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Abstract

Industrial performance optimization increasingly makes the use of various 
analytical data-driven models. In this context, modern machine learning capa-
bilities to predict future production quality outcomes, model predictive control 
to better account for complex multivariable environments of process industry, 
Bayesian Networks enabling improved decision support systems for diagnostics and 
fault detection are some of the main examples to be named. The key challenge is to 
integrate these highly heterogeneous models in a holistic system, which would also 
be suitable for applications from the most different industries. Core elements of 
the underlying solution architecture constitute highly decoupled model microser-
vices, ensuring the creation of largely customizable model runtime environments. 
Deployment of isolated user-space instances, called containers, further extends the 
overall possibilities to integrate heterogeneous models. Strong requirements on high 
availability, scalability, and security are satisfied through the application of cloud-
based services. Tieto successfully applied the outlined approach during the partici-
pation in FUture DIrections for Process industry Optimization (FUDIPO), a project 
funded by the European Commission under the H2020 program, SPIRE-02-2016.

Keywords: industrial optimization, model predictive control integration, machine 
learning model integration, Bayesian network integration, enterprise resource 
planning (ERP) forecast model integration, prediction model integration, model 
calculation graph, microservice-oriented architecture, cloud computing

1. Introduction

In the area of industrial manufacturing performance optimization, prediction 
models are often used to predict future plant outputs in order to increase product 
quality and energy efficiency or optimize planning of plant maintenance activities.

Forecasts and predictions are utilized to generate lead time to plan and oper-
ate the manufacturing processes in a highly optimized way. To achieve predictive 
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operation on optimized performance, analytical calculation models are developed 
and operationalized to calculate the future behavior of manufacturing plants. This 
chapter describes the techniques and methods for operationalizing the prediction 
models in industrial manufacturing environments.

A model is defined as a simplified mathematical representation of a real natural 
process. Such process can be an industrial plant (e.g., a heat exchanger) or a com-
plex plant like a continuous production machine (e.g., large-scale waste incineration 
steam boiler). Models are also called digital twins in applications where a model 
represents the real plant in a very high degree of details as in finite-element-method 
(FEM) model of a system (machine) or its components.

A model in the context of this chapter is characterized by three main features:

1. The model is a representation of a real plant.

2. The model is simplified “version” of the real plant that does not include all 
properties or behavior.

3. The models can be generalized, so they represent a type or a class of a real plant 
and not necessarily a real existing instance of a plant at a specific time.

Models are typically operationalized calculation (software) modules that allow 
a causal calculation of outputs from inputs and parameters. A model is defined as 
a calculation module that can predict the future industrial plant behavior. Such 
“plant behavior” can be the quality of produced product and the consumption of 
energy such as steam, electricity, raw material, and chemicals. Operating industrial 
plants based on predictive analytics allows optimized planning and real-time 
optimization. An industrial manufacturing or process industry plant has usually 
strictly separated information technology (IT) and operational technology (OT) 
systems (Figure 1).

2. Requirements and convergence of industrial system architecture

Industrial manufacturing industry continuously seeks for performance optimiza-
tion strategies and ways of operationalizing new methods for improving product 
quality, production efficiency, energy efficiency, emission reduction, and, of course, 
cost reduction techniques. Digital transformation programs need to support these 

Figure 1. 
Most basic representation and elements of a model.
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performance optimization goals. By driving convergence of OT and IT on all levels of 
enterprises (people, processes, interfaces, and system architecture), beneficial effects 
from integrated and consistent data and information utilization can be achieved.

Furthermore, a state-of-the-art operational architecture should be open and 
scalable for a whole ecosystem of internal or external partners to benefit from a 
learning culture on how to operate all production and business processes at maxi-
mum performance levels under changing market, raw material, and environment 
conditions (Figure 2).

Typical areas of industrial OT systems are as follows:

• machines and parts of machines (pumps, mixers, valves, tanks, etc.);

• automation systems [distributed control system (DCS), programmable logical 
controller (PLC), supervisory control and data acquisition (SCADA) system]; 
and

• operator user interfaces of SCADA system and DCS.

Typical areas of industrial IT systems are as follows:

• business applications like customer relationship management (CRM) system;

• business intelligence and data warehousing;

• enterprise resource planning (ERP) system;

• data analysis;

• computing systems and technology; and

• data warehouse and storage systems.

The main questions relevant in the design process of an industrial prediction 
model operationalizing framework development can be as follows:

• How to make exchange of prediction models as easy as possible for an indus-
trial ecosystem with partners from process industry and scientific community 
and commercial partners?

• What framework elements have impact on the calculation performance of 
large-scale models and what are the performance requirements based on the 
dynamic behavior of the processes of interest?

• What architectural security elements are required to ensure a safe operation of 
the model calculation runtime system and user interfaces.

2.1 Requirements by heterogenous industries

Various industries have significantly different requirements for the integration 
of prediction and optimization models.

Examples of different industries that benefit from prediction/forecast model 
integration are shown in Table 1:
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2.2 Requirements by heterogenous models

Forecast and prediction models can be of various types and purposes of 
integrated usage by a smart manufacturing system. The huge spectrum of very 
specific requirements makes it hard for practitioners to find models from existing 

Industry category Model value/benefits

Continuous process industry (e.g., pulp 
and paper mill, continuous waste water 
treatment plant, oil and gas refinery)

• Production rate of continuous production machines

• Tank level utilization for stable production

• Optimized quality stability

Original equipment manufacturer 
(OEM), e.g., micro-combined-heat-
power unit manufacturer

• Improved overall equipment efficiency

• Machine flexibility in conditions with changing raw mate-
rial properties

• Enable predictive maintenance use cases

Energy and utilities (e.g., waste 
incineration power plant, district heating 
network)

• Increased process stability (temperatures, pressure, steam 
flow) from predictive boiler operation using feedforward 
model predictive control

• Increased energy efficiency by predictive control of excess 
combustion air (=O2) control

Discrete manufacturing (e.g., 
automotive)

• Increased overall equipment efficiency (productivity time 
quality acceptance ratio)

• Reduced costs due to lower reject rates

Table 1. 
Industry categories and model benefits (by examples).

Figure 2. 
Model operationalization framework overview (examples of).
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libraries that fulfill the requirements of the specific application. An ontology-based 
approach to classify and identify such model application usage scenarios can be 
found in Ref. [1]. The challenge of model exchange can be solved by using standards 
for model exchange such as functional mockup interface (FMI) or functional 
mockup units (FMU), as specified in Ref. [2].

Model examples illustrating the range of requirements are as follows:

• prediction of future process information based on production plan;

• prediction of future process output based on (just) recent process inputs, 
process states, and predicted future disturbance variables;

• prediction models for use in model predictive control (MPC). Dynamic MPC 
models can be linear or nonlinear; and

• first principle physical models (dynamic, static).

Models can be developed in various simulation software tools and have very 
different requirements when it comes to the runtime environments. As models are 
software components, many dependencies need to be fulfilled to run the models. 
Running models in this context means execution with actual inputs and user-
specified parameters to calculate the predictions for a specific period (usually a time 
period in the future).

In order to avoid a complicated or even contractionary model runtime system 
architecture, a containerization technology can be used. In a software container 
(like Docker [3]), each model gets the required dependencies installed in the con-
tainer rather than on the global runtime system. Utilizing container technologies 

Figure 3. 
Microservice-based architecture for operationalized model integration.
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allows a clean deployment of operational models in their own containerized run-
time system avoiding any additional requirements on the main application level as a 
container provides all required dependencies.

The resulting system architecture is called microservice architecture as it 
contains smaller independent software components packed into smaller application 
units (containers). An additional service orchestrator application is required to 
handle the messages between the OT systems and the microservices (containers) 
and the user interface.

Figure 3 shows the system architecture for an example with two containers 
where Linux is used as container operating system and the model container host 
server can be Microsoft Windows® based. This scenario allows the integration of 
models for all commonly used operating systems and can therefore provide all 
dependencies of other software components needed by the models to run/execute 
properly.

3. Calculation graph configurator

This section will cover why it is beneficial to use a calculation graph configurator 
when integrating one or more models into one software solution. Furthermore, it 
will be explained how node-RED can be used as a calculation graph configurator [4].

3.1 Calculation graph configurator overview

Since executing models often requires multiple calculation steps, for example, 
preprocessing the model input data or apply filters when selecting input data, a 
visual tool to connect and modify these calculation steps is beneficial. For example, 
in the FUDIPO project Node-RED, a flow-based programming tool is used as a calcu-
lation graph configurator. One big advantage of a tool like Node-RED as a calculation 
graph configurator, is that it saves a lot of cost due to the fact that Node-RED is 
highly customizable and open source. Therefore developing a custom calculation 
graph calculator, is not necessary. Furthermore, Node-RED is cross platform com-
patible as it runs on Node.js. There is also an official Docker image for Node-RED [4].

3.2 Node-RED as a calculation graph configurator

In Node-RED, calculation steps are called nodes. The nodes communicate via 
JavaScript Object Notation (JSON) messages. Node-RED provides a base set of 
nodes with a special functionality like nodes making a HTTP-Request or executing a 
JavaScript code. In addition to the base nodes, the community develops and contrib-
utes nodes that are available, thus providing very versatile functionalities. Node-
RED also offers a dashboard where the model results could be displayed, although 
the default dashboard of Node-RED does not support multiple users, it should just 
be used for debugging or if only one user accesses the user interface (UI). Another 
great feature of Node-RED is that it provides a node to map data. Data mapping is 
required when the data source variables and the model input variables are not in 
the same structure. In some cases, the data must be mapped twice, once before the 
model execution, and a second time after the model has been executed to store the 
model results, as shown in Figure 4.

Node-RED’s dashboard offers some basic UI elements, like charts, input 
forms, buttons, switches, and slides; however, it is also possible to write HTML, 
cascading style sheet (CSS), or JavaScript code directly, and this offers the ability 
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to create a highly customizable UI within Node-RED. Furthermore, Node-RED 
offers the possibility to customize its theme to match the company’s color scheme. 
Additionally, Node-RED also offers the ability to secure the editor and dashboard 
user interface with a username and password, so if you have sensible data or do 
not want your Node-RED to be publicly available, it can be secured with a login 
mask [4].

3.3 Node-RED calculation graph example

An example calculation graph would be to retrieve data from an MicroSoft 
Structured Query Language (MSSQL) Server → map the data to match the model 
input data → filter or preprocess the input data → execute the model → map data back 
to match the schema of the MSSQL database → filter the model result data → save the 
filtered model results in a MSSQL server. In Figure 5, the example just explained is 
realized in Node-RED [4].

The first node runs the calculation graph every 15 minutes. At the time of 
writing, the interval can range from 1 second to 596 hours. The “Get Data from 
MSSQL Database” is a contribution node, which means that a user created this 
node and provided the source code, so everyone can use it. This node retrieves data 
from an MSSQL Server using Structured Query Language (SQL) statements. The 
yellow “Map data” node uses JSONata to change the structure of a JSON object. In 
the “Filter/preprocess data,” node JavaScript is used to apply custom-made filter 
and preprocessing algorithms. The “Execute Model” in this example sends a HTTP 
POST request to an Application Programming Interface (API), where the model is 
being executed and returns the model results as an HTTP response. The next node 
maps the model result data to the schema of the MSSQL database. Afterward, these 
data are filtered again before writing it back to the MSSQL database in the last node. 
An advantage of this solution is that there is only little effort needed to integrate 
models into the solution. The only thing that needs to be developed is API that 
executes the model. Node-RED also offers the possibility to execute terminal com-
mands, so if a model can be executed via the terminal, even less effort is needed to 
integrate the model. This calculation graph could also be used for multiple systems 
or machines if the model is designed to do so [4].

Figure 4. 
Data mapping for normalized model execution.

Figure 5. 
Calculation graph example in Node-RED.
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4. User interface

In this section, it will be discussed how a user interface for displaying the model 
results and for uploading or tuning the models could be developed. The key fea-
tures, a user interface should have, are as follows:

• visualizing model results with charts;

• allowing the model developer to upload a new version of the model; and

• allowing the model developer to test and tune the model.

Node-RED allows the model developers to tune and test their models with the 
live data; however, Node-RED does not offer the feature to upload new models. A 
possible solution for this would be to use Node-RED’s dashboard to visualize the 
model results, to use Node-RED’s editor to make it possible for the model developer 
to verify and tune his model(s) with live data, and to build a separate website 
enabling the model developers to upload newer and improved versions of their 
models. As already mentioned, Node-RED’s dashboard has the big advantage that 
it is very easy to use, even people with little to no knowledge about HTML, CSS, 
or JavaScript can make a simple user interface in Node-RED. However, the major 
flaw in the provided dashboard is that it does not support multiple users; for small 
use cases or debugging purposes, this might be enough, but in large-scale applica-
tions where multiple people are going to use the dashboard, another solution must 
be used. In such cases, it is either possible to develop a new website and access the 
model results either from an API or from a database, or use a fork of Node-RED’s 
dashboard, developed by the community, that supports multiple users [4].

Another possible solution would be to display the model results in the company’s 
current software solution. If there is already a software that acts as a user interface 
for the machine data, it might be possible to display the model results too.

If the goal is to continuously integrate multiple models, a possible solution 
would be to develop a website where the model developers are able to upload and 
maybe even verify, possibly with real live data from the machines, their models. 
Even though such an automated process might be convenient, it requires a lot of 
development effort and it should be considered if the initial effort is worth spend-
ing. Another possibility is to initially integrate the model manually in the solution 
and provide the model developers the possibility to update their models, by upload-
ing a new version to a website. This is especially useful if there are models that 
require frequent updates. For example, training a machine learning model requires 
a lot of computing power, due to this it is suboptimal to train the model on the 
server where the model is executed. Thus, training the model on a separate com-
puter or server that is suited for such high loads is better; therefore, a web interface 
could be used to upload the newly trained model, providing the model needs to be 
trained continuously. Another possible feature such a website could have would 
be allowing model developers to test the newly uploaded model with live data. So, 
model developers are able to ensure that their models are working correctly.

To be able to display the model results in a website in most cases, a charting 
library is needed. One of the many JavaScript charting libraries is Highcharts®. 
The advantage of Highcharts® is that it is very configurable, well documented, and 
feature rich. Highcharts®, for example, is able to export the data that are displayed 
in the chart as an Excel sheet or download the chart as an image. Highcharts® has 
many feature add-ons, called modules. Another big advantage of Highcharts® is 



9

Operationalizing Heterogeneous Data-Driven Process Models for Various Industrial Sectors…
DOI: http://dx.doi.org/10.5772/intechopen.92896

that it has a boost module, which significantly boosts the performance of the charts 
making it possible to display well over 500,000 datapoints in one chart while keep-
ing about the same performance as a chart with 1000 datapoints [5].

5. Pulp and paper use case

Processes in the pulp and paper industry are considerably complex with sig-
nificant time delays (up to few hours) resulting in major difficulties for appropri-
ate process optimization and control. An example of such process is continuous 
cooking in pulp digester, aiming at removing lignin from wood chips [6]. The 
most widely used index for measuring residual lignin present in the pulp is kappa 
number [6]. The digester primary control objective consists in minimizing the 
variability of kappa number, keeping it in a small range within few percent of target 
value (too low and too high kappa numbers negatively both impact quality and 
production stability).

The current situation is shown in Figure 6.
Through utilization of various process-specific analytical data-driven models, 

it is possible to substantially improve the process control, hence also the product 
quality and production stability.

One of such data-driven approaches is to conduct the forecast of future observa-
tions, such as based on certain characteristics of wood chips to predict the resulting 
kappa number (which is otherwise known only with the delay of ca. 4 hours from 
the time when respective wood chips came into cooking process). Measurement of 
wood chips with near-infrared (NIR) provides the capabilities to extract data on 
lignin content, moisture, and reactivity of wood chips. Subsequent utilization of 
specific physical and/or machine learning models enables to forecast the resulting 
kappa number.

MPC integration is another important approach in this context, in particular 
accounting for multivariable specifics of the underlying process control. The pres-
ence of measurement noise and various complex chemical process uncertainties, 
which are common in the pulp and paper industry, can also effectively be addressed 
through MPC [7]. Here, data from NIR-based soft sensors coupled with various 
dynamic process models are the main enablers of a feedforward MPC [7].

Process diagnostics (such as identification of digester hang-ups, screen clog-
ging, and channeling of liquor inside the digester [8]) can effectively be done by 
input of certain information on current system status to a causality tree, such as 
Bayesian Networks (BN), with subsequent inference for computations of prob-
ability of different faults. Hence, the resulting decision support system is a valu-
able tool to improve diagnostics and fault detection capabilities in pulp and paper 
applications.

A comprehensive view on model-based control and diagnostics for pulp digester 
provides [9] the possibility of feedforwarding the lignin content of incoming wood 
chips based on NIR measurement under the incorporation of modeling and simula-
tion studies. Additionally, Rahman et al. [9] proposed a simple Bayesian network-
based diagnostic approach to detect pulp digester faults. Rahman et al. [7] provided 
an approach for feedforward MPC as applied to the pulp and paper industry.

Moreover, the analytical data-driven models need continuous updating to utilize 
process changes and to learn from experience. The feedback can be done automati-
cally, by process operators, maintenance staff, and so on.

Thus, Figure 7 provides an overview of the potential process improvement as 
compared to the current situation.
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Figure 7. 
Pulp digester improved process [8].

6. Micro turbine powered combined cycle

A key factor to reduce the operating cost of a micro gas turbine (MGT) powered 
combined heat and power fleets is to improve the maintenance strategy. The goal is 
to stop maintaining the micro gas turbines on a timely basis, instead maintaining 
MGT based on anomaly detection (condition-based maintenance) with specifi-
cally developed models that are able to detect MGT faults. In addition to lowering 

Figure 6. 
Pulp digester [8].



11

Operationalizing Heterogeneous Data-Driven Process Models for Various Industrial Sectors…
DOI: http://dx.doi.org/10.5772/intechopen.92896

maintenance and operating costs using such models can also increases the safety 
of micro gas turbines. Two ways to develop such models would be either by using 
a physics-based approach or by using a data-driven approach, and the best results 
are achieved when combining a physics-based model and a data-driven model. The 
challenge when developing the models for a fleet of micro gas turbines is that often 
models are tuned for a specific machine and cannot be applied to a similar machine; 
however, when having a fleet of thousands of micro gas turbines, it would require 
way too much effort to develop a model for each system; therefore, the model must 
detect anomalies for multiple MGTs. To sum it up models should predict the main-
tenance actions long before the MGT fails, this will likely increase the safety, reduce 
the maintenance cost, and possibly increase the availability of MGTs [14, 15].

Physics-based models are based on mathematical formulas and constraints 
between sensor data. A physical model for MGTs basically simulates a micro gas 
turbine and compares the simulated values with the real sensor data. With the 
results, a degradation of a MGT can be calculated. The main disadvantage of such 
models is that they require an expert knowledge of the machines they are developed 
for. In contrast, data-driven models do not require such comprehensive knowledge 
of the field. Data-driven models use big quantities of sensor data and known 
failures. These data-driven models are able to classify and predict the future failures 
based on learning (machine learning) from the historical data. The drawback of 
data-driven models is that it is often not comprehensible how the model results are 
exactly calculated.

6.1 Example system architecture for micro gas turbines

This subsection will illustrate an example system architecture for micro gas 
turbine powered heat and power fleets.

Figure 8 represents an example system architecture for MGT fleets. Every MGT 
in the fleet writes its sensor data to a database, which is in the Azure [16] cloud for 
maximum scalability and availability. The SQL server has two databases, one for the 
sensor data and a separate database for the model results. The databases are sepa-
rated because if one database crashes, the other will keep running. If even more reli-
ability is needed, the two databases can also be in separate SQL servers. The virtual 

Figure 8. 
Example system architecture for MGT fleets.
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machine (VM) runs Node-RED as a calculation graph configurator and allows 
the model developers to verify and tune their models. Node-RED then executes 
the calculation graph as explained in Section 3.3. In this example, Node-RED’s 
dashboard is being used to validate, tune, and debug the models. Additionally, the 
model results (e.g., future maintenance actions) are visualized in the company’s 
own UI. Furthermore, the model results and sensor data could be processed and 
displayed in the UI of the customer, so the owners of the MGT(s) could see how 
good their MGT(s) perform, or even allowing them to plan for the future mainte-
nance costs [4, 5].

7. System environment

In the present setting, the view on the overall system architecture may not be 
limited to IT aspects but is necessarily extended to OT. Hahn [10] provides an 
in-depth analysis of the differences between IT and OT in the domain of industrial 
control systems (ICSs). On the one hand, OT is traditionally seen as the heart of 
ICS. On the other hand, modern ICS increasingly utilizes IT capabilities, creating 
a convergence of OT and IT domains [10]. For an in-depth understanding of the 
impact and posed challenges of OT and IT consolidation, it is therefore important to 
align on different principles to handle data in these both domains, together with dif-
ferences in how the overall systems are operated and managed, which technologies 
are used to support them, and so on. Hahn [10] provides the respective explanations 
as follows:

• Operational domain. In order to control and monitor physical processes (such 
as power grids, pulp production, and oil refinery), various sensors, actuators, 
controllers, and human operators are altogether utilized in ICS. The resulting 
unique operational requirements are much different from the traditional IT 
environments, whose focus is more strongly on controlling and managing the 
data, retrieved here from the underlying OT.

• Technical domain. The unique technical requirements for the software used 
to support the operations of ICS mainly result from or are closely related to 
specific communication protocols and architectures; real-time performance 
demand; domain-specific device manufacturers and integrators; complex 
integration of digital, analog, and mechanical controls; and so on.

• Managerial domain. From the management of OT system’s point of view, 
their underlying complex physical infrastructure usually requires much 
larger capital investments than it is the case for the IT systems. Hence, the 
operation of ICS is subsequently usually planned for decades, in order to 
recuperate the cost.

Thus, in order to successfully integrate specific solutions from the IT domain 
(in particular, analytical data-driven solutions) with OT in a holistic ICS, the 
 following requirements should be, respectively, satisfied [11]:

1. Data source requirements. Support for data produced by various industrial 
machines and sensors, usually connected in one network, without the possibil-
ity to access over a common application programming interface (API) is cru-
cially important. The unique characteristics of single heterogeneous elements 
should be harmonizable for further processing.
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2. Processing requirements. Data from sensor instrumented industrial devices 
commonly possess typical Big Data characteristics, so-called four Vs:

• velocity: data arrive rapidly from many different sources;

• volume: huge amounts of data produced in seconds or milliseconds;

• variety: structured, semi-structured, and unstructured data appear; and

• veracity: occurrence of noisy or otherwise of a poor-quality data.

This makes such data very challenging to manage, integrate, and analyze.

3. Human interface requirements. The insightful results from assessed data are 
necessary to be made available to operations professionals in convenient man-
ner for them. In other words, the respective process database should eventu-
ally contain all the data required to accordingly inform process responsible 
(in form of visualizations, notifications, alerts, etc.).

4. Security requirements. Integration, development, deployment, extension, and 
customization are required to take place in secure environments with ensured 
security standards on at least the same level as already in-place.

An important extension to the considerations regarding IT and OT is the 
runtime environment itself, or more precisely the decision between installing and 
running single solution components on the premises of demonstrators (on-prem) 
as opposed to remote facilities (cloud-based). The outlines of advantages and 
disadvantages of on-prem and cloud-based solutions are, respectively, depicted in 
Tables 1–3. At the same time, since in this case the single advantages and disadvan-
tages are often overlapping, the summarized information should be seen as a very 
general overview only.

Since on-prem and cloud-based solutions have own strong advantages and dis-
advantages, there is naturally no single best choice for every different demonstrator. 
In other words, it is crucially important to enable an efficient system architecture 
setup for on-prem the same as cloud based. Then, the decision for a particular setup 
is left to be met solely in accordance with respective internal policies, with posing 

Advantages of cloud-based solutions Disadvantages of cloud-based solutions

Short implementation time Limited customization possibilities

No need for system maintenance Security depends on cloud provider

Low upfront investment Low solution design flexibility

Table 3. 
Advantages and disadvantages of cloud-based solutions.

Advantages of on-prem solutions Disadvantages of on-prem solutions

Great possibilities for customizations Solution implementation takes longer

Possibility for specific security policies High system maintenance effort

High solution design flexibility High system management cost

In-house system and data knowledge High upfront investment

Table 2. 
Advantages and disadvantages of on-prem solutions.
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Figure 9. 
Simplified generic system overview.

no technological limitations whichsoever. Hence, disregarding the differences 
between the outlined system architectures, they can be consolidated as depicted in 
Figure 9.

Hence, the consolidated system environment may easily be generalized as of a 
cloud-based nature, differencing solely in certain administrative responsibilities of 
the underlying technical infrastructure.

8. Microservice architecture

The decision in favor of microservice architecture (MSA), which is a variation 
of service-oriented architecture (SOA), naturally results from the cloud-based 
(either a public cloud or an on-prem configuration) specifics of the underly-
ing solution. In a nutshell, a solution adopting microservice-based architecture 
consists of a large number of small services, each responsible for a single-specific 
aspect (e.g., data access, execution of certain model, and specific data preprocess-
ing step) [12]. Hence, the main benefits of solutions implemented based on MSA 
include their major scalability capabilities (both scaling up and scaling down 
depending on the present circumstances), reusability, loose coupling, and their 
advanced technology agnostic nature, which are probably the most important in 
the discussed context. The latter advantage of MSA enables easily utilize different 
runtime environments and programming languages in single microservices of one 
mutual solution, hence also adapting to technological changes to avoid technology 
lock-in, and so on [12].

Coming back to the previously elaborated requirements in the context of OT 
consolidated with IT to successfully implement analytical data-driven solutions, 
MSA solves these as follows:

1. Data requirements. The heterogeneous nature of the underlying data produced 
by industrial machines and sensors is best supported through the creation of 
separate microservices responsible for particular types of data, retrieving data 
from specific sources, and so on. Moreover, every new type of data or data 
source can further be easily supported by simply adding a new and indepen-
dent respective microservice to the overall solution. Through further microser-
vice, heterogeneous data can be harmonized and brought to common format 
and structure for the subsequent processing stages.

2. Processing requirements. The architecturally unlimited number of microservices 
in-place best support the requirement to process even data produced in near 
real time through simply extending the number of instances of respective 
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microservices. The only bottleneck could be imposed through requests 
dispatching entity, such as a certain API management microservice, which is 
nevertheless efficiently replicable nowadays as well. Thus, all of the V’s of Big 
Data can efficiently be approached by utilizing MSA.

3. Human interface requirements. The way of how results of data processing and 
analysis are made available to process professionals (process operators, process 
engineers, etc.) is again not limited by the architecture and only requires the 
implementation of appropriate single-independent microservices for writ-
ing the data to respective type of process database, or even simply visualizing 
in-place in the underlying solution. Moreover, the initially chosen implemen-
tation is easily adjustable during the whole solution lifecycle based on, for 
example, specific usability requirements.

4. Security requirements. Single microservices made responsible for security act 
as respective middleware, thus ensuring conformity to require security stan-
dards. Again, customization and adaptability are major benefits of choosing 
MSA as opposed to monolithic solutions.

An exemplarily overview of how MSA can successfully be utilized for operation-
alizing the heterogeneous data-driven process models is depicted in Figure 10.

9. ERP integration of prediction models

In today’s times, the ERP system has a central role in almost every company. Its 
capabilities help the business to act, plan, and decide on the data, which will be col-
lected in such systems. In all firms, such decision-making processes are happening 
every day. The question is how a company could become more competitive than its 
competitors. What if, company leaders could predict future events or would be able 
to connect the dots beforehand. This and maybe other reasons are the motivation to 
integrate the prediction models in ERP systems.

The challenge is, to bring the best parts of business know-how, software 
 engineering, and data science together, to be able to predict the future.

Figure 10. 
Microservice-based system outline.
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The first step is to understand the company’s business. Only with that knowl-
edge, problems can be identified, which are worth enough to be avoided to save 
leaders in firm’s time and costs.

One example of such problem could be the question: When and how much will 
my customer order which products? There are too many parameters to answer this 
question with a deterministic approach, which means the only way to solve this 
problem is to get an empiric way of thinking. So, companies can work with that 
what they already gathered in so many ways, with data.

This leads to the second step to get the understanding of that data. The advan-
tage of having an ERP system is that the information is already collected and 
described. To get one step further, the challenge is to find out or explore where these 
data are stored and verify the quality.

Once this is done, the content of the third step is to prepare the data for model-
ing. Simply spoken, the task here is to bring the data in a correct format that predic-
tion models can work with. Every model needs a different format, which means in 
this step, it is also needed to know which model should be used. If the formatted 
data and prediction model fit together, the next step can be done.

Step 4 is about modeling. In this phase, data and the selected prediction model 
will be evaluated, tested, and improved in a couple of iterations or even exchanged. 
The quality of a prediction model can be measured in predictive power and predic-
tive robustness. The power measures the capacity of the input variables to explain 
the target. The robustness is the ability to display the same level of performance on 
new data sets as training ones.

The final step is to deploy and integrate the prediction model in the ERP system. 
To show how this can be accomplished, the following paragraphs will rely on the 
ERP solution Systems, Applications, and Products (SAP).

A typical SAP on-premise installation always comes with an application server 
called SAP S/4HANA and a database management system called SAP HANA [13–16].

When and how much will my customer order which products?
In the paper business, the products can be distinguished by different character-

istics, but one major characteristic is the grade. So, for every grade, different raw 
materials are needed to be ordered and purchased. Also, a major factor is that for 
every grade, the paper machine needs a different setup, which leads also to effort 
and costs. So, for the management of a paper producing company, it would be ben-
eficial to predict the customer’s behavior for the next month to save time and costs.

The information which customer orders which product with amount and point 
of time is maintained the so-called customer sales order. Information to the product 
is available in the material master. The following database tables are meant: VBAK 
(Sales Document Header), VBAP (Sales Document Position), MARA (Material 
Master), and AUSP (characteristic values).

To be able to work with that data, it is needed to bring all tables in view to 
aggregate the information on a monthly basis. This can be accomplished with a 
so-called core-data-service (CDS), which is nothing else than a view with special 
functionalities. The CDS-View plays a major role when it comes to data preparation 
and analysis.

As there is the need to predict the future time events, the auto regressive 
integrated moving average (ARIMA) model will be chosen for this scenario. The 
ARIMA model is delivered within the HANA database by SAP Predictive Analytics 
Library (SAP PAL) and can be accessed via ABAP Managed Data Procedures 
(AMDP) from the application layer. It must be mentioned that there are also differ-
ent integration scenarios possible. For example, a R- and/or Python-Integration can 
be implemented with SAP as well. This approach will be used for high sophisticated 
models where the functionalities of SAP PAL cannot match for this requirement.
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To integrate this predictive function in existing applications or reporting tools, 
an Advanced Business Application Programming (ABAP) will be written for this 
purpose.

The ABAP executes the training of the model and the forecast for the next 
period at one point of time.

To get an overview how this solution with its different integration scenarios 
could like the following illustrations should help to get a better understanding what 
has been described before (Figure 11).

10. Conclusions

Operationalizing and deployment of industry process prediction models can 
be achieved efficiently by setting up a microservice-based architecture that gives 
not only the industry companies but also the scientific community full flexibility 
in using software components to run the prediction models. Successful integra-
tion of heterogenous models for different types of industries has shown high 
added value for operating the prediction models for business performance optimi-
zation. Process industry and OEMs benefit by the proposed architecture from a 
very fast and cost-efficient implementation of models into their OT and IT 
environment.
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