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Zusammenfassung

Das Ziel der Arbeit ist die Entwicklung einer Methode zur Untersuchung inverser Prob-
leme in aufeinandertreffenden Stäben. Dabei soll die Impedanz des auftreffenden Stabs
ermittelt werden, sodass eine vorgegebene Stoßkraft erzeugt wird (Impedanzproblem).
Die Methode ist für viele experimentelle und praktische Anwendungen relevant.
Beim Schlagbohrverfahren stellt sich beispielsweise die Frage, wie die Impedanz des
auftreffenden Stabs gewählt werden kann, sodass die einlaufende Kraftwelle bezüglich
der Effizienz optimiert wird.

Das Impedanzproblem wird nur von wenigen Forschern behandelt. Der vielverspre-
chendste Ansatz löst das inverse Problem mithilfe einer Integralgleichung. Dabei
werden mehrere Näherungsmethoden angewandt, um die Impedanz des auftreffenden
Stabs zu ermitteln. Im Rahmen dieser Arbeit wird eine Methode entwickelt, die
auf der Idee differentieller Methoden basiert. Die Methode nutzt die Struktur des
Wellenausbreitungsproblems aus. Hierfür werden die Stäbe durch Elemente mit
stückweiser konstanter Impedanz diskretisiert. Zunächst wird die Impedanz des
ersten Elements ermittelt, welches direkt auf die gestoßene Stange auftrifft. Alle
weiteren Elemente beeinflussen die Stoßkraft zeitverzögert. Je weiter die Elemente
von der Stoßfläche entfernt sind, desto später ist ihr Einfluss sichtbar. Zum Zeitpunkt
des erstmaligen Einflusses des jeweiligen Elements wird die zugehörige Impedanz
so gewählt, dass die vorgegebene Stoßkraft erreicht wird. Dadurch werden die
diskretisierten Impedanzen des auftreffenden Stabs rekursiv bestimmt.

Für stückweise konstante Impedanzfunktionen liefert die entwickelte Methode exakte
Lösungen in geschlossener Form. Des Weiteren wird eine Bedingung hergeleitet, die
angibt, ob eine Lösung zu dem inversen Problem existiert. Es wird gezeigt, dass jedes
zusätzliche Element, dessen Impedanz sich von der Impedanz des vorigen Elements
unterscheidet, die Wahrscheinlichkeit der Existenz einer Lösung verringert.
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Zusammenfassung

Das zugrundeliegende 1D-Modell wird experimentell validiert, indem die Simulations-
ergebnisse mit Messungen verglichen werden. Es wird insbesondere gezeigt, dass das
Modell auch für komplexe Geometrievariationen der Stäbe gültig ist.
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Abstract

Impacting rods are used in many practical and experimental applications. The analysis
problemof finding the time-dependent impact force for given properties of the impacting
rods and known initial velocities is thoroughly studied in literature. However, very little
literature has been published which addresses its inverse synthesis problem: Find the
location-dependent impedance function of the impacting rod that generates a prescribed
impact force.

In this contribution, a method that solves the synthesis problem is developed. The
impedances of the linear elastic rods are discretized by elements of piecewise constant
impedance. This enables making use of the analytical solution which exists for these
elements. The method utilizes that each element of the unknown impactor influences
the prescribed force at different time instants for the first time. At this specific time, the
impedance of the corresponding element is adjusted so that the actual force matches
the prescribed force. This procedure is repeated recursively until the impedances of
all impactor elements are determined. For piecewise constant impedance functions,
the developed method delivers exact solutions in closed-form. Moreover, a condition
is derived which states if a physically meaningful solution exists for the considered
element. Thus, it is known if and how long a solution of the inverse problem exists. The
working principle of the method is demonstrated with several examples, including the
application in percussion drilling.

Finally, the underlying 1D model is validated experimentally. To this end, a single-hit
test rig is set up. The comparison of simulation versus experimental results yields good
accordance both for standard and complex geometries of the impacting rods.
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1 Introduction

Wave propagation phenomena are present in anyone’s daily routine. Every time we
talk to someone, pressure waves are generated which propagate through the air to the
ears of the listener. The sound is created by inhaled air which is sent back out of the
mouth. On the way from the lung to the mouth, the airflow is shaped by the vocal cords
(excitation) and the cross sectional area variation of the vocal tract. Humans intuitively
choose the appropriate excitation and cross section area of the vocal tract while talking.
However, it is of interest to identify which vocal tract cross section area leads to the
corresponding sound. The direct problem of determining the pressure at the lips for
given excitation and cross section area of the vocal tract is very well understood. As
opposed to this, the inverse problem of finding the vocal tract’s cross section area for
given excitation and pressure measurement at the lips is much more demanding.

Typical questions that arise when dealing with inverse problems are:

1. Does a solution of the inverse problem exist?

2. Is the solution unique?

Another example of an inverse wave propagation problem is the determination of the
characteristic rod impedance function by applying a force impulse at one end of the
rod and measuring the impulse response. Similar questions are found in transmission
line analysis and geophysics. Mathematically, the presented scattering problems are
described by the same hyperbolic system of partial differential equations.

The inverse scattering problem of determining the rod’s impedance is of little practical
interest as the impedance is either known or determined by other means. However,
practical applications emerge if the system is extended by an impacting rod. For example,
when using percussion drilling to generate blast holes for mining, an actuated piston
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1 Introduction

transfers its kinetic energy to the rod during the impact. The induced force waves
propagate along the rod until they reach the ground. The efficiency of the drilling
process largely depends on the shape of the incident force waves at the ground. This
motivates the development of a method that allows to prescribe the force over time
at any axial rod position and to determine the corresponding impedance function of
the impacting rod. A new method is necessary since the classical approaches of the
scattering problem are not directly applicable to the impacting rod problem.

1.1 State of Research

In Fig. 1.1, an overview of the state of research is given. The classical 1D scattering
problem consists of applying an impulse �(0, C) at the boundary of the system and
measuring the impulse response $(0, C). As the input and output functions are known,
the properties of the system may be reconstructed. The wave supporting system is
described by two partial differential equations with coefficients �(G) and �(G) [46].
Physically, the coefficients refer to the distributed parameters of the system. Depending
on the interpretation of the coefficients, the model is applicable in many fields of
engineering. Some examples are the determination of the earth properties in geophysics
[8, 10, 63, 64], the determination of the vocal tract shape by acoustical measurements
at the lips [4, 65, 68 – 70] and the analysis of non-uniform transmission lines [12, 15, 51, 52].

There aredifferent names for thepartial differential equations in literature [11] depending
on the parametrization. The telegrapher’s equations result from the original equations
by carrying out a coordinate transformation and introducing the impedance. After
normalizing the telegrapher’s equations, the equations in the form of Schrödinger equations
arise by introducing two potentials. For expressing the variables �(G, C) and $(G, C)
in terms of left and right propagating waves, no established term exists in literature.
However, it is sometimes called two component wave system. Since the equations may be
transformed into the original system, they all rely on the samemathematical foundation.

As many engineering fields are involved in finding solutions to the inverse scattering
problem, the list of published literature is large. A comprehensive overview of many
scattering problems is presented in [30] and [11]. The idea of solving the scattering
problem using perturbation theory [54] has not been developed further since it has
several disadvantages. The most serious ones are that the method does not make use
of the structure of the problem and that the boundary conditions have to be known.
The most promising methods are either assigned to differential methods or integral
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1.1 State of Research

Figure 1.1: Overview of the state of research and the content of the thesis.
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1 Introduction

equations. Historically, the first complete solution of the scattering problem has been
documented by Gelfand and Levitan in terms of an integral equation. Subsequently,
many similar integral equations have been published, e.g. in references [3, 68, 74].
They mainly differ in the input/output pair that is used in the formulation. In general,
the computational costs of the integral equations is O(=̄3), with =̄ being the number
of discretized time intervals. However, by making use of the special structure of the
problem, the costs are reduced to O(=̄2) [5].

The differential methods directly exploit the knowledge of thewave propagation process.
As the material properties of the medium only vary in one direction, the medium is
interpreted as layers of constant material properties. The further the layers are away
from the force excitation the longer it takes to reach them. This also applies to the
measured signal which is influenced by the layers at different moments for the first time.
These observations are utilized in differential methods which determine the physical
properties of the medium layer for layer [14, 62, 69, 71]. For a continuous change of
the layers, the method is usually called layer peeling method [11]. The method with
discrete changes of the layers is known as the dynamic deconvolution method [60] or as the
downward continuation method [14].

The presented methods are also applicable to the longitudinal wave propagation in
elastic rods. The classic scattering problem of determining the impedance of the rod by
its impulse response is of little practical interest because the impedance is either known
or determined by other means. However, the methods for the scattering problem may
be extended to impacting rods where the impedance of one rod is determined so that a
desired impact force is generated (impactor synthesis problem). This problem is motivated
by theoretical work of Lundberg and Collet who have shown that the efficiency of the
percussion drilling process is increased if the incident wave is of exponential shape [49].
Lundberg and Lesser have extended the integral equations of Gopinath and Sondhi [68]
to solve the impactor synthesis problem in terms of an integral equation [47]. Dutta has
suggested to calculate the rod’s impedance by systematically solving the direct problem
and determining the solution which fits best to the desired impact force [24].

The impactor synthesis problem also occurs in dynamic material testing using a Split
Hopkinson Pressure Bar apparatus. The test rig was invented by Kolsky [40] and has
been applied to determine the material properties of a test specimen at high strain rates
[73]. The setup consists of three bars (striker, incident, transmitter) and a test specimen
which is located between the incident and the transmitter bar. After the striker hits the
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1.1 State of Research

incident bar, stress waves propagate along the incident bar toward the test specimen. At
the test specimen, the stress waves are partly reflected and transmitted. The incident,
reflected, and transmitted waves are recorded by strain gauges that are attached to the
incident and transmitter bar. For the evaluation of the detected waves, several methods
have been proposed, e.g. in references [29, 33, 55, 57].

It might be attempted to generate an incident wave that produces a constant strain
rate in the specimen. An evident difficulty is that this wave depends on the unknown
properties of the specimen. One possibility to fulfill this requirement is to optimize the
geometry of the striker [22, 26, 45, 75] accordingly. Another approach is to introduce
a shaping bar between striker and incident bar [28]. So far, the optimized striker
geometries are designed by experience and knowledge of the solution of the direct
problem. However, the determination of the geometry by solving the corresponding
inverse problem promises to deliver faster and more accurate results.

Apart from the two presented approaches, no other methods are known in literature
which solve the impactor synthesis problem. Specifically, no methods are knownwhich are
based on the idea of differential methods to recursively determine the rod’s impedance
layer by layer.

Thequality of the approaches strongly relies on thevalidity of the 1Dmodel. Pochhammer
[58] andChree [21] independently formulated the exact solutionof the three-dimensional
wave propagation problem in an infinitely long cylinder. The solution relates the phase
velocity of the longitudinalwaves to thewavelength of its propagatingmodes (dispersion
relation) [6]. The dispersive effect increases the greater the ratio between rod diameter
and wavelength is [27]. To correct these effects, several methods have been established,
e.g. in references [25, 53].

Since the dispersive effects are not represented by the 1D model, it has to be examined
under which circumstances the 1D model delivers accurate results. It has been proved
that the 1D results yield good accordance with their corresponding experimental results,
e.g. in reference [56]. However, only standard geometries (constant, conical, etc.) have
been studied. It has not been systematically examined yet if a complex variation of the
rod geometry, including jumps in cross section area, delivers good accordance with the
experimental results.
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1 Introduction

1.2 Thesis Purpose and Structure

The literature research reveals that there are very few methods which cover the impactor
synthesis problem. One approach is to systematically optimize the rod’s impedance by
solving the direct problem. This approach has several drawbacks: On the one hand,
the method does not guarantee that the solution converges to the exact solution and
on the other hand, the computational costs are very high. A more promising approach
has been developed by Lundberg and Lesser [47] based on the integral equations of
Gopinath and Sondhi [68]. This method provides a solution in two steps: Initially, a
deconvolution is carried out to determine the impulse response of the unknown rod.
Subsequently, the impulse response is substituted into an integral equation which is
finally evaluated for the determination of the unknown rod impedance. However,
several approximation methods are applied to obtain the rod’s impedance. Firstly,
the impulse response of the given rod, which is part of the convolution equation, is
not always known analytically and has to be approximated. Secondly, approximation
methods are applied to deconvolve the convolution equation. And thirdly, the integral
equation is solved approximately.

As compared to the evaluation of integral equations, a differential-based method, that
exploits the structure of the problem, merely has to approximate the unknown rod’s
impedance by piecewise constant layers. However, the existing methods to solve the
scattering problem are not expandable to the impactor synthesis problem straightforwardly.

The main purpose of the thesis is to develop a method that solves the impactor synthesis
problem based on the ideas of the differential methods of the scattering problem. A
further aim is to validate the underlying 1D model experimentally for an impact with
complex rod geometries.

In the thesis, the setups presented in Fig. 1.2 are investigated. In Setup 1, a rod with
constant cross section area is impacting a rodwith exponentially increasing cross section
area whose right end is fixed. Setup 2 is a textbook example where a rod consisting
of two cross section area sections is hitting a rod with a constant cross section area.
Setup 3 is more complex, including variations in geometry and the consideration of
external friction forces. Setup 4/5 only differ in the prescribed impact force #I that shall
be generated by the impacting rod whose impedances are determined accordingly. In
Setup 6, a rod with two steps in cross section area is hitting a rod with a constant cross
section area. Setup 7 is similar to Setup 6 but with more complex cross section area
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1.2 Thesis Purpose and Structure

Figure 1.2: Investigated setups.
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1 Introduction

Figure 1.3: Overview of the content of the chapters.

variations of the impacting rod. The setups are investigated by different means. They
are either investigated by applying the modal expansion method, the wave propagation
method, the recursive method or experimentally (see Fig. 1.3). The main purpose of
the thesis is to develop the recursive method which solves the impactor synthesis problem.
The recursive method is based on the wave propagation method. The modal expansion
method verifies thewave propagationmethodwhereas the experimental results validate
the underlying 1D model. This motivates the structure of the following chapters:

Chapter 2: In this chapter, the fundamentals that are used in the following chapters are
presented.

Chapter 3: The wave propagation method for the calculation of 1D wave propagation
problems in non-uniform rods is introduced. The range of applications is demonstrated
by applying the method to Setup 1 and Setup 2. The method is verified by a comparison
of results obtained with the modal expansion method versus results obtained with the
wave propagation method applied to Setup 3.

8



1.2 Thesis Purpose and Structure

Chapter 4: The fourth chapter covers the new recursive method. The presentation of the
main idea is followed by its mathematical description. A condition is derived to assess
the existence of a solution of the inverse problem for every step. Afterward, the working
principle of the recursive method is presented by employing Setup 4/5. Setup 4 only
differs from Setup 5 in the prescribed impact force # I. Depending on the impact force,
a solution of the inverse problem exists (Setup 4) or not (Setup 5). Finally, the method is
applied in percussion drilling.

Chapter 5: The experimental setup is presented. Several experiments are conducted
using Setup 6 to determine the influence factors on the measurements and to examine
the repeatability of the results. Subsequently, the simulation and experimental results
obtained with Setup 6 and Setup 7 are analyzed and compared. Thus, the underlying
1D model is validated.

Chapter 6: In the last chapter, the thesis is concluded.

9





2 Fundamentals

In this chapter, the fundamentals, which are applied in the subsequent chapters,
are presented. Initially, the governing partial differential equation (PDE) for the 1D
longitudinal wave propagation in rods is derived. It is shown that the PDE can be solved
analytically for a special class of cross sectional area variations by applying the modal
expansion method. However, the respective results are not expressable in closed-form
but with an infinite series of eigenfunctions and eigenfrequencies. The modal expansion
method reveals two drawbacks: Firstly, the analytical solution applies only to very few
cross sectional area variations. And secondly, many series terms have to be considered
to approach the exact solution. The solutions obtained by the modal expansion method
are used to verify the results of the wave propagation method whose main idea is to
subdivide the impacting rods into a large number of elements of piecewise constant
impedance. For these elements, the wave equation can be solved easily. Its D’Alembert
solution is discussed in detail. Especially, the transition and boundary conditions are
considered as they are essential to solve the inverse problem.

2.1 Derivation of the Governing PDE

In Fig. 2.1a, a schematic sketch of a rod is depicted. The mass density �, the Young’s
modulus � and the cross section area � only vary in G-direction. The axial displacement
of the particles at position G is described by D(G, C). It is assumed that the centroid of
the cross section area lies on a straight line perpendicular to the cross section area [36].
Applying Newton’s second law on the free body diagram of a rod segment (see Fig. 2.1b)
leads to

%#(G, C)
%G

= �(G)�(G)%
2D(G, C)
%C2

, (2.1)
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2 Fundamentals

Figure 2.1: (a) Schematic sketch of a rod and (b) the free body diagram of a rod segment for the derivation of
the governing PDE.

where #(G, C) is the normal force, positive in tension [35]. The particle velocity

E(G, C) = %D(G, C)
%C

(2.2)

is obtained by differentiating the displacement with respect to time whereas the axial
strain

�(G, C) = %D(G, C)
%G

(2.3)

is obtained by differentiating the displacement with respect to space [50]. Inserting the
force relation

#(G, C) = �(G)�(G, C) (2.4)

together with the relation between axial stress �(G, C) and strain �(G, C) (Hooke’s law)

�(G, C) = �(G)�(G, C) = �(G)%D(G, C)
%G

(2.5)

into Eq. (2.1) yields the governing PDE

%

%G

[
�(G)�(G)%D(G, C)

%G

]
= �(G)�(G)%

2D(G, C)
%C2

(2.6)
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2.1 Derivation of the Governing PDE

for the longitudinal wave propagation in rods. The model is equivalently describable
by a hyperbolic system of linear partial differential equations

%#(G, C)
%C

= �(G)�(G)%E(G, C)
%G

, (2.7)

%E(G, C)
%C

=
1

�(G)�(G)
%#(G, C)

%G
.

At this point, it is advantageous to introduce the impedance [32]

/(G) = �(G)�(G)2(G) (2.8)

with

2(G) =

√
�(G)
�(G) (2.9)

being thewavepropagation speed. The impedanceof a rod is definedas the ratio between
the force amplitude and its related velocity amplitude [36]. Thus, the impedance may
be interpreted as the resistance of the elastic structure to the acting forces.

Introducing the coordinate

�(G) =
∫ G

0

1
2(G′) dG′ (2.10)

together with the notation E(G(�), C) = Ē(�, C) etc. enables to transform the system (2.7)
into [46]

%#̄(�, C)
%C

= /̄(�)%Ē(�, C)
%�

, (2.11)

%Ē(�, C)
%C

=
1

/̄(�)
%#̄(�, C)

%�
.

Therefore, the equations are describable solely in dependance of the characteristic
impedance.

13



2 Fundamentals

2.2 Analytical Solution of the Governing PDE

In general, it is not possible to solve the governing PDE analytically. For a special class of
cross sectional area variations and for homogeneous materials analytical solutions exist
[1, 7, 43, 44, 59]. Guo and Yang [34] have shown that the cross sectional area variation
has to be either square, exponential, square of hyperbolic cosine or square of cosine.
The corresponding approach is named as the modal expansion method. Its main ideas
are presented below.

For homogeneous materials, the governing PDE (Eq. (2.6)) is rewritten

%2D(G, C)
%G2 + ℎ(G)%D(G, C)

%G
− 1
22

0

%2D(G, C)
%C2

= 0, ℎ(G) = d�(G)/dG
�(G) , 22

0 =
�

�
. (2.12)

Inserting the exponential approach

D(G, C) = 0(G) e8(:G−$C) (2.13)

with wave amplitude 0(G), wave number : and angular frequency $ in Eq. (2.12) leads
to two equations

Im: 2d0(G)
dG + ℎ(G)0(G) = 0, (2.14)

Re: d20(G)
dG2 − :

20(G) + ℎ(G)d0(G)dG +
$2

22
0
0(G) = 0 (2.15)

for the imaginary (Im) and real (Re) part, respectively. From the first equation, 0(G) is
determined

0(G) = 00

√
�0
�(G) , (2.16)

where 00 and �0 are the wave amplitude and cross section area at G = 0. By eliminating
0(G) in Eq. (2.15), the equation

:2 =
$2

22
0
−

(
1
4 ℎ(G)

2 + 1
2

dℎ(G)
dG

)
︸                   ︷︷                   ︸

1

(2.17)
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2.2 Analytical Solution of the Governing PDE

for : is obtained. Analytical solutions are found if the wave number is independent of G
which means that 1 has to be constant. This applies only to very few cross section areas,
including the ones mentioned above. For those cross section areas the phase velocity

Figure 2.2: Phase speed for � = 1 of the cross section areas that meet the requirement for an analytical solution
(constant :).

2p =
$
:
=

20√
1 − 22

0
$2 1

(2.18)

depends generally on the angular frequency $ which can be seen in Fig. 2.2. Except
from the curve related to quadratic cross sectional area variation, all the other curves are
dispersive. Moreover, the exponential and square of hyperbolic cosine cross sectional
area variations exhibit a cutoff frequency $c that is calculated with

$c = 20
√
1. (2.19)

Therefore, these cross section areas are mechanical high pass filters. In Tab. 2.1, the most
important values related to the analytical solutions are summarized. These values are
the cross section area variation �(G), the constant 1, the cutoff frequency $c, the phase
velocity 2p and the wave amplitude 0(G).
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�(G) 1 $c : 2p 0(G)
�0(1 + �G)2 0 0 $

20
20

00
1+�G

�0 e�G �2

4 20
�
2

√
$2

22
0
− �2

4
20√

1−
(
20�
2$

)2
00 e−

�
2 G

�0 cosh2(�G) �2 20�
√

$2

22
0
− �2 20√

1−
(
20�
$

)2
00

cosh(�G)

�0 cos2(�G) −�2 0
√

$2

22
0
+ �2 20√

1+
(
20�
$

)2
00

cos(�G)

Table 2.1: Properties of the analytical solutions, based on [34].

2.3 Wave Equation

The governing PDE (Eq. (2.6)) simplifies for homogeneous materials and constant cross
section areas to the well known wave equation [23, 41]

%2D(G, C)
%C2

= 22 %
2D(G, C)
%G2 , 22 =

�

�
. (2.20)

The wave equation also applies to all physical values that are proportional to a partial
derivative of D, especially, the velocity

E(G, C) = %D(G, C)
%C

, (2.21)

the strain

�(G, C) = %D(G, C)
%G

, (2.22)

and the normal force

#(G, C) = ��%D(G, C)
%G

(2.23)

as can be proven bypartially differentiating thewave equationwith respect to C and G [72].
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2.3 Wave Equation

2.3.1 D’Alembert Solution

Initially, the wave propagation along an infinitely long rod without any transition or
boundary conditions is considered. The two arbitrary functions 5 (G − 2C) and 6(G + 2C)
with argument G − 2C and G + 2C solve the wave equation [2]. Due to the linearity of the
PDE, the sum of the functions also solves the wave equation and the general solution of
the displacement is given by

D(G, C) = 5 (G − 2C) + 6(G + 2C). (2.24)

The functions 5 and 6 describe waves traveling at wave propagation speed 2 in positive
and negative G−direction, respectively.

For a unique solution of the functions 5 and 6, the initial conditions have to be evaluated.
Let

D0(G) = D(G, 0), E0(G) =
%D(G, C)

%C

����
C=0

(2.25)

be the initial displacement and velocity for −∞ ≤ G ≤ ∞ at C = 0. Then, the initial value
problem is solved with [72]

D(G, C) = 1
2

[
D0(G − 2C) + D0(G + 2C) +

1
2

∫ G+2C

G−2C
E0(Ḡ)dḠ

]
. (2.26)

The initial displacement D0(G) splits up in two parts of half magnitude each of which
are traveling in positive and negative G−direction. Moreover, due to the finite wave
propagation speed, the initial velocity at G = Ḡ only influences the displacements in the
interval G ∈ [Ḡ − 2C, Ḡ + 2C].

2.3.2 Transition and Boundary Conditions

For practical applications, transition and boundary conditions have to be considered.
An overview of themost common transition and boundary conditions is given in Fig. 2.3.

Transition Conditions

The aim is to find a coherence between the known incident force wave #i(Gtr , C) and
its reflected #r(Gtr , C) and transmitted parts #t(Gtr , C). Therefore, an incident wave
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2 Fundamentals

Figure 2.3: Two homogeneous elements with a fixed end at G = G1, a free end at G = G2 and the transition at
G = Gtr .

5i(G − 21C), which travels in the first element toward the transition, is considered. At the
transition, the incident wave is partly reflected and transmitted. This leads to traveling
waves 6r(G + 21C) and 5t(G − 22C) in the first respectively second element. In general, the
displacements of the two elements are described by

D:(G, C) = 5:(G − 2: C) + 6:(G + 2: C), : = 1, 2, (2.27)

which simplifies for the given consideration to

D1(G, C) = 5i(G − 21C) + 6r(G + 21C), (2.28)

D2(G, C) = 5t(G − 22C). (2.29)

Moreover, two transition conditions have to be stated which are continuity of displace-
ment

D1 (Gtr , C) = D2 (Gtr , C) (2.30)

and force equilibrium

#i(Gtr , C) + #r(Gtr , C) = #t(Gtr , C). (2.31)

The displacement D1(Gtr , C) is composed of an incident part Di(Gtr , C) and a reflected one
Dr(Gtr , C), whereas D2(Gtr , C) only consists of the transmitted part Dt(Gtr , C). In terms of
traveling waves, Eq. (2.30) is written as

5i (Gtr − 21C)︸        ︷︷        ︸
Di(Gtr ,C)

+ 6r (Gtr + 21C)︸         ︷︷         ︸
Dr(Gtr ,C)

= 5t (Gtr − 22C)︸        ︷︷        ︸
Dt(Gtr ,C)

. (2.32)
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2.3 Wave Equation

As the displacement at G = Gtr is continuous, this is also true for the velocity

%D1(G, C)
%C

����
G=Gtr

=
%D2(G, C)

%C

����
G=Gtr

, (2.33)

−21 5
′
i (Gtr − 21C) + 216

′
r(Gtr + 21C) = −22 5

′
t (G − 22C), (2.34)

−21 �1�1 5
′
i (Gtr − 21C)︸               ︷︷               ︸
#i(Gtr ,C)

+21 �1�16
′
r(Gtr + 21C)︸               ︷︷               ︸
#r(Gtr ,C)

= −22
�1�1
�2�2

�2�2 5
′
t (Gtr − 22C)︸               ︷︷               ︸
#t(Gtr ,C)

(2.35)

from which

−#i(Gtr , C) + #r(Gtr , C) = −
/1
/2
#t(Gtr , C) (2.36)

follows. Equation (2.36), together with Eq. (2.31) results in the final expressions

#t(Gtr , C) =
2/2

/2 + /1
#i(Gtr , C) = )1,2#i(Gtr , C), (2.37)

#r(Gtr , C) =
/2 − /1
/2 + /1

#i(Gtr , C) = '1,2#i(Gtr , C) (2.38)

for the transmitted and reflected force waves depending on the incident force. The
transmission and reflection factors from element 8 to element 9 are defined by

)8 , 9 =
2/ 9

/ 9 + /8
, (2.39)

'8 , 9 =
/ 9 − /8
/ 9 + /8

. (2.40)

Boundary Conditions

Alongwith the transition conditions, the boundary conditions arenecessary todetermine
the solution for D(G, C). In Fig. 2.3, the boundary conditions are a fixed end at G = G1

and a free end at G = G2.

At the fixed end, the displacement is identical zero, i. e.

D(G1 , C) ≡ 0, (2.41)
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whereas at the free end, the force is identical zero, i. e.

#(G2 , C) ≡ 0. (2.42)

The corresponding reflected forces at the fixed respectively free end are obtained by
taking the limit /2 →∞ (fixed end) or setting /2 = 0 (free end) in Eq. (2.38)

#r(G1 , C) = #i(G1 , C), (2.43)

#r(G2 , C) = −#i(G2 , C). (2.44)
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3 Impacting Rods: Direct Problem

The aim of this chapter is to verify the wave propagation method. Initially, the
wave propagation method is presented. Its main equations for one time step are
derived. Possible applications of the wave propagation method are demonstrated by
two examples. Afterward, the wave propagation method is summarized. Subsequently,
the modal expansion method is applied to a hit of two rods of constant and exponential
increasing cross section area. After determining the eigenfunctions of the problem, the
initial conditions are incorporated by using an orthogonality relation. At the end of the
chapter, the results that are determined with both methods, are compared. It is shown
that the wave propagation method provides more accurate results if a finite number of
terms is used.

3.1 Wave Propagation Method

The direct solution of the impacting rod problem has been discussed extensively in
literature, e.g. in references [31, 38]. One approach is tomodel the rodswith concentrated
masses and stiffnesses. This also applies to the well known finite element method (FEM).
The FEM delivers accurate results in a wide range of applications. However, the method
reveals disadvantages when wave problems are considered: On the one hand, the
accelerations are assumed to be finite so that they are numerically integrable. This is the
reason why strong discontinuities in force and velocity, which often occur in impacting
problems, are not displayed correctly. On the other hand, the FEM does not take into
account that the wavefront is traveling through the elements with finite speed. Thus,
displacements are calculated at axial positions which are not reached by the wavefront
yet. These disadvantages vanish when the system is modeled by distributed masses and
stiffnesses which are described by the wave equation. This approach has been studied
by Shorr in several publications, e.g. in references [66, 67]. The following derivation of
the wave propagation method is partly based on his publications.
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3 Impacting Rods: Direct Problem

The main idea in modeling is to approximate the impedances of the rods by piecewise
constant step functions. In Fig. 3.1, the elements of the rods are depicted for the
special case of constant material parameters � and �. Therefore, the impedances only
change due to the changing cross section area. This discretization is advantageous since
analytical solutions exist on elements with constant impedance. Moreover, the wave
propagation speed 2 9 is constant on each element 9. The element lengths ℓ 9 are adjusted
so that the waves travel through every element during a constant time step ΔC

ℓ 9 =

√
� 9

� 9
ΔC = 2 9ΔC. (3.1)

Thus, all the traveling waves reach the boundaries of the corresponding elements at the
same time.

If external forces or loads are applied, the following assumptions pertain:

• Line loads are modeled as concentrated external forces.

• External forces only act on the nodes between the elements.

• External forces may change in time but are constant during one time step.

Figure 3.1: Impact of two non-uniform rods and their modeling.
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3.1 Wave Propagation Method

As long as the impact force is compressive, the rods are calculated as if they were stuck
together. When the force tends to become tensile, the rods separate. Therefore, the rods
are treated as two individual rods with free ends at their former hitting surfaces.

3.1.1 Equations for One Time Step

During one time step, the waves are traveling from one element border to the next
element border. At the end of each time step at C = C0, all elements are in equilibrium
(see Fig. 3.2) which means that both the normal force # and the particle velocity E is
constant within the elements. The objective of this section is to derive the equations
which are required to determine the new equilibrium state one time step later at
C = C0 + ΔC. To this end, the transition forces and velocities are determined first. This
enables the calculation of the incident force and velocity waves starting from the element
borders. The new forces and velocities are finally obtained by a superposition of the
incident waves and their old values.

Figure 3.2: Two elements in equilibrium state at the end of each time step.

In general, the forces and velocities of two adjacent elements are not equal at C = C0,
that is #9−1 ≠ #9 and E 9−1 ≠ E 9 . These inequalities cause waves to propagate into the
elements starting from the transition (see Fig. 3.3a). The superscripts indicate that #
or E is either acting on the right end (superscript +) or left end (superscript −) of the
corresponding element.
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3 Impacting Rods: Direct Problem

Figure 3.3: Free body diagrams at the transition.

At the element transitions, force equilibriumand continuity is claimed. As a consequence
of continuity, the velocities of the related element particles have to be equal as well.
Mathematically, the claims are expressed by

#+9−1 − #−9 = �∗9 , (3.2)

E+9−1 = E
−
9 (3.3)
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3.1 Wave Propagation Method

with the external force �∗ and the transition forces #+
9−1 , #

−
9
and velocities E+

9−1 , E
−
9

acting on the element borders. During the travel time C̄ ∈ [C0 , C0 + ΔC], the waves
have propagated the distances 2 9−1 C̄ and 2 9 C̄, respectively. In Fig. 3.3b, the free body
diagrams of the parts that are covered by the incident waves are depicted. Applying the
momentum conservation law on the free body diagram of element 9(

#9 − #−9
)
C̄ = � 9� 92 9 C̄

(
E−9 − E 9

)
,

#−9 = #9 − / 9
(
E−9 − E 9

) (3.4)

leads to an equation for the transition force acting on the left end of element 9.
Analogously, the transition force acting on the right end of element 9 − 1 is derived

#+9−1 = #9−1 + / 9−1

(
E+9−1 − E 9−1

)
. (3.5)

By evaluating the transition conditions (Eqs. (3.2), (3.3 )) together with the above derived
equations (Eqs. (3.4), (3.5)), the unknown transition forces #+

9
, #−

9
and velocities E+

9
, E−

9

#+9 =

( (
E 9+1 − E 9

)
/ 9+1 + #9+1 + �∗9+1

)
/ 9 + #9/ 9+1

/ 9+1 + / 9
, (3.6)

E+9 =
/ 9E 9 + / 9+1E 9+1 − #9 + #9+1 + �∗9+1

/ 9+1 + / 9
, (3.7)

#−9 =

( (
E 9 − E 9−1

)
/ 9−1 + #9−1 − �∗9

)
/ 9 + #9/ 9−1

/ 9−1 + / 9
, (3.8)

E−9 =
/ 9E 9 + / 9−1E 9−1 + #9 − #9−1 + �∗9

/ 9−1 + / 9
(3.9)

are determined after the subscripts have been manipulated. The force difference Δ#
between the transition forces #+

9
, #−

9
and the old force #9 leads to traveling force waves

Δ#9 ,L = #
+
9 − #9 , (3.10)

Δ#9 ,R = #
−
9 − #9 (3.11)

as can be seen in Fig. 3.4. The subscripts denote if the waves are traveling to the left

25



3 Impacting Rods: Direct Problem

Figure 3.4: Incident waves in element 9 and in its adjacent elements.

(subscript L) or right (subscript R). Analogously, the difference in velocity ΔE leads to
traveling velocity waves

ΔE 9 ,L = E
+
9 − E 9 , (3.12)

ΔE 9 ,R = E
−
9 − E 9 . (3.13)

The new force #9 ,new and velocity E 9 ,new are finally obtained by a superposition of the
incident waves and the old values

#9 ,new = #9 + Δ#9 ,L + Δ#9 ,R , (3.14)

E 9 ,new = E 9 + ΔE 9 ,L + ΔE 9 ,R. (3.15)

3.1.2 Boundary Conditions

The most common boundary conditions (given boundary force, given velocity/displace-
ment, energy sink) are presented.

For given boundary forces #−= , #
+
=̃
, the subsequent equations for the velocities are

derived by manipulating Eqs. (3.4) and (3.5)

E−= =
#= − #−=
/=

+ E= , (3.16)

E+
=̃
=
#+
=̃
− #=̃

/=̃
+ E=̃ . (3.17)
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3.1 Wave Propagation Method

For given velocities E−= , E
+
=̃
, the resulting forces are determined by rearranging Eqs.

(3.16) and (3.17)

#−= = #= + /= (E= − E−= ) , (3.18)

#+
=̃
= #=̃ + /=̃

(
E+
=̃
− E=̃

)
. (3.19)

For a given energy sink, i.e. that no reflecting waves occur at the boundaries, the
equations are

#−= = #= , #+
=̃
= #=̃ . (3.20)

The corresponding velocities are obtained by substituting the determined forces into
Eqs. (3.16) and (3.17).

3.1.3 Examples

The range of applications of the wave propagation method is demonstrated by applying
the method to two examples. The first example is a textbook example with one jump in
impedance. The second example is more complex, including variations in geometry and
material parameters. Moreover, friction is considered and its influence on the simulation
results is analyzed.

First Example

The example presented in Fig. 3.5 is investigated. Rod 1 with initial velocity Ein is hitting
Rod 2 which is initially at rest. The impedance function of Rod 2 is constant (/̃ = /0).
Rod 1 consists of two parts with impedance /0 and /1, respectively. The simulation
is run with the parameters listed in Tab. 3.1. The corresponding results of the first

Figure 3.5: Setup of the first example. All dimensions in m.
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3 Impacting Rods: Direct Problem

Parameters Number Unit

/0 Impedance 5.10 ·104 N s m−1

/1 Impedance 2.87 ·104 N s m−1

Ein Initial velocity of Rod 1 6.00 m s−1

Table 3.1: Parameters used for the first example.

example are presented in Fig. 3.6. The displacement (left) and the normal force (right)
are depicted at three time instants. The transition between Rod 1 and Rod 2 is indicated
by a vertical dashed line.

At the first time instant, compressive force waves are traveling in both rods. The part of
the wavefront in Rod 1, which has been transmitted at the impedance jump of Rod 1, is
traveling to the left. The reflected part is moving toward the transition between Rod 1
and Rod 2. The waves that have not been covered by the wavefronts yet are either
traveling with initial velocity in Rod 1 or are at rest in Rod 2.

At the second time instant, the part of the incident wave in Rod 1, that has been reflected
at the impedance jump, decreases the absolute value of the normal force in Rod 2 when
it reaches the transition zone. Shortly after, when the incident wave in Rod 1 has traveled
back and forth along Rod 1, the rods separate. Thus, both rods move independently
which leads to discontinuous displacements of the rods at G = 0. After the separation,
the normal forces periodically change in both rods.

At the third time instant, the incident waves in Rod 2 have been reflected at its free end.
Therefore, the compressive force waves traveling to the right have been converted to
tensile force waves traveling to the left. The tensile force waves are pulling the particles
in positive G−direction. The displacements in Rod 2 are lowest in the region that has not
been reached by the reflected tensile force waves yet. Before the compressive waves have
been reflected at the free end, the displacements in this region have been largest (see
second time instant). This procedure is permanently repeated and leads to continuously
increasing displacements in Rod 2. Physically, the results are comprehensible as Rod 2 is
moving in positive G−direction after the impact. The displacements and normal forces
in Rod 1 may be interpreted analogously.
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3.1 Wave Propagation Method

Figure 3.6: Results of the first example. The displacements (left) and the forces (right) are presented at
C = 0.064 ms (first row), C = 0.259 ms (second row) and C = 0.549 ms (third row).
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Complex Example

The setup depicted in Fig. 3.7 is investigated where Rod 1 with initial velocity Ein hits
Rod 2 with initial velocity Ẽin. Both rods are supported by two plain bearings (see
Fig. 3.7a). It is assumed that Rod 1 can move freely, whereas friction is considered at the
plain bearings of Rod 2. The first plain bearing of Rod 2 is located between G2 and G3,
the second is located between G4 and G5. With the mass

< =

=̃∑
9=1

�̃ 9 �̃ 9 ℓ̃ 9 , (3.21)

of Rod 2, the total friction force

�R = �<6̄ (3.22)

is calculated, where � is the friction coefficient and 6̄ is the gravitational constant. If
=̂ is the total number of nodes : in contact with the plain bearings of Rod 2, then it is
assumed that the total friction force is uniformly distributed

�∗: = −
�R
=̂

sgn
(
1
2 (Ẽ: + Ẽ:−1)

)
. (3.23)

The cross section area of Rod 1 is constant (� = �0) as can be seen in Fig. 3.7a. The cross
section area of Rod 2 linearly increases from �0 to �1 between G1 and G2. From G2 to
G3, the cross section area is constant (� = �1). Between G3 and G4, � is caluclated as a
function of G

�(G) = �1 − 0.3�0 sin
(
�
G − G3
G4 − G3

)
. (3.24)

Subsequently, there is a constant section (� = �1) between G4 and G5 followed by a
linearly decreasing part from �1 to �0 between G5 and G6. In addition to the geometry
variations, the material paramaters vary between G3 and G4 (see. Fig. 3.7b). This section
may be interpreted as a rod part of different material (� = 1.5�0, � = 1.2 �0) that is
screwed together with the other rod parts of Rod 2. For example in rotary drilling,
heavy weight drill rods are applied to reduce fatigue [16]. The geometry variations
together with thematerial parameter variations lead to the impedance function depicted
in Fig. 3.7c. Due to the changing material parameters in G ∈ [G3 , G4], the impedance
function increases in this region which leads to jumps at G = G3 and G = G4.
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3.1 Wave Propagation Method

Figure 3.7: Setup of the complex example.
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Parameters Number Unit

�0 Cross section area 1.26 ·10−3 m2

�1 Cross section area 1.96 ·10−3 m2

�0 Young’s modulus 210 GPa
�0 Density 7.84 ·103 kg/m3

Ein Initial velocity of Rod 1 3.00 m s−1

Ẽin Initial velocity of Rod 2 -3.00 m s−1

� Friction coefficient 0.3 −
6̄ Gravitational constant 9.81 Nkg=1

Table 3.2: Parameters used for the complex example.

The simulation is runwith the parameters listed in Tab. 3.2. In Fig. 3.8, the corresponding
results for the displacement (left) and the normal force (right) are depicted at three time
instants. The transition between Rod 1 and Rod 2 is indicated by a vertical dashed line.
At the first time instant, the waves have propagated both into Rod 1 and Rod 2. The
parts, that have not been covered by the wave front yet, travel with their initial velocities.
At the second time instant, the wave front in Rod 1 is traveling toward the transition
after it has been reflected at its free end. In Rod 2, two jumps in normal force may be
observed. The first jump at G ≈ 0.14 m results from the reflection of the incident wave
front at the impedance jump at G = G3. The transmitted part of the incident wave front
is traveling at G ≈ 0.79 m. Since the wave propagation speed is larger between G3 and G4

compared to the other parts, the transmitted part of the incident wave front has traveled
further than the reflected part. At the last time instant, Rod 1 has separated from Rod 2.
After the separation, free end boundary conditions are applied at the former hitting
surface at G = 0. Therefore, the normal force at G = 0 is zero for both rods. Moreover, the
rods can move independently in negative G−direction which explains the displacement
jump at G = 0. The particles of Rod 2 at axial position G > 1.38 m have not been reached
by the wave front which is why the absolute value of the displacement is maximum and
the normal forces are close to zero in this region.

The normal forces are not exactly zero in this region, since the friction forces of the second
bearing position have already influenced the normal forces. However, the influence of
the friction forces on the results is very little. The reason is that the impact force is much
larger compared to the friction forces. For the given example, the absolute value of the
initial impact force is approximately 2250 times the absolute value of the total friction
force. It can be concluded that if short travel times are considered, the friction forces are
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3.1 Wave Propagation Method

Figure 3.8: Results of the complex example. The displacements (left) and the forces (right) are presented at
C = 0.070 ms (first row), C = 0.146 ms (second row) and C = 0.255 ms (third row).
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3 Impacting Rods: Direct Problem

negligible. In the long run, however, the friction forces significantly decrease the total
energy �tot of the system as can be seen in Fig. 3.9. The total energy

�tot =
1
2

=∑
9=1

� 9� 9ℓ 9E
2
9 +

1
2

=∑
9=1

#2
9

� 9� 9
ℓ 9 +

1
2

=̃∑
9=1

�̃ 9 �̃ 9 ℓ̃ 9 Ẽ
2
9 +

1
2

=̃∑
9=1

#̃2
9

�̃ 9�̃ 9

ℓ̃ 9

= �kin,Rod 1 + �pot,Rod 1 + �kin,Rod 2 + �pot,Rod 2

(3.25)

consists of the kinetic and potential energy of both rods. For the evaluation, 100 iterations
have been considered which means that the wave has traveled 100 times forth and back
in Rod 2. Without friction, the system is conservative and the total energy remains
constant. With friction, the total energy linearly decreases from its maximum value at
the beginning to approximately 128 J at the end. Thus, in the long run, friction has to be
considered.

The examples show that the presented wave propagation method is applicable to the
longitudinal impact of rods with arbitrary material parameters and geometries. In
addition, external forces that enable to model e.g. friction may be considered. The
wave propagation method will be used as the basis for the recursive method, which is
presented in the next chapter.

Figure 3.9: Comparison between the total energy �tot with and without the consideration of friction in Rod 2.
One iteration means that the wave has traveled back and forth in Rod 2.
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3.2 Modal Expansion Method

3.1.4 Summary

In Fig. 3.10, the summary of the method is depicted. The chart is divided into three
parts (application, preprocessing, simulation).

Figure 3.10: Summary of the wave propagation method.

A possible application of the presented method is the impact of non-uniform rods
at initial velocities Ein and Ẽin, respectively. The rods are subdivided into piecewise
constant impedances in the preprocessing step. Moreover, the element lengths are
adjusted so that it takes one time step to travel through each element. Based on the
initial displacements and velocities, the initial forces #9 and velocities E 9 at C = 0 are
determined. Afterward, the simulation starts with setting the current external forces �∗

9
.

Furthermore, the transition forces #+
9
, #−

9
and velocities E+

9
, E−

9
are determined and the

current boundary conditions are set. The time step ends by calculating the new forces
#9 ,new and velocities E 9 ,new in equilibrium. This procedure is repeated until the desired
simulation time is achieved.

The computational effort of the method is O(=∗)with =∗ being the total number of rod
elements. This enables fast calculations using many elements.

3.2 Modal Expansion Method

As discussed in Sec. 2.2, analytical solutions exist for the longitudinal wave propagation
in rods with varying cross section area. However, the possible cross sectional area
variations are very limited. The aim of this section is to apply the modal expansion
method to the problem given in Fig. 3.11. Thus, a reference solution is generated to
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3 Impacting Rods: Direct Problem

Figure 3.11: Investigated setup.

verify the wave propagation method. The setup consists of two homogeneous rods.
Rod 1 is hitting Rod 2 with initial velocity Ein. The cross section area of Rod 2 increases
exponentially and the displacements of the rods are denoted by D1(G1 , C) and D2(G2 , C),
respectively.

Eigenfunctions

The eigenfunctions*=(G=) of the approach

D=(G= , C) = 0=(G) e8(:=G=−8$C)

= 0=(G) e8:=G= e−8$C = *=(G=) e−8$C , = = 1, 2
(3.26)

are indicated by substituting the related wave numbers and amplitudes of Tab. 2.1 into
*=(G=) . This leads to the eigenfunctions

*1(G1) = �1 cos
(
$
20
G1

)
+ �2 sin

(
$
20
G1

)
, (3.27)

*2(G2) = 4
−�G2

2

�3 cos ©­«
√(

$
20

)2

− �2

4 G2
ª®¬ + �4 sin ©­«

√(
$
20

)2

− �2

4 G2
ª®¬
 (3.28)

of Rod 1 andRod 2. The unknown coefficients �1 . . . �4 are determined by evaluating the
boundary and transition conditions. At the transition, displacement and force continuity
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3.2 Modal Expansion Method

are claimed. Moreover, the left end of Rod 1 is free whereas the right end of Rod 2 is
fixed. The resulting equations

d*1
dG1

����
G1=0

= 0, (3.29)

*1(ℓ1) = *2(0), (3.30)
d*1
dG1

����
G1=ℓ1

=
d*2
dG2

����
G2=0

, (3.31)

*2(ℓ2) = 0 (3.32)

are written as a system of linear equations

©­­­­­­­­«

0 
 0 0
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ℓ1) sin(
ℓ1) −1 0

−
 sin(
ℓ1) 
 cos(
ℓ1) �
2 −�

0 0 cos
(
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)
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(
�ℓ2

)
ª®®®®®®®®¬

©­­­­­­­­«
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�2

�3

�4

ª®®®®®®®®¬
=

©­­­­­­­­«

0

0

0

0

ª®®®®®®®®¬
(3.33)

with


 =
$
20
, � =

√

2 −

(
�
2

)2

. (3.34)

Evaluating the characteristic equation



(
2 cos(
ℓ1) cos

(
�ℓ2

)
� + cos(
ℓ1) sin

(
�ℓ2

)
� − 2
 sin(
ℓ1) sin

(
�ℓ2

) )
= 0 (3.35)

determines the infinite number of eigenfrequencies $: from which their corresponding
coefficients

�1,: = �3,:
1

cos
(
$:
20

) , (3.36)

�2,: = 0, (3.37)

�4,: = −�3,:
1

tan
((

$:
20

)2
− 1

16

) (3.38)
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3 Impacting Rods: Direct Problem

are obtained. Thus, the eigenfunctions are determined and the approach is rewritten{
D1(G1 , C)
D2(G2 , C)

}
=

∞∑
:=1

{
*1,:(G1)
*2,:(G2)

}
[�3,: �̃5,: sin($: C) + �3,: �̃6,: cos($: C)]

=

∞∑
:=1

{
*1,:(G1)
*2,:(G2)

}
[�5,: sin($: C) + �6,: cos($: C)].

(3.39)

The remaining coefficients �5,: , �6,: are obtained by evaluating the initial conditions.

Initial Conditions and Orthogonality Relation

For a PDE of the form

'(G)%
2D(G, C)
%C2

+K[D(G, C)] = 0, G ∈ [0, ℓ ] (3.40)

with linear differential operator K[·], Hagedorn and DasGupta [36] have derived the
orthogonality relation

ℓ∫
0

'(G)* 9(G)*:(G)dG = �:� 9: , (3.41)

where �: is a constant. Applying this to the given problem of two impacting rods with
varying cross section area and constant material parameters leads to

'8(G8) = ��8(G8), K8[·] = −
%

%G8

(
��8(G8)

%

%G8

)
, 8 = 1, 2 (3.42)

and the orthogonality relation is

ℓ1∫
0

�1(G1)*1, 9(G1)*1,:(G1)dG1

+
ℓ2∫

0

�2(G2)*2, 9(G2)*2,:(G2)dG2 =

{
�: , 9 = :

0, else.

(3.43)
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Finally, the initial conditions for the displacements{
D1(G1 , 0)
D2(G2 , 0)

}
=

∞∑
:=1

{
*1,:(G1)
*2,:(G2)

}
�6,: (3.44)

and for the velocities{
E1(G1 , 0)
E2(G2 , 0)

}
=

∞∑
:=1

{
*1,:(G1)
*2,:(G2)

}
�5,:$: (3.45)

are evaluated and the orthogonality relation is applied. Thus, the remaining coefficients

�5,: =
1

�:$:


ℓ1∫

0

E1(G1 , 0)�1(G1)*1,:(G1)dG1 +
ℓ2∫

0

E2(G2 , 0)�2(G2)*2,:(G2)dG2

 (3.46)

and

�6,: =
1
�:


ℓ1∫

0

D1(G1 , 0)�1(G1)*1,:(G1)dG1 +
ℓ2∫

0

D2(G2 , 0)�2(G2)*2,:(G2)dG2

 (3.47)

are obtained.

3.3 Comparison between Wave Propagation and

Modal Expansion Method

For piecewise constant impedance functions of the rods, the wave propagation method
yields exact solutions up to a certain time as a sum of a finite number of terms (closed-
form). As compared to this, themodal expansionmethod leads to approximate solutions
for all time if a finite number of terms is used. Both methods are exact for all time if one
makes use of an infinite number of terms. Therefore, if it is only of interest to determine
the solution up to a certain time, the wave propagation method is more accurate. These
statements are demonstrated by applying both methods to the example depicted in
Fig. 3.11 and comparing their results. Rod 1 is hitting Rod 2 at the initial velocity Ein.
Moreover, the initial displacements D1(G1 , 0) and D2(G2 , 0) are zero. The other parameter
values are listed in Tab. 3.3.
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Parameters Number Unit

� Young’s modulus 210 GPa
� Density 7.84 · 103 kg/m3

Ein Initial velocity of Rod 1 6.00 m s−1

ℓ1 Length of Rod 1 1.00 m
ℓ2 Length of Rod 2 1.00 m
�0 Cross section area at G = 0 1.96 · 10−3 m2

� Exponent coefficient of Rod 2 1
2 m−1

Table 3.3: Parameters of the example presented in Fig. 3.11.

Figure 3.12 shows the corresponding results of the displacements and forces at three
different times. The hit takes place at G = 0 which is highlighted by a vertical dashed
line. To the left of the dashed line, the results of Rod 1 are plotted whereas the results
of Rod 2 are depicted on the right side. The rods stick together as long as the force at
the transition is compressional. This condition always applies to thepresented time steps.

At the first time, the incident waves have propagated 0.75 m in both rods. The part
of the rods that is further away than 0.75 m from the hitting surface is not influenced
by the impact yet. Thus, these elements are either at rest (Rod 2) or traveling at initial
velocity (Rod 1) as can be seen on the left graph of the first row in Fig. 3.12. Furthermore,
there is no significant deviation between the displacement results. These curves match
significantly better than the force curves. The reason is that the force curves are not
continuous. In the zoom box, the overshooting of the modal expansion method result
at the jump is highlighted. This behavior is characteristic for eigenfunction series and is
well known in literature as the Gibbs phenomenon. The forces in the parts of the rods,
that are not covered by their wavefronts yet, are still zero. However, the oscillations
of the modal expansion method results suggest that the wave already traveled further
than it actually did. Apart from the region close to the discontinuities, the force curves
are in very good accordance.

The continuous increase in cross section area of Rod 2 leads to continuously increasing
forces according to amount in Rod 2 and at the transition. Since the cross section area
of Rod 1 is constant, the wave shape does not change while propagating along Rod 1.
Thus, the impact force at C = 0 conforms with the wavefront of Rod 1.
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Figure 3.12: Comparison of results obtained with the modal expansion method versus results obtained with
the wave propagation method. The displacements (left) and the forces (right) are presented at C = 0.145 ms
(first row), C = 0.290 ms (second row) and C = 0.435 ms (third row).
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At the second time, the waves have been reflected at their respective boundaries and
travel back toward the transition. The free end on the left side of Rod 1 leads to
zero force at G = −1, whereas the fixed end of Rod 2 results in zero displacement at
G = 1. When the wavefront of Rod 1 reaches its left end, the maximum displacement
is achieved. Afterward, the reflected tensile forcewave reduces themaximumdeflection.

At the third time, the wavefronts have met at the transition and are traveling back to
their ends. This time, the reflected waves yield lower force magnitudes in Rod 2 and
greater magnitudes in Rod 1. The force jumps always occur at the curve bends of the
displacements.

In summary, the comparison of the results obtained with the two methods shows very
good accordance. The deviations at the region close to the force jumps are explainable
with the Gibbs phenomenon. It is disadvantageous for the modal expansion method
that a large number of eigenfunctions (2500 for the presented example) have to be
considered to plot the jumps. Moreover, the modal expansion method will always yield
approximate solutions as an infinite number of eigenfunctions can not be considered.
It can be concluded that for impact problems which include force jumps, the wave
propagation method is preferable. However, most importantly, the wave propagation
method is verified by the modal expansion method.
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4 Impacting Rods: Inverse Problem

Inverse problems occur in many practical applications. A well-known example is
the computer tomography where by detecting an attenuated X-Ray, the spatial X-Ray
absorption is concluded. This enables to get non-destructive information about the
scanned structure. The purpose of the presented method is to determine the impedance
function of Rod 1 which leads to the desired force over time at an arbitrary position
of Rod 2. To solve the inverse problem, the impedance function of Rod 2 and the
initial and boundary conditions have to be known (see Fig. 4.1). For the solution of the
direct problem, only the impedance functions of the rods and the initial and boundary
conditions have to be given to calculate the force and displacement distribution in both
rods.

Figure 4.1: Overview of given and calculated values of the direct and inverse problem.

The following chapter is structured as follows: Initially, the recursive method (RM) is
presented. The term reursive refers to the way how the inverse problem is solved. The
implementation of the main idea is presented and a condition of existence is derived. It
is shown how the impedance changes correlate with the probability that a solution of
the inverse problem exists. Moreover, it is shown that a prescribed force at an arbitrary
position of the second rod may be transformed to the corresponding impact force. At
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the end of the chapter, several examples are presented, including the application in
percussion drilling.

4.1 Recursive Method

The RM is based on the wave propagation method presented in Sec. 3.1. Without loss
of generality, the hit takes place at C = 0 and Rod 1 is the rod with unknown impedance.
In addition to the assumptions that are valid for the wave propagation method, some
prerequisites have to be met to apply the method.

These prerequisites are:

• Rod 1 is stress free just before the impact.

• Before the impact, all particles of Rod 1 are moving with the same velocity.

• No external forces are acting on the nodes of Rod 1.

For Rod 2, there are no prerequisites.

In Fig. 4.2a, a schematic sketch of the elements close to the impact zone is depicted.
The rods hit each other at initial velocities Ein of Rod 1 and Ẽin of Rod 2. Moreover, the
impedances of Rod 2 are given. The impedances of Rod 1 are determined according to
the predefined impact force (target force) which is illustrated in Fig. 4.2b. The main idea
of the method is to utilize that each element of Rod 1 influences the impact force #I at
different moments for the first time. Immediately after the impact, the influence of the
first element of Rod 1 can be observed in Fig. 4.2b. Two time steps later, the influence
of the second element becomes obvious. If the first @ − 1 elements in Fig. 4.2 are set to
perfectly match the target values, the question remains how the @th element has to be
set to continuously match the target force. Initially, the simulation is carried out with
the same impedance as the preceding element (/@ = /@−1). The difference between
the target force #@ (dashed line) and the force #̄@ obtained with equal impedances is
characterized by Δ#@ . The occurring force difference is balanced by an adjustment of
the impedance /@ . The only possibility that the impedance /@ influences the impact
force #I at the considered time is if the initial impact force #1 is directly transmitted to
the transition between element @ − 1 and @ where it is reflected and directly transmitted
back until it reaches the hitting surface. The mathematical implementation of the idea
is presented in the following section.
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4.1 Recursive Method

Figure 4.2: Idea of the recursive method.

As the waves have to travel back and forth at each element before they reach the hitting
surface, it is only possible to change #I every second time step by an impedance change
of Rod 1. Therefore, the target force, the boundary force and the initial conditions are
assumed to change only every second time step. However, this is not a serious limitation
as by doubling the number of elements, the same discretization accuracy is obtained.

4.1.1 Prescribed Impact Force

Initially, the formula to calculate the impedance of the first element is derived. Sub-
sequently, the formula to recursively determine all the other elements of Rod 1 is
presented. There is a different treatment of the first and all the other elements of Rod 1.
The impedance of the first element is set to determine the appropriate initial impact
force whereas for all the other elements, the initial impact force is given.
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First element

The initial impact force

#1 =
2/1

/1 + /̃1

(Ẽin − Ein)/̃1
2 = )1̃,1#0 (4.1)

is obtained by inserting the initial conditions for the first element of Rod 1 and Rod 2 in
Eq. (3.6). It is composed of the transmission factor

)1̃,1 =
2/1

/1 + /̃1
(4.2)

from the first element of Rod 2 to the first element of Rod 1 (see Eq. (2.39)) times the
impact force

#0 = −
(Ein − Ẽin)/̃1

2 . (4.3)

Rearranging Eq. (4.1) and solving for the unknown impedance /1 yields

/1 = −
#1/̃1

#1 + (Ein − Ẽin)/̃1
. (4.4)

Other elements

The remaining elements (second until =th element) are determined by implementing
the idea that every element influences the impact force at different moments for the
first time. In Fig. 4.2, the first @ − 1 impedances are set to perfectly match the target
force. The impedance of the next element @ is determined by first setting /@ = /@−1 and
determining the impact force #̄@ . Subsequently, the force difference Δ#@ between target
force #@ and #̄@ is balanced by

Δ#@ = #@ − #̄@ = #1 )1,2 )2,3 . . . )@−2,@−1 '@−1,@ )@−1,@−2 . . . )3,2 )2,1 )1,1̃

= #0 )1̃,1 )1,2 )2,3 . . . )@−2,@−1 )@−1,@−2 . . . )3,2 )2,1 )1,1̃ '@−1,@

=

(
)1̃,1 )1,1̃

)
()1,2 )2,1) . . .

(
)@−2,@−1 )@−1,@−2

)
'@−1,@#0 ,

(4.5)

where )8 , 9 , )9 ,8 are the transmission factors from element 8 to element 9 respectively from
element 9 to element 8 and '@−1,@ is the reflection factor from element @ − 1 to element
@. There is only one wave train that influences the impact force due to the impedance
change of /@ : The initial impact force #1 which is directly transmitted to the (@ − 1)th
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4.1 Recursive Method

element ()1,2 . . . )@−2,@−1 ) where it is reflected at the transition to the @th element ('@−1,@)
and transmitted back to the impact surface ()@−1,@−2 . . . )1,1̃). Since

)8 , 9 )9 ,8 =
4/8/ 9
(/8 + / 9)2

=  8 , 9 =  9 ,8 (4.6)

holds, the force difference can be written in a compact form

Δ#@ =  1̃,1  1,2 . . .  @−2,@−1 '@−1,@#0

=  @'@−1,@#0

=  @
/@ − /@−1

/@ + /@−1
#0 ,

(4.7)

where

 @ =  1̃,1

@−2∏
A=1
 A,A+1 =  1̃,1

@−2∏
A=1

4/A/A+1
(/A + /A+1)2

. (4.8)

Rearranging Eq. (4.7) and solving for /@ leads to the final equation for the unknown
impedance

/@ = /@−1
 @ #0 + Δ#@

 @ #0 − Δ#@
. (4.9)

After determining /@ , the procedure repeats for the next element until all elements of
Rod 1 are calculated recursively.

4.1.2 Transformation of the Prescribed Force

If the force #? is prescribed at an arbitrary position ? of Rod 2, it is possible to transform
#? to the corresponding impact force #I (see Fig. 4.3a). The presented procedure makes
use of the linearity of the problem. Thus, the impact force is reconstructed by a sum
of weighted time-shifted responses to a rectangular excitation. The prerequisites of the
RM and the piecewise constant modeling of the rod’s impedances lead to forces that
only vary every second time step. The prescribed force #? (C) at position ? is defined by
its factors .9

#? (C) = .9 , Cdt + 2(9 − 1)ΔC ≤ C < Cdt + 29ΔC , 9 = 1 . . . = (4.10)

as can be seen in Fig. 4.3b.
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Figure 4.3: Recursive determination of the factors -9 of the impact force #I.

The aim is to determine the factors -9

#I (C) = -9 , 2(9 − 1)ΔC ≤ C < 29ΔC , 9 = 1 . . . = (4.11)

of the unknown force #I which generate #? . To this end, a rectangular function

#I(C) = ℋ(C) − ℋ(C − 2ΔC), (4.12)
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withℋ(·) being the Heaviside function, is applied. Its response at position ?

� (C) = � 9 , Cdt + 2(9 − 1)ΔC ≤ C < Cdt + 29ΔC , 9 = 1 . . . = (4.13)

is called rectangular response. In Fig. 4.3c, the rectangular response together with the
desired force is depicted. The rectangular response is weighted so that it matches the
first step of #? (see Fig. 4.3d). Therefore, the first factor is determined as

-1 =
.1
�1
. (4.14)

All the other time-shifted rectangular responses arrive later and are not able to influence
the first step. In addition to the first rectangular function, a second rectangular function

#I(C) = ℋ(C − 2ΔC) − ℋ(C − 4ΔC), (4.15)

which is time-shifted by 2ΔC, is applied (see Fig. 4.3e). The second rectangular response
is weighted to match the second step. This enables the calculation of the second factor

-2 =
1
�1
(.2 − -1�2) . (4.16)

The procedure is repeated until all factors -9 are determined recursively. In general, the
formula for the determination of the 9th factor is

-9 =
1
�1

(
.9 −

9−1∑
:=1

-:� 9+1−:

)
. (4.17)

4.1.3 Condition of Existence

It is not always possible to generate a solution of the inverse problem for any given
force over time. Physical solutions only exist if the obtained impedances in Eq. (4.9) are
positive, i. e.

/@ > 0. (4.18)

Therefore, the following condition

 @ #0 + Δ#@

 @ #0 − Δ#@
> 0 (4.19)
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holds which is equivalent to��Δ#@

�� < �� @ #0
��. (4.20)

The force #0 is problem specific but independent of the determined element. By
rewriting the factor  @ as

 @ =  1̃,1

@−2∏
A=1
 A,A+1 =  1̃,1

@−2∏
A=1

[
1 −

(
/A − /A+1
/A + /A+1

)2
]
≤ 1, (4.21)

it becomes obvious that the absolute value of the force reserve
�� @ #0

�� decreases if the
consecutive impedances change. This means that the larger changes in impedance
are, the lower are the force reserves. Therefore, lower force differences

��Δ#@

�� may be
compensated as condition (4.20) has to hold. Physically, the factor  @ may be interpreted
as the fraction of transmitted energy through the impactor. The more impedance steps
are passed and the higher the jumps are, the more internal reflections occur whose
energy cannot be used to compensate the force differences.

In Fig. 4.4, the factors  A,A+1 and  = are analyzed for a constant change in impedance,
that is /A+1 = </A . The factor

 = =

=∏
A=1

[
1 −

(
/A − /A+1
/A + /A+1

)2
]
=

[
1 −

(
1 − <
1 + <

)2
]=

(4.22)

describes the fraction of total transmitted energy for = transitions and

 A,A+1 = 1 −
(
1 − <
1 + <

)2

(4.23)

describes the fraction of total transmitted energy at one transition. As the fraction
of total transmitted energy at one transition is independent of whether the wave is
first transmitted from the element with lower impedance to the element with larger
impedance or reverse,  A,A+1(<) =  A,A+1

( 1
<

)
applies. Therefore, only values < ≥ 1 are

plotted. For constant impedances (< = 1), all the energy is transmitted (see Fig. 4.4a).
The larger the changes in impedance are, the lower is the fraction of transmitted energy.
In Fig. 4.4b, it is shown that large jumps in impedance lead to disproportionally large
decreases in  = . For example, one jump in impedance with < = 2 leads to larger
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4.1 Recursive Method

Figure 4.4: Analysis of the continuously decreasing force reserve.

decreases in  = than 100 jumps with < = 1.05 although the initial impedance value only
doubles in the first case and approximately 132-folds in the second case.

4.1.4 Summary

The presented method applies to many inverse impact problems. The position, where
the force over time is given, can be chosen arbitrarily if the prerequisites are met. It is
only possible to prescribe the force over time for a time span which is twice the travel
time of the waves through Rod 1. Afterward, there are no elements left to shape the
waves. By applying the RM, the two main questions concerning inverse problems are
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answered: Firstly, there is a solution of the inverse problem (existence) if the condition
in Eq. (4.20) holds for every element of Rod 1. Moreover, in case the condition is
violated, it is possible to assess the maximum length of Rod 1 for which a solution of the
inverse problem still exists. Secondly, the solution is unique (uniqueness) in terms of
impedance. Another important aspect that is frequently discussed in inverse problems
is the stability of the results with respect to disturbed measurements. However, as the
prescribed force in the presented impacting rod problem is desired and not measured,
there are no deviations which could lead to instabilities.

The calculation time of the algorithm (see Tab. 4.1) is O(=∗2) with =∗ being the total
number of rod elements. On a standard laptop, the solution is obtained within 1 s if less
than 400 elements are chosen.

Algorithm: Recursive Method

Calculate /1.
FOR @ from 2 to =

Run simulation with /@ = /@−1.
Determine Δ#@ and  @ .
IF

��Δ#@

�� < �� @ #0
��

Calculate /@ .
ELSE

Solution of the inverse problem does not exist.
END

END

Table 4.1: Algorithm of the RM.

4.2 Examples

The working principle of the recursive method is illustrated by three examples. The
setups for the first two academic examples only differ in the prescribed impact force.
For an exponentially decreasing impact force, a solution of the inverse problem exists.
Moreover, for this particular setup, an exact reference solution exists which is compared
with the corresponding results obtained by applying the RM.With the second academic
example, it is shown that it is only possible to calculate a solution up to a certain time if a
linear increasing impact force is generated. The last example is devoted to the practical
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application of percussion drilling. Thus, the impedance of the impacting piston is
determined to generate a desired incident force in the rock.

4.2.1 Academic Examples

The setup illustrated in Fig. 4.5 is considered where a semi-infinite rod (Rod 2) with
constant impedance /̃ is given. Rod 2 is at rest at the beginning (Ẽin = 0). Moreover,
the velocity Ein of Rod 1 is known. The aim is to determine the unknown impedance
function /(B) of Rod 1 which generates a prescribed impact force #I(C). The parameters

Figure 4.5: Setup of the academic examples. The aim is to determine the impedance / which generates the
impact force #I(C) for given velocity Ein and given impedance /̃.

listed in Tab. 4.2 are chosen for both examples.

Parameters Number Unit

/̃ Impedance of Rod 2 79.7 kN s m−1

#̂ Impact force at C = 0 239 kN
C0 Time constant 0.383 ms
ΔC Time step 1.93 µs
= Number of elements of Rod 1 100 =

Ein Velocity of Rod 1 6.00 m s−1

Table 4.2: Parameters for the academic examples.

Example 1: Exponentially Decreasing Impact Force

Initially, an exponentially decreasing impact force

#I(C) = −#̂ e
(
− C
C0

)
(4.24)
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with arbitrary time constant C0 is given. Lundberg and Lesser [47] have introduced the
traveling time of the wavefront starting from the impact surface traveling to position B
with

�(B) =
∫ B

0

1
2(B′) dB′ (4.25)

and derived the exact solution

/exact(�) =
/0(

1 + /̃+/0
/̃C0

�
)2 , /0 =

1
Ein
#̂
− 1

/̃

. (4.26)

Since the wavefront is traveling through one element within one time step, the
impedances of the RM depending on the traveling time are expressed by

/(� = @ΔC) = /@ , @ = 0 . . . = − 1. (4.27)

The impedance results are depicted in Fig. 4.6. Both curves are continuously decreasing
beginning from their maximum value at �(0). Physically, it is comprehensible that the

Figure 4.6: Comparison between the impedance function that is obtained with the RM and the exact solution.

curves decrease as the claimed impact force is decreasing exponentially as well. The
impedance result determinedwith the RMmatches verywell the exact result. In fact, the
maximum relative error is 1.10 · 10−3 %. The remaining difference to the exact solution
is due to the piecewise constant approximation of the rod’s impedances. The more
elements are chosen the closer the results of the RM approach the exact solution.
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An extract of the results at designated time steps is presented in Tab. 4.3. The simulation
starts with the determination of the first element of Rod 1 and finishes with the last
element (@ = 100). From @ = 10 to until @ = 100, every tenth result is plotted.

@  @
��Δ#@

�� �� @ #0
�� /@

in kN in kN in kNsm=1

1 1.00 - 239 79.7
10 0.999 2.20 239 65.7
20 0.998 2.01 239 55.1
30 0.998 1.86 238 46.9
40 0.997 1.72 238 40.4
50 0.997 1.60 238 35.2
60 0.996 1.50 238 30.9
70 0.996 1.41 238 27.3
80 0.996 1.33 238 24.4
90 0.995 1.26 238 21.9
100 0.995 1.20 238 19.9

Table 4.3: Simulation steps of the example with exponentially decreasing impact force.

There is a clear tendency to be observed: All values, that is the transmission factor
 @ , the force difference

��Δ#@

��, the force reserve
�� @ #0

�� and the impedances /@ are
continuously decreasing. In Sec. 4.1.3, it has been proven that  @ is continuously
decreasing. Therefore, the results are consistent with the theory. At the beginning of the
simulation, the change in impedance is greatest. That is the reason, why  @ is decreasing
strongest at that time. As a result of the decreasing factor  @ , the force reserves have
to fall as well because #0 is constant. The exponentially declining impact force leads
to continuously declining impedances. The calculated values reveal that the presented
example did make very little use of the force reserves.

Example 2: Linearly Increasing Impact Force

The second example only differs from the first one by the impact force which is now
linearly increasing

#I(C) = −#̂
(
1 + 2 C

C0

)
. (4.28)

In Fig. 4.7, the related impedance result is plotted on a logarithmic scale. At @ = 78,
the simulation ends. Afterward, the calculated impedance value is negative which is
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Figure 4.7: Impedance function of the example with linear increasing impact force.

not physical. Shortly before, the impedance values increase strongly. A more detailed
overview of the results at designated simulation steps is presented in Tab. 4.4. The
simulation starts with the first element of Rod 1 and finishes for @ = 78. From @ = 10
until @ = 70, every tenth result is plotted. At the time of interest, from @ = 75 on, every
result is depicted. The absolute value of the force difference

��Δ#@

�� and the impedances
/@ are continuously growing whereas the absolute value of the force reserve

�� @ #0
�� and

the transmission factor  @ are continuously decreasing. The linear increasing impact

@  @
��Δ#@

�� �� @ #0
�� /@

in kN in kN in MNsm=1

1 1.00 - 239 0.0797
10 0.996 4.90 238 0.120
20 0.992 5.19 237 0.183
30 0.987 5.76 236 0.291
40 0.980 6.78 234 0.496
50 0.970 8.67 232 0.961
60 0.951 12.7 227 2.43
70 0.893 26.0 213 13.0
75 0.765 56.3 183 106
76 0.693 73.5 166 276
77 0.556 106 133 2460
78 0.202 191 48.3 -

Table 4.4: Simulation steps of the example with linearly increasing impact force.
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force leads to a continuous rise in the force difference and eventually to a continuous
rise of the impedances. At the beginning, the increase is moderate, however, the longer
the simulation takes the higher are the jumps in impedance. Especially, starting from
@ = 70, sharp increases occur. For @ = 78, the existence condition is not met anymore.
Therefore, no physical (positive) impedance can be determined.

One of the advantages of the presented approach is that the force condition immediately
indicates if there will be a solution for the next time step. Moreover, it is possible to
examine how long the given impact force can be generated. In this case, the maximum
traveling time of the wavefront is 77ΔC.

4.2.2 Percussion Drilling

Percussion drilling has a long tradition and is widely used for drilling applications.
The classical setup (see Fig. 4.8) consists of a pneumatically or hydraulically actuated
piston which hits onto the shank adapter at hitting frequencies between 50 and 100 Hz.
The shank adapter together with the coupling sleeve transfer the kinetic energy of the
piston into the rod. The resulting waves propagate through the drill rod to the drill
bit and finally fracture the ground due to high impact forces. The emerging cuttings
are flushed up by a high pressured fluid that is pumped to the ground through hollow
rods. The rotation of the drilling rod at rotation speeds between 60 and 200 rpm leads
to continuously changing points of impact [61]. Because of the energy losses during
the transmission of the shock waves, percussion drilling is used for drilling lengths no
longer than 30 m [37].

Figure 4.8: Sketch of the percussion drilling process, turned by 90◦.
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Problem Description and Modeling

The mechanics of percussion drilling has been studied for many years. However, the
research has mainly focused on the direct problem. The modeling is either realized with
a continuous model [9, 49], with an FEMmodel [13] or with lumped parameters [20, 42].
Comparisons between the results based on the 3D FEM and results based on the 1D
theory show that the differences are very little so that the 1D theory is applicable [19, 48].

The considered inverse problem is depicted in Fig. 4.9. A piston of given length (0.5 m)
and given initial velocity Ein is hitting onto the shank adapter. The shank adapter is
modeled by a segment of constant impedance /̃1, the coupling sleeve by a segment with
impedance /̃2 and the section with constant impedance /̃3 corresponds to the rod. The
bit is composed of a constant impedance part /̃4 and a linear increase from /̃4 to /̃5 at
the end. The bit-rock interaction during loading is modeled by a resistance force � with
coefficient :1. Its validity has been confirmed experimentally [17, 18, 39].

Figure 4.9: Example of a device for percussion drilling. The main parts are modeled as rod elements of
different diameters. All dimensions are in m.

Lundberg and Collet [49] have shown that the efficiency of the drilling process is
maximized if the incident force is of exponential shape

#i(C) = −#̂ e�C (4.29)

with an arbitrary initial force #̂ and a constant �. The investigation motivates the
realization of an exponential incident force by adjusting the impedance of the piston.

The simulation is run with the parameters listed in Tab. 4.5. The chosen coefficient :1

and the constant � are characteristic for a hard rock [49]. The simulation starts with
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Parameters Number Unit

/̃1 Impedance of the shank adapter 51.0 kN s m−1

/̃2 Impedance of the coupling sleeve 115 kN s m−1

/̃3 Impedance of the rod 79.7 kN s m−1

/̃4 Impedance of the constant bit segment 156 kN s m−1

/̃5 Impedance at the end of the bit 248 kN s m−1

#̂ Initial incident force 187 kN
� Constant 5.88 (ms)−1

:1 Resistance force coefficient 300 MN m−1

=̃ Number of elements of the rod 400 =

= Number of elements of the piston 100 =

Ẽin Initial velocity of the rod 0.00 m s−1

Ein Initial velocity of the piston 9.00 m s−1

Table 4.5: Parameters used for the percussion drilling example.

the transformation of the incident force #i to the corresponding impact force #I. This
enables applying the RM to calculate the piston’s impedance function subsequently.

Transformation of the Incident Force to the Impact Force

In Fig. 4.10a, the incident force described in Eq. (4.29) and the transformed impact force
are depicted. For better comparability of the results, the incident force is time-shifted
by the dead time Cdt which is the travel time from the impact surface to the bit-rock
interaction.

The curve of the impact force is above the curve of the incident force. The reason
is that the forces applied to the impact surface are amplified while traveling to the
bit-rock interaction. The impact force curve exhibits three major jumps whose origins
are depicted in Fig. 4.10b. The first jump occurs when the double reflected waves at the
coupling sleeve reach the bit-rock interface. The second jump is significantly larger. It
originates from the waves that are first reflected at the bit-rock interface, subsequently
reflected at the transition between bit and rod and finally travel back to the bit-rock
transition. These waves are compressive which is the reason why the magnitude of the
impact force decreases afterward. The last jump is due to the double reflected waves
between the impact surface and the coupling sleeve.
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4 Impacting Rods: Inverse Problem

Figure 4.10: Transformation of the incident force to the impact force.

Application of the Recursive Method

As the incident force has now been transformed to the corresponding impact force, the
RM is applied. In Fig. 4.11, the impedance over the distance B (starting for B = 0 at
the hitting surface) of the optimized piston is shown. As expected, the impedance is
increasing as the absolute value of the impact force is increasing as well. The three
jumps also emerge in the impedance curve. This is sensible since the jumps in piston
impedance lead to the desired jumps in impact force.

Using the RM, the results are determined exactly. This is confirmed by a comparison of
the desired incident force with the incident force obtained by running the simulation
with the determined impedance function of the piston. The maximum percentage
error is 1.13 · 10−12 % which is in the order of machine precision. Moreover, it is
possible to determine how long a solution of the inverse problem exists. For the chosen
piston length, a solution exists. However, the longer the piston is, the higher are the
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Figure 4.11: Calculated impedance function of the piston.

impedances at the end of the piston. At some point, no solution exists anymore. The
huge difference between maximum and minimum impedance restricts the practical
applicability. Besides, it is only possible to generate the desired incident force twice
the travel time through the piston. Afterward, no elements are left to shape the curve.
However, the percussion drilling example has shown that the RM is also applicable
if the desired force is prescribed at a position other than the impact surface. Besides,
the impedance function of the rod may vary and linear boundary conditions may be
considered.
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5 Experimental Investigation

In this chapter, the 1D model is experimentally validated. After presenting the
experimental setup with its components, preinvestigations are considered. Several
aspects have to be examined in advance to guarantee reliable results. Themost important
factor is the repeatability of the experimental results as non-repeatable results have
limited significance. The strains are measured by strain gauges (SGs) that are attached
to different circumferential and axial positions of the rod. It is assessed if bending or
the influence of the rod support results in different SG measurements. Subsequently,
it is evaluated if the results can be scaled according to the impact velocity. The
preinvestigations finish with the determination whether the piston bearings influence
the results.

After the preinvestigations, two different experiments, which only differ from the
cross sectional area variation of the piston, are conducted. Finally, the measurements
are evaluated and compared with simulation results obtained by applying the wave
propagation method.

5.1 Experimental Setup

The test rig consists of a gun that pneumatically accelerates a piston which finally hits
the rod (see Fig. 5.1). The impact velocity of the piston is measured by a photoelectronic
fork sensor called SpeedGate of the manufacturer Frederikson. The sensor’s two vertical
laser rays at known axial distance are cut by the front face of the piston at different
times. As both the time difference of these cuts and the related axial distance is known,
the impact velocity can be determined. After the hit, force waves propagate into piston
and rod. At three different axial positions, SGs, that are only able to detect longitudinal
elongation, are attached to the rod. Their gauge length (0.2 mm) is very short which
ensures good spatial resolution.
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Figure 5.1: (a) Experimental setup and (b) its schematic sketch.

Each SG is part of a quarter bridge (see Fig. 5.2) that transforms themechanical strain into
electrical voltage. The transformed electrical signal is amplified and filtered by an analog
anti-aliasing filter (Bessel, 5th order) with corner frequency 100 kHz. Subsequently, the
signal is digitalized and filtered by a digital IRR filter. The filter properties of the analog
filter are predefined whereas the properties of the digital filter are set according to the
application. For the given example, a conflict of interest exists. On the one hand, the
corner frequency of the digital filter (Bessel filter 4th order) has to be very high as the
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Figure 5.2:Measuring chain from the SG to the representation at the computer.

transient strain signal includes high frequencies. On the other hand, the higher the
corner frequency that is chosen the more noise is included in the signal. Based on these
conflicting goals, the corner frequency 40 kHz is set. The signal processing is conducted
with the signal conditioner Sirius HS from ZSE. Finally, the measurements are evaluated
by a computer.

The high-speed camera records the hit at its maximum frame rate (38565 fps) which
enables detecting at what time piston and rod separate. Moreover, the videos provide
very good insight during the impact. As the ambient light is not sufficient for these
frame rates, external LED-lights illuminate the impact zone. The parameters of the SGs,
the high speed camera and the signal conditioner are summarized in Tab. 5.1.

The rod can move freely at its right end. The stop only prevents the rod from crashing
into the fence after measuring. A more detailed examination of the piston and rod and
of the pressure chamber is provided in the next subsections.
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Parameters Number Unit

Strain gauge KFGS-02-120-C1-11L3M2R

Gauge factor 2.23 ± 1 % =

Gauge length 0.2 mm
Gauge resistance 119.6 ± 0.4 % Ω

High speed camera Chronos 1.4

Frame rate for 336G96 resolution 38565 fps
Power LED light 200 W

Signal conditioner Sirius HS

Corner frequency of analog anti-aliasing filter
(Bessel, 5th order)

100 kHz

Corner frequency of digital IIR filter
(Bessel, 4th order)

40 kHz

Sampling rate 1 MHz
Resolution 16 Bit

Table 5.1: Parameters of the SGs, the high speed camera and the signal conditioner.

Piston and Rod

For the experimental results, one rod and two different pistons are applied. The
dimensions of the pistons are shown in Fig. 5.3 and Fig. 5.4, respectively. Piston 1 is
symmetrical with two small diameter parts (40 mm) at their ends and one large diameter
part (50 mm) in the middle. Piston 2 consists of many cross section area parts, including
several steps and one cone.

The dimensions of the rod and the axial strain gauge positions (SGPs) are depicted in
Fig. 5.5. The rod’s diameter is constant (50 mm) with a total length of 1800 mm. The
axial SGP that is closest to the impact zone is named SGP1, the one in the middle of the
rod SGP2 and the one to the very end of the rod is named SGP3. The SGs are attached
symmetrically meaning that the distance of SGP1 from the left end equals the distance
of SGP3 from the right end (each 110 mm). Furthermore, SGP2 is exactly in the middle
of the rod. The SGs are mounted at different circumferential positions. They are either
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Figure 5.3: Dimensions of Piston 1 in mm.

Figure 5.4: Dimensions of Piston 2 in mm.

mounted on the top (0◦), right (90◦), bottom (180◦) or left (270◦) side of the rod (see
Fig. 5.5). Overall, eight SGs are attached to the rod. Two SGs are attached to SGP1

(top, bottom), four SGs are attached to SGP2 (top, right, bottom, left) and two SGs are
attached to SGP3 (top, bottom). The SGs are named by SGi,x, where i refers to the SGP
and x to the angle. For example, SG1,90◦ refers to the right SG at SGP1.

Figure 5.5: Dimensions of the rod and the axial position of the SGs in mm (left) and a sketch of the
circumferential positions of the SGs (right).

The pistons and the rod are made of steel with the parameters listed in Tab. 5.2.
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Parameters Number Unit

� Young’s modulus 210 GPa
� Density 7.84 ·103 kg/m3

Table 5.2: Parameters for the pistons and the rod.

Pressure Chamber

The acceleration of the piston is carried out pneumatically. Between the outer and inner
diameter of the gun, a pressure chamber is filled with pressurized air (see Fig. 5.6). The
chamber is kept closed by a bushing which is actuated pneumatically until the pressure
in the chamber reaches the desired air pressure. Once the pneumatic actuator pulls the

Figure 5.6: Pressure chamber of the gun in (a) closed and (b) open state.

bushing to the left, the pressurized air is flowing behind the left end of the piston which
leads to its acceleration. The experimental setup is a single hit device meaning that the
piston is not automatically moving back and forth. Moreover, as the pressure in the
pressure chamber is controlled, it is not possible to control the piston’s impact velocity
directly.

5.2 Experimental Procedure

Two different setups are investigated. The first setup (see Fig. 5.7) only differs from the
second setup (see Fig. 5.8) in the shape of the impacting piston. The rod, which initially
is at rest, can move freely at its right end. The stop does not influence the results as only
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the transient behavior of the waves immediately after the impact is analyzed. The initial
velocity of the pistons may be changed according to the investigated example.

Figure 5.7: Setup 1.

Figure 5.8: Setup 2.

For the evaluation of the results, the normal forces are calculated from themeasurements
at the SGs. The normal force #8 ,G refers to the force at SGi,x. For example, #2,0◦ is
the normal force at SG2,0◦. For most evaluations, only the normal force #: , which
compensates bending, is denoted. It is determined with

#: =
1
2 (#:,0◦ + #:,180◦) , : = 1 . . . 3. (5.1)

The subscript number of the forces refers to the corresponding SGP.

The SGs are attached to the top and bottom at each SGP to both compensate the normal
forces for bending and to determine the maximum bending stress

�:,bend =
1

2�Rod
(#:,0◦ − #:,180◦) , : = 1 . . . 3, (5.2)

with the cross section area �Rod of the rod. By using two diametrically opposite strain
gauges in a half bridge, it would not be possible to determine the maximum bending
stresses which is why a quarter bridge has been used.

In Tab. 5.3, an overview of the conducted experiments is given. The preinvestigations
are all carried out with the first setup. The repeatability experiment is conducted three
times. Since it is not possible to directly control the impact velocity, little differences in
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Name Setup Ein
(m s−1)

Width
Bearings (mm)

Evaluated
Values

Preinvestigations

Repeatablity 1 4.57
4.58
4.60

60
60
60

#1
#1
#1

Circumfertential SGP 1 4.60 60 #2,0◦ , #2,90◦ ,
#2,180◦ , #2,270◦ ,
�2, �2,bend

Impact Velocity 1 3.47
4.60
5.60

60
60
60

#1/|min(#1)|
#1/|min(#1)|
#1/|min(#1)|

Piston Bearings 1 4.60
4.61
4.62

6
15
60

#1
#1
#1

Main Investigations

Standard Piston 1 4.60 60 #1 , #2 , #3

Complex Piston 2 4.58 60 #1 , #2 , #3

Table 5.3: Parameters of the conducted experiments.

velocity occur. However, the deviations are negligible. The corresponding results for
the normal force at SGP1 are compared. The circumferential SGP experiments aim at both
determining the influence of the bending stress and the influence of the rod bearings.
Thus, the four normal forces at SGP2 are compared and the ratio max

���2,bend
��/max |�2 |

with �2 = #2/�Rod is determined. The impact velocity experiments differ in the impact
velocity which range from 3.47 m s−1 to 5.60 m s−1. It is assessed if the results are scalable
by comparing the normalized normal forces at SGP1. The piston bearings experiments
give information on whether the piston bearings have to be considered in the model by
comparing the results for #1.

In the main investigations section, the normal forces #1 , #2 and #3 are analyzed and
interpreted both for Setup 1 and Setup 2. At the end, the experimental results for #1 are
compared with the corresponding simulation results which are obtained by applying
the wave propagation method.
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5.3 Preinvestigations

The focus of the preinvestigations is on determining possible influence factors on
the measurements. Therefore, the interpretation of the results is qualitatively and
comparative. A detailed interpretation of the results will be conducted in Sec. 5.4.

5.3.1 Repeatability

In Fig. 5.9, the experimental results at SG1,0◦ for three impacts are depicted. The results

Figure 5.9: Examination of the repeatability of the mesaurement results. The initial velocities of the piston are
in the range between 4.57 m s−1 and 4.60 m s−1.

match very well without any obvious deviations. Very similar results are achieved
when the measurements are analyzed at other axial and other circumferential positions.
Therefore, it is concluded that the results are repeatable.

5.3.2 Influence of Circumferential Strain Gauge Position

The SGs are placed at different circumferential positions. In theory, a direct central
impact only causes longitudinal waves to propagate into the rod. However, optimal
conditions are never met. Furthermore, the rod is supported at two positions whichmay
influence the results due to friction. This examination aims to assess if the rod bearings
have to be considered in modeling and if the impact is direct central. Therefore, the
results at the secondSG for fourdifferent circumferential positions are shown inFig. 5.10.
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Figure 5.10: Influence of the circumferential SGP on the experimental results. The initial velocity of the piston
is 4.60 m s−1.

The qualitative behavior of the results is almost the same for all angles. Quantitatively,
the deviations are very small which can be regarded in the zoom window. Therefore,
it is concluded that the influence of the rod bearing is negligible and that the impact is
close to direct central. This assumption is confirmed by the calculated ratio

4 =
max

���2,bend
��

max |�2 |
100 (5.3)

between maximum bending stress and normal stress which is 2.74 %.

5.3.3 Influence of Impact Velocity

The initial velocity of the impacting piston varies for different applications. As the
presented test rig is also restricted in terms of its maximum piston velocity, the question
arises if the results are scalable. In Fig. 5.11, themeasurement results obtainedwith three
different initial velocities are depicted. The results are normalized by the absolute value
of the respective global minimum. The deviations between the normalized results are
very low which is highlighted in the zoom box. This allows the conclusion that within
the presented velocity range from 3.47 m s−1 until 5.60 m s−1 the results are scalable.
However, it is expected that the results are also scalable for a wider range but this needs
finally to be proven by other experiments.
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Figure 5.11: Influence of the initial velocity of the piston on the experimental results.

5.3.4 Influence of Piston Bearings

The pistons are mounted with bearings made of Polytetrafluorethylen as can be seen
in Fig. 5.12. Since it is not possible to accelerate the piston without bearings with the
presented test rig configuration, it has to be clarified if the piston bearings influence the
measurements. If the bearings influenced the results, there would be a difference in the
measurements depending on the bearing width. However, as can be seen in Fig. 5.12,

Figure 5.12: Influence of the bearings of the piston on the experimental results. The initial velocities of the
piston are in the range between 4.60 m s−1 and 4.62 m s−1.
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there is no significant difference apparent which is why the bearings are not considered.

In summary, the preinvestigations reveal that the experimental results are

• repeatable,

• negligibly independent of the circumferential position,

• scalable with respect to impact velocity,

• and not influenced by the piston bearings.

5.4 Main Investigations

The goal of the main investigations is to validate the 1D model presented in Chap. 3.
Therefore, two experiments are conducted, analyzed and finally compared with the
related simulation results.

The first experiment is conducted to assess if the experimental results are reliable. As the
geometry of Piston 1 varies only very little, it is possible to compare the measurements
with analytical results.

The second experiment is conducted with a complex piston geometry (Piston 2) with
many changes of the cross section area in axial direction. Piston 2 is applied to evaluate
if the 1D model is also valid for complex piston shapes.

5.4.1 Standard Impacting Rod

The first experiment coincides with the setup used for the preinvestigations (see Fig. 5.7).
Piston 1 is hitting the rod at initial velocity 4.60 m s−1.

Experimental Results

The time development of the forces, that are related to the corresponding SGs at three
different SGPs, is illustrated in Fig. 5.13. The numbers on the graphs belong to selected
time points. The qualitative behavior at these time points is explained with Fig. 5.14.
At C1, the first deflection is observed at the first SGP. After an abrupt drop of the force,
the force remains almost constant for a short period. Subsequently, another step to the
maximum compressive force follows. Apart from small oscillations after C3, the wave
shape between C1 and C3 is symmetrical. Just before C1, the piston hits the left end of
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Figure 5.13: Forces versus time (first experiment) gained at the SGPs. The initial velocity of the piston is
4.60 m s−1.
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the rod. The time from C = 0 until C1 arises due to the pretrigger settings and shall not
be confused with the traveling time of the waves from the hitting surface to the first
SGP. During the time from C3 to C8, the force is close to zero. Subsequently, a point
symmetrical section with a tensile force peak at the beginning and a compressive force
peak at the end (between C8 and C10) is observed.

The incident wave shape at the second SGP from C2 to C5 is very similar but time-delayed
with respect to the wave shape at the first SGP between C1 and C3. Furthermore, the
shape of the subsequent part (C6 − C9) resembles the incident wave with the opposite
sign. The sequence from C2 to C9 also repeats shortly after.

The results at the third SGP lastly drop (starting from C4). The following wave shape
between C4 and C7 resembles the wave shape of the first SGP between C8 and C10. However,
this time the wave shape begins with a compressive force peak and ends with a tensile
peak which is reverse at the first SGP. Again, the wave shape between C4 and C7 repeats
some time later.

For understanding the qualitative behavior of the force waves, it is advantageous to
study the hit of two rods of the same impedance. In Fig. 5.14, the forces at any piston
and rod position are depicted for selected time points which refer to the time points
marked in Fig. 5.13. The piston is located on the left side whereas the rod with its three
SGPs is placed on the right side. The force wave propagation direction is indicated with
small arrows and the colors of the waves state if a wave is compressional (green) or
tensile (orange).

After the hit, compressional force waves travel both into piston and rod. At C1, the
wavefront reaches the first SGP and leads to a jump. It is impossible to perfectly
represent a jump in the SG measurements due to four reasons. Firstly, the SGs always
measure the average elongation along their gauge length. Secondly, unlimited sample
rates cannot be chosen. Thirdly, the signal is filtered with a low pass filter. And most
importantly, due to 3D-effects, there is always a finite rise in reality. Moreover, the filter
causes oscillations after jumps. This has to be considered when interpreting the results.

At C2, the wavefront of the rod reaches the second SGP leading to the same jump as at the
first SGP. Meanwhile, the wavefront of the piston has traveled to the left end where the
wave is reflected as a tensile force. The compressive and tensile force waves are equal
in amount which is why the resulting force is zero. The tensile force wave continues
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Figure 5.14: Schematic sketch of the wave propagation after a hit of two rods with same impedance.
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traveling along the piston until it reaches the transition to the rod. This is the time Cs
when piston and rod separate as no tensile force may be transmitted at the transition.
Therefore, a rectangular wave shape that extends to double the length of the piston,
propagates along the rod. The development of the forces in the piston is not pursued
any longer.

At C3, the compression wave passes the first SGP leading to zero force again. The time
period C∗ between the arrival of the wave front at the first SGP until the wave has
completely passed the first SGP is determined with

C∗ =
2ℓPis
2
. (5.4)

For the given example, C∗ equals 1.93 · 10−3 s. This is in very good accordance with the
time span between C3 and C1.

As the rod’s impedance is constant, the wave shape does not change while traveling
along the rod. Therefore, the wavefront, that arrives at the third SGP at time C4, has the
same shape when arriving at the other SGPs. At SGP2, no reflecting waves interfere
which is why the shape of the normal force at the second SGP (between C2 and C5) is the
time-delayed shape of the force at the first SGP (between C1 and C3).

At C5, two events happen almost simultaneously. The incident compressive wave passes
the second SGP and the reflected tensile force wavefront reaches the third SGP leading
at both SGPs to zero resulting force.

When the compressive wave passes the last SGP at C6, only the tensile force is acting
on the SGs which is the reason why the force is jumping again. At the same time, the
tensile wavefront reaches the second SGP which causes a sharp rise in tensile force.

When the reflected part of the incident wave completely passes the third SGP (time C7),
the force drops to zero. From time C8 to C10, the same procedure as for the third SGP
takes place for the first SGP with the only difference that the incident wave is tensile
initially.

At C10, the state equals the state at C3. Thus, the period between C3 and C10 is repeated
all over again until the oscillations are damped by, e.g., material damping. However, in
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the considered period, the influence of material damping is negligible. The period time
complies with the time it takes to travel twice along the rod.

Comparison with Numerical Results

The measurements are compared with the simulation results which are generated by
applying the wave propagation method. The parameters, the initial conditions and
the setup of the simulation are set identically to the experiment. Moreover, the results
are filtered by the same filter (Bessel 4th order) as the measurements are filtered. The

Figure 5.15: Evaluation of the first experiment.

resulting graph is plotted in Fig. 5.15a. A part of the first incident wave is highlighted in
the zoom box. The deviations between the results are very little. The largest deviations
are detected after jumps when the experimental solution still oscillates. Both the
qualitative and the quantitative behavior of the curves matches very well as can be seen
in detail in the zoom box. After the arrival of the incident compressive force, four main
deflections are observed. Its sources are schematically visualized in Fig. 5.15b.
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The first deflection originates from the wave that incidents in the piston, reflects at its
first step and finally transmits to SGP1. The second deflection is considerably smaller
which is due to more reflections included in the development. The waves responsible
for the first and second step are identical until the wavefront reaches the transition
between piston and rod. While the first wave is transmitted to the SGs, the second wave
is reflected back and forth twice between transition and the first step of the piston before
it arrives at the SGs. The third wave is transmitted to the second step of the piston where
it is reflected and transmitted directly to the SGs. The fourth wave is similar to the third
one with the difference that the fourth wave is reflected at the free end of the piston. It
is important to emphasize that the presented waves are only the ones that contribute
most to the final shape of the force wave. The other waves are reflected very often so
that they are very low in amplitude and negligible for the qualitative understanding of
the final wave shape.

In summary, the accordance of the simulationwith the experimental results is very good.
Even small deflections are depicted by both approaches. Similar results are achieved at
the remaining two SGPs. Therefore, the 1D model is validated for small variations in
the piston geometry. In the next subsection, the question is answered if the statement is
also valid for major variations of the geometry.

5.4.2 Complex Impacting Rod

The second experiment is similar to the first experiment butwith a different piston hitting
the rod (see Fig. 5.8). Piston 2 has several cross sectional area variations, including a
conical increase at the beginning.

Experimental Results

InFig. 5.16, the experimental results of the secondexperiment at three SGPsarepresented.
Since only the piston geometry varies compared to the first experiment, the qualitative
behavior of the results is similar. An incident wave starting at C ≈ 1 ms at the first SGP
is traveling along the rod maintaining its shape while passing the second SGP. Over
time, the incident wave shape continuously alternates between compressive and tensile
force at SGP2. At the third SGP, only the very beginning of the incident wave is visible
as the measurement is superimposed by reflecting waves at the rod’s free end a little
while later. After two peaks (compressive and tensile), a section with forces close to zero
follows before the signal is repeated. Very similar results occur at the first SGP after
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Figure 5.16: Forces versus time (second experiment) gained at the SGPs. The initial velocity of the piston is
4.58 m s−1.
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the incident wave has passed with the difference that the sequence starts with a tensile
peak.

Comparison with Numerical Results

The comparison of the experimental versus the simulation results at the first SGP is
presented in Fig. 5.17a. For detailed analysis, the incident wave is magnified in the zoom
box (filtered on the left side and unfiltered on the right side of Fig. 5.17b). It is only
possible to generate filtered results for the simulation as unfilteredmeasurements would
include aliasing effects. The final shape of the incident wave consists of a multitude
of superimposed waves that are transmitted and reflected several times within the
piston. However, some waves significantly contribute to the outcome. These waves are
illustrated in Fig. 5.17c.

The qualitative and quantitative behavior matches very well with only small deviations
between the results. The greatest qualitative deviation occurs approximately in the
middle of the filtered results. At this position, the simulation result is shortly deflecting
in negative direction while the experimental result is continuously increasing. Rod and
piston do not separate when the reflected wave at the free end of the piston reaches the
transition zone but shortly later which leads to a wider incident wave compared to the
first experiment. It is very difficult to analyze the origin of every oscillation in the results
as the longer the time proceeds the more piston variations influence the force shape.
Moreover, the steps blur due to filtering. That is the reason why unfiltered results are
used to analyze the most significant steps.

The first step at C1 originates from the wave which propagates into the piston, reflects
at the beginning of the cone and transmits back to the first SGP. From C1 until close
to C2, the force decreases almost linearly which is due to the conical part of the piston.
When the wave, which reflects at the end of the cone, reaches SGP1 at C2, the force rises
immediately. The steps at C3/C4 refer to the waves that are reflected at the beginning/end
of the middle block. The reflected wave at the small block close to the end of the piston
is responsible for the jump in force at C5. The biggest jump in force occurs at C6. It
originates from the wave that transmits through the piston, reflects at the piston’s free
end and transmits back to SGP1.

While comparing the unfiltered with the filtered results, it is noticeable that not every
detail is represented in the filtered result. However, the main changes are visible. The
comparison shows that the main variations in the piston geometry are depicted in both
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Figure 5.17: Evaluation of the second experiment.
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experimental and simulation results with very good accordance. Therefore, it can be
concluded that the 1D model is validated. Moreover, the comparisons suggest that for
the given impact problems, the 1D consideration is sufficient. The advantage of the
1D theory is that the influence of the respective piston sections may be worked out.
Furthermore, the calculation time is much shorter. The main advantage is, however,
that it is possible to develop a method that solves the inverse problem based on the 1D
theory.
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The thesis aims to develop a method related to inverse problems in impacting rods.
Specifically, the impedance of the impacting rod is determined so that a prescribed force
at an arbitrary axial position of the second rod is generated (impactor synthesis problem).
The method is relevant for several experimental and practical applications. For example,
in percussion drilling, the question arises how the impedance of the impacting rod can
be determined to generate an incident force that improves the efficiency of the drilling
process.

The impactor synthesis problem is only addressed by a few researchers. Themost promising
approach solves the inverse problem in terms of an integral equation. By applying the
integral based approach, several approximation methods are carried out to calculate
the impactor’s impedance. Moreover, it is only possible to prescribe the desired force
at the hitting surface. In the context of the thesis, an approach based on the idea of
differential methods is developed. It addresses the drawbacks of the integral based
method mentioned above.

Themethod relies on the idea of directly exploiting the structure of thewave propagation
problem. Therefore, the impedance functions of the rods are approximated by piecewise
constant step functions. Use is made of the circumstance that each element of the
unknown impactor is influencing the prescribed force at different moments for the first
time. The element, which just influences the actual force for the first time, is adjusted so
that the actual force matches the prescribed force. Thus, the elements are determined
recursively starting from the element which is closest to the prescribed force position.

For piecewise constant impedance functions, the developed method delivers exact
solutions in closed-form. Moreover, a condition is derived which states if a solution of
the inverse problem exists. It is shown that any additional element, whose impedance
differs from the previous one, diminishes the probability that a solution exists. The
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method allows to prescribe the force at any axial position of the second rod. Furthermore,
arbitrary initial conditions are applicable to the second rod, including external forces.

The practical applicability of themethod is validated in two steps. Firstly, the determined
impedance function generates the prescribed force over time which is calculated by
applying the 1D model. Secondly, the 1D model is validated experimentally by
comparing experimental versus simulation results. In particular, it is shown that the
model is also valid for impacting rods with complex geometry variations. As scattering
problems are special cases of the impactor synthesis problem, the developed method is
widely applicable.
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List of Abbreviations

FEM Finite element method
PDE Partial differential equation
RM Recursive method
SG Strain gauge
SGP Strain gauge position
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List of Symbols

Indices

+ Acting on the right end of the element
− Acting on the left end of the element
I Impact
dt Dead time
i Incident
in Initial
r Reflected
t Transmitted

Symbols

� Cross section area (m2)
�0 Cross section area at G = 0 (m2)
� Constant (=)
� Coefficient (=)
� Young’s modulus (N /m2)
�∗ External force (N)
� 9 Coefficients of the impulse response (N)
ℋ Heaviside function (=)
� Measurable quantity at the border of the scattering problem (Case de-

pendent)
K Linear differential operator (=)
# Cutting force, positive in tension (N)
#̂ Initial incident force acting at the rock (N)
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List of Symbols

$ Measurable quantity at the border of the scattering problem (Case de-
pendent)

O Dimension of the computational cost (=)
* Eigenfunction (m)
-9 Coefficients of the piecewise constant force #I (N)
.9 Coefficients of the piecewise constant force #? (N)
/ Impedance (N s/m)
/̃ Impedance of Rod 2 (N s/m)
0 Wave amplitude (m)
00 Wave amplitude at G = 0 (m)
1 Summarized expression (m=2)
2 Wave propagation speed (m/s)
4 Ratio between maximum bending and normal stress (%)
5 Arbitrary function (=)
6 Arbitrary function (=)
6̄ Gravitational constant (N/kg)
ℎ Summarized expression (m=1)
: Wave number (m=1)
ℓ Length (m)
ℓPis Length of the piston (m)
< Mass of Rod 2 (kg)
= Number of elements of Rod 1 (=)
=̃ Number of elements of Rod 2 (=)
=̄ Number of time intervals (=)
=̂ Number of nodes in contact with bearings of Rod 2 (=)
=∗ Total number of rod elements (=)
B Distance from the hitting surface in direction of Rod 1 (m)
C Time (s)
C0 Time constant (s)
C∗ Time variable (s)
D Particle displacement (m)
D0 Particle displacement at C = 0 (m)
E Particle velocity (m/s)
E0 Particle velocity at C = 0 (m/s)
Ein Initial velocity of Rod 1 (m/s)
Ẽin Initial velocity of Rod 2 (m/s)
G Spatial coordinate (m)
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List of Symbols


 Summarized expression (m=1)
� Summarized expression (m=1)
� 9: Kronecker symbol (=)
ΔC Time step (s)
� Axial strain (=)
� Distributed parameter of the scattering problem (Case de-

pendent)
$ Angular frequency (rad/s)
$: :th eigenfrequency (rad/s)
� Mass density (kg/m3)
� Stress (N/m2)
' Summarized expression (kg/m)
�(B) Time it takes for the wave front to travel from the impact surface

to position B
(s)

� Constant (m=1)
� Distributed parameter of the scattering problem (Case de-

pendent)
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dsImpacting rods are used in many practical and ex-
perimental applications. The analysis problem of 
finding the time-dependent impact force for given 
properties of the impacting rods and known initial 
velocities is thoroughly studied in literature. How-
ever, very little literature has been published which 
addresses its inverse synthesis problem: Find the 
location-dependent impedance function of the 
impacting rod that generates a prescribed impact 
force.

In this contribution, a method that solves the syn-
thesis problem is developed. The impedances of 
the linear elastic rods are discretized by elements 
of piecewise constant impedance. The method 
utilizes that each element of the unknown im-
pactor influences the prescribed force at different 
time instants for the first time. Thus, the unknown 
impedances of the impactor may be determined 
recursively. The developed method delivers exact 
solutions in closed-form. Moreover, a condition 
is derived which states if a physically meaningful 
solution exists.

Finally, the underlying 1D model is validated experi
mentally. To this end, a single-hit test rig is set up. 
The comparison of simulation versus experimental 
results yields good accordance both for standard 
and complex geometries of the impacting rods.
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