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Abstract

This chapter describes spin-wave excitations in nanosized dots and rings in the presence
of the vortex state. The special attention is paid to the manifestation of the competition
between exchange and dipolar interactions in the spin-wave spectrum as well as the
correlation between the spectrum and the stability of the vortex. The calculation method
uses the dynamic matrix for an all-discrete system, the numerical diagonalization of
which yields the spectrum of frequencies and spin-wave profiles of normal modes of the
dot. We study in-plane vortices of two types: a circular magnetization in circular dots
and rings and the Landau state in square rings. We examine the influence of the dipolar-
exchange competition and the geometry of the dot on the stability of the vortex and on
the spectrum of spin waves. We show that the lowest-frequency mode profile proves to
be indicative of the dipolar-to-exchange interaction ratio and the vortex stability is
closely related to the spin-wave profile of the soft mode. The negative dispersion rela-
tion is also shown. Our results obtained for in-plane vortices are in qualitative agree-
ment with results for core-vortices obtained from experiments, micromagnetic
simulations, and analytical calculations.

Keywords: magnetic dot, in-plane vortex, spin waves, stability, dipolar-exchange com-
petition

1. Introduction

One of the hottest topics nowadays are small magnetic dots and rings with a thickness in a

range of few tens of nanometers and the diameter ranging from one hundred nanometers to a

few micrometers. A strong interest in such systems originates from their potential applicability

as well as rich physics [1]. The physical properties of magnetic nanodots are related mostly to

the concurrence of two types of magnetic interactions, namely exchange and dipolar ones.

Usually, the coexistence of long- and short-distance interactions leads to new phenomena, such
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as surface and subsurface localization of the spin waves in layered magnetic systems [2, 3],

opening of the band gaps in magnonic crystals [4, 5], or splitting the spin-wave spectrum into

subbands in patterned multilayers [6, 7]. In the case of exchange and dipolar interactions, the

situation is even more interesting due to competitive effects of these two schematically shown

in Figure 1.

The favorable alignment of two magnetic moments (also called them spins) coupled via

exchange interaction depends on the sign of the so-called exchange integral, J, regardless of

their mutual position. If J > 0 the spins are parallel (ferromagnetic, FM, coupling) while for

J < 0 the spins are antiparallel (antiferromagnetic, AFM, coupling). Dipolar coupling, on the

other hand, depends on the mutual positions of spins being FM if the spins are aligned one

after another and AFM for spins alongside one another (see Figure 1). As a result, the ferro-

magnetic exchange interaction forces parallel configuration of spins leading to the magnetic

monodomain whereas pure dipolar interaction leads to the in-plane alignment of spins and so-

called labyrinth magnetic structures [8]. Additionally, the dipolar interaction is a long range

one and consequently very sensitive for size and shape of the sample while the exchange

interaction is local. Thus, the competition between these two also depends on the size and

shape of the system.

The concurrence of these to competitive interactions is the origin of the variety of possible

magnetic configurations and leads to the occurrence of magnetic vortices in nanosized dots

and rings [9–12]. In the vortex configuration, a magnetization component lying in the plane of

the dot forms a closure state. Depending on the shape of the system, this in-plane magnetiza-

tion can be realized as a circular magnetization in circular dots and rings or as a Landau state

(closure domain configuration) in square rings, as shown in Figure 2a. In square dots,

Figure 1. Exchange vs. dipolar interactions. Preferred configuration of magnetic moments depends on the sign of the

exchange integral J for the exchange interaction while on the alignment of magnetic moments for the dipolar interaction.

Figure 2. (a) Different preferred configurations of the in-plane magnetization component in dots of different shape. (b)

Core-vortex vs. in-plane vortex.
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according to the simulations [13], the magnetic configuration is a mixture of these two states:

along borders Landau state appears, which is the effect of the minimization of the surface

magnetic charges, while in the central part of the dot, the magnetization is circular as a result

of the tendency to decrease the (local) exchange energy. The area of circular magnetization is

relatively small; therefore, in large-square dots, the Landau state prevails in the major part of

the dot. However, in small dots, the circular in-plane magnetization fails to fit the geometry of

the system only in minor corner regions.

For strong exchange interaction, the circular in-plane configuration is not enough to minimize

the exchange energy at the vortex center (which is not necessary the dot center, however, for

the stable vortex its center is in close vicinity to the center of the dot). As a consequence, spins

at the center are rotated from their in-plane alignment (forced by dipolar interactions) forming

so-called vortex core, a tiny region with a nonzero out-of-plane component of magnetization

(Figure 2b). In typical ferromagnets, such as cobalt or permalloy, the exchange interaction is

strong thus in experiments the vortex core is observed [14–16]. In rings, the center of the vortex

is removed from the sample, thus the magnetization lies in the plane of the dot throughout its

volume [17] except rings with extremely small internal radius [18]. The potential applications

of the magnetic vortex itself increase from the possibility of the switching of core polarity (up

or down) and chirality (the direction of the in-plane magnetization: clockwise, CW, or coun-

terclockwise, CCW), and these two can be switched independently [19, 20].

In square dots, beside the vortex core, domain walls appear as well at the borders between

domains. Roughly speaking, there are two types of domain walls: with and without nonzero

out-of-plane magnetization (Bloch and Néel type, respectively) [21]. Thus, in the first case, the

total out-of-plane magnetization is not zero even without the vortex core. Consequently, the

out-of-plane magnetization can differ from zero in square rings in which the core does not

appear. As we will show later, the preferred type of domain walls depends on the competition

between exchange and dipolar interactions.

There are two types of magnetic excitations in magnetic dots in the vortex state. First one is a

gyrotropic mode, i.e., the precession of the vortex core around the dot center. This is a low-

frequency excitation with the frequency usually in the range of hundreds of MHz, and it can be

utilized to microwave generation [22, 23]. The second type are spin waves; high-frequency

excitations with the frequency of several GHz [24]. The spin-wave excitations are normal

modes of the confined magnetic system similar to the vibration of the membrane. They prove

to be of a key importance for the vortex switching [25], can be used to generate the higher

harmonics of the microwave radiation [26], and have a significant influence on the vortex

stability [27, 28].

In this chapter, we study the stability of the magnetic vortex state and the spin-wave excita-

tions spectrum in two-dimensional (2D) nanosized dots and rings in their dependence on the

competition between dipolar and exchange interactions. We use a very efficient method based

on the discrete version of the Landau-Lifshitz equation. Our theoretical approach is described

in Section 2. In next sections, we present our results starting with the circular dot in which the

in-plane circular vortex is assumed as a magnetic state. In Section 3, we analyze an exemplar

spin-wave spectrum of the dot showing typical effects such as the negative dispersion relation
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and the influence of the lattice symmetry on the spin-wave spectrum. In Section 4, we examine

the stability of the in-plane vortex vs. the dipolar-to-exchange interaction ration (d) and the size

of the dot. The influence of the competition between dipolar end exchange interactions on the

spin-wave spectrum of a dot is studied in Section 5. In next two sections, we consider the

influence of the spin-wave profile of the soft mode on the vortex stability in circular (Section 6)

and square rings (Section 7). Finally, we provide some concluding remarks in Section 8.

2. The model

The object of our study is a dot (ring) cut out of a 2D lattice of elementary magnetic moments

(Figure 3). For circular dots, the external size L is defined as the number of lattice constants in

the diameter of the circle used for cutting out the dot. The internal size of the ring, L′, is the

radius of the inner circle (in units of the lattice constant). For square rings, Lmeans the number

of lattice sites along the side of the square. Similarly, L′ means the side of the removed square.

In linear approximation used in this work, the magnetic moment MR, where R is the position

vector, can be expressed as a sum of two components: static, M0;R, and dynamic, mR, with the

assumption that jmRj≪jMRj, jM0;Rj≃jMRj, andmR⊥M0;R. For any magnetic moment within the

dot, we can define a local Cartesian coordinate system as follows: unit vector iR is parallel to

the static componentM0;R, unit vector jR is oriented toward the vortex center lying in the plane

of the dot, and unit vector kR is the third Cartesian unit vector being perpendicular to the other

two. In this coordinate system, a dynamic component of the magnetic moment is

mR ¼ mj,RjR þmk,RkR, where mj,R and mk,R we will refer to as in-plane and perpendicular

coordinates of the magnetic moment, respectively. For in-plane vortices, the last component is

always perpendicular to the plane of a dot.

The time evolution of any magnetic moment MR is described by the damping-free Landau-

Lifshitz (LL) equation, which in the linear approximation reads:

i
ω

γμ0

mR ¼ M0;R · hR þmR ·HR, (1)

Figure 3. Schematic plots of two in-plane vortices typical for two types of rings: (a) a circular magnetization in a circular

ring and (b) closure domains (Landau state) in a square ring. Both rings are based on a 2D square lattice with magnetic

moments (represented by the arrows) arranged in the lattice sites. To the right in figure (a), the local coordinate system

associated with the magnetic moment indicated by the arrow.
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where i is the imaginary unit, γ is the gyromagnetic ratio, μ0 is the vacuum permeability, and ω

is the frequency of harmonic oscillations of mR. HR and hR are static and dynamic components

of the effective field Heff
R ¼ HR þ hR acting on the magnetic moment MR.

In this work, we consider exchange-dipolar systems only thus the effective field consists of two

components:

Heff
R ¼

2J

μ0ðgμBÞ
2

∑
R′
∈NN

MR′ þ
1

4πa3
∑

R′≠R

3ðR′−RÞ
�

MR′ � ðR′−RÞ
�

jR′−Rj5
−

MR′

jR′−Rj3

0

@

1

A:

The first term comes from the exchange interaction and can be derived from the Heisenberg

Hamiltonian under the condition of uniform interactions. Since we restrict ourselves to nearest

neighbor (NN) interactions the summation runs over NNs of the magnetic momentMR. Here J

is the NN exchange integral, μB is the Bohr magneton, and g is the g-factor. The second term is

a typical dipolar sum over all magnetic moments within the sample except MR. The position

vectors R are expressed in the units of the lattice constant a.

From Eq. (1) one can derive the system of equations of motion for dynamic components of all

magnetic moments as follows:

iΩmr;R ¼ − ∑
R′
∈NNðRÞ

kR �mR′ þmk;R ∑
R′
∈NNðRÞ

iR � iR′

−d ∑
R′≠R

3½ðR′−RÞ � kR�½ðR
′−RÞ �mR �

jR′−Rj5
−
kR �mR′

jR′−Rj3

 !

þmk;R ∑
R′≠R

3½ðR′−RÞ � iR�½ðR
′−RÞ � iR′ �

jR′−Rj5
−
iR � iR′

jR′−Rj3

 ! !

iΩmk;R ¼ ∑
R′
∈NNðRÞ

jR �mR′−mr;R ∑
R∈NNðRÞ

iR � iR′

þd ∑
R′≠R

3½ðR′−RÞ � jR�½ðR
′−RÞ �mR′ �

jR′−Rj5
−
jR �mR′

jR′−Rj3

 !

−mr;R ∑
R′≠R

3½ðR′−RÞ � iR�½ðR
′−RÞ � iR′ �

jR′−Rj5
−
iR � iR′

jR′−Rj3

 ! !

; ð2Þ

where Ω ¼ ðgμBωÞ=ð2γSJÞ is the reduced frequency of a spin-wave excitation, S is the spin (we

assume that all spins within the dot are the same thus any magnetic moment is equal

MR ¼ gμBS), and d is the only material parameter of the model referred to as a dipolar-to-

exchange interaction ratio given by:

d ¼
ðgμBÞ

2
μ0

8πa3J
: (3)

The above system of equations can be represented as an eigenvalue problem the matrix of

which is called a dynamic matrix. The diagonalization of the dynamic matrix leads to the

spectrum of frequencies and profiles of normal excitations of the dot. The spin-wave profile is

a spatial distribution of the dynamic components of magnetic moments, i.e., the distribution of

the amplitude of the magnetic moment precession. Dynamic components obtained from diag-

onalization are complex numbers with a phase shift π=2 between the real and imaginary part,

which gives T=4 shift in time, where T ¼ 2π=ω is a period of oscillations for a given mode.
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Usually, the distribution of these components obtained for the same mode is similar and differ

in the intensity only. Therefore, if the situation is clear, it is sufficient to provide one part (Re or

Im) of the one component (in-plane or out-of-plane) to explain the character of the mode. The

spin-wave profiles in circular dots are marked as (n, m) similarly to the vibrations of a

membrane, i.e., accordingly to the number of nodal lines in the radial (n) and azimuthal (m)

direction. The azimuthal modes occur in pairs: (n, −m) and (n, +m) with both modes of the

same character; thus, in this work we denote them just (n, m), with m denoting jmj.

3. Spin-wave spectrum of a circular dot

In Figure 4a shows an example of the spin-wave spectrum obtained for a circular dot of the

diameter L ¼ 101. The dot is cut out from the square lattice and contains 8000 spins. Amagnetic

configuration is assumed to form an in-plane vortex. The spectrum is calculated for the

dipolar-to-exchange interaction ratio d ¼ 0:42. The shape of the spectrum is typical for

exchange-dipolar systems: for low-frequency modes, the shape of the spectrum is determined

by the dipolar interaction, while for the high frequencies by the exchange one. Of course, the

spectrum is discrete, which is clearly seen in the inset where frequencies of 14 lowest modes

Figure 4. (a) An exemplar spin-wave spectrum calculated for the circular dot of the diameter L ¼ 101 lattice constants

consists of 8000 spins. The in-plane vortex configuration is assumed and the dipolar-to-exchange interaction ratio d is set

to 0.42. The inset shows 14 lowest modes of the spectrum. (b) Spin-wave profiles of 14 lowest modes of the spectrum

shown in (a).
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are presented. Among these modes, one can distinguish a pairs of modes of the same frequen-

cies. For example, modes 1 and 2, 7 and 8, 9 and 10, or 13 and 14 are degenerate in pairs. On the

other hand, modes 3–6, 11 and 12 have unique frequencies.

To investigate this feature, we provide spin-wave profiles of the lowest eight modes in

Figure 4b. As we can see that these 14 modes include seven pairs of modes with the same

absolute value of the azimuthal number. Degenerate modes are of the odd azimuthal number:

(0,3) modes 1 and 2, (0,5) modes 7 and 8, (0,1) modes 9 and 10, and (0,7) modes 13 and 14. In

contrast, for even azimuthal numbers, degeneration is lifted. This originates from the discrete-

ness of the lattice the dot is cut out from. If the symmetry of the profile matches the symmetry

of the lattice, the degeneration is removed. For example, mode 3 has two nodal lines coincide

with high-spin density lines (along the x and y axes in Figure 3a). Its counterpart, i.e., mode 4 is

rotated by π=4 having antinodal lines along the high-spin density lines. This situation is

analogous to the boundary of the Brillouin zone in the periodic system where the energy gap

appears between two excitations: one having nodes in the potential wells and the other one

having antinodes. Indeed, if the dot is based on the square lattice it can be considered as a

system periodic in the azimuthal direction. A unit cell in this case corresponds to a quarter of

the dot and is delimited by high-spin density lines. In such picture, one-half of the wavelength

of modes (0,2) fits the unit cell with nodes or antinodes at the unit cell boundary. The same rule

holds for hexagonal lattice where the degeneration is lifted if the azimuthal number is divisible

by 3 [29]. It is worth to noting that there is also another type of degeneracy lifting caused by the

coupling of the azimuthal modes with the gyrotropic mode [30, 31] which is not related to the

discreteness of the dot and appears even for first-order azimuthal modes. In our work, this is

not the case since we assume coreless vortex as a magnetic configuration.

For the dot under consideration, radial and azimuthal numbers are related to the wave vector

in the corresponding direction. Thus, the spectrum shown in Figure 4 exhibits negative dis-

persion relation for modes (0,1), (0,2), and (0,3), i.e., for this modes, the frequency decreases

with an increase of azimuthal number. Such negative dispersion was also observed for core-

vortices in circular dots experimentally [32, 33] and by means of analytical calculations [34, 35].

It was found that in a dot of a fixed thickness the increase in the diameter will cause the mode

order to change, namely it will cause the negative dispersion to be stronger (the modes with

higher azimuthal numbers will descend the spectrum). We show that this effect originates in

the influence of the dipolar interaction regardless it is enhanced by the size of the system or by

change of the dipolar-to-exchange interaction ratio.

4. Stability of the in-plane vortex

The dependence of the spin-wave spectrum on d is shown in Figure 5 for the dot under

consideration (L ¼ 101, 8000 spins). For intermediate values of the dipolar-to-exchange inter-

action ratio, there are no zero-frequency modes in the spectrum which means that the assumed

in-plane vortex is a (meta)stable magnetic configuration (see, e.g., our discussion in reference

[36]). Going toward smaller values of d the exchange interaction gains the importance until
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d ¼ d1. From this point, the frequency of the lowest mode is zero and the in-plane vortex is no

more stable (or even metastable); the lowest mode becomes the nucleation mode responsible

for the reorientation of the magnetic configuration. The profile of this mode reflects the

tendency of the system to find a new stable state. Since this transition is forced by the exchange

interaction we will call it the exchange-driven reorientation (transition). While d increases,

which means the dipolar interaction gains the importance, another transition appears for

d ¼ d2. In this case, the reorientation is caused by prevailing dipolar interaction; thus, it is

referred to as dipolar-driven reorientation (transition). This behavior reflects the origin of the

vortex state: the competition between dipolar and exchange interaction.

The importance of the dipolar interaction depends, besides its dependence on d, also on the

size of the system. Therefore, the critical values of d should change with the dot size. Figure 6a

shows critical values d1 and d2 vs. the number of spins,N, in which the dot consists of (which is

equivalent to change of the dot diameter since the system is 2D). The critical value d2 (for the

dipolar driven reorientation) clearly depends on N, especially for small dots. Surprisingly, for

the exchange-driven reorientation the critical value d1 ¼ 0:1115 and is constant in the whole

range of the dot size, i.e., from 60 to 8000 spins (L ¼ 9−101). (The same value and behavior of d1
is reported in reference [37] where circular dots are studied by means of Monte Carlo simula-

tions.)

To address this behavior of critical values in Figure 6b, we provide profiles of the lowest mode

for two values of d, for d≈d1 (left profile) and for d≈d2 (right profile), for L ¼ 23 (408 spins). Both

profiles are localized at the vortex center but the localization near d1 is much stronger than for

d2. The reorientation at d1 is forced by the exchange interaction which is local and thus the

dynamic interaction (between dynamic components of magnetic moments), confined to the

very center of the dot, is not sensitive to the size of the dot. (It is not sensitive to the shape of

the dot as well [28]). The second transition (d2) is forced by the long-range dipolar interaction

and the dynamic interaction of this type, although localized near the center, “feels” the dot size

even for rather big dots. However, due to the localization this effect fades for larger dots,

which is reflected in the d2 curve in Figure 6a.

For typical ferromagnetic materials, the dipolar-to-exchange interaction ratio has very small

value due to strong exchange. For example, using experimental data for ultrathin cobalt film

Figure 5. The frequency dependence on the dipolar-to-exchange interaction ratio d (in logarithmic scale) for 36 lowest

modes in the spin-wave spectrum of the circular dot of the diameter L ¼ 101 in the in-plane vortex state. The color

assignment is indicated at the right; the colors repeat cyclically for successive modes. There are no zero-frequency modes

between two critical values d1 and d2 which is indicative for the stability of the assumed magnetic configuration.
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[38] from the relationship (3) we obtain dCo ¼ 0:00043 which is far below d1. Consequently, in

such materials, the in-plane vortex is unstable regardless the size of the dot (since d1 is size

independent).

5. Competition between interactions

As seen from Figure 5, for the majority of modes the frequency decreases with increasing d but

with different rate. As a result, the order of modes in the spectrum changes with d; this effect is

particularly intensive at the bottom of the spectrum. In particular, the mode of the lowest

frequency has different symmetry of its profile in different ranges of d (compare Figure 7).

The modes with the decreasing frequency can be divided into two groups: first one contains

purely azimuthal modes (radial number equal zero). Within this group, the rate of the decreas-

ing frequency grows with the increasing azimuthal number. However, above c.a. 55 GHz, this

rate is visibly lower for another group of modes with the radial number 1. Within this second

group, the situation repeats: for the mode (1,m) the frequency decrease rate is almost the same

as for the mode (0,m) and it grows with increasing m. It shows that the impact of the dipolar-

to-exchange interaction ratio on the mode frequency is determined mainly by its azimuthal

number, the radial number being of little influence.

Besides the localized mode, there is one more mode in Figure 5 the frequency of which acts in

different way than the majority; in the broad range of d its frequency is almost constant. This

mode, called fundamental mode, is an analogue of the uniform excitation [35]. Its profile is

almost uniform within the dots without any nodal lines in azimuthal nor a radial direction

thus it is labeled as (0,0). Highly uniform profile is the origin of the independence of the

frequency of the fundamental mode on d.

As we already noticed that the mode order in the spin-wave spectrum is influenced by the

dipolar-to-exchange interaction ratio and by the size of the dot, thus influences the character of

the lowest mode. Figure 7a shows the dependence of the lowest mode frequency on d for

different size of the dot. Figure 7b and c provides mode profiles for some values of d for two

dot diameters: 51 and 101, respectively. Close to the critical value d1 the profile is strongly

localized at the vortex center regardless the dot size. This strong localization together with the

Figure 6. (a) Critical values d1 and d2 vs. the dot size (the number of magnetic moments within the dot, in logarithmic

scale) for circular dot in the in-plane vortex state. (b) Exemplar profiles of the lowest mode in circular dots for d≈d1 (left

profile) and for d≈d2 (right profile). Above each profile, its section along the indicated lines.
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short range of the exchange interaction (responsible for the magnetic reorientation below d1)

results in not only the independence of d1 on the size and shape of the dot but also the

frequency vs. d dependence is the same for the dot of any size. In this range of the dipolar-to-

exchange interaction ratio, the lowest mode is a soft mode but with growing d its frequency

increases rapidly and the mode ascend the spectrum very fast causing crossings with azi-

muthal modes of decreasing frequencies. After the first crossing, the azimuthal mode becomes

the lowest in the spectrum.

For small dots (L < 100), the mode (0,1) is the lowest one after crossing with the localized

mode. While d continues to increase till next crossing appears and (0,2) mode becomes the

lowest. The point of crossing of these modes shifts to the smaller d with increasing size of the

dot (see Figure 7a). Finally, for L ¼ 101, the crossing between modes (0,1) and (0,2) takes place

for lower d than the crossing with the localized mode. In a consequence, the first-order

azimuthal mode is not the lowest one for any d. On the other hand, higher order modes may

have the lowest frequency while d is growing (compare Figure 7b and c).

Here, we observe a general tendency of two interactions in question. The dipolar interaction

favors higher order azimuthal modes. Thus, modes with the increasing azimuthal number m

fall successively to the bottom of the spectrum as this type of interaction gains in importance

regardless of whether their strengthen is due to the size (L) or material (d) of the dot. The

exchange interaction in contrast favors modes with m = 1. Thus, the competition between the

exchange and dipolar interaction manifests itself not only in the preferred magnetic configura-

tion but also in the profile of the lowest frequency modes.

Figure 7. (a) The dependence of the lowest mode frequency vs. dipolar-to-exchange interaction ratio d (in logarithmic

scale) in circular dots of different diameter L with the in-plane vortex as a magnetic configuration. On every curve, the

crossing between first- and second-order azimuthal modes is marked with a black square (if exists). (b, c) Evolution of the

lowest mode profile with d in dots of diameters 51 and 101, respectively.
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This rule changes if the vortex is close to unstable, i.e., close to the critical value of d. In this

case, the soft mode is strongly localized at the vortex center. But even here this localized mode

has nodal lines in the azimuthal direction for strong dipolar interaction and uniform for strong

exchange interaction.

6. Circular rings

In circular rings, the central part of the dot is removed along with the vortex center. This causes

significant reduction in the influence of the exchange interaction and consequently should

result in the stabilization of the in-plane vortex for lower values of the dipolar-to-exchange

interaction ratio. Figure 8a shows the typical dependence of the spin-wave spectrum in circular

rings on d. The exemplar ring has external diameter L ¼ 25 and internal one L
′
¼ 2 which

means that only four central magnetic moments are removed from the dot. The overall charac-

ter of the picture is very similar to that for the dot shown in Figure 5 with two exceptions: the

range of the in-plane vortex stability and the behavior of the soft mode above d1. (The decreas-

ing of the frequency with growing d is much faster mostly due to the smaller external diameter.)

Just above d1 the frequency of the soft mode increases steeply, as a consequence of increasing

stability of the system, but before first crossing with the azimuthal mode the frequency slows

down and finally becomes almost independent on d. The profile of this mode is shown in

Figure 8b for d ¼ 0:01; it is no more localized. Instead of this, the mode is a fundamental mode

(0,0) being almost uniform within the ring. Due to the lack of the topological defect, there is no

reason for the localization.

Other profiles provided in Figure 8b illustrate the change of the character of the lowest mode.

Even if the external diameter of the ring is rather small, higher order azimuthal modes are the

lowest for large enough d: (0,3) for d ¼ 1:3 and (0,4) for d ¼ 2:0. In full dots these modes could

Figure 8. (a) The frequency dependence on the dipolar-to-exchange interaction ratio d (in logarithmic scale) for 25 lowest

modes in the spin-wave spectrum of the circular ring of the external diameter L ¼ 25 and the internal one L′
¼ 2 in the in-

plane vortex state. (b) The evolution of the lowest mode profile. Profiles are calculated for six values of d marked with

arrows in (a).
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be the lowest for c.a. 4 times larger diameter which reflects the change of the balance between

exchange and dipolar interaction after removing only few magnetic moments from the center

of the dot.

The removing of these four central magnetic moments has also great impact on the stability of

the in-plane vortex, as it should be expected. The critical value d1 decreases from 0.115 for the

full dot down to 0.0052 for the ring under consideration. However, this new critical value is

still much larger than the value of d in common ferromagnetic materials. Figure 9a shows the

change of the critical value d1 with increasing the internal diameter of the ring for four external

diameters: 23, 33, 43, and 63. In contrast to full dots in the rings d1 visibly depends on both

internal and external diameters (though for very small internal diameter the influence of the

external size is weak). The increase in any diameter of the ring enhances the stability of the in-

plane vortex. As a result, this magnetic configuration is stable even for such a material as

cobalt if the ring is large enough (d1 < dCo).

The enhancement of the in-plane vortex stability due to the increasing of its internal diameter

is rather obvious if we notice that the local exchange interaction between neighboring mag-

netic moments increases with decreasing distance from the vortex center (due to the change in

the angle between them). In this context, the removal of the bigger circle from the center of the

dot means the decreasing of the exchange interaction at the internal edge of the ring. Of course,

this change in the exchange energy at the border should be visible in spin-wave profiles. To

illustrate this effect, we calculate the profiles of the lowest mode for d≈d1 for the ring of the

external diameter L ¼ 23 and two different internal diameters, L′
¼ 2 and L

′
¼ 8, shown in

Figure 9b. Successive removing of the central part of the dot results in decreasing of the

amplitude of the magnetic moments precession (smaller intensity of the profile) at the internal

edge of the ring. On the other hand, the amplitude is slightly increased in the rest of the ring,

especially at the outer edge. For larger hole in the ring, the profile is almost uniform in radial

direction and d1 is very little dependent on L
′. This nonzero intensity of the spin-wave profile

Figure 9. (a) Critical value d1 vs. the internal diameter L′ of the circular ring for four external diameters L. The dashed line

in (a) indicates the value of d for Co/Cu(001) calculated from experimental results reported in reference [38]. (b) Spin-wave

profiles of the soft mode in circular rings calculated for d≈d1 for two internal diameters L′. The external diameter of rings is

fixed at L ¼ 23. To the right of each profile, its section along the indicated lines.
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reaching the external edge of the ring explains the influence of the external diameter on the

critical value d1.

7. Square rings

In square rings, the in-plane vortex takes the form of the Landau state (closure domain

configuration, see Figure 2). Unlike circular rings, here the magnetization along internal and

external edges has the same conditions (no curvature). Another difference is the existence

of domains walls. To see how these dissimilarities influence the in-plane vortex stability in

Figure 10a we show the critical value d1 vs. the internal size L
′ for square rings of different

external size L. Similarly to the circular rings, the removal of the central part of the dot results

in the drop of d1, i.e., the in-plane vortex becomes stable for stronger exchange interaction. The

critical value changes from 0.115 to 0.049. This time, in contrast to the previous case, this value

is constant for broad range of the internal size of the ring. Additionally, d1 does not depend on

the external size of the ring as well. Therefore, the in-plane vortex (with the domain walls of

Néel type) is not stable in square rings made from typical ferromagnetic materials.

To explain this behavior, Figure 10b shows spin-wave profiles of the lowest mode for d≈d1 for

square rings of the external size L ¼ 22 and three different internal sizes: L′
¼ 0 (full dot),

L
′
¼ 2, and L

′
¼ 16. Removing of the central part of a dot, even just few magnetic moments,

destroys the central localization of the lowest mode as it was in the case of circular dots, but

now the localization is shifted to the corners of the resultant ring. Such corner-localized profile

is not affected by the change of the size of the ring in large range of both, internal and external

size. Again, the strongly localized spin-wave profile together with the local character of the

exchange interaction causes the critical value of d for the exchange-driven reorientation to be

independent on the size of the system. The high amplitude of the spin wave at the corners

suggests also the increasing of the out-of-plane component of magnetization which means the

formation of the Bloch-type domain walls.

Figure 10. (a) Critical value d1 vs. the internal size L
′ of the square ring for four external sizes L. (b) Spin-wave profiles of

the soft mode in square rings calculated for d≈d1 for three internal sizes L′. The external size of rings is fixed at L ¼ 22.

Above each profile, its section along the indicated lines.
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8. Concluding remarks

In this chapter, we have shown our results concerning spin wave normal modes in nanosized

dots and rings in the presence of the in-plane magnetic vortex. In experiments, in-plane

vortices are observed in rings while in full dots made from typical ferromagnetic materials

(e.g., cobalt or permalloy) the vortex core is formed at the vortex center [30]. Our results

obtained for circular dots are consistent with this observation: in-plane vortex is stable in such

a system for very weak exchange interaction, much weaker than in usual ferromagnets. We

obtain the critical dipolar-to-exchange interaction ratio d1 ¼ 0:1115 (which corresponds to the

exchange integral J ¼ 0:058 eV) and this value is the same as received from Monte Carlo

simulations in reference [37]. This critical value does not depend on the size of a dot which is

also in agreement with simulations [37].

An interesting finding is the stability of the in-plane vortex in rings. In circular rings, the

removal of a central part of a dot brings the dependence of d1 on both diameters of the ring

(external and internal) and, consequently, the in-plane vortex becomes stable even for strong

exchange if the ring is large enough. In square rings, the situation is completely different: d1
does not depend on any size of the ring (except extremely narrow rings). The critical value d1 is

reduced in comparison with full dots though not enough to stabilize the in-plane vortex.

Therefore, in square rings made from usual ferromagnetic materials, the in-plane vortex is not

stable (due to the preferred type of domain walls).

For the in-plane vortex configuration in full dots we found similar phenomena as reported

from experiments, micromagnetic simulations, and analytical calculations, except those which

arise from the existence of the gyrotropic motion of the vortex core, e.g., the splitting of the

spin-wave frequency due to the coupling to the gyrotropic mode [31]. The qualitative

agreement between results for in-plane and core vortices is an effect of the existence of the

vortex center. Even without the out-of-plane component of the magnetization, the center of

the vortex plays the role of the topological defect in the same manner as the vortex core. This

defect acts as a nucleation center if d reaches its critical value and cause the localization of the

soft mode. On the other hand, the properties of the spin waves in the presence of the vortex

originate from the competition between exchange and dipolar interaction; thus the effects such

as negative dispersion relation or diversity of the lowest mode profiles are similar for both

types of vortices: with and without the core.

In our model, the dot is cut out from a discrete lattice which obviously has a consequence in

the results. If the symmetry of azimuthal modes matches the symmetry of the lattice, the

frequency of modes with opposite azimuthal numbers splits. Also the fundamental mode, an

analogue of the uniform excitation, has nonuniform spin-wave profile whose symmetry

reflects the symmetry of the lattice. (A similar effect was observed in micromagnetic simula-

tions due to the artificial discretization of a sample [39–41].) In the case of circular dots and

rings based on the discrete lattice, the edges are not smooth circles and cannot be smoothed as

it is in continuous systems with artificial discretization, e.g., in micromagnetic simulations [42].

With the size of the ring, the edge smoothness increases but even for rather small dots (a dozen

of lattice constants in the diameter) we obtain self-consistent results.
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In this work, the method described in Section 2 is used for 2D dots and rings but its

applicability is far beyond these simple systems. It can be used for 2D or 3D systems of an

arbitrary shape, size, lattice, or magnetic configuration. Moreover, if the exchange interac-

tion is neglected the method can be applied for nonperiodic systems too. Also interactions

taken into account are not limited to dipolar and exchange only (the model with the anisot-

ropy and the external field taken into account is derived in reference [43]). The main disad-

vantage of our approach is the lack of simulations; the assumption, instead of the simulation,

of the magnetic configuration is useful for very simple magnetic configurations only. On the

other hand, in comparison with time-domain simulations, the time of calculations is very

short, and the spin-wave spectrum is obtained directly from diagonalization of the dynamic

matrix (without the usage of the Fourier transformation). For simple magnetic configura-

tions, our results are in perfect agreement with simulations [37, 13, 44]. In the case of more

complicated systems, the simulations should be used for finding the stable magnetic config-

uration and for the simulated configuration the dynamical matrix method can be used to

obtain the spin-wave spectrum.
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