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Valorization of Natural 
Antioxidants for Nutritional and 
Health Applications
Pedro Ferreira-Santos, Zlatina Genisheva, Claudia Botelho, 

Cristina Rocha and José António Teixeira

Abstract

The significant increase in the world population age, 47 years in 1950 to 73 years 
in 2020, resulted in an increase in aging related diseases as well as in degenerative 
diseases. In consequence, researchers have been focusing in the development of new 
therapies, with a particular emphasis on the use of compounds with antioxidant 
properties, namely phytochemicals, such as polyphenols and carotenoids. Several 
in vitro and in vivo studies have demonstrated the phytochemicals antioxidant 
capacity. Their use is broad, as they can be part of food supplements, medicine and 
cosmetics. The health benefit of antioxidant phytochemicals is an indisputable 
question. Phytochemical properties are highly influenced by the natural matrix as 
well as by extraction process, which have a key role. There are several extraction 
methods that can be applied depending on the chemical properties of the bioactive 
compounds. There is a wide range of solvents with different polarities, which allows 
a selective extraction of the desired target family of compounds. Greener technolo-
gies have the advantage to reduce extraction time and solvent quantity in compari-
son to the most traditional methods. This chapter will focus on the different green 
extraction strategies related to the recovery of antioxidant bioactive compounds 
from natural sources, their nutritional and health potential.

Keywords: bioactive compounds, antioxidants, green technologies, oxidative stress, 
health benefits

1. Introduction

Nowadays, the awareness for the need to have a healthier lifestyle results in a 
higher consumption of natural organic food products and nutritionally rich anti-
oxidants rather than synthetic and processed foods. In the past decade, an increased 
interest in the exploitation of natural ingredients to be used in the food and food 
products was observed. Researchers from all over the world are focusing on alterna-
tive sources of healthy nutrients promoting a safer and convenient diet. There is not 
clear evidence that synthetic antioxidants have toxic effects, although, consumer’s 
interest is moving towards the natural products. Moreover, synthetic antioxidants 
and preservatives in food may lead to lipid peroxidation and deterioration of food 
flavor and quality [1]. Therefore, organic and sustainable processes, the identifica-
tion of new phytochemicals with attractive biological activities, such as antioxidant, 
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anticancer, antimicrobial, among others, are a hot topic among food researchers 
as well as for food industry aiming to develop new functional and therapeutic 
products.

Natural antioxidants are mainly derived from food, plants and other living 
organisms, such as fruits, vegetables, flowers, cereals, mushrooms, macro and 
micro-algae, spices and traditional medicinal herbs [2]. It is known that exogenous 
antioxidants have a strong potential to inhibit oxidative stress, preventing the lipid 
peroxidation process, and restore the cellular homeostasis [3]. Indeed, most of the 
antioxidant products shown to act as potential therapeutic agents. The consumption 
of antioxidants is highly important not only in prevention but also as an adjunct 
in the treatment of various human pathologies associated with oxidative stress, 
such as diabetes, aging, neurological, cardiovascular, and cancer [4]. In this sense, 
beneficial health effects of antioxidants are directly linked to regular daily intake 
and bioavailability.

The issues created by the increase of the human population, together with a 
reduction in renewable resources, is reflected in the increase of the global demand 
for reuse of industrial biowastes, as well as increasing the use of underexploited 
resources. The growing demand for new or alternative bioactive molecules obtained 
by green and sustainable processes, and decreasing the quantity of biowastes are 
premises for the development of conscious approaches for the valorization of 
phytochemicals from natural sources [5, 6]. Additionally, the development and 
optimization of efficient and intensified process for the recovery and isolation of 
high value phytochemicals are important.

The current chapter is focused on appreciation of different green extraction 
strategies related to the recovery of high value bioactive compounds from natural 
sources, their potential antioxidant activity, and possible nutritional and health 
applications.

2. Green approach in the extraction of antioxidant compounds

The recovery of antioxidant biomolecules or extracts is an important step to 
enable the reuse of natural resources for subsequent application in pharmaceuti-
cal, cosmetic products, food enrichment and preservatives, supplements and 
nutraceuticals.

Usually, bioactive phytochemicals are obtained using solid–liquid extraction, 
the unit operation, and depends on several factors, including the applied extrac-
tion technique, the parameters associated with the technique (such as temperature, 
time, pH and the extraction solvent), and the raw materials composition [7]. 
Extraction process is composed by 4 essential steps: (1) raw material pre-treatment 
(drying, grinding, etc.) to increase surface contact area and solvent penetration; 
(2) extraction with appropriated solvent; (3) post-treatment of the obtained liquid 
extract (filtration, concentration, purification, etc.); (4) solvent removal and its 
reuse [8].

The extraction process, when it is not optimized, is often time and energy 
consuming, induces the use of huge amount of water or petroleum-based sol-
vents (harmful for environment and consumers) and generates large quantity of 
waste [9]. Moreover, the resulting extract may not be safe for the consumers, as 
it may contain residual solvents, contaminants from raw material, or denatured 
compounds due to extreme extraction conditions [5]. In this sense, the extraction 
processes intensification/optimization is necessary. The goal of an intensified pro-
cess is to obtain greater extraction efficiency, high-quality and safe extracts while 
reducing extraction time, energy consumption, number of unit operations, amount 
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Extraction technology Concept Advantages Disadvantages References

Microwave assisted 
extraction (MAE)

Microwaves are electromagnetic fields in the range 
of 300 MHz to 300 GHz. The solvent penetrates into 
the solid matrix by diffusion leading to cell disruption 
and releasing the compounds of interest from a 
matrix to a solvent.

Lower time of extraction; low solvent 
volume; effective, uniform and selective 
heating.

High extraction pressure might 
modify the chemical structures of 
the compounds; low penetration 
of radiation in bulk products; 
equipment more expensive.

[5, 19]

Ultrasound assisted 
extraction (UAE)

Ultrasound is a sound wave of 20 kHz to 100 MHz. 
This process produces a phenomenon called 
cavitation, which means that the production, growth, 
and collapse of the bubbles to form pores that 
facilitate the cell wall disruption and increased the 
release of intracellular compounds into the extraction 
medium.

Fast; low solvent usage; lower extraction 
temperatures; preserving heat-sensitive 
compounds; eco-friendly and cheap 
process.

Energy intensive; dificult to scale up. [20, 21]

Pressurized liquid 
extraction (PLE)

This technology is based on the use of liquid solvents 
at temperature and pressure values above the 
atmospheric boiling point and below the critical 
point values, decreasing the viscosity of the solvent, 
promoting accelerated dissolution kinetics, and 
increasing the solutes’ solubility. The process disrupts 
the matrix, which increases the mass transfer of the 
analyte from the solvent sample

Rapid extraction; reduced organic solvent 
consumption.

Requires sophisticated 
instrumentation; possible 
degradation of thermolabile 
compounds.

[22, 23]

Supercritical fluid 
extraction (SFE)

Supercritical extraction is characterized by changes in 
temperature and pressure which transform the gas in 
supercritical fluid.

Fast; selective extraction; no residual 
solvents.

High cost; energy intensive; low 
polarity; type of co-solvent affects 
the efficiency of the extraction of 
antioxidant compounds.

[23, 24]

High hydrostatic pressure 
(HHP)

This technology applys very high pressures 
(100–1000 MPa) at 0 °C to less than 100 °C for a 
short period of time. Improves mass transfer rates 
and increases the secondary metabolite diffusion 
according to phase transitions.

Time efficient, requires less solvent, 
convenient, eco-friendly, safe and energy 
efficient; does not generate waste; pure 
and microbiologically safe products; 
absence of heating, avoiding compound 
denaturation and ensuring the extraction 
of thermo-sensitive components.

Variable efficiency; high processing 
costs.

[25–28]
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Extraction technology Concept Advantages Disadvantages References

Enzyme assisted extraction 
(EAE)

The matrix and enzyme solution are loaded into an 
extraction vessel and placed in a thermostated water 
bath at the certain temperature and time.

Moderate extraction conditions; eco-
friendly; selectivity due to the specificity 
of enzymes.

Expensive cost of enzymes; activity 
of enzymes varying with the 
environmental factors; filtration 
and cleanup step required; time 
consuming.

[3, 7, 23]

Pulsed electric field (PEF) The material is placed between two electrodes. 
The pulse amplitude varies from 100–300 V/cm to 
20–80 kV/cm. The treatment is conducted at room 
temperature or slightly higher. The principle of PEF 
extraction is to induce the electroporation of the cell 
membrane, thereby increasing the extraction yield.

Improves extraction and diffusion; 
cell permeability; minimize loss of 
heat sensitive molecules; selectivity of 
extracted compounds.

High control of parameters 
associated with the process (energy 
input, strength, pulses, temperature, 
and raw material properties, e.g. 
conductivity).

[5, 9, 29, 30]

High voltage electrical 
discharges (HVED)

It is an effective method to damage the cell structure 
and the extraction of valuable cellular compounds. 
The first step is the formation and propagation of 
a coil of a needle electrode and the formation of 
gaseous cavities. The second stage occurs when 
the streamer reaches the electrode plate (phase 
decomposition).

Efficiency of cell destruction; low solvent 
consumption; low operating temperature 
and temperature rise.

Free radicals production, which can 
react with antioxidant compounds, 
thus decreasing their bioactivy; 
lower selectivy; scale-up difficulties.

[19, 22, 31]

Ohmic heating (OH) Non-pulsed electrotechnology centered on the 
conversion of electric energy into thermal energy 
based in the Joule effect (heat is generated inside a 
conductive matrix). The voltage applied in the OH 
process normally varies between 400 and 4000 V 
(electric field from 0.001 to 1 kV/cm).

Fast and homogeneous heating; reduction 
of energy consumption and times; low 
water and organic solvents use; low 
waste generation; selectivity of extracted 
compounds; improves extraction and 
diffusion by cell permeability.

High control of parameters 
associated with the process (similar 
to PEF and HVED).

[9, 32, 33]

Table 1. 
Geen technologies for the extraction of antioxidant compounds from natural sources.
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of water and organic solvents in the process, environmental impact, economic costs 
and quantity of waste generated [8].

In the last decades, the growing interest in the global ecological footprint reduction, 
bioeconomy control and consumer safety, has propel the implementation of innovative 
and clean alternatives in the food, chemical, cosmetic and pharmaceutical industries, 
following the principles of green chemistry and green engineering [10, 11].

Among the various extraction factors, solvents play an important role in extrac-
tion efficiency. The reduction of hazardous solvents is also considered one of the 
priorities of international policies [12]. A suitable solvent is able to obtain safe and 
high-quality ingredients and to preserve the biological effects of the extracted 
compounds. Furthermore, it should be recyclable and reusable, preventing negative 
environmental effects.

Numerous solvents have been used for the extraction of antioxidants from foods, 
marine sources, medicinal plants and agroindustrial wastes [6]. The selection of 
solvents must be based on the chemical nature and polarity of the compounds to be 
extracted, since solvents with different polarities are necessary for the isolation of 
compounds with different chemical structure [5]. For example, most of the phe-
nolics, flavanoids and anthocyanins are hydrosoluble antioxidants. The polar and 
medium polar solvents, such as water, ethanol, methanol, propanol, acetone and 
their aqueous mixtures, are widely used for their extraction [13–15]. Carotenoids 
are lipid-soluble antioxidants, and common organic solvents, such as the mixtures 
of hexane with acetone, ethanol, methanol, or mixtures of ethyl acetate with 
acetone, ethanol, methanol, have been used for extraction [16–18].

A number of new alternatives to conventional techniques (Soxhlet, heat reflux, 
infusion, distillation, etc.), have been proposed to extract target antioxidant com-
pounds from various natural matrices. Table 1 presents a summary of the concept, 
the many benefits of some innovative extraction technologies as well as challenges 
associated with its use in the recovery of antioxidant molecules.

In the following sections some examples of natural matrices used as sources of 
antioxidant compounds using clean and innovative processes will be reported.

3. Natural sources of antioxidants

Fruits and vegetables are highly recommended dietary contents, widely known 
for their health-promoting effects and nutritious values. They got an essential place 
as conventional foods in the history because of their high amount of minerals, 
specifically electrolytes; vitamins, mainly vitamins C and E. Several studies are 
also demonstrating their high phytochemical contents eith antioxidant properties. 
Antioxidants obtained from plants, vegetables and fruits are mostly of terpenes, 
polyphenols, phytosterols, peptides, vitamins and minerals (Figure 1) [34, 35]. 
Antioxidant minerals, such as iron, zinc, selenium, copper, and manganese, act as 
cofactor of many antioxidant enzymes, absence of which may certainly disturb the 
activity of their enzymatic scavenging activity [2].

It has been argued that agri-food residues generated by the use of plants and 
their derivatives might have a negative impact on the environment when they are 
discarded. In developed countries, 42% of food waste is produced by households, 
while 39% losses occur in the food manufacturing industry, 14% in food service 
sector and remaining 5% in retail and distribution [36]. Waste from parts of plants 
such as peel, leaves, stem, seed, and roots generated from agriculture, to industrial 
manufacturing and processing [2]. They constitute a low-cost source of antioxidant 
molecules, which exhibit other biological activities, like antidiabetic, anti-obesity, 
antihypertensive, anticancer, and antimicrobial [13, 37, 38].



Antioxidants

6

Marine biodiversity is another underexploited source of natural products. 
Marine resources are gaining the attention of industries such as foods, pharmaceuti-
cals, nutraceuticals, and cosmetics because they have several interesting antioxidant 
molecules and other attractive biotechnological compounds (e.g. polysaccharides, 
pigments, proteins, etc.), making these resources a profound and renewable source 
to investigate novel molecules. Currently, more than 30000 structurally diverse 
secondary metabolites have been isolated from marine sources [39].

Algae are considered the richest source of active compounds with antioxidant 
activity (and other biological activities). They can be used as nutraceuticals, food 
additives and cosmetics. Algae are composed by a complex group of photosynthetic 
organisms with simple reproductive organs, which can be multicellular, known as 
macroalgae or seaweeds, and unicellular named as microalgae [40]. Algae produce 
various secondary metabolites with many antioxidant activities such as pigments 
(phycobiliproteins, chlorophylls and carotenoids), polyphenols (bromophenols, 
flavonoids, phlorotannins and phenolic acids), vitamins (β-carotene and other carot-
enoids), a complex of B vitamins (B1, B2, B3, B5, B6, B7 and B12), vitamin C (ascorbic 
acid), vitamin D and vitamin E (α-tocopherol) [40, 41]. Sulfated polysaccharides are 
nonanimal compounds reported to have antioxidant activities, which can be obtained 
from marine algae and other marine organisms from the phaeophyta group [42]. These 
compounds may be used as hydrocolloids and as nutraceuticals in the food industry.

Iodine (an important mineral from seaweeds), is a key element for hormones 
related with the thyroid, helping in the metabolism regulation [43].

Marine sponges (family Aplysinellidae) are recognized as producers of bromoty-
rosine derivatives, displaying a myriad of biological and pharmacological potentiali-
ties [39]. Many biological compounds previously isolated from some other marine 
organisms such as fish, crustaceans, and their by-products present bioactive potential.

For the past few decades, researchers and industry have been focusing their 
work on the use of by-products or biowastes to obtain products with high added 
value, using innovative and environmentally friendly processes. These products 
can be used as (bio)functional additives, or as a therapeutic alternative in the pre-
vention or treatment of cardiometabolic, cancer and neurodegenerative diseases 
[40, 42, 44, 45].

Figure 1. 
Classification of natural antioxidants.
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Sources Compounds Technologies (Solvents) Bioactivities References

Plants and by-products

Passion fruit 
peel

Carotenoids
Pectin

MAE,UAE
(water, 0live oil
sun flower oil)

Antioxidant
Antimicrobial
Anticancer

[46, 47]

Vine pruning Polyphenols OH, MAE,
(water, ethanol)

Antioxidant
Anticancer

[48, 49]

Grape skins Anthocyanins
Polyphenols

OH, MAE, UAE, EAE, PLE
(water, eutectic solvents)

Antioxidant [50–55]

Colored potato Anthocyanins OH
(water)

Antioxidant
Antimicrobial
Anticancer
Neuroprotective

[15]

Pine bark Polyphenols OH, MAE, UAE, SFE
(CO2, water, ethanol)

Antioxidant
Anticancer
Antimicrobial
Antihyperglycemic

[13, 56–58]

Pine nuts Polyphenols PLE, UAE, MAE
(water)

Antioxidant [59]

Soy beans Proteins
Isoflavones

EAE, UAE, PLE
(eutectic solvents, ionic 
liquid, water, methanol)

Antioxidant
Cardioprotective
Anticancer

[60–63]

Mentha Polyphenols
Essential oil

UAE, SFE, MAE, OH
(water, ethanol, methanol)

Antioxidant [64–66]

Tomato 
by-products

Polyphenols
Pectin
Fatty acids
Carotenoids

MAE, HHP, UAE, PEF, 
SFE, EAE
(hexane, methanol, 
acetone, ethyl lactate)

Antioxidant
Cardioprotective
Antihypertensive
Antidiabetic
Anticancer

[67–71]

Apple peels Pectin
Polyphenols

UAE, SFE
(water)

Antioxidant [72, 73]

Apple seeds Essential oils
polyphenols

PFE, UAE, SFE
(CO2, water)

Antioxidant [74–76]

Brewer’s spent 
grains

Polyphenols,
proteins

PEF, UAE, SFE
(water, ethanol)

Antioxidant [77–79]

Orange peel Pectin
Polyphenols

PEF, MAE
(citric acid)

Antioxidant [37, 80]

Moringa leaves Polyphenols
Vitamin C

PLE
(water)

Antioxidant [81]

Rapeseed oil
Guava oil,

Phytosterols,
Polyphenols
Tocopherols

SFE
(CO2, Euctetic solvents)

Anticholesterolemic
Antioxidant

[82, 83]

Roselle seeds
Black sesame 
seeds

Phytosterols SFE
(CO2, ethanol)

Anticholesterolemic
Antioxidant

[84, 85]

Microalgae

Spirulina 

platensis

Polyphenols
Carotenoids
Phycobiliproteins

OH; MAE; PEF; UAS; EAE
(water, ethanol)

Antioxidant
Antimicrobial
Anticancer
Anti-inflammatory

[86–95]

Heterochlorella 

luteoviridis

Carotenoids
Lipids

OH; UAE
(ethanol)

Antioxidant
Anti-inflammatory

[96, 97]
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Table 2 shows some examples of bioactive molecules from natural sources 
(plants and their by-products and algae), as well as the type of technologies and 
solvents used in the extraction process.

Sources Compounds Technologies (Solvents) Bioactivities References

Chorella 

vulgaris

Carotenoids
Polyphenols

PEF; SFE
(CO2, Water, water: 
ethanol)

Antioxidant
Antimicrobial
Anticancer
Anti-inflammatory

[98–101]

Nannochloropsis 
spp

Carotenoids
Chlorophylls
Polyphenols
Proteins
Lipids

UAE; PEF; PLE
(water, ethanol, dimethyl 
sulfoxide)

Antioxidant
UV-protective
Anti-inflammatory
Anticancer

[102–104]

Phaeodactylum 

tricornutum

Proteins
Pigments
Lipids
Carotenoids
Chlorophylls
Polyphenols

HVED; HHP; PLE, MAE
(water, ethanol, 
chloroform: methanol)

Antioxidant [17, 105]

Neochloris 

oleoabundans

Carotenoids PLE
(ethanol)

Antioxidant [106]

Macroalgae

Gracilaria Sulfated 
polysaccharides

Maceration by liquid 
nitrogen
(sodium acetate buffer)

Antioxidant [42]

Laminaria 

ochroleuca

Fatty acids
Polyphenols

PLE
(hexane, ethyl acetate, 
ethanol and ethanol:water)

Antioxidant
Anti-atherogenic

[107]

Ascophyllum 

nodosum

Laminaria 

japonica

Lessonia 

trabeculate

Lessonia 

nigrecens

Polyphenols MAE
(70% methanol)

Antioxidant
Anti-hyperglycemic

[108]

Fucus serratus

Laminaria 

digitata

Gracilaria 

gracilis

Codium fragile

Polyphenols PLE
(water, ethanol/water, and 
methanol/water)

Antioxidant
Antiproliferative

[40, 109]

Palmaria 

palmata

Proteins
Peptides

EAE
(water)

Antioxidant
Cardioprotective
Anti-inflammatory
Anti-diabetic

[110, 111]

Gelidium 

pusillum

Phycobiliproteins UAE
(phosphate buffer)

Antioxidant
Anticancer
Anti-inflammatory

[112, 113]

MAE, Microwave assisted extraction; UAE, Ultrasound assisted extraction; PLE, Pressurized liquid extraction; 
SFE, Supercritical fluid extraction; HHP, High hydrostatic pressure; EAE, Enzyme assisted extraction; PEF, Pulsed 
electric field; HVED, High voltage electrical discharges; OH, Ohmic heating.

Table 2. 
Green processes for antioxidants recovery from some plants, algae and by-products.
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Currently, phytochemicals are being used in several commercial applications, 
like nutraceuticals, food supplements, cosmetic products, food coloring agents, 
among others. As an example Moringa Olifeira extract is widely used in cosmetics or 
bath cosmetics [114]. Pycnogenol® is trade mark for the French pine bark extract, 
which is used as a food supplement with antioxidant properties [115]. Curcumin 
(Biocurcumax ®, BCM-95® CURCUGREEN®) is used as coloring agent for food and 
cosmetics, as well as a nutraceutical [116].

Multiple cosmetics companies use algae extracts and compounds in their formu-
lations, as an active agent, or a moisturizer, excipient, gelling, thickening, dyes, pig-
ments, preservatives, additives, aroma or fragrance agents. For example, Gracilaria 
species extracts are integrated into various commercial cosmetics, such as hydrogel 
soap from Sealaria® (Kfar Hess, Israel), facial mask by Balinique® (Miami, FL, 
USA), and hydrating cream by Thalasso® (Rosa Graf, Stamford, CT, USA). The 
Chondrus crispus extract enriched in sulphated polysaccharides, Gelcarin® (Dupont 
Nutrition and Biosciences, Wilmington, DEL, USA), to be used in various cosmetic 
products as gelling, thickener and stabilizer agent [43].

β-Carotene was the first high-value product commercially produced from a 
microalga Dunaliella salina with production starting in the 1980s by four produc-
ers—Koor Foods (Nature Beta Technology) in Israel, Western Biotechnology Ltd. 
and Betatene Ltd. in Australia, and Nutralite in the USA [117].

3.1 Enzymes

Antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GPx), are considered to be, the first line defense in the cells 
against reactive species like superoxide radical (·O2). SOD, CAT and GPx are indis-
pensable in the antioxidant defense of the body [118]. SOD is an endogenous enzyme 
and the most powerful antioxidant in the cell. As a metalloenzyme SOD requires a 
metal cofactor for its activity (iron,zinc or copper). It catalyzes the conversion of 
two molecules of ·O2 to hydrogen peroxide (H2O2). The level of superoxide dismutase 
decrease with the age. Moreover, the SOD deficiency was connected to a number 
of pathologies in both animals and humans. The daily intake of SOD supplement 
protect the immune system and slow down aging process. CAT is highly efficient 
antioxidant enzyme, located primarily in the peroxisomes but absent in mitochon-
dria of mammalian cells. It catalyzes the reduction of H2O2 to water and molecular 
oxygen, completing the process initiated by SOD. In the mammalian mitochondria 
cells, where the catalase is absent, the breakdown of the hydrogen peroxide to 
water and oxygen is carried out by another enzyme the GPx. GPx is an intracellular 
enzyme, and its activity depends on the micronutrient cofactor selenium [118]. 
Cabbage, brussels sprouts, and broccoli are natural sources of these enzymes [118].

3.2 Proteins and peptides

The protein role in the antioxidant defense system is a result of their direct 
action as precursors of intracellular formation of glutathione [119]. The antioxidant 
potential of fruit and vegetable juices and grain products is comparable to the 
antioxidant potential of milk [119]. Plant proteins are considered the new source of 
antioxidant peptides [120]. Soy milk is soybean-derived product rich in bioactive 
peptides and isoflavones. It is one of the most popular milk-substitutes for individu-
als with lactose-intolerance [121]. Other known plant protein drinks substitutes of 
caw milk are rice milk and almond milk.

Bioactive peptides are present in many fermented and functional foods. The 
bioactive peptides usually have between 2 and 20 amino acids residues and exercise 
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their activities only after being released from the main protein. Bioactive peptides 
can display different activities, e.g. antihypertensive, antioxidant, immunomodula-
tory, anti-inflammatory or antimicrobial, depending on the sequence and amino 
acid composition [122]. Agroindustrial by-products and wastes are being used 
as a source of bioactive peptides. Tomato seeds, containing 28% of protein, were 
subjected to fermentation to obtain different size of peptides [122]. Many times in 
fruit processing the main generated waste is the fruit stone. The alternatives for 
reutilization of these type of waste are few (as fertilizers or fuels). The cherry fruit 
stone contain high values of protein (up to 39%), and is considered a cheap source 
for production of bioactive peptides [123]. The obtained peptide fractions had 
high antioxidant or antihypertensive activities [123]. Phycobiliproteins are water 
soluble protein found in  Rhodophyta (red algae), Cyanobacteria (Spirulina), and 
Cryptophyta (Table 2). These proteins are well known for their strong antioxidant 
and free-radical scavenging activities [124]. Phycobiliproteins are divided in three 
classes phycoerythrin, phycocyanin and allophycocyanin. These proteins constitute 
up to 60% of the total soluble cellular protein in microalgae [125]. Phycobiliproteins 
have high commercial value as natural colorants in the nutraceutical, cosmetic, and 
pharmaceutical industries [124].

Other wastes like, peel, leaves, stem, seeds and roots are generated during har-
vesting, post-harvesting or processing of plants. These wastes are low-cost source 
of antioxidant molecules like terpenes, polyphenols, phytosterols and peptides 
that can exhibit different biological activities including antidiabetic, anti-obesity, 
antihypertensive, anticancer, antiviral and antibacterial [126].

3.3 Terpenes

Terpenes also known as terpenoids or isoprenoids are antioxidant molecules 
formed by the condensation of two subunits of isoprene (C5H8). Moreover, the 
terpenes are classified on the basis of the number of isoprene units (Figure 1). 
Terpenes are the main constituents of essential oils (up to 90%) and are very 
diverse in structure and compounds. Carotenoids are a class of natural lipid-soluble 
pigments that are responsible for the red, yellow, and orange colors found in various 
plants and microorganisms. Carotenoids are tetraterpenes (C-40) classified in 
two groups xanthophylls (lutein, zeaxanthin, and β-cryptoxanthin) and carotenes 
(α-carotene, β-carotene, and lycopene). Carotenoids are beneficial for humans and 
animals demonstrating antioxidant, antidibetic, antihypertensive, anti-inflamma-
tory and anticancer activities [33, 127–129].

3.4 Polyphenols

Polyphenol compounds are secondary metabolites produced in plants as a 
response to different stress conditions. Nowadays more than 8,000 polyphenols 
are known and more than a half correspond to the group of flavonoids. The main 
structure of the phenols is the benzene ring with different OH radicals. According 
to their chemical structure phenolic compounds can be divided in two major groups 
flavonoid and non-flavonoid. The non-flavonoid group includes the phenolic acids 
(hydroxybenzoic acids and hydroxycinnamic acids), stilbenes and lignans. The 
anthocyanins, flavanols, flavonols, flavones, flavanones, isoflavones and tannins are 
flavonoids [5].

Flavonoid consumption is associated with a reduced risk of coronary heart 
disease, stroke and cancer. Rich sources of polyphenol compounds in nature are 
fruits and vegetables, cereals, chocolate, olive oils and beverages such as tea and 
wine (Table 2). Polyphenols are known for their strong antioxidant properties [5]. 
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The strength of their antioxidant activity depends on their interaction with other 
molecules. For example the absorption of polyphenols in human body is enchased 
when there is no sugar molecules attached with them. This means that tea polyphe-
nol have higher absorption than fruit polyphenols because of the high sugar con-
tent. Normally from the total consumed amount of polyphenol only 15% -20% are 
absorbed in the human blood [2]. Moreover, studies demonstrated that the addition 
of milk to tea, a habit common in the United Kingdom, reduces the absorption of 
flavonols and diminish their antioxidant effect [130].

3.5 Vitamins

Vitamins obtained from fruit and vegetables also act as antioxidants. Examples 
are vitamin C and vitamin E. Vitamin C, that is ascorbic acid is powerful anti-
oxidant found in citrus fruits and vegetables such as oranges, lemons, as well as 
tomatoes. Vitamin E is a fat-soluble vitamin found naturally in lipid-rich fruits and 
vegetables, such as olives, sun flower, and nuts [2].

3.6 Phytosterols

Phytosterols are natural bioactive compounds belonging to the group of trit-
erpens. Humans must obtain phytosterols from plant-derived foods, such as nuts, 
seeds, cereals and legumes, vegetable oils, soybean oil, and sunflower oil (examples 
in Table 2) [126]. The most important and abundant phytosterols are β-sitosterol 
(carbon structure C-29), campesterol (C-28), and stigmasterol (C-29) [126, 131]. 
Phytosterols have chemical structures and functions similar to cholesterol, but 
differ from it by an extra methyl or ethyl group at C-24 or a double bond at the C-22 
position [132]. Because of the similarity in the structure, phytosterols can reduce 
cholesterol absorption in the small intestine and thus decreasing blood cholesterol 
levels. Additional known bioactivities of the phytosterols are anticholesterolemic, 
antidiabetic, hepatoprotective, anticancer, antioxidant, antimicrobial and anti-
inflammatory [131, 133].

4. Antioxidant actions of phytochemicals

4.1 In vitro evidence

Oxidation is a natural phenomenon of human cells. Several important biological 
processes need reactive oxygen species (ROS) like superoxide radicals, hydrogen 
peroxide, hydroxyl radicals and singlet oxygen [134, 135]. Without them, protein 
phosphorylation, activation of transcriptional factors, apoptosis or cell differentia-
tion would not occur. The problem lays on the formation/degradation imbalance 
of ROS and/or reactive nitrogen species (RNS) [134, 135]. The cell has intrinsic 
mechanisms to protect itself from excess of ROS/RNS, but only to an extent. If 
the threshold levels are overcome, cellular structures can be damaged like protein 
[134–136], lipids [134, 135, 137], polysaccharides [134, 135, 138] and nucleic acids 
[134, 135, 139]. Several cell mechanisms of defense against oxidative stress have 
been described in the literature [140, 141]. These mechanisms can be divided into 
enzymatic and non-enzymatic. SOD, CAT, GPx, Thioredoxin (TRX), Peroxiredoxin 
(PRX), Glutathione transferase (GST) are endogenous enzymatic mechanisms, 
while All trans retinol 2 (Vitamin A), Ascorbic acid (Vitamin C) and α-Tocopherol 
(Vitamin E) are non-enzymatic endogenous antioxidant mechanism [141]. SOD 
catalyzes de dismutation of the superoxide anion free radical into molecular oxygen 
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and hydrogen peroxide [141, 142] (Eqs. (1) and (2)). As described by Younus [142] 
this reaction is accompanied by an alternate oxidation–reduction of the metal ions 
present in the active site of SOD.

 ( )n n
M SOD O M SOD O

+ − +− + → − +1

2 2
  (1)

 ( ) ( )n n
M SOD O H M SOD H O

+ +− +− + + → − +1

2 2 2
2   (2)

CAT can use iron or even manganese as a cofactor for its enzymatic reactions 
that will lead to the degradation or reduction of hydrogen peroxide to water mol-
ecules and oxygen. This enzyme competes the detoxification process that SOD 
initiated (Eqs. (3)-(5))[118, 143, 144].

 H O O H O→ +
2 2 2 2

2   (3)

 ( ) ( ) ( )H O Fe III E H O O Fe IV E+ − → + = − +
2 2 2

.   (4)

 ( ) ( ) ( )H O O Fe IV E H O Fe III E O+ = − + → + − +
2 2 2 2

.   (5)

GTPx encompasses two independent reactions, the first one is the reduction of 
the enzyme by a hydroperoxide (Eq. (6)) followed by the oxidation to GSH [145].

 GSH ROOH GSSG ROH H O+ → + +
2

2 2   (6)

 GSH H O GSSG H O+ → +
2 2 2

2 2   (7)

Trx system is composed by Trx and thioredoxin reductase and NADPH. It is 
described that Trx uses cysteines at position 32 and 35 for the enzymatic reac-
tion. In the first reaction (Adenosine monophosphate + sulfite + thioredoxin 
disulphide = 5′-adenylyl+thioredoxin) [141, 146] the N-terminal cysteine of Trx 
acts on the disulphide bond of the substrate protein, leading to the formation 
a mixed disulphide bond between Trx and the substrate protein. Following the 
reaction to the C-terminal cysteine of Trx on the intermediate intermolecular 
disulphide bond, which will form in a disulphide bond in the oxidized Trx 
and the breakdown of the disulphide bond in the reduce substrate (Adenosine 
3′,5′-bisphosphate + sulfite + thioredoxin disulphide = 3′-phosphoadenylyl 
sulphate+thioredoxin) [141, 146]. PRX are antioxidant enzyme with the ability 
to reduce hydroperoxides, organic hydroperoxides and peroxynitrite using Trx as 
electrons donor (Eq. 8) [141, 147].

 R SH ROOH R S S R H O ROH− + = − − − + +
2

2 ` ` `   (8)

The presence of ROS initiates an autocatalytic chain lipid peroxidation of poly-
unsaturated acids, which leads to the formation of toxic electrophilic species and 
free radicals. This reaction may lead to the increase of 4-Hydroxynonenal (4HNE). 
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GST catalyze conjugation of lipid aldehydes like 4HNE, with GSH are the major 
defense against oxidative stress-induced cytotoxicity (Eq. (9)) [141, 148].

 RX GSH HX R S GSH+ = + − −  (9)

It is not clear if oxidative stress is the onset of degenerative diseases [149], but 
it is well known that it plays a significant role in their progression, like in the case 
of Alzheimer’s disease or vascular dementia [150]. Oxidative stress is also involved 
in other diseases like cancer [151, 152], cardiovascular diseases [153], metabolic 
disorders [154], and even on aging [149, 155]. Therefore, it is necessary to lower the 
ROS/RNS concentration inside the cell to minimize the effect. Antioxidants can act 
by different chemical mechanism: hydrogen atom transfer (HAT), single electron 
transfer (SET) and the ability to chelate transition metals.

Most of the commercially available anti-inflammatory and antioxidant medica-
tion present side effects [156], therefore the interest in natural antioxidants has 
grown considerably for the past years, being the phytochemicals a group of interest.

The characterization of molecules with antioxidant potential is complex, due to 
the inherent complexity of the oxidative reactions that occurs in cells [156]. There 
are several methods to determine the antioxidant potential of a particular substrate. 
Table 3 describes some of the chemical in vitro methods.

The chemical characterization of phytochemicals in terms of their antioxidant 
capacity is only the first step. It is necessary to perform a second screening using 
ex vivo models, like LDL-cholesterol assay [165, 166], supercoiled plasmid pBR322 
DNA Model [166], Haemololysis inhibiton assay [167], 2′,7′-dichlorofluorescin 
diacetate (DCFH-DA) [168].

Several studies have been made regarding the antioxidative properties of phyto-
chemicals, as an example Ferreira-Santos et al. [13] demonstrated that the presence 
of phytochemicals in Pinus bark has antioxidant properties. It has been shown that 
extracts of Moringa oleifera leaves significantly reduced the ROS production induc-
ing by H2O2 in HEK-293 cells [169]. Dilworth et al. presented similar results, it was 
demonstrated that the presence of Moring oleifera extract results in a significant 
decrease of the ROS in HL60 cells after an oxidative insult [170]. Soybean peptide 
also demonstrated similar results, where HepG2 cells in the presence of this com-
pound resulted in a significant decrease on ROS [171]. These are a few of the several 
studies that demonstrate the high potential of phytochemicals.

The third step is to evaluate these molecules in vivo. Pre-clinical tests using 
animal models and human clinical studies are required.

4.2 In vivo evidence

In the literature there are extensive studies regarding phytochemicals impact 
human health, particularly on the prevention of cardiovascular, metabolic, neuro-
degenerative and cancer diseases.

4.2.1 Cardiovascular and metabolic diseases

Cardiovascular diseases are associated with a multiple risk factors like hypercho-
lesterolemia, hypertension, smoking, diabetes, poor diet, stress and physical inac-
tivity. Usually, vegetables like spinach, citrus fruits, soybean oil, sprouts, peppers, 
cereals, spices, whole grain, honey, walnuts and black tea can significantly increase 
the hepatic antioxidant enzymes reduces the risk of cardiovascular diseases. Some 
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Method Description Determination References

2,2-diphenyl-1-
picrylhydrazyl
(DPPH)

DPPH is a stable free radical that 
in contact with a substrate that 
can donate a hydrogen bond 
forms a non-radical molecule 
Diphenylpicrylhhydrazine.
Scavenging activity mechanism.

Colorimetric [1]

2,2`-azino-bis(3-
ethylbenzothiazoline-6-
sulphonic acid
(ABTS)

In the presence of antioxidant 
ABTS.+ is reduce to ABTS resulting 
in a decrease in color.
Scavenging activity mechanism.

Colorimetric [157, 158]

O2
−· scavenging activity This assay is optimized for 

enzymatic antioxidants and relies 
on the competition kinetics of O2

−· 
reduction of cytochrome C (probe) 
and O2

−· scavenger (sample). 
Not suitable for non-enzymatic 
antioxidants.
Scavenging activity mechanism.

Fluorescence [1]

H2O2 scavenging 
activity

A common assay that claims to 
measure H2O2 scavenging capacity 
of dietary antioxidants uses 
horseradish peroxidase to oxidize 
scopoletin to a nonfluorescent 
product. In the presence of 
antioxidants the oxidation is 
inhibited.
Scavenging activity mechanism.

Fluorescence [1]

Ferric ion reducing 
antioxidant power
(FRAP)

It is based on the ability of 
antioxidants to reduce ferric iron. 
The molecule 2,3,5-triphenyl-1,3,4-
triaza-2-azoniacyclopenta-1,4-
diene chloride (TPTZ) is reduce 
to the ferrous form at a low pH. 
This reduction will result in a color 
change.
Reducing power mechanism.

Colorimetric [158, 159]

Cupric ion reducing 
antioxidant capacity
(CUPRAC)

bis(neocuproine)copper(II) 
chloride (Cu(II)-Nc) chromogenic 
oxidizing agent can react with a 
polyphenol. The reactive Ar-OH 
from the polyphenol are oxidized 
to quinones and Cu (II)-Nc 
reduced to a highly colored Cu 
(I)-Nc chelate.

Colorimetric [158, 160]

Oxygen radical 
absorbance capacity
(ORAC)

Assay is based on the oxidation of a 
fluorescent probe by peroxyl radicals 
by way of a hydrogen atom transfer 
(HAT) process. Peroxyl radicals are 
produced by a free radical initiator, 
which quenches the fluorescent 
probe over time. Antioxidants 
present in the assay work to block 
the peroxyl radical oxidation of 
the fluorescent probe until the 
antioxidant activity in the sample 
is depleted. The remaining peroxyl 
radicals destroy the fluorescence of 
the fluorescent probe.

Fluorescence [161, 162]
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specific fruits, vegetables or legumes can prevent cardiovascular disease induced by 
oxidative stress, due to presence of unique dietary antioxidant components [34].

Already in 1999, a study comprising approximately 100 000 patients in the 
US evaluated over a period of 7 years the outcome of flavonoid intake. The results 
demonstrated that flavonoid consumption was associated with lower risk of 
death with cardiovascular disease [172]. Patel et al. described that cohort studies 
clearly indicate that the consuption of plant-based foods decrease the prevalence 
of cardiovascular diseases [173]. Zhang et al. examinated the relation between soy 
food intake and the incidence of coronary heart disease in a cohort study of 75 000 
and concluded that there is a clear evidence of soy food intake and reduce risk of 
coronary heart disease [174].

Hypertension is characterized by high blood pressure leading to cardiac and 
vascular problems. A study performed in hypertensive rats demonstrated that the 
intake of Moringa oleifera seed powder did not reduce blood pressure, but decreased 
nocturnal heart rate and improved cardiac diastolic function [175]. Another study, 
lycopene diet ameliorates metabolic syndrome, lowering blood pressure, maintains 
normal blood glucose and prevents insulin resistance, ameliorates hypertension, 
vascular function and improves oxidative stress [33].

Diabetes mellitus, a chronic metabolic disease, characterized by elevated levels 
of blood glucose and insufficiency in production and action of insulin is the seventh 
leading cause of death worldwide. Phytochemicals with antioxidant activity like 
cinnamic acids, coumarins, diterpenes, flavonoids, lignans, prophenylphenols, 
monoterpenes, tannins, triterpenes, etc. also proved beneficial to protect diabetes or 
protect diabetic complications [176].

4.2.2 Cancer

Similarly to cardiovascular diseases, the number of reports regarding the ben-
efices of phytochemicals and cancer prevention and treatment are immense. Briefly, 
it has been reported that curcumin, a polyphenol compound that has anticancer 
properties, acting on cell cycle regulation, apoptosis, oncogene expression and 
metastasis [177]. The intake of green tea seem to help in the treatment of patients 
with low grade B-cell tumors [178, 179]. Another phytochemical that demonstrated 
positive results is Panax ginseng (responsible chemical groups, steroid glycosides 
and triterpene saponins). Clinical trials demonstrated that P. ginseng decreases 
cancer incidence and inflammation, particularly that ginseng tea decreases the risk 
of pharynx, larynx, esophagus cancer among others [180]. Some of the reported 
flavonoids (e.g., catechin, apigenin, kaempferol, quercetin, etc) are able to influ-
ence the deregulated processes during cancer development. Thus, flavonoids have 
beneficial effects on health and have the potential for the development of possible 

Method Description Determination References

Total radical-trapping 
antioxidant potential
(TRAP)

It is based on the measurement 
of the fluorescence decay of 
R-phytocoerythrin during an 
oxidation reaction.
Antioxidant activity mechanism.

Chemiluminescence 
quenching

[163, 164]

Thiobarbituric reactive 
substances
(TBARS)

Lipid peroxidation inhibition. Colorimetric 
Fluorescence

[1]

Table 3. 
In vitro assays to evaluate natural substrates antioxidant potential.
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chemoprotective therapeutic agents for the treatment of cancer. Some dietary flavo-
noids have antitumor activity during in vivo studies and also repress angiogenesis. 
In vitro studies conclude the potential of flavonoid-induced modulation of kinases 
with apoptosis, vascularization, cell differentiation, cell proliferation, etc [181]. For 
example, flavonoids have shown a potential effect in breast cancer as potent inhibi-
tors of aromatase, i.e., cytochrome P450 enzyme complex. Quercetin has shown 
decreased cell proliferation in prostate cancer and cell apoptosis by downregulation 
of heat-shock protein 90 (HSP90) [182].

4.2.3 Neurodegenerative diseases

Neurodegenerative diseases are highly debilitating diseases associated to oxida-
tive stress and inflammatory processes. Several studies have been performed to 
validate the benefices of phytochemicals on the several neurodegenerative diseases, 
like Alzheimer’s, Parkinson’s and multiple sclerosis. Flavonoids have a specific role 
in central nervous system maintaining homeostasis by effecting as antianxiety, 
anticonvulsant, by modulating neuronal oxidative metabolism, and neurotransmit-
ters [183]. Epigallocatechin-3-galate, a polyphenol present in the tea leaves seems to 
delay neurons degeneration [184]. A commercial drug which has in its composition 
Epigallocatechin-3-galate demonstrated to reduce amyloid plaques on an Alzheimer 
disease model [185, 186]. Another study demonstrated that epigallocatechin-
3-galate and tea prevented the loss of cells in substantia nigra in a Parkinson Disease 
model [187]. In a neuronal cell culture model SH-SY5Y cells, the presence of 
epigallocatechin-3-galate has a protective effect [187].

In vitro studies for Parkinson’s, quercetin markedly reduced the apoptosis of 
pheochromocytoma (PC-12) cells and hippocampal neurons. It showed increased 
cell viability and inhibited ROS and MDA production in H2O2-induced toxicity in 
PC-12 cells [183].

Once again curcumin demonstrates to have a positive effect in Alzheimer’s 
disease, as it can bind to amyloid plaques by inhibiting NF-κβ [188]. A different 
study demonstrated that ethanolic turmeric extract (Curcuma longa L.) prevented 
oxidative stress by decreasing the plasma and brain MDA levels and increasing the 
SOD, CAT, and GPx enzyme activities as well as GSH levels in the brain, showing 
neuroprotective effects [189].

Yang et al. [190] reported the neuroprotective effects of Ginkgo biloba extract 
(rich in flavonol glycosides and terpene trilactones) by preventive action on neu-
ronal cell death and enhancement of the function of brain capillary endothelial 
monolayers.

As an example of a carotenoid action, astaxanthin has potent antioxidant, 
anti-inflammatory and neuroprotective properties. Wu and coworkers  
[191] suggested that astaxanthin could alleviate brain aging, which may  
be due to attenuating oxidative stress, ameliorating hippocampus damage and 
increasing brain derived neurotrophic factor levels, preventing age-related 
neurodegenerative diseases.

5. Conclusions and future perspectives

The use of green methodologies and extraction process optimization to obtain 
highly value molecules with antioxidant properties, like terpenes, polyphenolic, 
phytosterols, and bioactive peptides, has increased for the past years. The reduction 
of the environmental footprint and the ability to obtain safe products with high 
industrial interest is fundamental for the future.
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Upon extraction and purification of the added value compounds it is possible to 
determine their antioxidant potential by several chemical and biological processes.

Plants, algae and by-products or waste products of the food industry are an 
invaluable source of active molecules with antioxidant properties. It is of upmost 
interest the discovery/development of new therapeutical molecules for the applica-
tion in several diseases. Computer-aided drug screening techniques, animal models 
and clinical trials should be taken into account to further develop this field of 
research.

There are several natural bioactive compounds already used for the treatment 
of different diseases (in combination with the conventional drugs), demonstrating 
good results.

Overall, natural antioxidant obtained from plants and marine resources have 
high nutritional potential and reveal a fundamental role in promoting human 
health, as an alternative to synthetic products.
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