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1. Introduction 

The vast majority of this book deals with monogenic disorders which are relatively rare but 
have just one or a small number of characteristic genotypes and usually very pronounced 
clinical and biochemical phenotypes. In contrast, this chapter will try to discuss 
multifactorial diseases which are far more prevalent and pose a completely different kind of 
challenge both for the socio-economic systems and for biomedical research. As an example 
we will focus on chronic kidney disease (CKD) and relevant animal models thereof. In fact, 
together with diabetic retinopathy, myocardial infarction, and stroke, diabetic nephropathy 
is one of the most severe sequelae of type II diabetes mellitus (T2D) and, considering the 
obesity-related pandemic of T2D, will represent a major health issue in the decades to come 
(Mensah et al., 2004; James et al., 2010). 
Of course, all of these diseases have an important genetic component as demonstrated by 
pedigree analyses and a growing number of twin studies (Walder et al., 2003; Vaag & 
Poulsen, 2007). Still, with rare exceptions, this genetic component is rather seen as a 
predisposition for than as a cause of the actual disease. In particular, recent genome-wide 
association studies (GWAS) on large population-based cohorts have revealed a couple of 
single nucleotide polymorphisms (SNPs) that are significantly associated with T2D but the 
contribution of single SNPs to the individual’s risk of developing T2D are marginal (Groop 
& Lyssenko, 2009). To fully understand the interaction of the identified genetic loci and to 
appreciate the meaning of the genetic background in a personalized medicine approach, 
complex haplotypes would have to be analyzed, and this has not even been achieved in 
basic diabetes research, let alone in any clinical application. 
Yet, genetic research in diabetology has gained a new momentum in the last few years since 
it became obvious that a combination of GWAS with a more detailed phenotyping than just 
a generic diagnosis of T2D immediately led to improved statistics and to a much better 
biochemical plausibility of the findings (Gieger et al., 2008; Illig et al., 2010). Specifically, 
genome-wide significances could be achieved on much smaller cohorts than in classical 
GWAS rendering a more cost-efficient tool in biomedical research. The statistical power 
could be further improved by defining metabolic phenotypes based on the knowledge of the 
underlying biochemical pathways, e.g., by using groups of metabolites that are synthesized 
or degraded by the same enzymes or by calculating ratios of the concentrations of products 
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and substrates of enzymatic reactions. This approach clearly reduces the inherent variability 
of the data set and, thus, offers great potential for robust diagnostic applications. In 
addition, it turned out that, in contrast to many GWAS results so far, the hits were not 
predominantly located in intergenic regions. In fact, eight of the nine loci that could be 
replicated with genome-wide significance in two independent cohorts (KORA and UK 
Twins) were in or very near a gene encoding for either an enzyme or a transporter. So, for 
the very first time, a convincing connection between genotype and metabolic phenotype 
could be demonstrated in a multifactorial disease. 
Even so, the field may still be far from a true systems biology view on T2D covering all the 
different omics levels but the application of GWAS (or next generation sequencing, for that 
matter) on quantitative metabolic traits clearly paves the way for a better understanding of 
epidemiology and pathophysiology at the same time, and this approach has already been 
confirmed in other areas of genetic research (Weikard et al., 2010). 
The systematic analysis of these metabolic traits is called metabolomics. Based on spectral 
methods such as nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry, it 
is increasingly recognized as the most informative discipline in functional genomics because 
it is closest to depicting actual biochemical phenotypes, and thus delivers signatures or 
biomarkers that mirror genetic predisposition and the sum of environmental influences in 
one data set (Altmaier et al., 2008; Altmaier et al., 2009; Altmaier et al., 2011). In conclusion, 
metabolomics-based biomarkers are expected to be more predictive and descriptive than 
their genomic and proteomic counterparts. They may help trigger a paradigm shift from 
damage-oriented to function-oriented diagnostics, ultimately allowing diseases to be 
detected at earlier stages and subtyped more accurately contributing to the overarching goal 
of personalized medicine (Weinberger, 2008; Suhre et al., 2010). 
Moreover, one of the most appealing advantages of metabolomics is that the majority of its 
analytes are not species-specific, i.e. most amino acids, sugars, lipids, etc. are structurally 
identical in mice, rats, dogs, pigs, monkeys, humans or other mammals, even in many 
microbes. This makes metabolomics ideally suited as a biomarker platform avoiding the 
need for redevelopment of the analytical assays for every animal model and for clinical 
trials.  

2. The fundamentals of metabolomics 

Metabolomics systematically identifies and quantifies low-molecular weight compounds in 
biological samples such as body fluids, tissue homogenates or cell culture. Metabolite 
concentrations allow inferences on the complex interactions between biological processes on 
a molecular level to be made. As pointed out above, metabolomics is increasingly 
appreciated as the richest source of information in functional genomics (Nicholson et al., 
1999; Weinberger & Graber, 2005). Until recently, systems biology has mainly relied on three 
other ‘omics’ technologies, namely genomics, transcriptomics, and proteomics. Important as 
these areas have been, they fail to provide a real-time phenotype, i.e., a picture of what is 
actually happening in a dynamic biological system. Recent advances in mass spectrometry 
have added metabolomics as another powerful and practical tool to the systems biology 
toolbox (Weckwerth, 2003). The metabolome is the sum of all low molecular weight 
metabolites in a biological system. By assessing hundreds of metabolites simultaneously, 
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modern mass-spectrometric techniques produce high-resolution biochemical snapshots 
showing the functional endpoints of genetic predisposition as well as the sum of all 
environmental influences, including nutrition, exercise, and medication. This snapshot is an 
almost real-time image of the physiology—or pathophysiology—of a cell or an entire 
organism (Weckwerth, 2003). 

3. Technological advances paved the way into clinical applications 

Mass spectrometric assays revolutionized the diagnosis of inherited metabolic disorders, a 
development co-pioneered in the late 1990s by Adelbert Roscher (Röschinger et al., 2003). 
This and similar pilot projects around the world taught the diagnostics community some 
crucial lessons. Quantitation of endogenous metabolites using multiple reaction monitoring 
(MRM) and stable isotope dilution (SID) for absolute quantitation on tandem mass 
spectrometers combined with advanced data analysis tools fulfills the most strict quality 
criteria in terms of precision and accuracy without suffering any of the shortcomings of 
immunoassays, such as cross-reactivities, which makes this technology an ideal platform for 
clinical chemistry (Unterwurzacher et al., 2008). What is more, the superior sensitivity of 
triple quadrupole mass spectrometers combined with MRM and SID enabled the detection 
of metabolites in biologically relevant sample types, such as plasma or serum, whereas the 
limited sensitivity in the previous NMR-based workflows restricted their use mainly to 
urine (urine as a sample type is analytically very convenient but the concentration of 
metabolites in urine is not regulated in the sense of a strict homeostasis as in blood). 
Furthermore, it has been proven for many disorders that multiparametric biomarkers 
reduce biological noise in the data by internal normalization as well as improve diagnostic 
sensitivity and specificity. Subsequently, it led to a marked reduction of healthcare costs 
(Röschinger et al., 2003; Weinberger., 2008). 

4. Targeted metabolomics or metabolic profiling 

There are two approaches to metabolomics usually called targeted metabolomics and 
metabolic profiling. While both approaches are complementary, targeted metabolomics, i.e., 
the identification and quantitation of defined sets of structurally known and biochemically 
annotated metabolites, takes advantage of our functional understanding of many 
biochemical pathways. In contrast to protein-protein interactions or regulatory relationships 
at the transcript level, the fact that so many biochemical pathways have been explored in 
great detail offers an invaluable source of background information that enables evidence-
based interpretation of metabolomics data sets. For the majority of these pathways, 
substrates and products of enzymatic reactions, reaction mechanisms, equilibra, kinetics and 
energetic of these reactions, as well as cofactors or compartmentalization have been 
elucidated. This information renders instant functional interpretation of the data set and, 
thus, phenotyping of the analyzed cell or organism, a straight forward process (Modre-
Osprian et al., 2009; Weinberger & Graber, 2005; Weinberger et al., 2005; Weinberger, 2008). 
One other major advantage of targeted metabolomics is that it generally provides 
quantitative information. These quantitative data, the molar concentrations of the 
metabolites involved in a pathway, facilitate the immediate understanding of any alterations 
between different biological states and allow for comparison and meta-analysis of several 
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independent studies (Enot et al., 2011). Targeted metabolomics enables the systematic 
quantitation of a wide range of biologically relevant molecule classes in cells, tissues, or 
clinically relevant fluids. The technology comprises an automated sample preparation 
workflow integrated with sensitive mass spectrometric methods and a tailor-made software 
solution. Many hundreds of metabolites can be identified and quantified using this novel 
platform, which is also well suited for high-throughput and routine applications 
(Weinberger & Graber, 2005). 

5. Proof-of-concept for targeted metabolomics: Neonatal screening  

The proof-of-concept for targeted metabolomics was first delivered in clinical diagnostics, 
namely in neonatal screening for inborn errors of metabolism. As mentioned above, the 
diagnosis of inherited disorders in amino acid metabolism, such as phenylketonuria, or fatty 
acid oxidation disorders, such as medium-chain acyl-CoA dehydrogenase (MCAD) 
deficiency, was revolutionized by the use of mass spectrometric assays (Röschinger et al., 
2003). The idea was a logical continuation of Sir Archibald Garrod’s (1857–1936) concept of 
chemical pathology, to quantify specific sets of amino acids and acylcarnitines to diagnose 
specific metabolic disorders. This laid the foundation for what is now referred to as 
‘targeted metabolomics’. The introduction of tandem mass spectrometry and the 
transition from expensive, monoparametric to multiparametric assays has enabled the 
simultaneous diagnosis of 20–30 monogenic diseases, which is a significant improvement 
of diagnostic performance, particularly of the specificity and the predictive values for 
very rare diseases. This improved diagnostic performance was achieved without raising 
costs. Rather neonatal screening is now reimbursed by health insurance providers in many 
Western countries and has lead to substantial healthcare savings. These medical and 
commercial benefits have turned neonatal screening into an impressive success story and 
led to its introduction in most industrialized countries within less than a decade (Röschinger 
et al., 2003; Weinberger., 2008). 

6. Data exploitation 

The whole data-related workflow for targeted metabolomics has recently been summarized 
(Enot et al., 2011). In the context of this chapter, we only refer to the pathway mapping 
aspects of this workflow. 
The unique level of understanding of metabolomics data that makes them suitable for a key 
role in functional genomics mainly results from this key step of data handling, namely the 
biochemical interpretation in the context of pathway and background knowledge. Despite 
its importance, very few standardized procedures have been developed and/or published 
for this step, and some experts would probably consider it their proprietary methodology to 
derive biochemical and pathobiochemical insight from multivariate metabolic datasets. 
The last few years have seen multiple efforts to systematically annotate endogenous 
metabolites and led to databases such as KEGG (Kaneshia & Goto, 2000), Reactome (Vastrik 
et al., 2007), BioCyc (Karp et al., 2005), HMDB (Wishart et al., 2007) and OMIM (Online 
mendelian inheritance in man, 2011). Despite suffering from some serious shortcomings in 
terms of pathway coverage and data curation, these may serve as a more or less accepted 
framework for future knowledge collection. 
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These databases also provide the background for various attempts at visualization of 
metabolic pathways and data mapping on these charts, although most of these projects still 
follow a static approach of predefined (and predrawn) maps that cannot do justice to the 
dynamics of biochemical networks. In the following paragraph, we would like to 
demonstrate a few concepts about how dynamic representation and simulation (Modre-
Osprian et al., 2009) of metabolic pathways enable the first steps of generating hypotheses 
from multivariate datasets. 
Firstly, electronic availability of metabolites and metabolic reactions facilitates an almost 
trivial but nevertheless powerful approach that is analogous to a gene set enrichment 
analysis (GSEA; Subramanian et al., 2005). Any given set of metabolites which has been 
identified by statistics as significantly different in two biological states or clinical cohorts can 
be mapped on the entirety of metabolic pathways, and these pathways can then be ranked 
by the number of altered metabolites they contain (Fig. 1). This is a way of structuring the 
data that scientists from transcriptomics and proteomics are familiar with although the 
definition of metabolic pathways does not follow a similarly strict classification system as 
the classical gene ontology (GO; Ashburner et al., 2000). Note also that a reliable selection of 
species-specific enzymatic reactions instead of the generic reference pathways is necessary 
to reduce the risk of false positive hits. 
 

Pathway Count 

00564 Glycerophospholipid metabolism 15 

00590 Arachidonic acid metabolism 7 

00591 Linoleic acid metabolism 7 

00592 alpha-Linolenic acid metabolism 7 

00600 Sphingolipid metabolism 3 

00052 Galactose metabolism 2 

00051 Fructose and mannose metabolism 1 

00310 Lysine degradation 1 

00500 Starch and sucrose metabolism 1 

00520 Amino sugar and nucleotide sugar metabolism 1 

Fig. 1. Ranking of metabolic pathways according to the number of significant differences 
between a study and control cohort in analogy to a gene set enrichment analysis 
(MarkerIDQ™ software, Biocrates) 

Secondly, starting from a particular metabolite of interest, exploration of the reactions that 
either synthesize or degrade this metabolite immediately generates a list of enzymes of 
interest for further investigation. This concept of exploring shells of reactions around a 
metabolite is exemplarily shown for tryptophan (Trp) metabolism in Fig. 2 and can be 
expanded stepwise around every metabolite serving as a new seed node. Each of these 
reactions can then be characterized by a ratio of product and substrate concentrations as a 
measure of enzymatic activity. Assessment of such ratios reduces biological noise and often 
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dramatically increases the significance of the findings (Altmaier et al., 2008; Gieger et al., 
2008; Wang-Sattler et al., 2008).  
Lastly, moving even further from a traditional textbook representation of metabolic 
pathways, one can apply route finding algorithms to find and depict connections between 
metabolites of interest across the boundaries of (often artificially) predefined pathways. 
Such algorithms can identify the shortest route, routes up to a defined length, routes that do 
not share a certain metabolite (termed node-disjoint paths) or enzyme (so-called edge 
disjoint paths), depending on the respective biological question (Fig. 3). Here, the main 
prerequisite to avoid a potentially very large number of trivial hits is the exclusion of 
common cofactors and small inorganic molecules that connect many metabolites to many 
others, e.g., H2O, CO2, ATP, NADP. Using tools like these, and keeping in mind all the 
caveats discussed above, enzymes and pathways involved in the pathophysiology of a 
certain disease or in the mode-of-action of a drug can be more efficiently identified. In 
addition, hypotheses for designing further validation experiments and studies can be 
formulated.  
 

 
Fig. 2. Shellwise exploration of enzymatic reactions in tryptophan metabolism. L- Trp was 
used as the first seed node; after expansion of eight synthetic or degrading reactions,  
5- hydroxy-tryptophan was used as secondary seed node and further expanded 
(MarkerIDQ™ software, Biocrates) 

Yet, all of this needs to be combined with another plausibility check, which originates from 
inherent redundancies in metabolism: quite often groups of compounds are metabolized by 
the same enzyme and should, therefore, be influenced in at least a similar (if not the same) 
way by regulatory mechanisms, drugs, etc. If this rule of thumb is severely challenged, one 
should always check for possible analytical or statistical artifacts, or – not uncommon in 
pharmaceutical R&D – interference by xenobiotics, e.g., a drug or drug metabolite 
disturbing the signal for an endogenous metabolite. 
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Fig. 3. Route finding across metabolic pathways. Nine paths from arginine to spermine, 
ranging in length from four to six steps were calculated based on the KEGG dataset, and the 
settings allowed for joint nodes, e.g., ornithine (MarkerIDQ™ software, Biocrates) 

6.1 Quantitative experimental information for computational biology 

The quantitative information of targeted metabolomics enables new possibilities in 
validating computational systems biology approaches using detailed kinetic models to 
simulate and predict the dynamic response of metabolic networks in the context of human 
diseases. It also supports the design of tailored kinetic models of human-specific metabolic 
pathways including detailed knowledge about all metabolic reactions concerned.  
Besides statistical model building and data mining-based approaches (Baumgartner et al., 
2004; Baumgartner et al., 2005; Baumgartner & Graber, 2008), computational systems biology is 
essential to combine knowledge of human physiology and pathology starting from genomics, 
molecular biology and the environment through the levels of cells, tissues, and organs all the 
way up to integrated systems behaviour. Applying systems biology approaches within the 
context of human health and disease will definitely gain new insights. Eventually, a new 
discipline – systems medicine – will emerge at the interface between medicine and systems 
biology (van der Greef et al., 2006; van der Greef et al., 2007; Lemberger, 2007).  
Higher levels of organization are extremely complex, and even models at the cell and 
subcellular levels are forced to resort to simplifications to minimize modeling and 
computational complexity (Crampin et al., 2004; Nakayama et al., 2005; Yugi & Tomita, 
2004). Additionally, some parameters and constants for kinetics, binding and concentrations 
of biomolecules are typically not known, thus reducing the model's ability to respond 
correctly to dynamic changes in external conditions. A high-quality network of human-
specific metabolic pathways including detailed knowledge about all metabolic reactions 
concerned is essential to design tailored kinetic models for better understanding of human 
physiology and its relationship with diseases. While such large networks are used to 
analyze the global structure or functional connectivity of the network (Ma et al., 2007), 
deterministic and stochastic models are mainly used for simulating specific metabolic 
pathways as well as regulatory and signaling networks (Goel et al., 2006). 
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Results of in silico experiments should be related to quantitative experimental data (e.g. from 
neonatal screening) in order to reveal better insights into dynamic properties of the complex 
biochemical networks under the constraints of various disease conditions and finally to 
obtain a better understanding of pathophysiological aspects of genetic disorders (Modre-
Osprian et al., 2009). 

7. Use case: Biomarker development in CKD 

Chronic kidney disease is a major health problem associated with increased risk of 
cardiovascular disease, renal failure and other complications (James et al., 2010). The cost for 
treating these complications puts a disproportionally large part on national health care 
budgets (Eknoyan et al., 2004; James et al., 2010; Mendelssohn & Wish, 2009). With an aging 
population and a worldwide epidemic of diabetes, the most common causes of CKD have 
switched from infection/inflammation and inheritance, to hypertension, other vascular 
disorders and diabetes as the main triggers. 
It is estimated that at least 40 million people in the EU have some degree of CKD. This 
number is expected to increase every year, even double over the next decade, and the trend 
is similar all over the world (European Kidney Health Alliance, 2011; James et al., 2010). One 
of the major reasons for this is the dramatic increase of T2D, accounting for up to 95 % of the 
total diabetes incidence (American Diabetes Association, 2000; Kurukulasuriya, & Sowers, 
2010; Ritz & Stefanski, 1996). Diabetic nephropathy is one of the most severe complications 
of diabetes and by far the most common cause of end-stage renal disease (ESRD; Susztak & 
Bottinger, 2006). Most people are unaware of their disease at early stages and do not get the 
right treatment in time. The classical renal function markers, serum creatinine level and 
estimated glomerular filtration rate (eGFR) are known to be insensitive and late markers of 
CKD (National Kidney Foundation, 2002). The gold standard for assessing renal function is 
measuring the true GFR with test substances like inulin or iothalamate, but this is an 
invasive and far too tedious procedure for routine application. It is of highest importance to 
develop markers which have the ability to predict or detect CKD at an earlier stage, making 
it possible to intervene with therapy to prevent or at least slow down the progression of 
kidney damage finally leading to ESRD and control related complications. While the 
classical diagnostic markers are restricted to traditional endpoints for kidney damage, 
metabolic markers can assess pathophysiological and pathobiochemical changes that play a 
role in exacerbation of renal damage. 
This use case is based on two studies explained in further detail below. In a preclinical study 
on puromycin-treated Sprague-Dawley rats, several classes of metabolites were quantitated 
covering the main pathways of metabolism. The absolute concentration of the metabolites 
was determined by MRM and the application of SID (Jarman et al., 1975). The aim of the 
preclinical rat study was to evaluate metabolic changes in these rats, focusing on 
nephrotoxicity.  
Cohorts consisted of three dosage groups (10 mg/kg/day, 20 mg/kg/day and 
40 mg/kg/day) and one control group where only a vehicle was administered.  Samples 
were taken at day 3, 7, 14 and 22 after start of the experiment, except for the highest dosage 
group, where all animals had to be sacrificed at day 14 because of complete renal failure. 
One of the metabolites that was associated with exacerbation of renal damage was 
symmetric dimethylarginine (SDMA) in plasma (Fig. 4), which has been extensively 
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discussed in the literature as a marker for renal failure (Bode-Böger et al., 2006; Vallance et 
al., 1992). SDMA is hardly metabolized in the body, but only eliminated by renal excretion 
and, since no specific tubular resorption has been reported, it could be interpreted as an 
internal test substance for renal clearance (Bode-Boger et al, 2006; Martens-Lobenhoffer & 
Bode-Böger, 2006). As seen in figure 4, SDMA was increased in the two highest dosage 
groups, and there was also an increase over time within these groups. 

Control 10 mg / kg /day 20 mg / kg /day 40 mg / kg /day
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22 days 

 
Fig. 4. Time-and dose-dependent increase of SDMA in a nephrotoxicity study in rats. Levels 
of SDMA increased in a time- (p=9.9·10-5 in the cohort treated with 20 mg/kg/day, p=8.4·10-4 
in the cohort treated with 40 mg/kg/day) and dose-dependent manner (p=4.4·10-6, comparing 
day 14 in all cohorts) 

Many of the preclinical findings were confirmed in a clinical biomarker study on 
progression of CKD that was performed at Montpellier University hospital as part of an EU-
funded consortium (ETB Urosysteomics). The participating patients were divided into three 
cohorts according to severity of kidney disease; no to moderate renal function impairment 
(eGFR > 30 ml/min/1.73 m², corresponding to stages 1 to 3 of CKD as proposed by the 
National Kidney Foundation, for simplicity referred to as stage 3), severe renal function 
impairment (30 ml/min/1.73 m² > eGFR > 15 ml/min/1.73 m², corresponding to stage 4) 
and renal failure (eGFR < 15 ml/min/1.73 m², corresponding to stage 5 treated with 
dialysis) based on eGFR as proposed by Bauer et al, 2008. The patients in this study were 
mixed cases from different etiologies of CKD (diabetic and non-diabetic), and several 
analyses were performed to exclude confounding factors of these diseases and to look at 
biomarkers influenced by kidney damage, regardless of underlying disease. 
Just as in the preclinical study, many of the quantitated metabolites were found to be 
significantly up- or downregulated with progressing CKD. In a discriminant analysis the 
data could be separated almost completely which indeed indicates there is information in 
the data set to distinguish the stages from one another (Fig. 5) and further statistical 
analyses both identified novel markers (Lundin et al., submitted for publication) and 
confirmed biomarkers that had already been found in previous studies (e.g., nephrotoxicity 
of model compounds, early prognostic markers for acute rejection and chronic nephropathy 
in kidney transplant patients; Boudonck et al., 2009; Lundin & Weinberger, 2009). One of the 
findings was elevated levels of SDMA, as already observed in the rat model (Fig. 6).  
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Fig. 5. Discriminant analysis of three stages of CKD. In the scores plot (left) the three stages 
of CKD are almost perfectly separated. Each point represents one patient and the cohort to 
which they belong is indicated by colour in the box in the upper right corner. The axes are 
calculated to minimize variance within the group and maximize it between the groups to get 
the best separation possible. The loadings plot (right) identifies which metabolites are 
mostly responsible for the separation, the further away from the origin, the stronger the 
influence. Since multi-group comparisons are not particularly clear, deeper analysis is 
required to identify single markers 
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Fig. 6. Increase of plasma SDMA concentrations in progressing CKD. Barplots represent 
plasma SDMA concentrations in three groups of patients with declining renal function. 
SDMA shows a highly significant increase in progressing stages of CKD (p = 1.2·10-9) 
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Another finding that was reproduced in both studies was changes in concentration of the 
essential with amino acid Trp. Tryptophan is crucial for protein synthesis and might 
therefore play an important part in cellular differentiation, development and growth 
(Badawy, 1988). The drop in concentration of Trp has been associated with impaired kidney 
function before (Egashira et al., 2006; Saito et al., 2000). In the puromycin-treated rat model 
of nephrotoxicity, Trp drops to less than a third of its concentration between low- and high 
dose and at different time points (Fig. 7). The same trend can be observed in the clinical 
study on progression of CKD (Fig. 8 left) which emphasizes the advantages of being able to 
use translational research in metabolomics.  
This phenomenon could partly be explained by albumin depletion since, in peripheral 
blood, Trp is bound to albumin to a significant extent (Walser & Hill, 1993). This would 
result in a drop of Trp when the albumin is being depleted in progressing kidney disease. 
As seen in figure 8 (right), there is indeed a drop in albumin in the clinical study, but not in 
the same magnitude as Trp, hence it can be assumed that other mechanisms are also 
involved here. 
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Fig. 7. Tryptophan depletion in puromycin-treated rats. Tryptophan shows both a dose- 
(4.9·10-6, comparing day 14 in all cohorts) and time-dependent (p=1.8·10-3 in the cohort 
treated with 10 mg/kg/day, p=1.2·10-6 in the cohort on 20 mg/kg/day, and p= 2.5·10-9 in 
the cohort on 40 mg/kg/day) decrease 

Another explanation for the drop in concentration of Trp might be in its degrading 
pathways (see Fig. 9). When analyzing the two main catabolic pathways originating from 
Trp, both the rat model and the clinical study revealed that actually both pathways (towards 
serotonin and through kynurenine towards niacin) are upregulated (Fig. 10). The steep 
increase and high statistical significance of the kynurenine / Trp (product to substrate) ratio 
in the clinical study suggest there is a markedly increased activity through this pathway, in 
keeping with the fact that the kynurenine pathway accounts for 95 % of tryptophan 
catabolism (Walser & Hill, 1993). The Trp degrading indoleamine 2,3-dioxygenase (IDO) 
enzyme, which catalyzes the initial and rate-limiting step in the niacin pathway, seems to 
have an increased activity in progressing CKD. 
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Fig. 8. Changes of Trp and albumin with progression of CKD. Left: Decrease of plasma Trp 
concentrations in progressing CKD. Barplots represent plasma Trp concentrations in three 
groups of patients with progressing CKD. Tryptophan shows a highly significant decline in 
later stages of CKD (p = 6.2·10-9). Right: This could in part be explained by the fact that it is 
albumin-bound, but although it is significant (p=1.56·10-9) the fold-change of the albumin 
depletion is by far less pronounced than the one for Trp 

 

 
Fig. 9. Simplified scheme of the two main pathways catabolizing Trp. To the right the niacin 
pathway is illustrated where the rate limiting step is the conversion of Trp to kynurenine 
catalyzed by IDO (Ball et al., 2009). To the left the serotonin pathway with its two key 
reactions (tetrahydrobiopterin-dependent tryptophan hydroxylation and 
pyridoxalphosphate-dependent decarboxylation of  
5-hydroxytryptophan) is shown 
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Fig. 10. Upregulation of Trp degrading pathways. There is an upregulation of both the 
niacin pathway (left, p=1.44·10-12) and serotonin pathway (right, p=2.98·10-6) degrading Trp, 
but the steep increase and high statistical significance of the kynurenine / Trp ratio suggest 
there is an increased activity of the Trp degrading IDO enzyme 
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8. Outlook and potential applications 

There is a widespread range of potential applications of metabolomics in the areas of 
biomedical research, pharmaceutical R&D and clinical diagnostics. Besides the well-
established procedure of neonatal screening, metabolomics is currently being applied in 
biomarker and diagnostics research as demonstrated in the example of CKD above. Still, the 
diagnostic potential of metabolomics is not confined to typical metabolic disorders, but 
rather extends into fields such as cancer (Osl et al., 2008) and neurologic disorders (Urban et 
al., 2010). Metabolomics can also be applied in drug development where it is used to 
uncover new drug targets, prioritize lead compounds and assess drug toxicity, enabling the 
development of novel, smarter and safer drugs (Weinberger & Graber, 2005). In addition, 
metabolomics has the possibility to identify individuals likely to benefit from a given 
therapy, minimizing the risk of side effects and avoiding unnecessary drug use.  

9. Conclusion  

The most important difference of metabolomics to other –omics approaches is the level of 
functional understanding that, currently, the metabolome is offering to a much greater 
extent than the other -omes. The first successful examples of combining GWAS with 
metabolic phenotypes, so-called metabotypes, have recently been published and show 
significant promise for a more useful outcome of population based association studies in 
general. This phenotyping is particularly useful when the disease in question affects 
metabolically active organs and when large scale transport phenoma are affected. 
Consequently, metabolomics is very well suited for biomarker discovery in multifactorial 
diseases like T2D and CKD. It is not only possible to find novel markers but also to 
explain the pathophysiological effects behind the disease, e.g., inhibition of or 
upregulation of an enzyme in a specific pathway. Additionally, the fact that there is no 
need to redevelop the analytic assays, because of the non-species specific properties of the 
metabolites, makes it cost- and time-saving since there is no need for redevelopment of 
the analytical assays. 
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