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Abstract

Growing bandwidth demands are driving the search for increased network capacity
leading to the exploration of new wavelength ranges for future communication systems.
Therefore, we consider two technologies that offer increased transmission bandwidths by
virtue of their high carrier frequencies, namely optical wireless and millimeter-wave
transmission. After highlighting the relevant electromagnetic (EM) spectrum region, we
briefly describe the applications and properties of each approach coupled with a short
history of their development. This is followed by a performance comparison in two
possible 5G links: outdoor point-to-point and indoor hotspots. We find that in both cases,
there are regions where optical wireless communications (OWC) are better, but others
where millimeter waves are to be preferred. Specifically, the former outperforms the latter
over distances up to approximately 50 meters outdoors and a 10-meter hotspot radius
indoors.

Keywords: optical wireless communications (OWC), visible light communications (VLC),
free space optics, infrared (IR) communications, millimeter-wave communications, 5G
access

1. Introduction

Mobile data traffic is projected to increase by several orders of magnitude by the year 2030 [1]

and to address this expansion requires increased system capacity. The now ubiquitous wireless

systems in modern life operate using carrier frequencies below 6 GHz. The next generation of

provision must be designed to meet future wireless data demands, and so the search for

further regions of the electromagnetic (EM) spectrum with untapped bandwidth has contin-

ued with renewed vigor in recent years. This has prompted research interest in underutilized
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higher frequency bands, with millimeter [2] and optical [3] waves being prime areas of interest.

Figure 1 below shows a portion of the EM spectrum that includes the ranges for optical and

millimeter-wave communication. The former includes a large span of frequencies that encom-

passes the infrared (IR) region through visible light and into the ultraviolet (UV) range. The

latter includes wavelengths from 1 to 10 mm, equating to 300 GHz and 30 GHz, respectively.

As may be seen from Figure 1, millimeter-wave and optical frequencies live side-by-side in the

EM spectrum and share the characteristics of propagation but are often seen as disparate

entities. In many ways, it would seem sensible to classify optical communications as nanome-

ter wave communications, but this has not been the case to date. However, both spectral

regions offer significantly increased transmission bandwidths by virtue of their increased

carrier frequencies, and this is the reason for their entry into the 5G arena. Nevertheless, the

realization of the potential of both optical wireless communications (OWC) and millimeter

waves requires solutions to the significant challenges that arise from the utilization of higher

frequency carriers. Transmissions using both OWC and millimeter waves occur in relatively

demanding propagation conditions. Both systems suffer from increased path loss, extra chan-

nel losses, and potentially useful technology that is not as established as that commonly

deployed at present [4, 5].

A notable difference is that OWC has leveraged component advances from fiber systems [6],

whereas the technological advances needed to make millimeter-wave radio cost-effective are

more recent [7]. The rest of this chapter presents brief reviews of OWC and millimeter-wave

systems and subsequently compares their performance in likely 5G scenarios.

2. Optical wireless

The use of optical carriers in free space is a technology that combines the mobility of radio

frequency (RF) wireless communications with the high-potential bandwidth of optical com-

munications. Moreover, the optical spectrum is not subject to license fees with easy spectrum

reuse since light beams cannot penetrate walls. The major design challenge for OWC is to

achieve a sufficiently high signal-to-noise ratio (SNR) at useful data rates given that the

transmitter (TX) power is limited by eye safety considerations [8].

Figure 1. The relevant portion of the EM spectrum.

The Fifth Generation (5G) of Wireless Communication6



2.1. Application areas and properties

OWC systems can be broadly classified into categories, namely indoor and outdoor. Within

both of these, a large number of possible operating modes have been demonstrated that may

be grouped using the sub-categories shown in Figure 2. A good overview of the classification

of optical wireless systems has recently been given by Son and Mao [9], to which the reader is

referred for more details, so here we provide only an overview.

The two fundamental designs for indoor OWC are directed line-of-sight (LOS) and diffuse

links, illustrated in Figure 3. In the former, a narrow beam TX sends light to a narrow field of

view (FOV) receiver (RX) over the LOS. Such a link thus experiences minimal impacts from the

multipath dispersion, noise, and path loss. Although the data rate is limited by the power

budget allowed, such LOS links are very suitable for high-speed hotspots. The idea of tracking

a user to support mobility with a TX and RX array [10] was demonstrated during the early

revival of OWC [11], and this concept is likely to be employed with the light emitting diode

(LED) lighting discussed later in this chapter.

A diffuse link relies on a wide-beam TX and a wide FOV RX and mirrors the operation of

current WiFi systems by scattering an optical beam from surfaces within a room. Although this

offers the advantage of more than one path, the differing path lengths produce a multipath

dispersion effect that limits the achievable bit rates [12]. Despite innovations such as quasi-

diffuse systems [13] and alternative modulation methods [14], the increased path loss produces

Figure 2. Simplified taxonomy of OWC.

Figure 3. Schematic view of LOS and diffuse OWC links.
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a need for higher power levels meaning that the diffuse systems are not competitive with RF

solutions and unlikely to be employed in 5G systems.

Outdoor OWC is usually referred to as free space optical (FSO) communication and makes use

of LOS links as the only feasible option given the path loss. We can consider FSO systems by

means of their distance from the center of the earth. First, there are OWC satellite networks

that can cover large portions of the globe [15]. Second, terrestrial FSO links [16] are usually

established between buildings. Finally, there is the rapidly developing area of underwater

OWC [17] where the incumbent acoustic technology is extremely limited in its bit rate, and

OWC offers enhanced performance. Of these, we concentrate on terrestrial systems here since

they are closest to the interface with 5G. We recognize that the satellites may be needed in the

overall 5G landscape, but many of the issues will be similar (particularly in the area of ground

to satellite communications), whereas underwater OWC is an important but distinct area with

different propagation conditions.

2.2. Brief history

Communication using light through the air has a long history, beginning with the employment

of reflected sunlight and smoke signals by ancient civilizations [18]. However, the birth of

what may be regarded as a “modern” system dates from Bell’s 200-meter photophone in 1880

[19]. With respect to FSO, the invention of the laser in the 1960s provided the means for a range

of FSO applications [20]. Optical fiber developments in the next two decades made these

preferable for long-distance optical transmission. Continued military and space work pro-

vided the basis for commercial FSO [21]. The 1990s saw growth in the civilian usage of FSO

links driven by increasing data rates and high-quality connectivity requirements. FSO deploy-

ment rather than fiber offers a cheaper and quicker way of providing customer bandwidth,

and may also be employed in disaster scenarios [22]. Substantial research efforts to improve

FSO system performance in adverse atmospheric conditions mean that multi-gigabit rates are

possible in the presence of turbulence [23].

Modern developments in indoor systems, commonly known as OWC, began with the seminal

work of Gfeller and Bapst [24] in 1979. This considered an IR system based on a diffuse link

using a wavelength of approximately 950 nm. The data rate achieved was just 125 kbps, but

the work prompted the development of IR OWC systems through the 1980s and 1990s. Thus,

LOS bit rates reached 155 Mbps [25], and diffuse systems achieved 70 Mbps [26]. This period of

substantial development for OWC using wavelengths between 780 and 950 nm was driven

largely by the ready availability of inexpensive optical sources and the coincidence of the peak

sensitivity of mass-produced photodiodes. To maintain the essential simplicity and low-cost of

OWC, most systems employed intensity modulation with direct detection (IM/DD), but many

modulation schemes were investigated [27]. OWC did not achieve mass market status during

this period but progress in IR systems has nevertheless continued with recent results demon-

strating multi-gigabit performance [28] and localization and tracking [10]. However, it has

been the developments in the visible light range that have really brought OWC to the fore as

an option for integration with 5G. The development of solid-state lighting has led to the

emergence of visible light communications (VLC) [29]. This approach makes use of the

The Fifth Generation (5G) of Wireless Communication8



communication potential of the lighting system that is offered once white LEDs (WLEDs) are

installed. VLC in its modern form was initiated primarily by work at Keio University in Japan

during the early part of the millennium [30]. Over the next period of years, the increasing

research interest in the field led to the creation of the Institute of Electrical and Electronics

Engineers (IEEE) 802.15.7 VLC task group, which has standardized physical (PHY) and medium

access control (MAC) layers, and characterized these for short-range data transmission [31].

Advances have continued thanks to the orthogonal frequency division multiplexing (OFDM)

scheme where parallel orthogonal subcarriers are used to achieve high data rates [6]. Direct

current biased OFDM (DCO-OFDM) enabled the demonstration of a data rate of in excess of

3 Gbps using a commercial LED [32]. In recent years, the term light fidelity (LiFi) has been

introduced [33] to encompass the aspect of mobility envisaged in the latest systems compared

to the original fixed point-to-point concept of VLC [34]. Development of the technology con-

tinues with the investigation, inter alia, of modulation schemes, modeling, and applications [35].

The twentieth century also saw the use of UV light for communications, making use of the

wavelength range 200–280 nm where there is very low background noise due to strong

atmospheric absorption, so UV offers non-LOS (NLOS) secure communication [36]. During

the 2000s, work at Massachusetts Institute of Technology (MIT) Lincoln laboratory replaced

bulky, slow gas discharge lamps with UV LEDs [37] but the employment of photomultiplier

tubes (PMTs) until relatively recently [38] has been a weakness of UV and OWC. The modern

alternative of an avalanche photodiode (APD) adds complexity, and although UV systems

system work continues, it is difficult to envisage 5G UV deployment.

3. Millimeter waves

There has been considerable interest in millimeter waves, particularly around 28-, 38-, 60 GHz,

and the E-band (71–76 GHz and 81–86 GHz) [39]. The progress in complementary metal-oxide-

semiconductor (CMOS) RF integrated circuits for 60 GHz systems [40] offers future prospects

for products. Millimeter-wave communications have similarities with OWC since the higher

carrier frequency suffers a high propagation loss, and is more sensitive to blockage than

existing RF systems.

3.1. Application areas and properties

The applications of millimeter waves may be broadly classified as shown in Figure 4, in which

systems where the millimeter waves convey information are distinguished from those where

they serve another purpose. In the first category, outdoor cellular transmission for 5G has

attracted substantial attention. The reduced propagation range of millimeter waves means that

to achieve the increased bandwidth and throughput, smaller outdoor transmission ranges will

be used [2] as illustrated later schematically in Figure 6. As will be discussed further when

millimeter waves are compared with OWC, both technologies can form the basis for high-

speedWiFi links to offer increased bandwidth and thus greater capacity [41]. Millimeter waves

Optical Wireless and Millimeter Waves for 5G Access Networks
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are ideal for satellite communications because of their significant bandwidth [42] and for high-

speed transmission of video and audio for virtual reality (VR) applications [43]. Millimeter-

wave radar has also been widely applied, most latterly in autonomous vehicles [44] and

contraband detection [45]. Medical applications include cancer treatment by the use of

immune system therapy [46].

A schematic representation of a millimeter-wave link is shown in Figure 5, which illustrates two

possible reflected paths by which the transmitted waves may reach the RX. In contrast to OWC,

Figure 4. Major application categories of millimeter waves.

Figure 5. Multiple propagation paths in millimeter-wave transmission.

Figure 6. Comparison scenarios.

The Fifth Generation (5G) of Wireless Communication10



these NLOS links cause multipath interference fading effects at the scale of a wavelength [47]

because constructive and destructive effects can occur. This not seen in OWC because photo-

diodes are typically many thousands of wavelengths across providing spatial diversity that

prevents the fading although not pulse dispersion. The advances in beamforming that are

outlined in the next section have enabled NLOS transmission to be implemented [48].

3.2. Brief history

Transmissions using millimeter-wave carriers have a long history but millimeter-wave mobile

communications arose in the 1980s [49]. There was then a substantial gap in millimeter-wave

communications research until the release of the unlicensed band near to 60 GHz [50]. This led

to the development of short-range Gbps point-to-point links and wireless network standards

[51]. As with OWC, military applications were developed over a similar time period [52],

recognizing the potential benefits of increased bandwidth, sophisticated antennas, greater

directionality, and reduced size compared to traditional microwave links.

Two key technological developments have enabled 60 GHz systems to become a reality,

namely high-speed integrated circuits [40] and the use of multiple antennas [53]. With respect

to the first of these, the work that has led to the emergence of low-cost millimeter-wave

circuitry began in the 1990s [54], employing III-V semiconductor compounds that were hard

to integrate with digital circuitry. Some of the earliest work using 60GHz CMOS appeared in

the 2000s [55] progressing to the low-power implementation of Alldred et al. [56]. Strides in

integration later resulted in chips of only a few square millimeters in area, including an

antenna and with power consumption under 100 mW [57]. Gbps speeds over 2 meters were

also demonstrated using integrated architectures [58]. The technology is now at a point where

sophisticated modulation techniques can be employed at multi-gigabit rates for the latest IEEE

standards using low supply voltages and small chip areas [59].

With respect to multiple antennas, the formation of arrays added considerable design flexibil-

ity to millimeter-wave systems. The fundamental driver of the technology was, and remains,

the need to compensate for the large propagation loss incurred by this wavelength range. The

utilization of highly directional antennas provides the necessary gain and the ability to imple-

ment beamforming that will be discussed below. The small wavelength is an advantage since

the antenna size is half a wavelength as is the antenna separation permitting many antennas to

be fitted into a relatively small space (several per square centimeter). Although the idea of

using antenna arrays and adapting their beam patterns has its origins in radar systems and has

existed for some time [60], interest in the concept for wireless communications started in the

1990s. Beamforming describes a signal processing technique used to achieve directional trans-

mission or reception of a wireless signal. The selectivity in the antenna patterns is

implemented by adapting the beams in an operation that may be seen as linear filtering in the

spatial domain. The phases and amplitudes of the signals may be controlled to produce

maxima or minima in desired and undesired communication directions, respectively [61].

Beamforming can be implemented in the digital baseband, the analog baseband or the RF

front-end [53], and each of these has its own particular design features [62]. The filter weights

employed to drive the antennas may be fixed, but a more flexible method (particularly for

Optical Wireless and Millimeter Waves for 5G Access Networks
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mobile communications) is adaptive or smart beamforming because it can adapt the RF

radiation pattern in real-time to accommodate changing transmission conditions [63].

4. Performance comparison

Based on the properties of the both OWC and millimeter-wave transmission, we now focus on

a comparison of their performance in the two of the most likely application scenarios shown in

Figure 6. Firstly, in the outdoor arena point-to-point links may be used to establish a mesh

network using individual “point-and-shoot” links. Secondly, high-speed indoor connectivity

may be offered using hotspots.

4.1. Methodology

We adopt a simplified approach so that the broad sweep of the performance of the technolo-

gies is captured. It is inevitable that some subtleties will be overlooked (such as shadowing

and the mechanism to provide a primarily LOS path), but the analysis enables a meaningful

indication of the relative performance of the two PHY layers. We now describe the simplified

link budget models of the optical and millimeter-wave channels. These are along the lines

originally described in [64] for a previous technology generation and inspired by the analysis

of Wolf and Kress [65]. We consider both outdoor and indoor LOS scenarios.

4.1.1. Point and shoot

Figure 7 shows the geometry of the outdoor application where both transceivers have emission

and FOV half angles of θh for simplicity and are not necessarily aligned to be facing each other.

4.1.1.1. Optical wireless

Applying the Friis formula [66] to an optical link produces unrealistic results because it applies

to narrow, diffraction limited beams that require very precise alignment. Therefore, we adopt

the more customary approach for OWC [67] where a link is considered that launches a beam

with half-angle θh that evenly illuminates the area within the emitter cone. The intensity

profile is assumed to be a constant value of I0 over an angle 0;θh½ �. This profile is beneficial so

Figure 7. Point and shoot configuration.

The Fifth Generation (5G) of Wireless Communication12



that there is no off-axis fall-off, and may be obtained using a holographic diffuser [68].

Considering the solid angle of the cone results, for an emitter source power PS, in:

I0 ¼
PS

2πr2 1� cosθhð Þ
(1)

The RX has a collection area, and in the worst case, this is orientated at an angle θh, meaning

the received optical power PO is:

PO ¼
PS

2πr2 1� cosθhð Þ
Acollcosθh (2)

The photocurrent resulting from the received optical power is iO ¼ RPO, for a photodiode

responsivity R. Therefore, the electrical power S, delivered to a load RL is:

S ¼ I2ORL (3)

The noise at the RX comprises shot noise from the signal, shot noise from any DC photocurrent

caused by ambient light and amplifier noise. Thus, the noise power delivered to the load over

an amplifier bandwidth Δf is:

N ¼ 2q RPO þ iAmbð ÞΔf þ i2AmpΔf
� �

RL (4)

where iAmb is the photocurrent due to ambient illumination and iAmp is the input referred noise

of the amplifier. Hence, the overall signal to noise ratio is given by:

S

N
¼

RPOð Þ2

2q RPO þ iAmbð ÞΔf þ i2AmpΔf
� � (5)

Leading to:

EbRb

N0
¼

RPOð Þ2

2q RPO þ iAmbð Þ þ i2Amp

� � (6)

This expression allows the bit-rate available Rb to be related to the range for a given required

Eb=N0. Then the modulation and detection scheme employed will determine the value of

Eb=N0 needed for a particular biterrorrate (BER). The value of the ambient light current varies

considerably with the FOV and optical filtering conditions prevalent in the system. Therefore,

for a 60-degree FOV, we take the pessimistic value of 1000 μA from [65], which assumes coarse

optical filtering. The ambient light collected depends on sin2
θhð Þ [69], and so we scale iAmb

appropriately as θh varies. Amplifier current noise is another quantity that varies somewhat

depending on the device used in the optical RX. A typical device such as the Texas instruments

OPA847 [69] offers a value of 2:7 pA Hz�1=2, so we adopt a slightly more conservative value of

3 pA Hz�1=2 in our calculations.

Optical Wireless and Millimeter Waves for 5G Access Networks
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4.1.1.2. Millimeter-wave communications

We assume that the system will utilize 60 GHz as its frequency of transmission given the

established products for this choice. Determination of the path loss for a 60 GHz mm-wave

system is not straightforward, so for the outdoor scenario we use the International Telecom-

munication Union (ITU) LOS model [70]:

PLdB dð Þ ¼ 92:44þ 20log10 fð Þ þ 10nlog10 dð Þ (7)

where d is the transmission distance in kilometers, f is the frequency in GHz and n is the path loss

exponent, which is approximately two for this scenario. This is used in combination with the

standard Friis model to produce a value of the received power as follows. In contrast with lower

frequencies, the antennas will not be isotropic, and have numerical gains of GT andGR for TX and

RX, respectively, so the overall receivedpower inwatts so for a transmitted signal powerPT will be:

PR dð Þ ¼ PTGTGR10
�PLdB dð Þ=10 (8)

The antenna gains above are assumed to be equal, which provides asymmetric transmission

system. Their values are determined based on the acceptance angle defined for optical trans-

mission to give a fair comparison. For an ideal antenna, the gain is equal to the directivity, and

so we can say that [71]:

GT ¼ GR ¼
4π

ΩA
(9)

where ΩA is the beam area, taken to be the solid angle formed by the angle θh. As a result, we

can write:

GT ¼ GR ¼
4π

2π 1� cosθhð Þ
¼

2

1� cosθhð Þ
(10)

We assume that the RX antenna feeds a matched preamplifier with noise factor F so that the

signal to noise ratio S=N at the RX is:

S

N
¼

PR dð Þ

FKTB
(11)

where K is Boltzmann’s constant and T is the temperature in Kelvin. For a bit-rate Rb average

energy per bit Eb and noise power density N0, we can then write:

EbRb

N0
¼

PR dð Þ

FKT
(12)

4.1.1.3. Results

We assume the same transmission power for the links of 1 W and a light collection area of

15 cm diameter using an optical concentrator. This would have a value of θh equal to approx-

imately 20 degrees. The noise factor is taken to be 5 dB as per the IEEE802.11ad standard

The Fifth Generation (5G) of Wireless Communication14



giving F ¼ 3:2. The results of the calculation are shown in Figure 8 where it may be observed

that FSO performs well for short distances, but millimeter waves offer better performance once

the transmission distance exceeds 20–30 m. It may also be observed that for very short dis-

tances there is no appreciable free space loss (FSO) given the large collection area but no gain

mechanism resulting in the flat portion of the characteristic until the loss begins to increase. We

must also state that both systems could be impacted by adverse transmission conditions, rain

for millimeter-wave and fog for FSO. Given the variability of these factors, the figure is

intended to present a best-case comparison of the two systems.

4.1.2. Hotspot

The application scenario is a “hotspot” in a 3-meter high room as shown in Figure 9. As is

apparent from the figure, the TX launches power within an emission cone with a half angle θh,

and the RX has an acceptance angle that is also θh. This pairing of angles is optimum since a

larger RX acceptance angle would mean that since terminals are transceivers, the uplink would

transmit radiation that would miss the ceiling base station and vice versa. The geometry of this

scenario means that for a hotspot radius d and range r:

θh ¼ tan�1 d=3ð Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 9
p

(13)

4.1.2.1. Optical wireless

The TX power is taken to be 10 W obtained from an LED lighting source, and a smaller RX

diameter of 15 mm is used to represent the size possible on portable computing devices.

Figure 8. Comparison of FSO and millimeter-wave performance over a point-to-point link.
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4.1.2.2. Millimeter-wave communications

In this example, we adopt the empirical model from the IEEE 802.11ad standard for a simple

indoor LOS link [72]:

PLdB dð Þ ¼ 32:5þ 20log10 fð Þ þ 10nlog10 dð Þ (14)

where d is the transmission distance in meters, f is the frequency in GHz and n is the path loss

exponent, which is approximately two for this scenario. The antenna gains will again be given

Figure 9. Geometry of the worst case hotspot alignment.

Figure 10. Comparison of OWC and 60 GHz performance for indoor hotspots.
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by Eq. (10), but the angle will be that used for OWC obtained from Eq. (12). Here, the TX

power is taken to be 10 mW since this represents a value that is permitted by many interna-

tional standards [73] when one takes into consideration the antenna gains.

4.1.2.3. Results

In this indoor application, there will be no atmospheric losses, so the predictions will most

likely be closer to the performance that could be seen using real links. The results obtained are

shown in Figure 10 and differ somewhat from the point-to-point case. Here, the change in FOV

for both systems with hotspot radius assists their performance somewhat, particularly for the

OWC link. It can be seen from the figure that there is a radius of up to a few meters where

OWC is extremely competitive and could outperform millimeter-wave transmission. Further-

more, the infrastructure for the lighting will already be present so fewer extra components will

be needed since the link uses the existing lights rather than a separate link.

5. Conclusions

This chapter has provided a brief introduction to potential 5G transmission systems based on

optical and millimeter waves. It may be seen that both technologies have long histories and

have been employed in military scenarios. Moreover, technological advances such as LiFi and

increasing CMOS integration have brought both options to the fore in recent years. With

respect to the future 5G integration, LOS transmission appears to be likely application given

the significantly reduced performance of both methods once NLOS links are considered.

Millimeter-wave transmission is probably more likely outdoors in most scenarios since its

performance is increasingly superior to FSO once distances exceed a few tens of meters. It is

the indoor sphere where OWC offers its best prospects for 5G because the LED lighting is

becoming widespread. Thus, a relatively high-power visible light source is available for trans-

mission as part of an office infrastructure. Transmission power at 60 GHz is restricted by

international standard, especially when high antenna gains are employed as would be the case

in small hotspots. Thus, OWC provides superior transmission performance over hotspots with

diameters of a few meters, which is a realistic size. We have taken a simplified view of the

application scenarios to compare them, and we acknowledge that significant developments are

occurring, such as multiple input multiple output (MIMO) systems [74, 75]. Thus, the next

stage of the future investigation is to incorporate these into the comparative modeling work.

This can be coupled with experimental trials to determine the utility of OWC and millimeter

waves in future 5G implementations.
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