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Abstract

The initial temper may directly affect the deformation behavior and material performance
in creep age forming (CAF) process. Five heat treatment states are selected as the initial
tempers for CAF, namely, solution, peak-aging (T6), over-aging (T73), retrogression and re-
solution. The formability and performance of an Al-Zn-Mg-Cu alloy with the above initial
tempers in creep aging process are investigated via using creep and stress relaxation aging
tests, mechanical property tests, corrosion resistance tests and microstructure analysis. The
differences of formability are attributed to the inhibitions of different distributed matrix
precipitates (MPts) on the dislocation movement, namely, the more coarsening theMPts is,
the easier the dislocation movement. During creep aging process, the mechanical proper-
ties are improved for the solution, retrogression and re-solution tempers with fine MPts,
but reduced for the T6 and T73 tempers due to coarsening ofMPts. Since the distribution of
grain boundary precipitates (GBPs) becomes discontinuous, the corrosion resistances of the
creep aged specimens are enhanced for all initial tempers. Taking both mechanical proper-
ties and corrosion resistances into account, the re-solution temper may be a preferable
choice to achieve high performance of the components beyond the precise shape in CAF.

Keywords: Al-Zn-Mg-Cu alloy, creep age forming, initial temper, precipitate, formability,
mechanical property, corrosion resistance

1. Introduction

With the increasing demands for high-performance and light-weight in the components of

aircraft and automobile, the Al-Zn-Mg-Cu (7xxx) series alloys have been widely used due to

their high strength and relatively low density. The precipitation reaction is the leading

strengthening mechanism in this class of alloys, and the precipitation sequence has been

generally identified as supersaturated solid solution ! Guinier-Preston (GP) zones ! η0
! η

(MgZn2) [1]. As a novel and promising forming technology, creep age forming (CAF) has been

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



developed and applied to manufacture large integral panel components, such as the upper

wing panels of Airbus A380, and both the upper and lower wing skins of B-1B0 Long Range

Combat Aircraft [2]. Compared to traditional manufacturing techniques, CAF has one of the

most prominent advantage, namely, due to the simultaneity of creep deformation and age

hardening, the shape forming process and the material strengthening process can be inte-

grated into one single process, thus reducing the cost of manufacturing.

The complexity of CAF lies in the strong interaction coupling between creep and aging.

Specifically, the precipitates generated in aging process will significantly hinder dislocation

movement. Inversely, the dislocation density variation induced by creep deformation will

affect the nucleation and growth of precipitates. Therefore, it is very difficult to precisely

control the product shapes and material properties. Furthermore, it is well known that the Al-

Zn-Mg-Cu alloys have many heat treatment states, and any one of the states can be the initial

temper of the material used in CAF. Various initial tempers inevitably cause different cou-

plings between creep and aging, and then make it difficult to precisely control the CAF process

[3]. In order to acquire the high performance of formed components beyond the precise shape,

it is very necessary to study the dependences of formability and performance on the initial

tempers of Al-Zn-Mg-Cu alloys during CAF.

A lot of experimental studies mainly aimed at finding out the effects of processing parameters

on CAF. Arabi Jeshvaghani et al. [4, 5] studied the effects of time and temperature on micro-

structure evolution of 7075 aluminum alloy sheet during CAF, and observed the transmission

electron microscope (TEM) bright field images of matrix precipitates (MPts) and grain bound-

ary precipitates (GBPs) in the formed samples after different forming periods, 6, 12 and 24 h,

respectively. Guo et al. [6] found that the external elastic tensile stress promotes the formation

of precipitates and shortens the aging period of an Al-Zn-Mg-Cu alloy. Lin et al. [7] found that

the main precipitates of Al-Zn-Mg-Cu alloys during creep aging process are metastable η0 and

stable η phases, and both of them are sensitive to the external factors, such as applied stress

and aging temperature. Chen et al. [8] found that the applied stress induces the coarsening of

precipitates in 7050 aluminum alloy during creep aging process, and both yield strength (YS)

and tensile strength (TS) of the creep aged samples are lower than those of the stress-free aged

samples. Lin et al. [9] studied the relationship between exfoliation corrosion (EXCO) sensitivity

and creep aging process conditions, and found that the EXCO resistance of an Al-Zn-Mg-Cu

alloy first increases and then decreases with the increase in stress and temperature. Li et al. [10]

investigated the creep aging behaviors of an Al-Cu-Li alloy with different initial tempers,

namely, solution, under-aging and peak-aging, and revealed there is a close relationship

between creep mechanism and initial temper.

In view of the large springback occurred in the unloading process, many numerical studies

mainly aimed at predicting springback after CAF to improve the forming precision. Based on

the damage theory by Kowalewski et al. [11] and the conventional creep damage model [12],

Ho et al. [13] proposed a unified creep constitutive model, and simulated the whole CAF

process including loading, forming and unloading by using this constitutive model combined

with the commercial finite element solver ABAQUS. Based on this work, Jeunechamps et al.

[14] suggested a unified creep aging constitutive model considering the age hardening during
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CAF, in which the nucleation and growth of precipitates were related to the creep deformation.

Lin et al. [15] introduced an integrated process to model stress relaxation, creep deformation,

precipitation hardening and springback in CAF. Zhan et al. [16] developed a microstructure

internal variables based creep aging constitutive model, which can describe the YS evolution

through integrating the contribution of each hardening mechanism, namely dislocation hard-

ening, age hardening and solution hardening.

It is noted that the initial tempers of aluminum alloys in above experiments and modeling are

mostly solution temper, and the effects of various initial tempers on deformation and proper-

ties of Al-Zn-Mg-Cu series alloys in CAF are rarely reported. Therefore, in order to clearly

understand the interaction between creep and aging, and achieve both high-precision forming

and mechanical property improvement, this study focuses on investigating the effects of initial

tempers on formability and performance of Al-Zn-Mg-Cu series alloys. In terms of creep

deformation and stress relaxation, the formability of an Al-Zn-Mg-Cu alloy with various initial

tempers under CAF conditions is evaluated firstly. Then, the evolution of microstructures and

performance are revealed. Finally, based on the relations among creep deformation, material

properties and microstructure evolution, the effects of initial tempers on formability and

performance are discussed.

2. Experimental procedures

2.1. Specimen preparation and heat treatment for various initial tempers

A typical commercial 7050 aluminum alloy (AA7050) hot rolled plate with 30 mm thickness

was used in this work, which belongs to the heat-treatable high strength Al-Zn-Mg-Cu series

alloys. This alloy was provided by Northeast Light Alloy Co., Ltd., Harbin, China, and its

chemical composition (wt.%) was verified by a SPECTRO MAXx direct-reading spectrometer,

as listed in Table 1. The as-rolled Al-Zn-Mg-Cu alloys have been certified as containing coarse

constituent particles (Al7Cu2Fe and Mg2Si) and fine intermetallics (MgZn2 and Al2CuMg). The

fine intermetallics can be dissolved by subsequent solution treatment, but the coarse constitu-

ent particles are quite stable and insoluble [17, 18]. The creep aging test specimens with the

gauge length of 50 mm and thickness of 3 mm were machined out from the hot rolled plate by

wire electrical discharge machining (WEDM) along the rolling direction, and their geometry

and dimensions are shown in Figure 1.

In this work, five heat treatment states were selected as the material initial tempers in creep

aging tests. The solution temper is the most widely used material initial temper in industrial

CAF. The peak-aged (T6) and over-aged (T73) tempers are the most common delivery condi-

tions of AA7050. Since the retrogression and re-aging (RRA) treatment can help Al-Zn-Mg-Cu

Zn Mg Cu Zr Ti Fe Si Al

6.02 1.97 2.23 0.12 0.03 0.10 0.07 Bal.

Table 1. Chemical composition (wt.%) of as-received AA7050.
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alloys to simultaneously achieve high mechanical properties and excellent corrosion resistance

[19, 20], the retrogression temper is selected to be an initial temper. That is to say, the creep

aging process will play the role of re-aging in RRA. Nevertheless, Lin et al. [21] pointed out

that the narrow temperature-time window in RRA does not apply to the thick plate. Thus, the

re-solution and re-aging (RSRA) treatment with wider temperature-time window has been

developed in response to the similar effect as RRA, and the re-solution temper is chosen as one

of the initial tempers in this study [22]. Figure 2 shows various heat treatment procedures

conducted to obtain the designed initial tempers of AA7050.

• For the solution temper, the as-rolled material was subjected to a solution treatment at

470�C for 50 min and subsequent water quenching.

• The T6 temper was obtained by a peak-aging treatment at 120�C for 24 h.

• For the retrogression temper, the specimen with T6 temper had endured a retrogression

treatment at 200�C for 5 min in a salt bath.

• The T73 temper was obtained by a two-step aging at 115�C for 8 h and then 165�C for 16 h.

• For the re-solution temper, the specimen with T73 temper went through a re-solution

treatment including hot insulation at 470�C for 50 min and rapid water quenching.

Figure 1. Geometry and dimensions of creep aging test specimens (unit: mm).

Figure 2. Heat treatment procedures of AA7050 for obtaining various initial tempers: (a) solution, T6 and retrogression;

(b) T7 and re-solution.
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2.2. Creep aging and stress relaxation aging tests

The creep aging and stress relaxation aging tests were carried out on a 100 kN electronic

creep testing machine with special thermal environmental chamber. In the chamber, the

temperature fluctuation can be controlled to less than 1�C. The tests were conducted

under the aging temperature of 165�C to obtain more significantly creep deformation than

those under the conventional T6 treatment temperature of 120�C. The applied stress of

250 MPa was within the typical stress range in the actual CAF process [23], and loaded on

the specimen according to a loading speed of 0.5 mm/min. Meanwhile, in order to avoid

the serious over-aging, the testing time is reduced to 18 h from the T6 treatment time of

24 h [24].

The installation position of the specimen was located in the middle of the chamber. The

specimen was heated to 165�C, and then holds for 10 min before loading. The temperature

was monitored at three positions around the specimen, namely, the two ends and the middle of

the specimen. The change of gauge length on the specimen was measured by a high-precision

(5 � 10�4 mm) grating line displacement transducer.

• In creep aging tests, the applied stress of 250 MPa remained the same throughout the

creep deformation process. When the tests went on for 6 h, some tests were stopped as

interrupted tests to investigate the evolution of microstructure and performance during

CAF process.

• In stress relaxation aging tests, the applied stress of 250 MPa was a starting stress to obtain

a given strain which remained unchanged during the stress relaxation process.

2.3. Microstructure characterizations and performance tests

The nano-sized precipitate microstructures were analyzed using the TECNAL G2 F30

transmission electron microscope (TEM). A slice was cut from the creep aged or stress

relaxation aged specimen by WEDM, and then sanded to 60 μm thickness using sandpaper.

Some 3 mm diameter round pieces as the TEM specimens were blanked from the slice and

twin-jet electro-polished in a solution of 20% perchloric acid and 80% ethanol (in volume)

at �20�C and 20 V. The quantitative analysis of the MPts in TEM bright field image was

conducted by the Image-Pro Plus 6 software with no less than five images counted for each

specimen.

The performance of the creep aged and stress relaxation aged specimens examined in this

study is YS, TS, elongation, hardness, electrical conductivity, EXCO resistance and stress

corrosion crack (SCC) resistance. The YS, TS and elongation were tested by the tensile tests

conducted on a MTS CMT5205 electronic universal testing machine under the tensile speed of

2 mm/min. The hardness tests were carried out using a digital micro-hardness tester. Also, 10

tests were performed on each specimen to calculate an average. The electrical conductivity was

measured by the eddy current method. The SCC resistances were evaluated using the slow

strain rate tests (SSRT) in a corrosive environment of 3.5% NaCl. The accelerated EXCO tests

were carried out in a classic etchant consisted of 4.0 M NaCl, 0.5 M KNO3 and 0.1 M HNO3.

The specimen surfaces of EXCO tests were studied using a JEOL JCM-6000 scanning electron

microscope (SEM).
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3. Results

3.1. Creep deformation, stress relaxation and formability

Figure 3 shows the creep deformation and stress relaxation behaviors of AA7050 with different

initial tempers during creep aging and stress relaxation aging tests. In the constant-stress creep

aging tests under 165�C and 250 MPa, the specimens with four initial tempers of solution, T6,

retrogression and re-solution all exhibit typical creep behaviors including primary and steady

stages, but the specimen with initial temper of T73 represents primary and tertiary stages, as

shown in Figure 3(a). The primary creep stage lasts about 0.5 h and has a decrease of creep rate.

After that, the strain hardening caused by creep and the softening caused by structural recovery

gradually achieve a balance, and then the creep process enters into the second stage, namely

steady creep stage. Four creep strain curves almost overlap with each other before the first half of

steady stage. The bifurcation on those curves appears about 6 h later. After creep aging tests of

18 h, the largest creep strain is obtained in the T73 temper, and the least creep strain appears in

the re-solution temper. However, the specimens with initial tempers of T6 and T73 apparently

enter the tertiary creep stage. It means that the interior of material has generated a lot of

microdefects, which is no longer applicable to the manufacture of aviation components. Using

the amount of creep strain to evaluate the formability, the consequence of the creep aging

formability of the specimens with three initial tempers except T6 and T73 is retrogression >

solution > re-solution. The final creep strain for the retrogression temper is about 1.21 and 1.34

times than that for the solution and the re-solution tempers, respectively.

A practical CAF process usually involves loading, forming, and unloading stages. The work-

piece is fitted closely with the tool surface after loading stage, and its shape will remain

unchanged in subsequent forming stage until unloading. In the forming process, part of the

elastic deformation is transformed into an irreversible plastic (creep) deformation, and the

stress gradually decreases. Thus, the CAF process is more like a stress relaxation process [25].

After the forming stage, the stress cannot be released completely. The residual stress causes the

workpiece to produce a larger springback in the unloading stage. In general, the larger stress

relaxation signifies the better formability of CAF. Figure 3(b) shows the stress relaxation

curves of AA7050 with different initial tempers during the stress relaxation aging tests under

Figure 3. Creep deformation and stress relaxation behaviors of AA7050 with different initial tempers: (a) curves of creep

strain and creep rate; (b) curves of stress relaxation and relaxation rate.
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165�C and initiating stress of 250 MPa. The stress decreases for the five initial tempers are very

sharp in the beginning, and turn to slow in the later period. The T73 temper has the largest

relaxed stress, and the re-solution temper has the smallest relaxed stress. Comparing the

magnitude of relaxed stress, it can be seen that the order of formability of the specimens with

five initial tempers is T73 > T6 > retrogression > solution > re-solution. This result is consistent

with the above conclusion of creep aging tests. An inference can be drawn that the root cause

of stress relaxation is the occurrence of creep deformation.

3.2. Evolution of microstructures

3.2.1. Matrix precipitates

In the precipitation reaction of the Al-Zn-Mg-Cu alloys under the CAF condition, the metasta-

ble η0 phase and stable η phase are main precipitates and formed in the supersaturated

aluminum matrix. Figure 4 shows the MPt microstructures of AA7050 with different initial

tempers before the creep aging tests. Both η0 and η phases can affect the creep behavior, so

there is no special distinction between the types of precipitates. Figure 4(a) shows that there is

no obvious precipitate in the alloy with solution temper. Figure 4(b) displays many fine

precipitates with average radius of 2.8 nm and number density of 1.7 � 1018 cm�3 evenly

distributed in the matrix of alloy with T6 temper. Figure 4(c) represents some coarse pre-

cipitates with average radius of 4.3 nm and number density of 6.3 � 1017 cm�3 uniformly

Figure 4. TEM images of MPts of AA7050 with different initial tempers before creep aging tests: (a) solution; (b) T6; (c)

T73; (d) retrogression; (e) re-solution.
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distributed in the matrix of over-aged alloy. Through retrogression treatment for the peak-aged

alloy, parts of MPts has been dissolved, and the residual MPts have the average radius of

3.2 nm and number density of 5.5 � 1017 cm�3, as shown in Figure 4(d). Therefore, it can be

seen that the short-time retrogression treatment cannot dissolve the whole precipitates.

Figure 4(e) shows the sporadic MPts distributed in the matrix of re-solution treated alloy, and

the average radius and number density of these precipitates are 4.8 nm and 7.9 � 1014 cm�3,

respectively. This suggests that due to the higher temperature and longer insulation time of the

re-solution treatment, plenty of precipitates in over-aged alloy are dissolved, and only few

precipitates are remained and coarsened.

In Figure 3, some creep curves are almost overlapping in the early stage of the creep aging

process. It can be inferred that the initial microstructures have little effect on the creep defor-

mation. The different creep rates appear in about 6 h, and the reason can be attributed to the

different precipitate microstructures of AA7050 with different initial tempers after creep aging

tests of 6 h. It also can be seen that, in the creep aging tests, the minimum creep rates appear at

around 6 h, which indicates that the precipitate microstructures have the strongest effect on

creep deformation at this time.

In the creep aging process, due to the precipitation reaction, the size of the MPts is greatly

changed. Figure 5 shows the MPt microstructures of AA7050 with different initial tempers after

Figure 5. TEM images of MPts of AA7050 with different initial tempers after creep aging tests of 6 h: (a) solution; (b) T6;

(c) T73; (d) retrogression; (e) re-solution.
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the creep aging tests of 6 h. As shown in Figure 5(a), there are a lot of fine precipitates with an

average radius of 3.5 nm. Figure 5(b) and (c) presents that the MPts in the alloy with T6 and T73

tempers grow, respectively, to 6.3 and 7.4 nm. Figure 5(d) represents the microstructure evolu-

tion of the retrogression treated specimen, and all previous MPts are coarsened to an average

radius of 4.6 nm. This image clearly shows that, after the creep aging tests of 6 h, the size of MPts

in the alloy with retrogression temper is bigger than that with solution temper. In Figure 5(e),

since most of MPts in T73 temper are dissolved by the previous re-solution treatment, after the

creep aging tests of 6 h, a lot of new precipitates with small size are re-precipitated in the matrix

of the alloy with re-solution temper accompanied by the coarsening of previous residual pre-

cipitates. In calculating the size of the new precipitates, the initial average radius of previous

residual precipitates is set to be a threshold value. Excluding the precipitates which are bigger

than the threshold radius of 4.8 nm, the average radius of new precipitates is 2.9 nm. It can be

seen that the size of newMPts of re-solution tempered specimen is the smallest in the specimens

with five initial tempers after the creep aging tests of 6 h.

3.2.2. Grain boundary precipitates

Figure 6 shows the GBP microstructures of AA7050 with different initial tempers before the

creep aging tests. As shown in Figure 6(a), there is no obvious precipitate on the grain

Figure 6. TEM images of GBPs of AA7050 with different initial tempers before creep aging tests: (a) solution; (b) T6; (c)

T73; (d) retrogression; (e) re-solution.
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boundary of the specimen with solution temper. This indicates that the intermetallics of

as-rolled AA7050 have been dissolved by the solution treatment. Figure 6(b) shows that

the specimen with T6 temper has continuously distributed GBPs. By comparing Figure 6(b)

and (d), it can be found that the alloy with retrogression temper has slightly discontinuous

GBPs than that with T6 temper. This indicates that the role of short-time retrogression

treatment on the dissolution of precipitates is limited. Figure 6(c) shows that the specimen

with T73 temper has discontinuous GBPs with large spacing. The comparison between

Figure 6(c) and (e) shows that, through re-solution treatment, the GBPs become smaller

in size. It demonstrates that the re-solution treatment not only dissolve the MPts but also

the GBPs.

Figure 7 represents the GBP microstructures of AA7050 with different initial tempers after the

creep aging tests. The GBP microstructures of the specimen with initial temper of solution is

similar to that of T6 temper, namely continuously distributed GBPs, as shown in Figure 7(a).

Figure 7(b) shows that the GBPs in the specimen with T6 temper translate from continuous to

discontinuous in the creep aging tests. Figure 7(c)–(e) reveal the growth of previous GPBs in

the specimens with initial temper of T73, retrogression and re-solution, resulting in more

discontinuous grain boundary structures. Among them, the specimen with T73 temper has

the largest sized GBPs with the widest spacing.

Figure 7. TEM images of GBPs of AA7050 with different initial tempers after creep aging tests: (a) solution; (b) T6; (c) T73;

(d) retrogression; (e) re-solution.
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3.3. Evolution of material performance

3.3.1. Mechanical properties and electrical conductivity

Figure 8(a) illustrates the YS, TS and elongation of AA7050 with different initial tempers

before and after creep aging tests. It can be seen that the mechanical strength of the specimen

with initial temper of solution obtains the maximized promotion in the creep aging tests. On

the contrary, the mechanical strengths of the specimens with initial tempers of T6 and T73

reduce. Compared with solution and re-solution tempers, the specimen with initial temper of

retrogression has the highest strength before creep aging. However, the mechanical strength of

this specimen is significantly lower after creep aging. Its YS and TS are approximately 18% and

9% lower than those of the creep aged specimen with initial temper of solution. The YS and TS

of the creep aged specimen with initial temper of re-solution are only 4% and 2% lower than

those of solution temper. In addition, the sorting of elongations is the opposite to that of

mechanical strengths, namely T73 > T6 > retrogression > re-solution > solution.

Figure 8(b) shows the hardness and electrical conductivity of AA7050 with various initial

tempers before and after the creep aging tests. The contrast situation of hardness is identical

to that of strength. Tsai and Chuang [26] determined that the electrical conductivity of alumi-

num alloy may serve as an indicator of SCC resistance, so the electrical conductivity tests were

carried out as the circumstantial evidence for subsequent SCC resistance tests. It can be see

that, for each initial temper, the electrical conductivity of specimen increases with time. At the

end of creep aging process, the sequence of electrical conductivity is T73 > T6 > re-solution >

retrogression > solution.

3.3.2. SCC and EXCO resistances

In the SSRT, the index rtf is commonly used to evaluate the SCC resistance and calculated by [22]:

rtf ¼
tfe
tfc

(1)
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Figure 8. Performance change of AA7050 with different initial tempers before and after creep aging tests: (a) strength and

elongation; (b) hardness and electrical conductivity.
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where tfe is the time of specimen fracture in the corrosive environment and tfc is the

corresponding time in the atmospheric environment. The closer the rtf value is to 1, the better

the SCC resistance.

Table 2 lists the rtf values of creep aged AA7050 with different initial tempers. After creep

aging process, the specimens with initial tempers of T6, T73 and re-solution have better SCC

resistance than those with initial tempers of solution and retrogression.

In the accelerated EXCO tests, the corrosion products gradually break away from the specimen

surface. Figure 9 displays the surface morphology of the creep aged specimens continuously

immersed in the EXCO solution for 48 h. The creep aged specimen with initial temper of

solution has been seriously corroded, and a mass of corrosion products is detached from the

metal surface. There are negligible corrosion phenomena which occur in the creep aged

specimens with initial tempers of T6 and T73. For the retrogression temper, there are some

cracks appeared on the metal surface. Conversely, some tiny cracks can be found on the surface

of the creep aged specimen with initial temper of re-solution.

Using EXCO grade to evaluate the degree of corrosion, the total EXCO behavior can be classified

into six grades, namely free of obvious corrosion (expressed as N), slight pitting (P), growing

pitting (EA), slight surface crack (EB), corrosion peeling and blister (EC) and corrosion product
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Figure 9. EXCO morphologies of creep aged AA7050 with different initial tempers: (a) solution; (b) T6; (c) T73; (d)

retrogression; (e) re-solution; (f) corresponding EXCO grade evolution.

Initial temper Solution T6 T73 Retrogression Re-solution

rtf value 0.724 0.972 0.987 0.903 0.956

Table 2. rtf values of AA7050 with different initial tempers after creep aging tests.
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shedding (ED). Figure 9(f) shows the EXCO grade evolution of the creep aged AA7050 with

various initial tempers during the EXCO tests, and it can be found that the degree of EXCO

aggravates with immersion time.

4. Discussion

4.1. Issue of formability

4.1.1. Deformation mechanism

In CAF process, the creep strain rate can be described by [27, 28]:

_εc ¼ Aσnexp �

Q

RT

� �

(2)

where σ is the instantaneous stress and A, n, Q, R and T are material constant, stress exponent,

deformation activation energy, universal gas constant and Kelvin temperature, respectively.

Translating the both sides of Eq. (2) into logarithmic form, the strain rate-stress double loga-

rithmic curves as shown in Figure 10. The data of strain rate and stress are taken from the

stress relaxation curves in Figure 3. Just to be clear, because the creep deformation of T6 and

T73 tempers enters into the tertiary stage, these two tempers are not take into account of the

discussion for deformation mechanism.

Figure 10(a) shows that each strain rate-stress double logarithmic curve consists of three

straight lines corresponding to three different stages in the stress relaxation aging process,

namely primary, transition and steady stages. The inflection point between two intersecting

straight lines indicates that there is a threshold stress occurred in the transformation of two

adjacent stages [25]. Since the threshold stress is the minimum stress required for creep

deformation, the different threshold stresses can reflect the differences of CAF formability.

Figure 10. Strain rate versus stress double logarithmic curves of AA7050 with different initial tempers during stress

relaxation aging tests: (a) total curves; (b) local enlargement in the circle.
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In other words, the smaller threshold stress means the better formability. Table 3 lists the

upper and lower threshold stresses in CAF at 165�C for the specimens with solution, retro-

gression and re-solution tempers. When the stress drops lower than the upper threshold stress,

the strain rate reduces sharply, and the CAF process enters into the transition stage from the

primary stage. When the stress falls below the lower threshold stress, the forming process

enters into the final steady stage. Whether upper or lower threshold stresses, the order of

various initial tempers is re-solution > solution > retrogression. It means that the retrogression

temper corresponds to the best CAF formability.

The dominant mechanism of creep deformation can be reflected from the stress exponent

n [28], which can be calculated through fitting the slopes of strain rate-stress double logarith-

mic curves of the steady stage in stress relaxation process. Figure 10(b) shows that the values

of stress exponent n in the steady stage CAF at 165�C for the AA7050 with solution, retrogres-

sion and re-solution tempers are 8.7, 7.3 and 9.5, respectively. The value of n less than 2

indicates that the creep deformation mechanism mainly is diffusion. While the value of n

greater than 4 means that the creep deformation is controlled by dislocation movement,

including dislocation slip and dislocation climb [29]. It follows that the dominant deformation

mechanism of AA7050 in the creep aging process under 165�C is dislocation creep.

4.1.2. Formability and MPts

Since the dislocation movement is affected by the size and distribution of the MPts, there is a

direct relationship between the precipitate microstructures and formability of AA7050 during

CAF. By comparing the precipitate microstructures of the specimens with different initial

tempers after the creep aging tests of 6 h in Figure 5, it is shown that the specimen with initial

temper of T73 has the largest MPts, and the specimen with initial temper of re-solution has the

smallest MPts. It well known that the small-sized precipitates will be cut by dislocation during

plastic deformation process of metal, while the big-sized precipitates will be bypassed. Thus,

the AA7050 with initial temper of T73 has the best formability because of its big-sized

precipitates are bypassed by the moving dislocation, but the alloy with initial temper of

re-solution has the worst formability since its small-sized precipitates pin the dislocation [30].

4.2. Issue of performance

4.2.1. Mechanical properties and MPts

It is generally known that the main influencing factor for mechanical properties of the heat-

treatable aluminum alloys is the size of MPts. Since its fine MPts similar to the T6 temper, the

specimen with initial temper of solution has the highest YS and TS after creep aging tests.

Because there is only the coarsening action of MPts, the mechanical strength of the specimens

Initial temper Solution Retrogression Re-solution

Upper threshold stresses (MPa) 229.8 225.1 232.9

Lower threshold stresses (MPa) 223.9 218.7 228.8

Table 3. Upper and lower threshold stresses of AA7050 with various initial tempers in CAF at 165�C.
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with initial tempers of T6 and T73 has actually lowered. In the creep aged specimen with initial

temper of re-solution, the re-precipitation takes place in the creep aging process, thus the fine

MPts leads to the higher strength which close to the strength of T6.

4.2.2. Corrosion resistance and GBPs

The corrosion resistance of Al-Zn-Mg-Cu alloys is directly determined by grain boundary

structure. The continuously distributed GBPs can create an anodic corrosion channel, where a

galvanic reaction will occur between the GBPs as anode and the aluminum matrix as cathode

in a corrosive environment [31]. For the solution and retrogression tempers, since their creep

aged specimens have continuous GPBs, these two tempers show higher sensitivity of EXCO

and SCC. Conversely, the discontinuous GPBs of the creep aged specimens with initial temper

of T6, T73 and re-solution cannot form effective anodic corrosion channel, thus these three

tempers have better corrosion resistances. The SCC mechanism of the Al-Zn-Mg-Cu alloys is

also considered to be the effect of hydrogen embrittlement except the anodic dissolution [21].

Figure 11. Multiple performance indexes of creep aged AA7050 with different initial tempers.
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The small and continuous GBPs in solution and retrogression tempers cannot capture hydro-

gen atoms, then the SCC easily occurs on the grain boundary where concentrated a bunch of

hydrogen atoms. Rather, the large and discontinuous GBPs in T6, T73 and re-solution tempers

as the pitfalls of hydrogen atoms avoid the mass concentration of hydrogen atoms in the grain

boundary, leading to the low SCC sensitivity.

4.3. Comprehensive evaluation by multiple indexes

Figure 11 displays the various material performances of AA7050 with various initial tempers,

which are tested 18 h under creep aging tests conditions of 165�C and 250 MPa. When the tests

comes to the end, only the specimen with initial temper of re-solution is absolutely still in the

steady creep stage. This shows that it has the potential to sustain a longer CAF period. The

mechanical properties of the creep aged specimen with initial temper of re-solution are very

close to those of solution temper as the best case, and much more than those of T6, T73 and

retrogression. Furthermore, the corrosion resistances of the creep aged specimen with initial

temper of re-solution are very close to the best case in T73 temper.

Taking the both requirements of forming precision and material performance into account, a

conclusion can be drawn by comparing the multiple indicators shown in Figure 11. The

re-solution is the best choice for the initial temper of Al-Zn-Mg-Cu alloys in CAF under the

given conditions, that is, the temperature of 165�C and the stress of 250 MPa.

5. Conclusions

In terms of the creep deformation and stress relaxation, as well as corresponding properties

tests and microstructure observations, the effects of initial tempers on the creep aging form-

ability and performance of an Al-Zn-Mg-Cu alloy (AA7050) have been studied under CAF

conditions. The main findings can be summarized as follows:

1. Using various heat treatment methods, five material states of AA7050 are obtained to

serve as initial tempers for CAF, namely, solution, T6, T73, retrogression and re-solution.

The microstructure analyses show that there is no obvious MPts in the alloy with solution

temper. The retrogression temper is transformed from T6 temper through retrogression

treatment which makes slight reduction of MPts density and discontinuous distribution of

GBPs. The re-solution temper is converted from T73 temper by re-solution treatment

which fully dissolves the MPts and makes the GBPs smaller.

2. The T73 temper has the best formability, and the worst presents in the re-solution temper.

Through calculating the stress exponents, it can be seen that the CAF of AA7050 under the

given thermal-mechanical conditions is mainly controlled by dislocation creep. The TEM

observations of the specimens after the creep aging tests of 6 h show that the T73 temper

has the biggest sized MPts which can be bypassed by the moving dislocation, thus it has

the best formability; the reason of the worst formability appeared in re-solution temper is

that the alloy has the smallest sized MPts which can pin down the moving dislocation.

Aluminium Alloys – Recent Trends in Processing, Characterization, Mechanical behavior and Applications114



3. The mechanical properties of the creep aged specimens with various initial tempers are

different. After creep aging, the specimens with initial tempers of solution and re-solution

show almost same high mechanical properties than that of T6, T73 and retrogression. Its

reason is that the creep aged specimens with initial tempers of solution and re-solution has

fine and homogeneous MPts, while the MPts of the creep aged specimens with initial

tempers of T6, T73 and retrogression grow up obviously. The discontinuous GBPs lead to

the better EXCO and SCC resistance of the creep aged specimens with initial tempers of T6,

T73 and re-solution. Conversely, the continuous GBPs result in the higher corrosion suscep-

tibility of the creep aged specimens with initial tempers of solution and retrogression.

4. In order to achieve the dual objective of precise forming and performance improvement,

the comprehensive assessment on multiple performance indexes indicates that the

re-solution is the best choice for the initial temper of Al-Zn-Mg-Cu alloys in CAF under

the given conditions. Re-solution temper has the potential to withstand long forming

period and can bring excellent mechanical properties and corrosion resistances.
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