

It is worth mentioning that the scattering matrix
characterizes the target under observation for a fixed imaging
geometry and frequency. In addition, the four elements must be
measured at the same time, especially in those situations where
the scatterer is not static or fixed. If they are not measured at the
same time, the coherency between the elements may be lost as
the different elements may refer to a different scatterer.

As indicated, the scattering matrix represents the scatter-
ing process for particular incident and scattering directions,

i.e. bki and bks , respectively. In addition to that, it is also
necessary to provide the horizontal and vertical unitary
vectors, for the incident and the scattered waves, as they are
necessary to define the polarization states of the waves.

In the most general case, which occurs in bistatic
configurations where the transmitter and receiver antennas
are located in different positions, the scattering matrix
contains up to seven independent parameters to characterize
the scatterer under observation. These parameters are the four
amplitudes and three relative phases; see (1.38). Indeed, any
absolute phase in the scattering matrix can be neglected as it
does not affect the received power:

Es
h

Es
v

� �
¼ e�jkre jϕhh

r|fflfflfflfflffl{zfflfflfflfflffl}
Absolute phase term

Shhj j Shvj je j ϕhv�ϕhhð Þ
Svhj je j ϕvh�ϕhhð Þ Svvj je j ϕvv�ϕhhð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Relative scattering matrix

Ei
h

Ei
v

" #
:

ð1:38Þ

As it was already highlighted previously, the scattering
coefficients depend on the direction of the incident and the
scattered waves. When considering the matrix S, the analysis
of this dependence is of extreme importance since it also
involves the definition of the polarization of the incident
and the scattered waves. Since (1.37) considers the polarized
electromagnetic waves themselves, it is mandatory to assume
a frame in which the polarization is defined. There exist two
principal conventions concerning the framework where the
polarimetric scattering process is considered: Forward Scat-
ter Alignment (FSA) and Backscatter Alignment (BSA); see
Fig. 1.3. In both cases, the electric waves of the incident and
the scattered waves are expressed in local coordinate systems
centred on the transmitting and receiving antennas, respec-
tively. All coordinate systems are defined in terms of a global
coordinate system centred inside the target of interest.

The FSA convention (see Fig. 1.3), also called wave-
oriented since it is defined relative to the propagating wave,
is normally considered in bistatic problems, that is, in those
configurations in which the transmitter and the receiver are
not located at the same spatial position.

The bistatic BSA convention framework (see Fig. 1.3) is
defined, on the contrary, with respect to the radar antennas in
accordance with the IEEE standard. The advantage of the
BSA convention is that for a monostatic configuration, also
called backscattering configuration, that is, when the trans-
mitting and receiving antennas are collocated, the coordinate
systems of the two antennas coincide; see Fig. 1.4. This
configuration is preferred in the radar polarimetry commu-
nity. In the monostatic case, the scattering matrix in the FSA
convention, SFSA, can be related to the same matrix referenced
to the monostatic BSA convention SBSA as follows:

1 Basic Principles of SAR Polarimetry 9



SBSA ¼ �1 0

0 1

� �
SFSA: ð1:39Þ

As it has been mentioned previously, in the radar polarim-
etry community, the monostatic BSA convention (backscat-
tering) is considered as the framework to characterize the
scattering process. The reason to select this configuration is
due to the fact that the majority of the existing polarimetric
radar systems operate with the same antenna for transmission
and reception. One important property of this configuration,
for reciprocal targets, is reciprocity, which states that

ShvBSA ¼ SvhBSA , ð1:40Þ

ShvFSA ¼ �SvhFSA : ð1:41Þ

Then, the formalization of the scattering process given by
(1.37), in the monostatic case under the BSA convention,
reduces to

Es
h

Es
v

� �
¼ e�jkr

r
Shh Shv
Shv Svv

� �
Ei
h

Ei
v

" #
: ð1:42Þ

In the same sense, Eq. (1.38) takes the form

Es
h

Es
v

� �
¼ e�jkre jϕhh

r|fflfflfflfflffl{zfflfflfflfflffl}
Absolute phase term

Shhj j Shvj je j ϕhv�ϕhhð Þ
Shvj je j ϕhv�ϕhhð Þ Svvj je j ϕvv�ϕhhð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Relative scattering matrix

Ei
h

Ei
v

" #
:

ð1:43Þ

The main consequence of the previous equation is that in
the backscattering direction, a given scatterer is no longer
characterized by seven independent parameters, but by five.
These are three amplitudes, two relative phases, and one
additional absolute phase.

A central parameter when considering the scattering pro-
cess occurring at a given scatterer consists of the scattered
power. For single-polarization systems, the scattered power is
determined by means of the radar cross section or the scatter-
ing coefficient. Nevertheless, a polarimetric radar has to be
considered as a multichannel system. Consequently, in order
to determine the scattered power, it is necessary to consider
all the data channels, that is, all the elements of the scattering
matrix. The total scattered power, in the case of a polarimetric
radar system, is known as Span, being defined in the most
general case as

SPAN Sð Þ ¼ trace SST�
� �

¼ Shhj j2 þ Shvj j2 þ Shvj j2 þ Svvj j2: ð1:44Þ

In the backscattering case, due to the reciprocity theorem,
the Span reduces to

SPAN Sð Þ ¼ Shhj j2 þ 2 Shvj j2 þ Svvj j2: ð1:45Þ

The main property of the Span is that it is polarimetrically
invariable, that is, it does not depend on the polarization basis
employed to describe the polarization of the electromagnetic
waves.
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Fig. 1.3 (a) FSA and (b) BSA conventions
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When the radar wave reaches a scatterer, part of the
incident energy is reflected back to the system. If the incident
wave is monochromatic, the target is unchanging and the
radar-target aspect angle is constant, the scattered wave will
be also monochromatic and completely polarized. Therefore,
both the incident and the scattered waves can be
characterized by their corresponding Jones vectors, and the
scattering process can be characterized by the scattering
matrix. These targets are referred to as point targets, single
targets or deterministic targets, as when a radar images this
type of scatterers, the scattered wave in the far-field zone
appears to be originated by a single point. In other words, the
target response is not contaminated by additional spurious, so
it is possible to infer some information about the target from
the single values of the scattering matrix. Table 1.6 shows the
scattering matrix, expressed in the linear polarization basis,
for some canonical bodies. These are referred to as canonical
due to the simplicity of their scattering matrix.

1.1.2.2 Scattering Polarimetry Descriptors
The scattering matrix introduced in the previous section is
indeed a scattering polarimetry descriptor that could be also
included in this section. Nevertheless, it merits a separate
section as this matrix represents the best vehicle to introduce
the description of the scattering process when polarimetry is
concerned, as the scattering matrix relates the Jones vectors
of the involved electromagnetic waves. Section 1.1.1.1
introduced additional descriptors for the polarization state
of an electromagnetic wave. As a consequence, some addi-
tional descriptors for the scattering process shall be
introduced in the following.

The 2 � 2 complex scattering matrix, as indicated,
describes the scattering matrix of a given target. Table 1.6
presented several examples for some simple or canonical
scatterers. Nevertheless, a real target presents always a com-
plex scattering response as a consequence of its complex
geometrical structure and its reflectivity properties. Conse-
quently, the interpretation of this response is obscure. As it
shall be presented later on, a possible solution to interpret this

response is to decompose the original scattering matrix into
the response of canonical mechanisms. With this idea in
mind, but also with the objective to introduce a new
formulism to extract physical information, it is possible to
transform the scattering matrix into a scattering vector that
presents a clearer physical interpretation.

The construction of a target vector k is performed through
the vectorization of the scattering matrix:

k ¼ V Sð Þ ¼ 1
2
trace SΨð Þ: ð1:46Þ

Ψ is a set of 2 � 2 complex basis matrices which are
constructed as an orthonormal set under a Hermitian inner
product. The interpretation of the target vector k depends on
the selected basis Ψ. The most common matrix bases
employed in the context of the radar polarimetry are the
so-called lexicographic ordering basis and the Pauli basis.
The lexicographic ordering basis consists of the straightfor-
ward lexicographic ordering of the elements of the scattering
matrix:

Ψl ¼ 2
1 0

0 0

� �
, 2

0 1

0 0

� �
, 2

0 0

1 0

� �
, 2

0 0

0 1

� �� �
:

ð1:47Þ

The Pauli basis consists of the set of Pauli spin matrices
usually employed in quantum mechanics:

Ψp ¼
ffiffiffi
2

p 1 0

0 1

� �
,
ffiffiffi
2

p 1 0

0 �1

� �
,
ffiffiffi
2

p 0 1

1 0

� �
,
ffiffiffi
2

p 0 �j

j 0

� �� �
:

ð1:48Þ

Note that the multiplying factor in both bases is necessary
in order to keep the total scattered power constant, i.e. trace
(SS�T).

The selection of the basis to vectorize the scattering matrix
depends on the final purpose of the vectorization itself. When

a bFig. 1.4 (a) FSA and (b) BSA
conventions in the
backscattering case
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Table 1.6 Scattering matrix for canonical bodies in the linear polarization basis bh,bvn o
Canonical body Diagram Scattering matrix

Sphere
a
2

1 0

0 1

� �

Dihedral corner reflector
kab
π

1 0

0 �1

� �

Trihedral corner reflector
kl2ffiffiffiffi
12

p
π

1 0

0 1

� �

Short thin cylinder
k2 l3

3 ln 4l
að Þ�1ð Þ

cos 2α sin α cos α

sin α cos α sin 2α

� �

Left-handed helix
1
2

1 �j

�j �1

� �

Right-handed helix 1
2

1 j

j �1

� �
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the objective is to study the statistical behaviour of the SAR
data or the radar measurement, it is more convenient to
consider the lexicographic basis due to its simplicity, as it
shall be extended in the next sections. Nevertheless, when the
objective is the physical interpretation of the scattering
matrix, it is more convenient to consider the Pauli basis.
Assuming the Pauli decomposition basis, an arbitrary 2 � 2
scattering matrix may be written in the following terms:

S ¼ aþ b c� jd

cþ jd a� b

� �
¼ a

1 0

0 1

� �
þ b

1 0

0 �1

� �
þ c

0 1

1 0

� �
þ d

0 �j

j 0

� �
: ð1:49Þ

It is worth noting that the elements a, b, c and d are
complex. If one considers the decomposition of the scattering
matrix as performed in (1.49), it is possible to identify the
four elements of the Pauli basis with some of the scattering
matrices of canonical bodies presented in Table 1.6. There-
fore, the elements a, b, c and d, i.e. the elements of the target
vector k, represent the contribution of every canonical mech-
anism to the final scattering mechanism. Therefore, the fol-
lowing interpretation is possible:

• a corresponds to the single scattering from a sphere or
plane surface.

• b corresponds to dihedral scattering.
• c corresponds to dihedral scattering with a relative orien-

tation of π/4 rad in the line of sight.
• d corresponds to anti-symmetric, helix-type scattering

mechanisms that transform the incident wave into its
orthogonal circular polarization state (helix related).

All in all, what has been performed in (1.49) is a target
decomposition. This concept shall be analysed in depth in the
next. It is also worth to notice that the different components
of the Pauli basis, or scattering components, are orthogonal.
This means that from a practical point of view, the separation
indicated in (1.49) is possible without ambiguities.

Finally, the explicit expressions of the target vector in the
lexicographic and Pauli decomposition bases, considering the
expression of the scattering matrix, in the most general case
are:

kl ¼

Shh
Shv
Svh
Svv

26664
37775, kp ¼ 1ffiffiffi

2
p

Shh þ Svv
Shh � Svv
Shv þ Svh

j Shv � Svhð Þ

26664
37775 ð1:50Þ

In the backscattering case, under the BSA convention, the
reciprocity property applies. Hence, the previous target
vectors admit the following simplification:

kl ¼
Shhffiffiffi
2

p
Shv

Svv

264
375,kp ¼ 1ffiffiffi

2
p

Shh þ Svv

Shh � Svv
2Shv

264
375 ð1:51Þ

The different 2 and
ffiffiffi
2

p
factors that appear in the definition

of the target vectors are necessary in order to maintain the
total scattered power or Span. As it is evident, the Span must
be constant and independent from the choice of the basis in
which the scattering matrix is decomposed. This is known as
total power invariance.

The concept of target vector, obtained as a vectorization of
the scattering matrix, makes it possible to obtain a new
formulation to describe the information contained in the
scattering matrix by means of the outer product of the target
vector with its conjugate transpose, or adjoint vector.

For a vectorization of the scattering matrix through the
lexicographic basis, in the most general case, the outer prod-
uct of the target vector with its transpose conjugate klkT�l
leads to the matrix:

klkT�l ¼

Shhj j2 ShhS
�
hv ShhS

�
vh ShhS

�
vv

ShvS�hh Shvj j2 ShvS�vh ShvS�vv
SvhS

�
hh SvhS

�
hv Svhj j2 SvhS

�
vv

SvvS
�
hh SvvS

�
hv SvvS

�
vh Svvj j2

266664
377775: ð1:52Þ

Due to a language abuse, the matrix klkT�l is sometimes
referred to as covariance matrix and represented by C, but as
it will be shown in Sect. 1.1.2.4, the covariance matrix
presents a different definition. It is worth to observe that
(1.52) is a 4 � 4, complex, Hermitian matrix. The construc-
tion of this matrix, through the outer product of the vector kl
and its transpose conjugate, makes the matrix klkT�l have a
rank equal to 1. Consequently, klkT�l presents exactly the
same information as the scattering matrix, and hence it may
have up to seven independent parameters. In the case of the
backscattering direction under the BSA convention, and due
to the fact that the reciprocity relation applies, klkT�l can be
written, considering (1.51), as

klkT�l ¼
Shhj j2 ffiffiffi

2
p

ShhS
�
hv ShhS

�
vvffiffiffi

2
p

ShvS
�
hh Shvj j2 ffiffiffi

2
p

ShvS
�
vv

SvvS
�
hh

ffiffiffi
2

p
SvvS

�
hv Svvj j2

264
375: ð1:53Þ

As in the previous case, the klkT�l matrix presents a rank
equal to 1 as it is obtained as the outer product of a vector and
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its transpose conjugate. Nevertheless, in this case, the covari-
ance matrix may present up to five independent parameters,
that is, the same number of independent parameters as the
scattering matrix from which it derives.

A similar procedure can be applied when the scattering
matrix is obtained considering the Pauli basis. In this case,
the matrix is obtained from the outer product kpkT�p . Due to a

language abuse, this matrix is sometimes referred to as coher-
ency matrix and represented by T, but as it will be shown in
Sect. 1.1.2.4, the coherency matrix presents a different defi-
nition. Under the most general imaging configuration, con-
sidering (1.65), the coherency matrix can be written as

kpkT�p ¼
Shh þ Svvj j2 Shh þ Svvð Þ Shh � Svvð Þ� Shh þ Svvð Þ Shv þ Svhð Þ� Shh þ Svvð Þ j Shv � Svhð Þð Þ�

Shh � Svvð Þ Shh þ Svvð Þ� Shh � Svvj j2 Shh � Svvð Þ Shv þ Svhð Þ� Shh � Svvð Þ j Shv � Svhð Þð Þ�
Shv þ Svhð Þ Shh þ Svvð Þ� Shv þ Svhð Þ Shh � Svvð Þ� Shv þ Svhj j2 Shv þ Svhð Þ j Shv � Svhð Þð Þ�

j Shv � Svhð Þ Shh þ Svvð Þ� j Shv � Svhð Þ Shh � Svvð Þ� j Shv � Svhð Þ Shv þ Svhð Þ� Shv � Svhj j2

26664
37775:

ð1:54Þ

As in the case of klkT�l , kpkT�p presents a rank equal to

1, and therefore, it may present up to seven independent
parameters. Finally, if the backscattering direction is

considered under the BSA convention, the coherency matrix
reduces to

kpkT�p ¼
Shh þ Svvj j2 Shh þ Svvð Þ Shh � Svvð Þ� 2 Shh þ Svvð ÞS�hv

Shh � Svvð Þ Shh þ Svvð Þ� Shh � Svvj j2 2 Shh � Svvð ÞS�hv
2Shv Shh þ Svvð Þ� 2Shv Shh � Svvð Þ� 4 Shvj j2

264
375: ð1:55Þ

Again, the previous matrix presents a rank equal to 1 and
may have up to five independent parameters.

The lexicographic and the Pauli target vector are just a
different transformation of the scattering matrix into a vector.
Hence, the covariance and coherency matrices are related by
the following unitary transformation in the most general
configuration:

kpkT�p ¼ 1
2

�

1 0 0 1

1 0 0 �1

0 1 1 0

0 j �j 0

26664
37775klkT�l

1 1 0 0

0 0 1 �j

0 0 1 j

1 �1 0 0

26664
37775:

ð1:56Þ

In the case of the backscattering direction under the BSA
convention, the previous transformation reduces to

kpkT�p ¼ 1
2

1 0 1

1 0 �1

0
ffiffiffi
2

p
0

264
375klkT�l 1 1 0

0 0
ffiffiffi
2

p

1 �1 0

264
375: ð1:57Þ

As it may be seen from all this section, the matrices klkT�l
and kpkT�p contain the same information as the scattering

matrix, that is, they are rank 1 matrices. The necessity to
introduce these matrices is that they will allow to define the
covariance and coherency matrices.

The complex scattering matrix S is able to describe a
single physical scattering process, as well as klkT�l and
kpkT�p . All these descriptors are based on a wave representa-

tion of the data, which depend on the absolute phase from the
scatterer. On the contrary, a power representation of the
scattering process eliminates this dependence, as power
parameters become incoherently additive parameters. In the
most general case, assuming the BSA convention, one may
define the 4 � 4 Kennaugh matrix as follows:
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K ¼ A� S
O

S
� �

A�1 ð1:58Þ

where

A ¼

1 0 0 1

1 0 0 �1

0 1 1 0

0 j �j 0

26664
37775: ð1:59Þ

The Kennaugh matrix can be written in the following
form:

K ¼

A0 þ B0 Cψ Hψ Fψ

Cψ A0 þ Bψ Eψ Gψ

Hψ Eψ A0 � Bψ Dψ

Fψ Gψ Dψ �A0 þ B0

26664
37775
ð1:60Þ

where

A0 ¼ 1
4
Shh þ Svvj j2

B0 ¼ 1
4
Shh � Svvj j2 þ Shvj j2

Bψ ¼ 1
4
Shh � Svvj j2 � Shvj j2

Cψ ¼ 1
2
Shh � Svvj j2

Dψ ¼ ℑ ShhS
�
vv

	 

Eψ ¼ ℜ S�hv Shh � Svvð Þ	 

Fψ ¼ ℑ S�hv Shh � Svvð Þ	 

Gψ ¼ ℜ S�hv Shh þ Svvð Þ	 

Hψ ¼ ℑ S�hv Shh þ Svvð Þ	 


: ð1:61Þ

In the previous definition, the sub-index ψ indicates that
the different parameters are roll angle dependent,
corresponding to the target rotation along the line of sight.

As detailed in Sect. 1.1.2.1, the scattering matrix relates
the scattered wave to the incident Jones vector. The
Kennaugh matrix is related to the associated Stokes vectors
defined in Sect. 1.1.1.1. In the forward scattering case, where
S is represented in the FSA coordinate formulation, this
matrix is named the 4� 4 Mueller matrix and is calculated by

M ¼ A S
O

S
� �

A�1: ð1:62Þ

The main difference ofK andM, with respect to klkT�l and
kpkT�p , is that the Kennaugh and the Mueller matrices are real

matrices, whereas the covariance and coherency matrices are
complex.

1.1.2.3 Partial Scattering Polarimetry
As indicated in Sect. 1.1.1.2, radar polarimetry is concerned
with two types of waves. The first type is monochromatic,
totally polarized electromagnetic waves where the polariza-
tion state is perfectly represented by the Jones vectors. Con-
sequently, the scattering process can be completely
represented by any of the scattering polarimetry descriptors
detailed in the previous section, and especially the scattering
matrix. This situation appears when the radar transmits a
perfectly monochromatic wave and this wave reaches an
unchanging scatterer, resulting in a perfectly polarized
scattered wave. As mentioned, these targets are referred to
as point targets or coherent targets. The most important point
to be considered when coherent scattering is addressed is to
determine the number of independent parameters necessary
to represent the scattering process. That is, to determine the
number of independent parameters necessary to represent the
operator able to characterize the change of the polarization
state of the scattered wave with respect to the incident wave
that occurs in the scattering process. In a monostatic configu-
ration, the scattering operator describing the scattering,
i.e. any of the matrix operators indicated in Sections 1.1.2.1
and 1.1.2.2, may present up to five independent parameters.
In the bistatic case, these descriptors may present up to seven
independent parameters.

The situation changes when the scattering properties of the
target being imaged by the radar system change in time, as it
would be the case for a forest being affected by the wind
conditions or, for instance, when the target presents more
than one scattering centre (a point at which the incident wave
can be considered to be reflected). Under this situation,
although the radar system transmits a perfectly polarized
wave, the wave scattered by the scatterer is partially
polarized. A scatterer of this category is normally referred
to as distributed scatterer, depolarizing scatterer or an inco-
herent scattering target. The change of the polarization state
of the scattered wave makes not possible to use the scattering
descriptors presented in Sects. 1.1.2.1 and 1.1.2.2 to describe
the scattering process, as these descriptors are not able to
describe the variation of the polarization state of the
scattered wave.

In the case of partially polarized waves, the description of
the polarization state must be addressed through polarization
descriptors relying on the second-order moments of the elec-
tromagnetic wave. If a wave is decomposed into two orthog-
onal components in the plane perpendicular to the
propagation direction, these second-order moments refer to
the power of each orthogonal component and to the correla-
tion between them. This information is perfectly represented
by the vector and the wave coherency matrix or the Stokes
vector. In the case of the description of the scattering process,
this information can be perfectly represented by the covari-
ance and coherency matrices as the mean values of these
matrices are not zero.
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1.1.2.4 Change of Polarization Basis
The scattering properties of a given scatterer, as
demonstrated, are contained within the scattering matrix S,
which, as shown previously, is measured in a particular
polarization basis. Since there exist an infinite number of
orthonormal polarization bases, the question rising at this
point is whether it is possible or not to infer the polarimetric
properties of the given target in any polarization basis from
the response measured at a particular basis. This question
presents an affirmative answer. The possibility to synthesize
any polarimetric response of a given target from its measure-
ment in a particular orthonormal basis represents the most
important property of polarimetric systems in comparison
with single-polarization systems. The most important conse-
quence of this process is that the amount of information about
a given scatterer can be increased, allowing a better charac-
terization and study. This polarization synthesis process is
based on the concept of change of polarization basis
presented in Sect. 1.1.1.3.

Before describing the polarization synthesis process in the
backscattering direction, it is necessary to analyse the scatter-
ing process given by (1.37) with respect to the direction of
propagation of the incident and the scattered waves. It must
be noticed that the incident wave propagates in the direction

given by the unitary vector bki , whereas the scattered one

propagates in the opposite direction, given by �bki . Conse-
quently, this difference in the propagation direction must be
taken into account when defining the polarization state of the
wave. Given a Jones vector propagating in the direction bk, the
Jones vector of a wave presenting the same polarization state
but which propagates in the direction �bk is obtained as

bk ! �bk , E bk� � ¼ E� �bk� �
ð1:63Þ

where, as mentioned previously, the BSA convention is
considered. Under this assumption, the scattering matrix is
referred to as the coordinate system centred in the transmit-
ting/receiving system. Consider a polarimetric radar system
which transmits the electromagnetic waves in the following
orthonormal basis bu, bu⊥f g. In this particular basis, the inci-
dent and scattered waves are related by the scattering matrix
as follows:

Es bu,bu⊥	 
 ¼ S bu,bu⊥	 
Ei bu,bu⊥	 
: ð1:64Þ

As shown in Sect. 1.1.1.3, given the Jones vector
measured in a particular basis, for instance, bu,bu⊥f g , it is
possible to derive it in any other polarization basis bu0,bu0⊥	 


,
which may be rewritten as follows:

E bu0,bu0⊥	 
 ¼ U bu,bu⊥	 

! bu0 ,bu0⊥	 
E bu,bu⊥	 
: ð1:65Þ

Then, the incident and the scattered waves transformed in
the new basis may be considered:

Ei bu0 ,bu0⊥	 
 ¼ U bu,bu⊥	 

! bu0,bu0⊥	 
Ei bu,bu⊥	 
, ð1:66Þ

Es bu0,bu0⊥	 
 ¼ U bu,bu⊥	 

! bu0 ,bu0⊥	 
Es bu,bu⊥	 
: ð1:67Þ

In order to apply the transformation basis procedure to the
scattered waves Es bu,bu⊥	 
 , we need to consider that it

propagates in the opposite direction as the incident wave
Ei bu,bu⊥	 
 . The transformation indicated by (1.64) assumes

that the incident and the scattered waves propagate in oppo-
site directions, but (1.66) and (1.67) assume that both waves
propagate in the same direction. Consequently it is necessary
to consider the transformation indicated by (1.63) in (1.67).
As a result, the transformation basis procedure applies to the
scattered wave as follows:

Es bu0,bu0⊥	 
 ¼ U�bu,bu⊥	 

! bu0 ,bu0⊥	 
Es bu,bu⊥	 
 ð1:68Þ

where now the wave in (1.68) is assumed to propagate in
opposite direction with respect to the incident wave in (1.66).
Now, it is possible to introduce (1.66) and (1.68) in (1.64):

U�bu0 ,bu0⊥	 

! bu,bu⊥	 
Es bu0,bu0⊥	 
¼S bu,bu⊥	 
U bu0,bu0⊥	 


! bu,bu⊥	 
Ei bu0 ,bu0⊥	 
:
ð1:69Þ

As the transformation matrix U is unitary, i.e. U�1 ¼ U�T,

Es bu0 ,bu0⊥	 
¼UTbu0,bu0⊥	 

! bu,bu⊥	 
S bu,bu⊥	 
U bu0 ,bu0⊥	 


! bu,bu⊥	 
Ei bu0,bu0⊥	 

ð1:70Þ

from where it can be clearly identified the following identity

S bu0,bu0⊥	 
 ¼ U�bu0 ,bu0⊥	 

! bu,bu⊥	 
� ��1

S bu,bu⊥	 
U bu0,bu0⊥	 

! bu,bu⊥	 
:

ð1:71Þ

The transformation expressed in (1.71) receives the name
of con-similarity transformation. This transformation allows
to synthesize the scattering matrix in an arbitrary basisbu0, bu0⊥	 


from its measure in the basis bu,bu⊥f g.

1.1.2.5 Scatterers Characterization by Single, Dual,
Compact and Full Polarimetry

The main objective behind the use of polarimetric diversity,
also known as full polarimetry, when observing a particular
scatterer is that this type of diversity allows a far more
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complete characterization of the scatterer than the characteri-
zation that could be obtained without polarimetric sensitivity,
or simply single-polarization measurements. Although this
improved characterization, if compared with single-
polarization data, the use of polarimetric diversity comes at
a price, as the average transmitted power must be doubled
and the swath width halved. In addition, a fully polarimetric
SAR is technologically more complex than a single-
polarization SAR system. In order to understand the differ-
ence between these two philosophies and the improvement in
the characterization of a scatterer provided by polarimetry, it
is necessary to introduce two important concepts, since they
will determine the way in which a target shall be
characterized. It may happen the scatterer of interest to be
smaller than the coverage of the radar system. In this situa-
tion, we consider the scatterer as an isolated scatterer, and
from a point of view of power exchange, this target is
characterized by the so-called radar cross section. Neverthe-
less, we can find situations in which the scatterer of interest is
significantly larger than the coverage provided by the radar
system. In these occasions, it is more convenient to charac-
terize the target independently of its extent. Hence, in these
situations, the target is described by the so-called scattering
coefficient.

The most fundamental form to describe the interaction of
an electromagnetic wave with a given scatterer is the
so-called radar equation. This equation establishes the rela-
tion between the power the scatterer intercepts from the
incident electromagnetic wave and the power reradiated by
the same scatterer in the form of the scattered wave. The radar
equation presents the following form:

Pr ¼ PtGt

4πr2t
σ

Ar

4πr2r
ð1:72Þ

where Pr represents the power detected at the receiving
system. The term

PtGt

4πr2t
ð1:73Þ

is determined by the incident wave, and it consists of its
power density expressed in terms of the properties of the
transmitting system. The different terms in (1.73) are the
transmitted power Pt, the antenna gain Gt and the distance
between the system and the target rt. On the contrary, the
term

Ar

4πr2r
ð1:74Þ

contains the parameters concerning the receiving system: the
effective aperture of the receiving antenna Ar and the distance
between the target and the receiving system rr. The last term
in (1.72), i.e. σ, determines the effects of the scatterer of
interest on the balance of powers established by the radar
equation. Since (1.73) is a power density, i.e. power per unit
area, and (1.74) is dimensionless, the parameter σ has units of
area. Consequently, σ consists of an effective area which
characterizes the scatterer. This parameter determines which
amount of power is intercepted from (1.73) by the scatterer
and reradiated. This reradiated power is finally intercepted by
the receiving system according to the distance rt. An impor-
tant fact which arises at this point is the way the scatterer
reradiates the intercepted power in a given direction of the
space. In order to be independent of this property, the radar
cross section shall be referenced to an idealized isotropic
scatterer. Thus, the radar cross section of an object is the
cross section of an equivalent isotropic scatterer that
generates the same scattered power density as the object in
the observed direction:

σ ¼ 4πr2
E
!s��� ���2
E
!i
���� ����2

¼ 4π Sj j2 ð1:75Þ

where E
!��� ���2 represents the intensity of the electromagnetic

wave and S is the complex scattering amplitude of the object.
The final value of σ is a function of a large number of
parameters which are difficult to consider individually: the
wave frequency, the wave polarization, the imaging geome-
try or the geometrical structure and the dielectric properties of
the scatterer. Then, the radar cross section σ is able to char-
acterize the target being imaged for a particular frequency
and imaging system configuration.

The radar equation, as given by (1.72), is valid for those
cases in which the scatterer of interest is smaller than the
radar coverage, that is, a point target or point scatterer. For
those targets presenting an extent larger than the radar cover-
age, we need a different model to represent the scatterer. In
these situations, a scatterer is represented as an infinite col-
lection of statistically identical point scatterers. The resulting

scattered wave E
!s

results from the coherent addition of the
scattered waves from every one of the independent scatterers
which model the extended scatterer. In order to express the
scattering properties of the extended target independently of
its area extent, we consider every elementary target as being
described by a differential radar cross section dσ. In order to
separate the effects of the target extent, we consider dσ as the
product of the averaged radar cross section per unit area
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σ0 and the differential area occupied by the target ds. Then,
the differential power received by the systems due to an
elementary scatterer can be written as

dPr ¼ PtGt

4πr2t
σ0ds

Ar

4πr2r
: ð1:76Þ

Hence, to find the total power received from the extended
target, we need to integrate over the illuminated area A0:

Pr ¼
ZZ
A0

PtGt

4πr2t
σ0

Ar

4πr2r
ds: ð1:77Þ

It must be noted that the radar equation at (1.72) represents
a deterministic problem, whereas (1.77) considers a statistical
problem. Eq. (1.77) represents the average power returned
from the extended target. Hence, the radar cross section per
unit area σ0, or simply scattering coefficient, is the ratio of the
statistically averaged scattered power density to the average
incident power density over the surface of the sphere of
radius rr:

σ0 ¼ E σf g
A0

¼ 4πr2r
A0

E E
!s��� ���2� �
E
!i
���� ����2

: ð1:78Þ

The scattering coefficient σ0 is a dimensionless parameter.
As in the case of the radar cross section, the scattering
coefficient is employed to characterize the scattered being
imaged by the radar. This characterization is for a particular
frequency f, polarization of the incident and scattered waves
and incident and scattering directions.

As it has been shown, the characterization of a given
scatterer by means of the radar cross section σ or the scatter-
ing coefficient σ0 depends also on the polarization of the

incident wave E
!i

. As one can observe in (1.75) and (1.78),
these two coefficients are expressed as a function of the
intensity of the incident and scattered waves. Consequently,
σ and σ0 shall be only sensitive to the polarization of the
incident waves through the effects the polarization has over
the power of the related electromagnetic waves. Hence, if we
denote by p the polarization of the incident wave and by q the
polarization of the scattered wave, we can define the follow-
ing polarization-dependent radar cross section and scattering
coefficient, respectively:

σqp ¼ 4πr2
E
!s

qp

��� ���2
E
!i

qp

���� ����2
¼ 4π Sqp

�� ��2, ð1:79Þ

σ0qp ¼
E σqp
	 

A0

¼ 4πr2r
A0

E E
!s

qp

��� ���2� �
E
!i

qp

���� ����2
: ð1:80Þ

As it has been shown, a given target of interest can be
characterized by means of the radar cross section or the
scattering coefficient depending on the nature of the scatterer
itself; see (1.75) and (1.78). Additionally, in (1.79) and
(1.80), it has been shown that these two coefficients depend
also on the polarization of the incident and the scattered
electromagnetic waves. A closer look to these expressions
reveals that these two real coefficients depend on the polari-
zation of the electromagnetic waves only through the power
associated with them. Thus, they do not exploit, explicitly,
the vectorial nature of polarized electromagnetic waves. A
SAR system that measures σ or σ0 is usually referred to as
single-polarization SAR systems as, normally, the same
polarization is employed for transmission and for reception.
In this case, the products delivered by the SAR system are
real SAR images containing the information of σ or σ0.

In order to take advantage of the polarization of the elec-
tromagnetic waves, that is, their vectorial nature, the scatter-
ing process at the scatterer of interest must be considered as a
function of the electromagnetic waves themselves. In Sect.
1.1.1.1, it was shown that the polarization of a plane, mono-
chromatic, electric wave could be represented by the
so-called Jones vector. Additionally, a set of two orthogonal
Jones vectors form a polarization basis, in which any polari-
zation state of a given electromagnetic wave can be
expressed. Therefore, given the Jones vectors of the incident
and the scattered waves, Ei and Es, respectively, the scatter-
ing process occurring at the target of interest is represented by
the scattering matrix S. In contraposition to a single-polari-
zation SAR system, a fully polarimetric SAR system
measures the complete scattering matrix S. Therefore, the
product delivered by this type of SAR systems corresponds
to the 2� 2 complex scattering matrix and not individual real
SAR images.

As it can be observed, the polarimetric sensitivity of a
measurement ranges from a complete absence of polarimetric
sensitivity in the case of single-polarization SAR systems to
a complete sensitivity in the case of fully polarimetric SAR
systems. Polarimetric sensitivity comes to a price of a more
complex system that implies, on the one hand, a heavier
system and, on the other hand, the need to transmit a larger
power. In addition, and due to the need to double the pulse
repetition frequency to accommodate two polarizations in
transmission, the radar swath is also reduced. Nevertheless,
between both architectures, there exist other polarimetric
radar configurations with may soften the previous limitations
but at the cost of reducing the amount of acquired
information.
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A single-polarization or mono-polarization SAR system
is composed of one transmission and one reception chain that
operate at a fixed polarization. In most of the cases, both
chains operate at the same polarization providing a co-pol or
co-polarized channel. In the particular case of the linear
polarization basis, these channels would correspond to σhh
or σ0hh and σvv or σ0vv for the horizontal and the vertical
polarization states, respectively. As indicated, these simple
imaging radars deliver real SAR images, proportional to σ or
σ0, as products. One possibility to increase the amount of
information is to consider a dual-polarized radar by including
a second reception chain in the system, in such a way that it
transmits in one polarization, for instance, h, and it receives
simultaneously on the same polarization h and also on the
orthogonal one v, leading to one co-pol and the so-called
co-polarized and the cross-polarized channels, respectively.
A different alternative for a dual-polarized system is to
consider a transmission chain that alternates between
polarizations and a single reception chain. In all these cases,
the polarimetric system provides images proportional to the
radar brightness.

All the previous SAR systems present the limitation that
the information that may be retrieved is restricted to the

information that can be extracted from the real SAR images,
proportional to σ or σ0, or their different combinations. Nev-
ertheless, this limitation is overcome by allowing two simul-
taneous and coherent reception channels operating at
orthogonal polarizations, making it possible to measure the
relative phase between them. The coherent nature of the
receiving channels allows measuring the different elements
of the covariance or coherency matrix. The first option that
may be considered is to assume a fixed polarization in trans-
mission and orthogonal polarizations in reception. In the case
of the transmission channel, the circular polarization and the
45� linear polarizations have been proposed, whereas for
reception the horizontal and vertical linear polarizations are
assumed. This type of systems are collectively known as
compact polarized systems as, although they allow to mea-
sure some of the elements of the covariance and coherency
matrix, they do not allow to measure the complete matrices.
Finally, by allowing the system to transmit alternatively
between orthogonal polarizations and to receive coherently
at the same two orthogonal polarizations, a system like this is
able to measure coherently the scattering matrix and to pro-
duce the covariance and coherency matrices. In the case of a
bistatic configuration, without any type of assumption, these

Fig. 1.5 The family of polarization diversity and polarimetric imaging radars. (Courtesy of Dr. R. K. Raney)
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will be 4 � 4 complex matrices, whereas in the case of a
monostatic configuration, these will be 3 � 3 complex matri-
ces. Figure 1.5 details the complete hierarchy of polarimetric
SAR systems.

1.2 SAR Data Statistical Description
and Speckle Noise Filtering

Most of geophysical media, for instance, rough surfaces,
vegetation, ice, snow, etc., have a very complex structure
and composition. Consequently, the knowledge of the exact
scattered electromagnetic wave, when illuminated by an inci-
dent wave, is only possible if a complete description of the
scene was available. This type of description of the scatterers
is unattainable for practical applications. The alternative,
hence, is to describe them in a statistical form. Such scatters
are named, consequently, as distributed or partial scatterers
(Ulaby et al. 1986a, b).

SAR systems are mainly employed for natural scenes
observation. Owing to the complexity of these scatterers,
the scattered wave has also a complex behaviour. Hence,
the scattering process itself needs to be analysed stochasti-
cally. Most of the techniques focused on solving the scattered
wave problem trying to find, hence, the statistical moments of
the scattered wave as a function of the incident wave
properties, as well as the scatterer features.

In order to derive a stochastic model for the observed SAR
images in the case of distributed scatterers, it is necessary to
consider a model for the SAR imaging process, a model for
the scattering process and a model for the distributed scatter
being imaged.

The SAR imaging process is divided into two main pro-
cesses. The former consists of the acquisition of the scattered
data, as a result of the illuminating wave, whereas the latter
comprises the focusing process. The second, which is in
charge of collecting all the contributions of a particular
scatterer focusing it as good as possible, tries to remove the
effects of the acquisition process. The SAR impulse
response, or SAR system model, embracing the acquisition,
as well as the focusing processes, can be assumed to be a
rectangular low-pass filter (Curlander and McDonough
1991):

h x, rð Þ / sinc
πx
δx

� �
sinc

πr
δr

� �
: ð1:81Þ

In the previous equation, x and r indicate the azimuth and
slant-range (simply called range in the following)
dimensions of the SAR image, respectively, whereas δx and
δr indicate the spatial resolutions in the same spatial
dimensions. Finally, a SAR image, i.e. S(x, r), may be

modelled as a two-dimensional low-pass filter, given by
(1.81), applied to the scene’s complex reflectivity σs(x, r)
(Curlander and McDonough 1991):

S x, rð Þ ¼
Z1
�1

Z1
�1

σs x
0, r0ð Þh x� x0, r � r0ð Þdx0dr0: ð1:82Þ

Since the spatial resolutions of the SAR impulse response,
δx and δr, are not zero, it is possible to introduce the concept
of resolution cell as the area given by δx � δr . Qualitatively,
in the absence of signal re-sampling, the information
contained by an image pixel is basically determined by the
average complex reflectivity σs(x, r) within this
resolution cell.

The resolution cell dimensions, δx and δr, are larger than
the wavelength of the illuminating electromagnetic wave λ.
As a consequence, the resulting scattered wave is due to an
elaborated scattering process. In order to arrive to a tractable
mathematical model of the SAR image S(x, r), it is conve-
nient to find an approximation for the scattering process
within the resolution cell. The most common simplification
is the Born approximation or simple scattering approximation
(Ulaby et al. 1986a). Under it, first, the distributed scatterer is
considered to be composed of a set of discrete scatterers
characterized by a deterministic response. This scatterer
model might be reasonable for those cases in which the
discrete scatterer description is valid, for instance, scattering
from raindrops or vegetation-covered surfaces having leaves
small compared with the wavelength. On the contrary, this
assumption is not valid for continuous scatterers. In these
cases, it is helpful to apply the concept of effective scattering
centre (Ulaby et al. 1986a), in which the continuous scatterer
is analysed in a discrete way, e.g. the facet model for surface
scattering (Ulaby et al. 1986a; Beckmann and Spizzichino
1987). In a second step, the scattered wave from the resolu-
tion cell is supposed to be the linear coherent combination of
the individual scattered waves of each one of the discrete
scatters within the cell. The main limitation of the Born
approximation is that it excludes attenuation or multiple
scattering in the process.

Assuming the scattered wave from any distributed
scatterer to be originated by a set of discrete sources, (1.82)
can be considered in its discrete form:

S x, rð Þ ¼
XN
k¼1

σs xk , rkð Þh x� xk , r � rkð Þ ð1:83Þ

where the sub-index k refers to each particular discrete
scatterer in the resolution cell and N is the total number of
these scatterers embraced by the response of the SAR system
h(x, r). Equation (1.83) can be rewritten by using
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σs xk, rkð Þ ¼ ffiffiffiffiffi
σk

p
exp jθ0sk

� �
, ð1:84Þ

h x� xk, r � rkð Þ ¼ hk exp jφkð Þ, ð1:85Þ

θsk ¼ θ0sk þ φk, ð1:86Þ

as follows:

S x, rð Þ ¼
XN
k¼1

Ak exp jθskð Þ ð1:87Þ

where Ak ¼ hk
ffiffiffiffiffi
σk

p
. As observed in (1.87), the process to

form a SAR image pixel consists of the complex coherent
addition of the responses of each one of the discrete
scatterers, which are not accessible individually. The sole
available measure is the complex coherent addition itself.
This coherent addition process receives the name of
bi-dimensional random walk (McCrea and Whipple 1940;
Doob et al. 1954).

At this point, it is necessary to consider certain
assumptions about the elementary scattered waves
Ak exp jθskð Þ in order to derive a stochastic model for the
observed SAR image (Beckmann and Spizzichino 1987;
Goodman 1985):

• The amplitude Ak and the phase θsk of the k-th scattered
wave are statistically independent of each other and from
the amplitudes and phases of all other elementary waves.
This fact states that the discrete scatterers are uncorrelated
and that the strength of a given scattered wave bears no
relation to its phase.

• The phases of the elementary contributions θsk are equally
likely to lie anywhere in the primary interval [�π, π).

Under these conditions, (1.87) may be seen as an interfer-
ence process, in which the interference itself is determined by
the phases θsk . This interference can be constructive, as well
as destructive. This effect can be clearly noticed in SAR
images, as the amplitude or the intensity of (1.87) presents
a salt and pepper or grainy aspect, as it may be observed in
Fig. 1.6, which corresponds to |Shh| acquired with the
RADARSAT-2 system over the city of San Francisco. Such
a phenomenon is known as speckle (Goodman 1985; Lee
1981; Lopes et al. 1990; Raney 1983).

Speckle is a true electromagnetic measurement and has a
complete deterministic nature, as shown in (1.87). Neverthe-
less, the information contained within speckle needs from
two different analyses. In those cases in which there is a
reduced number of discrete scatterers within the resolution
cell, or its response is basically originated by a reduced set of

Fig. 1.6 RADARSAT-2 amplitude image of the scattering matrix element Shh over San Francisco (USA)
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dominant ones, speckle is said to be partially developed.
Hence, the interference itself, i.e. the speckle, contains infor-
mation about the scattering process. On the contrary, when
there is a large number of discrete scatterers in the cell,
without a dominant one, the interference process becomes
so complex that it does contain almost no information about
the scattering process itself (Oliver and Quegan 1998). This
case is called fully developed speckle (Ulaby et al. 1986a),
and the complexity of the interference process is overcome
by analysing it by statistical means. Hence, speckle turns to
be considered as a noise-like signal (Ulaby et al. 1986b;
Lopes et al. 1990).

Summarizing, due to the lack of knowledge about the
detailed structure of the distributed scatterer being imaged
by the SAR system, it is necessary to discuss the properties of
the scattered wave statistically. The statistics of concern are
defined over an ensemble of objects, all with the same mac-
roscopic properties, but differing in the internal structure. For
a given SAR system imaging a particular scatterer, e.g. a
rough surface, the exact value of each pixel cannot be
predicted, but only the parameters of the distribution describ-
ing the pixel values. Therefore, for a SAR image, the actual
information per pixel is very low as individual pixels are
random samples from distributions characterized by a
reduced set of parameters.

1.2.1 One-Dimensional Gaussian Distribution

Considering a SAR system to be described by a rectangular
low-pass filter (see (1.81)) and the distributed scatterer to be
modelled by a set of discrete deterministic scatterers, by
means of the single or Born scattering approximation, a
SAR image, S(x, r), can be described by the model presented
in (1.87).

The main parameter in the SAR image model is the
number of discrete scatterers within the resolution cell,
i.e. N. Depending on the nature of this parameter, different
SAR image statistical models can be derived. On the one
hand, if N is considered as a constant value, provided that it is
large enough, (1.87) leads to the complex, zero-mean, com-
plex Gaussian pdf model, valid for homogeneous,
non-textured SAR images (Beckmann and Spizzichino
1987; Goodman 1985; Papoulis 1984). On the other hand,
to consider N as a random variable makes (1.87) to lead to pdf
models valid for textured areas description. In the following,
the zero-mean, complex Gaussian distribution model shall be
considered, although possible extensions to textured image
models shall be indicated.

When the number of discrete scatterers inside the resolu-
tion cell N is large, provided that Ak cos ( jθk) and Ak sin ( jθk)
satisfy the central limit theorem (Oliver and Quegan 1998),

the quantities ℜ{S} and ℑ{S} are Gaussian distributed, that
is, they follow a zero-mean, Gaussian probability density
function (pdf). The parameters of this pdf can be obtained
on the basis of the discrete scatterers model. The mean values
of ℜ{S} and ℑ{S} are equal to zero, and the variances are
E ℜ2 Sf g	 
 ¼ E ℑ 2 Sf g	 
 ¼ N

2 E Ak
2

	 

. Besides, the symme-

try of the phase distribution of the discrete scatterers produces
(Beckmann and Spizzichino 1987):

E ℜ Sf gℑ Sf gf g ¼
XN
k¼1

�
XN
l¼1

E AkAlf gE cos θkð Þ sin θlð Þf g

¼ 0:

ð1:88Þ

Under these conditions, ℜ{S} and ℑ{S}, denoted in the
following by x and y, respectively, are described by means of
zero-mean Gaussian pdfs:

px xð Þ ¼ 1ffiffiffiffiffiffiffiffi
πσ2

p exp � x
σ

� �2� �
, x 2 �1,1ð Þ ð1:89Þ

py yð Þ ¼ 1ffiffiffiffiffiffiffiffi
πσ2

p exp � y
σ

� �2� �
, y 2 �1,1ð Þ ð1:90Þ

where the variance is σ2 ¼ (N/2)E{Ak
2}. The pdfs px(x) and

py(y) are denoted in the following as N 0, σ2ð Þ. Consequently,
a SAR image, S¼ x + jy¼ A exp ( jθ), is described by a zero-
mean, complex, Gaussian distribution, with uncorrelated real
and imaginary parts, denoted next as N 0, σ2ð Þ. From (1.89)
and (1.90), it is straightforward to derive pA(A) and pθ(θ),
where A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and θ ¼ arctan (y/x), as:

pA,θ A, θð Þ ¼ A
πσ2

exp � A
σ

� �2� �
ð1:91Þ

pA Að Þ ¼ 2A
σ2

exp � A
σ

� �2� �
, A 2 0,1½ Þ ð1:92Þ

pθ θð Þ ¼ 1
2π

, θ 2 �π, π½ Þ: ð1:93Þ

The amplitude pdf, i.e. pA(A), is known as Rayleigh distri-
bution. In addition, if intensity, i.e. I ¼ A2, is considered, the
Rayleigh pdf is transformed to an exponential pdf:

pI Ið Þ ¼ 1
σ2

exp � I
σ2

� �
, I 2 0,1½ Þ: ð1:94Þ
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On the other hand, (1.93) shows that the SAR image phase
has a uniform pdf. Consequently, this phase bears no infor-
mation concerning the natural scene being imaged.

Given the SAR image amplitude pdf (1.92), the amplitude
mean value is equal to σ

ffiffiffi
π

p
=2, whereas the variance equals

(1 � (π/4))σ2. If the coefficient of variation, defined as the
standard deviation divided by the mean, is calculated, it
equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=πð Þ � 1

p
. For the intensity I, it has a value equal

to 1 as the mean and the variance are equal to σ2. As a
consequence, the intensity of a SAR image can be modelled
as the product of two uncorrelated terms (Goodman 1985;
Lee 1981; Lopes et al. 1990; Raney 1983), i.e.

I ¼ σ0n: ð1:95Þ

The deterministic-like value is given by its mean, i.e. σ0,
which corresponds to the mean incoherent power of the area
under study (1.78). The random process n, with mean and
variance equal to 1, is characterized by an exponential pdf
and is defined as the speckle noise component. As it may be
observed from the model (1.94) and (1.95), if the mean value
of the intensity increases, the variance increases as well.
Therefore, this model is known as the multiplicative speckle
noise model. In other words, the signal to noise ratio of the
image cannot be improved by increasing the transmitted
power, as the variance of the data will increase
proportionally.

The Gaussian model for SAR data, leading to (1.91) and
(1.95), is able to characterize SAR data for homogeneous
areas. In this case, useful information is described by a single
degree of freedom, corresponding to the mean intensity.
Nevertheless, for certain types of distributed scatterers, such
a simple model cannot describe all the data variability. The
reason behind this limitation is that this type of scatterers
need from a more sophisticated model, with more than one
degree of freedom, in order to be completely described.
Collectively, these models are able to describe average inten-
sity variations, which correspond to data texture (Oliver and
Quegan 1998). A variety of two-degree of freedom pdf
models have been proposed in the literature, for instance:
K-distribution (Kong 1990), Weibull distribution or
log-normal distribution (Oliver and Quegan 1998; Papoulis
1984; Kong 1990). All these models consist of assuming the
number of scatterers N, within a resolution cell, no longer as a
constant, but being described also by a certain distribution.
Even so, there are situations in which these two-parameter
models are not able to describe the scene. Hence, the solution
goes into the direction of introducing more degrees of free-
dom, thus resulting in more elaborate image models (Oliver
and Quegan 1998; Trunk and George 1970; Trunk 1972;
Schleher 1975).

1.2.2 Multidimensional Gaussian Distribution

The previous section was concerned with the statistical
description of one-dimensional complex data acquired by a
complex SAR system, i.e. a single SAR image. As shown,
despite the data’s complex nature, only the amplitude, or the
intensity, contains useful information concerning the
distributed target under analysis. The amount of information
can be increased by acquiring more than one SAR image, if
one or more imaging parameters, e.g. system position, acqui-
sition time, frequency or polarization, are varied. What it is
pursued, hence, is the study of the variation of the scatterer’s
response to changes of the SAR system parameters. The
volume of information is increased as more data channels
are available but also because, if available, the multidimen-
sional data correlation structure can be also exploited to
extract information about the observed scatterer (Oliver and
Quegan 1998; Cloude and Pottier 1996). The following list
shows the most common multidimensional SAR
configurations, as well as their main applications:

• SAR Interferometry (InSAR) (Bamler and Hartl 1998): In
this configuration, two SAR systems image the same
scene from slightly different positions in space, leading
to two-dimensional SAR data. In this way, the phase
difference between the two acquisitions is proportional
to the terrain’s topography. This configuration is exten-
sively employed nowadays to obtain Digital Elevation
Models (DEMs) of the terrain.

• Differential SAR Interferometry (DInSAR) (Gabriel et al.
1989): This SAR configuration admits several variants.
On the one hand, a differential interferogram can be
obtained through the difference of two interferograms
acquired with a zero spatial baseline, but at different
times. Consequently, the “residual” differential interfero-
gram can contain small topographic deformations or even
atmospheric effects. On the other hand, the same effect
can be observed if the topography of a given interferogram
is compensated for by means of an external DEM.

• SAR Polarimetry (PolSAR) (Ulaby and Elachi 1990): In
this case, the parameters which vary between the different
information channels are the polarization of the transmit-
ted wave and the polarization with which the scattered
wave by the terrain is collected. A set of two orthogonal
polarization states are employed, being the most common
the pair of horizontal and vertical polarizations. The most
important property of polarimetry is that the polarimetric
response to any polarization state of the incident wave of a
given scatterer can be derived from the response to a pair
of orthogonal polarization states. This SAR configuration
exploits the fact that scatterers present different responses
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to different polarizations of the incident wave. For back-
scattering in which waves are transmitted and collected in
the same position and by considering the reciprocity theo-
rem, PolSAR leads to three-dimensional data. On the
contrary, when scattered waves are collected in a different
position with respect to the transmitted one, i.e. forward
scattering, PolSAR data are four-dimensional data.

• Polarimetric SAR Interferometry (PolInSAR) (Cloude and
Papathanassiou 1998): This technique tries to combine both
the advantages of InSAR and PolSAR. On the one hand,
the introduction of interferometric diversity makes possible
the data to be sensible to the structure of the target in the
vertical dimension. On the other hand, the data are related
to different scattering mechanisms in the same resolution
cell, thanks to the polarimetric capabilities of the acquisi-
tion system. Hence, PolInSAR data are sensible to different
scattering mechanisms in the same image pixel, located at
different heights. The introduction of simple scattering
models allows to extract relevant information about the
scatterer under study. Among the possible applications of
this technique, the most important is the extraction of
parameters related to the vegetation cover which allow
biomass estimation. In terms of data dimensionality,
PolInSAR data consist of six-dimensional data if backscat-
tering is considered, whereas they are eight-dimensional
data for forward scattering.

• SAR Tomography (TomoSAR) (Reigber and Moreira
2000): As shown in the previous point, PolInSAR
represents a first step to resolve the vertical structure of
the imaged scatterer. In this direction, SAR tomography is
a technique directed to achieve a real three-dimensional
reconstruction of the scene under observation. Both the
SAR data acquisition and processing are based on the
generation and processing of a synthetic aperture in the
azimuth direction to reconstruct the object in this direc-
tion. In the same way, SAR tomography is based on the
synthesis of an aperture in the dimension perpendicular to
the plane formed by the azimuth and range dimensions, by
acquiring several SAR images in the vertical dimension.
Consequently, the phase information of these images can
be employed to reconstruct, with enough spatial resolu-
tion, the vertical structure of the scatterer.

• Multifrequency SAR (Sarabandi 1997; Lee et al. 1991): As
shown in the literature, the response of a given scatterer
depends on frequency. Consequently, in order to extract
the maximum amount of information concerning the
scatterer, several SAR images can be acquired at different
frequencies. Therefore, the dimensionality of the data
depends on the number of acquired images.

From a general point of view, a multidimensional SAR
system acquires a set of SAR images, represented by the
complex vector

k ¼ S1, S2, . . . , Sm½ �T ð1:96Þ

where m represents the number of SAR images, i.e. the data
dimensionality, according to the previous description. Each
element of the vector k, i.e. Si for i¼ 1, 2, . . ., m, represents a
single complex SAR image. In PolSAR, the k vector receives
the name of scattering or target vector (in the straightforward
lexicographic basis), and it represents a vectorization of the
scattering matrix S as detailed in Sect. 1.1.2.2. The correla-
tion structure of the vector k, provided that its m components
Si 	 N 0, σ2ð Þ, is completely characterized by the Hermitian
covariance matrix C, defined as follows:
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In the particular case of PolSAR data, the data correlation
structure can be also expressed by the Hermitian coherency
matrix Τ (Cloude and Pottier 1996). Considering (1.97), one
can see that the complex vector k is characterized by the
following pdf (Lee et al. 1994; Tough et al. 1995):

pk kð Þ ¼ 1
πm Cj j exp �kHC�1k

� �
: ð1:98Þ

Hence, (1.98) represents the data pdf model for a set of
m correlated SAR images, which is denoted in the following
as N 0,Cð Þ. Since k ~N 0,Cð Þ, it is completely characterized
by the first and the second central moments, i.e. the mean
target vector and the covariance matrix, respectively.

At this point, it is important to consider, as presented
before, the issue that the mean value of the real and imaginary
parts of k equals zero. The main consequence is that it
prevents the possibility to extract useful information via an
estimation of this mean value. For instance, this circumstance
determines the way PolSAR data has to be considered when
distributed scatterers are of concern. A PolSAR system
measures the 2 � 2 complex scattering matrix S, which can
be vectorized into the form presented by (1.96) (Cloude and
Pottier 1996; Bebbington 1992); see also Sect. 1.1.2.2. On
the one hand, when this scattering vector refers to a
distributed scatterer, a given sample of it has almost no
information concerning the scatterer itself, as k consists of a
sample of the pdf given by (1.98) (Oliver and Quegan 1998).
On the other hand, if the mean value of k is estimated, it turns
out to be zero. Thus, as reported in the literature, when
distributed scatterers are studied, the vector k, or the scatter-
ing matrix S in the particular case of PolSAR, cannot
completely describe the properties of the distributed scatterer.

24 C. López-Martínez and E. Pottier



Therefore, it is necessary to characterize these properties by
means of higher-order moments, i.e. through an estimation of
the covariance matrix C, or, additionally, the coherency
matrix Τ. These two matrices are derived through the outer
product of the target vectors kl and kp, respectively, as
indicated in Sect. 1.1.2.2, so they are independent of the
absolute phase of the scattering matrix S or the target vectors
kl and kp. Hence, the expected value in (1.97) needs to be
estimated. The process to estimate the covariance matrix C is
also referred to as the polarimetric speckle noise removal
process, as the objective is to remove the variability of the
data making it possible to retrieve the C matrix.

In the rest, the complex, multidimensional Gaussian
model, presented by (1.98), is taken as the multidimensional
SAR imagery model. As for the one-dimensional model for a
single SAR image, the complex, multidimensional Gaussian
model can be considered valid for homogeneous areas, that
is, areas in which the statistical properties of the data remain
constant. The main reason of this choice has to be found in
the fact that the simplicity of the complex, multidimensional
Gaussian pdf, makes it possible the analytical analysis of the
information which can be extracted from the data. In addi-
tion, many studies reported in the literature support this
model.

The multidimensional, zero-mean, complex Gaussian pdf
model is based on the following assumptions:

• The distributed scatterer may be modelled as a collection
of discrete or point scatterers, whereas the scattering pro-
cess occurring at the surface, or within it, is considered
under the Born or simple scattering approximation.

• The properties of the distributed scatterer remain constant
in space, hence leading to homogeneous SAR data.

Thus, whenever any of the previous two suppositions are
not fulfilled, SAR data can no longer be assumed to be
described by the complex, multidimensional Gaussian pdf
model. These departures have been noticed in the literature
at high resolutions or high frequencies, giving rise to data
texture. As for one-dimensional SAR imagery, some of these
departures can be explained by considering N, the total num-
ber of scatterers in the resolution cell, to be described by a
certain pdf. If the mean number of scatterers contributing to
the measurement at each pixel is large, then whatever the pdf
of the number of discrete scatterers, the vector k can be
represented by the product of two independent processes:

k ¼ Tk0, ð1:99Þ

where T is a positive scalar texture and k0 is a complex,
multidimensional Gaussian distributed vector, with the

same covariance as k. When T is considered to be described
by a square-root gamma pdf, the data k in (1.99) is described
by the so-called K-distribution (Kong 1990). Although (1.99)
gives rise to textured data, an important result is that any
model based on the fluctuation of the number of discrete
scatterers within the resolution cell gives rise to data that is
multivariate Gaussian at each pixel. That is, despite the
texture, the data’s correlation structure is still determined by
the multidimensional Gaussian structure.

The main drawback of the model given by (1.99) is that,
since the texture parameter T is a scalar, the texture informa-
tion is the same of all the channels of the vector k. Neverthe-
less, recent results presented in the literature point out that,
especially in the case of PolSAR data, the texture information
could be different for every SAR data channel (Oliver and
Quegan 1998; De Grandi et al. 2003). The physical reason
that would explain this issue is that a scatterer presents
different responses to different polarizations. Hence, these
differences, of course considered in the covariance matrix
C, could be also be present within the texture information.

As noticed, in order to extract the useful information
concerning the distributed scatterer under analysis from mul-
tidimensional SAR data, it is necessary to estimate the covari-
ance matrix C, or expressed in a different way, polarimetric
speckle noise must be filtered out. The estimated value of the
covariance matrix C, which generally receives the name of
sample covariance matrix and is denoted by Z, is studied in
detail in the following.

1.2.3 The Wishart Distribution

The nature of multidimensional SAR data, provided the zero-
mean, multidimensional, complex Gaussian pdf to be the
right data model, makes it necessary to study the distributed
scatterer properties through the estimation of the covariance
matrix C. The maximum likelihood estimation (MLE) of
C (Oliver and Quegan 1998) corresponds to
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If one considers the expectation of the MLE
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E Zf g ¼ 1
n
E AAH
	 
 ¼ C, ð1:101Þ

it can be demonstrated that the MLE of the Hermitian covari-
ance matrix is an unbiased estimator. In addition, it can be
shown that the variance of the different matrix components of
Z decreases with the number of samples n.

In SAR applications, the MLE of the covariance matrix
receives often the name of covariance matrix multilook esti-
mator (Sarabandi 1997), whereas Z is known as the sample
covariance matrix (Kay 1993). Here, look refers to each one
of the independent averaged samples. Hence, it can be
concluded from (1.101) that the performance of the covari-
ance matrix estimation Z, for homogeneous data, depends on
the number of averaged samples or looks, in such a way that
the larger the number of looks, the lower the variance and the
better the estimation. As the Z matrix is estimated from
random samples, this matrix is also a random matrix. Finally,
the distribution of the sample covariance matrix
Z corresponds to the Wishart distribution:

pZ Zð Þ ¼ Zj jn�m

Cj jneΓm nð Þ etr �C�1Z
� � ð1:102Þ

where etr(�) is the exponential of the matrix trace and the
complex multivariate gamma function is defined as

eΓm nð Þ ¼ πm m�1ð Þ=2∏m
i¼1Γ n� iþ 1ð Þ: ð1:103Þ

The distribution presented in (1.102) is denoted by
Z ~W nC,mð Þ. It can be observed from (1.102) that the Wishart
distribution depends on three parameters: the number of data
channels m, the number of averaged multidimensional data
samples n and the true covariance matrix C. The expression
of the Wishart distribution is only defined for n 
 m in order
to assure Z to be a full-rank matrix with a non-zero
determinant.

As it has been highlighted, the Hermitian covariance
matrix C represents the cornerstone in multidimensional
SAR data processing, and especially in PolSAR, together
with its counterpart, the coherency matrix T. The final objec-
tive of estimating these matrices is the possibility to extract
physical information to characterize the distributed scatterers
being imaged by the SAR system. This task is performed by a
collection of algorithms and techniques, collectively known
as inversion algorithms. The aim of these techniques is the
establishment of relations between the physical properties of
the distributed scatterer and the observed SAR data, hence
making it possible the inversion of this process in order to

extract physical information from observed multidimensional
SAR data. Most of these techniques have the covariance
matrix C, or certain information derived from it, as the
main input of the inversion process. Since due to the intrinsic
nature of SAR systems, direct access to the covariance matrix
C is not possible, it must be estimated from the observed
multidimensional SAR data.

As shown in Sect. 1.2.1, the estimation of incoherent
power may be also understood as a filtering process. One
alternative to define this filtering process is to assume a given
noise model able to identify the information of interest and
the noise sources that corrupt this information. In the case of
single SAR images, this noise model corresponds to the
multiplicative speckle noise model in (1.95). In the case of
multidimensional SAR data, this model cannot be extended
to the whole covariance matrix Z as it would imply uncorre-
lated SAR images. Nevertheless, the multiplicative speckle
noise model can be extended to model the diagonal as well as
the off-diagonal elements of Z (Lopez Martínez and Fabregas
2003). In this case, the nature of the speckle noise for a
particular element of the covariance matrix depends on the
correlation that characterizes this element. For low correla-
tion, speckle noise presents an additive nature, whereas for
high correlation, speckle noise is characterized by a multipli-
cative behaviour. Consequently, this model is referred to as
the multiplicative-additive speckle noise model for multidi-
mensional SAR data.

1.2.4 The Polarimetric Covariance
and Coherency Matrix

As indicated in the previous section, the characterization of
distributed scatterers must be performed through the covari-
ance C or the coherency T matrices. In a bistatic configura-
tion, and according to what has been presented in Sect.
1.1.2.2, these two matrices are defined as
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and
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respectively. In the case of a monostatic system configura-
tion, the covariance and the coherency matrices are defined as
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and

T ¼ E kpkT�p
n o

¼

E Shh þ Svvj j2
n o

E Shh þ Svvð Þ Shh � Svvð Þ�f g E 2 Shh þ Svvð ÞS�hv
	 


E Shh � Svvð Þ Shh þ Svvð Þ�f g E Shh � Svvj j2
n o

E 2 Shh � Svvð ÞS�hv
	 


E 2Shv Shh þ Svvð Þ�f g E 2Shv Shh � Svvð Þ�f g E 4 Shvj j2
n o

266664
377775: ð1:107Þ

As demonstrated in the previous section, the maximum
likelihood estimator of the expectation operator E{�} and
therefore the maximum likelihood estimator of the covari-
ance and coherency matrices correspond to the spatial aver-
aging, referred to as multilook or boxcar filter. In this case,
the estimated covariance and coherency matrices receive the
names of sample covariance and sample coherency matrices,
respectively.

Eqs. (1.106) and (1.107) represent the most general form
of the covariance and coherency matrices, respectively, for a
monostatic configuration. As these matrices are Hermitian,
they contain up to nine independent parameters. Neverthe-
less, depending on the type of scatterer, the number of inde-
pendent parameters can be lower leading to a particular form

of the covariance C or the coherency T matrices. If the
scatterer under study has reflection symmetry in a plane
normal to the line of sight, then the covariance and the
coherency matrices will have the following general forms:

C ¼
c11 0 c13
0 c22 0

c31 0 c33

264
375,

T ¼
t11 t12 0

t21 t22 0

0 0 t33

264
375, ð1:108Þ
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that is, the cross-polar scattering coefficient will be uncorre-
lated with the co-polar terms. Under this hypothesis, the
covariance C or the coherency T matrices present up to five
independent parameters. In addition to reflection symmetry, a
medium may also exhibit rotation symmetry. This type of
symmetry is referred to as azimuthal symmetry, leading to a
coherency matrix presenting the following form:

T ¼ 2

α 0 0

0 β 0

0 0 β

264
375 ð1:109Þ

which has only two independent parameters α and β.

1.2.5 The Polarimetric Coherence

From the expressions of the covariance and coherency matri-
ces that were introduced in Sect. 1.2.4, one may see that the
elements of these matrices may be divided into two types: on
the one hand, the diagonal elements containing the power
information and, on the other hand, the off-diagonal elements
that contain the correlation information between the different
channels of information. This correlation information may be
considered in an absolute way by considering just the
off-diagonal elements of these matrices. Nevertheless, this
correlation information may be also considered in a relative
way through the so-called complex correlation parameter,
defined as

ρ ¼ ρe jϕx
�� �� ¼ E SkS

�
l

	 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n o

E Slj j2
n or : ð1:110Þ

This parameter contains the information of statistical
resemblance between any two SAR images Sk and Sl. Indeed,
these SAR images correspond to the different elements of the
target vector k defined in Sect. 1.1.2.2. The amplitude of the
complex correlation coefficient, normally referred to as cor-
relation |ρ|, presents a value in the range [0,1]. If |ρ| ¼ 0 it
means that both SAR images are statistically independent,
and the phase ϕx contains no information. For |ρ| ¼ 1, both
SAR images are statistically equal, and the phase informa-
tion, free of noise, is a delta function containing information
about the scattering process. For any other value, |ρ|
establishes the correlation between both SAR images, and
the phase information ϕx is contaminated by the effect of
speckle noise.

In multidimensional SAR imagery, the complex correla-
tion coefficient has been revealed as an important source of
information. In particular, the correlation coefficient ampli-
tude, named coherence, apart from depending on the SAR

system characteristics, is also influenced by the physical
properties of the area under study. The complex correlation
coefficient is the most important observable for InSAR
(Bamler and Hartl 1998). On the one hand, and considering
the acquisition geometry, it has been demonstrated that its
phase contains information about the Earth’s surface topog-
raphy. Therefore, InSAR phase data are employed to derive
Digital Elevation Models (DEMs) of the terrain. On the other
hand, although there is not a complete understanding about
the parameters and the physical processes affecting the inter-
ferometric coherence, it has been shown that this parameter
may be successfully employed to characterize the properties
and the dynamics of the Earth’s surface.

The coherence represents also an important source of
information when PolSAR data are addressed. In particular,
the complex correlation coefficient parameter derived from
circularly polarized data has been employed to characterize
rough surfaces (Mattia et al. 2003), to study the sea surface
(Kasilingam et al. 2002) or to discriminate sea ice types
(Wakabayashi et al. 2004). When obtained from linearly
polarized data, the coherence has been also employed to
characterize the forest cover in the Colombian Amazon
(Hoekman and Quinones 2002). In conjunction with polari-
metric techniques, i.e. polarimetric SAR interferometry
(PolInSAR), the interferometric coherence is employed to
retrieve the forest vegetation (Cloude and Papathanassiou
1998) or the crop plants heights (Ballester Berman et al.
2005).

All the techniques listed in the previous paragraph rely on
a correct estimation of the coherence parameter. The
estimated coherence values are overestimated, especially for
low coherence values (Touzi et al. 1999). Under the homoge-
neity hypothesis, the coherence accuracy and bias depend on
the extent of the averaging or estimation process, in such a
way that the larger the number of averaged pixels, the higher
the coherence accuracy and the lower the bias. Therefore,
since coherence accuracy is achieved at the expense of spatial
resolution and spatial details, this point represents a clear
trade-off for coherence estimation. Coherence estimation
techniques rely also on the hypothesis that all the signals
involved in the estimation process are stationary and in
particular locally stationary processes. When this is not the
case, biased coherence values result (Touzi et al. 1999).
Hence, a lack of signal stationarity can be considered as a
second source of bias for coherence estimation. The depar-
ture of the stationarity condition may be induced by system-
atic phase variations mainly due to the terrain topography but
also to atmospheric effects or to deformation gradients. The
most reliable technique to eliminate this bias is to compensate
for the topography by means of external DEMs. Neverthe-
less, the DEMmay not be available for the scene under study,
or its quality may be rather low for coherence estimation
purposes. There exist alternative coherence estimation

28 C. López-Martínez and E. Pottier



techniques aiming to solve these problems with different
level of success.

1.2.6 Polarimetric Speckle Noise Filtering

As it has been explained previously, a PolSAR system
measures the scattering matrix S for every pixel. In the case
of deterministic or point scatterers, this matrix determines
completely the scattering process, and it can be directly
employed to retrieve physical information of the scatterer.
Nevertheless, in the case of distributed scatterers, the scatter-
ing matrix S is no longer deterministic but random due to the
complexity of the scattering process. As indicated, this ran-
dom behaviour is referred to as speckle. Speckle is a true
scattering measurement, but the complexity of the scattering
process makes it necessary to consider it as a noise source.
Consequently, the information of interest is no longer the
scattering matrix, but the different stochastic moments neces-
sary to specify completely the probability density function of
the SAR data. These moments must be estimated from the
measured data, or said in a different way, speckle noise must
be filtered out or even eliminated to grant access to these
statistical moments. In the case of PolSAR data, under the
assumption of the vector k to be distributed according to the
zero-mean, complex Gaussian distribution (1.98), these
moments correspond to the covariance C or the coherency
T matrices.

Section 1.2.3 already introduced the simplest approach to
estimate the covariance or the coherency matrices, i.e. the
multilook (1.100), which corresponds to an incoherent aver-
age or a spatial average. Although the multilook approach
corresponds to the maximum likelihood estimator of the
covariance or coherency matrices, it presents the drawback
that the estimation of the data is obtained at the expense of
degrading the spatial resolution and the spatial details of the
data. Figure 1.7 shows an example of these effects.

Considering the limitations of the multilook filtering
approach, it is necessary to define different filtering
alternatives that improve the multilook approach in such a
way that they are able to retain the spatial resolution and the
spatial details of the image but also lead to a correct and
unbiased estimation of the covariance and coherency
matrices.

1.2.6.1 PolSAR Speckle Noise Filtering Principles
The objective of any PolSAR speckle noise filter to be
defined is to estimate the covariance or the coherency matrix
while retaining the spatial resolution and the spatial details of
the data. From a general point of view, it would be necessary
to determine the general principles a PolSAR filter should
follow in order to perform a correct estimation of the infor-
mation of interest. Different authors have addressed the

necessity to specify the general principles of a PolSAR
speckle filter and which are the potential limitations: Touzi
et al. (Touzi and Lopes 1994), Lee et al. (Lee et al. 1999) and
López-Martínez et al. (Lopez Martínez and Fabregas 2008).

In the previous three references, as the data is assumed to
be characterized by the zero-mean, complex Gaussian pdf,
the information to retrieve is on the second-order moments of
the PolSAR data. In (Touzi and Lopes 1994), the authors
propose the use of the Mueller matrix, although they also
consider the covariance matrix. In (Lee et al. 1999; Lopez
Martínez and Fabregas 2008), the filtering is performed on
the covariance or on the coherency matrices. In any case, the
use of the covariance, the coherency or the Mueller matrices
to filter the data is equivalent as all these matrices contain the
same information. For instance, as indicated previously in
Sect. 1.1.2.2, the covariance and the coherency matrices are
related by similarity transformations. Implicitly, the authors
are considering that these matrices contain all the necessary
information to characterize the PolSAR data. This assump-
tion is only valid under the hypothesis of (1.98), which only
applies in the case of stationary data. The presumption of
more evolved stochastic data models that may take into
account additional signal variability, for instance, texture,
are always associated with the necessity to estimate addi-
tional stochastic moments associated with the texture
information.

Another point in which all the previous three references
are in agreement is the need to consider the estimation of the
previous matrices locally, adapting to the stationarity or
homogeneity of the PolSAR data. This requirement is
justified from two different points of view. The first one
refers, due to the stationarity of PolSAR data, to the need to
maintaining the spatial resolution and the radiometric infor-
mation in the case of point or deterministic scatterers, which
may be extended to the idea of preserving the spatial resolu-
tion and the spatial details of the PolSAR data. The second
refers to the fact that in the case of distributed scatterers, the
covariance matrix must be estimated on stationary data,
avoiding the mixture of different stationary areas. This idea
implies that the PolSAR filter must adapt the filtering process
to the morphology of the PolSAR data. The differences
between the filtering principles for PolSAR data proposed
by Touzi and Lopes (1994), Lee et al. (1999) and Lopez
Martínez and Fabregas (2008) are on how to consider the
information that may be provided by the off-diagonal
elements of the covariance or coherency matrices and
whether this information may be employed to optimize
speckle noise reduction or not. The approaches proposed by
Touzi and Lopes (1994) and Lee et al. (1999)) suggest an
extension of the multiplicative speckle noise model that
applies for the diagonal entries of the covariance matrix to
the off-diagonal ones, although it is also admitted that this
extension may not lead to an optimum filtering of the speckle
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noise component. In (Lee et al. 1999), the authors even
propose that the use of the degree of statistical independence
between elements must be avoided in order to avoid crosstalk
and that all the elements of the covariance matrix must be
filtered by the same amount. These principles were extended
in (Lopez Martínez and Fabregas 2008), based on a more
accurate PolSAR speckle noise model for the off-diagonal
elements of the covariance matrix (Lopez Martínez and
Fabregas 2003). This model predicts that for a given
off-diagonal element of the covariance matrix, speckle

presents a complex additive nature for low coherence values,
whereas speckle tends to be multiplicative in the case of high
coherences. Consequently, an optimum speckle noise reduc-
tion should adapt to the type of noise for the off-diagonal
elements of the covariance matrix, that is, filtering must adapt
to the level of coherence (Lopez Martínez and Fabregas
2008). As it may be concluded, a PolSAR filter needs also
to be adapted to the polarimetric information content of the
data. Consequently, in connection with what has been
explained previously, the way a PolSAR filter adapts to the

Fig. 1.7 RADARSAT-2 polarimetric RGB image over San Francisco (USA) where the colour code is Shh blue, Svv red and Shv green. (a) Original
image and (b) filtered image with a 7 � 7 multilook filter
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local information must consider all the information provided
by the covariance or coherency matrices.

1.2.6.2 PolSAR Speckle Noise Filtering Alternatives
As indicated in Sect. 1.2.3, the first alternative to estimate the
covariance or the coherency matrices is to consider their
maximum likelihood estimator that corresponds to an inco-
herent spatial average as expressed in (1.101). In this case,
the estimation of the information is obtained at the expense of
the loss of spatial resolution and spatial details. Conse-
quently, in order to avoid the previous drawbacks, the
PolSAR data filters should adapt to the morphology of the
SAR image to retain the spatial details while leading to a
correct and unbiased estimation of the covariance or coher-
ency matrices.

PolSAR images are inherently heterogeneous as they
reflect the heterogeneity of the Earth surface. Consequently,
a first alternative to adapt to this heterogeneity, in order to
avoid the loss of spatial resolution and spatial details, is to
adapt locally to the signal morphology. One option to achieve
this local adaptation is to consider edge aligned windows, as
proposed in (Lee et al. 1999). Previously to the PolSAR data
filtering process, the algorithm in (Lee et al. 1999), known as
refined Lee filter, proposed the use of directional masks,
within the analysis window, to determine the most homoge-
neous part of the sliding window where the local statistics
have to be estimated. This spatial adaptation permits to pre-
serve relatively sharp edges and local details. Once the direc-
tional mask defines the homogeneous pixels that have to be
employed to estimate the covariance or the coherency matri-
ces, these are estimated by means of the Local Linear Mini-
mum Mean Square Error (LLMMSE) approach, i.e.

bZ ¼ Zþ b Z� Z
� � ð1:111Þ

where bZ is the estimated value of the covariance matrix, Z is
the local mean covariance matrix computed with the homo-
geneous pixels selected by the edge aligned window and
Z corresponds to the covariance matrix of the central pixel.
Finally, b is a weighting function having a value between
0 and 1 derived from the statistics of the Span image. Over
homogeneous areas, b� 0 so the estimated covariance matrix
corresponds to the values of the local means as it would be
expected in absence of spatial details. Nevertheless, in the
case the central pixel of the analysis window corresponds to a
deterministic scatterer, b � 1 producing bZ to be the covari-
ance matrix of the central pixel. Consequently, the pixel is
not filtered and the spatial resolution is preserved, as
observed in Fig. 1.8. In relation with the filtering procedure
proposed in (Lee et al. 1999), the authors proposed also a
filtering alternative where the pixels to be averaged within the
analysis window are those with the same scattering

mechanism as the central pixel, obtained through the
Freeman-Durden decomposition (Lee et al. 2006).

As it may be observed, the previous filtering approach
adapts to the signal morphology through a family of edge
aligned windows. Hence, the adaptation to the signal morphol-
ogy is restricted to a finite family of aligned windows. In
(Vasile et al. 2006), the authors extended the ideas presented
in (Lee et al. 1999), but instead of considering edge aligned
windows, the authors introduced the concept of region grow-
ing to define an adaptive set of homogeneous pixels
surrounding the pixel under analysis in order to adapt to the
local morphology of the data. As in the case of Lee et al.
(1999)), the adaptation to the signal morphology is achieved
through the Span image. The region growing process is based
on comparing a given pixel against its neighbours to determine
their similarity by considering their corresponding covariance
and coherency matrices. Since a PolSAR system provides for
every pixel only the scattering matrix, an initial process of
regularization that assures full-rank covariance or coherency
matrices is necessary. This regularization process could be
performed with the multilook filter, but it would introduce a
loss of spatial resolution and spatial details. In (Lee et al.
1999), the authors propose the use of the median filter. Never-
theless, this alternative introduces a bias in the estimated data,
as in the case of non-symmetric distributions, such as the one
of the amplitude or the intensity of a SAR image or the one of
the Span, the median does not correspond to the mean.

All the previous filtering approaches adapt to the signal
morphology locally under the assumption that the pixels
surrounding the pixel of analysis present a high probability
to be statistically similar. Hence, these filters assume that the
data are locally stationary. Nevertheless, it has been recently
demonstrated that this idea of local stationary could be
relaxed under the assumption that similar pixels to the one
of analysis are available not only on the neighbourhood of the
pixel of analysis but on the complete image (Deledalle et al.
2010).

In order to increase the filtering effect, one option, as
shown in (Vasile et al. 2006), is to increase the number of
homogeneous pixels to be averaged that are similar to the
pixel under consideration. In (Vasile et al. 2006), as well as in
(Lee et al. 1999), the similarity is measured considering only
the information contained in the diagonal elements of the
covariance or coherency matrices. Therefore, these
approaches neglect the information provided by the
off-diagonal elements of these matrices. The way to take
into account all the information provided by the covariance
or the coherency matrices is to consider the concept of the
distance in the space defined by the matrices themselves.
This approach has been considered in (Deledalle et al.
2010) as well as in (Alonso Gonzalez et al. 2012). In (Alonso
Gonzalez et al. 2012), the authors propose to introduce the
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concept of binary partition tree (BPT) as a hierarchical
structure to exploit the relations that may be established
between similar pixels. In essence, the filtering alternative
proposed in (Alonso Gonzalez et al. 2012) produces first a
binary partition tree that establishes the relations between
similar pixels on the basis of a distance that takes into account
all the polarimetric information. In a second step, the binary
partition tree is pruned to find the largest homogeneous
regions of the image. This filtering alternative allows to filter
large homogeneous areas while maintaining the spatial
details of the data as observed in Fig. 1.9.

The objective of all the previous filtering techniques is to
obtain the best estimate of the covariance or coherency matri-
ces by means of increasing the number of averaged samples.
Nevertheless, if the number of available homogeneous pixels
is not large enough, the way to improve the estimation of the
covariance and coherency matrices must be addressed by
considering a better exploitation of the Wishart distribution.
As shown in (Lopez Martínez and Fabregas 2003), the
Wishart distribution allows defining the multiplicative-
additive speckle noise model for all the elements of the
covariance or the coherency matrices. This model has been
exploited for PolSAR data filtering in (Lopez Martínez and
Fabregas 2008), where it is demonstrated that if the filtering
process is adapted to the multiplicative or additive nature of
speckle, depending on the correlation of a pair of SAR
images, it may lead to an improved estimation of the different
parametric parameters that characterize the covariance or
coherency matrices.

Beyond all the PolSAR data filtering techniques presented
in this section, there exist a wide variety of similar
approaches in the related literature, where a comparison
among some of them has been presented in (Foucher et al.
2012). Nevertheless, it may be concluded that reaching an
optimal compromise of a joint preservation of the polarimet-
ric and the spatial information, in the case of PolSAR data
filtering, is still today a problem without an adequate solu-
tion. Consequently, the selection of a particular filtering
alternative for PolSAR data must take into consideration the
final application of the PolSAR data in order to determine the
optimum filtering according to that application.

1.3 Polarimetric Scattering Decomposition
Theorems

As shown in Sect. 1.1.2, the scattering matrix or the covari-
ance and coherency matrices allow the characterization of a
scatterer for a given frequency and a given imaging geome-
try. The information provided by these matrices, at a particu-
lar combination of transmitting and receiving polarization
states, can be extended to any polarization state, thanks to
the concept of polarization synthesis. Nevertheless, when
facing real polarimetric SAR data, the interpretation of
these matrices is not straightforward due to the complexity
of the scattering process and the high variability of the
scatterers. Polarimetric decomposition techniques appear as
a solution to interpret the information provided by the

Fig. 1.8 RADARSAT-2 polarimetric RGB image over San Francisco (USA) where the colour code is Shh blue, Svv red and Shv green. Filtered image
with the LLMMSE speckle filter
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scattering and the covariance and coherency matrices. These
decomposition techniques must be divided into two main
classes. The first one, referred to as coherent polarimetric
decompositions, makes reference to those decomposition
techniques applied to the scattering matrix. The validity of
these decomposition techniques is restricted to point
scatterers, that is, scatterers not affected by the speckle
noise component. If applied to distributed scatterers, these
decompositions would be random as they are not able to cope
with the stochastic nature of the measurements. Distributed
scatterers, on the contrary, can be analysed by the so-called
incoherent polarimetric decompositions that base the analysis
on the covariance or coherency matrices.

1.3.1 Coherent Scattering Decomposition
Techniques

Section 1.1.2.1 introduced the 2 � 2 complex scattering
matrix as a mathematical operator able to describe the scat-
tering process that occurs when a wave reaches a given
scatterer. As indicated, this matrix contains the necessary
information to determine the far-field scattered wave by the
scatterer as a function of the incident wave. Consequently,
the scattering matrix characterizes the scatterer, for the
employed imaging geometry and the working frequency. As
indicated in Table 1.6, simple canonical scattering
mechanisms may be recognized from the scattering matrix.
Nevertheless, in real measurements, the scattering matrix

usually presents a more complex structure that hinders the
interpretation in physical terms. The objective behind coher-
ent scattering decomposition techniques is to decompose the
measured scattering matrix by the SAR system, i.e. S, as a
combination of the scattering matrices corresponding to sim-
pler scatterers:

S ¼
Xk
i¼1

ciSi: ð1:112Þ

In (1.157), the symbol Si corresponds to the response of
every one of the simple or canonical scatterers, whereas the
complex coefficients ci indicate the weight of Si in the com-
bination leading to the measured S. As observed in (1.112),
the term combination refers to the weighted addition of the
k scattering matrices. In order to simplify the understanding
of (1.112), but also with the objective to make possible the
decomposition itself, it is desirable that the matrices Si pres-
ent the property of independence among them to avoid a
particular scattering behaviour to appear in more than one
matrix Si. Often, the independence condition is substituted by
the most restrictive property of orthogonality of the
components Si. Orthogonality helps to eliminate possible
ambiguities in the decomposition of the scattering matrix in
those cases in which the elements Si are not orthogonal.

The scattering matrix S characterizes the scattering pro-
cess produced by a given scatterer and therefore the scatterer
itself. This is possible only in those cases in which both the

Fig. 1.9 RADARSAT-2 polarimetric RGB image over San Francisco (USA) where the colour code is Shh blue, Svv red and Shv green. Filtered image
with the BPT speckle filter
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incident and the scattered waves are completely polarized
waves. Consequently, coherent scattering decompositions
can be only employed to study the so-called coherent
scatterers. These scatterers are also known as point or pure
targets.

In a real situation, the measured scattering matrix by the
radar S corresponds to a complex coherent scatterer. Only in
some occasions, this matrix will correspond to a simpler or
canonical object, in which a good example is, for instance,
the trihedrals employed to calibrate SAR imagery. Other
simple scattering mechanisms may be observed in
Table 1.6. Nevertheless, in a general situation, a direct analy-
sis of the matrix S, with the objective to infer the physical
properties of the scatterer under study, is shown to be com-
plex. Consequently, the physical properties of the target
under study are extracted and interpreted through the analysis
of the simpler responses Si and the corresponding complex
coefficients ci in (1.112).

The decomposition exposed in (1.112) is not unique in the
sense that it is possible to find a number of infinite sets
{Si; i ¼ 1, . . ., k} in which the matrix S can be decomposed.
Nevertheless, only some of the sets {Si; i ¼ 1, . . ., k} are
convenient in order to interpret the information contained in
S. Two examples of these decomposition bases have been
already shown in Sect. 1.1.2.2. Other examples of coherent
scattering decompositions are the Krogager (Krogager 1990)
or the Cameron decompositions (Cameron and Leung 1990).

1.3.1.1 The Pauli Decomposition
The most relevant coherent scattering decomposition is the
Pauli decomposition that was already introduced in Sect.
1.1.2.2. The Pauli decomposition expresses the measured
scattering matrix S in the so-called Pauli basis. If we consid-

ered the conventional orthogonal linear basis bh, bv,n o
, in a

general case, the Pauli basis {Sa, Sb, Sc, Sd} is given by the
following four 2 � 2 matrices:

Sa ¼ 1ffiffiffi
2

p 1 0

0 1

� �
ð1:113Þ

Sb ¼ 1ffiffiffi
2

p 1 0

0 �1

� �
ð1:114Þ

Sc ¼ 1ffiffiffi
2

p 0 1

1 0

� �
ð1:115Þ

Sd ¼ 1ffiffiffi
2

p 0 �1

1 0

� �
: ð1:116Þ

Asmentioned, it has been always considered that Shv¼ Svh,
since reciprocity applies in a monostatic system configuration

under the BSA convention. In this situation, the Pauli basis
can be reduced to a basis composed by the matrices (1.113),
(1.114) and (1.115), that is, {Sa, Sb, Sc}. Consequently,
given a measured scattering matrix S, this matrix can be
expressed as follows:

S ¼ Shh Shv
Shv Svv

� �
¼ aSa þ bSb þ cSc ð1:117Þ

where the complex coefficients that determine the contribu-
tion of every component of the basis can be obtained as

a ¼ Shh þ Svvffiffiffi
2

p , b ¼ Shh � Svvffiffiffi
2

p , c ¼
ffiffiffi
2

p
Shv ð1:118Þ

From the previous equations, it can be shown that

SPAN Sð Þ ¼ aj j2 þ bj j2 þ cj j2: ð1:119Þ

The interpretation of the Pauli decomposition must be
done according to the matrices {Sa, Sb, Sc} and their
corresponding decomposition coefficients, i.e. {a, b, c}. In
Sect. 1.1.2.1 it was seen that the matrices {Sa, Sb, Sc} corre-
spond to the scattering behaviour of some canonical bodies.

The matrix Sa corresponds to the scattering matrix of a
sphere, a plate or a trihedral; see Table 1.6. Generally, Sa is
referred to as single- or odd-bounce scattering. Hence, the
complex coefficient a represents the contribution of Sa to the
final measured scattering matrix. In particular, the intensity of
this coefficient, i.e. |a|2, determines the power scattered by
scatterers characterized by single- or odd-bounce.

The second matrix Sb represents the scattering mechanism
of a dihedral oriented at 0 degrees; see Table 1.6. In general,
this component indicates a scattering mechanism
characterized by double- or even-bounce, since the polariza-
tion of the returned wave is mirrored with respect to the one
of the incident wave. Consequently, b stands for the complex
coefficient of this scattering mechanism, and |b|2 represents
the scattered power by this type of targets.

Finally, the third matrix Sc corresponds to the scattering
mechanism of a diplane oriented at 45 degrees. As it can be
observed in (1.115), and considering that this matrix is

expressed in the linear orthogonal basis bh, bv,n o
, the

scatterer returns a wave with a polarization orthogonal to
the one of the incident wave. From a qualitative point of
view, the scattering mechanism represented by Sc is referred
to those scatterers which are able to return the orthogonal
polarization, from which one of the best examples is the
volume scattering produced by the forest canopy. The com-
plex scattering that occurs in the forest canopy, characterized
by multiple reflections, makes possible to return energy on
the orthogonal polarization, with respect to the polarization
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of the incident wave. Consequently, this third scattering
mechanism is usually referred to as volume scattering. The
coefficient c represents the contribution of Sc to S, whereas |
c|2 stands for the scattered power by this type of scatters.

The Pauli decomposition of the scattering matrix is often
employed to represent the polarimetric information in a sin-
gle SAR image. The polarimetric information of S could be
represented with the combination of the intensities |Shh|

2, |
Svv|

2 and 2|Shv|
2 in a single RGB image, i.e. each of the

previous intensities coded as a colour channel. The main
drawback of this approach is the physical interpretation of
the resulting image in terms of |Shh|

2, |Svv|
2 and 2|Shv|

2.
Consequently, a RGB image can be created with the
intensities |a|2, |b|2 and |c|2, which, as indicated previously,
correspond to clear physical scattering mechanisms. Thus,
the resulting colour image can be employed to interpret the
physical information from a qualitative point of view. The
most employed codification corresponds to

aj j2 ! Blue, bj j2 ! Red, cj j2 ! Green: ð1:120Þ

Then, the resulting colour of the RGB image is interpreted
in terms of scattering mechanism as given in (1.113)–(1.115);
see Fig. 1.10.

1.3.2 Incoherent Scattering Decompositions
Techniques

As explained in the previous sections, the scattering matrix
S is only able to characterize the point or deterministic

scatterers. In this case, the scattering process is completely
determined by the five independent parameters the matrix
S may present. On the contrary, this matrix cannot be
employed to characterize, from a polarimetric point of view,
the distributed scatterers, as the five independent parameters
of the S matrix are insufficient to characterize the scattering
process. As detailed in Sect. 1.2, distributed scatterers can be
only characterized statistically due to the presence of speckle
noise by means of higher-order descriptors. Since speckle
noise must be reduced, only second-order polarimetric
representations can be employed to analyse distributed
scatterers. In the case of monostatic scattering under the
BSA convention, these second-order descriptors are the
3 � 3 Hermitian covariance C or coherency T matrices.

The complexity of the scattering process makes extremely
difficult the physical study of a given scatterer through the
direct analysis of C or T. Hence, the objective of the incoher-
ent decompositions is to separate the C or T matrices as the
combination of second-order descriptors corresponding to
simpler or canonical objects, presenting an easier physical
interpretation. These decomposition theorems can be
expressed as

C ¼
Xk
i¼1

piCi,T ¼
Xk
i¼1

qiTi ð1:121Þ

where the canonical responses are represented by Ci and Ti

and pi and qi denote the coefficients of these components in
C or T, respectively. As in the case of the coherent
decompositions, it is desirable that these components present
some properties. First of all, it is desirable that the

Fig. 1.10 RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA) where the colour code is |Shh + Svv|
2 blue, |Shh � Svv|

2 red and
2|Shv|

2 green
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components Ci and Ti correspond to pure scatterers in order
to simplify the physical study. Nevertheless, this condition is
not absolutely necessary, and Ci and Ti may also represent
distributed scatterers. In addition, the components Ci and Ti

should be independent or, in a more restrictive way,
orthogonal.

1.3.2.1 Three-Component Freeman
Decomposition

The Freeman decomposition, also known as Freeman-
Durden decomposition (Freeman and Durden 1998), is the
best exponent of the so-called model-based decompositions.
In this type of decompositions, the canonical scattering
mechanisms Ci and Ti in which the original matrices are
decomposed into are fixed by the decomposition itself,
i.e. the scattering mechanisms are imposed. In particular,
the Freeman decomposition decomposes the original covari-
ance or coherency matrices into the three following scattering
mechanisms:

• Volume scattering, where a canopy scatterer is modelled
as a set of randomly oriented dipoles

• Double-bounce scattering, modelled as a dihedral corner
reflector

• Surface or single-bounce scattering, modelled as a first-
order Bragg surface scatterer

In the following, and without lack of generality, a formu-
lation in terms of the covariance matrix C is considered.

The volume scattering component, mainly considered in
forested areas, is modelled as the contribution from an
ensemble of randomly oriented thin dipoles. If the set of
randomly oriented dipoles are oriented according to a
uniform phase distribution, the covariance matrix of the
ensemble of thin dipoles corresponds to the following covari-
ance matrix:

Cv ¼ f v
8

3 0 1

0 2 0

3 0 3

264
375 ð1:122Þ

where fv corresponds to the contribution of the volume scat-
tering. The covariance matrix Cv presents a rank equal to
3. Thus, the volume scattering cannot be characterized by a
single scattering matrix of a pure scatterer. Finally, it is worth
to indicate, as observed in (1.122), that the model assumed
for forest scattering in the Freeman decomposition is fixed. In
contrast, the other two scattering components of the decom-
position, as it will be shown, admit a higher degree of
flexibility.

The second component of the Freeman-Durden decompo-
sition corresponds to double-bounce scattering. In this case, a
generalized corner reflector is employed to model this

scattering process. The diplane itself is not considered metal-
lic. Hence, it is assumed that the vertical surface presents
reflection coefficients Rth and Rtv for the horizontal and the
vertical polarizations, respectively, whereas the horizontal
surface presents the coefficients Rgh and Rgv for the same
polarizations. Additionally, two phase components for the
horizontal and the vertical polarizations are considered,
i.e. e j2γh and e j2γv, respectively. The complex phase constants
γh and γh account for any attenuation or phase change effect.
Hence, the covariance matrix of the double-bounce scattering
component, after normalization with respect to the Svv com-
ponent, can be written as follows:

Cd ¼ f d

αj j2 0 α

0 0 0

α� 0 1

264
375 ð1:123Þ

where

α ¼ e j2 γh�γvð Þ RghRth

RgvRtv
ð1:124Þ

and fd corresponds to the contribution of the double-bounce
scattering to the |Svv|

2component:

f d ¼ RgvRtv

�� ��2: ð1:125Þ

As it can be observed, in this case the covariance matrix
Cd presents a rank equal to 1, and therefore it may be
represented by a scattering matrix.

The third component of the Freeman-Durden decomposi-
tion consists of a first-order Bragg surface scattering
modelling a surface rough scattering. Considering Rh and
Rv the reflection coefficients for horizontally and vertically
polarized waves, the covariance matrix corresponding to this
scattering component is

Cs ¼ f s

βj j2 0 β

0 0 0

β� 0 1

264
375 ð1:126Þ

where fs corresponds to the contribution of the double-bounce
scattering to the |Svv|

2 component:

f s ¼ Rvj j2 ð1:127Þ

and

β ¼ Rh

Rv
: ð1:128Þ
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As in the case for the double-bounce scattering mecha-
nism, Cs presents a rank equal to 1.

Finally, it can be seen that the Freeman decomposition
expresses the measured covariance matrix C as

C ¼ Cv þ Cd þ Cs ð1:129Þ

that takes the expression

C ¼

3 f v
8

þ f d αj j2 þ f s βj j2 0
f v
8

þ f dαþ f sβ

0
2 f v
8

0

f v
8

þ f dα
� þ f sβ

� 0
3 f v
8

þ f d þ f s

2666664

3777775:
ð1:130Þ

As one may deduce from (1.130), the Freeman decompo-
sition presents five independent parameters {fv, fd, fs, α, β}
but only four equations. Consequently, some hypothesis must
be considered in order to find the values of {fv, fd, fs, α, β}.
Considering that the Span of the covariance matrix may be
expressed as a function of the power scattered by each com-
ponent of the decomposition {Cv, Cd, Cs}, i.e.

SPAN Cð Þ ¼ Shhj j2 þ Svvj j2 þ 2 Shvj j2
¼ Pv þ Pd þ Ps ð1:131Þ

the term Pv corresponds to the contribution of the volume
scattering of the final covariance matrix C. Hence, the
scattered power by this component may be written as

Pv ¼ f v: ð1:132Þ

The power scattered by the double-bounce component is
expressed as

Pd ¼ f d 1þ αj j2
� �

, ð1:133Þ

whereas the power scattered by the surface component is

Ps ¼ f s 1þ βj j2
� �

: ð1:134Þ

Consequently, the scattered power at each component
{Pv, Pd, Ps} may be employed to generate a RGB image,
similarly as in the case of the Pauli decomposition, to present
all the colour-coded polarimetric information in a unique
image; see Fig. 1.11.

1.3.2.2 Four-Component Yamaguchi
Decomposition

As it may be observed in (1.130), the three-component Free-
man decomposition is based on the assumption that the
analysed scatterer presents reflection symmetry, that is, the
correlation of the co-polar channels, either Shh or Svv, with the
cross-polar one Shv is zero, that is, E ShhS

�
hv

	 
 ¼ 0 and
E ShvS

�
vv

	 
 ¼ 0 . This type of symmetry in the scattering
process appears normally in the case of natural distributed
scatterers such as forests or grassland areas. Nevertheless, in
the case of more complex scattering scenarios, for instance,
man-made scatterers, this assumption is no longer true. In
addition to the previous limitation, the Freeman decomposi-
tion, as detailed in the previous section, considers only one
type of volume scattering, as reflected in (1.122), where the
scattering at the co-polar channels are supposed equal, i.e. E{|
Shh|

2} ¼ E{|Svv|
2}. The four-component Yamaguchi decom-

position is proposed to overcome the previous two limitations
of the Freeman decomposition (Yamaguchi et al. 2005).

If one considers the canonical scattering mechanisms
presented in Table 1.6, it may be observed that only the
rotated thin cylinder or the right- and left-handed helices are
able to produce a covariance matrix such that E ShhS

�
hv

	 
 6¼ 0
and E ShvS

�
vv

	 
 6¼ 0 and therefore produce a covariance
matrix without reflection symmetry. In the four-component
Yamaguchi decomposition, the authors propose to take into
account the absence of this type of symmetry by considering
first the three scattering mechanisms considered by the Free-
man decomposition, that is, volume, double-bounce and sur-
face scattering, together with a fourth component composed
by either the left- or the right-handed helix scattering
(Krogager 1990). In particular, the helix scattering is
characterized by generating a left-handed or a right-handed
circular polarization for all incident linear polarizations,
according to the scatterer helicity. The left-handed helix,
whose scattering matrix is presented in Table 1.6, leads to
the following covariance matrix:

Clh ¼ f c
4

1 �j
ffiffiffi
2

p �1

j
ffiffiffi
2

p
2 �j

ffiffiffi
2

p

�1 j
ffiffiffi
2

p
1

264
375 ð1:135Þ

whereas the right-handed helix results in the following
covariance matrix:

Crh ¼ f c
4

1 j
ffiffiffi
2

p �1

�j
ffiffiffi
2

p
2 j

ffiffiffi
2

p

�1 �j
ffiffiffi
2

p
1

264
375 ð1:136Þ
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where fc accounts for the contribution of the helix compo-
nent. As it may be observed in the previous two matrices, the
inclusion of the helix component allows to consider a scatter-
ing mechanism without reflection symmetry. The selection of
the left- or the right-handed helix will be determined by the
sign of the imaginary part of E ShhS

�
hv

	 

or E ShvS

�
vv

	 

.

In order to model the volume scattering, the Freeman
decomposition considered a set of randomly oriented dipoles,
oriented according to a uniform phase distribution. Neverthe-
less, when confronted to a real forest, the effect of the trunk
and the branches, especially at high frequencies, may lead to
a scattering from a cloud of oriented dipoles but with a
non-uniform distribution. In this case, depending on the
main orientation of these thin dipoles, the power associated
with E{|Shh|

2} and E{|Svv|
2} may be different if the dipoles

are preferably oriented horizontally or vertically, respec-
tively. As it may be seen, the volume model considered by
the Freeman decomposition (1.122) cannot take into account
this effect. In order to account for this preference in the
orientation, instead of considering a uniform distribution for
the orientation of the thin dipoles, it is proposed to consider
the following distribution:

p θð Þ ¼
1
2
cos θ for θj j < π=2

0 for θj j > π=2

8<: ð1:137Þ

where θ is taken from the horizontal axis seen from the radar.
When considering a cloud of randomly oriented, very thin
horizontal dipoles, the volume scattering is represented by
the following scattering matrix:

Cv ¼ f v
15

8 0 2

0 4 0

2 0 3

264
375: ð1:138Þ

Otherwise, if the cloud of thin dipoles is considered to be
composed of vertical dipoles, the covariance matrix
representing the volume component is

Cv ¼ f v
15

3 0 2

0 4 0

2 0 8

264
375: ð1:139Þ

Fig. 1.11 Freeman decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). Top panel, from left to right:
Pd, Pv, Ps. Bottom panel: RGB composition with Pd red, Pv green and Ps blue
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In all the cases, fv corresponds to the contribution of the
volume scattering.

Allowing the volume scattering to depend on the main
orientation of the particles makes it necessary to introduce an
additional step in the decomposition able to select the volume
scattering most adapted to the data under observation. The
four-component Yamaguchi decomposition proposes to
select among (1.122), (1.138) and (1.139) according to the
ratio χ ¼ 10 log (E{|Svv|

2}/E{|Shh|
2}). Table 1.7 details the

procedure to select the type of volume scattering proposed in
(Yamaguchi et al. 2005).

Finally, the double-bounce and the surface scattering
components of the four-component Yamaguchi decomposi-
tion are the same as the Freeman decomposition. Conse-
quently, the Yamaguchi decomposition models the
covariance matrix as

C ¼

f c
4

þ f d αj j2 þ f s βj j2 �j

ffiffiffi
2

p
f c

4
� f c

4
þ f dαþ f sβ

∓j

ffiffiffi
2

p
f c

4
f c
2

�j

ffiffiffi
2

p
f c

4

� f c
4

þ f dα
� þ f sβ

� ∓j

ffiffiffi
2

p
f c

4
f c
4

þ f d þ f s

26666664

37777775

þ f v

a 0 d

0 b 0

d 0 c

264
375

ð1:140Þ

where the last matrix accounts for the volume scattering that
has been selected according to Table 1.7. As one may deduce
from (1.140), the four-component Yamaguchi decomposition
presents six independent parameters {fv, fd, fs, fc, α, β}.
Considering that the Span of the covariance matrix may be
expressed as a function of the power scattered by each com-
ponent of the decomposition {Cv, Cd, Cs, Clh/rh}, i.e.

SPAN Cð Þ ¼ Shhj j2 þ Svvj j2 þ 2 Shvj j2
¼ Pv þ Pd þ Ps þ Pc ð1:141Þ

the term Pv corresponds to the contribution of the volume
scattering of the final covariance matrix C. Hence, the
scattered power by this component may be written as

Pv ¼ f v, ð1:142Þ

the power scattered by the double-bounce component is
expressed as

Pd ¼ f d 1þ αj j2
� �

, ð1:143Þ

the power scattered by the surface component is

Ps ¼ f s 1þ βj j2
� �

, ð1:144Þ

whereas the power scattered by the helix component is

Pc ¼ f c: ð1:145Þ

Consequently, the scattered power at each component
{Pv, Pd, Ps, Pc} may be combined to generate a RGB
image similarly as in the case of the Pauli decomposition, to
present all the colour-coded polarimetric information in a
unique image; see Fig. 1.12.

1.3.2.3 Non-negative Eigenvalue Decomposition
As indicated in the previous two sections, both the Freeman-
Durden and the Yamaguchi decomposition work under the
hypothesis that the measured covariance matrix may be
decomposed as the sum of a set of scattering mechanisms.
Whereas the first decomposition assumes reflection symme-
try for the scattering medium, this limitation is addressed by
the second one by considering a fourth scattering component
represented by either the left- or the right-handed helix scat-
tering. All the scattering mechanisms in which the measured
covariance matrix is decomposed into are represented by
their corresponding covariance matrices. As shown in (Van
Zyl et al. 2011), these matrices should correspond to physical
scattering mechanisms, so all their eigenvalues must be larger
than or equal to zero; in other words, the power received by
any combination of transmitting and receiving polarizations
should never be negative.

A close analysis of the Freeman-Durden decomposition
shows that the contribution of the volume scattering compo-
nent is directly estimated from the cross-polarized term, that
is, the decomposition assumes that neither the double-bounce
nor the surface scattering components contribute to it. This
assumption is very strict as, for instance, the rotation of the
polarization basis of the scattering matrix due to terrain
slopes in the along-track dimension (Lee et al. 2002) or
even rough surfaces may lead to significant cross-polarized
power (Hajnsek et al. 2003). Consequently, if these effects
are not taken into account, they may produce an overestima-
tion of the volume component. Once this volume component
is estimated from the data, it is extracted from the measured

Table 1.7 Selection of the volume scattering covariance matrix

χ < � 2 dB �2 dB < χ < 2 dB χ > 2 dB

Cv ¼ f v
15

8 0 2

0 4 0

2 0 3

264
375 Cv ¼ f v

8

3 0 1

0 2 0

3 0 3

264
375 Cv ¼ f v

15

3 0 2

0 4 0

2 0 8

264
375
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covariance matrix to estimate the double-bounce and the
surface components as

Cdþs ¼ C� Cv: ð1:146Þ

Consequently, if the volume component is not properly
estimated, the previous subtraction may lead to a result in
which the covariance matrix representing the double-bounce
and the surface components Cd + s may present negative
eigenvalues so it does not represent a physically possible

Fig. 1.12 Yamaguchi decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). From left to right, top panel:
Pd, Pv; middle panel: Ps, Pc; bottom panel: RGB composition with Pd red, Pv green and Ps blue
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scattering mechanism. The Yamaguchi decomposition also
presents this drawback as the double-bounce and the surface
like scattering components are estimated after the subtraction
of the volume scattering component.

In order to correct the presence of negative eigenvalues
when considering a decomposition based on (1.146), van Zyl
et al. (Van Zyl et al. 2011) proposed the non-negative eigen-
value decomposition (NNED). The Freeman-Durden and the
Yamaguchi decompositions assume that the measured
covariance matrix results from the addition of a set of scatter-
ing mechanisms. Nevertheless, the NNED approach pro-
posed to decompose the measured covariance matrix as

C ¼ aCmodel þ Cremainder: ð1:147Þ

The matrix Cmodel represents the covariance matrix
predicted by a theoretical model, for instance, the volume
scattering component. The parameter a is introduced in
(1.147) to assure that all the matrices in (1.147) represent

physically realizable scattering mechanism. Finally, the sec-
ond matrixCremainder will contain whatever is in the measured
matrix C that is not consistent with the model matrix Cmodel.

To find the value of a, (1.147) may be written as

Cremainder ¼ C� aCmodel: ð1:148Þ

Consequently, the value of a must assure that the
eigenvalues of Cremainder must be positive. In the case of a
scattering media with reflection symmetry, (1.147) may be
written as

Cremainder ¼
ξ 0 ρ

0 η 0

ρ� 0 ζ

264
375� a

ξa 0 ρa
0 ηa 0

ρ�a 0 ζa

264
375: ð1:149Þ

Therefore, the maximum value of a that assures that the
eigenvalues of Cremainder are positive corresponds to

amax ¼ min η=ηa,
1

2 ξaζa � ρaj j2
� � Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4 ξaζa � ρaj j2

� �
ξζ � ρj j2

r� �8<:
9=;, ð1:150Þ

where Z ¼ ξζa þ ζξað Þ � ρρ�a � ρ�ρa. For the case of scatter-
ing media not presenting reflection symmetry, the process to
derive the maximum value of a is similar, but results in more
complex expressions.

The volume scattering model employed for the canopy
scattering is based on a cosine-squared distribution raised to
the nth power for the vegetation orientation (Arii et al. 2011).
Considering that the basic scatterer in the canopy is a dipole,
it was shown that the covariance matrix can be written as

Cv θ0, σð Þ ¼ Cα þ p σð ÞCβ þ q σð ÞCγ ð1:151Þ

where

Cα ¼ 1
8

3 0 1

0 2 0

3 0 3

264
375, ð1:152Þ

Cβ ¼ 1
8

�
�2 cos 2θ0

ffiffiffi
2

p
cos 2θ0 0ffiffiffi

2
p

cos 2θ0 0
ffiffiffi
2

p
cos 2θ0

0
ffiffiffi
2

p
cos 2θ0 2 cos 2θ0

264
375,
ð1:153Þ

Cγ ¼ 1
8

�
cos 4θ0 � ffiffiffi

2
p

cos 4θ0 � cos 4θ0
� ffiffiffi

2
p

cos 4θ0 �2 cos 4θ0
ffiffiffi
2

p
cos 4θ0

� cos 4θ0
ffiffiffi
2

p
cos 4θ0 cos 4θ0

264
375,

ð1:154Þ

and

p σð Þ ¼ 2:0806σ6‐6:3350σ5

þ 6:3864σ4‐0:4431σ3‐3:9638σ2‐0:0008σ
þ 2:000, ð1:155Þ

q σð Þ ¼ 9:0166σ6‐18:7790σ5 þ 4:9590σ4

þ 14:5629σ3‐10:8034σ2‐0:1902σ
þ 1:000: ð1:156Þ

In the previous equations, the parameter θ0 represents the
mean orientation angle of the thin dipoles, whereas σ
accounts for the randomness of the cloud of dipoles.

On the basis of the previous procedure to avoid the extrac-
tion of non-physical covariance matrices, Arii et al. (Arii
et al. 2011) proposed an adaptive NNED decomposition
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theorem, where also the previous extended model for volume
scattering is considered. According to the NNED decompo-
sition, a covariance matrix for the volume scattering is first
subtracted from the measured covariance matrix as follows:

Cremainder ¼ C� f vCv θ0, σð Þ: ð1:157Þ

As indicated previously, fv can be obtained analytically
only under the assumption of reflection symmetry. In those
cases in which the previous hypothesis does not apply, the
maximum value of fv is obtained numerically by calculating
the eigenvalues Cremainder at specific randomness σ and mean
orientation angle θ0 by varying fv, and then, the maximum fv
in which all three eigenvalues of Cremainder are nonnegative is
selected. Once the volume component is extracted from the
measured covariance matrix as specified in (1.157), the
remainder matrix can be written as

C� f vCv θ0, σð Þ ¼ f dCd þ f sCs þ C0
remainder ð1:158Þ

where in this case Cd and Cs correspond to the double-
bounce and surface scattering mechanisms already employed

in the three-component Freeman-Durden decomposition. The
parameters fd, fs and C0

remainder are obtained through an eigen-
value decomposition. This procedure shows how to find the
parameters in the decomposition for a specific pair of
randomness σ and mean orientation angle θ0. To find the
best fit decomposition, the power in the remainder matrix
for all pairs of randomness and mean orientation angles is
evaluated and then the set of parameters that minimize the
power associated with C0

remainder should be found.
Finally, the scattered power at each component {fv, fd, fs}

may be combined to generate a RGB image similarly as in the
case of the Pauli decomposition, to present all the colour-
coded polarimetric information in a unique image; see
Fig. 1.13.

1.3.2.4 Eigenvector-Eigenvalue-Based
Decomposition

The previous incoherent decompositions were constructed on
the assumption that the scattering of a given pixel was due to
the combination of some predefined scattering mechanisms,
hence assuming different properties of the scattering pro-
cesses. These assumptions make these decompositions to be

Fig. 1.13 Van Zyl decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). Top panel, from left to right: fd,
fv, fs. Bottom panel: RGB composition with fd red, fv green and fs blue
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easy to interpret as the different scattering components pres-
ent a clear physical interpretation. Nevertheless, as these
decompositions consider only the predefined mechanisms,
they are not able to identify additional scattering mechanisms
when present. A way to circumvent this drawback is to
decompose the covariance or coherency matrices based on
their mathematical properties. Hence, contrary to the previ-
ous decompositions, the scattering mechanisms in which the
original matrices are decomposed are not established a priori
but given by the decomposition itself. The drawback of this
approach is that the scattering mechanism found by the
decomposition needs from a physical interpretation process.

The eigenvector-eigenvalue scattering decomposition,
also known as Cloude-Pottier decomposition, is based on
the eigendecomposition of the covariance C or coherency
T matrices (Cloude and Pottier 1996). According to the
eigendecomposition theorem, the 3 � 3 Hermitian matrix
C may be decomposed as follows:

T ¼ UΣU�1: ð1:159Þ

The 3 � 3, real, diagonal matrix Σ contains the
eigenvalues of C:

Σ ¼
λ1 0 0

0 λ2 0

0 0 λ3

264
375, ð1:160Þ

such that 1 > λ1 
 λ2 
 λ3 > 0. The 3 � 3 unitary matrix
U contains the eigenvectors ui for i ¼ 1, 2, 3 of C:

U ¼ u1 u2 u3½ �: ð1:161Þ

The eigenvectors ui for i ¼ 1, 2, 3 of C can be
reformulated, or parameterized, as

ui ¼ cos αi sin αi cos βie
jδi sin αi cos βie

jγi
� �T

:

ð1:162Þ

Considering (1.159), (1.160) and (1.161), the coherency
matrix C may be written as

C ¼
X3
i¼1

λiuiu�Ti : ð1:163Þ

As (1.163) shows, the rank-3 matrixC can be decomposed
as the combination of three rank 1 coherency matrices which
can be related to the pure scattering mechanisms given in
(1.162). Consequently, the eigendecomposition is not able to

produce scattering mechanisms in which the original matrix
is decomposed into with a rank larger than 1.

The eigenvalues (1.160) and the eigenvectors (1.161) of
the decomposition are considered as the primary parameters
of the eigendecomposition of C. In order to simplify the
analysis of the physical information provided by this
eigendecomposition, three secondary parameters are defined
as a function of the eigenvalues and the eigenvectors of C:

• Entropy:

H ¼ �
X3
i¼1

pi log 3 pið Þ pi ¼ λiP3
j¼1

λ j

ð1:164Þ

where pi are known as the probabilities of the eigenvalue λi,
respectively. These probabilities represent the relative impor-
tance of this eigenvalue with respect to the total scattered
power, as

SPAN Sð Þ ¼
X3
i¼1

λi: ð1:165Þ

• Anisotropy:

A ¼ λ2 � λ3
λ2 þ λ3

ð1:166Þ

representing the relative importance of the second eigenvalue
with respect to the third one:

• Mean alpha angle:

α ¼
X3
i¼1

piαi: ð1:167Þ

As it shall be shown, this parameter allows the physical
interpretation of the scattering mechanism found by the
eigendecomposition.

The eigendecomposition of the coherency matrix is usu-
ally referred to as the H=A=α decomposition. An example of
H=A=α decomposition is shown in Fig. 1.14. The

1 Basic Principles of SAR Polarimetry 43



interpretation of the information provided by the
eigendecomposition of the coherency matrix must be
performed in terms of the eigenvalues and eigenvectors of
the decomposition or in terms of H=A=α. Nevertheless, both
interpretations have to be considered as complementary.

The interpretation of the scattering mechanisms given by
the eigenvectors of the decomposition, ui for i ¼ 1, 2, 3, is
performed by means of a mean dominant mechanism which
can be defined as follows:

u0 ¼ cos α sin α cos βe jδ sin α cos βe jγ
h iT

, ð1:168Þ

where the remaining average angles β, δ, γ are defined in the
same way as α.

The study of the mechanism given in (1.168) is mainly
performed through the interpretation of the mean alpha angle
α, since its value can be easily related to the physics behind
the scattering process. The next list details the interpretation
of α:

• α ! 0: the scattering corresponds to single-bounce scat-
tering produced by a rough surface.

• α ! π=4: the scattering mechanism corresponds to vol-
ume scattering.

• α ! π=2 : the scattering mechanism is due to double-
bounce scattering.

The second part in the interpretation of the eigendecom-
position is performed by studying the value of the
eigenvalues of the decomposition. A given eigenvalue
corresponds to the associated scattered power to the
corresponding eigenvector. Consequently, the value of the
eigenvalue gives the importance of the corresponding eigen-
vector or scattering mechanism. The ensemble of scattering
mechanisms is studied by means of the entropy H and the
anisotropy A. The Entropy H determines the degree of
randomness of the scattering process, which can be also
interpreted as the degree of statistical disorder. In this way

• H ! 0:

λ1 ¼ SPAN, λ2 ¼ 0, λ3 ¼ 0 ð1:169Þ

As observed, in this case, the covariance matrixC presents
rank 1, and the scattering process corresponds to a pure
scatterer.

• H ! 1:

λ1 ¼ λ2 ¼ λ3 ¼ SPAN
3

: ð1:170Þ

In this situation, the covariance matrix C presents rank
3, that is, the scattering process is due to the combination of
three pure targets. Consequently, C corresponds to the
response of a distributed target. For instance, volume
scattering for a forest canopy presents an entropy value
very close to 1.

• 0 < H < 1: In this case, the final scattering mechanism
given by C results from the combination of the three pure
targets given by ui for i ¼ 1, 2, 3, but weighted by the
corresponding eigenvalue.

The anisotropy A, (1.166), is a parameter complementary
to the entropy. The anisotropy measures the relative impor-
tance of the second and the third eigenvalues of the
eigendecomposition. From a practical point of view, the
anisotropy can be employed as a source of discrimination
only when H > 0.7. The reason is that for lower entropies, the
second and third eigenvalues are highly affected by the SAR
system noise.

In relation with the previous parameters, the Shannon
entropy (SE) was introduced in (Morio et al. 2007):

SE ¼ log π3e3 Tj j� � ¼ SEI þ SEP ð1:171Þ

as the sum of two terms. The term SEI is the intensity
contribution that depends on the total power

SEI ¼ 3 log
π � e � I

3

� �
¼ 3 log

π � e � trace Τð Þ
3

� �
ð1:172Þ

whereas SEP is the polarimetric contribution

SEP ¼ log 27
Τj j

trace Τð Þ½ �3
 !

: ð1:173Þ

As indicated in Sect. 1.1.2.5, for some particular
configurations, a polarimetric SAR system may not measure
the complete polarimetric information. In this simpler config-
uration of dual polarization, the radar transmits only a single
polarization and receives, either coherently or incoherently,
two orthogonal components of the scattered signal. In this
configuration, the covariance C and coherency Tmatrices are
2 � 2 Hermitian matrices. As it has been demonstrated
(Cloude 2007a), these reduced matrices can be decomposed
also considering their eigendecompositions. The sole partic-
ularity is that in this situation the matrices present only two
eigenvalues.

1.3.2.5 The Touzi Target Scattering
Decompositions

The Touzi decomposition (Touzi 2007) was introduced as an
extension of the Kennaugh-Huynen coherent target scattering
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Fig. 1.14 H=A=α decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). From top to bottom: entropy,
anisotropy, mean alpha angle
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decomposition (Huynen 1970; Kennaugh 1951), for the char-
acterization of both coherent and partially coherent target
scattering. To characterize partially coherent scattering,
Huynen introduced a target decomposition theorem in
which he decomposed an average Mueller matrix into the
sum of a Mueller matrix for a single scatter presented in terms
of the Kennaugh-Huynen decomposition parameters and a
noise or the N-target Mueller matrix (Huynen 1970). In 1988,
Cloude (Cloude 1988) showed that the Huynen N-target
decomposition was not polarization independent and
introduced the eigenvector decomposition for a unique and
roll-invariant incoherent decomposition. Following that, both
Huynen’s (N-target) incoherent decomposition and Huynen’s
fork decomposition were abandoned. Recently, the
Kennaugh-Huynen decomposition has been reconsidered
and integrated in Cloude’s coherency eigenvector decompo-
sition (Cloude 1988) for characterization of coherent and
partially coherent scattering in terms of unique and polariza-
tion basis independent parameters (Touzi 2007).

The Kennaugh-Huynen decomposition, also named the
Huynen fork, used to be the most popular method for decom-
position of coherent target scattering (Touzi et al. 2004;
Boerner et al. 1998). Huynen’s fork was abandoned because
of the nonuniqueness of certain fork parameters, and in
particular the skip angle (scattering type phase), due to non-
uniqueness of the con-eigenvalue phases (Luneburg 2002).
To solve these ambiguities, the Kennaugh-Huynen scattering
matrix con-diagonalization was projected into the Pauli basis
(Touzi 2007), and a new target scattering vector model, the
TSVM, was introduced in terms of target parameters that are
not affected by the con-eigenvalue phase ambiguities (Touzi
2007). A complex entity, named the symmetric scattering
type, was introduced for an unambiguous description of
target scattering type. The polar coordinates of the symmetric
scattering type, αs and ϕαs, are expressed as a function of
target scattering matrix polarization basis independent
elements by (Touzi 2007)

tan αs � e jϕαs ¼ μ1 � μ2
μ1 � μ2

, ð1:174Þ

where μ1 and μ2 are the con-eigenvalues of the target scatter-
ing matrix S. The scattering vector of a symmetric scatterer
can be expressed on the Pauli trihedral-dihedral basis
{Sa, Sb} as follows (Touzi 2007):

V
!
sym ¼ V

!
sym

��� ��� � cos αs � Sa þ sin αs � e jϕαsSb
� �

, ð1:175Þ

where the scattering type magnitude αs corresponds to the
orientation angle of the symmetric scattering vector on the
trihedral-dihedral {Sa, Sb} basis. ϕαs is the phase difference

between the vector components in the trihedral-dihedral
basis. The new scattering type phase entity introduced in
(Touzi 2007) provides a measure of the phase offset between
the trihedral and dihedral scattering components. The infor-
mation provided by ϕαs as complementary to αswas shown to
be essential for a better understanding of marsh wetland
scattering variations between the spring run-off season and
the fall using Convair 580 SAR data collected over the Mer
Bleue wetland site (Touzi et al. 2007). The symmetric and
asymmetric nature of target scattering was characterized
using Huynen helicity τ (Touzi 2007). Notice that while the
complex scattering parameters αs and ϕαs are independent of
the basis of polarization (Touzi 2007; Paladini et al. 2012),
Huynen’s helicity characterizes the symmetric nature of tar-
get scattering in the {h, v} polarization basis (Huynen 1970).
Recently, a different expression of the helicity was derived at
the circular polarization basis (Huynen 1970), and the com-
plementary information it provides to the Huynen’s helicity
was demonstrated (Paladini et al. 2012).

The projection of the Kennaugh-Huynen coherent target
decomposition on the Pauli polarization basis can be
represented as a function of the complex scattering αs and
ϕαs and the Huynen maximum polarization parameters ψ and
m as

k ¼ m

1 0 0

0 cos 2ψ � sin 2ψ

0 sin 2ψ cos 2ψ

264
375

�
cos αs cos 2τ

sin αs:e jφαs

�j cos αs sin 2τ

264
375 ð1:176Þ

where ψ , τ and m are the Huynen orientation, the helicity and
the maximum return of the maximum polarization,
respectively.

It is worth noting that for a symmetric scattering (τ ¼ 0),
αs and ϕαs are identical to the Touzi SSCM parameters η and
φSb � φSa. αs and ϕαs are also identical to the Cloude-Pottier
parameters (Cloude and Pottier 1996) α and δ ¼ φ2 � φ1,
respectively (Touzi 2007). For scatterers of locally asymmet-
ric scattering, such as urban areas, treed wetlands and forests,
large divergence between ϕαs and δ and αs and α have been
noted (Cloude and Pottier 1996). Unlike Cloude-Pottier
parameters (Trunk and George 1970), the TSVM
characterizes target scattering type with the complex entity
(αs and ϕαs), which only depends on the scattering matrix
eigenvalues. This leads to a unique and unambiguous
description of target scattering in terms of parameters,
which are polarization basis independent, for both symmetric
and asymmetric targets as discussed in (Touzi 2007).
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For a unique characterization of coherent and partially
coherent scattering, the TSVM (Touzi 2007) was integrated
in Cloude’s coherency eigenvector decomposition (Touzi
2007). Like Wiener’s wave coherence characteristic decom-
position (Wiener 1930), Cloude’s characteristic decomposi-
tion of the coherency matrix, T, permits the representation of
T as the incoherent sum of coherency matrices that represent
independent single scattering (Cloude 1988). Under the tar-
get reciprocity assumption, T is represented as the sum of up
to three coherency matrices Ti, each of them being weighted
by its appropriate positive real eigenvalue ηi:

T ¼
X

i¼1, 2, 3

ηiTi: ð1:177Þ

In contrast to the Cloude-Pottier decomposition, the
TSVM is used for the parameterization of each coherency
eigenvector Ti (coherent single scattering) in terms of unique
target parameters. In order to avoid any loss of information
related to single scatterer parameters averaging, the target
scattering decomposition is conducted through an in-depth
analysis of each of the three single scattering eigenvectors ui,
i¼ 1, 2, 3 represented by the coherency eigenvector matrix Ti

of rank 1 and the normalized positive real eigenvalues λi¼ ηi/
(η1 + η2 + η3). This leads to the representation of each single
scattering ui in terms of five roll-invariant and independent
target scattering parameters (αsi, ϕαsi, τi, mi, λi) and the
Huynen orientation angle ψ i.

1.4 Polarimetric SAR Interferometry

This section is devoted to the radar remote sensing technique
called polarimetric interferometry (Cloude and
Papathanassiou 1998). When used with synthetic aperture
radar (SAR) systems, it is usually termed polarimetric inter-
ferometric SAR or PolInSAR for short (Papathanassiou and
Cloude 2001). PolInSAR has important applications in the
remote measurement of vegetation properties such as forest
height (Papathanassiou et al. 2005a) and biomass (Mette et al.
2004), future applications (Williams and Cloude 2005),
snow/ice thickness monitoring (Dall et al. 2003;
Papathanassiou et al. 2005b) and urban height and structure
applications (Schneider Zandona et al. 2005). As its name
suggests, this technique combines two separate radar
technologies, polarimetry and interferometry. The former,
as detailed in the previous sections, involves switching the
polarization state of transmit and receive channels to measure
differences in backscatter due to orientation, shape and mate-
rial composition (Cloude and Pottier 1996). This leads ulti-
mately to measurement of the 2 � 2 complex scattering
matrix S, from which we can synthesize the response of the

image pixel to arbitrary polarization combinations. On the
other hand, radar interferometry (Bamler and Hartl 1998)
involves coherently combining signals from two separated
spatial positions (defining the so-called baseline of the inter-
ferometer) to extract a phase difference or interferogram. In
radar this can be achieved in two main configurations,
so-called along-track interferometry, which involves time
displacements between separated antennas along the flight
direction of the platform leading to velocity estimation. Alter-
natively, we can perform across-track interferometry, involv-
ing lateral separation of antennas and leading to spatial
information relating to the elevation of the scatterer above a
reference ground position. In PolInSAR, interest centres
mainly on across-track geometries, but in principle it can be
applied to along-track configurations as well.

PolInSAR differs from conventional interferometry in that
it allows generation of interferograms for arbitrary transmit
and receive polarization pairs. It turns out that the phase of an
interferogram changes with the choice of polarization and
consequently we can extract important biophysical and geo-
physical parameters by interpreting this change in the right
way. It shall be seen that consequently the combination of
interferometry with polarimetry is greater than the sum of its
parts and that PolInSAR allows us to overcome severe
limitations of both techniques when taken alone. This is espe-
cially true in the important area of remote sensing of vegetated
land surface, where polarimetry suffers from the inherent high
entropy problem (Cloude and Pottier 1996), while standard
interferometry remains underdetermined, i.e. the interferogram
depends on many possible physical effects, no one of which
can be identified from the data itself (Treuhaft et al. 1996).

1.4.1 SAR Interferometry

PolInSAR algorithms make use of interferometric coherence,
or equivalently phase and local phase variance, rather than
backscattered power (Bamler and Hartl 1998; Zebker and
Villasenor 1992). For this reason, it is necessary to introduce
and to study the problems associated with the estimation of
coherence from radar data, especially in the case of interfero-
metric data. A similar introduction for polarimetric data was
already seen in Sect. 1.2.5. Starting with any two
co-registered single-look complex (SLC) data channels S1
and S2, the interferometric coherence is formally defined as

γ ¼ γj jeiϕ ¼ E S1S
�
2

	 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E S1S

�
1

	 
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E S2S

�
2

	 
q ð1:178Þ

where 0 � |γ| � 1. In practice, the sample coherence is
frequently used as a coherence estimate of Eq. (1.178):
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bγ ¼ bγj jeiχ ¼
Pn
k¼1

S1kS
�
2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1
S1kS

�
1k

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

S2kS
�
2k

s ð1:179Þ

where k is the sample number and we have only a finite
number n independent signal measurements available.
Eq. (1.179) represents the maximum likelihood estimate of
coherence and under some general statistical assumptions
provides an estimate that is asymptotically unbiased (see
Sect. 1.2.3). For jointly complex Gaussian processes S1 and
S2, the pdf of bγj j can then be derived as a function of the true
coherence value |γ| and the number of samples n (Touzi et al.
1999). The estimated coherence value bγj j is consistently
biased towards higher values (Touzi et al. 1999); in the
extreme of single-look estimation, the coherence estimate is
equal to unity and so always overestimated and without
information. However, the bias decreases with increasing
number of independent samples n and with increasing under-
lying coherence |γ|. A second important parameter to estimate
is the variance of the sample coherence magnitude. While the
true estimated value would be desirable, often we assume
zero bias, by using sufficient averaging, and estimate the
variance by making use of simpler equations for speedier
computations. In particular, the Cramér-Rao bounds provide
lower limits on the variance for coherence and phase and
have been derived in (Tabb and Carande 2001) to provide the
simpler formulae:

var bγj jf g 

1� γj j2
� �2

2n
, var χf g 
 1� γj j2

2n γj j2 ð1:180Þ

As it can be deduced for phase-based processing, it is
always better to operate at high coherence and avoid low
coherences; the latter involves not only increased variance
but also severe bias issues that can distort the phase informa-
tion. It is a key limitation of polarimetry that scattering by
vegetation leads to low coherences for all polarization
channels because of so-called depolarization. This severely
limits the ability to use polarimetric phase information over
vegetated land surfaces. Interferometry on the other hand
allows to partially control coherence via baseline selection.
PolInSAR exploits this advantage to obtain high coherence in
multiple polarization channels.

The above considerations for coherence estimation are
important in PolInSAR, the major distinguishing feature of
which is that we add an extra stage in the construction of the
two SLC channels S1 and S2. In general, for a fully polari-
metric data set, we take as input the three calibrated SLC

images Shh, Shv and Svv and generate projections of these onto
user-defined complex weight vectors w1 and w2 before cal-
culating the coherence defined as

s1 ¼w1
1

S1hhþ S1vv
� �ffiffiffi

2
p þw2

1

S1hh� S1vv
� �ffiffiffi

2
p þw3

1

ffiffiffi
2

p
S1hv ¼wT

1 �k1

s2 ¼w1
2

S2hhþ S2vv
� �ffiffiffi

2
p þw2

2

S2hh� S2vv
� �ffiffiffi

2
p þw3

2

ffiffiffi
2

p
S2hv ¼wT

2 �k2

9>>>>=>>>>;
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E S1S

�
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E S2S

�
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q
:

ð1:181Þ

The weight vectors w1 and w2 define user-selected scat-
tering mechanisms at ends 1 and 2 of the across-track base-
line. In general, w1 and w2 can be different and both
parameterized as complex unitary vectors of the form
shown in (1.162) (Cloude and Pottier 1996). The weight
vectors or scattering mechanisms in which the targets vectors
could be projected could be the canonical mechanisms detailed
in Table 1.6. However, it is a feature of PolInSAR algorithm
development that use is often made of more general w vectors
than those shown, derived, for example, as eigenvectors for
coherence optimisation (Tabb and Carande 2001; Colin et al.
2003), or through prior model studies of scattering from
vegetated terrain (Williams 1999). For this reason, we need
to keep the more general notation of Eq. (1.162) so as to be
able to consider arbitrary vectors in the formation of an inter-
ferogram. We now turn to consider such optimisation
algorithms in more detail and to briefly assess their
implications for coherence estimation and validation.

1.4.2 Algorithms for Optimum Interferogram
Generation

Polarimetric interferometry is a special case of multichannel
coherent radar processing (Reigber et al. 2000). Such
problems are characterized by multidimensional covariance
matrices (Lee et al. 1994, 2003). In PolSAR, for example,
interest centres on the 3 � 3 Hermitian covariance matrix C,
unitarily equivalent to the coherency matrix T as shown in
Sect. 1.1.2.2. This is the basic building block in polarimetric
interferometry, and so it can be designated as Λ1 to indicate
how it relates to fully polarimetric measurements but made at
only one spatial position. In single baseline PolInSAR, a
second measurement at a displaced position 2 is added.
This is now characterized by a 6 � 6 coherency matrix
Λ2 as shown in (1.182). The 6 � 6 matrix can be naturally
partitioned into three sub-matrices each of size 3 � 3. This
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formulation then scales in a natural way for multibaseline
PolInSAR by expansion of the governing coherency matrix
ΛN to a 3N � 3N complex system or 4N � 4N for bistatic
multibaseline PolInSAR, where N is the number of baselines:

Λ1 ¼ T ! Λ2 ¼
T11 Ω12

ΩH
12 T22

� �
! ΛN

¼

T11 Ω12 . . . Ω1N

Ω�
12 T22 ⋯ Ω2N

⋮ ⋮ ⋱ ⋮
Ω�

1N Ω�
2N ⋯ TNN

26664
37775: ð1:182Þ

Returning now to the important case of Λ2, two of the
sub-matrices T11 and T22 are Hermitian and relate to the
polarimetry from positions 1 and 2, while the third Ω12 is a
complex 3 � 3 matrix that contains information about the
variation of interferometric coherence and phase for all pos-
sible weight vectors w1 and w2:

γ w1,w2ð Þ ¼ wH
1 Ω12w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wH
1 T11w1

p
:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wH

2 T22w2

p : ð1:183Þ

The previous relation leads to an important choice of
approach to algorithm development in PolInSAR. In the
first case, if the vectors w1 and w2 are known in advance,
then the coherence can be directly estimated using (1.181)
with the same InSAR fluctuation statistics and bias outlined
in the previous section. However, often we wish to determine
optimum weight vectors from the data themselves, and it
follows from (1.183) that to do this we require estimates of
the three 3 � 3 matrices, T11 and T22 and Ω12. This opens up
a much wider discussion about the fluctuation statistics and
bias arising from the fact that only estimates and not true
matrix values can be used in (1.183). For example, to esti-
mate the sub-matrices, we must first estimate the full 6 � 6
coherency matrix Λ2. This estimate Z is obtained by means of
the multilook estimator.

One important application of (1.183) is the calculation of
the optimum coherences in PolInSAR. The most general
formulation of this was first presented in (Cloude and
Papathanassiou 1998) and is summarized in (1.184). Here,
we first state the problem mathematically, which is to choose
w1 and w2 so as to maximize the coherence magnitude,
defined from the complex coherence as a function of the
three sub-matrices T11 and T22 and Ω12 as shown. This can
be mathematically solved by using a Lagrange multiplier
technique as shown and leads to the calculation of the
required w vectors as eigenvectors of a pair of matrices,
themselves defined as products of the composite matrices:

max
w1,w2

wH
1 Ω12w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wH
1 T11w1

p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2 T22w2

p
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1 Ω12w2 þ λ1 wH
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� �þ λ2 wH
2 T22w2 � 1
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ð1:184Þ

As it was noted in Sect. 1.4.1, the estimated value of the
coherence magnitude is biased with respect to the true value
in such a way that the larger the number of averaged samples
and the higher the coherence magnitude, the lower the bias.
The previous hypothesis was based on considering (1.181)
where the vectors w1 and w2 are known in advance. Never-
theless, if (1.184) is considered to obtain the coherence
magnitude, the vectors w1 and w2 must also be estimated
from the data, leading to a larger coherence magnitude bias.

In order to obtain an optimization approach that has less
bias for a given number of samples, it is necessary to reduce
the effective dimensionality of the problem. Several authors
have proposed adopting the a priori assumption w1 ¼ w2,
i.e. that the optimum coherence vector remains unknown but
we assume that it doesn’t change with baseline (Colin et al.
2003; Sagues et al. 2000; Flynn et al. 2002). This idea is
supported on physical grounds for short baselines in the
absence of temporal decorrelation, i.e. for single-pass or
low-frequency sensors where the scattering does not change
significantly over the effective angular width of the baseline.
This approach calls for a new mathematical formulation of
the optimization process. One approach is based on a
straightforward extension of the Lagrange multiplier tech-
nique to constrain w1 ¼ w2. This leads by manipulation of
(1.184) to a set of w vectors given as eigenvectors of the
composite matrix:

T11 þ T22ð Þ�1 Ω12 þΩH
12

� �
w ¼ �λw: ð1:185Þ

One problem with the previous equation is that the eigen-
value is not the coherence, but its real part, and so the
optimization is phase sensitive. For this reason, a second
related approach based on maximization of the phase differ-
ence as a function of polarization vector w has been devel-
oped. In this case, the optimum vector is found by solving a
phase-parameterized eigenvalue problem (Colin et al. 2003;
Flynn et al. 2002):
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This has been shown to be equivalent to calculating the
numerical radius of the complex matrix A ¼ T�1/2Ω12T

�1/2.
A proposed algorithm for finding this optimum state has been
presented in (Colin et al. 2003; Colin et al. 2005). One
drawback in this approach is that ϕ1 is a free parameter, and
so either search or iterative methods must be used to secure
the global optimum. This adds to the computational complex-
ity for each pixel.

A third related approach has been proposed based on a
sub-space Monte Carlo searching algorithm (Sagues et al.
2000). This limits the search for the optimum (again assum-
ing w1 ¼ w2) to the diagonal elements of Ω12, i.e. to
co-polarized or cross-polarized combinations across the
whole Poincaré sphere. This again acts to effectively limit
the dimensionality of the problem and demonstrates less bias
than the full Lagrange multiplier method. Finally, phase
centre super-resolution techniques based on the ESPRIT
algorithm have also been proposed to find the optimum
w vectors (Yamada et al. 2001).

In all these cases, a sub-optimum solution is obtained
compared to the unconstrained Lagrange multiplier method
but often with better numerical stability. Given the general
increased processing overhead of employing optimization, it
is always of interest to investigate the potential benefits of
employing an optimization approach over simple linear, Pauli
and circular options.

1.4.3 Model-Based Polarimetric SAR
Interferometry

The previous section considered an important optimisation
problem in PolInSAR, namely, to investigate the maximum
variation of coherence with polarization by solving an eigen-
value problem. This section will be focused on some canoni-
cal problems of interest in the remote sensing of land surfaces
and try and use the mathematical solutions obtained to con-
clude as to the potential of optimisation versus standard
coherence estimation in PolInSAR. We consider three impor-
tant problems, scattering from non-vegetated surfaces, ran-
dom volume scattering and finally a 2-layer surface+volume
mixture which more closely matches the behaviour of natural
vegetated land surfaces.

1.4.3.1 PolInSAR for Bare Surface Scattering
The starting point will be to consider the simplest case of
non-vegetated terrain. Under the assumption of surface scat-
tering only, the polarimetry can then be characterized as a
reflection symmetric random media with a coherency matrix
T of the form shown in (1.187) (Cloude and Pottier 1996;
Cloude et al. 2004). The interferometry, following range spec-
tral filtering and assuming no temporal or SNR decorrelation,
is characterized by a single parameter, i.e. the ground phase ϕ:

K¼ T�1
11 Ω12T�1

11 Ω
H
12 ¼ T�1

11 e
iϕT11T�1

11 e
�iϕT11 ¼

1 0 0

0 1 0

0 0 1

2664
3775 :

ð1:187Þ

From the previous equation, it follows that the optimum
coherences are obtained as eigenvectors of the matrix K as
shown. By multiplying terms we see that the matrix K is just
the 3 � 3 identity matrix. This implies that all polarizations
have the same interferometric coherence and PolInSAR plays
no role in surface scattering problems. This is not quite true in
practice for two important reasons: in practice there will be
polarization-dependent SNR decorrelation. In fact, recently it
has been suggested that such SNR coherence variations with
polarimetry be used for quantitative InSAR surface parameter
estimation. This formulation assumes that the scattering from
the surface occurs within a thin layer. If there is significant
penetration into the surface, then volume scattering effects can
occur and this will lead to volume decorrelation effects. These
effects have been observed for land ice (Treuhaft et al. 1996)
and snow studies (Zebker and Villasenor 1992) where the
surface is non-vegetated but covered by a low-loss scattering
layer. Nonetheless, (1.187) demonstrates how for bare surface
scattering PolInSAR plays only a secondary role. More inter-
esting for application of natural land surfaces is to consider the
presence of volume scattering due to vegetation cover.

1.4.3.2 PolInSAR for Random Volume Scattering
When considering scattering from a volume, interest centres on
the special case of a random volume, i.e. one with macroscopic
azimuthal symmetry (Cloude and Pottier 1996). In this case the
polarimetric coherency matrix T is diagonal. However, more
care is required over consideration of the interferometric phase
in Ω12. In this case one must include the effects of volume
decorrelation due to the random vertical distribution of scatterers
(Treuhaft et al. 1996). In this case, the interferometry must
include a complex integral I2 normalized by a real integral I1:
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where

I1 ¼ e�
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e
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where the vegetation is characterized by a height hv and mean
extinction rate σ and θ0 represents the mean incidence angle.
In (1.188), it is also observed that K is proportional to the
identity matrix, but this time the eigenvalues, all equal, are
given by a ratio of integrals over the vertical distribution.
This ratio is just the volume decorrelation displaying an
increase in phase variance and a vegetation bias to the ground
phase determined by hv and σ:

γ wð Þ ¼ I2
I1

¼ 2σ eiϕ zoð Þ

cos θo e2σ hv= cos θo � 1ð Þ
Zhv
0

eikzz0e
2σ z0
cos θodz0

¼ p
p1

ep1hv � 1
ephv � 1

¼ γv

ð1:190Þ

where

p ¼ 2σ
cos θ0

,

p1 ¼ pþ ikz,

kz ¼ 4πΔθ
λ sin θ0

� 4πBn

λH tan θ0
:

ð1:191Þ

Here the vertical interferometric wavenumber kz (Bamler
and Hartl 1998) appears as a function of the normal baseline
Bn, the wavelength λ as well as the sensor height H. Δθ is the
angular separation of the baseline end points from the surface
pixel.

As it can be observed in (1.190), this coherence is inde-
pendent of polarization, K has three degenerate eigenvalues
and PolInSAR plays no role in the analysis of random vol-
ume scattering. This statement has to be modified in the
presence of oriented volumes (Treuhaft and Cloude 1999),
i.e. ones with a preferred orientation of scattering elements
such as that occurring in some agricultural crops and even in
forestry applications at low frequencies. In such cases

PolInSAR does indeed play a role for volume scattering,
with K developing three distinct eigenvalues. However, for
the treatment of forestry applications at L-band and above,
such orientation effects are small and the random volume
assumption is justified (Papathanassiou et al. 2000).

In conclusion, both bare surfaces and random volumes
lead to a degenerate eigenvalue spectrum for the matrix K.
It is only when we combine these two effects together that we
see the potential benefits of employing PolInSAR processing.

1.4.3.3 PolInSAR Two-Layer Combined Surface
and Random Volume Scattering

In the general case when combined surface and volume
scattering occurs, then PolInSAR coherence optimisation
becomes useful as it is now demonstrated. In this two-layer
case or Random-Volume-over-Ground (RVoG) model
approach (Cloude and Papathanassiou 2003), the observed
coherence is given by a mixture formula:

γ wð Þ ¼ eiϕ
eγv þ μ wð Þ
1þ μ wð Þ

¼ eiϕ γv þ
μ wð Þ

1þ μ wð Þ 1� γvð Þ
� �

: ð1:192Þ

Here, the ground phase ϕ and complex volume coherence
γv are combined with a new real parameter μ, the ratio of
effective surface, i.e. all scattering contributions with a phase
centre located at ϕ, to volume scattering. In effect, when μ¼ 0
the scattering reduces to the case of random volume scattering,
while when μ tends to infinity, it reduces to the surface scat-
tering case. Interest centres on the intermediate case because
one has an unknown, but constant, complex contribution from
the volume scattering combined with a polarization-dependent
surface term. By isolating the polarization-dependent terms,
the resulting coherence then lies along a straight line in the
complex coherence plane as shown in (1.192).

This straight line model has been successfully tested on
varied forest data sets and seems to be a good fit for L- and
P-band PolInSAR forestry applications. It is interesting to note
how the coherence varies as we adjust the single parameter μ
along this line. Figure 1.15 illustrates three important cases. In
all three we first note how the coherence starts for small μ at
some value depending on the volume scattering contribution,
0.8 in the example. It then initially decreases with increasing
surface contribution until reaching a turning point after which it
increases with μ, always approaching unity as μ tends to infinity.

In Fig. 1.15 three important special cases of the eigenvalue
spectrum of K for this scenario are also superimposed. The
top left shows the case when μ is always small, i.e. when
there is strong volume scattering with high extinction
masking the surface contributions. As polarization w is
adjusted, then μ will also change, and the optimizer has an
incentive to select the minimum μ channel to maximize coher-
ence. At the other extreme, when μ is large and surface
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scattering dominates, we see that the optimizer has an incen-
tive instead to maximize μ in order to maximize coherence. A
more interesting case, and one that occurs often in practice
for L-band forestry applications, is the intermediate zone
when the variation of μ (the μ spectrum) includes the turning
point. In this case the coherence can be maximized by either
increasing or decreasing μ depending on circumstances.

Two important conclusions can be made from this. Firstly,
in the mixed two-layer scattering case, the coherence varies
with polarization and so optimisation plays a role in PolInSAR
analysis. Secondly, we see that we cannot simply associate the
maximum coherence with, for example, the maximum value
of μ. Both maxima and minima of μ can lead to the optimum
coherence, depending on the circumstances. However, it
follows that if we can estimate the μ spectrum for any problem,
then we can compare the max/min with the values for the
standard channel (linear, Pauli, etc.) to quantify the potential
benefits of employing optimisation techniques.

The determination of the extreme points of the μ spectrum
is related to a classical problem in radar polarimetry, namely,
contrast optimisation (Novak and Burl 1990). The solution to

this is obtained as the eigenvalues of the product of the inverse
volume times the surface polarimetric coherency matrices:
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Fig. 1.15 Variation of coherence with small (top left), large (top right) and intermediate (lower) μ values
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Under the assumption of a random volume and reflection
symmetric surface scattering component, the eigenvalues of
this matrix can be determined analytically as

μ1 ¼ 1
2I1m

t11 þ t22
κ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t11 � t22

κ

� �2
þ 4 t12j j2

κ

s0@ 1A
μ2 ¼ 1

2I1m
t11 þ t22

κ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t11 � t22

κ

� �2
þ 4 t12j j2

κ

s0@ 1A
μ3 ¼ 1

I1m
t33
κ

� �

8>>>>>>>>>>>><>>>>>>>>>>>>:

)

γ1j jeiδ1 ¼ eiϕo γv þ μ1ð Þ
1þ μ1

γ2j jeiδ2 ¼ eiϕo γv þ μ2ð Þ
1þ μ2

γ3j jeiδ3 ¼ eiϕo γv þ μ3ð Þ
1þ μ3

8>>>>>>><>>>>>>>:
: ð1:194Þ

Equally importantly, the eigenvectors of this matrix indi-
cate the w vectors that should be employed in PolInSAR to
secure these extreme coherence values. We note from
Eq. (1.194) that the optimum contrast solutions are not gen-
erally the simple HH, HV and VV channels. This supports the
investigation of optimisation techniques based on fully polar-
imetric data acquisition for PolInSAR processing.

1.5 Polarimetric SAR Tomography

3-D SAR Tomography (TomoSAR) is an experimental
multibaseline (MB) interferometric mode achieving full 3-D
imaging in the range-azimuth-height space through elevation
beam forming, i.e. spatial (baseline) spectral estimation
(Reigber and Moreira 2000). Thanks to TomoSAR, the reso-
lution of multiple scatterers is made possible in height in the
same range-azimuth cell, overcoming a limitation of the
conventional InSAR processing and complementing
PolInSAR. TomoSAR can add more features for the analysis
of complex scenarios, e.g. for the estimation of forest struc-
ture and biomass, sub-canopy topography, soil humidity and
ice thickness monitoring and extraction of heights and
reflectivities in layover urban areas. In order to retrieve infor-
mation on the nature of the imaged scatterers, TomoSAR has
also been extended to include the polarimetric information
(briefly, PolTomoSAR) (Guillaso and Reigber 2005). It
jointly exploits multibaseline SAR data acquired with differ-
ent polarization channels to improve the accuracy of the
estimation of the vertical position of the imaged scatterers
and to estimate a set of normalized complex coefficients
characterizing the corresponding polarimetric scattering
mechanism.

The very first demonstration of the tomographic concept
was carried out in 1995 by processing single-polarization
data acquired in an anechoic chamber of a two-layer synthetic
target (Pasquali et al. 1995). TomoSAR was then
experimented from an airborne platform a few years later
by acquiring L-band data by means of the DLR E-SAR
platform over the Oberpfaffenhofen site (Reigber and
Moreira 2000). Although this experiment was successful in
demonstrating the 3-D imaging capabilities of forest volumes
and man-made targets at L-band, two main limitations of
TomoSAR were apparent, namely, (i) the usually low num-
ber of images available for processing to avoid large acquisi-
tion times and the consequent temporal decorrelation and (ii)
the difficulty of obtaining ideal uniformly spaced parallel
flight tracks due to navigation/orbital considerations.

In order to mitigate the effects of acquisition
non-idealities, most of the subsequent research on (single-
polarization) TomoSAR investigated different imaging
solutions, model-based and not. Many experiments have
shown that the use of polarimetric information not only
increments the number of observables, but it also allows to
enhance the accuracy of height estimation of scatterers, to
increase height resolution and to estimate a vector of complex
coefficients describing the scattering mechanism at each
height (Guillaso and Reigber 2005). In forest scenarios, the
combination of multibaseline polarimetric data can be used to
separate ground and canopy scattering and to estimate their
vertical structures by following a relatively simple algebraic
approach (Tebaldini 2009).

1.5.1 TomoSAR and PolTomoSAR as Spectral
Estimation Problems: Non-model-Based
Adaptive Solutions

As usual in SAR imaging and interferometry, after focusing
on the range-azimuth plane, the K SAR images available for
processing are assumed to be co-registered and properly
compensated for the flat-Earth phase. Moreover,
N independent looks (here multiple adjacent pixels) are
used for processing. For each n-th look, the complex
amplitudes of the pixels observed in the K SAR images at
the same range-azimuth coordinate are collected in the K � 1
complex-valued vector y(n) (Lombardini and Reigber 2003).
y(n) is characterized by its covariance matrix. It can be
demonstrated that the generic (l, m)-th element of R can be
written as

R½ �l,m ¼
Z

F zð Þ exp j kz,l � kz,mð Þzf gdz ð1:195Þ

where F(z) is the unknown vertical distribution of the
backscattered power as a function of the height z and kz, m
is the vertical wavenumber at the m-th track. From (1.195), it
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is apparent the Fourier relationship existing between the MB
covariances and the profile of the backscattered power, and it
justifies the use of spectral estimation as a processing tool to
estimate F(z).

The inversion of (1.195) for the estimation of F(z) cannot
be carried out through a plain Fourier-based 3-D focusing as
it suffers from inflated sidelobes and poor height resolution.
Among the investigated alternatives, a state-of-the-art solu-
tion is the adaptive beam forming (shortly, ABF), which is
based on the Capon spectral estimator, and it has been
demonstrated to have remarkable sidelobe rejection and res-
olution capabilities.

The single-polarization ABF spectral estimation problem
can be equivalently stated as the problem of designing a
complex-valued finite impulse response filter h of order
K that leaves undistorted the multibaseline signal component
at the height under test, say z, while rejecting possible other
components from noise and other heights (Lombardini and
Reigber 2003). In formulas

min
h

hT�bRh subjectto hT�a zð Þ ¼ 1 ð1:196Þ

where a(z) is the so-called steering vector, with generic
element [a(z)]k ¼ exp { jkz, kz } for k ¼ 1, . . ., K, and bR is
the sample covariance estimate. Notice that the resulting
ABF filter h depends on bR, and it varies with z; In particular,
the dependency on bR results in a null-placing at proper
heights in the filtering operation, thus increasing resolution
and sidelobe suppression in the final estimate of F(z). The
solution to the optimization problem (1.196) can be found in
closed-form (Lombardini and Reigber 2003).

If fully polarimetric data are available, without losing
generality, they can be combined in the Pauli basis. The
resulting MB data vectors y1(n), y2(n) and y3(n) can then be
stacked one on top of the other in order to form the 3K-
dimensional multibaseline-polarimetric data vector yP(n).
As a consequence, a MB-polarimetric sample covariance
matrix bRP can be calculated from yP(n). Different from the
single polarimetric case, the profile has now to be estimated
also by considering the polarization state at the targeted
height. In this sense, the definition of the steering vector
can be extended to the polarimetric case by means of a
three-dimensional target vector w whose elements are
complex-valued coefficients describing the scattering mech-
anism in the Pauli basis, with k w k2 ¼ 1. In formulas, the
polarimetric steering vector b(z, w) is given by

b z,wð Þ ¼ B zð Þw, ð1:197Þ

where

B zð Þ=
a zð Þ 0 0

0 a zð Þ 0

0 0 a zð Þ

264
375 : ð1:198Þ

The ABF optimization problem (1.196) can be extended
to the MB-polarimetric case as follows (Sauer et al. 2011):

min
hP

hT�P bRPhP subjectto hT�P b z,wð Þ ¼ 1 ð1:199Þ

where hP is the multibaseline-polarimetric ABF filter
response. Now, hP is optimized in order to place proper
nulls in height and in the polarimetric space generated by
w. Notice that the dependence of w on z has been formally
dropped for easiness of notation. From (1.199), the power of
the filtered signal is

bFABF z,wð Þ ¼ 1

bT� z,wð ÞbRPb z,wð Þ
ð1:200Þ

which is still a function of w. To estimate the vertical power
distribution as a function of the only z, and the corresponding
w, one can maximize (1.200) over w to finally obtain

bFABF zð Þ ¼ 1

λmin BT� zð Þ bR�1

P B zð Þ
n o ð1:201Þ

where λmin{�} denotes the minimum eigenvalue operator. The
resulting bwABF zð Þ is the eigenvector associated with λmin. It is
worth noting that the multibaseline-polarimetric ABF estima-
tor (1.201) enhances the discrimination of particular
scatterers or features. In other words, it is able to extract a
rank 1 polarimetric information. This is generally the case of
man-made targets like buildings in urban scenarios.

However, it can happen that the scatterers present at a
given z are characterized by a random polarimetric
behaviour, and they are more properly described by a 3 � 3
polarimetric covariance matrix T(z) rather than by a deter-
ministic target vector (Ferro-Famil et al. 2012). This is gen-
erally the case in natural scenarios like forests. In this way, a
scattering mechanism at the generic z will contribute to RP

with T(z)
N

[a(z)aT�(z)]. In light of this, the polarimetric
ABF estimator from the rank 1 formulation (1.201) can be
extended in a full-rank sense (Ferro-Famil et al. 2012). The
derivation of such estimate is based on the definition of a full-
rank objective function which uses the polarimetric span
instead of the intensity associated with a given scattering
mechanism. The full-rank ABF estimator then is
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bFABF�FR zð Þ ¼ trace BT� zð Þ bR�1

P B zð Þ
h i�1
� �

, ð1:202Þ

bTABF zð Þ ¼ BT� zð ÞbR�1

P B zð Þ
h i�1

: ð1:203Þ

The availability of the polarimetric coherence matrix
makes possible the full exploitation of the polarimetric infor-
mation for the characterization of the scattering, allowing the
3-D calculation of parameters like, e.g. entropy and degree of
polarization, as well as the application of polarimetric
decompositions.

1.5.2 Model-Based PolTomoSAR

As mentioned in Sect. 1.6.1, the non-model-based ABF pos-
sess some intrinsic degree of super-resolution, i.e. it is able to
separate scatterers with a height difference lower than the
Rayleigh resolution limit, which in turn depends on the
maximum available track separation. However, a higher
super-resolution could be needed in some applications. For
this reason, a solution is to resort to model-based tomo-
graphic processors, which generally exploit the statistical
description of the received signal or equivalently of the
scattering behaviours present in the observed scene.

Several methods have been proposed for single-
polarization and then extended to full-polarization MB data
sets. For instance, the MUSIC (multiple signal classification)
is matched to point-like targets (Frey and Meier 2011), and it
exploits the fact that the multibaseline response of each point-
like scatterer (i.e. the steering vector) in the backscattered
radiation is orthogonal to the noise subspace. As a conse-
quence, closed-form solution of the MUSIC PolTomoSAR
functional can be found that outputs the scattering mecha-
nism of each scatterer (Sauer et al. 2011). Still in the category
of the eigen-based processors, the weighted signal subspace
fitting can cope with more complex statistical descriptions of
distributed and coherent scatterers, although a multidimen-
sional optimization is required (Huang et al. 2011).

Alternatively to the eigen-based PolTomoSAR, a solution
adaptive to both coherent and distributed scatterers, but pos-
sibly leading to a lower computational time, is the so-called
covariance matching estimator (COMET). If the
multibaseline data are jointly Gaussian distributed, the
knowledge of the MB-multipolarimetric covariance matrix
RP is enough to perform a maximum likelihood
(ML) estimation of the parameters describing the vertical
distribution of the backscattered power. It can be
demonstrated that the global ML problem can be
decomposed by means of the extended invariance principle
into a cascade of two ML problems (i.e. the estimation of RP

and the estimation of the parameters of interest from bRP ),
leading to an asymptotically equivalent solution and with a

non-negligible reduction of the computational complexity.
Under the Gaussian hypothesis, the resulting COMET
estimates can be obtained from the following minimization
problem (Tebaldini and Rocca 2010):

bρ ¼ argmin
ρ

trace bR�1

P RP ρð Þ � bRP

h ibR�1

P RP ρð Þ � bRP

h i� �
ð1:204Þ

where ρ is the vector containing the parameters that describe
the multibaseline covariances. Equation (1.204) can be seen
as the weighted Frobenius norm of the approximation error

RP ρð Þ � bRP with weight bR�1

P . Worth of notice, the COMET
estimator can be used also when data are not Gaussian,
although it is not asymptotically optimal anymore.

1.5.3 Coherence Tomography

Besides the development of spectral estimation- and model-
based PolTomoSAR, also the so-called (polarimetric) coher-
ence tomography methods have been proposed which recon-
struct the vertical distribution of scatterers from complex
coherence measurements of volumetric scatterers. In a few
words, the structure function is approximated through a
weighted sum of a series of basis functions (Cloude 2007b).
The individual parameterization has then to be inverted using
a (limited) number of interferometric measurements at the
same or different polarizations. In this class of “hybrid”
algorithms, the different polarization channels can be used,
e.g. to find a polarization state with lowest ground
contribution.
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Forest Applications 2
K. P. Papathanassiou, S. R. Cloude, M. Pardini, M. J. Quiñones, D. Hoekman,
L. Ferro-Famil, D. Goodenough, H. Chen, S. Tebaldini, M. Neumann,
L. M. H. Ulander, and M. J. Soja

Abstract

The application of polarimetric Synthetic Aperture Radar
(SAR) to forest observation for mapping, classification and
parameter estimation (especially biomass) has a relatively
long history. The radar penetration through forest volume,
and hence the multi-layer nature of scattering models, make
fully polarimetric data the observation space enabling a
robust and full inversion of such models. A critical advance
came with the introduction of polarimetric SAR

interferometry, where polarimetry provides the parameter
diversity, while the interferometric baseline proves a user-
defined entropy control as well as spatial separation of
scattering components, together with their location in the
third dimension (height). Finally, the availability of multi-
ple baselines leads to the full 3-D imaging of forest
volumes through TomoSAR, the quality of which is again
greatly enhanced by the inclusion of polarimetry. The
objective of this Chapter is to review applications of SAR
polarimetry, polarimetric interferometry and tomography to
forest mapping and classification, height estimation, 3-D
structure characterization and biomass estimation. This
review includes not only models and algorithms, but it
also contains a large number of experimental results in
different test sites and forest types, and from airborne and
space borne SAR data at different frequencies.

2.1 Introduction

The application of radar polarimetry to forestry has a long
history. Ever since the earliest days of airborne data trials
with the JPL-AIRSAR system it was realized that forest
scattering at microwave frequencies generates more linear
cross-polarization (HV) than non-forest (especially at lower
radar frequencies such as P- and L- bands). Since then,
various groups have attempted to develop algorithms for the
generation of imaging radar products based on forest
mapping, classification and parameter estimation (especially
biomass) requirements.

It was also quickly realized that improved products were
obtained by using fully coherent scattering matrix or quad-
pol PolSAR systems. These then allow the application of
target decomposition and multivariate classification
techniques accounting not only for backscatter amplitude
and ratios, but also for phase and coherence statistics. The
physics behind these techniques is based on the idea that
there is significant forest penetration of microwave radiation,
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even to the surface layer under the forest, and hence multi-
layer scattering theories are required to properly interpret the
signatures. These multi-layer approaches in turn require mul-
tiple parameters for model based estimation and inversion
and the use of quadpol data allows much more robust inver-
sion of such models, providing as it does a wider set of
observables than classical single or even dual-pol radars.

Still there remained a problem unique to forestry, namely
high scattering entropy due to the complexity of the random
media scattering environment generated by forests. This inevi-
tably leads to lower accuracy and poorer resolution products. A
significant advance therefore came with realization that lower
entropy scattering could be obtained for forests by combining
polarimetry with interferometry for PolInSAR. Here polarim-
etry provides again the parameter diversity, with the interfero-
metric baseline now providing a user defined entropy control
as well as spatial separation of scattering components.

This concept has also recently been extended to consider
multiple baselines for multibaseline PolInSAR, which in the
limit leads to 3-D imaging of forests through TomoSAR, while
for limited baselines offers band-limited 3-D imaging, the
quality of which is again greatly enhanced by the inclusion
of polarimetry. This technology has now matured to the stage
where several important products (especially forest height and
vertical structure) can be accurately obtained at high spatial
resolutions and with wide continuous coverage. Since 2006,
with the launch of ALOS-PALSAR, such quad-pol
capabilities have been available routinely from space imaging
radars, enabling important developments in product maturity,
as well as opening new possibilities by using time series
analysis to capture dynamic changes in forests. A general
classification of the applications is reported in Table 2.1.

2.2 Forest Classification

2.2.1 Land Cover Classification in Tropical
Lands Using PolSAR

2.2.1.1 Introduction, Motivation and Literature
Review

Recent radar space borne systems, like the C-band
ENVISAT-ASAR, the C-band RADARSAT and the
L-band ALOS-PALSAR systems, offer unique possibilities

of mapping and monitoring the tropical forest, usually cov-
ered by clouds. Nevertheless it is still not clear which are the
advantages of complex fully polarimetric systems over sim-
ple single or double polarized systems for certain
applications. Also the specific use of frequencies and fre-
quency combinations is still unclear: long radar wavelength
like at L- and P- bands could add information to the short
wavelengths at C- and X- bands due to the different scattering
mechanisms involved in the wave interactions with the forest,
the difference in canopy penetration, improving the classifi-
cation of land cover classes or forest types.

Polarimetric radar classification simulations gave in the
past insights into the accuracy of using certain band/polariza-
tion combination for land cover, forest type and biomass
mapping (Hoekman and Quiñones 2000, 2002; Quiñones
2002). Nevertheless this information needed to be recreated
on the frame of recent versatile, robust and computational
efficient algorithms that can be applied over polarimetric and
multi-frequency space borne data. In this Section, a pixel
based unsupervised classification technique, developed in
Hoekman et al. (2011), is used as a research tool to evaluate
the NASA’s AIRSAR, C-, L- and P-band radar data acquired
in 1993 over the Guaviare site in the Colombian Amazon. A
polarimetric decomposition algorithm, that preserves the full
polarimetric information content into six different radar
intensities is used. Results give indication on the added
valued of certain frequency and polarization combination in
a tropical land. The robustness of the algorithm is further
demonstrated by its applications to fine beam dual-pol (FBD)
L-band HH/HV and wide beam (WB) L-band HH ALOS-
PALSAR data in central Kalimantan.

2.2.1.2 Methodology
Classification accuracy results from unsupervised
segmentations applied to different combinations of
polarimetric C, L and P band data are used to evaluate the
possible radar band combinations useful for tropical forest
monitoring and mapping. Use is made of the unsupervised
fully polarimetric SAR segmentation tool developed in
Hoekman et al. (2011). The unsupervised approach consists
of six processing steps extensively explained in Hoekman
and Vissers (2003). The first step is a mathematical data
transform which allows polarimetric data, without loss of
any information, to be written in a form where classes are

Table 2.1 Remote sensing applications on forestry

(End) Users Application(s) Interest/Motivation

National International Authorities/Agencies Forest biomass Carbon cycle & environmental science

Deforestration Carbon cycle & environmental science

Forest type classification Biodiversity

Forest Management Forest (top) height Inventory (selective)

Species classification Biodiversity, Forest monitoring

Mapping of storm damage Forest monitoring
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well approximated by multivariate normal distributions. This
transform allows application of a wide class of mature image
processing algorithms to polarimetric data, including unsu-
pervised data clustering. The second step relates to unsuper-
vised clustering encompassing a simple region-growing
segmentation (incomplete and over-segmented), followed
by model-based agglomerative clustering (Step 3), and
expectation-maximization on the pixels of these segments
(Step 4). Classification is achieved by Markov random field
filtering on the original data (Step 5). The result is a series of
segmented maps, which differ in the number of (unsuper-
vised) classes.

For the analysis of the results three different accuracy
percentages are used as indicators of the performance of a
particular polarization/frequency combination in the classifi-
cation of the four cover types. The first is the overall classifi-
cation accuracy, calculated as the percentage of right and
wrong classified pixels for all the classes, for a particular
polarization/frequency combination. A Kappa statistic (bK )
was computed to evaluate significant differences between
any pair of classification results (Lillesand and Kiefer
1994). A test statistic ΔbK can be calculated as:

ΔbK ¼
bK1 � bK2

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ21 bK1

h i
þ bσ21 bK2

h ir ð2:1Þ

where bσ21 bKh i
is the approximate large sample variance of bK.

At the 95% confidence level two results may be considered
significantly different if ΔbK > 1:96 (Benson and De Gloria
1985).

The second accuracy percentage is the users classification
accuracy that indicates the percentages of pixels classified in
a certain class given that the pixel was label into that class.
This particular indicator is useful to evaluate the capacity of a
certain combination to classify a class.

The third indicator is the percentage of confusion between
two particular land cover types in the absence of other clas-
ses. This indicator is of particular interest for the evaluation
of possible monitoring scenarios in a changing tropical forest.
Monitoring scenarios are defined as the capacity to differen-
tiate processes like deforestation, forest degradation and
forest regeneration as explained in Hoekman and
Quiñones (2000).

2.2.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on land cover clas-
sification in tropical lands are summarized in Table 2.2 and
further described in Appendix A. Figure 2.1 shows an over-
view of the radar data.

Fully polarimetric target properties for uniform distributed
scatterers can be described by nine single-pol radar intensities
as introduced in Hoekman and Vissers (2003). For the
AIRSAR data the Stokes scattering operator matrix was set
to zero for the four ‘asymmetric’ elements of the covariance
matrix. For that reason it is assumed that the objects display
azimuthal symmetry and that the asymmetrical information
may be discarded. In this case the case of azimuthal symme-
try (Freeman 1999) the covariance matrix simplifies to.

Cr ¼
ShhS

�
hh

� �
0 ShhS

�
vv

� �
0 ShvS

�
hv

� �
0

SvvS
�
hh

� �
0 SvvS

�
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� �
0B@

1CA ð2:2Þ

In the intensity representation introduced in Hoekman and
Vissers (2003) it is possible to find several sets of 5 indepen-
dent intensity values containing this and only symmetrical
information. At least one (non-redundant) possibility is
needed to represent the polarimetric data. A selection of
6 intensities were made using the conjugated Real and Imag-
inary parts of the HH-VV phase differences as follows:

ð2:3Þ
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Intensity images created for the C-, L-, and P-band data are
shown in Fig. 2.2.

For each single frequency, comparisons were made
between the combinations of dual-like polarizations
(HH/VV), three linear polarizations (HH/VV/HV) and all
6 intensity polarizations (Pol-6i) containing the polarimetric
information (HH/VV/HV/MR/PL/PM). For the comparison
between multi-frequency data, combinations where made
using two and three frequencies (C-L), (L-P), (C-L-P) with
three linear polarizations (HH/VV/HV) and with all polari-
metric data per frequency (HH/VV/HV/MR/PL/PM).
Figure 2.3 shows the classification result from the unsuper-
vised segmentation using different combinations. Table 2.3
shows all three accuracy percentages calculated for the stud-
ied frequency/polarizations combinations. Low overall clas-
sification accuracies and low users accuracy per class were

found for all C-band combinations and for L- and P-band
dual-pol (HH/VV)/single frequency combinations. High con-
fusion between classes was also found for these channel
combinations. For both L- and P-band the results by adding
the HV channel to the dual-pol (HH/VV) were significantly
higher (94.5% to 85.5%, for L-band and 93.5% to 61.2% for
P-band, respectively) and improved both the users accuracy
per class and the confusion between classes especially
between primary and secondary forest and primary and
recently cut areas in both cases. When these classes are
confused the particular combination will not addressed the
monitoring scenarios for detection of forest regeneration or
deforestation processes, at least using only single-date data.
The addition of HV polarization to the dual-pol (HH/VV)
data, have significant impact on the classification accuracy
for both L- and P-band data.

Fig. 2.1 Total power image of the P-, L- and C-band AIRSAR data, in
the 45�–50� incidence angle range, over the Guaviare study site.
Photographs illustrate the four vegetation cover types in this study.
Polygons digitized over the visited field locations for all the four cover

types are illustrated: (1) primary forest (red): 27 polygons (4983 pixels);
(2) secondary forest (blue): 49 polygons (4004 pixels); (3) recently
deforested areas (green): 30 polygons (2878 pixels); and (4) grasslands
(white): 18 polygons (4046 pixels)

Table 2.2 Test sites and corresponding radar and validation data selected for the generation of showcases on land cover classification

Application/product Test site – Radar data Reference data

Land cover classification
in tropical lands

Guaviare, Colombian Amazon
AIRSAR P-, L-, and C-band data (1993),
incidence angle from 20� to 60�

Direct field observations on vegetation and terrain characteristics
like drainage, flooding and slopes
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Fig. 2.2 Intensity images derived from the C-, L-, and P-band AIRSAR polarimetric decompositions into intensity images. Horizontal (h), vertical
(v), left circular (l), right circular (r), 45� linear (p) and �45� linear (m)

Fig. 2.3 A 400 � 400 pixels window, classification maps resulting
from the unsupervised segmentation of images when using different
frequency/polarization combinations. (1) primary forest (green); (2) sec-
ondary forest (yellow); (3) recently deforested areas (red); and

(4) grasslands (blue). In the top left corner, a total power image is
shown with some of the validation polygons that have been used as a
reference to evaluate the results
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The addition of polarimetric (Pol-6i) data to the three
polarization (HH/VV/HV) combinations decreases the over-
all classification accuracy and in most of the cases increases
the confusion between primary and secondary forest. In gen-
eral the confusion between classes is below 10%, for all the
land cover pairs, when using L- (HH/VV/HV) or P- (HH/VV/
HV) and P- (Pol-6i) combinations. When comparing the
results produced by the L- and the P-band combinations
there are no significant differences in the results, meaning
that both single L- or P- band data (HH/HV/VV) or (Pol-6i)
are very good to assess the monitoring scenarios. All overall
accuracies are above 90% for the frequency/polarizations
combination. For the two frequencies combinations, the
accuracy results of the C-L combination (91.5% and 91.7%)
are significantly lower than the combinations of the L-P
combinations (96.2% and 98%) for (HH/VV/HV) and
(Pol-6i) respectively. Lower percentages when using
C-band are explained by the relatively lower “user’s accu-
racy” classification results, for primary and secondary forest
and the high confusion found between these same classes.

The combination of C-L-P (HH/VV/HV) and L-P (Pol-6i)
were not significantly different from each other. These
combinations also show high users accuracy for all the clas-
ses and low confusion percentages between all pairs of cover
types, addressing all the monitoring scenarios.

2.2.1.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Most of the classifications for the combinations involving
C-band channels appear to be very irregular affecting the

accuracy results. The low classification accuracies and the
high confusion between classes, found when using the
C-band single frequency combinations and the C-L multi-
frequency combinations are obviously suffering from the
effect of rough texture in the C-band images (high variance
between neighboring pixels) due to the higher resolution of
the C-band channels and also by the direct scattering occur-
ring between the short C-band waves with the leaves and
branches of the rough canopy of the primary forest and
secondary vegetation. On the other hand, the results involv-
ing C-band channels are also affected by the nature of the
classification algorithm and the application of the Markov
random field filter to the segmentation procedure. When there
is much variance between neighbors the classification of a
pixel might be more affected by system filter parameters than
for channels with less texture.

For combinations involving L- and P-band channels the
classifications are smoother and borders are better defined.
Classification accuracy results are higher, which might be
explained by the physical interactions, mostly double
bounces and volume scattering, occurring between the longer
wavelengths and the larger scatterers in this land cover clas-
ses. These frequencies are more sensitive to contrasting veg-
etation structure as is the case by the cover types selected for
this study.

The use of polarimetric data for both single frequency and
multi frequency combinations, for the L- and P-band
channels, did not add significant information compared to
the (HH/VV/HV) combinations. For this contrasting vegeta-
tion structures polarimetric information is of no need, but

Table 2.3 Accuracy classification results for different polarization combinations for all AIRSAR channels studied

Overall classification accuracy calculated between
all classes

Users accuracy in percentage of right
classified pixels per class

Confusion between classes in absence of
other classes

Band Polariz. Right % Wrong % 1 2 3 4 1–2 1–3 1–4 2–3 2–4 3–4

C HH/VV 55.8 44.2 60.5 51.5 81.7 54.5 41.0 2.7 7.7 6.8 8.8 36.6

C HH/VV/HV 56.6 43.4 54.6 42.1 82.3 60.9 46.9 3.7 6.4 2.4 14.3 28.3

C Pol-6i 57.9 42.1 56.6 45.4 93.8 61.8 38.6 12.1 8.1 4.6 17.5 22.9

L HH/VV 85.5 14.5 78.1 77.8 87.7 99.1 17.5 9.0 0.0 3.6 0.3 3.6

L HH/VV/HV 94.5 5.5 91.7 91.2 96.3 99.1 7.6 0.8 0.0 2.0 0.3 0.3

L Pol-6i 90.7 9.3 81.0 91.3 97.0 99.3 13.4 1.1 0.0 2.9 0.6 0.6

P HH/VV 61.2 38.8 58.3 41.9 16.2 91.6 21.3 27.1 0.1 57.1 18.2 0.2

P HH/VV/HV 93.5 6.5 96.9 84.2 98.6 96.5 2.5 2.0 0.0 7.1 2.5 0.4

P Pol-6i 89.9 10.1 97.4 81.6 94.7 87.9 4.5 3.2 0.0 5.7 6.8 1.6

C-L HH/VV/HV 91.7 8.3 88.4 87.8 91.9 98.2 10.2 2.1 0.0 3.9 0.4 0.7

L-P HH/VV/HV 96.2 3.8 94.8 92.7 98.9 99.4 3.4 3.4 0.0 0.5 0.4 0.2

C-L Pol-6i 91.5 8.5 84.7 86.5 99.0 99.9 10.6 1.6 0.1 4.6 0.4 0.0

L-P Pol-6i 98.0 2.0 99.0 95.3 97.3 99.9 1.8 0.4 0.0 0.5 0.4 0.9
C-L-P HH/VV/HV 98.0 2.0 97.8 95.5 99.5 99.6 2.8 0.5 0.0 0.1 0.2 0.1
C-L-P Pol-6i 96.2 3.8 98.0 91.3 100. 96.8 1.8 0.6 0.1 2.5 1.2 2.0

The bold numbers indicate the best result plus the results that are not significantly different from the best result at the 95% level of confidence.
(1) Primary forest; (2) Secondary forest; (3) Recently deforested areas; and (4) Grasslands
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might be of relevance for other applications like forest type
mapping (Quiñones 2002).

In general, for addressing the monitoring scenarios in the
tropical forest when using the land cover classes used in this
study, the L- and P-band linear polarizations (HH/VV/HV)
appear to be suitable, and there is no evidence that could
show that any of this two frequencies should be preferred
over the other.

What is certainly clear is that the use of only two like
polarizations for the L and P band was not enough to differ-
entiate this land cover classes and not good enough to address
the monitoring scenarios in this study. The use of HV polari-
zation significantly improved the overall classification
accuracies and decreased the confusion between the cover
classes. At that respect, the assessment of dual polarizations
involving cross-polarized data (HV) is of interest for future
studies.

With the launch of polarimetric space borne SAR systems
like RADARSAT-2 (C-band) in December 2007 and ALOS-
PALSAR (L-band) in January 2006, the need for simple,
robust and accurate polarimetric classification and biophysi-
cal parameter estimation algorithms for monitoring
applications and research is of great importance. Ideally,
algorithms should be sufficiently versatile to handle multi-
band, multi-polarization, multi-date and/or multi-sensor data
sets. Moreover, it would be an important asset when
algorithms could deal with situations were ground truth is
sparse or incomplete. Combination of unsupervised with
supervised approaches increases the accuracies of the classi-
fication as shown in Cao et al. (2010) so the possibility of
using unsupervised segmentation algorithm as supervised
segmentation procedure when classes are already being sta-
tistically described and labelled is very useful.

The current segmentation methodology applied for
mapping and monitoring of tropical forest allows all the
above mention possibilities. Until now, it is being extensively
tested over images of the L-band WB and FBD-FBS ALOS-
PALSAR, and C-band ENVISAT-ASAR and RADARSAT.
Some issues surrounding the application of the current algo-
rithm, to these space borne images, are related to speckle and
image texture. The use of a Markov random field filter in the
classification procedure helps to overcome partly the effect of
speckle, nevertheless it is being demonstrated that filtering of
radar images previous segmentation can help in the better
statistical definition of classes and in the final classification
results. In addition, the use of the current algorithms in the
high resolution RADARSAT-2 and (X-band) TerraSAR-X
images can create very blurry classifications and re-sampling
of the data is necessary before getting reasonable results.
Also regarding the legend development process, the field
information is still necessary and the interpretation of the
radar signatures can be of great complexity. Nevertheless
several maps have been created using this algorithm

(Hoekman et al. 2010). An example is a forest type map
created for an ecologically complex area in Central
Kalimantan. This map was created using a combination of
space borne WB (HH) and FBD (HV/HH) polarizations for
2 years of ALOS-PALSAR acquisitions. The results are
reported in Fig. 2.4. The overall classification accuracy cal-
culated for the map is of 84% for 17 different vegetation
cover types. This methodology has proven to be very robust
to noise/outliers and overlapping clusters, is reasonably fast
and is suitable for moderate to large images.

2.2.2 Forest Mapping and Classification Using
Polarimetric and Interferometric Data

2.2.2.1 Introduction, Motivation and Literature
Review

Forest remote sensing from SAR data has been intensively
studied during the last 15 years. Various types of SAR data
(single-, dual- and quad-pol, single- or multi-frequency)
acquired in multi-temporal, multi-angular or interferometric
modes were used to retrieve geophysical property estimates.
All these studies demonstrated that SAR quantities (intensity,
phase, correlation, coherence. . .) show particular behaviors
over forested areas and may be used for classification
purposes. Forest classification may be split into two comple-
mentary applications requiring different levels of accuracy
and processing complexity:

• forest area mapping, which consists in delimiting the
extent of forested areas within a SAR image;

• discrimination of vegetation categories, which aims to
separate pixels belonging to different types of vegetated
media.

This Section proposes to gather complementary aspects of
polarimetric and interferometric data processing techniques
to improve forest mapping and classification performance. If
SAR polarimetry is particularly well adapted to the analysis
and description of scattering mechanisms, and hence may be
used to discriminate different environments, it is well known
that PolSAR parameters tend to saturate over volumetric
media with highly random response, like dense forest
observed at L band or at higher carrier frequency. Oppositely,
interferometric SAR measurements permit to further investi-
gate volumetric media properties but suffer from a lack of
contrast over areas showing more polarimetrically determin-
istic responses like agricultural fields and open surfaces.

This Section proposes simple processing schemes, based
on both SAR signal statistical properties and physical
interpretations of wave scattering, that combine PolSAR
and PolInSAR analysis techniques into hierarchical,
supervised or unsupervised classification approaches. It is
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shown that forest mapping can be performed efficiently using
PolSAR data processing and that refined segmentation results
may be obtained by including POLinSAR information. For-
est category identification is, in general, a significantly more
complex task, since classical SAR indicators like reflectivity,
or usual polarimetric parameters, can reveal highly
misleading in the frame of forest classification, due to their
saturation or high correlation with factors unrelated to the tree
species under observation. As it is related hereafter, this
serious limitation may be overcome by dealing with intrinsic
PolInSAR parameters, that do not depend on forest radiome-
try and that are less affected by saturation effects.

Many studies report that SAR backscatter intensity value
depends, up to a certain extent, on forest bio and geo-physical
properties such as biomass, tree age (Lee et al. 2002). Never-
theless, high performance mapping or classification of for-
ested areas can generally not be achieved by thresholding
backscattered intensity due to the large variability of SAR
image information. Single polarization data-based mapping
techniques generally use additional modes of diversity, like
texture (De Grandi et al. 2000; Wegmüller andWerner 1995),
or time (seasonal variations, stability) (Grover et al. 1999;
Lee et al. 1999; Paloscia et al. 1999). Partially or fully
polarimetric SAR data may also be used to map forests,
using cross-pol ratios or co-pol correlation (Hoekman and
Quiñones 2000; Hoekman and Varekamp 2001) and com-
bined with multi-frequency measurements (mainly P-, L- and
C-bands) (Quegan et al. 2000; Ranson and Sun 1994; Ranson
et al. 1995). However, the robustness of such supervised
approaches has to be tempered by considering repeatability
and generalization issues related to uncontrolled variations of
polarimetric scattering patterns with time (year, season,
month or even days) or depending on the geographical

location or the investigated area (Ranson and Sun 1994; Le
Toan et al. 2001; Cloude and Pottier 1997).

Unsupervised PolSAR approaches, related to the decom-
position of polarimetric covariance matrices may be
employed to determine the presence of forest from an inter-
pretation of polarimetric scattering mechanisms (Le Toan
et al. 2001; Cloude and Pottier 1997; Durden et al. 1989;
Ferro-Famil et al. 2001, 2006). Such methods may meet some
limitations over complex areas that cannot be separated from
forests based on PolSAR information only (Ferro-Famil et al.
2003; Freeman and Durden 1998; Kurvonen and Hallikainen
1999). Single polarization interferometric coherence may be
used to map forested areas (Askne et al. 1997; Dammert et al.
1999; Engdahl and Hyyppä 2003; Rignot et al. 1994a), but
such techniques have to deal with exterior factors such as the
spatial/temporal baselines compromises, forest density and
topography that may affect the mapping accuracy and reli-
ability. Finally, complementary aspects of both polarimetric
and interferometric diversity modes may be combined in
order to overcome intrinsic issues of each separate mode,
and provide more reliable and accurate mapping results
(Ferro-Famil et al. 2006).

An important number of studies have been led to discrim-
inate different types of forest from single polarization SAR
data (Dobson et al. 1996). Similarly to forest mapping
applications, reasonable classification rates may be reached
with supervised algorithms, particularly well adapted to one
site or type of vegetation, but a systematic implementation
may meet some problems of generalization, due to temporal
variations and saturation of the basckscattered intensity (Lee
et al. 2002; Hyypa et al. 1997; Mougin et al. 1999). The use
of fully polarimetric and/or multifrequency data permit to
further discriminate a large range of natural media (Hoekman

Fig. 2.4 Land cover Map (right|) created using a combination of WB and FBD- L-band ALOS-PALSAR data (left). Accuracy assessment was done
using field photographs taken on the points over long transects in the study area (centre). Calculated accuracy 84% for 17 classes
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and Quiñones 2000, 2002; Hoekman and Varekamp 2001;
Ranson et al. 1995; Dobson et al. 1992) using supervised
hierarchical classifiers, multi-frequency polarimetric
acquisitions (Hoekman and Quiñones 2002; Dobson et al.
1992; Ferrazzoli et al. 1997; Hagberg et al. 1995), model-
based approaches (Hoekman and Quiñones 2000; Hoekman
and Varekamp 2001; Ranson and Sun 1994; Lombardo and
Macrì Pellizzeri 2002), or directly based on polarimetric
measurements (Ranson et al. 1995) or on pre-processed
polarimetric indicators, such as polarimetric decompositions
results (Ferro-Famil et al. 2001; Kurvonen and Hallikainen
1999). One has to note that parameter saturation over forested
areas may affect polarimetric indicators too and may then
limit the performance of all the classification approaches
mentioned above. Radar interferometry is an efficient tool
for forest observation (Grover et al. 1999) and may overcome
limitations due to polarimetric scattering coefficient satura-
tion. Interferometric classification approaches generally rely
on the modeling of SAR measurement coherence and an
interpretation of its relation to the observed media nature
and geophysical characteristics (Askne et al. 1997, 2003;
Eriksson et al. 2003a; Imhoff 1995a; Strozzi et al. 2000;
Van Zyl 1993; Wegmüller and Werner 1997). Statistical
segmentation procedures adapted to inSAR data sets have
been developed as well (Dammert et al. 1999; Engdahl and
Hyyppä 2003; Rignot et al. 1994a). Interferometry based
classification meet limitations similar to those enounced in
the case of forest mapping, mainly linked to temporal-spatial
baselines, topography and to the lack of polarimetric diver-
sity. Quad polarization interferometric data, Pol-In-SAR,
based classification is a powerful alternative to multi-
frequency data processing. The interpretation of this high-
dimensional information by the way of optimisation
procedures permits to isolate different kinds of forested
areas and constitutes a good solution to forest classification
(Ferro-Famil et al. 2006). The introduction of joint polarimet-
ric and interferometric information in an unsupervised classi-
fication scheme has shown the complementarity of both data
types permits to discriminate refined features that cannot be
observed from separate analysis (Ferro-Famil et al. 2003).
The use of polarimetric interferometric representation statis-
tics, derived in Ferro-Famil and Neumann (2008), in the
frame of already existing robust and powerful supervised/
unsupervised classification algorithms (Ferro-Famil et al.
2006, 2003; Kurvonen and Hallikainen 1999), permit to
reach higher levels of performance and robustness over a
wide range of vegetation types (Ferro-Famil et al. 2006).

2.2.2.2 Methodology
The employed methodology for unsupervised forest mapping
is illustrated in Fig. 2.5. The PolSAR image is first segmented
using the Wishart H=A=α statistical segmentation technique.

An identification of basic scattering mechanisms is then run
over each pixel of the image, from specific polarimetric
indicators derived from the eigenvector decomposition of
coherency matrices, as described in Ferro-Famil et al.
(2003): according to the number of scattering mechanisms
detected within pixel using the H and A parameters, specific
procedures are run to assign the pixel under observation to
the volume diffusion, single- or bouble-bounce class. In order
to reduce the random aspect of the mapping and increase its
robustness with respect to arbitrarily fixed decision
boundaries, a global decision is taken over statistically com-
pact clusters obtained from the Wishart H=A=α segmentation
using a winner-takes-all decision strategy. As mentioned
earlier, such a mapping approach may lead to some false
alarms over complex and dense volumetric areas, like urban
environments observed at L-band, and PolInSAR coherence
optimization may be used to refine the PolSAR map.
Parameters built from the PolInSAR optimal coherence set
are used to determine the number of coherent scattering
mechanisms from which is derived an indicator of the level
of volumetric scattering. This information is then combined
with the PolSAR result in order to obtain a refined forest map
(Ferro-Famil et al. 2003, 2006).

Forest classification is performed here as a statistical
supervised process which comprises two stages: a learning
phase during which user-selected groups of data are used to
learn the statistics of the different classes to be discriminated,
and a classification phase which assigns a class label to each
pixel on an image according to a statistical metric or to a
specific decision rule whose parameters have been learned
during the preceding phase. Here again, the random aspect of
classification results may be reduced by taking global
decisions over statistically compact clusters obtained from
an unsupervised segmentation map.

This Section compares results obtained using the whole
PolInSAR information, i.e. statistics of the (6� 6) coherency
matrix, or using reduced but more robust information
consisting of the three optimal PolInSAR coherences.

2.2.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest mapping
and classifications are summarized in Table 2.4 and further
described in the Appendix.

The complexity of the SAR scene over the Traunstein
forest may be appreciated from the Pauli color-coded image
shown in Fig. 2.6. This site is composed of forested areas,
pasture fields with scattered farms and isolated buildings and
an urban area at the center left part of the image. The unsu-
pervised Wishart classification given in Fig. 2.6 provides
some useful indications on the PolSAR properties of this
data set:
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• the different types of environments cannot be separated
using their PolSAR statistics since many classes are
spread over the whole image;

• one may observe a clear distribution of the classes in the
range direction, related to the dependency of the
backscattered intensity on the incidence angle, and to the
predominance of the span over other polarimetric
indicators. This aspect may be highly limiting for discrim-
inating media located at different range positions.

Classification results shown in Figs. 2.6 and 2.7 indicate
that PolInSAR data sets can be efficiently used in a
supervised way to discriminate between different forest spe-
cies and grow states or between different levels of biomass.
The principal basic features of the ground information can be
retrieved in the classification results whose spatial distribu-
tion is more heterogeneous than the provided reference map.
This variability is mainly due to the fact that ground informa-
tion is generally delivered under the highly simplified form of
compact and homogeneous clusters, whereas forest stands are
in general not homogeneous. A qualitative comparison
between the ground information map and an aerial photo-
graph revealed that some areas, considered as homogeneous
in the ground maps, could indeed contain zones with varying

tree densities, forest paths, clear cuts etc. On the other hand,
some specific forest parcels belonging to slightly different
types or having close biomasses may have very close
PolInSAR responses that cannot be discriminated using sta-
tistical or hierarchical approaches. The overall performance
of the biomass classification approach was evaluated over
trusty locations, in terms of homogeneity, and a correct
classification rate higher than 75% was found. The classifica-
tion of forest type and growth states led to slightly lower
rates.

As it has been mentioned earlier, single-pol techniques are
mentioned in the literature for forest mapping and classifica-
tion in the frame of marginal approaches, mainly based on
texture and temporal analysis, in order to investigate the
potential of existing spaceborne data sets for such
applications. As reported in many studies, single polarization
SAR data acquired at high frequency (L-band and higher)
cannot be used in a robust way for mapping and classifying
forested areas in general configurations, i.e. without a large
amount of a priori information. The use of dual-pol data is not
recommended either, due to the fact that the cross-pol HV
channel is essential for accurately mapping and discriminat-
ing volumetric media with different physical features. Being
this channel uncorrelated with other co-polarized
measurements over the major part of natural environments,

Fig. 2.5 Synopsis of the unsupervised forest mapping approach

Table 2.4 Test sites and corresponding radar and validation data selected for the generation of showcases on forest classification

Application/product Test site – Radar data Reference data

Forest mapping and
classification

Traunstein forest, Germany
5-image PolInSAR data set
Spatial baselines: 0, 5, 10 m
Temporal baselines: 10 min,
15 days

Maps of tree species, growth state and biomass derived from ground
inventories
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volumes and surfaces, a (2 � 2) co- and cross-pol covariance
matrix would not bring sufficient information for applying
the technique proposed here. A co-pol covariance matrix,
e.g. built from the HH and VV channels, can be used for
forest mapping through the analysis of its eigenvalues, but
with a significant loss of performance and additional
ambiguities compared with the fully polarimetric case. Such
a configuration leads to a significant reduction of the contrast
between the elements of the optimal PolInSAR coherence set
involving a severe loss of performance for classifying differ-
ent types of forested areas or different levels of biomass.

The following comparison aims to show that over forested
areas, single image polarimetry, i.e. classical SAR

polarimetry, can be highly misleading for characterizing
dense volumetric environments at L-band. This fact is due
to the saturation of the polarimetric response, i.e. the covari-
ance matrix tends to be proportional to the identity matrix,
which strongly limits the potential of analysis of polarimetry
and to the high dependence of the backscattered energy,
i.e. the polarimetric span, on the scene geometry in general
and the local incidence angle in particular. As one may note
in Fig. 2.8, classification results obtained from PolSAR only
data are largely influenced by the spatial distribution of the
backscattered intensity over the whole scene, which may be
appreciated over the Pauli color-coded image displayed in
Fig. 2.6. Due to its interferometric aspect, PolInSAR-based

C2C1T11 T22 T33 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15 C16

Fig. 2.6 Left: Pauli color-coded image of the Traustein site; right: result of the unsupervised PolSAR Wishart classification into 16 classes

Fig. 2.7 Left: simplified forest biomass map, where medium biomass (B) means 200 t/ha < B � 310 t/ha; right: biomass classification result
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technique permits to overcome this saturation effect. Being
based on the statistics of span-independent quantities, it
presents greatly enhanced features, whose distribution is
tightly linked to the kind of forest under observation and
not the angular dependence of the span.

Another illustration of this effect is given in Fig. 2.9 where
classification results, obtained using the Wishart statistics of
the full PolInSAR coherency matrix, are compared for vari-
ous temporal and spatial baselines. The Wishart PolInSAR

classifier output maps are quasi-insensitive to the level of
interferometric correlation between the images. This obser-
vation shows that the volumetric analysis through interfero-
metric coherence properties play a very little role during the
classification, whereas the PolSAR part, saturated and
strongly influenced by the span, predominates, leading to
classification results poorly related to forest properties and
perturbed by the scene topography or the acquisition geome-
try. Oppositely, the proposed approach, based on the

youth

growth conifer.

mature conifer.

plenter (heterogeneous)

growth broadl.

mature broadl.

Fig. 2.8 Forest type classification results. Left: using the Wishart statistics of the PolSAR coherency matrix T; mid: reference map; right: using the
proposed PolInSAR approach

Fig. 2.9 Biomass classification using various temporal (Bt) and spatial
(Bs) baseline configurations. Legend as in Fig. 2.7. Color coded images
of the optimal Pol-inSAR coherence set are given (central panel).

Results obtained using the statistics of the full PolInSAR coherency
matrix are plotted in the top panel, and the ones obtained by using the
statistics of the optimal PolInSAR coherence set are in the bottom panel
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statistics of the optimal coherence set, fully exploits the
relative interferometric coherence information, and for a cor-
rect spatial and temporal configuration, provides results
intrinsically related to forest properties and less affected by
potential changes of incidence angle.

2.2.2.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Polarimetry plays a key role for applications related to forest
mapping or classification using SAR images. Despite the fact
that single polarization intensity value depends, up to a
certain extent, on forest geophysical properties such as bio-
mass or tree age, high performance mapping or classification
of forested areas can generally not be achieved by
thresholding backscattered intensity due to the large
variability of SAR image information, to the potentially
important influence of factors related to the scene topography
or to the acquisition geometry, and to the saturation of the
relation relating intensity to biomass at L- or higher fre-
quency bands.

SAR polarimetry offers the possibility to measure this
saturation from indicators related to the number of effective
scattering mechanisms estimated within each pixel. Media
with a polarimetrically saturated responses are associated to
complex volumes, hence to forests. Such an approach works
well over most environments, but may lead to false alarms
over highly heterogeneous zones, mainly urban areas. This
problem may be overcome by further measuring the presence
of dense volume using PolInSAR parameters. Here again,
polarization plays an essential role as it permits to separate
media whose interferometric coherence may vary depending
on the chosen polarimetric channel.

Due to the saturation of the polarimetric response of an
environment in the presence of volume, classical SAR polar-
imetry, i.e. based on a single PolSAR image, cannot be used
to classify forested areas with a sufficient accuracy, and one
has to use PolInSAR data sets. However, this showcase
clearly demonstrates that using the whole PolInSAR infor-
mation for classifying forested areas can be counter-
productive, as a significant part of this information can be
dominated by factors unrelated to the nature of biomass
features of the observed forest. Instead, using a set of
elaborated parameters that concentrates the relative part of
the PolInSAR information provides interesting results and
limits the effects of artefacts encountered with usual or direct
approaches.

In conclusion, polarimetry represents a very useful and
efficient mode of diversity for forest mapping and classifica-
tion, and needs to be coupled to interferometric
measurements for characterizing complex volumetric
environments. Pre-processing steps, aiming to separate
sources of potential perturbations, linked to the acquisition

geometry or other parameters unrelated to forest from the
useful part of the signal should be implemented.

2.2.3 Detection of Fire Scars

2.2.3.1 Introduction, Motivation and Literature
Review

Canada is home to 10% of the world’s forests. Accounting of
annual carbon emissions from forest fire events and monitor-
ing changes in Canada’s forests are important activities at
Natural Resources Canada (NRCan). In 2004, NRCan
initiated a joint project between the Canadian Forest Service
(CFS) and the Canada Centre for Remote Sensing (CCRS) to
create a system, the Canadian Wildland Fire Information
System (CWFIS), used to estimate direct carbon emissions
from Canadian wildfires (Groot et al. 2007). Accurate knowl-
edge of burned areas is required to produce burned area
estimates at the national level for post fire mapping. Cur-
rently, optical remote sensors, like SPOT-VGT and Landsat,
are used to map burned areas at low resolution (1 km) and
high resolution (30 m) respectively. A final burned-area
output is used as an input to the National Forest Carbon
Monitoring, Accounting and Reporting System (NFCMARS)
(Kurz and Apps 2006) to estimate national carbon emissions.
However, for producing such burned area estimates, the
earliest possible cloud-free satellite images are critical.
Because of adverse weather, cloud and illumination
conditions in the Canada North, the limitation of remote
sensing images from these optical sensors is evident.

Advanced space-borne Synthetic Aperture Radar (SAR)
systems, such as Japanese ALOS-PALSAR, the German
TerraSAR-X, and the Canadian RADARSAT-2, can contrib-
ute specially to this estimation effort. Over previous sensors,
these offer better spatial resolution, shorter revisiting times,
availability of polarimetry, and all-weather data acquisition
capability. Therefore, considerable polarimetric SAR
research in forest applications has been conducted at CFS
with support of the Canadian Space Agency (CSA) and
NRCan. One of the motivations is to determine whether
polarimetric SAR information can be used to detect fire
scars effectively in forest lands and offer alternative to tradi-
tional sketch mapping methods and optical sensors.

Historic burned area estimates, created from sketch
mapping from small planes, GPS mapping from helicopters,
and photo interpretation (Fraser et al. 2000, 2004), are avail-
able from provincial and territorial forest fire agencies.
Because the management and protection of these data
resources fall under provincial and territorial jurisdiction,
GIS wildfire polygon data varies in quality due to the
limitations of the traditional GIS technologies available at
the time. Several Canadian provinces maintain GIS wildfire
polygon data for managed forests from the 1940s to the
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present day. Generally, the older the data the less reliable it
becomes. Fire perimeters derived from these traditional
methods often include unburned “islands” and may overesti-
mate burned areas. Moreover, the distribution of remote wild
fire events and environmental conditions make them a chal-
lenge to accurately map.

Research has been conducted in mapping forest fire scar
using SAR, which can be used to provide measurements of
post-fire ecosystem changes in forest structure, ground sur-
face exposure and soil moisture patterns (Landry et al. 1995;
Bourgeau-Chavez et al. 1997). In Bourgeau-Chavez’s studies
based on radar backscatter analysis, he demonstrated that fire
scars were detectable in a range of boreal ecosystems across
the globe using C-band SAR and showed that the length of
viewing time of fire scars with ERS or RADARSAT-1 data
was between 3 and 7 years in Alaska and Canada (Bourgeau-
Chavez et al. 2002).

In previous studies, it was discovered that, using the
airborne Convair 580 C-band quad-pol data, it is possible to
detect a historical fire scar, more than 50 years old, over our
study site in Hinton, Alberta (Goodenough et al. 2006). Here,
we focus on the detection of two roughly 9 years old fire
scars, using ALOS-PALSAR L-band and RADARSAT-
2 C-band quad-pol data data. The analysis includes data
pre-processing, decomposition analysis and classification
methodologies. The aim of the approach is to provide new
fire-scar mapping methodologies from SAR quad-pol data in
support of CWFIS and NFCMARS.

2.2.3.2 Methodology
Three techniques used to analyze space-borne quad-pol data
for fire scar detection include polarimetric decomposition,
scattering model, and classification. Decomposition
approaches, such as the entropy-alpha decomposition
(Cloude and Pottier 1997) and three component decomposi-
tion (Freeman and Durden 1998), provides various
parameters showing different scattering characteristics of
objects on the ground. Scattering model, such as the Ori-
ented-Volume-over-Ground (OVOG) (Cloude 2009),
estimates secondary parameters for volume and surface scat-
tering components. The classification technique utilizes these
scattering characteristics from the decomposition and
modelling, performs image classification and extracts fire
scars. Two latest classification methods employed here are a
coherence-based geometrical detector described in Marino

and Cloude (2010) and a data driven multi-dimensional clus-
tering approach, i.e. the K-Nearest Neighbors (KNN)
(Richardson et al. 2010).

Compact polarimetry (compact-pol) architecture is a new
hybrid SAR mode and is proposed for the future Canadian
RADARSAT Constellation Mission (RCM). The compact-
pol mode transmits single circular polarization (left/right) and
receives simultaneous coherent orthogonal linear
polarizations. The advantages of this mode are wide-swath
coherent polarimetric information, low data rate, and rela-
tively simple transmitter architecture (Raney 2007). These
advantages plus shorter satellite revisiting intervals are par-
ticularly attractive for forest applications. Therefore, it has
become essential to quantitatively assess this new mode.
RADARSAT-2 quad-pol data were used to simulate RCM
compact-pol data and new compact-pol parameters using
compact-pol decomposition theories were introduced
(Cloude et al. 2012) to investigate whether the loss of infor-
mation through the compact-pol projection affects the quality
of detection of forest fire scars. A rule-based classifier based
on the physical interpretation of the compact parameters was
constructed. A detailed description of this classification
approach is provided in Cloude et al. (2013).

2.2.3.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on fire scar detection
are summarized in Table 2.5 and further described in the
Appendix.

The L-band data set was first corrected for any Faraday
rotation, a low frequency distortion arising from trans-
ionospheric propagation from the satellite to the ground.
Because all data sets provided were in single-look complex
format, multi-looking in azimuth and range directions were
performed to reduce speckle. Next, a box car filter was used
to generate the 3 � 3 PolSAR coherency matrix. To further
reduce topography relief effects on the polarimetric SAR
data, polarization orientation shifts introduced by terrain
slopes in the azimuth direction were detected and corrected
to generate reflection symmetry in the coherency matrix of
the polarimetric SAR data for the next stage of analysis.

The coherence-based geometrical detector was performed
on the PALSAR quad-pol data over the Keg River site.
Figure 2.10 is a Pauli RGB composite of the PALSAR
scene. The variety of colours indicates the wide diversity of

Table 2.5 Test sites and corresponding radar and validation data selected for the generation of showcases on fire scar detection

Application/
product Test site – Radar data Reference data

Fire scar
detection

Keg River, Alberta, Canada
ALOS-PALSAR (08.06.2009)
6 RADARSAT-2 acquisitions (between Nov. 2010 and
June 2011)

Fire scar polygons (government of Alberta), Google Earth maps,
field knowledge
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landcover types in this area. Figure 2.11 is the result of a fire
scar coherence detector using a supervised approach, i.e. with
training on a known fire scar region. Figure 2.12 is the result
for an unsupervised fire scar detector, both of which showed
good detection and low false alarm rates. Figure 2.13
illustrates the fire scar detection and clustering result from
the KNN classification, using H=A=α from the entropy-alpha
decomposition as input. Both of the coherence-based detector
and the KNN classifier showed very good fire scar results for
the PALSAR L-band Keg River scene.

A rule-based classifier was applied on simulated C-band
compact-pol data with imagery dimension 29 km � 27 km,
and the scene is shown in Fig.2.14. One issue was the
temporal variability of the simulated compact data due to
environmental changes. To avoid threshold values depending

partly on the data set and meet the time-invariant classifier
requirements, six simulated compact data sets in different
seasons were combined to form a co-registered data stack.
Each pixel was averaged in time across the whole stack to
create a time averaged Stokes vector. Four decomposition
parameters used for the rule-based classification were the
compact minimum volume, the degree of polarization, the
α-angle and the compact phase. Figure 2.15 is a pseudo
colour classification map of the averaged compact data. The
fire scars are dark grey areas and outlined by the GIS fire
polygons (red). The output fire scars from the rule-based
classification are shown in Fig. 2.16. In Bourgeau-Chavez
et al. (2002), Bourgeau-Chavez showed that fire scars
between 3 and 7 years in Alaska and Canada were detectable
with ERS or RADARSAT-1 single polarization data.

Fig. 2.10 Keg River, ALOS-PALSAR acquisition: Pauli RGB

Fig. 2.11 Keg River, ALOS-
PALSAR acquisition: supervised
coherence detector

Fig. 2.12 Keg River, ALOS-
PALSAR acquisition:
unsupervised coherence detector

Fig. 2.13 Keg River, ALOS-PALSAR acquisition: KNN (K ¼ 55, 22 clusters)
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However, because their approach is a manual interpretation
method based on the backscatter intensity, the accuracy of
fire scar detection results were largely affected by human
error, seasonal variations, topography effects, and environ-
mental conditions.

In this Section, we demonstrated that the strong signature
embedded in quad-pol SAR data provided much better
capabilities for fire scar detection and monitoring. The fire
scar detection results from quad-pol and simulated compact-
pol data showed the improved mapping of historical fire scars
in this age category. With such method, the fire scar detection
now is much more reliant on polarization information, toler-
ant of topographic variations and robust to absolute changes
in backscatter due to environmental conditions, which is
complementary to optical remote sensing and current fire
scar mapping techniques.

2.2.3.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

This Section focused on utilizing the phase information
contained in polarimetric SAR data to increase the sensitivity
of SAR measurement for scar identification. ALOS-
PALSAR and RADARSAT-2 data were processed and
analyzed over the study site in Keg River, Alberta. The
results showed that it is feasible to clearly map historical
fire scars of approximately 9 years of age with polarimetric
SAR data from both sensors. The coherence-based geometri-
cal detector and KNN classification results are encouraging,
showing the potential and effectiveness of such methodology
in segmenting and classifying polarimetric SAR data for fire
scar detection.

Fig. 2.14 Keg River, RADARSAT-2 average acquisition: HH single-pol amplitude

Fig. 2.15 Keg River, RADARSAT-2 average acquisition: rule-based
compact classification Fig. 2.16 Keg River, RADARSAT-2 average acquisition: fire scar

identification
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Compact polarimetry provides a new wide-swath multi-
channel coherent mode for radar imaging. However, the loss
of information through projection and high entropy for vege-
tation scattering pose challenges for use in fire scar detection.
Here, compact polarimetry decomposition and classification
were employed. The degree of polarization, minimum-over-
time-volume, and compact phase were very useful
parameters for the rule-based classification, especially when
supported by the α-angle. With carefully defined threshold
values and the use of extended time series of simulated
compact data, the historical fire scars in this study area were
clearly detected. The false positives outside the fire scar
region in simulated compact-pol data can be further reduced
by using area filters. These results support the idea that, in
absence of an operational quad-pol mode, the compact mode
would be a good mode to use for wide area land-use moni-
toring and change detection.

2.3 Forest Height Estimation

2.3.1 Introduction, Motivation and Literature
Review

Forest height is one of the most important parameters in
forestry along with basal area and tree species or species
composition. It provides information about stand develop-
ment and/or site index and describes dynamic forest develop-
ment, modeling and inventory. Forest height is an (standard)
indicator for the site dependent timber production potential of
a stand, and is closely related (through allometric relations) to
forest biomass (see Sect. 2.5.1). Furthermore, accurate forest
height measurements allow concluding on the successional
state of the forest and can be used to constrain model
estimates of above ground biomass and associated carbon
flux components between the vegetation and the atmosphere.
The distribution of forest heights within a stand can be further
used to characterize the disturbance regime while high (spa-
tial and temporal) resolution forest height maps can be used
for detecting selective logging activities (Köhler and Huth
2010; Dubayah et al. 2010; Thomas et al. 2008; Hurtt et al.
2010).

When it comes to characterize dynamic forest processes
the (accurate) estimation of forest height change is even more
important than static forest height measurements. Forest
height change can be directly used to characterize forest
growth, mortality and deforestration and to conclude about
the associated carbon fluxes without the need of assumptions
(or knowledge) about the successional status (Köhler and
Huth 2010; Dubayah et al. 2010).

Being a standard parameter in forest inventories, forest
height is hard to be measured on the ground and typical
estimation errors are around 10% accuracy, yet increasing

with forest height and density. In terms of remote sensing
techniques, lidar configurations have been today established
as the reference (in terms of vertical and spatial resolution
and/or accuracy) for measuring on local and regional scale
vertical and horizontal distribution of vegetation structure
components including vegetation height. Lidar estimation
methodologies have been developed and validated through
a variety of airborne and speceborne measurements and
experiments (Lefsky 2010). However, the rather small
footprints of spaceborne lidar configurations do not allow
global forest height (and structure) monitoring with reason-
able temporal resolution.

The introduction of polarimetric SAR interferometry
(PolInSAR) at the end of the nineties was a decisive step
towards developing remote sensing applications relevant to
forest structure. The inherent sensitivity of the interferometric
coherence to the vertical structure of volume scatterers com-
bined with the potential of SAR polarimetry to interpret and
characterise the individual scattering processes at different
structural components allows a qualitative and quantitative
determination of relevant (structure) parameters from SAR
measurements. Today, PolInSAR is an established technique,
allowing investigation of the 3-D structure of natural volume
scatterers.

The fundamental interferometric measurement is the com-
plex interferometric coherence, which comprises the interfer-
ometric correlation coefficient, as well as the interferometric
phase. For a given spatial baseline (indicated by the vertical
interferometric wavenumber kz) and a given polarization
(indicated by the unitary vector w (Cloude 2009; Marino
and Cloude 2010)) the complex interferometric coherence is
obtained by forming the (normalized) cross-correlation
between the corresponding interferometric images S1(w)
and S2(w):

γ kz,wð Þ ¼ < S1 wð ÞS�2 wð Þ >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< S1 wð ÞS�1 wð Þ >< S2 wð ÞS�2 wð Þ >p ¼j γ kz,wð Þ

j exp jφð Þ: ð2:4Þ

The measured coherence depends on the system and imag-
ing geometry, as well as on the dielectric and structural
parameters of the scatterers within the scene. A detailed
discussion of system induced coherence contributions can
be found in Lefsky (2010). After calibration of system
induced decorrelation contributions and compensation of
spectral decorrelation in azimuth and range the estimated
interferometric coherence can be decomposed into three
main decorrelation processes (Zebker and Villasenor 1992;
Bamler and Hartl 1998; Moreira et al. 2013):

γ kz,wð Þ ¼ γTempγSNRγVol kz,wð Þ ð2:5Þ
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• γSNR known as the Signal-to-Noise Ratio (SNR)
decorrelation is introduced by the additive white noise
contribution on the received signal;

• γTemp is the temporal decorrelation caused by dynamic
changes in the scene occurring in the time between the
two acquisitions. It depends on the structure and the tem-
poral stability of the scatterer, the temporal baseline of the
interferometric acquisition and the dynamic environmen-
tal processes occurring in the time between the
acquisitions;

• The volume decorrelation γVol(kz, w) is the decorrelation
caused by the different projection of the vertical compo-
nent of the scatterer reflectivity spectrum into the two
interferometric SAR images. It contains therefore infor-
mation about the vertical structure of the scatterer (Cloude
2009; Bamler and Hartl 1998). Indeed, γVol(kz, w) is
directly related to the vertical distribution of scatterers F
(z, w) in the medium through a (normalized) Fourier
transformation relationship (Bamler and Hartl 1998;
Papathanassiou and Cloude 2001)

γVol kz,wð Þ ¼ exp jkzz0
� � RhV0 F z0,wð Þ exp jkzz

0� �
dz0

RhV
0
F z0,wð Þdz0

ð2:6Þ

where hV indicates the height (or depth) of the volume.
kz ¼ (m � 2π � Δθ)/[λ � sin (θ0)] is the effective vertical
(interferometric) wavenumber that depends on the imaging
geometry (Δθ is the incidence angle difference between the
two interferometric images induced by the baseline and θ0 the
local incidence angle) and the radar wavelength λ. z0 is a
reference height and φ0 ¼ kzz0 the associated interferometric
phase. For monostatic acquisitions m ¼ 2, while for bistatic
acquisitions m ¼ 1.

Accordingly, γVol(kz, w) contains the information about
the vertical structure of the scatterers and allows to estimate
F(z, w) (and/or associated structure parameters) from
measurements of γVol(kz, w) (or γ(kz, w)). Indeed, for the
estimation of F(z, w) (and/or associated structure parameters)
from γVol(kz, w) measurements at different polarisations,
frequencies and/or (spatial) baselines two approaches have
been explored in the literature:

1. The first one is to parameterise F(z, w) in terms of geo-
metrical and scattering properties and to use then γVol(kz,
w) measurements at different spatial baselines and/or dif-
ferent polarisations to estimate the individual model
parameters. In this case, the scattering model is essential
for the accuracy of the estimated parameters. On the one
hand the model must contain enough physical structure to
interpret the inreferometric measurements, while on the

other hand it must be simple enough in terms of
parameters in order to be determinable with the available
(in general limited) number of observations (Cloude 2009;
Papathanassiou and Cloude 2001; Cloude and
Papathanassiou 2003).

2. The second approach to estimate F(z, w) is to approximate
it by a (normalized) polynomial series or another orthogo-
nal function basis Pn(z) (Cloude 2009; Cloude 2006):

F z,wð Þ ¼
X
n
an wð ÞPn zð Þ ð2:7Þ

and to use then γVol(kz, w) measurements to estimate the
coefficients an(w) of the individual components. The advan-
tage of this approach is that there is no assumption on the
shape of F(z, w) required, allowing the reconstruction of
arbitrary vertical scattering distributions (Cloude 2006).

2.3.2 Methodology

2.3.2.1 Random-Volume-Over-Ground Inversion
For vegetation applications two layer statistical models,
consisting of a vertical distribution of scatterers FV(z, w)
that accounts for the vegetation scattering contribution, and
a Dirac-like component mG(w)δ(z � z0) that accounts for the
scattering contribution(s) with the underlying ground
(i.e. direct surface and dihedral vegetation-surface
contributions) have been proven to be sufficient in terms of
robustness and performance especially at lower frequencies
(Cloude 2009; Moreira et al. 2013; Papathanassiou and
Cloude 2001):

F z,wð Þ ¼ FV z,wð Þ þ mG wð Þδ z� z0ð Þ ð2:8Þ

where mG(w) is the ground scattering amplitude. Substituting
(2.8) into (2.6) leads to the model:

eγVol kz,wð Þ ¼ e jφ0
eγV kz,wð Þ þ μ wð Þ

1þ μ wð Þ ,eγV kz,wð Þ

¼

RhV
0
FV z,wð Þ exp jkzz

0� �
dz0

RhV
0
FV z,wð Þdz0

: ð2:9Þ

The ratio μ wð Þ ¼ mG wð Þ=R hV
o FV z,wð Þdz is the effective

ground-to-volume amplitude ratio.
For modelling the vertical distribution of scatterers in the

vegetation layer FV(z, w), or equivalently eγV kz,wð Þ, different
models can be used. A widely and very successfully used
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model for FV(z, w) is an exponential distribution of scatterers
(Moreira et al. 2013; Papathanassiou and Cloude 2001):

FV z,wð Þ ¼ exp 2σ wð Þz= cos θ0ð Þ½ � ð2:10Þ

where σ(w) is a mean extinction value for the vegetation layer
that defines the attenuation rate of the profile. Besides the
exponential profile, that appears to fit better higher
frequencies, Gaussian, or Linear scattering distributions
have been proposed especially at lower frequencies
(Garestier and Le Toan 2010a, b; Kugler et al. 2009).

Equation (2.9) comprises four unknowns: the forest height
hV, the extinction σ(w), the ground topography phase φ0, and
the ground-to-volume amplitude ratio μ(w) and cannot be
inverted by a single-channel (i.e. single polarisation) interfer-
ometric acquisition that provides only one (complex) γVol(kz,
w) estimate. In order to invert (2.9), one has to increase the
dimensionality of the observation space introducing:

• Baseline diversity: the dependency of γVol(kz, w) on the
vertical wave number is essential as it allows to increase
the observation space in an effective way (i.e. without
increasing the number of unknown parameters) as F
(z, w) does not change with kz (Treuhaft and Siqueira
2000). At the same time, the choice of the vertical wave
number allows to optimize the inversion performance
(Krieger et al. 2005). However, the limitation of
multibaseline inversion approaches arises when the acqui-
sition of additional spatial baselines is associated with
non-zero temporal decorrelations (i.e. when they are not
acquired simultaneously).

• Polarimetric diversity: the variation of γVol(kz, w) with
polarization is due to the polarization dependency of F
(z, w). The fact that certain components of F(z, w) have a
stronger polarised (scattering) behaviour than others
allows to use the polarimetric dependency of γVol(kz, w)
for the estimation of F(z, w) (Papathanassiou and Cloude
2001; Cloude and Papathanassiou 2003). Looking on the
two layer model of (2.8), while the ground scattering
component is strongly polarized and therefore has to be
assumed to be polarization dependent, the volume scatter-
ing component can be both: in the case of oriented
volumes (OV) the vertical distribution of scatterers in the
volume is polarization dependent, while in the case of
random volumes (RV), the vertical distribution of
scatterers in the volume is the same for all polarisations,
i.e. FV(z, w) ¼ FV(z).

In forest applications random volumes have been
established so that a single polarimetric baseline allows the
inversion of the Random-Volume-over-Ground (RVoG)
model (Cloude 2009). Oriented volumes are more expected
to be important in agriculture applications where the

scatterers within the agriculture vegetation layer are in
many cases characterized by an orientation correlation
introducing anisotropic propagation effects and differential
extinction (Treuhaft and Cloude 1999; Ballester-Berman
et al. 2005).

In the absence of temporal decorrelation (i.e. γTemp ¼ 1)
and assuming a sufficient high SNR (i.e. γSNR ¼ 1), from
(2.5) follows:

γ kz,wð Þ ¼ γVol kz,wð Þ: ð2:11Þ

The inversion problem for the quad-pol single-baseline case
is balanced with six unknowns (hV, σ, μ1 � 3, φ0) and three
measured complex coherences [γ(kz, w1) γ(kz, w2) γ
(kz, w3)] each for any independent polarization channel

min
hV , σ, μi ,φ0

γ kz,w1ð Þ
γ kz,w2ð Þ
γ kz,w3ð Þ

2664
3775�

eγVol hV , σ, μ1jkzð ÞeγVol hV , σ, μ2jkzð ÞeγVol hV , σ, μ3jkzð Þ

2664
3775

��������
��������: ð2:12Þ

with eγVol hV , σ, μijkzð Þ modelled as in (2.9) and under the
RVoG assumption.

However, Eq. (2.12) does not have a unique solution for a
single baseline. Uniqueness can be established in terms of a
single baseline only by regularisation (Cloude 2009; Flynn
et al. 2002). A very efficient regularisation approach is to
assume no response from the ground in one polarization
channel (i.e., μ3 ¼ 0) (Papathanassiou and Cloude 2001;
Cloude and Papathanassiou 2003). This way, one obtains
an inversion problem with five real unknowns (hV, σ,
μ1 � 2, φ0) and three measured complex coherences each
for any independent polarization channel (Papathanassiou
and Cloude 2001):

min
hV , σ, μi ,φ0

γ kz,w1ð Þ
γ kz,w2ð Þ
γ z,w3ð Þ

2664
3775�

eγVol hV , σ, μ1jkzð ÞeγVol hV , σ, μ2jkzð ÞeγVol hV , σ, μ3 ¼ 0jz
� �

2664
3775

��������
��������

ð2:13Þ

Equation (2.13) has now a unique solution in terms of hV
and σ: each {hV, σ} pair for a given baseline (i.e. vertical
wavenumber κz) and φ0 phase is mapped through (2.10) into
a unique eγVol kzð Þvalue. However, the validity of this assump-
tion is not expected to be universal. Deviations of the real
vertical structure from the modelled one degrade the inver-
sion performance of (2.12) and (2.13). Two situations where
such a reality/model mismatch becomes obvious are:

1. In low extinction forest scattering situations given in
sparse forests the assumption that μ3 ¼ 0 is not valid,
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i.e. all polarizations are affected by a significant ground
scattering contribution. Also underlying topographic
variations within the scene can increase the ground scat-
tering contribution in all polarization channels. The pres-
ence of a residual μ3 in (2.13) biases the inversion results
(usually causes an overestimation of forest height and/or
an underestimation of the extinction coefficient). For a
single-baseline inversion scenario, one way to still obtain
a solution is to fix the extinction value. However, the
relative strong variation of σ in forest environments limits
the inversion performance obtained in many forest
environments.

2. Inverse scattering distributions, i.e. cases where more
effective scatterers are located in the lower forest layers
than on the higher ones. This can be the case in sparse
forest environments with more or less distinct
understorey, or at lower frequencies when the effective
scatterers become larger and therefore located lower
within the forest architecture. In this case, the exponential
decay of FV(z) as assumed in (2.11) is no longer valid
resulting in an underestimation of forest height and/or an
overestimation of extinction.

However, quantitative model based estimation of forest
height by means of (2.13) based on a single frequency, fully
polarimetric, single baseline configuration has been success-
fully demonstrated at different frequencies, from P- up to
X-band. Several space and airborne experiments
demonstrated the potential of Pol-InSAR techniques to esti-
mate with high accuracy forest height over a variety of
natural and commercial; temperate, boreal and tropical sites
characterized by different stand and terrain conditions (Lee
et al. 2010, 2013; Lavalle et al. 2012).

2.3.2.2 Non-volumetric Decorrelation
Contributions

Equation (2.9) accounts only for the volume decorrelation
contribution while other non-volumetric decorrelation effects
are ignored. Any decorrelation contribution reduces the inter-
ferometric coherence, and increases the variation of the inter-
ferometric phase. Furthermore, one has to distinguish
between real and complex decorrelation contributions:
while the expectation value of the interferometric phase
remains invariant in the case of real decorrelation
contributions, complex decorrelation biases the interferomet-
ric phase.

The most prominent decorrelation contribution in the case
of non-simultaneous acquisitions (repeat pass system) is tem-
poral decorrelation. It is caused by changes within the scene
occurring in the time between (or even during) the two
acquisitions. Such changes affect the location and/or the
(scattering) properties of the scatterers within the scene

inducing in the most general case a complex decorrelation
(Lee et al. 2010, 2013; Lavalle et al. 2012).

In terms of the RVoG model (2.2), temporal decorrelation
may affect both the volume component that represents the
vegetation layer and the underlying ground layer and can be

accounted for by introducing γTemp w
!	 


as complex temporal

decorrelation coefficient in (2.11) (Lee et al. 2010):

γ kz,wð Þ ¼ γTemp wð ÞγVol kz,wð Þ

¼ exp jkzz0
� �

γTemp wð ÞeγV kzð Þ þ μ wð Þ
1þ μ wð Þ : ð2:14Þ

It is expected that decorrelation processes within the vol-
ume layer differs from temporal decorrelation of the ground
layer, to account for this γtemp(w) needs to be split into a
volume part and a ground part (Lee et al. 2010):

γ kz,wð Þ ¼ exp jkzz0
� �

� γTV wð ÞeγV kzð Þ þ γTG wð Þμ wð Þ
1þ μ wð Þ : ð2:15Þ

γTV(w) describes the temporal decorrelation of the volume
layer and γTG(w) the temporal decorrelation of the underlying
surface scatterer. Note that in general the decorrelation pro-
cesses within the volume layer occur at much smaller time
scales than the decorrelation processes on the ground (which
includes both surface and dihedral scattering) (Lee et al.
2010, 2013). As indicated, both coefficients may be
polarisation dependent and complex. For example, changes
in the dielectric properties of the canopy or ground layer lead
to (complex) polarisation dependent temporal decorrelation
contributions γTV(w) and γTG(w) (Lee et al. 2010). Changes
in the vertical distribution of scattererers lead to complex
decorrelation contributions.

From the parameter inversion point of view now, the
RVoG model (2.14) with general temporal decorrelation
contributions cannot be solved under any (repeat-pass) obser-
vation configuration. Any additional measurement of γ(kz, w)
at a different spatial baseline and/or polarisation introduces
the same number of unknowns (γTV and γTG) as observation
parameters. However, even if the general temporal
decorrelation scenario leads to an underdetermined problem,
special temporal decorrelation events may be accounted
under certain assumptions. The most common temporal
decorrelation over forested terrain is wind-induced
decorrelation due to the (wind-induced) movement of the
scatterers (e.g. leaves and/or branches) within the canopy
layer. In terms of the RVoG model, this corresponds to a
change of the position of the scattering particles within the
volume in the two acquisitions that introduces a
non-volumetric decorrelation. However, in this case the
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scattering amplitudes as well as the propagation properties of
the volume remain the same. Assuming further that the scat-
tering properties of the ground do not change in the time
between the two acquisitions (2.12) reduces to:

eγVol kz,wð Þ ¼ exp jkzz0
� � γTempeγV kzð Þ þ μ wð Þ

1þ μ wð Þ ð2:16Þ

γTemp describes the real temporal decorrelation of the volume
scatterer. The inversion of PolInSAR coherences
contaminated by temporal decorrelation using (2.13) leads
to overestimated forest height as the RVoG model interprets
the lower coherence by an increased forest height. Note that
the estimation bias increases with increasing level of tempo-
ral decorrelation and is significantly larger for low(er) than
for tall(er) forests stands. The effect of γTemp decreases with
increasing spatial baseline (Lee et al. 2013).

As indicated by (2.5), γ(kz, w) may include several non
volumetric decorrelation contributions γDeco so that:

γ kz,wð Þ ¼ γDecoγVol kz,wð Þ ð2:17Þ

In this sense, Eq. (2.9) becomes:

γ kz,wð Þ ¼ exp jφ0ð ÞγDeco
eγV kzð Þ þ μ wð Þ

1þ μ wð Þ : ð2:18Þ

The inversion of (2.18) requires apart from polarimetric
also baseline diversity (Lee et al. 2010). Assuming γDeco to be
polarisation independent, at least a second baseline is
required for height inversion. Each baseline provides three
measured coherences γ w1jkz,ið Þ γ w2jkz,ið Þ γ w3jkz,ið Þ½ �:

γ wjkz,ið Þ ¼ exp jφ0,i

� �
γDeco,i

eγV kz,ið Þ þ μ wð Þ
1þ μ wð Þ ð2:19Þ

where i ¼ 1, 2 indicate the two spatial baselines. Assuming
μ(w3) ¼ 0 the polarisation with the lowest ground contribu-
tion becomes:

γ w3jkz,ið Þ ¼ exp jφ0,i

� �
γDeco,ieγV kz,ið Þ: ð2:20Þ

Equation (2.19) can be inverted in two steps. First, for each
baseline all possible triplets {hV, σ, γDeco, i} fulfilling (2.20)

are estimated. Then the triplets with common height/extinc-
tion pairs {hV, σ} are projected into each individual baseline
and hV, σ are estimated according to

min
hV , σ

γ w3jkz,1ð Þ
γ w3jkz,2ð Þ

" #
�

γDeco,1eγV kz,1ð Þ
γDeco,2eγV kz,2ð Þ

" #�����
����� ð2:21Þ

The advantage of (2.18) is that it can be inverted in a
multi-baseline sense without requiring absolute (i.e. residual
geometric, ionospheric and/or atmospheric) phase
corrections.

2.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest height
estimation are summarized in Table 2.6 and further described
in the Appendix.

The results achieved at L-band over the temperate
Traunstein site are presented in Fig. 2.17. The L-band HV
intensity image of the Traunstein forest site is shown on the
left. In the middle and on the right of Fig. 2.17 forest height
maps derived from Pol-InSAR data acquired at L-band in
2003 (middle) and 2008 (right) are shown. Comparing the
two forest height maps a number of changes within the forest
become visible: the logging of individual tall trees as a result
of a change in forest management between 2003 and 2008
(marked by the green box); the damage caused in January
2007 by the hurricane Kyrill which blew down large parts of
the forest (marked by the orange box); and finally forest
growth on the order of 3–5 m over young stands as seen
within the area marked by the white circle. The validation
plot against the lidar reference data, shown in Fig. 2.18,
indicates correlation coefficient of 0.95 and a root mean
square error (RMSE) below 2 m.

The inversion results achieved at P-band over the tropical
Mawas site are shown in Fig. 2.19. The HH amplitude image
is shown on the top. The river crosses the left part of the
image embedded in secondary riverine forest. The lidar strip
is superimposed on the amplitude image. Forest height along
the Lidar strip is constant within 	5 m around 27 m with
lower heights in the parts close to the river and the disturbed
forest areas. The PolInSAR forest height map is shown on the

Table 2.6 Test sites and corresponding radar and validation data selected for the generation of showcases on forest height estimation

Application/product Test site – Radar data Reference data

Forest height Krycklan, Sweden
TanDEM-X dual-pol (HH VV)
Traunstein, Germany
Airborne E-SAR L-band repeat-pass quad-pol data 2003/2008
Mawas, Indonesia
Airborne E-SAR P-band repeat-pass quad-pol data 2004

Airborne lidar measurements
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bottom. In the forested part the logging trails caused by
logging activities 10–15 years ago appear clearly. On the
top right the validation plot against the lidar reference data
is shown characterized by a correlation coefficient of 0.94
and a RMSE of clearly below 2 m, indicating an estimation
accuracy better than 10% of the mean forest height.

2.3.4 Comparison with Single/Dual
Polarimetric Data

The RVoG model, as given in (2.9) and assuming FV(z,
w) ¼ FV(z), can be inverted by means of a dual-polarimetric
interferometric configuration that provides only two polari-
metric channels w1 and w2. Assuming a zero ground-to-
volume amplitude ratio for one polarization (i.e. μ(w2) ¼ 0)
leads to a balanced inversion problem with unique solutions
for four unknowns, i.e. the forest height hV, the extinction σ,
the ground topography phase φ0 and the ground-to-volume
amplitude ratio μ(w1):

min
hV , σ, μ1,φ0

γ kz,w1ð Þ
γ kz,w2ð Þ

" #
�

eγVol hV , σ, μ w1ð Þjkzð ÞeγVol hV , σ, μ w2ð Þ ¼ 0jkzð Þ

" #�����
�����

ð2:22Þ

Indeed, the inversion scheme of Eq. (2.22) has been used
to invert airborne but also space borne dual-pol interferomet-
ric configurations (Cloude 2009; Kugler et al. 2014). Com-
pared to the quad-pol case the performance of the dual-
polarimetric inversion has a reduced performance in terms of:

1. Biased estimation results which are obtained when the
assumption of a zero ground-to-volume amplitude ratio is
violated, i.e. when the ground scattering contribution is
significant in all polarisations. This can be the case at
lower frequencies and/or sparse forest conditions. With
respect to the zero ground-to-volume amplitude ratio
assumption, conventional dual-polarimetric configurations
acquiring a co- and a cross-polarised channel are in favour
when compared to dual-polarimetric configurations

Fig. 2.17 E-SAR L-band HV intensity image of the Traunstein test site (left). Forest height map computed from PolInSAR data in 2003 (middle)
and 2008 (right)
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acquiring the two co-polarised channels. However, even
the cross-polarised channel can be affected by a significant
ground scattering contribution especially in the presence of
terrain slopes.

2. Larger variance of the obtained forest height estimates
when compared to the inversion results achieved by
using the full polarimetric information as only a polari-
metric subspace is available for performing the inversion.
This affects the conditioning of the inversion problem and
the accuracy of the obtained estimates. For the Traunstein
site the performance of two dual-polarimetric interfero-
metric configurations, HH and HV as well as HH and VV
has been evaluated and compared to the quad-polarimetric
case. While the forest height estimates obtained from both
dual-polarimetric configurations do not show any signifi-
cant bias, their variance is significantly higher across all
validation stands than the variance of the forest height
estimates obtained from the quad-polarimetric configura-
tion as indicated in Fig. 2.20.

3. Larger amount of (forest) points with no RVoG solution.
This is, in most cases, also the result of a non-zero ground
scattering contribution in the estimated γVol(kz, w)¼ γV(kz)

Fig. 2.18 Validation plot of forest height estimates at L-band over
Traunstein (2008) against the lidar reference

Fig. 2.19 Top: P-band HH intensity image of the Mawas test site. Bottom: Forest height map from PolInSAR data. Top right: associated validation
plot against the lidar reference
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level that moves the γV(kz) values out of the eγV kz, hV , σð Þ
solution space. In the case of Traunstein, both dual-
polarimetric inversion configurations have 15% more
non-invertible forest points than the quad-polarimetric
configuration where 95% of all forest points could have
been inverted.

In the case of a single-polarimetric interferometric configura-
tion that provides a single polarimetric channel w, the
parameterisation of the measured interferometric coherence in
terms of the RVoGmodel requires four parameters: forest height
hV, extinction σ, ground topography phase φ0, and ground-to-
volume amplitude ratio μ(w). Even neglecting the ground scat-
tering contribution is not anymore sufficient to obtain a balanced
inversion problem. In this case, the inversion relies on additional
assumptions or external (a-priori) information on extinction or
on ground topography. Fixing the extinction σ has been proved
to compromise the inversion performance as it restricts the
ability of the RVoG model to interpret the spatial variability of
forest structure (Hajnsek et al. 2009).

A significant better performance is achieved by using an
external digital terrain model (DTM) to estimate the ground
topography phase exp(iφ0) (Kurvonen and Hallikainen 1999;

Dobson et al. 1996). In this case γ κz,w
!	 


can then be

inverted for forest height hV and extinction σ as.

min
hV , σ

γ kz,wð Þ exp �jφ0ð Þ � eγV hV , σ, μ ¼ 0jkzÞð kk ð2:23Þ

Figure 2.21 compares the two approaches using single-
and dual-polarimetric TanDEM-X data sets acquired over
Kryclan. The lidar-derived reference forest height map is
shown on the top left. The corresponding single- and dual-

pol forest height maps are on top middle and top right
respectively. The associated validation plots are shown on
bottom middle and bottom right. Compared to the single-pol
inversion characterized by a correlation coefficient equal to
0.91 and a RMSE of about 1.6 m the dual-pol estimates is
noisier, in particular for the taller forest stands, but the overall
correlation coefficient equal 0.86 and a RMSE of 2.02 m
remains convincing. On the bottom left, the single-pol forest
height estimates are plotted against the dual-pol forest heights
estimates. A correlation coefficient equal to 0.93 in combina-
tion with a RMSE of 1.44 m underlines the consistency of the
results obtained by the two approaches.

2.3.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Single-pol interferometric data at a single baseline do not
provide enough measurables to invert forest height without
a-priori information e.g. on terrain topography. A single-pol
inversion is possible when multiple baselines are available, but
the performance might be compromised by the presence of
temporal decorrelation and the ratio of the spatial baselines.
On the other hand, forest height inversion is possible with dual-
pol interferometric data taking into account a reduced estima-
tion performance when compared to the quad-pol case. The
availability of quad-pol interferometric measurements, that
allows the implementation of adaptive optimisation technique,
is critical when algorithm robustness and performance matters.

Forest height estimation matured and developed in the last
years from a pre-operational to an operational PolInSAR prod-
uct that has been validated in the frame of several campaigns
over a wide range of forest, terrain and environmental
conditions. The overall obtained estimation accuracy is on
the order of 10% or better. Uncompensated non-volumetric
decorrelation contributions, such as temporal or additive noise
decorrelation, are the most critical error sources. The
limitations of the individual inversion approaches and the
error propagation through them are today well understood as
well as the options available to compensate for them.

2.4 Forest Vertical Structure Estimation
Using Multi-baseline Polarimetric SAR
Acquisitions

2.4.1 Polarimetric SAR Tomography

2.4.1.1 Introduction, Motivation and Literature
Review

The vertical structure of forest is widely recognized to be an
indicator of the above-ground biomass, whose knowledge is
crucial for understanding the carbon cycle. Moreover, the

Fig. 2.20 Increase of forest height standard deviation (expressed in %
of absolute forest height) for the dual-pol inversion case (blue: HH and
HV, red: HH and VV) when compared to the quad-pol case for each
validation stand of the Traunstein 2008 L-band
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knowledge of the vertical structure can reduce effects of
saturation in the measurement of biomass by means of remote
sensing systems. Through vertical structure it is possible to
characterize the state of a forest ecosystem, for instance
relatively to local/global climate change. Biodiversity in a
forest environment depends on its vertical structure (Pretszch
2009).

Forest structure and biomass are still too poorly quantified
across most part of the planet. For this reason, the estimation
of forest vertical structure has become a very important
research topic within the remote sensing community. Much
work has been done in recent years in order to characterize
the 3-D structure of the vegetation layer, as demonstrated on
the one hand by the employment of lidar sensors, and on the
other hand by the attention paid by different research groups
to SAR systems. Especially the processing of SAR data
results to be particularly appealing in forest observation. In
fact, the unique ability of low frequency (P-/L-band) waves to
penetrate into and through even dense vegetation and thus to
interact with the different vegetation layers, provides

sensitivity to vegetation structure. On the other hand, space
borne SAR systems can acquire data continuously and pro-
vide the related products with high spatial and temporal
resolution at a global scale.

A way to obtain the vertical structure of forests from SAR
data consists in making use of SAR tomography (TomoSAR)
techniques, which combine coherently (i.e. amplitude and
phase) more than two acquisitions separated by horizontal
and/or vertical displacements (baselines). The resulting
cross-track baseline diversity allows to produce an aperture
synthesis along the vertical plane to get full 3-D imaging
through elevation beamforming for each given range-azimuth
cell. The main result of this imaging process is a profile of the
backscattered power as a function of the height. The size of
the 3-D resolution cell is determined by pulse bandwidth
along the slant range direction, and by the lengths of the
synthetic apertures in the azimuth and cross-range directions.
This concept is sketched in Fig. 2.22. It is worth noting that,
provided a sufficient number of baselines, while polarimetric
diversity per se is not required for obtaining forest profiles,

Fig. 2.21 X-band single and dual-polarimetric inversion results. Top: Forest height maps. Lidar H100 map (left), single-pol forest height map
(middle), dual-pol forest height map (right). Bottom: Validation plots: dual-pol (right), single-pol (middle), single- vs dual-pol (left)
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polarimetric information is essential to characterize the indi-
vidual scattering processes resolved in height. Such an
enhanced representation results in the possibility to (1) extend
from 2-D to 3-D all the classes of polarimetric estimation/
decomposition techniques; (2) provide new estimation/
decomposition techniques that are explicitly based on the
joint exploitation of tomographic and polarimetric data.

The development of TomoSAR started with single-pol
data. In parallel to the development of PolInSAR, TomoSAR
for forest observation was demonstrated with an L-band
airborne multibaseline (MB) experiment (Reigber and
Moreira 2000) carried out by the DLR E-SAR platform
over the Oberpfaffenhofen site. The possibility was shown
to gain insights about the 3-D nature of the scattering
mechanisms. However, two main limitations of SAR Tomog-
raphy for forests were apparent since the beginning, namely
the usually low number of images available for processing to
avoid large acquisition times and the consequential temporal
decorrelation, and the difficulty of obtaining ideal uniformly
spaced parallel flight tracks due to navigation/orbital
considerations. The baseline non-uniformity causes
distortions in the imaging point-spread function along height,
preventing from employing a simple Fourier-based focusing
due to anomalous side and quasi-grating lobes.

In order to mitigate the effects of acquisition
non-idealities, most of the subsequent research on (single-
pol) TomoSAR investigated different imaging solutions.
With particular reference to forest scenarios, a significant
model-free advancement was reported in Lombardini and
Reigber (2003), in which an adaptive beam forming tech-
nique based on the Capon spectral estimator was proposed
and tested. The adaptive beam forming allows a reamarkable

improvement in terms of both sidelobe level and resolution,
and it has become a state-of-the-art technique in TomoSAR.
Model-based alternatives were investigated as well, such as
the multiple signal classification (MUSIC) (Nannini et al.
2009) and multi-baseline inversion approaches based on the
covariance matching principle (Tebaldini 2010). These
techniques have been extended in order to handle different
polarimetric channels (Sauer et al. 2011; Huang et al. 2012;
Ferro-Famil et al. 2012; Frey and Meier 2011). Many
experiments carried out with real data have shown that the
use of polarimetric information not only increments the num-
ber of observables, but it also improves the accuracy of height
estimation of scatterers, increase height resolution, and
allows to estimate a vector of complex coefficients describing
the scattering mechanism at each height. Moreover, the com-
bination of multibaseline polarimetric data can also be used
to separate ground and canopy scattering, and to estimate
their vertical structures by following a relatively simple alge-
braic approach based on the sum of Kronecker products
(Tebaldini 2009) that extends with continuity the PolInSAR
concept. Other authors have also shown the possibility to
separate different contributions in the multibaseline
PolInSAR coherences in order to estimate structural
parameters associated e.g. to tree morphology (Neumann
et al. 2010).

In this Section, the application of TomoSAR techniques to
the estimation of the forest vertical structure is demonstrated
with real data acquired in the framework of relevant (repeat-
pass) airborne SAR campaigns. It is shown that the employed
methodologies can separate different scattering layers and
can estimate the distribution of the radar backscattered
power along height, being such profile a proxy for a biomass

Fig. 2.22 Left panel: pictorial view of a tomographic SAR system; right panel: cross range and slant range extent of the TomSAR resolution cell
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distribution profile. Moreover, the role of polarimetry in
improving and enriching the tomographic processing output
will be emphasized and discussed.

2.4.1.2 Methodology
In order to estimate a vertical profile of the backscattered
power, as already mentioned in Sect. 1.6, a plain Fourier-
based 3-D focusing suffers from inflated sidelobes and poor
height resolution (Lombardini and Reigber 2003). For this
reason, in this Section the adaptive beam forming (from here
on indicated with the acronym ABF for brevity) solution is
considered. In this Section, we recall the ABF principle,
while details can be found in Chap. 1.

In the classical single-pol TomoSAR, it is assumed to
process data from an equivalent cross-track array of
K phase centers, each of them corresponding to one of the
K repeated flight tracks of the SAR sensor over the area of
interest. As usual in SAR imaging and interferometry, after
focusing in the range-azimuth plane, the images are assumed
to be coregistered and properly compensated for the flat-earth
phase. Moreover, N independent looks (here formed from
multiple adjacent pixels) are used for processing. For each n-
th look, the complex amplitudes of the pixels observed in the
K SAR images at the same range-azimuth coordinate are
collected in a number of K � 1 complex-valued vectors
corresponding to the number of polarimetric channels
(Sauer et al. 2011). If fully polarimetric data are available,
without losing generality, they can be combined in the Pauli
basis. The resulting MB data vectors can then be stacked one
on top of the other in order to form the 3K-dimensional
MB-polarimetric data vector yP(n), which is statistically
characterized by the MB-polarimetric covariance matrixRP.

In forest scenarios, the scatterers at a given height z are
characterized by a random polarimetric behaviour, and they
are more properly described by means of a 3� 3 polarimetric
covariance matrix T(z) rather than by a deterministic (coher-
ent) target vector (Ferro-Famil et al. 2012). In this way, the
scattering mechanism at the generic z will contribute to RP

with T(z)
N

[a(z)aT�(z)], in which “
N

” denotes the
Kronecker product and a(z) is the K � 1 MB steering vector.
At the generic z, the ABF processor maximizes the total

polarimetric power, and at the same time minimizes the
interfering power contributions coming from heights differ-
ent than z. By repeating this procedure for all the heights of
interest, a stack of estimated polarimetric covariance matrices
T(z) can be obtained. In this way, the polarimetric informa-
tion can be exploited for a full 3-D characterization of the
scattering, allowing for instance the use of incoherent polari-
metric decompositions, as well as the application of physical
scattering models for the 3-D identification of the single
scattering components.

The Kronecker product representation discussed before
can be specialized to express two-layer scattering models
like the ones that are commonly used to describe model
scenarios in the PolInSAR framework. A ground and a vol-
ume scattering layer will then contribute to RP with 3 � 3
polarimetric covariance matrices TG and TV and with struc-
ture matrices (i.e. baseline-dependent only) RG and RV,
respectively. As a consequence, under the RVoG assumption,
the MB-polarimetric covariance matrix RP can be modelled
as a sum of Kronecker products as follows (Tebaldini 2009):

RP ¼ CG

O
RG þ CV

O
RV : ð2:24Þ

It is worth noting that if only one baseline is available, then
Eq. (2.24) reduces to the classical PolInSAR model of (2.9),
and therefore it constitutes its consistent multibaseline exten-
sion. The form of (2.24) allows to separate ground and
volume scattering by means of algebraic techniques
(Tebaldini 2009).

2.4.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest structure
estimation are summarized in Table 2.7 and further described
in the Appendix.

To begin with, Fig. 2.23 shows a tomographic profile
obtained in the range-height plane by processing both the
L- and P-band Traunstein data with the full rank ABF at the
same (fixed) azimuth coordinate. Polarimetric TomoSAR
results have been derived from the selected data set by
using a square multilook cell in the range-azimuth plane

Table 2.7 Test sites and corresponding radar and validation data selected for the generation of showcases on forest structure estimation

Application/
product Test site – Radar data Reference data

Forest structure
estimation

Remningstorp, Sweden
Airborne E-SAR P-band repeat-pass
quad-pol data 2007
Krycklan, Sweden
Airborne E-SAR P-band repeat-pass
quad-pol data 2008
Traunstein, Germany
Airborne E-SAR L/P-band repeat-pass
quad-pol data 2009

Airborne lidar measurements (ground topography and forest height), biomass
profiles extracted from ground measurements
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measuring around 25 m � 25 m. This cell corresponds to
more than 100 independent looks, which is enough to guar-
antee a well-conditioned inversion of the MB-polarimetric
covariance matrix. The slant range coordinate spans an inter-
val of approximately 1.7 km, while the height varies in an
interval of 160 m around 650 m above the sea level. The
powers estimated in the three Pauli channel (i.e. the values on
the diagonal of the estimated T(z)) have been RGB-coded, as
usually done for polarimetric SAR images. Height resolution
capabilities are apparent, allowing to distinguish different
scatterers at different heights in the same cell, and do not
worsen significantly from near to far range, being robust to
the variation of the incidence angle. Bare ground areas can be
distinguished from forested areas. Moreover, the ground
scattering is located in correspondence of the lidar ground
height, and it is more powerful at P-band than at L-band. In
addition to height position, from the profiles of Fig. 2.23 a
first insight of the occurring scattering mechanisms can be
gained. For instance, in the forested areas, it is possible to
distinguish mixed surface and double-bounce components at
the ground level, as it is reasonable to expect from direct
ground backscattering and tree trunk-ground interactions.
Moreover, double-bounces are clearer at P-band, while at
L-band their polarimetric signature looks more affected by

the propagation through the canopy and/or the presence of
understorey, although some estimation bias can have been
induced by the volume due the limited height resolution and
number of baselines. At the increase of the height, volumetric
contributions (in green) start to appear at some range
coordinates, sometime mixed to multiple (even or odd)
bounce scattering contributions. They are always visible at
L-band, while they are semi-transparent for many stands at
P-band.

The following examples show how ground and volume
scattering can be separated. One way to achieve this, is to
exploit the ABF PolTomoSAR focusing. Using simple itera-
tive MB-polarimetric techniques (Pardini and Papathanassiou
2013), the ground height has been retrieved from the data
with an estimation accuracy of around 2 m at L-band and
1.5 m at P-band. Once the ground height is available, a simple
separation between ground and volume can be performed.
Figure 2.24 shows the Pauli RGB image of the ABF powers
in correspondence of the estimated ground height at both L-
and P-band. Double-bounce and direct surface scattering
contributions are predominant, as expected, with a few
contributions in the third Pauli channel due to residual
understorey vegetation and possible orientation effects due
to azimuth slopes. Notice that the ground scattering is more

Fig. 2.23 Traunstein data set: tomographic slices obtained in the range-height plane at a fixed azimuth with the full-rank ABF. Estimated powers in
the three Pauli channels are RGB-coded (Red: HH-VV, Green: 2 HV, Blue: HH + VV). Top panel: L-band; bottom panel: P-band
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powerful at P-band than at L-band, as it is reasonable to
expect. The availability of the polarimetric covariance matrix
TABF(z) at each imaged height allows also to characterize the
scattering by means of conventional incoherent decomposi-
tion tools developed in SAR polarimetry. A demonstration of
this capability can be found in Fig. 2.25, in which the joint
distribution of the entropy and α angle are plotted in corre-
spondence of the forested areas and for both ground and
canopy contributions in isolation. The majority of the ground
scattering (Fig. 2.25a, b) presents in general moderate
entropy, with α angles around 45�, as it typical for vegetated
surface imaged after propagation through a forest canopy
with relatively small baseline aperture, therefore with some
volume-induced bias. Notice that the P-band ground scatter-
ing shows an increased number of low-entropy surface
contributions with respect to L-band. Concerning the volume
(Fig. 2.25c, d), an entropy/α diagram characteristic of a
random volume is obtained, although with entropy values
lower at P-band than at L-band.

Ground and volume scattering can also be extracted by
referring to model (2.24) and by using algebraic techniques.
This possibility is shown experimentally here after
processing the P-band Remningstorp and Krycklan data
sets. With reference to the Remingstorp data set, the two
profiles in the left panels of Fig. 2.26 were obtained by
processing the HH (top left) and HV (bottom left)
polarizations independently. The most apparent feature in
these panels is that the strongest scattering contributions
appear at the ground level, not only in HH polarization but
in HV polarization as well. This observation was interpreted
as a result of double bounce interactions between the vegeta-
tion and the terrain, which determined cross-pol contributions
at the ground level. In this situation, the vertical resolution
capabilities granted by TomoSAR do not suffice for the aim
of separating ground and volume scattering, as both occur at
the ground level. The results of the separation between
ground and volume scattering are shown in the right panels
of Fig. 2.26. In the profile relative to ground scattering the
backscattered power is associated with the ground level only,
as witnessed by the excellent agreement with lidar terrain

height. The profile relative to volume scattering yields a
much more uniform backscattered power distribution as com-
pared to HV, and also provides an excellent agreement with
lidar forest height.

The same procedure was applied to the aim of a large scale
characterization of the forested area within the Krycklan river
catchment. Figure 2.27 displays maps of the heights at which
the estimated backscattered power for volume-only scattering
undergoes a loss of 0 dB (i.e., no loss), 3 dB, 5 dB, and 7 dB
with respect to the peak value (which corresponds by defini-
tion to the phase center height). Lidar heights are displayed in
Fig. 2.27b to help the interpretation of the results. Forest
height was assessed through a direct investigation of the
shape of the backscattered power distribution. The estimation
was found to be unbiased for forest height values larger than
about 8 m. Standard deviation was assessed in about 3 m.
Results are shown in Fig. 2.27c. Another effective way to
characterize the forest vertical structure at large scale is to
display the ground-to-volume backscattered power ratio at
different polarizations, see Fig. 2.28. These maps are sensi-
tive to both forest height and terrain topography, and may be
used to assess the impact of multiple reflections on SAR
images.

The analysis carried out up to now has assessed the quality
and the information content of tomographic products. More-
over, some simple examples have been shown about the
validity of the resulting polarimetric information for scatter-
ing interpretation. A further qualitative experiment can be
carried out to understand if a correspondence exists between
the ABF spectral components and the biomass components at
different heights. For this validation, a few representative
biomass profiles calculated from ground measurements
have been selected, and the ABF full-rank profiles have
been estimated in the same coordinates.

Figure 2.29a shows six different biomass profiles (first
row) which refer to stands taller than 30 m. These profiles
mainly present a biomass contribution close to the top (tree
crown and stems) and an additional one close to the ground
(tree trunk). Starting from the left, in the third and the last two
profiles some understory vegetation can be noticed. In

Fig. 2.24 Traunstein data set: Pauli images of the ground scattering isolated from the canopy (volume) scattering. Azimuth coordinate is on the
horizontal axis. Color coding is as in Fig. 2.23. Left panel: L-band; right panel: P-band
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Fig. 2.29b the L-band ABF profiles are reported in the three
Pauli channels. Qualitatively, it is apparent the agreement
between the backscattered radar power and the biomass
distributions already by processing a relatively low number
of images (7) with a short total baseline (30 m), therefore
resulting into a vertical Rayleigh resolution around 15 m for
the profiles under analysis. It is worth noting that different

polarimetric channels are sensitive to (slightly) different bio-
mass components, as the profiles show variations from chan-
nel to channel. From this example, it is therefore possible to
conclude that polarimetric diversity is crucial for a complete
characterization of the mapping of biomass components into
radar scattering components.

Fig. 2.25 Traunstein data set: 2-D histograms of entropy and α angle of forested areas for both ground and volume scattering in isolation after the
ABF polarimetric TomoSAR processing. (a) Ground, L. (b) Ground, P. (c) Volume, L. (d) Volume, P
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Fig. 2.26 Remningstorp data set. Left panels: HH and HV profiles. Right panels: ground and volume Tomograms. All panels are normalized such
that the sum along each column is one. The black and green lines are relative to terrain and forest height as estimated by lidar

Fig. 2.27 Krycklan data set. (a) Tomographic heights relative to volume-only scattering. (b) lidar forest heights. (c) 2D histograms relative to
TomSAR and lidar forest height estimates
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Fig. 2.28 Krycklan data set:
Ground-to-volume power patio
[dB] at HH (left) and HV (right)

Fig. 2.29 Traunstein data set: reference biomass profiles and radar
profiles estimated with the ABF processor from the L-band acquisitions.
Profiles amplitudes are normalized with respect to the maximum. The
ground is located at 0 m. The dashed horizontal lines indicate the Lidar
stand height. (a) Biomas profiles estimated from ground measurements.

(b) Polarimetric ABF profiles, Pauli basis, full-rank coherent
processing. (c) ABF profiles, lexicographic basis, each channel
processed independently. (d) Polarimetric ABF profiles, Pauli basis,
each channel processed independently



2.4.1.4 Comparison with Single/Dual
Polarization Data

The ABF profiles obtained by processing single polarization
MB data in the lexicographic basis are plotted in Fig. 2.29c. It
is apparent that one single power profile makes difficult the
interpretation of the scattering from the different vegetation
components. For instance, with this (realistic) baseline distri-
bution it is not possible to discriminate the presence of
understory vegetation without ambiguities. A way to circum-
vent this inconvenient could be to increase the number of
baselines and at the same time to increase the height resolu-
tion in order to be able to separate many more power
components. However, this may not be feasible depending
on navigation/orbital considerations and temporal
decorrelation problems. As a consequence, the polarimetric
information, beyond the increased number of outputs,
becomes crucial (1) to relax the acquisition requirements,
and (2) to enhance profile interpretation by the application
of physical scattering models.

A second comparison is in order. Supposing to have full
polarization data available, one could also select a basis
different from the lexicographic one and to process the new
MB data independently from channel to channel. An example
is shown (again in correspondence of the reference profiles)
in Fig. 2.29d. Comparing them with the profiles in Fig. 2.29b,
the polarization-coherent full-rank ABF can resolve slightly
better different scattering components by keeping fixed the
total baseline length. Clearly, the presence of volume
scatterers reduces the contribution of polarimetry to any
increase of vertical resolution, differently from e.g. urban
scenarios. Not to be forgotten is of course the difference in
the output. While a polarization-incoherent processing only
outputs three real-valued profiles, the polarization-coherent
approach outputs an entire polarimetric coherence matrix.

2.4.1.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

In this Section the application of PolTomoSAR algorithms
has been demonstrated for the estimation of the vertical
structure of forests. The scattering can therefore be described
in 3-D by means of a stack of polarimetric covariance matri-
ces estimated at each height of interest, or by focusing on
certain layers. Experiments have been carried out with a P-
and an L-band MB-fully polarimetric data sets acquired by
the DLR E-SAR platform. Both data sets are characterized by
a relatively low number of baselines and an height resolution
in the order of magnitude of 10 m. The goodness of the
extracted polarimetric signatures has been qualitatively
assessed, and the estimated power distributions have been
compared with the corresponding biomass profiles derived
from ground measurements. A general agreement has been
found.

To summarize, from the results of the experimental analy-
sis, the crucial role of polarimetry in the coherent processing
of MB data has been individuated in the following aspects:

1. Increased amount of structural-dependent information in
output, allowing the physical interpretation of the
estimated profile;

2. Enhanced possibility to separate scattering contributions
at different heights beyond the height resolution limit
imposed by both the total baseline length and the tomo-
graphic processor;

3. Higher height resolution in the profiles extracted in each
channel of the polarimetric basis;

4. Higher accuracy in the estimation of vertical structure
parameters.

Point (2), in turn, allows to relax constraints on the relative
acquisition tracks displacements, and might be of help for
forest vertical structure monitoring with non-optimal baseline
distributions. Point (3) has been shown here also by compar-
ing the coherent MB-polarimetric ABF with an adaptive
processing incoherent in the polarization channels. Point
(4) is out of the scope of this Section, but experimental
examples can be found e.g. in Sauer et al. (2011) and
Huang et al. (2012).

3-D (Pol)TomoSAR imaging requires additional efforts
compared to traditional 2-D SAR products and PolInSAR,
due to the need of gathering multiple viewpoints and to
employ more sophisticated processing techniques. Also,
compare to single-pol TomoSAR, a small disadvantage of
TomoSAR is the need for a larger multilook cell in order to
obtain a reliable and well-conditioned estimate of the
MB-polarimetric covariance matrix. Nevertheless, this issue
is mitigated in SAR sensors with very high range-azimuth
resolution, for which a satisfactory multilook degree for a
stable ABF inversion can be achieved without increasing
dramatically the horizontal resolution cell of the output
products. With reference to forest monitoring and
applications, this has an impact on the resolution of forest
structure products, and on the way in which they are able to
describe (dynamic) phenomena that may occur at very differ-
ent scales depending on the kind of forest.

Another limitation peculiar of forest scenarios is the tem-
poral decorrelation of the scattering. This factor has limited
until now the tomographic forest monitoring from space
borne platforms due to the large revisit times. Very recently,
the possibility to track scattering changes has been shown in
the so-called differential tomographic framework, which
combines in a synergic way spatial and temporal spectral
analysis. However, although promising and extended in a
polarimetric sense in Lombardini et al. (2010), these
techniques are in a very early stage of experimentation.
Nevertheless, space borne implementations of
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(Pol)TomoSAR will benefit from repeated single-pass (Pol)-
InSAR implementations, in which a temporal-decorrelation-
free PolInSAR coherence is available for each satellite pass.

PolTomoSAR is quite well developed and mature from
the signal processing point of view. Many alternative
techniques are continuously being investigated and their per-
formance characterized. In particular, the adaptive processing
in general represents a state-of-the-art, model-free, yet well-
performing algorithm. Modern techniques based on compres-
sive sensing are being investigated as well. A still underde-
veloped element is the physical interpretation of profiles. The
link between the obtained profiles that depend in general on
frequency, polarization and acquisition geometry and physi-
cal forest structure parameters is essential for establishing
potential applications and is today not well understood,
although intensively investigated.

2.4.2 Estimation of Vegetation Structure
Parameters

2.4.2.1 Introduction, Motivation and Literature
Review

Forest structure and biomass are important components in
terrestrial ecosystem carbon and water cycles and provide
significant controls on land–atmosphere interactions. The
present estimate by IPCC (Intergovernmental Panel on Cli-
mate Change) is that deforestation amounts to between 10%
and 30% of the total anthropogenic carbon flux. The range of
uncertainty is large due to the lack of accurate measurement
techniques. SAR observations can help to better quantify
terrestrial carbon stocks and fluxes in forest biomass,
providing several advantages over other techniques: indepen-
dence of the time of the day (in comparison to optical remote
sensing), cloud cover penetration (using selected low
frequencies), large coverage (in comparison to lidar), and
high resolution (in comparison to radiometers).

Early remote sensing attempts to estimate biomass were
originally based on regression from microwave backscatter
signal (possibly combining multiple frequencies and
polarizations). However, methods based on radar backscatter
signals are limited by saturation and loss of sensitivity to
biomass for high biomass levels (maximum at about
80–200 tons/ha), depending on the wavelength, polarization,
and incidence angle. In addition, the saturation is dependent
on forest type, ground topography, and environmental
conditions. Due to spatial and temporal forest variability
and the signal dependence on instrument parameters, the
regression approach poses difficulties to generalize over
extended areas.

Recent advances in Lidar and InSAR enabled the estima-
tion of vertical forest structure. To a large extent, forest
biomass is determined by tree structure, which makes the

vertical structure information a powerful indicator for bio-
mass. Lidar illuminates the forest with laser rays and allows
the reconstruction of vertical structure profile from the
returned signal (waveform). Especially the recently devel-
oped small-footprint lidars provide unprecedented means
for high-resolution structure estimation. However, lidar cov-
erage is limited, disallowing global forest monitoring based
on this technology alone.

On the other hand, the developments in InSAR, PolInSAR
and TomoSAR enable large coverage and independence of
cloud cover. Acquiring SAR signals from two (or more)
slightly displaced flight trajectories (possibly using the
same platform in a repeat pass configuration) and exploiting
the effect of interference of coherent waves enables InSAR to
estimate several phase centers inside of the forest, and thus
the important parameters of forest structure extent. Polarime-
try plays an important role by helping to decompose different
scattering processes from the ground and the canopy. In order
to further improve the accuracy of forest structure and bio-
mass estimation, multibaseline (MB) approaches are consid-
ered. This showcase demonstrates the application of
MB-PolInSAR to airborne SAR data over temperate and
boreal forests estimating forest structure, biomass, tree mor-
phology and ground scattering related parameters.

Interferometric decorrelation in volumetric media such as
canopy, snow and ice has been modeled to measure vegeta-
tion depth and extinction for the first time in 1995–1996
(Hagberg et al. 1995; Treuhaft et al. 1996). The model
resembles a simple sparse-medium water cloud model
(Treuhaft et al. 1996). In 1997–1998 time frame, authors in
Cloude and Papathanassiou (1998) and Papathanassiou and
Cloude (2001) proposed to combine polarimetry with inter-
ferometry to discriminate ground scattering from volume
scattering in the canopy. This enables to estimate forest
height by differentiating the InSAR phase centers from dif-
ferent polarizations, or to invert the complex coherence
model accounting for the extinction. PolInSAR coherence
optimization in single- and multi-baseline configurations
has also been used to reduce phase uncertainty and to deter-
mine the polarization with lowest/highest InSAR phase noise
(Cloude and Papathanassiou 1998). Also extensive
PolInSAR scattering models for random and oriented scatter-
ing in the canopy and single- and double-bounce scattering at
the ground level were derived and evaluated in Treuhaft and
Siqueira (2000). Since then, the PolInSAR approach to mea-
sure volumetric media properties has been extended and
applied to other volumetric media (such as snow, ice, and
agriculture (Lopez-Sanchez et al. 2007)) and to complex
multi-scattering environments in urban areas. Polarimetry
demonstrated to be a key factor in distinguishing physically
different scattering centers inside individual resolution cells.

Alternative radar approaches to estimate forest structure
are based on tomography (Reigber and Moreira 2000), multi-
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baseline InSAR estimation (Treuhaft et al. 2009), and polari-
zation coherence tomography (Cloude 2006). The first aims
to reconstruct the reflectivity profile of the volume by using
conventional or adaptive beam forming techniques (see Sect.
2.4.1). The last two rely on structure models, which are fitted
using coherences from different baselines, and which
corresponds to probing the medium with different Fourier
frequencies.

Another approach (Neumann et al. 2010), as presented in
this Section, aims to further decompose the MB-PolInSAR
data into ground and volume sources related to polarimetric
scattering, vertical profile structure and temporal change. On
the one hand, this improves the understanding of the involved
processes, and on the other, providing e.g. tree morphology
parameters would enhance tree species characterization and
biomass estimation.

The limitations of PolInSAR are governed by the geomet-
ric configuration of the interferometer (structure sensitivity)
and the ambiguities related to vertically non-homogeneous
structure, spatial variability of the forest, temporal
decorrelation in repeat pass acquisitions, and possibly other
minor (but usually well understood) noise sources (thermal
noise and other instrument/system induced effects) (Krieger
et al. 2005).

Height sensitivity and accuracy is varying with environ-
mental and acquisition configuration parameters. On one
side, airborne acquisition geometry causes variation in height
sensitivity along the swath, and on the other side, the optimal
acquisition geometry depends on the actual forest height. One
proposed approach was to combine height estimates from
multiple single-baseline PolInSAR data sets, if they are avail-
able (Hajnsek et al. 2009).

Acquiring SAR data in repeat pass configuration leads to
illuminating possibly changed targets. Recent airborne and
ground-based studies confirmed several common sources of
temporal change in PolInSAR observables, including wind,
growth, and changes in soil and vegetation water content.
Initially, temporal decorrelation has been modeled by a
Gaussian process. Over a short temporal scale (sub-hour
level), wind effects appear to be the dominating source of
decorrelation. Therefore, in Askne et al. (1997), the authors
incorporate change in the Gaussian motion with height, argu-
ing that thinner branches (higher in the canopy) are stronger
effected by the wind than thicker branches and the trunk
(closer to the ground). Soil moisture effects have been
observed to affect the interferometric coherence and phase.
Diurnal variability of vegetation water content is as well
expected to affect the temporal decorrelation, as recently
observed in ground-based radar measurements (Hamadi
et al. 2013).

Recent important contributions to PolInSAR statistical
properties and estimation approaches promise further
advances. Tests of common physical assumptions, such

scattering symmetries and stationary behavior, were initially
derived in Ferro-Famil and Neumann (2008). The singular
value decomposition based “Sum of Kronecker Products”
(SKP) provides an elegant way to decompose the
MB-PolInSAR covariance matrix into a parametric form of
independent contributions (Tebaldini 2009). This work was
recently updated by deriving a maximum likelihood estima-
tor for the linear structure of two independent layers, as
presented in [R7].

2.4.2.2 Methodology
The MB-PolInSAR approach of this Section consists of com-
bining a physical model–based polarimetric decomposition
with the PolInSAR Random Volume over Ground (RVoG)
coherence model for the vertical forest structure. The goal is
to enhance vertical structure estimation and to permit the
retrieval of morphological vegetation parameters as well as
ground parameters under the vegetation. The temporal
change is taken into account in order to compensate for the
caused decorrelation.

The models used in PolInSAR are usually based on the
two-layer model, where it is assumed that the signal can be
decomposed into independent and distinctive layers,
representing the ground and the volume. The “distinc-
tiveness” can be based on three orthogonal principles:
(1) polarimetric scattering, (2) vertical extent, and (3) tempo-
ral processes (compare Fig. 2.30). Though the layers are
considered independent, they can affect each other. For
instance, the volume layer attenuates the ground scattering,
possibly modifying the ground scattering polarization by
means of refraction. The double-bounce is caused by scatter-
ing in both layers, though structurally it is attributed to the
ground layer.

The modeled ground contribution consists of attenuated
surface scattering from the soil, the double-bounce scattering
between the soil and tree elements such as trunk and
branches, and volumetric scattering from a low layer of
understory. The volume layer is dominated by diffuse vol-
ume scattering from the canopy elements, including multiple
scattering effects. Forest canopy is expected to be a sparse
medium, attenuating the signal with the distorted Born
approximation. The vertical profile is represented by an
effective scattering profile F(z), which takes into account
extinction and the distribution of the scattering elements.
Different forms were proposed for F(z) in the literature,
including a uniform attenuated, Gaussian, or represented by
Fourier or Legendre series. In this example, to represent the
temperate and boreal forests, F(z) is characterized by two
parameters, extinction σx and the canopy-fill-ratio rh, as
outlined in Fig. 2.31.

The polarimetric coherency matrix of the volume compo-
nent is characterized by two parameters related to the polari-
zation entropy in the canopy (called orientation randomness

2 Forest Applications 93



in Neumann et al. (2010), as it is more constrained than the
generic entropy) and the effective scattering mechanism type.
The particle anisotropy characterizes the effective shape of
the average particle in the polarization plane in dependence
of the particle and background permittivities The orientation
randomness characterizes the width of the distribution of
particle orientation angles in the polarization plane
(Neumann et al. 2010). The polarimetry of the volume com-
ponent can range from purely randomly oriented collection of
scatterers with high polarization entropy to a less diffuse form
with ordered branch structure.

Prior to parameter retrieval, data preparation consists of
the following steps, starting with a stack of single-look com-
plex (SLC) data sets for multiple acquisitions and
polarizations: flat earth removal, range spectral filtering,
polarimetric calibration, MB-PolInSAR covariance matrix
estimation including pre-summing and speckle filtering,

radiometric calibration, SNR compensation, polarimetric sta-
tionary calibration, local orientation angle compensation,
ground topography phase shift, natural media (reflection
symmetry) assumption, forest/non-forest pre-classification.

In the retrieval phase, most crucial is the estimation of the
ground elevation phases and the linear ground-volume struc-
ture. Using one of the recently proposed least squares or
maximum likelihood approaches (Tebaldini 2009) provides
a parametric decomposition of the MB-PolInSAR covariance
matrix. The determination of the decomposition parameters
(which characterize the ground to volume ratio and the polar-
ization responses at both layers) is based on a set of
assumptions. Common assumptions are based on physical
insights into the ground-volume distinctiveness and can
include metrics on polarization entropy, scattering mecha-
nism type, ranges for forest height and ground elevation,
and temporal effects. The constrained optimization problem

Fig. 2.30 Information content of
PolInSAR data, separated into
polarimetric and interferometric
sources in ground and volume
layers
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retrieval representation in the
coherence plane

94 K. P. Papathanassiou et al.



is solved in a least squares sense determining the decomposi-
tion of the MB-PolInSAR covariance matrix into two layers,
providing the ground and volume PolSAR matrices, and a
MB series of coherences for the ground and volume
components. The physical structure indicators are extracted
from the PolSAR matrices, such as canopy orientation
randomness, scattering mechanism types, ground-to-volume
ratio, etc. The final estimation of the vertical structure profile
is performed in an additional step by fitting the coherence sets
for the ground and volume to a model of the verticals struc-
ture distribution.

For the demonstration of biomass estimation, different
regression frameworks (multiple linear regression (LR), sup-
port vector machines (SVM), and random forests (RF)) were
evaluated by using field measurements of above-ground-bio-
mass. Validation is performed using leave-one-out approach.

2.4.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest parameter
estimation are summarized in Table 2.8 and further described
in the Appendix.

MB-PolInSAR modeling and inversion provide many
retrievable parameters including: forest height, ground eleva-
tion topography, vertical structure characterizing parameters
(attenuation, canopy-fill-factor, differential extinction), tem-
poral decorrelation, ground-to-volume ratio, individual
power contributions, ground and volume scattering mecha-
nism types and orientation randomness. For the Traunstein
2003 data, only the forest height can be related to the valida-
tion data, as projected from the 1998 inventory. In the fol-
lowing, we will present several retrieved forest structure
parameters from the Traunstein 2003 data as obtained in the
study (Neumann et al. 2010). Estimates are plotted in
Fig. 2.32.

1. Vertical forest structure: forest heights are estimated close
to projected field measurements with an average stand-wise
root mean square error (RMSE) of about 5 m and standard
deviation of 4.3 m. The heights were underestimated by
1.5 m. However, in some stands, the forest heights vary
continuously, indicating non-homogeneity inside of the
stands. Figure 2.33a shows the forest heights and the

individual canopy layer depths for the 20 evaluation stands.
The red and green lines in this plot represent the field
measured and PolInSAR estimated forest heights, respec-
tively. The brown line delimits the canopy layer from the
non-canopy layer above the ground and represents the
canopy-fill-ratio, normalized to the total vegetation height.
It is notable that the smallest error corresponds to the most
homogeneous forest stand #2, which is largely dominated
by a single species, Northern Spruce (bias: �0.3 cm;
RMSE: 1.5 m). The highest errors correspond to stand
#20: the heights are underestimated by 5 m with an
RMSE of 7.6 m. However, examining the optical data,
one can observe several clear cuts and roads inside of this
forest stand, which we initially assumed to be homogenous.
This indicates significant changes in the spatial structure of
this forest stand between the forest inventory in 1998 and
the date of radar acquisition in 2003.

2. Temporal decorrelation: using the full model inversion
allows us to estimate the total amount of temporal
decorrelation, which varied significantly with forest
stand and baseline between 0.5 and 0.95, as presented in
Fig. 2.33b. The temporal decorrelation of the volume at
these time scales is mostly caused by wind, which is
non-stationary, neither temporally nor spatially. These
results indicate that the temporal decorrelation is more
correlated with the forest height and the spatial baseline
and less with the time separation at the given sub-hour
level.

3. Orientation randomness: Fig. 2.32d shows the estimated
degree of orientation randomness over the whole scene.
The standard deviation of orientation randomness is low,
and the distinctiveness is high, which permits discriminat-
ing between the different evaluation stands. As discussed
in the theoretical part, this parameter depends mostly on
the morphology of the tree structures and the incidence
angle. The incidence angle dependence is clearly observ-
able in the scatter plot in Fig. 2.33d. Forest species type
effects on orientation randomness were well visible.
While coniferous tree canopies caused lower orientation
randomness, down to 0.65, the highest orientation
randomness was observed for deciduous trees, and in
particular for the maple dominated forest stand #3 in the
center of the image.

Table 2.8 Test sites and corresponding radar and validation data selected for the generation of showcases on forest structure estimation

Application/product Test site – Radar data Reference data

Vegetation parameter
estimation

Krycklan, Sweden
Airborne E-SAR L-band repeat-pass quad-
pol data 2008
Traunstein, Germany
Airborne E-SAR L-band repeat-pass quad-
pol data 2003

Airborne lidar measurements (ground topography and forest height),
forest inventory data
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4. Particle scattering anisotropy: The effective particle scat-
tering mechanism type seems to be insensitive to the
evaluation stand and the incidence angle. In contrast, the
particle anisotropy phase has a large dynamic range of
about 70 degrees over the different evaluation stands.
These findings were surprising and still need to be con-
firmed by rigorous analysis.

5. Extinction and canopy fill factor: Extinction σx (average at
0.15 dB/m) and the canopy-fill-ratio (average at 0.6) pro-
vide additional degrees of freedom for the adaptation of
the model to the given forest structure. However, these
estimates were found to be partly correlated with each
other, which indicates that the used forest structure
model and inversion approach are still ambiguous and a
better representation should be found.

6. Differential extinction and coherence: Based on the
estimated structure (extinction) and the PolSAR

covariance matrix, we estimated the differential extinction
in the canopy between HH and VV polarizations to be up
to 0.06 dB/m. This tree canopy orientation induced effect
changes the PolInSAR coherence for the canopy. The
induced effect on coherence magnitude and phase is at
the order of 0.005� and 1�, respectively.

7. Ground level contributions: Next to ground topography
elevation, PolInSAR allows to estimate the ground-to-vol-
ume ratio (estimated to be in average about 0.2) and the
individual PolSAR covariance matrices for the ground and
volume contributions. We observed noteworthy cross-
polarized contributions (about 20%) at the ground level,
but the major scattering power at the ground was observed
in the Pauli HH-VV component (about 50%). Though
HH-VV is dominant, these results suggest that a simple
first-order models for the ground component are insufficient
to reliably represent the ground scattering inside the forest.

Fig. 2.32 Traunstein test site: optical image, PolSAR image with delineated forest stands, estimated forest height, and orientation randomness
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Figures 2.34 and 2.35 represent the Krycklan catchment
area and show forest structure parameters retrieved from
MB-PolInSAR data: polarimetric image in Pauli matrix
basis (2.34a), lidar top forest height (h100) (2.34b), forest
height (2.34c), biomass using SVM regression (2.34d),
ground and volume orientation randomness (2.35a, b) and
ground and volume scattering mechanism types (2.35c, d).
Investigating regression techniques using a combination of
PolInSAR retrieved forest structure parameters allowed us to
improve biomass estimation at both, L- and P-band
frequencies. On the one hand, providing more structure-
related input parameters naturally improves the regression.
However, due to spatial and temporal forest variability this
regression usually does not generalize over large forest areas.
We evaluated three approaches (Multiple Linear Regression
(LR), Support Vector Machines (SVM), and Random Forests
(RF)) using up to 14 parameters, independently at both
frequencies. Using “leave-one-out” cross-validation
approach, the best biomass RMSE were 19.7 and 22.7 t/ha
at L- and P-band, respectively, using either SVM or LR. For
comparison, without providing any forest structure

information, the best RMSE values were 27.3 and 28.5 t/ha
at L- and P-bands (both using SVM).

Thesewere initial results on biomass regression from selected
MB-PolInSAR forest structure estimates. It is to expect, that the
results can be improved by more systematically evaluating the
entire available parameter space and by performing a better
regularization of the regression frameworks.

2.4.2.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

This Section demonstrated a MB-PolInSAR approach for
forest structure and biomass estimation on two airborne
data sets at L- and P-band frequencies. We presented a
model to characterize polarimetric interferometric radar
response from vegetation. For the volume component, a
novel polarimetric model was used to allow varying degrees
of orientation randomness and scattering anisotropy inside
the canopy.

The forest height estimation performance has been
evaluated on real airborne L–band SAR data over the

Fig. 2.33 Traunstein test site: Estimated forest structure, scatterplot of estimated height, temporal decorrelation, orientation randomness over
incidence angle
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Traunstein forest. Using three baselines, the forest height has
been underestimated with an average bias of 1.51 m and
RMSE of 4.97 m. In addition, polarimetric parameters and
backscattered powers were estimated for both layers, the
ground and the canopy. On the other hand, the estimations
of the extinction and the canopy–fill–factor were not satisfac-
tory, as there seems to rest a level of ambiguity and correla-
tion between these two parameters. Furthermore, differential
extinction and temporal decorrelation were estimated.

The same methodology was applied to boreal forest in the
Krycklan Catchment to estimate forest structure parameters
and to successively estimate biomass via regression. The
combination of polarimetric canopy and ground indicators
with estimated forest structure information (consisting of
forest height and ground-to-volume ratio) improved the
RMSE of biomass estimation up to 27% and 43% at L- and
P-bands, respectively.

The limitations for the presented parameter retrieval
framework are determined by model assumptions. Only a
simplified vegetation structure is taken into account assuming
vertically uniform and horizontally homogeneous layers.

Next it is assumed, that the average effective particle shape
is representative for all particles, and independent of height
and polarization orientation. The variation of extinction with
polarization is assumed to be insignificant for parameter
retrieval. Also, a plane of reflection symmetry is assumed to
exist for the illuminated vegetation area. The possibility to
estimate the degree of temporal coherence over vegetation
provides new opportunities for PolInSAR time series analy-
sis, which might lead to competitive multi–temporal moni-
toring of ecosystem dynamics. However, further theoretical
and experimental investigations need to be conducted to
improve the understanding and to examine the possibilities
and limits of radar remote sensing of the temporal behavior
and the forest structure.

Interferometry and polarimetry provide complementary
information on the illuminated forest and we only start to
explore the potentials for forest monitoring using these
techniques. Though, it is an actively developing field and
over the last few years several important breakthroughs in
information content understanding and processing were
reported which should help making this technique operational.

Fig. 2.34 Krycklan catchment. From left: L-band PolSAR image, Lidar height (rh100), PolInSAR height and biomass estimates
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2.5 Biomass Estimation

2.5.1 Biomass Estimation: A Review

2.5.1.1 Introduction, Motivation
Biomass is defined as the quantity of living organic matter
per unit volume and is usually given as a mass, or a mass per
unit area. Forest biomass refers to living and dead organic
material of plants and trees in the forest including roots, stem,
stump, branches, bark, seeds and foliage. Above ground
forest biomass defines to the forest biomass above the soil
(e.g. excluding the roots). About half of the forest biomass is
carbon, so that biomass is often used as proxy for carbon and
its spatial distribution characterises the distribution of carbon
in the biosphere (Houghton et al. 2009; Houghton 2005;
IPCC good practice guidance for land use, land use change
and forestry 2003). Dynamic variations in the biomass are
therefore a direct measure of the exchange of carbon between
the terrestrial ecosystem and the atmosphere (GCOS 2003,
2004; GOFC-GOLD 2016). In this context, biomass was
identified by the UNFCCC as an Essential Climate variable
(GCOS 2003), whose determination is of great importance to

reduce the uncertainties in our knowledge of the climate
system. The importance of biomass manifests itself not only
due to its role as a carbon sink or carbon source (Canadell
et al. 2007; DeFries et al. 2002), but also due to its relevance
for characterising forest or ecosystem productivity (Keeling
and Phillips 2007).

Biomass inventories and biomass dynamics in local,
regional and global scales are essential, though, up to now,
largely unknown initialisation parameters of current climate
models. A precise determination (on the order of 20%) of the
spatial distribution of forest biomass would be sufficient to
match the inaccuracy of terrestrial carbon fluxes to the other
components of the carbon cycle (IPCC good practice guid-
ance for land use, land use change and forestry 2003).

The significance of an accurate knowledge of biomass is
further underlined by the increased importance of two other
aspects: (1) the increasing use of biomass for generating
energy and the resulting increase in the proportion of green-
house gases emitted from biomass (Fargione et al. 2008), and
(2) the increased interest in reducing greenhouse gases by
preventing deforestation and forest damage (UNFCCC 2016;
UN-REDD Programme 2008; Herold and Johns 2007).

Fig. 2.35 Krycklan catchment. From left: Ground and volume orientation randomness, and ground and volume scattering mechanism types
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Despite its importance, estimations of biomass at local,
regional and global scales are today very inaccurate. One
reason for this is the large effort required for a precise
estimation of forest biomass. Direct biomass measurements
are destructive and therefore costly in terms of resources,
effort and time (Chave et al. 2003). Usually, biomass is
estimated on a single tree basis from a number of
measurements such as tree height and/or diameter and the
use of appropriate allometric relationships (Chave et al.
2005). The stand biomass levels are then obtained by sum-
ming up the single tree biomass levels up. In heterogeneous
forests, this procedure is very arduous and often inaccurate,
meaning that ground measurements of biomass in natural
forests are never better than 20% (Chave et al. 2003). Partic-
ularly in tropical forest ecosystems there are large deviations
also induced by allometric deviations. On larger scales, apart
from the uncertainties arising from forest complexity, the
different definitions, measurement protocols and used
generalisation methods introduce additional inconsistencies
in regional and national inventories and data bases. Finally,
the Intergovernmental Panel on Climate Change (IPCC)
recognises the lack of exact spatial forest biomass data (the
measurement errors often exceed the estimated mean value)
as one of the largest uncertainties in the global carbon budget.

Figure 2.36 demonstrates the actual stand of uncertainty. It
compares four biomass maps of the Brazilian Amazon basin:
on top left the Saatchi et al. 2007 map (Saatchi et al. 2007a),
top right the Saatchi et al. 2011 map (Saatchi et al. 2011a),
bottom left the Nogueira et al. 2008 map (Nogueira et al.
2008) and bottom right the Baccini et al. 2012 map (Baccini
et al. 2012). All four are generated by combining ground and
remote sensing data. However, each of them is using a
different set of remote sensing data, different approaches to
interpolate ground and remote sensing data, and/or different
allometric relations. It is quickly evident that the four maps
deliver strongly deviating mean biomass values, spatial dis-
tribution patterns and spatial biomass trends.

Biomass is an integrative forest parameter that depends on
multiple tree or stand attributes. Starting from a single tree,
the above ground stem biomass AGBT is given by the prod-
uct of the stem volume VT with the (species specific) wood
density ρT:

AGBT ¼ VTρT ¼ 1
4
HTDBH

2
TFTρT ð2:25Þ

where HT is the (top) tree height, DBHT the diameter at breast
height, FT is a (species dependent) form-factor accounting for
the deviation from a pure cylinder shape. The wood density
ρT typically varies between 0.5 and 0.69 g/cm�3 (GOFC-
GOLD 2016). The so-called biomass expansion factor
(BEF) is used to account for the total above ground biomass

including branches, understorey, etc. contributions (Canadell
et al. 2007).

However, single-tree measurements are ineffective for
large areas and global applications. In contrast, forest stand
parameters are an option with great potential as remote sens-
ing systems can measure them globally. In order to develop
methodologies that use forest stand parameter to estimate
aboveground biomass, new allometric relationships account-
ing for stand rather single tree parameters need to be derived
and investigated. In this sense, moving from a single tree to a
stand, the above ground stand biomass AGB is obtained by
summing up the biomasses of the N individual trees in the
stand

AGB ¼
XN
i¼1

AGBTi ¼
XN
i¼1

VTiρTi

¼
XN
i¼1

1
4
HTiDBH

2
TiFTiρTi ð2:26Þ

Substituting in (2.26) the basal area BA, that describes the
amount of the stand area occupied by tree stems, the mean top
height HM and a mean wood density ρM

BA ¼ 1
4

XN
i¼1

DBH2
Ti,HM ¼ 1

N

XN
i¼1

HTi,F

¼ 1
N

XN
i¼1

FTi, ρM ¼ 1
N

XN
i¼1

ρTi ð2:27Þ

follows

AGB ¼ BAHMFMρM : ð2:28Þ

Equation (2.28) makes clear that an accurate estimation of
stand biomass relies on the knowledge of three key
parameters: the tree height and density (expressed for exam-
ple by the basal area in (2.28)) which both together define the
woody volume of the stem and the wood density. Today there
is no remote sensing configuration able to measure directly
all three parameters.

Radar, and particular SAR remote sensing techniques for
the estimation of above ground forest biomass, can be
divided into three categories: (1) direct, (2) model-based,
and (3) allometric techniques. Direct techniques use empiri-
cal or statistical relationships to relate directly the radar
observables (primarily radar backscatter measurements at a
single or different polarisations but also polarimetric or inter-
ferometric correlations) to above ground forest biomass
values. Model based approaches rely on electromagnetic
scattering models to interpret the SAR data and to establish
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the relationship to biomass. Finally, in allometric techniques,
the radar observables are used for the estimation of one or
more physical forest parameters, as for example forest height,
and then these parameters are related to forest biomass
through allometric relations. The different approaches and
techniques will be reviewed in the following.

2.5.1.2 Methodology

2.5.1.2.1 Direct Biomass Estimation
The first approaches to estimate forest biomass directly from
backscatter measurements at different frequencies and
polarisations date back to the early days of SAR remote
sensing, and are today still an active research area. The
basis of these approaches is the fact that with increasing
forest biomass the (measured) backscatter intensity increases.
Accordingly the backscattered intensity from a young forest
with low biomass is in general weaker than the backscattered
intensity from an old taller forest with high biomass. This has

been observed, investigated and reported in the frame of
airborne SAR experiments (at different frequencies and
polarisations) already back in the eighties – early nineties
(Le Toan et al. 1992; Rignot et al. 1994b; Imhoff 1995b;
Dobson et al. 1995; Kasischke et al. 1995; Rauste et al. 1994;
Harrell et al. 1995) These early results initiated a big interest
in exploring SAR measurements for forest biomass estima-
tion. Following experiments and work focused on studying
and establishing (empirical) relations between biomass and
SAR intensity measurements at the conventional HV, VV
and HV polarisations.

A number of experiments performed over different forests
and at different frequencies, indicated that the HV polarised
(back-) scattering coefficient is strongly correlated to bio-
mass, that this is often the case also for the HH scattering
coefficient, while the correlation between biomass and VV
scattering coefficient is often weak. However, at lower
frequencies and/or sparse forest conditions the HH scattering
coefficient is contaminated by dihedral scattering

Fig. 2.36 Four different biomass classification maps for the Brazilian Amazon. Top left: Saatchi et al. (2007a), top right: Saatchi et al. (2011a),
bottom left: Nogueira et al. (2008), bottom right: Baccini et al. (2012)
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contributions (characterised by a strong directional backscat-
tering behaviour) and is therefore stronger affected by topo-
graphic variations. Accordingly, HV is identified as the best
polarisation for biomass inversion because it is less affected
by the disturbing ground scattering contributions. Figure 2.37
shows P-band HV backscattering coefficient plotted against
aboveground biomass for four different sites. Calibration
factors of 5 dB and �3 dB have been added to the datasets
from La Selva and Remningstorp, respectively. The solid line
is the regression curve derived from the combined data
(Le Toan et al. 2011).

However, even if the experimental results appear in many
cases convincing the theoretical interpretation relationships
used where rather weak and largely based on simple forest
scattering models. Today is known that that there are three
critical limitations common to these studies/approaches:

1. At every frequency (and polarisation) the sensitivity of the
backscattered SAR intensity decreases with increasing
biomass level. This effect is often referred as “saturation”
and imposes a maximum limit for which a biomass esti-
mation is possible within a given accuracy. The sensitivity
and with it the saturation limit increases with increasing
wavelength (decreasing frequency). Authors generally
agree upon that L-Band saturates between 40 t/ha and
100 t/ha, and P-band between 120 t/ha and 200 t/ha.
Longer wavelengths like VHF as provided by the Swedish
VHF sensor CARABAS are sensitive to biomass levels
beyond 200 t/ha.

2. The empirical and semi-empirical relationships between
backscattered SAR intensity and biomass depend on site
conditions, and forest type and structure.

3. The fact that the backscattered SAR intensity depends also
on the acquisition geometry, terrain topography, seasonal
and environmental (dielectric) conditions make the inter-
pretation of the backscattered SAR intensity in terms of
biomass levels ambiguous.

In order to overcome these limitations model-based
approaches have been developed.

2.5.1.2.2 Model-Based Estimation
Model-based approaches use electromagnetic scattering
models to establish the relation between SAR observables,
primarily the (back-) scattering coefficients at one or more
polarisations, and biomass. The main motivation behind their
development was twofold: to better control the dependency
of the biomass relation on the individual site characteristics
by parameterising propagation and scattering processes and
to reduce the distortion due to non-vegetation scattering
contributions by decomposing the total scattering into ele-
mentary scattering contributions.

While they have been many approaches investigated and
proposed addressing model based biomass estimation one
can distinguish two different model families: The first family
of models develop from the so called Water Cloud Model
(Attema and Ulaby 1978), are in general two layer models
(i.e. volume and ground layer) and are applicable primarily at
higher frequencies where canopy attenuation is relevant
(Henderson and Lewis 1998); The second one is derived by
means of radiative transfer modelling, accounting in general
up to three layers (i.e. grown, trunk and ground layer) and
appears more suited for the lower frequency range (Saatchi
and McDonnald 1997; Saatchi and Moghaddam 2000;

Fig. 2.37 P-band HV
backscattering coefficient plotted
against aboveground biomass for
four different sites. (Le Toan et al.
2011)
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Mitchard et al. 2011). Both approaches rely on the separation
(or interpretation) of volume and ground (including surface
and/or dihedral) scattering contributions either by means of
polarimetric scattering coefficients or covariance matrices.
This allows, depending on the implementation, to incorporate
topographic corrections.

However, there are two critical points that constrain the
applicability and/or performance of these models: the first one
is the large number of model parameters required in relation to
the low dimensionality of conventional SAR observation
spaces. This results in a large number of parameters/
coefficients that have to be a-priori known or estimated from
forest biomass reference data. The second one is the rather
poor integration of the effect of forest biomass into EM scat-
tering models at relevant frequencies. This is primarily
because of our inability to describe in a realistic way the
complex scattering interactions occurring within a forest
under different conditions and at different scales. The fact
that forest biomass by itself depends on a number of forest
parameters makes this task even more complex.

The advantage of using multitemporal SAR acquisitions
to improve the performance of biomass estimators was
already recognized at a very early stage (Kurvonen et al.
1999). The availability of multiple SAR acquisitions
increases the sensitivity of the SAR backscattered intensity
to biomass and allows an estimation even beyond the satura-
tion point as recent studies demonstrated (Santoro et al. 2011,
2013). More than 100 acquisitions per year are used to derive
biomass estimates from C-band radar backscatter. Averaging
across large number of acquisitions, performed under slightly
different incidence angles in different environmental
(i.e. weather) and seasonal conditions allows to overcome
the saturation appearing in single image relationships. The
price to be paid is the low spatial resolution resulting from the
large number of samples required to obtain robust estimates.
This has been demonstrated in Santoro et al. (2011) with a
stock volume map of the boreal zone from ENVISAT-ASAR
data with a resolution of 1 km � 1 km. Up to 300 m3/ha
(approx. 150 tons/ha) no saturation effect could be detected.

The introduction of SAR interferometry in the late nineties
had a significant impact on forest applications by improving
the performance of existing applications when introducing
both interferometric coherences and/or interferometric phases
or triggering the development of new ones.

The interferometric coherence has been explored in terms
of its temporal as well as in terms of its volumetric
contributions. As the temporal decorrelation contribution
dominated the early C-band repeat-pass interferometric
spaceborne data available the first attempts where based on
empirically relating the amount of change (i.e. temporal
decorrelation) estimated in the interferograms to the biomass
(or the stock volume, or the height) of the individual stands
(Koskinen et al. 2001; Pulliainen et al. 2003; Eriksson et al.

2003b). In Wagner et al. (2003) ERS interferometric coher-
ence in combination with JERS backscattering was used with
success to classify the biomass levels across Siberia. The
availability of repeat-pass space borne interferometric
acquisitions with smaller temporal baselines and/or at longer
wavelengths (L-band) with weaker temporal decorrelation
contributions allowed the development of more physical
interpretation and inversion models for the interferometric
coherence able to distinguish between temporal and volume
decorrelation contributions. This helped to improve biomass
estimation and to obtain more robust estimates, especially in
boreal forests (Santoro et al. 2002; Askne and Santoro 2009;
Askne et al. 2013).

Besides the interferometric coherence, interferometric
phase measurements have been also used to support biomass
estimation in cases where the coherence level was allowing
meaningful phase reconstruction. The so-called scattering
center height, i.e. the height of the interferometric phase
center with respect to the underlying ground has been used
as a proxy for forest height in different biomass estimation
schemas (Solberg et al. 2010, 2013; Treuhaft et al. 2015).
However, the dependency of the phase center location on the
acquisition geometry and terrain topography as well as on
seasonal and environmental variation constrains its robust-
ness especially at lower frequencies.

2.5.1.2.3 Allometric Biomass Estimation
Accurate forest height measurements can be used as a proxy
for aboveground biomass estimates, especially in high bio-
mass regions (Mette et al. 2003, 2004a, b). Differently than
the conventional biomass estimates at stand level obtained by
multiplying stock volume with mean wood density, biomass
estimates from forest height measurements rely on the use of
allometric relationships (Mette et al. 2003). A first approach
in this direction was introduced in Mette et al. (2003) where a
simple power law allometric relationship was proposed

AGB ¼ la 1:66Hð Þb: ð2:29Þ

where AGB is the stand biomass (Mg/ha), H is the forest
dominant (top) height or H100 (height of the 100 largest trees
per hectare (Reigber and Moreira 2000)), b is the allometric
exponent and la a scaling factor known as allometric level. The
allometric level accounts primarily for differences in stand
densities but also tree species and site conditions and decreases
from climax tree species to pioneer tree species. For estimating
AGB from height measurements in the context of (2.29) the
allometric level needs to be known.On regional (i.e. landscape)
scale a mean allometric level can be assumed (under the
assumption of similar tree species composition, logging
practices, management concepts and growth conditions).

Height-to-biomass allometric relationships proved to be
robust and able to provide accurate AGB estimates from
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forest height in homogenous forest conditions. This has been
demonstrated for a number of boreal, and temperate sites with
different conditions. However, the approach meets its
limitations in forest of heterogeneous structure and density.
This is shown in Fig. 2.38 where the height (i.e. H100) to
biomass relationship for four European forest test sites. The
results have been achieved by using a common allometric
exponent of 0.52 and site adapted values for the allometric

level. The three more heterogeneous sites, namely
Traunstein, Ebersberger Forst and the Nationalpark
Bayrischer Wald, are characterised by a lower height–bio-
mass correlations indicating the insufficiency of a fixed allo-
metric level to represent the height to biomass relationship.
On the other hand, the more homogeneous, in terms of
horizontal and vertical structure, boreal forest in Krycklan
is well described by a single allometric level. The

Fig. 2.38 Height to biomass allometry for four European forest test sites. Top left: Traunstein Site in Germany; top right: Ebersberger Forst in
Germany; bottom left: Bayrischer Wald in Germany; bottom right: Krycklan in Sweden
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correspondences obtained for the four test sites between the
biomass estimated from ground measurements and using the
height to biomass allometry are shown in Fig. 2.39.

The high correlation between forest height and biomass
has been explored in Toraño-Caicoya et al. (2016a) to use
forest height estimated from TanDEM-X interferometric data
to estimate successfully biomass at boreal forests by means of
(2.29).

In order to improve the performance of the conventional
forest height to biomass allometry that degrades in structur-
ally heterogeneous forests the direct or indirect use of forest
structure information in (2.29) has been proposed and is
currently investigated by several groups. The forest structure
information can be obtained from inventory data or even
more relevant from 3-D radar reflectivity reconstructed
from tomographic measurements. One such example has
been recently presented in Toraño-Caicoya et al. (2015)
where the use of vertical structure information derived from
3-D radar reflectivity reconstructed at L-band by means of
tomographic SAR techniques has been used to improve the
performance of the height to biomass allometry. First the
vertical reflectivity profile F(z) is expressed in terms of a
Legendre polynomial series

F zð Þ ¼
X
n

anPn zð Þ where an

¼ 2nþ 1
2

Z 1

�1
F zð ÞPn zð Þdz ð2:30Þ

where Pn(z) are the Legendre polynomials and an the
associated Legendre coefficients. The first four Legendre
coefficients (a1, . . .a4) are then used to define a structure
ratio Srat that allows to distinguish between different allome-
tric levels

Srat ¼ a1j j
a2 þ a3 þ a4j j : ð2:31Þ

The lower frequency contribution, expressed by the first
Legendre coefficient (a1), is associated to the stem compart-
ment while the higher frequency components, represented by
the higher order coefficients a2, a3 and a4 are associated to the
crown/canopy compartment. Accordingly, the structure ratio
Srat Srat may be used as a proxy to stand density to improve
the allometric biomass estimation (Toraño-Caicoya et al.
2016b)

AGB ¼ 7S0:8rat H
b: ð2:32Þ

Thus, for a constant height, if the numerator of the ratio
increases (indicating a higher proportion of stem biomass),

biomass increases, and if the denominator increases
(indicating a higher proportion of crown biomass) biomass
decreases. Figure 2.46 shows the improvement achieved by
using (2.35) instead of (2.32). The high variance produced by
the “height to biomass” allometric relation in (2.32) can be
corrected with the inclusion of forest structure information.

2.5.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on biomass estima-
tion are summarized in Table 2.9 and further described in the
Appendix.

Biomass maps have been obtained in the two selected test
sites in two steps: first by estimating forest height from
interferometric TanDEM-X and second by estimating bio-
mass from height using following allometric relation
provided by the Swedish National Forest Service Inventory
(SLU)

AGB ¼ 0:3H2: ð2:33Þ

Results are shown in Fig. 2.40.
The accuracy of the estimated biomass depends on two

error sources: the accuracy of the estimated height-to-bio-
mass relationship (ΔAGB) and the accuracy of the forest
height estimates (ΔH ). ΔAGB is defined by the forest
conditions and can only be improved when additional forest
parameters (like forest density, structural parameters, etc.) are
included in the allometric estimation process. Under the
assumption of homogenous stand conditions across the
boreal region, ΔAGB can be assumed constant and it is
estimated from the bias observed in the height-to-biomass
relationship applied to the reference data. ΔH depends on
forest height estimation methodology and performance. Air-
borne lidar measurements provide height estimates with
sub-meter accuracy and are therefore used as a reference.

For forest heights obtained from TanDEM-X data, ΔH
depends, in general, on the acquisition mode (single-pol,
dual-pol, dual-baseline) the number of available acquisitions
(see Sect. 2.2) and on the associated range of spatial baseline.

Accordingly, the total biomass estimation sensitivity
(ΔABGtot) can be expressed as

ΔAGBtot ¼ ∂AGB
∂H

ΔH þ ΔAGB: ð2:34Þ

Using (2.33) in (2.34) it follows:

ΔAGBtot ¼ 0:6HΔH þ ΔAGB: ð2:35Þ

ΔH and ΔAGB determine the accuracy of biomass estima-
tion. However, assuming the allometric error ΔAGB to be
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independent from H, the biomass estimation accuracy is
driven by ΔH only.

Figure 2.41 shows classification performance obtained by
means of (2.33) for a relative height error of 0% (top left) and
10% (top right), and 1 (bottom left) and 3 m (bottom right)
absolute errors. The real biomass is plotted on the y-axis, the
estimated biomass, for a 90% confidence interval, is plotted
on the x-axis in 10 Mg/ha biomass steps. The blue dashed
lines indicate the class boundaries, estimated at the point in

which two biomass intervals do not overlap. Assuming an
error free height measurement (ΔH ¼ 0), up to 9 biomass
classes can be obtained. This is the best performance that can
be achieved, due to the residual error in ΔAGB. In case of a
10% height error five classes can be distinguished. For height
errors larger than 20% only two biomass classes can be
separated reducing the classification to a forest/non forest
classification.

Fig. 2.39 Height and structure to biomass allometry for four European forest test sites. Top left: Traunstein Site in Germany; top right: Ebersberger
Forst in Germany; bottom left: Bayrischer Wald in Germany; bottom right: Krycklan in Sweden
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The analysis above makes clear that the biomass estima-
tion performance reacts very sensitive to height errors. Con-
sequently, reliable and robust biomass estimates require
accurate and robust height estimates which again strongly
depend on the polarimetric configuration of the observation
space. The performance shortcomings of dual-polarimetric
observations in terms of:

1. biased estimation results due to the lack of appropriate
observation dimensionality to account for ground
depolarisation (especially at lower frequencies and/or
sparse forest conditions);

2. larger amount of forest types/samples with model mis-
match (due to the over constrained model);

3. larger variance of the obtained forest height estimates
when compared to the inversion results achieved by
using the full polarimetric information;

can be widely compensated by using quad-polarimetric
observations.

2.5.1.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Single-pol data interferometric data at a single baseline do not
provide enough measurable to invert forest height from inter-
ferometric data without a-priori information on terrain topog-
raphy. A single-pol inversion is possible when multiple
baselines are available but the performance is compromised
by the presence of temporal decorrelation and the ratio of the
spatial baselines. On the other hand, forest height inversion is
possible with dual-polarimetric interferometric data taking
into account a reduced estimation performance when com-
pared to the quad-polarimetric case. The availability of quad-
polarimetric interferometric measurements - that allows the
implementation of adaptive optimisation techniques - is criti-
cal when algorithm robustness and performance matters.

2.5.2 Biomass Estimation from Semi-empirical
Relationships

2.5.2.1 Introduction, Motivation and Literature
Review

Understanding the terrestrial carbon cycle and predicting
future climate changes are important topics in climate
research. One of the major uncertainties in the current carbon
cycle models lies in terrestrial ecosystems, mainly forests
(Solomon et al. 2007). Rather than estimating forest carbon
directly, biomass can be used instead since about 50% of
biomass is carbon. Furthermore, above-ground biomass
B [t/ha] is often used as a proxy indicator which is estimated
from remote sensing measurements, e.g. using P-band
(ca 450 MHz) SAR as discussed in this Section. B is here
defined as dry weight and includes stem, bark, branches, and
needles/leaves, but excludes stump and roots.

Several studies of using P-band SAR for forest biomass
retrieval have been performed in the past. The early studies
(Ranson and Sun 1994; Imhoff 1995a; DeFries et al. 2002;
Rauste et al. 1994; Beaudoin et al. 1994; Rignot et al. 1995)
concluded that HV-polarized backscatter shows highest cor-
relation with biomass. In later studies (Hoekman and
Quiñones 2000; Rignot et al. 1995; Santos et al. 2003),
retrieval models were extended to other polarisation
channels, showing improved retrieval results. In Saatchi
et al. (2007b, 2011b) and Sandberg et al. (2011), the need
for topographic corrections was pointed out and models were

Fig. 2.46 Scatter plot for model R1. For each stand/plot, all available
acquisitions are shown

Table 2.9 Test sites and corresponding radar and validation data selected for the generation of showcases on biomass estimation with allometric
relationships

Application/product Test site – Radar data Reference data

Biomass estimation with allometric relationships Krycklan and Remningstorp, Sweden
TanDEM-X dual-pol data HH-VV

Inventory biomass maps
Lidar forest height measurements
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Fig. 2.40 Biomass estimation
using forest height-tobBiomass
allometry. Left panel: Krycklan,
TanDEM-X (27.02.2011),
13.5 � 18.8 km; right panel:
Remningstorp, 9.3 � 11.3 km,
30.12.2011. From top to bottom:
single look complex amplitude,
coherence scaled from 0 (black) to
1 (white), forest height map scaled
from 0 to 40 m, and biomass
(classification) map. The
5 biomass classes are colored
from light to dark green according
to the mean biomass (center
value) of each class
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improved. In Neumann et al. (2012), polarimetric and inter-
ferometric SAR observables were also used. Complementary
approaches include polarimetric SAR interferometry (Cloude
and Papathanassiou 1998; Papathanassiou and Cloude 2001;
Cloude and Papathanassiou 2003; Neumann et al. 2010) or
SAR tomography (Cloude 2006; Reigber and Moreira 2000;
Tebaldini 2010). Although the models presented in the men-
tioned articles show promising results, the analysis were

limited to a single test site and the diversity of the data was
low. Therefore, the extrapolation capabilities of the models
remain untested.

2.5.2.2 Methodology
Biomass retrieval using the following two polarimetric SAR
models is analysed:

Fig. 2.41 Biomass estimation performance based on (2.36) for a 90% confidence interval for relative height errors on the top panel (0 left and 10%
right) and absolute height errors on the bottom (1 m left and 3 m right) panel
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M1ð Þ lnB ¼ 3:280þ 0:138 γ0HV
� �

dB þ 0:049 γ0HH
� �

dB � 0:113 γ0VV
� �

dB

M2ð Þ lnB ¼ 3:129þ 0:093 γ0HV
� �

dB
þ 0:020þ 0:605uð Þ γ0HH

� �
dB

� γ0VV
� �

dB

	 
 ð2:36Þ

The coefficients were estimated by least squares using
the 97 circular plots in Krycklan (for each plot, four data
points representing each flight heading were used). The first
model is a linear combination of the three like-pol backscatter
channels. The second model is a model proposed in Soja et al.
(2013), which includes HH/VV ratio (which was found to be
less susceptible to temporal and topographic changes), and
the ground-slope angle u, which introduces a first-order topo-
graphic correction. The models were tested in Solomon et al.
(2007) for sensitivity to site, topography and temporal
change. Furthermore, the models were evaluated using two
sets of test data from two different test sites. The test sites are
located 720 km apart and represent two different cases of
boreal forest. Models fitted to data from one test site are
evaluated on the other. In this manner, the model is validated
independently of the training data set.

Biomass retrieval using a third model is also analysed,
i.e. the single-pol model according to

R1ð Þ lnB ¼ C0 þ C1 γ0HV
� �

dB
� 0:766

	 

ð2:37Þ

where C0 ¼ 3.8914 and C1 ¼ 0.1301 (Le Toan et al. 2011).

2.5.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on direct biomass
estimation with semi-empirical relationships are summarized
in Table 2.10 and further described in the Appendix.

Averaged, stand-wise backscatter data were extracted
from the geocoded SAR images for all stands and plots in
both Remningstorp and Krycklan. A 50 � 50 m DEM was
used for geocoding and normalisation. Although high-
resolution lidar DEMs were also available for both test
sites, they were not used because the evaluation scenario
would be less realistic as comparable DEM resolutions are

not available on global scale. All normalisation procedures
were performed before averaging, that is on high-resolution
SAR data. A buffer zone of 10 m was also added to avoid
border effects.

Quantitative results for model M1 are shown in Fig. 2.42.
Scatter plots for biomass for the 58 lidar stands and 10 field
plots in Remningstorp are shown. Model parameters were
extracted in Krycklan. As it can be seen in the figure, biomass
is overestimated by 25–50 t/ha. Root mean square error
(RMSE) for all data (all acquisitions at all headings and all
dates) is measured to 39% of the mean biomass of 181 tons/
ha (RMSE is estimated for field plots, for which biomass
estimation error is a few per cent). For model M4, the
corresponding results are shown in Fig. 2.44. RMSE is
25%, and bias is much lower than for model M1. It is thus
concluded, that the inclusion of the HH/VV ratio and topog-
raphy notably improves retrieval performance.

Biomass maps for model M1 and M4 are shown in
Figs. 2.43, 2.44, and 2.45. For M1, overestimation can be
observed in many places in the maps. For M4, overestimation
can be observed in some limited regions. This overestimation

Table 2.10 Test sites and corresponding radar and validation data selected for the generation of showcases on biomass estimation

Application/
product Test site – Radar data Reference data

Biomass
estimation

Krycklan, Sweden
Airborne E-SAR P-band repeat-pass quad-pol data
2008
Remningstorp, Sweden
Airborne E-SAR P-band repeat-pass quad-pol data
2007

In-situ measurements (stem diameters, stem volume maps, tree
heights)

Fig. 2.42 Scatter plot for model M1. For each stand/plot, all available
acquisitions are shown
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can been explained by physical scattering properties; see
(Le Toan et al. 2011).

In Figs. 2.46 and 2.47, quantitative results and biomass
maps are shown for single-pol model R1. The model
overestimates biomass gravely for almost all stands and is
thus not suitable for across-site biomass retrieval.

2.5.2.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

The inclusion of polarimetry significantly improves biomass
retrieval performance for regression-based models. Using the
HH/VV-ratio, the geophysical variability common for both
HH and VV is eliminated (for example, moisture, topography

Fig. 2.43 Remningstorp:
biomass maps for model M1. One
single image for the 179-degree
heading was used for each date to
create SAR-based biomass maps
(IDs: 0110, 0206, and 0412,
March to May, respectively)

Fig. 2.44 Scatter plot for model M4. For each stand/plot, all available
acquisitions are shown
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Fig. 2.45 Remningstorp:
biomass maps for model M4. One
single image for the 179-degree
heading was used for each date to
create SAR-based biomass maps
(IDs: 0110, 0206, and 0412,
March to May, respectively)

Fig. 2.47 Remningstorp:
biomass maps for model R1. One
single image for the 179-degree
heading was used for each date to
create SAR-based biomass maps
(IDs: 0110, 0206, and 0412,
March to May, respectively)
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and structure). Using the slope angle u, the influence of
topography is reduced.

2.6 Summary
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Abstract

Based on experimental results, this chapter describes
applications of SAR polarimetry to extract relevant infor-
mation on agriculture and wetland scenarios by exploiting
differences in the polarimetric signature of different

scatterers, crop types and their development stage
depending on their physical properties. Concerning agri-
culture, crop type mapping, soil moisture estimation and
phenology estimation are reviewed, as they are ones with a
clear benefit of full polarimetry over dual or single polar-
imetry. For crop type mapping, supervised or partially
unsupervised classification schemes are used. Phenology
estimation is treated as a classification problem as well, by
regarding the different stages as different classes. Soil
moisture estimation makes intensive use of scattering
models, in order to separate soil and vegetation scattering
and to invert for soil moisture from the isolated ground
component. Then, applications of SAR polarimetry to
wetland monitoring are considered that include the delin-
eation of their extent and their characterisation by means
of polarimetric decompositions. In the last section of the
chapter, the use of a SAR polarimetric decomposition is
shown for the assessment of the damages consequential to
earthquakes and tsunamis.

3.1 Introduction

There exists a wide variety of remote sensing applications in
the context of agriculture. A possible classification is
summarised in Table 3.1, including the end-users and their
motivation for such applications.

Most of these applications have made use of quad-pol
data, but recently several studies have been carried out
using compact polarimetry, where a single transmit (usually
circular) and dual linear coherent receive is used. These have
shown some promising advances in agriculture applications,
for instance, combining high classification accuracy from the
polarimetric information with wide swath coverage. Among
all these applications, the following ones demonstrate the role
of polarimetry and the benefits of quad-pol data over single-
pol or dual-pol approaches:
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• Crop type mapping: By means of supervised or partially
unsupervised classification schemes, different crop types
can be classified in PolSAR images provided that they
exhibit different polarimetric signatures as a result of
different physical properties.

• Soil moisture retrieval: Using target decomposition
approaches, the response from the vegetation and the
underlying ground can be separated, as well as the depen-
dence of the radar signal on soil roughness and moisture.

• Phenology monitoring: When plants change their physical
characteristics as they develop, different stages can be
regarded as different classes, hence being separated by
their polarimetric signatures.

Regarding PolInSAR, the rapid rate of growth and change
in most crops has undermined so far the development of
operational applications based on space-borne SAR systems,
since they only provide repeat-pass interferometry (with the
notable exception of the recently launched TanDEM-X sen-
sor, which has polarimetric modes available for future use)
and agriculture requires single-pass acquisitions. To date, the
only successful application based on PolInSAR data is the
retrieval of crop height, as an indicator of crop condition or
phenology, which has been demonstrated with airborne data.

Wetlands constitute an application scenario with increas-
ing interest in the remote sensing community, especially due
to their ecological importance and their clear role in biodi-
versity. The main applications of PolSAR in wetlands consist
in their delineation and characterisation (i.e. condition assess-
ment and vegetation-type classification), for which some
approaches have been successfully tested recently. In addi-
tion, PolInSAR has been employed to monitor changes in the
water level by exploiting the high coherence provided by the
double-bounce mechanism produced by the interaction
between the water layer and the plants.

Finally, PolSAR has been applied to assess the effect of
earthquakes and tsunamis, thanks to the detection of changes
in the physical properties of the scene when these events
happen.

3.2 Crop Type Mapping

3.2.1 Evaluation of C-Band Polarimetric SAR
for Crop Classification

3.2.1.1 Introduction, Motivation and Literature
Review

As the global population increases at a rate of about 80 mil-
lion per year (United Nations Population Fund 2011), the
agriculture and agri-food sector must continue to innovate if
it is to meet this demand with an ever-decreasing land base.
Recognising the importance of timely information to support
accurate national, regional and global agricultural production
forecasts, the G20 Group on Earth Observations Global
Agricultural Geo-Monitoring Initiative (GEO-GLAM) was
launched in 2011 (European Space Agency 2012). Under
this initiative, data from Earth observing satellites will be
fundamental to characterise crop types and estimate acreages
in order to monitor global food production. Yet as the sector
adapts to meet the needs of this growing population, society
will demand that food be grown in an environmentally sus-
tainable manner. Thus, monitoring how crops are being
grown and effects on the landscape and surrounding
ecosystems is also important.

Synthetic aperture radars (SARs) can contribute signifi-
cantly to this global monitoring effort. This is particularly
true given improved access in the last decade to satellites with
SARs which acquire data at multiple polarisations as well as
those that are fully polarimetric-capable. And when agricul-
ture monitoring agencies consider accessing data at multiple
frequencies by tasking satellites from various international
data providers, a radar-only solution to delivery of crop
inventories is possible. Yet research and development are
required to adapt existing classification methodologies to
use data from SARs. In addition, global cropping systems
vary significantly, and consequently, research is required to
determine the optimal SAR configuration for different mixes
of crops grown under diverse growth cycles.

Table 3.1 Remote sensing applications on agriculture

(End) users Application(s) Interest/motivation

National international
authorities/agencies

Crop type mapping or classification Justification of subsidies and fraud detection, acreage

Water resources consumption Control in regions suffering droughts or with scarce water
resources

Yield prediction Economic and market predictions, price regulations, etc.

Forest management Timely information about crop condition
and phenology

Planning and triggering of farming practices according to specific
phenological stages

Water requirements/soil moisture Irrigation optimisation: only when and where necessary

Final crop productivity Benefits
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In 2004, Agriculture and Agri-Food Canada (AAFC)
began developing a classification method to inventory
Canada’s crops. This research led to the implementation of
AAFC’s annual crop inventory with the first national inven-
tory available in 2011. Reliability in delivery of the AAFC
inventory has been facilitated by acquiring RADARSAT-
2 dual-polarisation (VV, VH) C-band data to fill gaps when
adequate optical data are unavailable (Fig. 3.1). Although the
proportion of SAR-to-optical data used in the inventory is
growing each year, optical data are still required to meet
individual crop accuracy targets. Thus AAFC research
continues to explore how multi-frequency and polarimetric
SAR data can help to move the inventory towards increased
reliance on SAR sensors and less dependence on optical
satellites.

SAR satellite data are attractive for mapping and monitor-
ing agriculture as microwave frequencies are unaffected by
cloud and haze, unlike their optical counterparts. Agricultural
targets (soils and crops) are very dynamic, and thus optical
sensors can miss crucial periods in the growing season when
information is critically required. Early studies examined the

use of single frequency-single polarisation SAR data and
reported that these data had to be integrated with optical
satellite images if adequate crop classification accuracies
were to be achieved. This included integration of C-HH
(Brisco and Brown 1995), C-VV (Ban 2003; Schotten et al.
1995) or C-HH and C-VV (Blaes et al. 2005) images with at
least one optical image. Even when ENVISAT-ASAR and
RADARSAT-1 were integrated to create a data set with all
three noncoherent linear polarisations (C-VV, C-VH and
C-HH), optical images were still needed to successfully clas-
sify individual crops in complex cropping systems (McNairn
et al. 2009a). Yet these studies also reported that optically
based classification accuracies benefited by the inclusion of
SAR data (Brisco and Brown 1995; Ban 2003; McNairn et al.
2009a).

Of all the linear polarisations, many studies have con-
firmed that the cross-polarisation (HV or VH) is the single
most important polarisation to identify the majority of crops
(McNairn et al. 2000, 2009a, b; Foody et al. 1994; Lee et al.
2001). This polarisation is responsive to the multiple scatter-
ing from within the vegetation volume, and because

Fig. 3.1 Example of product from Agriculture and Agri-Food Canada’s 2012 crop inventory which uses an integration of optical and RADARSAT-
2 data
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vegetation structure varies greatly among crops, cross-
polarised backscatter provides the best discrimination. Nev-
ertheless, classification accuracies are increased substantially
with the inclusion of additional polarisations. The greatest
incremental increase in accuracy is observed when adding a
second polarisation (Foody et al. 1994; McNairn et al. 2000;
Hoekman and Vissers 2003), yet a third polarisation will still
result in additional improvements to the classification for
some crops (McNairn et al. 2000, 2009a; Hoekman and
Vissers 2003).

Less research has been completed on the additional benefit
of coherent polarimetric parameters for crop classification.
Integrating all three linear polarisations and several polari-
metric parameters (the co- and cross-polarised pedestal and
variation coefficients, e.g.) (Foody et al. 1994) reported a
small increase in accuracies. This small incremental increase
in accuracy was confirmed in a study where parameters
generated from scattering decompositions provided slightly
higher accuracies (McNairn et al. 2009b). The HH-VV cor-
relation coefficient and the RR-RL ratio, integrated with HV,
have also proven useful in classifying crops (Quegan et al.
2003).

A multi-frequency multi-polarisation approach is the best
option for crop discrimination. Ground-based scatterometer
and airborne SAR research campaigns describe improvements
in vegetation discrimination using multi-frequency data.
Researchers reported that relative to single frequency data,
higher crop classification accuracies are achieved using X-
and C-band (Thomson et al. 1990); C- and L-band (Skriver
2012); X-, C- and L-band (Brisco and Protz 1980; Guindon
et al. 1984); as well as C- and L- and P-band (Chen et al. 1996;
Ferrazzoli et al. 1997, 1999; Hill et al. 2005; Hoekman et al.
2011) data. The advantage of a multi-frequency data set for
separating vegetation types has also been demonstrated using
data acquired from multiple satellite platforms, specifically
ERS (C-band) and JERS (L-band) (Bouman and Uenk 1992;
Dobson et al. 1996). Lower-frequency (i.e. L-band)
microwaves penetrate larger biomass crops, and the scattering
from within the canopy where structure is quite different aids
in separating these crops (McNairn et al. 2009b). Yet for
smaller biomass crops, lower frequencies can penetrate too
far into the canopy and result in significant soil contributions.
For these crops, discrimination is achieved using higher-
frequency microwaves where most interaction is limited to
within the canopy.

3.2.1.2 Methodology
The evaluation of C-band SAR for crop classification was
accomplished using RADARSAT-2 data acquired for three
study sites – two in Canada’s western Prairie region and a
third in eastern Canada. Field observations of crop type were
collected to train the supervised classification model and to
test the classification accuracy. Fields were randomly split

with half used for training and the remainder used to inde-
pendently evaluate the classification results. A 7 � 7 boxcar
speckle filter was applied to the single-look complex
RADARSAT-2 data for the eastern site. For the two western
sites, a 9 � 9 boxcar filter was selected due to the larger field
sizes typical of this region of Canada. The covariance matrix
was then converted to a symmetrised 3 by 3 covariance
matrix from which radar intensity backscatter (HH,
HV/VH, VV) was generated. In addition, the Cloude-Pottier
(Cloude and Pottier 1997) decomposition was applied
generating entropy (H ), anisotropy (A) and alpha angle (α)
parameters. With the Freeman-Durden decomposition, the
total power was partitioned into contributions from three
scattering mechanisms: single-bounce, double-bounce and
volume scattering (Freeman and Durden 1998). After
generating these radar parameters, the data were ortho-
rectified using platform ephemeris information and models
of the internal sensor distortion, a set of ground control points
(GCPs) and digital elevation models. Prior to classification an
enhanced Lee filter was applied with a window size of 5 � 5
for the eastern site and 9 � 9 for the western sites.

Fully polarimetric sensors are limited in terms of swath
coverage, making their use in large area monitoring a chal-
lenge. Specific to RADARSAT-2 the maximum swath for
quad-pol (QP) is approximately 50 km, achieved with the wide
QP mode. With compact polarimetric (CP) configurations, a
larger swath is maintained relative to fully polarimetric SAR
systems (Charbonneau et al. 2010), making CP an attractive
option to assist with the production of national crop
inventories. Although CP offers this operational advantage,
the information generated by CP configurations is not well
understood particularly as it relates to applications such as
crop classification. To investigate the potential of CP for this
application, a circular right transmitting-coherent linear receiv-
ing compact polarimetric mode (CL-pol) was simulated from
the RADARSAT-2 fully polarimetric data acquired for the
Casselman site. The simulated CL-pol data were stored in the
Stokes vector format, and the Stokes vector parameters were
subsequently used in the classification. A detailed description
of the CP simulation in provided in (Charbonneau et al. 2010).

Upon evaluation of several classification models
(McNairn et al. 2009a), AAFC chose a decision tree
(DT) supervised classifier as it provided the most consistent
and reliable classification accuracies particularly when SAR
data were used in the classification. Decision boundaries and
coefficients for the linear discriminate function used in the
classification were estimated empirically from the training
data. The DT was run using boosting over five trials to
force the classifier to focus on poorly classified cases. To
avoid over-fitting, the classifier used a global pruning of the
model of 25%. The DT classifier was implemented with the
software See5 (Rulequest Research 2008) and is currently the
basis of AAFC’s operational annual crop inventory.
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3.2.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for crop classification are summarised in Table 3.2
and further described in the Appendix.

When a multitemporal data set with all linear polarisations
(HH, VV, HV/VH) is available, high overall accuracies are
achievable. With the simple crop mix (corn, soybeans, wheat,
pasture) of the eastern site, accuracies of 90% are reached.
Slightly lower accuracies are found in more complex crop-
ping systems, such as those of Canada’s western region. Here
overall accuracies of 85.5% are reported for both the
Manitoba and Saskatchewan sites. Using either the Cloude-
Pottier (western sites) or Freeman-Durden (all three sites)
decomposition parameters resulted in higher accuracies
although gains were small. A classification using Cloude-
Pottier entropy, alpha and anisotropy inputs increased overall
accuracies by less than a percentage for the Manitoba site
(86.3%) and less than 2% for the Saskatchewan site (87.3%).
With the simple cropping mix in the eastern site, the linear
polarisations outperformed the accuracies achieved with
Cloude-Pottier (87.5%). The scattering parameters generated
by the Freeman-Durden decomposition provided the best
results for all three sites (Ontario, 91.3%; Manitoba, 87.1%;
Saskatchewan, 88.7%) although increases in accuracy were
limited to between 1 and 3%. For the Casselman site, the
CL-pol Stokes vector parameters produced an overall accu-
racy (91.1%) similar to that achieved with the Freeman-
Durden decomposition (91.3%).

Although high overall accuracies are an important indica-
tor of a successful classification, crops must also be well
classified individually in order to provide accurate production
estimates. Reaching these accuracies has been a challenge for
SAR-only classifications. For the Canadian inventory,
achieving these individual crop accuracies has required inte-
gration of optical data particularly where the cropping mix is
more complex. As presented in Fig. 3.2, when the three linear
polarisations achieve high crop-specific accuracies (greater
than 90%), little is gained in using fully polarimetric or CP
parameters. However, the Cloude-Pottier or Freeman-Durden
decompositions can improve accuracies when the linear
polarisations are unable to reach accuracies above 90%. The
results from the decompositions (QP) and the Stokes vector

parameters (CP) were comparable with differences of less
than one percent observed. The one exception was the pasture
class, where the Freeman-Durden outperformed the Stokes
vectors by about 3%. It should be noted that small incremen-
tal increases in accuracies are important as these improved
accuracies lead to more precise acreage estimates when con-
sidering the generation of national, regional or global produc-
tion assessments.

3.2.1.4 Comparison with Single-/
Dual-Polarisation Data

As expected, the use of a single polarisation does not achieve
satisfactory classification results. For the more complex crop-
ping mix found in Carman, single VV and VH polarisations
produced overall accuracies of 75.6% and 75.1%, respec-
tively. Slightly higher accuracies were reached in the eastern
site (77.9% for VV polarisation and 79.4% for VH). Only
62.5% (Casselman) and 68.1% (Carman) were attained with
the HH polarisation. For the western cropping mix, while the
VV polarisation provided better classification of pasture, corn
and cereal crops, the remaining crops (canola, flax and beans)
were best identified with the cross-polarisation. In Ontario,
VH outperformed VV for all crops except corn. For both sites,
HH always produced the lowest crop-specific accuracies.

As previously reported, the addition of a second
polarisation (in this case adding VV to VH) provided signifi-
cant improvements for many crops. For a more complex
cropping mix (Carman), with these two polarisations,
accuracies for corn, beans and cereals increased by 17.8%,
13.5% and 8.0%, respectively (Fig. 3.3). The addition of HH
to these first two polarisations increased accuracies by less
than 2%. In the eastern site, the integration of VV with VH
increased individual accuracies by 7–8% for all crops except
soybeans. For soybeans this increase was limited to less than
2%. For the Casselman site, there was value in adding the
third HH polarisation for pasture and wheat where accuracies
rose by a further 10–11% (Fig. 3.3).

In regions of Western Canada, approximately three-
quarters of the annual cropland is planted in cereals and
canola. In the eastern part of the country, this is true for
soybeans and corn. Early estimates of these specific crop
acreages are important for production and yield forecasting.

Table 3.2 Test sites and corresponding radar and validation data selected for the generation of showcases on crop classification

Application/product Test site – radar data Reference data

Crop classification Casselman, Ontario (2008) 274 fields surveyed for crop type

RADARSAT-2 FQ19 June 22, July 16, Aug. 9, Sept. 2

Carman, Manitoba (2009) 219 fields surveyed for crop type

RADARSAT-2 FQ15 June 22, July 16, Aug. 9, Sept. 2

Indian Head, Saskatchewan (‘09) 610 fields surveyed for crop type

RADARSAT-2 FQ2 June 8, July 2, July 26, Aug. 19, Sept. 12

RADARSAT-2 FQ19 June 4, July 22, Aug. 15, Sept. 8
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By mid-July, using only two RADARSAT-2 images (June
22 and July 16), accuracies above 70% (canola) and 80%
(cereals) could be reached if either the Cloude-Pottier or
Freeman-Durden decompositions were used in the classifica-
tion of the western site. This represents a significant improve-
ment in accuracies reached relative to those generated using
single (VH), dual (VV, VH) or multiple (HH, VV, VH)
polarisations (Fig. 3.4). For the eastern Ontario site,
mid-season estimates (as well as by July 16) were

significantly improved using the QP or CP configurations.
Using either the simulated CL-pol data or one of the
decompositions, accuracies close to 80% were achieved for
corn and 93% for wheat. The Stokes vector parameters were
far superior for mid-season identification of soybeans
(79.9%), about 10% better than accuracies reached with
either of the decompositions and 6% better than accuracies
produced using the three linear polarisations.
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3.2.1.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Accurate crop classification is the basis for generating pro-
duction estimates and yield forecasts. Regardless of the
source of satellite data, multitemporal acquisitions are neces-
sary. These map products have traditionally been generated
using optical satellite data. However, with improved access to
SAR satellites with greater polarisation diversity, and in
some cases polarimetric capabilities, the potential of this
technology for agriculture monitoring is evident. The use of
SAR for crop classification requires multitemporal
acquisitions of dual polarisations (at a minimum) to meet
acceptable overall classification accuracies. However, crop-
specific accuracies still require the integration of additional
data which has often come from optical sensors. Yet with
increased access to polarimetric satellites, results are
demonstrating that parameters generated from these complex
data, such as radar decompositions, can improve crop-
specific identification. In particular, fully and compact polar-
imetric data can assist in crop identification mid-season
which is important if production estimates are required before
end of season.

Repetition in results by many international researchers has
brought confidence to the idea of radar-assisted crop identifi-
cation. This has been put into practice by Agriculture and
Agri-Food Canada where RADARSAT-2 (VV, VH) data are
integrated with optical imagery to produce that country’s
annual inventory. Increasing the ratio of radar-to-optical
data in such an inventory is now limited primarily by access
to polarimetric swaths deemed to be operationally appropri-
ate for national mapping. Missions which include wide swath
compact polarimetry modes may provide a partial solution.
Further, researchers have repeatedly demonstrated that a
radar-only approach, with no optical data requirement, is
possible with the integration of multi-frequency SAR. The
primary impediment to implementing this approach is access
to multi-frequency data over swaths appropriate for large area
mapping. Without a single multi-frequency satellite,

coordinating access from multiple sensors (from multiple
agencies) is required. If this challenge can be met, monitoring
agencies would have the classification tools and data to
monitor national, regional and global agriculture production
exclusively with SAR sensors.

3.2.2 Crop Classification Using Multitemporal
L- and C-Band Airborne Polarimetric SAR

3.2.2.1 Introduction, Motivation and Literature
Review

Remote sensing has the potential to provide estimates of
inputs for land process models, for instance, the land cover
type as well as quantitative geophysical parameters such as
soil moisture and leaf area index (LAI). Such models can
provide information that is crucial for a number of
applications such as flood and drought prediction, crop irri-
gation scheduling and meteorology (Moran et al. 2004).
Also, land cover maps provide fundamental information for
many aspects of land use planning and policy development
(Bocco et al. 2001), as a prerequisite for monitoring and
modelling land use and environmental change (Shalaby and
Tateishi 2007) and as a basis for land use statistics at all
levels. The European Environmental Agency (EEA) has pro-
duced the CORINE Land Cover, and the requirement is a
classification accuracy of 85% for the classification perfor-
mance of the so-called level 3 classes, which are relatively
broad classes (EEA 2007). An important part of land cover is
the distribution of agricultural crops, and it is well-known
that synthetic aperture radar (SAR) is able to perform such
classification. The main advantage of SAR compared with
optical and infrared sensors is its all-weather mapping capa-
bility. The discrimination potential of SAR data is based on
the sensitivity of the radar backscatter to dielectric properties
of the objects and to object structure (i.e. the size, shape and
orientation distribution of the scatterers) (Skriver et al. 1999).
The possibility of identifying individual classes is based on
the fact that the dielectric properties and structure of different
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Fig. 3.4 Mid-season classification accuracies for Casselman (left) and Carman (right)
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crop types vary. A distinct variation is also seen for these
properties through the growing season due to the develop-
ment of crops (Skriver et al. 1999). Therefore, the discrimi-
nation capabilities may vary through the year, and it may also
be improved by performing multitemporal classification
(Schotten et al. 1995; Skriver 2012; Skriver et al. 2011).
The radar backscatter is also sensitive to other parameters,
e.g. dielectric properties of the soil, surface roughness, terrain
slope and vegetation canopy structure (e.g. row direction and
spacing and cover fraction) (Moran et al. 2004). These
properties are not necessarily specific for the individual clas-
ses and may therefore cause variability of the backscatter and
other polarimetric observables within the classes. Also,
differences in the development stages at a specific point in
time due to, for instance, differences in sowing time may
cause such variability (Skriver et al. 1999).

Polarimetric SAR measures all polarimetric information
for a target in the form of the scattering matrix. Therefore,
such data may be used to assess the capabilities of SAR for
crop classification in various configurations, including
single-polarisation, dual-polarisation and fully polarimetric
modes. Various methods have been used for such
assessments: statistical methods based on the Wishart distri-
bution (Lee et al. 1994; 2001; Skriver 2012; Skriver et al.
2011) or covariance matrix elements transformed into back-
scatter coefficients (Lee et al. 2001; McNairn et al. 2009b;
Hoekman and Vissers 2003; Skriver 2012; Skriver et al.
2011; Foody 1988; Freeman et al. 1994), methods based on
scattering mechanisms (Lee et al. 1999, 2004) and
knowledge-based methods (Ferrazzoli et al. 1999; Pierce
et al. 1994; Skriver 2001). In the latter approaches, it is
possible to include scattering model results and common
knowledge about the targets. Hence, such methods are nor-
mally relatively robust and easy to adjust to different growing
conditions caused by, for instance, different sowing time, soil
and weather conditions. The number of different classes that
can be determined is normally relatively small using this type
of method. The statistically based methods, on the other
hand, will normally provide a larger number of classes, but
the classifiers will then normally be specifically adjusted to
the data set at hand, and it is difficult to adapt the classifier to
other environmental conditions and/or geographical
locations.

3.2.2.2 Methodology
The basis for our analysis and processing is the multi-look
covariance matrix, which is formed from the coherent scat-
tering vector made up of the backscatter responses at the
linear polarisations, HH, VV and cross-polarisation. The
diagonal backscatter elements in the covariance matrix are
then normalised so they correspond to the γ0 backscatter
coefficient in order to reduce the influence of the incidence
angle.

All acquisitions have been co-registered by identifying
ground control points in the images. The covariance matrix
data, corresponding to the original one-look scattering matrix
data, have been averaged to reduce the speckle by a cosine-
squared weighted 9 by 9 filter. After averaging the equivalent
number of looks is estimated to be 9–11 from homogenous
areas in the images in the Foulum data set and 10 in the
AgriSAR06 data set.

Three different SAR modes are simulated using the same
data set, i.e. single-polarisation, dual-polarisation and
fully polarimetric data. For the polarimetric results, the full
covariance matrix data has been used. For the single- and
dual-polarisation modes, subsets of the covariance matrix
data have been used, e.g. for the single-polarisation backscat-
ter coefficients, γ0hh and γ0vv, the corresponding elements from
the diagonal of the covariance matrix have been used, and for
the dual-polarisation backscatter coefficients, pairs of these
elements have been used, as well as the cross-polarised
backscatter, γ0xp . For the single- and dual-pol modes, the

backscatter intensities have been used, and hence not the
complex scattering matrix elements, in order to simulate
satellite systems, like ENVISAT, RADARSAT, ALOS and
Sentinel-1, where such modes are used to optimise the spatial
and temporal coverage. Hence, the possibility of a coherent
combination of the HH and VV polarisations has not been
considered for this application.

For the single- and dual-polarisation data, the backscatter
coefficients have been used in the classification. Backscatter
coefficients follow the Gamma pdf for a multi-look SAR
image. When the number of looks is large, the Gamma pdf
can, however, be approximated by the Gaussian pdf. The
number of looks in our case is at least 10. Hence, the Gauss-
ian pdf is a valid approximation, and the multivariate Gauss-
ian pdf is used for both single- and dual-polarisation data.
The classification method used in all cases is the standard
Bayesian maximum likelihood (ML) classifier for multivari-
ate Gaussian statistics.

For the fully polarimetric cases, two methods are used: the
standard Bayesian maximum likelihood Wishart classifier
originally proposed by Lee et al. (1994) and the method
introduced by Hoekman and Vissers using a reversible trans-
form of the covariance matrix into backscatter intensities
(Hoekman and Vissers 2003). The complexWishart classifier
is based on the classical Bayesian approach to classification,
and the distance measure is derived based on the pdf of the
covariance (or coherency) matrix for polarimetric SAR data,
i.e. the complex Wishart pdf (Lee et al. 1994). Hoekman and
Vissers (2003) introduced a reversible transform of the
covariance matrix into backscatter intensities. The advantage
is that the fully polarimetric information can be described by
backscatter intensities alone. This description will, for
instance, better than the Wishart distribution, describe the
statistics of a collection of homogeneous areas for the same
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class but with some variability of the mean parameters due to,
e.g. slightly different development stages for crops.

The methodology for the assessment of the classification
accuracy that has been used is the following: one relatively
large and representative field (more than 500 pixels) has been
picked for each of the crop classes, and these areas have been
used as training areas for the classifiers. A large number of
test areas for the classes have been selected, and the classifi-
cation accuracy has been estimated using these areas. The
classification errors estimated are based on the number of
pixels in all these test areas, and hence no results are shown
using the same data set for training and for testing.

3.2.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for crop classification are summarised in Table 3.3
and further described in the Appendix.

The results of classifying the crops for different modes of
the SAR acquisitions and for the multitemporal
configurations are shown in Figs. 3.5 and 3.6. For each
frequency and test site, all single-polarisation and incoherent
dual-polarisation configurations have been assessed, as well
as the two polarimetric classification methods when
fully polarimetric data were available. In the two figures,
only the configuration with the best performance, i.e. the
lowest classification error, within these groups of

configurations is shown. For the Foulum data set, it is seen
in Fig. 3.5 that the polarimetric data always provide the best
classification result, especially at L-band, where there is a
relatively large improvement compared to the incoherent
dual-polarisation results. At C-band, the difference between
polarimetric results and the dual-polarisation results is
smaller. At both frequencies, the Hoekman and Vissers clas-
sifier performs best, and the classification error is down to
approximately 20%. Also at both frequencies, a clear
improvement is seen using the multitemporal acquisitions.

At the AgriSAR06 test site, polarimetric data were avail-
able only at L-band, and in this case, as can be seen from
Fig. 3.6, there is a clear advantage when only a few temporal
acquisitions are available, whereas the performance is worse
than the incoherent dual polarisation for more acquisitions.
The best classification result is about 11%.

3.2.2.4 Comparison with Single-/
Dual-Polarisation Data

As mentioned above, also single- and incoherent dual-
polarisation results are shown in Figs. 3.5 and 3.6. For both
test sites at C-band, it is seen that the best single polarisation
is VV and the best dual polarisation is VVXP, whereas at
L-band the best single polarisation is HH and the best dual
polarisation is HHXP.

Table 3.3 Test sites and corresponding radar and validation data selected for the generation of showcases on crop classification

Application/product Test site – radar data Reference data

Crop classification Foulum Crop maps

C- and L-band fully polarimetric multitemporal data

AgriSAR06

C-band dual pol., multitemporal

L-band fully pol., multitemporal
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Fig. 3.5 Classification errors for Foulum at C-band (left) and L-band
(right) for the best modes for the three cases, single polarisation (red),
dual polarisation (blue) and full polarimetry (green), as a function of the

multitemporal acquisition mode, where 4, 5, 6 and 7 correspond to
April, May, June and July, respectively
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For the Foulum test site, the smallest classification error for
the C-band results is 41% for VV and 20% for VVXP, and for
the L-band results, it is 43% forHHand28% forHHXP (Skriver
2012). For the AgriSAR06 test site, the results are at C-band
19% for VV and 10% for VVXP, and at L-band 15% for HH
and 3% for HHXP (Skriver et al. 2011). It is observed that the
differences in performance between the C- and the L-band
configurations are relatively small. For the Foulum test site,
the C-band performs better than L-band, whereas it is the other
way around for the AgriSAR06 test site. This probably has to do
with the different set of crop types present at the two test sites.

In all cases, there is a large improvement from the single-
polarisation to the dual-polarisation results. It is clearly seen
that the multitemporal acquisitions are necessary for these
configurations in order to obtain a reasonable performance.
Especially, the dual-polarisation modes including the cross-
polarisation perform well, and at C-band they provide com-
parable results with the fully polarimetric data.

3.2.2.5 Discussion on the Role of Polarimetry
on the Maturity of the Application
and Conclusions

From the presented results, it is clear that polarimetry has a
role in crop classification from SAR. Especially, for L-band
an improvement is seen compared to the single and incoher-
ent dual polarisations. At C-band, the polarimetric SAR still
performs best, but the improvement compared to the simpler
modes is small. The classification results for C- and L-band
are relatively similar, and there is no clear preference for one
or the other, except that L-band probably requires the polari-
metric modes to obtain a sufficient classification perfor-
mance, whereas simpler modes may be sufficient at C-band.

The application of using multitemporal SAR for crop clas-
sification is considered to be relatively mature. Multitemporal
acquisitions are considered to be the most important require-
ment for this application, whether polarimetric or simpler
modes are available or not. For the polarimetric modes, it
may be less critical if a lot of multitemporal acquisitions are
not available, whereas it is essential with multitemporal
acquisitions for the single- and dual-polarisation modes.

In conclusion, the performance of the multitemporal SAR
data is seen to be very close and even better for some of the
modes, compared with the requirements on, e.g. the CORINE
land cover of 85% classification accuracy on level 3 classes.
Hence, it will be possible with future polarimetric and/or
short revisit systems to obtain a sufficient classification per-
formance. This could, for instance, be possible with the
future Sentinel-1 satellites, where single- and dual-
polarisation acquisitions at C-band will be available with
short revisit times for large parts of the continents, or with
future L-band polarimetric missions, such as ALOS-2.

3.3 Soil Moisture Estimation Under
Vegetation Using SAR Polarimetry

3.3.1 Introduction, Motivation and Literature
Review

Several hydrological processes, like surface runoff, infiltra-
tion, plant water uptake and groundwater drainage, are
affected by the spatial and temporal variations of soil mois-
ture within the pedosphere (Bronstert et al. 2012; Krajewski
et al. 2006). These moisture changes are still very difficult to

0

10

20

30

40

50

60

70

80

109 123 131 136 144 158 164 172 186 193 207

C
la

ss
if

ic
at

io
n

 e
rr

or

C-VV
C-VVXP

0

10

20

30

40

50

60

70

80

109 123 131 136 144 158 164 172 186 193 207

C
la

ss
if

ic
at

io
n

 e
rr

or

L-HH
L-HHXP
L-Lee

Fig. 3.6 Classification errors for AgriSAR06 at C-band (left) and
L-band (right) for the best modes for the three cases, single polarisation
(red), dual polarisation (blue) and full polarimetry (green) (only

L-band), as a function of the multitemporal series, where the day number
corresponds to a series of acquisitions up to and including that day
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simulate by environmental/hydrological models due to the
multiple and multi-dimensional dependencies of this highly
varying soil parameter. Therefore they require a continuous
and long-term monitoring (Meehl et al. 2007).

Monitoring of soil moisture content reveals, for instance,
the retention capabilities of the soil to store the infiltrated
precipitation for a delayed and uncritical release in the dis-
charge system (Bronstert and Bardossy 1999). In this way
hazard precautions, like flood forecasting and dam manage-
ment, can be supported to identify critical catchment states
before flooding events (Minet et al. 2011). Besides flood
prevention in humid regions, also agricultural management
practices in semi-arid regions, like irrigation, benefit from the
incorporation of soil moisture information leading to crop
yield optimisation in terms of precision farming (Robinson
et al. 2008).

In practice, information about the soil moisture status is
mostly acquired by single point measurements (Robinson
et al. 2003), which might be combined to wireless sensor
networks in order to enlarge the monitoring to field scale
(Cardell-Oliver et al. 2005). In addition, soil moisture sensing
on this scale can be also approached by geophysical methods,
like ground-penetrating radar (GPR) (Huisman et al. 2003) or
ground albedo neutron sensing (GANS) with cosmic ray
probes (Zreda et al. 2008). As the spatial upscaling from
point or field measurements to large scales is highly
non-linear (Merz and Plate 1997), remote sensing extends
soil information retrieval from local point or field studies to
spatial investigations on sub-catchment or entire catchment
areas, including also very isolated regions (Western et al.
2002).

Since optical remote sensing of soil properties (Katra et al.
2006) relies on daylight and clear weather conditions,
RADAR-based methods turn out to be weather- and
illumination-independent supporting a continuous soil moni-
toring strategy. Therefore passive microwave sensors
(radiometers) (Jackson 1993) as well as active microwave
sensors (scatterometers (Wagner et al. 2007), synthetic aper-
ture radars (SAR) (Ulaby et al. 1982)) are used on airborne or
space-borne platforms.

Space-borne radiometers and scatterometers, like MIRAS
on SMOS (Kerr et al. 2001) and AMI on ERS, operate with
low spatial resolution in the order of kilometres and high
temporal resolution in the range of one acquisition every
second or third day (in mid-latitudes), which is favourable
for global monitoring purposes.

In contrary, SAR sensors, like PALSAR on ALOS
(Rosenqvist et al. 2007) or ASAR on ENVISAT, acquired
data in the order of decametres with a temporal resolution in
the range of one acquisition every first to second week
(in mid-latitudes), which fits to regional imaging purposes
(Wagner et al. 2008). In order to combine both spatial scales
for a spatially enhanced soil moisture retrieval on a global

scale, an active-passive microwave sensor will be launched
for the SMAP mission (Entekabi et al. 2010).

However, only SAR remote sensing enables a monitoring
of the soil and its variability down to the local scale due to its
imaging capabilities in high spatial resolution compared to
the other microwave sensors. The sensitivity of SAR for soil
characteristics is based on the fact that the transmitted elec-
tromagnetic (EM) wave interacts with two key parameters of
the soil system: soil moisture and soil roughness. SAR
sensors, used for soil moisture retrieval, acquire in different
wavelengths (ranging from X-band (λ ¼ 3 cm, TerraSAR-X
(Anguela et al. 2010)), C-band (λ ¼ 5 cm, ENVISAT-ASAR
(Löw et al. 2006)), L-band (λ ¼ 23 cm, ALOS (Koyama and
Schneider 2011)) to P-band (λ ¼ 80 cm, E-SAR (Jagdhuber
et al. 2012a)).

Moreover, SAR remote sensing has the capability to pen-
etrate through natural media, like vegetation layers, espe-
cially with increasing wavelength (Cloude et al. 2004).
Hence, also agricultural regions, which are most of the year
covered by vegetation, can be investigated for their soil
moisture conditions. This enables a continuous soil monitor-
ing along the entire plant growth cycle, if the increasing
scattering contribution from the vegetation is considered
(Hajnsek et al. 2009).

Concerning SAR remote sensing approaches, the first soil
moisture analyses were carried out on single-polarisation
intensities over bare soils leading to ill-posed inversion
problems, because the soil moisture and roughness influences
are enclosed in one acquired signal (Bernard et al. 1982).
With the emerging establishment of fully polarimetric SAR
sensors, the observation space has been enlarged allowing to
separate soil roughness from soil moisture influence for an
unambiguous inversion of both soil parameters over bare
soils (Hajnsek et al. 2003).

For bare soils, three different categories of EM scattering
models, which relate the natural soil conditions with the
characteristics of the scattered RADAR signature, can be
distinguished: empirical models, semi-empirical models and
theoretical models. As remote sensing relies on the under-
standing of electromagnetic (EM) scattering on ground, only
theoretical models can be considered as test site independent
and form the basis of the analyses. Among these models, the
integral equation method (IEM) is widely applied for EM
scattering of bare soils because of its broad range of applica-
bility in terms of soil roughness classes (Fung 1994).

So far the investigation of soil parameters, like soil mois-
ture, with polarimetric SAR remote sensing was constrained
on bare soil areas due to the lack of retrieval algorithms
including the influence of a vegetation cover (Hajnsek et al.
2003). The dielectric discontinuities in vegetation volumes,
which can be, for example, stems, branches, twigs and leaves,
scatter the waves in a complex manner (Ulaby and Wilson
1985).
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In order to incorporate the influence of vegetation cover,
different EM models have been developed to describe vege-
tation scattering (Lang and Sidhu 1983), whereby the level of
detail varies from a simple layer of uniformly shaped spheres
(Attema and Ulaby 1978) until sophisticated three-
dimensional models of the vegetation volume, including
cylinders, dipoles and discs with their respective orientation
distributions to simulate stems, branches and leaves (Karam
et al. 1992). Especially for the latter models, the amount of
required input parameters exceeds by far the potential observ-
able space of SAR remote sensing for direct inversion.

Unlike traditional retrieval approaches evaluating the total
backscattered signature, an innovative soil information
retrieval under vegetation cover should focus on the separa-
tion of the individual scattering contributions from the soil
and the vegetation in order to extract only the soil properties
for inversion. Polarimetric decompositions represent an
established technique for separation of elementary scattering
processes and have quite a history in polarimetric SAR
remote sensing. Originally, these decomposition methods
were designed for forested environments including scattering
interactions with the ground, with the tree trunk and the
ground as well as with the tree canopy. Recently, the descrip-
tion of the polarimetric vegetation volume component was
considerably extended by Freeman (Freeman 2007),
Neumann (Neumann et al. 2010) and Arii (Arii et al. 2010)
using shape parameters for the scattering components
(leaves, twigs, branches) and different orientation
distributions within the tree canopy to characterise the polar-
imetric volume scattering of various tree species in a more
detailed way. Besides the polarimetric decomposition models
for forests, several (multi-angular) polarimetric decomposi-
tion methods for the more complex scattering scenario of
agriculture, including a depolarising surface component due
to soil roughness or an oriented vegetation component due to
plant structure, are under development and provide the
methodical foundation for this application showcase
(Hajnsek et al. 2009; Jagdhuber et al. 2012b, 2013a).

3.3.2 Methodology

The retrieval of soil characteristics by polarimetric SAR
remote sensing is investigated for agricultural areas using
C-band wavelength (λ ¼ 5 cm) to assess a continuous soil
parameter estimation with a growing vegetation cover along
the phenological cycle. Due to polarimetric decomposition
techniques, the separation of vegetation from soil/ground
information should allow a continuous monitoring of soil
moisture under vegetation cover. A modular polarimetric
decomposition for retrieval of soil moisture is introduced to

provide a profound basis for representation of different natu-
ral scattering conditions.

The received SAR signal of almost any natural media is a
mixed response of different scattering processes occurring
within the resolution cell. Therefore polarimetric decomposi-
tion techniques have been developed and used to separate the
different scattering contributions. Equation (3.1) describes a
generic example of an incoherent decomposition using the
coherency matrix notation (Cloude 2009). A simple and
generic case of model-based decompositions considers a
non-penetrable surface superimposed by a volume of
particles. This can be modelled with three components
defined as surface TS, dihedral TD and volume TV scattering.
The first component in Eq. (3.1) represents direct backscatter
from a smooth surface (ks < 0.3), which can be expressed by
the SPM or Bragg scattering model (Yamaguchi et al. 2006):

TS ¼ f S

1 β�S 0

βS βSj j2 0

0 0 0

264
375 with

f S ¼
m2

S

2
Rh þ Rvj j2 and βS ¼ Rh � Rv

Rh þ Rv
ð3:1Þ

where the coefficients Rh and Rv are the horizontal and
vertical Bragg scattering coefficients and mS represents the
soil roughness influence on the intensity component fS. Both
Bragg scattering coefficients depend only on the dielectric
constant of the soil εS and the local incidence angle θl.

The dihedral scattering component can be modelled as a
double Fresnel reflection on smooth dielectric media leading
to the following rank-1 coherency matrix (Yamaguchi et al.
2006) and including the dihedral scattering intensity fD and
the dihedral scattering mechanism ratio αD:

TD ¼ f D

αDj j2 αD 0

α�D 1 0

0 0 0

264
375, with

f D ¼ m2
D

2
RshRth þ RsvRtve

iφD
�� ��2 and,

αD ¼ RshRth � RsvRtveiφD

RshRth þ RsvRtveiφD
ð3:2Þ

where the horizontal and vertical Fresnel coefficients of the
soil plane (Rsh, Rsv) and of the trunk plane (Rth, Rth) depend
on the soil and trunk dielectric constant (εS and εt) and the
respective incidence angle θs ¼ θl and θt ¼ π/2 � θl. The
phase φD incorporates differential propagation in the case of
an orientated vegetation layer, while mD represents the scat-
tering loss on the intensity component fD.
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The most challenging component with respect to EM
modelling is the vegetation volume. A widely used approach
deals with the vegetation volume as a cloud of equally shaped
particles with a certain orientation distribution. In one of the
simplest ways, the volume component is modelled as ran-
domly oriented cloud of dipoles. The initial vertical dipole
can be expressed with the following scattering matrix Svdi:

Svdi ¼
0 0

0 1

� �
: ð3:3Þ

After expansion to the coherency matrix, the matrix is
rotated around the LoS by an angle of 2ψ to account for the
orientation of the scattering particles:

Trot ¼ R2TvdiψRT
2ψ ¼

1 0 0

0 cos 2ψ sin 2ψ

0 � sin 2ψ cos 2ψ

2664
3775

1=2 �1=2 0

�1=2 1=2 0

0 0 0

2664
3775

1 0 0

0 cos 2ψ � sin 2ψ

0 sin 2ψ cos 2ψ

2664
3775: ð3:4Þ

In order to respect all the different orientations occurring
within vegetation, the rotated coherency matrix Trot is
integrated together with the specific probability density func-
tion pψ(ψ) of orientations assuming a uniform angular distri-
bution pψ(ψ) ¼ 1/(2π) and a distribution width
Δψ ¼ ψ2�ψ1 ¼ 2π in the case of a randomly oriented
vegetation volume (Yamaguchi et al. 2006):

TV ¼ f V

Z ψ2

ψ1

pψ ψð ÞTrotdψ

¼ f V

1=2 0 0

0 1=4 0

0 0 1=4

264
375: ð3:5Þ

In a first step, the modelled vegetation volume component
TV with its volume intensity fV is subtracted from the
measured polarimetric SAR data T to separate the volume
TV and the ground TG components (TS + TD):

Th i � f VTV ¼ TG ¼ TS þ TD: ð3:6Þ

However, if the volume modelling is imperfect, Eq. (3.6)
leads to biased or even non-physical results for the ground
component TG. To avoid this effect, a mathematical method
using the positive semi-definiteness of the Hermitian ground
component was proposed by Van Zyl et al. to correct the
volume intensity fVcorr (Van Zyl et al. 2008). With this
corrected volume intensity, the linear system of Eq. (3.2) is
solved for the single ground components (αD, βS, fS, fD) of
the three scattering contributions obeying the dominance
criterion of Freeman et al. for the ground components (Free-
man and Durden 1998).

3.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for crop classification are summarised in Table 3.4.
The Indian Head test site is further described in the
Appendix.

The presented polarimetric methodology was employed
on the fine quad-polarimetric RADARSAT-2 data sets of
Flevoland and Indian Head in order to decompose the SAR
data into their respective scattering components (surface,
dihedral, volume) and afterwards to invert the volumetric
soil moisture from the ground components (surface,
dihedral).

Figure 3.7 displays exemplarily the RGB composite of the
normalised decomposed scattering power components from
the three-component model-based decomposition introduced
in Sect. 3.3.2 for the two test sites and two different acquisi-
tion dates (Flevoland, in the beginning of the observation
cycle, 11th of June 2009, towards the end of the observation
cycle, 29th of August 2009; Indian Head, 4th of August and
4th of September 2009). For the Flevoland scenes, the water
bodies in blue colour and the urban areas predominantly in
red colour are clearly visible in both scenes due to their
temporal scattering stability. However, the agricultural areas
are mostly indicated by the rectangular “patch work”
structures across the centre of the scenes, which change
significantly between the two acquisitions. For the Indian
Head scenes, the agricultural fields show two different
patterns for each date (August, September) due to the pheno-
logical plant development along the growing cycle. While the
strongly vegetated fields exhibit a strong volume scattering,
the low vegetated (catch crops) or bare fields (after harvest)
indicate predominantly surface scattering.
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In June, after the start of the crop cycle (Fig. 3.7 left), the
fields appear in all three colours, indicating a mixture of
surface (bare soil), dihedral (stalk/leave-ground) and volume
(complex vegetation) scattering due to the different
phenologies of the different crop types, but also the different
sowing dates on different fields.

In August, within the final stage of the crop cycle (Fig. 3.7
right), a part of the agricultural fields (mostly the winter
crops) are already harvested and appear in blue colour
indicating predominantly surface scattering, while the other
part of the agricultural fields (summer crops, like corn) still
exhibit green colours, indicating complex volume scattering
before harvesting.

Figure 3.8 exhibits the trends of the three normalised
scattering power components (red, dihedral; green, volume;
blue, surface) for Flevoland and Indian Head test sites. The
general trend is similar for both test sites at Flevoland, where
volume is dominant most of all times with values around
0.6–0.7 peaking in July/August during the maturity stage of
the vegetation. The ground components always stay below
0.4–0.5 except for the April dates in Flevoland.

Moreover, dihedral scattering is mostly present within the
June dates in Flevoland, when the vegetation is active and
fresh for a distinct double bounce and almost vanishes after-
wards, while surface scattering dominates over dihedral scat-
tering for Flevoland in July and August 2009. For the Indian
Head test site, the time series in Fig. 3.8 reveals a clear
dominance of volume scattering (level ¼ 0.8 along all
August) due to a strong agricultural vegetation cover of
canola crops (vegetation height > 1.0 m) on the test field,
where some minor ground scattering occurs as single-bounce
surface and/or as double-bounce dihedral scattering
(level < 0.2). Hence, the dry moisture regime (mean soil
moisture level lower than 8vol.%) together with the thick
vegetation layer of canola will be a big challenge for soil
moisture inversion under vegetation at C-band.

In conclusion, the decomposition led to a physically
meaningful separation of the scattering contributions within
the C-band RADARSAT-2 scenes, which reflects the

agricultural scattering scenario reasonably well. After the
model-based polarimetric decomposition into the single scat-
tering components, the surface and dihedral components
were inverted for soil moisture retrieval under vegetation
cover as described in Sect. 3.3.2. Only for Flevoland very
low inverted moisture ranges (soil moisture <5.6vol.%) com-
pared to the in situ measured moistures (~30–40vol.%) are
not representative and are filtered out in the end of the
inversion process.

Figure 3.9 presents exemplarily the combination of
inverted soil moisture values from both ground components
(surface, dihedral) for the Flevoland (11th of June 2009 and
29th of August 2009) and Indian Head (4th of August and 4th
of September 2009) test sites. The inversion rates for the
whole Flevoland scene are 33.12% for the June date and
32.70% for the August date, while the inversion rates for
both test sites and all scenes are displayed in Fig. 3.10. For
Flevoland the inversion rates vary between 22% and 33%
along time, whereby the minimum is reached in July, when
the agricultural vegetation is in its maturity stage. For Indian
Head the inversion rate varies between 11% and 25% grow-
ing slightly higher in the end of the vegetation growth period.
Hence, in all cases, the inversion exhibits gaps of
non-invertible points (white areas in Fig. 3.9). The inversion
mostly failed within the agricultural regions due to the variety
of scattering scenarios (typical field sizes at Flevoland:
10–15 ha), which are difficult to describe in detail with one
type of model-based polarimetric decompositions assuming
just a randomly oriented vegetation volume.

However, distinct field heterogeneities are visible within
the soil moisture results, which fit the expectations of a highly
varying soil moisture content on the agricultural fields. For
Indian Head, a higher inversion rate can be stated for the
scene acquired in September due to a diminished vegetation
cover caused by harvesting activities and senescence.

In general, the inversion result at Flevoland for the 11th of
June 2009 reveals a higher soil moisture level on the dihedral
dominant fields than on the fields with surface scattering. In
addition, the dominance of surface scattering for the 29th of

Table 3.4 Test sites and corresponding radar and validation data selected for the generation of showcases on soil moisture estimation under
vegetation

Application/product Test site – radar data Reference data

Soil moisture estimation
under vegetation

Flevoland, the Netherlands Two continuously recording soil moisture stations (volumetric soil moisture
content, hourly sampling from 26/05-06/10/2009)RADARSAT-2, C-band – fine quad-

polarimetric SLC data sets

Time series from April 2009 to
August 2009

Indian Head, Canada One continuously recording soil moisture station (volumetric soil moisture
content, hourly sampling from 17/07-13/09/2009)RADARSAT-2, C-band – fine quad-

polarimetric SLC data sets

Time series from July 2009 to
September 2009
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August 2009 seems to result in a lower moisture level on
most of the fields. In contrast to Flevoland, the Indian Head
test site exhibits generally a lower soil moisture level, but
also states relatively a higher moisture regime for fields with
dihedral compared to surface scattering.

Figure 3.11 presents the validation of the inverted soil
moisture from the ground scattering components (surface,
dihedral) with the in situ measurements of the 2 test sites
and all continuously recording moisture stations for 11 differ-
ent dates from 11th of June until the 29th of August 2009 at

Fig. 3.7 RGB composite of normalised decomposed scattering power
components from model-based polarimetric decomposition for the
beginning of the observation cycle at 11th of June 2009 (Top left) and
the end of the observation cycle at 29th of August 2009 (Top right) at the
Flevoland test site and for 4th of August in the main growth period

(Bottom left) and 4th of September 2009 in the end of the main growth
period (Bottom right) at the Indian Head test site (red, even bounce/
dihedral scatterers; green, volume scatterers; blue, odd bounce/surface
scatterers)
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Flevoland and for 9 dates from 4th of August until 4th of
September 2009 at Indian Head. A clear underestimation has
to be stated at Flevoland for all dates of the observation cycle.
In contrary, a distinct overestimation is reported by the com-
parison with in situ measurements at Indian Head. The
estimated soil moisture values for the two measurement
locations at Flevoland are underestimating the measured
soil moisture values by a RMSE of 13.32vol.% (r2 ¼ 0.12),
whereas the comparison with the field measurements for
Indian Head overestimates with a RMSE of 22.84vol.%
(r2 ¼ 0.02) including all analysed dates.

In the past, the soil moisture retrieval method was devel-
oped and implemented for L-band data (see Jagdhuber et al.
2012b, 2013a, b), and with the transfer to the C-band scatter-
ing scenario, the algorithm needs further adaptions especially
concerning the ground scattering models. First analyses on
the surface component inversion blame the low moisture
values at Flevoland on the low T12 correlation term, which

leads to small βS values and the underestimation of the soil
moisture level.

In addition, the measured soil moisture of the two in situ
stations at Flevoland ranges between 24vol% and 42vol%.
This represents a significantly high soil moisture level, which
is an additional challenge for the inversion algorithm,
because the sensitivity of the inversion models decreases
with increasing soil moisture level (Jagdhuber 2012).

For Indian Head, the distinct overestimation of the soil
moisture might be traced back to a very challenging scatter-
ing scenario of a large canola vegetation cover (>100 cm) and
a very dry soil underneath, which might be hardly detectable
at C-band (wavelength: 5 cm).

Moreover, it has to be stated that the validation could only
be conducted over time (continuously recording moisture
stations) and not over space (no soil moisture network or
spatial sampling), since only three measurement locations
were available for Flevoland and Indian Head in 2009.

Fig. 3.8 Normalised decomposed scattering power components (red,
dihedral; green, volume; blue, surface) from the model-based polarimet-
ric decomposition for the Flevoland test sites (site 1, Plus sign; site
2, Star sign from the beginning of the observation cycle at 11th of June

2009 until the end of the observation cycle at 29th of August 2009) and
for the Indian Head test site (site 3, Plus sign) (R, even bounce/dihedral
scatterers; G, volume scatterers; B, odd bounce/surface scatterers)
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Fig. 3.9 Inverted soil moisture [vol.%] from both ground scattering
components (surface, dihedral) for the Flevoland test site (at the begin-
ning of the observation cycle at 11th of June 2009 (Top left) and the end
of the observation cycle at 29th of August 2009 (Top right)) and for the

Indian Head test site (on the 4th of August (Bottom left) and the 4th of
September (Bottom right) 2009); non-invertible areas are masked white;
image smooth: 4 � 4
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3.3.4 Comparison with Single-/Dual-Pol Data

The developed algorithm is directly and solely based on the
fully polarimetric observation space and therefore directly
affected by the reduction to single- or dual-polarimetric
data. This means that only in the case of fully polarimetric
data, the vegetation- and/or soil roughness-induced
depolarisation can be assessed, quantified and removed in
the best way. A decomposition, separating the vegetation

volume and the soil ground scattering components, is
not/only partly feasible with single-/dual-polarimetric
approaches.

Hence, there is a trade-off between decomposing fully
polarimetric data and then solving a lower parameterised
inversion problem or using single-/dual-polarimetric data
and modelling the whole backscatter signal by solving an
ambiguous, highly parameterised inversion problem.

Fig. 3.10 Inversion rate [%] for soil moisture retrieval of both ground
scattering components (surface, dihedral) at Flevoland (left) from the
beginning of the observation cycle at 11th of June 2009 until the end of

the observation cycle at 29th of August 2009 and at Indian Head (right)
from 21st of July until 4th of September 2009

Fig. 3.11 Validation of inverted soil moisture [vol.%] from ground
scattering components (surface, dihedral) with in situ measurements of
soil moisture at the two continuously recording moisture stations (site
1, Plus sign; site 2, Star sign) at Flevoland (left) for 11 different dates

from 11th of June until the 29th of August 2009 (colours) and at Indian
head (right) for 12 dates from 4th of August until 4th of September
2009; validation box: 7 � 7 pixels
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Fig. 3.12 Multi-angular polarimetric decomposition for soil moisture
retrieval under vegetation cover at L-band applied to E-SAR data of the
OPAQUE 2008 campaign: (Top) Local incidence angle and soil mois-
ture inversion results for a single-, bi- and tri-angular model-based
decomposition and inversion are depicted. The inversion rate constantly

increases, when moving to a multi-angular decomposition and inver-
sion. (Bottom) Validation of the SAR-based moisture estimates with in
situ measurements from different crop types for each single measure-
ment location (left) and for the mean of field values (right) (Jagdhuber
et al. 2013a)
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3.3.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusion

Polarimetry and the acquisition of fully polarimetric SAR
data are essential for the retrieval of soil moisture under
vegetation. Only the polarimetric observation space with its

capability of polarimetric decompositions provides and
reveals the different properties (dielectric content, object
geometry) of the scatterers on ground in the most complete
way compared to backscatter intensity analyses or interfero-
metric techniques. Therefore SAR polarimetry plays an
essential role in this application.

Fig. 3.13 Hybrid polarimetric decomposition for soil moisture retrieval
under vegetation cover at L-band applied to E-SAR data of the AgriSAR
2006 campaign: (Top) Land use and soil moisture inversion results for a
time series covering the entire vegetation cycle (April–July 2006) are
depicted. Urban and forested areas are masked grey. (Bottom)

Validation of the SAR-based moisture estimates with in situ
measurements from different crop types for each single measurement
locations (left) and for the mean of field values (right). Symbology:
Diamond, 5th of July; Stars, 7th of June; Plus, 19th of April) (Jagdhuber
et al. 2013b, 2014)
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In the last years, the application of soil moisture retrieval
under vegetation advanced to a distinct level of maturity by
using longer wavelength SAR (L-band) (Jagdhuber et al.
2012b, 2013a, b). Compared to C-band, L-band provides a
deeper penetration into the vegetation canopy together with a
convenient signal-to-noise ratio (SNR) for reliable polarimet-
ric signal analyses (Jagdhuber 2012). Figures 3.12 and 3.13
show exemplarily two novel and innovative types of polari-
metric decompositions for soil moisture inversion under veg-
etation at longer wavelength (L-band): a multi-angular,
model-based decomposition and a hybrid (combined
model-/eigen-based) decomposition. The multi-angular
decomposition in Fig. 3.12 leads to the increase in inversion
rate from 40% to 71%, when moving from a single-angular to
a tri-angular model-based decomposition, which also reflects
in the quality of the inversion with an RMSE of 5.85vol.% in
contrast to the C-band results (in Fig. 3.11) (Jagdhuber et al.
2013a). In comparison to all presented inversion approaches,
Fig. 3.12 reveals the best inversion and validation results of
the novel hybrid decomposition technique using a model-
based decomposition for the volume removal and an eigen-
based decomposition to retrieve the single ground scattering
components for soil moisture inversion under vegetation
cover for an entire vegetation growth period sensed during
the AgriSAR 2006 campaign (Jagdhuber et al. 2013b). The
inversion rate is always higher than 95% including the entire
vegetation cycle. Moreover, the RMSE for all acquisition
dates (April–July 2006) lies in the favourable range of
4,6vol.% (mean of field values) to 6.5vol.% (single scattering
locations) for ecosystem applications.

Furthermore, first attempts were also made for retrieving
soil moisture under boreal forest using P-band in order to
enlarge the moisture retrieval to forested environments
(Jagdhuber et al. 2012a). In addition, also X-band fully
polarimetric data of TerraSAR-X are currently investigated
for soil moisture retrieval on bare and sparsely vegetated soils
for shorter wavelength SAR (Jagdhuber et al. 2013c, d). In
this way, the fully polarimetric soil moisture estimation using
decomposition techniques is approached covering the fre-
quency range from X- to P-band considering the
wavelength-dependent sensitivity for vegetation cover and
the soil below.

3.4 Crop Phenology Estimation Using SAR
Polarimetry

3.4.1 Introduction, Motivation and Literature
Review

All agricultural crops present a continuous development,
from sowing or transplanting to harvest, in which they grow
and evolve in accordance with their biophysical

characteristics and the farming practices applied to them.
Phenology denotes such a succession of stages during the
cultivation cycle and is commonly expressed using numerical
scales (Meier 2001).

Tracking phenology of agricultural fields by remote sens-
ing is useful for farmers with extensive fields because it
provides key information for planning and triggering cultiva-
tion practices, so the main application of this EO product is
precision farming. These cultivation practices (e.g. irrigation,
fertilisation, effective germination counting, harvest, etc.)
require timely inputs about the status of the plants and,
specifically, about their condition or situation along the
expected cultivation cycle.

Besides precision farming, timely information of phenol-
ogy can contribute to agencies and institutions involved in
market predictions, insurance policies, subsidies claims, etc.
since such information complements their own data sources
and provides a temporal schedule for the crop production and
yield calendar.

Most of the applications require phenology information at
parcel (field) level, but in some cases it may be necessary to
provide values at pixel (sub-parcel) level, especially when
dealing with detection of heterogeneities produced by culti-
vation problems (e.g. water salinity used of irrigation) and
plant diseases (e.g. pests and plagues). Unfortunately phenol-
ogy monitoring by satellite remote sensing has not attracted
much attention in the past due to both the lack of time series
of images and the cost of the ground campaigns. Neverthe-
less, this situation has changed in recent times, thanks to the
launch of satellites with shorter revisit times (e.g. 11 days for
TerraSAR-X) and reconfigurable acquisitions (different
beams can be operated for more frequent observation of a
particular area). Importantly for us these are also available in
multiple polarisation channels, which prompted this research
into phenology retrieval using polarimetric imaging radar
(PolSAR).

Algorithms for phenology monitoring have to be devised
individually for each crop type, based on the expected
response of each crop to the sensor at its different stages,
which can be extracted from the data themselves (training
sets) or from previous experiments, models and simulations.
In addition, approaches based on the availability of time series
of images can improve importantly the performance of these
algorithms, since phenology is intrinsically related to time.

The starting point of this application is the knowledge of
which crop type or plant species is cultivated at the monitored
fields, which is provided by the users or can be obtained from
a crop type map. Then, the general objective of this product
consists in estimating the current phenological stage of the
plants in the parcel by exploiting a single PolSAR
acquisition.

The topic of vegetation phenology monitoring by means
of remote sensing has been mostly addressed in the past by
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analysing temporal variations of vegetation indices acquired
by optical sensors. These vegetation indices are formed by
combining different spectral bands which exhibit different
sensitivities to biochemical plant constituents and canopy
biophysical parameters. These indices are then used as a
proxy for monitoring the plant growth stage by means of
empirical relationships with structural parameters. Among
all of them, the most important one is LAI (leaf area index)
which plays a key role in the design of crop models for crop
condition assessment and final yield prediction (Bach and
Mauser 2003).

In addition to different airborne sensors operating world-
wide (CASI, ROSIS, DAIS-7915), there are several operative
satellite missions which have been providing multispectral
data for large-scale Earth dynamics studies. Some of these
instruments are the MODerate-resolution Imaging Spectrora-
diometer (MODIS) by NASA, the Advanced Very High
Resolution Radiometer (AVHRR) by NOAA and the VEG-
ETATION sensor on board SPOT satellite by CNES. In
general, the main purpose of all these projects has been
primarily focused on crop yield prediction and crop
mapping/classification, being these tasks directly related to
the estimation of phenology (Nellis et al. 2009).

Early studies by Badhwar and Henderson in 1981
(Badhwar and Henderson 1981) made use of Landsat Multi-
spectral Scanners (MSS) in order to design a crop model able
to determine development stage of corn and soybean. Further
improvement was proposed by Tilton and Hollinger in 1982
(Tilton and Hollinger 1982) when they proposed an algo-
rithm to predict the development stages early in the growing
season by means of a principal component analysis of
Landsat images. In 1990, Lloyd exploited the approximately
linear relationship between solar energy absorption of plants
and NDVI measurements acquired by NOAA-AVHRR in
order to describe phenological events (Lloyd 1990). Like-
wise, in 1994 Reed et al. (1994) analysed time series of
NOAA-AVHRR acquisitions as well, and they found a high
correlation between NDVI temporal trends and phenological
variations in case of spring wheat at a continental scale.

The work by Tucker in 1979 (Tucker 1979) is considered
as one of the first contributions that proposed the systematic
use of NDVI for characterising vegetation. Since then, NDVI
has been the most widely used spectral index for vegetation
monitoring. It combines the reflectance values of plants in red
(low reflectance) and near-infrared (high reflectance) bands.
In general, temporal variations of NDVI exhibit a high corre-
lation with the main growth stages of plants, i.e. vegetative,
reproductive, maturity and senescence stages.

The combination of other spectral bands has led to the
development of refined optical indices that could yield dif-
ferent results depending upon the type and conditions of
vegetation. Studies conducted in (Haboudane et al. 2004)
demonstrated that LAI values for soybean, corn and wheat

can be consistently estimated from vegetation indices at
different phenological stages.

Further improvements have been proposed, such as the
enhanced vegetation index (EVI) which was designed in
order to increase the sensitivity to vegetation changes by
considering the canopy background contributions as well as
the atmosphere influences (Huete et al. 2006).

Contrary to the valuable and long experience acquired in
hyperspectral systems, the use of active microwave remote
sensing for agriculture monitoring activities is a relatively
new topic (Lopez-Sanchez and Ballester-Berman 2009), also
due to the scarcity of well-established and long-term research
programmes developing both air- and space-borne missions
capable of providing the required radar data sets. Fortunately,
this situation has entirely changed in recent years after the
initiation of a large number of radar remote sensing
campaigns promoted by different aerospace agencies and
institutions around the world such as ESA, CSA, NASA,
DLR and JAXA.

After some pioneer works on the potential of radar for
characterising natural targets (see, e.g. Ulaby et al. 1987), the
interest on the use of active microwave sensors was greatly
stimulated during the 1990s (Henderson and Lewis 1998) as
a consequence of the launch of three satellites operating at
C-band, i.e. ERS, ENVISAT-ASAR and RADARSAT-1.

Among other applications, vegetation phenology monitor-
ing has been also tackled, but the literature on this topic is still
very scarce. First contributions demonstrating the relation-
ship between radar backscatter and growth stages of rice were
presented by Le Toan et al. (1989), Kurosu et al. (1995) and
Le Toan et al. (1997) in 1989, 1995 and 1997, respectively.
Other follow-up works to this topic were also based on the
analysis of incoherent radar measurements and can be found
in (Inoue et al. 2002; Chen and McNairn 2006; Koay et al.
2007; Bouvet et al. 2009). These works have shown the
potential of C-band HH/VV ratio for rice field discrimination
and that a clear intensity signature appears as a consequence
of phenological development of rice plants. More recently in
(Lopez-Sanchez et al. 2012a), an algorithm to estimate the
phenological stages throughout the whole growing season
was designed on the basis of a coherent approach. However,
the phenology retrieval issue has not been explicitly studied
for other crops in the literature. Indeed, the only clear exam-
ple we have found on this topic is the work by Wegmüller
and Werner in 1997 (Wegmüller and Werner 1997) where
they described the sensitivity of interferometric coherence to
the fraction of vegetation cover and the potential for tracking
phenological events for corn, sugar beets, potatoes and
rapeseed.

Alternatively, the interest has been focused on estimating
parameters related to crop growth, such as biomass and LAI
(which in turn are intrinsically related to each other), as well
as crop condition and type assessment. Early contributions by
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Brown et al. (1992) and Bouman and Hoekman (1993) made
use of different frequency bands for separating crop types.
Also the estimation of biomass from olive groves, sunflower,
corn, sorghum, rape, wheat and alfalfa was studied in
(Ferrazzoli et al. 1997). Estimation of LAI with saturation
effect at 2–3 m2/m2 has been also reported in (Ferrazzoli et al.
1992) by means of radar backscatter at C-band. The use of
time series of backscattering coefficients, together with elec-
tromagnetic models and neural networks, for such a purpose
has been also addressed in the literature (Del Frate et al.
2004). Backscattering coefficients at different polarimetric
channels were also correlated with phenology and cultivation
practices (e.g. irrigation) for several crop types in (Moran
et al. 2012).

As an alternative way to retrieve information on the phe-
nology of crops, other works have been focused on crop
height estimation, given that plant height could be used as a
proxy for phenology at least for certain growth stages (mainly
during the vegetative phase). The applied retrieval strategy
has evolved from the design of empirical relationship
between coherence and height as shown in (Engdahl and
Borgeaud 1998; Engdahl et al. 2001) for sugar beet, potato
and winter wheat to more elaborated and robust approaches
consisting of electromagnetic modelling of PolInSAR
observables (Treuhaft et al. 1996; Treuhaft and Siqueira
2000; Cloude and Papathanassiou 2003) which have yielded
successful results in crops such as maize and rice in labora-
tory conditions (Ballester-Berman et al. 2005) and maize and
winter rape in the framework of an airborne campaign
(Lopez-Sanchez et al. 2012b).

In summary, it can be concluded that the topic of crop
phenology is an incipient research field which recently has
been stimulated by the potential positive socio-economic
impact that remote sensing tools offer in terms of monitoring
and management tasks on crop fields at large scale.

3.4.2 Methodology

As amatter of fact, the problem of identifying the phenological
stage of an agricultural crop can be regarded as a classification
problem, where each stage corresponds to a class, and hence
can be approached in a similar way to crop type mapping. This
application is better suited to algorithms based on hierarchical
trees or simple decision planes, since they can be tailored to
match specifically the different features of the plants that
change or appear as they develop. This type of rule-based
algorithms facilitates the physical interpretation of the phenol-
ogy retrieval procedure, since the criteria are based on scatter-
ing mechanisms (e.g. surface, dihedral, volume) and properties
(e.g. extinction, depolarisation, etc.) in correspondence to the
crop structure and features at each stage and in contrast with
other algorithms based on the full covariance statistics

(e.g. Wishart classifier). Hierarchical tree algorithms have
been widely used for classification purposes in the literature
and specifically for crop type mapping with PolSAR data, so
they can be considered as mature since they provide consistent
accuracies above 85% in crop type mapping. Therefore, hier-
archical tree algorithms will be implemented and tested for this
product.

The starting point is the multi-look processing or filtering
of the available PolSAR images, providing the covariance or
coherency matrix for each multi-looked pixel. A sliding
boxcar filter has been employed since the monitored parcels
are wide enough and homogeneous for applying such a
filtering type. Then, all images have been geocoded. If all
images were acquired with the same beam and pass, a
coregistration of the whole set to a common master image
could be used instead of geocoding. Once geocoded, all
available PolSAR images are studied for each crop type by
restricting the region of interest (ROI) to the interior of all
fields of each crop. In all cases, an analysis of a large number
of polarimetric observables is carried out in order to extract
the most meaningful set for the crop under study. The avail-
able observables are backscatter powers and correlations
(linear, Pauli and circular basis and for compact polarimetry
as well), backscattering ratios for different channels and for
various polarisation bases, eigenvector/eigenvalue decompo-
sition parameters, compact polarimetry decomposition
parameters and the Freeman-Durden and Touzi decomposi-
tion outputs.

This analysis is based on the representation of the
observables as a function of phenology, so the reference
data recorded at each acquisition date are used to define the
x-axis of their representation. For each observable, the mean
and standard deviation within the parcel at every radar acqui-
sition are obtained and plotted.

From the analysis of the evolution of all observables for
each crop type, a reduced set of them will be selected for the
retrieval algorithm by identifying the ones that define with
more distinction particular phenological stages. Specifically,
those with wider dynamic ranges and less presence of
ambiguities will be chosen. Moreover, observables with
easy physical interpretations will be preferred to those with
less clear explanations in terms of scattering physics. With
the selected set of observables, a hierarchical tree is defined
by setting manually thresholds based on the previous
analysis.

An important question to address for the definition of the
final product concerns the required spatial resolution since
phenology can be provided either at pixel level (one value per
multi-looked pixel) or at parcel level (one value per parcel).
In the first case, we could detect areas with different degrees
of development within the same parcel, hence being also
useful for localised farming practices such as irrigation and
fertilisation. In the second case, we would be interested in the
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global development of the crop field, which would be con-
sidered as homogeneous.

According to the available reference data (see Appendix),
we know the phenology at several ground points of each
field, but (1) they are mostly coincident for the same parcel;
and (2) available values are maximum and minimum values
of phenological stages, instead of single values. Therefore,
we have considered in the analysis that phenological data at
each field and each date are the same for the whole field,
being the mean the value adopted.

The inversion algorithm however has been applied at both
pixel and parcel levels. This option increases the usefulness
of the product for potential end-users since retrieved infor-
mation is provided at different scales, i.e. at pixel level any
possible heterogeneity within a field can be detected and, in
addition, at parcel level an overall conclusion on the status of
the field is obtained. For the estimation at parcel level, it will
be computed as the mode of the estimates within the parcel in
accordance with the available reference data.

3.4.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for crop phenology estimation are summarised in
Table 3.5 and further described in the Appendix.

3.4.3.1 Analysis
First we describe and justify the evolution as a function of
phenology of different parameters. To this end, all parameters
presenting similar evolutions are grouped. In general, from
the five crop types analysed (barley, oat, wheat, field peas and
canola), we have found only three main signatures, since all
three cereals (barley, oat and wheat) behave similarly.

Although in principle we expected clear differences in the
radar responses as a function of incidence angle (there are
images acquired with angles from 22� to 39�), such
differences are only evident in some parameters and espe-
cially for certain crop conditions (e.g. during the vegetative
phase in cereals, since ground dominates the radar response).
Consequently, a joint analysis of all angles has been carried
out. In some extreme situations, like two images acquired on
consecutive days with 22� and 39�, a discontinuity is
expected, so this will be commented when necessary.

Finally, and according to the discussion in the previous
sections, we have computed the evolutions of all parameters
at pixel level after a 9 � 9 multi-look. The plots of the

evolutions show the average and the standard deviation
computed over the whole field.

In this report, we will focus our analysis on the results on
cereals (which benefit most strongly from polarimetry), and
some additional short comments will be given on canola and
pea fields. Only observables with some trends or sensitivity
to phenology will be commented for each crop type.

Sample results are shown in Fig. 3.14.

3.4.3.1.1 Cereals
Parameters with high sensitivity:

• Linear cross-polar backscatter (Shv) presents an increase at
both the early stages (6–10 dB from stages 10 to 25–30)
and the late ones (4–5 dB from stage 75)*, being quite
constant in the middle. Similar parameters are Shh – Svv, Srr
and Sll backscatter and Pv of Freeman decomposition.
*Note that the increase in late stages is not present for
oat (but at one single acquisition at 22�).

• HHVV correlation decreases clearly during the vegetative
phase (stages 10–50) and then remains around 0.4 with
important differences between acquisitions. Similar
parameters:
– Average alpha increases from 0� to 45� only during the

vegetative phase.
– Srl/Srr and Slr/Sll ratios show a decrease of 10 dB during

the vegetative phase.
– Correlations RRRL and LLRL behave similarly, espe-

cially for wheat.
• Entropy shows a sudden increase from 0.2 at stage 10 to

0.7–0.8 at stages 20–30, and then it remains around 0.8 all
the time.

• Dominant alpha (α1) increases monotonically during the
whole cycle, but it is slightly saturated after the vegetative
phase (see Fig. 1.1).

• τ of Touzi decomposition is always close to zero, so the
corresponding dominant alpha is like α1 from the conven-
tional eigen-analysis.

3.4.3.1.2 Canola
The most remarkable result in this case is that the cross-polar
backscatter follows a clear monotonic increasing trend for the
whole growth period. This enables the phenology estimation
in a straightforward way by using one single channel,
HV. Indeed, coherent polarimetry does not contribute much
to this crop type.

Table 3.5 Test sites and corresponding radar and validation data selected for the generation of showcases on crop phenology estimation under
vegetation

Application/product Test site – radar data Reference data

Crop phenology
estimation

Indian Head Intensive campaign of
AgriSAR200957 quad-pol RADARSAT-2 images, from which 20 are used in this

showcase
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3.4.3.1.3 Field Pea
In general we found that many observables here are symmet-
rical with respect to stages 20–25, hence making it difficult to
break the ambiguity between early and late stages without
any auxiliary information (e.g. time coordinate). Plants are
always very short, so there is not much development or clear
changes in terms of structure.

3.4.3.2 Retrieval Algorithms
In the following, details on the retrieval algorithm for cereals
are given. After a close inspection of Fig. 3.14, a feasible
algorithm could be designed to distinguish four different
phenological intervals, i.e. early vegetative (stages 0–19),
advanced vegetative (stages 20–39 or 20–44), late vegetative,
reproductive and early maturation (stages from 40 or 45 to
79) and, finally, maturation (stages 80+).

The physical description of each interval is the following:

1. Surface scattering dominates the radar echo: very low
entropy, alpha and alpha1 close to zero, very low Shv
and high correlation between Shh and Svv.

2. Vegetation starts to be present in the radar response, hence
increasing entropy. Dominant alpha (α1) is low (less than
20�), but alpha has already reached 40�. Backscatter
power will remain quite constant at all channels during
this stage and the next one.

3. This corresponds to a moment of fast development in
terms of phenology (buds, flowers, etc.), but not much
change in terms of structure and, thus, radar response at
least at C-band. Backscatter powers remain constant and
both alpha and alpha1 too.

Fig. 3.14 Evolution of HV (t33), HH�VV (t22) and dominant alpha (α1) as a function of phenology for barley (top row), oat (middle row) and wheat
(bottom row)
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4. Finally, backscatter power increases at Shv and Shh – Svv
channels as a result of an increase of the randomness of the
structure of the plants (but for oat, which remains as in
previous stages since its morphology does not change).

A basic hierarchical tree algorithm can be defined in terms
of just two parameters: dominant alpha angle (α1) and back-
scatter power at Shv or Shh – Svv (t33 or t22 entries of the
coherency matrix). The proposed algorithm is depicted in
Fig. 3.15.

3.4.3.3 Results and Validation
The results obtained by applying the algorithm proposed in
the previous section are analysed here for each crop type
separately. As mentioned above, we will concentrate in
cereals where the benefits of polarimetry are well evident.
A figure showing the output of the retrieval algorithm applied
at pixel level for wheat fields and for the 20 images will be
presented. The statistics of the retrieved values and their
comparison against the reference data will be also shown in
form of a table. Results on oat and barley are just summarised
in the text.

3.4.3.3.1 Wheat
Figure 3.16 shows the retrieved results for wheat. We can
appreciate how the most frequent phenology value at each
data is in perfect agreement with the reference data at all dates
but for one image acquired on 2nd of July (with 22� inci-
dence). This acquisition corresponds to an extreme incidence
angle, so the proposed algorithm (common for all incidences)
is more likely to fail. Nevertheless, the first images provide a
100% of pixels with the right value. In later acquisitions, the
transitions between successive stages are, in general, quite
smooth in terms of the amount of pixels estimated to be at
each stage around the transitions.

For some images there is a non-negligible amount of
pixels (more than 25%) assigned to wrong stages. These
cases correspond to either dates of transition between succes-
sive stages or cases where the particular incidence angle
affects more clearly the radar response. Anyway, the overall
result demonstrates that the proposed algorithm is quite reli-
able despite its simplicity and it provides right estimates for
19 of the 20 images.

3.4.3.3.2 Oat
Results for oat (not shown here) are not as good as for wheat
after the early vegetative phase. In this case, the radar
response does not change significantly from the sixth acqui-
sition date onwards. Consequently, it is virtually impossible
to distinguish the two last intervals, from stage 45 to the end
of the season, and also separating the advance vegetative
(interval 2) from the later stages. With the proposed
approach, the most frequent value of retrieved phenology
from the sixth to the last image corresponds to interval
3 but in five of the images, hence demonstrating the lack of
sensitivity for this crop type. The overall validation provides
13 right estimates at parcel scale from the 20 cases.

Attending at the physical characteristics of oat, the vege-
tation volume, it is less dense and tall than other cereals
(e.g. wheat and barley), so the radar response does not exhibit
clear variations after the end of the vegetative phase, and,
moreover, the ground contribution is more present than for
other cereals.

3.4.3.3.3 Barley
The overall performance of the proposed algorithm for barley
(tables not shown here) is quite similar to that of wheat, so the
same comments apply. In this case the algorithm provides
right estimates in all 20 images.

3.4.4 Comparison with Single-/
Dual-Polarisation Data

The analysis of the evolutions of radar observables as a
function of phenology suggests that the dimensionality of
the polarimetric space influences the number of different
stages that could be identified for each crop type. As in the
previous lines, the following analysis is focused on cereals
since in this case polarimetry does play a substantial role for
monitoring purposes.

For single polarisation, HH and VV exhibit low sensitivity
to phenology and large dependence on incidence angle and
even on ascending/descending mode (probably due to row
orientation w.r.t. radar) in early stages. HV shows three
stages in its evolution as a function of phenology, i.e. initial
fast increase at early vegetative, slow decrease at central part

Fig. 3.15 Basic hierarchical tree
algorithm for cereals. t22 can be
equivalently substituted by t33
setting the threshold in �15 dB
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from 20 to 80 stages and late fast increase. Therefore, the
number of stages to be separated is smaller than with full-pol,
and there is more uncertainty between stages 10–20 and 20+.
Moreover, the same threshold would not fit equally all cereals
and should be adapted to each type.

In case of dual-pol, and provided the mentioned lack of
sensitivity of Shh and Svv, typical dual-pol systems gathering
[Shh, Svh] or [Svv, Shv] data do not show a clear improvement
with respect to Shv. Anyway, the joint use of Shv and any of
the Shv/Svv or Shv/Shh ratios provides enough information for
barley and wheat to classify correctly the phenology for the
three intervals mentioned in the previous paragraph
(i.e. stages below 20, from 20 to 80 and above 80). Interme-
diate stages, however, are not separable in this observation
space.

A [Shh, Svv] coherent measurement, instead, provides sim-
ilar performance to full-pol, since α1 is quite similar to the α1
gathered with full polarimetry and Shh – Svv is already used by
the proposed algorithm. Anyway, such acquisitions suffer the

same drawback of full polarimetry in terms of spatial cover-
age, due to the reduced swath required by doubling the PRF
of the radar system.

Compact polarimetry (Charbonneau et al. 2010; Ballester-
Berman and Lopez-Sanchez 2012; Cloude et al. 2012) is
expected to offer a slightly lower performance than full
polarimetry but with a wider swath capability may suffice
in some applications. Note that t33, t22 and α1, used for cereals
in this study, are mapped approximately in an equivalent way
by compact-pol using Pv, Pd and αs.

3.4.5 Discussion on Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Figure 3.17 summarises the useful parameters for each crop
type according to the retrieval results presented previously.
We confirm that the sensitivity of C-band polarimetry to crop

Fig. 3.16 Results obtained for wheat: Percentage of pixels assigned to each stage at each image and available reference data. The most frequent
value at each date is coloured according to the scale employed in the map
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phenology is defined by the presence of different
morphologies of plants and parcels as they develop along
the cultivation cycle. For cereals with distinct plant structures
at different stages, polarimetry enables the estimation of their
growth stage (from a set of 4 significant intervals) by
exploiting just a single radar acquisition, without any other
additional information. It is also pointed out that the use of
time coordinate, enabled by the availability of time series of
radar data from current SAR sensors, will definitely improve
the estimation accuracy even more.

The conclusions from this study can be extrapolated to
other crop types by taking into account the physical rationale
employed to establish the retrieval algorithms. Hence, phe-
nology is likely to be retrieved for every crop with develop-
ment features analogous to those analysed here. In addition,
the wide range of incidence angles employed in this study,

despite their influence in the observables, demonstrates the
robustness of this application.

According to the most important observables found in this
study (t33, t22 and α1), a compact-pol sensor would be able to
provide most of the polarimetric sensitivity required for this
application and wide swath coverage. It is noted that only in
case of canola fields, because of its particular morphology,
dual-pol and single-pol systems would suffice.

It should be noted that all approaches validated in this
study make use of backscattering coefficients (echo power) at
some stages, which may limit its applicability in case of
radiometric fluctuations due to diverse causes. In this sense,
a phenology retrieval algorithm based on amplitude-
independent polarimetric observables has been demonstrated
for rice fields at X-band (Lopez-Sanchez et al. 2012a) and
C-band (Lopez-Sanchez et al. 2014).
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Crop type Useful observables

Barley
α1, Shh- Svv (t22), Shv (t33), Pv of Freeman decomp., Srr, Sll, Srl / Srr, Srl / Sll, cor-
relations: HHVV, RRRL and LLRROat 

Wheat 

Canola Shh- Svv (t22), Shv (t33), Pv of Freeman decomp., Srr, Sll

Pea
Shh- Svv (t22), Std.Dev.{Srr }, HHVV correlation, entropy, average alpha, Pv
of Freeman decomp., Srr, Sll, Srl / Srr, Srl / Sll

Fig. 3.17 Top: summary of useful parameters for each crop type. Bottom: overall performance
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3.5 Wetland Observation

3.5.1 C-Band Polarimetric Time Series
for Delineating and Monitoring Seasonal
Dynamics of Wetlands

3.5.1.1 Introduction, Motivation and Literature
Review

Land use changes, especially in agricultural landscapes, are
considered as the major cause of negative environmental
impacts, which can be aggravated by climate change. Drain-
age of wetlands for land reclamation and extraction of
groundwater to irrigate agricultural land have caused degra-
dation of soil and water quality and biodiversity loss in some
parts of the world. Wetlands are complex ecosystems, per-
manently or seasonally flooded that provide many ecological,
biological and hydrologic functions (Hubert-Moy 2006); this
natural resource plays an important role in the regulation of
water flow, in the protection of the water quality and in the
sustainable management of ecosystems (Maltby 2009). Dam-
aged in the past because considered as unsanitary and
unfarmable areas, this ecotone or transition area is a fragile
and threatened ecosystem. Preventing the wetland reduction
and degradation has now become a priority. Therefore, both
inventory and characterisation of wetlands constitute an
important stake from an environmental but also socio-
economical point of view. A recent study proposed a method
to inventory wetlands based on the functional analysis of
potential, existing and effective wetlands (Mérot et al.
2006). The authors have shown that it is important to localise
existing and potential wetlands because the area between
them can be considered as negotiation areas for restoration
purposes. It has also been demonstrated that the length of the
contact between existing wetlands and the dry land – includ-
ing potential wetlands – plays an important role in the deni-
trification process. For these reasons, a precise determination
of the limits of existing and potential wetlands is an important
environmental issue. Moreover, little attention has been
devoted to our knowledge to the evaluation of wetlands
functionalities (for hydrologic processes but also for
bio-geochemical and ecological functions) on large areas. In
these last years, intensive research efforts have focused on the
identification and broad delineation of wetlands (Technical
Report Y-87-1 1987). Remotely sensed data are currently
used to identify, delineate and characterise wetlands (Ozesmi
and Bauer 2002; Hubert-Moy et al. 2006). Optical data pro-
vide interesting information to inventory vegetation and agri-
cultural practices in wetlands but are limited to cloud-free
periods. For these reasons it is not possible to precisely
delineate saturated areas extent as well as water cycles and
water levels in these areas with passive remote sensing
techniques. Although radar is not sensitive to visibility

conditions and can be obtained day or night and through
smoke and cloud cover, the spatial resolution of radar imag-
ery that has been used until now was too low to investigate
wetlands with a sufficient level of precision. For this purpose,
quad-polarimetric and fine-resolution SAR data sets show
great potential for mapping wetlands. The objective of this
showcase is to address the issue of evaluating fully polari-
metric RADARSAT-2 time series data sets for monitoring
the seasonal dynamics of saturated areas extent in wetlands.
To that end, the development and validation of a general
PolSAR segmentation including multitemporal analysis of
wetland evolution and polarimetric decomposition are
presented.

One fundamental task in wetland monitoring is the regular
mapping of temporarily flooded areas. Monitoring and
mapping wetlands on a large scale is becoming increasingly
more important, and satellite remote sensing provides today a
practical approach. Remotely sensed data are widely used to
identify, delineate and characterise wetlands. Optical data
provide interesting information of improved spectral
characterisation of vegetation and soil types to inventory
vegetation and agricultural practices in wetlands but are
limited to cloud-free periods. For this reason it is not possible
to precisely delineate saturated areas extent as well as water
cycles and water levels in these areas with passive remote
sensing techniques. Due to the independence of weather and
illumination conditions, SAR sensors could provide a suit-
able data base and have been proved today to be an effective
tool offering great potential for quantitative monitoring and
mapping of wetlands.

The topic of wetland monitoring by means of SAR remote
sensing has been mostly addressed in the past by analysing
temporal variations of the backscattering coefficient. The use
of single-polarisation SAR data has been shown to be impor-
tant for wetland water extent characterisation. However,
single-polarisation SAR in vegetation-type discrimination
which is necessary for wetland mapping presents a limited
capability. A good overview of SAR wetland monitoring is
given in (Bourgeau-Chavez et al. 2009) and (Lang and
Kasischke 2008). A multi-polarised attempt is reported in
(Henderson and Lewis 2008) where the amplitudes in
horizontal and vertical polarisation, but no phase informa-
tion, are interpreted and correlated with certain wetland
characteristics.

Until today just a few publications are concerned with the
use of fully polarimetric SAR data sets for wetland monitor-
ing. The operational use of polarimetric SAR is not yet really
demonstrated and is still at a study level. The results shown in
different publications are always at a preliminary result stage
and had never been confirmed when applied on other test
sites or under different acquisition configurations (multi-
frequency or multi-angular). The most important publications
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in that topic are mainly based on a change detection analysis
or trying to show that there exist relationships between some
specific polarisation parameter and the related scattering
mechanism type.

In (Liao and Wang 2010), fully polarimetric
RADARSAT-2 data sets are investigated for wetland classi-
fication. The target decomposition is used for optimum
characterisation of wetland target scattering, and it is shown
that the polarimetric information permits the discrimination
of eight classes of land surface, based on the use of the
entropy and alpha parameters, and leads to an effective clas-
sification of two wetland classes: closed and open.

In (Park et al. 2010), an effective method of extracting
geophysical information of tidal wetlands (zone of interaction
between marine and terrestrial environments ) is proposed,
based on the use of fully polarimetric forward/inverse scat-
tering models for quantitative estimation of intertidal
mudflats including surface geometric characteristics such as
the roughness of the scattering surface.

In (Koch et al. 2012) multi-frequency (RADARSAT-
2 and ALOS-PALSAR) analysis is conducted for
characterising and mapping wetland conditions in a semi-
arid environment in Central Spain. The results suggest that
the fully polarimetric SAR data enables a better separation of
the vegetation structure and fragmentation than with the
optical data.

In (Brisco et al. 2011), (Schmitt et al. 2012) and (Schmitt
and Brisco 2013), three polarimetric decomposition
techniques (Cloude-Pottier, Freeman-Durden and normalised
Kennaugh elements) are compared to each other in terms of
identifying the wetland flooding extent as well as its temporal
change. The image comparison along the time series is
performed with the help of a novel curvelet-based change
detection method for the enhancement of polarimetric
decomposition channels, as well as temporal differences in
these channels. The results indicate that the decomposition
algorithm has a strong impact on the robustness and reliabil-
ity of the change detection.

In (Patel et al. 2009), scattering models based on physical
principles have been applied to characterise the wetland
targets like open water habitat and various types of aquatic
vegetation with or without standing water, along with various
species of forested areas. Entropy, alpha angle and anisotropy
have been derived, thus enabling to understand the
differences in wetland targets in terms of their scattering
behaviour at the L- and P-bands. A significant outcome of
this study is that it explores and demonstrates the potential of
the state-of-the-art technique of polarimetric SAR for
characterising scattering behaviour of various components
of a wetland ecosystem.

In (Yajima et al. 2008) is proposed an analysis of the
seasonal changes of a wetland by a modified polarimetric
four-component scattering power decomposition method. It

is shown by the modified scheme that the seasonal changes
and features of the vegetation of a lagoon can be clearly
detected and observed clearly.

At last, in (Touzi and Gosselin 2010), the TSVM decom-
position is investigated when applied for wetland monitoring.
Different polarimetric decompositions are studied and com-
pared, and some new polarimetric parameters are extracted
that characterise uniquely the scattering type with a complex
entity, whose both magnitude and phase have been shown
very promising for wetland class characterisation and
peatland characterisation. It has been shown, for example,
that the scattering type phase permits the detection of water
flow variations beneath the peat surface.

Until today no publications are concerned with the use of
fully polarimetric SAR series data sets to identify and locate
the seasonal dynamics of saturated areas in wetlands. To that
end, the development and validation of a supervised PolSAR
segmentation including multitemporal analysis of wetland
evolution and polarimetric decomposition method are
presented in this showcase. The proposed methodology is
based on the segmentation of a polarimetric descriptor, the
Shannon entropy, which has been shown to be a very sensi-
tive parameter to the temporal variability of flooded areas.

3.5.1.2 Methodology
The employed methodology is presented on Fig. 3.18. The
RADARSAT-2 quad-polarimetric SAR image pre-processing
and processing has been conducted using the PolSARpro
software. The first step consists in extracting the polarimetric
3 � 3 T3 coherency matrix which is independent of the
polarimetric absolute phase, in order to apply the geocoding
process directly on the elements of the T3 matrix. The
geocoding of the RADARSAT-2 quad-polarimetric slant-
range SAR images to the geographic ground range coordinate
system is performed using 46 precise ground control points,
uniformly distributed over the subset image, selected from the
ortho-rectified ALOS-PRISM and ALOS-AVNIR-2 images
used as reference images (Marechal et al. 2010). Due to the
fact that the topography of the investigated area is relatively
flat, the three inherent and specific geometrical distortion
sources in SAR images (foreshortening, layover and radar
shadow) do not occur in such a case, and one can conclude
that the polarimetric data quality is preserved after the
geocoding process (Toutin et al. 2013). To validate the rectifi-
cation procedure, corner reflectors have been set in the
investigated area during the RADARSAT-2 acquisitions. As
these corner reflectors have been precisely located with a
differential GPS, it has been possible to assess the geocoding
accuracy, thus leading to an RMSE error lower than 1 pixel
(Marechal et al. 2012).

Concerning the RADARSAT-2 quad-pol SAR image
processing, different polarimetric decomposition methods
(Huynen, Cloude, Barmes, Holm, Freeman, Van Zyl,
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Yamaguchi, Cloude-Pottier and Shannon entropy
decompositions) (Lee and Pottier 2009) or specific PolSAR
image analysis when applied on wetland characterisation and
interpretation (Yajima et al. 2008; Touzi and Gosselin 2010)
has been investigated in order to extract one polarimetric
descriptor that could be very sensitive to the temporal
variability of the marsh flooded areas. The temporal coeffi-
cient of variation along the 15 RADARSAT-2 quad-polari-
metric SAR images has been derived for each of the
polarimetric parameters extracted from the polarimetric
decompositions, and among all of them, the Shannon entropy
(SE) (Lee and Pottier 2009), defined in equation (1.171), has
shown the most pronounced contrast between the marsh
flooded areas and the surrounding, allowing a segmentation
of the data to extract only the water table.

Figure 3.19 shows the normalised Shannon entropy
(SE) parameter when applied on the Pleine-Fougères PolSAR
image. It is important to point out that the investigated area is a
permanent windy area and the open water area becomes a
slightly rough surface. Consequently and despite the quite
low intensity level, the backscattering mechanism corresponds
to a single-bounce scattering mechanism with an associated
Shannon entropy low value. Figure 3.20 shows the temporal

coefficient of variation CV xð Þ ¼
ffiffiffiffiffiffiffiffiffi
var xð Þ

p
E xf g of the Shannon

entropy parameter over the 1-year time series. It can then be
seen that this polarimetric descriptor is a very sensitive param-
eter to the temporal variability of the marsh flooded area.

The original concept proposed in this methodology is
based on the post-processing which is based on a segmenta-
tion of the Shannon entropy image in order to detect and

Fig. 3.19 The normalised Shannon entropy (SE) image

Fig. 3.18 Proposed methodology
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extract the limits of the open water area and its evolution
during the time period under study. Indeed, the extent of the
flooding area and its timing exert a strong influence on
ecological patterns such as the distribution and diversity as
well as the amount of plant community in the wetland
(Bourgeau-Chavez et al. 2009). The segmentation-based
image procedure that has been used is based on the following
steps: calculation of gradient values map, computation of
global statistics (cumulative relative histogram) and applica-
tion of watershed transform on the modified gradient map to
detect homogeneity sets of pixels. This segmentation-based

image processing system is implemented in ENVI software
(ITT Visual Information Solutions 2007, Boulder, USA), and
details on this patented application can be found in (Xiaoying
2009).

The Shannon entropy image has been segmented to iden-
tify open water and saturated areas. For this, segmentation
parameters, like Shannon entropy threshold values, pixel
population and neighbourhood limit, have been set up from
the first RADARSAT-2 quad-pol SAR image acquired on
22nd of February 2010. Due to both the pixel size (5 � 6 m2)
of the SAR image, versus the area of the investigated study
site, and the ground truth observations, a good compromise in
the setting method has been to fix the pixel population to
30 for open water to 40 for saturated area and to fix the
neighbourhood limit to 8 pixels in both cases. The threshold
used during the segmentation procedure has been set up from
a histogram analysis of the Shannon entropy value distribu-
tion and has been fixed to 0.4 to separate the open water case
to the saturated area case as shown in Fig. 3.21. Once trained
on this first image, the same resulting and fixed parameters
have been applied for the segmentation of all the 14 other
SAR images, without applying any new training on each
image.

3.5.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for wetland delineation and monitoring are
summarised in Table 3.6 and further described in the
Appendix.

The segmented image corresponding to the first
RADARSAT-2 quad-pol SAR image acquired on 22nd of
February 2010 is shown in Fig. 3.22. The validation of the
segmentation of the Shannon entropy (SE) image has been
conducted using the methodology presented in Sect. 3.5.1.2.
On Fig. 3.23 are displayed the results of the segmentations
corresponding to the maximum (2010/12/31) and minimum
(summer acquisitions from 2010/07/16 to 2010/09/26)

Fig. 3.20 Temporal coefficient of variation of the Shannon entropy
parameter

Fig. 3.21 Histogram analysis of
the Shannon entropy value
distribution and corresponding
thresholds
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extension of the water table. The segmentation result for the
acquisition of March (2010/03/18) is also shown as a classi-
cal example. The measurement stations, located along the
transect, are represented with the symbol , and the symbol

represents the reference fix point. The detected limits of
the water table for the three examples are represented with the
symbols (December), (March) and (summer). As it
can be seen, there exists a prefect correspondence between
the results of the segmentation and the limit of the water table
detected during the different ground truth campaigns.

More of that, to assess the results, the spatial distribution
of the open water, extracted from the segmented image, is
displayed over the lidar image. The analysis of the altimetric
profile, obtained from the digital elevation model, confirms
the shape of the limit of the open water according to the local

microtopography (presence of little canal with deposits or
presence of two holes, artificial depression on the ground,
etc.).

This 1-year time series of segmented Shannon entropy
images is merged in a geographic information system in
order to create a precise map of permanent and temporary
water. Figure 3.24 provides an overview of the variations of
the water table over the wetland site from February 2010 to
February 2011, in showing the minimum and maximum
water extent of the water table, including open water bodies
and inundated vegetation and soils, during one hydrological
year.

3.5.1.4 Comparison with Single-/
Dual-Polarisation Data

The fully polarimetric RADARSAT-2 data of wetlands are
used to simulate dual-polarimetric mode data from the
upcoming RADARSAT Constellation Mission (CSA) and
Sentinel-1 (ESA). The simulated dual-polarimetric SAR
data are then used to evaluate the Shannon entropy for wet-
land monitoring, and the results are compared with the fully
polarimetric data. In the dual-polarimetric case, the two terms
of the Shannon entropy are given by:

SEI ¼ 2 log
π e IT
2

� �
¼ 2 log

π e trace C2ð Þ
2

� 	
SEP ¼ log 1� p2T


 � ¼ log 4
C2j j

trace C2ð Þ2
 ! ð3:7Þ

where C2 stands for the 2� 2 covariance matrix of one of the
possible dual-polarimetric target vector: [Shh, Svh]

T, [Shv,
Svv]

T or [Shh, Svv]
T.

Figures 3.25 and 3.26 show the normalised Shannon
entropy (SE) parameter when derived from the dual-
polarimetric target vectors [Shh, Svh]

T and [Shv, Svv]
T.

As it can be seen, the results are consistent for both dual-
polarisation Shannon entropy and the fully polarimetric one
(Fig. 3.19). This result is very interesting and mainly
promising in the sense that the methodology developed for
the fully polarimetric case can be applied without any restric-
tion to the dual-polarimetric case as the input feature seems to
be the same. Delineating and monitoring the seasonal

Table 3.6 Test sites and corresponding radar and validation data selected for the generation of showcases on wetland delineation and monitoring

Application/product Test site – radar data Reference data

Wetland delineation
and monitoring

Pleine-Fougères, Brittany, France ALOS-PRISM
(16/03/2010)

16 RADARSAT-2 Fine Quad-Pol (FQ23) ALOS-AVNIR-
2 (16/03/2010)

22/02/2010, 16/03/2010, 11/04/2010, 05/05/2010, 29/05/2010, 22/06/2010, 16/07/2010, 09/08/
2010, 02/09/2010, 26/09/2010, 20/10/2010, 13/11/2010, 07/12/2010, 31/12/2010, 24/01/2011,
17/02/2011

Lidar (05/04/2009)

0.5 m DTM

Ground truth data

Fig. 3.22 The segmented Shannon entropy (SE) image with the open
water in blue
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Fig. 3.23 Validation of the limits
of the water table extracted from
the segmented images with the
limits detected during the
corresponding ground truth
campaigns

Fig. 3.24 Variations of the water
table over the wetland site from
February 2010 to February 2011
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dynamics of wetlands can be seriously considered as a con-
crete application for the RADARSAT-RCM and Sentinel-1
missions.

3.5.1.5 Discussion on the Role of Polarisation,
on the Maturity of the Application
and Conclusions

The aim of this showcase is to determine the capabilities of
fully polarimetric SAR time series data sets to delineate and
monitor wetland ecosystems. This study was set from
February 2010 to February 2011 (15 images) over a wetland
area located in France (Brittany). Every 24 days, simulta-
neously with the image acquisition in a Fine Quad-Pol mode
(beam FQ23, 42.6�), a 1-year ground truth measurement
campaign to measure the distance between a reference fix
point and the limit of the water table has been conducted. It
has been established in this study that the Shannon entropy is
a parameter very sensitive to the temporal variability of
flooded areas. Maps of the fluctuated trend of the open
water from a 1-year RADARSAT-2 quad-pol time series
have been achieved, in an automatic procedure, from the
segmentation of this polarimetric descriptor. A lidar image
of the investigated area, providing very accurate elevation
and precise microtopography information, has corroborated
these results, leading to a very fine analysis of the obtained
results. The limits of the water bodies extracted from seg-
mented images highlight inundation extend oscillation,
which is a key environmental factor controlling ecological,
hydrological and chemical processes. This product, when
generated over several years, can provide useful information
to characterise the water cycle and identify variations that
may affect the overall ecosystem. The results presented here
show already the important potential of fully polarimetric
SAR data. However, a very promising result concerns the
very good correlation between the dual-polarimetric Shannon
entropy and the fully polarimetric one, which means that it
will also be possible to extract the open water and its spatial
distribution when this proposed methodology will be applied
on the future dual polarimetry RADARSAT-RCM and
Sentinel-1 time series data sets. At last, it is important to
note that this proposed methodology cannot be applied to
single-polarisation data. Indeed, single-pol data processing is
often and/or only based on the analysis of the backscattering
level, and in such a case, single-pol data become very ambig-
uous for the delineation of wetlands since the same backscat-
ter level can be reached at land and water, depending on the
wind conditions. Water bodies become a rougher surface and
so return a stronger signal in presence of wind.

3.5.2 Tropical Wetland Characterisation
with Polarimetric SAR

3.5.2.1 Introduction, Motivation and Literature
Review

Tropical wetlands are very productive ecosystems located
mainly in the tropics, but can also be found in sub-tropical
regions, where temperatures sometimes drop below freezing

Fig. 3.25 The normalised Shannon entropy (SE) image in the case of
the target vector [Shh, Svh]

T

Fig. 3.26 The normalised Shannon entropy (SE) image in the case of
the target vector [Shv, Svv]

T
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point. They consist of both inland freshwater ecosystems and
coastal, mangrove systems. Both ecosystems serve as a criti-
cal habitat for a wide variety of plant and animal species.
Tropical wetlands also have a valuable economical impor-
tance, as they serve as a large carbon reservoir, filter nutrients
and pollutants and provide aquatic habitats for outdoor recre-
ation, tourism and fishing (Barbier 1994). Globally, many
tropical wetlands are under severe environmental stress,
mainly from agricultural and urban development, pollution
and rising sea level.

In order to generate an inventory of tropical wetlands and
assess their health, it is important to map, characterise and
monitor these fragile ecosystems. Such tasks are best
conducted using remote sensing observations, because of
the remoteness and large extent of many tropical wetlands.
Optical remote sensing observations are fairly limited in the
tropics, because of frequent cloud coverage. The all-weather
capability synthetic aperture radar (SAR) observations are
very useful for the characterisation and monitoring tasks,
especially quadruple-polarimetric (quad-pol) data that
contains more spatial information related to physical
characteristics than single- or dual-polarimetric data.

A common method for characterising landscapes with
polarimetric SAR (PolSAR) observations is decomposition
analysis, which maps the landscape according to the surface’s
scattering mechanisms. In this contribution we use four
decomposition types, Pauli, Freeman, Yamaguchi and Hong
and Wdowinski. The first three decompositions, Pauli, Free-
man and Yamaguchi, have been applied successfully to char-
acterise landscapes in various environments. The fourth
decomposition by Hong and Wdowinski (H&W) is a new
decomposition, which was developed in accordance with
new SAR phase observations (interferograms) in tropical
wetlands. The contribution includes a brief description of
the new decomposition and the application of all four
decompositions to the following four quad-pol data sets
acquired over the Everglades: three satellites, TerraSAR-X,
RADARSAT-2 and ALOS-PALSAR, and one airborne sen-
sor UAVSAR. The results of our decomposition analyses
indicate that quad-pol SAR data is very useful for tropical
wetland characterisation, in particular the X- and L-band
data sets.

Quad-pol SAR data have been used over the past two
decades to study and characterise tropical wetlands in various
locations worldwide. The early quad-pol PolSAR studies
relied on airborne C-, L- and P-band observations acquired
by NASA’s AIRSAR mission over tropical wetlands in
Belize, French Guiana, Australia and the USA. Most of
these studies focused on the interaction of the SAR signal
with mangrove vegetation and the possibility to retrieve
quantitative estimates of biophysical parameters such as tree
height and biomass (Pope et al. 1994; Proisy et al. 2000;
Lucas et al. 2007; Trisasongko 2009). The AIRSAR data was

also used to map sub-environments of coastal herbaceous
wetlands (Slatton et al. 1996). Another more advanced air-
borne sensor that acquired quad-pol data over tropical
wetlands is NASA’s UAVSAR, which operates at L-band.
Fatoyinbo and Simard (2011) used quad-pol UAVSAR com-
bined with ALOS polarimetric data to estimate biomass of
mangrove forests in various remote locations in the tropics.

The use of space-borne quad-pol data for tropical wetland
studies has been, so far, fairly limited due to the limited
amount of space-borne quad-pol data acquired over tropical
wetlands. The shuttle imaging radar-C (SIR-C) was the first
space-borne sensor to acquire quad-pol SAR data. The SIR-C
data were used to detect a seasonal flooding component in
Yucatan wetlands (Pope et al. 1997) and for land cover
classification in India (Turkar and Rao 2011). Insofar only
three satellites acquired quad-pol SAR data, two of them in
an experimental mode (TerraSAR-X and ALOS-PALSAR)
and one, RADARSAT-2, as part of its regular operation.
Ullmann et al. (2012) used quad-pol TerraSAR-X data
acquired over Indonesia and analysed them using Cloude
and Yamaguchi decompositions. Their analyses revealed
land classification in which wetlands and other flooded vege-
tation could easily be identified by the double-bounce scat-
tering component. Hong et al. (2010) and Hong and
Wdowinski (2011) used RADARSAT-2 quad-pol data
acquired over the Everglades wetlands in south Florida.
Interferometric processing of the data revealed a very similar
fringe pattern in all polarisation interferograms suggesting
that both co- and cross-pol signals sample the water surface
beneath the vegetation. Based on the phase observations,
Hong and Wdowinski (2013) developed a new PolSAR
decomposition analysis with a double-bounce component
from cross-polar channel.

Decomposition analyses are common methods for
characterising landscape with polarimetric SAR observations.
The widely used Pauli decomposition is a simple method that
represents the main three scattering mechanisms: single-
bounce, double-bounce and volume scattering (Cloude 2009;
Cloude and Pottier 1996; Lee and Pottier 2009). A three-
component scattering model proposed by Freeman and
Durden (1998) has been successfully applied to decompose
polarised SAR data into three components according to the
main scattering mechanisms under reflection symmetry
conditions. In order to account for non-reflection symmetry
conditions, Yamaguchi et al. (2005, 2006) added a fourth helix
component to their decomposition. Various methods were
proposed to estimate the volume scattering component consid-
ering non-reflection symmetry condition (Arii et al. 2010,
2011; Neumann et al. 2009). Recently an extended volume
scattering model was discussed using randomly orientated
diplane scatterers (Sato et al. 2012a). More recent decomposi-
tion studies also included mathematical operations on the
decomposed coherency matrix in order to resolve anomalous
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values generated by the previous three- and four-
decomposition methods (Yamaguchi et al. 2011; van Zyl
et al. 2011; Lee and Ainsworth 2011). Touzi et al. (2009)
proposed a phase of target scattering decomposition for wet-
land characterisation, and Hong and Wdowinski (2013) devel-
oped a new decomposition analysis with a double-bounce
component from cross-pol.

3.5.2.2 Methodology
Our methodology for characterising tropical wetlands with
quad-pol SAR data consists of four decomposition analyses,
Pauli, Freeman, Yamaguchi and H&W (Table 3.7). The first
decomposition we considered, Pauli, is a simple method that
represents the main three scattering mechanisms. The other
three decompositions are model-based, accounting for three
or four scattering mechanisms. The Freeman decomposition
accounts for three mechanisms (single bounce, double
bounce and volume), whereas the Yamaguchi decomposition
includes a fourth helix scattering component. The H&W
decomposes the cross-pol signal into volume and double-
bounce scattering components, which increases the double-
bounce scattering component on the account of volume scat-
tering. The inclusion of a cross-pol double-bounce scattering
is based on cross-pol SAR phase observations in wetlands
showing coherent interferometric signal backscattered from
the water surface beneath the vegetation. Touzi et al. (2009)
presented a non-model, roll-invariant target scattering
decomposition for the characterisation of temperate wetlands.
We did not include Touzi decomposition in this study,
because we focus on model-based decompositions.

The full description and mathematical formulation of the
four decompositions can be found in the references listed in
Table 3.7. The first three listed decompositions are well-
known and do not need much introduction. However, the
fourth decomposition, H&W, is fairly new. Hence we pro-
vide a brief description of the decomposition, including key
equations. Our decomposition is based on phase observations
from wetlands indicating that the cross-pol signal samples the
water surface beneath the vegetation. The simplest scattering
mechanism that accounts for scattering in the cross-pol signal
is a rotated dihedral, which we included in our formulation.
Following the formulation of Yamaguchi et al. (2005), we
utilise a 3 � 3 coherency matrix to derive each scattering
component mathematically as shown in Eq. (3.8):

Th iHV ¼
T11 T12 T13

T21 T22 T23

T31 T32 T33

2664
3775 ¼

¼ f sT
hv
single þ f dT

hv
double þ f vT

hv
volume þ f dT

hv
rotated diplane

ð3:8Þ

where hi denotes the ensemble average of a few pixels in the
data processing and fs, fd and fv are the coefficients related to
the powers of single-bounce, double-bounce and volume
scattering components, respectively.

Following Yamaguchi et al. (2005) four-component
decomposition formulation, we adopted the same scattering
coherency matrices for the single-bounce, double-bounce and
volume scattering as follows:

Th ihvsingle ¼
1 β� 0

β βj j2 0

0 0 0

2664
3775

Th ihvdouble ¼
αj j2 α 0

α� 1 0

0 0 0

2664
3775

Th ihvvolume ¼
1
4

2 0 0

0 1 0

0 0 1

2664
3775

ð3:9Þ

We introduce a double-bounce scattering model of a
rotated dihedral for the cross-pol signal, with the following
matrix which is integrated with the probability density func-
tion similar to formulations of Yamaguchi et al. (2005):

SHV ¼ 1 0

0 �1

� �
or SHV ¼ �1 0

0 1

� �

) Th ihvrotated diplane ¼
1
2

0 0 0

0 1 0

0 0 1

264
375 ð3:10Þ

Equation (3.10) allows us to estimate the double-
bounce component in the cross-pol signal. Thus, the

Table 3.7 List of decompositions used in this study and their main characteristics

Decomposition Characteristics References

Pauli 3 components: HH�VV, HH + VV, HV Cloude and Pottier (1996)

Freeman Model based, 3 components: single bounce, double bounce, volume Freeman and Durden (1998)

Yamaguchi Model based, 4 components: single bounce, double bounce, volume, helix Yamaguchi et al. (2005)

H&W Model based, 3 components: single bounce, double bounce (co- and cross-pol), volume Hong and Wdowinski (2013)
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coherency matrix in Eq. (3.8) can now be written as a
combination of single-bounce, double-bounce from both

co- and cross-pol and volume scattering components as
follows:

Th iHV ¼ f sT
hv
single þ f dT

hv
double þ f vT

hv
volume þ f dT

hv
rotated diplane ¼

¼ f s

1 β� 0

β βj j2 0

0 0 0

2664
3775þ f d

αj j2 α 0

α� 1 0

0 0 0

2664
3775þ f v

4

2 0 0

0 1 0

0 0 1

2664
3775þ f d

2

0 0 0

0 1 0

0 0 1

2664
3775 ð3:11Þ

We have four observables and five unknown parameters in
Eq. (3.11). We reduce the number of unknown parameters by
assuming α ¼ 0 in the areas dominated by surface scattering
and β� ¼ 0 in areas dominated by double-bounce scattering.
Further details of the decomposition are provided by (Hong
and Wdowinski 2013).

3.5.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for tropical wetland characterisation and monitoring
are summarised in Table 3.8 and further described in the
Appendix.

We applied the 4 decompositions listed in Table 3.7 to the
4 quad-pol data sets listed in Table 3.8 and obtained 16 dif-
ferent decompositions that characterise our study area in the
Everglades. In order to evaluate the decomposition results,
we first present the four decompositions applied to the
RADARSAT-2 data set and compare the results with Landsat
image and detailed vegetation map (Fig. 3.27). We then
compare three decomposition results applied to three data
sets that were acquired with three different SAR frequencies
(X-, C- and L-bands), covering the same area (Fig. 3.27). In
this comparison we applied the H&W decomposition to all
data sets. Again, we compare the decomposition results with
an optical Landsat image and a vegetation map.

The study of the RADARSAT-2 data set (Fig. 3.27) shows
that all four decompositions yield similar results indicating
double-bounce scattering (red) in the northeast corner of the
data set, combined volume and single-bounce scattering

(blue-green) in the southwest corner and mostly volume
scattering (green) in a wide area located between the two
corners. There are some variations in the decompositions.
The most noticeable difference is the high volume scattering
of the Freeman decomposition (Fig. 3.27b). The issue of high
volume scattering (too much green) in urban environments
led (Yamaguchi et al. 2005) to develop their four-component
decomposition with helix scattering, which indeed shows less
volume scattering. The H&W decomposition also shows less
volume scattering than the Freeman one, because some of the
cross-pol signal contributes to the double-bounce component.
We validate the decomposition results by comparing them to
an optical Landsat image (Fig. 3.27e) and vegetation map of
the study area (Fig. 3.27f). A visual comparison between the
decompositions and vegetation map indicates that all four
decompositions characterised well the mangrove forests in
the southwest corner and the sawgrass in the northeast corner,
as both areas contain fairly homogeneous vegetation. The
decompositions’ spotty patterns in the transition zone
between the saltwater mangroves and freshwater sawgrass
reflect the mixture of vegetation types in that transition zone.
Both prairies and scrub vegetation types consist of a variety
of grass, bushes and trees, which results in a spotty pattern in
the decomposition.

The multi-frequency decomposition study (Fig. 3.28)
yields very interesting results, as in each frequency the
radar signal interacts differently with the vegetation. In this
study we show results of the Hong and Wdowinski decom-
position; similar results were obtained by the other

Table 3.8 Test sites and corresponding radar and validation data selected for the generation of showcases on tropical wetland characterisation

Application/product Test site – radar data Reference data

Tropical wetland characterisation Shark River Slough Optical data, vegetation maps

TerraSAR-X, 16/04/2010

RADARSAT-2, 23/09/2008

ALOS-PALSAR, 19/04/2011

Coastal mangrove forests

UAVSAR, L-band, 22/06/2010
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decompositions. The decomposition of the TSX data set
shows large colour variability reflecting a high sensitivity
level of the X-band (3.1 cm) to distinguish between the
various vegetation types. The decomposition shows in great
details the distribution of mangroves along the tidal channels
as volume scattering, the sawgrass in the northeast corner as
double-bounce scattering and a mixture of all three scattering
mechanisms in this vegetation transition zone between fresh-
water (sawgrass) and saltwater (mangroves) ecosystems. The
decomposition of the RADARSAT-2 data set shows a domi-
nance of volume scattering (green) throughout the image and,
hence, low resolution to distinguish between the various
vegetation types in the transition zone. Nevertheless, the
decomposition still distinguishes well the sawgrass (red in
the northeast corner) from the rest of the vegetation types.
The L-band decomposition also shows high variability and
sensitivity to different vegetation types.

The most interesting difference between the ALOS and
the other two decompositions is the sawgrass characterisation
in northeast corner. The ALOS decomposition characterises
the sawgrass area as single-bounce scattering (blue), whereas

the other two decompositions as double bounce. The differ-
ent scattering mechanism reflects a different interaction of the
relatively thin sawgrass (a few cm wide) with the different
wavelengths of the radar signal. The sawgrass serves as good
scatterers for the X- and C-band signals (3.1 and 5.6 cm,
respectively), but is transparent to the longer wavelength
L-band signal (24.1 cm).

The validation of the three decompositions with the
Landsat image and vegetation maps indicates a very good
sensitivity of the TSX and ALOS decompositions to charac-
terise this vegetation transition zone. Furthermore, the two
decompositions show higher variability than the vegetation
map, which can be used for a better vegetation classification
of tropical wetlands. The lower performance of the
RADARSAT-2 decomposition is surprising, because the
C-band data corresponds to an intermediate frequency/wave-
length between the X- and L-band data, which both revealed
high sensitivity to tropical wetland vegetation. In order to
verify these results, we checked five different RADARSAT-
2 quad-pol data sets acquired over the same area at different
times with all four decompositions. The results of all

Fig. 3.27 Polarimetric decomposition results of the C-band
RADARSAT-2 data, acquired on 23rd of September 2008. (a) Pauli
decomposition presented as colour composite image with the following
decomposition components: HH�VV (red), HH+VV (blue) and HV
(green). (b) Freeman’s three-component decomposition with the follow-
ing components: blue, single bounce; red, double bounce; and green,

volume scattering. (c) Yamaguchi’s four-component decomposition
with same colour scheme as in (b). (d) Hong and Wdowinski’s three-
component decomposition with cross-pol double bounce. (e) Landsat-7
ETM+ optic colour composite image. (f) Vegetation map of the study
area (Florida Coastal Everglades, Long Term Ecological Research (FCE
LTER, http://fcelter.fiu.edu)). Legend is shown in Fig. 3.28
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decompositions are very similar to those presented here in
Fig. 3.28b. A possible explanation for the lower performance
of the C-band data is the vegetation wavelength that promotes
Bragg scattering in C-band, as suggested by Atwood
et al. (2013).

The analysis of the UAVSAR data set with four
decompositions is presented in Fig. 3.29. The data covers a
long swath of mainly mangrove forest located along the
western coast of south Florida. The decompositions yielded

similar results to that presented in Fig. 3.27, in which the
Yamaguchi and H&W decompositions show a better fit to the
vegetation map.

3.5.2.4 Comparison with Single-/
Dual-Polarisation Data

The use of single- or dual-polarimetric data to characterise
tropical wetlands yielded variable quality results, depending
the radar frequency, image resolution, hydrological

Fig. 3.28 Decomposition colour composite image of the Shark River
Slough site in the Everglades using Hong-Wdowinski’s approach (blue,
single bounce; red, double bounce (both from the co- and the cross-pol);
and green, volume scattering) of the quad-pol data sets: (a) X-band

TerraSAR-X, (b) C-band RADARSAT-2 and (c) L-band ALOS-
PALSAR. (d) Landsat-7 ETM+ optic colour composite image and (e)
vegetation maps (Florida Coastal Everglades, Long Term Ecological
Research (FCE LTER), http://fcelter.fiu.edu)
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conditions and vegetation type (e.g. Bourgeau-Chavez et al.
2005). Single- and dual-pol can distinguish fairly well
between woody and herbaceous vegetation and was success-
fully used to map mangrove forest distribution (e.g. Lucas
et al. 2007). However, single- and dual-pol data are often not
sufficient to distinguish between non-homogeneous vegeta-
tion distributions. Thus recent studies suggest the use of
single- and dual-pol data combined with optical data for
wetland characterisation (Bourgeau-Chavez et al. 2009;
Evans and Costa 2013). Because quad-pol data contains
twice or quadruple amount of data than dual- or single-pol
data, the usage of quad-pol data might be sufficient for
characterising tropical wetlands.

The examples presented in this study support the idea that
quad-pol data can be sufficient for precise wetland
characterisation, as the examples indicate high sensitivity of
the various decomposition results to the different vegetation
types. To illustrate the strength of the quad-pol
characterisation, we compared our decomposition results
with single- and dual-pol representations of the same wetland

area (Fig. 3.30). The comparison shows that the single- and
dual-pol images have limited ability to distinguish between
the different vegetation types. The grey scale of single-pol
image allows us to distinguish between 3 and 4 shades of
grey corresponding to different vegetation types. The dual-
pol image that combines two ranges of colours (red and
green) can distinguish 6–7 areas of different scattering
characteristics. The quad-pol decomposition uses three
ranges of colours (red, blue and green), which provide suffi-
cient sensitivity to distinguish ten or more areas of different
scattering characteristics, which are sufficient to characterise
the main vegetation types in tropical wetlands.

3.5.2.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Decomposition analyses have been used for more than a
decade to characterise landscapes according to scattering
mechanisms. In that sense, it is a mature application for
most landscape characterisation. However, the use of

Fig. 3.29 Polarimetric decomposition results of the L-band UAVSAR
data, acquired on 19th of April 2011. (a) Pauli decomposition presented
as colour composite image with the following decomposition
components: HH�VV (red), HH+VV (blue), and HV (green). (b)
Freeman’s three-component decomposition with the following
components: blue, single bounce; red, double bounce; and green,

volume scattering. (c) Yamaguchi’s four-component decomposition
with same colour scheme as in (b). (d) Hong and Wdowinski’s three-
component decomposition with cross-pol double bounce. (e) Landsat-7
ETM+ optic colour composite image. (f) Vegetation map of the study
area. Legend is shown in Fig. 3.29
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decompositions for characterising tropical wetlands was
rather limited due to the limited available quad-pol data
acquired over these wetlands. In this study we demonstrated
that quad-pol decompositions are very useful methods for the
characterisation of tropical wetlands. We analysed four quad-
pol data sets using four decomposition types. All
decompositions were able to distinguish well between the
main vegetation types, which include saltwater mangrove
forests, freshwater sawgrass swamp and a transition zone
with a mixture of vegetation types. Our analyses indicate
that the TSX and ALOS quad-pol decompositions are more
sensitive to vegetation variation in the transition zone than
the RADARSAT-2 decomposition. Both TSX and ALOS
decompositions show more details of vegetation distribution
that the available vegetation cover map.

3.5.3 Subarctic Peatland Characterisation
and Monitoring

3.5.3.1 Introduction, Motivation and Literature
Review

Wetlands play a key role in regional and global environments
and are critically linked to major issues such as climate
change, water quality, the hydrological and carbon cycles
and wildlife habitat and biodiversity. Wetlands with at least
30–40 centimetres of peat accumulated on the surface repre-
sent an important class of wetland named peatland. Although
peatlands globally only cover 3% of the land, they store 30%
of the terrestrial carbon (Gorham 1995). Therefore, it is
important to maintain and protect peatlands to reduce green-
house gases.

Fig. 3.30 Comparison between single-, dual- and quad-pol
characterisation of tropical wetland area. (a) Amplitude image of
single-polarimetric data of TerraSAR-X. (b) Colour composite image
of dual-polarimetric data: HH (red), HV (green) and HH-HV (blue). (c)

Pauli decomposition colour composite image: HH�VV (red), HH+VV
(blue) and HV (green). (d) Hong and Wdowinski’s three-component
decomposition: double bounce (red), surface bounce (blue) and volume
scattering (green)

160 J. M. Lopez-Sanchez et al.



Unfortunately, major peatland transformations have been
detected in the boreal and subarctic peatland regions. While it
is well established that fens change naturally into bogs over
time and that bogs can revert to fens, the observations over
the last 50 years indicate that the rate of these changes has
been significantly altered by various sources of stress (cli-
mate change, isostatic uplift, fire and anthropogenic
activities) and this could have important implications
(Gorham 1995; Brook and Kenkel 2002; Brook 2006; Jano
et al. 1998). This has been noted in the Hudson Bay
Lowlands of Manitoba, Canada, which contain the most
extensive wetlands and thickest peat deposits in Canada
(Brook and Kenkel 2002; Brook 2006; Jano et al. 1998).
This region is home to unique concentrations of wildlife,
most notably polar bears and caribous. Bears rely on inland
denning habitat in the peatlands, and caribous are tied to
peatland vegetation (bogs in winter and fens in summer).
The loss of bogs will have important implications for polar
bear denning habitat which is entirely within bogs with thick
peat deposits (Brook and Kenkel 2002; Brook 2006; Jano
et al. 1998). This is in addition to the impact on global
warming that would occur due to the release of the carbon
stored by peatlands. Therefore, there is an immediate need for
cost-effective tools that permit accurate classification and
mapping of peatlands, as well as long-term monitoring of
their (bog-fen) transformations.

Cost-effective wetland characterisation and monitoring
are now possible due to advances in the technology of earth
observation satellites that provide the possibility of efficient
monitoring of wetland status over large and remote areas
(Fournier et al. 2007; Grenier et al. 2007). Recently, the
visible near-infrared (VNIR) satellites (and Landsat in partic-
ular) have become the most popular source of information for
wetland mapping. In Canada, Landsat 7 data combined with
RADARSAT1 HH-polarisation SAR data have been used as
the basis source of information for building the Canadian
Wetland Inventory (Fournier et al. 2007; Grenier et al.
2007). The use of the additional all-weather single
polarisation (HH) RADARSAT1 information permits better
delineation and monitoring of wetland water extent (Touzi
et al. 2009; Grenier et al. 2007). Unfortunately, the combina-
tion with VNIR optical and SAR satellite information cannot
clearly discriminate bogs from poor (shrubs and sedges) fens
(Fournier et al. 2007; Grenier et al. 2007; Touzi et al. 2007).
As a result, bogs are generally confused with fens in the
North, and the bog to fen transformations related to climate
change or anthropogenic activities may not be detected.

Since bog and fen vegetation can hardly be discriminated
by optic and conventional SAR sensors, it might be interest-
ing to use their different hydrological properties to discrimi-
nate these two peatland classes. In fact, fens and bogs differ
in the way that they receive water and therefore receive
nutrients differently. A bog is a peat-forming ecosystem

that lacks any significant groundwater inflow and is therefore
ombrotrophic. The bog soils are not affected by the mineral-
enriched ground waters from surrounding soils, since precip-
itation, fog and snow are the primary water sources. In
contrast to the ombrotrophic bogs, the minerotrophic fens
are connected to small streams and may also receive water
from surrounding uplands (Ingram 1982; Zoltai and Vitt
1995). In this study, we will show that earth observation
satellites equipped with L-band polarimetric SAR could pro-
vide the required information for cost-effective peatland
mapping and monitoring in the boreal and subarctic
peatlands. The unique capability of polarimetric SAR for
the detection of peatland subsurface water flow, first
demonstrated in (Touzi et al. 2007), could permit an
enhanced discrimination of bog from fen, which will result
in better monitoring of bog-fen transformations related to the
various (natural and anthropogenic) sources of stress. This
will be confirmed herein using polarimetric L-band ALOS
collected over a boreal peatland, La Baie des Mines, and
subarctic peatlands in the Wapusk National Park in Canada.

Several studies have been published on the investigation
of polarimetric SAR for wetland classification (Pope et al.
1994, 1997; Hess et al. 1995; Sokol et al. 2004). Pope et al.
(1994, 1997) have shown that the phase difference between
the HH and VV polarisations, ϕHH � ϕVV, was the most
useful parameter for flooded wetland classification and detec-
tion of seasonal flooding wetland changes. ϕHH � ϕVV,
which characterises wetland scattering in terms of odd and
even bounce interactions (Van Zyl 1989), permits an
enhanced identification of marsh classes generally dominated
by double-bounce interactions. However, they raised the
point that the high variability of ϕHH � ϕVV might limit its
efficiency in wetland classification (Pope et al. 1994, 1997;
Hess et al. 1995).

In the 1990s, ϕHH � ϕVV was among the most used
polarimetric parameters for natural target characterisation
(Ulaby and Elachi 1990; Touzi et al. 2004). Currently, target
scattering decomposition has become the standard method
for the extraction of natural target geophysical parameters
from polarimetric SAR data (Touzi et al. 2004; Boerner et al.
1998). The objective of incoherent target scattering decom-
position (ICTD) theory is to express natural target average
scattering as the sum of independent elements in order to
associate a physical mechanism with each component
(Cloude 1988; Van Zyl 1992). Several techniques have
been proposed during the past two decades to decompose
the scattering average covariance matrix. The first class (Van
Zyl 1992; Touzi 2007a; Touzi and Shimada 2009) is based on
the eigenvector-based decomposition (Cloude 1988)
introduced by Cloude in the context of radar imaging. The
latter (Cloude 1988) was an extension of Wiener’s character-
istic decomposition of wave coherence matrix to target coher-
ency matrix (Touzi and Shimada 2009; Wiener 1930). The
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characteristic decomposition of the averaged target coher-
ency matrix (Cloude 1988) permits the characterisation of
global target scattering with two parameters, the Cloude-
Pottier “averaged” scattering type (α) and the entropy (H ).
This served as the basis of the very popular Cloude-Pottier α/
H classification (Cloude and Pottier 1997). The second class
corresponds to model-based decompositions (Freeman and
Durden 1998; Yamaguchi et al. 2005; van Zyl et al. 2011),
which are based on Freeman’s basic idea (Freeman and
Durden 1998), supposing that target observed scattering can
be modelled as the linear sum of scattering that can be
represented by models of the physical scattering process.
Freeman’s decomposition assumes that target scattering can
be modelled as the linear sum of surface, double-bounce and
volume scattering (Freeman and Durden 1998).

In this study, the Touzi decomposition (Touzi 2007a;
Touzi et al. 2007) will be assessed for peatland
characterisation using L-band polarimetric ALOS data. This
method, which exploits Cloude’s eigenvector-based decom-
position (Freeman and Durden 1998), permits a high-
resolution decomposition of target scattering in terms of
roll-invariant and unique target characteristics (Touzi
2007a; Touzi et al. 2009). In contrast to Cloude-Pottier
ICTD (Cloude and Pottier 1997), the new decomposition
uses a complex entity, (αs, ϕαs) for an unambiguous descrip-
tion of target scattering type (Touzi et al. 2009; Touzi 2007a).
The information provided by both the scattering type magni-
tude αs and phase ϕαs has been shown to be important for
wetland classification (Touzi et al. 2007, 2009). The analysis
of C-band SAR data collected with the Convair-580 over the
RAMSAR Mer Bleue peatland, near Ottawa, Canada,
permits the demonstration of the unique potential of the
scattering type phase, ϕαs, for bog-fen discrimination
(Touzi et al. 2007, 2009). These two classes could not be
separated using the multi-polarisation (HH, HV, VV) inten-
sity or the HH�VV phase difference information (Touzi et al.
2007, 2009). These very promising results obtained with the
scattering type phase are confirmed in the following using
polarimetric L-band ALOS data collected over boreal and
subarctic peatlands (Touzi and Gosselin 2010). We will show
in the following that the phase of the dominant scattering type
ϕαs is sensitive to peatland subsurface water flow variations,
and this permits an efficient discrimination of bog from poor
fens. The use of the additional information provided by the

scattering type magnitude αs is also required for effective
wetland classification.

3.5.3.2 Experimental Results
Test sites and corresponding radar and validation data sets
selected for subarctic peatland characterisation and monitor-
ing are summarised in Table 3.9 and further described in the
Appendix.

3.5.3.2.1 La Baie des Mines

Peatland Hydrology Characteristics for Bog-Fen
Discrimination
Open (sedge and shrub) bogs and poor (sedge) fens are
regrouped in the peatland class of Fig. 9.1a. Traditional
definitions of peatlands denote that a minimum peat layer of
30–40 cm is needed for an ecosystem to be considered as a
peatland (Ingram 1982; Zoltai and Vitt 1995). Both bogs and
fens in the peatland study site satisfy this criterion with peat
thickness varying from 1 m to 3 m according to the field data.
Shrub bog, which is the dominant class, has a complete
ground cover of sphagnum moss with a shrub canopy
dominated by ericaceous shrubs (such as Labrador tea).
Poor fen areas contain vegetation that is composed primarily
of sedges and an understory of sphagnum mosses. Since bog
and fen vegetation can hardly be discriminated by optic and
SAR sensors, their different hydrological properties can be
used to discriminate them, as demonstrated in the following.
In particular, the depth of peatland subsurface water will be
shown to be a key parameter for bog-fen discrimination. A
bog consists of two layers: one is the upper thin layer about
45 cm deep, known as acrotelm, through which rain sinks
rapidly. Below the acrotelm, there is a much thicker layer of
peat, the catotelm, of dramatically reduced hydraulic conduc-
tivity and through which water movement is very slow,
which is typically less than 1 m/day (Ingram 1982; Zoltai
and Vitt 1995; Fraser et al. 2001). Unlike bogs, a poor fen
peat has a higher capacity of water retention, and water
moves slowly through the fen. The field measurements in
La Baie des Mines site reveal a water table 20 cm below the
poor fen peat surface, whereas the bog subsurface water lies
on the bottom of the acrotelm at about 40 cm below the peat
surface. This is in agreement with other studies, which show
that bog water remains generally 30–40 cm below the peat

Table 3.9 Test sites and corresponding radar and validation data selected for the generation of showcases on subarctic peatland characterisation

Application/product Test site – radar data Reference data

Subarctic peatland characterisation La Baie des Mines Peatland, Quebec, Canada Classification based on Ikonos images and forest inventory

ALOS-PALSAR, 10/11/2006, 13/05/2007 Fieldwork data

Wapusk National Park, Manitoba, Canada Brook’s classification (Brook and Kenkel 2002)

ALOS-PALSAR, 08/06/2010, 24/07/2010 Landsat-5 images, 18/07/2010, 04/09/2010
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surface (at the catotelm layer) (Ingram 1982; Touzi et al.
2007; Fraser et al. 2001)).

Application of the Touzi Decomposition to Polarimetric
ALOS Data: Required Processing Window Size
for Unbiased ICTD
As mentioned above, our decomposition may be considered
as an extension of Kennaugh-Huynen decomposition, which
solves for con-eigenvalue phase ambiguities and can be
applied for the decomposition of both coherent (presented
in terms of the [S] matrix) and partially coherent (presented in
terms of the coherency [T] matrix) target scattering. Since
bog scattering might be highly coherent, the application of
the decomposition under coherent conditions (1-look image)
should preserve the spatial resolution. In that case, the
parameters provided by the Touzi decomposition would be
equivalent to the ones obtained with the Kennaugh-Huynen
CTD after phase ambiguities removal. Under the assumption
of coherent scattering, the decomposition is applied with
1 � 1 processing window on the May acquisition.
Figure 3.31a presents the 1-look scattering type ϕαs. As can
be noted, the phase is random because of the presence of
speckle, and no useful information can be extracted. The fact
that each resolution cell is not dominated by a single coherent
scatterer does not permit the generation of a meaningful
scattering decomposition using the CTD. We have previously
shown that a processing window with a minimum of

60 independent samples is required for unbiased estimation
of the ICTD parameters (Touzi 2007b). A 3-look image is
firstly generated in Mueller matrix with a square pixel by
replacing each pixel’s Mueller matrix with the Mueller
matrix averaged over the 3 pixel azimuth segment centred
on the pixel. The ICTD is then applied to the 3-look image
using a 7 � 7 processing window. The decomposition is
applied under the target reciprocity assumption, and the
cross-polarisation magnitude is taken as the average of HV
and VH magnitude to increase the signal-to-noise ratio of
3 dB HV ¼ e jϕHV HVj j þ VHj jð Þ=2 (where ϕHV is the phase
of HV).

Analysis of the ALOS Acquisitions
The May acquisition, in dry conditions, provides the most
suitable data set for wetland classification. The dominant
scattering parameters are generated with a processing win-
dow that includes more than 60 independent samples. A
colour wheel with equally spaced bins between �π/2 and π/
2 is used to represent the scattering type phase ϕαs1 of the
dominant scattering. ϕαs1 image of the May acquisition is
presented in Fig. 3.31c, and the scattering type magnitude αs1
image is presented in Fig. 3.32a. The classification and the
field data are used to compute the statistics of the scattering
type parameters and σ0 for the HH, VV and VV polarisation,
for the various wetland classes: (poor) fen, open (sedge and
shrub) bog, treed bog, swamp and upland forests. Table 3.10

Fig. 3.31 La Baie des Mines Peatland. (a) 1-look scattering type phase
(May). (b) Multi-polarisation images for May and November
acquisitions (HH in red, HV in green and VV in blue). Wetland samples

are delineated: swamp (red), upland forest (green), treed bog (brown),
open peatland (black). (c) Scattering type phase images
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presents for each class the average and variation of each
parameter for each class using the samples outlined in
Fig. 3.31b. Analysis of Figs. 3.31c and 3.32a and the domi-
nant scattering type statistics of Table 3.10 lead to the fol-
lowing conclusions:

1. ϕαs permits a clear separation of poor fen (ϕαs about�60�)
from open bog (about�18�). ϕαs has similar values (about
30�) for the various treed areas: swamp, treed bog and
upland forests.

2. Even though the scattering magnitude αs1 cannot separate
poor fen from bogs, αs1 discriminates well the swamp
class from the upland forest and treed bog. αs1 is very
efficient in detecting the quasi-dipole scattering (αs1¼ 40

�
)

due to the wave interactions of water and trees in the
swamp. The fact that the contribution of the trihedral and
dihedral scattering is not added in phase (ϕαs ¼ 31

�
) leads

to a quasi-dipole scattering instead of the perfect-dipole
scattering (with αs1 ¼ 45

�
and ϕαs ¼ 0

�
) (Touzi et al.

2007).
3. It is worth noting that the swamp quasi-dipole scattering

can also be detected with HH (much larger than VV and
HV) as can be expected.

Therefore, we can conclude that the information provided
by both the scattering type magnitude and phase is required
for wetland characterisation. To validate the unique potential
of the scattering type phase for discrimination of poor fens
from bogs, in situ field measurements were collected. The
areas that appear in pink (ϕαs1 about �60�) on Fig. 3.31c
were effectively identified as fens. They are dominated by
herbs, and the water level lies between 10 and 20 cm under
the peat surface. The sites that look dark blue on Fig. 3.31c
were identified as bogs. They are dominated by Labrador tea
and a very thick peat (from 1.6 m to 3 m deep). The water
table is much deeper (40–50 cm under the peat surface) in the
bog samples, as expected according to hydrologic properties
of bogs (Fraser et al. 2001).

Peatland Subsurface Water Flow Monitoring Using
Polarimetric May and November ALOS Acquisitions:
Multi-polarisation Versus Polarimetric Information

The spring acquisition took place under dry conditions; no
rain for 14 days and warm weather with a temperature
between 10� and 20�. The fall image was collected under
cool weather (with a temperature below 5�) and wet

Table 3.10 Scattering type parameters estimates and HH, HV and VV for May acquisition

Class ϕαs1Z (deg) αs1Z (deg) HH (dB) VV (dB) HV (dB)

Open bog �18� � 3� 6� � 3� �6.8 � 1 �7.1 � 1 �17.5 � 1

Poor fen �60� � 3� 6� � 3� �6.8 � 1 �7.2 � 1 �17 � 1

Treed bog 30� � 3� 15� � 3� �5 � 1 �6.5 � 1 �12 � 1

Swamp 31� � 3� 40� � 3� �2.5 � 1 �5.6 � 1 �11 � 1

Forest 30� � 3� 25� � 3� �5 � 1 �6.5 � 1 �12 � 1

Fig. 3.32 May and November images: (a) αs1; (b) m1; (c) λ1
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conditions; about 10 mm rain accumulated during the 2 days
that precede the acquisition. Since the L-band ALOS
penetrating wave is sensitive to wetland groundwater
conditions, we should expect a significant change in radar
backscattering at HH, HV and VV polarisations.
Figure 3.31b presents the composite colour of HH, HV and
VV for both acquisitions. Water-level change can be noted in
the swamps outlined in Fig. 3.31b. However, no change can
be detected in the open peatland. The multi-polarisation
information looks similar for the two acquisitions even
though we might expect significant changes in the peatland
subsurface water flow between the dry and wet acquisitions.
These changes cannot also be detected using the dominant
scattering type parameters αs1, m1 and λ1 as can be noted in
Fig. 3.32. Analysis of all the other intensity parameters
(span,λi, mi, i ¼ 1, . . ., 3) and Cloude-Pottier’s parameters
(α, entropy and anisotropy) leads to similar conclusions.
None of them are sensitive to water flow changes beneath
the peat surface.

Like in (Touzi 2007a), the scattering type phase ϕαs1

seems to be the only polarimetric parameter that can detect
peatland subsurface water flow changes, as can be noted in
Fig. 3.31c. Major changes (pink to dark blue) in ϕαs can be
noted when the phase images of May and November are
compared. These significant variations (larger than 40�) rep-
resent the significant variations of the water flow beneath the

peat surface between the dry and wet (May–November)
peatland conditions. The pink colour, which indicates the
presence of subsurface water, is dominant in the November
acquisition. The latter acquisition took place shortly after the
rain stopped, and this does not give enough time for the rain
water to sink deeply into the acrotelm. This makes fen-bog
discrimination difficult since the L-band wave reaches the
subsurface water in both fens and bogs. Bog-fen discrimina-
tion is easier with the May data set collected under dry
conditions, as discussed previously.

It is worth noting that similar observations regarding the
higher sensitivity of the radar signal phase to subsurface
features in comparison with the detected intensity were
brought out by Lasne et al. (2004). Using the airborne
L-band RAMSES SAR, they showed that the phase differ-
ence ϕHH � ϕVV permits the detection of pale soils buried in
a bare sandy area near Bordeaux (France), at a depth greater
than 5.2 m. These pale soils cannot be detected with the radar
signal intensity at HH, HV or VV polarisation, which is only
sensitive to the presence of pale soil that is not deeper than
3.5 m (Lasne et al. 2004). One might expect that the phase
difference ϕHH � ϕVV of the like-polarisations is also sensi-
tive to the peatland subsurface water flow. The phase
ϕHH � ϕVV and the Pauli phase difference, i.e. phase of
(HH � VV)/(HH + VV), are presented in Fig. 3.33a, b,
respectively. As can be seen, both HH-VV phase difference

Fig. 3.33 Phase and orientation images: (a) ϕHH � ϕVV; (b) Pauli phase difference
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and the Pauli phase are not able to detect peatland subsurface
water flow changes. This is in agreement with the results of a
previous study on the Mer Bleue wetland (Touzi 2007a). The
optimum phase ϕαs1, which is sensitive to peatland subsur-
face water flow, is generated with a non-zero orientation
angle in a polarisation basis different from the conventional
(H�V) linear-polarisation basis. The Kennaugh-Huynen
diagonalisation of the coherent dominant scattering matrix
leads to the generation of the maximum polarisation, whose
phase ϕαs1 permits the detection of peatland subsurface water
flow. It is worth noting that such promising results obtained
with ϕαs1 could only be derived, thanks to the excellent
quality of ALOS HV measurement in terms of calibration
and high signal-to-noise HV measurement (Touzi and
Shimada 2009). An accurate measurement of HV is required
to generate the optimum polarisation whose scattering type
phase ϕαs1 is sensitive to the water beneath the peat surface.
This makes this unique application suitable with only fully
polarimetric SAR. The reconstruction of HV from dual-
polarisation RH-RV Compact (Souyris et al. 2005; Raney
2007) SAR measurements (using Souyris’s method (Souyris
et al. 2005)) does not permit the generation of the optimum
ϕαs required for peatland subsurface water flow monitoring,
as demonstrated in (Touzi 2013).

3.5.3.2.2 Wapusk National Park
The area of study is dominated mainly by a sedge bulrush
poor fen (dark orange) in an area that includes lichen melt
pond bog, peat plateau bog, spruce bog and sedge-rich fens.
During the spring and summer active layer melting season,

we should expect important changes in the peat subsurface
water flow in the fen class. A thermistor cable was installed in
a pond bog (Dyke and Wendy 2010). The active layer thick-
ness was 13 cm in June at the start of the melting season,
27 cm in July and more than 80 cm in September. Figure 3.34
presents the colour composite of HH (red), HV (green) and
VV (blue) for the June and July acquisitions, respectively. As
can be noted, the radiometric information provided by the
multi-polarisation information cannot detect any change in
the peatland hydrology between the June start of the melting
season and the late part of July.

Our ICTD is applied to the ALOS images as described in
Sect. 9.5.1.3, and the various ICTD parameters are analysed.
Again, the scattering type phase ϕαs1 of Fig. 3.35 is the only
target scattering decomposition parameter that has revealed
peatland subsurface flow variations. Major changes in ϕαs can
be noted when the phase images of early June and late July
are compared. The bulrush sedge poor fen area, in particular,
outlined in Fig. 3.35a (and denoted (2)) shows significant
changes. This area is dominated in the June image by the pink
colour, as might be expected. ϕαs is sensitive to the fen
shallow subsurface water lying on the permafrost surface
(about 13 cm deep). In July, the fen is still irrigated by
shallow subsurface water that can be detected (in pink) by
the L-band wave, whereas a large part of the fen subsurface
water either has been evaporated or was too deep (more than
25 cm) to be detected by ϕαs1. No change can be noted on the
bogs (in dark blue) between June and July acquisition, and
the recent field trip allowed us to explain the phase
behaviours in these bog areas, as discussed in the following.

Fig. 3.34 Multi-polarisation (HH, HV, VV) images for the bog-fen peatland in Wapusk National Park (June and July 2010)
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In the first week of July 2012, additional in situ field
measurements were collected in the Wapusk National Park
peatland for further validation of the results above. Helicopter
was used to visit various samples in the areas 1 and 2 outlined
in Fig. 3.35a. These areas were assigned to the sedge bulrush
fen and lichen melt pond bog classes, respectively, according
to Brook’s classification. Water-level measurements, vegeta-
tion species characterisation, active layer and peat thickness
were collected in the various sites. The average of active layer
thickness in the bogs and fens visited during the field trip in
July is deeper than 25 cm. Areas in pink were identified as
fens with herb vegetation and water level 10 to 20 cm beneath
the peat surface. Samples in dark blue were identified as
bogs. No water was detected under the peat surface or at
the frozen ground about 25 cm under the peat surface. The
water coming to bogs from precipitations has evaporated,
while the fens are continuously irrigated by subsurface and
runoff water. The absence of subsurface water in bogs should
explain the stability of the phase (dark blue) between the June
and July acquisitions, in particular in the area (1) on the
bottom of in Fig. 3.35. This area (1) outlines a fen site A
(pink in the phase image) and a bog site B (dark blue in the
phase image) that were visited. Pictures of the corresponding
peat samples are shown in Fig. 3.36. While no water can be
seen under the bog peat surface (at the frozen ground inter-
face), the water level at the shrub fen was about 15 cm under
the peat surface, as can be seen on the peat sample pictures of
Fig. 3.36c, d. These observations confirm the promising
potential of ϕαs for bog-fen discrimination. Since no water
lies beneath bog peat surface, ϕαs can easily identify poor
fens of shallow subsurface water. The sensitivity of polari-
metric L-band scattering phase to peatland subsurface water

should provide an efficient tool for monitoring bog-fen
transformations.

3.5.3.3 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

This study confirms that the scattering type phase
ϕαs extracted from fully polarimetric L-band ALOS data
can reveal the seasonal changes in poor fen subsurface
water flow and permits the separation of poor fen from
shrub bogs. Such information cannot be obtained with the
multi-polarisation HH, HV and VV intensities nor with the
conventional polarimetric decomposition parameters such as
the Cloude-Pottier α, the entropy and the extrema of the
intensities provided by the coherency eigenvalues. ϕαs,
which cannot detect deep (45 cm below the peat surface)
water in a boreal bog, seems to be more sensitive to the
shallower water (10–20 cm) beneath the surface in fen, and
this makes possible the separation of poor fens from shrub
bogs. These results have recently been confirmed in a boreal
peatland in the Athabasca region in the context of an investi-
gation on the long-term monitoring of oil sand exploration on
surrounding peatland. The use of polarimetric L-band SAR
and ϕαs could also be very promising for the detection of new
fens in subarctic bogs. Recent field work in the Wapusk
National Park peatlands revealed the absence of water
(on the surface of the permafrost) beneath the peat bog
surface. Fens, which are continuously irrigated by subsurface
water 10–20 cm deep, could be clearly identified with ϕαs.
Even though we are convinced that further experiments are
needed to validate these results with other peatland sites, the
results obtained so far look very promising for the operational

Fig. 3.35 Scattering type phase image for the bog-fen peatland in Wapusk National Park: (a) June; (b) July
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use of the upcoming polarimetric L-band SAR satellite
missions, and ALOS2 in particular, as an essential source of
information for mapping peatlands and monitoring bog to fen
transformations. Operational windows of polarimetric
L-band SAR acquisitions are required from the spring runoff
water to the fall season, and over a long period of time, for
efficient peatland monitoring.
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3.6 Monitoring Change Detection Produced
by Tsunamis and Earthquakes by Using
a Fully Polarimetric Model-Based
Decomposition

3.6.1 Introduction, Motivation and Literature
Review

Natural disasters occur frequently, causing significant loss of
life and leading to major geo-/bio-environmental and socio-
economic costs. Therefore, the monitoring of the disaster
damages over the globe is an urgent need. It is quite difficult
to obtain an immediate response of large-scale earthquakes
and tsunami disaster areas by ground survey methods.
Although the ground survey is accurate, it is also highly
time-consuming and manpower extensive, and, conse-
quently, this causes delays in assessment responses to rescue

Fig. 3.36 Field data collection. (a) Sedge fen A. (c) Water-level picture in sedge fen A. (b) Open bog B. (d) Water-level picture in bog B; no water
at the frozen ground interface
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teams. Satellite remote sensing has great potential in the
monitoring of disaster damages because of its repetitive
capability and synoptic coverage. The aim of this work is to
present a methodology to generate information from high-
resolution polarimetric SAR images to identify directly the
differences or damages between pre- and post-tsunami and
earthquake conditions on the affected regions. This method-
ology is based on scattering decomposition techniques for
polarimetric data. We take the advantage of the excellent
quad-polarisation data sets acquired with the Japanese
Advanced Land Observing Satellite-Phase Array type
L-band Synthetic Aperture Radar (ALOS-PALSAR) imaging
system using its high-resolution PolSAR mode to produce
colour-coded images for easily interpreting earth surface
features and monitoring the earthquake and tsunami damage
along the Miyagi coast affected by the 11th of March 2011
tsunami.

Assessment of earthquake and tsunami disaster damages
in urban areas has been investigated based on visual interpre-
tation or change detection methods using remotely sensed
imagery. Hitherto, several methods are available to monitor
earthquake and tsunami damages by using multispectral and
monochromatic optical images as well as mono/dual-
polarisation SAR images (Matsuoka and Koshimura 2010;
Chini et al. 2009). High-resolution multispectral optical
images enable direct visual interpretation of the damages
and are rather straightforward and simple to interpret by
users. However, optical remote sensing fails under cloudy,
foggy and hazy as well as severe rainy conditions for moni-
toring near-real-time damage. Single-wavelength SAR
images obtained from fixed single- and/or dual-polarisation
sensors are independent of meteorological conditions, but are
difficult to be interpreted and require tedious computational
analyses for assessments. Most recently, the potential and
advantages of fully polarimetric SAR data to monitor the
natural disasters, including tsunami and earthquake, were
demonstrated in (Yamaguchi 2012) and (Sato et al. 2012b).

Scattering power decompositions have been a research
topic in radar polarimetry for the analysis of fully polarimet-
ric synthetic aperture radar data (Freeman and Durden 1998;
Yajima et al. 2008; Yamaguchi et al. 2005; 2011; Arii et al.
2011; Sato et al. 2012a; van Zyl et al. 2011; Lee and
Ainsworth 2011; Touzi 2007a; Singh et al. 2012). There
exist nine real independent observation parameters in the
3 � 3 coherency or covariance matrix with respect to the
second-order statistics of polarimetric information (Freeman
and Durden 1998; Yajima et al. 2008; Yamaguchi et al. 2005;
Touzi 2007a). There are several decomposition methods to
retrieve information from the coherency matrix. Physical
scattering model-based decompositions are straightforward
to interpret the final imaging result because the experimental
evidence is incorporated in the model-based approach. The
pioneering work of the model-based decomposition was

presented by Freeman and Durden (Freeman and Durden
1998) by introducing the three-component decomposition.
To date, a significant amount of research has been carried
out on the model-based decomposition techniques (Arii et al.
2011; Sato et al. 2012a; Yamaguchi et al. 2011; van Zyl et al.
2011; Lee and Ainsworth 2011; Singh et al. 2012).

The original three-component decomposition was pro-
posed by Freeman and Durden (1998) under the reflection
symmetry condition, i.e. the cross-correlation between the
co- and cross-polarised scattering elements are close to zero
for natural distributed objects. This method decomposes the
observation matrix into the surface, double bounce and vol-
ume scattering terms based on the physical scattering models
and accounts for five terms out of nine independent
parameters. Then, Yamaguchi et al. (2005) added a helix
scattering term and proposed the four-component decompo-
sition. Then, by using the rotation of coherency matrix,
Yamaguchi et al. (2011) reduced the number of polarimetric
parameters from 9 to 8. The Yamaguchi et al. (2011) method
yielded better decomposition results by accounting for six
parameters out of eight. The un-accounted parameters are the
real and imaginary part of T13 in the coherency matrix, and
they still remained un-accounted in any of the known physi-
cal scattering model-based decompositions. Finally, a general
four-component decomposition (G4U) method has been pro-
posed recently by Singh et al. (2012) using a special unitary
transformation to the rotated coherency matrix, which has
been used in the existing four-component decomposition.
Since unitary transformations do not change any information
included in the coherency matrix, the rotated coherency
matrix is transformed to eliminate the T23 element. This
four-component decomposition finally accounts for seven
terms out of seven polarimetric parameters.

3.6.2 Methodology

Figure 3.37 shows the general four-component scattering
power decomposition procedure (G4U). The number of inde-
pendent parameters in the coherency matrix is reduced from
9 to 7 by the rotation and the special unitary transformations.
This decomposition scheme describes the total scattering
power into surface scattering power Ps, double-bounce scat-
tering power Pd, volume scattering power Pv from dipole
and/or oriented dihedral and helix scattering power Pc. This
recently developed four-component scattering power decom-
position scheme also includes the complete fully polarimetric
relative phase information and the extended volume scatter-
ing model for oriented dihedral structures (Singh et al. 2012)
(which are the most convenient in urban areas to estimate the
appropriate volume scattering as compared to three-
component decomposition (Freeman and Durden 1998)).
The decomposition starts by retrieving the helix scattering
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power. The branch condition for C1 is used to retrieve
double-bounce scattering caused by oriented dihedrals. The
second branch condition for C0 is to select dominant scatter-
ing mechanism. The outputs of the G4U are used to examine
the disaster areas.

Colour composite images of Fig. 3.38 were generated with
multi-look factors of 18 times in azimuth direction and
3 times in range direction for the PALSAR data sets in
Table 3.9. After the decomposition of ALOS-PALSAR data
over the earthquake/tsunami disaster site, the four scattering

Fig. 3.37 General four-component scattering power decomposition algorithm (G4U) (Singh et al. 2012)
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components (Ps, Pd, Pv and Pc) were normalised by total
power (TP) for further analysis. A mean filter with 3 � 3
window size is applied on these normalised scattering power
component images before analysing the images in more
detail (Singh et al. 2013).

3.6.3 Experimental Results

We have selected parts of the coastal areas within the Miyagi
Prefecture affected by the 11th of March 2011 magnitude 9.0
Honshu, Japan, earthquakes (38.322 N, 142.369 E, depth
32 km) that struck off Japan’s northeastern coast and trig-
gered a historical super-tsunami. We used the ALOS-
PALSAR fully polarimetric, single-look complex (SLC),
level 1.1 (ascending orbit) images acquired over study areas
before (2nd of April 2009) and after the earthquake/tsunami
(8th of April 2011) struck; see Table 3.11.

Two (pre- and post-disaster) images are processed by
implementing the G4U scheme (Singh et al. 2012) to the
data sets in Table 3.11. These decomposition RGB colour-
coded images of 20090402 and 20110408 are presented in
Fig. 3.39. Since man-made structures such as building and

bridges orthogonal to radar illumination are categorised into
double-bounce scatterer types in the G4U scheme, the
double-bounce (Pd) scattering component in urban area is
caused by right angle scattering between building block
walls and road surfaces. The volume scattering (Pv) and
surface scattering (Ps) components are small for orthogonally
illuminated man-made structures. However, damaged or col-
lapsed urban blocks or man-made structures resulting from
the earthquake/tsunami impact that do not appear to be
orthogonal to radar direction, and which corresponding
main scattering centre is at an oblique direction with respect
to radar illumination, generate no double-bounce type
response in the G4U images after the tsunami struck. Due
to multiple scattering, these red areas (pre-tsunami image)
turn into green (volume scattering) in post-tsunami images.
In cases of buildings washed out and/or eliminated by the
tsunami, these areas appear as blue (i.e. surface scattering
types of the G4U scheme) in the post-tsunami images. These
effects in post-tsunami images, compared to pre-tsunami
images, provide a simple straightforward tool for interpreting
collapsed buildings in tsunami-affected areas (Singh et al.
2013).

Fig. 3.38 (a) Pre- and (b) post-earthquake/tsunami G4U colour-coded
images for PALSAR data. (c) Ground truth information, (d) pre- and (e)
post-earthquake/tsunami HH-pol intensity images for PALSAR data and
(f) pre- and (g) post-earthquake/tsunami dual-pol RGB images of

PALSAR data. In all images, the flight direction of ALOS-PALSAR is
from left to right, and PALSAR illumination direction is from top to
bottom

Table 3.11 Test sites and corresponding radar and validation data selected for the generation of showcases on monitoring of post-disaster effects in
urban areas

Application/product Test site – radar data Reference data

Monitoring of post-disaster
effects in the urban areas

Ishinomaki, Miyagi
Prefecture, Japan

Ground truth information provided by the Association of Japanese Geographers
and Geospatial Information Authority of Japan

ALOS-PALSAR data
set #20090402

ALOS-PALSAR data
set #20110408
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The changes produced by the disaster are shown in
Fig. 3.39 using the difference in the normalised scattering
powers ps (¼ Ps/TP), pv(¼ Pv/TP) and pd (¼ Pd//TP).
Table 3.12 shows the quantitative mean statistics of the
normalised difference scattering parameters Δps, Δpv, Δpd
and Δpc corresponding to surface, volume, double bounce
and helix scattering powers, for patch A (vegetated area,
Fig. 3.39), patch B (agricultural area/wiped-out houses
debris-deposited area, Fig. 3.39) and patch C (urban region,

Fig. 3.39). The mean statistics including� standard deviation
of the pixel distributions over all patches were analysed, and
the basic behaviours of scattering parameters ps, pv and pd
were observed as follows: (1) the surface scattering is
increased in tsunami-affected areas (vegetation-damaged
area and wiped-out/collapsed urban block area), but it can
be decreased in the areas with deposition of wiped-out houses
by the retreating tsunami and for the floating houses on bay
areas; (2) the volume scattering is decreased in tsunami-

Fig. 3.39 The difference images in between pre-earthquake/tsunami
(20090402) and post-earthquake/tsunami (20110408) for decomposi-
tion parameters (a) Δps, (b) Δpv and (c) Δpd are superimposed on TP

image of 20090402. Patch A shows the vegetation area on relatively flat
surface areas, patch B represents the agricultural area over a relatively
flat ground, and patch C illustrates urban areas of Ishinomaki city

Table 3.12 Statistics of the difference values of pixels for patches A, B and C in between pre- earthquake/tsunami (20090402) and post-
earthquake/tsunami (20110408) decomposition parameters

Scattering component Mean Std. Dev. Number of pixels

Patch A Δps 0.107 0.070 100

Δpv �0.154 0.066

Δpd 0.047 0.054

Δpc �0.000 0.015

Patch B Δps �0.222 0.050 75

Δpv 0.145 0.046

Δpd 0.061 0.031

Δpc 0.016 0.008

Patch C Δps 0.136 0.132 112

Δpv 0.150 0.093

Δpd �0.280 0.075

Δpc �0.006 0.018
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affected or damaged vegetation areas and increased in dam-
aged or collapsed, deposited and/or floating (on bays water
surface) urban blocks or man-made structures by the earth-
quake/tsunami; and (3) the double-bounce scattering is
decreased in earthquake/tsunami collapsed or damaged
urban areas and increased in areas with deposited
(in agricultural fields or other type scattering dominated
areas) wiped-out urban blocks or man-made structures,
mainly caused by the force of tsunami. More detailed analy-
sis and discussion are given in (Singh et al. 2013).

3.6.4 Comparison with Single-/
Dual-Polarisation Data

SAR images obtained from fixed single- and/or dual-
polarisation sensors are independent of meteorological
conditions, but are difficult to interpret and require tedious
computational analyses for at most incomplete assessments
only. A single observation using conventional SAR images
makes it difficult to generate desirable images ready for direct
visual interpretation. The features that can be identified in the
fully polarimetric case cannot be distinguished in single and
dual-pol images (see Fig. 3.38). However, high-resolution
fully polarimetric SAR images are straightforward to identify
the differences or damages between pre- and post-tsunami
conditions of the affected regions.

3.6.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Since microwave radar remote sensing is a suitable tool for
monitoring the near-real-time earthquake and tsunami dam-
age at large scales, at anytime of day or night, its implemen-
tation becomes of vital relevance to governmental and other
agencies for initiating swift and well-orchestrated rescue
operations. In this showcase, we have explored the role of
polarimetry in tsunami and earthquake disaster monitoring.
Fully polarimetric high-resolution L-band image data sets
with the implementation of the G4U scheme provide a
straightforward simple tool for interpreting as well as
identifying collapsed buildings caused by earthquake/tsu-
nami disasters. This method also holds other types of natural
(typhoon or tornado) and man-made disaster assessment
application. It is found that the double-bounce scattering
power is the most promising parameters to detect automated
disaster-affected urban areas at pixel level. It is also observed
that the very-high-resolution PolSAR images are required for
superior urban area monitoring over the oriented urban
blocks with respect to the illumination of radar.

3.7 Summary (Table 3.13)

Table 3.13 Summary of presented application, methods and preferred system configurations for monitoring and characterisation of agriculture and
wetland scenarios

Application Methods and used frequency (P/L/C/X)
Radar data preference/requirements/
comments

Crop type mapping Decision tree supervised classification applied to PolSAR
observables from incoherent decompositions, multitemporal data (C)

Preferred frequency: C – simpler
polarimetric modes could suffice

Statistical classification applied to PolSAR backscattering,
multitemporal data (L/C)

Need of multitemporal data: short revisit
time needed

Radiometric stability in time may be
needed

Soil moisture retrieval under
vegetation

PolSAR decomposition and inversion of scattering models (L/C) Preferred frequency: L

Phenology monitoring Hierarchical classification based on PolSAR observables (C) Short revisit time

Radiometric stability in time

High-resolution and/or wide swath
desirable – compact-pol is a good trade-
off

Wetland and peatland
delineation and
characterisation

Segmentation of the Shannon entropy image (C) Dual-pol could suffice (e.g. for
RADARSAT-2 and Sentinel-1)

PolSAR model-based decompositions (L/C/X) Preferred frequencies: L/X

Touzi decomposition (L) Preferred frequency: L

Good SNR in HV needed

Effect of tsunami and
earthquakes (change
detection)

Four-component decomposition (L) High resolution needed
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Cryosphere Applications 4
I. Hajnsek, G. Parrella, A. Marino, T. Eltoft, M. Necsoiu, L. Eriksson,
and M. Watanabe

Abstract

Synthetic aperture radar (SAR) provides large coverage
and high resolution, and it has been proven to be sensitive
to both surface and near-surface features related to accu-
mulation, ablation, and metamorphism of snow and firn.
Exploiting this sensitivity, SAR polarimetry and polari-
metric interferometry found application to land ice for
instance for the estimation of wave extinction (which
relates to sub surface ice volume structure) and for the
estimation of snow water equivalent (which relates to
snow density and depth). After presenting these
applications, the Chapter proceeds by reviewing
applications of SAR polarimetry to sea ice for the classifi-
cation of different ice types, the estimation of thickness,
and the characterisation of its surface. Finally, an applica-
tion to the characterisation of permafrost regions is

considered. For each application, the used (model-based)
decomposition and polarimetric parameters are critically
described, and real data results from relevant airborne
campaigns and space borne acquisitions are reported.

4.1 Introduction

Over the last 30 years, the use of air- and space borne remote
sensing has revolutionised glaciology through dramatic
improvements in the scale and in the temporal and spatial
resolutions of cryospheric observations. Remote sensing
offers the possibility to cover large areas quickly and often
at a low cost compared to more traditional methods. Many
types of remote sensing can be useful for glacier studies
including aerial photography and space borne sensors
operating in the visible spectrum, gravimetry, passive micro-
wave technology, and radar including satellite altimetry,
scatterometry, and other active imaging systems.

However, the greatest advance has been the successful
implementation of synthetic aperture radar (SAR). Over ice-
and snow-covered terrain, SAR has been proven to be sensi-
tive to both surface and near-surface features related to accu-
mulation, ablation, and metamorphism of snow and firn
(material in the intermediate stage between snow and ice).

Land Ice In the last decade, the coherent combination of
both interferometric and polarimetric observations has
established PolInSAR as a viable technique for the extraction
of geophysical parameters. However, the use of PolInSAR
over glaciers to date is restricted to a small number of air-
borne studies due to the complexity of glacier environments
and the inherent difficulties in validation. Temporal
decorrelation and the limited polarimetric modes of space-
borne sensors limited the role of space-borne SAR data.

Nevertheless, the high spatial and temporal resolution and
the (sensitive) observation space provide a considerable
potential in PolSAR and PolInSAR applications over land ice.
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Land Ice – Snow Characterisation For land ice, the main
issue today is the characterisation of the snow layer at the
surface and the underlying ice volume. The snow layer can be
characterised by means of two main parameters, the snow
depth and density, which can be jointly measured through the
snow water equivalent. Polarimetry can help to isolate the
scattering contribution of the snow volume from the one of
the underlying ground and with this it allows to establish a
relation with the snow water equivalent.

Land Ice – Ice Extinction Another important parameter is
the ice extinction that provides information about the ice vol-
ume structure and is, therefore, also an important indicator for
changes in the ice volume. Themain sensitivity is concentrated
in the first 10–20mof depth of the ice volume. The introduction
of polarimetry in combination with interferometry represented
a breakthrough for the retrieval of ice extinction.

Sea Ice The ice coverage of oceans plays a sensitive role in
the interaction between the atmosphere and the water surface,
while, at the same time, it affects sea traffic and human
activities. In the northern hemisphere, significant economic
components drive the need to study sea ice, in addition to the
scientific reasons, while climatological and environmental
aspects predominate the need for knowledge about the ice
situation in the southern hemisphere.

Themain interest lies in the information about sea ice extent,
movement, and conditions. The formation of sea ice depends
on a variety of environmental factors like temperature, wind,
current, and water salinity. At the same time, sea ice undergoes
a seasonal cycle and has several distinct stages of development.
Polarisation diversity has shown to increase the information
content of SAR imagery significantly and the benefits for sea
ice monitoring have been recognised early; despite this, the
amount of polarimetric SAR data of sea ice available today
remains limited. Most of the research work in this domain has
been based on airborne SAR data and later on images from
ALOS-PALSAR and RADARSAT-2. Many of the early stud-
ies based on polarimetric SAR focused on the physics of
scattering from sea ice and the resulting polarimetric signatures
of ice types. Major investigations were made for sea ice-type
classification using different algorithms.

Sea Ice – Classification The most used approach for sea ice
characterisation is based on image segmentation algorithms
applied on single, dual, or fully polarimetric SAR data. With
the introduction of RADARSAT-2, fully polarimetric SAR
images have been used on a wider basis in classification
procedures improving segmentation performance of different
ice types.

Sea Ice – Thickness For thin sea ice thickness is a sensitive
parameter affecting the heat exchange between atmosphere
and ocean. There is an increasing interest to better understand
and quantify this relation within the climate system as well as
to monitor and to model its state. During the last two decades,
the sensitivity of active microwave sensors and their potential
for thin sea ice thickness retrieval was intensively
investigated, both empirically and theoretically. A simplified
scattering solution for the rough surface case of polarised
backscattering of thin sea ice has been established. In addi-
tion, a theoretical base for the relation of co-polarised polari-
metric coefficients (co-pol ratio and phase difference,
complex correlation coefficient) – being independent of sur-
face roughness – to the thickness of thin sea ice was devel-
oped in L- and X-band.

Sea Ice – Surface Characterisation Sea ice surface rough-
ness is another important parameter together with sea ice
thickness for the thermodynamic exchange between atmo-
sphere and ocean. Although not yet fully understood and
quantified, sea ice surface roughness is used as an input
parameter for weather prediction modelling. Several works
consider surface roughness algorithms for bare surface
applications, but only few studies investigate their use on
sea ice surfaces. However, with fully polarimetric airborne
sensors, first data sets were acquired to test and develop this
application.

There are two main parties interested into cryosphere
applications for either ecosystem change research or indus-
trial interest (see Table 4.1). The main motivation is to infer
the measured snow and ice parameters into ecosystem change
models and use them as an input for climate change model
predictions or have a commercial interest as for example
securing continuous ship traffic roads.

Table 4.1 Polarimetric SAR applications in cryosphere: use and motivation

(End) users Application(s) Interest/motivation

Authorities/agencies research Snow characterisation Justification of subsidies and fraud detection, acreage

Retreat of glaciers Control in regions suffering droughts or with scarce water resources

Sea ice characterisation Economic and market predictions, price regulations, etc.

Commercial Sea ice extend, movement, condition Ship traffic road mapping
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4.2 Land Ice Extinction Estimation Using
PolInSAR

4.2.1 Introduction, Motivation, and Literature
Review

Monitoring glaciers and ice sheets is a primary task to under-
stand and quantify climate change. Mass balance is the most
important descriptor of the health of a glacier and is the final
objective of nearly all glacier monitoring studies. It expresses
the total mass change of a glacier in 1 year and is computed
by the algebraic sum of accumulation (all processes by which
material is added to a glacier) and ablation (all processes by
which snow or ice is lost from a glacier). Hence, mass
balance is an important indicator of a glacier’s likely
response to climate change. There are several reasons why
direct observations of mass balance are either impractical or
too inaccurate to be of value, in which case it may be useful to
measure a proxy variable that is qualitatively or quantita-
tively related to mass balance or to a change in mass balance.
The two main existing approaches are to monitor or track
changes in the extent of the various glacier facies
(characterised by differing degrees of summer melt) and to
make repeated observations of changes in the areal extent and
terminus position of a glacier over time. Areal extent is still
today best measured with optical imagery, although radar
imagery has shown significant promise for facies
classification.

Because dry snow is relatively transparent at microwave
frequencies, end-of-summer conditions are preserved in win-
ter SAR images and the different melting and freezing
patterns of the various zones result in distinct radar backscat-
ter properties. SAR imagery has been used to help delineate
facies boundaries, although interpretation can be difficult as
variations in backscatter are also caused by changes in the
surface dielectric properties, roughness, and topography. The
additional information provided by PolInSAR can help elim-
inate this ambiguity by separating surface and volume
contributions and thus lead to a more accurate
characterisation of melt extent. PolInSAR-derived glacier
properties such as facies boundaries and the presence of
melt features could thus be used as proxy indicators of
changes in glacier mass balance and regional climate. Both
facies and melt structures are related to the electromagnetic
ice extinction through a variation of vertical density.

The estimation of a parameter such as extinction is of high
relevance for glaciologists since it contains information on
the density and internal structure of the ice:

• It is useful for characterising regions of greater or lesser
volume scatter (Hoen 2001), and in turn increasing the
accuracy of facies delineation and classification.

• It provides a better understanding of glacier dynamics,
monitoring the extent of the various melt zones (facies)
and mass balance fluctuations that may be occurring in the
Polar Regions as a result of climatic changes (Davis and
Poznyak 1993).

• Extinction also has implications on the accuracy of
existing radar products, as knowledge of its temporal and
spatial variability could help in correcting InSAR (Dall
2007) and radar altimeter-derived elevation maps which
suffer from an extinction-dependent penetration bias
(Jezek et al. 1994).

Despite the significant progress in determining the spatial
extent of glaciers, in mapping surface features and in deter-
mining surface elevation, large uncertainties remain in
estimating reliable glacier accumulation rates, ice thickness,
subsurface structures and discharge rates. Consequently,
even today it is challenging to grasp the structure of the ice
volume with SAR remote sensing methods.

The first SAR images, taken in 1978 by Seasat (L-band),
revealed the potential of SAR for identifying surface and
subsurface features and in classifying the glacier zones
(Bindschadler et al. 1987; Rott 1984). A significant step
forward was done with the introduction of experimental
fully polarimetric SAR systems. PolSAR data over alpine
glaciers were provided by the SIR-C (1994) at C- and
L-band (Mätzler et al. 1984).

SAR interferometry has been widely applied to measure
glacier topography and displacements at accuracies of
centimetres to metres (Dowdeswell et al. 1999; Massonnet
and Feigl 1998; Mohr and Madsen 1996; Joughin et al.
1998). Preliminary investigations into the relation between
interferometric coherence and the rate of extinction of the
radar signal in ice were conducted in (Hoen 2001; Hoen and
Zebker 2000) in which the ice was modelled as a homoge-
neous, lossy, and infinite scattering volume. However, polar-
imetric effects were not included in the coherence model.

The use of PolInSAR over glaciers is restricted to a small
number of airborne studies (Dall et al. 2003, 2004; Stebler
et al. 2005) due to temporal decorrelation and to the limited
polarimetric modes of space-borne sensors, as well as to the
complexity of glacier environments and to difficulties in
validation. In (Stebler et al. 2005), the authors describe
PolInSAR signatures at L- and P-band over an alpine glacier,
although no model is suggested to explain polarisation
dependencies in the backscatter and interferometric coher-
ence. PolInSAR coherences at L-band over Greenland are
presented in (Dall et al. 2003), and several models are con-
sidered in (Dall et al. 2004), although no physically model
consistent with observed coherence magnitude and phase was
found. Given the high resolution and multiple observables
offered by PolInSAR on a pixel-by-pixel basis, there is
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considerable potential for its use in glaciological applications
if a model relating observables to ice properties could be
found.

In the recent literature, great attention has been given to
model-based decomposition techniques. One of the first
model-based polarimetric decomposition for ice was proposed
in (Sharma et al. 2011). The main scattering contributions were
assumed to come from a shallow snow-ice interface, the under-
lying possibly oriented ice volume (of dipole-shaped particles)
and an oriented sastrugi field at the surface.

4.2.2 Methodology

The ice extinction estimation method used for this application
was proposed in (Sharma 2010) and can be seen as made of
two parts: model-based polarimetric decomposition and
PolInSAR inversion procedure. The principal objective of
the polarimetric decomposition is to break down the total
scattering within one resolution cell into a sum of elementary
scattering contributions and to associate a physical mecha-
nism to each component. The advantage of the model-based
approach is that it is based on the physics of radar scattering;
hence the interpretation of its results is relatively straightfor-
ward (Van Zyl et al. 2008).

The considered decomposition technique assumes, in a
more general case, that the total backscattering consists of
three components: surface, volume, and oriented sastrugi
field. Assuming that the mentioned contributions are uncor-
related, the combined covariance matrix is the sum of the
three individual matrices plus a diagonal noise matrix N:

Ctot ¼ Cg þ Cv þ Cs þ N ð4:1Þ

where Cg, Cv, and Cs indicate the covariance matrices of the
surface, volume, and sastrugi contribution, respectively.

The surface scattering is postulated to originate from a
slightly rough snow-ice interface and modelled using the
first-order Small Perturbation Model (SPM). The overlying
dry snow layer is assumed to be transparent at long wave-
length (L- and P-band) and only responsible for refraction of
the incident wave.

The ice volume component is believed to be due to a
dominant scattering mechanism related to ice crystals or ice
inclusions (ice pipes and lenses). Consequently, the ice mass
is modelled as an infinite homogeneous volume of identically
shaped and sized scatterers. For simplicity, the scatterers are
assumed to be thin randomly oriented dipoles. Transmission
and propagation effects are also introduced to model a more
realistic scenario.

A third relevant scattering contribution is expected to
originate from a shallow oriented sastrugi field. This consists
of streamlined snow dunes formed by wind erosion and
deposition on the snow surface. It is generally oriented paral-
lel to the main wind direction, and its size ranges from one to
a few metres. An oriented sastrugi field is then modelled as an
oriented volume of dipoles where all scatterers are contained
in the plane of the air-snow interface.

The importance of possible multiple scattering
mechanisms has been investigated by analysing circular
ratio values (RR/RL and LL/RL) observed in the dataset
selected for this showcase. The available L-band and
P-band acquisitions show low circular ratio, with values
ranging between 0.2 and 0.4. Only in some cases at L-band,
it reaches values higher than 1.0 in the extreme far range
region. This general behaviour can be interpreted as an indi-
cator of the low importance of multiple scattering, which was
consequently neglected in the model.

Decomposition results are used to estimate surface-to-
volume ratios μ (where the surface contribution includes the
sastrugi component) for each available polarimetric channel
in order to isolate the volume backscattering contribution.

In a second step, the outcome of the polarimetric decom-
position is used as input in an interferometric coherence
model, which is finally inverted to retrieve ice extinction for
each polarimetric channel. In detail, surface-to-volume ratios
are employed to estimate the volumetric coherence γVol from
the total InSAR coherence γ of the corresponding channel
using the following relations:

γ ¼ ejϕγSNRγrangeγz ð4:2Þ

γz ¼
γVol keð Þ þ μ

1þ μ
ð4:3Þ

where ϕ is a topographic phase term, γSNR is the coherence
term due to SNR decorrelation, γrange represents the coher-
ence due to range spectral decorrelation, and γz the term
dependent only on the vertical distribution of the scatterers.
In (4.3), μ is the estimated surface-to-volume ratio, and
γVol(ke) the volume decorrelation expressed as function of
the extinction coefficient ke to be estimated. In order to
account for the propagation within the ice volume, the verti-
cal wavenumber kz has been modified by considering the
dielectric constant of ice.

The range spectral decorrelation (γrange) and SNR
decorrelation (γSNR) can be separately estimated according
to (Hoen and Zebker 2000; Zebker and Villasenor 1992),
respectively. At this point, the extinction coefficient can be
inverted from γVol for each polarisation and baseline.
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4.2.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on land ice extinc-
tion estimation are summarised in Table 4.2 and further
described in the Appendix.

As shown in Fig. 4.1, surface-to-volume scattering ratios
estimated by means of the polarimetric decomposition are
used in combination with PolInSAR coherences and the
infinite-uniform-volume-underground model to determine
the ice extinction coefficient. The PolInSAR inversion proce-
dure is separately applied to each polarimetric channel. A

spatial averaging window of 100 effective looks is used to
compute interferometric coherences, corresponding to an
approximately square window of 20 � 20 m in ground
range – azimuth geometry. Results from multiple baselines
are combined by eliminating solutions from extremely small
baselines (which have no interferometric sensitivity) and
from longer baselines more susceptible to insufficiencies in
modelling. Results are then averaged from the remaining
valid baselines on a pixel-by-pixel basis. For brevity, results
of polarimetric decomposition and extinctions inversion are
shown in the following only for ascending acquisitions for
the Summit test site. Figures 4.2 and 4.3 show the

Table 4.2 Test sites and corresponding radar and validation data selected for the generation of showcases on land ice extinction estimation

Application/product Test site – Radar data Reference data

Land ice extinction estimation Summit, Austfonna, Svalbard GPR profiles, meteorological data, snow pit

Etonbreen, Austfonna, Svalbard

ICESAR 2007, E-SAR, L-/P-band full-pol

Fig. 4.1 Workflow for extinction
inversion using PolInSAR
observables (Sharma 2010)
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Fig. 4.2 Decomposed power contributions from L-band ascending acquisitions of March 2007, for the Summit test site. From left to right, surface,
volume, and oriented sastrugi contributions are shown

Fig. 4.3 Decomposed power contributions from P-band ascending acquisitions of March 2007, for the Summit test site. From left to right, surface,
volume and oriented sastrugi contributions are reported



decomposed powers for the surface, volume, and sastrugi
contributions at L- and P-band, respectively, for the Summit
test site. As expected, the surface contribution is generally
higher in the near range, due to the steeper incidence angle,
while it decreases for higher incidence angle at both
frequencies. Interestingly, the estimated volume power is
rather different at L- and P-band. In the first case, Fig. 4.2
shows a quite homogeneous image, with slight increase from
the near to the far range, consistent with the behaviour of the
surface component described above. Figure 4.3 depicts a
rather different scenario for P-band as the volume component
varies more within the scene. Areas characterised by higher
volume contribution might be related to the presence of
abundant melt features (ice pipes, lenses) located deeper in
the firn layer, that can only be detected at P-band due to the
enhanced penetration capability. Finally, decomposed sas-
trugi powers point out a stronger influence on L-band
measurements than at P-band, confirming that longer
wavelengths are more sensitive to the underlying ice volume.

A first validation of the estimated extinction values has
been carried out by comparison with published laboratory
experiments on pure ice from (Tiuri et al. 1984; Ulaby et al.
1986a; Dowdeswell and Drewry 2004; Warren and Brandt

2008). These studies report absorption extinction coefficients
of 0.02 to 0.09 dB/m at L- and P-band for temperatures
ranging from �8 to �5 �C, with L-band extinctions slightly
larger than P-band values. Extinctions derived at L-band
from glacier ice samples include one study from the
dry-zone of Antarctica yielding 0.29 dB/m at 1.5 GHz and
0.04 dB/m at 0.9 GHz (Holmlund et al. 2000) and a second
study from the Canadian Arctic quoting a value of 0.05 dB/m
at 1.3 GHz (Uratsuka et al. 1996). At P-band an extinction
rate of 0.03 dB/m was derived from GPR data in the percola-
tion zone of central Greenland (Paden et al. 2007). Compar-
ing these values to the experimentally derived results from
the firn zone at Summit (see Fig. 4.4), the averaged L-band
results from the Pol- InSAR model of around 0.1 dB/m are
reasonable when compared to (Holmlund et al. 2000), falling
between the extinctions derived for 0.9 and 1.5 GHz. The
L-band extinctions at Summit are somewhat higher than that
quoted in (Uratsuka et al. 1996), although the glacier faces
for (Uratsuka et al. 1996) is unknown, such that it may
correspond to relatively pure ice such as in the ablation or
superimposed ice zones without ice inclusions to introduce
scattering loss. At P-band, there are higher extinctions
(>0.15 dB/m) in areas of concentrated potential melt

Fig. 4.4 Inverted extinctions ke [dB/m] for HH (left), VV (middle), and HV (right) polarisations, from ascending L-band acquisitions of March
2007 over Summit
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structures at Summit, but background values are approxi-
mately 0.05 dB/m in Fig. 4.5 for the co-polarisations, in
rough agreement with (Paden et al. 2007). At Etonbreen in
the superimposed ice zone, extinctions at both L-band and
P-band are lower than at Summit, with values close to
0.05 dB/m at L-band and 0.04 dB/m at P-band for the
co-polarisations.

Only a relative comparison between the GPR and SAR
data is possible, because of the differences in frequency,
depth of integration (only around 10 m for the GPR data
compared to the much deeper SAR penetration depths
inverted from the estimated extinctions), and most signifi-
cantly, differences in acquisition geometry. In fact, the GPR
is nadir-looking and thus has a strong surface reflection
component compared with the SAR side-looking backscatter.
Nevertheless, a relative comparison of GPR backscattering
coefficients with the SAR data was carried out in (Sharma
2010) to verify whether the volume scattering seen by the
GPR is related to that from the inverted extinctions. How-
ever, better agreements were observed between inverted
extinctions and GPR backscatter at L-band. This could indi-
cate that the polarimetric decomposition was able to remove
the surface contribution from the SAR data. At P-band, a
worse agreement was found, probably because of the SAR’s
deeper penetrations, well below the range of the GPR data.

4.2.4 Comparison with Single/Dual
Polarisation Data

For this application, a comparison with a dual-polarimetric
case is not possible. As seen in Sect. 4.2.2, the employed
methodology is based on a polarimetric-decomposition tech-
nique for which fully polarimetric SAR data are needed.
Moreover, the complexity of the scattering mechanisms
involved in an ice scenario still represents a very limiting
factor for the development of further electromagnetic models.
Consequently, there is still a lack of studies addressing ice
extinction by means of SAR, and the adopted methodology
represents one of the very few published works in this field.

4.2.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application,
and Conclusions

The potential of SAR for ice extinction retrieval is due to its
capability to penetrate into the ice masses for several tens of
metres at long wavelengths. In addition, the typical side-
looking acquisition geometry of SAR sensors avoids strong
echoes from glaciers surface like in the case of GPR, and the
total backscatter results to be more related to the ice volume

Fig. 4.5 Inverted extinctions ke [dB/m] for HH (left), VV (middle) and HV (right) polarisations, from ascending P-band acquisitions of March 2007
over Summit
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structure. In this sense, polarimetry has a crucial role in the
understanding of the scattering mechanisms involved in this
kind of scenario, and polarimetric model-based decomposi-
tion techniques are actually a very powerful tool to model and
interpret SAR signatures. The advantage of model-based
approaches is that they are based on the physics of the radar
scattering and the characteristics of the investigated scenario;
hence their interpretation turns very straightforward.

4.3 Snow Water Equivalent Retrieval

4.3.1 Introduction, Motivation, and Literature
Review

Snow is a basic reservoir of water and a significant part of the
Earth’s population relies on seasonal snow-packs and glacier
for their water supply (Barnett et al. 2005). Snow also
represents a critical component of the global water cycle
and climate system. Consequently, the global warming
could have a severe impact on several aspects of our society.
For this reason, spatially distributed information on snow
accumulation rate, glaciers mass balance, lake ice, and sea
ice are strongly required. In fact they became essential for the
development of large-scale hydrological and climate models,
in order to better understand the on-going changes and to
predict future climate dynamics. In this sense, satellite
missions are capable to provide global and systematic
observations also over the Polar Regions, where the extreme
climate makes in situ studies very challenging. For snow
cover monitoring, snow water equivalent (SWE) is the pri-
mary parameter to estimate. SWE can be defined in units of
kg/m2 as the product of snow depth and density, or in units of
m by normalising it to the water density (ρwater ¼ 1 kg/m3).

Microwave remote sensing overcomes several limiting
factors, like weather and sun illumination dependence, affect-
ing optical and infrared techniques. Its potential in monitor-
ing snow cover properties is related to retrieval of the electro-
magnetic properties (e.g. dielectric constant) of snow. In the
microwave range, snow exhibits well-defined spectral and
polarimetric signatures related to its special dielectric
proprieties which, in turn, depend on the micro- and macro-
scopic structure and geometry of the snowpack (Maetzler
1998). These characteristics make SAR suitable for studying
and monitoring snow cover.

Due to the high penetration capability of microwaves (for
frequencies up to X-band) and low attenuation of dry snow, a
snowpack behaves as a quasi-transparent medium. In this
case, the major scattering source is the snow/ground interface
(Shi et al. 1993). Hence, X-band or higher frequency
(e.g. Ku-band) SAR sensors are needed for snow depth
measurement and snowpack characterisation because of

their higher sensitivity (shorter wavelength) to the snowpack
structure (Shi and Dozier 1993). Considering a typical snow
cover scenario, several parameters influence the measured
backscattering. The most significant include snow density
and depth, grain size distribution, wetness, and their variation
along depth as well as snow surface roughness underlying
soil conditions (permittivity, roughness, and topography).

First investigations concerning snow parameter estimation
by means of SAR have been addressed with single frequency
and single polarisation (both VV and HH) data mainly due to
the restricted operation modes of early airborne and space
borne SAR sensors (Guneriussen et al. 2001; Shi and Dozier
1995, 2000a, b). Several methods have been developed for
snow cover mapping using multi-temporal SAR data. Time
series C-band SAR data have been used to estimate SWE of a
snow cover in the Appalachian Mountains in Southern Que-
bec (Bernier and Fortin 1998). The study revealed that the
scattering from a shallow snow layer (SWE < 20 cm) is
undetectable at C-band.

Several experiments have been conducted by using multi-
frequency (L-, C-, and X-band) and multi-polarisation radar
backscatter data from the Shuttle Imaging Radar-C (SIR-C)
mission to estimate snow density, depth, and particle size
(Shi and Dozier 2000a, b). The retrieval approach was based
on a physical model and provided reasonable estimates of
SWE, validated with in situ measurements. Nevertheless, the
estimation uncertainty remained large, probably due to the
already mentioned smaller sensitivity of low frequencies to
SWE than higher microwave frequencies. Recent modelling
approaches indicate that combined observations at X- and
Ku-bands are more suitable for remote sensing of SWE (Shi
2006). In this sense, the dual-frequency COld REgions
Hydrology High-resolution Observatory (CoReH2O) Candi-
date Mission was selected from the European Space Agency
(ESA) for feasibility studies in the frame of the Earth
Explorer Programme (European Space Agency 2008). The
CoReH2O SWE retrieval procedure is based on the inversion
of a two-layer (snow-over-ground) radiative transfer model,
using measured dual polarisation (VV and VH) backscatter-
ing as input together with some a priori information
(European Space Agency 2008). This procedure is specifi-
cally developed for open areas under the assumption of a dry
snow cover.

In the last years, the availability of fully polarimetric
space-borne X-band data (e.g. from TerraSAR-X) made pos-
sible first investigations on the potential of polarimetry in
estimating snow cover properties from space. For this, a first
polarimetric decomposition technique for a snow-cover sce-
nario was proposed in (Pisciottano et al. 2011) to discrimi-
nate the scattering contribution of the snow-pack from the
underlying ground, in order to extract the snow layers
characteristics independently from the ground conditions.
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4.3.2 Methodology

The SWE estimation procedure developed for this applica-
tion is based on a two-step procedure. In the first stage, the
polarimetric decomposition proposed in (Pisciottano et al.
2011) is applied on fully polarimetric data acquired at X-
and C-band to separate volume and ground scattering contri-
bution, then an entropy-based criterion is used to mask out
vegetated areas. As second step, the decomposed VV and VH
backscattered power components are used in the place of the
respective backscattering coefficient as input for the
CoReH2O inversion algorithm. For this, the original estima-
tion procedure has been adapted to the single-frequency case
(X- or C-band) considering only the modelling of the snow-
volume backscattering. Some a priori information (from
ground measurements) is also needed (e.g. snow density
and temperature) as input for the estimation procedure.

The main advantage of using polarimetric decomposition
for this application is the possibility to work with the only
snow-volume scattering component. In this way, the SWE
inversion is not depending on the ground layer conditions
(dielectric constant, soil moisture, and roughness) anymore
and the modelling of a ground scattering component becomes
unnecessary. Consequently, the number of a-priori informa-
tion needed for the inversion algorithm is considerably
reduced.

4.3.2.1 Polarimetric Decomposition
for Snow-Covered Areas

The polarimetric decomposition proposed in (Pisciottano
et al. 2011) is used for the developed SWE retrieval proce-
dure over open areas. It consists in a two-component decom-
position, derived as adaptation of the model proposed in
(Freeman 2007), originally developed for a volume of vege-
tation covering the ground. In the case of a snow cover
scenario, the volume scattering component is attributable to
the snow cover, acting as a volume of particles (snow grains),
whereas the surface-like scattering contribution is due to the
underlying ground. Both volume and ground component can
be modelled by means of their respective coherency matrices.

The snow layer is assumed to be a volume of uniformly
distributed and randomly oriented particles. An additional
parameter is the shape factor ρ, ranging from ρ ¼ 1/3 for
the case of dipoles to ρ ¼ 1 for spheres. Intermediate values
of ρ indicate spheroidal particles (Nghiem et al. 1992). Under
this assumption, the volume coherency matrix can be
expressed as (Hajnsek et al. 2007):

Tv ¼ f v

1þ ρ 0 0

0 1� ρ 0

0 0 1� ρ

2
64

3
75 ð4:4Þ

where fv corresponds to the intensity of the volume scattering
component.

The surface scattering component is modelled according
to the Bragg model and its coherency matrix results to be:

Ts ¼ f s

1 β� 0

β βj j2 0

0 0 0

2
64

3
75 ð4:5Þ

where fs is the intensity of the surface scattering component
and β is defined as:

β ¼ Rh � Rv

Rh þ Rv
ð4:6Þ

with Rh and Rv representing the Bragg scattering coefficients
for horizontally and vertically polarised wave, respectively.

The power contribution of the two components to the total
backscattered power Ptot can now be written as:

Ps ¼ f s 1þ βj j2
� �

ð4:7Þ

Pv ¼ f v 3� ρð Þ ð4:8Þ

corresponding to the trace of the associated coherency matri-
ces. Using the transformation from coherency to covariance
matrix (Hajnsek 2001) the VV and VH power contribution of
the volume scattering component can be derived and written
as:

PVV
v ¼ f v ð4:9Þ

PVH
v ¼ f v

1� ρ
2

ð4:10Þ

The quantities fv and ρ can be estimated from the coher-
ency matrix of the real data as suggested in (Pisciottano et al.
2011).

4.3.2.2 Snow Water Equivalent Retrieval
Algorithm

The original SWE inversion procedure proposed in
(European Space Agency 2008) for the CoReH2O candidate
mission is based on a dual frequency (X- and Ku-band) and
dual polarisation approach and is developed for dry snow
cover in open areas. The core of the procedure is a two-layer
Dense Medium Radiative Transfer (DMRT) backscatter
model. It relates the physical properties of the snow layer
and the underlying ground to the SAR backscattering in the
VV and VH polarisations. In particular, the snow volume is
modelled as a layer of uniformly distributed spherical
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particles (snow grains), which have same size. Under this
hypothesis, the volume backscatter contribution can be writ-
ten as (Rott et al. 2008; Ulaby et al. 1984):

σvpq ϑtð Þ ¼ T2
pq ϑtð Þ

� ωpq

2
1� exp �2

keSWE
ρs cos ϑtð Þ

� �� �
cos ϑtð Þ

� �
ð4:11Þ

where Tpq is the transmission coefficient at the air-snow
interface; p and q the transmitted and received polarisation,
respectively; and ϑt the transmitted angle through the snow-
pack. The snow parameters involved are the density ρs, the
extinction coefficient ke, the scattering albedo ω, and
the SWE.

The entire estimation algorithm can be split in two steps.
First, VV and VH backscatter coefficients are simulated
using the DMRT model, together with a set of a priori
information and initialisation values of the parameters to
estimate: SWE and grain size. Successively, a constrained
optimisation method is applied pixel by pixel to iteratively
match the simulated X- and Ku-band VV/VH backscatter
coefficients to the measured values. The input values of
SWE and grain size ensuring the reached optimum condition
are finally assumed as estimates.

As already mentioned, this procedure is strongly depen-
dent on the required a priori information about the ground
and snowpack conditions. This kind of information are usu-
ally obtained through in situ measurements which are rather
expensive, time-consuming, and can be conducted only on
very small scale. Consequently, the dependency on a priori
information represents a strong limitation when deriving
SWE maps (and not single-point values) over a certain area.

In this sense, the modified SWE inversion procedure
based on polarimetric decomposition results to be much
more robust since the dependency on most of the a priori
information is eliminated. First, the CoReH2O algorithm has

been adapted for a single-frequency case (X- or C-band).
Then, the capability of the polarimetric decomposition to
isolate the snow volume scattering component allows to
focus the DMRT modelling on the only volume component.
In fact, assuming that the volume backscattering is uncorre-
lated to the underlying ground layer (no second order scatter-
ing considered), there is no need to know soil conditions.
This represents a significant simplification of the entire pro-
cedure since the ground contribution strongly influences the
total backscattering. In addition, the sensitivity analysis of the
CoReH2O DMRTmodel to the snow properties performed in
(Pisciottano et al. 2011) showed that the backscattering con-
tribution from the snow layer is mainly influenced by SWE
and grain size, and only slightly dependent on other
parameters, like snow temperature and density. This means
that the latter two quantities need to be known for a rigorous
SWE inversion, whereas a slightly rougher estimate can be
obtained by assuming fixed values of snow temperature and
density over the processed SAR scene. The scheme in
Fig. 4.6 shows the working flow-line of the proposed SWE
estimation procedure. The final products are SWE maps with
a spatial resolution of about 20 � 20 m in the case of
TerraSAR-X data and 40 � 40 m for RADARSAT-2.

4.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on snow water
equivalent retrieval are summarised in Table 4.3 and further
described in the Appendix.

The SWE estimation procedure described before has been
applied over different subsets of the available TerraSAR-X
and RADARSAT-2 dataset. A validation could be carried out
only over the small areas where the ground measurements
took place. For brevity, the focus is on test site of
Sodankylae. In particular, the results shown in the following
are obtained in correspondence of the Intensive Observation

Fig. 4.6 Scheme of the SWE
estimation procedure based on
polarimetric decomposition and
modified CoReH2O algorithm
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Area (IOA), where continuous SWE measurements are avail-
able for the same period of the SAR acquisitions.

The three TerraSAR-X acquisitions available for this test
site were acquired on the 11th and 22nd of April and the 3rd
of May 2010. In these dates, point measurements of SWE in
the IOA reported values of 205 mm, 191 mm, and 164 mm,
respectively. The corresponding retrieved values obtained
from the inversion procedure, using snow density and tem-
perature measurements as a priori information, are shown in
Fig. 4.7, where a validation is also performed by comparison
with the respective measured values of SWE. As clearly
shown in Fig. 4.8, for the acquisition of April, the SWE
inversion performs very well; estimated values of 211 mm
and 193 mm correspond to measured values of 205 mm and
191 mm, respectively. These results definitely satisfy the
accuracy requirement established for the CoReH2O mission.
For the case of May, the worse performance can be due to the
raising of air temperature reported in the ground
measurements for that period. This may have led to a change
in the snow-pack structure, moving away from the validity
hypothesis of the used DMRT model. For the case of
RADARSAT-2, preliminary results (see Fig. 4.9) seem to
confirm the conclusions of (Bernier and Fortin 1998) since

Fig. 4.7 The image on the left shows the entropy-based mask for open
areas obtained from the TerraSAR-X acquisition of the 11.04.2010 over
Sodankylae. The red box indicates the subset including the IOA where a

demonstration of SWE estimation has been performed (image on the
right). SWE values are retrieved over a 60 � 60 pixels subset and range
from 0 mm (black) to 240 mm (red)

Table 4.3 Test sites and corresponding radar and validation data selected for the generation of showcases on snow water equivalent retrieval

Application/product Test site – Radar data Reference data

Snow water equivalent
retrieval

Sodankylae, Finland Ground measurements (CASIX
experiment)3 TerraSAR-X quad-pol scenes (2010), 8 RADARSAT-2 quad-pol scenes

(2011–2012)

Churchill, Canada

3 TerraSAR-X quad-pol scenes (2010) 5 RADARSAT-2 quad-pol scenes
(2011–12)

Fig. 4.8 Validation of estimated SWE over the IOA of the Sodankylae
test site using the three TerraSAR-X acquisitions. Blue, green, and red
symbols are referred to the dates of 11-04-2010, 22-04-2010 and 03-05-
2010, respectively
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almost no sensitivity can be observed along time in presence
of the shallow snow cover (SWE always lower than 20 cm)
reported for Sodankylae.

4.3.4 Comparison with Single/Dual
Polarisation Data

Some comparisons have been carried out between the
employed methodology, based on fully polarimetric data,
and the original CoReH2O dual polarimetric retrieval proce-
dure. Preliminary results show that the procedure based on
polarimetric decomposition is more robust than the dual-pol
procedure, especially when tested over different ground
conditions (bare soil, swamp). This is attributable to the
capability of the polarimetric-decomposition to extract the
volume scattering component quite efficiently over different
kinds of ground, while the efficiency of DRTM model for the
ground scattering proposed in the dual-pol approach is
severely compromised when soil condition are not known
(Pisciottano et al. 2011). Nevertheless, these results have to
be confirmed by further investigations.

4.3.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

The importance of polarimetry in this kind of applications is
well established, as already discussed in the literature review.
Single polarisation studies have shown a very limited poten-
tial and were mainly employed for snow cover mapping. The

introduction of polarimetry, even if with a dual-pol configu-
ration, allowed deeper investigations about the scattering
mechanisms and their relative contributions to the total scat-
tering. They also contributed significantly for the develop-
ment of more detailed physical models. Nevertheless, as
observed for the case of the CoReH2O SWE inversion, a
dual polarisation approach requires a significant a priori
knowledge to be able to estimate snow properties
(e.g. SWE, grain size, etc.). The introduction of fully polari-
metric data makes possible the development of decomposi-
tion techniques for snow cover scenarios and has the big
potential to reduce (almost eliminate) the need of any a priori
information about the investigated test site.

4.4 Sea Ice Characterisation

4.4.1 Sea Ice Observation
with Quad-Polarimetric SAR

4.4.1.1 Introduction, Motivation, and Literature
Review

The observation of sea ice is a major topic in remote sensing
due to the difficulty of performing frequent in situ
expeditions (Elachi and Van Zyl 2006; Gareth Rees 2006;
Jackson and Apel 2004). Monitoring of sea ice is important
for many environmental issues (Sandven et al. 2006). First of
all, it is a sensitive climate indicator, and it plays an important
role in global climate systems. It restricts the exchange of
heat and chemical constituents between ocean and atmo-
sphere acting as an insulator. Moreover, it influences the
global climate system with effects related to its elevated

Fig. 4.9 Time series of measured SWE (blue), snow depth (orange), and inverted SWE (green) using RADARSAT-2 data for the Sodankylae IOA
test site
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albedo, reducing the amount of solar radiation absorbed at the
Earth’s surface. On the other hand, sea ice affects oceanic
circulation directly by the rejection of salt to the underlying
ocean during ice growth, which is responsible for deep water
formation. Besides these, the possibility and safety of navi-
gation in Polar Regions is severely influenced by the pres-
ence of sea ice.

Microwave sensors and synthetic aperture radar (SAR) are
very valuable for monitoring sea ice since they can acquire
information in absence of solar illumination (i.e. during Polar
nights) and with almost any weather conditions
(Franceschetti and Lanari 1999). Unfortunately, the descrip-
tion of the backscattering behaviour of sea ice is particularly
challenging. For this reason, many scientists moved towards
systems able to increase the amount of information acquired.
In this context, polarimetry plays a key role, because it is able
to enhance dramatically the discrimination capability of the
observed target, solving many ambiguities revealed in single
polarisation images (Cloude 2009; Lee and Pottier 2009; Van
Zyl 2011). Specifically, sea ice could be modelled as a
layered media showing several interfaces: air-snow, snow-
ice, and (eventually) ice-water (Elachi and Van Zyl 2006;
Jackson and Apel 2004; Drinkwater et al. 1992; Nghiem et al.
1995a, b; Ulaby et al. 1986b).

An introduction to polarimetry is provided in the first
chapters of this book. In this section we only concentrate on
the polarimetric models introduced to characterise sea ice.
Several models were proposed to predict the polarimetric
behaviour of sea ice (Nghiem et al. 1995a, b; Ulaby et al.
1986b; Carlström 1997; Tjuatja et al. 1992). A thorough
description of them is outside the purpose of this Section.

4.4.1.1.1 Polarimetric Models
To understand the backscattering from ice, it is important to
know the physical differences between different ice types.
Here, only a very short inventory is reported and the reader is
redirected to the World Meteorological Organization (WMO)
Sea Ice Nomenclature document for further details. Follow-
ing its formation, the ice can be defined new ice (frazil ice,
grease ice, slush and shuga), nilas (below 10 cm thick),
young ice (10–30 cm thick), first year ice (30 cm to 2 m
thick), and old or multi-year ice (that has survived at least one
melting season). The floating structures are generally called
floes (that can have extensions from few metres to several
kilometres). Another structure commonly seen during ice
formation is pancakes (generally smaller than 3 m) that may
present raised rims and draft. With deformed ice, it is
designed ice that suffered deformations due to pressure or
melting. Some classical structures are ridges and hummocks.
Another interesting feature of sea ice areas are leads, which
are openings (cracks) in the ice tens of metres large and up to
several kilometres long. Each of the ice formations or
features will have a characteristic scattering behaviour.

Sea ice is generally modelled as a multi-layer medium:

1. The first interface is between air and snow cover (Tjuatja
et al. 1992; Beaven et al. 1995). The behaviour of this first
layer is strongly dependent on the dielectric properties of
the snow, which are dependent on factors as water content
and temperature. If the dielectric constant is small enough
(i.e. dry and cold conditions), this interface will not scatter
much, and the snow will be transparent to the electromag-
netic wave. It is important to keep in mind that in some
conditions as during snow melting this layer can mask
completely the underneath ice.

2. The second interface is snow-ice. The behaviour of this
interface depends on the difference in dielectric constants
between snow and ice (Nghiem et al. 1995a, b; Ulaby et al.
1986b). If the ice is highly saline, its dielectric constant is
quite high, and the most of the backscattering will come
from the surface. On the other hand, if the ice is less saline,
the electromagnetic wave can penetrate, and a consistent
volume scattering will be observed (Beaven et al. 1995).
Another important factor in the balance of surface and
volume scattering is the surface roughness. As a role of
thumb, higher roughness (compared with the wavelength)
will provide higher backscattering (Ulaby et al. 1986b).
The Bragg model is generally exploited to characterise the
surface scattering, but when the roughness is very large,
an extended version of the model should be used (Cloude
2009).

3. Ice volume: Characterising the backscattering of the ice
volume is particularly challenging due to the large
differences showed by ice types (strongly depending on
their formation process). From experiments and
modelling, it appears that the backscattering mainly
comes from brine inclusions which represent small
discontinuities in the volume. Polarimetry is expected to
be useful to acquire some insight on the typology of ice,
since it is sensitive to particles anisotropy and orientation
(Nghiem et al. 1995a, b; Ulaby et al. 1986b).

Besides a simple layered structure, ice generally presents a
large variety of deformation features due to the action of sea
and wind that compress and crack floes (Carlström 1997;
Isleifson et al. 2009; Onstott et al. 1998). Ridges, hummocks,
and areas with broken ice are generally (but not necessarily)
bright in the SAR images. This makes possible, in some
instances, the identification of floes edges (Dierking and
Dall 2007). Polarimetry combined with heterogeneity analy-
sis may play a role in detecting such features, since their
polarimetric behaviour is expected to be different from the
one of homogeneous floes.

Another feature observable under some circumstances is
the frost flowers. They form in calm and windless conditions
when the atmosphere temperature is much lower than the one
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of the ice (Isleifson et al. 2010). They may present a very
large backscattering which may be eventually misinterpreted
by some models.

4.4.1.1.2 Validating Models and Experiments
Many experiments were carried out in order to test the polari-
metric models. Some of them consider laboratory conditions,
where all the parameters are under control and can be accu-
rately monitored. A famous series of experiments were the
CORRELEX (Nghiem et al. 1995b; Beaven et al. 1995).
Although in a lab it is possible to control accurately the
experiment, there may be problems in replicating some
of the characteristics of sea ice formations that are only
achievable in the field. For instance, the mechanical effect
of waves is central in ice formation. One experiment that
tried to capture this characteristic is presented in Onstott
et al. (1998).

Another way to test models is to use a scatterometer and
collect data over actual sea ice (Nghiem et al. 1995b;
Isleifson et al. 2009; Dierking 1999; Geldsetzer et al. 2007;
Kern et al. 2006; Partington et al. 2010). Clearly this
approach may lack control compared to a lab experiment,
and it is generally limited to a reduced number of ice types;
however, it is often preferred to lab experiments because it is
able to picture more realistic scenarios.

4.4.1.2 Methodology
In this section the employed methodologies and polarimetric
observables are briefly listed. Details about them can be
found in the introductory chapters, here only the applicability
to sea ice observation is examined.

4.4.1.2.1 Co-polarisation Ratio
This is defined as the averaged intensities of VV over HH
polarisations. In the literature, many authors have used this
observable (Geldsetzer et al. 2007; Kern et al. 2006;
Drinkwater et al. 1990; Geldsetzer and Yackel 2009; Kwok
et al. 1991) for several reasons. (1) To detect open water and
leads: it is a useful discriminator between Bragg and volume
scattering (Geldsetzer and Yackel 2009). A complication is
when water in very calm conditions has a very low signal-to-
noise ratio (SNR), which makes the two Co-Polarisations
more similar. (2) To analyse volume scattering: due to
particles anisotropy, it is sometimes observed that the volume
can have HH power higher than VV (Geldsetzer et al. 2007).
(3) Ice thickness: the balance of surface and volume scatter-
ing in sea ice is ruled by dielectric constant and roughness.
When these two are high, the sea ice behaves more as a
surface; otherwise a volume is observed (Kern et al. 2006).
Interestingly, the dielectric constant is strongly dependent on
the ice salinity, and the latter exhibits some dependency on
ice thickness (thicker ice is less saline due to expulsion and

washing up during melting seasons). Therefore, thicker ice
should have a lower ratio, and several attempts were made to
find a regression curve to extract thickness from this ratio
(Kim et al. 2012; Wakabayashi et al. 2004).

4.4.1.2.2 Cross-Polarisation Ratio (or Depolarisation
Ratio)

This is the ratio between a cross-pol and a co-pol channel
(Kim et al. 2012; Thomsen et al. 1998). This can be extended
using the sum of cross-polarisations over the sum of
co-polarisations (Geldsetzer et al. 2007). It is mainly
employed to:

1. Detect open water: water is expected to have low Cross-
Polarisation backscattering.

2. Ice thickness: for similar reasoning like the
Co-Polarisations Ratio (Kim et al. 2012).

4.4.1.2.3 Co-polarisation Coherence
Many authors exploited the coherence between the two
co-polarisations γCo for sea ice monitoring (Nghiem et al.
1995b; Isleifson et al. 2009; Geldsetzer et al. 2007;
Drinkwater et al. 1990; Kwok et al. 1991; Israelsson and
Askne 1991), for the following reason. Analysing surface
and volume scattering, both magnitude and phase provide
information regarding the scattering process. For instance, a
zero phase difference with small standard deviation is an
indicator of surface scattering. Regarding volume scattering,
isotropic (spherical or randomly oriented) particles provide
again zero phase difference but with a standard deviation
generally larger compared to surfaces. Finally, different
phase behaviours can be observed depending on the particles
anisotropy and orientation (Nghiem et al. 1995a, b; Ulaby
et al. 1986b).

4.4.1.2.4 Circular Polarisation Coherence
This observable is very sensitive to: (1) surface roughness
(Wakabayashi et al. 2004), using the magnitude; (2) orienta-
tion of the observed targets (Lee et al. 2000, 2002), using the
phase. In the case of ice floes, a large scale surface variation
can introduce a large phase standard deviation (Wakabayashi
et al. 2004). Moreover, target (i.e. particles or surface
features) orientation can be analysed and it can be used to
solve misclassification with volume scattering.

4.4.1.2.5 Cross-Polarisation Coherence
In some situations (especially in melting conditions), the
cross-polarisation backscattering from ice is particularly
low; consequently, the signal-to-noise ratio, SNR, (defined
as the ratio between averaged intensity of signal over inten-
sity of noise) is low. This coherence can be used to check the
reliability of cross-channel measurements over dark areas.
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4.4.1.2.6 Cloude-Pottier Decomposition
Several examples can be found where the Cloude-Pottier
decomposition is employed for sea ice observation, and
they are mainly related to (1) classification and (2) features
extraction (Wakabayashi et al. 2004; Scheuchl et al. 2002,
2003a; Wesche and Dierking 2012).

4.4.1.2.7 Noise Estimation/Mitigation
Every time a coherence is estimated, it is important to under-
stand whether it represents a physical decorrelation effect or
not. Quad-polarimetry allows a very powerful methodology
for estimating the value of the noise floor (Cloude 2009).
Thermal noise decorrelation can be easily estimated based on
the SNR of the specific channels (e.g. the two
co-polarisations). Also some noise mitigation procedure can
be exploited (Cloude 2009).

4.4.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice observa-
tion are summarised in Table 4.4 and further described in the
Appendix.

In this Section the results obtained using polarimetric
observables are presented. For the sake of brevity, only few
observables will be displayed. Figure 4.10 presents the
Storfjord dataset, while Fig. 4.11 shows the Barents Sea
dataset. In all the images, the horizontal axis is azimuth and
the vertical is range (near range at the bottom and far range at
the top of the image). The average (filtering) used considers a
boxcar of 7 � 28 pixels. Such window should provide an
equivalent number of looks of around 86. Moreover, only for
visualisation purposes, the images consider the multi-look of
4 pixels in azimuth, which makes the pixels on the ground

Table 4.4 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice observation

Application/product Test site – Radar data Reference data

Sea ice observation Fram strait, Storfjord, Barents Sea (Svalbard) No ground measurement available

E-SAR L-band

Fig. 4.10 Polarimetric analysis of L-band ICESAR data: Storfjord (16.03.2007). RGB Pauli composite image (Red, |HH � VV|2; Green, |2HV|2;
Blue, |HH + VV|2); intensity of cross-polarisation; phase of circular-polarisations coherence
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Fig. 4.11 Polarimetric analysis of L-band ICESAR data: Barents Sea (18.03.2007). RGB Pauli composite image (Red, |HH�VV|2; Green, |2HV|2;
Blue, |HH + VV|2); co-polarisations ratio; magnitude of co-polarisations coherence; magnitude of cross-polarisations coherence
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more squared (please note, this depends on the range location
in the image).

Results can be interpreted as follows:

1. Pauli RGB: It can be noticed that the simple visualisation
of the Pauli RGB image can help significantly to distin-
guish between different sea ice types. Interestingly, it
appears that the colour of the images is bluer in the near
range (bottom: around 26� of incidence angle) than in far
range (top: about 65� of incidence angle). This is in line
with many models that predict a stronger surface contri-
bution for small incidence angles and a larger volume
contribution for larger incidence angles (Nghiem et al.
1995b; Carlström 1997; Tjuatja et al. 1992).

2. Phase of circular-polarisation: in Fig. 4.10, a green
(i.e. HV) bright area is visible. Strong backscattering in
the cross-channel is often associated with volume scatter-
ing (e.g. multiyear ice, MYI). However there is no MYI in
the scene. Only by analysing this phase it is possible to
understand that the strong cross return is due to orientation
effects (i.e. it is not MYI). The reason of such orientation
is not completely known; nevertheless the correction
allowed solving this ambiguity.

3. Co-polarisation ratio: This observable is very powerful to
highlight areas of open water (Geldsetzer and Yackel
2009). In Fig. 4.11, the bright areas correspond to open
water (this was validated with a photograph captured
during the flight pass).

4. Co-polarisation coherence: This is used to discriminate
between different kind of scattering mechanisms and vol-
ume types. Figure 4.11 represents an example where the
magnitude of this observable can be used to discriminate
between floes. Additionally, some studies described cor-
relation between this observable and ice thickness
(Nghiem et al. 1995b).

5. Cross-polarisations coherence: From Fig. 4.11, it can be
seen that some floes present a low value (i.e. low SNR),
and therefore care has to be given when the cross-
polarisation is used to retrieve parameters over such areas.

4.4.1.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Few conclusions could be drawn on the benefits of using
polarimetric data for sea ice observation.

1. Higher discrimination: The use of four images instead of
one enhances the capability to characterise the scattering
process. For instance, the co-polarisation ratio can be used
to detect open water, and the co-polarisations coherence
tells about the scattering mechanism. If our interest is
focused on detecting ice features as ridges or hummocks,

then the depolarisation ratio or the Cloude-Pottier decom-
position can be useful.

2. Avoiding misclassification (correction for orientation
angle): Another powerful methodology only possible
with quad-pol data is the correction for orientations of
observed targets. The latter can produce misclassification
(in this case with multi-year ice).

3. Noise estimation/mitigation: With quad-pol data, it is pos-
sible to estimate locally the noise floor and understand
where the measurements are less reliable due to noise (and
therefore they should not be used for quantitative
analysis).

As a final remark, from the literature it seems that
polarisation has a valuable role in sea ice observation (even
if just with dual-polarimetric data). It is generally quite
agreed that at least a dual-polarimetric mode is necessary in
order to understand the behaviour of different kinds of sea
ice. In some instances, the refrain in exploiting polarimetric
modes is the impossibility to acquire very large swaths
(as ScanSAR images) that in many sea ice applications are
needed to cover vast areas in short time. Fortunately, many of
the new generations of satellites will be able to acquire
polarimetric data with wide swaths.

4.4.2 Sea Ice Segmentation and Classification
from Fully Polarimetric SAR Imaging

4.4.2.1 Introduction, Motivation and Literature
Review

SAR images of sea ice reveal large variability in appearance
as function of imaging geometry (incidence angle,
polarisation, frequency), physical properties (surface rough-
ness, ice type, and other surface properties), and meteorolog-
ical conditions. Wave propagation effects, such as
attenuation, emission, and scattering, are strongly affected
by physical properties like salinity, temperature, snow
cover, wetness, volume structure, and surface roughness
(Kong 1986). As a result, the physical structure of sea ice
leads to radar signatures that may enable image segmentation
and ice type classification.

Sea ice is in general divided into two major categories,
first-year ice (FY) and multi-year ice (MY). MY ice has
survived at least one summer melt and is discriminated
from FY-ice on the basis of properties such as deformation
(roughness, surface topography), thickness, salinity, and
snow cover (Nghiem et al. 1995a). The extent of deformation
is exploited when trying to discriminate ice types. The most
commonly referred sea ice types are level ice, rafted ice,
ridged ice, rubble fields, and hummocked ice. Level ice is
ice with a relatively flat surface, which has not been deformed
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to any extent. Rafted ice arises when ice sheets collide and
override one another; it occurs usually on new and FY-ice.
Pressure processes cause the ice to pile up both above and
below the surface. A ridge is the result of such processes and
can be described as a long line of piled up, cracked ice.
Repeated ridging causes rubble fields. Leads are open water
channels in areas of predominantly sea ice. In addition, there
exist several ice types representing young and thin sea ice.

The emergence of dual- and fully polarimetric space-
borne SAR systems gives prospects for enhancement of the
amount of information about sea ice that can be obtained
from satellite-borne sensors.

The goal of this note is to present an example of the
improvements gained in characterisation of sea ice by
utilising polarimetric observations instead of just single-
polarisation SARs. We will here focus on how polarimetry
may improve segmentation and classification.

From previous studies of multi-polarisation measurements
of sea ice, the knowledge status can currently be summarised
as follows:

• Polarimetry is promising for the identification of the early
stages of new (thin) ice formation and the discrimination
of ice and open water (Dierking et al. 2003).

• The role of phase in polarimetric classification is unclear.
• The optimal frequency for polarimetric classification

remains unclear and varies with application and region
(Dierking et al. 2004). Overall, L-band appears to be more
effective for full polarimetric ice classification than
C-band.

• Multi-frequency is superior to single-frequency polarime-
try. This would require improved methods for data inte-
gration and data fusion processing.

Full polarimetric SAR observations allow for the decom-
position of radar signals into the contributions from the
various scattering mechanisms. Even if it is generally
known that scattering from sea ice is dominated by surface
scattering, the backscattered signals may include
contributions from several mechanisms. The relative
contributions of rough surface scattering, specular
reflections, volume scattering, and multiple scattering pro-
cesses depend on thickness, degree of deformation, size of
deformed structures, amount of snow on the ice, salinity, and
compactness of the ice fragments (Dierking et al. 1997).

Several polarimetric parameters have been evaluated for
first year sea ice discrimination in C-band RADARSAT-

2 data in (Gill and Yackel 2012), and the authors obtained a
classification accuracy greater than 90%. Extracting polari-
metric information from sea ice scenes was the main subject
of (Eltoft et al. 2012), and it was noted that the multitude of
decomposition parameters are yet to be fully evaluated for
sea ice discrimination.

4.4.2.2 Methodology
The workflow for retrieval of sea ice information undertaken in
this Section includes two major steps. The first step is an
unsupervised segmentation of the image, which subdivides it
into a given number of segments based on variations in statisti-
cal and polarimetric properties. This step is followed by a
polarimetric analysis, where the objective is to infer the polari-
metric properties of each image segment. These properties may
be interpreted in terms of physical characteristics, which may
help label the segments into ice types.

The PolSAR image is segmented using a mixture of
Gaussian models for the global probability density function
(pdf). We assume reciprocity, and the segmentation algo-
rithm uses the following 6 parameters generated from the
general (3 � 3) C-matrix, as described in (Doulgeris and
Eltoft 2010; Doulgeris 2013). These 6 parameters are geo-
metric brightness, co-polarisation ratio, cross-polarisation
ratio, co-polarisation, correlation magnitude, and
co-polarisation correlation angle. The six features are
nonlinearly transformed such that the marginal pdfs have a
Gaussian-like appearance at the peaks. We then model the
global pdf as a multivariate Gaussian mixture distribution and
segment the image into a given number of unlabeled
segments using the expectation maximisation algorithm, as
described in (Doulgeris and Eltoft 2010). The proper number
of classes is currently manually estimated based on optical
images, the Pauli image, the sea ice observation log, and the
segmentation results obtained with different number of
classes.

4.4.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice segmen-
tation and classification are summarised in Table 4.5.

The smoothed, geocoded segmentation result is shown in
Fig. 4.12. The image has been segmented into five classes.
Sea ice experts interpreted the segmentation result aided by
thickness measurements, optical photos, and the Pauli image.
According to their interpretation, the yellow class is thin ice
or open water; the red class is young, thin first year ice with

Table 4.5 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice segmentation and classification

Application/product Test site – Radar data Reference data

Sea ice segmentation and
classification

Arctic Sea, north of
Svalbard

Ice thickness measurements (EM-bird), optical photos, roughness
measurements

RADARSAT-2, April
2012
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snow cover and some deformation; the blue, brown, and cyan
classes are various stages of first year ice.

Figure 4.13 displays the thickness estimates along the
helicopter track. As can be noted, the thickness varies
between 0 and 6–7 m. Below the thickness curve, we have
plotted the image segments along the flight track. By com-
paring the thickness and the coloured segments, we can
conclude that the yellow class certainly corresponds to thin,
new frozen ice, or open leads. We also see strong fluctuations
in thickness in some classes, indicating deformed ice. We
note that the cyan class seems to have the least thickness
variations, indicating that this is a smooth ice type. This
observation is in agreement with the fact that this class has
very low backscatter. However, this class consists of rela-
tively thick ice, around 1.5 m according to the EM-bird
estimates.

4.4.2.4 Comparison with Single/Dual
Polarisation Data

As illustrated in Fig. 4.14, radar polarimetry will in general
increase the dimension of the feature space and enable
retrieval of more information from a scene. Whereas single
polarisation SAR images basically allow for image

Fig. 4.12 Image segmented by the automated segmentation algorithm
into five classes
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Fig. 4.13 Thickness estimates from EM-bird measurements. The colour segments at the bottom corresponds to the segments along the flight track

Fig. 4.14 The added feature
space dimension by radar
polarimetry
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processing type analysis, polarimetry will allow for both
polarimetric analysis, to infer scattering information, as well
as the use of advanced multivariate statistical methods. With
respect of the current application showcase, we note that a
single polarisation image will be restricted to only two
parameters, the multi-looked intensity and a measure of
non-Gaussianity. Polarimetry allows for much more, and it
is a subject for future research to optimise the feature selec-
tion. From our experience, polarimetry will result in more
detailed segmentation.

4.4.2.5 Discussion on the Role of Polarisation,
on the Maturity of the Application
and Conclusions

This Section has presented the result of segmenting a
RADARSAT-2 PolSAR scene of Arctic sea ice, collected
north of Svalbard in the Spring 2011. The scene shows
various stages of first year ice, plus leads, some open, and
some refrozen. The data set also comprised in situ data such
as EM-bird thickness measurements, and optical photos
along the helicopter tracks covered by the SAR image.

The analysis shows that the feature set consisting of six
statistical and polarimetric parameters has discrimination
power and enables segmentation of this sea ice scene into
five proper segments. Some of these can be identified as
distinct ice types. The added information associated with
full polarimetry allows for a more detailed segmentation of
the scene, as well as providing scattering mechanism infor-
mation, which may subsequently help labelling the segments
into ice types.

4.4.3 Antarctic Sea Ice Thickness Using Sea Ice
Surface Measurements
and TerraSAR-X Data

4.4.3.1 Introduction, Motivation and Literature
Review

Sea ice thickness data is critical to the long-term assessment
of climate change in the Polar Regions. The validation of sea
ice remote sensing products in Antarctica has been compli-
cated by remote location, limited extent, and infrequency of
direct measurements. Estimates of sea ice thickness are par-
ticularly important in the Antarctic due to the limited
opportunities for direct physical measurements, even when
access is available.

Research objectives described in this Section are:

• Obtain spatially and temporally coincident icemeasurements
and TerraSAR-X (TSX) satellite measurements of Antarctic
sea ice floes in the Bellingshausen Sea, an area that has
undergone significant change.

• Examine polarimetric descriptors derived from TSX
related to sea ice and snow characteristics for sea ice floes.

• Assess statistical relationships between surface elevation,
snow depth, freeboard, ice thickness, and roughness with
the ultimate goal of classifying sea ice types and calculat-
ing sea ice thickness from active radar returns.

This research benefited from direct collaboration with the
British Antarctic Survey (BAS), Scottish Association of
Marine Science (SAMS), and other international participants
in obtaining in situ sea ice measurements during the IceBell
field campaign in November 2010. The results of these
efforts were used to derive sea ice and snow cover thickness
relationships in the Antarctic which ultimately could improve
satellite remote sensing products, allowing improved long
term monitoring of the ice mass balance in the Antarctic sea
ice zone.

Both passive and active microwave remote sensing have
provided useful information on the extent and area of sea ice
in both Polar Regions and their trends of change over approx-
imately 30 years. Techniques for monitoring ice thickness
from space have used altimetry measurements from lasers
and the buoyancy of the snow and ice relative to local sea
level reference (Zwally et al. 2008; Yi et al. 2011; Kurtz et al.
2009; Kurtz and Markus 2012). An alternate approach uses
empirical relationships developed from in situ field data to
derive ice thickness from snow freeboard (Xie et al. 2011).

Previous studies of the potential of polarimetric SAR data
for sea ice monitoring and characterisation have concentrated
on thin-ice due to limited data available (Scheuchl et al.
2004) which resulted in part from a lack of coincident surface
measurements with SAR acquisitions. Attempts to obtain
thin-ice thickness from airborne radar imagery have been
made using full polarimetric data acquired by JPL’s AIRSAR
(Nghiem et al. 1995a; Rignot and Van Zyl 1992; Rignot and
Drinkwater 1994; Kwok et al. 1995; Winebrenner et al.
1995), Danish EMISAR (Thomsen et al. 1998; Dierking
et al. 2004; Skriver and Pedersen 1995), Canadian Convair-
580 SAR (Livingstone et al. 1996; Scheuchl et al. 2003b),
German HELISCAT (Kern et al. 2006), and Japanese PiSAR
(Wakabayashi et al. 2004; Matsuoka et al. 2002; Nakamura
et al. 2005). Fully polarimetric spaceborne SAR data were
first acquired over sea ice in 1994 by the SIR-C mission, with
first results reported by Eriksson et al. (1998). Other results
based on high-resolution polarimetric data were reported
using ALOS-PALSAR (e.g. Wakabayashi and Sakai 2010),
RADARSAT-2 (e.g. Kim et al. 2012), and TerraSAR-X
(e.g. Kim et al. 2012; Busche et al. 2009).

Scheuchl et al. (2005) indicate that swath widths for fully
polarimetric modes are limited and will not provide sufficient
coverage for operational sea ice monitoring. This research
allowed for multiple acquisitions of X-band dual-polarisation
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SAR for tracking distinct ice floes, in conditions of rapid
drift, typically over 100 m/h, with 80% success. The pro-
posed ice-thickness method improved on existing techniques
showing high potential in operational sea ice monitoring.

4.4.3.2 Methodology
Radar backscatters are affected by thick snow cover (volume
scattering), snow wetness, presence of ice layers, age (grain
size/shape), and sea water flooding at the snow-ice interface.
Due to differences in structure and composition, different
types of sea ice have different polarimetric scattering
behaviours. The unique coherent dual-polarimetric X-band
capability of TSX imagery was used to emphasise the volume
scattering through the parameters derived from entropy/alpha
decomposition developed by Cloude and Pottier (1997). This
method does not depend on the assumption of a particular
underlying statistical distribution and is free from the physi-
cal constraints imposed by multivariate models (Singh et al.
2010).

While the conceptual theory of target decomposition was
developed for quad-pol radar backscatter, it can also be
applied to dual-polarised data (Cloude 2007). To derive the
polarimetric decomposition parameters, we first generated
the covariance matrix C2 of the images and then applied a
(9 � 9 kernel) refined Lee Filter (Lee 1981) to eliminate
speckle but preserve the edge sharpness. A target decompo-
sition technique was performed to derive the mean Alpha
angle (α ) and Entropy (H ). The Shannon Entropy (SE),
characterised as the sum of intensity, degrees of polarisation,
and the intrinsic degrees of coherence, was based on the
method described by Morio et al. (2007). Correlation
between SE estimates of the sea ice floe derived from TSX
data acquired on November 27 and field-based surface eleva-
tion, snow depth, and freeboard was performed to discrimi-
nate the freeboard condition. For ice thickness calculation,
we segregated sea ice and snow cover into generalised classes
as they may impact the buoyancy model employed but not
necessarily to discriminate between all the ice conditions
present at that time. The sea ice thickness algorithm was
based on empirical equations presented in (Xie et al. 2011)
and 4 classes (i.e. deep slush layer, shallow slush layer, ice
block with little snow cover, and snow cover with positive
freeboard) based on the physical measurements of surface
elevation, snow depth, and ice freeboard (Lewis et al. 2013).
Finally, co-registration was performed on TSX imagery
acquired on Nov. 27, Dec. 01, and Dec. 13. The

co-registration could not be performed using floe boundaries,
as these are dynamic and change rapidly, so ice blocks with
very high SE values within the floe provided the tie points in
the co-registration process. The root mean square (RMS)
error in the co-registration of these images was less than
2 pixels (i.e. <10 m).

4.4.3.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice thickness
are summarised in Table 4.6.

4.4.3.3.1 2D Eigenvector Analysis
The results of the entropy-alpha decomposition applied to a
TSX image acquired on December 1, 2010, are shown in
Fig. 4.15. Areas of low entropy commonly have a single
dominant mechanism for radar backscatter as compared to
areas of high entropy where multiple scattering mechanisms
contribute. The alpha angle, derived from eigenvectors of the
decomposition, is indicative of the average or dominant scat-
tering mechanism. The majority of the alpha angle values are
near 45�, suggesting that the scattering mechanism is mainly
volume scattering. The extreme degrees of randomness over
the open water portions of the image, which also show
increased alpha angle values, are indicative of a low signal-
to-noise ratio.

4.4.3.3.2 Sea Ice Classification and Ice Thickness
Estimates

Several data sources defined classes of SE from the Nov.
27 TSX data (coincident with the IceBell field surveys of
Floe 6). These sources included the alpha channel image of
entropy-alpha decomposition, the conventional HH, and VV
backscattering coefficients image, and the reflectivity ratio
image corresponding to the ratio between HH and VV
intensities. The range of SE was important in identifying
areas of negative and positive freeboard where different
buoyancy models were applied in sea ice thickness calcula-
tion. Figure 4.16 shows the range of SE classes as applied to
the IceBell survey grid for Floe 6 for the three TSX images of
the time series. A decrease in SE values over time is observed
within the boundaries of the survey grid area. The declining
SE relates to changing distribution of SE classes over time,
thus implying that additional areas of sea water flooding
(slush) were present later in the season. The ice bottom
calculated from our SE-based model follows the trend of

Table 4.6 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice thickness

Application/
product Test site – Radar data Reference data

Sea ice
thickness

Bellingshausen Sea Surface and snow depth surveys, electromagnetic induction thickness surveys, drilled hole
thickness profiles, terrestrial scanning LiDAR surveys, airborne scanning LiDAR surveys, and
ground penetrating radar surveys on sea ice floes.

TerraSAR-X dual-pol
Nov.2010-Jan. 2011
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Fig. 4.15 The average Alpha angle, Entropy, and computed SE for the
TSX image acquired on Dec 01, 2010. Higher SE is apparent in smaller
broken floes and areas of brash ice (red) with interspersed areas of open

water (dark blue). After Dec 13, the Floe 6 broke with the IMBs
separated on different pieces (after Necsoiu et al. 2011; Lewis and
Necsoiu 2011)

Fig. 4.16 Time series and distribution of SE for the 100 m � 100 m grid survey area shown by SE class. Notice the absence of ice block class
4 present on the floe but not within the grid boundaries (this class is present elsewhere on Floe 6)
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the EM-31 derived ice bottom much more closely than the
simple buoyancy model used in other studies (Fig. 4.17).

4.4.3.4 Discussion on the Role of Polarisation,
on the Maturity of the Application
and Conclusions

Based on preliminary results, TSX dual-pol HHVV data have
the potential to derive sea ice type, snow and ice thickness,
and surface roughness features. Regarding sea ice
interpretations, it is crucial that a detailed and direct survey
of ice characteristics is performed on the sea ice floes. Essen-
tial in monitoring sea ice characteristics is the capability,
provided by location of the drifting buoys, to follow sampled
floes with high-resolution, narrow-swath satellite data
acquisitions during the months following surface sampling.
IMB sensors, with their capability to track changing surface
conditions through temperature and other measurements,
such as snow depth and flooding, are also essential to provide
field calibration over an extended period. The methodology
presented here marks an advance towards an integrated sea
ice algorithm based on surface sea ice measurements (includ-
ing IMBs) and TSX imagery; however, more study of polari-
metric descriptors and detailed analysis of field
measurements will be needed to increase the information
content and to validate this approach.
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4.4.4 Polarimetric SAR for Classification of Sea
Ice in the Baltic Sea

4.4.4.1 Introduction, Motivation, and Literature
Review

The Baltic Sea is a semi-enclosed brackish sea in Northern
Europe. The average ice season extends from December into
May and reaches a maximum ice extent of approximately
150,000 km2. The region is steadily busy with shipping
traffic for which the ice conditions are of great importance.
Conditions where wind drives the ice, causing it to form
ridges or pressing it against the shoreline or entrances to
harbours, are of particular concern as such regions are diffi-
cult to break into.

During 2007 to 2009, Chalmers University of Technology
and the Swedish Meteorological and Hydrological Institute
(SMHI) carried out the project “Improved sea ice monitoring
for the Baltic Sea” (Eriksson et al. 2010), with the goal to
evaluate the usefulness of new space-borne SAR instruments
for the purpose of operational sea ice monitoring. Within this
project, a number of SAR scenes were acquired in the north-
ern Baltic Sea. The images were evaluated, for instance, in
terms of how well different ice types could be separated, and

Fig. 4.17 A 2-D profile
comparison of snow and ice
surface elevations and ice bottom
derived from EMI measurements
with ice bottom calculated from
both standard buoyancy
relationships and the SE-based
model ice bottom (Lewis et al.
2013)
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how differences appear between single and dual polarisation
data and between different frequency bands. The Swedish Ice
Service at the SMHI participated in parts of the evaluation.

In the context of the above-mentioned project, fully polar-
imetric SAR data were ordered from two SAR satellite
systems: The Canadian RADARSAT-2 (RS2) which utilises
a C-band SAR and the Japanese Advanced Land Observing
Satellite (ALOS) which carried an L-band SAR.

Fully polarimetric SAR data were collected with the
NASA airborne AIRSAR system over sea ice in the Beaufort,
Bering, and Chukchi Seas already in 1988. These data have
been evaluated in several studies and results have been
presented by a number of authors, e.g. Drinkwater et al.
(1991), Ngheim et al. (1995b), and Weinbrenner et al.
(1995). These studies have mainly focused on the
possibilities to separate different ice types or determine sea
ice thickness. Various combinations of co-polar (HH or VV)
and cross-polar (HV or VH) backscatter values and ratios,
co-polar phase, or magnitude and phase of the complex
correlation between the backscatter components were
evaluated. Similar studies were later done on polarimetric
datasets collected at other locations with various airborne
SAR systems, e.g. Greenland Sea with EMISAR in 1995
(Thomsen et al. 1998), Sea of Okhotsk with PiSAR in 1999
(Wakabayashi et al. 2004) and during the SIR-C mission with
the Space Shuttle over the Weddell Sea in 1994 (Eriksson
et al. 1998). In a study of the improvement of sea ice classifi-
cation by means of radar polarimetry, which was published
by Dierking et al. in 2004 (Dierking et al. 2004), the authors
came to the conclusion that the goal of a robust, fully
automated sea ice classification scheme by means of polari-
metric SAR was not yet achieved.

The first satellite with a fully polarimetric SAR was
ALOS, which was launched in 2006. In the last
10–15 years it also became common to include various
decomposition methods in the analysis of polarimetric SAR
data of sea ice. These methods often make it possible to
identify how individual scattering mechanisms contribute to
the total received signal. Studies that have used these
methods for separation of sea ice types are, e.g., presented
by Wakabayashi et al. 2004, Scheuchl et al. 2002, and more
recently Gill and Yackel (2012), Doulgeris (2012), and
Dierking and Wesche (2013).

The most extensive comparison between ice type classifi-
cation accuracies for different combinations of polarimetric
parameters is the one presented by Gill and Yackel (2012).
Their evaluation for three ice types (smooth first year ice,
rough first year ice, and deformed first year ice) and open

water for polarimetric RS2 images indicate that no single
parameter discriminates significantly (>60%) between all
these ice types, but with a combination of three parameters,
an overall accuracy of up to 91% was achieved.

4.4.4.2 Methodology
In order to make a qualitative evaluation of the SAR images,
a field campaign was organised to collect field data. Flights
with helicopter were carried out from the Umeå Airport in
Sweden. Optical and thermal infrared photos were captured
by two cameras directed in the nadir direction. The optical
camera had a 114� diagonal angle of view, whereas the
infrared camera spanned 30�.

The fully polarimetric SAR images were studied using
H=A=α decomposition (Lee and Pottier 2009; Cloude and
Pottier 1997). First, we formed local estimates of the coher-
ency matrix and multi-looked to square pixel size (in ground-
range coordinates). The decomposition was performed with a
9 � 9 boxcar filter to minimise biases in the entropy and
anisotropy estimation. A polarimetric signature analysis was
carried out and was used to assess the credibility of the
employed segmentation.

4.4.4.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice classifica-
tion in the Baltic sea are summarised in Table 4.7.

We will demonstrate the results by using examples from
one RS2 image and one ALOS-PALSAR image.

Site A is located in image #7, at the border between the
fast ice and dense drift ice seen in Fig. 4.18. The fast ice was
rugged and covered by a snow layer between 0 and 45 cm
thick. The ice thickness was measured at one point to 110 cm.
The drift ice was densely packed and attached to the fast ice.
It had a level, glossy surface with a thin snow layer of less
than 2 cm thickness. The thickness of the drift ice was
measured at two locations, to 30 and 37 cm.

An H=A=α decomposition was made on the
RADARSAT-2 image. The result shows that both the fast
ice and the drift ice in this location are subject to low entropy
surface scattering. The alpha parameter is slightly lower over
the fast ice (~10� as compared to ~20�), thus being closer to
the geometrical optics limit. The entropy is lower over the
fast ice as well (0.2 as compared to 0.5), indicating more
random scattering from the drift ice. Specular reflection,
away from the radar, is presumed to occur on the flat surface
of the drift ice. The returned signal is instead dominated by
reflection from brine pockets and fractures in the uppermost

Table 4.7 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice classification in the Baltic sea

Application/product Test site – Radar data Reference data

Sea ice classification in the Baltic Sea Baltic Sea (Bay of Bothnia, Kvarken) Optical and thermal infrared photos

ALOS-PALSAR 2007, 2009

RADARSAT-2 2009
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layer of the low-saline ice, which then explains the higher
entropy and alpha values. The two ice types found in site A
are believed to be representative for a much larger area,
judging from the optical helicopter images. This is also in

agreement with the results from a classification, shown in
Fig. 4.19. The figure shows an unsupervised H=α classifica-
tion with eight classes, where the fast and drift ice are well
distinguished.

Fig. 4.18 Scene #7. Left: Optical photo taken from helicopter in the
nadir direction. The photo covers an area of 50 � 30 m and shows fast
ice to the left and dense drift ice to the right. Right: The alpha-parameter

from theH/A/α-decomposition. The scene covers an area of 24� 24 km.
Site A is marked with letter A and is also the location of the optical
photo. Arrows indicate North

Fig. 4.19 Scene #7. Wishart H/α classification where orange corresponds to fast ice, purple to drift ice, red to open water, and yellow to land areas
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Figure 4.20 shows the alpha parameter obtained for scene
#10 along with the Wishart H/α classification. The scene
covers a diverse ice field with an ice concentration of approx-
imately 90%. It can be observed that volume scattering is
more common in the northern parts of the scene. The Wishart
H=α classification identifies four major classes of ice types
(blue, red, yellow, and orange). The red and orange classes
are characterised by low alpha and entropy values, clearly
acting as surface scatterers. The blue class is defined by alpha
values in the range between 40� and 50�, relating to volume
scattering, whereas the yellow class is similar but with
slightly more weight towards surface scattering. The optical
helicopter images reveal that these classes are mostly level
ice surfaces with no snow layer, whereas the red/yellow
classes consist of snow-covered or rough ice of densely
packed or consolidated floes.

4.4.4.4 Comparison with Single/Dual
Polarisation Data

Sea ice is fairly well studied with single and dual polarisation
data using L- and C-band SAR sensors. Fully polarimetric
data may be used to study in detail the scattering mechanisms
for different ice types or to improve sea ice classification for
the purpose of ice charting. An experienced ice analyst can
use dual polarisation data to map the ice conditions with high
precision, but for automated classification this remains diffi-
cult. With fully polarimetric data, the automated classifica-
tion will have an advantage because the many information
channels will make manual interpretation complex.

4.4.4.5 Discussion on the Role of Polarisation,
on the Maturity of Application
and Conclusions

SAR polarimetry has shown potential for sea ice classifica-
tion and segmentation. It is still in the early development

phase, not only because of the limited spatial coverage that is
insufficient for traditional operational sea ice charting
services but also due to the non-trivial task to accurately
relate classes with their respective ice type. The classifier
must either aim for a reliable segmentation into few classes
or for a detailed segmentation into many ice types with the
secondary task to label each class with its actual ice type.

4.4.4.6 Acknowledgements
Data from ALOS were provided by the European Space
Agency within the framework of the ALOS Data European
node category-1 proposal titled Improved sea ice monitoring
for the Baltic Sea (AOALO.3562). Data from RADARSAT-
2 were granted within the Canadian program for Science and
Operational Applications Research for RADARSAT-
2 (SOAR), project number 3924. The Umeå Marine Science
Centre in Norrbyn and Lapplandsflyg AB in Umeå are
acknowledged for logistical support during the field
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4.5 Investigation of Permafrost with Fully
Polarimetric Data

4.5.1 Introduction, Motivation, and Literature
Review

Satellite-borne synthetic aperture radar (SAR) data are useful
for estimating soil moisture and surface roughness over large
areas. However, few studies have been conducted using SAR
to examine permafrost areas, which have surfaces covered by
low vegetation, including areas with tussocks, mosses, and
low shrubs; whereas SAR data has been widely used to study
mineral soil surfaces. Knowledge of the moisture levels in
permafrost regions is important for monitoring the seasonal

Fig. 4.20 Scene #10. Left: The alpha-parameter from the H/A/α-decomposition. Right: Wishart H/α classification (green colour is land, other
colours sea ice). The scene covers an area of approximately 30 � 50 km (width � height)
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variability of the active layer, which is a seasonally unfrozen
layer that occurs in upper part of the permafrost. The North
Slope in Alaska has experienced significant changes in vege-
tation greenness over the past two decades (Goetz et al. 2005;
Verbyla 2008), and it has been suggested that variations in
soil moisture may be partly responsible for these changes.
Rignot and Way (1994) showed that freeze-thaw cycles in
high-latitude terrestrial ecosystems, which include perma-
frost regions, can be monitored using ERS-1 SAR data.
Several studies have examined surface soil moisture in fire-
disturbed forests in Alaska using C-band SAR data;
variations in soil moisture were detected by variations in
the backscattering coefficient (σ0) (Kasischke et al. 2007).

PALSAR was launched in 2006 onboard ALOS.
PALSAR was the first Earth observing satellite to carry a
full polarimetry mode, and it provides complete radar back-
scattering information on both the intensity and phase of the
signal. This is a significant advantage for deriving a complete
understanding of the factors controlling radar backscattering
in areas, especially those with complex scattering
mechanisms, such as low vegetation, for which the impact
would be expected to be minimal in the L-band. This is also
essential for deriving robust algorithms for estimating soil
moisture levels, as well as other parameters.

Here, we demonstrate how to analyse field measurement
data and L-band full polarimetry data. This Section is based
on (Watanabe et al. 2012).

4.5.2 Methodology

4.5.2.1 Single-Layer Model
Three parameters describe the primary factors affecting radar
scattering mechanisms: soil moisture (Mv) or dielectric con-
stant (ε), root mean square (RMS) height of the soil surface
(s), and correlation length (l ). The parameters s and l are
usually multiplied by the wave number k (k ¼ 2π/λ, where λ
is the radar wavelength) to give the derived parameters ks
and kl.

Several models have been suggested for estimating Mv
from SAR data. One of the popular models is the integral
equation method (IEM) (Fung 1994), which describes the
behaviour of σ0 for both the co-polarisation and cross-
polarisation terms. For cases where ks, kl < 1:2

ffiffiffi
ε

p
, the back-

scattering coefficient can be calculated using the following
analytical equation:

σ0qp ¼
k2
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where θ is the local incidence angle, kz¼ k cos θ, kx¼ k sin θ,
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where μ is the magnetic permeability, Rhh and Rvv are Fresnel
reflection coefficient, and p and q represent the polarisations
corresponding to h and v. W(n) is the Fourier transform of the
n-th power of the surface correlation function; the exponen-
tial, Gaussian, and 1.5-power forms of this function are well
known. Many curves observed in the field appear to follow an
exponential shape generated by the exponential correlation
function (Fung 1994), represented by

W nð Þ Kð Þ ¼ l
n

� �
1þ Kl

n

� �2
" #�1:5

: ð4:14Þ

Oh (2004) proposed a semi-empirical model in which
some parameters were tuned using ground-based

(GB) polarimetric scatterometers and AIRSAR data obtained
for various soil conditions. Three parameters are defined in
this model, and the following one is used in our analysis

σ0VH ¼ 0:1M0:7
v cos θð Þ2:2 1� exp �0:32 ksð Þ1:8

� �h i
ð4:15Þ

The applicable range of the model is less than 3�ks.

4.5.2.2 Two-Layer Model
The two-layer model was developed to describe more com-
plex ground phenomena, such as the presence of vegetation,
or snow on ice. Fung (1994) used four terms to represent the
co-polarisation surface and volume backscattering of the two
layers (see Fig. 4.21):
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σ0pp ¼ σ0s1pp þ σ0s2pp þ σ0vpp þ σ0vspp ð4:16Þ

where σ0s1pp describes surface scattering from layer 1 and is
represented by Eq. (4.12), and σ0s2pp describes surface scat-
tering from layer 2 and is represented by

σ0s2pp ¼ T1t θ, θtð ÞTt1 θt, θð Þ exp �2τ
cos θt

� �

� cos θ
cos θt

σ0spp θtð Þ ð4:17Þ

where T1t and Tt1 are the transmissivity from layer 1 to 2 and
from layer 2 to 1, respectively, τ is the optical depth, and
σ0spp is the surface scattering at layer 2, represented by
Eq. (4.12). σ0vpp describes the volume scattering in layer
1 and is represented by

σ0vpp ¼ 0:5aT1tTt1 cos θ 1� exp
�2τ
cos θt

� �� �
Ppp cos θt,� cos θt; πð Þ

ð4:18Þ

where a is the albedo and Ppp is element pp of the phase
matrix. A Rayleigh phase matrix is assumed, and
Phh ¼ Pvv ¼ 1.5. The fourth term, σ0vspp, describes
interactions between volume scattering in layer 1 and surface
scattering from layer 2. This term is very small and is negli-
gible in most cases.

In the case of cross-polarisation, Eq. (4.15) of the Oh
model is used to describe the backscattering from layer
1. Additionally, Eq. (4.16) can be modified to describe the

backscattering from layer 2 by inserting Eq. (4.16) for σ0spp,
which is represented by

σ0qp ¼ σ0 Oh modelð Þ
s1pq

þ T1t θ, θtð ÞTt1 θt, θð Þ exp �2τ
cos θt

� �

� cos θ
cos θt

σ0 Oh modelð Þ
s2qp θtð Þ: ð4:19Þ

4.5.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on permafrost
characterisation are summarised in Table 4.8.

PALSAR data acquired for the test sites (Arctic National
Wildlife Refuge (ANWR), Alaska, USA) were used in this
analysis. Full polarimetry mode (HH, HV, VH, and VV) data
was acquired on July 29, 2007, and July 31, 2008, in
descending orbit. Dual polarisation mode (HH and HV)
data was observed on August 17, 2007, 2 weeks after the
observation of full polarimetry data for the test sites in
ascending orbit. The off-nadir angle was 21.5� for the full
polarimetry mode and 34.3� for the dual polarisation mode.
The position of the field test sites and the physical
characteristics are summarised in Table 4.8. The test sites
are in the coastal tundra ecosystem of the Alaskan Arctic
coastal plain. Trees were absent because of the high-latitude
location (70�N). HH and VV polarisation was dominant in
the permafrost area. This means that surface backscattering
was dominant. Strong radar reflections were observed for
very wet areas along the small stream, and high moisture
values were observed in this area (A-5 and A-6). Field
observations were conducted at 6 sites in 2007 (A-1 to A-6)
and 4 sites in 2008 (A-1 to A-3 and A-7). Tussocks and
polygons, which are structures typical of permafrost, were
observed in many tussocks in our test sites was 3 to 10 cm in
diameter. On a larger scale, thermal contraction cracks form
polygonal (mainly tetragonal) nets that cover extensive areas
of arctic and subarctic regions; the polygons typically range
in size from 15 to 40 m.

Fig. 4.21 An illustration of the terms in the 2-layer scattering model

Table 4.8 Test sites and corresponding radar and validation data
selected for the generation of showcases on permafrost characterisation

Application/
product Test site – Radar data

Reference
data

Permafrost
characterisation

Arctic National Wildlife Refuge
(ANWR), Alaska, USA

ALOS-PALSAR
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4.5.3.1 Data Processing
Parameters derived from the PALSAR data and field experi-
ment are summarised in Table 4.9. We used PALSAR data
processed by the Earth Observation Center of the Japan
Aerospace Exploration Agency (JAXA) and calculated the
backscattering coefficient (σ0) for each polarisation. We
measured ks and kl using a needle profilometer; the
profilometer was 1-m long for the measurements, which is
10 times longer than the typical 10-cm correlation length at
our test sites.

The 2-cm interval of needles on the profilometer was
sufficiently small to have an insignificant effect on the mea-
surement results. The surface correlation functions measured
for our test sites matched well with the exponential form
represented by Eq. (4.14).

The vertical cross section of the soil at site A-1 is
presented in Fig. 4.22. This is a typical permafrost structure,
and the soil moisture for the organic layer was measured
using time-domain reflectometry (TDR-type sensor;
TRIME-FM2) in 2007 and frequency-domain reflectometry
(FDR-type sensor; Decagon) in 2008. The length of the
probes was 15 cm. These systems directly measured the ε
value, and ε was converted to soil moisture using the Topp
equation (Topp et al. 1980),

εr ¼ 3:03þ 9:3Mv þ 146M2
v � 76:7M3

v ð4:20Þ

The system only displays the moisture value. The value of
the dielectric constant originally measured by the device was
determined using this relation. The soil moisture of the
sphagnum moss layer was measured for several points in
site A-1 and had a value of 10.6%.

4.5.3.2 Comparing PALSAR Data with Single-Layer
Models

The observed σ0 values were compared with those estimated
using the IEM/Oh model, which included the Mv (organic
layer) and surface parameters measured in the field. The σ0co-
pol values were 5 to 7 dB lower than those calculated by the
IEM model, while the σ0VH values were moderately matched
to values calculated using the Oh model.

Next, we calculated the σ0 value assuming a 10% soil
moisture value (sphagnum moss layer). The σ0co-pol values

Table 4.9 Parameters derived from field measurements and from the satellite data

Site Lat/Lon

Parameters from field data collection and PalSAR

NotesYear Mv ks kl σ0HH σ0VH σ0VV
A-1 �143.66 2007 34.7 0.82 2.8 �9.3 �20.5 �9.6 Covered with polygons well-developed tussocks

69.72 2008 25.2 �10.2 �22.0 �12.2

A-2 �143.63 2007 39.8 0.68 2.0 �10.2 �22.4 �10.2 No polygonal structures observed

69.72 2008 46.6 �11.1 �24.1 �9.9

A-3 �143.61 2007 41.6 0.44 3.4 �11.0 �22.8 �11.0 No polygonal structures observed

69.72 2008 38.8 �10.4 �24.6 �11.6

A-4 �143.62 2007 47.7 0.71 3.1 �10.1 �22.2 �11.2 Numerous shrub patches

69.71 No polygonal structures observed

Well-developed tussocks

A-5 �143.63 2007 63.8 0.70 2.5 �9.0 �21.3 �9.3 Covered with polygons

69.71 Well-developed tussocks

A-6 �143.64 2007 78.9 1.13 3.2 �8.8 �19.3 �8.8 No polygonal structures observed

Well-developed tussocks69.71

Very wet

A-7 �143.60 2009 29.2 0.48 5.6 �13.5 �25.3 �10.0

69.72

Mv measured in inorganic layer

Fig. 4.22 Vertical cross section of the soil at site A-1
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were well matched to the IEM model, while the σ0VH values
were 3 to 6 dB less than those in the Oh model. There is no
single-layer model that simultaneously accounts for the
σ0co-pol and σ0cross-pol observed with PALSAR.

4.5.3.3 Comparing PALSAR Data with Two-Layer
Models

The 2-layer model (sphagnum moss, layer 1; organic layer,
layer 2) was used to calculate σ0 at the A-1 site, where a data
logger was deployed to monitor moisture levels. Albedo and
optical depth values were changed from 0.1 to 1, and σ0 was
calculated from the two-layer model; these results were com-
pared with PALSAR data taken with off-nadir angles of 21.5�

and 34.3�. As the sphagnummoss layer may smoothen surface
roughness, a value of half the surface roughness was adopted
for ks in layer 1; kl was estimated from its correlation with ks.

Several combinations of albedo and optical depth values
yielded σ0 discrepancies of <2 dB between PALSAR data
and the results of the 2-layer model. One of the best results is
presented in Fig. 4.23, which was obtained using the
parameters listed in Table 4.10. The σ0 values derived from
the PALSAR data are plotted as squares for the full
polarisation mode (off-nadir angle of 21.5�; incidence angle
of 24�) and as circles for the dual polarisation mode (off-nadir
angle of 34.3�; incidence angle of 38�). In this case, the
2-layer model for both co-polarisation and cross-polarisation
fit the data to within 1 dB. In the case of co-polarisation with
an incident angle of 24�, surface scattering from layer 1 was
dominant with smaller contributions expected from layer
2 and from volume scattering. In the case of cross-
polarisation, scattering from layer 2 was dominant, and scat-
tering from layer 1 (soil moisture of 10%) was negligible.

The entropy (H) and α were also calculated from the full
polarimetry data. The α angle ranged from 13.5� to 23.6�, and
H ranged from 0.28 to 0.47. These values are categorised as

Zone 9 in the H/α classification scheme, which represents
low entropy scattering processes such as surface scattering.
The entropy values observed at Ulaanbaatar were 0.14, and
smaller than those observed in ANWR, although the sites
have almost the same surface parameters and Mv. A larger
entropy value indicates the complexity of the scattering
mechanism; therefore, the two-layer scattering model for
ANWR may generate a large entropy value.

4.5.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

The simultaneous collection of field data and ALOS-PALSAR
fully polarimetric observations was performed in Alaska, USA
(2007 and 2008). The ground surface in Alaska is covered by
an active layer of permafrost consisting of a few to 10 cm of
sphagnum moss layer and deeper organic and mineral layers.

From the analysis of field data and PALSAR data, we
compiled the following results:

• The σ0co-pol values obtained in Alaska were 5 to 7 dB
lower than those predicted by the IEM model.

• Unlike σ0co-pol values, σ
0
VH values estimated from the Oh

model are moderately well matched to those derived from
the PALSAR data.

Fig. 4.23 σ0 derived from the two-layer model is plotted against incidence angle. (Left panel) Co-polarisation. (Right panel) Cross-polarisation.
PALSAR data are represented by squares (July 29, 2007, observations) and circles (August 17, 2007, observations)

Table 4.10 Parameters for the two-layer model

Parameters Layer 1 Layer 2

Mv 10% (ε ¼ 5.3) 34.7% (ε ¼ 20.6)

ks 0.41 0.82

kl 3.88 2.75

Albedo (a) 0.1

Optical depth (τ) 0.5

Frequency 1.27 GHz
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• Vertical depth dependency of moisture levels was
observed in the field data from permafrost regions. Mois-
ture levels of the sphagnum layer, located above the
organic layer, were estimated to be about 10%, while
moisture levels of the underlying organic and mineral
layers were 25% to 79%, respectively.

From these observations, we concluded that the sphagnum
moss layer plays an important role in radar backscattering
processes in permafrost regions and is a main contributor to
the σ0co-pol backscattering component; the underlying organic
and mineral layers, on the other hand, contribute to the σ0cross-
pol component. A two-layer model, which was applied to one
of the test sites in Alaska, provided a good prediction of
σ0 values derived from PALSAR data obtained with
off-nadir angles of 21.5� and 34.3�, for both co-polarisation
and cross-polarisation results.

Full polarimetry data describe the complete radar back-
scattering from a target, and it is essential for understanding
the scattering mechanism from the target. If full polarimetry
data is not used, it is difficult to conclude whether the
two-layer model is necessary for the description of σ0 in the
permafrost region.

4.5.5 Acknowledgements

We are grateful to the graduate and undergraduate students at
Sato Laboratory in Tohoku University for their assistance
with field data collection. The field measurements in Alaska
were funded by JAXA. This work was supported by Japan
Society for the Promotion of Science (JSPS) Grants-in-Aid
for Scientific Research, (S) 18106008, (B) 22404001, and
(C) 21510004.

4.6 Summary (Table 4.11)

References

Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a
warming climate on water availability in snow-dominated regions.
Nature 438:303–309

Beaven SG, Lockhart GL, Gogineni SP, Hossetnmostafa AR, Jezek K,
Gow AJ, Perovish DK, Fung AK, Tjuauja S (1995) Laboratory
measurements of radar backscatter from bare and snow-covered
saline ice sheets. Int J Remote Sens 16:851–876

Bernier M, Fortin JP (1998) The potential of time series of C-band SAR
data to monitor dry and shallow snow cover. IEEE Trans Geosci
Remote Sens 36:226–243

Bindschadler RA, Jezek KC, Crawford J (1987) Glaciological
investigations using the synthetic aperture radar imaging system.
Ann Glaciol 9:11–19

Busche T, Hajnsek I, Papathanassiou KP, Krumpen T, Rabenstein L,
Hölemann J, Haas C, Willmes S (2009) Comparison of helicopter-
borne thin sea ice thickness profiles with polarimetric signatures
of dual-pol TerraSAR-X data. In: Proceedings of IEEE 2009
International Geoscience and Remote Sensing Symposium
(IGARSS)

Carlström A (1997) A microwave backscattering model for deformed
first-year sea ice and comparisons with SAR data. IEEE Trans
Geosci Remote Sens 35:378–391

Cloude SR (2007) The dual polarization entropy/alpha decomposition: a
PALSAR case study. Paper presented at the 2007 international
workshop on Science and Applications of SAR Polarimetry and
Polarimetric Interferometry (POLinSAR)

Cloude SR (2009) Polarisation: applications in remote sensing. Oxford
University Press, Oxford

Cloude SR, Pottier E (1997) An entropy based classification scheme for
land application of polarimetric SAR. IEEE Trans Geosci Remote
Sens 35:68–78

Dall J (2007) InSAR elevation bias caused by penetration into uniform
volumes. IEEE Trans Geosci Remote Sens 45:2319–2324

Dall J, Papathanassiou KP, Skriver H (2003) Polarimetric SAR interfer-
ometry applied to land ice: first results. In: Proceedings of IEEE
2003 International Geoscience and Remote Sensing Symposium
(IGARSS)

Dall J, Papathanassiou KP, Skriver H (2004) Polarimetric SAR interfer-
ometry applied to land ice: modelling. In: Proceedings of 2004
European Conference on Synthetic Aperture Radar (EUSAR)

Davis CH, Poznyak VI (1993) The depth of penetration in Antarctic firn
at 10 GHz. IEEE Trans Geosci Remote Sens 31:1107–1111

Dierking W (1999) Multifrequency scatterometer measurements
of Baltic Sea ice during EMAC-95. Int J Remote Sens 20:349–372

Table 4.11 Summary of presented application, methods and preferred system configurations for cryosphere monitoring

Application Methods and used frequency (P/L/C/X)
Radar data preference/requirements/
comments

Land ice extinction (internal
structure)

PolInSAR decomposition and inversion (P/L) Preferred frequencies: P/L

Snow water equivalent PolSAR decomposition and inversion (C/X) Preferred frequencies: X/Ku

Dual-pol may suffice

Sea ice: Observation PolSAR observables and decompositions (L) Wide swath needed

Sea ice: Thematic mapping Statistical image segmentation based on PolSAR descriptors (C) Wide swath needed

Wishart classification applied to PolSAR entropy/alpha
decomposition (L/C)

Sea ice thickness PolSAR decompositions, segmentation and empirical models (X) Wide swath needed

At X-band, dual-pol may suffice

Permafrost observation Based on a PolSAR two-layer scattering model (L)

210 I. Hajnsek et al.



Dierking W, Dall J (2007) Sea-ice deformation state from synthetic
aperture radar imagery – Part I: comparison of C- and L-band and
different polarization. IEEE Trans Geosci Remote Sens
45:3610–3622

Dierking W, Wesche C (2013) C-band radar polarimetry – useful for
detection of icebergs in sea ice? IEEE Trans Geosci Remote Sens
52:25–37

Dierking W, Carlstrom A, Ulander LMH (1997) The effect of inhomo-
geneous roughness on radar backscattering from slightly deformed
sea ice. IEEE Trans Geosci Remote Sens 35:147–159

Dierking W, Skriver H, Gudmandsen P (2003) SAR polarimetry for sea
ice monitoring. Paper presented at the 2003 International Workshop
on Science and Applications of SAR Polarimetry and Polarimetric
Interferometry (POLinSAR)

Dierking W, Skriver H, Gudmandsen P (2004) On the improvement of
sea ice classification by means of radar polarimetry. In: Goossens R
(ed) Remote sensing in transition. Millepress, Rotterdam

Doulgeris AP (2012) Rethinking statistical based segmentation of sea
ice. Paper presented at the ESA SeaSAR 2012 workshop

Doulgeris AP (2013) A simple and extendable segmentation method for
multi-polarisation SAR images. Paper presented at the 2013 Interna-
tional Workshop on Science and Applications of SAR Polarimetry
and Polarimetric Interferometry (POLinSAR)

Doulgeris AP, Eltoft T (2010) Scale mixture of Gaussian modelling of
polarimetric SAR data. EURASIP J Adv Sig Proc 2010:1–12

Dowdeswell JA, Drewry DJ (2004) Investigations of the form and flow
of ice sheets and glaciers using radio-echo sounding. Publ Rep Progr
Phys 67:1821–1861

Dowdeswell JA, Unwin B, Nuttall AM, Wingham DJ (1999) Velocity
structure, flow instability and mass flux on a large Arctic ice cap
from satellite radar interferometry. Earth Planet Sci Lett
167:131–140

Drinkwater MR, Kwok R, Rignot E (1990) Synthetic aperture radar
polarimetry of sea ice. In: Proceedings of IEEE 1990 International
Geoscience and Remote Sensing Symposium (IGARSS)

Drinkwater MR, Kwok R, Winebrenner DP, Rignot E (1991) Multifre-
quency polarimetric synthetic aperture radar observations of sea ice.
J Geophys Res 96:20679–20698

Drinkwater M, Kwok R, Rignot R, Israelsson H, Onstott RG,
Winebrenner DP (1992) Potential applications of polarimetry to the
classification of sea ice. Geophys Monogr Ser 68:419–430

Elachi C, Van Zyl JJ (2006) Introduction to the physics and techniques
of remote sensing. Wiley, New York

Eltoft T, Fors A, Moen MA, Renner A, Doulgeris A, Gerland S, Ferro-
Famil L (2012) A multi-polarization study of Arctic sea ice in
C-band and X-band. Paper presented at the ESA SeaSAR 2012
Workshop

Eriksson L, Drinkwater M, Holt B, Valjavek E, Nortier O (1998) SIR-C
polarimetric radar results from the Weddell Sea, Antarctica. In:
Proceedings of IEEE 1998 International Geoscience and Remote
Sensing Symposium (IGARSS)

Eriksson LEB, Borenäs K, Dierking W, Berg A, Santoro M,
Pemberton P, Lindh H, Karlson B (2010) Evaluation of new
spaceborne SAR sensors for sea-ice monitoring in the Baltic Sea.
Can J Remote Sens 36:56–73

European Space Agency (2008) CoReH2O: candidate earth explorer
core missions- reports for assessment. Mission Science Division,
ESA-ESTEC, Noordwijk, The Netherlands, ESA SP-1313(3)

Franceschetti G, Lanari R (1999) Synthetic aperture radar processing.
CRC Press, Boca Raton

Freeman A (2007) Fitting a two-component scattering model to polari-
metric SAR data from forests. IEEE Trans Geosci Remote Sens
45:2583–2592

Fung AK (1994) Microwave scattering and emission models and their
applications. Artech House, Norwood

Gareth Rees W (2006) Remote sensing of snow and ice. Taylor &
Francis, Boca Raton

Geldsetzer T, Yackel JJ (2009) Sea ice type and open water discrimina-
tion using dual co-polarised C-band SAR. Can J Remote Sens
35:73–84

Geldsetzer T, Mead JB, Yackel JJ, Scharien RK, Howell SEL (2007)
Surface-based polarimetric C-band scatterometer for field
measurements of sea ice. IEEE Trans Geosci Remote Sens
45:3405–3416

Gill JP, Yackel JJ (2012) Evaluation of C-band SAR polarimetric
parameters for discrimination of first- year sea ice types. Can J
Remote Sens 38:306–323

Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed
photosynthetic trends across boreal North America associated with
climate and fire disturbance. Proc Natl Acad Sci U S A
102:13521–13525

Guneriussen T, Hogda KA, Johnsen H, Lauknes I (2001) InSAR for
estimation of changes in snow water equivalent of dry snow. IEEE
Trans Geosci Remote Sens 39:2101–2108

Hajnsek I (2001) Inversion of surface parameters using polarimetric
SAR. Ph.D. thesis, Friedrich-Schiller Universität, Jena

Hajnsek I, Schoen H, Jagdhuber T, Papathanassiou KP (2007) Estima-
tion of soil moisture under vegetation using PolInSAR: a comparison
of methods. Paper presented at the AgriSAR workshop

Hoen EW (2001) A correlation-based approach to modeling interfero-
metric radar observations of the Greenland ice sheet. Ph.D. thesis,
Stanford University

Hoen EW, Zebker HA (2000) Penetration depths inferred from interfer-
ometric volume decorrelation observed over the Greenland ice sheet.
IEEE Trans Geosci Remote Sens 38:2572–2583

Holmlund P, Nyman M, Petterson R, Stenberg M, Gjerde K,
Gundestrup N, Hansson M, Isaksonn E, Karloef L, Winther JG,
Pinglot F, Reijmer C, Thomassen M, Van de Wal R, Van der
Veen C, Wilhelms F (2000) Spatial gradients in snow layering at
10 m temperatures at two EPICA-dronning Maud Land (Antarctica)
pre-site-survey drill sites. Ann Glaciol 30:13–19

Isleifson D, Langlois A, Barber DG, Shafai L (2009) C-Band
scatterometer measurements of multiyear sea ice before fall freeze-
up in the Canadian Arctic. IEEE Trans Geosci Remote Sens
47:1651–1661

Isleifson D, Hwang B, Barber DG, Scharien RK, Shafai L (2010)
C-band polarimetric backscattering signatures of newly formed sea
ice during fall freeze-up. IEEE Trans Geosci Remote Sens
48:3256–3267

Israelsson H, Askne J (1991) Analysis of polarimetric SAR observations
of sea ice. In: Proceedings of IEEE 1991 International Geoscience
and Remote Sensing Symposium (IGARSS)

Jackson CR, Apel JR (2004) Synthetic aperture radar marine user’s
manual. National Oceanic and Athmospheric Administration
(NOAA)

Jezek KC, Gogineni P, Shanableh M (1994) Radar measurements
of melt zones on the Greenland ice sheet. Geophys Res Lett
21:33–36

Joughin IR, Kwok R, Fahnestock MA (1998) Interferometric estimation
of three-dimensional ice-flow using ascending and descending
passes. IEEE Trans Geosci Remote Sens 36:25–37

Kasischke ES, Bourgeau-Chavez LL, Johnstone JF (2007) Assessing
spatial and temporal variations in surface soil moisture in fire-
disturbed black spruce forests in Interior Alaska using spaceborne
synthetic aperture radar imagery – implications for post-fire tree
recruitment. Remote Sens Environ 108:42–58

Kern S, Gade M, Haas C, Pfaffling A (2006) Retrieval of thin-ice
thickness using the L-band polarization ratio measured by the
helicopter-borne scatterometer HELISCAT. Ann Glaciol
44:275–280

Kim JW, Kim DJ, Hwang BJ (2012) Characterization of arctic sea ice
thickness using high-resolution spaceborne polarimetric SAR data.
IEEE Trans Geosci Remote Sens 50:13–22

Kong JA (1986) Electromagnetic wave theory. Wiley, New York

4 Cryosphere Applications 211



Kurtz NT, Markus T (2012) Satellite observations of Antarctic Sea ice
thickness and volume. J Geophys Res Oceans. https://doi.org/10.
1029/2012JC008141

Kurtz NT, Markus T, Cavalieri DJ, Sparling LC, Krabill WB, Gasiewski
AJ, Sonntag JG (2009) Estimation of sea ice thickness distributions
through the combination of snow depth and satellite laser altimetry
data. J Geophys Res Oceans. https://doi.org/10.1029/2009JC005292

Kwok R, Drinkwater M, Pang A, Rignot E (1991) Characterization and
classification of sea ice in polarimetric SAR data. In: Proceedings of
IEEE 1991 International Geoscience and Remote Sensing Sympo-
sium (IGARSS)

Kwok R, Nghiem SV, Yueh SH, Huynh DD (1995) Retrieval of thin ice
thickness from multifrequency polarimetric SAR data. Remote Sens
Environ 51:361–374

Lee JS (1981) Refined filtering of image noise using local statistics.
Comput Vis Graph Image Proc 15:380–389

Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to
applications. CRC Press, Boca Raton

Lee JS, Schuler DL, Ainsworth TL (2000) Polarimetric SAR data
compensation for terrain azimuth slope variation. IEEE Trans Geosci
Remote Sens 38:2153–2163

Lee JS, Schuler DL, Ainsworth TL, Krogager E, Kasilingam D, Boerner
WM (2002) On the estimation of radar polarization orientation shifts
induced by terrain slopes. IEEE Trans Geosci Remote Sens
40:30–41

Lewis MJ, Necsoiu M (2011) Seeing sea ice. In: Technology Today,
SwRI

Lewis MJ, Necsoiu M, Parra J, Maksym T (2013) Evolution of Antarctic
Sea ice characteristics using TerraSAR-X data. TBD

Livingstone CE, Barber DG, Spiring F, Liu W (1996) The SIMMS’93
SAR polarimetry experiment: combined surface and airborne radar
measurements of winter sea ice. In: Proceedings of IEEE 1996 Inter-
national Geoscience and Remote Sensing Symposium (IGARSS)

Maetzler C (1998) Microwave properties of ice and snow. In: Shmitt B
et al (eds) Solar system ices. Astrophys Space Sci Library
227:241–257. Kluwer Academic Publisher

Massonnet D, Feigl KL (1998) Radar interferometry and its application
to changes in the Earth’s surface. Rev Geophys 36:441–500

Matsuoka T, Uratsuka S, Satake M, Nadai A, Umehara T, Maeno H,
Wakabayashi H, Nishio F, Fukamachi Y (2002) Deriving Sea-ice
thickness and ice types in the Sea of Okhotsk using dual-frequency
airborne SAR (Pi-SAR) data. Ann Glaciol 34:429–434

Mätzler C, Strozzi T, Weise T, Floricioiu D, Rott H (1984) Microwave
snowpack studies made in the Austrian Alps during the SIR-C/X-
SAR experiment. Int J Remote Sens 18:2505–2530

Mohr JJ, Madsen SN (1996) Application of interferometry to studies of
glacier dynamics. In: Proceedings of IEEE 1996 International Geo-
science and Remote Sensing Symposium (IGARSS)

Morio J, Refregier P, Goudail F, Dubois-Fernandez P, Dupuis X (2007).
Application of information theory measures to polarimetric and
interferometric SAR images. In: Proceedings of 2007 International
Conference on Physics in Signal and Image Processing

Nakamura K, Wakabayashi H, Naoki K, Nishio F, Moriyama T,
Uratsuka S (2005) Observation of sea-ice thickness in the Sea of
Okhotsk by using dual-frequency and fully polarimetric airborne
SAR (Pi-SAR) data. IEEE Trans Geosci Rem Sens 43:2460–2469

Necsoiu M, Lewis MJ, Parra J, Hwang P, Wilkinson J, Maksym T,
Floricioiu D, Weissling B, Xie H, Ackley S (2011) Studies of
Antarctic sea ice characteristics using surface sea ice measurements
and TerraSAR-X data. Paper presented at the 2011 TerraSAR-X
DLR Science Meeting no. 4

Nghiem SV, Yueh SH, Kwok R, Li FK (1992) Symmetry properties in
polarimetric remote sensing. Radio Sci 27:693–711

Nghiem SV, Kwok R, Yueh SH, Drinkwater MR (1995a) Polarimetric
signatures of sea ice – 1. Theoretical model. J Geophys Res
100:665–679

Nghiem SV, Kwok R, Yueh SH, Drinkwater MR (1995b) Polarimetric
signatures of sea ice – 2. Experimental observations. J Geophys Res
100:681–698

Oh Y (2004) Quantitative retrieval of soil moisture content and surface
roughness from multipolarized radar observations of bare soil
surfaces. IEEE Trans Geosci Remote Sens 42:596–601

Onstott RG, Gogineni P, Gow AJ, Grenfell TC, Jezek KC, Perovich DK,
Swift CT (1998) Electromagnetic and physical properties of sea ice
formed in the presence of wave action. IEEE Trans Geosci Remote
Sens 36:1764–1783

Paden JD, Allen CT, Gogineni S, Jezek KC, Dahl-Jensen D, Larsen LB
(2007) Wideband measurements of ice sheet attenuation and basal
scattering. IEEE Geosci Remote Sens Lett 2:164–168

Partington KC, Flach JD, Barber DG, Isleifson D, Meadows PJ, Verlaan
P (2010) Dual-polarization C-band radar observations of sea ice in
the Amundsen Gulf. IEEE Trans Geosci Remote Sens
48:2685–2691

Pisciottano I, Jagdhuber T, Hajnsek I (2011) First analysis on snow
cover change using fully polarimetric TerraSAR-X data. Paper
presented at the 2011 international workshop on Science and
Applications of SAR Polarimetry and Polarimetric Interferometry
(POLinSAR)

Rignot E, Drinkwater MR (1994) Winter Sea-ice mapping from multi-
parameter synthetic aperture radar. J Glaciol 40:31–45

Rignot E, Van Zyl JJ (1992) Analysis of scattering behavior and
radar penetration in AIRSAR data. In: Proceedings of IEEE 1992
International Geoscience and Remote Sensing Symposium
(IGARSS)

Rignot E, Way JB (1994) Monitoring freeze-thaw cycles along north-
south Alaskan transects using ERS-1 SAR. Remote Sens Environ
49:131–137

Rott H (1984) The analysis of backscattering properties from SAR data
of mountain regions. IEEE J Ocean Eng 9:347–355

Rott H, Cline D, Haas C, Duguay C, Essery R, Macelloni G, Malnes J,
Pulliainen J, Rebhan H, Yueh S (2008) Scientific preparations for
CoReH2O, a dual frequency SAR mission for snow and ice
observations. In: Proceedings of IEEE 2008 International Geosci-
ence and Remote Sensing Symposium (IGARSS)

Sandven S, Johannessen OM, Kloster K (2006) Sea ice monitoring by
remote sensing. Wiley, New York

Scheuchl B, Hajnsek I, Cumming IG (2002) Model-based classification
of polarimetric SAR sea ice data. In: Proceedings of IEEE 2002
International Geoscience and Remote Sensing Symposium
(IGARSS)

Scheuchl B, Hajnsek I, Cumming IG (2003a) Classification strategies
for polarimetric SAR sea ice data. Paper presented at the 2003
International Workshop on Science and Applications of SAR Polar-
imetry and Polarimetric Interferometry (POLinSAR)

Scheuchl B, Cumming IG Hajnsek I (2003b) Classification of ice types
from Convair-580 data of Northumberland Strait, PEI. In:
Proceedings of CSA 2003 advanced SAR workshop

Scheuchl B, Caves R, Flett D, De Abreu R, Arkett M, Cumming I (2004)
The potential of cross-polarization information for operational sea
ice monitoring. Paper presented at the 2004 Envisat/ERS symposium

Scheuchl B, Cumming I, Hajnsek I (2005) Classification of fully polari-
metric single-and dual-frequency SAR data of sea ice using the
Wishart statistics. Can J Remote Sens 31:61–72

Sharma J (2010) Estimation of glacier ice extinction coefficients using
long-wavelength polarimetric interferometric synthetic aperture
radar. Ph.D. thesis, Karlsruhe Institute for Technology

Sharma J, Hajnsek I, Papathanassiou KP, Moreira A (2011) Polarimetric
decomposition over glacier ice using long-wavelength airborne
PolSAR. IEEE Trans Geosci Remote Sens 49:519–535

Shi J (2006) Snow water equivalence retrieval using X and Ku band
dual-polarization radar. In: Proceedings of IEEE 2006 International
Geoscience and Remote Sensing Symposium (IGARSS)

212 I. Hajnsek et al.

https://doi.org/10.1029/2012JC008141
https://doi.org/10.1029/2012JC008141
https://doi.org/10.1029/2009JC005292


Shi J, Dozier J (1993) Modelling and observation of polarimetric SAR
response to dry snow. In: Proceedings of IEEE 1993 International
Geoscience and Remote Sensing Symposium (IGARSS)

Shi J, Dozier J (1995) Inferring snow wetness using C-band data from
SIRC’s polarimetric synthetic aperture radar. IEEE Trans Geosci
Remote Sens 33:905–914

Shi J, Dozier J (2000a) Estimation of snow water equivalent using
SIR-C/X-SAR. I. Inferring snow density and subsurface properties.
IEEE Trans Geosci Remote Sens 38:2465–2474

Shi J, Dozier J (2000b) Estimation of snow water equivalent using
SIR-C/X-SAR. II. Inferring snow depth and particle size. IEEE
Trans Geosci Remote Sens 38:2475–2488

Shi J, Davis RE, Dozier J (1993) Stereological determination of dry
snow parameters for discrete microwave modelling. Ann Glaciol
17:295–299

Singh G, Yamaguchi G, Park SE, Venkataraman G (2010) Identification
of snow using SAR polarimetry techniques. International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Science, Volume XXXVIII, Part 8, Kyoto

Skriver H, Pedersen LT (1995) Polarimetric signatures of sea ice in the
Greenland Sea. In: Proceedings of IEEE 1995 International Geosci-
ence and Remote Sensing Symposium (IGARSS)

Stebler O, Schwerzmann A, Luthi M, Meier E, Nuesch D (2005)
PolInSAR observation from an alpine glacier in the cold infiltration
zone at L- and P- band. IEEE Geosci Remote Sens Lett 2:357–361

Thomsen BB, Nghiem SV, Kwok R (1998) Polarimetric C-band SAR
observations of sea ice in the Greenland sea. In: Proceedings of IEEE
1998 International Geoscience and Remote Sensing Symposium
(IGARSS)

Tiuri M, Sihvola A, Nyfors E, Hallikaiken M (1984) The complex
dielectric constant of snow at microwave frequencies. IEEE J
Ocean Eng 9:377–382

Tjuatja S, Fung AK, Bredow J (1992) A scattering model for snow-
covered sea ice. IEEE Trans Geosci Remote Sens 30:804–810

Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of
soil water content. Water Resour Res 16:574–582

Ulaby FT, Stiles WH, Abdelrazik M (1984) Snow cover influence on
backscattering from terrain. IEEE Trans Geosci Remote Sens
22:126–133

Ulaby FT, Moore RK, Fung AK (1986a) Microwave remote sensing,
active and passive. Volume III: From theory to applications. Artech
House, Norwood

Ulaby FT, Moore RK, Fung AK (1986b) Microwave remote sensing:
active and passive. Artech House, Norwood

Uratsuka S, Maeno H, Suitz T, Fisher DA, Goto-Azuma K, Mae S
(1996) Internal layering detected by microwave ice-radar in the
Arctic ice cap. Nat Inst Polar Res 51:387–394

Van Zyl JJ (2011) Synthetic aperture radar polarimetry. Wiley,
New York

Van Zyl JJ, Arii M, Kim Y (2008) Requirements for model-based
polarimetric decompositions. In: Proceedings of 2008 European
Conference on Synthetic Aperture Radar (EUSAR)

Verbyla D (2008) The greening and browning of Alaska based on
1982–2003 satellite data. Glob Ecol Biogeogeogr 17:547–555

Wakabayashi H, Sakai S (2010) Estimation of sea ice concentration in
the Sea of Okhotsk using PALSAR polarimetric data. In:
Proceedings of IEEE 2010 International Geoscience and Remote
Sensing Symposium (IGARSS)

Wakabayashi H, Matsuoka T, Nakamura K, Nishio F (2004) Polarimet-
ric characteristics of sea ice in the sea of okhotsk observed by
airborne L-band SAR. IEEE Trans Geosci Remote Sens
42:2412–2425

Warren SG, Brandt RE (2008) Optical constants of ice from the ultravi-
olet to the microwave: a revised compilation. J Geophys Res
Atmosp. https://doi.org/10.1029/2007JD009744

Watanabe M, Kadosaki G, Kim Y, Ishikawa M, Kushida K, Sawada Y,
Tadono T, Fukudah T, Sato M (2012) Analysis of the sources of
variation in L-band backscatter from terrains with permafrost. IEEE
Trans Geosci Remote Sens 50:44–54

Wesche C, Dierking W (2012) Polarimetric analysis of iceberg and sea
ice radar backscattering mechanisms for iceberg detection. In:
Proceedings of IEEE 2012 International Geoscience and Remote
Sensing Symposium (IGARSS)

Winebrenner DP, Farmer LD, Joughin IR (1995) On the response of
polarimetric SAR signatures at 24 cm wavelength to sea ice thick-
ness in arctic leads. Radio Sci 30:373–402

Xie H, Ackley SF, Yi D, Zwally HJ, Wagner P, Weissling B, Lewis M,
Ye K (2011) Sea ice thickness distribution of the Bellingshausen Sea
from surface measurements and ICESat altimetry. Deep Sea Res Part
II. Topic Stud Oceanogr 58:1039–1051

Yi D, Zwally HJ, Robbins J (2011) ICESat observations of seasonal and
interannual variation of sea-ice freeboard and estimated thickness in
the Weddell Sea. Ann Glaciol 52:43–51

Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar
echoes. IEEE Trans Geosci Remote Sens 30:950–959

Zwally HJ, Yi D, Kwok R, Zhao Y (2008) ICESat measurements of sea
ice freeboard and estimates of sea ice thickness in the Weddell Sea. J
Geophys Res Oceans. https://doi.org/10.1029/2007JC004284

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

4 Cryosphere Applications 213

https://doi.org/10.1029/2007JD009744
https://doi.org/10.1029/2007JC004284


Urban Applications 5
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Abstract

The experimental result reported in this chapter review the
application of (high resolution) Synthetic Aperture Radar
(SAR) data to extract valuable information for monitoring
urban environments in space and time. Full polarimetry is
particularly useful for classification, as it allows the detec-
tion of built-up areas and to discriminate among their
different types exploiting the variation of the polarimetric
backscatter with the orientation, shape, and distribution of
buildings and houses, and street patterns. On the other
hand, polarimetric SAR data acquired in interferometric
configuration can be combined for 3-D rendering
through coherence optimization techniques. If multiple
baselines are available, direct tomographic imaging can
be employed, and polarimetry both increases separation
performance and characterizes the response of each
scatterer. Finally, polarimetry finds also application in
differential interferometry for subsidence monitoring, for
instance, by improving both the number of resolution cells

in which the estimate is reliable, and the quality of these
estimates.

5.1 Introduction

Cities and urban places grow fast, especially in the develop-
ing countries. As most countries rapidly become urbanized,
environmental change, including climate change, is becom-
ing a leading development challenge. The impacts of weather
variability and climatic changes on cities and urban areas are
many and complex. Major cities situated along the coast are
likely to be or are already affected by sea- level rise,
increased storm flooding, inundation, coastal erosion, rising
coastal water tables, and obstructed drainage. Displacement
of people, especially to or from urban areas, destruction of
property, and loss of livelihoods are other common impacts,
which often contribute to and perpetuate stresses to the
system.

Remote sensing is particularly well adapted to monitor
urban land expansion and urbanization. Indeed, remotely
sensed data are inherently suited to provide information on
urban land cover characteristics, and their changes over time,
at various spatial and temporal scales. Synthetic Aperture
Radar (SAR) is an active remote sensing technique capable
to gather data independently of time and weather conditions.

Urban scenes are composed of a variety of natural and
artificial scatterers. In this sense, polarimetric information is
useful for classification, because the polarimetric backscatter
from man-made targets varies highly with orientation, shape
and distribution of buildings and houses, and street patterns.
The first application linked to polarimetric data is then the
classification methods for detecting built-up areas and dis-
criminating their different types. Several classification
schemes can effectively extract the urban structures by
mapping urban related classes with better accuracy than
with single-polarimetric data. Some works identify building
characteristics through the polarimetric mechanisms such as
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orientation effects and dihedral effects (Iribe and Sato 2007)
or through time-frequency analysis (Ferro-Famil and Pottier
2007). Other ones propose the estimation of the dielectric
constant of buildings (Cloude 2009).

PolInSAR data have also been proven to help classifica-
tion in urban scenarios, as demonstrated in (Moriyama et al.
2005). It is hence possible by using the PolInSAR coherence
to remove some volume scattering ambiguities remaining in
PolSAR scenario. The three dimensional rendering over
urban areas has been recently found to be another possible
product. At this state of the art, the PolInSAR performances
that have been shown in this context have only been
demonstrated on airborne high-resolution data. The height
estimations are based on coherence optimization (Colin et al.
2006; Colin-Koeniguer and Trouve 2014) or a phase scatter
separation methods such as ESPRIT (Guillaso et al. 2005).
Then the potential of polarimetry for this application is dou-
ble: it can first be used for pre-segmentation algorithms and
then for improving the estimation of the heights or separating
phase centers. Another technique dedicated to 3-D rendering
is the tomographic approach that is the extension of the con-
ventional two-dimensional SAR imaging principle to three
dimensions. Full three-dimensional imaging of a scene is
achieved by the formation of an additional synthetic aperture
in elevation by a coherent combination of images acquired
from several parallel flight tracks. Once again, the polarimet-
ric extension of this technique has been applied only to
airborne data (Huang et al. 2012; Sauer et al. 2007).

On the other hand, land subsidence is a major geological
disaster in urban areas. Monitoring land subsidence effi-
ciently will not only help people to identify the spatial and
temporal pattern of this kind of disaster but also help people
minimize the hazard ahead. Persistent Scatterer Interferome-
try (PSI) has been recognized as the most powerful tool to
monitor the land subsidence in long time series and on large
scale (Ferretti et al. 1999, 2001). In PSI approaches, PS
selection is a decisive stage because the number and quality
of PS directly affect the computed deformation results. In this
context, it becomes relevant to assess the use of polarimetry
associated with PSI to improve the PS selecting algorithm
(Pipia et al. 2009; Navarro-Sanchez et al. 2010).

5.2 Classification of Urban Areas

5.2.1 Polarimetry for Urban Classification

5.2.1.1 Introduction and Motivation
An urban area is characterized by complex man-made
structures with heterogeneous scattering objects. When
sensed by radar, it exhibits strong backscattering if the radar
illumination is orthogonal to buildings. The scattering mag-
nitude from an urban area, in general, is much larger than

those from other areas such as rural, agricultural, vegetation,
or forest region. It is rather easy to recognize urban areas
using the backscattering coefficient even with a single-polar-
imetric radar. If the detailed information is desired for urban
area application, we need to use fully polarimetric data (Lee
and Pottier 2009; Yamaguchi et al. 2005). Fully polarimetric
data, i.e., the scattering matrix S, can be expressed in the
horizontal (H) and vertical (V) polarization basis.

Polarimetric data analyses on urban areas, up to now, have
revealed the following results as shown in Fig. 5.1. If the
polarimetric radar illumination is orthogonal to buildings or
building blocks, the scattering mechanism is characterized by
the double bounce scattering caused by the vertical building
wall surface and horizontal road surface. The co-polarized
backscattering (|Shh|

2 and |Svv|
2) are strong enough compared

to the cross-polarized (|Shv|
2) component. On the other hand,

if the radar illumination is not orthogonal or parallel to
building or building blocks, i.e., in the case of oblique inci-
dence to building facets, the scattering magnitude signifi-
cantly reduces, and the scattering mechanism changes from
double bounce to single bounce with the generation of the
cross-polarized component. In this case, the scattering
characteristics with small RCS and with a rather big contri-
bution of the cross-polarized |Shv|

2component impose a diffi-
cult problem to distinguish between oriented buildings
against vegetation. Since the scattering characteristics
become similar to those of forest in this case, it is difficult
to classify them.

The purpose of this section is to show the effectiveness of
polarimetry for urban classification considering the effect of
scattering characteristics in urban structures. There are, at
least, two effective methods for this urban classification:

1. The correlation coefficient in the circular polarization
basis (Moriyama et al. 2005; Lee et al. 2002; Schuler
et al. 2006; Yamaguchi et al. 2008)

2. The scattering power decomposition with de-orientation
(Yamaguchi et al. 2005), polarization orientation compen-
sation (Lee and Ainsworth 2011), or minimization of the
cross-polarized component (Yamaguchi et al. 2011; Arii
et al. 2011; Sato et al. 2012; Singh et al. 2013)

Fig. 5.1 Scattering from buildings
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In the following, some classification results using both
methods are explained with high-resolution data sets.

5.2.1.2 Literature Review and Methodology

5.2.1.2.1 The Correlation Coefficient
The utilization of the correlation coefficient in the circular
polarization basis dates back more than a decade (Moriyama
et al. 2005; Lee et al. 2002). The advantage of circular
polarization basis seems to be insensitive to object orienta-
tion. The original application was proposed by D.L. Schuler
et al. for the detection of man-made structures (Guillaso et al.
2005). Similar works can be found in (Yamaguchi et al.
2008). The key point is an enhancement of urban areas
against surrounding areas using the correlation coefficient.

The correlation coefficient can be written in terms of
scattering elements as:

γLL�RR ¼ γLL�RRj j∠γLL�RR

¼
4 Shvj j2 � Shh � Svvj j2

D E
� jRe S�hv Shh � Svvð Þ� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Shh � Svv þ 2jShvj j2
D E

Shh � Svv � 2jShvj j2
D Er ,

ð5:1Þ

where the symbol h�i denotes ensemble average in an image
window.

It is experimentally known that the cross-correlation
between the co- and cross-polarized scattering elements are
close to zero for natural distribute objects,

ShhS
�
hv

� � ¼ SvvS
�
vh

� � � 0: ð5:2Þ

This is the so-called reflection symmetry condition. Under
this condition, the correlation coefficient (5.1) becomes real-
valued, and it is expressed as:

γLL�RR 0ð Þ ¼
4 Shvj j2 � Shh � Svvj j2

D E
4 Shvj j2 þ Shh � Svvj j2

D E ð5:3Þ

If we calculate the correlation coefficient (5.1) in an urban
area which exhibits non-reflection symmetry condition, the
values become larger than (5.3). If we normalize (5.1) by
(5.3):

γ0LL�RR ¼ γLL�RRj j
γLL�RR 0ð Þj j : ð5:4Þ

The value of γ0LL�RR will be close to unity for the reflection
symmetry condition and will be larger than unity for the
non-reflection symmetry case. We denote (5.4) as an

extended correlation coefficient for discrimination versus
(5.1).

If we examine the distribution of the correlation coeffi-
cient (5.1) for typical areas shown in rectangular boxes of
Fig. 5.2, the values exhibit specific features (see Fig. 5.3). Sea
(Patch A) and forest areas (Patch B) are typical reflection
symmetry scatterers. The mean value of the coefficient is
close to �0.8 for sea and 0 for the forest. The values of
oriented urban areas (Patch C) are widely spread within the
unit circle in the complex plane, while the mean values of
orthogonal blocks (Patch D) are concentrated around �1 on
the plane. These specific distributions are important for urban
classification.

5.2.1.2.2 Extraction of Oriented Urban Area by
Extended Correlation Coefficient

The mean values of extended correlation coefficients of spe-
cific scattering structures in Fig. 5.2 are shown in Table 5.1. It
is seen that the oriented houses exhibit large values of more
than 2 compared to other areas. Orthogonal urban areas
exhibit values similar to those of the reflection symmetry
scatterer. Therefore, it is possible to extract oriented urban
blocks using the extended correlation coefficient only. The
detection result by the extended correlation coefficient is
shown in Fig. 5.4, where typical oriented residential houses
are highlighted in circles.

5.2.1.2.3 Tree Area Detection
Clusters of trees or forests exhibit volume or diffuse scatter-
ing with relatively small backscattering power. If trees are
mixed within complex urban areas, the detection of trees

Fig. 5.2 The total power image, X-band Pi-SAR data
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becomes difficult because strong total powers from
man-made structures mask the tree echo.

If we pay attention to forest areas in Fig. 5.3, the mean
value of the correlation coefficient is concentrated around
0. This situation serves to extract forested areas in a very
simple way. If we take the reciprocal of (5.1), the value
becomes very large for the tree or forested area. Figure 5.5

shows the value of which indicates the tree or forested area in
Fig. 5.2. For the sake of comparison, an aerial photo of the
same area is shown in Fig. 5.6. The bright areas in Fig. 5.5 are
in good agreement with trees in the actual photo image. As
can be deduced, it is possible to identify small forests along
the seashore and cluster of trees in urban residential areas.
They perfectly match between Figs. 5.5 and 5.6.

5.2.1.2.4 Classification of Terrain by Total Power
and the Correlation Coefficients

Since the total power is the essential radar parameter, and the
correlation coefficient in the circular polarization basis
provides useful information, it is possible to use these
parameters together for the identification and classification
of complex urban terrain. One of the algorithms for urban
classification is shown in Fig. 5.7.

The algorithm uses the total power and the correlation
coefficient and its extension (5.4). The total power below
�13 dB is assigned to sea or water area for the exclusion of
spiky noise in that area even if |γLL � RR| is large. The total
power larger than�5.2 dB with |γLL � RR| > 0.6 is assigned to

Fig. 5.3 The distribution of the
correlation coefficient for specific
areas in Fig. 5.2

Table 5.1 Values of extended correlation coefficient

Category γLL-RR
C: Non-orthogonal urban area 2.54

D: Orthogonal urban area 1.12

B: Forest (pine trees) 1.44

Crop field 1.22

Paddy rice field 1.11

Seashore 1.10

A. Sea 1.01

Fig. 5.4 Detection result of oriented building blocks

Fig. 5.5 Tree clusters highlighted by 1/|γLL � RR|
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orthogonal urban scatterer (orthogonal to radar illumination),
because the magnitudes of the total power and the correlation
coefficient are large for man-made structures (see Figs. 5.3
and 5.4, respectively). In the range of �13 < TP < �5.2 dB,
the appropriate values of the correlation coefficients |γLL � RR|
and the extended γ0LL�RR

�� �� are employed to discriminate areas
based on Table 5.1 and Fig. 5.4. The final classification result
for the Pi-SAR image is shown in Fig. 5.8. Since the radio-
metric and polarimetric calibrations have been carried out in
the Pi-SAR data sets, these criterion values can be applied to
other scenes.

5.2.1.2.5 Scattering Power Decomposition
Scattering power decompositions provide tools for the analy-
sis of fully polarimetric images (Yamaguchi et al. 2005). The
decomposition images based on the physical scattering model
are easy to interpret because experimental pieces of evidence
are incorporated. The pioneering work in the model-based
decomposition was presented by Freeman and Durden (Free-
man and Durden 1998) by introducing the three-component
decomposition. To date, a significant amount of research has

been carried out on the model-based decomposition
techniques (Arii et al. 2011; Sato et al. 2012; Singh et al.
2013).

This section presents the four-component scattering power
decomposition by rotation of coherency matrix (Yamaguchi
et al. 2011) for urban classification. The advantage of this
method is the final imaging performance compared to other
schemes. It provides the most natural and beautiful imaging
results when RGB color-code is used for double bounce,
surface, volume scattering power plus additional Yellow for
helix scattering (see Fig. 5.10). Since the helix scattering
decreases with an increasing number of averaging pixels,
yellow color is assigned to this helix scattering. The yellow
color makes RGB images more vivid. It fades away when the
number of ensemble averaging pixels increases. On the other
hand, we sometimes need high-resolution images using a
small number of averaging pixels, 3�3 for example, for
urban area classification. In such a case the yellow color
looks bright for man-made structures and fits for human eye
recognition, although the statistics may not be accurate due to
a small number of averaging.

Fig. 5.6 An aerial photo image of the area
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5.2.1.2.6 Decomposition Algorithm
The procedures for the four-component scattering power
decomposition have been already shown in Fig. 3.37. This
method first rotates the coherency matrix in an imaging
window so as to minimize the cross-polarized component.
Then it decomposes the observation matrix into the surface,
double bounce, volume, and helix scattering terms based on
the physical scattering models and determines the
corresponding scattering powers. This method accounts for
6 terms out of 8 independent polarimetric parameters.

5.2.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on urban classifica-
tion are summarized in Table 5.2.

The decomposition algorithm in Fig. 3.37 can be directly
applied to fully polarimetric data sets. Once the scattering
powers are obtained, they are assigned to RGB color-code
with the double bounce scattering power Pd to Red, the
volume scattering power Pv to Green, the surface scattering
power Ps to Blue, and the helix scattering Pc to Yellow as
shown in Fig. 5.9. The magnitude is assigned to color bright-
ness. The general tendencies of scattering powers are
displayed as a function of imaging window size.

The decomposition results are shown in Fig. 5.10. The
window size for the ensemble average was chosen as 5�5,
7�7, and 9�8. The images become vivid with an increasing
number of pixels as shown in Fig. 5.10. The double bounce
scattering power Pd (Red) and volume scattering power Pv
(Green) increase with an increasing number of pixels from
5�5 to 9�9. The decomposition results can be compared

Fig. 5.7 Classification algorithm

Fig. 5.8 Classified area by
correlation coefficient and total
power
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with the Google photo image in Fig. 5.10, where perfect
matching can be seen. Residential areas orthogonal to radar
illumination exhibit pink color (R + B), whereas oblique
areas show yellow or orange color. At the time of data
acquisition, the rice paddy field was full of rice stem with
50 cm long, which caused a mixture of volume and double
bounce scattering mechanisms. If we need a high-resolution
image in urban areas, we need to reduce the averaging num-
ber in order to avoid blurring. This causes an adverse effect in
polarimetric statistics itself; however, the complementary
behavior of Pc and Pd serves good performance in urban
classification. Lower left of Fig. 5.10 are buildings not
orthogonal to the radar beam. They exhibit yellow color in
the 5�5 image and gradually become a mixture of yellow and
red in 7�7 and 9�9 images. Bright yellow color best fits for
man-made structure indicator.

5.2.1.4 Comparison with Single/
Dual-Polarization Data

Since the correlation coefficient in the circular polarization
basis and the four-component scattering power decomposi-
tion are based on fully polarimetric data, they do not apply to
single-/dual-polarimetric data sets. These methods make use
of fully polarimetric data and bring full color image by
polarization. If single-/dual-polarimetric data are provided,
the backscattering information only will be available,
resulting in mono-color image.

5.2.1.5 Discussion on the Role of Polarimetry
and on the Maturity of the Application
and Conclusions

The correlation coefficient in the circular polarization basis
contains useful information on objects. It can be used for
classification, derivation of surface slope, and polarization
orientation angle, among others. Since the correlation value is
dependent on neighboring pixels, the value becomes large if
there are similar scatterings and small if the scattering is
random. Important is the independence from backscattering
power. For high-resolution data sets, polarimetry and this
polarimetric index will be a key parameter for the classifica-
tion of objects.

Scattering power is one of the most essential radar
parameters. Polarimetric decomposition powers provide us
with an easy way to interpret the radar scene for everybody.
Therefore polarimetry seems an essential monitoring tool for
radar remote sensing.

If scattering power decomposition results are combined
together with the correlation coefficient results, they will
serve the most efficient tool for polarimetric analyses of
objects.

5.2.2 Detection of Built-Up Areas

5.2.2.1 Introduction, Motivation, and Literature
Review

In the context of rapid global urbanization, urban
environments represent one of the most dynamic regions on
earth. Even in developed countries, the yearly conversion of
natural or agricultural space into residential, industrial, or
transport areas frequently exceeds 100 ha. The current
increase in population has resulted in widespread spatial
changes, the particularly rapid development of built-up
areas, in the city, and its environs. Due to these rapid
changes, up-to-date spatial information is required for the
effective management and mitigation of the effects of built-
up dynamics.

Various studies have shown the potential of high-
resolution optical satellite data for the detection and classifi-
cation of urban areas. Nevertheless optical satellite imagery is
characterized by a high dependency in weather conditions
and daytime. Thus, particularly in case of regional and
national surveys within a short period of time, disaster man-
agement, or when data have to be acquired at specific dates,
radar systems are more valuable.

Fig. 5.9 Color-code for the four-component scattering power decom-
position. The color-code are used with Red for the double bounce
scattering power Pd, Blue for the surface scattering power Ps, Green
for the volume scattering power Pv, and Yellow for the helix scattering
Pc. The magnitude corresponds to the brightness of each color. The
general scattering power behavior is displayed as a function of imaging
window size

Table 5.2 Test sites and corresponding radar and validation data selected for the generation of showcases on urban classification

Application/product Test site – Radar data Reference data

Urban classification (PolSAR) Western Niigata city, Japan Google photo images

PiSAR-X airborne data, X-band, 1.5 m resolution

5 Urban Applications 221



Thus, the new generation of civil space borne Synthetic
Aperture Radar (SAR)-Systems with short revisit can serve
as a valuable resource. Promising approaches toward the
classification of urban areas include the analysis of multi-
polarized image analysis. However, to ensure a detailed
mapping of urban structures, we need high ground resolution.
Indeed, the emergence and recognition of urban remote sens-
ing appear to be linked to the continuous improvement of the
spatial resolution offered by generation sensors (Boehm and

Schenkel 2003). Unfortunately, satellite sensors using the
polarimetric mode are often in a degraded resolution. That
is why to evaluate the benefits of polarimetry in the urban
areas, we try to use here the satellite data with the best
achievable resolution, which are achieved today by the
TerraSAR-X system.

Among the algorithms to detect buildings in polarimetric
SAR image, we must distinguish between what is purely
statistical (Pellizzeri et al. 2003; Cao et al. 2011; Deledalle

Fig. 5.10 Four-component power decomposition to Pi-SAR-X data set. The effect of imaging window size can be seen and compared in the
decomposition image
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et al. 2015) or imaging techniques (Wang et al. 2010; Liu
et al. 2010) from what is of interest of polarimetry. Some
works are only effective exploitation of spatial characteristics
of the image such as line detection, analysis of speckle,
region-based and edge-based information, etc. Others focus
on the best way of estimating PolSAR or PolInSAR coher-
ence matrices or to use dedicated statistical tools as fuzzy
logic, neuronal networks, and maximum likelihood
classifiers. Others deal with performance evaluation of differ-
ent polarimetric parameters in their contributions to classifi-
cation or segmentation algorithm and consider their ability to
provide a physical interpretation. The latter is more related to
the benefit of polarimetry itself.

Polarimetric decompositions can provide physical
interpretations of the PolSAR observations such as scattering
mechanisms or polarimetric properties. Parameters obtained
by the decomposition methods can be directly used as classi-
fication features in non-parametric classifiers. In this frame-
work, various polarimetric SAR parameters can be evaluated
for urban land cover detection. They include the Pauli
parameters, Freeman and Cloude-Pottier decompositions,
Freeman or Yamaguchi decompositions, coherency matrix,
intensities of each polarization, and their logarithms.

The principal algorithms proposed in the literature for the
extraction of buildings in SAR images using polarimetric
information are summarized in the following.

5.2.2.1.1 Main Scattering Mechanisms Occurring
for Buildings

The contribution of urban polarimetry can be justified by the
diversity and complexity of the interpretation of the different
mechanisms involved. Briefly, the recorded observations are
summed by the scatterings from the targets on the same wave
front. For example, the layover areas contain the scatterings
from the roof, wall, and ground. A mixture of volume scat-
tering by vegetation and double-bounce scattering from
buildings can also be observed in low-density areas. The
total scattering is strongly influenced by the looking
directions and the alignment of structures: man-made
structures which are arranged perpendicularly to the illumi-
nation direction increase the oriented double bounce
contribution.

Among the polarimetric parameters that can be used in
urban areas, some are from coherent decompositions, others
from incoherent decompositions. Generally, the former are
dedicated to the analysis of targets called deterministic whose
statistical fluctuation of the polarimetric response is
neglected. This could be the case of manufactured targets
such as buildings. The latter take into account the sources of
decorrelation.

5.2.2.1.2 A Classical Polarimetric Parameter: Entropy
Generally, the polarimetric entropy can precisely distinguish
the degree of randomness in the mixture of different

polarimetric mechanisms taking place within a resolution
cell. Thus, this parameter, and its alternatives such as depo-
larization or scattering diversity (Praks et al. 2009), seem
therefore appropriate to discriminate man-made targets from
natural targets.

However, the use of entropy for classification purposes is
not so simple. Firstly, entropy requires a statistical estima-
tion, and it is well-known that the results depend on how this
estimation is performed and on the number of samples. Fur-
thermore, it is known that entropy is connected to numerous
factors related to the design of the sensor, such as the resolu-
tion, the noise level, the wavelength, and the geometrical
configuration.

Thus, for the classification algorithms based on the use of
polarimetric entropy over several images of San Francisco,
two main issues have been raised. First, entropy strongly
depends on the orientation of the buildings with respect to
the sensor axis. This correlation has been also analyzed using
a UAVSAR image of New Orleans (Colin-Koeniguer et al.
2015). In this image, several different neighborhoods with
various orientations were selected, and the mean entropy has
been calculated for each of them. Entropy increases very
rapidly with street orientations. Since San Francisco contains
some district, the SOMA, with a specific orientation, all
classical parameters failed to classify correctly both the
buildings of this district and the neighboring districts with
different orientations. The second problem is that entropy is
high all over the TerraSAR-X image and does not provide
sufficient contrast for the detection of built-up areas. This
high entropy is the result both of the strong effect of the
orientation at X-band and the metric resolution. As soon as
the orientations of the streets are not equal to the sensor
trajectory orientation, all mechanisms have comparable
amplitudes. The different mechanisms are mixed together in
the estimation of the coherence matrix, and therefore, the
estimated entropy is high.

5.2.2.1.3 Temporal Estimation
We have seen that for oriented districts, and for some resolu-
tion ranges, entropy is high when estimated spatially, and
therefore, it cannot be used efficiently for built-up detection
or land classification. In this case, we can estimate entropy
temporally. If a few years ago, access to polarimetric SAR
data on the same site was rare, today the number of revisits
over the same site increases and can be used for statistical
estimation of second-order parameters.

The potential of a temporal estimation has been shown on
part of SAR images of San Francisco. We calculated the
entropy of parts of the image for three types of estimation:

• A spatial average over 3 pixels
• A spatial average using a classical 5�5 pixels
• A temporal average using 3 passes

5 Urban Applications 223



The resulting estimation of entropy is presented over an
extract of a TerraSAR-X image in Fig. 5.11 and over an
extract of a UAVSAR image in Fig. 5.12. Results on the
TerraSAR-X image show that a spatial estimation gives poor
results, whereas a better contrast seems to appear between
deterministic and non-deterministic targets using a temporal
estimation over only 3 pixels. On the UAVSAR image, when
we increase the number of pixels used in the spatial

estimation, the contrast between districts with different
orientations increases also. When we use the temporal esti-
mation, then the contrast between these different districts
decreases, while the contrast between deterministic and
non-deterministic targets increases. These results have been
confirmed on larger temporal image stacks and are very
promising for the benefit of temporal estimates in urban
polarimetric images.

Fig. 5.11 Different entropy maps obtained using different estimation methods over an extract of TerraSAR-X data set

Fig. 5.12 Different entropy maps obtained using different estimation methods over an extract of UAVSAR data set
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5.2.2.1.4 The Polarization Orientation Angle
and Disorientation

The orientation angle has also been deeply investigated in
polarimetry in built-up areas (Lee and Ainsworth 2011).
The polarization orientation angle (POA) is defined by the
angle of rotation about the line of sight. It has been shown
that the polarization orientation angle shifts are induced by
surfaces with buildings that are not aligned in the along-track
direction. Classical disorientation algorithms aim at:

• Estimating the orientation angle of the target under study
• Applying a rotation of the polarimetric basis to align the

axis of the target on the horizontal axis and therefore
obtain zero cross-polarization returns

However, in the case of a real dihedral mechanism, this
operation is not so simple, for many reasons:

• First, we do not deal with metallic canonical effects, but
with dielectric ones. The Fresnel coefficients on dielectric
materials are not equal in amplitude for the HH and the
VV polarization, and so the corresponding scattering
matrix is not strictly equal to the second Pauli
matrix (Thirion-Lefevre et al. 2020).

• Second, the rotation is applied in the wave plane. As a
consequence, a dihedral effect whose corner is horizontal
with a given orientation has not necessarily a polariza-
tion orientation angle (POA) equal to its corner
orientation.

• Finally, the double bounce mechanism related to a vertical
wall with a non-zero orientation angle cannot involve two
successive specular scattering mechanisms. Generally, it
is assumed that the vertical wall implies a specular one,
whereas the ground does not, as represented in Fig. 5.13.
Therefore, this real double bounce effect has a very

smaller return in the co-polarization channels that the
classical ones. Small elements of the facade can now
also contribute to the polarimetric return and can have
comparable amplitudes. In this case, the double bounce
effect is not more dominant for a building.

5.2.2.1.5 The Use of the Generalized Interferometric
Coherence

At X-band, as the traditional parameter of entropy does not
seem satisfactory, we propose to use polarimetry contribution
to a repeat-pass interferometric mode. Indeed, the phenomena
of temporal decorrelation will be very fast in this frequency
band, again sensitive to displacements of the order of a
centimeter. A HIS colored representation of the interferogram
obtained over the whole image of San Francisco is given in
Fig. 5.14.

Thus, the interferometric correlation image exhibits a con-
trast much better than the intensity image between natural
and artificial targets, as shown in Fig. 5.15 on a detail of the
image. It is clear on these images that areas of parks and
urban vegetation whose intensity is very high present a high
decorrelation that allows distinguishing buildings.

The proposed solution is therefore to use optimized
repeat-pass coherent polarimetry as an essential criterion for
an unsupervised 2-class classification that will eventually be
improved by shape criteria extracted from the span image.
The optimized coherence will be obtained by one of the
optimization procedures described in (Colin et al. 2006;
Cloude and Papathanassiou 1998).

5.2.2.2 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on urban classifica-
tion are summarized in Table 5.3 and further described in the
Appendix.

Fig. 5.13 Representation of mechanisms for the classical dihedral effect and the disoriented dihedral effect
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Fig. 5.15 Image of the masks obtained from the ground truth files and applied to the performance evaluation of the different classification methods.
Left: intensity on a detail of the image; right: optimum coherence on a detail of the image

Table 5.3 Test sites and corresponding radar and validation data selected for the generation of showcases on urban classification

Application/product Test site – Radar data Reference data

Urban classification (optimized coherence) San Francisco, USA Shapefile with building footprints

TerraSAR-X HH/HV/VV

TerraSAR-X HH/VV

Toulouse, France

TerraSAR-X HH/VV

Fig. 5.14 Interferogram obtained over the whole image of San Francisco in HH polarization with a HSI representation. Hue: interferometric angle,
Saturation: coherence level, Intensity: span



To use polarimetric parameters in the framework of built-
up areas detection, four main features of the polarimetric
analysis in the context of urban areas can be used:

• Polarimetry can distinguish between deterministic
(man-made targets) and non-deterministic (natural targets).

• Built-up areas contain a lot of orientation effects that
induce a non-zero polarization orientation angle
(Moriyama et al. 2004). This polarization orientation
angle is defined by the angle of rotation about the line of
sight. It has been shown that the polarization orientation
angle shifts are induced either by dihedral effects between
the ground and a vertical wall that are not aligned in the
along-track direction or by tilted roofs. However, the
evaluation of this orientation angle is very noisy as soon
as this angle becomes high.

• Double bounce effects between vertical walls and the
ground give often very strong echoes in the SAR image.

• Lack of azimuthal symmetry implies that the correlation
coefficient between cross-polarization and co-polarization
is not equal to zero on the contrary to a flat surface or
vegetated areas.

To quantify the contribution of polarimetry for building
detection, we plotted ROC (Receiver Operating Characteris-
tic) curves that are a plot of the true positive rate against the
false-positive rate for the different possible cut points of a
diagnostic test. These curves analyze the efficiency of using
various input parameters and various distances between the
two classes defined by the ground truth (built-up and natural).
The closer the curve follows the left-hand border and then the
top border of the ROC space, the more accurate is the test.
Different distances can be calculated using different
parameters: entropy, Yamaguchi, the different polarimetric
correlations existing in case of non-symmetry.

The results are presented in Fig. 5.16. Then these curves
clearly show that the best discriminating parameter among
the tested ones is the Yamaguchi double bounce component.
However, we must keep in mind that the Yamaguchi param-
eter does not only depend on the polarimetric content but also
the powers. When we compare this parameter to the polari-
metric intensity channels in Fig. 5.17, we see that it is always
less efficient than the polarimetric amplitudes. That proves
that polarimetric parameters that are independent of the span
(entropy, correlation) give not good results here to identify
alone built-up areas.

Since at X-band traditional polarimetric parameter fails to
identify man-made targets, we propose to use polarimetry
contribution to a repeat pass interferometric mode. Indeed,
the phenomena of temporal decorrelation will be very high in
this frequency band, because it will be sensitive to
displacements of the order of a few centimeters. Thus, the
interferometric correlation image exhibits a contrast much

better than the intensity image between natural and artificial
targets.

The ROC curves presented in Fig. 5.18 clearly show the
benefit to use interferometric coherence for discriminating
buildings, at least at HH and VV polarization. Then, the
benefit of polarimetry can be also considered through the
use of a coherence optimization The ROC curves estimated
in Fig. 5.19 also show the following points:

• It is clear that the contribution of polarimetry to optimiza-
tion allows for improving the detection performance.

• Coherence optimized on a single mechanism gives similar
results to the coherence optimized on two mechanisms.

• The map of HV interferometric coherence gives poor
results. It is actually very noisy, maybe due to the lower
signal to noise ratio that exists in this experimental polari-
metric channel.
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Fig. 5.16 Efficiency (ROC) of different polarimetric parameters
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• The polarimetric coherence matrix provides also some
interesting information for classification, which can out-
perform some pure interferometric information (e.g., in
HV).

• The dual-polarimetric optimization seems to outperform
slightly the full polarimetric optimization.

However, the contribution of the HV should be
highlighted differently. Indeed, it is clear that the contribution
can be shown only in cases where the SNR is sufficient. The
preliminary results of classification obtained images of San
Francisco and Toulouse are given in Fig. 5.20. They will be
further improved by taking into account shape criteria, for
example, effective forms as the rectilinear contours of
buildings.

5.2.2.3 Comparison with Single-/Dual-Pol Data
The contribution of polarimetric data in comparison with
single-pol data has been demonstrated in the previous sec-
tion. As regards the contribution of HV versus dual-pol mode
HH /VV, the situation is less clear. The ROC curves compar-
ing the benefits of full polarimetric optimization compared to
dual-pol mode presented in Fig. 5.21 show that

• For small false-positive rates (<0.5), the dual-pol optimi-
zation seems to outperform slightly the full polarimetric
optimization.

• For high false-positive rates higher than 0.5, the full polar-
ization outperforms the dual-pol mode.

However, the contribution of the HV should be
highlighted differently. Indeed, it is clear that the contribution
can be shown only in cases where the SNR is sufficient.

The ROC curves estimated over Toulouse in dual-
polarimetric mode are presented in Fig. 5.21. They also
show that the second optimal coherence gives better contrast
than the first one. Indeed, we should remember that Toulouse
contains only bare soil and buildings, whereas San Francisco
contains also vegetation and ocean. The water surface
decorrelates more than soil, and then the contrast in
decorrelation remains high even after optimization. Optimi-
zation can be sometimes not as efficient as expected, for
example, in presence of bare soil whose optimization can
improve coherence or when a polarimetric channel has an
inefficient level (HV). However, averaging the optimized
coherence appears to present the best performance for
the detection of built-up areas. The proposed solution is
therefore to use optimized repeat-pass coherent polarimetry
as an essential criterion for unsupervised 2-class classifica-
tion. This classification can be eventually improved by shape
criteria extracted from the Span image.

5.2.2.4 Discussion on the Role of Polarimetry
and on the Maturity of the Application
and Conclusions

The detection of man-made targets using polarimetry has a
few years now. The contribution of polarimetry to distinguish
natural areas from artificial targets is well-known in
classification.

This application at X-band using satellite data is far more
recent with the launch of TerraSAR-X. In this context, polar-
imetry seems to become less effective for discriminating
built-up areas. Indeed, the roughness of roofs and walls,
sensitive to this scale, the different materials, and different
elements that compose them, all seem to contribute to the
depolarization effects or mixtures of mechanisms. In this
context, it becomes difficult to predict and interpret the polar-
imetric answer of the urban areas.
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Fig. 5.18 ROC: comparison of intensity and interferometric coherence
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The processing of these data at this wavelength is indeed
relatively recent. There is still a lot of effort to do, especially
from the point of view of modeling tools, to be able to better
understand the polarimetric response at these wavelengths. In
particular, there is a major effort to carry out about the
influence of the wavelength related to the size of the
resolution cell.

Still at X-band, it appears that the essential contribution of
polarimetry is the optimization of the interferometric coher-
ence and its use to discriminate targets based on their speed of
temporal decorrelation.

5.3 3-D Rendering Over Urban Areas

5.3.1 3-D Rendering Using Coherence
Optimization

5.3.1.1 Introduction, Motivation, and Literature
Review

3-D rendering is a logical extension to the classification of
buildings proposed in the previous section, to enrich the data
necessary to monitor the growth of the urban extension. But it

Fig. 5.20 Results of classification of built up areas in white, over a full polarimetric image of San Francisco on the left, and over a dual-polarimetric
image over Toulouse on the right
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can also be considered as part of the diagnostic of urban areas
after natural disasters such as tsunamis or earthquakes. Natu-
ral disaster monitoring and evaluation of their effects is a
complex problem in urban areas because a lot of parameters
can be investigated. Areas of significant changes can be
detected on the basis of the exploitation of high-resolution
satellite data, areas where a 3-D model can be established on
a large scale by interferometry. In this context, the contribu-
tion of radar is its immediate use regardless of weather
conditions or smoking out due to fires.

Polarimetry combined with interferometry can improve
the product of the latter either by separation of scattering
phase center, i.e., by being able to distinguish different
heights in a single resolution cell or by improving the inter-
ferometric correlation map, i.e., by enhancing its value and
reducing the noise level of the interferometric phase. In the
latter case, to assess the benefit of polarimetry, we simply
need to compare the use of the interferometric phase before
and after optimization.

5.3.1.1.1 Scattering Phase Center Separation
For the separation of phase centers, the goal is to get the
ground height jointly with the elevation of the roof. In this
framework, the benefits of polarimetry are often compared
with the benefits of pure technical image processing.

The results of techniques for phase separation will obvi-
ously depend on three factors:

• The resolution of the images. This is even the essential
criterion. For instance, if the resolution is low, a vertical
wall will be found synthesized in a single resolution cell.
This wall will include several scattering centers, and
potentially different polarimetric returns with different
heights will therefore be mixed.

• The frequency. At low frequencies, the wave will not
necessarily be sensitive to details. Thus, even a large
resolution cell will see a limited number of mechanisms.

• The height of ambiguity for the interferometric process.
The distribution of heights observed depends on this
parameter: if the ambiguity height is small, then the angu-
lar diversity of the generalized coherence will be very
important.

Among the techniques of phase separation, two main
techniques exist:

• The ESPRIT method (Guillaso et al. 2005)
• The coherence optimization using a single mechanism that

has been shown in (Colin et al. 2006) to be able to separate
different phase scattering centers, under some
assumptions (absence of temporal or volume
decorrelation)

5.3.1.1.2 Coherence Optimization
There are different possible definitions of a generalized coher-
ence for polarimetry and therefore other possible methods to
perform an optimization. For example, we can distinguish
between:

• The one mechanism optimization, proposed in (Colin
et al. 2006; Qong et al. 2005).

• The initial two mechanism optimization, where the
generalized coherence measures the resemblance between
the response of an electromagnetic mechanism at the first
antenna and another electromagnetic mechanism at the
second antenna. The optimization problem has been
introduced and solved to obtain the optimum scattering
mechanism (Cloude and Papathanassiou 1998).

• The so-called polarization subspace method (PSM)
is based on finding local maxima of the co-polar or
cross-polar coherence functions. Physically, the
mechanisms must be represented as an elliptic polarization
transformation. The approach of the polarization state
conformation (PSC) algorithm is very similar: it is based
on the knowledge of the polarimetric basis transformation
along with the polarization signatures of both interfero-
metric images (Pascual et al. 2002).

All these methods can be generalized to the multibaseline
case (Neumann et al. 2008).

5.3.1.1.3 Limitations
Limitations of these techniques for three-dimensional recon-
struction are:

• At present, the technical phase scattering separation can
distinguish up to three different heights. Practically, with
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current resolutions images of buildings, they are effective
for a mixture of two main contributions. To be able to
separate more scattering phase centers and to obtain volu-
metric images, it is possible to consider multibaseline
approaches or tomography techniques.

• The effects of layover and interactions between buildings
by the existence of urban canyons are rarely treated
together on large images in a systematic way.

• The effects of statistical averaging are very influential in
this type of image. A satisfactory 3-D rendering requires
preliminary stages of image segmentation.

• We have seen that at X-band, the temporal decorrelation
of the images is very fast.

Particularly in the resolution cells of the San Francisco
images containing layover phenomenon, it is clear that the
phase of the roof is mixed with the ground phase. However
the ground seems to induce a high decorrelation in the mix-
ture, and therefore its elevation cannot be estimated
satisfactorily.

Thus, concerning the TerraSAR-X images of San
Francisco, if the estimate of the height of the roof is possible,
at present we have no satisfactory estimate of the height of
the associated ground. The following image in Fig. 5.22
shows a HSI representation of the interferogram obtained
over San Francisco where the interferometric phase is in
hue and the optimized coherence level is in saturation. Even

Fig. 5.22 Details of an interferogram obtained in the optimum polarization
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after an optimization, no pertinent elevation can be found on
the ground. We conclude that at X-band, it is necessary to
have single pass data or smaller temporal baselines to be able
to provide a 3-D rendering over the whole image.

5.3.1.2 Methodology
To perform a 3-D rendering over the entire image using a
PolInSAR data set in a single pass mode, we use the follow-
ing method:

• First, a prior segmentation method is proposed. It is a
method of using hierarchical segmentation criteria form
(essentially linear edge detection and size criteria).

• Then, an optimization method is applied to the whole
image, using the calculation of coherence matrices of all
pixels belonging to the same segment. We use the coher-
ence optimization described in (Colin et al. 2006)

• Locally, for building elevation estimation, we use a scat-
tering phase center separation method, based on the
assumption that the resolution cell contains only two
main scatterers at two different elevations. The algorithm
is described in (Colin-Koeniguer and Trouve 2014).

Concerning this last point, we can use here the methodol-
ogy that has achieved the best results. Roofs are expected to
correspond either to the case of one bright point or to the case
of two bright points when layover is assumed and that the
resolution cell contains scatterers of the roofs mixed to
scatterers from the ground. We have shown that the coher-
ence set corresponding to the top of the roof mixed with
the ground is a narrow ellipse. If polarimetric decorrelation
between the two interferometric signals is very low, then the
major axis of this ellipse will intersect the unitary circle into
the interferometric phase of the roof and the interferometric
phase of the ground. Most of the time, the ground alone is not
necessarily visible. As the extension of the major axis of the
ellipse is not always sufficient to ensure a robust regression,
we choose to estimate separately the phase of the ground
through the optimization applied to pixels belonging to the
ground. This optimization enables us to find the point exp
( jφ0) where φ0 corresponds to the interferometric phase of
the ground. Then we find the intersection of the segment
joining exp( jφ0) and the optimized coherence of the roof
with the unitary circle. This intersection corresponds to exp
( jφ1). The total height is deduced from φ1 � φ0.

5.3.1.3 Experimental Results
The 3-D rendering applications are conditioned mainly by
two parameters:

• The single-pass or multipass mode of acquisitions
• The resolution

In terms of resolution, it is unlikely to achieve satisfactory
results with images of resolutions higher than 3 meters. Thus
we will restrict satellite data in case of the dual-pol mode of
TerraSAR-X. In this context, we can evaluate the contribu-
tion of this partial polarization mode. This data will also
allow us to quantify the impact of temporal decorrelation on
this type of applications. We will also use data from
RAMSES airborne single-pass mode and will be able to
quantify the impact of multipass or single-pass mode. In
both cases, we select the site of Toulouse city in south-
western France. The Toulouse metropolitan area is the fifth-
largest in France, one of the bases of the European aerospace
industry.

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on 3-D urban ren-
dering are summarized in Table 5.4 and further described in
the Appendix.

To validate our estimations over Toulouse with the single-
pass mode, we have used a file describing building footprints
and their elevation as ground truth for this application. It is a
file shapefile, organized as a structure containing a list of
polygonal elements. These polygons define the footprint of
each building on the ground, and for each element, the
minimum and maximum elevation data are given. We select
the buildings of our ground truth over Toulouse that are in
our PolInSAR image and that are high (> 6 m) and big (>
10 m2) enough. That gives us 140 buildings whose elevation
is given with a precision of 1 m, represented in Fig. 5.23. The
ambiguity height lies between 90 m for minimum ranges to
120 m for far range. In order to automatically select the pixels
belonging to the building or on the ground nearby, we have
registered the footprints of each building on our SAR image.
An excerpt of this coregistration is given in Fig. 5.24.

The different heights so found are evaluated in terms of
the mean error in the measurement compared with heights
given by ground truth, and the root mean square error. The
ambiguity height on this image is about 100 meters. The three
methods are also compared to the estimation computed in the

Table 5.4 Test sites and corresponding radar and validation data selected for the generation of showcases on 3-D urban rendering

Application/product Test site – Radar data Reference data

3-D urban rendering (optimized coherence) Toulouse Shapefile with elevations of all buildings

RAMSES (airborne), single-pass, HH/HV/VV;

TerraSAR-X HH/VV, repeat-pass mode
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single-polarimetric channels of the Pauli basis. The results are
presented in Table 5.5. The best result is obtained for Method
3.Method 2 is the only one that overestimates the heights. Note
that the best single-polarimetric channel for the estimation of
interferometric heights is the HV. Results obtained for a 3-D
rendering over the whole image are shown in Fig. 5.25.

5.3.1.4 Comparison with Single/
Dual-Polarization Data

Results indicate that estimation using a single polarization is
better for HV polarization whose level is high at this fre-
quency over a wide variety of roof surfaces. When using the
partial coherence matrices obtained from HH and VV polari-
zation only, we still can follow the same algorithm and obtain

the results reported in Table 5.6. Results obtained show that
the mean error is equal for dual-pol and full-pol case; how-
ever, the root mean square error is higher in the dual-pol case.

5.3.1.5 Discussion on the Role of Polarization
and on the Maturity of the Application
and Conclusions

Within the 3-D reconstructions field, to obtain a visually
readable reconstruction thanks to SAR data, it is necessary
to perform segmentation before the height reconstruction. In
this context, polarimetry can be used at two levels:

• In the process of segmentation
• In the improvement of the height estimation

Fig. 5.24 Coregistration of the ground truth and the PolInSAR image

Table 5.5 Results of building height estimation

Estimation: Ground truth height – estimated height (m) Root mean square error (m)

HH+VV 2.57 3.89

HH-VV 2.76 4.60

HV 2.23 3.79

# 3 – Linear regression, optimal coherence 1.20 2.87

Fig. 5.23 The set of buildings for elevation estimation evaluation
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The application described here is still at an early stage in
terms of performance evaluation. Note that unlike the
applications of classification, most of the work in this area
has concerned X-band. At this frequency, the cross-
polarization returns seem to be particularly high. Indeed, all
the polarization channels play an important role, because at
this scale, numerous oriented objects will create HV returns,
and depolarization effects will be high everywhere. As at
X-band, the estimation of elevation requires a single-pass
interferometric mode. Despite the early stage of development,
this application seems to be promising as it will benefit from
the improving resolutions of the new generation of satellites.

5.3.2 Building Height Estimation Using
Polarimetric SAR Tomography
with a Minimal Set of Images

5.3.2.1 Introduction, Motivation, and Literature
Review

SAR Polarimetry (PolSAR) provides valuable information
about the type of soil and urban object geometry, especially
over buildings. SAR Interferometry (InSAR) may be used to
determine either digital elevation models and surface

deformation or the radial velocity of objects (e.g., cars).
However, SAR information over dense urban environments
is particularly complex due to: geometric distortions caused
by the layover and shadowing phenomena, described in
Fig. 5.26, complex scattering patterns within the same reso-
lution cell (e.g., single/double-bounce scattering, volume
diffusion), random aspect due to speckle effects, etc.

SAR tomography is the extension of conventional
two-dimensional SAR imaging into three dimensions. 3-D
imaging of a scene is achieved by the formation of an addi-
tional synthetic aperture in elevation and the coherent combi-
nation of images acquired from several parallel flight tracks
using tomographic imaging. This technique directly retrieves
the distribution of the backscattered power in the vertical
direction and may be applied to estimate forest structure,
building height, or layover areas induced by strong terrain
slopes or discontinuities in the imaged scene.

3-D SAR focusing using tomographic processing of
multibaseline interferometric data sets may be considered as
a spectral estimation problem. A wide variety of spectral
analysis techniques can be used to perform tomography,
ranging from classical Fourier-based methods to high-
resolution (HR) approaches. A recent study by (Sauer et al.
2011) proposed to apply polarimetric versions of spectral

Table 5.6 Results of building height estimations: comparison full/dual/single pol

Estimation: Ground truth height – estimated height (m) Root mean square error (m)

HH+VV 2.57 3.89

HH-VV 2.76 4.60

HV 2.23 3.79

Dual pol 1.20 3.76

Full pol 1.20 2.87

Fig. 5.25 Three-dimensional reconstruction performed over X-band airborne data over Toulouse. The colors result from the Pauli decomposition
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estimation methods to the airborne dual-baseline PolInSAR
data sets at L-band. Results showed that using polarimetric
data could improve building height estimation, both in terms
of discrimination of mixed scattering responses (layover,
vegetation, etc.) and determination of physical characteristics
of observed media. Despite undeniable performance
improvements, such an approach may have some limitations,
due to the lack of statistical adaptivity of the commonly used
spectral estimation methods. Firstly, as shown by (Ferro-
Famil and Pottier 2007), scatterers in urban areas may have
very different statistical properties that are not optimally
handled by the methods proposed by (Sauer et al. 2011)
and may involve estimation errors and instability. Over
urban areas, backscattered signals have diverse statistical
properties, e.g., coherent scatterers (e.g., point-like or double
bounce scatterers) or distributed scatterers with speckle
affected responses (e.g., surface or vegetation), respectively.
Therefore the Conditional and Unconditional model
assumptions (CM and UM) (Stoica and Nehorai 1990) may
be used to estimate optimally both types of source signals.

Maximum Likelihood (ML) estimation performed under
these hypotheses lead to the deterministic (Determ-ML) and
stochastic (Stocha-ML) solutions, the former being statisti-
cally less efficient than the later. However, Stocha-ML
achieves an optimal estimation performance at the cost of
exceedingly complicated computation. Moreover, the com-
plex scattering response from a dense urban environment
leads to a mixture of various scatterers with different statisti-
cal properties that can be handled using a hybrid signal model
introduced in (Sauer et al. 2011). A source signal under the
hybrid assumption presents statistical properties originating
partially from the UM and CM models. The performance of
the MUSIC estimator degrades significantly in case of
correlated signals or closely spaced signals. Moreover,
processing tomographic data acquired from irregularly

distributed baselines can cause ambiguous responses and
sidelobe effects that may lead to erroneous interpretations
and estimations.

5.3.2.2 Methodology
In order to overcome these limitations, weighted subspace
techniques are of great interest, since they apply to arbitrary
array structures and have a prominent performance even for
highly correlated signals that are often encountered in urban
areas. With an appropriate choice of weighting matrices,
subspace fitting estimators possess an estimation accuracy
similar to the one of conventional ML techniques (Sauer
et al. 2011), at a modest computational cost. Depending on
the nature of the considered subspace, different estimators
may be obtained, SSF (on signal subspace) or NSF (on noise
subspace), respectively, (Huang et al. 2012; Viberg and
Ottersten 1991) extended the NSF estimator from the dual-
polarization case (Swindlehurst and Viberg 1993) to the
Fully Polarimetric (FP) case and also provided an analytic
solution that maintains its optimization complexity to the one
of the single-polarization (SP) case (Huang et al. 2012).
Using a critical and minimal tomographic configuration
consisting of only 3 PolSAR data sets, this FP-NSF estimator
is applied to estimate building heights and scattering
mechanisms over dense urban areas.

5.3.2.3 Experimental Results
The application data set was acquired by the DLR’s experi-
mental SAR (E-SAR) system over the city of Dresden (see
Table 5.7) in a dual-baseline fully polarimetric interferomet-
ric configuration with a small baseline equal to 10 m and a
large one of 40 m, which form a small-size irregular array.
The acquired SAR images are of intermediate resolution (3 m
in azimuth and 2.2 m in range), leading to a sum of diverse
polarimetric and statistical contributions within each

Fig. 5.26 Layover and shadow
phenomena in urban areas
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resolution cell. The scene consists of buildings, trees, parks,
grassland, and some bare surfaces like sports fields, as
depicted in Fig. 5.27.

Two buildings facing the radar flight track are studied over
a set of range bins corresponding to the yellow bar in
Fig. 5.28. Tomograms over this test line are computed by
using the dual-baseline Fully Polarimetric (FP) data sets and
the FP NSF method and then projected in ground range in
Fig. 5.29. Due to the very low dimension of the observation
space, conventional model order selection techniques may
fail to accurately determine the number of scatterers within
one resolution cell. For this reason, the number of scatterers is
fixed to 2 over the selected range bins. The resulting
tomograms depict the building shape and scattering patterns
using the reflectivity in Fig. 5.29 (left) and α values in
Fig. 5.29 (right). Compared with the lidar profile (black
line), the building height and its shape are quite well
estimated based on this dual-baseline intermediate-resolution

data set. At the wall-ground interaction, strong reflectivities
and high α values are due to the powerful double-bounce
reflection. Over the roofs and surfaces, the α value decreases
indicating surface scattering.

The 3-D reconstruction over an urban zone shown in
Fig. 5.30 has been run using the FP-NSF tomographic esti-
mator with model order equal to 2, and the corresponding
results are depicted in Fig. 5.31. From the α values in
Fig. 5.31 (right), scattering mechanisms can be distinguished
in the vertical direction (unlike conventional 2-D polarimetric
analysis) that allows to discriminate for instance double
bounce scattering at the wall-ground interaction as well as
over some of roofs with complex structures. Over the whole
test zone, the surface elevation is estimated by the FP-NSF
estimator considering two sources, which matches very well
with lidar elevation data, as can be observed in Fig. 5.32. A
3-D reconstruction of a group of buildings is validated
against lidar in Fig. 5.33.

Fig. 5.27 Optical and SAR images of the city of Dresden. Optical images: Copyright Bing Maps

Table 5.7 Test sites and corresponding radar and validation data selected for the generation of showcases on building height estimation with
PolTomoSAR

Application/product Test site – Radar data Reference data

Building height estimation with PolTomoSAR Dresden, Germany (2000) Lidar DTM and DSM

Dual-baseline E-SAR data
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5.3.2.4 Comparison with Single/
Dual-Polarization Data

The VV reflectivity tomogram in Fig. 5.34 (left) shows an
incomplete building shape especially on the top of the
buildings, leading to an inaccurate estimation of the building
height due tomissed patterns. The HH tomogram is affected by
spurious sidelobes which degrade building height estimation
too. However, the tomographic profile obtained from fully

polarimetric data set permits to guess correctly building shapes
with a consistent height estimation compared to the lidar pro-
file. This fact reveals that fully polarimetric dual-baseline con-
figuration improves significantly the tomographic accuracy,
compared with single-polarization ones, and provides addi-
tional information, related to scattering mechanisms, which
helps to better characterize building features, like geometrical
shapes as well as dielectrical properties, etc.

Fig. 5.29 Tomograms estimated by FP-NSF method: reflectivity tomogram (left) with scale: 25–110 dB and α tomogram with scale: 0–90� (right)

Fig. 5.28 Test area containing buildings facing the acquisition flight path: optical image (left) and Pauli-coded SAR image (right)
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5.3.2.5 Discussion on the Role of Polarization
and on Maturity of the Application
and Conclusions

Polarimetric SAR tomography (PolTomoSAR) is a very inter-
esting approach to analyze complex 3-D environments, like
urban environments, forested areas, etc. As it is demonstrated
in this section, powerful spectral analysis techniques can be
used to efficiently separate responses from scatterers located at
different elevations in very severe scenarios, i.e., with only
three images. Combining tomographic processing with polari-
metric diversity provides a significant gain in performance as
the 3-D imaging process adapts to the polarimetric properties
of the scatterers to be imaged, i.e., adaptively maximizes SNR

and estimation accuracy. Fully polarimetric tomography
permits to further discriminates closely spaced scatterers hav-
ing diverse polarimetric responses and is less sensitive to
artifacts and spurious sidelobes, compared to single-
polarization approaches. Moreover, PolTomoSAR results can
be processed through usual polarimetric approaches, like
polarimetric decompositions and others, in order to character-
ize, identify scatterers, and provide interpretation of scattering
mechanisms.

PolTomoSAR analysis of urban environments has been
conducted over nearly a decade, with very different spectral
estimation approaches and acquisition configurations, and
may be considered as mature. The approach used here
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Fig. 5.31 3-D tomographic reconstruction using dual-baseline PolInSAR data sets, shaded by surface elevation (left) and α value (right)

Fig. 5.30 Another urban area under study. Optical image (left) and Pauli-coded SAR image (right)
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provides very high vertical resolution and a robust estimation
of different parameters of urban environments, like building
heights and scattering mechanisms. PolTomoSAR

techniques can be extended to different applications such as
subsurface observation and forestry remote sensing, under
foliage imaging and object detection (Huang et al. 2012).

Fig. 5.33 3-D reconstruction: lidar (left) and FP-NSF estimator (right)

Fig. 5.32 Lidar surface elevation (right) and estimated surface elevation by FP-NSF estimator (left)
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5.4 Subsidence Monitoring

Since its conception in the late 1990s, differential SAR Inter-
ferometry (DInSAR) is an established technique useful for
the monitoring of deformation episodes over wide areas
(Ferretti et al. 1999, 2001). PSI techniques exploit the phase
information of a stack of interferograms, obtained from a set
of SAR images acquired at different dates, to retrieve accu-
rate information of the ground deformation evolution along
time. In this framework and mainly due to decorrelation
phenomena, any advanced DInSAR technique is constrained
by the number and the quality of trustful points from where
reliable information of deformation can be retrieved. Two
main criteria are available in the literature to perform ade-
quate pixel quality estimation. In the first approach, the phase
quality is assessed through the coherence estimator applied to
each interferometric pair (Mora et al. 2003; Berardino et al.
2002). In the second approach, the phase quality is associated
with the amplitude dispersion index DA of the images
(Ferretti et al. 1999), often used in urban environments,
where it is common to find point-like, deterministic scatterers
(called Persistent Scatterers, PS) associated with strong and
stable backscattering from man-made structures. The higher
the interferometric coherence or, accordingly, the lower the
DA, the better the phase quality and, thus, the most reliable
the deformation process estimation.

Due to the lack of polarimetric SAR (PolSAR) data sets,
the use of DInSAR techniques has been traditionally limited
to the single-polarization approach.

However, the scenario has changed with the launch of new
satellites with polarimetric capabilities, such as TerraSAR-X,
RADARSAT-2, ALOS-PALSAR, and the upcoming launch
of Sentinel-1, ALOS-2, and RADARSAT Constellation Mis-
sion. The new polarimetric diversity can be exploited in order
to enhance the performance of conventional PSI approaches.

5.4.1 Improvement of Differential SAR
Interferometry for Subsidence
Monitoring with Polarimetric
Optimization Techniques

5.4.1.1 Introduction, Motivation, and Literature
Review

The application of polarimetric optimization methods has led
to an improvement in the density but also in the quality of the
deformation process retrieval (Pipia et al. 2009; Navarro-
Sanchez et al. 2010; Navarro-Sanchez and Lopez-Sanchez
2011a, b, 2012; Iglesias et al. 2012; Monells et al. 2012) .

This section describes the three polarimetric optimization
methods available in the literature when PolSAR data sets are
available. The methods are referred as Best (Pipia et al.
2009), Equal Scattering Mechanism (ESM) (Colin et al.
2006) and Sub-Optimum Scattering Mechanism (SOM)
(Sagues et al. 2000). Their exploitation for DInSAR
applications is addressed with both the coherence stability
and DA pixel selection criteria. The objective is to improve
the quality of the interferograms through the proper combi-
nation of the available polarimetric channels. The optimiza-
tion techniques will use the phase quality estimators as
figures of merit. Deformation maps obtained from fully
polarimetric data sets will be compared with those obtained
with the traditional single-polarimetric approaches in order to
show the benefits of the former. In addition, the performances
of dual-polarimetric data are also evaluated.

5.4.1.1.1 Classical Differential SAR Interferometry
DInSAR processing aims at obtaining the temporal evolution
of deformation episodes, together with the topographic error
and atmospheric artifacts, from a stack of multi-temporal
differential interferograms. In this framework, a usual
approach, among others, is the Coherent Pixels Technique
(CPT) (Mora et al. 2003; Blanco et al. 2008). CPT can work

Fig. 5.34 Single-polarization HH (left), VV (middle) and fully polarimetric (right) reflectivity tomograms with scale: 25–110 dB
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with either the coherence or the amplitude-based pixel selec-
tion criteria. Similarly to other DInSAR algorithms, a linear
model, which includes the linear deformation term and the
topographic error of the DEM used to generate the differen-
tial interferograms, is adjusted to the interferometric data
through a minimization process (Blanco et al. 2008). Once
the linear deformation term and the topographic error have
been determined for the selected pixels, in a second step the
deformation time series and the atmospheric phase screen are
derived for all selected pixels leading to a complete charac-
terization of the deformation process.

5.4.1.1.2 Polarimetric Differential SAR Interferometry
Working at the PolSAR acquisition level, the scattering
matrix S, which indicates the polarimetric information
associated to each pixel of the scene, can be defined, in the
orthogonal horizontal and vertical polarization basis {H,V},
as (Lee and Pottier 2009).

S buH,buV� � ¼ SHH SHV

SHV SVV

� 	
ð5:5Þ

In this context, it is possible to indicate the scattering
matrix S in another generic orthogonal basis {X,Y} through
a unitary transformation (Lee and Pottier 2009; Kostinski and
Boerner 2009).

S bx,by� � ¼ SXX SXY
SXY SYY

� 	
¼ U2

TS buH,buV� �U2 ð5:6Þ

where (�)T refers to the vector transposition and the matrix
transformation U2 can be expressed in terms of the orienta-
tion and ellipticity angles (ψ , χ) of the polarization ellipse by

U2 ¼
cosψ � sinψ

sinψ cosψ

� 	
cos χ j sin χ

j sin χ cos χ

� 	
� eþjϕ0 0

0 e�jϕ0

� 	
: ð5:7Þ

From an interferometric point of view, if two PolSAR
acquisitions obtained at different times i ¼ 1, 2 are available,
the so-called scattering vector ki can be defined as a
vectorization of the scattering matrix S as

ki ¼ 1ffiffiffi
2

p SHH,i þ SVV,i, SHH,i � SVV,i, 2SHV,i½ �T : ð5:8Þ

The scattering vector ki can be projected onto an unitary
projection vector w obtaining a generic scattering coefficient
Si ¼ w�T

i ki for each pair of images i ¼ 1, 2, where �T is the
conjugate transpose operator. At this stage, the PolInSAR
vector between two PolSAR acquisitions is defined by
(Cloude 2009; Qong et al. 2005)

k6 ¼ kT1 ,k
T
2


 �T
: ð5:9Þ

Once the PolInSAR vector k6 is defined, under the
assumption of spatial homogeneity and ergodicity, the
6 � 6 PolInSAR coherency complex matrix T6 is defined as

T6 ¼ E k6k�T6
�  ¼ T11 Ω12

Ω�T
12 T22

� 	
ð5:10Þ

T11 and T22 refer to the coherency matrices of each
PolSAR data set and Ω12 indicate the polarimetric interfero-
metric coherency matrix. In this context, the expression of the
classical interferometric coherence can be generalized taking
into account its polarimetric dependence

γ w1,w2ð Þ ¼ w�T
1 Ω12w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w�T
1 T11w1

� �
w�T

2 T22w2
� �q ð5:11Þ

Notice that different projection vectors between the differ-
ent acquisitions of the interferogram, w1 6¼ w2, may lead to
the introduction of a polarimetric contribution in the interfer-
ometric phase, due to a phase center change within the same
resolution cell. Thus, ensuring the same projection vector
along the whole stack of interferograms, w ¼ w1 6¼ w2, is
mandatory for Polarimetric Differential SAR Interferometry
(PolDInSAR) applications. Under this restriction, (5.11) can
be rewritten as

γ wð Þ ¼ w�TΩ12wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�TT11wð Þ w�TT22wð Þp : ð5:12Þ

In the framework of PolDInSAR, polarimetric optimiza-
tion methods seek to optimize the generalized expression of
the coherence (5.12). The first approach explores the whole
space of projection vectors w looking for the one providing
the highest value of coherence. The second one explores all
the polarimetric transformations given by (5.6) and again
looks for the one providing the maximum value of coherence.
Meanwhile, when working with point-like scatterers, the
expression of the DA can be also generalized (Navarro-
Sanchez et al. 2010; Navarro-Sanchez and Lopez-Sanchez
2011a, b, 2012, 2013; Navarro-Sanchez et al. 2014) as

DA wð Þ ¼ σA
mA

¼ 1
w�Tkj jh i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

w�Tki
�� ��� w�Tk

�� ��� �� �2vuut
where w�Tk

�� ��� � ¼ 1
N

XN
i¼1

w�Tki
�� ��

ð5:13Þ

where σA is the standard deviation and mA is the mean of the
amplitude time series. In this case the objective is, as stated in
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the coherence case, to find the projection vector or the polar-
imetric transformation that minimizes the generalized expres-
sion of DA.

5.4.1.2 Methodology

5.4.1.2.1 Stability Optimization Methods
In this section, the basis of the different polarimetric optimi-
zation methods for PolDInSAR applications with the coher-
ence stability pixel selection approach is addressed.

The first approach, referred as Best, is based on selecting
the polarimetric channel providing the highest temporally
averaged coherence value for each pixel along the whole
stack of interferograms. Consequently, the original three
interferograms (one per polarimetric channel) are mixed in
a new interferogram where the phase of each pixel
corresponds to the channel providing the highest temporally
averaged coherence. In order to avoid changes in the phase
centers, the polarization mechanism for each pixel has to be
equal in all the interferograms of the data set.

The second approach, which is referred as Equal Scatter-
ing Mechanism (ESM), consists on finding the projection
vector w that maximizes the generalized expression of the
coherence (5.12). The solution must be obtained using
numerical methods since the maximization problem has no
analytical solution. The simplest approach consists on
parameterizing the projection vector w to obtain all the pos-
sible values of the generalized coherence. The parameteriza-
tion presented in (Cloude and Papathanassiou 1998) can be
used to ensure the unitarity of the projection vector

w ¼
cos α

sin α cos βejδ

sin α sin βejγ

264
375 0 	 δ 	 π, � π 	 γ < π,

0 	 α 	 π
2
, 0 	 β 	 π

(

ð5:14Þ

The optimum projection vector will be the one providing
the maximum coherence. The main drawback of this
approach is its high computational cost. To face this problem,
the solution presented in (Colin et al. 2006) which makes use
of an iterative process to find the optimum projection vector
w is proposed. This approach assumes that the two coherency
matrices T11 and T22 are similar, which is accomplished
when polarimetric stability applies. Under this hypothesis,
the estimated complex differential coherence is approximated
by

bγ wð Þ ¼ w�TΩ12w
w�TTw

where T ¼ T11 þ T22

2
, ð5:15Þ

where bγj j < γj j and the interferometric phase provided by
both estimators is preserved. In the framework of

PolDInSAR applications, an extension of the method
introduced by Colin et al. in (Colin et al. 2006) to the
multi-temporal case may be considered. The extension
presented by Neumann et al. in (Neumann et al. 2008) aims
to optimize the temporally averaged coherence instead of the
coherence of each interferogram separately. Once the opti-
mum projection vector wopt, ESM is found, the coherence is
obtained through (5.12), and the interferometric phase is
given by

ϕESM ¼ arg w�T
opt,ESMΩ12wopt,ESM

� �
: ð5:16Þ

On the other hand, when polarimetric stability does not
apply the optimized differential phase may be affected by the
difference of polarimetric behavior, leading to an erroneous
phase value. An alternative method referred as Sub-Optimum
Scattering Mechanism (SOM) (Sagues et al. 2000) is pro-
posed in order to overcome these restrictions. The algorithm
is based on exploring the entire possible polarimetric basis,
departing from Shv and sweeping all the values of ellipticity
and orientation angles. This will consider all the possible
polarization states of the propagating wave. The key step
resides in looking for the polarization basis transform
providing the highest temporally averaged coherence value
among all the co-polar and cross-polar realizations

γSOMj j ¼ max
ψ , χð Þ

γXX ψ , χð Þj j, γXY ψ , χð Þj jf g ð5:17Þ

The subscripts XX and XY refer to the co-polar and cross-
polar channels in the new (ψ , χ) polarization basis, respec-
tively. This method could be seen as a subspace of the ESM
approach.

5.4.1.2.2 Amplitude Dispersion Optimization
Methods

In this section, the basis for the adaptation of the three
optimization methods presented before will be particularized
for the DA pixel selection criterion approach.

As in the coherence case, the Best approach is the simplest
way to face the polarimetric optimization problem. It is based
on selecting the interferometric phases of the polarimetric
channel providing the minimum DA.

The second approach, ESM, explores the whole polarimet-
ric space looking for the projection vector w that minimizes
the generalized DA expression (5.13). To solve this problem,
there is no analytical solution. Hence, the optimization prob-
lem must be solved by brute force, parameterizing the projec-
tion vector as seen in (5.12). As in the coherence case, the
main drawback of this approach is the computational cost
since a 4-D space needs to be explored. For this reason, the
adaptation of the SOM approach is an appropriate alternative.
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As seen in the coherence stability case, the method consists
in sweeping all the possible orientation and ellipticity angles in
order to reach a scattering matrix in a new polarization basis,
which provides a minimum DA value among all the co-polar
DA, aa and cross-polar DA, ab indices. With this approach, the
computational load is highly reduced since the solution now
consists in exploring a 2-D space corresponding to all possible
orientation and ellipticity angles.

5.4.1.3 Experimental Results
The PolSAR data set used in this work consists of 34 fully
polarimetric RADARSAT-2 images, from January 2010 to
May 2012, that correspond to the metropolitan area of
Barcelona, Northeastern Spain. RADARSAT-2 works at
C-Band, with a resolution of 5 meters in both range and
azimuth directions and a revisiting time of 24 days. Selected
test sites and data sets are summarized in Table 5.8 and
further described in the Appendix.

This section shows the PolDInSAR results obtained using
the different polarization optimization techniques described
previously with both the coherence and amplitude approaches.
Once the phase optimization is performed in the pixel selection
step, the classical DInSAR processing can be applied to the
new stack of optimized interferograms, since there are no
differences from the single-polarimetric case.

The pixel selection with the coherence approach has been
performed establishing a threshold of 0.75, which
corresponds to a phase standard deviation of 5� with the
9 � 5 multi-look window used (Hanssen 2001). To highlight
the performances of the different optimization methods, a
quite restrictive threshold has been established. Table 5.9
shows the pixel density obtained for each method. Notice
how with polarimetric optimization techniques, it is possible
to reach an increase in the number of selected pixels of a 2.7
factor compared with the single-polarization case.

Figure 5.35 shows a comparison of final DInSAR defor-
mation maps obtained using the Shh single-polarimetric chan-
nel and the three different optimization methods. The
deformation pattern is almost identical in all cases, and the
main differences lay in the pixel densities shown in Table 5.9.
Different deformation bowls can be observed in the figure;
the most severe is in the airport and in the harbor area. Some
weaker deformations are observed in the city. In the North-
East part of the image, interesting subsidence that follows the
track of a metro line under construction is identified. Since
the affected area is narrow, it is difficult to detect when the
density of pixels is low, such as in the single-polarimetric

case. The optimization methods largely increase the number
of selected pixels leading thus to a better determination of the
deformation bowl extension and its characterization.

Regarding the amplitude-based approach, a DA threshold
of 0.25, which corresponds to a phase standard deviation of
15� (Hanssen 2001), has been used. Notice how the
differences among the different methods are more substantial
for this case; see Table 5.10. The ESM approach increases in
a factor of seven the number of pixels from the single-
polarimetric case. As in the coherence stability case, this
pixels’ density increase justifies the use of PolSAR data in
the DInSAR framework.

Finally, Fig. 5.36 shows the linear deformation maps
using each optimization approach in the area within the city
of Barcelona commented before. All approaches are able to
determine the deformation bowls with similar values of ter-
rain deformation. The main differences come from the larger
pixels’ densities obtained when using the advanced polari-
metric optimization methods. ESM provides the larger
improvement in number of pixels, and consequently the
deformation map allows precisely determining the extension
of the deformation bowl along the new underground line. The
different deformation bowls observed in the figure match the
path followed by the tunnel, and the widest bowl, also with
the highest subsidence, is located over a new underground
station.

5.4.1.4 Comparison with Single/
Dual-Polarization Data

The usage of fully polarimetric data imposes some limitations
in the sensors regarding the swath extension, basically
reduced by a factor of two if compared with the single or
dual-pol cases. This section presents a comparison between
the performances of full and dual-pol data in terms of pixels’
density. Fully polarimetric data entails covering the entire
polarimetric space; hence the optimum value in terms of the

Table 5.9 Coherence stability pixel selection statistics for each
method. (%) refers to the total number of pixels

Method Number of pixels

hh 6431 (3.3%)

hv 5026 (2.6%)

vv 5014 (2.6%)

Best 11,931 (6.1%)

SOM 13,894 (7.1%)

ESM 17,281 (8.9%)

Table 5.8 Test sites and corresponding radar and validation data selected for the generation of showcases on urban subsidence monitoring

Application /product Test site – Radar data Reference data

Urban subsidence monitoring Barcelona, Spain No ground measurements

34 RADARSAT-2 Fine Quad-Pol images, 2010–2012
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phase quality can be reached. If only dual-pol data are avail-
able, the result is obviously suboptimum, but the complexity
of the optimization process is significantly reduced. More-
over, dual-pol configurations are in general more efficient in
terms of coverage.

To simulate the performance of dual-polarimetric
products, the fully polarimetric data set available has been
narrowed down selecting either the two direct channels
(HH/VV) or a direct channel and a cross-polar channel
(HH/HV or VV/VH). The first option presents the same

Fig. 5.35 Linear velocity retrieved over Barcelona, from January 2010 to May 2011. Using the hh polarimetric channel (a) or the Best (b), SOM (c)
and ESM (d) mean coherence stability optimization methods
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swath restrictions than the full-pol case. The comparison is
based on the optimization process performance, so swath
differences are omitted. The ESM approach, under the DA
pixel selection criterion, is selected for the comparison since
it provides the best performance. Table 5.11 shows the results
after the pixel selection step. Results reveal that both fully

polarimetric and dual-polarimetric data are suitable for phase
quality optimization techniques since they clearly outperform
the single-polarimetric case. As expected, the dual-pol opti-
mization does not produce the same improvement in pixels
density than the full-pol case. For this particular data set,

Table 5.10 DA pixel selection statistics for each method. (%) refers to
the total number of pixels

Method Number of pixels

hh 9398 (1.9%)

hv 8522 (1.7%)

vv 9927 (2.0%)

Best 21,721 (4.4%)

SOM 40,032 (8.1%)

ESM 71,702 (14.6%)

Fig. 5.36 Linear velocity retrieved from the RADARSAT-2 PolSAR data set. Using the hh polarimetric channel (a) and the Best (b), SOM (c) or
ESM (d) DA-based optimization methods for the DInSAR processing. The orange line shows the path of the new underground line

Table 5.11 Amplitude dispersion pixel selection for dual VS fully
polarimetric configurations. The % of pixels is over the total pixels
considered

Method Number of pixels

hh 9398 (1.9%)

Dual-Pol HH-VV 35,410 (7.2%)

Dual-Pol HH-VV 33,697 (6.9%)

Dual-Pol HH-VV 33,179 (6.8%)

Full-Pol 71,702 (14.6%)

hh 9398 (1.9%)

5 Urban Applications 245



there is roughly a factor of two between the dual-pol and the
full-pol densities. On the other hand, the performance among
the dual-polarimetric configurations is rather similar, being
the HH-VV combination slightly better than the ones involv-
ing the cross-polar channel. For this reason, despite the major
computational load and the higher complexity in the
algorithms, the use of fully polarimetric data is strongly
recommended.

5.4.1.5 Discussion on the Role of Polarization
and on the Maturity of the Application
and Conclusions

General polarimetric optimization methods for its application
in DInSAR processing have been evaluated. The three differ-
ent optimization techniques have been put forward using
RADARSAT-2 fully polarimetric data and working with
both the coherence stability and the amplitude-based pixel
selection criteria.

With the proper combination of the available polarimetric
channels, the proposed polarimetric optimization methods
demonstrate their capability to enhance the quality of
DInSAR results. First, it is possible to obtain a higher density
of pixels compared with the single-polarization case. More-
over, the quality of the interferometric phase is also
improved, leading to more precise deformation maps. This
fact provides major robustness in DInSAR algorithms and is
a key factor to better determine and characterize deformation
bowl extensions.

Concerning the comparison of fully polarimetric and dual-
polarimetric data, the use of fully polarimetric data is strongly
recommended since it clearly improves the DInSAR results.
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5.4.2 Ground Deformation Estimation Using
Polarimetric Persistent Scatterers
Interferometry

5.4.2.1 Introduction, Motivation, and Literature
Review

In this section, we present a general framework for improving
PSI through polarimetry. The proposed approach seeks the
optimization of the parameters used as quality criteria for the

initial pixel selection, with the consequent improvement in
terms of density of points with valid deformation results.
Moreover, disposing of denser distributions of PS or CP
constitutes an advantage for the data processing itself, since
many stages (e.g., phase unwrapping, atmospheric phase
screen removal, interpolations, etc.) are carried out more
robustly and accurately than with sparse distributions of
pixels. Consequently, final deformation values are also
more accurate in such conditions.

First works on single-pol PSI can be found in (Ferretti
et al. 1999, 2001) which make use of an amplitude dispersion
criterion (DA) for persistent scatterers selection. DA criterion
may not be suitable for non-urban areas, where strong point-
like scatterers are less common, or when only a small set of
SAR images of the area under study is available; hence DA

estimates may be biased. To overcome these drawbacks,
many techniques based on average interferometric coherence
( γj j) were proposed (Mora et al. 2003; Berardino et al. 2002).
Points selected using this method are usually referred as
coherent pixels (CP) and correspond to stable distributed
scatterers, rather than point-like ones. Notice that maximum
likelihood estimation of interferometric coherences generally
requires averaging of neighboring samples, consequently
spatial resolution is degraded. Alternative PSI approaches
can also be found in (Hooper et al. 2004, 2007), where a
phase coherence analysis is used in order to refine the initial
PS selection, and (Ferretti et al. 2011) where joint analysis of
PS and CP is addressed. A reference book in this area is
(Kampes 2006).

The first application of polarimetry to urban PSI was
proposed in (Perissin and Ferretti 2007) which made use of
ENVISAT incoherent dual-pol data to recognize target phys-
ical features and to classify PS. Another PS classification
strategy supported by polarimetry was also presented in
(Dheenathayalan and Hansen 2011) in the context of
building-versus-ground relative movement estimation, using
TerraSAR-X coherent dual-pol data.

To further exploit polarimetric diversity at initial PSI
processing stages, an algorithm aiming to increase the quality
and number of pixels pre-selected for PSI processing was
introduced in (Pipia et al. 2009). The proposed algorithm
consisted in selecting, from the set of polarimetric channels
provided by the sensor, the one that optimizes the average
interferometric coherence for each pixel. The algorithm was
tested using dual-pol (HH, VV) ground-based SAR data,
achieving a significant improvement in the density of
selected CP and demonstrating for the first time the potentials
of polarimetry for PSI. Extending that idea, in (Navarro-
Sanchez and Lopez-Sanchez 2012; Navarro-Sanchez et al.
2014), a generic method for polarimetric PSI optimization
was proposed and tested using a set of TerraSAR-X dual-pol
images. For each pixel, the algorithm finds the optimum
channel as a linear combination of the set of channels
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measured by the sensor. That algorithm, which is employed
in this work, can be adapted to optimize any parameter used
as quality criterion and can be used as a pre-processing step to
any known PSI technique. Following this line, an efficient
search of the optimum channel was also addressed, and
results using fully polarimetric data were presented in
(Navarro-Sanchez et al. 2014; Monells and Mallorqui
2013), showing a remarkable improvement compared to
dual-pol data in terms of density of PS and CP.

Concerning other pixel selection criteria, the normalized
average Polarization Phase Difference (PPD) was proposed
in (Samsonov and Tiampo 2011) for selecting only those
pixels clearly dominated by odd and even bounce scattering
mechanisms. In (Navarro-Sanchez and Lopez-Sanchez
2011b), a polarimetric stationarity test was proposed as a
means to refine PS and CP selection. Similarly, a complete
study of the temporal evolution of the polarimetric behavior
of an urban area was carried out in (Pipia et al. 2012) using
ground-based SAR data, and a filtering strategy was pro-
posed to minimize the presence of non-stationary backscat-
tering processes. Finally, in (Navarro-Sanchez and Lopez-
Sanchez 2013), an adaptive spatial speckle filtering approach
driven by polarimetric temporal statistics is exploited as a
pre-processing stage before polarimetric optimization, which
allows to process simultaneously both optimized PS (point-
like targets) and CP (homogeneous, distributed scatterers),
obtaining a significant increase in the final density of points
and spatial coverage of deformation maps.

5.4.2.2 Methodology
The main objective of the polarimetric approach used here for
PSI is to maximize the quality and number of PS or CP
selected as reliable a priori, by optimizing the parameters
used as a selection criterion. In (46), (48) we proposed a
general framework for PSI polarimetric optimization, starting
from the concept of polarimetric (or vector) interferometry
introduced in (Cloude and Papathanassiou 1998). Let k be a
pixel’s target vector obtained by projecting its scattering
matrix S onto the Pauli basis. For fully polarimetric data, it
is given by:

k ¼ 1ffiffiffi
2

p
HH þ VV

HH � VV

2HV

264
375 ð5:18Þ

where HH and VV stand for the horizontal and vertical
co-polar channels, respectively, and HV is the cross-polar
channel. Notice that we assume HV ¼ VH due to reciprocity.
In order to generate an interferogram, k can be projected onto
a unitary complex column vector ω, resulting in:

μ ¼ ωT�k ð5:19Þ

where and μ is a scalar complex scattering coefficient. As a
scalar complex, μ is analogous to single-pol data, so we can
make use of any known PSI technique by applying it to μ.
Therefore, the proposed PSI optimization approach consists
in finding, for each pixel, the projection vector ω that
optimizes the parameter considered as the quality criterion
when computed for μ.

To facilitate the search of the optimum projection vector,
we can parameterize ω in a way we ensure it is unitary, and
we take into account all possible unambiguous combinations:

ω ¼
cos αð Þ

sin αð Þ cos βð Þeiδ
sin αð Þ sin βð Þeiψ

264
375,

0 	 α 	 π
2

0 	 β 	 π
2

�π 	 δ < π

�π 	 ψ < π

8>>>>><>>>>>:
ð5:20Þ

Therefore, the problem is reduced to find four real
parameters, α, β, δ, and ψ whose range is finite and known
and which value is related to the geometric and electromag-
netic properties of the target (Cloude 2009). We have adapted
this formulation to the dual-pol case, as the TerraSAR-X data
at our disposal. For dual-pol data, the target vector is given
by:

k ¼ 1ffiffiffi
2

p HH þ VV

HH � VV

� 	
ð5:21Þ

and the projection vector can be parameterized as:

ω ¼ cos αð Þ
sin αð Þeiψ

� 	
,

0 	 α 	 π
2

�π 	 ψ < π

(
ð5:22Þ

so in this case the search is reduced to just two real
parameters, α and ψ .

The optimization approach is tested here for the two most
commonly used criteria of selection: the average interfero-
metric coherence and the amplitude dispersion index. In the
context of polarimetric interferometry, the average coherence
γj j can be expressed as:

γj j ¼ 1
K

XK
k¼1

γkj j, with γk ωð Þ

¼ ωΩijωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωTiiω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωTjjω

pq ð5:23Þ

where subscript k denotes the k-th interferogram obtained by
combining images i and j. Polarimetric coherency matrices
Tii, Tjj and polarimetric interferometric cross-correlation
matrix Ωij are defined as in (7):

5 Urban Applications 247



Tii ¼ E kikT�i
� 

, Tjj ¼ E k jkT�j
n o

, Ωij

¼ E kikT�j
n o

ð5:24Þ

where E{�} is the expectation operator. As these expectations
cannot be computed in practice, they are usually replaced by
their maximum-likelihood estimates, given by the empirical
mean evaluated using L samples of the target vectors (multi-
look). Despite a larger number of looks generally implies
better estimates (if the averaged area is sufficiently homoge-
neous), averaging also degrades spatial resolution, so a trade-
off is required, especially in urban, highly heterogeneous
environments.

As for the amplitude dispersion index, it can be expressed
as (Navarro-Sanchez VD et al. 2010):

DA ¼ σa
a
¼ 1

ωT�kj j ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ωT�kij j � ωT�kj j
� �2

vuut ð5:25Þ

where N is the total number of images and the overline
indicates empirical mean value.

Note that different scattering mechanisms may correspond
to different heights inside the resolution cell, so allowing the
projection vector ω to vary along time could introduce a
variation in the phase term which might be misinterpreted
as deformation. In order to avoid this, we constrain the
optimum ω obtained for each pixel to be the same along all
the stack of images. This constraint is usually referred in the
literature to as ESM (Equal Scattering Mechanisms)
(Neumann et al. 2008).

5.4.2.3 Experimental Results
with Dual-Polarimetric Data
and Comparison
with Single-Polarimetric Data

A set of 41 dual-pol, Single-look Slant-range Complex (SSC)
images acquired by TerraSAR-X from February 19, 2009, to
May 27, 2010, over the urban area of Murcia (Spain) has
been used to test the proposed algorithms. All images have
been acquired using StripMap mode (SM) at HH and VV
channels, along ascending passes, with a mean incidence
angle of 37.8 degrees. Azimuth and slant range resolutions
are 6.6 m and 1.17 m, whereas pixel dimensions are 2.44 m

and 0.91 m, respectively. Therefore, the resulting
oversampling factors are 2.7 and 1.28 in azimuth and range.
The processing has been applied over a part of the image with
2000�2000 pixels.

For comparison purposes, we have also computed defor-
mation maps using a set of 41 single-pol SSC TerraSAR-X
images, acquired at VV channel using SM mode, along
descending passes, with a mean incidence angle of 35.3
degrees, from February 1, 2009, to May 20, 2010 (i.e., during
the same period as the dual-pol images). These images have
azimuth and slant-range resolutions of 3.0 m and 1.17 m,
with a pixel spacing of 1.89 m and 0.91 m, respectively. We
have selected a crop of 2582�2000 pixels corresponding
approximately to the same area considered for the dual-pol
images.

The test site and corresponding radar and validation data
sets selected for the generation of this showcase on urban
ground deformation monitoring are presented in Table 5.12.
Despite the advantage of fully polarimetric data over dual-pol
for this application, as stated later in the text, this test site was
preferred due to the availability of reference ground data for
validation and the granted access to the TerraSAR-X images
for this purpose.

In this section, we present results obtained for dual-pol
and single-pol data, using PSI based on both PS (selection by
amplitude dispersion index) and CP (selection by average
interferometric coherence). Note that for average coherence
computation, a 7�7 multi-look scheme has been considered
for both dual-pol and single-pol sets. Taking into account the
oversampling factors presented before, this corresponds to an
equivalent number of looks (ENL) of approximately 22 for
single-pol images and 14 for dual-pol images. These ENLs
are sufficient to ensure a negligible bias in the coherence
estimation for coherence values over 0.6 for both data sets
(Touzi et al. 1999). In order to minimize decorrelation issues
and to keep a reasonable stack size, a 100 m limit for the
perpendicular baseline and 100 days for the temporal base-
line have been defined, resulting in the generation of
166 interferograms from the dual-pol images and
140 interferograms from the single-pol images. Table 5.13
shows, for the dual-pol data set, the percentage of PS and CP
selected for the linear and the Pauli channels, as well as for
the optimum channel, considering different thresholds for DA

and γj j. The column labeled as Union corresponds to a simple
optimization algorithm based on selecting the best channel

Table 5.12 Test sites and corresponding radar and validation data selected for the generation of showcases on urban subsidence monitoring

Application/product Test site – Radar data Reference data

Urban subsidence
monitoring

Murcia Extensometer network (19 extensometers). Data provided by IGME (Instituto
Geológico y Minero de España)41 TerraSAR-X dual-pol images

[HH,VV]

41 TerraSAR-X single-pol
images [VV]
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among all the copolar and the Pauli channels (similar to the
algorithm described in (Pipia et al. 2009)), instead of
searching over the whole polarimetric space, whereas the
column OPT corresponds to the optimization approach
described in Sect. 5.4.2. A clear improvement in terms of
percentage of points selected as reliable is achieved for both
criteria of selection. In the case of CP selection, if we com-
pare the best-performing copolar channel, HH, with the opti-
mum channel OPT, we observe a significant increase of about
25% more pixels selected for the least restrictive threshold
(0.6). For more demanding thresholds (0.8, 0.9), the incre-
ment becomes more noticeable, up to a 60% increase in
comparison with HH. In this case, the simple algorithm
consisting in choosing the best from a reduced set of channels
(denoted as Union) achieves a suboptimal solution at a con-
siderably lower computational cost. Also note that, in this
urban scenario, the HH-VV channel, generally associated
with double-bounce reflections like the ones originated by
building façade-ground dihedrals, is the best choice from the
set of copolar and Pauli channels. The increase in the number
of selected pixels is more spectacular for PS selection since in
this case the optimization is applied to single-look data (i.e.,
not spatially averaged), which are more sensitive to the
geometrical and polarimetric features of dominant scatterers
inside the resolution cell. Consequently, improvement ranges
in this case from 130% (more than 2 times more pixels
selected) for the least restrictive threshold (0.3) to 170%
(2.7 times more pixels) for the most restrictive threshold
(0.15), when comparing the optimum channel to the refer-
ence single-pol channel HH. Notice that in this case, the
Union approach is far from providing the same improvement,
yielding results at midway between single-pol and optimized
ones.

For comparison, Table 5.14 shows results obtained for the
single-pol data set, at VV channel. Given the different acqui-
sition geometry (descending vs ascending), the selected area
of study is not exactly the same as for the dual-pol set, but
results are still quite similar to those obtained for the dual-pol
set at VV channel in terms of selected pixels density. Note
that the higher azimuth resolution of the single-pol images
implies that we dispose of more pixels for the same area, but

the ratio between selected and total pixels remains similar.
Therefore, for improving the total area coverage, it is better to
opt for polarimetrically optimized data (see more comments
on that at the end of this section).

In Figs. 5.37 and 5.38, we present maps of the deformation
velocity obtained using PSI based on CP and PSI based on
PS, respectively. Both single-pol and dual-pol sets have been
processed. We easily appreciate the increase in the density of
pixels with output deformation estimates and the appearance
of new details that did not show up in single-pol channels.
Concerning the estimated deformation values, we also
observe that for the dual-pol set (for both optimized and not
optimized channels), an area of slow ground subsidence is
found in the north of the city, which appears as stable for the
single-pol data set.

An attempt to validate the obtained results with the
available extensometer measures has been carried out, but
unfortunately neither the spatial sampling (19 extensometers
in total and only 12 inside the area of interest) nor the
temporal sampling (only 3 measures per extensometer inside
the time span) were sufficient for a proper deformation
characterization. In addition, available extensometers data
exhibit unexpected uplift measures that do not match
the general deformation trend of the area, which has been
studied in several works (Herrera et al. 2010; Monells et al.
2010).

Finally, Fig. 5.39 illustrates in a more precise way
the increase of area coverage achieved by the polarimetric
optimization procedure. An area of 1 km2 has been selected,
and the actual coverage has been computed by taking
into account projected pixel sizes: approximately 2.44 m
azimuth and 1.48 m range for dual-pol images and 1.89 m
azimuth and 1.56 m range for single-pol. Note that in the

Table 5.13 Percentage of pixel candidates selected for each channel, considering different and DA thresholds

γj j threshold HH VV HH+VV HH-VV Union OPT

0.6 39.15% 35.18% 31.74% 41.45% 47.25% 48.81%

0.7 26.43% 22.17% 19.46% 28.51% 34.18% 36.06%

0.8 13.93% 10.52% 9.19% 15.44% 19.28% 20.94%

0.9 4.19% 2.84% 2.50% 4.63% 6.13% 6.78%

DA threshold HH VV HH+VV HH-VV Union OPT

0.3 6.27% 5.17% 5.06% 6.52% 10.97% 14.52%

0.25 3.60% 2.77% 2.77% 3.77% 6.38% 8.63%

0.2 1.73% 1.24% 1.28% 1.78% 3.11% 4.34%

0.15 0.58% 0.39% 0.43% 0.58% 1.07% 1.57%

Table 5.14 Percentage of pixel candidates selected for the single-pol
VV images set, for different and DA thresholds

γj j threshold 0.6 0.7 0.8 0.9

VV 32.92% 21.83% 11.08% 3.35%

DA threshold 0.3 0.25 0.2 0.15

VV 5.70% 3.30% 1.65% 0.65%
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case of CP, pixel size is increased by the multi-look factor
(7�7), so in general we will have large area coverage
but poorer resolution. As extracted from the figure, the

better resolution of single-pol images does not affect actual
coverage as significantly as the polarimetric optimization
procedure.

Fig. 5.38 Deformation velocity maps obtained for PS-PSI, considering a DA threshold of 0.25

Fig. 5.37 Deformation velocity maps obtained for CP-PSI, considering an average coherence threshold of 0.8. The percentage of candidate pixels
is reported
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5.4.2.4 Discussion on the Role of Polarimetry
and on the Maturity of the Application,
and Conclusions

In this study we demonstrate how polarimetric diversity can
enhance the performance of conventional PSI techniques
without introducing significant changes to the processing
chain, getting an important improvement in terms of defor-
mation maps density and spatial coverage. In addition, polar-
imetry can be of use for PS/CP characterization, allowing us
to assign in a more precise way each PS/CP to actual targets,
hence widening the range of applications of these techniques.

In its current status, polarimetric PSI can be regarded as a
sufficiently mature approach to be used successfully with a
variety of polarimetric configurations. It is important to men-
tion that first experiments with full-pol data (Navarro-
Sanchez and Lopez-Sanchez 2013) show a more significant
improvement than dual-pol, increasing the density of selected
pixels up to twice compared to dual-pol optimized data, and

more than four times compared to single-pol. Compared
to the copolar dual-pol data analyzed here, the HV channel
adds a great deal of information, given the important cross-
polar response coming from tilted dihedrals in urban areas
(oriented buildings). Note that the described optimization
procedure based on parameter search, though robust, can be
computationally costly for fully polarimetric data, so more
efficient optimization methods are currently under develop-
ment. Finally, additional efforts have yet to be made in the
validation of results with ground truth data.

5.5 Summary

For each application concerning urban monitoring, the
methods presented are summarized, with their acquisition
modes and the required frequency bands in Table 5.15.

Fig. 5.39 PSI area coverage comparison, for CP and PS modes
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Abstract

In this chapter, the most promising techniques to observe
oil slicks and to detect metallic targets at sea using polari-
metric synthetic aperture radar (SAR) data are reviewed
and critically analysed. The detection of oil slicks in SAR
data is made difficult not only by the presence of speckle
but also by the presence of, e.g. biogenic films, low-wind
areas, rain cells, currents, etc., which increase the false
alarm probability. The use of polarimetric features has
been shown to both observe oil slicks and distinguish
them from weak-damping look-alikes but also to extract
some of their properties. Similarly to oil slicks, the same
factors can hamper the detection of metallic targets at sea.
The radiometric information provided by traditional
single-channel SAR is not generally sufficient to unam-
biguously detect man-made metallic targets over the sea
surface. This shortcoming is overcome by employing
polarimetry, which allows to fully characterize the scatter-
ing mechanism of such targets.

6.1 Introduction

The two main ocean applications analysed are related to oil
slicks and metallic target detection.

SAR oil slick observation is physically possible under
low-to-moderate wind conditions (~3–12 m/s), because an
oil slick damps the short gravity and capillary waves and
reduces the friction velocity generating a region of low

backscatter area in the SAR image. However, SAR oil slick
detection is not an easy task, since SAR images are affected
by multiplicative noise, known as speckle, which hampers
interpretability of such images. Furthermore, there are other
physical phenomena, known as look-alikes, which can gen-
erate dark areas in SAR images not related to oil slicks, such
as biogenic films (e.g. slicks produced by animals and plank-
ton), low-wind areas, areas of wind-shadow near coasts, rain
cells, currents, zones of upwelling, internal waves and oce-
anic or atmospheric fronts. Tailored filtering techniques must
be developed in order to minimize the number of false
alarms. Within such a context, single-polarization SAR oil
slick detection procedures can be generally divided into three
phases: dark area detection, feature extraction and oil slick/
look-alike classification. On the basis of the estimated
features and some a priori knowledge, it is possible to assign
a probability that a dark area is an oil slick. Furthermore, the
usefulness of additional external data is recognized to
enhance the ability to distinguish between oil slicks and
look-alikes, such as local wind field information (to sort out
low-wind areas) and optical data to identify biogenic films.
Recently, the superiority of polarimetric SAR measurements
for sea oil slick observation purposes has been demonstrated.
New quad- and dual-polarimetric approaches have been
recently developed for sea oil slick observation, under low-
to-moderate wind conditions, and are here considered.

Polarimetric models and analysis tools have been devel-
oped to observe sea oil slicks and have shown that some
polarimetric features, namely, HH-VV correlation, unpolar-
ized backscattered energy and scene depolarization
capabilities, can be successfully used to both observe oil
slicks and distinguish them from weak-damping look-alikes
(Nunziata et al. 2012a; Solberg 2012).

With respect to the state of the art related to SAR obser-
vation of man-made metallic targets at sea, both image- and
physically based approaches have been developed. The elec-
tromagnetic wave scattered off man-made metallic targets at
sea is physically determined by several scattering
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mechanisms that cause a high coherent microwave response
depending on the construction material and the characteristics
of the radar instrument, such as incidence angle, frequency,
polarization, resolution and speckle. Accordingly, ships and
oil rigs, hereinafter man-made metallic targets, appear in
SAR images as bright spots over a dark marine background.
Following this rationale, many image-based techniques have
been developed which seek for anomalies in SAR images.
However, SAR observation of man-made metallic targets at
sea is a nontrivial task due to speckle and natural physical
processes, e.g. atmospheric fronts, internal waves, current
boundaries, breaking waves, outlying rocks, shoals, sea
currents, coastal effects, etc., which may generate false
alarms. Accordingly, man-made metallic targets detection is
a complex topic that can hardly be optimized with conven-
tional single-polarization SARs. Radiometric information
provided by traditional single-channel SAR is not generally
sufficient to unambiguously detect man-made metallic targets
over the sea surface, since it does not fully characterize the
scattering mechanism of such targets. Hence, new polarimet-
ric approaches have been developed for man-made metallic
targets observation at sea that perform better than the single-
polarization ones.

In this chapter the most promising polarimetric techniques
to observe oil slicks and to detect metallic targets at sea are
reviewed and critically analysed.

6.2 Oil at Sea Observation

6.2.1 Introduction, Motivation and Literature
Review

Oil at sea observation has received considerable attention in
recent literature due to its impact on marine ecosystems,
fisheries, wildlife, etc. SAR has proven to be a fundamental
remote sensing tool for oil slick mapping, under low-to-
moderate wind conditions (3–15 m/s), due to its almost
all-weather and its all-day imaging capabilities. In very sim-
ple terms, the physical rationale underpinning SAR oil slick
observation resides on its viscoelastic properties that damp
the short Bragg resonant waves resulting in a low backscatter
area, i.e. a dark patch in the SAR image plane.

Marine slicks are composed of two major types of
hydrocarbons, mineral oils including petroleum-based mate-
rial and films from biological processes. Mineral oils are
typically due to spills from ships and offshore drilling
platforms and pipelines, natural hydrocarbon seeps and dis-
charge from storm-water urban run-off. Mineral oils spread
into thin layers through gravity and surface tension and evap-
orate through weather over time. Biogenic films, also called
surfactants (surface-active agents) or natural films, are a vis-
cous by-product of ocean plant and animal growth and decay.

Traditionally, SAR oil slick observation is based on
single-polarization VV or HH intensity images, and manual
inspection is very often still needed (Solberg 2012).

With polarimetric SAR sensor capabilities now operation-
ally available, several polarimetric techniques have been
proposed for oil slick monitoring showing superiority with
respect to single-polarization SAR cases (Nunziata et al.
2012a; Solberg 2012). Here, a brief review of the most up-
to-date polarimetric techniques to observe oil at sea is
provided. Then, some of the most promising polarimetric
techniques are applied to selected test cases in order to clearly
show the benefit of polarimetric SAR data for oil at sea
observation.

Polarimetric models and analysis tools have been devel-
oped to observe sea oil slicks and have shown that some
polarimetric features, namely, the correlation between the
co-polarized (HH and VV) channels, unpolarized
backscattered energy and scene depolarization capabilities,
can be successfully used to both observe oil slicks and distin-
guish them from weak-damping look-alikes (Nunziata et al.
2012a). All these approaches share a common physical ratio-
nale that relies on the fact that, under low-to-moderate wind
conditions (3–12 m/s) and at intermediate incidence angles,
both slick-free and weak-damping slick-covered sea surfaces
call for Bragg scattering, whereas in the case of oil-covered
sea surfaces, a completely different one, i.e. non-Bragg scat-
tering mechanism, is in place. Following this rationale, these
polarimetric features, which can be considered as measures of
the departure from Bragg scattering, have been estimated by
either the scattering S, the Kennaugh K or the coherency
T matrices and have been successfully used to observe sea
oil slicks in polarimetric SAR data (Nunziata et al. 2012a). A
brief description of the state of the art related to polarimetric
SAR data for oil at sea observation is provided as follows.

In Migliaccio et al. (2011a)), the benefits of polarimetric
RADARSAT-2 SAR data to observe the Deepwater Horizon
oil spill were shown using polarimetric features. In Minchew
et al. (2012)) and Migliaccio and Nunziata (2014)), polari-
metric features were extracted from L-band UAVSAR full-
polarimetric SAR data to observe the oil slicks due to the
Deepwater Horizon accident in Gulf of Mexico. It was shown
that the dominant scattering mechanism, both over the slick-
free and the slick-covered sea surface, is the tilted-Bragg
scattering. In Jones et al. (2011)), polarimetric UAVSAR
data collected over the polluted area of the Gulf of Mexico
were exploited to observe oil-affected wetlands in Barataria
Bay, Louisiana. In Nunziata et al. (2008)), a model to inter-
pret the elements of the Mueller matrix in terms of sea surface
scattering with and without oil slicks was developed. In
Nunziata et al. (2011)), the co-polarized signature, i.e. the
plot of the synthesized normalized radar cross section
(NRCS) as a function of ellipticity and orientation angle,
was exploited to observe oil at sea. The pedestal of the
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signature is shown to be both able to observe oil at sea and
distinguish them from weak-damping look-alikes. In
Migliaccio et al. (2009a)), multi-polarization features were
exploited to conceive a polarimetric processing chain to both
observe oil slicks and distinguish them from weak-damping
look-alikes. In Zhang et al. (2011)), full-polarimetric SAR
data were used to observe oil seeps in the Gulf of Mexico. In
Migliaccio et al. (2009b) and Velotto et al. (2011)), the
standard deviation of the co-polarized phase difference
(CPD) was shown to result in larger values over oil-covered
areas and in very low values over both free sea surface and
over biogenic slicks. In Migliaccio et al. (2011b)), the CPD
approach was used together with a target detection approach,
based on HH-HV SAR data, to conceive a processing chain
able to observe both oil slicks and metallic targets at sea;
i.e. oil field, in an unsupervised way.

6.2.2 Methodology

In this section the theoretical background behind the opera-
tional procedures is briefly described, starting from quad-
polarimetric approaches and, then, moving to the dual-
polarimetric one. To provide an effective physical descrip-
tion, the section presents a brief description of the polarimet-
ric model that describes sea surface scattering with and
without oil slicks, which is the backbone of the selected
polarimetric approaches.

Under low-to-moderate wind conditions and at intermedi-
ate incidence angles, two reference scenarios must be distin-
guished: sea surface with and without oil slicks.

Slick-free sea surface scattering calls for Bragg or tilted-
Bragg scattering. It is a single-reflection scattering mechanism
that, being quasi-deterministic, is expected to be characterized
by a low polarimetric entropy, a high correlation between like-
polarized channels and a low unpolarized backscattered
energy, as demonstrated in Nunziata et al. (2012a)). Similar
polarimetric scattering features apply when dealing with weak-
damping surfactants; e.g. biogenic slicks, some marine
features, etc. In real cases, illegal oil discharges are typically
heavy oils that do not belong to this class.

An oil-covered sea surface, due to the strong damping
properties of oil slicks, dampens the short Bragg scattering

waves generating a low backscatter area (i.e. a dark area in
single-pol SAR images). From a polarimetric viewpoint, this
means a large departure from the Bragg scattering mecha-
nism (Nunziata et al. 2012a). In detail, a low correlation
between like-polarized channels and a large unpolarized
backscattered energy (which indicates that a high random
scattering mechanism is in place) is expected, as
demonstrated in Nunziata et al. (2012a)).

Following this rationale, polarimetric features, which can be
considered as measures of the departure from Bragg scattering,
have been successfully used to observe sea oil slicks in polari-
metric SAR data. All the polarimetric features can be derived
by the second-order products of the scattering matrix; i.e. either
the coherencyT or the covarianceCmatrix can be used. In this
study the following polarimetric features are used: polarimetric
entropy (H), modified anisotropy (A12) (Wenguang et al.
2010), the mean scattering parameter α, normalized pedestal
height (NP) (Nunziata et al. 2012a), conformity coefficient
(Zhang et al. 2011) μ and standard deviation of the
co-polarized phase difference (σ) (Migliaccio et al. 2009b).
According to theoretical modelling, those polarimetric features
are expected to follow the behaviour synthesized in Table 6.1.

6.2.3 Experimental Results

The Gulf of Mexico site includes both oil slicks related to the
Deepwater Horizon accident and oil seeps. Test sites and
corresponding radar and validation data sets selected for the
generation of showcases are summarized in Table 6.2 and
further described in the appendix.

In this sub-section the polarimetric approaches described
in Sect. 6.2.2 are applied to actual polarimetric SAR data

Table 6.1 Expected behaviour of the polarimetric features

Polarimetric feature Slick-free Oil-covered

H Low High

A12 High Low

α Low Intermediate

NP Low High

μ Positive Negative

σ Low High

Table 6.2 Test sites and corresponding radar and validation data selected for the generation of showcases on oil at sea observation

Application/Product Test site – radar data Reference data

Oil at sea observation Gulf of Mexico Deepwater Horizon oil slick

3 RADARSAT-2 fine quad-pol

Gulf of Mexico Oil seeps

2 RADARSAT-2 fine quad-pol

Gulf of Mexico Deepwater Horizon oil slick

1 UAVSAR MLC quad-pol
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where verified oil slicks are present to clearly show the
added-value information that can be obtained by PolSAR
data. All the polarimetric features provide similar results;
hence, to save space, only the outputs obtained using NP
and μ, evaluated over the whole image by using a 7 � 7
average moving, are shown.

The first experiment is relevant to the RADARSAT-
2 SAR scene collected on May 15, 2010. The wind speed is
4–7 m/s, and the incidence angle varies in the range 29.1�–
30.9�. The imaged scene contains few slicks, related to the
Deepwater Horizon accident, that result in areas darker than
the background sea both in the Pauli and in the single-
polarization grey-tones VV image; see Fig. 6.1a, b. There
are also few bright spots that are due to metallic targets at sea.
It can be noted that the slick-covered sea area is very hetero-
geneous and presents some holes that, although present also
in the VV-polarized image, are better visible in the Pauli
image.

The outputs of NP and μ are shown in Fig. 6.1c, d. The NP
image [see Fig. 6.1c] clearly shows the slick-covered areas
that result in NP values larger than the background sea. Note
that also metallic targets result in lager NP values. A deeper
analysis on NP values reveals that slick-free and slick-
covered sea surface is not well-separated. NP results in very
low values both for slick-free and slick-covered sea surface

(NP < 0.1). This clearly witnesses that the amount of unpo-
larized backscattered energy is very low over the whole
scene. In electromagnetic terms, this witnesses that the domi-
nant scattering mechanism over the whole scene (with the
exception of the metallic targets) is the Bragg/tilted-Bragg
mechanism. This result agrees to the conclusions drawn in
Minchew et al. (2012) and Migliaccio and Nunziata (2014)),
where UAVSAR data related to the Deepwater Horizon
accident were processed. From a physical viewpoint, this
unconventional result can be explained considering that
(a) the oil released by the Deepwater Horizon was a “light
oil”; (b) a massive use of dispersant was made that generated
a mixture oil/water/chemical dispersants that cannot still
considered oil; and (c) the spill occurred in a very different
way if compared to “conventional” accidents or illegal
discharges, since the oil came from the bottom of the sea.
With respect to μ [see Fig. 6.1d], it is worth noting that it calls
for positive values everywhere, witnessing that Bragg scat-
tering dominates the whole scene.

This experiment clearly shows the extra benefit provided
by polarimetric SAR data for oil at sea observation. PolSAR
data result in an unprecedented amount of information that
can be used to infer detailed information on the scattering
mechanism of the observed scene. This information can be
related, at least in a rough way, to the damping properties of

Fig. 6.1 RADARSAT-2 SAR data collected on May 15, 2010 over the Gulf of Mexico. (a) Pauli image. (b) Squared-modulus VV-polarized SAR
data. Outputs of the NP (c) and μ (d) approaches

258 M. Migliaccio et al.



the oil slick or to the kind of surfactant that is present. It must
be explicitly pointed out that this information cannot be
extracted from single-polarization intensity SAR data.

The second experiment is relevant to the RADARSAT-
2 SAR scene collected on May 8, 2010. The wind speed is
6 m/s, and the incidence angle varies in the range 41.9�–
43.3�. The imaged scene contains few slicks, related to a
well-known oil seep in the Gulf of Mexico. Those slicks
result in “green” areas in the Pauli image and in areas darker
than the background sea in the single-polarization grey-tones
VV image; see Fig. 6.2a, b.

The outputs of the NP and μ approach are shown in
Fig. 6.3a, b, respectively. It can be noted that, unlike the
previous experiment, in this case, all the polarimetric
approaches result in good separation between oil-covered
and slick-free sea surface. From an electromagnetic viewpoint,
one can say that this scene is everywhere dominated by Bragg
scattering but within the oil-covered sea surface. With respect
to NP, it can be noted that oil-covered sea surface results in a
significant amount of unpolarized backscattered energy
(NP > 0.5), which is compatible with a non-Bragg scattering
mechanism, while a significantly lower unpolarized energy
applies in case of slick-free sea surface. It can be also noted

that μ results in positive (negative) values over slick-free
(oil-covered) sea surface, allowing a clear and unambiguous
distinction between the two scattering mechanisms.

Since in this case a “conventional” oil slick is in place, it is
worth analysing the performance of the polarimetric features
in terms of the detection capability. Within this context, the
most attractive polarimetric feature is the conformity coeffi-
cient (or, equivalently, the approach proposed in Nunziata
et al. (2008))), since it is able to separate in two
non-overlapped regions: Bragg and non-Bragg scatterings
without any external threshold. The logical true (sea) and
false (oil) output obtained using μ is shown in Fig. 6.3c. As
expected, positive (true) μ values result from sea surface
Bragg scattering, while negative (false) μ values result from
the oil-covered sea surface non-Bragg scattering. It must be
explicitly pointed out that no empirical threshold must be set,
and this is a key advantage of PolSAR approaches with
respect to single-polarization ones.

These results demonstrate the unique benefit of PolSAR
data for oil at sea observation with respect to single-
polarization SAR data. In fact, polarimetric data result in
unprecedented information that in no way can be extracted
from single-polarization intensity data.

Fig. 6.2 RADARSAT-2 SAR
data collected on May 8, 2010
over the Gulf of Mexico. (a) Pauli
image. (b) Squared-modulus
VV-polarized SAR data
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6.2.4 Comparison with Single/Dual
Polarization Data

In this sub-section the dual-polarimetric σ approach is
verified against actual polarimetric SAR data to discuss its
performance with the above-described quad-polarimetric
approaches. Note again that σ is the standard deviation of
the co-polarized phase difference.

The output of the σ approach applied to the RADARSAT-
2 SAR scenes of Figs. 6.1, and 6.2 is shown in Fig. 6.4a, b,
respectively. The slick-covered areas are emphasized by the σ
approach, as expected. With respect to Fig. 6.4a, the mean σ
value related to slick-free and slick-covered sea surface is 30�

and 45�, respectively. Hence, as far as for the quad-
polarimetric approaches, the scattering mechanism that
characterizes slick-covered sea surface is compatible with a
Bragg mechanism. With respect to Fig. 6.4b, even in this
case, the σ approach provides results similar to the quad-
polarimetric ones. The output witnesses that a highly
non-Bragg scattering mechanism characterizes the

oil-covered sea surface, resulting in larger σ values (~110�).
A different scattering mechanism characterizes the
surrounding sea, where the mean σ value is ~55�. Even in
this case, as far as for the quad-polarimetric approaches, σ
values larger than expected are measured over sea surface
that results to be very heterogeneous in terms of σ values,
showing that, probably, a larger oil-affected area is present.
Moreover, the area that surrounds the slicks is characterized
by intermediate σ values, witnessing that low oil concentra-
tion/mixing phenomena apply.

6.2.5 Discussion on the Role of Polarization,
on the Maturity of the Application
and Conclusions

Experiments clearly witness that the extra information
inherently carried on polarimetric SAR data allows not only
detecting oil at sea but also (and often more importantly) to
provide a rough information on the kind of surfactant and on

Fig. 6.3 Output of the NP (a) and μ (b) approach, binary μ image (c)
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its damping properties. Hence, SAR polarimetry is able to
offer an unprecedented level of scattering details that can be
used to assist classical “large swath” single-polarization pro-
cedure providing extra information on the surfactant. The
application is mature: the proposed techniques have been
successfully verified against actual polarimetric L-, C- and
X-band SAR data collected in a broad range of incidence
angles and sea state conditions.

6.3 Targets at Sea Observation

6.3.1 Introduction, Motivation and Literature
Review

Sea metallic targets, i.e. oil rigs and ships, observation is
nowadays a topic of great applicative interest. Both traffic-
related and surveillance applications need a synoptic,
all-weather and day and night observation system. The SAR
is the key remote sensing tool for this application. However,
SAR metallic targets observation is not an easy task. Specifi-
cally, one of the main issues to be tackled is the presence of
false alarms versus missed targets.

In this section, the benefits of using fully polarimetric
SAR data for targets at sea observation are carefully
analysed. Accordingly, the most up-to-date state-of-the-art
detectors able to deal with full- and dual-polarimetric single
look complex (SLC) SAR data are briefly reviewed, and their
performance is analysed using actual full-polarimetric SAR
data collected in selected test sites. Then, a fair intercompari-
son of the detectors is accomplished in order to clearly show
the benefits related to the use of fully polarimetric SAR data.
As a benchmark, a single-polarization HV detector, based on
the generalized-K (GK) distribution, is also applied to the HV
SLC SAR data to clearly point out the benefits of radar
polarimetry for targets at sea observation.

Metallic targets, being characterized by structures large
with respect to the electromagnetic wavelength, call for a
backscatter signal stronger than the background sea. Hence,
they appear as bright spots in the SAR image plane. Follow-
ing this rationale, several radiometric-based approaches have
been developed to observe targets in single-polarization SAR
data (Crisp 2004). However, the information provided by the
backscattered intensity collected by a single-polarization
SAR is not always sufficient to effectively observe metallic
targets. To conceive more effective observation techniques,

Fig. 6.4 –σ [�] map related to the
RADARSAT-2 SAR scene of
Figs. 6.1 (a) and 6.2 (b)
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great attention to polarimetric approaches has been paid. In
fact, new high-performance polarimetric SARs, e.g. the ones
operated onboard the Advanced Land Observing Satellite-
2 (ALOS-2), RADARSAT-2, TerraSAR-X and COSMO-
SkyMed missions, are of particular interest.

In Liu et al. (2005)), a ship detector, that applies a likeli-
hood ratio test with the Neyman-Pearson criterion to define a
pixel-based detection criterion, is developed. Gaussian
distributions for the scattering matrix components were
assumed in order to derive an approximate decision variable.
Even though the Gaussian distribution does not fit perfectly
the data, the test shows good accuracy on real data. In Yeremy
et al. (2001)), two studies have been accomplished using
airborne C-band polarimetric SAR data. The first study
compares target-to-clutter ratios (TCRs) for various polari-
metric channels, demonstrating that the best polarimetric
channel for ship observation purposes depends on the inci-
dence angle. Co-polarized horizontal channel (HH) performs
better than cross-polarized one (HV) for larger incidence
angles. Moreover, a comparative study on the suitability of
two polarimetric target decomposition techniques, i.e., the
coherent target decomposition (CTD) and Van Zyl decompo-
sition (VZD), is also undertaken, demonstrating that CTD
performs better than VZD in terms of false alarm rate. In
Touzi and Charbonneau (2002)), the CTD is enhanced to
extend its range of applicability, and the symmetric scattering
characterization method (SSCM) is introduced to better
exploit the information provided by the symmetric scattering
component in the frame of coherent scattering. In Ferrara
et al. (2011)), a speckle-based multi-polarization study is
developed to define a physically based single-polarization
filter. It is shown that a proper combination of speckle-related
parameters, when evaluated over the cross-polarized channel,
is able to observe targets at sea with a very low false alarm
rate. In Novak et al. (1989)), a linear polarimetric detector that
maximizes the target-to-clutter contrast, the so-called polari-
metric matched filter (PMF), is derived, and the structure of
this detector is related to simple polarimetric targets types.

These approaches are meant to identify a set of polarimet-
ric features peculiar to the metallic targets (e.g. high polari-
metric entropy, large coherent component, etc.), but,
unfortunately, there is a strong dependence on the scattering
mechanism of both target and surrounding background. A
different approach is proposed in Marino (2013)) where a
notch filter for target detection purposes is developed.
Experiments on C-band RADARSAT-2 full-polarimetric
SAR data demonstrate the capability of the approach to
highlight features, which are polarimetrically different from
the background sea in a broad range of sea state conditions
and almost independently of look angle. In Nunziata et al.
(2012b)), a polarimetric detector that exploits the different
symmetry properties that characterize sea surface with and

without metallic targets is proposed. The detector works on
dual-polarimetric HH/HV (VV/VH) pairs, and it exploits the
cross-correlation between co- and cross-polarized channels to
detect targets at sea in a robust and effective way.
Experiments accomplished using L-band ALOS-PALSAR,
C-band RADARSAT-2 and X-band TerraSAR-X data con-
firmed the effectiveness of the proposed approach. In
Nunziata and Migliaccio (2013)), X-band dual-polarization
Cosmo-SkyMed PingPong SAR data are exploited to observe
metallic targets at sea in a very effective way.

6.3.2 Methodology

In this section the operational procedures used are briefly
described, starting from quad- and dual-polarimetric
detectors, and, finally, a single-pol detector is considered as
a benchmark.

6.3.2.1 Liu Et al. Detector
The detector is fully described in Liu et al. (2005)). It
assumes that ocean and target backscatter follow a zero-
mean multivariate Gaussian distribution; hence, a likelihood
ratio test is proposed, based on the Neyman-Pearson criterion
to maximize the detection probability subject to the
constraints that the probability of false alarm is less than a
prefixed value. Moreover, typically the elements of covari-
ance matrix of the target, Ct, are much larger than the ones
related to the sea, C0; hence, a simplified decision rule can be
used:

Λ ¼ k�C�1
o k ¼ > Tl

� Tl

target

ocean

(
ð6:1Þ

where k is the target scattering vector. This detector is sub-
optimal; the magnitude of the measured data over sea surface
typically does not strictly follow a Gaussian distribution,
showing significant tails. In the following the value of proba-
bility of false alarm used for setting the threshold is
Pf ¼ 10�5.

6.3.2.2 Geometrical Perturbation Polarimetric
Notch Filter

This ship detector shares the same general methodology of
the geometrical perturbation partial-target detector
(GP-PTD), and physical justification of the algorithm can
be found in Marino (2013)). The idea behind the GP-PNF is
to build an algorithm that is able to identify any partial target,
which is different from the background clutter. In the case of
ship detection, the background is the sea. Hence, the follow-
ing decision rule is proposed (Marino 2013):
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γn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RedR

t�T t� t�Tbtsea�� ��2r > Tn ð6:2Þ

where t is the partial vector extracted from the scene
(observables), Tn is the threshold, and RedR is a detector
parameter that can be set using a rationale based on the
signal-to-clutter ratio (SCR) [R17]. The solution followed
in this report is to set the threshold to Tn ¼ 0.98 and choose
RedR based on the intensity of the minimum target of interest
Pmin
T . In this study Pmin

T is about 0.2 (linear scale).

6.3.2.3 Polarimetric Match Filter
This detector was firstly introduced in Novak et al. (1989)),
and it considers an optimization of the power ratio between
the quadratic forms of the covariance matrices of target and
clutter. The optimization is easily carried out exploiting the
Lagrangian method:

L ¼ω�TTseaω� λ ω�TTtω� C
� �

) ∂L
∂ω�T ¼ Tseaω� λTtω ¼ 0 ) T�1

seaTtω ¼ λω
ð6:3Þ

The latter says that the optimum scattering mechanisms ω
are the ones that diagonalize the matrix A ¼ Tsea

�1Tt. Even
though A is not Hermitian, it can be proved that it admits real
positive eigenvalues. The maximum eigenvalue represents
the maximum contrast; therefore the detector is finalized in
setting a threshold on this. In this report a value of contrast
equal to 9 is considered.

6.3.2.4 Reflection Symmetry Detector
In this sub-section the theoretical rationale that lies at the
basis of the polarimetric detector (Nunziata et al. 2012b) is
briefly outlined. The underpinning idea is that natural
distributed targets (sea surface) satisfy reflection symmetry,
while man-made metallic targets call for larger departure
from this condition. To highlight the different target/sea
behaviour in dual-polarized SAR data, the modulus of the
correlation between like- and cross-polarized scattering
amplitudes is used (Nunziata et al. 2012b):

X ¼ ShhS
�
hv

� ��� �� > T ð6:4Þ

To obtain a binary mask, a threshold T is used. Here,
T ¼ 0.04 is used.

6.3.2.5 GK Filter
In this sub-section the single-polarization detector proposed
in Ferrara et al. (2011)) is briefly outlined. An electromag-
netic model, based on the generalized-K (GK) distribution, is
proposed in Ferrara et al. (2011)) that allow observing the
scattering features associated with metallic targets at sea in
full-resolution single-look-complex (SLC) SAR data. Hence,
a simple and effective approach to observe targets at sea in
HV-polarized SLC SAR data is proposed. In Ferrara et al.
(2011)), the following index is shown:

γ ¼ 1
2η

� 	2

ð6:5Þ

where η is related to the rice factor (Ferrara et al. 2011) and,
when evaluated over the HV channel, is able to sort targets
and sea areas in two nonoverlapping sets, i.e. γ < 1 and γ > 1,
respectively. Following this theoretical rationale, a simple
filter that implements (6.5) is developed that operates on
SLC SAR data using two nested windows, to estimate the
coherent and incoherent backscattered field components,
whose sizes are 8 � 8 and 18 � 18, respectively.

6.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on targets at sea
observation are summarized in Table 6.3 and further
described in the appendix.

In this sub-section the full-polarimetric detectors, i.e. Liu
et al., geometrical perturbation-polarimetric notch filter
(GP-PNF) and the polarimetric match filter (PMF), are
verified against actual polarimetric RADARSAT-2 SAR
data (see Sect. 6.3.2).

One meaningful experiment, relevant to the scene col-
lected on May 15, 2010, is detailed. The scene consists of
six targets: one oil rig and five visually inspected targets. The
Pauli image and the HH-polarized squared-modulus SAR
data are shown in Fig. 6.5a, b, respectively. The location of
the targets was derived by a map (i.e. ground truth), and it is
shown as red boxes in the image. Moreover, a visual inspec-
tion of the radar image was carried out trying to interpret the
points in the image that may represent vessels. The latter are
marked by yellow circles.

Table 6.3 Test sites and corresponding radar and validation data selected for the generation of showcases on targets at sea observation

Application/Product Test site – radar data Reference data

Targets at sea observation Gulf of Mexico Oil/gas rigs/platform Google Earth map

3 RADARSAT-2 fine quad-pol
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The output of the full-polarimetric Liu et al., GP-PNF and
PMF detectors is shown in Fig. 6.6a, c, respectively. The
detection masks show that all the targets identified in the
scene are detected. Moreover, all the quad-polarimetric
detectors seem to detect two points in the upper left corner.
These appear in the Pauli image [see Fig. 6.5a] as bright red
spots, and, hence, they can be associated to dihedral
structures. It is not clear what the points are since their
brightness is relatively low (therefore we did not consider
them belonging to vessels in the visual inspection). However,
their polarimetric behaviour is particularly well-defined (and
repeated among them), and therefore we do not believe that
they are common false alarms. It may be speculated that they
are small vessels or probes beside the larger vessel or just
ambiguities/artefacts. In the absence of accurate ground
measurements, it is not possible to provide any specific
conclusion. Finally, the PMF seems to be particularly sensi-
tive to changes of the polarimetric background, and it is able
to detect one of the ambiguities in the image that appears very
faint in the Pauli RGB. This is clearly not a genuine target;
however, it is an illustration of the power of these algorithms
in picking up anomalies on the background. In general,
azimuth ambiguities can be somehow filtered out by some
algorithms; therefore it should be possible to remove this

typology of false alarms with some post-processing. In gen-
eral, more tests should be carried out in order to understand if
the PMF high sensitivity may constitute a drawback in prac-
tical application (i.e. leading to irremovable false alarms).

6.3.4 Comparison with Single/Dual
Polarization Data

In this sub-section the dual-polarimetric symmetry detector
and the single-polarization (HV) GK filter are verified against
actual polarimetric RADARSAT-2 SAR data.

The symmetry detector and the GK filter outputs obtained
processing the SAR scene of Fig. 6.5 are shown in Fig. 6.7a,
b, respectively.

The symmetry detector succeeds in observing all the
targets highlighted in Fig. 6.5b. The two “potential” targets
observed by all the quad-pol detectors are not present in the
symmetry output. The single-polarization detector misses
one target (the one on the upper left side of the image).
Moreover, even this detector does not observe the two
“potential” targets. These results clearly witness the superior-
ity of polarimetric detectors with respect to the single-
polarization HV one.

Fig. 6.5 RADARSAT-2 SAR
data collected on May 15, 2010,
over the Gulf of Mexico. (a) Pauli
image. (b) Squared-modulus
HH-polarized SAR data. Yellow
circles, visually inspected vessels;
red boxes, verified metallic
targets. Dark areas are related to
the oil spilled during the
Deepwater Horizon accident
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6.3.5 Discussion on the Role
of the Polarization, on the Maturity
of the Application and Conclusions

In this section, some of the most up-to-date polarimetric
detectors to observe metallic targets at sea in PolSAR images
are reviewed, and their performance is discussed using actual
RADARSAT-2 SAR data where both visually inspected and
verified targets are present.

Experimental results clearly witness that the extra infor-
mation inherently carried on polarimetric detectors allows a
better discrimination of the “anomalies” in the polarimetric
backscattering of sea surface related to targets. This results in
a better target/sea discrimination, even when very challeng-
ing scenes are considered, e.g. the one showed in Fig. 6.5,
where few targets are present within a low backscatter area.
Hence, SAR polarimetry is able to offer an unprecedented
level of scattering details that can be used to detect targets
that cannot be observed when using conventional single-
polarization detectors. On this purpose, it must be explicitly
noted that some of the “potential” targets detected only by the
quad-pol detectors are very complicated to be visually
inspected from the HH or HV SAR image. Hence, if con-
firmed they would clearly witness the benefits of quad-pol
detectors in detecting even targets characterized by low
signal-to-noise (SNR) ratio. These results pushed toward a
fair intercomparison of the above-mentioned approaches
using a SAR data set where verified small targets are present
(see external contributor document).

Fig. 6.6 Output of the full-
polarimetric detectors. (a) Liu
et al., (b) GP-PNF, (c) PMF

Fig. 6.7 RADARSAT-2 SAR scene of Fig. 6.5. (a) Dual-polarimetric
symmetry detector output. (b) Single-polarization HV GK filter output
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The application is mature: the proposed techniques have
been successfully verified against actual polarimetric L-, C-
and X-band SAR data collected in a broad range of incidence
angles and sea state conditions.

6.4 Polarimetric Synthetic Aperture Radar
Measurements of Oil Pollution at Sea

6.4.1 Introduction, Motivation and Literature
Review

Full-polarimetric SAR systems allow us to link scattering
processes and variations in the backscattered signal to the
physics of the medium measured. Recent advances in the
field show a potential in polarimetric SAR measurements
with respect to discrimination between different types of oil
or surfactants and in deriving valuable information about oil
slicks physical properties. In this showcase, we demonstrate
that multi-polarization SAR can be used to obtain key infor-
mation for pollution response authorities about detected
slicks at sea (Skrunes et al. 2015).

The experimental work described in this chapter has been
conducted by University of Tromsø in collaboration with
Norwegian Clean Seas Association for Operating Companies
(NOFO), with funding from Total E & P Norge AS and the
Norwegian Space Centre (NSC).

Occasionally, large amounts of oil are spilled into the sea.
The Deepwater Horizon accident in the Gulf of Mexico in
2010 and the Prestige accident off the coast of Galicia in 2002
are examples of such incidents. During the recovery and
cleanup phase, information about slick properties, such as
the thickness distribution and the oil volume fraction, is
requested. Deliberate man-made slicks are often smaller in
size but are nevertheless frequently occurring. Biogenic
slicks and natural seeps are also known to resemble oil spills
in mono-polarization SAR imagery. Therefore, knowledge
about the slick type and its origin is useful input to decision-
makers. This type of information could limit the number of
false alarms as well as expensive actions taken by authorities.

Hence, beyond simply detecting the slicks, a demand for
additional information is recognized. This has triggered the
scientific community to explore polarimetric SAR systems
and their potential in:

• Discriminating man-made mineral slick types from mono-
molecular biogenic slicks and

• Characterizing slicks, e.g. to obtain knowledge on slick
thickness and infer oil/water mixing

The ocean is a nonstationary medium, and oil slicks are
affected by weathering processes over time. Weathering pro-
cesses include spreading, drift, evaporation, dissolution,

natural dispersion, emulsification, sedimentation, biodegra-
dation and photooxidation (Kotova et al. 1998). This can
cause significant variability in the signatures of oil pollutants
in SAR imagery. The detection and characterization
capabilities of SAR systems also show a dependence on
imaging geometry and SAR system properties,
e.g. incidence angles and sensor frequency. Norway is one
of the few countries allowing oil discharges for the purpose
of equipment and procedure testing. To gain increased
knowledge in the field of oil spill remote sensing by SAR,
controlled large-scale oil-on-water experiments are currently
conducted in the North Sea. These experiments are excellent
opportunities to create realistic study cases while having
access to key parameters such as the oil types released,
meteorological conditions and the age of the spills. This
chapter describes the lesson learned from the Norwegian
oil-on-water experiments in 2011 and 2012, seen from a
polarimetric SAR remote sensing perspective.

For polarimetric SAR systems, when Bragg scattering is
dominant, the cross-polarization term could be considered
negligible. This assumption is made in the Freeman-Durden
decomposition, where the first component models an untilted
and slightly rough first-order Bragg surface. In the context of
marine slicks, the strength of polarimetric SAR systems
seems indeed to lie in the relation between the
co-polarization coefficients (VV and HH) of the scattering
matrix. The standard deviation of the co-polarized phase
difference (CPD) is described as an important feature,
which adds discrimination power to the problem of
distinguishing oil spills from biogenic look-alikes
(Migliaccio et al. 2009b). The co-polarization ratio is another
feature that is sensitive to the dielectric properties of the
surface (Minchew et al. 2012), and its potential is currently
investigated with respect to discriminating oil from look-
alikes in the marginal ice zone (Brekke et al. 2014). Solberg
recently gave a literature review on remote sensing of oil
pollution, where a brief summary of SAR and some addi-
tional polarimetric descriptors is included (Solberg 2012).

6.4.2 Methodology

6.4.2.1 Oil-on-Water Experiments
The NOFO conducts an oil-on-water exercise once a year in
the North Sea. The purpose of these exercises is to improve
the national oil spill preparedness. In 2011 and in 2012, the
controlled discharges at sea provided a unique opportunity to
acquire satellite data of various oil types and collect other
auxiliary information about the oil spills. The substances
were released from ships involved in the exercises, and
SAR data was collected from European, American, Canadian
and Indian satellites. Meteorological conditions were logged,
and other data such as photos and infra-red
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(IR) measurements were collected from vessels, aerostats and
aircrafts.

6.4.2.2 Releases of Mineral and Biogenic Oil Types
into the Sea Water

Kotova et al. (Kotova et al. 1998) emphasizes the importance
of weathering processes, as they influence oil spills physico-
chemical properties and detectability in SAR images. The
processes that play the most important role for oil spill
detection are evaporation, emulsification and dispersion.
Lighter components of the oil will evaporate to the atmo-
sphere. The rate of evaporation is dependent on oil type,
thickness of the spill, wind speed and sea temperature. Emul-
sification of crude oil (crude oil is a naturally occurring
substance and has been extracted, but no further processing
is done) refers to the process where water droplets become
incorporated in the oil and are estimated based on water
uptake as a function of the wind exposure of the actual oil
type. Dispersion is an important factor in deciding the life-
time of an oil spill, and it is strongly dependent on the sea
state. While evaporation, dispersion and dissolution make the
oil on the surface disappear, emulsification of the oil increase
the viscosity and volume of the pollutant and promote its
persistence (Reed et al. 1999). In the oil-on-water

experiments taking place at the Frigg field, we have released
both crude oil and water-in-oil emulsion to create realistic
mineral oil slicks. Figure 6.8 shows crude (Balder) oil
forming into a large slick on the ocean surface in 2011.

One look-alike phenomenon frequently discussed in the
literature is natural biogenic slicks. Biogenic slicks are sur-
face films consisting of surface-active compounds,
originating from marine plants or animals. The main
producers of natural surface films are algae and some bacte-
ria. Surface-active organic compounds have one hydrophobic
part and one hydrophilic part, i.e. strong tendencies both
towards and against water. Hence, the molecules are sponta-
neously arranged at the air-water interface with the hydro-
phobic part up in the air and the hydrophilic part down in the
water. This forms a very thin and so-called monomolecular
film, which is only one molecule thick (~ 2.4–2.7 nm). In
contrast, crude oil spills mainly consist of chemicals with
exclusively hydrophobic character. Depending on the
amount and viscosity of the oil and on the environmental
conditions, crude oil spills will spread out over time. How-
ever, the final thickness still remains orders of magnitude
larger than that of monomolecular films (μm, mm and even
cm for freshly spilled oil) (Hühnerfuss 2006). The two slick
types will have different viscoelastic properties and induce

Fig. 6.8 Left: The crude oil slick formed in June 2011. Vessels participating in the exercise are visible. (Photo: Kustbevakningen. Right: Release of
palm oil ongoing at the Frigg field in 2011. Photo: Stine Skrunes)
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different damping on the ocean waves (Hühnerfuss 2006). It
is difficult to distinguish between mineral oil spills and natu-
ral slicks in mono-polarization SAR data. As a third sub-
stance applied in the oil-on-water experiments, we have
chosen to use palm oil as a biogenic slick simulator. The
palm oils viscoelastic behaviour is similar to the one of
natural biogenic oil films. Figure 6.8 shows a photo of the
release of 400 litres of palm oil in 2011.

6.4.2.3 Analysis of Multi-polarization SAR Data
The methodology applied in the analysis of the SAR datasets
includes the following steps:

• Computation of multi-polarization features
• Masking of open sea water
• Unsupervised classification of the remaining slick pixels

The output from the classification is finally discussed in
relation to the known in situ slick characteristics.

A quality investigation of SAR data recorded by Radarsat-
2 and TerraSAR-X during the 2011 experiments has also
been conducted. The analysis revealed that the signal over
oil slicks in the cross-polarization channels (VH and HV)
often fluctuates around the noise floor (Skrunes et al. 2012a).
A threshold of �6 dB is proposed in Minchew et al. (2012)),
where a study based on the airborne UAVSAR (L-band)
system was undertaken. This requirement cannot be met by
current spaceborne systems, such as Radarsat-2 and
TerraSAR-X, as the signal level in the cross-polarization
channels is fairly low over marine slicks. Hence, for the
remainder of this chapter, we limit our attention to the
co-polarization scattering coefficients (VV and HH), which
have a stronger signal-to-noise ratio.

A selected set of multi-polarization features is applied as
input to the unsupervised classification procedure. The names
of the features considered are presented in Table 6.4, while
more detailed definitions can be found in Skrunes et al.
(2015, 2012b). The features are either processed from the
mean covariance matrix or from target decomposition
theorems. Some of them are well-known multipurpose
descriptors. Others are in the literature specifically proposed

for oil slick studies. Several of the features were originally
developed for the full scattering matrix case. To comply with
the discussion on data quality above, these features are here
adapted to dual-polarization (only involving the VV and HH
scattering coefficients, respectively).

6.4.3 Experimental Results

The selected test site is the Frigg field in the North Sea,
northwest of Stavanger. SAR measurements of the oil slicks
artificially created in 2011 and 2012 have been successfully
collected from spaceborne sensors. An overview of some of
the datasets is given in Table 6.5.

An investigation of the features presented in Table 6.4
shows a varying degree of separability between the slick-
covered areas and the ambient clean sea. Figure 6.9 presents
some of the features listed in Table 6.4, i.e. the entropy, the
covariance scaling factor and the real part of the
co-polarization correlation. The features are computed from
one of the quad-polarimetric Radarsat-2 fine-resolution scene
recorded in 2011 (see Table 6.5). We can see that some of
these features exhibit clear differences within the plant oil
slick as compared to values within the mineral oil slicks.
Particular regions within individual slicks are also more
pronounced than other regions of the same slick.

The intensity image, in the bottom part of Fig. 6.9, shows
the VV channel with labels indicating the slick types. As we
can see, all slicks are clearly visible despite fairly low-wind
speed at the time of recording. The bottom right image shows
an unsupervised classification of the three different oil slicks.
The classification result indicates a potential for discrimina-
tion between mineral oil and biogenic slicks. We can also
observe zones along the edges of the mineral slicks. This
zoning may be related to changes in physical parameters,
e.g. the thickness distribution of the oil. Aerial photos of
the crude oil, taken approximately 1 h before the satellite
passed, reveal internal thickness variations corresponding to
the Bonn Agreement Oil Appearance Code (BAOAC)
(Skrunes et al. 2012b; Areal-surveillance – Cooperation on
aerial surveillance over the North Sea area. In: Bonn Agree-
ment Counter Pollution Manual 2005). This supports our
SAR-based observations.

6.4.4 Comparison with Single/Dual
Polarization Data

The simplest type of SAR systems transmits on one polariza-
tion and receives on the same (like) polarization. Current
operational oil slick monitoring services are mainly based
on mono-polarization SAR products (VV or HH polariza-
tion). Both support vector machines (SVM) and Bayesian

Table 6.4 Features applied in this study

# Feature

1 Entropy H

2 Anisotropy A0

3 Mean scattering angle α

4 Covariance scaling factor μ

5 Co-polarization power ratio γCO
6 Standard deviation of co-polarized phase difference σϕCO
7 Magnitude of co-polarization correlation coefficient ρCO
8 Real part of co-polarization correlation rCO
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classification schemes have previously been proposed for oil
slick detection and oil spill versus look-alike discrimination
based on Radarsat-2 ScanSAR or ENVISAT ASAR Wide
Swath SAR scenes (Brekke and Solberg 2008). These
algorithms are trained and tested on large data sets with
reasonable good performance. However, it is shown that oil
spills can be hard to separate from look-alikes when only
utilizing mono-polarization SAR images. From the mono-
polarization intensity or amplitude products, the information
we can extract about the slicks are mainly related to the
geometry and shape of the segmented region, properties of
the backscatter level of the spot and the surroundings, spot
contextual information and texture.

True polarimetric SAR modes are necessary to be able
take advantage of the technology discussed in this chapter.
Hence, the previous alternating polarization (AP) mode of
ENVISAT or the current PingPong (PP) mode of Cosmo-
SkyMed is not ideal for oil slick characterization. These
modes suffer from a time lag between the transmissions of
the horizontal and vertical polarized signals. The delay is
long enough to cause an incoherent imaging over sea surfaces
(Nunziata et al. 2011). These data products can simply be
described as images, as they do not include the relative phase
between the two received channels. Techniques applicable to
these data types are primarily restricted to ratios or
differences of their respective images.

Table 6.5 Test sites and corresponding radar and validation data selected for the generation of showcases on observation of oil pollution at sea

Sensor Date and pass Mode and pol. Oil slicks

Radarsat-2 8 June 2011 descending Fine quad-polarization Emulsion and plant oil

TerraSAR-X 8 June 2011 descending Strip map, HH and VV Emulsion

TerraSAR-X 8 June 2011 ascending Strip map, HH and VV Emulsion, plant oil and crude oil

Radarsat-2 8 June 2011 ascending Fine quad-polarization Emulsion, plant oil and crude oil

Cosmo-SkyMed 14 June 2012 ascending PingPong, HH and VV Emulsion and oleyl alcohol (OLA) or plant oil

Cosmo-SkyMed 14 June 2012 descending PingPong, HH and VV Emulsion and plant oil

Radarsat-2 15 June 2012 descending Fine quad-polarization Emulsion and plant oil

TerraSAR-X 15 June 2012 ascending Strip map, HH and VV Emulsion

Radarsat-2 15 June 2012 ascending Fine quad-polarization Emulsion

Cosmo-SkyMed 15 June 2012 ascending PingPong, HH and VV Emulsion

Fig. 6.9 Top row: entropy (left), covariance scaling factor (middle) and
co-polarization correlation (right). Bottom row left: VV intensity image
from June 2011 at a wind speed of 1–3 m/s. RADARSAT-2 data and
products# MDA LTD. (2011) – All Rights Reserved. Bottom row

right: an unsupervised K-means classification based on the set of
multi-polarization features visualized in the top row. The open water
is masked out (black)
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With the launch of Advanced Land Observing Satellite
(ALOS) in 2006 and TerraSAR-X and Radarsat-2 in 2007,
coherent dual- and quad-polarimetric SAR measurements
became available from space. The scattering matrix holds
all the complex scattering coefficients that describe the
marine target. The scattering coefficients are measured at
different linear combinations of send and received
polarizations (VV, HH, VH and HV). The polarimetric
SAR systems extend our capabilities to characterize the
slicks. It provides us with a mean to investigate the physical
scattering characteristics of the surface medium. However,
due to limitations in the current technology, only narrow
swath modes are available.

In compact polarimetry, one polarization is transmitted,
and two orthogonal polarizations are received, together with
their relative phase. With this technique, one realizes some of
the benefits of quad-polarimetric SAR systems, but not all.
An advantage is an extended coverage. However, with com-
pact polarimetry one only gets access to a 2 � 2 coherency
matrix, whereas quad-polarimetric systems measure the
covariance matrix (Raney 2011). Compact polarimetry for
oil slick detection has been investigated by simulating com-
pact polarization from Radarsat-2 quad-polarimetric SAR
data (Salberg et al. 2012; Shirvany et al. 2012; Nunziata
et al. 2015).

6.4.5 Discussion on the Role of Polarization,
on the Maturity of the Application
and Conclusions

We conclude that polarimetric SAR measurements have an
improved ability to discriminate between mineral oil slicks
and look-alike phenomena, as well as a potential for slick
characterization. Interesting internal slick variations are
observed, which may be related to differences in thickness
or oil volume fraction.

However, we would like to emphasize that, beyond simply
detection, a sufficiently high signal-to-noise ratio is necessary
to succeed in any physicochemical slick information extrac-
tion by polarimetric SAR. Currently, only the VV and HH
channels from satellites such as Radarsat-2 and TerraSAR-X
can be utilized for oil slick characterization, while some
airborne sensors (e.g. the UAVSAR) have a low enough
noise floor to allow exploitation of the whole scattering
matrix, which also includes the cross-polarization channels.
We would therefore like to emphasize that the choice of SAR

sensor properties, such as the noise floor level and the selec-
tion of incidence angles, needs to be carefully considered
when designing new missions aiming for oil pollution
monitoring.

To lift the application described in this chapter to an
operational stage, our aim is first to test the techniques on a
wider range of data samples, including a wider spectre of
metrological conditions, water-in-oil mixtures and
surfactants, and second to build up a training dataset that
could be used as input to a supervised classifier.

6.5 Ship Detection

6.5.1 Methodology

The aim of this section is to present a comparison of ship
detectors exploiting quad-, dual- and single-polarimetric data
over a dataset where a ground survey was carried out during
the acquisition. A theoretical presentation of the algorithms
exploited for ship detection is included in the previous
sections and introductory chapters.

6.5.2 Test Sites and Data Sets

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on ship detection are
summarized in Table 6.6.

6.5.2.1 Brief Polarimetric Analysis of the Data
All the algorithms consider an initial multi-look of 1 � 5
(range x azimuth) pixels applied on the elements of the
covariance matrix. This makes the pixel more squared on
the ground. Subsequently, a boxcar filter of 3 � 3 pixels is
employed to further reduce the pixels statistical variation.
Clearly, the samples are not all independent each other, and
the equivalent number of looks (ENL) returned by such
averaging is ENL ¼ 15.

The aim of this section is to evaluate the L-band polari-
metric behaviour of the sea in this scene. An easy way to
display (part of) the information contained in quad-
polarimetric acquisitions is by using a Pauli RGB colour
composite image. The Pauli scattering vector is defined as
kp, whose first component represents odd bounce (as surface
scattering or trihedral corner reflectors), the second is an even
bounce (as dihedrals corner reflectors horizontally oriented),

Table 6.6 Test sites and corresponding radar and validation data selected for the generation of showcases on ship detection

Application/Product Test site – radar data Reference data

Ship detection Tokyo Bay, Japan NDA reference data (video camera, ground radar, AIS)

ALOS-PalSAR
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and the third is a dihedral with the corner 45 degree oriented
along the Line of Sight (please note, in case of absence of
target orientations, the latter is often exploited as an indicator
of volume scattering). Figure 6.10 presents the RGB image of
the test area with the overlapped “ground-surveyed” targets.

In this section, the visual interpretation is used as a bench-
mark to compare the algorithms with the results that could be
provided by a SAR image analyst. In the following, green
indicates detected targets, while red is for missing vessels.
The circles are targets observed in the ground survey and
visible in the RGB image, while the rectangles are vessels
present in the survey but invisible in the RGB. The number
beside the rectangles indicates that more vessels are closed to
each other in the same area. The green curve delineates an
area where seaweed farms (laver) are present. Please note
there are also other coastal areas where laver cultivations are
present, but they are not listed in the survey. The video
camera and the ground radar were located close to the NDA
(National Defence Academy) indicated by a black circle.

In the Pauli RGB [Fig. 6.10a], the sea is clearly distin-
guishable from other features in the scene due to its blue
colour. The Bragg scattering model can be used to approxi-
mate the scattering from the sea surface at this frequency. An

exception is when the sea state is particularly calm
(or generally when the gravitational and capillary waves are
dampened) leading to a backscattering proximal to the noise
floor. In the image, many point targets in the sea area appear
to present a clearly distinguishable polarimetric behaviour
(i.e. different colours). In order to have an intuitive idea
regarding possible advantages of using quad/polarimetric
data, Fig. 6.10b presents the intensity of the HV channel
(cross-polarization). The latter is often exploited to perform
ship detection since, accordingly to the Bragg model, the
cross-polarization should be negligible on the sea, therefore
increasing the contrast between ships and sea. However, only
using HV the visual discrimination between ships and sea
becomes harder.

Further details regarding the sea polarimetric behaviour
can be obtained applying the Cloude-Pottier decomposition.
Figure 6.11 presents the resulting entropy and averaged α
angle. As expected, the sea exhibits relatively low values of
entropy indicating one dominant scattering mechanism. The
averaged α is also small, indicating surface scattering.
Finally, it is interesting to notice that in some sea areas,
especially exhibiting low backscattering, the values of
entropy and α increase. This is mainly due to noise effects.

Fig. 6.10 RGB Pauli and HV intensity of the surveyed area, ALOS-
PALSAR (JAXA), Tokyo Bay (35,294451; 139,785816). Green circles,
targets present in the ground survey and visible in the RGB; red
rectangles, vessels present in the ground survey but completely invisible
in the RGB. The green curve delineates an area with seaweed (laver)

cultivations. The video camera and the ground radar were located close
to the NDA (National Defence Academy) indicated by a black circle.
Incidence angle: ~24degrees. Multi-look: 1x5. Image size: 1000� 1000
pixels, ~30 � 30 km
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6.5.3 Detection with Quad-Polarimetric Data

The quad-polarimetric detectors compared in this section are
the geometrical perturbation-polarimetric notch filter
(PG-PNF) (Marino 2013), the polarimetric match filter
(PMF) (Novak et al. 1989), the Liu et al. detector (Liu et al.
2005) and the polarimetric entropy.

Figure 6.12 presents the detection masks for each detector.
The same circles and rectangles shapes extracted by the visual
interpretation are represented on each detection masks in
order to have a benchmark for algorithm comparison. The
window size of the boxcar filter is 3� 3 (after the 1� 5 multi-
look). The training for the detectors (i.e. the definition of the
sea clutter backscattering) is performed manually choosing a
representative area in the dataset. An operative solution may
consider guard windows; however this is not presented here
because it will generate a strong dependency of the results on
the dimension of the selected guard window, which may
obstruct a proper performance assessment. More details on
the detector parameters are provided in the caption of
Fig. 6.12. The results are summarized in Table 6.7, in the
following only few comments are presented.

6.5.3.1 Detection
Interestingly, all the quad-polarimetric algorithms are able to
detect the vessels visible in the RGB image except for the
entropy that misses one. Moreover, they can detect one vessel
identified in the survey but very hardly visible in the RGB.

6.5.3.2 Missing Detection
Several vessels were missing in the detection masks and
visual interpretation. These are mainly small vessels,
supposedly made of fibre glass. A finer sensor’s spatial reso-
lution may be a way to try to retrieve small targets. However,
if a vessel is composed of materials almost transparent to the
electromagnetic wave (e.g. absence of large metallic parts), it
may still be physically impossible to observe it.

6.5.3.3 Seaweed
All the algorithms seem to be able to identify part of the laver
seaweed farm. This is composed of nets lying on the sea
surface. Entropy provides the best laver detection; it is
followed by the PMF and the GP-PNF. Their detectability
is physically based on the fact that the nets damp the Bragg
resonant waves leading to a non-Bragg scattering. This is
why the entropy is a good candidate to detect them. Please
note that in the scene, other coastal areas present laver
cultivations and are not indicated in the ground survey (but
they can be detected by the entropy). Finally, Liu et al. is
missing the most of the nets.

6.5.3.4 False Alarms
Unfortunately, the ground survey that accompanies the SAR
data is not accurate enough to allow a reliable estimation. For
instance, a vessel detected by the SAR and invisible to the
video/radar (perhaps because too far from the NDA
buildings) would be listed as false alarm. However, for

Fig. 6.11 Entropy and averaged α angle from the Cloude-Pottier decomposition. (a) Entropy, scaled between 0 and 1; (b) averaged α, scaled
between 0 and π/2, blue-red (rainbow) colour bar
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Fig. 6.12 Detection with quad-polarimetric data: (a) GP-PNF (RedR¼ 10�4 and T¼ 0.98); (b) PMF (T¼ 4); (c) Liu et al. (Pf¼ 10�4); (d) entropy
(T ¼ 0.5). Green, detected vessels; red, missing vessels. Red arrows: missing vessels that can be visually identified. Stars are supposed false alarms

Table 6.7 Detection results for the algorithms tested

Algorithms Visual RGB GP-PNF PMF Liu et al. Entropy Symmetry HV

Detected 21 22 22 22 21 14 18

Missed 9(17) 8(16) 8(16) 8(16) 9(17) 16(24) 12(20)

False alarms 0 0 1 1 Several 0 0
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what is observed in the test area, the GP-PNF does not
present any false alarm, while the PMF and Liu et al. have
one false alarm each. They are indicated in the images with
stars. This result shows the robustness of such detectors. The
entropy has no false alarms in the area close to NDA; how-
ever, many detections are located in areas exhibiting low
backscattering. Some of them correspond to ships wakes
and therefore can be easily defined as false alarms. A more
thorough treatment of false alarms is provided in the final
section when the receiver operating characteristic curves are
presented.

6.5.4 Dual- and Single-Polarimetric Detectors

In this section, the results with the dual-polarimetric VV/VH
symmetry detector (Nunziata et al. 2012b) and a CFAR test
on the HV intensity exploiting the K-distribution (Crisp
2004) is presented. In this detection test, the threshold on
the HV intensity is set solving numerically the integral for
Pf ¼ 10�5 (exploiting a K-distribution). The threshold for the
symmetry detector is 0.1, since this was shown to be a robust
threshold selection over other datasets. As for the other
detectors, the boxcar window is 3 � 3 after multi-look.

Figure 6.13 presents the detection masks for these two
detectors, while the results are summarized in Table 6.7. It is
evident that the detection performance is reduced substan-
tially. Compared to the 22 vessels detected by the quad-pol

algorithms, the HV intensity misses 4, and the symmetry
misses 8 vessels. This numbers can be converted in relative
degradation of the Pd obtaining 18% for the HV and 36% for
the symmetry detector. The absolute degradations (when all
the surveyed vessels are considered) are 13% and 26%. In
particular, some ships visible in the RGB Pauli image are
lost. Other tests were performed changing slightly the thresh-
old in order to ensure the right setting of the detectors
parameters. However, the number of detections increased
only slightly. In the next section, an analysis is performed
to assess the impact of a bad threshold selection to the lower
detection performance. The area with seaweed farms is
completely missing in the detection masks.

6.5.5 Receiving Operating Characteristics

The detection masks presented in the previous section help in
understanding the detection capabilities in a more operational
test, where one threshold is fixed. However, the threshold
selection may be not optimal, and the poor performance of
one algorithm may be just caused by a bad threshold selec-
tion. For this reason, it is valuable to assess the algorithms
performance independently of the threshold selection. This
can be accomplished plotting Pd against Pf and generating the
so-called receiver operating characteristic (ROC) curves
(Kay 1993). In this way, the problem of optimally selecting
the threshold is de-coupled with assessing the best detector.

Fig. 6.13 Detection with dual- and single-polarimetric data: (a) symmetry detector (T¼ 0.1); (b) HV intensity (Pf¼ 10�5). Green, detected vessels;
red, missing vessels. Red arrows: missing vessels that can be visually identified. Stars are supposed false alarms
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Pd is calculated only for visible vessels, since we were not
able to assess the exact location of the pixels representing the
missing vessels (i.e. the analysis is restricted to vessels that
have some backscattering). In order to find a meaningful
value for Pf, a large area in the dataset outside Tokyo Bay
is selected where no apparent vessels were present.

Figure 6.14 shows the ROC curves for the different polar-
imetric detectors. As a comparison also the single-channel
detectors using the intensity of HV, HH and VV are consid-
ered. Finally, in order to provide a more complete analysis a
detector based on spectral (or sub-look) analysis of SAR data
is presented (in the plot, it is indicated with HV sub-look, and
a more complete name is sub-aperture cross-correlation mag-
nitude). Details regarding the latter detector are not presented
here for the sake of brevity, but they can be found in Brekke
et al. (2013)). In very few words, this is a single-channel
detector aiming at increasing the contrast between sea clutter
and vessels because sea areas in different nonoverlapping
portions of the image spectrum are uncorrelated. The
sub-look detector tested here considered two nonoverlapping
portions of the range spectrum with a 3 � 3 window.

Finally, two more detectors are considered in the ROC
analysis. The GP-PNF is executed feeding the algorithm with
only dual-polarimetric data (HH/VV and HH/HV). The idea
behind this analysis is that keeping the same detector and
feeding it with fewer images give a clear indication of how
the loss of information impacts the detection performance.

As a final remark, the ROC curves presented here are
different from the ones showed in [39] because the area
used for estimating the false alarms is different. In [39], a
region presenting a large area affected by azimuth
ambiguities (coming from the nearby Tokyo) was selected
in order to test the sensitivity of the detectors to such artefact.
Here, the comparison between different polarimetric modes
is investigated, and therefore including artefact may mask
part of the differences (since it is never possible to obtain
high Pd and low Pf due to the detection of the ambiguities).

Analysing the ROC curves, few conclusions can be
drawn:

1. The best detectors seem to be the quad-polarimetric ones
(red curves), followed by the dual-polarimetric ones (blue
and green curves).

2. Among the single-polarimetric channels, the HV seems to
be the best, followed by HH and finally VV. This can be
found in the literature; however, there may be situations
where the co-polarized channels may be more beneficial
for detection (it depends on sea state and incidence angle).

3. The sub-look processing seems to not improve the HV
detection in this test. A reason may be that the sea back-
ground is already quite low, and therefore the loss of
resolution (due to sub-looking) is not paid back with a
significantly better contrast.

Fig. 6.14 ROC curves for the different detectors: red solid, GP-PNF
quad-pol; red dotted, Cloude-Pottier entropy; red dashed, PMF; red
squares, Liu et al.; blue dashed, symmetry VV/VH; green solid, dual-
pol HH/VV GP-PNF; green diamonds, dual-pol HH/HV GP-PNF; black

solid, HV intensity; black dotted, HH intensity; black dashed, VV
intensity; black dot dash, cross-correlation of sub-look images in
HV. (b) Presents a zoom of (a) in the upper left area. Best detection is
in the upper left area of the plot
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4. The symmetry detector presents a very good ROC curve
(not largely inferior to quad-pol detectors), but its Pd from
the previous analysis was quite low. This is probably due
to a wrong selection of the threshold, and therefore it
should be possible to improve the detection mask with
an algorithm able to select the threshold locally (or at least
based on the specific dataset).

6.5.6 Discussion on the Role of Polarimetry
and Conclusions

This section presented the comparison of quad-, dual- and
single-pol detectors over a dataset acquired by ALOS-
PALSAR and kindly provided by JAXA. The test area is
Tokyo Bay, Japan, and during the acquisition, a ground
survey was conducted. The latter was carried out with a
video camera and a ground radar (in X-band) located beside
the Nation Defence Academy (NDA) at 100 m over the sea
level. The availability of such information allowed the evalu-
ation of quantitative results. The quad-pol detectors tested
here are the geometrical perturbation-polarimetric notch filter
(GP-PNF), the polarimetric match filter (PMF), the Liu et al.
and the entropy, while the dual-pol algorithm is the symmetry
detector, and the single pol is a CFAR test on the HV
intensity exploiting the K-distribution. Besides, a visual
inspection was attempted on the RGB Pauli and the HV
intensity images to provide a benchmark for the comparison
of the other detectors.

The results showed that the quad-pol algorithms are able
to detect 22 vessels (i.e. all the vessels visible in the RGB
plus one), while the symmetry and HV suffer from more
missed detections (respectively 14 and 18 vessels detected)
which return a degradation of performances respectively of
13% and 26%. The false alarms are low for all the detectors

tested at exception of the entropy detector which is not
suitable in areas presenting low backscattering. Finally, a
ROC curve analysis is performed with the purpose of
assessing the detector performances independently of the
threshold selection.

Some specific comments on the results are as follows:

1. Initially, it is interesting to notice that the use of quad-
polarimetry is helpful to improve the detection capability
even in the quite straightforward case of human interpre-
tation. In Fig. 5.2 it can be observed that a smaller amount
of vessels is distinguishable from the sea clutter in the HV
intensity image alone.

2. All the quad-pol detectors perform in similar ways in the
context of detection capability. This is an indicator that in
this experiment, the main driver for the detection perfor-
mance is quad-polarimetry (compared to dual-polarimetry)
more than the specific detector or the selection of its
parameters. Clearly, in other datasets a larger difference
between the quad-pol detectors could be observed.

3. Analysing the ROC curves, the difference between quad-
and single-pol detectors is large on this dataset, especially
for the case of the co-polarizations. In the case of HV, a
Pd > 0.95 can only be reached at the expenses of a
Pf > 10�3 (which is not appropriate for many applications).

6.5.7 Acknowledgement
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6.6 Summary (Table 6.8)

Table 6.8 Summary of presented application, methods and preferred system configurations for ocean monitoring

Application Methods and used frequency (P/L/C/X) Radar data preference/requirements/comments

Oil observation PolSAR features from T/C matrix for detection (L/X) No preferred frequency
Careful choice of incidence angle and noise floor
for system design

Unsupervised classification based on PolSAR features for
classification of oil types (C/X)

Metallic targets and ship
detection

PolSAR detectors based on T/C matrix for metallic target
detection (C)

No preferred frequency

PolSAR detectors based on T/C matrix for ship detection (L)
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Appendix: Test Sites and Data Sets

Forest Applications

Remningstorp Forest

The Remningstorp test site (58�300N, 13�400E) covers about
1200 ha of productive forest land. It is classified as
hemiboreal, and the dominant tree species are Norway
spruce, Scots pine, and birch. Till is the main soil type. The
area is fairly flat with topographic variations between 120 and
145 m above sea level. Location and views of the
Remningstorp test site are shown in Fig. 1.

In spring 2007, ground measurements of every single tree
with a diameter at breast height (dbh) larger than 5 cm were
carried out in 11 plots having an extent of 80 m by 80 m for
4 of them and 20 m by 50 m for the others. Additionally, six
plots of 80 m by 80 m extent are available from fall 2006.
Laser scanning was performed in April 2007 and covered the
main area of 400 ha where the ground measurement cam-
paign took place. With support from in situ data (field plots)
available from 2004 and 2005, the laser scanning data were
processed into a stem volume map with 10 m grid from which
biomass estimates were calculated using biomass expansion
factors. In addition, a digital elevation model and a digital
surface model were also derived based on the laser data set.

Krycklan Forest

The Krycklan site is located in central Sweden (64�100N,
20�010E) (see Fig. 1) and represents a typical Scandinavian
boreal forest. It is a managed forest with a mean forest height
of 18 m and a mean biomass level of 90 t/ha. The maximum
measured forest height is 28 m with a biomass of 220 t/ha.
The forest is dominated by coniferous tree species (Norway
spruce and Scots pine) with fractions of birch. The site has a
hilly topography characterized by moderate slopes and a
height variation between 20 m and 400 m amsl. The bedrock

consists almost entirely of gneiss. The dominating soil is
moraine, with variations in thickness.

Traunstein Forest

The Traunstein test site represents a temperate mixed moun-
tain forest and is located in southeastern Germany (47�510 N,
12�290 E) (see Fig. 2 for some views). Dominant tree species
are European spruce and silver fir accompanied with small
fractions of European beech. It is a managed forest composed
of even-aged stands which cover forest heights from 10 m to
40 m. Mean biomass level is on the order of 210 t/ha while
some old forest stands can reach biomass levels up to 600 t/
ha. Compared to other managed forests in this ecological
zone (mean biomass of 121 t/ha), the biomass values of
Traunstein forest are significantly higher. Typical for the
pre-alpine character of the test site is the fairly flat relief
disturbed by some steep slopes embedded in a hilly
landscape.

Traunstein test site has already been used for more than
100 years for forest growth and forest yield studies from the
chair of forest yield science of the “Technische Universität
München” (Technical University of Munich, TUM) and
therefore well documented with high precision ground
measurements. In total, data from three extensive ground
inventory surveys are available (2003, 2008, 2013). Ground
surveys are done by means of inventory plot measurements
on a grid basis. For this, a 100 m by 100 m grid was laid over
the test site with an inventory point at each cross section.
Each plot is circular with a radius of 12.62 m and represents
an area of 500 m2. In total, around 220 inventory plots are
measured. Most important measurement parameters of the
inventory survey are tree height, dbh, and tree species infor-
mation (needed for biomass estimation). In 2008 and 2012,
laser scanning flights were performed (July 2008) to provide
complete forest height measurements all over the test site.
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Laser scanning data provided a digital elevation model and a
digital surace model, from which a forest height map (top
height) was derived.

Keg River Forest

The center geo-coordinates of the Keg River forest are
recorded at 57�350 N, 117�450 W. The study area is about

Fig. 1 Locations and views of the Remningstorp test site

Fig. 2 Two views of the Traunstein forest
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900 km2 and the elevation of the site ranges from 400 to
800 m above sea level. This region is dominated by conifer-
ous forest species, demonstrated in a forest land cover map of
Canada produced by the Earth Observation for Sustainable
Development (EOSD) of Forests. This area is known with its
extensive fire history with multiple fires in every decade since
1950. A latest wild forest fire in this region occurred in 2002,
which burned approximately 4830 ha. The Alberta historical
wild fire GIS polygons, representing collections based on fire
years since 2000, are available from the Government of
Alberta. A fire scar polygon in the Keg River region,
digitized from aerial photos in 2002, was extracted from
this GIS dataset and is shown in Fig. 3 superimposed on a
Google Earth image.

Mawas Forest

The Mawas site is an Indonesian forest conservation area
located in Central Kalimantan (2�090 S, 114�270 E). It lays
over a flat topography including several large (ombrogenous)
peat domes and is covered by tropical peat swamp forest
types. Forest height varies gradually from relatively tall

(30 m) and dense forest at the edges toward small (15 m or
lower) and open forest at the center of a dome with biomass
levels from 20 to 250 t/ha. The forest is still marked by strong
logging activities carried out in the early 1990s last century.
In August 2007, lidar measurements were performed with a
swath width of about 300 m along a 22-km-long strip. The
spatial resolution is of 3–4 m, dependent on the amount of
returning samples; the pixel density decreases from the center
(nadir) to the corners of the image. From the Lidar raw data,
forest height and ground terrain digital elevation models have
been derived.

Guaviare Forest

The Guaviare study site corresponds to an inland tropical
forest area located in the Colombian Amazon (2�300 N,
72�300 W). The area is characterized by a flat terrain, well-
drained soils, and flooding occurs seasonally in main rivers.
The Guaviare site is a colonization area were land cover types
are changing creating a dynamic landscape mosaic with four
main vegetation cover types: primary forest, secondary for-
est, recently deforested (burnt) areas, and grasslands.

Fig. 3 Fire scar polygon over the Keg River Forest, Alberta, Canada
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Recently deforested areas are those where forest has been
recently cut, and the remnants have been burnt after a short
period of drying. Usually crops are planted shortly after
burning, while big branches, trunks, and stumps of big trees
remain present for some time. For the identification and
description of the land cover types, direct field observations
on vegetation and terrain characteristics like drainage,
flooding and slopes, were made at 124 locations.

Agriculture and Wetlands Applications

Carman, Casselman, and Indian Head

The Carman (Manitoba, 49�630 N, 98�000 W) and Indian
Head (Saskatchewan, 50�190 N, 103�240 W) sites are located
in Canada’s western prairie region where the cropping mix is
diverse and fields are large (20–60 ha). These sites are
dominated by production of cereals (primarily wheat, barley,
and oats) and oilseeds (canola, flaxseed, sunflower, and soy-
bean). Typical field rotation is cereal crop alternating with

oilseeds/pulses. In contrast to the western site, the eastern
Casselman site (Ontario, 45�220 N, 74�580 W) is
characterized by small elongated fields (15 ha on average)
and a simple crop mix. Here annual crops include corn,
soybeans, and spring wheat, as well as perennial cover
crops of pasture and forage. For all sites, only one crop is
grown during the relatively short April to September season.

Indian Head is the main test site for the applications
presented in Chap. 3. A sample RADARSAT-2 RGB com-
posite image over this area is shown in Fig. 4. Indian Head
has been one of the three locations included in the
ESA-funded AgriSAR2009 campaign.

The ground data collection was conducted in 2009 by the
Indian Head Agriculture Research Facility (IHARF) and the
University of Regina. Available ground data consist of two
sets:

• An intensive detailed survey of representative crops in a
small number of fields

• A more extensive, but less detailed, survey of crops over
the entire test site

Fig. 4 A sample RADARSAT-
2 composite image over
Indian Head
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The intensive database comprises the following records
gathered in 52 locations, of 14 different parcels, and a total of
6 different crop types. Each point record has the following
attributes:

• Crop type
• UTM coordinates
• Growth stage or phenology (multiple dates)
• NDVI (multiple dates)
• LAI (multiple dates)
• Photos (multiple dates)
• Grain yield

The objective of the extensive survey was to record crops
grown in all fields within the area of interest. A total of
609 fields covering 90% of the area of interest were surveyed,
including the 14 intensive survey fields. Sixteen different
crop types were monitored in this campaign. The following
information was gathered for each field:

• Crop type
• Stubble type
• Row orientation (degrees)
• Row spacing (cm)
• Area (ha)

Besides these measurements, the following relevant infor-
mation is also available:

• Daily meteorology information was acquired during the
whole campaign from the Environment Canada weather
station at Indian Head: temperature, humidity, rainfall, wind.

• Volumetric soil moisture was automatically measured
during the campaign (see Fig. 5). Instrumentation

consisted of four soil moisture probes attached to a data
logger. The probes were placed in the soil at 5 cm depth.
The data logger recorded hourly values from the four
probes during 2 months. Additional soil moisture
measurements at 20 cm depth were recorded separately
every few days.

DEMMIN

The Durable Environmental Multidisciplinary Monitoring
Information Network (DEMMIN) is a well-established agri-
cultural test site located close to the town of Demmin
(53�5401800 N, 13�0203800 E), 150 km north of Berlin
(Germany), that has been regularly used since 1999 for
remote sensing studies involving both airborne and ground-
truth measurements. Diverse crops such as winter wheat,
winter barley, winter rape, maize, and sugar beet are
cultivated in this area, where the dominant soil texture is a
variation between loamy sand to strong loamy sand.

The AgriSAR 2006 campaign was an ESA conducted
campaign carried out in 2006, and it was focused on the
Görmin farm, located north-eastern part of the DEMMIN
area. Figure 6 displays the Görmin test site. From April to
August, detailed ground data, airborne SAR, and optical
measurements, as well as satellite images, were collected in
the framework of the preparatory activities for Sentinel-1.

The large size of agricultural fields, the variety of crops,
the short time interval between acquisitions of ground-truth
and radar measurements, and the coverage of the whole
season are important features to consider the suitability of
these data sets for demonstrations purposes. The main draw-
back, however, is the reduced number of fields, especially for
classification purposes.

Fig. 5 Volumetric soil moisture
as a function of time recorded in
Indian Head
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Fig. 6 A land use map of the Görmin test site

284 Appendix: Test Sites and Data Sets



The estimation of soil and vegetation parameters was
performed by means of two procedures throughout the
project:

• Continuous measurements performed simultaneously to
the radar flights

• Intensive measurements performed on three dates during
the AGRISAR2006 campaign

In case of continuous measurements, a number of bio- and
geophysical parameters were sampled simultaneously with
the radar flights. A total of 16 ground measurements
campaigns were conducted by the German Remote Sensing
Data Center of DLR (DLR-DFD), the Leibnitz-Zentrum für
Agrarlandschaftsforschung (ZALF), GEO-Informatik, and
University of Kiel with around 13 people collecting vegeta-
tion and soil parameters.

These parameters are listed below:

• Phenology stage
• Leaf Area Index (LAI) and vegetation height
• Crop density (plants/m2)
• Row distance
• Crop coverage
• Biomass (wet/dry)
• Plant water content
• Chlorophyll (SPAD)
• Volumetric soil moisture at two different depths (0–5 cm,

5–10 cm)
• Surface roughness (photogrammetric)

For the volumetric soil moisture, three gravimetric
measurements per sampling unit were averaged for each
depth. Standard deviations are also provided and rain events
and (slight) topography variations were also recorded and are
available as well. An analysis on data quality was performed
and the variation coefficient (VC) was calculated for this
purpose for each sample unit, depth, and date. Most of the
data sets exhibit a variation less than 10% on average and
outliers are easily identified in the time series of VC as well as
the possible sources of error.

The soil moisture was also monitored by means of two
TDR stations that were deployed in winter rape and sugar
beet fields. Soil moisture was sampled at 5 cm and 10 cm at
three locations per station with a 10 min sampling period.
During the calibration stage of TDR probes, slight
overestimations of water content of 3.8% and 3.45% were
detected on the measurements.

Soil surface roughness measurements were acquired by
using photogrammetric image matching techniques. The pho-
togrammetric system allows a quantitative evaluation of qual-
ity of the delivered data due to high accurate control points
that were installed on the system.

In case of intensive measurements, three campaigns of
1 week were carried out by different institutions in order to
obtain additional soil, vegetation, weather, and atmosphere
samples. Concerning the soil moisture estimation, permanent
registering soil moisture station and TDR probes were used
for such a purpose. In the subsequent quality analysis, soil
moisture mean and standard deviation were computed for
each field and the effect of local slopes over the monitored
fields was also taken into account.

In case of soil roughness, 13 roughness profiles were
acquired using the ESA laser profiler over bare fields, a
wheat field at an early stage. There are 6 profiles 20 m-
long, 1 profile 15 m-long, 2 profiles 10 m-long, and 4 profiles
5 m-long. The profiles were acquired along two directions,
i.e., perpendicular and parallel to the row directions and
standard deviation values are provided.

Optical images were also acquired by two optical systems,
the INTA’S AHS and the ITRES CASI system installed in the
CASA aircraft from the Spanish Air force, and the CHRIS/
PROBA spaceborne sensor.

Foulum

Foulum test site (Denmark, 56�290 N, 9�350 E) contains a
large number of agricultural fields with different crops, as
well as several lakes, forests, areas with natural vegetation,
grasslands, and urban areas. The area is relatively flat, and
corrections of the local incidence angle due to terrain slope
are therefore, as a first approximation, not necessary. The
crop types present in the area are for spring crops, namely,
beets, peas, potatoes, maize, spring barley, and oats, and for
winter crops, namely, rye, winter barley, winter wheat, winter
rape, and grass. The forest areas consist primarily of two
types of coniferous forest, i.e., Norway spruce and Caucasian
fir. A land cover map was established for the test site includ-
ing more than 350 test areas.

The Pleine Fougères Test Site

The Pleine Fougères area in France (48.31� N, 1.15� W)
corresponds to the lower valley of the Couesnon river and
presents five marshes. Two of them (Sougéal marsh and
Mesnil marsh) have been studied in the framework of a
research project conducted by the University of Rennes-1
and other local institutions. This wetland zone is protected
by the RAMSAR community agreement and also by ZNIEFF,
ZICO, Natura2000, and ZPS. A composite Radarsat-2 image
over an orthophoto of the area is shown in Fig. 7.

A ground campaign was carried out during 2010 in order
to measure volumetric soil moisture using time-domain
reflectometry (TDR) instruments along four transects.
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Moisture along transects is measured at two different depths
(3.5 cm and 12 cm). The following data are also available in
the framework of the mentioned project:

• Precise surface elevation data gathered with a ground-
based Lidar

• Aerial photographs of the site, coincident with the radar
acquisitions, for delineation validation

• Ground inventories and maps with the vegetation species
present in the area

• Meteorological information

Western Everglades

The Shark River Slough test site is located in the western
Everglades in Florida (FL, USA). The Everglades subtropical
wetlands in South FL consist of a wide, shallow, and slow
sheet-flow environment. The sheet flow begins in Lake
Okeechobee and flows southward to the Everglades
wetlands. Artificial changes, such as construction of canals
and levees in the past half century, have damaged signifi-
cantly the flow and ecology of the natural wetland system. At
present, the Everglades wetland is composed of managed

Fig. 7 Radarsat-2 composite image over an orthophoto of the Pleine Fougères test site
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wetlands in the northern section, which is controlled by a
series of man-made structures as levees and hydrological
gates, and naturally flown wetlands in the southern area,
where the original wetland sheet flow has been preserved.
In order to maintain the hydrology and ecology of these
fragile wetlands, the Everglades wetlands are monitored by
a large number of water-level gauges.

The southwestern section of the wetland is located in the
Everglades National Park. This area comprises of various
wetland environments across the transition between fresh-
water and saltwater wetlands as shown in. The northeastern

part of the study area consists of freshwater herbaceous
vegetation, whereas the southwestern area consists of salt-
water woody vegetation (mangroves). The shorter scrub is
developed in the transition zone between freshwater and
saltwater comparing with taller and denser mangrove forest
in the saltwater wetland (the vegetation map over the
Everglades can be found at http://fcelter.fiu.edu/data/GIS).
The optical color composite image of Landsat-7 ETM+
(http://www.landcover.org/data/landsat) shown in Fig. 8
describes clearly two different types of vegetation.

Fig. 8 Location map of the study area in the western Everglades, using
a Landsat ETM+ optical color composite (http://www.landcover.org/
data/landsat). The frames mark the swath locations of data acquired by
three SAR satellites (X-band TerraSAR-X, C-band Radarsat-2, and

L-band ALOS PALSAR) and one airborne UAVSAR (L-band SAR).
The aqua frame indicates the location of a common area to all three
satellite acquisitions
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Canada Peatlands: La Baie Des Mines
and Wapusk National Park

La Baie de Mines peatland is a 700 ha raised boreal peat
dome located 12 km west of Trois-Rivières, Canada. Figure 9
presents the peatland classification based on forest inventory,
which was provided by the Ministère des Ressources
Naturelles et de la Faune du Québec. The site includes four
main wetland classes: shrub bog, treed bog, poor sedge fen,
and swamp. Shrub bogs and poor sedge fens, which cannot
be discriminated with optical sensors (Ikonos), are regrouped
in the open peatland class of Fig. 9.

The Wapusk National Park (WNP) is located in the
Hudson Bay Lowlands. The Hudson Bay Lowlands contain
the most extensive wetlands and thickest peat deposits in
Canada. Figure 9 presents the classification of the peatland
study site (near the Roberge lake) extracted from Brook’s
wetland classification. The latter was generated using
Landsat-5 TM mosaic and extensive ground field data col-
lected at 600 sites throughout the WNP. The area includes
five main wetland classes: lichen melt pond bog, peat plateau
bog, litchen spruce bog, sedge bulrush poor fen, and sedge
rich fen.

Cryosphere Applications

The Austfonna Ice Cap

An area of interest for land ice observation is the Austfonna
ice-cap, in the Nordaustlandet island (79�480 N, 22�240 E),
located North-East of the Svalbard archipelago (Norway). On
this island, several ice caps and glaciers cover an area of
11,150 km2 and represent one of the largest land ice masses
outside of the Antarctic and Greenland ice sheets. Austfonna
possesses unique features requiring further investigation
including a subpolar thermal regime and the widespread
presence of superimposed ice. Moreover, several glaciers in
drainage basins have been observed to surge. An additional
advantage of studying the Austfonna ice cap is its simple
dome-shaped topography, which significantly facilitates the
analysis. In particular two sites have been chosen for this
study (Fig. 10): one is located in the firn area, very close to
the summit of the ice cap (here, referred to as Summit); the
second one is in the superimposed ice zone, close to the
Etonbreen outlet glacier (Glacier). Airborne SAR
acquisitions over both sites were carried out during the ESA
IceSAR 2007 campaign.

Fig. 9 Left panel: classification of La Baie des Mines based on forest inventory. Right panel: Brook’s classification of the peatland areas of the
Wapusk National Park
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Ground measurements on Austfonna were collected in
spring 2007 by a team from the University of Oslo (UiO)
and the Norwegian Polar Institute (NPI) as part of calibration
and validation activities for the CryoSat-2 satellite. Snow
stratigraphy, neutron probe, and ground penetrating radar
data were collected during a two-week period spanning the
end of April and beginning of May prior to spring melt.
Meteorological data for the March and April 2007 acquisition
period and limited measurements from 2004–2007 are also
available.

Fram Strait, Storfjord, and Barents Sea

The test sites for the sea ice measurements need to fulfil
certain conditions with regard to the position of different

sea ice types. The three chosen test sites are all located around
the Svalbard archipelago (Norway). The first location is in the
Barents Sea, east of the Barentsøya and Edgeøya islands; the
second site is located in the Storfjorden, between Spitsbergen
and Edgeøya; the Fram strait, a passage from the Arctic
Ocean to the Greenland Sea and Norwegian Sea, between
Greenland and Spitsbergen, was chosen as third test site (see
Fig. 11). SAR images were acquired over these three
locations during the ESA IceSAR 2007 campaign.

Sodankylae

The Sodankylae test site (67�250 N, 26�350 E) is located in the
heart of Lapland, in Finland. The territory is crossed by the
rivers Kitinen and Luiro. The topography of the region is

Fig. 10 Locations of Summit and Glacier test sites and overview of the SAR flight trajectories during the IceSAR 2007 campaign
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very smooth with only small relieves of altitude seldom
higher than 400 m. It is mainly a forested area populated by
pines with an understory of lichens, mosses, and small shrubs
over a sandy soil. The ground is usually covered by snow
from October until the middle of May, and the uppermost soil
layers are frozen during the wintertime. A view of the
Sodankylae test site is reported in Fig. 12.

Ground measurements collected during the NoSREx
(Nordic Snow Radar Experiment) campaign during the
winters 2009/10 and 2010/11 are available. The experiment
was conducted by the FMI (Finnish Meteorological Institute)
and supported by ESA. The main reference points were
collected over three areas, the IAO automatic and manual
station, as well as over a bog site. Over this reference points,
the main parameter that were collected are snow depth, snow
density, grain size, snow water equivalent, soil temperature,
and air temperature. In addition two reference points in the
forest have been identified.

Churchill

The test site of Churcill (58�460 N, 94�100 W) takes its name
from the homonymous town on the shore of Hudson Bay in
Manitoba, Canada. The landscape is characterized by shallow
soils due to a combination of subsurface permafrost and rock
formation. The south and central part of Manitoba includes
numerous lakes and rivers that flow northeast into the bay.
An expanse of almost uninhabited tundra surrounds the port
of Churchill.

Ground measurements collected during the CASIX exper-
iment (October 2010 – March 2011) are available. The loca-
tion of the CASIX experiment is shown in Fig. 13. The
campaign was conducted by the University of Waterloo,
supported by the ESA and NSERC (National Sciences and
Engineering Research Council of Canada). The dataset
includes X- and Ku-band scatterometers data and field
in situ measurements of snow properties over different

Fig. 11 Locations of Fram Strait, Storfjorden, and Barents Sea test sites and IceSAR 2007 flight trajectories
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Fig. 12 View of Sodankylae
test site

Fig. 13 Location of the Churchill test sites for the CASIX campaign
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scenarios. The references points are located on two lakes and
are also covering forest and tundra area. Over this reference
points, the main parameter that were collected are snow
depth, snow density, grain size, snow water equivalent, soil
temperature, and air temperature.

Urban Applications

Toulouse

Toulouse is a city in southwestern France. The Toulouse
metropolitan area is the fifth largest in France and contains
low residential districts and some industrial places. It is one
of the bases of the European aerospace industry.

As cadastral registers from French cities such as Toulouse
are easily obtainable, precise ground truth can be deducted
(see Fig. 14 for an example). It yields that a classification map
from the ground can be used to estimate classification perfor-
mance (soil, vegetation, etc.). Moreover, 3-D representation
of these cities is also available and may be used in the third
produce (3-D Rendering). A specific ground truth over
Toulouse is available. It consists in a 3-D representation of
the city. It allows us to have not only the footprints of each
building but also their individual heights.

San Francisco

San Francisco is the financial, cultural, and transportation
center of the San Francisco Bay Area, a region of 7.15 million

people. The San Francisco Bay is well known to polarimetry
field, as one of the first fully polarimetric images have been
acquired by NASA/JPL AIRSAR L-band instrument
California, USA, from 1988. This previous airborne data set
contains four-looked coherency matrices, with a pixel resolu-
tion of about 10 m � 10 m. This data set has been from this
date extensively used for performance evaluation and
presented in the literature of polarimetric SAR. Now quad
polarimetric data are available with satellite TerraSAR-X and
with better resolution (3 m).

A description of building footprints and their elevation can
be found in a shapefile format on the website https://data.
sfgov.org. The file is organized as a structure containing a list
of polygonal element. These polygons define the footprint of
each building on the ground, and for each element, the
minimum and maximum elevation data are given. These
data were created using a conversion tool for 3-D shapefile
using the ArcGIS 3-D conversion tool “Multipatch Foot-
print”. Original 3-D data were derived from Pictometry, Inc.

Murcia and Barcelona

Murcia is a major city in southeastern Spain. It has been
selected as a test site due to its high deformation rate and
the set of extensometers deployed along the city that provide
validation data. Subsidence has occurred in the metropolitan
area of Murcia City (SE Spain) as a result of soil consolida-
tion due to piezometric level depletion caused by excessive
pumping of groundwater. In fact a piezometric level decline
between 5 and 15 m was measured on this layer during recent

Fig. 14 Representation of ground truth available on two Toulouse districts
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drought periods: 1980–1983, 1993–1995, and 2005–2008.
After the second drought period, ground subsidence was
triggered causing damages in buildings and other structures
with an estimated cost of 50 million Euros, generating a
significant social impact. Geology data are available with
the distribution of the compressible thickness and the maxi-
mum groundwater depletion in the period 2004–2008.

Another significant test site in Spain that has been used for
observing deformations is the city of Barcelona. Nowadays
Barcelona is being affected by new underground
infrastructures construction. In particular, a new metro line
that will connect the city with the airport is generating subsi-
dence at different areas. Several hazards have been related to
these activities, such as the collapse of a block in El Carmel
neighborhood in 2005 or damages on a building in the South
of the city.

Ocean Applications

Gulf of Mexico

The Gulf of Mexico is one of the largest basins in the world,
located south of the USA and north of Mexico. It serves an
important role in the worldwide economy due to its oil fields
that are at the core of the petrochemical industry of the USA.
These oil rigs pose an important environmental risk in the
case of disasters and accidents, such as the recent massive
Deepwater Horizon oil spill, which is considered the largest
offshore spill in US history. In addition to such disasters/
accidents, the Gulf of Mexico is prone to hurricanes. During
such events, man-made metallic infrastructures, such as oil
rigs, can be wrecked or destroyed, accompanied by release of
oil at sea.

Fig. 15 Location and area coverage of the Gulf of Mexico test site where both RADARSAT-2 and UAVSAR full-polarimetric SAR data have been
collected. Test sites concern both oil rigs/ships and oil slicks/oil seeps
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Moreover, Gulf of Mexico is also very rich in oil
seepages. Recent studies have suggested that seepage rates
in the Gulf of Mexico are much higher than reported in
previous NRC studies. By using submarines and remote
sensing at least 63 new individual seeps have been identified;
see for instance the one shown in Fig. 15.

There are thousands of oil and gas rigs a few miles away
from the Gulf of Mexico coast running from Texas to
Louisiana and the state of Mississippi. A recent estimate
indicates that there are approximately, in June 2010, 3445
oil and gas structures in the Gulf of Mexico, producing, in
October 2010, 29% of the oil and 13% of the natural gas
produced in the USA. A map of oil and gas rigs is provided
by Minerals Management Service (MMS), http://www.gomr.
mms.gov/homepg/pubinfo/repcat/arcinfo/index.html.

The Gulf of Mexico has been recently involved in the
Deepwater Horizon accident. On 20 April 2010, a fire
broke out on the Transocean Deepwater Horizon oil rig
under lease to BP (British Petroleum), with 126 people on
board. On 22 April 2010, the rig sank. Safeguards set in place
to automatically cap the oil well in case of catastrophe did not
work as expected. A first estimate of about five million
barrels already makes this accident the world’s largest acci-
dental oil spill. It is surpassed only by the intentional 1991
Gulf War spill in Kuwait. Many airborne and satellite
missions imaged the polluted area by using different
instruments, e.g., http://www.noaa.gov/deepwaterhorizon.
Moreover, during the period of the oil spill, there were
numerous daily overflights by multiple aerial platforms to
provide information on extent and oil properties for first
responders, e.g., http://www.epa.gov/bpspill/epa.html.
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