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Abstract

Among the different terrestrial ecosystems, forests are the most important biomass car-
bon producers and the ones that store the most standing biomass carbon. Consequently, 
they are also the major source of biomass for energy. Forest biomass has been used as 
a fuel from early times, and from the late twentieth century onward, there has been a 
renewed interest in its use to produce heat and electricity. The interest in forest biomass 
as an energy source relates to some of its features, such as relative abundance and uni-
formity worldwide and neutrality of CO

2
 emissions. Nonetheless, its use is not free of 

risks, mostly related with the sustainability of the forest systems and their productions. 
This study reviews the state of the art of the forest sources of biomass for energy, their 
assessment, their properties as a fuel, as well as the conversion technologies used in the 
most common energy applications.

Keywords: silviculture, estimation, remote sensing, conversion technologies, heat, 
power

1. Introduction

Energy has been obtained from forests for thousands of years, forests being the largest con-

tributor to the current global biomass supply [1]. Most of today’s production of solid biomass 
for energy occurs in non-Organization for Economic Cooperation and Development (OECD) 
countries (in 2015, 83.7%) [2] and is widely used for traditional cooking and residential heating. 
The traditional use of biomass is inefficient and characterized by severe negative impacts on 
human health by the combustion smoke [3]. Also, it has been linked to local deforestation and 
consequent environmental degradation, but the association of the demand of traditional wood 
for cooking and heating to large-scale deforestation is controversial [4, 5]. The modern uses of 
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woody biomass are characterized by more efficient and cleaner technologies. Its utilization, 
though, is also linked to controversies as far as sustainability issues are concerned. In developed 
countries, the interest in bioenergy has been increasing mostly due to greenhouse gas mitigation 
policies. Wood biomass is a renewable energy source and considered to contribute to a decrease 
in the anthropogenic CO

2
 emissions. This chapter reviews the forest structure (Section 2),  

the existing methods and techniques to evaluate biomass (Section 3), the types of biomass and 
biomass residues (Section 4), and the common uses of biomass for energy (Section 5).

2. Forest structure and biomass

The role of forests in providing a large suite of products and services is well known [6–9]. Due 
to the reduction of the forest area and shortage of woody products, as well as to guarantee the 
sustainability of forests and ecosystems, the need to evaluate, monitor, and regulate the forest 
arose [10–12]. Initially, the emphasis of assessment was on the quantity per class of woody 
products (mainly large- and small-dimension timber), typically with the evaluation of volume 
[6, 13, 14]. This drove forest stands toward predominantly pure, even-aged stands, either in high 
forest or in coppice regime, frequently centered in one production, also due to the simpler man-

agement [6, 7, 10, 13, 14]. Later in the twentieth century, the stand and forest management were 
expected to include objectives other than woody products, such as services, sustainability, and 
conservation of the forests and ecosystems [10, 11]. This originated a shift in forest management 
to new approaches focused on systems of multiple productions, which have driven silviculture 
toward uneven-aged and mixed stands. These approaches are focused in the natural processes 
emulation, which originated a wide suite of methods and techniques to achieve it [10, 15–17]. 
The overall biomass production, as a result of the management approaches, tends to be peri-
odical in even-aged stands with large time periods between two consecutive harvests, while 
multiaged stands harvest periodicity tends to be in shorter time periods and rather constant, 
with a quantity function of the growth, target equilibrium, and proportions of the age classes of 
the stand [6, 7, 10, 13, 14, 17, 18]. Stand composition, both on the quantity, variety, and quality 
of biomass, also derives from the management strategy. In the traditional approach, silviculture 
was oriented toward pure stands, while the new ones are focused on mixed stands. The latter 
are systems with wider complexity and consequently more difficult to manage but are consid-

ered more biodiverse and resilient, and enable risk dispersion due to their multiple productions 
[6, 7, 10, 14, 18–20]. The challenge is defining and separating pure and mixed stands [21].

3. Forest biomass evaluation

Forest evaluation started with forest inventories in the Middle Ages, during wood short-
age, with the aim of estimating the forest areas, stand composition, and wood volume per 
dimension class. The expectations, apart from wood, of forests to provide services resulted 
in the inclusion of a wide set of variables in the inventories, among which is biomass 
[22–25]; this intensified labor and increased costs [22, 24]. Forest inventories are defined by 
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sampling design, for an assumed threshold error, which is accomplished in two sequential 
steps: (1) evaluation of forest area and crown cover with remote sensing [24, 26, 27] and (2) 
survey of field plots to measure several dendrometric variables, being the most frequent 
diameter at breast height and total height [22, 24, 28–30]. The evaluation on an area basis is 
done with extrapolation methods [22, 24]. From the 1990s of the last century onward, the 
development of remote sensing deployed the derivation of a set of functions to estimate 
several stand absolute density measures such as the number of trees, the basal area, the 
volume, and the biomass (e.g., [31–36]). These functions enable the rationalization of forest 
inventory field work, facilitating also the evaluation of forest stands where field work is 
hard to accomplish [22, 24].

3.1. Forest inventory

Biomass was not traditionally assessed in the forest inventories. It was only from the late 
twentieth century onward that it was included, compelled by the need to evaluate carbon 
stocks, sequestration and losses, and biomass for bioenergy. The methods to evaluate biomass 
can be grouped in two broad classes [22, 24]: the direct methods and the indirect methods. 
The former, though very accurate, are destructive and frequently used to derive data sets for 
modeling. The latter are mathematical functions that use as explanatory variables dendro-
metric variables, frequently diameter at breast height and/or total height. These functions are 
frequently developed for each biomass component (stem, bark, leaves, branches, and crown), 
and total tree biomass is obtained by summing all the components. Similarly, biomass per 
plot is the sum of the biomass of all the trees, and normally referred to a standard area unit, 
typically the hectare. The functions are species-specific, site-specific, and regime-specific, due 
to the tree species habit and growth pattern per site and regeneration method (seed for high 
forest and vegetative for coppice). As a result, a wide range of functions is found in literature 
[37–45]. The advantage of these functions is their accuracy [27]. The shortcomings are related 
to the selection of the best function for the stand location, species, and stand structure [46, 47]. 
The choice might encompass some difficulties when no functions exist or those that exist are 
not adequate, thus resulting in large estimation bias [48]; and with the extrapolation methods 
in the evaluation of the forest areas [24], decreasing the accuracy with the increase of the 
area evaluated due to the variation in stand structure, topography, soil, and climate [49]. The 
estimation errors with this method are assumed to be between 15 and 40%, with the standard 
threshold of 25% [50].

3.2. Remote sensing

The major advantage of remote sensing is related to the wide range of working scales, 
associated with the spectral, spatial, radioactive, and temporal resolutions, as well as to 
their technology [51, 52], which allow the evaluation of the distribution of the forest area, 
species, and their physical and biochemical properties [53]. The advantages of biomass 
estimation with remote sensing methods when compared with those using forest inven-
tory are: (1) can be applied regardless of the area dimension [26, 27], (2) does not need field 
work, therefore being interesting in areas where it is difficult to implement it or where 
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many field plots are needed to attain the threshold error [24, 27]; (3) short time cycles 
can be used for data collection, contrary to forest inventory, where cycles shorter than 
5–10 years are unfeasible [24, 26]; (4) different scales can be used as function of imagery 
spatial resolution [26, 27]; and (5) it applies to all the area, thus extrapolation methods are 
not required [32, 34–36].

The biomass functions that use satellite image data are mathematical functions that use 
data derived from satellite optical sensors for the explanatory variable [33], such as spectral 
reflectance, crown diameter, crown horizontal projection, crown cover, original bands and/
or vegetation indices [32, 34–36, 54–58]. The statistical methods and techniques used to fit 
the functions are varied. Examples are linear and nonlinear regression, regression k-nearest 
neighbor, neural networks, regression tree, random forest, and support vector machine  
[27, 52]. Remote sensing data is derived from passive or active sensors.

For an optical sensor (passive sensor), the spatial resolution is the main distinctive feature of 
the satellite images and can be grouped in three broad classes: coarse, medium, and high. The 
coarse spatial resolution satellite imagery (>100 m) comprises: National Oceanic and Atmosphere 
Administration (NOAA) with the Advanced Very High Resolution Radiometer (AVHRR) sensor, 
Moderate Resolution Imaging Spectroradiometer (MODIS), and Satellite Pour l’Observation de la 

Terre (SPOT) Vegetation [55, 59–62]. The medium spatial resolution satellite imagery (10 to 100 m) 
includes Landsat, Sentinel, Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), and Wide Field Sensors (WiFS) [55, 63–65], as well as recently Landsat 8 and Sentinel, free 
global-scale remote sensing data. The high spatial resolution satellite imagery consists of: IKONOS, 
QuickBird, WordView, and GeoEye satellites, with a pixel size smaller than 5 m [33–36, 66, 67].

The active sensors, Radio Detection and Ranging (RADAR) and Light Detection and Ranging 
(LiDAR), have gained relevance for biomass estimation in the last years [68–72]. The RADAR 
use microwaves to obtain information of surface target. It has the advantage of data acquisi-
tion being independent of the hour of the day and atmospheric conditions. More recently, the 
synthetic aperture radar (SAR) sensor, C-band RADARSAT-2, and X-band TerraSAR provide 
more accurate biomass estimation due to the spatial resolution variability, polarization, and 
incidence angles [73]. LiDAR systems allow to obtain detailed information about the structure 
of vegetation (horizontal and vertical tree dimension), considering the distances measured to 
the object surface [74, 75]. It can be supported by spaceborne, airborne, and terrestrial plat-
forms that create a very precise 3D-point cloud data from vegetation [76] and are used to 
develop models for several vegetation biophysical parameters, such as tree height, crown 
dimensions, volume, and canopy density [52]. The statistical methods most frequently used 
to develop biomass functions are linear and multilinear regression [52] and machine learning 
algorithms [70, 71].

Some studies used a combination of LiDAR and multispectral or hyperspectral data to iden-

tify the different forest areas where the spectral response is similar, to improve the biomass 
estimation [77–81]. Related to the satellite spatial resolution is the target area of estimation, 
which can be at regional or local scales [32, 34–36, 82–86] or national scales [87–90]. However, 
some difficulties in the estimation of biomass with accuracy may arise due to the variability of 
the stands and forests, especially in the tropical forests [91, 92].
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4. Forest biomass and forest residues

Forests are the terrestrial ecosystems that produce and store the most biomass, which explains 
why biomass for energy has been derived mainly from forests for a long time [8, 13, 14, 93, 94]. 
The forest biomass varies according to site, stand structure, topography, climate, management 
system, and disturbances [91, 95, 96]. The two features that make biomass a primordial source 
for energy are their availability and uniformity at a global level [8, 97, 98]; more recently, the 
neutrality in CO

2
 emissions is also an important factor [97, 99].

In general, all forests produce biomass that is mainly removed in harvests, though in smaller 
quantities also in silvicultural operations (thinnings and prunings). Forests can be grouped 
in two broad types considering the biomass removal for energy purposes [95, 100]: energy 
plantations, where all biomass is harvested for energy and forest systems managed for timber 
and/or other products and services, where all or part of forest residues can be removed from 
the stands for energy purposes.

4.1. Energy plantations

Several terms have been used to describe the forest systems whose main, and frequently the 
only, production is biomass for energy [94, 101, 102] and that are characterized by specific 
spatial and temporal features [93, 99]. The most important features of these systems, when 
compared with agricultural crops or other forest systems, are their low risks, high economic 
viability, harvest flexibility, availability worldwide, biodiversity enhancement (especially if 
incorporated in agricultural crops portfolio), and the possibility of use for phytoremediation 
purposes [97, 100, 103–107]. The energy plantations are well represented in Europe, though to 
a lesser extent in the southern countries [103, 105], USA [108, 109], Canada [110], and China 
[111]. For the establishment of the energy plantations, the selection of species, density, rota-

tion, harvest cycles, site, and management practices has to be considered.

The selection of species is of primordial importance. The species better suited for energy plan-

tations are those that have high biomass production in dry weight, good sprouting ability, fast 
juvenile growth, narrow crowns or large-sized leaves in the upper crown, biomass with high 
specific energy and quality, adaptability to a wide range of sites, and resistance to biotic and 
abiotic agents [100, 112, 113]. Hybrids are frequently used to increase productivity, for their 
adaptation to the environmental conditions and resistance to pathogens [104, 114, 115]. From 
the many potential species suited for energy plantations, the three most referred in literature 
are: Populus spp. [101, 111, 112, 115–118], Salix spp. [101, 112, 114, 116, 118], and Eucalyptus 
spp. [97, 101, 112, 119, 120].

Density, rotation, and harvest cycles are strictly linked, since the main goal of energy planta-

tions is to attain the highest production in the shortest time (e.g., [104, 116, 117]). Thus, three 
principles regulate density and rotation; namely the law of final constant yield, the develop-

ment of social classes in a stand, and self-thinning law [93]. However, there is a large vari-
ability of densities from 1000 stems ha−1 to 310,000 stems ha−1 [99, 108, 114, 116, 118, 121, 122] 

and rotation lengths between 1 and 20 years [99, 108, 114, 116, 118, 121, 122]. Also, a dichotomy 

Solid Biomass from Forest Trees to Energy: A Review
http://dx.doi.org/10.5772/intechopen.79303

27



seems to exist between density and rotation [101], frequently higher densities and shorter rota-

tions [104, 114, 115, 121, 122], or lower densities and longer rotations [97, 118–120]. Harvest 
cycles depend on stump mortality and ability to resprout and cutting cycles of 10 to 30 years 
are indicated in the literature [83, 99, 104, 117].

Site selection is directly related to survival, growth, and yield of the tree species or clones. To 
obtain high productivities, sites should be of good quality with long growing seasons [83, 100, 
101], and steep slopes should be avoided when mechanization is foreseen [99, 101, 104]. Control 
of natural vegetation to reduce competition between spontaneous vegetation and energy plan-

tations is better suited during site preparation [101, 104, 115], though it might also be necessary 
after each harvest [93, 104, 123].

Two main options are available for the selection of planting techniques: plantation of cuttings 
or seedlings. While the former is use with Salix spp. [101, 104, 124–126], the latter is chosen 
for Populus spp. or Eucalyptus spp. [101, 124, 126]. Similarly, two approaches are available 
for management: the plantation with a cut after 1 year in order to promote coppicing or first 
harvest at the end of the rotation length [93, 104, 121, 122].

Other management practices include fertilization to promote yield [93, 101], though there is 
some controversy in the literature, with some authors stating that fertilization does not increase 
yield (e.g., [124, 126, 127]), while others state the opposite (e.g., [128, 129]). The control of patho-

gens should be primordially done by choosing resistant species or clones or by the increasing 
diversity (e.g., [101, 130]) and, if this is not enough, with phytopharmaceuticals [93, 98, 101, 115]. 
Irrigation should be used when water stress and growth reduction are expected [93, 131, 132].

4.2. Stands managed for timber and other products and services

The main goal for stands managed for timber and other products and services is not biomass 
for energy. The latter is a secondary production, composed of residues, which are growing 
stock unused parts, such as tops, limbs, stems, stumps, and that result from harvest (cut-
tings or late thinnings) or silvicultural practices (noncommercial or early thinnings) [8, 133]. 
Regarding forest residues, two management options can be considered: their maintenance 
in the stand to preserve or improve stand productivity and site fertility or their removal 
when negative impacts are not expected [134–136]. The amount of forest residues depends 
on the species, stand structure, and stem quality, which generate a wide variability on their 
quantity (e.g., [8, 89, 137]). Two constraints should be considered: the proportion of residues 
that is feasible to remove from a stand, which depends on its spatial distribution, 50% when 
scattered and 65% when stacked [8, 138]; and the distance between the stands and the places 
where it will be used, a 20–50 km radius is frequently used [8, 88, 137, 139].

Considering the different stand structures, the ones that potentially originate larger amounts 
of forest residues are even-aged, mixed managed stands, where some species are not well 
suited for timber or with timber of bad quality, and pure or mixed unmanaged stands, with 
high density, individuals of small diameter and bad timber quality [8]. Noteworthy are also 
the agroforestry systems, where the forest portfolio can include energy plantations [140, 141] 

and stands managed for timber and other nonwoody products and services from which forest 
residues can be obtained [140, 142–144]. The latter, frequently in rather small quantities, are 
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mainly derived from thinnings and prunings but also from sanitary cuttings or trees that have 
reached the end of their lifetime cycle [142, 144, 145].

5. Uses of forest biomass for energy

One of the advantages of biomass over other renewable energy sources is its versatility. 
Biomass in general, and forest biomass in particular, can be converted into electricity, heat, or 
transportation fuels. In practice, though, forest biomass is mainly used for heat and electricity 
production. The transformation of forest biomass into biofuels that can be used in the trans-
port sector still faces various challenges, which have hindered its commercialization [146, 147].

5.1. Current status

Despite its advantages and despite being the most used renewable energy source, the current 
share of bioenergy in the world is still very limited. In 2015, bioenergy and renewable wastes 
accounted for 9.4% of the world’s energy supply [2]. Among the various biomass sources, 
solid biofuels accounted for 63.7% of the global renewables supply (liquid biofuels, biogas, 
and renewable municipal waste accounted respectively for 4.3, 1.7, and 0.9% and the other 
renewable energy sources for the rest) [2]. In OECD countries, where biomass is mostly used 
in modern systems, the share of biomass and renewable wastes is even lower, with these fuels 
accounting for 5.2% of the total primary energy supply in 2015 and solid biomass accounting 
for 36.1% of the renewable energy supply [2].

Solid biofuels, which are almost entirely composed of wood, wood residues, and wood fuels, 
are used to produce electricity and heat. Direct heat is by far the most common application of 
solid biomass. In this case, biomass is used directly by the end users (e.g., residential, indus-
trial, commercial, agriculture) and not by the energy transformation sector (e.g., power plants, 
combined heat and power (CHP) plants or heating plants). The dominance of the use of solid 
biomass for heating applications is mostly justified by its traditional use in the African and 
Asian countries for heating and cooking [1].

Looking at the situation in Europe, where biomass is mostly used in a modern way, the uti-
lization of solid biomass by the energy transformation sector has a bigger prevalence. Power 
plants for the production of electricity have a 9% share, CHP plants both for the production 
of electricity and heat 16% and district heating plants 5% [148]. In total, the European energy 
transformation sector accounts for 30% of the solid biomass consumption, contrasting with 
the world average, which is around 9%.

5.2. Feedstock characterization

Biomass for energy uses comes from various sources. Generically, it can be divided into for-
est, agricultural, and residual biomass. From these three categories, biomass from forestry 
is by far the most significant source of biomass for energy production. In 2014, it generated 
more than 87% of the world biomass feedstock, while agriculture contributed with 10% and 
municipal solid wastes and landfill gas with 3% [1].
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Biomass from the forest sector (e.g., fuelwood, forest residues, and wood industry residues) 
is mostly used as raw material and not subjected to an upgrading process. However, the use 
of upgraded biomass has been gaining importance and, for example, pellets are one of the 
fastest growing bioenergy carriers [1]. Some advantages of upgraded forest biomass over raw 
biomass are the fact that it is more uniform and convenient to use and especially well suited 
when biomass is consumed in a place far away from its production site. As a disadvantage it 
has a higher cost compared to the correspondent raw biomass fuel [149].

The most relevant properties in terms of energy conversion for some forest biomass fuels 
are presented in Table 1. Due to the variability for a specific species, they should be con-
sidered as illustrative. Untreated wood is characterized by low carbon content and high 
volatile matter and oxygen contents when compared to solid fossil fuels. This leads to the 
lower heating values of wood, which in combination with its low density results in low 
values of energy density. The lower heating value of oven-dry wood of different species 
does not have a large variation [150]. However, in practice, in many applications wood is not 
oven-dried and contains a certain amount of water. Typically, fresh timber has a moisture 
content between 50 and 60%, while timber stored for a summer and for several years have, 
respectively, 23–35% and 15–25% water content [150]. The lower heating value of wood 
fuels is very dependent on the water content of the fuel. The more water content the wood 
has, the lower is its energy content. The ash content of wood is typically low [151], but it 
can be significantly higher in bark [152]. Additionally, the harvesting process can introduce 
inorganic materials in the feedstock.

Eucalyptus 

wood

Poplar 

wood

Willow 

wood

Beech 

wood

Bark 

(pine)

Wood 

chips 

(pine)

Pellets 

(wood)

Proximate Analysis (wt% dry)

Fixed carbon 18.80 13.05 13.73 14.53 26.60 19.40 12.65

Volatile matter 80.40 80.99 73.18 84.87 71.80 80.00 83.64

Ash 0.80 1.16 1.68 0.60 1.60 0.60 3.71

Ultimate Analysis (wt% dry)

Carbon 51.20 47.05 43.06 49.38 53.90 51.80 49.12

Hydrogen 6.00 5.71 5.49 6.17 5.80 6.10 7.82

Oxygen 41.69 41.00 38.36 43.55 38.26 41.19 38.77

Nitrogen 0.20 0.22 0.44 0.28 0.40 0.30 0.56

Sulfur 0.02 0.05 0.00 0.01 0.03 0.01 0.02

Moisture content (wt%, 
on wet base, as received)

4.00 4.80 11.40 15.20 5.00 3.87 4.70

LHV (MJ kg−1) (dry) 18.50 18.19 18.05 17.97 20.10 19.56 17.42

Table 1. Forest biomass fuel properties [153].
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5.3. Conversion technologies

Combustion is by far the most common way of converting forest biomass into energy [154]. 
It is performed in batch or continuous systems, depending on the scale, and to produce heat, 
power, or combined heat and power. The focus of this chapter is not on the traditional equip-
ment to burn wood, but a review can be found, for example, in Ref. [155].

5.3.1. Heating applications

Depending of the scale, different combustion equipment can be used. In Europe, most of the 
biomass is burned in small-size units for household heating, whose scale is typically of the 
order of a few kW

th
. Equipment such as stoves, fireplaces, furnaces, and boilers are used to 

produce heat (a description can be found in [156, 157]). The most common fuels are firewood, 
wood pellets, and wood chips. The conversion efficiencies depend on the equipment. The tra-
ditional open fireplaces have efficiencies lower than 20% [158] and should not be considered 
a heating solution. At the high end of the range, wood pellet boilers can achieve efficiencies of 
more than 90% [159]. The scale of nondomestic applications is very variable and can go up to 
several MW

th
. Heat can be produced in main activity heating plants or in industrial facilities. 

It is in Europe that most district heating is used [160]. Most of the biomass heat sold by the 
European energy sector comes from CHP plants. Biomass heat-only plants are important in 
small-scale district heating systems [161]. The combustion technologies used in district heat-
ing power plants are mainly fixed bed, bubbling fluidized bed, and circulating fluidized bed 
furnaces (a description can be found in [157, 162, 163]). Fixed-bed boilers are less efficient 
(60–90%) than fluidized bed boilers (75–92%) [164]; they present lower costs and are typically 
used for smaller capacities than fluidized bed boilers [157]. Heat distribution losses have to be 
taken into account to know the overall efficiency of district heating. Several parameters affect 
heat losses, such as linear heat density, pipe diameter, or temperature level [165]. In the indus-
trial sector, process heat is typically generated by boilers, dryers, kilns, furnaces, and stoves. 
Wood and wood-upgraded fuels (e.g., torrefied pellets and charcoal) can be burned to provide 
the broad spectrum of temperatures required by the industries [166]. For low and medium 
temperature process heat, mainly boilers are used, while for high temperature process heat, 
direct heat is supplied [167]. The equipment used for direct heating is very diversified and 
dependent on the process itself. For example, Ref. [168] and Ref. [169] describe the equipment 
used in the iron and steel industry, while Ref. [170] in the cement, lime, and magnesium oxide 
industries. The combustion technologies used for indirect process heating are similar to the 
ones used in district heating. The industries that use biomass for process heat generation are 
mainly those that generate biomass residues (e.g., pulp and paper and the wood and wood 
products industries). An example of a sector that does not produce biomass residues but uses 
solid biomass for the partial substitution of fossil fuels is the cement industry [171].

5.3.2. Power applications

The primary combustion technologies used in biomass-fired power plants are similar to that 
of district heating and industrial plants with indirect heating applications: fixed and fluidized 
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bed boilers. Additionally, pulverized combustion is also used; it is used as well in industrial 
applications, but not so commonly [157]. Pulverized biomass-fired boilers are very efficient 
but require a considerable amount of fuel pretreatment [172] when the biomass is not already 
generated in fine particles (e.g., in sawmills or cork industry). As far as secondary technologies 
are concerned, today biomass-fired power plants are mostly based on steam turbines [173]. 
The electrical efficiencies of these plants depend on the size of the power plant and tend to 
be within the range of 18–33% (for installed capacities of 10 to 50 MW

e
, respectively) [174]. 

Higher efficiencies in larger systems have been reported in the literature [172]. The size of 
biomass power plants is typically much smaller than that of fossil fuel power plants due to the 
restricted availability of local biomass sources and transport costs. Co-firing of wood and coal 
is a strategy to reduce greenhouse gas emissions, improving the overall efficiency of power 
plant with no need for a continuous supply of biomass [175]. It enables the advantages of the 
larger coal-fired power plants, while partially using a renewable energy source. Gasification of 
forest biomass into syngas followed by combustion of the syngas is an interesting alternative 
to combustion only systems, which offers higher efficiencies especially for smaller capacity 
power plants [176]. The most mature technology is gasification coupled with an internal com-

bustion engine [177]. They are used in smaller systems than steam turbines [178].

5.3.3. CHP applications

Combined heat and power is the simultaneous generation of electricity and useful heat. It is 
a much more efficient way to burn forest biomass than biomass-fired power plants, since the 
overall efficiencies of CHP plants is much higher (global efficiencies above 85% can be achieved 
[179]). CHP biomass systems have an important application in industries that generate wood 
residues, such as the pulp and paper and wood industries [180, 181]. The other important 
CHP application is district heating plants [160]. CHP power plants for capacities above 2 MW

e
 

are dominated by burning biomass in steam turbines (Rankine cycle) [182]. Steam turbines are 
a mature technology and applied in a wide range of powers. However, in small decentralized 
plants their electrical efficiency is low [159]. In this case, CHP plants should be operated in a 
heat-controlled mode with low power-to-heat ratios [159]. For systems smaller than 2 MW

e
, 

the biomass CHP conversion technologies are not so well established [182]. In this power 
range, one of the commercial technologies available is the organic Rankine cycle (ORC). Its 
electric efficiency is relatively low, but the investment and maintenance costs are lower than 
that of the conventional Rankine cycles [183]. Another commercially available technology for 
small capacities is the steam piston engine [159]. Its nominal efficiency is comparable to that of 
steam turbines, having in efficiency little variation at partial load, contrary to steam turbines 
that have low part-load efficiencies [159]. Stirling engines are not commercially available yet 
[184]. They are a promising technology suitable for CHP plants below 100 kW

e
 and achieve 

relatively high electrical efficiencies [182]. From all the commercially available technologies 
for sizes below 2 MW

e
, gasification is the one that presents higher efficiencies [182].

6. Conclusions

The primordial source of biomass for energy is derived from stands and forests. Due to the 
wide range of stand structures, the amounts of biomass available for energy are also quite 
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variable. Higher quantities per unit area are attained in energy plantations. Pure or mixed 
even-aged high forests managed for timber potentially originate larger amounts of forest 
residues when compared with the other types of stands. The renewed interest of biomass as a 
source of energy brought about the challenge of its estimation. Remote sensing is a useful tool 
that enables a more cost-efficient evaluation and monitoring when compared with the forest 
inventory approach. Forest biomass is a very versatile renewable energy source, yet its share 
on the world energy supply is relatively small. It is mainly converted to energy in combustion 
systems used for heat generation, but CHP and electricity production are also common. For 
most applications, the use of raw biomass is adequate, but it might be necessary and/or more 
appropriate to upgrade it.
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