
 123

LN
BI

P
41

9

22nd International Conference
on Agile Software Development, XP 2021
Virtual Event, June 14–18, 2021, Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Peggy Gregory
Casper Lassenius
Xiaofeng Wang
Philippe Kruchten (Eds.)

Lecture Notes
in Business Information Processing 419

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Peggy Gregory · Casper Lassenius ·
Xiaofeng Wang · Philippe Kruchten (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming
22nd International Conference
on Agile Software Development, XP 2021
Virtual Event, June 14–18, 2021
Proceedings

Editors
Peggy Gregory
University of Central Lancashire
Preston, UK

Xiaofeng Wang
Free University of Bozen-Bolzano
Bolzano, Italy

Casper Lassenius
Aalto University
Espoo, Finland

Philippe Kruchten
University of British Columbia
Vancouver, BC, Canada

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-78097-5 ISBN 978-3-030-78098-2 (eBook)
https://doi.org/10.1007/978-3-030-78098-2

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7891-6666
https://orcid.org/0000-0001-8424-419X
https://orcid.org/0000-0003-4192-7024
https://orcid.org/0000-0003-1359-4867
https://doi.org/10.1007/978-3-030-78098-2
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the research papers presented at XP 2021, the 22nd International
Conference on Agile Software Development, held online during June 14–18, 2021, due
to the COVID-19 pandemic.

XP is the premier Agile software development conference combining research and
practice. It is a unique forum where Agile researchers, practitioners, thought leaders,
coaches, and trainers get together to present and discuss their most recent innovations,
research results, experiences, concerns, challenges, and trends. XP conferences provide
an informal environment to learn and trigger discussions, and welcome both people new
to Agile and seasoned Agile practitioners.

XP 2021 marked the 22nd edition of the “First Conference in Agile.” Our theme was
“Agile Turns Twenty While the World Goes Online” as this year we marked both the
20th anniversary of the publication of the AgileManifesto and the global move to remote
working as a result of the COVID-19 pandemic. After the challenges of the past year
and during these times of great change we continue to provide a space for academics and
industry practitioners to come together and share what they have learnt over the last year.
We elicited a wide range of contributions addressing all Agile approaches, theoretical
viewpoints of Agile, applications of Agile in a wide range of areas including DevOps,
FinTech, AI/ML, and IoT, and empirical studies exploring how Agile approaches are
used and the impact they have in different settings.

The XP 2021 conference invited submissions on eight tracks: research papers,
researchworkshops, experience reports, industry and practice sessions, empirical studies
(on-site research), Agile gamification and facilitation, posters, and lightning talks. We
ran a slightly reduced conference because of the pandemic and received 215 submissions,
demonstrating that the XP community remains strong even in difficult times.

For the research paper track, we invited submissions of unpublished high-quality
research papers related to Agile and lean software development. Submissions addressing
topics across the full spectrum of Agile software development, on issues of concern to
practitioners, researchers, or both, were welcomed.

TheXP 2021 research paper track received 38 submissions. Each paperwas reviewed
by three members of the Program Committee. Based on the reviews, 11 full papers and
2 short papers were accepted for publication in these proceedings. The papers cover
a wide range of topics, including Agile practices, assessment of agility and delivery
performance, and large-scale Agile.

The success of the XP 2021 conference should be attributed to the passionate and
hard work of many people. We greatly appreciate the contributions of the authors, the
Program Committee, and the volunteers. Finally, we would like to express our gratitude

vi Preface

to the XP Conference Steering Committee and the Agile Alliance for their ongoing
support.

April 2021 Peggy Gregory
Casper Lassenius
Xiaofeng Wang

Philippe Kruchten

Organization

Conference Chair

Peggy Gregory University of Central Lancashire, UK

Program Co-chairs

Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Casper Lassenius Aalto University, Finland

Publication Chair

Philippe Kruchten University of British Columbia, Canada

Program Committee

Noura Abbas Colorado Technical University, USA
Ademar Aguiar University of Porto, Portugal
Craig Anslow Victoria University of Wellington, New Zealand
Hubert Baumeister Technical University of Denmark, Denmark
Marthe Berntzen University of Oslo, Norway
Jan Bosch Chalmers University of Technology, Sweden
Frank Buschmann Siemens AG, Germany
Fabio Calefato University of Bari, Italy
Noel Carroll National University of Ireland Galway, Ireland
Daniela S. Cruzes Norwegian University of Science and Technology,

Norway
Torgeir Dingsøyr Norwegian University of Science and Technology,

Norway
Yael Dubinsky StepAhead, Israel
Jutta Eckstein IT communication, Germany
Steven Fraser Innoxec, USA
Ilenia Fronza Free University of Bozen -Bolzano, Italy
Juan Garbajosa Universidad Politécnica de Madrid, Spain
Alfredo Goldman University of São Paulo, Brazil
Eduardo Guerra Free University of Bozen-Bolzano, Italy
Orit Hazzan Technion - Israel Institute of Technology, Israel
Helena Holmström Olsson University of Malmö, Sweden
Fabio Kon University of São Paulo, Brazil
Philippe Kruchten University of British Columbia, Canada

viii Organization

Ville Leppänen University of Turku, Finland
Lech Madeyski Wroclaw University of Science and Technology, Poland
Sabrina Marczak PUCRS, Brazil
Frank Maurer University of Calgary, Canada
Tommi Mikkonen University of Helsinki, Finland
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF, Norway
Parastoo Mohagheghi Norwegian Labour and Welfare Administration, Norway
Jürgen Münch Reutlingen University, Germany
Maria Paasivaara IT University of Copenhagen, Denmark, and Aalto

University, Finland
Ken Power Independent Consultant, Ireland
Rafael Prikladnicki PUCRS, Brazil
Pilar Rodríguez Universidad Politécnica de Madrid, Spain
Darja Šmite Blekinge Institute of Technology, Sweden
Simone V. Spiegler University of Stuttgart, Germany
Viktoria Stray University of Oslo, Norway
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan
Eileen Wrubel Software Engineering Institute, USA

Steering Committee

Hubert Baumeister Technical University of Denmark, Denmark
François Coallier Ecole de technologie supérieure, Canada
Jutta Eckstein IT communication, Germany
Steven Fraser Innoxec, USA
Juan Garbajosa (Chair) Universidad Politécnica de Madrid, Spain
Peggy Gregory University of Central Lancashire, UK
Ellen Grove Agile Alliance, USA
Casper Lassenius Aalto University, Finland
Michele Marchesi University of Cagliari, Italy
Maria Paasivaara IT University of Copenhagen, Denmark, and Aalto

University, Finland
Viktoria Stray University of Oslo, Norway
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Sponsoring Organization

Agile Alliance, USA

Contents

Agile Practices

From Collaboration to Solitude and Back: Remote Pair Programming
During COVID-19 . 3
Darja Smite, Marius Mikalsen, Nils Brede Moe, Viktoria Stray,
and Eriks Klotins

UX Work in Software Start-Ups: Challenges from the Current State
of Practice . 19
Sofia A. M. Silveira, Joelma Choma, Roberto Pereira,
Eduardo M. Guerra, and Luciana A. M. Zaina

How to Write Ethical User Stories? Impacts of the ECCOLA Method 36
Erika Halme, Ville Vakkuri, Joni Kultanen, Marianna Jantunen,
Kai-Kristian Kemell, Rebekah Rousi, and Pekka Abrahamsson

Process Assessment

Setting the Scope for a New Agile Assessment Model: Results
of an Empirical Study . 55
Doruk Tuncel, Christian Körner, and Reinhold Plösch

Towards a Standardized Questionnaire for Measuring Agility at Team Level . . . 71
Hanna Looks, Jannik Fangmann, Jörg Thomaschewski,
María-José Escalona, and Eva-Maria Schön

The Impact of Agile Transformations on Organizational Performance:
A Survey of Teams, Programs and Portfolios . 86
Christoph Johann Stettina, Victor van Els, Job Croonenberg,
and Joost Visser

Measuring Software Delivery Performance Using the Four Key Metrics
of DevOps . 103
Marc Sallin, Martin Kropp, Craig Anslow, James W. Quilty,
and Andreas Meier

x Contents

Large-scale Agile

Evolution of the Agile Scaling Frameworks . 123
Ömer Uludağ, Abheeshta Putta, Maria Paasivaara, and Florian Matthes

Coordination Strategies: Managing Inter-team Coordination Challenges
in Large-Scale Agile . 140
Marthe Berntzen, Viktoria Stray, and Nils Brede Moe

Challenges of Adopting SAFe in the Banking Industry – A Study Two
Years After Its Introduction . 157
Sara Nilsson Tengstrand, Piotr Tomaszewski, Markus Borg,
and Ronald Jabangwe

Benefits and Challenges of Adopting SAFe - An Empirical Survey 172
Abheeshta Putta, Ömer Uludağ, Maria Paasivaara, and Shun-Long Hong

Short Contributions

Using a Low Code Development Environment to Teach the Agile
Methodology . 191
Mary Lebens and Roger Finnegan

Comparing Participants’ Brainwaves During Solo, Pair, and Mob
Programming . 200
Makoto Shiraishi, Hironori Washizaki, Daisuke Saito,
and Yoshiaki Fukazawa

Author Index . 211

Agile Practices

From Collaboration to Solitude and Back:
Remote Pair Programming During COVID-19

Darja Smite1,2(B), Marius Mikalsen2,3, Nils Brede Moe1,2, Viktoria Stray2,4,
and Eriks Klotins1

1 Blekinge Institute of Technology, Karlskrona, Sweden
{darja.smite,nils.b.moe,eriks.klotins}@bth.se

2 SINTEF, Trondheim, Norway
{darja.smite,marius.mikalsen,nils.b.moe,

viktoria.stray}@sintef.no
3 Norwegian University of Science and Technology, Trondheim, Norway

4 University of Oslo, Oslo, Norway

Abstract. Along with the increasing popularity of agile software development,
software work has become much more social than ever. Contemporary software
teams rely on a variety of collaborative practices, such as pair programming, the
topic of our study. Many agilists advocated the importance of collocation, face-
to-face interaction, and physical artefacts incorporated in the shared workspace,
which the COVID-19 pandemic made unavailable; most software companies
around the world were forced to send their engineers to work from home. As
software projects and teams overnight turned into distributed collaborations, we
question what happened to the pair programming practice in the work-from-home
mode. This paper reports on a longitudinal study of remote pair programming
in two companies. We conducted 38 interviews with 30 engineers from Norway,
Sweden, and the USA, and used the results of a survey in one of the case com-
panies. Our study is unique as we collected the data longitudinally in April/May
2020, Sep/Oct 2020, and Jan/Feb 2021. We found that pair programming has
decreased and some interviewees report not pairing at all for almost a full year.
The experiences of those who paired vary from actively co-editing the code by
using special tools to more passively co-reading and discussing the code and solu-
tions by sharing the screen. Finally, we found that the interest in and the use of PP
over time, since the first months of the forced work from home to early 2021, has
admittedly increased, also as a social practice.

Keywords: COVID-19 ·WFH · Remote · Distributed · Pair programming ·
Agile

1 Introduction

Contemporary software engineering has become more social than ever [1]. The pop-
ularity of collaborative practices, such as pair programming (PP), have continuously
grown along with the growing interest in implementing agile software development

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-78098-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_1

4 D. Smite et al.

methodologies. The increased interest in PP has been linked with that joint problem
solving outperforms individual capabilities [2] and that developers enjoy pairing more
than working solo [3].

PP emerged as a collocated practice, sometimes even facilitated by specially dedi-
cated work areas, i.e., open space with groups of workstations for PP [4], and relies on
constant communication and collaboration. This is why, when theworldwide COVID-19
pandemic in 2020 has forced many software companies to send their employees to work
from home (WFH), many of the collaborative practices that used to depend on physical
collocation, were, obviously, disrupted. An interesting research question is then: What
happened to the PP practice in the forced WFH regime?

We know that collaborative practices are more challenging in virtual teams [5]. The
use of digital communication tools due to physical distance brings challenges, such as
reduced communication quality due to poor network and meaning, tone, and emotion
being lost and misunderstood over digital media [6]. Furthermore, facilitation of remote
pair programming (RPP) requires specific tool support. Existing literature suggests that
although several tools developed for RPP exist, there is very little empirical evaluation
[7]. Even though distributed work is challenging, RPP has been shown to have benefits
similar to collocated pairing [8]. However, there are not many studies on RPP in industry
settings, and most are investigating students from a teaching perspective [7]. Further,
there are no studiesof teams that suddenly need to change from being collocated to
working full-time remotely. All these research gaps motivated our study.

2 Background and Related Work

2.1 Pair Programming

Pair programming (PP) is a key collaborative agile practice that is believed to improve
team performance. In PP, two developers sit side-by-side at one computer, continuously
collaborating on the same design, algorithm, code, or test [10]. In its original form, one
developer takes a leading role (called the driver) while another (called the navigator)
observes and actively provides feedback, asks questions andmakes suggestions to ensure
high quality of the produced code [11]. While the roles of the navigator and drivers are
widely accepted, pairs often take on both responsibilities at the same time instead of
having an explicit division of labor. Chong and Hurlbutt [12] found in their ethnographic
study that having a strict separation of roles inhibits the natural way of working and that
both developers having imminent access to the keyboard enabled rapid switching and
made the developers more engaged. Further, Wray [13] reports additional scenarios of
how two developers can collaborate on jointly improving the same code, for example,
by jointly reviewing and discussing issues and potential solutions without any explicit
roles.

The processes of PP relate to key processes of effective agile teamwork [9], which are
monitoring, feedback, and backup behavior [14]. Since the pair might constantly change
the driver and the navigator, or work without separating the roles, PP can help exercising
backup behavior and establishing it in teamswhenmissing [15]. PP is also found to be an
efficient practice for education, and consequently a good practice when onboarding new
people [2, 16]. Pairing involves shared decision making, therefore the practice supports

From Collaboration to Solitude and Back 5

self-management [17]. Further, recent research reports that PP is effective in terms of
raising coding quality [16]. Last but not least, PP has also been found to be a practice that
developers enjoy. Williams et al. [3] found that more than 90% stated that they enjoyed
collaborative programming more than solo programming.

2.2 Remote Pair Programming

There are not many studies on remote pair programming (RPP) in industry, and most
focus on students from a teaching perspective [7]. From existing studies we know that
RPP provides benefits similar to colocated pairing such as increased productivity, code
quality, and knowledge transfer in addition to the benefit of promoting communication
between distributed team members [8]. At the same time, it is evident that RPP can be
more challenging to initiate and perform compared to collocated PP. Initiation can be
challenging because team members cannot just swivel their chairs around to the person
sitting close to them. As such, it is important to have social software that can show who
is available for pairing in distributed teams [5, 18]. In colocated PP, you work on the
same code and frequently switch roles. In a distributed setting you need technology to
support this [19]. Further, pairs also need tomake voice and video calls and share screens
during the coding activity. Because many tools exist, developers often have their own
preferences on how to perform RPP, which sometimes leads to frustration within a team
[20]. Therefore, having the right tools accepted by all teammembers is a success criterion
for RPP to work, along with a list of important functions. The main requirements are
[7, 19, 20] that pairs must be able to: 1) access, edit and synchronize the same files, 2)
coordinate and fulfill the driver and observer roles, 3) point to different parts of the code,
4) know about the presence of their partner (text or video).

3 Empirical Cases and Research Method

3.1 The Case Study Design

In this paper, we report our findings from studying RPP forced by the COVID-19 pan-
demic in two companies. We chose a multiple longitudinal case study design [21] to
understand what happens to distributed PP using digital collaboration tools. The case
study is multiple, as we study engineers in two different companies. Our unit of study
is individual engineers and their perceptions of and experiences with RPP. The study is
longitudinal (see Fig. 1) as we have inquired the same people at different points of time.
The cases are selected by convenience sampling, based on the availability of access to
the company data and personnel and the interest of the companies in understanding the
PP practice. The interviewees and survey respondents have volunteered to participate.

It is worth mentioning that we initially had access to a third company, in which PP
was neither practiced systematically before transitioning to working from home, nor
during the COVID-19 pandemic. Therefore, we decided not to include this case.

6 D. Smite et al.

Fig. 1. Longitudinal data collection in each company

3.2 InterSoft and SavingsBank and Their Transition to WFH

The two companies we study are InterSoft and SavingsBank (both anonymized).
InterSoft is an international software company with development offices in Sweden,

the UK, and the USA. In March 2020, InterSoft sent all employees in all locations to
work from home, prohibiting access to the office spaces. The decision was initially
set for two weeks with following extensions, which at the moment of our publication
has reached September 2021. Thanks to the geographic distribution, the company has
had the facilitating conditions, infrastructure and tools enabling distributed work before
the pandemic. At the same time, InterSoft is an advanced agile company that promotes
collaboration and teamwork, and agile practices, such as PP, are commonplace. Company
culture seems to highly depend on intensive collaboration and collocation, this is whywe
were curious to study InterSoft’s ability to transit into WFH. To support the employees,
InterSoft has acquired various remote collaboration software licenses and launched a
program for reimbursing office equipment in the early weeks of WFH and supported the
transition to WFH through various experience sharing activities.

SavingsBank is a Norwegian software development company owned by an alliance
of banks. In March 2020, its employees went from predominantly on-site work to 100%
distributed work from home. Company sites were closed, and initially, employees were
not allowed to be at the office at all. During the summer of 2020, because of a lower spread
of the virus, the offices were open with restrictions (number of simultaneous employees
at the office and in meeting rooms, and distance between employees). During the fall of
2020, the increased spread of the virus led to the offices being shut down again, which is
still the case at the time of writing. Employees with a particular reason for being at the
office (such as the need to run tests on a particular network or particularly problematic
situation at home), are allowed to use the office. Notably, four of the 24 development
teams in the company were partially distributed before, working across two different
Norwegian cities, this is why SavingsBank also had facilitating conditions and infras-
tructure when moving into the WFH. The studied unit was described by practitioners as
a leading agile environment in Norway, using state-of-the-art collaboration methods and
technologies. Similar to Intersoft, SavingsBank had the technical infrastructure and tools
that enable distributed work and a program for getting equipment from work. Through
the year, employees were encouraged to keep their practices, and experiment with new
practices and forms of digital collaboration.

From Collaboration to Solitude and Back 7

3.3 Data Collection

This study is a part of a larger study of WFH experiences in each of the companies. PP
emerged as one of the practices that changed, and thus became a candidate for a detailed
analysis. Here, we report our findings from 38 interviews and 17 follow up inquiries
from 30 engineers from the two companies, and a corporate tool satisfaction survey in
one company. Our data collection is longitudinal, aiming at collecting experiences from
same interviewees at different points of time to see changes in their experiences.

In InterSoft, we conducted 15 interviews in the first round of in April/May 2020.
Interviewees were selected by convenience sampling, at the same time aiming at having
representatives from the main locations (in Sweden and USA), age groups and family
situations. The interviewswere 45–60min long and focused on the details of a typical day
under WFH, reflections on the changes in the daily routines (schedule, tasks, meetings,
teamwork, ceremonies, includingPP), onwhatworks andwhat does notwork in theWFH
mode, home office, and hopes for the future. We conducted follow up interviews with
eight of the informants in September/October 2020. In the second round, the interviews
were 30 min long and focused on the changes in routines and practices since the last
inquiry.All interviewswere semi-structured, conducted by two researchers inEnglish via
Zoom and audio-recorded with the consent of the interviewees. One of the interviewers
led the interview, while the other took detailed notes (close to transcription). After the
interview, notes were refined and complemented by cross-checking with the recording.

In SavingsBank, the interviewswere conducted in September 2020. The interviewees
were selected by tech leads to achieve a representative set of engineers. All interviews
were 45–60 min long, conducted via MS Teams. Ten of the interviews were conducted
by two researchers, and seven by one. The interviews were semi-structured, and focused
on daily work practices using digital collaboration, interruptions, and internal open
source. All interviewswere audio-recordedwith the consent of the interviewees and later
transcribed. Notes were also taken during the interview. The interviews were conducted
in Norwegian, the quotations from the interviews are thus translations.

For both companies we followed up interviewees with emails to aim at having mul-
tiple data points for each interviewee and to detail the RPP practices. The follow up
inquiry was done in January/February 2021. We asked “Do you do RPP now?”, “How
often do you do RPP?”, “Do you use any special tools for RPP?”, “What do you think
about RPP while working from home?”. We received 21 answers (7 in InterSoft, and 14
in SavingsBank). As a result, we had four interviewees inquired (interviewed or emailed)
three times, 22 inquired twice and only four inquired just once.

Additionally, we used results from an internal engineering satisfaction survey from
InterSoft. We analyzed three survey rounds (Jul 2020, Oct 2020 and Jan 2021). We
include responses regarding PP support: 67 responses from the first round, 63 responses
from the second round and 129 responses from the third round. In the survey, respondents
were asked to rate and comment on their satisfaction with the PP tools on a 5-point
Likert scale (no support, poor support, moderate support, good support, great support).
The survey was designed, ran, and analyzed independently from our study, qualifying it
as secondary analysis of the secondary data [22].

8 D. Smite et al.

3.4 Data Analysis

Our data analysis was conducted in several steps. First, we conducted interviews with a
broad scope of inquiry to help companies understand how to cope with the new situation
of working from home. After completing two rounds of interviews in InterSoft, and
the first round of interviews in SavingsBank, the researchers involved in the interviews
reflected on what emerged as the topics of interest for more detailed analysis.

Second, we presented preliminary findings to the companies and received their feed-
back. During the feedback session we took notes and later adjusted our interpretation of
the findings based on the comments received.

Third, we analysed the written material, focusing on PP experiences. In the InterSoft
case, we went through the written notes and partial transcripts from 23 interviews and
found 21 references particularly relating to PP. In the SavingsBank case, the transcrip-
tions were first coded in a bottom-up fashion, and 80+ codes were created, across 7
categories using the NVivo software for qualitative data analysis. Categories included
concepts such as “new challenges during COVID”. After this initial, close-to-the-text
coding, we specifically looked for data on PP, and we found 15 references in the data.

Fourth, we started comparing the material for the two cases. Based on our initial
understanding of the data, two of the researchers created an excel sheet in order to orga-
nize the data. The excel sheet had the following categories: “Whether or not PP is done”,
“How is PP done”, “How often is PP done”, “How often was PP done before working
from home”, and “Interesting quotes”. The final category was used to capture interesting
insights on the PP practice as experienced by the interviewees. These categories form
the basis of the findings. In particular, we found the majority of the interviewees prac-
ticed PP before the pandemic, with the exception of few interviewees who did not; that
the frequency of the use of RPP in WFH could vary between not at all, occasionally,
regularly but less frequently than in the office, and more frequently than in the office;
and for the way to perform RPP we ended up with two categories: Using special tools
or Calling in & sharing screen. When the interview material was insufficient to answer
the questions, we then sent follow up emails to inquire about more details. The feedback
received was used to fill the gaps and enrich the findings.

Finally, the data from InterSoft was supplemented by the material from the tool
satisfaction survey for triangulation and to seek explanations for the emerging findings.

3.5 Limitations and Threats to Validity

First, it’s worth mentioning that our data collection initially was not focusing on the
pair programming as the main topic of inquiry and the interview guides used in the two
cases, although overlapping, were not fully aligned. We have mitigated this in the later
follow-up inquiries, aligning the questions sent to the interviewees to mirror the data
collected from the two cases.

Further, interviews as the data collection method have certain limitations. Accord-
ing to [21], interviews is one of the most important sources of case study information
and should be considered “guided conversations rather than structured queries”. And
although interviews are insightful and provide perceived causal inferences and expla-
nations, it is vital to be aware of the weaknesses of interviews as evidence. Interviews

From Collaboration to Solitude and Back 9

are likely to be biased, when it comes to poorly defined questions and responses. If
the informant does not recall the past correctly, their answers are inaccurate, and they
can be reflexive in the way that the informant gives what the interviewer wants to hear
[21]. We sought to mitigate the shortcomings by collaboratively creating non-leading
questions in the interview guide. Also, being semi-structured, we sought to follow up on
the directions where the interviewee wanted to go. We also were, in most of the cases,
two researchers doing the interviews, so we could adjust to each other, and in one of the
companies the interviews were longitudinal, so we could check the same facts at two
different points of time.

To further strengthen the validity of our findings, we performed triangulation by
using data collected from different sources and by different methods. Triangulation is
the core principle of case study research, which helps ensuring the consistency of the
findings [21]. Besides, we presented our findings back to the companies, and sent the
final version to all the interviewees to verify our analysis and interpretations.

There is also a limitation in terms of generalizing based on case studies. The main
lesson learned in our work is the variety of experiences with RPP and the journey that
individual engineers made, which can be viewed as a working hypothesis rather than
strong theoretical claims [21]. What strengthens our findings is that we have two cases,
spanning several locations. Finally, our findings are indicative as we shed empirical light
on a relevant and emerging phenomenon, which could be relevant and interesting for
individual engineers as well as software companies working with agile methods.

4 Findings

4.1 Do Engineers Pair Program When Working from Home?

To understand the RPP as a practice, we asked the engineers whether or not they did
PP when working from home. We grouped their responses into four categories; “Not all
all”, “Occasionally”, “Regularly, but less frequently than in the office”, and “Regularly
and more frequently than in the office” (see Fig. 2).

Eight respondents state that they do not do RPP. Of these, two respondents state that
it is because it was not done before either, and it is not something they have begun doing
now.A third respondent comments that they becamemore separated duringworking from
home, and that this makes it more challenging to do pair programming. An engineer
that states that they do not do pair programming comments: “We do little real pair
programming. However, we try to make a habit out of discussing with the team when
you start a task and discuss solutions. This is effective.” (Oskar, Sep 2020).

Nine respondents state they are doing RPP, however very infrequent/occasionally,
e.g., once a month. One respondent in this category is an engineer and a tech lead in a
team. He describes doing a little bit of pair programming, but that he wants to do more.
The challenges are related to the working situation at home and a lot of meetings: “I
have a home office together with my partner, and we switch between sitting in the kitchen
and the bedroom when we have meetings at the same time. That makes it difficult to do
it ad hoc. Additionally, I am one of those that has too many other meetings already, so
it is hard to reserve time” (Oliver, Sep 2020).

10 D. Smite et al.

Another engineer, who used to do PP three times a week, notes how it is different
doing PP while working from home “That’s not easy. There are a few tools to do it, like
we have this Visual Code plugin – but it’s just not the same thing, it’s not as natural as it
was in the office” (Maya, Sep 2020). This echoes many others who said, that particularly
in the beginning of working from home, using digital tools, like screen sharing or more
customized tools like Tuple, was radically different from just walking over to the person
next to you and sharing the keyboard and screen. Pair programming was more popular
then, because it was easier, as one engineer comments: “It was easier when you sat in
the same location, […] to take that little talk. If I was stuck, and knew that some other
had solved the same problem last week, then it was much easier to just pop by and [ask]
´Can you quickly show me how you did it on your PC?’, instead of starting to share
screens, it is absolutely much better to do it when you are in the same location” (Trond,
Sep 2020).

In the interviews conducted in the early months of the forced WFH situation, many
engineers confessed that they either have not done any PP or tried it only a few times.
As an interviewee described: “It’s less easy to do [PP] with screen sharing. At least,
I’ve been doing less of that. […] It’s been quite OK, but long term it would be good to
have an easier possibility to do pair programming. But for these couple of months, it’s
OK” (Ally, May 2020).

One of the reasons why PP failed to take off was that pairs needed to agree on doing
PP and finding the time in a way that was not as natural as in the office. As one of the
interviewees explained, in the early days of working from home, there were attempts to
mimic the “old” way of working, where you could do more ad-hoc PP. But it obviously
was not as easy: “We’ve tried it once since we started working from home and I think it
worked quite well, but I think it’s hard, I am not sure why it is harder, but I’ve tried to
say that I want to pair, and then it’s Yeah, sure, let’s do it after lunch. And then things
change after lunch and then you don’t do it. Maybe it’s because we need to schedule this
more explicitly. We have not figured out the solution” (Sven, May 2020).

As a result, some teams started schedulingRPP sessions, as one explains:“We started
doing some more regular pair programming in our team recently. We booked a daily time
slot for this, after our standup, and if during the standup some pairing opportunities
come up, we use this dedicated time.” (Robert, Jan 2021).

A clear majority of responses at the end of our study period indicate that engineers
pair program regularly. A more detailed analysis of the interviewee responses suggests
that about half of those responding positively have increased their interest in pairing
remotely over time. As people realised that remote work was not a temporary situation,
the need for more collaborative practices increased and new ways of remote pairing
were sought in order to address complex problems, like developing something new,
or improving a design. The use of PP increased also because engineers became more
experienced with remote work.

That both sentiments towards joint, digital collaboration practices, and the very
remote practices themselves change is apparent from our data. Consider one engi-
neer, who, when we interviewed him in Sep 2020, was very clear that the new, remote
work was far inferior to being collocated. In Feb 2021, he describes how things have
improved: “Since the last time we talked, I think it has been a kind of development

From Collaboration to Solitude and Back 11

[…] My impression is that generally everyone became better at answering quickly and
calls for handling issues which are difficult to [communicate in text]. I think everyone
became better at using Slack and [MS] Teams correctly, and hence complex tasks are
not considered that difficult anymore” (Gustav, Feb 2021).

The progression of the interest in RPP over time is also supported by results of the
tool support satisfaction survey from InterSoft conducted in Jul 2020 and repeated in
Oct 2020 and Jan 2021 (See Fig. 3). The number of positive responses reporting good
or great support increased from 54% to 73%.

Finally, two respondents stated that they do more PP than before the pandemic.
Because of the need to plan and schedule collaboration, regular pairing sessions became
a commodity. The members of the mentioned team do it directly after the standup and
in the afternoon, on a daily (or almost daily) basis. One of the respondents explains how
pair programming is a new initiative: “We have in our area/team started focusing on pair
programming now after the New year. We did it both with regard to quality, but not the
least with regard to people’s need for seeing each other and ‘feel’ that we work together
while working from home.” (Albert, Feb 2021).

Fig. 2. An overview of PP in the studied companies: transition from collocated PP or no PP to
the way RPP is performed with regards to frequency and technical solutions.

4.2 How is Remote Pair Programming Done?

Similar changes as in the adoption of the RPP practice we also found also in the way it
is performed. While in the early interviews conducted in April and May many reported
to have not done any RPP or to have tried it once or twice, email responses received in
January and February 2021 were full of detailed descriptions of tools that were tried,
which were working well, and which setups were preferred. In our analysis of the differ-
ent ways of doing RPP, we have derived two main categories of responses (see Solutions
to pairing in Fig. 2).

In the first category, we have gathered experiences of RPP assisted by special tools
that allow mimicking the collocated PP practice – looking at a code together and co-
editing it and changing the driver and the navigator roles in the pair on a need basis:“Pair-
ing has gotten a lot better… We’ve gotten corporate licenses for some software that makes

12 D. Smite et al.

pairing easier. Not just screen sharing, but also controlling each other’s computers, and
being able to program simultaneously”. (Conor, Sep 2020).

Among the interviewees, we solicited experiences with Tuple, VSCode extension
for PP and “Code with me” extension to IntelliJ. Evidently, the number of interviewees
using special tools is not that large. We explain it with the lack of awareness of the
tools, the initial skepticism towards the ability of the tools to support “real” PP and the
difficulty to pair for a longer period of time.

The lack of awareness of the tools for RPP is also evident in the data collected
through the tool satisfaction survey conducted at InterSoft (see Fig. 3). When asked how
well the company tools support employees in performing PP tasks we see an increase in
employees who are satisfied with the support. At the same time, fewer employees report
poor or no support even in early 2021.

Our findings suggest an increasing adoption and support for RPP tools. The few
employees discontent with the support suggest that the tools are not working for every-
one. However, it is more likely that the respondents are not aware or have not tried out the
tools available. The latter is also indirectly supported by our findings from the interviews
regarding the frequency of use of RPP.

Fig. 3. Survey responses about satisfaction with tool support for pair programming

The next category reflects the adaptation of relatively passive PP practice. In fact,
most of the interviewees in our study reported calling in their peers and looking at the code
and discussing solutions while sharing their screen. Co-editing the code was not always
a part of this practice. This is probably why, admittedly, this practice was not regarded as
“real” PP, although still acknowledged to be better than working solo. In practice, one of
the developers was said to occupy the driver’s role, while the other is restricted to be the
navigator, as switching is not technically possible. As one of the interviewees described
it, “[We] do not do it ‘by the book’, but there is a lot of screen sharing together with
one or more [team members]. This is related to debugging (checking logs/config/code),
code assessment and implementing new functionality” (Gustav, Feb 2021). Another
interviewee explained, “[It’s] not like pair programming when you sit during four hours
in parallel, but usually we do syncing for one hour, going through the code together, and
then dividing the tasks, working for two hours in parallel and then syncing again. We
call that ‘more pair programming’.” (Ally, Sep 2020).

From Collaboration to Solitude and Back 13

4.3 What Are the Main Challenges in Remote Pair Programming in WFH?

Pair programming “by thebook” requires physical collocation,which for obvious reasons
is impossiblewhen everyoneworks fromhome. In the previous subsections,wedescribed
what tools and practices engineers follow to enable RPP, and mentioned that many
experience difficulties and said that the fact that you need to do it in separation depending
on the tools and internet is an obstacle to practicing PP. In the following we summarize
the main challenges of remote setup according to our interviewees.

We learned that one of the key challenges associated with RPP is the very initiation
of pairing. Several interviewees mentioned that the threshold to approach the colleagues
was higher when working from home because they could not just shout out a question
over the shoulder, as in the office, and did not have a good insight into what their
colleagues are doing in a particular moment. As someone explained: “You don’t want
to disturb people because you don’t know what the others are doing right now” (Ola,
Apr 2020). This was even more challenging for the recently onboarded engineers who
were not well familiar with other colleagues. As an interviewee explained: “I prefer to
do pair programming when I am at the office, because then it is easier to grab someone.
I feel that there is a higher threshold when you are on Slack. The better you know your
team, the easier it is.” (Kristine, Feb 2021).

Another important challenge was to find a technical solution that helps to work
with the code together. RPP makes engineers depend on tools with varying quality and
suitability for the task, for something that you previously did by walking over to the
person next to you. Several interviewees said that tool-mediated PP would not feel the
same, and therefore had not even tried it. Some tried to “jump on a call” but complained
about the connection problems. Finally, some confessed that they wanted to use specific
tools but they were not accepted as sufficiently secure in the company. Technical hiccups
also contributed to the threshold, as an interviewee explained: “It takes more time than
usual to do [PP]. Difficult if someone gets technical issues with sharing the screen”
(Morten, Feb 2021). And another admitted: “I do not enjoy PP while working from
home, the software can be a bit slow at times, and it’s easy to lose control of the cursor
if both of us are trying to edit” (Carol, Feb 2021).

Last but not least, several interviewees admitted that active tool-mediated PP was
too intense and tiresome if done for hours, suggesting that a more passive mode was
more suitable for the “online” version. As an interviewee explained: “Proper pair pro-
gramming is very intense and tiring, and it becomes difficult to hold for a longer time.
But a more relaxed variant, where you have video and audio but work mostly separately
and share a screen when needed, then you can work for hours” (Gustav, Feb 2021).

4.4 What Are the Benefits of Remote Pair Programming in WFH?

Despite these challenges, RPP still has a number of benefits. Pair programming is, in
essence, a way for engineers to more quickly get a shared understanding of the problem,
and then jointly and simultaneously work on solving the problem; means of seeking
and receiving feedback and monitoring each other’s work. The need for joint problem
solving and acquiring a second opinion have not diminished when moving to working
remotely, as one engineer notes: “I feel like I have been an advocate for pairing up and

14 D. Smite et al.

pair programming and doing things together since I started, because I think that’s a
good way to avoid the buzz factor.” (Kristoffer, May 2020).

This notion is second by another engineer, who also points out howpair programming
“works well for doodling and problem solving” (Andreas, Feb 2021). In the formerly
collocated contexts, engineers were used toworking together, and, as aminimum, having
a shared understanding of what they are going to do, before they split up and work
individually to solve it.

We found that some respondents, despite admitting the difficulties of RPP and pre-
ferring to do it in co-location, acknowledge some benefits in tool-mediated pairing that
are only available when using tools, such as the ability to control the partner’s screen
without taking away his or her keyboard. As an interviewee described: “[Tuple] was the
most recent tool that I’ve tried, and that was very good. […] I think the big thing that
Tuple has is the ability to type on your partner’s screen. And I’ve used it twice recently
and it was very quick and very easy, it was very helpful” (Conor, Sep 2020).

Additionally, there is a clear social component to RPP, which seems to become
increasingly important as more time is spent away from the teammates. The following
two quotes demonstrate how pairing enhances the work experience not only for the
usual purposes, but for the sake of socialization: "I think PP and writing code together
is something we should do more of while working from home, both because two heads
work better than one, but in particular because it is something social and it makes what
you do feel more important" (Erik, Feb 2021) and “We did it both with regard to quality,
but not the least with regard to people’s need for seeing each other and to get a feel of
working together although working from home […] it adds something positive in terms
of more contact with the other team members" (Albert, Sep 2020).

Another interesting observation relates to few interviewees who perceived RPP as
easier because they did not disturb others unlikewhenworking in the office. Therewas no
longer the need to leave your desk and search for a quiet room to pair. As an interviewee
explained: "[Remote] pair programming works well and perhaps better than in the office
where you would disturb the neighbour with the talking” (Arvid, Feb 2021).

Finally, we also associate RPP with more structured or disciplined daily routines. As
one interviewee, who have admitted strugglingwithworking from home in the beginning
of the pandemic, described that frequent pairing helped him become more disciplined
and keep the focus: “While you are pairing, you don’t get distracted, you don’t want to
get distracted. […] The difference is, when I am soloing I usually sit in my living room,
in a more casual setting, so I can relax, enjoy and have fun. But when I am pairing I
feel like I should not be wasting their time, it should be more serious work. So I go to
my home office with the chair and monitor to do it properly” (Ola, Sep 2020).

5 Discussion and Concluding Remarks

In this paper, we presented our findings from studying the changes in PP practices in two
companies that sent their employees to work from home as a result of the COVID-19
outbreak. In the following, we summarize and discuss our findings.

In response to our RQ: “What happened to PP practice in the forced WFH regime?”,
we conclude that the overall use of PP has decreased and some interviewees in our

From Collaboration to Solitude and Back 15

study report not pairing at all for almost a full year. However, we also found that the
interest in and the use of RPP over time, since the first months of the forced WFH to
the early 2021, has admittedly increased, which is confirmed both by the interviewees
and the results of the tool satisfaction survey in one of the companies. The experiences
with RPP vary from actively co-editing the code by using special RPP tools (referred
to as practicing PP “by the book”) to co-reading and discussing the code and solutions
by sharing screen (which supports the acceptance of alternative ways of pairing [13]).
When it comes to the frequency of PP, we found that most do it less frequently than in
the office. The sudden transition to the WFH led engineers to focus on individual tasks,
temporarily reversing the social trend in software engineering [1, 2]. Our findings also
illustrate how RPP is more intense and tiring than pairing in the office, which supports
existing research on RPP being exhausting if performed for a long time [2]. Among
the challenges, we found the difficulty of initiating RPP when trying to merely mimic
the collocated practices. We can speculate that one reason for this is a lack of tools
showing availability [5, 18], or initial failure to create new practices utilizing such tools.
We also found how this changed over time. Our findings support the earlier research
emphasizing the importance of and consensus over good tools for RPP [19, 20]. With
respect to RPP benefits, our study confirms that engineers pair program because they
enjoy it [3], especially as an important mean for socialization while WFH, which goes
beyond RPP for quality and efficacy [11] and is not much discussed in existing literature.

When reflecting on the individual journeys of engineers in our studymade, we notice
a few commonalities. We depict them in a conceptual representation of the acceptance
of the work from home setup represented by an inverted Hype Curve1 (see Fig. 4).

Fig. 4. Trends in acceptance of the WFH setup and respective changes in RPP experiences.

1 Hype curve or cycle is a graphical representation of thematurity, adoption, and social application
of technologies, which is developed, used and branded by the American research, advisory and
information technology firm Gartner.

16 D. Smite et al.

The traditional Hype Curve depicts the changes in the adoption of new technologies,
starting with a technology breakthrough, the early publicity of which often inflates the
expectations, shortly followed by the disillusionment, then continues with the work
on advancing the technology, reflected in the enlightenment and increased popularity,
finally leading to mainstream adoption. Unlike technology adoption, we believe that
the transition to RPP resembles a vertically inverted curve. In the beginning, many of
the interviewees did not do any RPP, because it was assumed to fail to provide the
experience of the actual collocated PP as experienced in the office. As time went on and
the perceiving temporary mode of working from home turned into a new way of living,
engineers started to experiment with different ways of pairing. At the end of the first
WFH year, RPP became more and more popular, not only as a way to solve complex
problems or teach juniors, but also as a way to facilitate collaboration and interaction
and satisfy the socialization needs. We evidence the rise of experimentation with the
tools and ways of approaching RPP (e.g., changes in the scheduling of regular pairing
sessions). Evidently, not all interviewees have gone through the curve, indicating that
the speed with the RPP adoption varies.

We can expect those who at the moment of our study, have followed remote pairing
occasionally, orwhohave not yet found the right tool support,will do so in the near future.
This is supported by stories we have collected from those who indicate an increasing
interest in remote pairing over time.

Yet, we also found that several engineers who used to pair program in the office, have
not done it at all, since they were forced to work from home. Besides, our results suggest
that remote collaboration is not as natural as the collaboration in the office, and that the
success of remote collaboration reported by the interviewees in our study highly depends
on the existing social connections. If the future will be a hybrid of remote and office
work, and companies will more willingly hire experts from remote locations, we will no
longer be able to rely or assume that people will know each other well. This leads to a
question, whether future teams will find ways to overcome the threshold of initiating and
maintaining the high level of collaboration or regress to a more transaction-relationship.
From one hand, PP can become a practice to familiarize the team members and keep
the collaboration high even when team members choose to continue working remotely.
On the other hand, if perception of being an “unnatural” or “challenging” practice will
dominate themainstream opinion, PPmight become extinct in the repertoire of the future
software teams.

We believe that given many of the positive effects that are reported from working
from home, findings ways to keep PP in the repertoire of the future teams is important.
The understanding of the RPP and the very nature of future collaborations at the virtual
workplace is one important direction for future research.

Acknowledgements. This research is funded by the Swedish Knowledge Foundation within the
ScaleWise project (KK-Hög grant 2019/0087) and the S.E.R.T. research profile project, and the
Research Council of Norway through the 10xTeams project (grant 309344).

From Collaboration to Solitude and Back 17

References

1. Mens, T., Cataldo, M., Damian, D.: The social developer: the future of software development
[Guest Editors’ Introduction]. IEEE Softw. 36(1), 11–14 (2019)

2. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9–10), 833–859 (2008)

3. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair
programming. IEEE Softw. 17(4), 19–25 (2000)

4. Robinson, H., Sharp, H.: Organisational culture and XP: three case studies. In Proceedings
of Agile Development Conference (ADC 2005), pp. 49–58. IEEE (2005)

5. Tell, P., Babar, M.A.: Requirements for an infrastructure to support activity-based computing
in global software development. In: Proceedings of IEEE Sixth International Conference on
Global Software Engineering Workshop, pp. 62–69 (2011)

6. Rizvi, B., Bagheri, E., Gasevic, D.: A systematic review of distributed Agile software
engineering. J. Softw. Evol. Process 27(10), 723–762 (2015)

7. Estácio, B.J., Prikladnicki, R.: Distributed pair programming: a systematic literature review.
Inf. Softw. Technol. 63, 1–10 (2015)

8. Baheti, P., Gehringer, E., Stotts, D.: Exploring the efficacy of distributed pair programming.
In: Extreme Programming and Agile Methods—XP Agile Universe, pp. 387–410 (2002)

9. Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: a
case study of a Scrum project. J. IST 52(5), 480–491 (2010)

10. Williams, L., Kessler, R.R.: Pair Programming Illuminated. Addison-Wesley Professional,
Boston (2003)

11. Williams, L.: Pair Programming. Encyclopedia of Software Engineering, vol. 2 (2010)
12. Chong, J., Hurlbutt, T.: The social dynamics of pair programming. In: 29th International

Conference on Software Engineering (ICSE 2007), pp. 354–363 (2007)
13. Wray, S.: How pair programming really works. IEEE Softw. 27(1), 50–55 (2009)
14. Brannick, M.T., Salas, E., Prince, C.W.: Team performance assessment and measurement:

Theory, Methods, and Applications. Psychology Press, Taylor & Francis Group, New York
London (1997)

15. Kude, T.: Agile Software Development Teams during and after COVID-19. http://knowledge.
essec.edu/en/innovation/agile-software-development-during-after-COVID19.html (2020).
Accessed 5 Mar 2021

16. Demir, Ö., Seferoglu, S.S.: A Comparison of solo and pair programming in terms of flow
experience, coding quality, and coding achievement. J. Educ. Comput. Res. 58(8), 1448–1466
(2021)

17. Moe, N.B., Aurum, A., Dybå, T.: Challenges of shared decision-making: amultiple case study
of agile software development. J. IST 54(8), 853–865 (2012)

18. Giuffrida, R., Dittrich, Y.: Empirical studies on the use of social software in global software
development–a systematic mapping study. J. IST 55(7), 1143–1164 (2013)

19. Tsompanoudi, D., Satratzemi, M., Xinogalos, S., Karamitopoulos, L.: An empirical study on
factors related to distributed pair programming (2019)

20. Dominic, J., Tubre, B., Ritter, C., Houser, J., Smith, C., Rodeghero, P.: Remote pair program-
ming in virtual reality. In: 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 406–417 (2020)

21. Yin, R.K.: Case study research and Applications: Design and Methods, 6th ed. SAGE
Publications, Thousand Oaks, California (2018)

22. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner
Researchers, 2nd edn. Blackwell Publishing, Oxford (2002)

http://knowledge.essec.edu/en/innovation/agile-software-development-during-after-COVID19.html

18 D. Smite et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

UX Work in Software Start-Ups:
Challenges from the Current State

of Practice

Sofia A. M. Silveira1, Joelma Choma1(B), Roberto Pereira2,
Eduardo M. Guerra3, and Luciana A. M. Zaina1

1 Federal University of São Carlos (UFSCar), Sorocaba, Brazil
{sofia,jchoma,lzaina}@ufscar.br

2 Federal University of Paraná (UFPR), Curitiba, Brazil
rpereira@inf.ufpr.br

3 Free University of Bozen-Bolzano, Bolzano, Italy
eduardo.guerra@unibz.it

Abstract. Software start-ups develop innovative software products
working with disruptive technologies in time pressure and market-driven
environment. Recently, User eXperience (UX) has become a hot topic
that interests software teams of start-ups. However, software and UX
professionals have struggled to match UX practices into the development
activities, partially because of the lack of resources in the start-ups. This
paper investigates how software start-ups handle UX activities during
software development and how relevant UX is to these companies’ pro-
fessionals. To achieve our aim, we surveyed 88 professionals who take part
in software teams in star-ups, analyzing the responses using descriptive
and statistical methods. Our results reveal that regardless of having or
not a UX position in the start-up, UX practices are spread in differ-
ent software development phases and not fitting into them. Results also
show although professionals consider UX relevant and recognize impor-
tant skills to perform UX activities, some obstacles hinder the effective
use of UX in software start-ups. From the survey results, we identified a
set of challenges to be overcome in consolidating the UX work in software
start-ups. By diagnosing the UX state-of-practice in start-up scenarios
and identifying such challenges, our work contributes to provides relevant
insights to further academic and practical studies in this field.

Keywords: Software start-ups · Agile practices · User eXperience ·
UX practices · UX challenges · Survey

1 Introduction

Software start-ups focus on developing innovative products or services, often
disruptive and in challenging contexts [20]. A start-up is a human institution
designed to deliver a new product or service under conditions of extreme uncer-
tainty [21]. To be a start-up, it is not require the company to be small or new.
c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 19–35, 2021.
https://doi.org/10.1007/978-3-030-78098-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_2

20 S. A. M. Silveira et al.

Start-ups differ from established companies by searching for a scalable, repeat-
able, and profitable business model with the aim of growing in the market [22].
The continuous seeking for a scalable business model pushes the start-ups to
have changes in their process and operations constantly. Start-ups usually work
with a small team of professionals, exploring new technologies, being marked
by rapid evolution, high uncertainty about customers and market conditions,
and high failure rate [1,20]. The literature has emphasized the need for stud-
ies on Software Engineering practices that are specific and appropriate to the
characteristics of start-ups [20,22].

The combination of innovation and a market-driven context leads to a situa-
tion where a specific (and restrict) set of software development practices may be
useful for start-ups [19]. Besides, some studies point out user experience (UX) as
a critical factor for software start-ups, generating value for users, and creating
competitive advantage [8,12,20,22]. Although different UX definitions are found
in the literature, it is a consensus that UX work can affect a product acceptance
[14]. The ISO-9241 norm [2] defines UX as “user’s perceptions and responses that
result from the use and/or anticipated use of a system, product or service.” This
norm emphasizes human-centred design, highlighting the adoption of different
software development practices, such as user research, interactive design, user
involvement, and cross-functional design teams.

For the Software Start-ups Global Research Network group1, good UX can
help start-ups to move towards successful and sustainable business creation,
promoting genuine interest from users and opportunities for meaningful feedback
[22]. UX can be crucial to test a value proposition early on [6]. At the beginning
of product development, a good understanding of the problem the software will
solve can helps to find a suitable market and drive the UX work. To assess
market interest and to establish a customer base, studies indicate that many
start-ups attempt a balance between customer value by focusing on functionality
and UX while keeping engineering effort minimal [12]. In this sense, a trade-off
between features, quality, time, and cost can determine the scope of the minimum
viable product [21]. However, there is a gap in knowledge about UX practical
actions more compatible with reality in start-ups. To accomplish this gap, we
carried out a survey in Brazil’s start-up ecosystem to identify how UX work has
been applied in these fast-growing innovative environments. In this paper, we
present our findings on UX relevance from a software professionals’ standpoint
and identified a set of challenges faced for the adoption of UX practices taking
into account the reasons, obstacles, and skills needed for UX work.

Our survey’s target audience was professionals working with software devel-
opment in start-ups, covering start-ups of any size, lifetime, and market segment.
Based on 88 valid answers from professionals who work on software development
positions in start-ups, our results offer a diagnosis about UX, revealing that
although it is considered relevant and present, it remains often in the fron-
tiers of the software development process and not integrated into it. Our work
contributes to research and practice of UX in start-ups, both by bringing more

1 https://softwarestart-ups.org/.

https://softwarestart-ups.org/

UX Work in Software Start-Ups 21

discussions about the critical role of UX in the different phases of software devel-
opment, as well as by showing that how much have or not have UX positions
allocated in software start-ups can influence the use of UX in the practice. Addi-
tionally, six challenges related to UX adoption were identified, providing impor-
tant insights to further academic and practical studies in the software start-ups
context.

This paper is organized as follows. Section 2 introduces the related works
to UX in start-ups. Section 3 outlines the research method adopted. Section 4
presents the main findings and discusses the study limitations and threats to
validity. Section 5 highlights the challenges that start-ups face on UX work.
Finally, Sect. 6 concludes the paper and presents directions for further work.

2 Related Work

UX’s importance in software development in start-ups was raised in the liter-
ature in 2012 [17]. Five recommendations about software engineering practices
for developing start-up products are reported, and Good UX is essential recom-
mendation warns on risks of skipping UX validation in the early stages of the
product conception. In 2016, a global research agenda on software development
in start-ups restated the importance of put UX in practice from the early stages
of software development [22]. However, this work pointed out that it is still an
open question which UX practices are in fact useful for these organizations.

Although software practitioners in start-ups recognize UX’s relevance to
product development, start-ups have faced difficulties in setting the UX methods
and practices to the fast-paced environment [6,7]. The software teams’ mindset
and organizations’ culture can often be an obstacle to UX work [16]. There is also
an influence of the limitations in human resources, common in most start-ups,
which can make it difficult to hire experienced UX professionals [9,12,13].

Collecting users’ feedback about the product appears as the main concern
of start-ups [7,8,12]. User interface prototypes (i.e. mockups and wireframes)
[9,12,17], user testings [9], questionnaires [13] and analysis of data log [7,8] are
mentioned as the UX practices frequently used by software practitioners in that
context. However, start-ups also struggle with the effective use of information
collected about their users [5,8,9]. Moreover, UX methods and practices have
different aims depending on the software development stage [12], requiring UX-
skilled professionals to know which one to use and how to get the best benefit
from their application. Some studies stand out that the relation between UX
and business models could support decision-making about product development
and contribute to a positive image of the organization [9,12,22].

From the literature review, we identified only two surveys focused on explor-
ing the topic of UX in start-ups [9,15]. In the survey conducted from interviews
with 21 professionals of 20 software start-ups from different countries, Hokka-
nen et al. [9] identified three main categories of factors that affect UX work in
start-ups were identified: (1) Strategy, as strategic choices on resource alloca-
tion and Product qualities that affect actions for creating good UX; (2) Team

22 S. A. M. Silveira et al.

Qualities, as they can be improved by having UX expertise, domain knowledge,
and UX mindset; and, (3) Interaction with Users that focus on how actively
involving users in their process of creating UX. Salgado et al. [15] conducted a
survey involving 26 small Brazilian software companies of which 17 were software
start-ups. Their survey results pointed out (1) the need of improving the profes-
sional awareness of the importance of usability and UX, (2) a demand for more
appropriate usability and UX practices to fulfill the context of small businesses.

3 Research Method

Our research method followed the guidelines recommended by Kitchenham and
Pfleeger [11]. This survey addressed two research questions. First, what is the
role of UX in the different software development activities? Second, how do pro-
fessionals consider UX in start-ups that have UX-related roles and those that do
not? By answering the first question (RQ1), we intend to explore how often UX
activities have been carried out in the start-ups throughout software develop-
ment, and what UX practices have been employed to support the professionals’
tasks. To address the second question (RQ2), we intend to investigate how pro-
fessionals perceive UX work in the start-ups by exploring the reasons that drive
and factors that hinder the use of UX practices in the start-up. Furthermore, we
look at UX work relevance and essential related skills in software start-ups from
the point of view of professionals who work in the UX area in comparison with
those professionals with positions only in the software engineering area.

The survey’s target audience was professionals working in software develop-
ment areas at start-ups in Brazil, including software engineers, software devel-
opers, UX designers, testers, project managers, product managers, and software
architects. In this survey, we do not impose any restrictions on the start-up size.
As the data collection method, we prepared an online survey with 26 questions,
including an informed consent describing study objectives and a statement about
the guarantee of participants’ confidentiality and anonymity.

The questionnaire was evaluated in two steps. First, three researchers of
UX, software engineering (SE), and start-up areas reviewed the survey design.
Second, we conducted a pilot test with six graduate students from UX and
SE areas to verify the questionnaire clarity and easiness of understanding. Our
instrument was refined based on that feedback by: (a) rewriting questions; (b)
modifying answers’ format; (c) reordering questions to a more logical sequence;
or (d) splitting questions to improve readability. Despite the survey’s broader
scope, we used a subset of questions related to this paper’s aim, presented in
Table 1. The online survey was open from June until the middle of September
2020. An invitation email was sent directly to start-ups and researchers’ contact
networks, asking to forward it to other potential participants. The respondents
were guided to answer considering the start-up where they currently work.

In our analysis, we first verified responses’ consistency and integrity, elimi-
nating inconsistent, incomplete, and duplicate questionnaires. In the next step,
we did the partitioning of the responses (see Table 1). To analyze the responses

UX Work in Software Start-Ups 23

Table 1. Survey questions

No. Question (simplified version) Type RQ

Q1 How many years of experience do you have? Multiple-choice –

Q2 What roles do you play in the start-up? Multiple-choice –

Q3 What year was the start-up founded? Free text –

Q4 What market-segment does the start-up operate in? Multiple-choice –

Q5 How many employees does the start-up have? Multiple-choice –

Q6 What frameworks and methodologies are applied? Multiple-choice –

Q7 How long has the start-up been using UX practices? Multiple-choice RQ1

Q8 How often is UX applied in the following software development

activities: (i) software ideation, (ii) product specification, (iii)

requirements analysis, (iv) design and prototyping, (v)

development, (vi) testing and integration, (vii) deployment, and

(viii) maintenance

Likert scale RQ1

Q9 For the start-up’s development team, how often do the following

activities occur: (a) user involvement in the requirements

elicitation, and (b) user involvement in prioritizing requirements

Multiple-choice RQ1

Q10 What UX practices has the start-up used? Multiple-choice RQ1

Q11 Does the start-up have specific UX-related positions? *options

with different team configuration

Multiple-choice RQ2

Q12 What are the reasons that do the start-up use UX practices? Multiple-choice RQ2

Q13 Which factors hinder the use of UX practices in the start-up? Multiple-choice RQ2

Q14 How much the skills are needed for collecting, interpreting and

analyzing UX data: (a) know-how to collect feedback, (b)

know-how to interpret feedback, (c) know-how to collect user

information, (d) know-how to interpret user information, (e)

ability to analyze a large amount of data

Likert scale RQ2

Q15 How much the skills are needed to perform UX work: (a)

experience in graphic design, (b) know-how to perform activities

with the user, (c) knowledge in usability theories, (d) knowledge

of heuristics

Likert scale RQ2

Q16 How important the items are to the software team: (a) UX

practices in product development e (b) having a mindset focused

on programming

Likert scale RQ2

related to RQ1, we did a first division based on the respondent’s information on
how long the start-up has been using UX practices (Q7). Regarding responses
related to RQ2, we did a second division based on the respondent’s information
about whether the start-up had UX positions (Q11) to analyze the responses
from Q12 and Q13. To analyze how much certain skills were necessary to per-
form UX activities (Q14 and Q15), we did a third division, considering whether
the respondent plays a UX-related role or not (Q2). Finally, we considered the
last two divisions to analyze how relevant is UX to the development team eval-
uating the influence of having a mindset focused on programming (Q16).

We analyzed the data using descriptive and statistical methods. A non-
parametric test Kruskal–Wallis (KW) was applied to verify statistically signif-
icant differences between observed groups [18]. For cases where the KW test
showed a significant difference, we ran a post hoc analysis using the Dunnett’
method [3] to identify the differences.

24 S. A. M. Silveira et al.

4 Results

A total of 99 responses have been collected, out of which 88 have been used in
our analysis as valid responses. Invalid responses refer to 9 duplicate answers, 1
with incomplete answers, and 1 with inconsistent answers. Of the 88 respondents,
about 80% of them have more than 3 years of professional experience, and out
of these, 29 respondents have more than 10 years. About 51% of respondents
(45 of 88) play roles only in the software engineering area, 23% of respondents
(20 of 88) play roles only in the UX area, and 26% of respondents (23 of 88)
accumulate positions in both areas.

Of the 43 respondents who informed work on UX-related roles, the main
reported roles were UX Designer (38–88%), and UX Researcher (21–49%).
Regarding SE-related roles, we mainly found Software Developer (33 of 88)
and Software Architect (16 of 88). About 40% of respondents played the role
of product manager (35 of 88) and 23% product owner (20 of 88). The respon-
dents’ start-ups develop products for different market segments, and some of
them for more than one segment. The three most cited start-ups segments are
Information Technology, Finance, and Education.

Figure 1 introduces a heat map chart presenting the number of start-ups
that fit into each category related to some characteristics, such as size (in terms
of employees), foundation year, and the amount of time start-ups have been
applying UX practices. Lighter colors represent that few start-ups fit into those
categories, whereas darker colors represent that plenty of start-ups fit into those
categories.

Fig. 1. Start-up time applying UX practices by size and foundation year.

Regarding the frameworks and methodologies applied in start-ups (Q6), the
participants were allowed to select more than one option. SCRUM (55–63%) and
Kanban (54–61%) are the most recurrent among respondents. Only respondents
who work at start-ups that apply UX practices (78 of 88 respondents) mentioned

UX Work in Software Start-Ups 25

Design Thinking (41–53%), Design Sprint (31–40%), and Lean UX (25–32%).
The least applied methodology is Hypothesis-driven development (5–6%).

4.1 UX in the Software Development Activities

We asked the participants how often UX is applied throughout software develop-
ment (Q8), how often activities involving users occur (Q9), and which UX prac-
tices were commonly used in the start-ups (Q10). Of the 88 valid responses, 78
respondents answered these questions, while the other 10 respondents reported
that their start-ups did not use UX practices. To analyze these questions, we
split the 78 participants’ responses according to information about how long the
start-up has been using UX practices (Q7). We found that 18 respondents were
from start-ups that have applied UX for up to 1 year, 32 respondents from start-
ups that have applied UX from 1 to 2 years, and 28 respondents from start-ups
that have applied UX for over 3 years.

Table 2. UX in the software development

Software ideation Product specification

Always Often Rarely Never Always Often Rarely Never

Up to 1 year 33% 33% 28% 6% Up to 1 year 28% 44% 28% 0%

From 1 to 2 years 38% 41% 19% 3% From 1 to 2 years 28% 59% 13% 0%

Over 3 Years 64% 25% 11% 0% Over 3 Years 71% 29% 0% 0%

p-value: 0.041* p-value: 0.001*

Requirements analysis Design and prototyping

Always Often Rarely Never Always Often Rarely Never

Up to 1 year 22% 33% 33% 11% Up to 1 year 44% 44% 11% 0%

From 1 to 2 years 28% 47% 22% 3% From 1 to 2 years 53% 34% 13% 0%

Over 3 Years 43% 36% 11% 0% Over 3 Years 75% 18% 7% 0%

p-value: 0.038* p-value: 0.112

Development Testing and integration

Always Often Rarely Never Always Often Rarely Never

Up to 1 year 22% 44% 28% 6% Up to 1 year 22% 44% 22% 11%

From 1 to 2 years 38% 28% 25% 9% From 1 to 2 years 22% 41% 25% 13%

Over 3 Years 43% 43% 14% 0% Over 3 Years 39% 43% 14% 0%

p-value: 0.206 p-value: 0.067*

Deployment Maintenance

Always Often Rarely Never Always Often Rarely Never

Up to 1 year 28% 33% 28% 11% Up to 1 year 39% 33% 17% 11%

From 1 to 2 years 16% 47% 25% 13% From 1 to 2 years 19% 28% 47% 6%

Over 3 Years 43% 32% 14% 11% Over 3 Years 29% 57% 14% 0%

p-value: 0.178 p-value: 0.033*

Users in requirements elicitation Users in requirements prioritizing

Always Often Rarely Never Always Often Rarely Never

Up to 1 year 44% 22% 33% 0% Up to 1 year 33% 33% 33% 0%

From 1 to 2 years 13% 50% 25% 13% From 1 to 2 years 13% 56% 22% 9%

Over 3 Years 43% 39% 18% 0% Over 3 Years 36% 46% 18% 0%

p-value: 0.022* p-value: 0.115

Start-ups applying UX: up to 1 year (N = 18) | from 1 to 2 years (N = 32) | over 3 years (N = 28)

26 S. A. M. Silveira et al.

UX in the Software Development. In Table 2, we see the respondent’s per-
ception of how often the start-ups are concerned with applying UX in the soft-
ware development. Overall, almost 90% of respondents stated to use UX prac-
tices more often during product specification, design, and prototyping activities,
while more than 40% of them rarely apply it in the software maintenance. We
found that more than 80% of start-ups working with UX for more than 3 years
are significantly more concerned with it during the software ideation (p-value
0.041) and requirements analysis (p-value 0.038) activities than the start-ups
that started using UX less than a year. Besides, more than 80% of start-ups
that have applied UX for more than 3 years are significantly more concerned
with involving users in eliciting requirements (p-value 0.022), applying UX in
testing and integration (p-value 0.067), and maintenance (p-value 0.033) than
the group of start-ups using UX from 1 to 2 years. In the product specification
phase, we found that both groups with applied UX for less than 1 and 2 years
differ significantly from the group that has applied UX for longer.

UX Practices Applied in the Start-Ups. Table 3 presents the respondents’
information about which UX practices are used in their start-ups, as well as their
frequency. Overall, the most commonly applied practices are prototyping (66 of
78), user interview (63 of 78), and usability testing (51 of 78). Heuristic evalua-
tion (28 of 78), storyboard (26 of 78), and card sorting (19 of 78) are the least
used practices in start-ups. KW test revealed a statistically significant difference
in four practices: user interview (p-value = 0.05), usability testing (p-value =
0.006), personas (p-value = 0.007), and storyboard (p-value = 0.004). The post
hoc test indicated that start-ups from Up to 1 year group use significantly less
of these practices than the star-ups from over 3 years group.

Table 3. UX practices applied in the start-ups

Up to 1 year (N=18)* 1 to 2 years (N=32)* Over 3 Years (N=28)*

UX Practices F Always Often Rarely Always Often Rarely Always Often Rarely p-value

Prototypes 66 11% 28% 22% 31% 38% 25% 43% 39% 7% 0.076

User Interview 63 11% 28% 33% 31% 34% 16% 39% 36% 11% 0.049*

Usability Test 51 6% 17% 33% 31% 16% 6% 43% 32% 11% 0.006*

Personas 48 6% 22% 28% 25% 28% 9% 39% 21% 4% 0.007*

User Flow 40 11% 11% 0% 19% 28% 13% 32% 25% 4% 0.263

Heurisctic 28 11% 6% 11% 22% 16% 0% 32% 4% 4% 0.196

Storyboard 26 0% 6% 22% 19% 13% 0% 29% 7% 4% 0.004*

Card Sorting 19 0% 6% 0% 9% 6% 0% 25% 18% 4% 0.612

* Time period that the start-ups have applied UX practices

Figure 2 shows the UX practices used according to the foundation year of the
start-ups. From the heat map chart, we can see that the newer companies (i.e.
<3 years) use more personas technique than user testing. This result shows that
these organizations need to have more details on the users’ characteristics. These
organizations are in the early stage of product exploration, and, consequently,

UX Work in Software Start-Ups 27

Fig. 2. UX practices applied in the start-ups.

the users are not well defined, the product is not stable, and they are subject
to pivot more. In older start-ups (i.e. >3 years), the testings are running more
frequently than in newer ones, which can be a consequence of their product has
already achieved a degree of maturity and been considered stable.

4.2 UX Work from the Perspective of Start-Ups Professionals

To explore perceptions about the main reasons why the start-up uses UX prac-
tices (Q12) and the main factors that hinder their usage (Q13), we divided
the participants’ responses considering whether or not respondents’ start-ups
had UX-related professionals (Q11). Of the 78 respondents who answered these
questions, we found that 33 respondents were from start-ups that have a fully
or partially dedicated UX team (UX-Team), 25 respondents were from start-ups
that have at least one fully or partially dedicated UX professional (UX-Pro), 12
respondents from start-ups that do not have a UX professional (No-UX), and
8 respondents from start-ups that train employees from other areas to do UX
work (Train-E).

Reasons for Using UX. Table 4 summarizes the results on the reasons that
lead start-ups to apply UX practices in the development of their products. From
the respondents’ point of view, the three main reasons for the start-up to use UX
practices are to create value for the user (70 of 78), create successful products
(66 of 78), and create value for business development (56 of 78). KW test reveled
a statistically significant difference in respondents’ opinions on obtaining com-
petitive advantages (p-value = 0.020). This reason was highlighted by 67% (39
of 58) of respondents from UX-Pro group. In the opinion of respondents from
Train-E group, the two main reasons to apply UX are the successful product

28 S. A. M. Silveira et al.

Table 4. Reasons for using UX

Reasons Overall UX-Team UX-Pro No-UX Train-E

(N=78) (N=33) (N=25) (N=12) (N=8) p-value

Create value for the user 70 (90%) 94% 88% 92% 75% 0.454

Create successful products 66 (85%) 91% 84% 67% 88% 0.264

Create value for business development 56 (72%) 79% 72% 67% 50% 0.425

Obtain competitive advantages 46 (59%) 76% 56% 25% 50% 0.020*

Reduce risk of injury inherent in the

creation of new features

37 (47%) 55% 36% 58% 38% 0.418

Acquire more users 34 (44%) 55% 32% 33% 50% 0.311

Present a more professional image of the

product

32 (41%) 39% 32% 58% 50% 0.458

Understand how to sustain the long-term

business model

26 (33%) 36% 28% 50% 13% 0.324

UX-Team = fully or partially dedicated UX team | UX-Pro = fully or partially dedicated UX

professional | No-UX = No UX professional | Train-E = the start-up trains employees when

necessary.

creation (7 of 8) and the value for the user (6 of 8), and the least cited reason
is about understanding how to sustain the long-term business model (1 of 8).

Factors that Hinder the Application of UX. Table 5 presents respondents’
opinions about factors that make it difficult to apply UX practices. Overall, more
than 40% of respondents pointed out that the main difficulties are the short time
available (36 of 78) and the scarce financial resources (31 of 78). Unsurprisingly,
lack of a designated professional to work with UX is a difficulty most often

Table 5. Factors that hinder the application of UX

Factors Overall UX-Team UX-Pro No-UX Train-E

(N=78) (N=33) (N=25) (N=12) (N=8) p-value

Short time available 36 (46%) 48% 36% 42% 75% 0.280

Few financial resources 31 (40%) 30% 36% 50% 75% 0.113

Lack of consensus on UX relevance,skills,

and responsibilities

28 (36%) 42% 36% 25% 25% 0.654

Dispersion of UX information 28 (36%) 36% 32% 50% 25% 0.660

Lack of a professional designated to work

with UX

25 (32%) 9% 24% 92% 63% 0.001*

Difficulty fitting UX work using agile

practices

23 (29%) 33% 32% 17% 25% 0.724

Communication and collaboration gap

between UX and other professionals

25 (32%) 48% 20% 25% 13% 0.031*

Late start of UX activities 20 (26%) 27% 32% 17% 13% 0.618

Difficulty transforming UX needs into design

solutions

13 (17%) 12% 16% 17% 38% 0.398

Difficulty knowing how to get infor-mation

from users

9 (12%) 12% 12% 0% 25% 0.397

Few start-up-specific UX practices 7 (9%) 6% 16% 8% 0% 0.455

UX-Team = fully or partially dedicated UX team | UX-pro = fully or partially dedicated UX professional

| No-UX = No UX professional | Train-E = the start-up trains employees when necessary.

UX Work in Software Start-Ups 29

pointed out by respondents from start-ups that do not have UX professionals,
while the difficulty related to communication and collaboration gap between UX
and other professionals is a difficulty most often pointed out by respondents
from start-ups that have UX teams.

Skills to Perform UX Activities. To explore how much certain skills were
necessary to carry out UX activities from respondents’ viewpoints (Q14 and
Q15), we analyzed 78 responses considering whether or not the respondents
played the role of UX in the start-up (Q2). We found 43 respondents who play
some UX-related role in their start-ups and 45 respondents who play roles only in
the area of software engineering. See the results in Table 6. Overall, skills know-
how to collect and interpret feedback and Know-how to collect and interpret user
information were considered much-needed for the group of professionals who
play the UX-related role (an average of 72% of them), and to a lesser proportion
for SE professionals (an average of 54% of them). When running the KW test,
we found no significant differences between groups.

Table 6. Skills to perform UX activities

Skills Play UX role No-play UX role

MN NE LN NN MN NE LN NN p-value

Know-how to interpret feedback 79% 19% 2% 0% 69% 31% 0% 0% 0.330

Know-how to collect feedback 72% 26% 2% 0% 51% 49% 0% 0% 0.079

Know-how to interpret user information 72% 23% 5% 0% 54% 43% 3% 0% 0.138

Know-how to collect user information 67% 23% 9% 0% 46% 46% 9% 0% 0.094

Knowledge in usability theories 47% 35% 19% 0% 40% 49% 6% 3% 0.978

Ability to analyze a large amount of data 37% 40% 16% 5% 31% 20% 31% 17% 0.066

Knowledge of usability heuristics 35% 47% 16% 2% 23% 46% 17% 6% 0.308

Know-how to perform activities with the user 33% 49% 14% 5% 40% 37% 20% 0% 0.592

Experience in graphic design 19% 47% 26% 9% 17% 54% 23% 3% 0.533

MN much-needed | NE needed | LN a bit needed | NN unnecessary

UX Relevance and Focus on Programming. The question about the impor-
tance of UX practices for the development team considering a mindset focused on
programming from the respondents’ perspective (Q16) was analyzed in two ways.
Table 7 shows on the left side, the results considering the relation of UX relevance
and the UX positions in the start-ups (i.e., UX-Team, UX-Pro, No-UX, Train-
E). On the right side, the table shows the results considering a mindset focused
on programming. We found out that there are no significant differences between
groups in both questions, according to the KW test. Regarding the importance
of UX, only 13% (10 of 78) of the respondents responded that UX is rarely
important for the development team. Development teams are always concerned
with UX in the opinion of 46% (19 of 41) of respondents within UX-Team and
Train-E groups. Table 7 also shows an overall perspective of the results by divid-
ing the data into UX and SE professional groups. As in the previous analysis,
we did not find significant differences between these groups for both questions.

30 S. A. M. Silveira et al.

4.3 Threats to Validity

The respondents’ perception and their inadequate knowledge of the domain are
potential threats to the internal validity of surveys [4]. We conducted a pilot
test with researchers in the UX domain and start-ups to check possible prob-
lems with the survey questions, and then, we refined the instrument to mitigate
misinterpretations by respondents. The survey participants were recruited using
a convenience sampling [4]. Regarding external threats referring to sample rep-
resentativeness and heterogeneity within the target population [23], we use a
network of start-up professionals and researchers distributed in different states
of Brazil to engage professionals working for software start-ups and playing dif-
ferent roles.

Table 7. UX relevance and focus on programming

UX relevance Focus on programmingp

Groups N Always Often Rarely Never Always Often Rarely Never

UX Team 33 45% 36% 15% 0% 30% 36% 27% 3%

UX Pro 25 36% 48% 12% 4% 32% 56% 12% 0%

No-UX 12 33% 58% 8% 0% 25% 33% 25% 17%

Train-E 8 50% 38% 13% 0% 38% 38% 25% 0%

p-value = 0.859 p-value = 0.476

Plays UX role 43 44% 42% 12% 0% 40% 33% 23% 2%

Does not play UX role 45 38% 38% 20% 2% 18% 58% 18% 7%

p-value = 0.300 p-value = 0.146

UX Team = fully or partially dedicated UX team | UX-pro = fully or partially dedicated

UX professional | No-UX = No UX professional | Train-E = the start-up trains employees

when necessary.

We refined our questionnaire by changing some types of questions, such
as adopting the multi-point Likert scale to mitigate possible construct threats
referring to measurement fails. In multiple-choice questions, we add the option
“other” to avoid an exhaustive list of possible answers. And, for all multiple-
choice and Likert scale questions, we include the “I do not know” option to
avoid inconsistent responses. Due to space limitations, however, we did not add
the answers to these options in the tables of this paper. Specifically, the list of UX
practices and the reasons and obstacles statements for using UX in the start-up
were derived from existing studies [8,9,15]. To mitigate the evaluation apprehen-
sion effect, we have guaranteed the respondents anonymity and made the survey
results available through a technical report. Regarding conclusion threats, we
used the Kruskal-Wallis non-parametric tests and the Dunnett’ method that are
appropriate to perform multiple comparisons from multiple choice answers or
the Likert scale [18].

UX Work in Software Start-Ups 31

5 Challenges for UX in Software Start-Ups

Regarding RQ1, our findings revealed that in start-ups applying UX for over
3 years, UX is more present in the different software development activities, and
the adoption of UX practices is less frequent for start-ups that apply UX for
less than 3 years. This result suggests these start-ups become more mature in
understanding the importance of UX and using UX practices in their work.

Regarding RQ2, our results revealed that independently of the start-up hav-
ing UX-related roles, respondents considered the creation of value for the user
and the business reasons for using UX. The respondents also pointed out the lack
of resources and time as the main impediments that blocked UX adoption. Our
findings showed that UX is considered relevant even in start-ups where there
were no UX professionals. The ability to handle user information from different
perspectives was seen as the primary skill to conduct UX work in start-ups.
Taking into account our findings, we outline some challenges on UX work in
start-ups as the following:

Challenge 1 - Matching UX Work into Agile Practices to Running
at Different Stages of Product Development. Frequently, start-ups guide
their software development by agile practices [20]. Nevertheless, we found that
although the professionals see the UX relevance, they face difficulties of fitting
UX work into agile practices, as shown in Table 5. Furthermore, our results
showed that UX’s concerns are spread throughout the different frequency of
application for start-ups that applied UX for up to 1 year (see details in Sect. 4.1).
These results can indicate these start-ups are struggling to add the UX work to
their software development activities. However, providing a good user experience
(UX) from the beginning of product development can have a meaningful positive
impact on product acceptance [5].

Challenge 2 - Making Practices Leaner for UX Work. When adopting
UX practices, start-ups are often concerned with the cost their application can
bring, requiring them to find a balance between the UX work application and
the less resource-consuming [22]. The pressure to put the product on the market
and the lack of UX professionals can be among the causes for a low frequency
on the application of UX practices. A report on design maturity points that
organizations with less expertise in UX have difficulty accommodating practices
throughout the software development process [10]. From a similar perspective,
the report results can explain why start-ups that have been applying UX for
less than 1 year do not frequently use UX practices (see Table 3). Especially
for early-stage start-ups, UX practices need to be adopted to do just enough
to validate the product ideas without waste resources [5]. Nonetheless, a key
question continues unanswered: “how to make UX practices more lightweight in
order to be incorporated into the start-ups daily work?”.

32 S. A. M. Silveira et al.

Challenge 3 - Adjusting the Pace of UX Work in a Highly Reactive
Environment. Our findings pointed out that creating successful products is
a trigger for UX’s work (see Table 4). However, it may be harder for start-ups
to add UX practices into their software development process by being highly
reactive to market demands. When the start-up decides to change its prod-
uct drastically, UX work may need to be started from scratch, e.g., conducting
research with a new group of users [5]. In addition, UX professionals may have
to deal with the frustration of discontinuing a project if they are not prepared
to work at the pace of these innovation-driven environments. Start-ups do not
always have UX specialists who may be involved in assessing the business model
from the early stages.

Challenge 4 - Aligning UX Work with the Business Model and User
Needs. In our survey, the most cited reasons for applying UX in start-ups are
create value for the user and create value for business development, as shown
in Table 4. However, the lack of resources and time to conduct UX activities
appeared as factors that harm UX activities (see Table 5), while the understand-
ing how to sustain the long-term business model is not seen as an important
factor by professionals in start-ups that have UX-related roles (i.e., UX-Pro, see
Table 4). This result could be a consequence of UX not being seen as a cross-
cutting attribute. Our results have similarities with others from the literature
which also point out that UX impacts on the business model and is important
to create a user-product linked [9,12,22].

Challenge 5 - Training and Skills Development to Perform UX Activ-
ities. Our results showed that professionals from start-ups that do not have
a designated UX professional recognize the importance of this professional for
carrying out UX work (see Table 5). Also, our results show that both profession-
als from start-ups with and without UX-related roles have similar perspectives
about the skills needed to perform UX activities (see Table 6). In addition to
expertise in UX, Hokkanen et al. [9] highlighted the expertise of domain as an
associated factor that should drive how and what type of UX can be created
and tailored to the start-ups’ business niche. In the same work, the participants
reported that two key factors to UX work are the development of the abilities
to get user feedback and to promote user involvement. Our results restate the
concerns on collecting and handling user feedback and information (Table 6), as
discussed in [5,7,9,13]. However, we add a new detail by showing that these con-
cerns are seen as important skills by professionals independently if they have or
not UX-related roles. These findings lead us to the idea that there is a common
consciousness about what skills should be developed or improved by start-ups
professionals. We have not found out in the literature the best practices or lessons
learned about how to introduce these skills in start-ups’ teams.

Challenge 6 - Conducting Research with Real Users. Although usability
testing appeared as an often approach used by start-ups, the literature shows

UX Work in Software Start-Ups 33

that professionals face difficulties in conducting user testing with real end-users
[7]. In many situations, user testing is carried out with friends and with other
internal members of the start-up. Differently of the literature, know-how to get
information from users did not appear in the top as an obstacle to applying
UX (Table 6). Hokkanen et al. [8], however, point that start-ups had challenges
in collecting meaningful information from users and need of a systematically
way to handle user information. Our sample did not provide us inputs to get
an explanation of our different result. However, we consider this issue deserves
a better further investigation.

6 Conclusions

This paper presented an investigation on the UX state-of-practice in software
start-ups from a survey conducted with 88 professionals who work in software
start-ups in Brazil. The respondents were in UX and SE positions. In our analy-
sis, we addressed the role of UX in software development and the main practices
used in the fast-paced environment of start-ups. We also looked at the reasons
that influence or hinder UX work, the essential UX-related skills, and UX rele-
vance from professionals’ point of view. In summary, our findings showed that
even considering UX relevant, professionals have faced problems to fit UX in the
software development work, regardless of having UX-related positions allocated.
We concluded that more than developing professionals’ mindset about UX rel-
evance, software start-ups need a set of practices to support decision-making
about how and when UX work can be effectively embedded into their software
development activities.

By analyzing these issues in a critical way, we have identified a set of chal-
lenges faced by software start-ups in the adoption of UX practices. The iden-
tification of these challenges is a significant contribution achieved by this work
since these can be used to drive actions on start-ups and to guide future studies
on the field. Besides, our discussion provides insights to encourage researchers
and software practitioners to carry out more in-depth investigations on topics,
such as the UX value for users and business, and UX in the volatile scenario
of early-stage start-ups. Future work includes examining the remaining survey
questions and the replication of our survey to other start-up ecosystems.

Acknowledgments. We thank the support of grant #2020/00615-9 and grant
#2020/10429-8, São Paulo Research Foundation (FAPESP), and grant 313312/2019-2,
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq - Brazil).

References

1. Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I.O., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144, 255–274
(2018)

34 S. A. M. Silveira et al.

2. DIS, I.: 9241–210: 2010. ergonomics of human system interaction-part 210: Human-
centred design for interactive systems (formerly known as 13407). International
Standardization Organization (ISO). Switzerland (2010)

3. Dunnett, C.W.: A multiple comparison procedure for comparing several treatments
with a control. J. Am. Stat. Assoc. 50(272), 1096–1121 (1955)

4. Ghazi, A.N., Petersen, K., Reddy, S.S.V.R., Nekkanti, H.: Survey research in soft-
ware engineering: problems and mitigation strategies. IEEE Access 7, 24703–24718
(2018)

5. Hokkanen, L., Kuusinen, K., Väänänen, K.: Early product design in startups:
towards a UX strategy. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.)
PROFES 2015. LNCS, vol. 9459, pp. 217–224. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-26844-6 16

6. Hokkanen, L., Kuusinen, K., Väänänen, K.: Minimum viable user experience: a
framework for supporting product design in startups. In: Sharp, H., Hall, T. (eds.)
XP 2016. LNBIP, vol. 251, pp. 66–78. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33515-5 6

7. Hokkanen, L., Leppänen, M.: Three patterns for user involvement in startups. In:
Proceedings of the 20th European Conference on Pattern Languages of Programs,
pp. 1–8 (2015)

8. Hokkanen, L., Väänänen-Vainio-Mattila, K.: UX work in startups: current practices
and future needs. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015.
LNBIP, vol. 212, pp. 81–92. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-18612-2 7

9. Hokkanen, L., Xu, Y., Väänänen, K.: Focusing on user experience and business
models in startups: Investigation of two-dimensional value creation. In: Proceedings
of the 20th International Academic Mindtrek Conference, AcademicMindtrek 2016,
pp. 59–67. ACM, New York (2016)

10. InVision: The new design frontier (2018). https://www.invisionapp.com/design-
better/design-maturity-model/

11. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Guide to Advanced
Empirical Software Engineering, pp. 63–92. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-1-84800-044-5 3

12. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering in start-up
companies: an analysis of 88 experience reports. Empir. Softw. Eng. 24(1), 68–102
(2019)

13. Kuusinen, K., Sørensen, M.K., Frederiksen, N.M., Laugesen, N.K., Juul, S.H.:
From startup to scaleup: an interview study of the development of user experi-
ence work in a data-intensive company. In: Bogdan, C., Kuusinen, K., Lárusdóttir,
M.K., Palanque, P., Winckler, M. (eds.) HCSE 2018. LNCS, vol. 11262, pp. 3–14.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05909-5 1

14. Law, E.L.C., Roto, V., Hassenzahl, M., Vermeeren, A.P., Kort, J.: Understanding,
scoping and defining user experience: A survey approach. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp.
719–728. Association for Computing Machinery, New York (2009)

15. de Lima Salgado, A., Amaral, L.A., Freire, A.P., Fortes, R.P.M.: Usability and UX
practices in small enterprises: Lessons from a survey of the Brazilian context. In:
Proceedings of the 34th ACM International Conference on the Design of Commu-
nication, SIGDOC 2016, pp. 18:1–18:9. ACM, New York (2016)

16. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experi-
mentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)

https://doi.org/10.1007/978-3-319-26844-6_16
https://doi.org/10.1007/978-3-319-26844-6_16
https://doi.org/10.1007/978-3-319-33515-5_6
https://doi.org/10.1007/978-3-319-33515-5_6
https://doi.org/10.1007/978-3-319-18612-2_7
https://doi.org/10.1007/978-3-319-18612-2_7
https://www.invisionapp.com/design-better/design-maturity-model/
https://www.invisionapp.com/design-better/design-maturity-model/
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/978-3-030-05909-5_1

UX Work in Software Start-Ups 35

17. May, B.: Applying lean startup: an experience report - lean & lean UX by a UX
veteran: lessons learned in creating & launching a complex consumer app. In:
Proceedings - 2012 Agile Conference, Agile 2012, pp. 141–147 (2012)

18. McCrum-Gardner, E.: Which is the correct statistical test to use? Brit. J. Oral
Maxillofacial Surg. 46(1), 38–41 (2008)

19. Melegati, J., Chanin, R., Sales, A., Prikladnicki, R.: Towards specific software
engineering practices for early-stage startups. In: Paasivaara, M., Kruchten, P.
(eds.) XP 2020. LNBIP, vol. 396, pp. 18–22. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58858-8 2

20. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

21. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radicall Successful Businesses. Crown Publishing Group, New York
(2011)

22. Unterkalmsteiner, M., et al.: Software startups - a research agenda. e-Informatica
Softw. Eng. J. 10(1), 89–123 (2016)

23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, New York (2012). https://doi.org/
10.1007/978-3-642-29044-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-58858-8_2
https://doi.org/10.1007/978-3-030-58858-8_2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
http://creativecommons.org/licenses/by/4.0/

How to Write Ethical User Stories?
Impacts of the ECCOLA Method

Erika Halme(B) , Ville Vakkuri , Joni Kultanen , Marianna Jantunen ,
Kai-Kristian Kemell , Rebekah Rousi , and Pekka Abrahamsson

University of Jyvaskyla, PL35 Jyvaskylä, Finland
{erika.a.halme,ville.vakkuri,joni.m.kultanen,marianna.s.p.jantunen,

kai-kristian.o.kemell,rebekah.rousi,pekka.abrahamsson}@jyu.fi

Abstract. Artificial Intelligence (AI) systems are increasing in signifi-
cance within software services. Unfortunately, these systems are not flaw-
less. Their faults, failures and other systemic issues have emphasized
the urgency for consideration of ethical standards and practices in AI
engineering. Despite the growing number of studies in AI ethics, com-
paratively little attention has been placed on how ethical issues can be
mitigated in software engineering (SE) practice. Currently understanding
is lacking regarding the provision of useful tools that can help compa-
nies transform high-level ethical guidelines for AI ethics into the actual
workflow of developers. In this paper, we explore the idea of using user
stories to transform abstract ethical requirements into tangible outcomes
in Agile software development. We tested this idea by studying master’s
level student projects (15 teams) developing web applications for a real
industrial client over the course of five iterations. These projects resulted
in 250+ user stories that were analyzed for the purposes of this paper.
The teams were divided into two groups: half of the teams worked using
the ECCOLA method for AI ethics in SE, while the other half, a control
group, was used to compare the effectiveness of ECCOLA. Both teams
were tasked with writing user stories to formulate customer needs into
system requirements. Based on the data, we discuss the effectiveness of
ECCOLA, and Primary Empirical Contributions (PECs) from formulat-
ing ethical user stories in Agile development.

Keywords: User story · Agile development · Ethics · Artificial
Intelligence

1 Introduction

During recent years, the role of ethics has been emphasized in the context of Artifi-
cial Intelligence (AI) and Autonomous Systems (AS). In the field of Software Engi-
neering (SE) however, few tools or methods are available for systematically incor-
porating ethics into development. Furthermore, AI ethics has seldom been studied
from the perspective of practical application in SE. Ethically aligned AI/AS devel-
opment principles and guidelines exist [1], yet as recent research demonstrates [2],
there are still major challenges in translating these to practice.
c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 36–52, 2021.
https://doi.org/10.1007/978-3-030-78098-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_3&domain=pdf
http://orcid.org/0000-0003-0750-1580
http://orcid.org/0000-0002-1550-1110
http://orcid.org/0000-0001-8404-5254
http://orcid.org/0000-0002-8991-150X
http://orcid.org/0000-0002-0225-4560
http://orcid.org/0000-0001-5771-3528
http://orcid.org/0000-0002-4360-2226
https://doi.org/10.1007/978-3-030-78098-2_3

How to Write Ethical User Stories? Impacts of the ECCOLA Method 37

Overall, AI ethics currently seems to be an area with a prominent gap
between research and practice [2]. While we now have some degree of consensus
on what AI ethics is and what ethical principles and issues are important to
consider in AI development [1], translating these principles into concrete action
is challenging [2,3]. Organizations and developers seem to struggle with turning
ethical guidelines into tangible requirements.

We have attempted to tackle this issue by proposing a method for imple-
menting AI ethics in SE. The method is called ECCOLA.

The ECCOLA method has been iteratively developed and validated. This
current paper reports on one of these iterative validations. Additionally, we wish
to better understand how AI ethics should be practically applied to design and
development. Another goal of the paper in the context of ethics, is to examine
user stories and further knowledge of how to write ethical user stories in terms of
translating ethical principles into tangible engineering requirements. ECCOLA
will be discussed in greater detail in the next section.

Writing user stories is a practice commonly used to help define requirements
during development, especially in Agile software development. Thus, we felt that
ethical user stories could be one way of making (AI) ethics a part of the workflow
of developers. To study user stories in the context of (AI) ethics, we conducted an
empirical study of 15 projects. These projects were split into two, with half of the
project groups using the ECCOLA method to guide the user story writing pro-
cess, and the other, the control group, writing user stories without ECCOLA yet
with another set of non-ethically oriented cards (‘placebos’). The main research
question of the current study is: “How can Non-Functional ethically-oriented
User Stories be written with the assistance of the ECCOLA method?”

2 Background

2.1 Implementing Ethics into Software Development

Research seems to point to both challenges and benefits in applying ethics within
Agile methods. Miller and Larson [4], on human values in Agile software devel-
opment, highlighted the importance of developers acquiring an awareness of and
skill in performing ethical analysis. This was in order to be able to evaluate
development methods on a more sophisticated level. Yet, developers may expe-
rience difficulties in articulating ideas about human values, due to their tech-
nical language orientation [4]. While comparing Agile Principles with software
ethics, Judy [5] concluded that the conversation of ethical dilemmas is largely
absent from the Agile context. Particularly in instances where ethical issues do
not directly affect business value or teams. Miller and Larson [4] call for tools
of ethical analysis; they propose that parties involved in software development
need intellectual skills and a vocabulary that will help them understand and
communicate competing human duties, values and consequences.

Agile practices are “designed to navigate essential complexity” [5]. Their
growing rate of adoption is based on an inclination towards harnessing values
and culture in development processes and practices [5]. At the same time, Miller

38 E. Halme et al.

and Larson [4] propose that through deontological analysis, the Agile Manifesto
itself can be seen to place emphasis on human values. According to Judy [5], the
Agile community serves as a “vital resource” for peers with shared values.

It would seem that ethical building blocks exist in the Agile methodology
itself, but applying ethical analysis tools could further improve the situation
through clarifying ethical targets and what they mean in action, even in the
absence of “standard” methods.

To address the unique challenges posed by information technology (IT), con-
cepts such as Information Ethics, and further, Computer Ethics, have emerged.
The discussion around guidelines and codes of conduct for ethical considera-
tions, as well as initiatives to promote ethical software development, progress
as technology evolves. For example, the ACM Code of Ethics and Professional
Conduct for ethical software development dates back to 1992. It was subse-
quently updated to better suit the advancement of technology in 20181. This
ACM Code of Ethics, as an example of an acknowledged resource of computer
ethics, presents principles of responsibility for all who “use computing technology
in an impactful way”. It considers ethical principles such as prioritizing human
well-being, trustworthiness, fairness and privacy.

The ethical principles of computer ethics proceeded into the evolving discus-
sion of autonomous, intelligent technologies. Debates and discussion regarding AI
ethics has produced a widely recognized understanding of AI ethics guidelines,
that consist of partially the same principles as those in computer ethics. For
example, a study of the guidelines [1] identified a “global convergence emerg-
ing around five ethical principles”, namely: transparency, justice and fairness,
non-maleficence, responsibility and privacy.

When discussing ethics in IT, Value-Sensitive Design (VSD) is also wor-
thy to mention. Having emerged from the Human-Computer Interaction (HCI)
community in the 1990s, it is “a theoretically grounded approach to the design
of technology that accounts for human values in a principled and comprehen-
sive manner throughout the design process” [6]. It has been utilized in various
domains and tools including a ToolKit (for envisioning practices), consisting
of 32 cards for envisioning the use case scenario themed in stakeholders, time,
values, and pervasiveness [7].

While codes for ethical conduct in SE exist, an issue across domains of soft-
ware development is in that these codes do not carry over into practice. As
suggested by [8], any number of guidelines, policies, and procedures to encour-
age ethical behavior cannot guarantee their implementation. They state that,
“credible results and a strong discipline of empirical software engineering are
based on mutual trust that everyone will behave ethically” [8]. However, this
trust has not proven to be sufficient in facilitating ethical thinking. For exam-
ple, McNamara et al. [9] replicated a prior behavior ethics study, and found out
that explicitly instructing participants to consider the ACM Code of Ethics in
relation to the impacts of their software development decision-making had no
influence on actual ethical decision-making itself. In the field of AI ethics, [2]

1 https://www.acm.org/articles/bulletins/2018/july/new-code-of-ethics-released.

https://www.acm.org/articles/bulletins/2018/july/new-code-of-ethics-released

How to Write Ethical User Stories? Impacts of the ECCOLA Method 39

discovered a gap between research and practice regarding the ways in which AI
ethics are implemented. While on the one hand, AI ethics are discussed in aca-
demic circles, on the other hand, discussions had not carried over to industrial
application.

2.2 ECCOLA Method and It’s Application

Inspired by the challenges of implementing ethics in AI development, the
ECCOLA method [10] used in the current study, was developed with the inten-
tion to provide developers with “an actionable tool for implementing [AI] ethics”.
The method considers topics of AI ethics created in reflection of AI ethics prin-
ciples from relevant literature while aiming to make them more practical and
applicable for development. The ECCOLA method is a deck of 21 cards, with
eight (8) themes and one to six (1–6) topics in each theme (see Table 1). Develop-
ers can utilize the ECCOLA cards to implement the various ethical consideration
prompts in software development by using the questions provided on the cards.
Each card consists of one topic like the theme transparency considers topics
under Communication and Explainability, while Accountability considers top-
ics such as Auditability and Ability to Redress. One additional card, called the
Game sheet, explains how the method is used in practice. The cards are split
into three sections to motivate what to do while providing a practical example.
The cards also contain a note-making space to make it even more practical in
real life development work.

Table 1. ECCOLA card themes

Card themes (8) Card number (0–20) Card amount (total 21)

Analyze #0 1

Transparency #1–6 6

Safety & Security #7–9 3

Fairness #10–11 2

Data #12–13 2

Agency & Oversight #14–15 2

Wellbeing #16–17 2

Accountability #18–20 3

ECCOLA is a modular, sprint-by-spint process, where relevant cards are
chosen in advance in order to make the method manageable and focused in the
proceeding development work. This process results in a paper trail of ethical
choices to be made during the development of software product.

In short, the three (3) phases of prepare, review and evaluate are repeated
in every iteration during the development process. Decisions and card selection
processes become easier and more productive when developers/users familiarize

40 E. Halme et al.

themselves with the card themes and contents. The cards are to be sorted into
three (3) piles before development. The first pile is for the planning stages of the
project. The second one is for different parts of the development and the third
pile, if needed during the project’s final phase. The project or product defines
what cards are selected and utilized at different development stages. Tutorial
sessions are held before the interested parties start to deploy the method. The
sessions contain some exercises and an introduction to the method and AI ethics,
if needed. In this sense, ECCOLA is, in Agile methodology, a continuum for
ethical building blocks in the form of an analysis tool and this we will elaborate
upon more in the coming paragraphs.

2.3 User Stories in Ethically Aligned Software Design

User stories in the field of SE and Agile software development connect the two
sides of software project parties - business and development - in relation to infor-
mation about customer requirements [11]. User stories are highly apt for Agile
environments (as originated from the XP method) due to the fact that they can
be utilized for planning iterations and within iterative development processes
[11]. From the outset, Agile practices “focus on the development and delivery
of only those features that are really useful to customer” [12]. These methods
are applied in development projects with fast moving targets, where develop-
ment teams and applied tools should adapt easily to changes [13]. As the name
suggests, this provides software projects with manageable agility, particularly in
terms of bringing value to customer needs. This value delivery is enabled through
requirements engineering (RE) practices such as user stories [12].

User stories serve as mediators or boundary objects between users and the
development team. In the user story process, the decision-making and idea of the
software outcome is spread along the development project duration [11]. This
simple yet unifying function offers the development team an effective tool to
handle information just-in-time. In practice, user stories are handwritten cards
or paper notes generated by the customer team. If the customer is not involved
in the process the product owner - part of the development team - answers for
the customer software requirement needs.

The user story card or template generally contains two sections that describe
the requirements at a high level. This is formulated into three leading sentences:
“As a <role>, I can <action>, so that <goal>.” This progresses with accep-
tance criteria that are utilized to evaluate the user story execution [14]. Based
on Cohn’s [14] original developments, Dimitrijevic et al. [12] capsulize the user
story process into seven steps: user stories gathering, user role modeling, accep-
tance testing, estimating and planning releases and iterations, as well as tracking
and communicating. These seven areas of user story processing emphasize the
unpretentious nature of what the process components should entail.

The user stories are classified according to functional and non-functional
requirements. The functional requirements represent stories that are “compre-
hensible by both the developer as well as the customer team... and it’s a discrete

How to Write Ethical User Stories? Impacts of the ECCOLA Method 41

piece of functionality; that is, something a user would be likely to do in a sin-
gle setting” [11]. The goal for requirements that are classified as non-functional
requirements address the system needs, e.g. performance, availability, usability,
security and capacity [11], which represent the system quality in general. Ethi-
cal requirements can be classified as non-functional requirements as they share
similarities with quality requirements, for instance in terms of qualities such as
security.

3 Research Framework

Sketching and prototype generation have been described as extensions of designer
and developer cognition (see e.g., [15]). Likewise, for decades cards have been
used as highly practical and effective tools for not only materializing thoughts
but also representing how we mentally structure, categorise, and prioritise infor-
mation [16].

Through utilizing cards in combination with light weight methods such as
user stories in Agile processes, we may observe benefits from several perspec-
tives: 1) concretizing the mental arrangements of information through arranging
the cards; 2) physically re-ordering these cards to find better alternatives and
smoother streams of logic; 3) direct information and guides for development; and
4) the ability to test user logic – in and of itself, and/or in light of the system
and its re-design/re-development or improvement, and/or in relation to software
developer logic while translating ideas generated form the cards into coherent
and actionable stories (from scenario to program) [17].

In this study, we empirically evaluated the ECCOLA method. ECCOLA is
a method for implementing AI ethics, which we have presented in an existing
paper [10] and briefly above. The advantage of thinking tools such as cards and
user stories – the types of tools utilised within this current study – for instance,
are that they can be used repeatedly and iteratively throughout the design and
development process. As their forms and functions also suggest, not only are
these tools instruments for extending and validating thought, but they are also a
means of engaging multiple minds – the input of several or many people – within
the thought structuring, or cognitive development-action process. This facilitates
and enables collective cognition through teams and developer-stakeholder (end-
user) interactive and iterative processes [18]. In terms of designing for immaterial
qualities, or non-functional requirements such as ethics, values and emotional
experience for instance, these forms of tools are highly valuable as they serve to
connect immaterial qualities to tangible and concrete design and development
decisions.

For this study, we selected four cards for the teams to apply to their processes
in order to see how using ECCOLA would affect how the teams take ethical issues
into account while writing user stories. These cards were predetermined and were
the same for each team, i.e., in this case the development teams did not pick the
cards themselves. Due to research technical reasons, only four cards were chosen
to conduct this study. We discuss the role of ECCOLA in this study in detail in
the next section.

42 E. Halme et al.

4 Study Design

In this section, we discuss the methodology used in the study. The purpose of the
study was to understand how user stories could be written in terms of integrat-
ing ethical considerations (principles) into the actionable logic of the interaction
design and SE process. The study was conducted as an experiment in a con-
trolled research setting via the university’s distance learning tools. According
to Wohlin et al. “experiments involve more than one treatment to compare the
outcomes. For example, if it is possible to control who is using one method and
who is using another method, and when and where they are used, it is possible
to perform an experiment” [19]. Our main interest was to compare the output
of two types of user story generating student groups - the test groups utilising
ECCOLA and a control group utilising a card set without explicitly concentrat-
ing on ethics. ECCOLA was used as a framework to guide the user story creation
in the student groups who were assigned the test group role. The main goal of
ECCOLA as a development tool and artefact is to aid the translation of seem-
ingly non-functional requirements such as ethics, into operational SE actions.
This experimental setting was considered apt for determining ECCOLA’s effec-
tiveness from this perspective.

4.1 Data Collection Methodology and Study Context

In the current study, focus was placed on the production of ethical user stories
through utilising ECCOLA cards. ECCOLA had a two-fold function in this
exercise: 1) as a guide for deliberating ethics in SE based on ethical AI principles;
and 2) as a subject of appraisal - we sought to validate ECCOLA’s effectiveness
through its operationalization in user stories. In order to achieve this, data was
collected in the form of user stories (n = 298) from 15 project teams. Out of these
15 teams, nine teams utilized ECCOLA to aid the user story writing process,
while six did not. Originally there was a more equal delegation of the two groups
(ECCOLA and non-ECCOLA/control), but some groups were merged to avoid
undermanned teams as some students opted to not complete the course.

The data for this study were collected from a Master’s level Information Sys-
tems (IS) course at the University of Jyväskylä, Finland. In the course, students
worked in teams of 3–5 students to carry out a project for a real case company.

The duration of the software project was six weeks. During this time, the
students received five assignments, one each week after the first week’s introduc-
tory lecture. These assignments comprised two parts: non-technical and techni-
cal. The non-technical part was the focus of this study and formed the basis of
data collection. User stories were discussed during the lectures to familiarize the
teams with the practice of producing them.

The students were split into teams based on self-evaluations of their software
development skills. In a pre-course questionnaire, students were asked to evaluate
their confidence in programming abilities in any programming language on a
scale of 0 to 100. Students were organised in an ascending order based on their
level of programming confidence, and divided incrementally into teams (i.e., the

How to Write Ethical User Stories? Impacts of the ECCOLA Method 43

most confident students into one group, the least confident into another, and the
rest in between). Division was made in this manner in order to avoid imbalance
of technical skills, and thus, workload distribution within each team.

For demographic data, students were also required to report their previous
work experience in software engineering/development, in Agile development, and
their experience in utilizing Scrum (see Table 2). While 61 percent of the students
reported to have at least some experience in SW development (the distribution of
experience levels between students in both ECCOLA and non-ECCOLA groups
were similar) some difference in experience related to Agile development and
Scrum can be seen between the two groups - to the benefit of the ECCOLA
group. Students’ experience in Agile development can be seen to relate to their
prior knowledge about user stories as user stories are used as a RE tool in agile
development work.

Table 2. Demographic data of working experience

Work experience: How much work experience in

the field of software

engineering/development do

you have?

How much

experience in Agile

development do you

have?

How much

experience of Scrum

do you have?

ECCOLA —– Control ECCOLA-Control ECCOLA-Control

None 38% —————–41% 49%———-64% 51%———-64%

Less than 1 year 28% —————-23% 26%———-27% 28%———-23%

1–5 years 28% —————-36% 21%———-9% 15%———-14%

6–10 years 0% ——————0% 3%————0% 3%———–0%

More than 10 years 3% ——————0% 0%————0% 0%———–0%

N/A 3% ——————0% 3%————0% 3%———–0%

TOTAL 100%————-100% 100%——–100% 100%——-100%

These teams were then split into two groups (X for odd numbers and Y for
even numbers). Teams in group X used ECCOLA to help devise user stories,
while group Y did not. Group Y, however, also received a set of cards. The cards
issued were created for the present study setting. These cards contained instruc-
tions on writing user stories but did not discuss ethical issues. The purpose of the
second set of cards was to encourage a sense of equal treatment between groups.
Furthermore, the equality in issuing all groups with card sets was to ensure that
learning outcomes were not compromised by perceived varying conditions and
resources (i.e., tools at each group’s disposal). Materials such as Card decks X &
Y, the User Story Template, instructions and weekly assignments can be found
at external repository at Figshare2.

As the course progressed, so too did the user story development process. Dur-
ing the first week of the project, after gaining a firm understanding of user stories,
the groups were to write 4–6 user stories that featured functional requirements.
Each user story was written on a template provided to the teams.
2 https://doi.org/10.6084/m9.figshare.14210753.

https://doi.org/10.6084/m9.figshare.14210753

44 E. Halme et al.

The first week’s assignment required the students to utilize one card from
their given set that comprised a Stakeholder Analysis theme. The second week’s
assignment focused on examining the customer need/desired product description
and writing 4–6 user stories through the lens of non-functional requirements
(NFR). Students were informed about the differences of functional and non-
functional requirements including examples of both types of requirements. For
the rest of the project timeline the groups with X deck were allocated three
additional cards to reference (four cards in total): Stakeholder Analysis, System
Reliability, Privacy and Data, and System Security. The groups with Y deck
were provided with two new cards in addition to Stakeholder Analysis (three
in total): Non-Functional Requirements and Functional Requirements.

After the second week, each week featured user story revision, creation of new
user stories if applicable, and a check to see if user stories were implemented into
the product. At the end of the course, the groups were to review and return all
their user stories with concluding remarks about the implementation process.

4.2 Data Analysis

The data was analyzed with coding techniques according to Grounded Theory
Method (GTM) and the INVEST model. The use of GTM in IS studies varies
in application rigour (degree of adoption) and type of research contribution [20].

There is no “unique, generally accepted set” of GTM procedures to guide the
coding process [20], and the use of the method has evolved since its development.
Regardless of the type of application, a key concept in GTM includes coding as
a way to classify themes that arise in the data.

Before commencing analysis, the user stories were submitted by the student
teams, categorized by assignment/week, and finally summarized in a table. The
data were then analyzed in three phases. First, we looked at the data quantita-
tively in order to gain an overview and to look at any quantitative differences
between the data from the two groups of teams. This was done due to the high
volume of otherwise qualitative data.

In the second phase, we utilized a GTM approach to code the user stories one
at a time. This process was carried out iteratively, with the list of codes updated
during the process as new codes emerged. We chose this approach due to the fact
that this is a novel area of research: we were not able to identify any existing
studies on writing ethical user stories. Moreover, we chose a GTM approach
as it is well-suited for discovering phenomena inductively [20]. We wanted to
study the data by limiting possibilities for bias as much as possible. We also did
not know which aspects of user story creation the use of ECCOLA might affect
and how. Thus, we saw the need to examine the findings against a blank slate,
making GTM ideal. In analyzing the user stories, we applied the GTM coding
methodology of open coding, a coding where initial labels are attached to data
[20]. The codes were not pre-determined, as we wanted to first apply themes to
the data, and later categorize them in terms of their relevance to the research.
It is possible, however, that a researcher bias from previous AI ethics research
may have contributed to the themes that arose from the data.

How to Write Ethical User Stories? Impacts of the ECCOLA Method 45

In the third and final phase, we utilized the INVEST model. According to the
INVEST model, the quality of the user stories can be evaluated with six attribute
lists, in a method called INVEST [11,12]. The acronym, introduced by William
Wake (2003) stands3, for: I as an Independent, N as a Negotiable, V as Valuable
to Purchasers or Users, E as an Estimatable, S as Small and T as Testable. A
good user story can be composed through these elements, particularly when:
it is not dependent on other user stories; can be negotiated as it does not go
into detail; brings value to the customer; can somehow be estimated in terms of
resourcing and anticipated amounts of customer support; and is small in size in
order to be as accurate as possible for producing estimations. It should also be
testable to assure the accuracy of the requirements.

To operationalize INVEST, firstly two teachers from the course evaluated
the user stories through the framework. Each teacher analyzed equal number
teams producing the user stories. Both teachers evaluated as many control group
teams and ECCOLA teams each to reduce any potential bias. Then, one of
the researchers scored all the user stories using INVEST, independently of the
teachers’ evaluations. The evaluation was binary: either a user story fulfilled the
requirements of an INVEST attribute or not.

5 Findings

As discussed in the study design section, we collected 298 user stories from 15
student teams. These teams were split into two groups: group Y (the control
group, i.e. the teams that did not use ECCOLA) and group X (the teams that
used ECCOLA). Group Y had six teams in it, whereas group X had nine. Over-
all, group Y produced 119 users stories (average 19,8 per team) and group X
produced 179 user stories (average 19,9 per team).

In the GTM coding, each story was attributed three high-level themes: (1)
stakeholder, (2) requirement, and (3) technical orientation (T) vs human orien-
tation (H). Inside these themes were lower level codes attributed to each theme,
as seen in Fig. 1. Not all codes were present in every user story. For example,
every user story had some stakeholder(s) present but the stakeholder(s) varied
between user stories. Additionally, the human orientation vs. technical orienta-
tion codes were mutually exclusive, serving as a way of categorizing the user
stories into two groups.

Whether a particular user story was human-focused or technology-focused
was considered interesting from the point of view of ethics. This was of inter-
est from the ECCOLA viewpoint, as we wished to understand to what extent
ECCOLA might have influenced the user stories in relation to, e.g. considera-
tion for human aspects. While this was a binary split in our analysis, the stories
involved both human and technical aspects of the system, and were categorized
based on which aspect was more dominant.

3 https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/.

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

46 E. Halme et al.

The ECCOLA group produced more human-centric user stories (61%) than
technology-centric ones (38%). The control group, on the other hand, pro-
duced more technology-centric user stories (65%) than human-centric user stories
(31%). Based on these results, it seems that the use of ECCOLA could encourage
developers to be produce more human-centric user stories.

PEC1: (Primary Empirical Contribution): Using ECCOLA seems to result in
more human-centric user stories.

Fig. 1. Grounded theory coding from user stories

Regarding the codes under the other two themes, the codes under the require-
ment theme were largely similarly represented in the user stories of both groups.
For example, security codes were found in exactly 15% of the user stories of both
groups. Thus, ECCOLA did not seem to result in any significant differences in
the requirement codes.

The only notable differences could be seen in the usability and agency codes.
The usability code was present in 29% of the user stories of the ECCOLA group,
but only 9% of the user stories of the control group. The agency code was present
in 8% of the ECCOLA group’s user stories, but only in 2% of the control group’s.
It could be that the ECCOLA cards, in addition to resulting in more human-
centric user stories in general, also served to highlight the user in terms of e.g.,
ease of use. The agency %’s in both groups were ultimately so low that it is
too weak of an indicator of anything based on this data alone. Thus, using
ECCOLA did not seem to increase consideration related to the ECCOLA card
themes (System Security, Privacy & Data, and System Reliability) that were
present in the cards utilized by the ECCOLA groups.

PEC2: Using the ECCOLA cards did not affect how the teams wrote user stories
in terms of the themes present in the cards.

In addition to the GTM analysis, we utilized the INVEST framework to
analyze the user stories. The results of this analysis are summarized in Table 3.
Overall, the ECCOLA teams scored higher in quality according to the INVEST

How to Write Ethical User Stories? Impacts of the ECCOLA Method 47

framework. The ECCOLA group had an average INVEST score of 60,68% and
the control group had an average score of 53,17%. The ECCOLA teams scored
higher in every category of the INVEST framework aside from V(aluable). All
the highest individual team scores were also in the ECCOLA group.

PEC3: Teams using ECCOLA produced higher quality user stories when mea-
sured using the INVEST framework.

Additionally, one of the largest differences in the INVEST scoring categories
could be seen in the I(ndependent) category. Average INVEST scores for I –
Independent for ECCOLA teams was 69,92% and for Control teams 46,54%. The
user stories of the ECCOLA groups were notably more stand-alone than those of
the control groups, i.e. they overlapped less in concepts. This can be beneficial
as independent user stories can be produced and tackled before subsequent ones
are written (as opposed to e.g., functionality 1 ->functionality 2).

PEC4: Using ECCOLA results in more independent user stories that consider
the software from a wider perspective than just that of its functionalities.

Table 3. User store quality

Group I N V E S T Average

Control 46,54% 8,80% 78,12% 70,53% 52,00% 63,01% 53,17%

ECCOLA 69,92% 12,88% 72,74% 81,25% 62,34% 64,97% 60,68%

Difference –23,38 –4,08 5,38 –10,72 –10,34 –1,96 –7,52

INVEST analysis is conducted with binary coding. 1=User story fulfilled
the requirements of an INVEST attribute 0=User story didn’t fill the
requirements. Shown on the table is percentage of positive scores.

In addition to the general INVEST analysis of all the user stories produced
during the project, we looked at the second week’s user stories in detail. During
the second week, the teams were tasked with producing non-functional user sto-
ries. The scores for each group and how they differed from the average INVEST
scores of that group can be found in Table 4. Based on these scores, ECCOLA
seemed to improve the quality of the non-functional user stories. More impor-
tantly, the overall good INVEST scores of the non-functional user stories of the
ECCOLA group seem to support the idea that non-functional user stories can
be written with ECCOLA, and particularly user stories of high quality.

In summary, the teams utilizing ECCOLA, while writing more human-centric
user stories, considered ethical aspects in their user stories more than the con-
trol group. The control group largely focused on traditional SE aspects such as
features and other technical design properties (Table 4).

48 E. Halme et al.

Table 4. Non-functional user story quality

Group I N V E S T

Control group - Week 2 scores 92,61 % N/A 77,71 % 44,46 % 29,56 % 29,68 %

Control group - difference from avg 46,07 N/A 4,83 –26,07 –22,44 –33,33

ECCOLA group - Week 2 scores 82,24 % N/A 71,14 % 68,87 % 53,33 % 51,11 %

ECCOLA group - difference from avg 12,32 N/A –1,60 –12,38 –9,01 –13,86

INVEST analysis is conducted with binary coding. 1=User story fulfilled the requirements of an
INVEST attribute 0=User story didn’t fill the requirements. Shown on the table is percentage
of positive scores.

PEC5: Non-functional user stories can be written with the assistance of the
ECCOLA method.

These findings and observations indicate that the team members utilizing the
ECCOLA cards consider ethics in user story processing, while the control groups
concentrated more on traditional SE development activities such as features and
other technical design properties. Even though the chosen ECCOLA cards were
the most technically-oriented the end result was then a human-oriented approach
to user story production.

5.1 Validity Threats

In discussing ethical user stories, one limitation to consider is related to construct
validity. How to measure the level of ethical consideration? This is also a general
question related to studying the implementation of AI ethics. In this case, we
have utilized a framework based on existing literature (ECCOLA). While there
is currently no universally accepted consensus on what AI ethics is and what
principles it should comprise, ECCOLA is constructed from some of the most
prominent AI ethics principles (many of which e.g. [1] discuss).

Another potential limitation of the study is the empirical setting. To improve
the reliability of the results, we chose an A/B testing based study setting and
formed standardized procedures for data collection and analysis. We also utilized
student data in this study. In this regard, we turn to Höst et al., [21] who
argue that the differences between students and professionals are not statistically
significant. We also argue that the use of students is justified by the novelty of
the topic: we are not aware of any existing study that has looked into ethical
user stories.

6 Discussion and Conclusion

In this paper, we have studied ethical user stories through the lens of the
ECCOLA [10] method. In an experiment, we had developer teams (n=15) write
user stories related to a real-world project. These teams were split into an
ECCOLA group that utilized the tool to support them in writing user sto-
ries, and a control group that did not use ECCOLA to do so. We analyzed 298

How to Write Ethical User Stories? Impacts of the ECCOLA Method 49

user stories from these teams using two different analysis approaches. In Table 5
below, we summarize the Primary Empirical Contributions (PECs) of this study
that we highlighted in the preceding section. Here, we discuss the implications
of these findings before concluding the paper.

Table 5. List of primary empirical contributions

PEC Description

1 Using ECCOLA seems to result in more human-centric user stories

2 Using the ECCOLA cards did not affect how the teams wrote user
stories in terms of the themes present in the cards

3 Teams using ECCOLA produced higher quality user stories when
measured using the INVEST framework

4 Using ECCOLA results in more independent user stories that consider
the software from a wider perspective than just that of its
functionalities

5 Non-functional user stories can be written with the assistance of the
ECCOLA method

As the summarizing PECs in the above table show, the ECCOLA method
[10] seemed to improve user stories in various ways. However, PEC2 also high-
lights an interesting observation in that ECCOLA did not make the user stories
notably more focused on the themes of the ECCOLA cards in question. More-
over, the ECCOLA cards used in this study contained typical SE themes such as
system security and privacy & data. These themes should be familiar for anyone
concerned with SE and thus their lack of an effect in this study needs to be
considered when moving forward with developing the method. Even if overall,
ECCOLA produced positive results in this study, the contents of the cards may
need adjusting based on PEC2.

Aside from evaluating ECCOLA, this study provides an initial look into
writing ethical user stories. Bridging the gap between research and practice in
AI ethics has been a recurring challenge in the area, with companies strug-
gling to implement abstract ethical guidelines in practice [2,3]. User stories can
help us bridge this gap. Ethical issues should be considered as non-functional
requirements among other ‘-ilities,’ such as usability and quality, and user stories
can help companies formulate them into such. Although the ECCOLA method
resulted in more ethical user stories in this study, it is but one option for sup-
porting the creation of user stories that involve ethical consideration.

User stories traditionally place emphasis on Functional Requirements (FR)
over Non-Functional Requirements (NFR) [22]. Depicting NFRs as User Stories
has been suggested to include certain added challenges compared to FRs, such
as that NFRs are not backlog items themselves, but rather constraints on devel-
opment that are defined in the acceptance criteria for multiple backlog items4,
4 https://www.scaledagileframework.com/nonfunctional-requirements/.

https://www.scaledagileframework.com/nonfunctional-requirements/

50 E. Halme et al.

and being solution-wide, they may conflict with the user story requirement of
independence5. The use of user stories in defining NFRs is not a novel concept,
but the perceived difficulties taken into account, the creation of NFR user stories
in this paper can be deemed successful.

Indeed, this study serves as Proof-of-Concept for ethical user stories. Using
ECCOLA, developer teams were able to produce non-functional user stories that
received high scores in INVEST (a framework for evaluating user stories). To
facilitate the implementation of ethics in different context, such as AI ethics, for-
mulating ethical issues into user stories can go a long way in making ethical issues
tangible. Industry expert Mike Cohn posited that producing non-functional user
stories is challenging but possible6, and our results seem to support this idea in
the case of ethics as well, at least from the point of view of INVEST.

Future studies should look further into how ethics could be more easily trans-
formed into requirements in SE. While user stories provide one possible avenue
for doing so, other alternatives are also worth investigating. If the challenge in
implementing ethics in practice (AI ethics or otherwise) is that ethical princi-
ples are difficult to translate into code and action, we should look into tools that
developers are familiar with in order to make this process more accessible for
those working hands-on with these systems.

Acknowledgments. The authors would like to thank the students for their active par-
ticipation in the experiment. The authors also gratefully acknowledge being funded by
three Business Finland research projects: Sea4Value Fairway, APPIA, and AMALIA-
2020.

References

1. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat.
Mach. Intell. 1(9), 389–399 (2019)

2. Vakkuri, V., Kemell, K.K., Kultanen, J., Abrahamsson, P.: The current state of
industrial practice in artificial intelligence ethics. IEEE Softw. 37, 50–57 (2020)

3. Mittelstadt, B.: Principles alone cannot guarantee ethical AI. Nat. Mach. Intell. 1,
1–7 (2019)

4. Miller, K.W., Larson, D.K.: Agile software development: human values and culture.
IEEE Technol. Soc. Mag. 24(4), 36–42 (2005)

5. Judy, K.H.: Agile principles and ethical conduct. In: 2009 42nd Hawaii Interna-
tional Conference on System Sciences. IEEE (2009)

6. Friedman, B., Kahn, P.H., Borning, A.: Value sensitive design and information
systems. In: The Handbook of Information and Computer Ethics, pp. 69–101 (2008)

7. Nathan, L.P., Friedman, B., Klasnja, P., Kane, S.K., Miller, J.K.: Envisioning
systemic effects on persons and society throughout interactive system design. In:
Proceedings of the 7th ACM Conference on Designing Interactive Systems (2008)

5 https://www.linkedin.com/pulse/how-can-agile-teams-capture-non-functional-
phil-robinson/.

6 https://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-
user-stories.

https://www.linkedin.com/pulse/how-can-agile-teams-capture-non-functional-phil-robinson/
https://www.linkedin.com/pulse/how-can-agile-teams-capture-non-functional-phil-robinson/
https://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories
https://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories

How to Write Ethical User Stories? Impacts of the ECCOLA Method 51

8. Andrews, A.A., Pradhan, A.S.: Ethical issues in empirical software engineering:
the limits of policy. Empir. Softw. Eng. 6(2), 105–110 (2001). https://doi.org/10.
1023/A:1011442319273

9. McNamara, A., Smith, J., Murphy-Hill, E.: Does ACM’s code of ethics change
ethical decision making in software development? In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 729–733 (2018)

10. Vakkuri, V., Kemell, K.K., Abrahamsson, P.: ECCOLA: a method for implement-
ing ethically aligned AI systems. In: Proceedings of the 46th Euromicro Conference
on Software Engineering and Advanced Applications, (SEAA2020), pp. 195–204.
IEEE (2020)

11. Cohn, M.: User stories applied for agile software development. In: Cohn, M. (ed.)
13th ed. Pearson Education Inc., Indiana (2009)

12. Dimitrijevic, S., Jovanović, J., Devedžić, V.: A comparative study of software tools
for user story management. Inf. Softw. Technol. 57, 352–368 (2015). Mihailo Pupin
Institute, Volgina 15, Belgrade, Serbia; FON, School of Business Administration,
University of Belgrade, Jove Ilića 154. Belgrade, Serbia

13. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development
methods: review and analysis. Proc. Espoo 2002, 3–107 (2002)

14. Cohn, M.L., Sim, S.E., Lee, C.P.: What counts as software process? Negotiating the
boundary of software work through artifacts and conversation. Comput. Support.
Cooper. Work (CSCW) 18(56), 401 (2009). https://doi.org/10.1007/s10606-009-
9100-4

15. Suwa, M., Gero, J.S., Purcell, T.: The roles of sketches in early conceptual design
processes. In: Proceedings of Twentieth Annual Meeting of the Cognitive Science
Society, pp. 1043–1048. Lawrence Erlbaum Hillsdale, New Jersey (1998)

16. Rugg, G., McGeorge, P.: The sorting techniques: a tutorial paper on card sorts,
picture sorts and item sorts. Exp. Syst. 14, 80–93 (1997)

17. Bers, M.U.: Coding as a Playground: Programming and Computational Thinking
in the Early Childhood Classroom. Routledge, Abingdon (2020)

18. Papatheocharous, E., Nyfjord, J., Papageorgiou, E.: Fuzzy cognitive maps as deci-
sion support tools for investigating critical agile adoption factors. In: Fitzgerald,
B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS 2013.
LNBIP, vol. 167, pp. 180–193. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-44930-7 12

19. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

20. Wiesche, M., Jurisch, M.C., Yetton, P.W., Krcmar, H.: Grounded theory method-
ology in information systems research. MIS Q. 41(3), 685–701 (2017)

21. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects-a comparative study
of students and professionals in lead-time impact assessment. Empir. Softw. Eng.
5(3), 201–214 (2000). https://doi.org/10.1023/A:1026586415054

22. Behutiye, W., Karhapää, P., Costal, D., Oivo, M., Franch, X.: Non-functional
requirements documentation in agile software development: challenges and solu-
tion proposal. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 515–522.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 41

https://doi.org/10.1023/A:1011442319273
https://doi.org/10.1023/A:1011442319273
https://doi.org/10.1007/s10606-009-9100-4
https://doi.org/10.1007/s10606-009-9100-4
https://doi.org/10.1007/978-3-642-44930-7_12
https://doi.org/10.1007/978-3-642-44930-7_12
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1023/A:1026586415054
https://doi.org/10.1007/978-3-319-69926-4_41

52 E. Halme et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Process Assessment

Setting the Scope for a New Agile
Assessment Model: Results

of an Empirical Study

Doruk Tuncel1(B), Christian Körner1, and Reinhold Plösch2

1 Siemens AG, Munich, Germany
doruk.tuncel@siemens.com

2 Johannes Kepler University Linz, Linz, Austria

Abstract. Agile software development methods have been increas-
ingly adopted by many organizations at different organizational levels.
Whether named agile adoption, agile transition, agile transformation,
digital transformation or new ways of working, the success of embracing
this change process mostly remains uncertain. This is primarily because
there are many ways of evaluating success. Based on the existing agile
assessment models, we developed a model of principles with associated
practice clusters that serves as a core for a new agile assessment model
that is capable of assessing agile organizations at different scale. Towards
our ultimate goal to establish a lightweight, context-sensitive agile matu-
rity model, we validated our initial findings in an expert interview study
to identify improvement points, and ensure the at hand model’s applica-
bility, coherence and relevance. The results of the interview study show
that the structure as well as the content of our assessment model fits
with the experts’ expectations and experience.

Keywords: Agile · Maturity assessment · Process improvement

1 Introduction

Agile software development methodology has been a well investigated topic over
the past two decades. Its potential towards enabling more lean and customer
oriented value creation processes makes it valuable for almost any organiza-
tion. On the other hand, it is known that the success and potential impact
of agile software development methodology is dependent on how it is put in
practice. While it is clear that merely applying certain practices comes short
in reaping the value of agile methodology, enforcing it to inappropriate organi-
zational contexts or considering it as a silver bullet generates more harm than
they help. In order to enable contextually appropriate adoptions, one important
criterion is identifying the current state of an organization. Contextual appro-
priateness itself is a function of culture, complexity of problems at hand, form
of the value to be delivered and potentially many other aspects. Therefore, in

c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 55–70, 2021.
https://doi.org/10.1007/978-3-030-78098-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_4

56 D. Tuncel et al.

order to evaluate an organization’s current state with respect to the applica-
tion of agile software development methodology, manifold aspects are required
to be rigorously assessed. Yet, the questions including but not limited to how
to structure such an assessment model so that it provides enough flexibility to
be applicable to different organizational contexts, which aspects to consider in
the evaluation without compromising from practical applicability, how to ensure
objectivity of the results, how to identify improvement areas and guide organiza-
tions towards those improvement areas remain unanswered. Though there exist
multitude of models and various methodologies towards achieving this goal, the
existing models mostly lack both meticulous scientific and industrial validation,
practical applicability and contextual appropriateness.

Our aim with this research endeavour is to tackle this unsolved, complex
problem, without compromising from the aforementioned essential attributes.
Tuncel et al. [1] state that there could be two approaches for model develop-
ment. Based on our experience in evaluating the process maturity of develop-
ment organizations, we could develop an assessment model for the agile software
development methodology context. Or, we could assess existing agile maturity
assessment models, identify their valuable components and concepts, learn from
their mistakes and develop a model based on the existing scientific body of
knowledge. We have been pursuing the latter approach. In this paper, we mainly
explain the process of identifying five principles derived from the Agile Manifesto
[2] as one of those valuable components of the existing assessment models. These
are the condensed pillars of agile software development methodology, which are
ideally capable of reflecting the reality of an organization with respect to their
agility. Following up on this, we discuss the practice clusters we establish within
each of these principle pillars. These principles and clusters in the end, form the
structural boundaries of the proposed assessment model. In this process itself,
we aim to act agile and iterate over the model elements multiple times. In this
paper, we share the results of this first iteration, which is provided by means of
expert interviews. Other parts of the assessment model, e.g., the questions for
each cluster as well as the assessment and aggregation model are out of scope for
this paper. In order to investigate the importance, relevance and completeness of
the consolidated principles and clusters within this first iteration, we formulated
the following research questions:

– RQ1: Do the pillars of principles sufficiently cover the relevant aspects of
agility in practice?

– RQ2: Do the clusters of a principle sufficiently operationalize the principle?
– RQ3: Does the importance of clusters differ considering the organizational

levels?

This paper is organized as follows. In Sect. 2 we provide the necessary background
information in the theory behind assessment model construction, and summarize
front-line studies that provide an assessment model. In Sect. 3, first, we elaborate
on the research methodology. Second, establish the landscape for the structure of
the proposed agile assessment model. Third, we discuss the validation procedure
of the presented elements of the proposed agile assessment model. In Sect. 4,

Setting the Scope for a New Agile Assessment Model 57

we share the results of the interview and objectively refer to the outcomes of
the answers. In Sect. 5, we reflect on the results, share our key findings and
discuss the potential threats to validity and our approach towards overcoming
these limitations. Finally, in Sect. 6, we summarize our research and provide an
outlook to the potential next steps to be taken.

2 Related Work

As discussed in Sect. 1, developing an agile assessment model that does not lack
essential attributes is a challenging endeavour and there have been attempts
towards this direction. It is important to highlight that, whether an assessment
model or a maturity model, these models consist of multiple components: an
overall structure such as which subject areas are to be asked for in an assessment,
elements to look for within those subject areas, questions to find out about
the state of these elements, a method for calculating the leveling structure and
an aggregation mechanism. Since the scope of our research is establishing and
validating the initial component mentioned above, this section discusses first, the
existing studies that are relevant for establishing a structure for an assessment
model, then, the pioneer studies that offer such a model structure themselves.

2.1 Model Development Approaches

De Bruin et al. [3] propose a structured generic framework for developing a
maturity model. The framework consists of six distinct phases of model develop-
ment, namely: Scope, Design, Populate, Test, Deploy and Maintain. Then, they
discuss each of these phases in detail by means of exemplifying them over two
well-established models. It is reflected by the authors that, the scope setting
procedure of the model is followed by the actual design, both of which occur
prior to populating the model.

Becker et al. [4] establish an eight step procedure for developing maturity
models. This procedure provides not only the distinct phases but also the activ-
ity flow and the logic to be followed throughout the development process. The
authors provide eight requirements for maturity model development, which are
derived from the design science research guidelines provided by Hevner et al. [5].
The study highlights the importance of starting the model development proce-
dure by comparing the model to be developed against the existing models, as
well as following an iterative procedure for the entire development process.

Wangenheim, von et al. [6] highlight the relevance of the process of creating
software process capability/maturity models (SPCMMs) for the field of software
engineering. This relevance is motivated by means of discussing how harmful can
the misuse of SPCMMs be for the organizations. Authors provide five distinct
phases as Knowledge identification, Knowledge specification, Knowledge refine-
ment, Knowledge usage and Knowledge evolution. These phases encompass total
of sixteen steps including but not limited to defining the scope, developing a
draft, validating the draft. It is explicitly mentioned that sound theoretical basis

58 D. Tuncel et al.

and proper evaluations of the models with respect to validity, reliability and gen-
eralizability are lacking in most of the models. This study concludes by noting
the need for methodological support to enable model validations.

Maier et al. [7] mention the importance of maturity grids in terms of
their capacity to enabling organizational capability assessments. Upon reviewing
twenty four different grid structures, authors provide guiding reference points for
maturity grid development and define four phases, and thirteen decision points
corresponding to these phases. These four phases are Planning, Development,
Evaluation and Maintenance. Moreover, they provide the applicable decision
options for each of these decision points.

2.2 Assessment Models

Sidky et al. [8] propose one of the essential approaches for guiding organiza-
tions’ adoption process of agile practices. To achieve that, authors define an
agile adoption framework consisting of two components: The agile measurement
index and the four stage process that together provide assistance for adopting
agile practices. The provided measurement index is formed by agile levels, prin-
ciples, practices and indicators. Five principles of the measurement index are
the condensed formulations of twelve agile principles of the Agile Manifesto.
Practices are the elements falling in the intersecting cells of the Level-Principle
matrix. Five levels of on the other hand provide the different stages of adoption.
The four stage process utilizes this measurement index. The model is explicitly
highlighting the importance of tailorability of the five levels, by describing the
challenges behind reaching a consensus on the assignment of practices to the
levels. It is concluded that the framework received overall positive feedback, yet,
has significant room for improvement.

Qumer and Henderson-Sellers [9] define an agile software solution framework
that is built upon an agile conceptual aspect model, that is accompanied by an
agile toolkit and a four dimensional analytical tool. Authors define a method
core comprising five aspects, namely: Agility, People, Process, Product, Tools,
and an Abstraction aspect to reflect an agile software development methodol-
ogy. While the agile toolkit consists of seven main components, the provided
analytical tool focuses on the following four dimensions: Method scope, Agility
characterization, Agile value characterization and Software process characteriza-
tion. To complement these two components of the framework for process adop-
tion, authors establish the Agile Adoption and Improvement Model (AAIM).
AAIM is built on the following three agile blocks: Prompt, Crux and Apex and
six agile levels. This study emphasizes the relevance of having a model that
is applicable to different situation specific scenarios in the domain of software
engineering.

Fontana et al. [10] suggest a framework for maturing in agile software develop-
ment that has its roots in the complex adaptive systems theory. While explicitly
mentioning ambidexterity as a fundamental attribute towards maturity, the pro-
vided framework focuses on the outcomes rather than prescribing practices. The

Setting the Scope for a New Agile Assessment Model 59

core role of people in software development organizations is explicitly acknowl-
edged within the study. The contrast between exploitation and exploration is
represented as an important element for balancing the specific outcomes and
adopting new practices. Further, by means of a cross-case analysis, the authors
name six pursued outcomes: Practices, Team, Deliveries, Requirements, Product
and Customer. In conclusion, this study draws attention to the importance of
allowing context-specific practices in the maturing process without compromis-
ing from the agile values.

3 An Assessment Model Proposal

As the focal point of this research, this section elaborates on the methodology
behind the development procedure of the proposed agile assessment model, the
overall structure of the model along with the definitions of core model elements.
Finally, without going into the detailed results, it discusses the validation phase
of the model.

3.1 Methodology

In order to construct a scientifically founded agile assessment model that is capa-
ble of serving the needs of the industry, we have formulated a fine combination of
research methodologies that enables us to perform the necessary research activ-
ities in an effective manner. Towards this goal, we have initiated our research
with a Systematic Literature Review based on backwards and forward snow-
balling described by Wohlin [11], the systematic literature review study allowed
us identifying reusable components of the previously conducted researches, and
the already established assessment models. We have published the results of this
research in [1]. Following up on these research results, we conduct Design Sci-
ence Research in accordance with Hevner et al. [5]. As described by the authors,
developing the design artifact is the core activity of the design science research.
In the context of our research, building the overall structure of the proposed
agile assessment model maps to this core activity. This core activity is to be
followed by an Action Design Research per Sein et al. [12]. Proceeding with an
action design research implies conducting an intervention, however, it is out of
the scope of this research and is not discussed to great extent.

3.2 Model Structure

The proposed agile assessment model consists of two fundamental elements: prin-
ciples and clusters. Principles are, as the name suggests, a set of abstract notions
that are essential to the agile software development methodology. Clusters on
the other hand, are the semantic classifications of the practices of agile software
development methodology within the principles. The proposed model has five
principles and eighteen clusters within those principles. Its structure is estab-
lished by the following procedure: Initially, principles that are capable of cap-
turing and reflecting the agile reality of an organization are extracted from the

60 D. Tuncel et al.

twelve notable agile assessment models. These twelve models are the prominent
models among the 40+ models we have examined in our previous research [1].
While establishing these principles, we considered the critical views on the prin-
ciples of the Agile Manifesto in an alignment with Meyer [13] and the degree
of acceptance of these principles in the scientific literature. As a result, for the
initial structure of the proposed model, a condensed set of five principles that
are essentially derived from the Agile Manifesto are constructed as-is, based
on the well received proposal of Sidky et al. [8]. Following that, the practices
of agile software development methodology that are either implicitly or explic-
itly mentioned within these twelve models analyzed in our literature study are
systematically extracted. Because some of these twelve models (e.g., Turetken
et al. [14]) build up on one other (e.g., Sidky et al. [8]), or some (e.g., Patel and
Ramachandran [15]) reuse certain practices such as “User stories are written.”
from another (e.g., Nawrocki et al. [16]), the identified duplicates in collected
practices are discarded. Additionally, since the scope of the proposed model is
beyond any agile software development framework, in the cases where models
developed specifically towards a certain framework (e.g., Turetken et al. [14]),
the framework specific practices are as well left out. In the end, to form the
preliminary structure of the proposed agile assessment model in this paper, the
remaining practices were classified under five principles, and with respect to
their conceptual proximity to each other, were clustered underneath those five
practices. As discussed in Sect. 2, establishing this overarching model structure
encompass the initial steps of the model development. The resulting structure
can be depicted in Fig. 1.

Fig. 1. Initial structure of the proposed model

Setting the Scope for a New Agile Assessment Model 61

3.3 Validation

As it is mentioned in Sect. 1, in order to obtain critical feedback on the pro-
posed model structure, we conducted an interview study. The interview study
involved six domain experts in agile software methodologies. The profiles of the
interviewed experts are diversified from senior software developers, architects to
senior agile coaches, senior process consultants to senior technical team leads,
working in different development organizations, least of them having 7+ years of
experience in the domain. The validation interviews focused on receiving feed-
back with respect to the completeness of the five agile principles, and the con-
solidated set of eighteen clusters positioned under these five principles. During
the interviews, for each cluster, experts were systematically asked to evaluate 1)
how well does the cluster fit to the principle it is positioned within, 2) whether
the cluster is found to be fit into different principles as well, 3) whether the
importance of a cluster vary with respect to different organizational scales, and
4) whether a clusters requires either a split or a merge with another cluster to
establish a proper level of granularity. Following on top of these cluster specific
questions, experts were additionally asked to comment on the completeness of
these five principles with respect to their capacity to reflect the agile reality of an
organization, as well as of these eighteen clusters with respect to their capacity
to completely reflect the principle they are positioned under. In order to estab-
lish the context of a principle and a cluster, descriptions of each cluster (e.g.,
Value Delivery: The organization uses proper methods, techniques and tools for
planning the delivery of value by means of realized user stories, epics or features.)
are provided along with certain exemplary aspects (e.g., Release Planning, Col-
laborative Planning, Backlog Management, User Stories) to be associated with
that cluster. While the results of this validation procedure and the key obser-
vations are reflected in Sects. 4 and 5 respectively, the complete list of cluster
descriptions and exemplary aspects can be found at https://bit.ly/3eKj4im.

4 Results

The proposed model structure consists of five principles and eighteen clusters.
In this section, first, we present the achieved results, grouped by each of the five
principles. For each principle, the expert responses regarding the clusters within
that principle are reflected. Particularly, the responses regarding the importance
of a cluster with respect to the organizational scale are visualized by Figs. 2, 3,
4, 5 and 6. Second, we share the results regarding the overall structure of the
proposed model under Sect. 4.6. Due to space limitations, results with relatively
low information are provided at https://bit.ly/3eKj4im.

In the following figures, S refers to small organizational units such as agile
teams, M refers to the medium level organizational units, which can be inter-
preted as project or product organizations consisting of multiple teams, and L
refers to large organizational units. Depending on an organizational context, it is
possible to perceive this level as the top level management of development orga-
nizations, where orchestration of multiple medium level organizational units are

https://bit.ly/3eKj4im
https://bit.ly/3eKj4im

62 D. Tuncel et al.

required. In agile frameworks addressing scale (e.g., SAFe, LeSS, Nexus) scal-
ing starts from single teams, reach multiple teams or the entire organization. In
order to abstract from specific agile frameworks and in order to avoid confusion
regarding the terms, we use these more abstract terms small, medium and large.
The coding mechanism of results in the following figures are as follows: Very
Important: 5, Important: 4, Neither/Nor: 3, Unimportant: 2, Very Unimportant:
1 and I don’t know: -, while E1 to E6 refer to the interviewed experts.

4.1 Embrace Change to Deliver Customer Value Principle

The results indicate that “Lean Mindset” cluster is an overarching cluster. This
implies that it should be reflected under multiple principles. In fact, all of the
interviewees explicitly stated that “Lean Mindset” should be reflected under at
least two other principles. Additionally, interviewees highlight that the difference
between the mindset and actual practice may not always be clear, in a way
that one can have a lean or lean-agile mindset, yet fail to practice this mindset
in real life scenarios. When it comes to “Change Orientation” one important
point is, except one of the interviewees, there is an agreement that “Change
Orientation” as well should be reflected under multiple principles. On the other
hand, “Iterative and Incremental Value Delivery” is expected to be found also
under “Planning and Delivering Software Frequently”. This is highlighted by
two of the interviewees by the response “Does not fit well”, one of which also
noted that the importance of this cluster is less when larger organizational scales
are considered. Although there is no agreement with respect to its fitness to the
principle it is positioned under, “Flexibility in Value Delivery” is found to be fit
also under “Technical Excellence” by half of the interviewees.

Fig. 2. Embrace change to deliver customer value

4.2 Plan and Deliver Software Frequently Principle

Based on the interview study outcomes, there are two particular observations
regarding this principle. First, except one of the interviewees, both the clus-
ter “Value Delivery Planning” and “Value Delivery Actualization” are found
to be “Fit Very Well” in this principle. Second, all of the interviewees found

Setting the Scope for a New Agile Assessment Model 63

“Value Delivery Actualization” to be the most important for “Small” scale orga-
nizational units. While there is no general agreement about under which other
principles to reflect these two clusters, an important result can be that “Value
Delivery Actualization” is mostly perceived as in relation with “Technical Excel-
lence”, while “Value Delivery Planning” is associated with “Embrace Change to
Delivery Customer Value”.

Fig. 3. Plan and deliver software frequently

4.3 Human Centricity Principle

One particular shared comment was that it is not easy to make a clear distinc-
tion between the clusters “Unit Empowerment” and “Unit Autonomy”. Con-
sequently, the idea to merge two clusters was prominently mentioned. Further,
human related aspects were referred to as so essential yet overlooked aspects by
multiple experts. As it can be observed from Fig. 4, all clusters are found to be
at least “Important”, especially on the scale of small organizational units.

Fig. 4. Human centricity

4.4 Technical Excellence Principle

Regarding the four clusters under this principle, primary remark is that “Contin-
uous Improvement” cluster is perceived as “Very Important” by almost all of the
experts, irrespective of the organizational scale. Another important observation
is that this cluster is expected to additionally be positioned under “Embrace
Change to Deliver Customer Value”, by all but one of the experts.

64 D. Tuncel et al.

Fig. 5. Technical excellence

4.5 Customer Collaboration Principle

While both of the clusters under this principle are found to be “Fit Very Well”
except one case for “Customer Involvement” where it is evaluated as “Fits Well”;
half of the interviewee responses indicate an association with “Embrace Change
to Deliver Customer Value” for both of these clusters. When it comes to the
importance of a cluster with respect to the organizational scale, a pattern can
be observed in Fig. 6. Specifically when the interviewees posed an answer, all of
them agree that “Customer Decision Making” cluster is “Very Important” for
middle level and larger organizational units, whereas its importance decrease as
the organizational scale gets smaller.

Fig. 6. Customer collaboration

4.6 Overall Structure

Figure 7 shows that the different backgrounds of the interviewees provide certain
patterns in the results. Particularly, the importance of a cluster with respect to
different organizational scales can be captured by the color transitions among
the cells. The experts with consulting or coaching roles for example, seem to put
more importance on the small organizational units, than the experts with soft-
ware implementation focus. Based on the collected responses, the initial model
structure is to be updated with “Change Orientation” and “Continuous Improve-
ment” becoming overarching concepts. Further, “Unit Empowerment” and “Unit
Autonomy” clusters are to be merged.

Setting the Scope for a New Agile Assessment Model 65

5 Discussion

Based on the results of our interview study, this section discusses the impor-
tant findings under two groups: general findings and cluster specific findings.
Then, it provides answers to the research questions. Finally, in Fig. 8, we share
the updated structure of the proposed model after an iteration over the dis-
cussed findings. General findings touch to the important remarks with respect
to the overall structure of the proposed model, whereas cluster specific findings
reflect some of the important patterns observed regarding the clusters. Figure 7
is formed by merging the aforementioned tables in their order of presentation.
This consolidated view is provided to allow the reader to observe certain vertical
patterns that can be associated with expert profiles. The complete table reflect-
ing the fitness of each cluster with respect to the principles they are positioned
under, as well as whether they also fit under multiple principles can be found at
the URL provided in the Sect. 4.

Fig. 7. Importance of clusters with respect to the organizational scales

66 D. Tuncel et al.

5.1 General Findings

Both Principle and Cluster Completeness are Highlighted. Although some addi-
tional remarks and suggestions were provided by the interviewees, all of the
experts appreciated the completeness of the model elements.

Descriptive Texts and Exemplary Aspects Help Defining the Boundaries. Experts
provided positive feedback on being given clear cluster descriptions, example
practices, artifacts and aspects associated with clusters so that they can easily
establish the context of a cluster.

There Is No “One, All Agreed Positioning” of the Clusters. The concepts and
practices of the agile software development methodology are perceived very dif-
ferently based on the background and experience of the individuals.

In Fig. 7, we observe that most of the average cluster values are greater than
or equal to 4.00. This is expected as the underlying elements of the model are
extracted from the scientific literature. Where the average values fall under 4.00,
it can be observed that it is caused by the distance of the larger organizational
units to the implementation level concerns of software development. Even though
there is no agreement on a single model structure, the experts provided great
insights towards improving the proposed model to capture the reality of an
organization. These findings show that the initially proposed model structure
was too simplistic for reflecting the reality.

5.2 Cluster Specific Findings

Technical Excellence Clusters Act as a Prerequisite for Frequent Delivery. Tech-
nical excellence is mostly interpreted as the first step towards making frequent
delivery possible, as frequent delivery implies a certain level of automation, and
involves making architectural decisions.

Technical Excellence Clusters are Perceived as Relatively Less Important for
Higher Level Organizational Units. As technical excellence clusters are reflect-
ing more the implementation level concerns, their importance is perceived to
decrease as the scale of the organization increase. The lower importance score of
the technical clusters on higher levels were therefore not surprising for us.

Customer Collaboration Clusters Contribute to Planning. Especially for large
organizational units, customer collaboration is commented to be very important,
and is perceived as an enabler of the delivery planning activities.

Human Centricity Clusters are Well Perceived. In almost all of the interviews,
human centricity clusters received positive feedback. It is often commented that,
people play a central role almost in any process, and if the aim of a model is to
capture the reality with respect to agile, people should never be overlooked.

RQ1: Do the Pillars of Principles Sufficiently Cover the Relevant
Aspects of Agility in Practice? The principles are evaluated to be complete
in terms of reflecting the world of agile. Only one of the experts stated that
communicating the purpose of agile transformation and the role of management
should be reflected in this structure more explicitly.

Setting the Scope for a New Agile Assessment Model 67

RQ2: Do the Clusters of a Principle Sufficiently Operationalize the
Principle? The clusters are evaluated to be sufficient and complete in terms
of spanning the principles they are positioned under. Only one of the experts
mentioned that the budgeting aspects may be necessary to position under a
principle appropriately.

RQ3: Does the Importance of Clusters Differ Considering the Orga-
nizational Levels? From Fig. 7, we observe that the importance of clusters
differ with respect to the organizational scale. This is an important finding as
it can help conducting contextually appropriate assessments, where the scale of
the organization is considered as a component of the organizational context.

Fig. 8. Updated structure of the proposed model

5.3 Threats to Validity

In this section, we discuss the validity threats and our attempts to ensure a high
quality of research by keeping these threats minimal. We are aware of the four
validity threats namely Construct Validity, External Validity, Internal Validity
and Reliability as defined, and tailored to the software engineering domain by
Yin [17] and Runeson et al. [18] respectively. However, as our methodology is
not a case study research, not all four of these validity threats are covered in this
section. Rather, we concentrate on the following two aspects as they are found
to be more relevant for our methodology:

68 D. Tuncel et al.

Construct Validity reflects how properly the examined concept represents
the ideas of the researchers. Therefore, should there be any misunderstandings
between the researchers and the interviewed parties with respect to the defi-
nitions or concepts that are being discussed, they should be addressed. In our
interview study, in order to proactively avoid potential misunderstandings, we
provided descriptive texts for each cluster, as well as exemplary practices falling
under that particular cluster. This approach allowed us to establish the bound-
aries and the context of the inspected cluster. As our interview partners pos-
itively commented on the cluster descriptions and exemplary aspects, we can
assume that we were able to properly tackle this threat to validity.

External Validity refers to the generalizability of the derived results from
a research activity. In our research, validation of the consolidated agile princi-
ples and agile practices is performed by means of expert interviews. This pro-
cedure makes the validation susceptible to converge towards and be specific to
the potentially strong personal opinions of experts. In order to overcome this
threat, first, we derived the principles and practices from scientific literature.
This scientifically grounded approach allowed us to have a safety net, in terms
of the further validation of the elements within the model. Moreover, as a sec-
ond attempt to ensure the external validity of clusters and the structure of the
model, we have selected experts from different business organizations. Each of
these experts has more than 7 years of experience in the domain of agile soft-
ware development methodologies, and provide their expertise in the spectrum
of domains from consulting to software architecture. To conclude, although it
is generally accepted that statistical generalizability should not be expected in
empirical studies, we have put strong emphasis on ensuring the external validity
of our findings.

6 Conclusion and Future Work

This section summarizes our research and provides an outlook to the further
research that is necessary in order to further improve the proposed agile assess-
ment model following up on the validation procedure. Given the points discussed
under Sect. 4 and Sect. 5, there is an overall positive feedback to the proposed
elements of the assessment model, and this provides a promising outlook for
the future of our research. Our research motivates the need towards building an
agile assessment model based on an in depth, comparative analysis of the existing
models. While learning from the relatively weaker aspects of the existing models,
we established our model structure based on principles of the Agile Manifesto.
The clusters of practices are also reflecting approximately twenty years of sci-
entific analysis of agile software development activities starting from Nawrocki
et al. [16], to Laanti [19].

Our endeavour towards iterative and incremental development of this model
requires us to frequently consult experts and receive continuous feedback on
the evolving elements of the proposed model. As discussed in Sect. 2 to a great
extent, establishing the boundaries and the overall structure of the assessment

Setting the Scope for a New Agile Assessment Model 69

model is an important step of assessment model development which needs to
be followed by populating the assessment matrix with practices. In our context,
this maps to identifying which practices should go under which clusters, which
practices should be discontinued or marked as irrelevant for contemporary devel-
opment activities of the organizations. In the following steps, it will be necessary
to further refine the practice clusters and establish boundaries across the prin-
ciples for the clusters that are relevant for multiple principles. Once the overall
structure such as which subject areas are to be asked for in an assessment, and
which elements are to be looked for within those subject areas sufficiently iden-
tified, a method for calculating the leveling structure, as well as the appropriate
questions to find out about the state of these elements to be looked for need to
be clarified. As the next step, we will develop questions for all clusters and vali-
date them with detailed interviews with a focus on completeness and suitability
for agile assessments. Upon completing these remaining phases, we will develop
an aggregation mechanism so that meaningful outcomes can be retrieved when
an assessment is conducted.

These activities are planned as part of an action design research described
by Sein et al. [12]. By means of an action design research, we will be able to not
only employ the proposed assessment model in real business environment, but
also receive feedback regarding the methodology behind the assessment.

References

1. Tuncel, D., Körner, C., Plösch, R.: Comparison of agile maturity models: reflecting
the real needs. In: 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 51–58. IEEE (2020)

2. Beck, K., et al.: Manifesto for agile software development (2001)
3. De Bruin, T., Rosemann, M., Freeze, R., Kaulkarni, U.: Understanding the main

phases of developing a maturity assessment model. In: Australasian Conference on
Information Systems (ACIS), pp. 8–19. Australasian Chapter of the Association
for Information Systems (2005)

4. Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for it man-
agement. Bus. Inf. Syst. Eng. 1(3), 213–222 (2009)

5. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quart. 28, 75–105 (2004)

6. von Wangenheim, C.G., Hauck, J.C.R., Zoucas, A., Salviano, C.F., McCaffery,
F., Shull, F.: Creating software process capability/maturity models. IEEE Softw.
27(4), 92–94 (2010)

7. Maier, A.M., Moultrie, J., Clarkson, P.J.: Assessing organizational capabilities:
reviewing and guiding the development of maturity grids. IEEE Trans. Eng. Man-
age. 59(1), 138–159 (2011)

8. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile practices:
the agile adoption framework. Innovations Syst. Softw. Eng. 3(3), 203–216 (2007)

9. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption
and improvement of agile methods in practice. J. Syst. Softw. 81(11), 1899–1919
(2008)

70 D. Tuncel et al.

10. Fontana, R.M., Meyer, V., Jr., Reinehr, S., Malucelli, A.: Progressive outcomes: a
framework for maturing in agile software development. J. Syst. Softw. 102, 88–108
(2015)

11. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, pp. 1–10 (2014)

12. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design
research. MIS Quart. 28, 37–56 (2011)

13. Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, Heidelberg (2014)
14. Turetken, O., Stojanov, I., Trienekens, J.J.: Assessing the adoption level of scaled

agile development: a maturity model for scaled agile framework. J. Softw. Evol.
Process 29(6), e1796 (2017)

15. Patel, C., Ramachandran, M.: Agile maturity model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw.
Eng. IJSE 2(1), 3–28 (2009)

16. Nawrocki, J., Walter, B., Wojciechowski, A.: Toward maturity model for extreme
programming. In: Proceedings 27th EUROMICRO Conference. 2001: A Net
Odyssey, pp. 233–239. IEEE (2001)

17. Yin, R.K.: Case study research and applications. Sage (2018)
18. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case study research in software

engineering: Guidelines and examples. Wiley (2012)
19. Laanti, M.: Agile transformation model for large software development organiza-

tions. In: Proceedings of the XP2017 Scientific Workshops, pp. 1–5 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Towards a Standardized Questionnaire
for Measuring Agility at Team Level

Hanna Looks1(B), Jannik Fangmann2, Jörg Thomaschewski2, María-José Escalona1,
and Eva-Maria Schön3

1 University of Seville, Seville, Spain
hanna.looks@iwt2.org, mjescalona@us.es

2 University of Applied Sciences Emden/Leer, Emden, Germany
j.fangmann@ux-researchgroup.com,

joerg.thomaschewski@hs-emden-leer.de
3 University of Applied Sciences (HAW), Hamburg, Germany

eva-maria.schoen@haw-hamburg.de

Abstract. Context: Twenty years after the publication of the agile manifesto,
agility is becoming more and more popular in different contexts. Agile values are
changing the way people work together and influence people’s mindset as well as
the culture of organizations. Many organizations have understood that continuous
improvement is based on measurement.

Objective: The objective of this paper is to present howagility can bemeasured
at the team level. For this reason,wewill introduce our questionnaire formeasuring
agility, which is based on the agile values of the manifesto.

Method: We developed a questionnaire comprising 36 items that measure
the current state of a team’s agility in six dimensions (communicative, change-
affine, iterative, self-organized, product-driven and improvement-oriented). This
questionnaire has been evaluated with respect to several expert reviews and in a
case study.

Results: The questionnaire provides a method for measuring the current state
of agility, which takes the individual context of the team into account. Fur-
thermore, our research shows, that this technique enables the user to uncover
dysfunctionalities in a team.

Conclusion: Practitioners and organizations can use our questionnaire to opti-
mize collaboration within their teams in terms of agility. In particular, the value
delivery of an organization can be increased by optimizing collaboration at the
team level. The development of this questionnaire is a continuous learning process
with the aim to develop a standardized questionnaire for measuring agility.

Keywords: Agile · Questionnaire ·Measurement of agility · Agile values ·
Team level

1 Introduction

In more and more industries, agile values [1] are changing the way people work together
and influence people’s mindsets. This can be seen in the increasing spread of agile pro-
cess models [2]. The establishment of the term Agile in software development began

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 71–85, 2021.
https://doi.org/10.1007/978-3-030-78098-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_5

72 H. Looks et al.

with the Agile Manifesto in 2001 [3]. As a reaction to the influence of the increasing
trend of digitalization in software development, the Agile Manifesto defines the values
and principles for a new approach to the development of digital products, which dif-
fers from traditional software development [3]. Agile transformation is understood as
a development away from traditional process models towards agile process models in
the development of digital products [4]. In the 1980s, Takeuchi and Nonaka [5] had
already stated that a sequential phases approach to product development is not well
suited because of the lack of flexibility. Digitalization leads to an increasing dynamic of
user requirements, which in turn leads to ever shorter development cycles and shorter
product launch times. These developments impact the way in which users are involved
in the development process [4, 6]. In response to these changes, the solution approach
postulated in the Agile Manifesto requires a shift in the focus of software development
from process and project to people and product [1].

Agility is a mindset that must be transferred to the specific context of its user, and so,
strongly depends on the individual situation. The emergence of an agile way of working
takes place here in the context of agile transformation through the adaptation of agile
values [1]. An important part of the Agile mindset is continuous improvement based on
feedback. For this purpose, measurement is pursued in many subject areas. Research has
already dealt with the measurement of agility in recent years. Many of the approaches
are concerned with measuring the process using artefacts and workflows [7]. However,
the Agile values are not taken into account by these approaches. Agile is more than a
process; hence it is important to start with people working together to measure agility.

In this paper we present our questionnaire for measuring agility. Our research is
guided by the following research question:

‘How can agility be measured at the team level?’

Our understanding of agility is influenced by the agile values [1]. We decided to
focus on the team level because the team is responsible for value delivery in agile
product development [8].

Our questionnaire was developed by means of scientific methods. Therefore, the
current state of research in the field of measuring agility must be sufficiently considered.
For this reason, a literature review was conducted. This literature review serves as the
starting point of the construction process for the questionnaire, which must consistently
follow the rules of science in order to be able to make generalizable statements about
the reality of experience.

The paper is structured as follows: Sect. 2 provides an overview of related work.
Section 3 presents the research method used to develop the questionnaire to measure

agility. Section 4 presents the results including the complete questionnaire. Section 5
discusses the significance of the results and limitations. At the end, Sect. 6 concludes
with a summary of this paper and our future research projects.

2 Related Work

Weused a literature review to identifymodels formeasuring agility.We looked atmodels
that measure agility across the levels of organization, team, and individual to obtain a

Towards a Standardized Questionnaire 73

comprehensive picture of related work. Furthermore, we analyzed related work in terms
of their methodology for measuring agility. The results are presented in the following.

On the one hand, we identified and evaluated seven maturity models [7, 9–14]. to
measure agility in the development of digital products. On the other hand, we evaluated
two questionnaires [15, 16].

The authors of the models justify their creation primarily with the realization that no
suitable model for agile maturity levels had yet been established at the time of creation
[7, 11, 14]. In this respect, it is evident that the identified models are in an early phase of
development and have not been consistently and actively developed since their creation
[17]. So far, none of the maturity models examined has been sufficiently evaluated and
empirically proven.

We can conclude that further conceptual and empirical research is required to enable
valid application of the models [16, 17]. In general, these publications make it clear
that there is a need for structured approaches to support agile transformation. This view
is confirmed in other sources [3, 16]. The need for agile transformation support along
with the lack of validation of existing models confirms the need for research. The Agile
Manifesto was used as a basis for developing the identified maturity models [7, 9, 10].
In general, the determination of the agile maturity level in the identified models is
largely independent of the process model; it is based on the basic concept of agility [17].
Although they originated independently, many of the maturity models examined have a
comparable structure. However, it can be seen that the maturity models emerged against
fundamentally different theoretical backgrounds and intentions [17]. Accordingly, the
requirements that must be achieved with increasing maturity levels are strongly related
to the individual context in which the models were defined. Therefore, no uniform, hier-
archical model of the requirements for agility across thematuritymodels could be gained
from the analysis of thematuritymodels [14]. In addition to the context-dependent appli-
cability, the different theoretical backgrounds in the creation of the models examined
also mean that the results are not comparable across models when applied [17]. Even
though all maturity models depict agility and most have a similar number of maturity
levels, it cannot be said that users of different models with the same maturity level are
equally advanced in the agile transformation.

The questionnaires (see [15, 16]) studied offer an approach to determining progress
in agile transformation that is independent of maturity levels. The scales defined by the
questionnaires correspond to the construct of process fields in the maturity models. They
delineate different sub-areas of the domain of agility from each other [18]. A hierarchical
prioritization of the queried agility requirements is, therefore, not necessary.

The analysis of the identified models has shown that the models each show different
ways to achieve agile maturity, while the questionnaires aim to determine agile maturity.

3 Research Method

This paper presents our questionnaire formeasuring agility at the team level.Our aim is to
develop a standardized questionnaire to measure agility. The results of the measurement
should enable suitablemeasures to be derived and prioritized and the agile transformation
to be driven forward in a targeted manner, taking into consideration the agile values.

74 H. Looks et al.

This section first explains the development of the questionnaire. The development of
the questionnaire was carried out by considering the research question ‘How can agility
be measured at the team level?’. We, therefore, define the requirements below:

• Determining of a representative overall impression of the current state of agility at the
team level

• Focusing on agile values independent of the application of methods
• Supporting the agile transformation process
• Covering all dimensions of the concept of agile transformation
• Talking up the least possible time and effort for testing (maximum 10 min)
• Considering the user-specific context of the participant

The aforementioned requirements were derived from the issues we identified in the
related work (see Sect. 2). In order to be able to advance the agile transformation in a
targeted manner with appropriate measures, a comprehensive overall impression of the
current state of agility is required. By focusing on the agile values, the application of
the questionnaire is not limited by the use of a specific agile approach. Furthermore,
the need for a short testing time is justified by the conception, that the measurement of
agility needs to be done in an agile way. We think that a complex and time-consuming
method for measuring agility is in conflict with the concept of agility itself. To take
into account, that every agile transformation differs based on the specific context, in
which the transformation takes part, this specific context needs to be assessed in the
questionnaire.

The development of the questionnaire is a continuous learning process. In the begin-
ning, we started with a literature review (see Sect. 2) and an expert survey in order to
identify a list of potential items for our questionnaire (see Sect. 3.1). Then, after the
first version of the questionnaire was created, we conducted a pretest (see Sect. 3.2).
Afterwards, we adapted the questionnaire to the context of public administration and
evaluated it (see Sect. 3.3). We also conducted another expert survey to review the com-
prehensibility of the items and the assignment to the six defined dimensions of agility
(see Sect. 3.4).

3.1 Initial Construction of the Questionnaire

The maturity models and questionnaires for implementing and measuring agile trans-
formation identified in the literature review (see Sect. 2) form the starting point for the
construction of the questionnaire. Each of these models defines elementary questions
for assessing the current state of agile transformation, which are referred to as indica-
tors in the following. The 539 indicators identified were completely reworded in the
construction of the questionnaire so that they could be considered as potential items.
After sorting out duplicate and irrelevant indicators, the remaining 386 indicators were
assigned to agile values. Afterwards, the indicators defining a common behavior were
grouped. These groups were then combined and reformulated into a potential item that
reflects the underlying behavior of the assigned indicators. This process resulted in 83
possible candidate items of the questionnaire (see Fig. 1).

Towards a Standardized Questionnaire 75

Fig. 1. Process of construction of the questionnaire

Through an empirical selection based on an expert survey with five experts the 28
most relevant items were selected as assessment questions for the questionnaire. The
aim of these assessment questions is to evaluate the current state of agility.

These 28 items were then assigned to the defined six dimensions of agility (see
Sect. 4.1). The illustration of this mapping is shown in Sect. 4.3.

The assessment of agility through the assessment questions is initially independent
of the specific context of the questionnaire user. In order to take the user-specific context
into account, weighting questions were added to the assessment questions. Furthermore,
demographic questions to capture the demographic situation of the user were included
in the questionnaire. Based on the implementation of a case study, the demographic
questions were reduced from five to two questions (see Sect. 4.2). The result of the
construction process is a questionnaire comprising 36 items.

3.2 Pretest

Subsequent to the construction of the questionnaire, a pretest was conducted. The pretest
represents a prototypical testing of the questionnaire before the actual data collection is
carried out; it is an indispensable prerequisite for preparing the main survey [19].

This pretest serves to determine the quality of the items and dimensions as a result
of the construction process of the questionnaire. For this pretest, the authors constructed
an online version of the questionnaire in the German language. The online questionnaire
contains all three groups of questions demographic questions, assessment questions, and
weighting questions, and was extended with an introduction that clarifies the context of
use for the participants, it contains all three groups of questions. Sixty participants from
different companies took part in the pretest. The companies belong to different industries

76 H. Looks et al.

(e.g. insurance, consulting, software development, e-commerce). The data from these
participants was used to analyze the quality of the questionnaire.

The statistical evaluations of the results of this pretest confirmed that we were on the
correct path in our development and, so, could continue with further studies.

3.3 Evaluation in the Public Administration Sector

The development of the questionnaire aims to ensure that the questionnaire can be used
in any user-specific context in the future. In order to evaluate the questionnaire in a
broader context, it has already been adapted for use in public administrations.

The digital transformation impacts the way products are developed, leadings to an
increased focus on project work in public administrations. In the context of public admin-
istration, user-centricity is a central aspect in the development of digital products because
of the diversity of the target group. The agile paradigm supports a high degree of user-
centricity through its focus on people and the product. The employees of the public
administration increasingly show a readiness for agile practices and implicitly for topics
of user involvement.

For the use of the questionnaire in public administrations in Germany, an expert
survey was conducted with 26 experts in three iterations, with the aim of adapting the
wording of the items to the user-specific context. Based on the expert survey conducted,
it was shown that the questionnaire can be adapted to the user specific context. Further-
more, the dimension team-centered was also renamed self-organized. This renaming
will now be adopted for the dimension in the following. The adaptations showed that the
development of the questionnaire is a continuous learning process; further adaptations
are necessary.

After adapting the questionnaire to the context of public administration, wewere able
to apply the questionnaire in a first case study to three teams of a public administration
in Germany and successfully determine the current state of agility within these teams.

The results of the survey show a representative overview of the current state of agility
at the team level. The case study also showed that due to team sizes between five and eight
team members, the anonymity of the survey based on individual demographic questions
could no longer be guaranteed. Therefore, the items of the demographic questions were
reduced (see Sect. 4.2).

3.4 Expert Survey

During a further expert survey in two iterations, the items of the assessment questions of
the questionnaire were reviewed again and linguistically adapted. In the first iteration,
five experts were asked about the comprehensibility of the items. Theywere furthermore,
given the task to assign the items to one or more of the six dimensions of agility, as we
defined them (see Sect. 4.1). In this first iteration, four of the 28 items of the assessment
questions were rated as not clearly understandable. Furthermore, the items were not
clearly assigned to the dimensions. These resultswere carried over into a second iteration.
Within the second iteration, the four items that were not clearly understandable could be
adjusted in their wording in conversation with six agile experts. The experts judged the

Towards a Standardized Questionnaire 77

divergent assignment of the items to the dimensions to be dependent on the linguistic
understanding of the items, the ambivalence of the items and the experience horizon of
the experts from the first iteration. This divergent assignment shows the relevance of the
need for further research.

4 Results

The following section presents our questionnaire to measure agility at team level. Owing
to the adaptations already carried out, the questionnaire presented in this paper is a
Version 2.0. Three groups of questionswere defined: demographic questions, assessment
questions, and weighting questions. The 36 defined items (see Sect. 3.1) were assigned
to these three question groups.

4.1 Defining Six Dimensions of Agility

In order to develop a suitable questionnaire that takes agile values into account, we
defined six dimensions of agility. For the definition of the dimensions, the agile values
were compared with the traditional values. Based on the agile expression of the defined
value pairs, the six dimensions communicative, change-affine, iterative, self-organized,
product-driven, and improvement-oriented have been defined for the questionnaire. The
construction was based on a mixed strategy with aspects of intuitive, rational, criteria-
oriented, and factor-analytical construction. These dimensions may change in the future
as we identify the need for them, based on future study results.

The meaning of the six dimensions for the agile approach - as distinguished from
the plan-based approach in respect of the development of the questionnaire - is defined
as follows:

Communicative
For the sequential processing of the plan, the plan-based approach defines a formal
process that must be strictly followed in the implementation of the plan. In the agile
transformation, this focus shifts. Here, the focus is on direct communication, both within
the development team and with the customer.

Change-Affine
In the plan-based approach, a change in requirements represents an unforeseen deviation
from the plan. This can only be integrated into the plan with great effort and, so, it
results in a negative attitude towards changes. In the agile approach, the product and
requirements are reviewed by the customer in several feedback cycles in order to avoid
developing the product without taking the customer’s needs into account. Identified
changes are seen as adding value to the product for the customer, resulting in an open
attitude towards change.

Iterative
Since a change in requirements is not expected in the plan-based approach, the product
is created through the linear processing of the initially defined plan. In contrast, the agile

78 H. Looks et al.

approach provides for iterative development with regular reassessment of open require-
ments. The requirements that have to be implemented in the iteration are processed by
the team in accordance with the pull principle.

Self-organized
The plan-based approach is characterized by a strong hierarchy-centricity in respect of
project management. A leading authority takes the decisions in the project and delegates
the tasks to the development team. In the agile approach, the development team itself
accepts a high degree of responsibility in the project. The teamworks in a self-organized
way and can take decisions independently of a leading authority.

Product-Driven
The plan-based approach is characterized by a high degree of documentation. In the
agile approach, less value is placed on documentation. The focus here is on the product
to be created. Much of the documentation can be replaced by direct communication. The
close cooperation, therefore, enables a stronger product centricity, with consideration of
the customer’s benefit.

Improvement-Oriented
The strong orientation towards the project plan results in the plan-based approach in the
fact that deviations from the plan must be answered for. The resultant apportionment
of blame can be avoided in the agile approach through constant cooperation. Regular
retrospectives are used to constantly try to improve the project approach in order to
generate a product with high customer benefit.

4.2 Demographic questions

In order to capture the demographic context of the participants, five demographic ques-
tions were first constructed. The case study showed that because of the size of a team,
anonymity in the survey results cannot be maintained (see Sect. 3.3). Based on these
findings from the case study, the demographic questions were reduced to Item 1 and
Item 2 (see Table 1).

Table 1. Demographic questions

ID Item

1 How would you assess your competence in the field of agile development of digital
products?

2 How would you describe the way you think and act in your daily work?

These demographic questions can be used to verify whether the self-assessment of
competence and working methods correlates with the results of the survey.

In the questionnaire, the demographic questions are asked at the beginning of the
survey, since they are a suitable introduction to the survey.

Towards a Standardized Questionnaire 79

4.3 Assessment Questions

The 28 items selected by the experts in the construction process (see Sect. 3.1) were
assigned to the previously defined dimensions (see Sect. 4.1), as shown in Table 2.

These items are used in the questionnaire to assess the agility of a team. The first
column of the following tables defines a unique abbreviation for each item, which is
used to reference the items.

Table 2. Assessment questions

ID Dimension Item

3 Communicative Each team member is aware of the tasks of the other team
members

4 Communicative The source code is considered a collective property by the entire
team

5 Communicative The team meets on a scheduled basis several times a week to
exchange information directly

6 Communicative Communication involves all team members

7 Communicative All project stakeholders know the current progress of the product
development

8 Communicative The customer or his representative can be contacted directly at
any time in the project

9 Communicative Requirements are gathered from the customer in collaboration
with the team

10 Communicative Team members are provided appreciation for their work

11 Change-affine Proposed changes in the requirements can be adapted by the
customer during the project

12 Change-affine Each iteration is completed with the delivery of the working
product to the customer

13 Change-affine Changed requirements are seen as an added value of the product
for the customer and not as an additional workload

14 Change-affine The customer regularly inspects the working product with regard
to the realization of the business value

15 Iterative The autonomous assignment of tasks is not restricted by
organizational procedures

16 Iterative The developers determine their tasks autonomously from the open
requirements

17 Iterative Projects can be started without fully defining the requirements at
the beginning of the project

18 Iterative Detailed project planning is only available for the next iteration

(continued)

80 H. Looks et al.

Table 2. (continued)

ID Dimension Item

19 Self-organized The scope of work for an iteration is decided by the team

20 Self-organized The team is accountable for its actions

21 Self-organized Decisions regarding the execution of their own work can be made
by the team without the involvement of a managing authority

22 Self-organized The entire team actively collaborates on project planning

23 Product-driven Productive working time is used for work on the product

24 Product-driven The customer is directly participating in all project decisions

25 Product-driven All subject matter experts are actively involved in the
identification of the requirements

26 Product-driven Documentation is critically reviewed for its value

27 Improvement-oriented In regular retrospectives, the approach of the project is reflected
with the aim of improvement

28 Improvement-oriented All team members actively participate in continuous
improvement in the project

29 Improvement-oriented Sights gained from retrospectives are turned into concrete
improvement measures

30 Improvement-oriented Improvements can be explored experimentally during the project

Except for the communicative dimension, which comprises eight items, all dimen-
sions include four items. The items of each dimension form a psychometric scale.
According to Döring and Bortz [20], a psychometric scale is a summary of items that
together measures a characteristic of a complex construct. By forming a scale, the the-
oretical construct described by the dimension can be captured more precisely than by
querying it with a single item [20].

The items are formulated as statements. For every statement the participant is asked
to indicate the extent to which the behaviour required by the items apply to thinking
and acting in his or her current developmental environment. According to Moosbrugger
and Kelava [21], a discretely graded rating scale is suitable for answering this type of
question. Regarding the scale points, a 7-point Likert scale was chosen. On the scale, the
participant is asked to choose between the extremes ‘totally agree’ and ‘totally disagree’.
The individual scale points are verbalized as follows: totally agree, agree, rather agree,
neutral, rather disagree, disagree, totally disagree.

The scale has an odd number of scale points, which means that neutral middle
category is present. The participant is, therefore, not forced to give a tendency, as would
be the case with a scale with an even number of scale points [19]. With an uneven
number of scale points, however, there is a risk that the mean category will not be used
exclusively in the sense of the mean characteristic expression, but also if comprehension
problems occur or the answer is refused. This mixture of response behaviour, known as

Towards a Standardized Questionnaire 81

confounding, is to be relativized by the additional option of no response on the response
scale [21].

Regarding scale points, a number of five or seven is suggested in the literature for
odd scales [19, 22]. A fewer number of scale points leads to a loss of information, as
the participant cannot give the answer with sufficient differentiation [19]. More scale
points can lead to cognitive overload, as the participant is no longer able to differentiate
meaningfully between the response options [21]. Based on the results of Finstad [22], it
was decided to use the higher differentiability of a 7-point scale.

4.4 Weighting Questions

In order to fulfil the objective of taking the user-specific context into account, the ques-
tionnaire was supplemented with weighting questions. For each of the six dimensions
of the questionnaire, an additional item was defined that asks about the importance of
the dimension for the user. Accordingly, the items of the scales can be weighted in a
manner specific to the context. For the formulation of the weighting questions, a concise
description of the behaviour of the team required by the dimension was chosen.

The questions are listed in Table 3. As with the assessment questions, a unique
abbreviation is given.

Table 3. Weighting questions

ID Dimension Item

31 Communicative The agile team should communicate frequently and directly with
each other

32 Change-affine The agile team should react quickly and flexibly to volatile
requirements

33 Iterative The agile team should develop the product in several iterations

34 Self-organized The agile team should operate autonomously as a self-organized
team

35 Product-driven The focus of the agile team should be on the product to be created

36 Improvement-oriented The agile team should continuously improve the development
process

Analogous to answering the assessment questions, the weighting questions are rated
on a 7-point Likert scale. In contrast to the assessment questions, however, the questions
do not ask for agreement but for importance. For this reason, the naming of the scale
points for the weighting questions is chosen as follows: particularly important, impor-
tant, rather important, neutral, rather unimportant, unimportant, particularly unimpor-
tant. To preclude any confusion, the scale was also supplemented here with the option
of no answer.

We have learned in a case study that it is valuable to have an introductory workshop
before carrying out the questionnaire. On the one hand, the team can build a shared

82 H. Looks et al.

understanding as regards the objectives of the questionnaire and to define common
goals among the team. On the other hand, it is helpful in terms of reducing bias during
the questionnaire study, because the dimensions can be discussed in order to build a
shared understanding regarding the wording and meaning.

5 Discussion and Limitations

In the previous sections, we presented our questionnaire for measuring agility at the
team level as well as the construction process of our questionnaire. In the following, we
want to discuss the strengths and weaknesses of the questionnaire.

During our journey to create our questionnaire, we conducted several studies (see
Sects. 3.2, 3.3 and 3.4) and discussed it with many experts. We learned that our ques-
tionnaire is able to assess the agile values with the assistance of the six dimensions
(communicative, change-affine, iterative, self-organized, product-driven, improvement-
oriented: see Sect. 4.1).Moreover, the additional weighting questions allow us to include
the respective context of the respondent as well as define the objective of the survey.
In our case study, we learned that we can analyze how the current state of agility is
perceived. For example, one study showed that a team has very different perceptions
in respect of the understanding of agility and agile working. The difference in these
perceptions in cooperating teams leads to misconceptions about the way of work. Such
a work environment can lead to a breakdown of trust and commitment between teams,
which furthermore leads to dysfunctionalities according to Lencioni [23].

We also found that the implementation of the survey must be accompanied by an
expert. The implementation of the questionnaire should be carried out in a moderated
fashion. On the one hand, it is important to reach a shared understanding of the objective.
On the other hand, it is important to interpret the results correctly and derive measures
based on the measurement. Furthermore, the moderated implementation of the ques-
tionnaire causes a stronger analysis of the contents and, so, leads to a reflection of one’s
own work as well as the work in the team. For this reason, we are currently working on a
process model for the application of the questionnaire [24, 25]. In summary, this means
that practitioners and companies can use the questionnaire to optimize collaboration
within their teams. Optimizing collaboration has a positive effect on the value delivery
of the team and, hence, on the success of a company.

In addition, our questionnaire for measuring agility has some limitations. The expert
survey has shown that the items of the assessment questions (see Sect. 4.3) cannot be
clearly assigned to the defined dimensions. This ambiguous assignment of the items to
the defined dimensions can be caused by the different kinds of linguistic understanding
of the items, the environment, the experts’ horizon of experience, or also the ambiguity
of the items. The expert surveys showed that adjustments with regard to the linguistic
formulation were repeatedly necessary. We are currently in the process of conducting
further studies, inwhichwewill investigate the assignment of the items to the dimensions
by means of statistical analysis.

Towards a Standardized Questionnaire 83

6 Conclusion and Future Work

This paper presented an overview of the current state of research on the development of a
questionnaire tomeasure agility at the team level.Our questionnaire formeasuring agility
includes 36 items, assigned to these three question groups (2 demographic questions, 28
assessment questions, and 6weighting questions). In order to develop a suitable question-
naire that takes the agile values into account, we used the six dimensions communicative,
change-affine, iterative, self-organized, product-driven, and improvement-oriented.

Firstly, we provided an overview of the related work. We identified and analyzed
seven maturity models and two questionnaires for measuring agility based on a literature
review. In addition, the research method for the development of the questionnaire was
specified.

We presented our research method, including the initial construction of the
questionnaire, a pretest, a case study, and further expert surveys.

By conducting the expert surveys, an optimization in the wording of the developed
items of the assessment questions was already achieved. The pretest and the case study
already show that the questionnaire is suitable for measuring agility at the team level
and that the current state of agility can be captured. Furthermore, the case study showed
that the results of the questionnaire can be used to identify dysfunctionalities in teams.

In futurework, wewant to create a standardized tool for supporting the agile transfor-
mation of an organization.We are already conducting further studies on this in Spain. On
the one hand, the aim is to develop a standardized questionnaire for measuring agility.
Conducting the expert survey and the case study shows that the development of this
instrument is a continuous learning process. Further research is required to develop this
instrument into a standard. On the other hand, wewant to elaborate on our process model
for using this questionnaire within the agile transformation.

Acknowledgements. This research is partially supported by NICO (Nuevas Iniciativas para el
Aseguramiento Temprano de la Calidad Funcional y no Funcional en Procesos y Productos Soft-
ware Orientados al Usuario) (PID2019-105455GB-C31), which is funded by Spanish Ministry of
Science, Innovation and Universities.

References

1. Beck, K., et al.:Manifesto for Agile SoftwareDevelopment (2001). https://agilemanifesto.org
2. Version One Inc.: 14th Annual State of Agile Report (2020)
3. Ozcan-Top, O., Demirörs, O.: assessment of agile maturity models: a multiple case study. In:

Woronowicz, T., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2013. CCIS, vol. 349,
pp. 130–141. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38833-0_12

4. Schön, E.-M.,Winter, D., Escalona,M.J., Thomaschewski, J.: Key challenges in agile require-
ments engineering. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol.
283, pp. 37–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_3

5. Takeuchi, H., Nonaka, I.: The new new product development game. Harvard Bus. Rev. 64
(1986)

https://agilemanifesto.org
https://doi.org/10.1007/978-3-642-38833-0_12
https://doi.org/10.1007/978-3-319-57633-6_3

84 H. Looks et al.

6. Schön, E.-M., Thomaschewski, J., Escalona, M.J.: Lean user research for agile organizations.
IEEE Access 8, 129763–129773 (2020)

7. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile practices: the agile
adoption framework. Innov. Syst. Softw. Eng. 3, 203–216 (2007)

8. Schwaber, K., Sutherland, J.: The Scrum Guide (2020)
9. Qumer, A., Henderson-Sellers, B., McBride, T.: Agile adoption and improvement model. In:

Proceedings European and Mediterranean Conference on Information Systems 2007 (2007)
10. Packlick, J.: TheAgileMaturityMapAGoalOrientedApproach toAgile Improvement. Agile

2007.13–17 Aug. 2007, Washington, D.C. IEEE Computer Soc, Los Alamitos, California
[u.a.] (2007)

11. Patel, C., Ramachandran,M.: Agile maturity model (AMM): a software process improvement
framework for agile software development practices. Int. J. Softw. Eng. IJSE 2(1), 3–28 (2009)

12. Benefield, R.: Seven dimensions of agile maturity in the global enterprise: a case study. In:
43rdHawaii International Conference on System Sciences (HICSS), 2010; Honolulu, Hawaii,
5–8 January 2010. IEEE, Piscataway, NJ (2010)

13. Yin, A.P.G.: ScrumMaturityModel. Dissertacao para obtencao doGrau deMestre emEngen-
haria Informática e de Computadores. Technical report, Universidade Técnica de Lisboa,
Lissabon (2011)

14. Fontana, R.M., Meyer, V., Reinehr, S., Malucelli, A.: Progressive outcomes: a framework for
maturing in agile software development. J. Syst. Softw. 102, 88–108 (2015)

15. So, C., Scholl, W.: Perceptive agile measurement: new instruments for quantitative studies in
the pursuit of the social-psychological effect of agile practices. In:Abrahamsson, P.,Marchesi,
M.,Maurer, F. (eds.)XP2009. LNBIP, vol. 31, pp. 83–93. Springer,Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01853-4_11

16. Gren, L., Torkar, R., Feldt, R.: The prospects of a quantitative measurement of agility: a
validation study on an agile maturity model. J. Syst. Softw. 107, 38–49 (2015)

17. Leppänen, M.: A comparative analysis of agile maturity models. In: Coady, J., Schneider,
C., Linger, H., Barry, C., Lang, M., Pooley, R. (eds.) Information Systems Development.
Reflections, Challenges and New Directions, pp. 329–343. Springer New York, New York,
NY (2013). https://doi.org/10.1007/978-1-4614-4951-5_27

18. Maier, A.M.,Moultrie, J., Clarkson, P.J.: Assessing organizational capabilities: reviewing and
guiding the development of maturity grids. IEEE Trans. Eng. Manage. 59, 138–159 (2012)

19. Porst, R.: Fragebogen. Ein Arbeitsbuch. Springer VS, Wiesbaden (2014). https://doi.org/10.
1007/978-3-658-02118-4.pdf

20. Döring, N., Bortz, J.: Forschungsmethoden und Evaluation in den Sozial- und Human-
wissenschaften. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-41089-5.
pdf

21. Moosbrugger, H., Kelava, A. (eds.): Testtheorie und Fragebogenkonstruktion. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-20072-4

22. Finstad, K.: Response interpolation and scale sensitivity: evidence against 5-point scales. J.
Usability Stud. 5, 104–110 (2010)

23. Lencioni, P.: The five dysfunctions of a team. Pfeiffer, San Francisco, California (2012)
24. Fangmann, J., Looks, H., Thomaschewski, J., Schön, E.-M.: Agile transformation in e-

government projects. In: 15th Iberian Conference on Information Systems and Technologies,
Sevilla, Spain, pp. 1–4 (2020)

25. Looks, H., Fangmann, J., Thomaschewski, J., Schön, E.-M.: Towards a process model for
agile transformation in e-government projects. J. Inf. Syst. Eng. Manage. (2021)

https://doi.org/10.1007/978-3-642-01853-4_11
https://doi.org/10.1007/978-1-4614-4951-5_27
https://doi.org/10.1007/978-3-658-02118-4.pdf
https://doi.org/10.1007/978-3-642-41089-5.pdf
https://doi.org/10.1007/978-3-642-20072-4

Towards a Standardized Questionnaire 85

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Impact of Agile Transformations
on Organizational Performance: A Survey

of Teams, Programs and Portfolios

Christoph Johann Stettina1(B), Victor van Els1, Job Croonenberg2,
and Joost Visser1

1 Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands

c.j.stettina@liacs.leidenuniv.nl
2 Tilburg School of Economics and Management,

Tilburg University, Tilburg, The Netherlands

Abstract. While many organizations embark on agile transformations,
they can lack insight into the actual impact of these transformations
across organizational layers. In this paper, we collect new and study
existing evidence on the impact of agile transformations on organiza-
tional performance across teams, programs and portfolios. We conducted
an international survey collecting the perceptions of agile coaches, trans-
formation leads and other relevant roles, and we correlated levels of
agile maturity to the perceptions on dimensions of organizational perfor-
mance. Based on 134 responses from 29 countries across 16 industries, (1)
we consolidated understanding of the benefits of agile transformations
based on prior evidence and our data from a more diverse and larger
sample, (2) we identified the dimensions impacted by agile transforma-
tions as being productivity, responsiveness, quality, workflow health and
employee satisfaction & engagement and (3) we traced specific benefits on
those dimensions to individual organizational layers of teams, programs
and portfolios, showing the magnitude of impact of each dimension per
layer. Overall, we can conclude that agile transformations have a variety
of strong organizational benefits. This aggregated evidence allows reflec-
tion on transformation trends, but also enables organizations to optimize
their agile transformation efforts.

Keywords: Agile transformations · Agile portfolio management ·
Software development · Organizational performance

1 Introduction

While many organizations embark on an agile transformation to make their
businesses more agile and responsive, the actual impact of those transforma-
tion efforts is often not well understood. Agile transformations are a relatively
new and complex organizational phenomenon. Initially developed and applied
c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 86–102, 2021.
https://doi.org/10.1007/978-3-030-78098-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_6

Impact of Agile Transformations on Organizational Performance 87

within individual teams and initiatives with a focus on software development,
organizations have begun to apply it at an enterprise level, impacting multiple
organizational layers such as teams [6,27], programs and portfolios [28], as well
as multiple business domains such as HR, finance and sales [21].

While agile transformations are frequently thought to provide better align-
ment with client needs, better involvement of business and users, as well as better
and more transparent planning [28], their impact is historically understood from
the perspective of an agile software development capability due to their roots in
that domain [6]. Current studies consider their impact only on individual levels,
mostly within teams and individual organizations. For practitioners, this is prob-
lematic, as it is difficult to understand the expected benefits and how those ben-
efits relate to the necessary investments required to adopt agile ways of working.

In this paper we report on our international study, presenting for the first time
a view on the impact of agile transformations across the domains of portfolio, pro-
grams and teams. To academia we present a model of agile maturity and orga-
nizational performance, depicting how organizational performance is impacted
through growth of agile maturity across the levels of portfolios, programs and
teams during agile transformations. To practice we provide examples of what
impact organizations can expect from undertaking an agile transformation.

2 Related Work

In this section we will briefly elaborate on the definition and history of agile
transformations with their associated challenges, and then discuss extant litera-
ture on the impact of agile transformations on organizational performance. This
will transition into the research question as posed in the following section.

2.1 Agile Transformations and Their History

In order to overcome the challenges of adoption and achieve the benefits of agile
methods in the context of larger enterprises, organizations embark on a Agile
Transformation Process [8,13]. The development and adoption of agile at scale,
agile project and portfolio management can be historically described in at least
four successive stages:

(1) Team-level agile: At first, in the late 1990 s, a number of frameworks and
methods were created to deal with an increasing number of failing software devel-
opment projects. The academic roots lie with Takeuchi and Nonaka [29], whose
product development game was translated and expanded into frameworks such
as Scrum [24] and XP. Today these frameworks are known under the umbrella
of agile methods, facilitating shortened feedback loops and better aligning work
with business needs.

(2) Cross-team and program-level agile: The success of Scrum leading up to
2000 brought about the desire to execute larger initiatives in an agile way. How-
ever, as Scrum was originally designed for initiatives or projects with an optimal
team size of 5–9 individuals, organizations began experimenting with ways to
coordinate several agile teams to deliver initiatives requiring larger workforces.

88 C. J. Stettina et al.

This led to the creation of Scrum of Scrums. Other frameworks focusing on
smaller organizations have been developed, such as Nexus, which limits itself to
80 people.

(3) Enterprise agile: An increasing adoption of Scrum in organizational set-
tings, while successful on the one hand, challenged the existing roles and respon-
sibilities in organizations applying these frameworks. As Scrum requires more
interaction between users, sponsors and teams, it often clashes with standard
organizational structures and workflow [5]. Hence, as of approximately 2010,
frameworks began appearing that allowed the embedding of large-scale agile IT
initiatives into enterprises, the most prominent being the Scaled Agile Frame-
work (SAFe) [12], LeSS (Large-Scale Scrum) and the Spotify model.

(4) Business agility : From 2018 onwards, companies and framework creators
adjusted their thinking from IT-driven to organization-wide agility [1]. While the
term can be traced back to earlier academic literature [16], terms such as agile
finance, agile marketing, agile sales and agile HR began appearing later [21].

2.2 Understanding Individual Transformation Journeys

Strategies Employed: Frameworks tend to have ideal implementation roadmaps,
but the implementation strategies actually employed may vary. For example,
there is a team-per-team transformation, a department-per-department imple-
mentation and a ‘big bang’ approach to full organizational change. Further, a
new department or even company can be set up to be agile-native. Different com-
panies approach this in different ways, and therefore achieve different results.

Challenges Involved: When undergoing agile transformations, commonly
reported challenges are (1) resistance to change, (2) difficulty of implementa-
tion resulting from vague terminology and a lack of clear guidance from liter-
ature and (3) the integration of non-development functions, e.g. projects being
iterative means funding needs to be iterative, which is not always the case [5,18].

Agile Maturity Across Differing Organizational Layers: Companies have trans-
formed to become agile to varying degrees across different organizational layers,
including teams, programs and portfolios. All three layers are addressed by the
SAFe framework [12], but other frameworks such as LeSS, the Spotify model
and the business agility framework do not necessarily acknowledge them.

The SAFe layers can be summarized as follows [12]: Team level : a set of teams
responsible for the development of User Stories based on Features identified at
the Program level. Program level : a team of teams building upon a set of 5–
12 teams, responsible for the development of Features to be developed by the
underlying teams. Portfolio level : the portfolio management team defines the
strategic themes, translates those into a portfolio-backlog, and allocates it to
respective program layers as appropriate. Thus, based on the scaling principle,
the program layer builds on multiple underlying teams. While portfolios build
on multiple programs respectively, they apply a different workflow in which the
programs within the portfolio might be competing for resources [28].

Progress in becoming agile can be measured in terms of agile maturity, using
the five levels identified and proposed by Laanti [14], as shown in Fig. 1.

Impact of Agile Transformations on Organizational Performance 89

Fig. 1. Transformation maturity model based on Laanti [14]

2.3 The Impact of Agile Transformations

Practitioner literature promises high-impact numbers in decent alignment with
reported metrics. For example, SAFe presents the following benefits [12]: 10–
50% happier, more motivated employees, 30–75% faster time-to-market, 20–
50% increase in productivity, 25–75% defect reduction1. However, these figures
are currently supported only by anecdotal evidence from supplied case studies
with limited reproducibility, as reported without e.g. sample size or calculation
methodology. Additionally, practitioner frameworks generally report qualitative
improvements as opposed to strict metrics.

More academically, previous research by Laanti [15] outlines a model to eval-
uate organizational improvements, and applies it to measure the perceived ben-
efits of agile. In this research, Laanti collects agreement with statements that
claim, for example, quality improvement as a result of agile transformations on
a seven-point scale, as presented in Table 1. Reported values show an average
reported mean of 5, suggesting some, though limited, agreement. The natural
limitations of this are that degree of improvement is not measured, and a lack of
differentiation is made between organizational levels. Olszewska [20] provides a
quantitative analysis of performance in agile contexts. Both find positive results,
and in combination with other studies, agile has started being associated with
factors such as (1) improved quality [25], (2) added value [22], (3) faster time-to-
market, (4) better responsiveness to change [15,20] and (5) lower development
cost [30]. Past studies have the shortcoming of being limited to case studies,
or not adjusting for the penetration of agile throughout different organizational
levels. Concretely, solely IT being agile as opposed to the entire organization
being agile may result in different organizational improvements.

1 In the most recent 5.1 version of the SAFe framework, the impact is presented as
30%, 75%, 35% and 50%, respectively resembling the means of the original ranges.

90 C. J. Stettina et al.

3 Research Question

Extant literature suggests adopting agile methods across the layers of an orga-
nization, meaning pursuing an agile transformation is associated with improved
organizational performance. However, empirical support is scarce, primarily
researching agile at team level. Past research has not considered agile presence at
different organizational levels, and practitioner frameworks even go so far as to
claim that adopting agile methods is associated with equal performance improve-
ment at all levels, meaning the team, program and portfolio level. This research
aims to fill that gap by investigating organizational performance associated with
agile transformations at those differing levels. As such, the research question of
this paper is: What are the benefits of undergoing an agile transformation?

4 Methodology

In order to both answer our research question and attain a suitable level of exter-
nal validity, data from a wide range of agile practitioners was needed. Hence,
we developed a survey to obtain a suitable sample size. Surveys are easy to dis-
tribute, thus facilitating sample size, and are self-administered, thus minimizing
desirability biases through anonymity [11].

4.1 Survey Design

In order to answer our research question, we designed a survey in five segments:
(1) Context; (2) Agile transformation; (3) Agile maturity; (4) Organizational
performance; and (5) Satisfaction. To improve survey quality, multiple versions
of the survey were tested and subjected to expert input. This resulted in adjusted
questions to ensure all participants were able to answer.

(1) Context: The survey first gathers relevant descriptive information to ver-
ify representativeness of the sample. It includes questions on the participant’s
role in the organization and its transformation, as well as the company’s size
and industry.

(2) Agile transformation: This section first verifies whether the company has
completed an agile transformation, or is in the process of one, or plans to trans-
form in the future. Second, it explores what strategy was employed to initiate
the transformation, and what transformation framework was utilized. Third,
the scope of the initiative is assessed, verifying how much of the organization is
transforming.

(3) Agile maturity: Laanti [14] presents a maturity model distinguishing three
common organizational levels in agile: portfolio, program and team. If sufficient
effort is put in, companies move through these levels from beginner, novice,
fluent, advanced to eventually world-class. What needs verification is as follows:
as companies scale their agility, will the benefits of agility scale as well? Similarly,
as companies level up their agility, will the benefits follow? Participants were
asked to rank their company in terms of proficiency for each organizational
level.

Impact of Agile Transformations on Organizational Performance 91

(4) Organizational performance: To evaluate the impact of the agile transfor-
mation, participants were asked to input their perceived percentile improvements
on the following metrics, as adopted from Laanti [15]: effectiveness of develop-
ment; quality of the product; transparency of development; increased collabora-
tion; work being more fun; work being more organized; work being more planned;
autonomy of development teams; earlier detection of bugs/errors/defects; work
being less hectic. These measures were employed to facilitate comparison with
existing literature.

(5) Transformation satisfaction: Satisfaction with the transformation was
evaluated on a seven-point Likert scale with the following question: How satisfied
are you with the results of the transformation (so far)?

4.2 Data Collection

The survey was distributed through online communities on platforms such as
LinkedIn and personal networks. Furthermore, to ensure sample representative-
ness, relevant practitioners were approached directly, simultaneously targeting
relevant companies and ensuring a variety of seniority level. The collection period
spanned three weeks from 11 July to 21 August 2018. During this time frame,
264 people started the survey, and 134 completed it, resulting in a response rate
of 51%.

5 Results

5.1 Descriptive Statistics

Roles of Participants: The principal roles of participants within the different
transformations as reported were Agile Program Coach (26.12%) and Transfor-
mation Manager/Lead (21.64%). Other roles were Team Coach (21.64%), Trans-
formation sponsor (8.21%) and DevOps coach (5.22%).

Size of Organizations: Most participants are employed in large organizations.
This means that most companies in this sample have more than 50,000 employees
(38.06%). The next largest group of respondents (23.88%) work within companies
with an employee number of between 1,001 and 5,000. The remaining respon-
dents were from companies with fewer than 1,000 employees (19.4%), between
20,001 and 50,000 employees (9.7%) and between 5,001 and 20,000 employees
(8.96%).

Industry: A large proportion of the participants come from three specific indus-
tries. These industries are software (21.64%), financial services (17.91%) and
professional services (15.67%). The probable reason for these higher percent-
ages is that the agile way of working is more prevalent within these indus-
tries. The remaining responses were from workers in the following industries:
telecoms (6.72%), utilities (5.97%), health care (4.48%), retail (4.48%), gov-
ernment (3.73%), manufacturing (3.73%), consumer products (2.99%), public
services (2.24%), transportation (2.24%), insurance (0.75%), media & entertain-
ment (0.75%), internet services (0.75%) and education (0.75%).

92 C. J. Stettina et al.

5.2 Transformation Details

Transformation Strategy: Participants were asked about the strategy used
to implement large-scale agile within their company. Most companies used
the bottom-up (team-by-team) strategy (42.54%), whereas others used the
department-by-department strategy (29.1%), the big-bang strategy (11.94%),
the new department strategy (7.46%) and the new company strategy (0.75%).
Eight per cent of the participants said they used another strategy or no strategy
at all.

Agile Frameworks Applied: The largest group of participants reported using the
Scaled Agile Framework R©(SAFe R©) (42.11%). Other participants reported the
use of Scrum of Scrums (19.55%), internally created methods (14.29%), Enter-
prise Scrum (3.01%), Large-scale scrum (2.26%), Lean management (2.26%) and
Nexus (0.75%). Other participants responded they used another or no framework
for the transformation (15.79%).

Capital Investment: The largest group of participants indicated that the transfor-
mation had needed an investment of between e500,000 and e2 million (26.72%).
The other participants responded that the investment needed was between e2
and e10 million (25.19%), between e100,000 and e500,000 (16.03%), less than
e100,000 (14.5%), more than e50 million (9.16%) and between e10 and e50
million (8.4%).

Fig. 2. Agile maturity across portfolio, program and team layers

Maturity: As seen in Fig. 2, on team level the biggest group of participants
assessed their company as being at advanced level (29%). The other participants
estimated that their organization was fluent at team level (23%), novice at team
level (20%) and beginner at team level (19%). A smaller group estimated it to
be at world-class level (8%). On program level, the biggest group of participants
estimated their company to be at novice level (32%). The other participants
estimated that their organization was at beginner on program level (26%), fluent
on program level (18%), advanced on program level (18%) and world-class on
program level (7%). On portfolio level the biggest group of participants estimated
their company at beginner level (38%). The other participants estimated that
their organization was at novice level (25%), fluent at portfolio level (17%),
advanced at portfolio level (14%) and world-class at portfolio level (7%).

Impact of Agile Transformations on Organizational Performance 93

Table 1. Perceived impact of agile transformation on various metrics associated with
dimensions of organizational performance. Mean and three quartiles are reported for
our own data. For comparison (discussed in Sect. 6.2), reported means are reproduced
from Laanti [15] and Olszewska [20], and reported ranges from SAFe [12]. Laanti
reported on a seven-point Likert scale, rather than improvement percentage.

Survey data [15] [20] SAFe [12]

Mean Q1 Q2 Q3 Mean Mean Range

Productivity 20–50%

Increases the effectiveness of
development

60% 40% 69% 81% 4.97

Features / Money spent
(Hustle metric)

483%

Responsiveness

Improves time-to-market 67% 49% 72% 90% 30–75%

Customer service request
turnaround time

24%

Lead time per feature 64%

Quality

Improves the quality of the
product

61% 47% 70% 81% 4.70

Enables the earlier detection
of defects

67% 50% 71% 89% 4.77

Number of external Trouble
Reports (TR)

−188%

Avg # days of Open
External TR

31%

Defect reduction 25–75%

Workflow health

Number releases per time 400%

Number of days between
commits

38%

Makes work more organized 57% 32% 59% 81%

Makes work more planned 55% 31% 55% 80% 4.50

Employee satisfaction &
Engagement

10–50%

Makes work more fun 63% 44% 70% 84% 4.61

Makes work less hectic 49% 21% 50% 73% 3.64

Increases the autonomy of
development teams

64% 50% 70% 82% 4.86

Increases collaboration 75% 60% 79% 91% 5.04

Increases the transparency of
development

70% 50% 75% 91% 5.13

94 C. J. Stettina et al.

Satisfaction with Transformation: The biggest group of participants was moder-
ately satisfied with the results of the transformation (38.06%). Other groups of
participants were slightly satisfied (20.9%), extremely satisfied (18.66%), slightly
dissatisfied (8.21%), neither satisfied nor dissatisfied (7.46%), moderately dissat-
isfied (3.73%) and extremely dissatisfied (2.99%).

Organizational Impact: Our results regarding perceived impact of agile trans-
formations on various dimensions of organizational performance are reported in
Table 1. For each dimension, the perceived impact on one or more associated met-
rics was measured. For these, we show the mean impact, as well as the impact at
first, second and third quartile of the distribution. The second quartile (median)
reflects the central tendency, which is highest for Increases collaboration at 75%
improvement and lowest for Makes work less hectic at 50% improvement. The
first and third quartiles capture the inter-quartile range (IQR) showing smallest
dispersion for Increases collaboration with IRQ = 91%−60% = 31% and largest
dispersion for Makes work less hectic with IQR = 73% − 21% = 52%.

Increases the e ectiveness of development

Increases the quality of the product

Improves time-to-market

Enables the earlier detection of defects

Makes work more planned

Makes work more organized

Makes work more fun

Makes work less hectic

Increases the autonomy of development teams

Increases collaboration

Increases the transparency of development

Productivity

Responsiveness

Quality

Employee satisfaction
& engagement

0.450* 0.511* 0.487*

Portfolio Program Team

0.373* 0.381* 0.382*

0.322* 0.450* 0.450

0.357* 0.437* 0.413*

0.263* 0.356* 0.263*

0.303* 0.379* 0.305*

0.121 0.212* 0.225*

0.426* 0.363* 0.359*

0.298* 0.350* 0.372*

0.279* 0.297* 0.244*

0.237* 0.319* 0.332*

*= p < .05

Metric Dimension

Fig. 3. Correlations between maturity at different organizational layers and metric
improvement per dimension. In bold we show the strongest correlations (above 0.45).

5.3 Correlation Analysis

The model shown in Fig. 3 shows the correlations of agile maturity on a particu-
lar layer with organizational performance per metric. Pearson correlations were
used to allow for significance testing and due to the linearity of the expected rela-
tionship between maturity and performance. Except Makes work more fun, all
metrics correlated with agile maturity are significant at P<0.05 across all orga-
nizational levels. The strongest correlations, and thus the largest improvements

Impact of Agile Transformations on Organizational Performance 95

associated with improved agile maturity, are as follows: Increases the effective-
ness of development with coefficients between 0.45 and 0.51; Enables the earlier
detection of defects improving between 0.36 and 0.44; improvements in Makes
work less hectic between 0.36 and 0.43. Notably, no metrics seem to respond uni-
formly across organizational levels. In terms of the proposed research question,
all metrics seem to undergo relevant improvements as a result of undergoing an
agile transformation.

6 Discussion

Our discussion starts with general observations (6.1), and then goes into separate
dimensions (6.2) and organizational layers (6.3).

6.1 The Impact of Agile Transformations: General Observations

We now discuss the impact of agile transformations, comparing our data with
existing literature, beginning with general observations, and continuing with
a discussion of the individual dimensions in Sect. 6.2. To allow comparison of
results across existing studies and our data, we grouped the metrics of Laanti [15],
Olszewska [20] and SAFe [12] into a hierarchical classification in Table 1.

Our data suggests that agile transformations positively impact organizational
performance across all employed metrics. An observation one can make while
looking at Table 1 is that all studies report rather large improvements.

Further, one can observe that the impact differs per organizational layer. For
example, an increased maturity on program level shows the strongest impact,
correlating with the dimensions of Productivity, Quality and Workflow health
(see Fig. 3). Most notably, increasing agile maturity at the program level has a
correlation coefficient of 0.511 with Increases the effectiveness of development,
and one of 0.450 with Increases the quality of product, as shown in Fig. 3. The
weakest correlation is found with Makes work more fun at the program level at
0.212. Satisfaction with the transformation is positively associated with perfor-
mance benefits, except for the Improves time-to-market metric. However, dissat-
isfied respondents still report an average performance improvement of 45%. The
highest satisfaction shows an average performance improvement of 77%. This
is in line with previous research finding that satisfaction with change predicts
performance benefits of that change, while asserting that agile transformations
in and of themselves are beneficial.

Comparing our data to the results of Laanti [15], Olszewska [20] and
SAFe [12], one can observe that reported performance improvements vary signif-
icantly. We identify three potential interpretations of this cross-study variance.
A rather obvious explanation is that the applied metrics differ and the mea-
surements have been taken differently across the various studies. An increased
acceptance and maturity of agile methods in practice could be another poten-
tial explanation. Yet another reason could be that the impact is contextual
and varies greatly across the surveyed organizations. Previous studies and

96 C. J. Stettina et al.

professional reports (cf. State of Agile Survey [26] and Business Agility Report
[1]) indeed indicate an increase in acceptance and adoption of agile methods in
practice.

6.2 Impacted Metric Dimensions

We will now continue to discuss the individual metrics presented in Table 1 and
their measurements.

Overall, our results correlate with previous findings that organizational per-
formance improves as a result of agile transformations. Differences can be found,
however, in the magnitude of this improvement, with Olszewska occasionally
reporting very high numbers [20]. These differences may be caused by the dif-
ferences in sample, since both Laanti and Olszewska report findings from within
a single organization. Furthermore, comparison is challenging due to different
scales and operationalization of concepts. Notwithstanding these differences, the
benefits of agile transformations are confirmed through improved replication
across a larger sample.

We will now continue to discuss the impact of agile transformations across the
five identified dimensions of (1) Productivity, (2) Responsiveness, (3) Quality,
(4) Workflow health and (5) Employee satisfaction & engagement, with their
respective metrics as illustrated in Fig. 3.

Productivity: Defined as total output divided by total input, improvements
in productivity come from both efficiency and effectiveness [2]. Factors influ-
encing productivity in software development can be categorized into product
(e.g. complexity, size), process (e.g. maturity) and development environment
(e.g. languages, development tools) [17,31]. SAFe reports a 50% improvement
in productivity in general. On Increases the effectiveness of development, our
reported improvements almost double Laanti’s results.

Responsiveness: Responsiveness here refers to quickness of response to either
customer or market demand [2]. Responsiveness in software development is gen-
erally associated with a mature use of agile practices and processes [23] and team
configuration (e.g. application of feature teams with an end-to-end responsibil-
ity over a (sub)product [19]). We report similar Time-to-market improvements
at 67% as SAFe’s 20–70%, though without a range, which suggests our results
may be higher. More concretely, Olszewska reports an improvement of 24% and
64% on Customer service request turnaround time and Lead time per feature
respectively. This shows that responsiveness can be expected to improve, but
depending on operationalization, different results may be achieved.

Quality: Defined as a measure of excellence, both product and development
quality fall under this category [2]. In software development, the ISO 25010
standard delineates two overarching categories: product quality and quality in
use. These have eight and five categories respectively, which in turn have 31
and 11 sub-categories [10]. While the complexity of quality may therefore not be
fully covered in existing agile literature, results seem to unite in finding benefits

Impact of Agile Transformations on Organizational Performance 97

of agile transformations. Laanti reports a fair degree of agreement on Increases
the quality of the product (4.70/7) and Enables the earlier detection of defects
(4.70/7), which is mirrored by our results of 61% and 67% respectively. The
Increases the quality of the product and Enables the earlier detection of defects
reported here fall into the range reported by SAFe under defect reduction, as does
Olszewska’s Average days of open external reports (31%). Notably, the Number of
external trouble reports worsened, meaning increased, with 188% as reported by
Olszewska [19]. This may have been caused by the increased number of releases,
since there would be more opportunities for trouble reports to be logged within
the same time frame.

Workflow Health: Workflow refers to the way that work is organized, or the
sequence of steps in a work process [2]. A workflow can be called healthy, when
the work is well organized and planned, in which case individual tasks are exe-
cuted and (intermediate) products are delivered at a steady pace. Thus, the
notion of workflow health concerns the internals of the work process, which is
linked to, but distinct from, the other categories such as employee satisfaction
or productivity. The results presented here correlate with existing literature in
emphasizing the benefits to be achieved by pursuing an agile transformation. A
transformation Makes work more organized by 55%, and Laanti reports agree-
ment on improvements here (4.50). Olszewska’s metric of the Number of days
between commits reports a slightly lower improvement of 38%. Olszewska also
reports an impressive improvement in Number of releases per time of 400%.
Important to distinguish is that increases in Number of releases per time are
affected not only by workflow health, but also by the size of an individual release.
In agile software development, individual pieces of work are to be small, suggest-
ing the workflow health improvement, its presence implicitly agreed upon, may
not reach 400%.

Employee Satisfaction and Engagement: This section here follows the def-
inition: employees being happy and actively engaged with their job due to the
job itself and the overall working conditions [2]. Higher satisfaction and engage-
ment leads to higher individual performance, and literature has found a positive
relationship with firm growth as well as retention rates [3,9]. Increases collabo-
ration and Increases the transparency of development are the highest evaluated
metrics in Laanti’s study as well as ours. Interestingly, all metrics except Makes
work less hectic (49%) exceed the range given by SAFe of 10–50%. Makes work
less hectic is also the only metric where participants reported a negative impact,
with 3.61 [15].

Customer Satisfaction: The table notably does not include this concept,
which is a limitation of our data set as well as of existing agile literature. A
faster time-to-market is not valuable if what is delivered is not valued by cus-
tomers.

98 C. J. Stettina et al.

6.3 The Relevance of Organizational Layers

In this subsection we will discuss the correlation of impact with reported matu-
rity across teams, programs and portfolios. Figure 3 presents the results of the
correlation analysis between the maturity model and the impact dimensions.

While the impact dimensions discussed by Laanti [15], Olszewska [20] and
SAFe [12] generally do not discriminate between organizational layers, looking
at the types of metrics used, it can be assumed that those metrics are most
applicable at the program and team layers. Due to the absence of portfolio-level
metrics (e.g. portfolio performance metrics such as maximizing the portfolio’s
overall economic value, strategic alignment and portfolio balance, or satisfaction
metrics such as decision effectiveness [4]), for the sake of comparability, we will
therefore discuss the impact on the program and team layers.

Following our analysis, we see that the perceived impact on performance is
not consistent across organizational levels, meaning that performance improve-
ment at the portfolio level is not equal to that at the team or program levels.

Notably, only the Makes work less hectic improvement increases when scal-
ing from program to portfolio level. All other metrics’ improvement is decreased
to varying degrees. Since scaling agile to the portfolio level is a relatively new
phenomenon, the associated complexity may not allow the benefits to actualize
to their full extent. Another explanation may be that intrinsic differences in
the benefits of agile at the portfolio and program level exist. The portfolio level
oversees several programs whereas the program level is, simply put, a group of
teams. Making a parallel with a portfolio of business units is useful. The coor-
dination costs of having multiple business units is well established in literature,
and significant changes in the business unit operation necessitate adjustments in
how the portfolio is managed. This would suggest that scaling agile to the port-
folio layer adds a degree of complexity that companies may not be equipped to
manage. This interpretation is supported by the fact that the lowest agile matu-
rities are reported at the portfolio level. Further, at the portfolio level, different
metrics matter, e.g. Improves time-to-market is likely to be valued higher than
Enables the earlier detection of defects. The program level is a group of teams,
suggesting that improvements as a result of an agile transformation should fol-
low the same mechanisms. However, the portfolio is not a sum of programs and
follows a different scaling mechanism [28]. For these reasons, it is not unusual
for performance improvement at the portfolio level to be perceived differently
(i.e. lower) than at the program and team level.

6.4 Limitations

Although we applied a rigorous method when designing the questionnaire and
collecting the data, multiple limitations are present in the current paper. Partic-
ularly, in survey-based research, three main types of bias can be found and are
discussed here: sampling bias, response bias and non-response bias.

Sampling bias is the bias related to the way respondents are selected. We
note that the majority of responses stem from participants who tend to be

Impact of Agile Transformations on Organizational Performance 99

responsible for agile transformations (e.g. Agile Program Coaches and Trans-
formation Managers and Leads), which may lead to self-selection bias, but also
to more high-quality answers, as those participants are expected to have the
best overview of the transformation. We addressed sampling bias by sharing the
survey with different communities rather than those purely involved with agile
methods. Nevertheless, self-selection bias might have occurred as a result of the
research being an online survey. Responses from additional business stakehold-
ers and software developers affected by the transformation would be a valuable
addition to future research.

Response bias can be encapsulates friendliness bias and social desirability
bias. As perceptions rather than concrete improvements (‘hard-data’) were col-
lected, the results are open to potentially biased responses. The scale used for
organizational performance could be a source of bias as it was presented as a
0%–100% range. This may have deterred participants from selecting 0, and also
did not allow participants to indicate a decrease in performance. However, results
are somewhat robust since participants who reported low satisfaction with their
agile transformation still reported a minimum performance increase of 40%. As
the survey was anonymous, we further believe that response bias due to socially
desirable answers was mitigated.

Non-response bias is a bias where participants are unwilling to take or com-
plete the survey, resulting in under-representation of specific viewpoints. With
a rather high response rate of 51%, we believe that the non-response bias is
limited. Still, negative opinions are under-represented, at under 10% of partic-
ipants. This may suggest that overall, transformations go smoothly, but might
also indicate that the dissatisfied group is under-represented in this paper.

7 Conclusions

In this paper we have presented the results of our empirical study on the impact
of agile transformations on organizational performance. Based on an interna-
tional survey with 134 participants from varying industries and nationalities, we
discuss the perceived benefits.

The contribution of this paper is threefold: (1) we consolidated understanding
of the benefits of agile transformations based on prior evidence and our data from
a more diverse and larger sample; (2) we identified the dimensions impacted
by agile transformations as being productivity, responsiveness, quality, workflow
health and employee satisfaction; and (3) we traced specific benefits on those
metric dimensions to individual organizational layers of teams, programs and
portfolios, showing the magnitude of impact of each metric per layer.

First, by comparing existing quantitative results with both academic and
practitioner literature, we conclude that agile transformations indeed result
in widespread organizational performance improvements. Importantly, depend-
ing on the operationalization of a specific concept, exact results will vary
between studies. However, the identified dimensions are confirmed to be pos-
itively impacted by the pursuit of an agile transformation with limited depen-
dence on the selected metrics. Second, based on existing literature, including

100 C. J. Stettina et al.

input for the described comparison, a comprehensive overview of the impacted
dimensions is established. From an investigation of the non-agile literature, we
posit the unsurprising notion that different metrics are appropriate at different
layers. A particularly strong candidate is strategic alignment of projects at the
portfolio level. Further, we point out the lack of further, customer-facing metrics,
e.g. customer satisfaction. Third, besides the applicability of individual metrics,
we confirm that the benefits of agile maturity on specific metrics differ according
to the organizational layer. For example, workflow health sees practically equal
improvements at the team and portfolio level, but notably higher improvements
at the program level.

Overall, the level of granularity in understanding these performance benefits
is improved by acknowledging organizational layers and the differences of per-
formance benefits of agile transformations between them. A more fine-grained
understanding of the impact at different dimensions and layers achieved through
our research opens the possibility of building an integrated model of maturity,
impacted metrics and organizational layers, where inter-dependencies within and
across these topics can be investigated. This facilitates a potential adoption and
growth model for organizational agility to optimize transformation paths for
impact. A very recent publication [7] that presents a multi-factorial model of
developer productivity seems to have independently taken a similar approach to
ours, in the way it looks at various dimensions and organizational layers, and
discusses similar metrics to ours. While the authors of that research take the
notion of productivity as their focal point, our perspective is agile transforma-
tion, where productivity is just one of various dimensions.

We conclude that agile transformations positively impact organizational per-
formance, with reported improvements in many cases going way beyond 30%
across the reported dimensions.

Acknowledgment. The authors would like to thank the survey participants and
anonymous reviewers for contributing to this study.

References

1. Business Agility Institute: The Business Agility Report: Responding to disruption,
3rd edition (2020)

2. Cambridge University Press: Cambridge Online Dictionary. https://dictionary.
cambridge.org/. Accessed 12 Jan 2021

3. Coffman, C., Gonzalez-Molina, G.: Follow this path: How the world’s greatest
organizations drive growth by unleashing human potential. Hachette+ ORM (2002)

4. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: New product portfolio manage-
ment: practices and performance. J. Prod. Innov. Manage. Int. Publ. Prod. Dev.
Manage. Assoc. 16(4), 333–351 (1999)

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

6. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50(9–10), 833–859 (2008)

https://dictionary.cambridge.org/
https://dictionary.cambridge.org/

Impact of Agile Transformations on Organizational Performance 101

7. Forsgren, N., Storey, M.A., Maddila, C., Zimmermann, T., Houck, B., Butler, J.:
The space of developer productivity: there’s more to it than you think. Queue
19(1), 20–48 (2021)

8. Gandomani, T.J., Zulzalil, H., Ghani, A.A.A., Sultan, A.B.M., Parizi, R.M.: The
impact of inadequate and dysfunctional training on agile transformation process:
a grounded theory study. Inf. Softw. Technol. 57, 295–309 (2015)

9. Griffeth, R.W., Hom, P.W., Gaertner, S.: A meta-analysis of antecedents and cor-
relates of employee turnover: update, moderator tests, and research implications
for the next millennium. J. Manage. 26(3), 463–488 (2000)

10. International Organization for Standardization: ISO/IEC 25010:2011 systems and
software engineering - systems and software quality requirements and evaluation
(SQuaRE) - system and software quality models (2011)

11. Joinson, A.: Social desirability, anonymity, and internet-based questionnaires.
Behav. Res. Methods Instrum. Comput. 31(3), 433–438 (1999)

12. Knaster, R., Leffingwell, D.: SAFe 5.0 Distilled: Achieving Business Agility with
the Scaled Agile Framework. Addison-Wesley Professional, Boston (2020)

13. Korhonen, K.: Evaluating the impact of an agile transformation: a longitudinal
case study in a distributed context. Software Qual. J. 21(4), 599–624 (2013)

14. Laanti, M.: Agile transformation model for large software development organiza-
tions. In: Proceedings of the XP2017 Scientific Workshops, p. 19. ACM (2017)

15. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional
methods at Nokia: a survey of opinions on agile transformation. Inf. Soft. Technol.
53(3), 276–290 (2011)

16. Mathiassen, L., Pries-Heje, J.: Business agility and diffusion of information tech-
nology (2006)

17. Maxwell, K.D., Forselius, P.: Benchmarking software development productivity.
IEEE Softw. 17(1), 80–88 (2000)

18. Moe, N., Dingsøyr, T., Dyb̊a, T.: Overcoming barriers to self-management in soft-
ware teams. IEEE Softw. 26, 20–26 (2009)

19. Olsson, H., Sandberg, A., Bosch, J., Alahyari, H.: Scale and responsiveness in
large-scale software development. IEEE Softw. 31(5), 87–93 (2013)

20. Olszewska, M., Heidenberg, J., Weijola, M., Mikkonen, K., Porres, I.: Quantita-
tively measuring a large-scale agile transformation. J. Syst. Softw. 117, 258–273
(2016)

21. Oprins, R.J.J., Frijns, H.A., Stettina, C.J.: Evolution of scrum transcending busi-
ness domains and the future of agile project management. In: Kruchten, P., Fraser,
S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 244–259. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-19034-7 15

22. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental
software development approach with agile practices. Empir. Softw. Eng. 15(6),
654–693 (2010). https://doi.org/10.1007/s10664-010-9136-6

23. Recker, J., Holten, R., Hummel, M., Rosenkranz, C.: How agile practices impact
customer responsiveness and development success: a field study. Proj. Manage. J.
48(2), 99–121 (2017)

24. Schwaber, K.: Scrum development process. In: Sutherland, J., Casanave, C., Miller,
J., Patel, P., Hollowell, G. (eds.) Business object design and implementation, pp.
117–134. Springer, London (1997) https://doi.org/10.1007/978-1-4471-0947-1 11

25. Sfetsos, P., Stamelos, I.: Empirical studies on quality in agile practices: a systematic
literature review. In: 2010 Seventh International Conference on the Quality of
Information and Communications Technology, pp. 44–53. IEEE (2010)

https://doi.org/10.1007/978-3-030-19034-7_15
https://doi.org/10.1007/s10664-010-9136-6
https://doi.org/10.1007/978-1-4471-0947-1_11

102 C. J. Stettina et al.

26. State Of Agile: Digital.ai 14th annual state of agile report (2020). https://
stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494

27. Stettina, C.J., Heijstek, W.: Five agile factors: helping self-management to self-
reflect. In: Proceedings of European Software Process Improvement Conference
(EuroSPI) (2011)

28. Stettina, C.J., Hörz, J.: Agile portfolio management: an empirical perspective on
the practice in use. Intl. J. Project Manage. 33(1), 140–152 (2015)

29. Takeuchi, H., Nonaka, I.: The new new product development game. Harvard Busi-
ness Review (1986)

30. Van Solingen, R.: Measuring the ROI of software process improvement. IEEE
Softw. 21(3), 32–38 (2004)

31. Wagner, S., Ruhe, M.: A systematic review of productivity factors in software
development. arXiv preprint arXiv:1801.06475 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
http://arxiv.org/abs/1801.06475
http://creativecommons.org/licenses/by/4.0/

Measuring Software Delivery Performance
Using the Four Key Metrics of DevOps

Marc Sallin1(B) , Martin Kropp1 , Craig Anslow2 , James W. Quilty2 ,
and Andreas Meier3

1 University of Applied Sciences and Arts Northwestern Switzerland,
Windisch, Switzerland
martin.kropp@fhnw.ch

2 Victoria University of Wellington, Wellington, New Zealand
{craig,james.quilty}@ecs.vuw.ac.nz

3 Zurich University of Applied Sciences, Wintherthur, Switzerland
meea@fhnw.ch

Abstract. The Four Key Metrics of DevOps have become very popular
for measuring IT-performance and DevOps adoption. However, the mea-
surement of the four metrics deployment frequency, lead time for change,
time to restore service and change failure rate is often done manually and
through surveys - with only few data points. In this work we evaluated
how the Four Key Metrics can be measured automatically and developed
a prototype for the automatic measurement of the Four Key Metrics. We
then evaluated if the measurement is valuable for practitioners in a com-
pany. The analysis shows that the chosen measurement approach is both
suitable and the results valuable for the team with respect to measuring
and improving the software delivery performance.

Keywords: DevOps · Agile · Metrics · Four Key Metrics ·
IT-performance · Case study

1 Introduction

More and more organizations are adopting DevOps to accelerate delivery speed
and improve quality of their software products [1]. The term DevOps first
appeared in 2009 in social media coined by Patrick Debois [2]. Bass et al. define
the term in their book as “a set of practices intended to reduce the time between
committing a change to a system and the change being placed into normal pro-
duction, while ensuring high quality” [3]. Companies state that the measurement
of DevOps progress is seen as important but also as very difficult [4]. The State
of DevOps report, first published in 2014, provides a view into the practices and
capabilities that drive high performance in software delivery [5]. The researchers
found that only four key metrics (FKM) differentiate between low, medium,
high, and elite performers: Lead time for change, deployment frequency, time to
restore service, and change failure rate [6]. These four metrics help organizations
c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 103–119, 2021.
https://doi.org/10.1007/978-3-030-78098-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_7&domain=pdf
http://orcid.org/0000-0002-5784-0655
http://orcid.org/0000-0002-7439-6517
http://orcid.org/0000-0001-8064-6300
http://orcid.org/0000-0002-0929-7539
http://orcid.org/0000-0001-7491-4129
https://doi.org/10.1007/978-3-030-78098-2_7

104 M. Sallin et al.

and teams to determine whether they are improving the overall IT-performance.
As they are strongly correlated with well-known DevOps practices they are also
known as DevOps metrics [5].

The FKM in the State of DevOps report is based on surveys. While a survey
approach has the advantage that you can raise highly focused questions, and
address a clear target audience, it also comes with several disadvantages: the
absence of a clear definition of the measurement, no continuous data, subjective
answers, offline data capture and analysis, and extra effort and cost to generate
the data. On the other side, using system data provides the advantage that
these data are instantly available (e.g. the number of User Stories done in a
Sprint), and can be captured and analysed automatically. However, these data
may not be complete with respect to the required DevOps aspects (e.g., cultural
measures) [7]. This work aims to address these disadvantages by automatically
measuring the FKM and evaluate if the automatic measurement of the FKM is
of value for practitioners with respect to improving their performance.

We defined two research questions to be answered by this study.

RQ1 How can the FKM be automatically measured?
RQ2 How valuable is the approach to automatically measure the FKM for soft-

ware development teams?

RQ1 was answered using a multivocal literature review [8] to include both
state-of-the-art and -practice literature. To answer RQ2 the findings of RQ1 were
operationalized using a prototype. The prototype was used by a development
team in an industrial context at Swiss Post and we asked the members of the
development team to participate in a survey.

2 The Four Key Metrics (FKM)

This chapter explains the origin of the FKM, describes their original definition
and explains why they gained a high popularity in industry. While DevOps has
become very popular in industry [1, p. 18] to bring development and operation
close together and deploy new software faster into operation, it was unclear how
you can measure the improvement in DevOps.

Forsgren et al. searched for a performance measurement of software teams
which focus on global outcome in DevOps. That means, in the basic sense of
DevOps, firstly, a measurement that does not pit development against opera-
tions, by rewarding development for throughput and operations for stability and
secondly, focus on outcomes, not output. That means, do not reward people for
putting in large amounts of work, but rather measure results that add business
value. They found that four key metrics differentiate between low, medium, high,
and elite performers [9]. Forsgren et al. defined the metrics as follows:

Deployment Frequency: addresses minimizing the batch size in a project
(reducing it is a central element of the Lean paradigm). As this is hard to
measure in software, they took the deployment frequency of software to pro-
duction as a proxy.

Measuring Software Delivery Performance 105

Lead Time for Change: defined as “the time it takes to go from code committed
to code successfully running in production”. Shorter time is better because it
enables faster feedback and course correction as well as the faster delivery of
a fix to a defect.

Time to Restore Service: as failure in rapidly changing complex systems is
inevitable the key question for stability is how long it takes to restore service
from an incident from the time the incident occurs (e.g., unplanned outage,
service impairment)?

Change Failure Rate: the percentage of changes for the application or service
which results in degraded service or subsequently required remediation (e.g.,
lead to service impairment or outage, require a hot fix, a rollback, a fix-
forward, or a patch).

In recent years, the FKM have gained large attention and popularity in
industry and are applied by many known companies, like Zalando, RedGate,
HelloFresh, PBS or Contentful. The publication of Forsgren’s book “Accelerate:
The Science of Lean Software and DevOps” in 2018 which summarizes their
research [10], and the recommendation of ThoughtWorks in 2019 to adopt the
FKM in their technology radar [11] has further increased the popularity of the
FKM. The DevOps Trends Survey for 2020 carried out by Atlassian shows that
nearly half of the respondents leverage the four key metrics [4, p. 24].

3 Multi-vocal Literature Review

Despite interest from industry [4], at the time of writing there is no research
which suggests/summarizes how to automatically measure the FKM. To be able
to define a broadly accepted definition for the automatic measurement we inves-
tigated what other researchers and practitioners did in this area. Usually sys-
tematic literature review (SLR) studies are conducted to capture the state of a
research topic. However, SLRs focus mainly on research contribution and do not
include grey literature from practice (GL) [8]. As a large majority of software
practitioners do not publish in academic forums, we also included GL to make
sure we get the result of the current state-of-practice in this field. Furthermore,
the very current perspective, the relevance for practitioners and the low volume
of published research indicates that not only formal literature should be used to
cover a topic [8].

The multivocal literature review was conducted according to the guideline of
Garousi et al. [8] which considers also the popular SLR guidelines by Kitchenham
and Charters [12]. Literature was included if any of the inclusion and none of
the exclusion criteria are met (see Table 1).

3.1 Systematic Literature Review

The publications of Forsgren et al. (i.e., the book “Accelerate” and the “State of
DevOps Reports”) are listed in Google Scholar and Research Gate. For the SLR,

106 M. Sallin et al.

Table 1. Multivocal literature review inclusion and exclusion criteria.

Inclusion Exclusion

Contains more detailed definition than
Forsgren et al.

Is not written in English or German

Contains information about automatic
measurement or tooling

Is not text (e.g., YouTube, or Webinar)

Contains experience report about the
automatic measurement

Is a book

the relevant/related research was identified using snowballing starting from their
publications. All 93 unique articles which cited the literature about the FKM
published by Forsgren et al. were retrieved by following the cited links. Citations
from books were not included. 21 articles are not written in English or German
and hence were excluded. Only 7 of the 72 remaining articles treated the topic
“metrics” and none of them contained more information about the FKM than
already presented by Forsgren et al. As no articles from the SLR were included,
no data could be extracted and used in the synthesis.

3.2 Gray Literature Review

For the gray literature review (GLR) Google was used as search engine because
pilot searches have shown that there is no more narrow scope for the source of
information (e.g. only StackOverflow or Medium) which returns results. A pilot
search was conducted to find which keywords are used when people are talking
about the FKM. This was done by retrieving articles which talk about one of
the four metrics (search for “deployment frequency”, “lead time for change”,
“time to restore service” and “change failure rate”) and screening the articles to
see how the authors bring them into the context of the FKM. As a result, the
following search terms were defined to be used for the GLR.

– DevOps metrics
– DevOps metrics accelerate
– DevOps metrics DORA
– four key metrics DevOps
– accelerate metrics definitions

In contrast to the searches within the formal literature, gray literature search
returns an exhaustive number of results. Thus, stopping criteria need to be
defined [8]. Google has a ranking algorithm which aims to return relevant articles
ordered by priority. That means, the most relevant articles are at the top and
the following stopping criteria were applied.

– Theoretical saturation: As soon five articles in a row did not match the “Is
about this topic & contains information” inclusion criteria, the next five arti-
cles were screened by only looking at their title. If they were not relevant, the
search was ended.

Measuring Software Delivery Performance 107

– Effort bounded: After reviewing 100 results for a search term, the search was
ended.

Initially, 115 articles/search results were retrieved and screened. 43 out of
those 115 were not about the topic and 5 were not in text form. 16 unique
articles remain which either include a definition or an experience report.

3.3 Results

This section presents the results of the multivocal literature review. The full list
of retrieved literature is provided online.1

Deployment Frequency: 7/16 articles contain a definition for deployment fre-
quency. As this metric is already well defined by Forsgren et al. as deployment of
software to production, the definitions do not widely diverge. They have in com-
mon that “number of deployments/releases in a certain period” are counted.
Some state that they only count successful deployment (but successful is not
defined) and some explicit mention that they count deployments to produc-
tion. For the purposes of automated measurement, a deployment is defined as a
new release2 As this is a speed metric, every deployment attempt is counted as
deployment even if it was not successful.

Lead Time for Change: 9/16 articles contain a definition for lead time for
change. Like the deployment frequency, the definition of Forsgren et al. does not
leave much room for interpretation although some deliberately took approaches
diverging from that of Forsgren et al. All suggestions based on the original FKM
definition measure the time a commit takes until it reaches production, the only
difference is how they aggregate (i.e., mean, median, p90 etc.). Today it is default
practice to use a version control system for source code. To make an adjustment
to the software system a developer has to alter source code and to put it under
version control. Hence, the commit3 is defined as the “change”. Thus, the lead
time is given by the time span between the timestamp of the commit and the
timestamp of the deployment, as defined in Sect. 3.3.

Time to Restore Service: 8/16 articles contain a definition for time to restore
service. Five of them define the time to restore service as mean time for clos-
ing an incident in a certain period. One suggests using chaos engineering (i.e.,
introduce a failure and measure how long it takes until it gets discovered and
resolved), there is a suggestion to periodically poll the “status” and record how
long it takes when the status indicates degradation until the degradation gets
restored (but do not mention from where the status is taken). The last sug-
gestion made by two articles assumes that the time to restore service should

1 https://1drv.ms/x/s!ApmGN3k-vuHI1ZxB8z9SnoO0r0t vw?e=qAuxgW.
2 A delivered version of an application which may include all or part of an application.

[13, p.296].
3 Depending on the used version control system this is called e.g. “commit” or “check-

in”.

https://1drv.ms/x/s!ApmGN3k-vuHI1ZxB8z9SnoO0r0t_vw?e=qAuxgW

108 M. Sallin et al.

be calculated for failed releases and thus suggests identifying “fix releases” and
measuring how long it takes from one release to the following “fix release”. The
reasons for a failure are manifold, and frequently rely on human interpretation of
what constitutes “failure” and “fix”, which makes it difficult to fully automate
this metric. Provided that a team has an incident management, the calculation
via incidents is an interesting approach. Since the incident creation could also
be automated, this approach allows a mixture of manual and automated failure
recognition. For this work, we define the time to restore as the time between
incident creation to closing the incident, like this is stated by the majority of
articles found. This choice was made because there is already an incident man-
agement in place, which can be used to gather the data and this seems so far to
be the most reliable source of data.

Change Failure Rate: 9/16 articles contain a definition for change failure rate.
The different suggestions are listed below.

– Percentage of releases that were followed by a “fix release”.
– Count of hot fixes in commit messages.
– Detect failures by using monitoring metrics and divided by deployments.
– Manually mark a deployment as successful or not.
– Count rollbacks divided by deployments.

To measure change failure rate, first, it has to be defined what a change is.
In all identified articles a change is indicated by a deployment. Accordingly, the
change failure rate is the ratio of change failures to deployments (see Sect. 3.3).
The next challenge is to identify a failure and attribute it to a change. Unlike for
the time to restore service, the incident management cannot be used for failure
detection as, according to Forsgren et al., a change failure includes all cases
where subsequent remediation was required.4 Especially for development teams
with a good software delivery performance, the team itself will be responsible
for the deployment and any resulting failures will be fixed immediately without
an incident ever existing. As we assume a low change failure rate in the context
of our case study of Swiss Post, we decided to use for our measurements the
manual classification of a deployment as a failure by the development team.

Summary: The velocity metrics are more precisely defined and thus the auto-
matic measurement is easier and more straightforward to derive. This is also
reflected in the articles found. With the toolchain used by the development
team, the measurement of the speed metrics can be completely automated. The
stability metrics are less well defined, and unlike the velocity metrics, the bound-
aries can be drawn less precisely. The literature provided various approaches, but
the approaches that would have allowed a fully automated measurement do not
capture all relevant aspects of the metrics. For this reason, we have chosen to
use only partial automation for measuring the stability metrics. We assume that
the change failures are less manifold than failures in general and thus suggest
4 This could be, for example, an automated rollback which is never visible in the

incident management system.

Measuring Software Delivery Performance 109

the creation of a taxonomy of change failures, which will be the enabler for tools
and concepts to automatically detect them.

4 Measure the Four Key Metrics

Based on the earlier definitions Sect. 3 an application was built to measure the
FKM automatically. The prototype application is divided into two main parts
(green) and several data sources (blue). One is the collector, and the other is
the aggregator. The collector is responsible to gather the necessary raw data,
transform them and write them in a not compressed manner to the storage of
the aggregator (i.e., do no calculations like average). The aggregator enables dif-
ferent calculations and visualizations. This separation aims to enable the usage
of different collectors (e.g., for applications which are built and deployment with
another toolchain) and to keep the flexibility of having different ways of calcu-
lating the metrics (e.g., use the median instead of the mean or use other time
periods). The Fig. 1 shows the components of the prototype.

The collector part was implemented using Jenkins5 (Host/Execute in regular
intervals) and PowerShell6 (collection logic). The aggregator part was Splunk7

(use an index as storage, do calculations using the Splunk Query Language and
visualization with a dashboard). The resulting UI is shown in Fig. 2.

Container Orchestration

Aggregator

Get History

Get Image Metadata

Send Events

Collector

Service Namespace

Storage

Calculation

Delivery Lead Time

VCS

Service Repository

Container Registry

Service Container Images

Write

Visualization

Visualize

Look at

User

Deployment Frequency

Access

Issue Management

Issues Get Issues
Mean time to repair

Change Failure Rate

Get Logs & Metrics

Log Aggregation

Index

Fig. 1. Concept of prototype to measure the FKM. (Color figure online)

Deployment Frequency: the deployments are detected by using the pulled
event from OpenShift, which is logged if a Docker image is pulled from a registry.
Those events are sent to Splunk from where the collector gets the data.

5 https://www.jenkins.io (25.04.2021).
6 https://github.com/PowerShell/PowerShell (25.04.2021).
7 https://www.splunk.com/ (25.04.2021).

https://www.jenkins.io
https://github.com/PowerShell/PowerShell
https://www.splunk.com/

110 M. Sallin et al.

Lead Time for Change: the deployments are collected like described in
“Deployment Frequency”. The logged event contains the name of the Docker
image and the version. The comm it hash from which the Docker image was
built is retrievable from Artifactory by using the Docker image name and ver-
sion. The source code repository URL is also attached as metadata to the Docker
image. With the commit hash of the current deployment and the last deploy-
ment, as well as the repository URL, all commits which were newly deployed to
production are retrieved and the lead time for each commit is calculated.

Fig. 2. Dashboard showing the automatic measured FKM.

Time to Restore Service: the Scrum team uses Jira for issue management.
Jira issues of type “incident” are retrieved and the time to restore service is
calculated by taking the time passed from creation of the incident until it was
resolved.

Change Failure Rate: how to collect the deployments was described in
“Deployment Frequency”. Additionally, failed changes are registered by the
team, using a web-based form (implemented with Jenkins). With those two
ingredients, the percentage of failed deployments is calculated.

5 Case Study

To investigate the RQ2 “How valuable is the approach to automatically measure
the FKM for software development teams?”, we conducted a survey after the
development team had worked with the prototype for three weeks. For this, the
prototype was presented and explained to the team. They decided to look at the
metrics once a week as part of an already existing meeting and discuss them.

Measuring Software Delivery Performance 111

5.1 Case Description

The study was conducted at the Informatics/Technology function unit of Swiss
Post Ltd. Swiss Post Ltd is the national postal service of Switzerland. The group
consists of strategic subsidiaries which operate in the core markets of Swiss Post
Ltd and function units which are affiliated to Swiss Post Ltd. [14].

In 2019 the Informatics/Technology function unit had around 1200 full-time
equivalent employees with about 330 software developers. The unit runs only
projects for internal customers i.e., the IT department does not offer services for
customers outside of the group. The Scrum team consisting of 10 people looked
at in this study is located in the Informatics/Technology function unit and works
for Logistics Services in the area of parcel sorting. Logistics Services is one of the
subsidiaries of Swiss Post Ltd and is among other things responsible for parcel
sorting and delivery. In 2020 Logistics Services delivered 182,7 million parcels
[15]. The Informatics/Technology function unit is under pressure, that new prod-
ucts should be delivered earlier to the customer, and IT must be able to react
faster to changes in the environment. At the same time, the customer expects
consistently high quality. To achieve these goals Informatics/Technology function
unit is undergoing an agile transformation. Beside adopting agile methodologies
like Scrum and Kanban, DevOps practices are being introduced as part of this
agile transformation. The Informatics/Technology function unit is mainly orga-
nized project driven but the Scrum team which participated in this study is a
stable product team. In 2020 they started to work on a new software system,
which is one of the core systems for the sorting of parcels. The team also started
to invest in their tool-chain (Fig. 3) and began adopting certain DevOps prac-
tices. However, so far, no actions have been taken by the management and the
team to measure the progress of the transformation process and the DevOps
practices with respect to its improvements; so the team is also not able to track
the progress of improvements.

Trigger

Commits reference issues

VCS
(Bitbucket)

Pull
Image

Send
Logs /

 Metrics

Container Orchestration
(OpenShift)

Container Registry
(Artifactory)

Trigger

Push Image

CI
(Jenkins)

Log-Aggregation
(Splunk)

Adjust deployment

CD
(Jenkins)

Issue Management
(Jira)

Fig. 3. The toolchain used by the Swiss Post Scrum team.

5.2 Methodology

The research question was divided into sub questions to be answered by the sur-
vey. In order to be valuable, a metric should be valid, this concern was addressed
by the sub questions one and two. A metric is considered valuable if the team

112 M. Sallin et al.

can act on it i.e. it leads to effects. This was addressed by sub question three.
The sub question four aimed to capture the subjective perspective of the team
onto the value of the automatically measured FKM.

1. Are the FKM a valid way of measuring the speed and stability for software
delivery?

2. Can the FKM be used as an indicator for advancing DevOps adoption?
3. What is the effect of measuring the FKM on the teams?
4. Does the development team find value in measuring the FKM?

The survey consisted of four parts: demographics, metric measurement, effect
of metric measurement and usefulness of metrics. In the metric measurement
part, the participants were asked for their opinion about the FKM and if they
think that the metrics as defined by Forsgren et al. measure what they claim
to. Furthermore, they were asked how good the automatic measurement imple-
mentation reflects what the metrics should measure. The effect of the metric
measurement part asked what effects, if any, they expect if the metrics would be
measured long term.8 Finally, the participants were asked how likely they would
recommend another team to use the automatic metrics measurement and what
metric they consider the most important to be automatically measured.9

The questions and our analysis is principally based on Likert scales, and is
therefore a quantitative approach based on self-reported experience and percep-
tion. After each Likert scale question, there was the possibility to optionally
explain the rating in free text.

Six out of ten team members participated in the survey. Among them are
four developers and two software architects, aged between 25 and 44. Four of
the participants stated that they already knew about the FKM before they were
introduced by us.

5.3 Results

This section presents the results of the survey about the automatic metrics
measurement. The results are provided online.10

Metrics Measurement. Figure 4 shows what the participants think about the
metrics defined by Forsgren et al. In general, the participants agree (statement
1: 2× strongly agree, 4× agree) that the FKM are a valid way of measuring the
speed and stability for software delivery. The two speed metrics are generally
seen as a valid way of measuring the software delivery performance (statement 2:
2× strongly agree, 3× agree, 1× disagree). There is slightly less agreement about
the stability metrics (statement 3: 1× strongly agree, 3× agree, 2× somewhat

8 The measurement period was to short to ask for effects that have already occurred.
9 The full survey can be retrieved here https://1drv.ms/b/s!ApmGN3k-vuHI1ZVZuj-

pZY76IvhC Q?e=AaxwMe.
10 https://1drv.ms/x/s!ApmGN3k-vuHI1ZtdjwlKBlPYInsY2g?e=V2aBMD.

https://1drv.ms/b/s!ApmGN3k-vuHI1ZVZuj-pZY76IvhC_Q?e=AaxwMe
https://1drv.ms/b/s!ApmGN3k-vuHI1ZVZuj-pZY76IvhC_Q?e=AaxwMe
https://1drv.ms/x/s!ApmGN3k-vuHI1ZtdjwlKBlPYInsY2g?e=V2aBMD

Measuring Software Delivery Performance 113

agree). The FKM were explicitly picked to make sure teams do not trade-off
quality for speed. However, it seems there is a piece missing as the participants
are sceptical about the stability metrics showing when a team does this trade-off
(statement 4: 1× strongly disagree, 1× somewhat agree, 2× agree, 1× strongly
agree).

For the implementation of the automatic measurement there was broad agree-
ment that the measurement of the speed metrics is sufficient and moderate agree-
ment about the stability metrics (see Fig. 5).

Fig. 4. Participants agreement about the validity of the FKM, as originally defined by
Forsgren et al.

Fig. 5. Participants agreement about whether the implemented automation is able to
capture the correct measurement.

114 M. Sallin et al.

Effect of Metric Measurement. Figure 6 the answers to the expected effects
are shown. The left part shows the answers to the question whether the partici-
pant expect an effect on the team and/or on the personal behavior. The left side
shows what kind of effect they expect.

The described effects expected for the personal behavior were: Pay more
attention to get the pull requests merged quickly, greater use of feature flags,
better root cause analysis, more team spirit, feeling more responsible for the
work, source of motivation to improve. The effects expected for the team behavior
were: More attention for the software delivery process, less deployment pain and
anxiety, more relaxed environment, encourage some technical practices, putting
some pressure to some team members, source of motivation to improve.

Fig. 6. Expected effects of long term measurement.

Usefulness of the Metrics. The question “On a scale from 1–10, how likely
are you to recommend the metrics measurement to another team?” was answered
with an average score of 8.3 (max: 10, min: 6, sd: 1.5). The participants ranked
the Lead Time for Change as the most important metric to be automatically
measured, followed by Change Failure Rate, Time to Restore Service and the
Deployment Frequency on the fourth rank. The participant with the value of six
explained this score in the free text answer. He wrote that he thinks the most
teams do not yet have the mindset nor the tools to start measuring.

6 Discussion

6.1 RQ1: How to Automatically Measure the FKM?

This question was addressed with a multivocal literature review. We identified no
scientific literature which investigated the automatic measurement of the FKM.
The gray literature review revealed sixteen articles which described aspects of
the automatic measurement. Nine of them were published in 2020, three in 2019
and one in 2018, which we explain with the growing interest in DevOps.

The definitions by Forsgren et al. for the stability metrics (change failure rate
and time to restore service) are not as clear as the definitions of the speed metrics

Measuring Software Delivery Performance 115

(deployment frequency and lead time for change) and therefore the suggestions
for how to perform the measurement are more diverse for the stability metrics
than for the speed metrics. How to automatically measure the speed metrics only
differs in detail but still, they are context sensitive i.e., some practices applied
by a team can have influence on the definition used and also the measurement
implementation (e.g., feature flags, canary releases or Blue/Green deployments).

Worth to mention is the fact that automatic measurement is only possible
if the processes are automated. That means only teams which already invest in
their automation will be able to use the automatic measurement. Thus, a team
might start with tracking their FKM with a survey to get a baseline [7] and as
they advance, they switch to an automatic measurement.

6.2 RQ2: How Valuable Is the Approach to Automatically Measure
the FKM for Software Development Teams?

We addressed this question with a prototype and a survey. The sub questions to
this research question are discussed in the following sections.

Are the FKM a Valid Way of Measuring the Speed and Stability for
Software Delivery? In general the participants agreed that the metrics defined
by Forsgren et al. are valid. There was slightly more agreement about the speed
than the stability metrics. This might be the case because the speed metrics are
easier to measure and more clearly defined. Participants are skeptical about the
stability metrics showing when a team trade-off quality against speed. A possible
reason is that the metrics will show this trade-off not in short but in long term.
If a team decides to not constantly refactor the code base, in the short term
they will be faster and not lose stability. However, in the mid to long term the
technical dept will lead to lower pace and to lower stability [16]. Another reason
is that change failure rate and time to restore service do not capture all quality
aspects. Lets imagine a team skips all regression test non-critical parts of the
system. They get faster but more bugs are discovered in production, which makes
the perceived quality of users lower. But the stability metrics will not show this
if the bugs do not lead to failures. Although the stability metrics are valid to
capture the stability of a system, each system has other quality attributes which
should not be traded-off for speed. As they are individual, each team might
define additional metrics to capture these attributes.

Can the FKM Be Used as an Indicator for Advancing DevOps Adop-
tion? This question was addressed with a statement with a Likert scale rating.
The participants generally agreed but not strongly. The reason gets unveiled
when looking at the free text answers. There is general agreement that the FKM
are good representatives of DevOps adoption but do not cover every aspect. One
aspect mentioned is the provisioning of infrastructure. A DevOps team might
be fast with existing services but slow when creating a new one. That might
be fine if it’s a very rare event, otherwise it should be optimized as well. In

116 M. Sallin et al.

his article, Cochran talks about his research about “developer feedback loops”
and mention metrics which might not be covered by the FKM like “Find root
cause for defect”, “Become productive on new team”, “Launch a new service in
production” [17]. However, there is a need to consider that Forsgren et al. do
not postulate that the FKM cover all aspects but say that they are sufficient to
divide the teams into clusters. Thus, it would have to be examined whether the
high/elite performers correlate with efficient developer feedback loops.

What Is the Effect of Measuring the FKM on the Teams? The partici-
pants mostly agreed that they see value in automatically measuring the FKM and
expect that the long-term measurement will lead to positive effects on the per-
sonal and on the team behavior. But they also state that the FKM do not cover
all aspects which are considered as important for quality, speed, and DevOps in
general (see also the sections above). It was mentioned that the intrinsic moti-
vation of getting better will let the team take the necessary actions to improve
the metrics. The intrinsic motivation is important because one should be well
aware of Goodhart’s law which states that “When a measure becomes a target, it
ceases to be a good measure.” [18]. It is not recommended to give a development
team the goal of improving metrics and rewarding them with external incentives.
Furthermore, a team might need to be guided to improve their FKM. The par-
ticipants who have a noticeable amount of experience in software engineering,
agile and some experience with DevOps only moderately agree that they are
able to influence the FKM (2× somewhat agree, 3× agree, 1× strongly agree)
and that they know which practices and techniques correlate with each of the
DevOps metrics (3× somewhat agree, 2× agree, 1× strongly agree).

Does the Development Team Find Value in Measuring the FKM?
From the stated expected positive effects and the high recommendation score the
conclusion follows, that the team sees value in measuring the FKM. However, this
have to be seen in the context of this team. One of the participants states that
he belief that a team has to have already the “right” mindset to get a value from
the measurement. If a development team which want to improve it’s software
delivery performance and/or DevOps adoption the automatic measurement of
the FKM are a valuable tool.

The metric with ranked with the highest priority to be measured was the
lead time for change. That one with the next was change failure rate. Which
indicates that there is the motivation to see how fast one can deliver, however,
stability should not suffer as a result.

6.3 Limitations

We are aware that the study has several limitations. The SLR part of the MLR
returned no results i.e., no scientific literature but only gray literature was
included. The lack of scientific literature is maybe due to the applied methodol-
ogy (i.e., there are articles, but they are not listed to cite the origin articles used

Measuring Software Delivery Performance 117

for snowballing). The definitions found are presented in gray literature, those
articles are usually less reliable as they do not apply scientific methods, not pro-
vide many details and are representing the subjective view of the author. Fur-
thermore, it is possible that important gray literature was not included because
a GLR is not exhaustive but certain the stopping criteria are applied.

The research was carried out as a case study. The sample size was small and
homogeneous. Participants of the survey were already high performers according
to FKM and had already invested into their CI/CD processes, else the automatic
measurement wouldn’t have been possible. Hence, the results of the study are
not representative and generalization is only possible to a limited extent. Fur-
thermore, the study is highly context specific to the Swiss Post environment,
which also limits the generalization. But might still be helpful to companies
with similar setups. Due to time constraints, the duration in which the team
made use of the metrics was too short to ask about perceived effects and we
asked about expected effects. It has to be considered that those effect might not
show up as expected.

6.4 Summary

The findings indicate that the suggested automatic measurement of the FKM
is a good starting point and a valuable tool for intrinsically motivated software
development teams, which want to improve software delivery performance and
show their DevOps adoption. But the FKM do not cover every aspect e.g. the
developer feedback loops are not covered. Hence, it is important that the devel-
opment team does not only focus on improving the measurements.

6.5 Outlook

The study found that it is possible to meaningful measure the FKM automati-
cally and the software developers team see it as valuable, the prototype going to
be rolled out for all development teams at Swiss Post (i.e., all teams which create
containerized applications will be able to use it). Professionals and researchers
outside of Swiss Post might adapt the suggested definitions and ways to auto-
matically measure the FKM, to build tools for measuring the FKM in their
context.

7 Conclusions

In this work we investigated how the four key metrics defined by Forsgren et al.
can be measured automatically and if practitioners think that the metrics are
valuable. We conducted a multivocal literature review to reveal how the four
key metrics are measured by different companies in the industry and in other
research projects. Based on those findings, we created a prototype to automat-
ically measure the metrics. The prototype was used by a Scrum team at Swiss
Post for three weeks. Afterwards, we collected their experience by using a survey.

118 M. Sallin et al.

The participants of the survey stated that they think that the FKM are a valid
measurement for software delivery performance and that they would recommend
the automatic measurement for another team. However, they also stated that the
FKM are not capturing every important aspect e.g. how fast can infrastructure
be provisioned. Despite of the maturity of the team in terms of experience with
Agile, DevOps, software engineering and their ranking according to the FKM,
it was discovered that the participants only moderately agreed that they think
they are able to influence the metrics and that they know what practices to
apply to improve. This finding suggests that especially less mature team need
guidance to be able to improve on the FKM as they are a lagging measurement
and do not directly suggest any actions.

References

1. StateOfAgile: 14th annual STATE OF AGILE REPORT. Technical report 14
(2020)

2. Mezak, S.: The Origins of DevOps: What’s in a Name? (2018)
3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 1st edn.

Addison-Wesley Professional (2015)
4. Atlassian: 2020 DevOps Trends Survey. Technical report, Atlassian (2020)
5. PuppetLabs: 2014 State of DevOps Report. Technical report, PuppetLabs (2014)
6. PuppetLabs: 2019 State of DevOps Report. Technical report, PuppetLabs (2019)
7. Forsgren, N., Kersten, M.: DevOps metrics. Queue 15(6), 19–34 (2017)
8. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature

and conducting multivocal literature reviews in software engineering. arXiv (2017)
9. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: Accelerate: State of DevOps.

Technical report, DORA (2019)
10. Forsgren, N., Humble, J., Kim, G.: Accelerate: The Science of Lean Software and

DevOps. 1st edn. IT Revolution Press (2018)
11. ThoughtWorks: ThoughtWorks Technology Radar - Four Key Metrics (2019)
12. Kitchenham, B.A., Charters, S.: Guidelines for performing Systematic Literature

Reviews in Software Engineering. Technical Report EBSE 2007–001, Keele Uni-
versity and Durham University Joint Report (2007)

13. ISO/IEC, IEEE: ISO/IEC/IEEE 24765:2010 - Systems and software engineering -
Vocabulary. Iso/Iec Ieee 2010 (2010). 410

14. Group Struture - Swiss Post (2020)
15. Swiss Post: Post verzeichnet Allzeitrekord von 182,7 Millionen Paketen (2021)
16. Behutiye, W.N., Rodŕıguez, P., Oivo, M., Tosun, A.: Analyzing the concept of

technical debt in the context of agile software development: a systematic literature
review. Inf. Softw. Technol. 82, 139–158 (2017)

17. Cochran, T.: Maximizing Developer Effectiveness (2021)
18. Strathern, M.: ‘Improving ratings’: audit in the British University system. Eur.

Rev. 5(3), 305–321 (1997)

Measuring Software Delivery Performance 119

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Large-scale Agile

Evolution of the Agile Scaling
Frameworks

Ömer Uludağ1(B), Abheeshta Putta2, Maria Paasivaara2,3,
and Florian Matthes1

1 Technische Universität München, München, Germany
{oemer.uludag,matthes}@tum.de

2 Aalto University, Espoo, Finland
{abheeshta.putta,maria.paasivaara}@aalto.fi

3 LUT University, Lappeenranta, Finland
maria.paasivaara@lut.fi

Abstract. Over the past decade, agile methods have become the favored
choice for projects undertaken in rapidly changing environments. The
success of agile methods in small, co-located projects has inspired com-
panies to apply them in larger projects. Agile scaling frameworks, such
as Large Scale Scrum and Scaled Agile Framework, have been invented
by practitioners to scale agile to large projects and organizations. Given
the importance of agile scaling frameworks, research on those frame-
works is still limited. This paper presents our findings from an empirical
survey answered by the methodologists of 15 agile scaling frameworks.
We explored (i) framework evolution, (ii) main reasons behind their cre-
ation, (iii) benefits, and (iv) challenges of adopting these frameworks.
The most common reasons behind creating the frameworks were improv-
ing the organization’s agility and collaboration between agile teams. The
most commonly claimed benefits included enabling frequent deliveries
and enhancing employee satisfaction, motivation, and engagement. The
most mentioned challenges were using frameworks as cooking recipes
instead of focusing on changing people’s culture and mindset.

Keywords: Agile scaling frameworks · Large-scale agile · Survey

1 Introduction

Ever since the creation of the Agile Manifesto in 2001, practitioners and
academics have devoted a great deal of attention to agile software develop-
ment methods [1]. Initially, they were designed for small, co-located, and self-
organizing teams that develop software in close collaboration with business cus-
tomers using short iterations [2]. Hence, agile methods have been primarily
applied to projects within the so-called ‘agile sweet spot’, i.e., small and co-
located teams of less than 50 persons with easy access to the user and business

c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 123–139, 2021.
https://doi.org/10.1007/978-3-030-78098-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_8

124 Ö. Uludağ et al.

experts and that develop non-life-critical software [3]. Given the successful adop-
tion of agile methods in small organizations and projects, also many large soft-
ware organizations have begun to adopt these methods [4]. However, the adop-
tion of agile methods outside the agile sweet spot poses significant challenges to
organizations, such as coordination challenges in multi-team environments [5].
To resolve issues associated with the adoption of agile methods in large-scale
organizations and projects, several agile scaling frameworks, such as Large Scale
Scrum (LeSS)1 and Scaled Agile Framework (SAFe)2, have been created both by
some custodians of existing agile methods and by others who have worked with
companies to scale agile methods to their settings [4,6,7]. As large organizations
face growing pressures and expectations to become more agile, and the agile scal-
ing frameworks claim to provide off-the-shelf solutions to scaling, their adoption
has rapidly increased in industry, as confirmed by the yearly non-scientific survey
on the state of agile development conducted by VersionOne [6–8].

Not only is there a growing interest in adopting agile scaling frameworks
from an industrial perspective [8], but there is also a growing academic inter-
est to study the adoption of these frameworks [6]. A systematic mapping study
by Uludağ et al. [6] uncovered the topic of agile scaling frameworks as a major
research stream in the field of large-scale agile development, with a total of 16%
of all published studies related to large-scale agile development. The existing
literature on the scaling frameworks mainly investigates how individual frame-
works are adopted based on case studies (cf. [9]) followed by a comparison of
the frameworks based on their underlying characteristics based on literature
reviews (cf. [10]). However, the existing literature on agile scaling frameworks
disregards the following topics: (i) providing a comprehensive overview of agile
scaling frameworks and their evolution, (ii) studying the reasons behind creat-
ing these frameworks, and (iii) investigating the benefits and (iv) challenges of
adopting these frameworks. To address this research gap, we conducted a survey
with the creators/methodologists of known agile scaling frameworks and aim to
answer the following research questions (RQs):

– RQ1: How did the agile scaling frameworks evolve over the years?
– RQ2: What are key reasons behind creating of agile scaling frameworks?
– RQ3: What are the claimed benefits of adopting agile scaling frameworks?
– RQ4: What are the claimed challenges of adopting of agile scaling frame-

works?

The remainder of this paper is structured as follows. In Sect. 2, we provide
an overview of related work. In Sect. 3, we portray the research design of our
paper. Section 4 presents the result of our survey. In Sect. 5, we discuss our main
findings and limitations and conclude our study with a summary of our results
and remarks on future research.

1 https://less.works/, last accessed on: 03-10-2021.
2 https://www.scaledagileframework.com/, last accessed on: 03-10-2021.

https://less.works/
https://www.scaledagileframework.com/

Evolution of the Agile Scaling Frameworks 125

2 Background and Related Work

The successful adoption of agile methods in small teams ignited a new passion
among firms to start using agile methods in large projects, even beyond software
development, across the enterprise [11]. This phenomenon is often referred as
‘large-scale agile development’ [12]. In line with Dikert et al. [5], we understand
the term ‘large-scale agile development’, as the application of agile methods in
large multi-team settings consisting of 50 persons or more, or at least six teams.

Over the past two decades, software engineers and researchers have devoted
a great deal of attention to agile software development [13]. Within few years,
various agile methods appeared on the landscape, such as Extreme Programming
and Scrum, to name a few [1]. Figure 1 presents the various agile methods, their
interrelationships, and their evolutionary paths [13].

Fiction of universal methods
(Malouin and Landry, 1983)

1990

2000

Prototyping methodology
(e.g., Lantz, 1986)

Spiral model
(Boehm, 1986)Evolutionary life-cycle

(Gilb, 1988)

Rapid application
development (RAD)
(e.g., Martin, 1991)

RADical software
development (Bayer
and Highsmith, 1994)

Adaptive Software Development
(ASD) (Highsmith, 2000)

Dynamic systems
development method
(DSDM, 1995)

Object oriented
approaches

Unified modeling
language (UML)

Rational Unified
Process (RUP)
(Kruchten, 2000)

Feature-Driven
Development (FDD)
(Palmer and Felsing, 2002)

Crystal family
of methodologies
(Cockburn , 1998; 2001) Extreme Programming (XP)

(Beck, 1999)

Agile Modeling (AM)
(Ambler, 2002)

Pragmatic
Programming (PP)
(Hunt and Thomas,
2000)

Open Source
Software (OSS)
development

Internet technologies,
distributed software
development

Methodology
Engineering
(Kumar and
Welke, 1992)

Amethodological IS
development
(Baskerville, 1992;
Truex et al., 2001)

IS development in
emergent organizations
(Truex et al., 1999)

Agile manifesto
(Beck et al., 2001)

New product development game
(Takeuchi and Nonaka, 1986)

Scrum development
process
(Schwaber, 1995;
Schwaber and
Beedle , 2001)

Synch-and-stabilize
approach (Microsoft)
(Cusumano and Selby, 1995;
1997)

Internet-speed development
(Cusumano and Yoffie , 1999;
Baskerville et al., 2001;
Baskerville and Pries-Heje , 2001)

Fig. 1. Evolutionary map of agile methods [13]

Agile methods adhering to varying degrees to the tenets of the Agile Mani-
festo3 share some common characteristics, e.g., iterative and incremental devel-
opment and focus on small releases [1]. The ideal context of applying agile meth-
ods in software projects lies within the so-called ‘agile sweet spot’, i.e., small and
co-located teams of less than 50 persons with easy access to the user and business
experts and that develop non-life-critical software [3]. However, applying agile
methods both for larger projects or in larger companies [5], i.e., scaling agile

3 http://agilemanifesto.org/, last accessed on: 03-10-2021.

http://agilemanifesto.org/

126 Ö. Uludağ et al.

methods, involves two significant challenges. First, the scaling of agile methods
entails additional scaling and complexity factors that summon ‘bitter spot’ con-
ditions for agile methods, such as a large number of teams, geographical distri-
bution, entrenched culture, or formal governance structures [14]. Second, present
agile methods do not provide sufficient guidance on dealing with these scaling
and complexity factors [15]. Thus, custodians of existing agile methods and con-
sultants that have worked with companies in scaling agile to their settings have
proposed several agile scaling frameworks over the last years to address the lim-
itations of the agile methods in large organizations and projects [6,7,10]. These
frameworks incorporate predefined workflow patterns to deal with issues related
to large number of teams, inter-team coordination, and customer involvement
[10,16].

Due to the importance of this topic to companies, researchers have started
to study the frameworks’ adoption [6]. Based on a structured literature review,
Uludağ et al. [17] identified 20 different agile scaling frameworks presented in
Table 14. Secondary studies on the scaling frameworks compare some of them
based on different criteria. For instance, Alqudah and Razali [10] juxtapose DAD,
LeSS, Nexus, RAGE, SAFe, and Spotify based on, e.g., team size, available train-
ing and certificates, and the underlying agile methods and practices. Diebold
et al. [18] provide a map visualizing underlying agile practices of different frame-
works, such as DAD, LeSS, and Nexus, to support organizations in the selection
of appropriate frameworks. Based on 13 agile transformation cases, Conboy and
Carroll [16] provide nine challenges and a set of recommendations associated
with agile scaling frameworks, such as LeSS, Nexus, S@S, and Spotify.

Although agile scaling frameworks have received some attention from aca-
demics [6], to the best of our knowledge, there is no other work that provides an
overview of agile scaling frameworks, their evolution, and reasons, as well as the
benefits and challenges of these frameworks.

3 Research Methodology

Survey Design. To answer the research questions, we created a survey follow-
ing the guidelines suggested by Lin̊aker et al. [19]. We opted to conduct a survey
as it often aims to provide a state-of-the-art overview on particular methods [20],
such as agile scaling frameworks. As a large part of our survey consists of closed-
ended questions to quantitatively analyze the agile scaling frameworks, we used
a survey as it is a suitable means to provide a quantitative description of the data
[20]. The questionnaire consisted of four sections with a total of 22 questions5.
The first section included questions on the framework background, e.g., reasons

4 We extended the table by Uludağ et al. [17] by adding a column to show the scaling
levels of the frameworks and expanded the list of the frameworks by two additional
frameworks: HSD and Parallel as their methodologists approached us during two
agile conferences (see Sect. 3). We set the names of agile scaling frameworks whose
methodologists participated in our survey in bold.

5 Questionnaire link: https://bit.ly/2ZPl69S.

https://bit.ly/2ZPl69S

Evolution of the Agile Scaling Frameworks 127

T
a
b
le

1
.
O

v
er

v
ie

w
o
f
a
g
il
e

sc
a
li
n
g

fr
a
m

ew
o
rk

s
b
a
se

d
o
n

[1
7
]

F
ra

m
e
w

o
rk

M
e
th

o
d
o
lo

g
is

t
O

rg
a
n
iz

a
ti

o
n

P
u
b
l.

d
a
te

C
a
te

g
o
ry

S
c
a
li
n
g

le
v
e
l

D
y
n
a
m

ic
S
y
st

e
m

s
D

e
v
e
lo

p
m

e
n
t

M
e
th

o
d

A
g
il
e

P
ro

je
c
t

F
ra

m
e
w

o
rk

fo
r

S
c
ru

m
(D

S
D

M
)

A
ri

e
v
a
n

B
e
n
n
e
k
u
m

D
S
D

M
C

o
n
so

rt
iu

m
1
9
9
7

F
ra

m
e
w

o
rk

P
o
rt

fo
li
o

C
r
y
s
t
a
l
F
a
m

il
y

(
C
r
y
s
t
a
l)

A
li
st

a
ir

C
o
c
k
b
u
rn

1
9
9
8

S
e
t

o
f
m

e
th

o
d
s

T
e
a
m

S
c
ru

m
o
f
S
c
ru

m
s

(S
o
S
)

J
e
ff

S
u
th

e
rl

a
n
d
;
K

e
n

S
c
h
w

a
b
e
r

S
c
ru

m
In

c
2
0
0
1

M
e
c
h
a
n
is

m
P
ro

g
ra

m

L
a
r
g
e

S
c
a
le

S
c
r
u
m

(
L
e
S
S
)

C
ra

ig
L
a
rm

a
n
;
B

a
s

V
o
d
d
e

L
e
S
S

C
o
m

p
a
n
y

B
.V

2
0
0
7

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

G
il
l
F
r
a
m

e
w
o
r
k

(
G

il
l)

A
si

f
Q

u
m

e
r;

B
ri

a
n

H
e
n
d
e
rs

o
n
-S

e
ll
e
rs

A
d
a
p
t

In
n

2
0
0
8

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

E
n
t
e
r
p
r
is
e

T
r
a
n
s
it
io

n
F
r
a
m

e
w
o
r
k

(
E
T
F
)

–
a
g
il
e
4
2

2
0
1
1

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

M
e
g
a

F
r
a
m

e
w
o
r
k

(
M

e
g
a
)

R
a
fa

e
l
M

a
ra

n
z
a
to

;
M

a
rd

e
n

N
e
u
b
e
rt

;
P
a
u
la

H
e
c
u
la

n
o

U
n
iv

e
rs

o
O

n
li
n
e

S
.A

2
0
1
1

F
ra

m
e
w

o
rk

P
o
rt

fo
li
o

S
c
a
le

d
A

g
il
e

F
r
a
m

e
w
o
r
k

(
S
A

F
e
)

D
e
a
n

L
e
ffi

n
g
w

e
ll

S
c
a
le

d
A

g
il
e

In
c

2
0
1
1

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

D
is
c
ip

li
n
e
d

A
g
il
e

D
e
li
v
e
r
y

(
D

A
D

)
S
c
o
tt

A
m

b
le

r
D

is
c
ip

li
n
e
d

A
g
il
e

C
o
n
so

rt
iu

m
2
0
1
2

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

E
n
te

rp
ri

se
A

g
il
e

D
e
li
v
e
ry

a
n
d

A
g
il
e

G
o
v
e
rn

a
n
c
e

P
ra

c
ti

c
e

(E
A

D
A

G
P
)

E
ri

k
M

a
rk

s
A

g
il
e
P
a
th

2
0
1
2

S
e
t

o
f
p
ra

c
ti

c
e
s

E
n
te

rp
ri

se

S
p
o
t
if
y

M
o
d
e
l
(
S
p
o
t
if
y
)

H
e
n
ri

k
K

n
ib

e
rg

;
A

n
d
e
rs

Iv
a
rs

so
n
;
J
o
a
k
im

S
u
n
d
é
n

S
p
o
ti

fy
2
0
1
2

M
o
d
e
l

E
n
te

rp
ri

se

R
e
c
ip

e
s

fo
r

A
g
il
e

G
o
v
e
rn

a
n
c
e

in
th

e

E
n
te

rp
ri

se
(R

A
G

E
)

K
e
v
in

T
h
o
m

p
so

n
C

p
ri

m
e

2
0
1
3

F
ra

m
e
w

o
rk

P
o
rt

fo
li
o

C
o
n
ti

n
u
o
u
s

A
g
il
e

F
ra

m
e
w

o
rk

(C
A

F
)

A
n
d
y

S
in

g
le

to
n

M
a
x
o
s

L
L
C

2
0
1
4

F
ra

m
e
w

o
rk

P
ro

g
ra

m

E
n
t
e
r
p
r
is
e

S
c
r
u
m

(
e
S
c
r
u
m

)
M

ik
e

B
e
e
d
le

†
E
n
te

rp
ri

se
S
c
ru

m
In

c
2
0
1
4

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

e
X

p
o
n
e
n
t
ia

l
S
im

p
le

C
o
n
t
in

u
o
u
s

A
u
t
o
n
o
m

o
u
s

L
e
a
r
n
in

g
E
c
o
s
y
s
t
e
m

(
X

S
C
A

L
E
)

P
e
te

r
M

e
re

l
X

sc
a
le

A
ll
ia

n
c
e

2
0
1
4

S
e
t

o
f
p
ri

n
c
ip

le
s

E
n
te

rp
ri

se

H
o
li
s
t
ic

S
o
ft
w
a
r
e

D
e
v
e
lo

p
m

e
n
t

(
H

S
D

)
M

ik
e

M
a
c
D

o
n
a
g
h
;
S
te

v
e

H
a
n
d
y

H
o
li
st

ic
S
o
ft

w
a
re

C
o
n
su

lt
in

g
L
td

2
0
1
4

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

S
c
A

L
e
D

A
g
il
e

L
e
a
n

D
e
v
e
lo

p
m

e
n
t

(S
A

L
D

)
P
e
te

r
B

e
c
k
;
M

a
rk

u
s

G
ä
rt

n
e
r;

C
h
ri

st
o
p
h

M
a
th

is
;
S
te

fa
n

R
o
o
c
k
;
A

n
d
re

a
s

S
c
h
li
e
p

–
2
0
1
4

S
e
t

o
f
p
ri

n
c
ip

le
s

E
n
te

rp
ri

se

F
A

S
T

A
g
il
e

(
F
A

S
T
)

R
o
n

Q
u
a
rt

e
l

C
ro

n
T
e
c
h
n
o
lo

g
ie

s
2
0
1
5

S
e
t

o
f
m

e
th

o
d
s

P
ro

g
ra

m

L
e
a
n

E
n
te

rp
ri

se
A

g
il
e

F
ra

m
e
w

o
rk

(L
E
A

F
)

–
L
e
a
n
P
it

c
h

T
e
c
h
n
o
lo

g
ie

s
2
0
1
5

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

N
e
x
u
s

(
N

e
x
u
s
)

K
e
n

S
c
h
w

a
b
e
r

S
c
ru

m
.o

rg
2
0
1
5

F
ra

m
e
w

o
rk

P
ro

g
ra

m

P
a
r
a
ll
e
l
A

g
il
e

(
P
a
r
a
ll
e
l)

D
o
u
g

R
o
se

n
b
e
rg

;
B

ra
rr

y
B

o
e
h
m

;
M

a
tt

S
te

p
h
e
n
s;

C
h
a
rl

e
s

S
u
sc

h
e
c
k
;
S
h
o
b
h
a

D
h
a
li
p
a
th

i;
B

o
W

a
n
g

P
a
ra

ll
e
l
A

g
il
e

In
c

2
0
1
6

S
e
t

o
f
m

e
th

o
d
s

E
n
te

rp
ri

se

S
c
r
u
m

a
t

S
c
a
le

(
S
@

S
)

J
e
ff

S
u
th

e
rl

a
n
d
;
A

le
x

B
ro

w
n

S
c
ru

m
In

c
2
0
1
8

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

128 Ö. Uludağ et al.

behind the framework creation and the claimed benefits and challenges. The
second section presented questions about framework evolution, e.g., the frame-
work version history. In the third section, we aimed to capture the lean and
agile foundations behind the framework, e.g., agile practices adopted to develop
the framework. In the final section, we collected information on compatibility
between the frameworks. The questions were compiled based on previous studies
[8,17] and the Ask Matrix6.

Survey Validation. Two experienced researchers validated the questionnaire
from the software engineering research group at TU Munich. Their suggestions
on length, language, and the order of questions were incorporated.

Data Collection. We collected data between August 2017 and September 2019
using the online tool Unipark7. We used various approaches to reach out to
the inventors or organizations, i.e., methodologists, that created the frameworks
shown in Table 1. First, we sent out the questionnaire link to 22 methodologists
by email. Second, we contacted some of the methodologists in two of the leading
agile conferences: XP 20198 and Agile 20199, and emailed them the survey link.
Third, we reached a few methodologists via LinkedIn10 by sending a personal
message with the survey link. We received responses from 15 creators.

Data Analysis. We imported the survey data related to our four research
questions to excel sheets. The first two authors analyzed data for all research
questions individually by following Corbin and Strauss’s coding guidelines [21].
We started with breaking down the data into meaningful entities, i.e., open
codes. Later, based on the constant comparison of similarities and differences,
we grouped the open codes into higher categories of codes called axial codes.
Finally, both authors had a few discussions to compare the open and axial codes
from their analysis. The majority of the codes matched between the two authors,
and only a few adjustments were made by mutual agreement.

4 Results

4.1 RQ1: Evolution of the Agile Scaling Frameworks

Figure 2 shows a time-based overview of the 15 agile scaling frameworks whose
methodologists participated in our survey. Grey rectangles () indicate the
start of development of a framework, whereas green rectangles () show current
versions and blue rectangles () symbolize intermediate versions. Figure 2 also
shows two types of dependencies between the frameworks and their versions:
Dashed arrows indicate the influence between different frameworks, whereas solid
arrows show a predecessor relationship.
6 http://www.agilescaling.org/ask-matrix.html, last accessed on: 03-10-2021.
7 https://www.unipark.com/en/, last accessed on: 03-10-2021.
8 https://www.agilealliance.org/xp2019/, last accessed on: 03-10-2021.
9 https://www.agilealliance.org/agile2019/, last accessed on: 03-10-2021.

10 https://www.linkedin.com/, last accessed on: 03-10-2021.

http://www.agilescaling.org/ask-matrix.html
https://www.unipark.com/en/
https://www.agilealliance.org/xp2019/
https://www.agilealliance.org/agile2019/
https://www.linkedin.com/

Evolution of the Agile Scaling Frameworks 129

Fig. 2. Evolution of agile scaling frameworks

130 Ö. Uludağ et al.

According to our survey data, Crystal is the first created agile scaling frame-
work which development started in 1997. Nexus, eScrum, and S@S were also rela-
tively early designed compared to most other agile scaling frameworks. However,
it took the methodologists almost ten years to publish these frameworks, e.g., by
publishing their official guides. Although nine frameworks were created before
2010, only three of them went public before 2010. Whereas, between 2011 and
2018, twelve frameworks were published. None of the methodologists indicated
stopping the further development of their frameworks. Most frameworks have
multiple versions, whereas four frameworks have only one version, namely Nexus,
LeSS, Spotify, and XSCALE. Gill was initially created as the ASSF framework
(2005-2008), which then evolved into Gill in 2012. The methodologists of Mega
indicated that Mega 1.0 was a derivative of SoS. They also stated that Mega
2.0 was influenced by Spotify including the idea to extend the adoption of agile
practices to other parts of the organization. The methodologists of Spotify found
inspiration from Craig Larman’s and Bass Vodde’s two books (cf. [22,23]), that
later became LeSS. Spotify was also influenced by the Program Increment Plan-
ning events of SAFe (cf. [24]).

4.2 RQ2: Key Reasons Behind Creating Agile Scaling Frameworks

Table 2 presents 12 reasons behind creating scaling frameworks based on our
survey. These reasons were grouped into four categories: complexity, customer,
market, and organization. The most commonly stated reasons were: improving
the agility/adaptability of the organization, improving the collaboration of agile
teams working on same product, improving the coordination of agile teams work-
ing, and improving the synchronization of agile teams working on same product.

Evolution of the Agile Scaling Frameworks 131

Table 2. Reasons behind the creation of agile scaling frameworks

Reason category Reason Reported in

Complexity Dealing with increased complexity ETF, SAFe

Descaling large product organizations

in smaller independent entities

eScrum, XSCALE

Customer Delivering higher business value LeSS

Improving customer involvement eScrum

Market Improving the agility/adaptability of

the organization

DAD, Gill, HSD, SAFe, S@S, Spotify

Dealing with changing environments LeSS

Organization Improving the collaboration of agile

teams working on same product

Nexus, Parallel, SAFe, S@S

Improving the coordination of agile

teams working on same product

Crystal, Nexus, S@S

Improving the synchronization of

agile teams working on same product

FAST, Nexus, SAFe

Enabling the

information/communication flow

between agile teams

Crystal, Mega

Scaling agile to more

people/teams/higher organizational

levels

LeSS, SAFe

Managing dependencies between agile

teams

eScrum

4.3 RQ3: Benefits of Adopting Agile Scaling Frameworks

Table 3 presents 30 claimed benefits of adopting scaling frameworks based on
our survey. These benefits were grouped into two categories, namely: busi-
ness/product and organization/culture. The most commonly mentioned ben-
efits were: enabling frequent product deliveries, enhancing employee satisfac-
tion/motivation/engagement, improving software quality, providing customer/
business value, improving the collaboration of agile teams working on same prod-
uct, improving the coordination of agile teams working on same product, improv-
ing the synchronization of agile teams working on same product.

4.4 RQ4: Challenges of Adopting Agile Scaling Frameworks

Table 4 presents 22 challenges of adopting scaling frameworks based on our sur-
vey. These challenges were grouped into three categories: implementation, orga-
nization/culture, and scope. The most commonly mentioned challenges were:
using frameworks as cooking recipes and using frameworks without understand-
ing for what reasons they should be applied.

132 Ö. Uludağ et al.

T
a
b
le

3
.
C

la
im

ed
b
en

efi
ts

o
f
a
d
o
p
ti

n
g

a
g
il
e

sc
a
li
n
g

fr
a
m

ew
o
rk

s

B
e
n
e
fi
t

c
a
te

g
o
ry

B
e
n
e
fi
t

R
e
p
o
rt

e
d

in

B
u
si
n
e
ss
/
P
ro
d
u
c
t

E
n
a
b
li
n
g

fr
e
q
u
e
n
t

p
ro

d
u
c
t

d
e
li
v
e
ri

e
s

F
A

S
T

,
P
a
ra

ll
e
l,

S
A

F
e
,
S
@

S
,
S
p
o
ti

fy

Im
p
ro

v
in

g
so

ft
w

a
re

q
u
a
li
ty

M
e
g
a
,
P
a
ra

ll
e
l,

S
A

F
e

P
ro

v
id

in
g

c
u
st

o
m

e
r/

b
u
si

n
e
ss

v
a
lu

e
L
e
S
S
,
M

e
g
a
,
S
@

S

E
n
a
b
li
n
g

c
o
n
ti

n
u
o
u
s

im
p
ro

v
e
m

e
n
t

E
T

F
,
S
p
o
ti

fy

E
n
a
b
li
n
g

c
o
n
ti

n
u
o
u
s

in
te

g
ra

ti
o
n

M
e
g
a
,
N

e
x
u
s

E
n
a
b
li
n
g

sh
o
rt

e
r

fe
e
d
b
a
c
k

c
y
c
le

s
F
A

S
T

,
N

e
x
u
s

E
n
a
b
li
n
g

b
e
tt

e
r

a
d
a
p
ta

b
il
it
y

to
c
h
a
n
g
in

g
m

a
rk

e
t

c
o
n
d
it

io
n
s

S
@

S

E
n
a
b
li
n
g

fa
st

e
r

ti
m

e
-t

o
-m

a
rk

e
t

S
A

F
e

E
n
a
b
li
n
g

th
e

re
le

a
se

o
f
w

o
rk

in
g

p
ro

d
u
c
ts

e
v
e
ry

S
p
ri

n
t

N
e
x
u
s

Im
p
ro

v
in

g
c
u
st

o
m

e
r

sa
ti

sf
a
c
ti

o
n

e
S
c
ru

m

Im
p
ro

v
in

g
e
ffi

c
ie

n
c
y

G
il
l

M
in

im
iz

in
g

so
ft

w
a
re

p
ro

d
u
c
ti

o
n

c
o
st

s
P
a
ra

ll
e
l

O
rg
a
n
iz
a
ti
o
n
/

C
u
lt
u
re

E
n
h
a
n
c
in

g
e
m

p
lo

y
e
e

sa
ti

sf
a
c
ti

o
n
/
m

o
ti

v
a
ti

o
n
/
e
n
g
a
g
e
m

e
n
t

e
S
c
ru

m
,
F
A

S
T

,
M

e
g
a
,
S
A

F
e
,
S
@

S
,
S
p
o
ti

fy

F
o
st

e
ri

n
g

th
e

c
re

a
ti

o
n

o
f
a
u
to

n
o
m

o
u
s

te
a
m

s
e
S
c
ru

m
,
F
A

S
T

,
S
@

S

Im
p
ro

v
in

g
th

e
c
o
ll
a
b
o
ra

ti
o
n

o
f
a
g
il
e

te
a
m

s
w

o
rk

in
g

o
n

sa
m

e
p
ro

d
u
c
t

C
ry

st
a
l,

M
e
g
a
,
S
@

S

Im
p
ro

v
in

g
th

e
c
o
o
rd

in
a
ti

o
n

o
f
a
g
il
e

te
a
m

s
w

o
rk

in
g

o
n

sa
m

e
p
ro

d
u
c
t

C
ry

st
a
l,

M
e
g
a
,
S
@

S

Im
p
ro

v
in

g
th

e
sy

n
c
h
ro

n
iz

a
ti

o
n

o
f
a
g
il
e

te
a
m

s
w

o
rk

in
g

o
n

sa
m

e
p
ro

d
u
c
t

C
ry

st
a
l,

M
e
g
a
,
S
@

S

E
n
a
b
li
n
g

e
n
te

rp
ri

se
a
g
il
it
y

L
e
S
S
,
S
@

S

F
o
st

e
ri

n
g

in
n
o
v
a
ti

o
n

F
A

S
T

,
G

il
l

Im
p
ro

v
in

g
a
g
il
e

m
in

d
se

t
a
n
d

u
n
d
e
rs

ta
n
d
in

g
D

A
D

,
E
T

F

Im
p
ro

v
in

g
a
c
c
o
u
n
ta

b
il
it
y

N
e
x
u
s

Im
p
ro

v
in

g
o
rg

a
n
iz

a
ti

o
n
a
l
p
e
rf

o
rm

a
n
c
e

S
p
o
ti

fy

Im
p
ro

v
in

g
te

a
m

c
o
h
e
si

o
n

M
e
g
a

Im
p
ro

v
in

g
tr

a
n
sp

a
re

n
c
y

N
e
x
u
s

Im
p
ro

v
in

g
w

o
rk

fl
o
w

s
H

S
D

E
n
a
b
li
n
g

b
e
tt

e
r

u
n
d
e
rs

ta
n
d
in

g
o
f
th

e
o
rg

a
n
iz

a
ti

o
n

a
n
d

it
s

v
is

io
n

D
A

D

E
n
a
b
li
n
g

th
e

p
ri

o
ri

ti
z
a
ti

o
n

o
f
c
o
m

p
a
n
y

b
o
tt

le
n
e
c
k
s

X
S
C

A
L
E

F
o
st

e
ri

n
g

se
rv

a
n
t

le
a
d
e
rs

h
ip

F
A

S
T

R
e
d
u
c
in

g
h
e
a
d
c
o
u
n
t

F
A

S
T

R
e
so

lv
in

g
o
rg

a
n
iz

a
ti

o
n
a
l
im

p
e
d
im

e
n
ts

S
@

S

Evolution of the Agile Scaling Frameworks 133

T
a
b
le

4
.
C

la
im

ed
ch

a
ll
en

g
es

o
f
a
d
o
p
ti

n
g

a
g
il
e

sc
a
li
n
g

fr
a
m

ew
o
rk

s

C
h
a
ll
e
n
g
e

c
a
te

g
o
ry

C
h
a
ll
e
n
g
e

R
e
p
o
rt

e
d

in

Im
p
le
m
e
n
ta

ti
o
n

Im
p
le

m
e
n
ti

n
g

is
d
iffi

c
u
lt

d
u
e

to
fr

a
m

e
w

o
rk

c
o
m

p
le

x
it
y

e
S
c
ru

m
,
H

S
D

M
is

si
n
g

fa
m

il
ia

ri
z
a
ti

o
n

w
it

h
fr

a
m

e
w

o
rk

e
S
c
ru

m
,
N

e
x
u
s

Im
p
le

m
e
n
ta

ti
o
n

o
v
e
rh

e
a
d

S
A

F
e

M
is

c
o
n
c
e
p
ti

o
n

d
u
e

to
u
n
c
o
n
v
e
n
ti

o
n
a
l
a
g
il
e

p
ra

c
ti

c
e
s

F
A

S
T

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

C
ry

st
a
l

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

re
g
a
rd

in
g

le
a
n

p
ra

c
ti

c
e
s

M
e
g
a

O
rg
a
n
iz
a
ti
o
n
/
C
u
lt
u
re

U
si

n
g

fr
a
m

e
w

o
rk

s
a
s

c
o
o
k
in

g
re

c
ip

e
s

D
A

D
,
H

S
D

,
S
A

F
e
,
S
p
o
ti

fy

U
si

n
g

fr
a
m

e
w

o
rk

s
w

it
h
o
u
t

u
n
d
e
rs

ta
n
d
in

g
fo

r
w

h
a
t

re
a
so

n
s

th
e
y

sh
o
u
ld

b
e

a
p
p
li
e
d

E
T

F
,
N

e
x
u
s,

S
p
o
ti

fy

L
a
ck

o
f
m

a
n
a
g
e
m

e
n
t

b
u
y
-i
n

S
A

F
e
,
S
@

S

M
o
v
in

g
a
w

a
y

fr
o
m

a
g
il
e

P
a
ra

ll
e
l,

S
A

F
e

M
o
v
in

g
b
a
ck

fr
o
m

a
g
il
e

to
tr

a
d
it

io
n
a
l
m

a
n
a
g
e
m

e
n
t

a
p
p
ro

a
ch

e
s

E
T

F
,
L
e
S
S

C
h
a
n
g
e

re
si

st
a
n
c
e

L
e
S
S

Im
p
le

m
e
n
ta

ti
o
n

is
d
iffi

c
u
lt

in
c
o
m

m
a
n
d

a
n
d

c
o
n
tr

o
l-
st

y
le

o
rg

a
n
iz

a
ti

o
n
s

F
A

S
T

Im
p
le

m
e
n
ta

ti
o
n

is
d
iffi

c
u
lt

in
tr

a
d
it

io
n
a
l
o
rg

a
n
iz

a
ti

o
n
s

F
A

S
T

In
v
o
lv

in
g

n
o
n
-d

e
v
e
lo

p
m

e
n
t

u
n
it

s
is

d
iffi

c
u
lt

G
il
l

Im
p
le

m
e
n
ta

ti
o
n

is
d
iffi

c
u
lt

d
u
e

to
re

m
a
in

in
g

p
o
w

e
r

st
ru

c
tu

re
s

L
e
S
S

C
h
a
n
g
in

g
th

e
m

in
d
se

t
o
f
th

e
o
rg

a
n
iz

a
ti

o
n

is
d
iffi

c
u
lt

E
T

F

S
co

p
e

Im
p
le

m
e
n
ta

ti
o
n

is
li
m

it
e
d

to
te

a
m

le
v
e
l

M
e
g
a

Im
p
le

m
e
n
ta

ti
o
n

is
n
o
t

su
it

a
b
le

fo
r

m
o
n
o
li
th

ic
a
p
p
li
c
a
ti

o
n
s

M
e
g
a

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

re
g
a
rd

in
g

p
ro

d
u
c
t

b
a
ck

lo
g

m
a
n
a
g
e
m

e
n
t

M
e
g
a

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

re
g
a
rd

in
g

m
a
n
a
g
e
rs

a
n
d

sp
e
c
ia

li
st

p
o
si

ti
o
n
s

L
e
S
S

R
e
q
u
ir

in
g

c
o
-l
o
c
a
ti

o
n

o
f
a
g
il
e

te
a
m

s
F
A

S
T

134 Ö. Uludağ et al.

5 Discussion and Conclusions

5.1 Key Findings

RQ1: How did agile scaling frameworks evolve over the years?
By comparing the evolution map of agile scaling frameworks in Fig. 2 with the
evolutionary map of agile methods by Abrahamsson et al. [13], we observed two
notable parallels. First, similar to the movement of agile methods, the movement
to agile scaling frameworks emerged from parallel innovation both by some inven-
tors of existing agile methods and by consultants who supported organizations
in scaling the agile methods. Second, likewise to agile methods, agile scaling
frameworks have been continuously emerging and evolving after the movement
started. This trend will likely continue as the methodologists of agile scaling
frameworks seem to be committed to improving them in the future. Although
the evolution map visualizes several agile scaling frameworks, users have concen-
trated on a few frameworks [25], particularly on SAFe and SoS [8]. The most
recent State of Agile survey [8] confirms this by stating that 35% of their respon-
dents adopted SAFe and 16% used SoS. A similar observation can be made for
agile methods, as 58% of the respondents of the State of Agile survey use Scrum,
making it the most commonly used agile method [8].

RQ2: What are key reasons behind creating of agile scaling frameworks?
In total, we found 12 reasons behind the creation of 15 agile scaling frameworks.
The reasons identified in our survey fall into either the category of improving
the current state of the organization or dealing with the organization’s prevalent
challenges. Both look similar to reasons that trigger an organizational change
[26]. Several reasons, e.g., improving the collaboration and coordination agile
teams working on same product and dealing with changing environments were
found in previous studies on large-scale agile development [27,28]. Other reasons
related to the scaling of agile methods, such as dealing with increased complexity
and scaling agile to more people, were also reported in [9,29–31]. However, to our
knowledge, two reasons found in our survey related to descaling large product
organizations into smaller independent entities and improving customer involve-
ment were not reported by the extant literature on agile development. Surpris-
ingly, several popular reasons for agile, e.g., improving productivity, improving
visibility, and improving predictability, were not reported as reasons [8]. As the
questionnaire’s question was about the main reasons of creating a framework,
these earlier mentioned reasons can be some of the implicit reasons behind the
creation of the 15 agile scaling frameworks.

RQ3: What are the claimed benefits of adopting agile scaling frameworks?
In total, we identified 30 claimed benefits. The majority of these claimed benefits
were similar to the benefits of agile adoption in general found from recent studies
on agile method, e.g., State of Agile survey [8]. However, the most common
benefit of agile, namely improved productivity [8], was not mentioned by any
methodologists. We also identified benefits related to reducing headcount and
fostering servant leadership, which were not found in the previous literature on

Evolution of the Agile Scaling Frameworks 135

large-scale agile development. More research on benefits is needed to establish
scientific evidence of using these frameworks in the industry. It is also crucial to
understand which practices have contributed to these benefits.

RQ4: What are the challenges of adopting agile scaling frameworks?
We identified 22 challenges from 15 scaling frameworks. To our knowledge, none
of the framework’s official websites has given information related to the diffi-
culties encountered while adopting these frameworks. The most common chal-
lenges identified in our study, i.e., using frameworks as cooking recipes and using
frameworks without understanding for what reasons they should be applied, were
not reported by previously published empirical studies. The majority of the
challenges found in our study, e.g., change resistance, moving away from agile,
implementation is difficult due to remaining power structures, and lack of man-
agement buy-in, were already reported in previously published studies on scaling
frameworks [16,32–34] and large-scale agile development [5,35]. The challenges
look similar to agile transformation challenges in general. Hence, using an agile
scaling framework is not a silver bullet for scaling agile in large organizations,
but a starting point for an agile transformation [33]. Several methodologists men-
tioned that leaders and change agents should focus on changing people’s culture
and mindset, rather than using frameworks only as cooking recipes.

5.2 Limitations

We discuss the limitations of our study through the threats, as suggested by
Wohlin et al. [36].

Construct Validity. This threat is concerned whether the questions presented
in the questionnaire represent the attributes being measured. Two survey experts
thoroughly checked the questionnaire and evaluated its’ understandability, clar-
ity, and readability to counteract this threat. Moreover, the questions were com-
piled based on previously published studies in the realm of agile software devel-
opment.

External Validity. This threat is about the generalizability of the results. We
aimed to collect responses from all existing scaling frameworks. Out of 22 frame-
works, we received responses from 15 methodologists. We could not get responses
from the methodologists of seven frameworks despite contacting them several
times via email. Thus, this threat could not be completely mitigated. However,
we received responses from the most widely adopted scaling frameworks, such
as SAFe, LeSS, DAD, and Spotify [8].

Internal Validity. This threat is concerned with factors that can affect the
relationship between the research process and survey results, i.e., the cause and
effect relationship. We contacted the methodologists via emails found from the
frameworks’ official websites. We received confirmation from most methodolo-
gists after they filled in the survey, which ensured that the right persons answered
the survey. We also met some methodologists during the agile conferences per-
sonally and asked them to answer the survey.

136 Ö. Uludağ et al.

Conclusion Validity. This threat deals with the ability to conclude from survey
data. The data was coded independently by two researchers. Both researchers
compared the codes and drew conclusions together to avoid misinterpretation
and misunderstanding of the data.

5.3 Conclusions

Large-scale agile development has received significant interest by practitioners
and academics over the last years [37]. As organizations are driven by pressures
to scale and to react fast, agile scaling frameworks are increasingly prevalent in
contemporary software organizations [7,8], sparking a growing academic interest
in studying the adoption of these frameworks [6]. Although there is a body
of knowledge on agile scaling frameworks, less research has been conducted to
provide an overview of these frameworks and their evolution, study the reasons
behind creating these frameworks, and investigate the benefits and challenges
of adopting these frameworks. We surveyed the methodologists behind the agile
scaling frameworks to address this research gap.

Our study provides an overview of 22 agile scaling frameworks of which 15
were covered by our survey. Our study extends extant literature by providing a
map on agile scaling frameworks with their evolutionary paths. Although many
methodologists started creating their first frameworks between 2001 and 2011,
most guides on these frameworks were published later on. Our findings show a
cluster of framework publications between 2011 and 2018, confirming the rising
industry interest in scaling the agile methods. We identified 12 reasons behind
the creation of the agile scaling frameworks. We revealed two new reasons which
were not reported by the existing literature on agile development: descaling large
product organizations into smaller independent entities and improving customer
involvement. Further, the methodologists claimed 30 different benefits of adopt-
ing their frameworks related to business, product, organizational, and cultural
aspects. The methodologists also reported two new benefits which were not
described in the previous literature: reducing headcount and fostering servant
leadership. The methodologists recognized 22 challenges in the adoption of the
frameworks of which two were newly discovered in our study, i.e., using frame-
works as cooking recipes and using frameworks without understanding for what
reasons they should be applied.

We encourage researchers to investigate further how contextual factors, such
as complexity, multi-product development, or agile maturity, impact a scaling
framework’s selection. We call for cross-case analyses to compare the adoption
of agile scaling frameworks based on common comparison characteristics.

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
Towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012). Special Issue: Agile Development

Evolution of the Agile Scaling Frameworks 137

2. Kettunen, P.: Extending software project agility with new product development
enterprise agility. Softw. Process Improv. Practice 12(6), 541–548 (2007)

3. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
4. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development

at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empir. Softw. Eng. 23(1), 490–520 (2017). https://doi.org/10.1007/
s10664-017-9524-2

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

6. Uludag, Ö., Philipp, P., Putta, A., Paasivaara, M., Lassenius, C., Matthes, F.:
Revealing the state-of-the-art in large-scale agile development: A systematic map-
ping study. arXiv preprint arXiv:2007.05578 (2021)

7. Carroll, N., Conboy, K.: Applying normalization process theory to explain large-
scale agile transformations. In: Proceedings of the 14th International Research
Workshop on IT Project Management, January 2019

8. VersionOne: 14th Annual State of Agile Survey (2020). https://stateofagile.com/#
ufh-i-615706098-14th-annual-state-of-agile-report/7027494. Accessed 03 Oct 2021

9. Pries-Heje, J., Krohn, M.M.: The safe way to the agile organization. In: Proceedings
of the XP2017 Scientific Workshops, pp. 1–4. ACM, May 2017

10. Alqudah, M., Razali, R.: A review of scaling agile methods in large software devel-
opment. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 828–837 (2016)

11. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile trans-
formation at ericsson: a case study. Empir. Softw. Eng. 23(5), 2550–2596 (2018)

12. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What is large in large-scale? A Taxon-
omy of Scale for Agile Software Development. In: Jedlitschka, A., Kuvaja, P.,
Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014.
LNCS, vol. 8892, pp. 273–276. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13835-0 20

13. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on
agile methods: a comparative analysis. In: Proceedings of the 25th International
Conference on Software Engineering, pp. 244–254. IEEE, May 2003

14. Ambler, S.W.: agile software development at scale. In: Meyer, B., Nawrocki, J.R.,
Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 1–12. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85279-7 1

15. Maples, C.: Enterprise agile transformation: the two-year wall. In: Proceedings of
the 2009 Agile Conference, pp. 90–95. IEEE, August 2009

16. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

17. Uludağ, Ö., Kleehaus, M., Xu, X., Matthes, F.: Investigating the role of architects
in scaling agile frameworks. In: Proceedings of the 21st International Enterprise
Distributed Object Computing Conference, IEEE, pp. 123–132, October 2017

18. Diebold, P., Schmitt, A., Theobald, S.: Scaling agile: how to select the most appro-
priate framework. In: Proceedings of the 19th International Conference on Agile
Software Development: Companion, pp. 1–4. ACM, May 2018

19. Lin̊aker, J., Sulaman, S.M., Maiani de Mello, R., Höst, M.: Guidelines for conduct-
ing surveys in software engineering (2015)

20. Punter, T., Ciolkowski, M., Freimut, B., John, I.: Conducting on-line surveys in
software engineering. In: International Symposium on Empirical Software Engi-
neering, pp. 80–88. IEEE (2003)

https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1007/s10664-017-9524-2
http://arxiv.org/abs/2007.05578
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1007/978-3-540-85279-7_1

138 Ö. Uludağ et al.

21. Corbin, J.M., Strauss, A.L.: Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory, 3rd edn. Sage Publications Inc., Los
Angeles, Calif (2008)

22. Larman, C.: Scaling lean & agile development: thinking and organizational tools
for large-scale Scrum. Pearson Education India (2008)

23. Larman, C., Vodde, B.: Practices for scaling lean & Agile development: large, mul-
tisite, and offshore product development with large-scale scrum. Pearson Education
(2010)

24. Scaled Agile Inc.: PI Planning (2021). https://www.scaledagileframework.com/pi-
planning/. Accessed 03 Oct 2021

25. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and challenges of adopting the
scaled agile framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

26. Scaled Agile Inc.: Reasons for SAFe Adoption (2021). https://www.
scaledagileframework.com/reaching-the-tipping-point/. Accessed 03 Oct 2021

27. Paasivaara, M.: Adopting safe to scale agile in a globally distributed organization.
In: Proceedings of the 12th International Conference on Global Software Engineer-
ing, pp. 36–40. IEEE, May 2017

28. Gustavsson, T.: Dynamics of inter-team coordination routines in large-scale agile
software development. In: Proceedings of the 27th European Conference on Infor-
mation Systems, pp. 1–6, June 2019

29. Heikkilä, V.T., Paasivaara, M., Rautiainen, K., Lassenius, C., Toivola, T.,
Järvinen, J.: Operational release planning in large-scale scrum with multiple
stakeholders-a longitudinal case study at f-secure corporation. Inf. Softw. Tech-
nol. 57, 116–140 (2015)

30. McMunn, D., Manketo, P.: Building strong foundations... underwriting fannie
mae’s agile transformation. In: International Conference on Agile Software Devel-
opment, Agile Alliance, August 2017

31. Michelson, C., Adolph, S.: Bias from the bottom: A different way to bootup a safe
train. In: International Conference on Agile Software Development, Agile Alliance
(2019)

32. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and Challenges of Adopting the
Scaled Agile Framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

33. Putta, A., Paasivaara, M., Lassenius, C.: How are agile release trains formed in
practice? a case study in a large financial corporation. In: Kruchten, P., Fraser, S.,
Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 154–170. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19034-7 10

34. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: Practices,
challenges, and success factors. Journal of Software: Evolution and Process 30,
(2018)

35. Uludağ, Ö., Kleehaus, M., Dreymann, N., Kabelin, C., Matthes, F.: Investigating
the adoption and application of large-scale scrum at a German automobile manu-
facturer. In: Proceedings of the 14th International Conference on Global Software
Engineering, pp. 22–29. IEEE, May 2019

https://www.scaledagileframework.com/pi-planning/
https://www.scaledagileframework.com/pi-planning/
https://doi.org/10.1007/978-3-030-03673-7_24
https://www.scaledagileframework.com/reaching-the-tipping-point/
https://www.scaledagileframework.com/reaching-the-tipping-point/
https://doi.org/10.1007/978-3-030-03673-7_24
https://doi.org/10.1007/978-3-030-19034-7_10

Evolution of the Agile Scaling Frameworks 139

36. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Cham (2012)

37. Dingsøyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier.
IEEE Softw. 36(2), 30–38 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Coordination Strategies: Managing Inter-team
Coordination Challenges in Large-Scale Agile

Marthe Berntzen1(B) , Viktoria Stray1,2 , and Nils Brede Moe2

1 University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
{marthenb,stray}@ifi.uio

2 SINTEF, Strindveien 4, 7465 Trondheim, Norway
{viktoria.stray,nils.b.moe}@sintef.no

Abstract. Inter-team coordination in large-scale software development can be
challenging when relying on agile development methods that emphasize iterative
and frequent delivery in autonomous teams. Previous research has introduced the
concept of coordination strategies, which refer to a set of coordination mecha-
nisms to manage dependencies. We report on a case study in a large-scale agile
development program with 16 development teams. Through interviews, meeting
observations, and supplemental document analyses, we explore the challenges to
inter-team coordination and how dependencies are managed. We found four coor-
dination strategies: 1) aligning autonomous teams, 2) maintaining overview in
the large-scale setting, 3) managing prioritizations, and 4) managing architecture
and technical dependencies. This study extends previous research on coordination
strategies within teams to the inter-team level. We propose that large-scale organi-
zations can use coordination strategies to understand how they coordinate across
teams and manage their unique coordination situation.

Keywords: Coordination strategies · Coordination mechanisms · Dependency
management · Large-scale agile · Inter-team coordination · Software
development

1 Introduction

Digital transformation drives new sectors, such as the finance and transportation sectors,
to make use of agile development methods, often in large-scale settings. Despite the
popularity of agile, there are new and complex challenges associated with agile meth-
ods in large-scale settings due to the unavoidable coordination required when many
development teams work together [1–3]. When many teams work simultaneously with
large code bases, achieving technical consistency across teams, managing stakeholders,
balancing a shortage of expert resources, and aligning autonomous teams can become
problematic [3, 4]. Practitioners of large-scale agile need to understand how to orga-
nize for scale, select optimal large-scale practices, and enable inter-team knowledge
sharing [1, 5]. Development teams need to manage dependencies between, for example,
requirements, testing, integration, and deliverables, working together with requirement

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 140–156, 2021.
https://doi.org/10.1007/978-3-030-78098-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_9&domain=pdf
http://orcid.org/0000-0003-1455-2562
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0003-2669-0778
https://doi.org/10.1007/978-3-030-78098-2_9

Coordination Strategies: Managing Inter-team Coordination Challenges 141

engineers, architects, testers, other teams, and support and expert roles, all while keep-
ing in line with the team’s goals and prioritizations [3]. Many of these aspects represent
coordination challenges, as several parts of the development organization depend on
each other to align their efforts to deliver a software product.

Coordination is often defined as managing dependencies between activities [6], and
effective coordination is considered a critical element for large-scale software develop-
ment [5, 7]. Successful coordination is achieved by the use of appropriate coordination
mechanisms, defined as organizational arrangements such as meetings, roles, tools, and
artifacts associated with one or more dependencies that allow individuals or teams to
realize collective performance [8]. When a set of coordination mechanisms are used to
manage dependencies, it is knownas a coordination strategy [9].Moving to the inter-team
level, coordination mechanisms, and potentially strategies, are directed at managing the
dependencies between teams [2, 10]. Examples of mechanisms include Scrum-of-Scrum
meetings and communities of practice, where representatives from each team are present
[11], as well as tools and artifacts such as inter-team task boards and project backlogs.
When mechanisms work together to address specific coordination issues, for instance
managing inter-team prioritizations, they form coordination strategies.

While there is a vast literature on coordination in agile software development,
research-based knowledge on inter-team coordination strategies is limited, as existing
empirical studies have focused on coordination strategies within the team [9, 12]. To
better understand the challenges to inter-team coordination and how they can be man-
aged, we address the following research question: How are coordination strategies used
in large-scale agile to manage inter-team coordination challenges?

We conducted a case study over six months in a large-scale program in the public
transportation sector with 16 development teams. We analyzed data from interviews and
field observations to identify the challenges. To guide our analysis, we applied concepts
from the theory of coordination in co-located agile software development [9, 12], or
the theory of coordination, for brevity [8]. This theory was developed in the context of
co-located agile teams [9]. Of particular interest to further exploration is that the theory
proposes one agile coordination strategy [9]. In large-scale contexts, there is likely to
be a mix of typical agile software development practices and more traditional practices.
Furthermore, as large-scale settings are characterized by complex dependencies [2, 3],
there may be more than one strategy at play [10, 13].

2 Background and Related Work

2.1 Managing Dependencies in Large-Scale Agile Development

Dependencies are central to the study of coordination. A dependency is defined as when
the progress of one action relies upon the timely output of a previous action or on the
presence of a specific thing, such as an artifact, a person, or relevant information [12].
Moving to the large-scale level, an inter-team dependency occurs when the output of one
team is required as input for another team’s work [2, 10]. According to a dependency
taxonomy for agile projects [12], there are eight types of dependencies, divided into
three categories: knowledge, process, and resource dependencies. Table 1 summarizes
the eight typxes of dependencies.

142 M. Berntzen et al.

Prior research suggests that there are many and complex dependencies in large-
scale agile, and that organizational context matters for large-scale coordination. Uludağ
and colleagues [14] studied recurring development patterns and presented an iteration
dependencymatrix to visualize dependencies between teams. Sekitoleko et al. [15] inves-
tigated challenges associated with communication of technical dependencies in large-
scale agile. They found challenges such as planning, task prioritization, code quality, and
integration and suggested that these challenges can be addressed by practices such as
Scrum-of-Scrum meetings, continuous integration, and working in an open space [15].
Dingsøyr et al. [5] explored coordination in a large-scale program with a high degree of
task uncertainty and interdependencies and highlighted the importance of scheduled and
unscheduled meetings for coordination by feedback. They also emphasized the need for
changing coordination practices over time [5].

Further, Gustavsson [16] studied coordination in companies that had implemented
the Scaled Agile Framework (SAFe) and found that SAFe provides several coordination
mechanisms, such as product increment planning meetings, Scrum-of-Scrum meetings,
and program task boards address inter-team dependencies. These, however, required tai-
loring to the specific contexts of each company [16]. Martini et al. [17] also highlighted
the role of context for coordination between teams. They studied inter-group interac-
tion speed in an embedded software development context, exploring how boundary-
spanning roles, activities, and artifacts mitigate challenges, with interaction hindering
speed between teams. Their findings highlight the need for boundary-spanning mecha-
nisms across teams and organizational levels for software architecture, processes, shared
responsibilities, and managing expectations [17].

Table 1. Types of dependencies that can affect agile project progress [24, 25]

K
no

w
le

dg
e A form of information is

required for a project to
progress

Requirement: Domain knowledge or a requirement is not
known and must be located or identified.
Expertise: Information about task is known only by
certain persons or groups.
Historical: Knowledge about past decisions is needed.
Task Allocation: Who is doing what, and when, is
unknown.

Pr
oc

es
s A task must be completed

before another task can
process and this affects

project progress

Activity: An activity is blocked until another activity is
complete.
Business process: Existing business processes cause a
certain order of activities.

R
es

ou
rc

e

An object is required for a
project to progress

Entity: A resource (person, place or thing) is not
available.
Technical: A technical aspect of development affects
progress, such as when two software components must
interact.

Coordination Strategies: Managing Inter-team Coordination Challenges 143

2.2 Coordination Strategies

One way to manage dependencies in software projects is to implement coordination
strategies [9]. The idea that coordination mechanisms can be used together in the form
of coordination strategies is not entirely new. Within software engineering, the concept
has been explored conceptually in co-located [9, 12] and global software development
settings [18]. However, empirical descriptions of the concept are scarce.

Xu [13] proposed eight coordination strategies for large agile projects for empiri-
cal exploration, focusing on decision-making, communication, and control as relevant
dimensions of large-scale coordination and encouraging empirical exploration of these.
Li and Maedche [18] conceptually explored coordination strategies within teams in
a distributed setting, suggesting that increased communication within the team facili-
tates shared understandings within the distributed team. Scheerer and colleagues [10]
described eight types of inter-team coordination strategies, from purely mechanistic to
cognitive and organic, and suggested that future research further explore the concept.
These studies recognize that situational factors influence coordination strategies, which
should also be relevant to the large-scale inter-team context, where teams are often
surrounded by complex organizational contexts [19].

In this paper, we apply concepts developed in the theory of coordination [9, 12]. We
chose this theory as a lens for investigating inter-team coordination because it provides
a framework for analyzing dependencies and coordination mechanisms specific to agile
software development and captures both explicit (such as a Kanban board) and implicit
forms of coordination (such as shared knowledge) [5, 9]. The theory, and in particular the
coordination strategy concept, is relevant also to large-scale contexts because it takes into
account that project complexity and uncertainty, as well as the organizational structure,
influence coordination [9]. The theory of coordination proposes that coordination in
agile software development results from a combination of various agile coordination
mechanisms, such as daily stand-up meetings, product backlogs, and software demos,
which address dependencies in different ways [9, 12, 20]. The theory further proposes
that appropriate coordination strategies enable effective coordination [20].

A coordination strategy comprises three components: coordination mechanisms for
synchronization, for structure, and for boundary spanning [9, 20]. Synchronization activ-
ities and artifacts refer to coordination mechanisms that promote shared understand-
ing. Structure coordination mechanisms include the proximity, availability, and substi-
tutability of personnel, whereas boundary spanning refers to mechanisms that involve
interaction outside the boundaries of the development team [9, 20].

3 Method and Analysis

This study reports on a case study conducted in a Norwegian public sector organization.
This organization has an ongoing development program, referred to as the PubTrans
program. The data reported in this study was collected over six months during fall 2019.
The case study design was chosen because the research-based knowledge on inter-team
coordination of software development activities is limited, and case studies can provide
detailed insights into the topic under investigation [21]. We took an ethnographic app-
roach to the data collection, focusing on obtaining rich descriptions of the development

144 M. Berntzen et al.

process and the participants’ experiences [22], complemented by in-depth interviews
and document analyses.

3.1 Case Description

The PubTrans development program was established in 2016 following a public trans-
portation reform and aims to develop a new micro-services-based platform. The new
platform provides, among others, a sales platform for travel operators and a trip planner
for travelers. Many languages and technologies were used across the program, and new
technologies and tools were adopted as development needs arose. The new cloud-based
platform ran on Google Cloud Platform with Kubernetes. Central languages and tech-
nologies in use included Kotlin and Java for back-end, and JavaScript (Node.js) and
React-Native for front-end. They also used support tools such as Grafana, Prometheus,
Slack, JIRA and Confluence. The development organization was mostly co-located with
16 teams, each responsible for their part of the overall software product.

Since the outset, PubTrans has worked with agile methods and autonomous teams.
The agile values were largely embraced on the organizational level and the develop-
ment management had top managements’ support on working in agile ways of working.
PubTrans did not subscribe to any specific agile methodology or large-scale agile frame-
work, such as Scrum or SAFe. Rather, the development teams had the autonomy to
choose which agile practices to use. Most teams had chosen to adopt practices from
Scrum such as sprints, stand-up meetings and retrospectives with varying frequency. In
addition to developers, all teams included a team leader, a tech lead (a form of team
architect), and a product owner. In addition, there were several inter-team roles such as
system-, cloud-, and security architects, as well as product and development managers.

Since the initial architecture and team organization was designed in 2016, PubTrans
grew from five initial teams to the current large-scale set-up with 16 permanent teams.
The teams were organized based on product areas, and the number of members per
team varied from five to over fifteen team members. The program was initiated as a
development project in 2016 but was transformed to an ongoing development program
in 2018. Along the way, they went through several organizational phases and how to
best align the team organization with the technical platform was an ongoing discussion.

While the new micro-services-based platform was being developed, PubTrans also
delivered services both to their clients (typically public transportation operators) and to
the general public through the old, monolithic system. More functionality was added to
the new platform continuously and needed to be compatible also with the old system.
Many dependencies existed between these systems, and all teams had dependencies to
other teams. In addition, there were inter-team knowledge and process dependencies
related to, for instance, the delivery sequences. Accordingly, the need for coordination
across teams was high.

3.2 Data Collection and Analytical Procedures

During fall 2019, we spent a total of 24 full days at the PubTrans site. The observations
consisted of more than 44 h of observation, including a total of 25 meetings. We con-
ducted 12 interviews with team members and program managers. Additionally, we had

Coordination Strategies: Managing Inter-team Coordination Challenges 145

Table 2. Data sources

Data type Description
Interviews 3 program architects, 3 tech leads, 1 product owner, 1 team leader, 4

program managers.

Observations Twenty-four days on-site including observation of 6 tech lead forums,
6 stand-up meetings, 4 product owner meetings, 4 client meetings, 3
program demos, 2 retrospectives

Supplemental
documents

Jira and Confluence documentation such as product backlog and priori-
tization documents, Slack channels; meeting agendas

frequent informal conversations with the program members. We also inspected docu-
ments, logs, and other textual sources for supplemental analysis. The data sources are
specified in Table 2. All interviews were tape-recorded based on participants’ consent
and later transcribed by the first author. The duration was 62 min on average. All inter-
views were semi-structured, and although the conversations developed naturally, we
used an interview guide with questions relating to participants’ work habits and inter-
team coordination practices. Questions included, “What challenges do you face working
with other teams or roles in the program?,” “Can you describe how you interact with
members of other teams?,” and “What may hinder teams from completing their tasks?”.

When analyzing the data, we triangulated between sources to strengthen the accuracy
and compellability of our findings [21]. By interviewing participants from different parts
of the development organization, we gained access to participants’ understanding of
their work routines across teams and across levels of responsibility. By observing the
development process as it unfolded over time and examining associated documents, we
obtained context to the interview statements. Together, these data sources provided us
with rich information for addressing our research question.

The data was coded in NVivo 12 by the first author, who knew the case in detail. To
ensure validity, all emerging categories and concepts were negotiated during a series of
discussions among the authors, and some of the material was coded by all authors before
discussion. The analytical coding proceeded incrementally. During first-cycle coding,
we used descriptive and holistic coding to understand “what is going on” in the data
[23] and to identify the broad challenges observed and described by the participants.
In the second stage, we categorized the challenges that were relevant across teams
and identified the various dependencies and coordination mechanisms associated with
inter-team challenges using focused coding [23]. Finally, we compared the challenges
identified in the first stagewith the dependencies and relatedmechanisms.We considered
something a coordination mechanism if it was associated with one or more distinct
dependencies, and a coordination strategy when the mechanisms addressed the same
set of challenges [9]. As the mechanisms included operated at the inter-team level, we
considered them all to be boundary-spanning [9].

146 M. Berntzen et al.

3.3 Limitations and Threats to Validity

All empirical studies have limitations that might threaten the validity and reliability of
the results. One limitation of this study is the reliance on a single case. As such, the
general criticisms of single-case studies, including the replicability and generalizability
to other settings, apply to our study [21]. However, there is theoretical generalizability
in the concepts applied, as the challenges we report on are not expected to be unique to
this setting [21]. A second limitation relates to the reliance on interviews as a major data
source. However, we complemented the interviews with extensive on-site observations
and supplemental documents. As such, data triangulation allowed us to obtain context
for the interview statements and strengthen our findings [21]. A third limitation is related
to the number and types of meetings we observed. If we had observed more and differ-
ent meetings, such as more retrospectives, we might have found other challenges and
mechanisms. However, our extensive on-site presence allowed us to observe many of
the challenges in practice.

4 Findings

In this section, we present four coordination strategies that were used to manage chal-
lenges with inter-team coordination in the large-scale program. Below, we describe the
challenges, dependencies, and corresponding coordination strategies in more detail. The
coordination strategies were: 1) aligning autonomous teams, 2) gaining and maintaining
overview across teams, 3) managing prioritization issues, and 4) managing architecture
and technical dependencies. Table 3 provides an overview.

4.1 Strategy 1: Aligning Autonomous Teams

One set of challenges was related to aligning autonomous teams in the large-scale pro-
gram. Providing the teams with a high degree of autonomy resulted in process depen-
dencies such as teams blocking each other, as well as the surrounding organizational
business processes, which could cause delays that slowed down the speed of the pro-
gram. Additionally, lack of alignment resulted in technical dependencies not being suf-
ficiently managed. PubTrans aimed to facilitate an agile environment and culture based
on autonomous teams. For instance, the teams could choose whether they wanted to
apply Scrum, Kanban, Scrumban, or any other agile method. Although autonomy was
appreciated, there were challenges related to the freedom of choice when teams operated
with different definitions of done, had different testing regimes, and different ways of
updating their documentation. One informant stated, “Here, one has chosen a model
with autonomous teams that are allowed to define their own ways of working. If there
are sixteen teams here, there are sixteen different ways of doing things” [Manager 4].

The missing alignment was also observed when we examined the teams’ Jira and
Confluence pages; some had well-described processes and documentation, whereas oth-
ers had little to none. In addition, missing alignment contributed to a lack of technical
consistency across teams. “We have allowed people to develop the new APIs team by
team. That means they are not uniform” [Manager 2]. Although team autonomy was

Coordination Strategies: Managing Inter-team Coordination Challenges 147

Table 3. Challenges and coordination mechanisms in the four strategies

Challenge description Coordination mechanisms

St
ra

te
gy

 1
:

A
lig

nm
en

t

Choice of agile methods result in
different team routines:
- Different definitions of done
- Different development routines
- Different testing routines
- Lack of technical consistency
Related dependencies:
Process: Activity and Business process
dependencies
Resource: Technical dependencies

Synchronization activities: Inter-team
stand-ups and status meetings, tech lead
forum
Synchronization tools and artefacts:
Shared routines for deliveries and
documentation and testing, common
definition of done, test team, platform team
to support teams with shared technologies
Structure mechanisms: Co-location, open
office space

St
ra

te
gy

 2
:

O
ve

rv
ie

w

Large-scale makes it hard to main-
tain overview:
- Feeling out of sync with other teams
- Problems with information flow
- Task-related communication across
teams
- Locating people and information
Related Dependencies:
Knowledge: Expertise, Task allocation,
Requirement dependencies

Synchronization activities: Inter-team
stand-ups and status meetings, program
demo
Synchronization tools and artefacts:
Slack, shared backlog in Jira, organization
map on Confluence, program roadmap,
Objectives and Key Results
Structure mechanisms: Open office space,
co-location

St
ra

te
gy

 3
:

Pr
io

rit
iz

at
io

n

Hard deadlines and many clients lead
to prioritization challenges:
- Stakeholder expectation management
- Time and delivery pressure
- Lack of time to prioritize quality work
- Changing prioritizations
- Lack of clarity in the prioritization
process
Related Dependencies:
Process: Activity dependencies
Resource: Entity and technical depend-
encies

Synchronization activities:
Inter-team stand-up meetings, Product
owner meetings
Synchronization tools and artefacts:
Prioritization task board, shared backlog
Structure mechanisms: Temporary team
arrangements (task force teams, taking on
other teams’ tasks)

St
ra

te
gy

 4
:

A
rc

hi
te

ct
ur

e

Complex technical dependencies:
- Two systems in use in parallel
- Teams becoming bottlenecks
- Large code bases of some teams
- Risk of repeating old patterns
- Vulnerability for errors
Related Dependencies:
Process: Activity dependencies, Re-
source: Technical dependencies

Synchronization activities:
Tech lead forum
Synchronization tools and artefacts:
Objectives and Key Results, platform team
Structure mechanisms: Temporary team
arrangements

Note. Some coordination mechanisms are recurring across the strategies as they ad-
dress more than one dependency.

appreciated, teams also saw the need for alignment across teams: “It is great that the
teams are free and have a lot of responsibility. But it is also essential to have arenas
where we can discuss and share knowledge across teams so that it’s not spinning out of
control” [Tech lead 2].

148 M. Berntzen et al.

The challenges described above were addressed with several coordination mecha-
nisms. PubTrans implemented shared documentation routines onConfluence, and shared
delivery routines where a shared definition of done and common testing routines was
central. Furthermore, they had established a platform team whose main responsibility
was to support the development teams by “developing functionality across teams, but
also handling things like automatic builds, deploying, monitoring and logging overall
across the teams” [Team leader].

Other mechanisms included synchronization activities such as inter-team stand-ups
for alignment of prioritizations, a test team that worked with testing across the teams,
and a tech lead forum for addressing technical dependencies and architecture. Together,
these mechanisms form a coordination strategy aiming to align the autonomous teams
toward collective deliveries, while at the same time allowing the teams autonomy within
appropriate boundaries.

4.2 Strategy 2: Gaining and Maintaining Overview Across Teams

Another major challenge to inter-team coordination was the difficulty of maintaining
overview across teams. In the interviews, participants described challenges such as being
out of sync with other teams; problems with the information flow; locating information
concerning other teams; and insufficient communication about tasks across teams. One
informant explained, “Right now, it is a bit hard to know the status of any given team.
I don’t know where to find it. You need to play detective” [Product owner]. Another
said, “It is an information problem. The technical state is not visible across teams and
this is the greatest hindrance to addressing inter-team technical problems” [Architect
2]. These challenges are examples of knowledge dependencies, such as expertise, task
allocation, and requirement dependencies, because there is a need to know something
about other teams in order to proceed on some action. In the team area, we observed
expertise dependencies in practice when frustrated developers discussed whom they
should talk to and who knew what in other teams.

The challenge with overview across teams was addressed by several coordination
mechanisms. For instance, the office space supportedoverviewandknowledge sharingby
both providing open spaces for conducting inter-team stand-up meetings and supporting
spontaneous informal coordination.Aweekly programdemowhere the teams showcased
their latest work was conducted in an open workspace (shown in Fig. 1). In addition,
a program roadmap was visible to all in the open work space. To help team members
identify each other, the program had a Confluence document with the names and photos
of all members of each of the 16 teams, as well as other employees in the program, such
as managers and program architects.

Furthermore, Slack channels and direct messages provided the developers with an
easy way of sharing knowledge and reaching out to people they did not know. PubTrans
also used Objectives and Key Results (OKRs), which is goal-setting framework where
objectives and corresponding key results are defined for individual teams and at the
organizational level tomeasure progress over a set time period, typically per quarter [24].
The company used OKRs as a mechanism to provide an overview of the increasingly
complex development process. OKRswere formed for all teams during off-site quarterly
workshops where product owners, team leaders, and program architects and managers

Coordination Strategies: Managing Inter-team Coordination Challenges 149

Fig. 1. The office space with the program’s roadmap easily visible

worked iteratively with forming team-specific objectives and key results. Because of the
many inter-team dependencies, it was important to compare and discuss OKRs across
teams and adjust as needed. “The goal of using OKRs is to get an overview and gain
insight in the organization. OKR allows us to work more structured, and gain overview
of ‘this is where were we are now’. Then we can assess what to focus on and use it to
take action.” [Architect 1]. Together, these activities and artifacts form a coordination
strategy for gaining and maintaining overview across teams.

4.3 Managing Prioritization Issues

Because PubTrans was started as a result of a political reform, there were often hard
deadlines the program needed to adhere to, causing time and delivery pressure. One tech
lead explained how this impacted the prioritizations they could make: “Because of these
deadlines we are forced to make very hard prioritizations. And that is something I’m
sure the clients feel. It’s a bit painful from time to time” [Tech lead 1]. PubTrans had
many clients with different needs and the program sometimes overpromised what they
were able to do. A manager explained, “Things come up from different clients that they
all expect us to solve. Sometimes we have not managed the expectations well enough,
and we may simply not have finished on time” [Manager 1]. Sometimes one team was
forced to stop working on one task to prioritize something else with higher priority,
which could cause delays for other teams. One tech lead illustrated a situation where
three teams were working together: “We were so close to finishing the feature! And then
one of the teams had to prioritize something else” [Tech lead 2].

Always chasing the nearest fixed deadlines had consequences for the overall product
quality. Informants expressed the challenge of reducing technical debt and working on
improvements:“We need mechanisms that prevent us from always rejecting improvement
work in favor of new features” [Manager 3]. Another said,“It’s all about not overloading
the team and setting aside time to prioritize improvement” [Tech lead 1].

150 M. Berntzen et al.

There was also a lack of clarity in the prioritization process. The product owners
were in charge of the functional prioritizations and were given input from four account
managers who were responsible for client communication. Furthermore, clients could
communicate directly with the teams through Slack. Although frequent communication
with the customers was important, this set-up led to some confusion. One manager
related this to the scaling of the program: “In the beginning, everything was clear. But
now, as things are expanding, these considerations of prioritizations start to matter. Who
are in charge of what is going to be prioritized? Right now, sitting in this chair, I still do
not know how our overall prioritization mechanism works” [Manager 3].

The prioritization challenges relate to process dependencies, as they impacted task
completionwhen an activity was dependent on input from several teams. They also relate
to resource dependencies as often both technical features and input from members of
other teams or program experts, such as the architects, were required to proceed.

Managing prioritization across teams was addressed with mechanisms such as tem-
porary task force teams. A tech lead explained how they had successfully assembled a
task force team to implement a feature where multiple teams were involved: “To get
things done as soon as possible, we put together members from four teams. We sat
together and held our own task force stand-ups, focusing only on what we needed to
get through” [Tech lead 2]. Furthermore, teams taking on tasks from other teams was
described as a successful mechanism when prioritizations caused delays across teams.
One team readjusted by implementing a feature for a team that had too much on their
hands instead of waiting for them to do it. “The payment solutions were implemented
fully by another team, which was a great success and one of the smarter things we have
done” [Product owner]. To manage the prioritization process, PubTrans used inter-team
status meetings for product owners and team leaders, where they discussed top prior-
ities from the different teams toward the overall deliveries. These were conducted in
front of a physical task board showcasing the most important inter-team prioritizations.
The product owners also had weekly meetings discussing the prioritizations in more
detail. Finally, a new and refined shared backlog was created to help with prioritizing
across teams and clients. Together, these mechanisms form a coordination strategy for
managing inter-team prioritization.

4.4 Managing Architecture and Technical Dependencies

The program scaled fast, growing from five teams in 2016 to 16 teams in 2019. In addi-
tion, new clients were constantly added. Scaling up meant that new technical and archi-
tectural dependencies arose; several software components from different teams needed
to interact, knowledge dependencies arose as information was required across teams,
as well as process dependencies, because development activities had to be completed
across teams before they were integrated.

In developing the new micro-services-based application, it was hard to avoid devel-
oping copies of the old system, which, according to a team leader, left them at risk of
developing a distributed monolith. “Overall, we don’t have any mechanism to protect
us from repeating old patterns. We have some teams that have been able to create some-
thing entirely new, but we also have teams that simply re-implement what they have
implemented in the past” [Team leader]. After some time, two teams who developed

Coordination Strategies: Managing Inter-team Coordination Challenges 151

key components became bottlenecks. At one point, one team’s code base was seemingly
large enough to constitute a mini version of the whole platform on which all teams
depended. Furthermore, change in one part of the code could have a significant impact
on other parts andmake the platform vulnerable: “One risk with developing a distributed
monolith with poor error handling is that if one application goes down, the whole system
goes down” [Team leader].

Several coordinationmechanismswere used to deal with these challenges. The archi-
tects formed specific OKRs to increase awareness of the technical state across teams and
to identify constraints and bottlenecks that slowed down the delivery speed. The above-
mentioned use of temporary team arrangements, the tech lead forum, as well as the
platform team, also contributed to managing technical dependencies. Together, these
coordination mechanisms form a coordination strategy for managing architecture and
technical dependencies.

The tech lead forumwasvital in this strategybecause teams learned about eachother’s
architectures and discussed their challenges in relation to each other. The forum was
described as a community of practice aimed at sharing architecture-related knowledge
and providing an overview of technical dependencies across all the teams. The forummet
biweekly, facilitated by one of the program architects and accompanied by a Confluence
page where meeting agendas and minutes were posted. One tech lead stated, “I think
the forum is great! It is very good to learn about other teams and what they do and what
challenges they have. It’s very helpful” [Tech lead 2].

While valuable, such synchronization activities introduced new challenges, as all
teams needed to be represented. Challenges included keeping the meetings relevant for
all, engaging participants in discussions, and finding the optimal meeting size. Across
the six tech lead forums we observed, between 20 and 25 people showed up, of whom
several weremanagers whowere interested in following the discussions. Being a popular
meeting, there was a shortage of space, and at two meetings, some people had to stand
because there were no more chairs available. Despite the many participants, there were
mostly five or six people who talked. One tech lead reflected on why people did not
speak up: “It can be very quiet in tech lead forum. Maybe it is that we do not dare to
use the time of all these important people who are here” [Tech lead 2]. A final challenge
with this forum was related to its dependency on a person (entity dependency): “The
tech lead forum is currently completely dependent on the architect facilitating it; it is
not self-organizing in any way” [Team leader].

5 Discussion

In this study, we explored the research question: How are coordination strategies used in
large-scale agile to manage inter-team coordination challenges? We applied the theory
of coordination as a guiding lens and extended the coordination strategy concept to
the inter-team level. Our findings broaden the application of the theory of coordination
beyond single co-located agile teams [9, 20] and answer calls for future research on
coordination strategies [10, 13, 18].

According to the theory of coordination, a coordination strategy is a set of agile
coordination mechanisms used to manage dependencies [9, 20]. This theoretical lens

152 M. Berntzen et al.

served to understand how PubTrans worked on solving their day-to-day coordination
challenges among the 16 teams. These challenges are not unique to PubTrans, but rather
are characteristics of scaling agile [4]. The four coordination strategies we identified
from PubTrans’ coordination challenges and mechanisms were 1) aligning autonomous
teams, 2) maintaining overview in the large-scale setting, 3) managing prioritizations,
and 4) managing architecture and technical dependencies. By extending the theory of
coordination to the large-scale level, we show that the identified coordination strategies
reflect the complex environment. In large-scale settings, agile practices are often used
in combination with other organizational practices [2, 5]. We found that the four coordi-
nation strategies included both agile coordination practices, such as stand-up meetings,
demos, and task-boards, as well as non-agile practices like OKRs, task force teams, and
communities of practice.

Our findings further show that coordination mechanisms were used for several pur-
poses to address challenges and dependencies in the program, which is reflected by their
occurrence in several strategies. For instance, tools like Confluence and Slack supported
both inter-team alignment (strategy 1) and overview of team members (strategy 2), by
providing digital arenas for common documentation routines and gaining easy access
to people. Inter-team stand-up meetings provided overview of what was going on in the
teams (strategy 2) and served to manage prioritizations between teams (strategy 3). The
use of temporary team arrangements supported both inter-team prioritizations (strategy
3), as well as technological dependency management (strategy 4).

Further, PubTrans had several coordinator roles [9, 25], such as the team leaders,
product owners, and tech leads, aswell asmanagers and programarchitects.Other studies
highlight shared goals and knowledge enabled by high-quality communication between
inter-team roles [3, 25, 26]. For instance, Sablis et al. [3] emphasize the importance of
expert roles such as architects in supporting teams and that there is often a shortage of
expertise in large-scale projects. In line with this research, we found that there were
entity dependencies related to architects in facilitating the tech lead forum. Shastri and
colleagues [26] found that project managers perform important coordinating activates
such as facilitating, tracking, and negotiating project progress. This research relates to
our findings in that programmanagers facilitated the use of OKRs and supported product
owners and team leaders with inter-team prioritizations.

In large-scale software development, neither dependencies nor coordination needs
are static. We found that the coordination strategies responded to coordination problems
that emerged when the program scaled. Our findings are consistent with a study of
two large-scale programs, where coordination mechanisms did not arise as ready-to-use
procedures, but were formed during the coordination process [27].

5.1 Implications for Practice

Our findings generate a number of practical implications.While autonomous teams need
to know what others are doing, solve technical dependencies, and align their prioriti-
zations and processes with other teams [28], agile methods offer little specific advice
on how this should be implemented in large-scale settings. In line with research on
large-scale agile frameworks [16, 29] and hybrid settings [2], we found that coordi-
nation needs tailoring to the specific organizational context to cope with uncertainty,

Coordination Strategies: Managing Inter-team Coordination Challenges 153

novelty, and complexity [6, 30]. Our results show that the coordination strategy con-
cept is useful for dependency management at scale, and that large-scale agile programs
benefit from adapting coordination mechanisms to their specific needs. We suggest that
large-scale companies gather insights of their coordination challenges and dependencies
across teams and use these to understand their own coordination strategies.

With respect to the first strategy, aligning autonomous teams, we find that while
autonomous teams are central to agile, it appears important to strike a balance between
autonomy and alignment and to be flexible across the large-scale development orga-
nization [2, 4, 31]. We suggest including shared documentation and testing routines
and a common definition of done while still allowing the teams autonomy to choose
development practices in an alignment strategy.

The second strategy,maintaining overview across teams, relates to typical challenges
with knowledge dependencies as the number of teams grows so large that it is hard to
keep track of who is working on what. For this strategy, we recommend including
mechanisms such as keeping a team chart showcasing who does what in which teams,
and using communication tools that provide easy access to members of other teams,
such as Slack, and regular synchronization meetings to support overview [27].

Relating to the third strategy, managing prioritizations, PubTrans worked on estab-
lishing effective prioritization mechanisms. In line with previous studies [e.g., 5, 16,
27], we found that physical or digital prioritization boards highlight essential inter-team
prioritizations and guided teams in adjusting to each other. Another successful practice
in PubTrans was the ability of teams to take on the tasks of other teams. This flexibility
appears core to an agile culture and mindset. We recommend such practices to make the
most of a strategy for managing prioritizations. Concerning the fourth strategy, manag-
ing architecture and technical dependencies, we recommend the use of communities of
practice, such as the tech lead forum, to support management of technical dependencies
across teams [11], and establishing a platform team to support development teams [29].

6 Conclusion and Future Research

In this study, we explored the research question of how coordination strategies were
used to manage challenges with inter-team coordination in a large-scale agile program
with 16 teams.We found the coordination strategy concept useful for studying inter-team
coordination in large-scale settings. The concept provides practitioners with an approach
that is highly context-specific and flexible and thus suitable for the volatile, complex, and
ambiguous large-scale development setting. From our analysis, we found four coordi-
nation strategies: 1) aligning autonomous, 2) gaining and maintaining overview across
teams, 3) managing prioritization issues and, 4) managing architecture and technical
dependencies. We extend the coordination strategy concept to include more practices
beyond agile coordination mechanisms, as we found that the mechanisms included in
the strategies consisted of both agile practices, such as stand-up meetings and demos,
and other practices such as OKRs and a community of practice. Future research could
further explore how coordination mechanisms fit together to form coordination strate-
gies, and how to tailor them to contribute to effective coordination in large-scale settings.
We also encourage future research to explore coordinator roles in relation to inter-team

154 M. Berntzen et al.

coordination strategies. Finally, our on-site access allowed us to explore coordination in
a co-located setting. Since then, the workplace has changed, and we encourage empirical
research on coordination strategies in distributed settings.

Acknowledgements. This research was supported by the Research Council of Norway through
the research project Autonomous teams (A-teams) project, under Grant Number 267704.

References

1. Bass, J.M., Salameh, A.: Agile at scale: a summary of the 8th International Workshop on
Large-Scale Agile Development. Presented at the Agile Processes in Software Engineering
and Extreme Programming–Workshops (2020)

2. Bick, S., Spohrer, K., Hoda, R., Scheerer, A., Heinzl, A.: Coordination challenges in large-
scale software development: a case study of planning misalignment in hybrid settings. IEEE
Trans. Softw. Eng. 44, 932–950 (2018)

3. Sablis, A., Smite, D., Moe, N.: Team-external coordination in large-scale software develop-
ment projects. J. Softw. Evol. Process. e2297 (2020)

4. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

5. Dingsøyr, T., Moe, N.B., Seim, E.A.: Coordinating knowledge work in multi-team programs:
findings from a large-scale agile development program. Proj. Manage. J. 49, 64–77 (2018)

6. Malone, T.W., Crowston,K.: The interdisciplinary study of coordination.ACMComput. Surv.
(CSUR). 26, 87–119 (1994)

7. Faraj, S., Sproull, L.: Coordinating expertise in software development teams. Manage. Sci.
46, 1554–1568 (2000)

8. Okhuysen, G.A., Bechky, B.A.: 10 coordination in organizations: an integrative perspective.
Acad. Manag. Ann. 3, 463–502 (2009)

9. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile software
development projects. J. Syst. Softw. 85, 1222–1238 (2012)

10. Scheerer, A., Hildenbrand, T., Kude, T.: Coordination in large-scale agile software devel-
opment: a multiteam systems perspective. Presented at the 2014 47th Hawaii international
conference on system sciences (2014)

11. Smite,D.,Moe,N.B., Levinta,G., Floryan,M.: Spotify guilds: how to succeedwith knowledge
sharing in large-scale agile organizations. IEEE Softw. 36, 51–57 (2019)

12. Strode, D.E.: A dependency taxonomy for agile software development projects. Inf. Syst.
Front. 18(1), 23–46 (2015). https://doi.org/10.1007/s10796-015-9574-1

13. Xu, P.: Coordination in large agile projects. Rev. Bus. Inf. Syst. (RBIS). 13, (2009)
14. Uludağ, Ö., Harders, N.-M., Matthes, F.: Documenting recurring concerns and patterns in

large-scale agile development. Presented at the Proceedings of the 24th European Conference
on Pattern Languages of Programs (2019)

15. Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M., Olsson, H.H.: Techni-
cal dependency challenges in large-scale agile software development. In: Presented at the
International Conference on Agile Software Development (2014)

16. Gustavsson, T.: Dynamics of inter-team coordination routines in large-scale agile software
development. In: Proceedings of the 27th European Conference on Information Systems
(ECIS), pp. 1–16, Uppsala (2019)

https://doi.org/10.1007/s10796-015-9574-1

Coordination Strategies: Managing Inter-team Coordination Challenges 155

17. Martini, A., Pareto, L., Bosch, J.: A multiple case study on the inter-group interaction speed
in large, embedded software companies employing agile. J. Softw. Evol. Process. 28, 4–26
(2016)

18. Li, Y., Maedche, A.: Formulating effective coordination strategies in agile global software
development teams (2012)

19. Mikalsen, M., Næsje, M., Reime, E.A., Solem, A.: Agile autonomous teams in complex
organizations. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 55–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_7

20. Kanaparan, G., Strode, D.: A theory of coordination: from propositions to hypotheses in
agile software development. In: Presented at the Proceedings of the 54th Hawaii International
Conference on System Sciences (2021)

21. Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications,
Thousand Oaks (2018)

22. Sharp, H., Dittrich, Y., de Souza, C.R.B.: The role of ethnographic studies in empirical
software engineering. IEEE Trans. Softw. Eng. 42, 786–804 (2016)

23. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Thousand Oaks (2012)
24. Niven, P.R., Lamorte, B.: Objectives and Key Results: Driving Focus, Alignment, and

Engagement with OKRs. John Wiley & Sons, Hoboken (2016)
25. Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an empirical

study through the lens of relational coordination theory. In: Presented at the International
Conference on Agile Software Development (2019)

26. Shastri, Y., Hoda, R., Amor, R.: The role of the project manager in agile software development
projects. J. Syst. Softw. 173, 110871 (2021)

27. Moe, N.B., Dingsøyr, T., Rolland, K.: To schedule or not to schedule? An investigation of
meetings as an inter-team coordination mechanism in large-scale agile software development
(2018)

28. Martini, A., Stray, V., Moe, N.B.: Technical-, social-and process debt in large-scale agile:
an exploratory case-study. In: Presented at the International Conference on Agile Software
Development (2019)

29. Paasivaara, M.: Adopting SAFe to scale agile in a globally distributed organization. In: Pre-
sented at the 2017 IEEE 12th International Conference on Global Software Engineering
(ICGSE) (2017)

30. Jarzabkowski, P.A., Lê, J.K., Feldman, M.S.: Toward a theory of coordinating: creating
coordinating mechanisms in practice. Organ. Sci. 23, 907–927 (2012)

31. Moe, N.B., Smite, D., Paasivaara,M., Lassenius, C.: Finding the sweet spot for organizational
control and team autonomy in large-scale agile software development. Empirical Softw. Eng.
(2021)

https://doi.org/10.1007/978-3-030-30126-2_7

156 M. Berntzen et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Challenges of Adopting SAFe in the Banking
Industry – A Study Two Years After Its

Introduction

Sara Nilsson Tengstrand1, Piotr Tomaszewski2(B) , Markus Borg1,2 ,
and Ronald Jabangwe2

1 Lund University, Lund, Sweden
2 RISE Research Institutes of Sweden, Lund, Sweden

{piotr.tomaszewski,markus.borg,ronald.jabangwe}@ri.se

Abstract. The Scaled Agile Framework (SAFe) is a framework for scaling agile
methods in large organizations. We have found several experience reports and
white papers describing SAFe adoptions in different banks, which indicates that
SAFe is being used in the banking industry. However, there is a lack of academic
publications on the topic, the banking industry is missing in the scientific reports
analyzing SAFe transformations. To fill this gap, we present a study on the main
challenges with a SAFe transformation at a large full-service bank. We identify
the challenges in the bank under study and compare the findings with experience
reports from other banks, as well as with research on SAFe transformations in
other domains. Many of the challenges reported in this paper overlap with the
generic SAFe challenges, including management and organization, education and
training, culture and mindset, requirements engineering, quality assurance, and
systems architecture. However, we also report some novel challenges specific to
the banking domain, e.g., the risk of jeopardizing customer relations, stability, and
trust of external stakeholders. This study validates several SAFe-related challenges
reported in previous work in the banking context. It also brings up some novel
challenges specific to the banking industry. Therefore, we believe our results are
particularly useful to practitioners responsible for SAFe transformations at other
banks.

Keywords: Large-scale agile · Scaled agile framework · Banking · Interview
study

1 Introduction

Even though agile methods have become popular among all kinds of companies, the
methods were initially created for small teams and organizations. This often causes
challenges when large organizations want to go agile [1]. Several frameworks guide a
large-scale agile adoption, such as Large Scale Scrum, Disciplined Agile Delivery, and
the Scaled Agile Framework (SAFe) [2]. According to a yearly survey by VersionOne, a
company specializing in agile solutions, SAFe is the most popular framework for scaling

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 157–171, 2021.
https://doi.org/10.1007/978-3-030-78098-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_10&domain=pdf
http://orcid.org/0000-0001-7877-2121
http://orcid.org/0000-0001-7879-4371
http://orcid.org/0000-0002-2305-6352
https://doi.org/10.1007/978-3-030-78098-2_10

158 S. Nilsson Tengstrand et al.

agile in large enterprises [3]. SAFe is a set of principles and practices that aims at scaling
agile methods for large organizations.

Scaled Agile, the company behind SAFe, publishes experience reports from compa-
nies that have introduced SAFe. The financial sector, and the banking industry specifi-
cally, are represented there [2]. At the time of writing, several actors from the banking
industry are in the middle of a SAFe-transformation. Scaled Agile quotes experience
reports from SAFe introductions at banks such as Nordea, Standard Bank, and Capital
One [4], showing that SAFe is actively used in the banking industry.

As it can be expected, there are numerous challenges for both large-scale agile
transformations in general and SAFe transformations specifically [1, 2, 5]. Despite that
fact, Putta et al. [2] report a lack of scientific research on the challenges of SAFe adoptions
in general. The banking industry is no exception in this matter.

Our study aims to fill that gap by identifying the challenges for a SAFe transformation
in the banking industry. We seek an answer to the following research question:

RQ: What are the main challenges for adopting SAFe in the banking industry?
To answer this question, we conduct a qualitative survey at a large full-service bank.

The study consists of several interviews with people representing key roles involved
in the SAFe transformation. To establish how our findings fit into the existing body of
knowledge and how much they can be generalized, we compare them to the existing
research on challenges with general agile transformations and to the aforementioned
SAFe introduction experience reports.

The rest of the paper is organized as follows: Sect. 2 introduces theory on large-scale
agile software development and the Scaled Agile Framework. Section 3 presents related
work and Sect. 6 describes the research method. Section 5 presents the results of the
study; Sect. 6 discusses the results. Section 7 concludes the findings.

2 Large Scale Agile Software Development

Dikert et al. [1] define large-scale agile software development as software development
organizations with 50 ormore people or at least six teams. Agilemethods were originally
created with small and isolated teams in mind. Scaling up agile practices to larger
organizations with multiple teams poses certain difficulties. Software development in
large companies often means larger projects that span over a long period. Moreover,
there is often a need to coordinate multiple teams in the software development process.
To be able to meet the needs of large organizations, agile practices need to be applied to
the entire organization. There have been a number of scaled agile frameworks proposed
and, as mentioned, the most popular amongst them is SAFe [3].

SAFe is a set of principles and practices that make it possible to apply an agile way of
working throughout the entire organization. SAFe can be configured in different ways
and can be adapted to the specific needs of the company. The framework is built on
core values and principles and has an implementation roadmap to guide organizations
on how to go through the transformation. SAFe is suitable for companies ranging from
medium-sized, with roughly 50 employees, to large with thousands of people [6].

SAFe offers several different configurations. In the most extensive configuration,
there are guidelines for four defined levels of the organization: team, program, value

Challenges of Adopting SAFe in the Banking Industry 159

stream/solution, and portfolio. Figure 1 shows some examples of roles and activities. At
the Team level, the Scrum master, agile teams, and the product owner are operating and
deliveringworking systems at least every twoweeks. The development is primarily based
on user stories and enabler stories. At the Program level, the agile teams are coordinated
by an Agile Release Train (ART). ART consists usually of five to twelve teams that
work together coordinated by the Release Train Engineer. This level focuses on creating
artifacts such as a vision, roadmaps, and features. The Value stream level, sometimes
called the solution level, is for organizations that require additional roles to integrate
the work of complex systems that are dependent on each other. At this level, release
management roles work with economic frameworks to coordinate multiple ARTs and
value streams. The Portfolio level has the purpose of aligning the value streams from
the lower levels to meet the business goals and financial goals of both the portfolio
and the organization’s overall business goals by program portfolio management. At this
level, there are so-called Epics, which are initiatives that transcend all levels of the
organization, i.e., from the visions of the upper levels to concrete development projects
in the lower levels [7].

Fig. 1. Examples of roles and activities included at each level of SAFe

3 Related Work

This section presents individual studies on SAFe transformations from the literature,
followed by three secondary studies.

160 S. Nilsson Tengstrand et al.

3.1 Individual Case Studies

Although there is little research on SAFe transformations in the banking industry, there
are studies on large-scale agile transformations in other industries. Laanti et al. [8] have
made a case study on the organization-wide transformation at Nokia and found that the
main group of challenges is related to the deployment of agile methods and the second
largest group of challenges is managing and planning requirements according to agile
methods. Paasivaara et al. [9] have made a case study on Ericsson’s large-scale agile
transformation and experienced challenges such as change resistance, lack of training and
coaching, and that the surrounding organization was still in “waterfall mode”. Paasivaara
et al. [10] have further made a case study on the SAFe transformation at Comptel, a
globally distributed software development company. In the case of Comptel, challenges
such as lack of early training sessions and change resistance are reported.

Several white papers reporting challenges from SAFe transformations in full-service
banks are available on the Scaled Agile website. Nordea introduced SAFe in 2014. One
challenge that was reported is that different teams in the same Agile Release Train were
frustrated because the delivery streams were not in unison, meaning it was not clear
what was supposed to be delivered. However, the so-called Program Increment (PI) ses-
sions, which is a planning event preceding the PI, which in its turn is a 10-week period
consisting of five sprints, were reported as a successful way of uniting the teams [11].
Initio, a business consultancy firm, has analyzed the effect of implementing a SAFe
transformation at ING Benelux, BNP Paribas, Deutsche Bank, and SimCorp and reports
lessons learned from the transformations. Observations include that changes need to
happen incrementally by doing small experiments frequently. Moreover, they recom-
mend a close collaboration with senior management and training senior management in
SAFe principles and practices [12]. The SouthAfrican Standard Bank reveals some chal-
lenges when transforming their company according to SAFe. Standard Bank rolled out
a few agile teams but experienced difficulties when scaling up the agile methodologies
and having teams working together [13]. Johnston & Gill [14] have further investigated
the case of Standard Bank and found that it was challenging to redefine the project
manager role, specifically replacing the command-and-control leadership style with a
coaching one. Furthermore, it was difficult for higher management to understand the
long term benefits of the transformation. Making tradeoffs between quality and time as
well as requirements prioritization have also been listed as challenges. The American
Bank Capital One reports that it was hard for teams to accept the change and that early
on in the transformation, it was difficult for teams to deliver independently because of
dependencies outside of the teams [15].

Berkani et al. conducted a case study on an agile transformation in a French central
bank [16]. The study is motivated by the research gap on how a company goes from
experimenting with agile methods to establishing agile methods as a natural part of the
organization. The study lists factors for a successful implementation in a large organiza-
tion such as a reorganization of the Project Management Office and IT projects depart-
ment, and generalizations of internal agile methods from a top management perspective.
However, the study does not describe challenges related to the transformation.

Challenges of Adopting SAFe in the Banking Industry 161

3.2 Systematic Literature Reviews

We have identified three different systematic literature reviews that summarize and cat-
egorize findings from studies on large scale agile transformations [1, 2, 5]. Figure 2
summarizes the categories of challenges found in these studies. The first two studies
focus on large-scale agile transformations in general, while the third study focuses on
SAFe transformation in particular. In the first study by Dikert et al., the category where
most challenges are reported is “agile difficult to implement” and an example of a chal-
lenge in that category is that agile is customizable poorly [1]. The second study byUludag
et al. reports most challenges with coordinating multiple agile teams that work on the
same product, which is a challenge in the “communication and coordination” category
[5]. In the third study by Putta et al., which focuses specifically on SAFe transforma-
tions, the most common challenge is change resistance, found in the “organizational and
cultural” category [2].

Fig. 2. Categories of challenges presented in three different systematic literature reviews. Note
that the ordering within each column does not convey any particular meaning.

162 S. Nilsson Tengstrand et al.

4 Method

Figure 3 shows the research strategy. The study is exploratory since it seeks new insights
into the SAFe transformation challenges in the case company and the banking industry
in general.

Fig. 3. The research strategy for the study

In order to establish the current body of knowledge with regards to the agile trans-
formations and challenges associated with them we have performed a literature review.
The findings from the literature review, primarily from the existing systematic literature
reviews, formed a base for an interview study that we conducted in a large bank. The
purpose of the study was to identify the challenges the bank faced during the SAFe
transformation. On top of that we have looked into a number of white papers where
other banks described their own experiences from agile transformations. Finally, we
have compared and synthesized the results.

The company where the interviews were performed is a large full service bank with
services such as consumer banking, investment banking and trading. Examples of con-
sumer banking services are customer saving accounts andmortgageswhereas investment
banking includes services such as assisting companies in mergers and acquisitions. The
bank has physical branches where they offer face-to-face services to their customers as
well as online presence. Furthermore, the case company operates in several countries and
has over 12,000 employees globally. The bank has a large IT department that is respon-
sible for customer facing products, like internet banking, but also products facilitating
internal operations, like digital meeting platforms.

The goal of the SAFe transformation under study is to make the entire company
operate in an agile manner. The bank has been transforming according to SAFe since
2018 and has a handful Agile Release Trains in operation. The bank chose SAFe as it was
considered to have the highest chance to be accepted and trusted by decision-makers.
Another reason for selecting SAFe was the standardization of roles and practices, that
makes it easier to both educate employees and recruit new ones. The company has
previous experience with agile on a smaller scale, and some individual teams apply agile
practices in their daily work.

Challenges of Adopting SAFe in the Banking Industry 163

Prior to the interviews, we created a list of categories where the challenges have
been previously identified based on the input from literature reviews [1, 2, 5]. To assure
completeness, we ensured that all categories identified by the three systematic literature
reviews fit into the proposed categories. On top of that, we added a “Banking specific”
category to capture the challenges that are specific to the domain under study. Figure 4
shows the resulting categories. These categories were used as a base for each interview.
During the interviews, the interviewees were asked if the category was relevant for their
transformation, and to provide examples of challenges they faced.

Fig. 4. The different categories of challenges in a SAFe transformation used as a foundation in
the study. The references relate to the challenges reported in previous secondary studies, see Fig. 2.

The interviews were performed with four representatives from the bank. The sam-
pling of the interviewees was motivated by their experience and expertise in the SAFe
transformation in the bank. They all belong to the selected group of individuals who
were driving the agile transformation in the company. As such, they are expected to
have wide knowledge of obstacles and challenges not only in their respective areas, but
also in the bank in general. Dealing with such challenges is an important part of their
daily work.

A semi-structured interview is common to use in such studies, as such interviews are
exploratory and descriptive [17]. The use of interviewswith both open-ended and specific
questions allows for answers with unforeseen information but still makes sure that the
interview stays on topic. Since the respondents have different roles in the transformation,
they were not asked the exact same questions. However, each interview followed the
same pattern. We started with establishing some background information about the
interviewees and their roles in the agile transformation. After that we went through
the categories from Fig. 4. For each category the interviewees were asked to provide
information about the challenges that the bank faced in the respective area.

To ensure that the responses were interpreted correctly, the transcript was sent to
the interviewees for validation. Based on the transcripts, each of the three involved
researchers (authors 1–3) performed an independent identification and categorization of
the challenges. Later, a workshop was arranged to agree on a joint list of categorized
challenges. The final list was compared to the findings from other studies.

5 Results

The results are summarized in Table 1 and further elaborated in this chapter.

164 S. Nilsson Tengstrand et al.

Table 1. The resulting list of challenges

Management and organization

A1. Difficult to adapt existing internal processes to the agile development practices

A2. Difficult to define and adapt to new roles

A3. Difficult to create a shared vision and align the entire organization around common goals

A4. Challenge to make the entire organization to work agile

A5. Hard to coordinate and align agile development in a distributed organization

Education and training

B1. Competency gap between old and new roles

B2. Difficult to achieve optimal time planning for the training activities

B3. Need for tailoring of training to meet different needs in the organization

Culture and mindset

C1. Individual resistance to change

C2. Change is discouraged in the banking industry

C3. Banking values traditions and stability, implies difficulties for transformation

Requirements engineering

D1. Difficult to prioritize requirements

D2. Difficult to break down requirements

D3. Hard to find a balance between specificity and time

D4. Requirements in SAFe defined differently, new way of dealing with requirements

Quality assurance

E1. Difficult to balance speed and quality

E2. Challenge to increase test automation

Systems architecture

F1. Legacy systems are not easily adopted to agile ways of working

F2. Complexity and interdependencies between legacy systems are hard to deal with

Banking specific

G1. External rules and regulations complicate transformations in the banking industry

G2. Big transformations may adventure the external stakeholder trust

Management and Organization (A): In general, software development teams are
more likely to have the knowledge or even previous experience with agile methods
and the transformation might therefore not be as challenging for them as it is for other
departments. The challenge is instead to integrate and engage every unit that are in
a large organization in the SAFe transformation, especially if they have traditionally
been working in non-agile ways. This challenge is exacerbated when developers are not
collocated.

Challenges of Adopting SAFe in the Banking Industry 165

Education and Training (B): The case company faces a competency gap in profiles of
old and new roles as the transformation is taking place. But despite the positive attitude
on employees’ competency, there are difficulties with bridging the competency gap that
the SAFe transformation requires. This highlights that there is need for better training
when adopting SAFe. To be able to adopt SAFe successfully, it is important to educate
all Scrum masters of the purpose and the principles behind SAFe for them to, in turn,
be ambassadors within their teams. However, the case company faced difficulties in
providing effective training activities. The main issues relate to the need for tailoring
training to the companies’ and needs, and also finding optimal time for training and
minimizing impact on productivity.

Culture and Mindset (C): Themain challenge of adopting SAFe is that the employees
are not used tomaking changes. Itwas reported that there is no company infrastructure for
supporting change and transformation management, which leads to people not wanting
or expecting change. One interviewee mentioned that the banking industry in general
values traditions and that many people are used to working in a way where it is easier to
predict outcomes and to make long-term planning, in contrast to agile methods. The case
company has a successful business, and it is then hard for some employees to understand
why a transformation as big as adopting SAFe should be made.

Requirements Engineering (D): The traditional requirements engineering role has
faced one of the most significant changes in the transformation. One interviewee men-
tioned that it is a challenge to change the requirements process to instead begin with
expressing high-level business needs that the development team should build from, rather
than beginwith a complete list of requirements as in the previouswayofworking. In addi-
tion, rationale for requirement prioritization from upper management is not clearly com-
municated to developments. The reason for this might be, according to one interviewee,
that the SAFe transformation was started at the bottom of the organization.

An interviewee revealed that there is a problemwith teams viewing agile epics as just
a high-level requirement that should be broken down into smaller requirements when it
should instead be viewed as a placeholder for communication. An epic should be tied
to a story so that everyone involved understands what is desired to be achieved. By
communicating the epic as a story instead of through conventional documentation, the
chance of success increases, as stated by the interviewee. In the case company, this has
shown to be a long process, taking up to three years before the new way of dealing with
requirements has become universally accepted.

Quality Assurance (E): In a more traditional development process, software testing
occurs primarily towards the end of the process. On the other hand, agile methods
strive for built-in-quality where testing takes place continuously in the process. One
interviewee reported that when changing the way of working with testing, the case
company faces several challenges. One reported challenge is building a foundation for
automated testing, and another one was the challenge of balancing quality and time.

Systems Architecture (F): One challenge mentioned in the interviews is that the com-
plexity of the systems makes it difficult to work according to SAFe. Dependencies

166 S. Nilsson Tengstrand et al.

between systems and having many systems are all impediments for the SAFe transfor-
mation. The complexity of the systems makes it harder for the case company to deliver
customer value for every sprint (i.e., every two weeks), e.g., compared to a fast-moving
small startup.However, according to the interviewees, it will never be relevant to increase
the sprint length.

Banking Specific (G): The case company’s reputation is dependent on releasing reli-
able products and services that people can trust. However, balancing reliability and
frequent releases is a delicate issue. The interviewees mentioned the risk of adventuring
external stakeholders’ trust when working with more frequent releases. Simultaneously,
new and sometimes unpredictable regulations and quickly changing demands in themar-
ket put pressure on the case company’s ability to be flexible. In an industry where more
niche banks takemarket shares, the competitive landscape puts pressure on the large full-
service banks to become fast and flexible while not jeopardizing the trust and loyalty of
external stakeholders that are more used to stability and a slow pace of changes.

6 Discussion

The challenges of adopting SAFe can vary between different banks. We believe that by
comparing the study result with other experience reports some common challenges can
be identified. All the challenges that were found in the case company are listed in Table
1. We have found that many of them are also mentioned in experience reports from other
banks, or even in other industries.

We show that the case company faced several challenges in the “management and
organization” category. Some of them are also reported by other banks. Capital One
[15] reports dependencies outside of the teams as a challenge, similar to our findings at
the case company. This suggests that organizational boundaries in companies affect the
SAFe transformation. Here, an interesting dilemma appears. It is a common practice not
to deploy the transformation all at once but instead introduce changes incrementally, as
mentioned in the cases of ING Benelux, BNP Paribas, Deutsche Bank, and SimCorp
[12]. At the same time, dependencies between departments are an issue for a successful
transformation, implying that changes need to occur at many departments at once. Not
surprisingly, the challenge to transform the entire organization into an agile way of
working is not unique to the banking industry. Ericsson also reports a challenge with
surrounding organizations being in “waterfall mode” when scaling the agile methods
[9]. Furthermore, the challenge of redefining roles is also reported at Standard Bank
[13], confirming that is evident across banks transforming according to SAFe.

Experience reports from other banks also cover challenges identified in the “edu-
cation and training” category. One of them is the need for tailoring of training to meet
different needs in the organization. Standard Bank reports difficulties for uniting teams
when scaling up the transformation [13], and Nordea reports a challenge with aligning
different agile teams [11]. This emphasizes the need to align knowledge and competency
about agile practices across all teams. The challenge of aligning agile teams could also
be a challenge related to management and organization since a lack of shared vision and
optimization targets might be a reason why teams are not synchronized.

Challenges of Adopting SAFe in the Banking Industry 167

For the challenges in the “culture and mindset” category, we show that the general
characteristics of the banking industry culture pose particular difficulties for making
changes in general. This has also been found in another bank, where accepting change
is reported as a challenge in the case of Capital One [15].

There are also some challenges reported in the “requirements engineering” category.
One of the challenges is reported by Standard Bank. The report states that having trans-
parent requirements prioritization is difficult [13]. This challenge further shows a need
for management to formulate and communicate goals in the teams. Previous research
suggests that effective communication can facilitate the prioritization of requirements
[18]. The requirements engineering-related challenges in SAFe transformation gener-
alize beyond the banking industry as managing and planning requirements are also
mentioned as challenges at Nokia [8].

When it comes to “quality assurance,” the issue of balancing quality and speed of
delivery found in this study is also found in the experience report from Standard Bank
[14]. The challenge of managing more frequent releases is also related the “systems
architecture” category, where the complexity of the systems and dependencies between
the systems are found challenging for the SAFe transformation in the case company.

The case company faces challenges originating from the external stakeholders, as
reported in the “banking specific” category. The company operates in an industry where
every product has to undergo rigorous testing procedures before releasing due to external
regulations. The testing process can be hard to align with agile methods. Similar issues
with agile methods and regulated development are discussed in safety-critical contexts
[19]. In the banking domain, the characteristics of the services necessitate instilling high
levels of trust, which can be difficult when having to work with incremental updates and
frequent releases, as recommended by agile principles.

To summarize, Table 2 maps the challenges identified in our study to other stud-
ies and experience reports reporting similar findings. The distinction is made between
findings from within and outside of the banking industry. We find that some of the chal-
lenges are found in other banks, and that a majority of the challenges is common with
SAFe transformations in other industries. The challenges that do not appear in previous
customer stories or research are:

• C3. Banking values traditions and stability, implies difficulties for transformation
• G1. External rules and regulations complicate transformations in the banking industry
• G2. Big transformations may adventure the external stakeholder trust

All these challenges are very specific to the banking industry, and can be considered
sensitive, which may explain why they have not been reported previously. As these
challenges seem not to have been obvious from the beginning, we believe that they are
one of the unique contributions of our study and can be of particular interest for other
actors in the banking industry.

168 S. Nilsson Tengstrand et al.

Table 2. Mapping between challenges found in this study and related work

Challenge in our study Challenge found in other banks Challenge found in other industries

A1 [15] [2]

A2 [13] [2]

A3 [5]

A4 [9]

A5 [2]

B1 [2]

B2 [10]

B3 [13] [9]

C1 [5]

C2 [15] [10]

C3

D1 [13] [2]

D2 [5]

D3 [5]

D4 [5]

E1 [14] [5]

E2 [2]

F1 [2]

F2 [5]

G1

G2

7 Threats to Validity

This section discusses threats to the validity of our conclusions. The discussion is orga-
nized into construct validity, external validity, and reliability issues. We do not discuss
internal validity, as our conclusions include no causal claims.

Construct validity reflects how well the phenomenon under study is captured. The
researchers have substantial pre-understanding of agile transformations and combined
experience of almost two decades of large-scale agile transformations at five different
companies. Regarding the constructs under study, we rely on standard SAFe concepts
that were well understood by all interviewees. Thus, we consider the threats to construct
validity as minimal.

External validity is related to the generalization of the findings outside the studied
setting. We claim that our conclusions are relevant for other large banks. To mitigate the
threats to external validity, we selected interviewees with broad experience and insights
in various units within the bank – some of them also had worked with other banks in

Challenges of Adopting SAFe in the Banking Industry 169

the past. We have also identified an overlap between our findings and what other banks
undergoing similar transformation report in white papers, as well as an overlap between
our findings and the general body of knowledge with respect to agile transformations.
We believe that strengthens the generalizability claim. Further studies may reveal that
our findings, at least in part, also generalize to smaller challenger banks [20] and other
FinTech businesses such as insurance companies.

The reliability of a study is related to the dependence on specific researchers. We
mitigate the threats to research bias by applying established research practices. The
interview guide was co-developed iteratively by the first three authors. The interviews
were conducted, recorded, and transcribed by the first author. Three authors indepen-
dently analyzed the transcripts, and a joint workshop was organized to summarize the
results. The few findings that deviated were discussed until a common understanding
was reached. We maintained a chain of evidence from the conclusions to individual
interview statements through fine-granular traceability during the study. However, for
confidentiality and anonymity reasons, we agreed with the case company and with the
interviewees not to reveal exact mappings between statements and interviewees in this
paper. Nevertheless, it is possible that another set of researchers would emphasize other
aspects of SAFe transformations. However, as the reported findings are presented on a
high-level of detail, we consider the threats to the reliability of the study as minor.

8 Conclusions

The goal of this study was to identify challenges of a SAFe transformation in the bank-
ing industry. To address the research question, we have performed a study at a large
full-service bank. In the study, we have identified several challenges belonging to seven
categories, ranging from technical challenges related to the system architecture to bank-
ing specific issues. Significant challenges include the alignment of goals andoptimization
targets within the entire organization. Our findings considerably overlap with experience
reports from similar transformations, both in the banking industry and in other industries.
Consequently, we believe that the findings are interesting for the banking industry and,
therefore, are relevant to other banks that are about to embark upon their SAFe transfor-
mation journeys. As a natural next step we would like to investigate how the challenges
have been addressed at the bank to be able to provide actionable recommendations.

References

1. Direkt, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

2. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and challenges of adopting the Scaled Agile
Framework (SAFe): preliminary results from a multivocal literature review. In: Proceedings
of the International Conference on Product-Focused Software Process Improvement, pp. 334–
351 (2018)

3. Version One (2020): 14th Annual State of Agile Report. https://stateofagile.com/#ufh-i-615
706098-14th-annual-state-of-agile-report/7027494

4. Scaled Agile, (n.d.): SAFe customer stories, 2020–08–25. https://www.scaledagile.com/cus
tomer-stories/

https://stateofagile.com/%23ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://www.scaledagile.com/customer-stories/

170 S. Nilsson Tengstrand et al.

5. Uludag, Ö., Kleehaus, M., Caprano, M., Matthes, F.: Identifying and structuring challenges
in large-scale agile development based on a structured literature review. In: Proceedings of
the 22nd International Enterprise Distributed Object Computing Conference, pp. 191–197
(2018)

6. Scaled Agile: Achieving business agility with SAFe® 5.0 December 2019. https://www.sca
ledagile.com/?ddownload=47510

7. Knaster, R., Leffingwell, D.: SAFe 4.0 distilled: applying the Scaled Agile Framework for
lean software and systems engineering, Boston: Addison-Wesley Professional (2017)

8. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing raditional methods at
Nokia: a survey of opinions on agile transformation. Inf. Softw. Technol. 53, 276–290 (2011)

9. Paasivara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile transformation at
Ericsson: a case study”. Empir. Softw. Eng. 23, 2550–2596 (2018)

10. Paasivaara, M.: Adopting SAFe to scale agile in a globally distributed organization. In: Pro-
ceedings of the 12th International Conference on Global Software Engineering, pp. 36–40
(2017)

11. Scaled Agile: (2015) SAFe Case Study: Nordea, 2020–08–30. https://www.scaledagile.com/
case_study/nordea/

12. Everaerts, S.: Initio (2018), 2020–08–30. https://www.initio.eu/blognavigation/2018/12/3/
embracing-scaled-agile-framework-in-banking-amp-investment-industry

13. Scaled Agile, (n.d.): SAFe Case Study: Standard Bank, 2020–08–30. https://www.scaledagi
leframework.com/standard-bank-case-study/

14. Johnston, K.A., Gill, G.: Standard Bank: The Agile Transformation, vol. 6, no. 1 (2017)
15. Scaled Agile, (n.d.): SAFe Case Study: Capital One, 30/8, 2020. https://www.scaledagilef

ramework.com/capital-one-case-study/
16. Berkani, A., Causse, D., Thomas, L.: Triggers analysis of an agile transformation: the case

of a central bank. In: Procedia Computer Science, pp. 449–456 (2019)
17. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software

engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)
18. Bjarnason, E., Wnuk, K., Regnell, B.: Requirements are slipping through the gaps – a case

study on causes & effects of communication gaps in large-scale software development. In:
Proceedings of the 19th International Requirements Engineering Conference, pp. 37–46
(2011)

19. Steghöfer, J.-P., Knauss, E., Horkoff, J., Wohlrab, R.: Challenges of scaled agile for safety-
critical systems. In: Proceedings of the InternationalConference onProduct-FocusedSoftware
Process Improvement, pp. 350–366 (2019)

20. Blakstad, S., Allen, R.: New standard models for banking. In: FinTech Revolution, Palgrave
Macmillan, Cham, pp. 147–166 (2018). https://doi.org/10.1007/978-3-319-76014-8_9

https://www.scaledagile.com/%3Fddownload%3D47510
https://www.scaledagile.com/case_study/nordea/
https://www.initio.eu/blognavigation/2018/12/3/embracing-scaled-agile-framework-in-banking-amp-investment-industry
https://www.scaledagileframework.com/standard-bank-case-study/
https://www.scaledagileframework.com/capital-one-case-study/
https://doi.org/10.1007/978-3-319-76014-8_9

Challenges of Adopting SAFe in the Banking Industry 171

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Benefits and Challenges of Adopting
SAFe - An Empirical Survey

Abheeshta Putta1(B), Ömer Uludağ2, Maria Paasivaara1,3,
and Shun-Long Hong2

1 Aalto University, Espoo, Finland
{abheeshta.putta,maria.paasivaara}@aalto.fi

2 Technische Universität München, München, Germany
{oemer.uludag,shunlong.hong}@tum.de
3 LUT University, Lappeenranta, Finland

maria.paasivaara@lut.fi

Abstract. During the last two decades, turbulent business environ-
ments tempted firms to adopt agile methods to cope with the ever-
changing customer demands. The success of agile methods in small
and co-located teams inspired companies to apply them to large-scale
endeavors. Agile scaling frameworks, such as the Scaled Agile Frame-
work (SAFe), have been proposed by practitioners to scale agile prac-
tices to large projects and enterprises. Companies are increasingly taking
these frameworks into use. However, the number of quantitative empir-
ical studies assessing the benefits and challenges of adopting the agile
scaling frameworks is still limited. This paper starts filling in this gap
by presenting the results from a survey of 100 industry participants
around the world on their perception of the benefits and challenges of
adopting the SAFe framework. Our results show that the SAFe adoption
improves transparency, as well as collaboration and dependency manage-
ment between agile teams. The most commonly mentioned challenges of
the SAFe adoption are organizational politics, difficulties in establishing
an agile mindset, change resistance, and team formation challenges.

Keywords: Agile scaling frameworks · Large-scale agile software
development · Scaled agile framework · Survey

1 Introduction

Agile software development methods were originally designed for small and co-
located teams. The realized benefits in small organizations led to an increased
interest in agile across large-scale organizations [1]. Transformation to agile is not
an easy undertaking; several studies have reported significant challenges while
adopting agile in large-scale settings, e.g., change resistance, coordination chal-
lenges in multi-team environment, and challenges in involving non-development
units [1]. Agile adoption is more than just implementing practices; it is about

c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 172–187, 2021.
https://doi.org/10.1007/978-3-030-78098-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-78098-2_11

Benefits and Challenges of Adopting SAFe - An Empirical Survey 173

changing the mindset, and culture [2]. Several agile scaling frameworks, e.g.,
Scaled Agile Framework (SAFe) [3], Large Scale Scrum (LeSS) [4], Disciplined
Agile Delivery (DAD) [5] were designed by practitioners and consultants to sup-
port scaling of agile to large organizations. Out of all scaling frameworks, SAFe
has been the most popular according to the most recent State of Agile survey by
VersionOne, with 35% of the respondent organizations reporting its usage [6].

The popularity of SAFe and successful marketing of its benefits by the Scaled
Agile Inc. has encouraged companies to take SAFe into use [7]. Over one hundred
companies have reported about their SAFe usage via case studies and short sto-
ries [8]. According to the official SAFe website [3], 70% of Fortune 100 companies
have certified SAFe professionals, and 700,000 practitioners have been trained in
SAFe. Despite the popularity of SAFe in industry, scientific research exploring
SAFe usage is still limited; nevertheless, there is a slight increase in scientific
studies published after 2018. However, the majority of reported experiences on
SAFe still comes from grey literature [7], most of which is published on the SAFe
official website, which may lead to biased information. The SAFe adopters have
reported several benefits [7]. However, we do not have much research-based evi-
dence of these benefits. Therefore, it would be essential to identify whether the
SAFe framework can mitigate the challenges of scaling agile, bring the promised
benefits, and determine whether it brings in new challenges [9].

A few quantitative studies have already reported the benefits and challenges
of SAFe usage [10–12]. However, we need more quantitative studies to capture
the state-of-practice of SAFe adoption, as the limitations of the existing sur-
veys prevent generalization, e.g., in [10], out of 111 respondents, only 5% were
pure SAFe users, and [11] studied only three organizations. As many researchers
have expressed the need for better understanding the SAFe usage and adoption
[13,14], in this paper, we investigate the state-of-practice of SAFe adoption by
conducting an empirical survey of companies that have taken SAFe into use. We
report the contextual factors of companies, as well as the benefits and challenges
of SAFe usage.

The remainder of this paper is structured as follows. In Sect. 2, we present the
background and related work of our paper. Section 3 describes the underlying
research method of this paper. Section 2 presents our results and provides a
discussion of our main findings. Section 5 concludes our study with a summary
of our results and remarks on future research.

2 Background and Related Work

This section gives an overview of SAFe and presents the previous empirical
studies on SAFe.

2.1 SAFe

Dean Leffingwell established SAFe in 2011. The latest version, 5.0, was released
in 2020 [3]. SAFe incorporates practices from agile and lean [3]. It has four

174 A. Putta et al.

different configurations: Essential, Large Solution, Portfolio, and Full SAFe. Each
configuration has set of practices, artifacts, and roles to deliver solutions to the
end user. SAFe has four core values: built-in quality, transparency, alignment,
and program execution [15].

SAFe claims that the most common benefits of its adoption are: employee
engagement, productivity, time to market, and quality [3]. Challenges of imple-
menting SAFe are not mentioned.

2.2 Previous Studies

In this section, we present the benefits and challenges of SAFe adoption reported
in the previous studies.

Putta et al. [7] conducted a multivocal literature review (MLR) and reported
a total of 23 benefits and 15 challenges of SAFe adoption. The most common
benefits were: transparency, alignment, and quality. The most often mentioned
challenges were: resistance to change, moving away from agile, and controversies
within the framework. The study’s limitation is the use of grey literature from
the SAFe website that might lead to the results being biased towards the benefits
of SAFe.

Laanti and Kettunen [10] conducted an empirical survey on SAFe adop-
tions in Finland. They analyzed data from 111 respondents. As the most signif-
icant benefits of SAFe they reported: transparency, co-operation, and common
cadence. The most commonly mentioned challenges were: old mindset and cul-
ture, the model not fitting correctly to own organization, and missing fluency
when using the model. The limitation is that only 5% of the respondents were
pure SAFe users.

Gustavsson and Bergkvist [11] surveyed SAFe in three different organiza-
tions: automotive, financial, and public sector. They reported increased visi-
bility, overview, and transparency as the most common benefits and the lack
of productivity, focus, and efficiency as the most common drawbacks of SAFe
adoption. As the study had only three organizations participating, it makes it
hard to transfer the results to other organizational settings.

Salikhov et al. [12], surveyed 16 organizations that had adopted SAFe
and received answers from 21 respondents. Their preliminary results indicate
improved productivity, better handling of dependencies, improved coordination
between levels, and better vision of the big picture as the most often mentioned
benefits. The most common drawbacks include: requires more resources, complex
structure, lack of autonomy, and decreased productivity.

The existing surveys are few, and they are limited to selected locations and
organizations, which reduces their external validity. In this paper, we present
the benefits and challenges of SAFe by conducting an empirical survey with
respondents from various geographical locations, domains, roles, and differing
length of experience with SAFe, which helps to understand SAFe usage more
broadly in the industry and improves the external validity of the findings.

Benefits and Challenges of Adopting SAFe - An Empirical Survey 175

3 Research Methodology

This section describes the research design by presenting the research questions,
survey design, data collection, and data analysis.

3.1 Research Questions

We aim to answer the following research questions:

– RQ1:What benefits are realized after the adoption of SAFe?
– RQ2: What challenges are witnessed during and after the adoption of SAFe?

3.2 Survey Design

In order to answer the research questions, we created a survey following the
guidelines suggested by Lin̊aker et al. [16]. The survey questionnaire consisted of
six sections with a total of 25 questions1. In the first section, we presented our
research goals and information on who should answer the survey (only practi-
tioners having experience in one or several of the scaling frameworks were asked
to answer the survey). The second section included questions on the organiza-
tions’ transformation background, such as how long they had used a specific
framework. In the subsequent three sections, we asked the participants to assess
their agreement regarding their own organization on lists of reasons, benefits,
and challenges, which were compiled based on three previous studies on agile
and large-scale agile development [17–19]. Additionally, in each of the three sec-
tions described above, we included an open-ended question for the respondents
to add other reasons, benefits, or challenges experienced/witnessed respectively
to reduce the anchoring effect. In the fifth section, we captured the participants’
background information, such as their company’s domain, respondent’s primary
role in the organization, and the location of the organization. The last section
provided closing remarks on the survey and a thank you message.

Survey Validation. The questionnaire was first carefully reviewed by first three
authors. Then, we asked for comments from an academic subject matter expert.
Next, two survey experts helped to make sure that the questionnaire adhered
to the best practices of survey research. Finally, an industry expert on large-
scale agile reviewed the questionnaire and suggested, e.g., reducing the ques-
tionnaire’s length. After incorporating all suggestions, we conducted a pilot sur-
vey with three respondents and asked for their feedback on the questionnaire’s
length, understandability, and readability. After final modifications, the survey
was ready to be submitted to the target audience.

Sampling and Target Audience. In this context, we used non-probabilistic
convenience sampling, which involves “getting responses from the individuals who
are willing and are available” [20]. The target audience for the survey included

1 Link to the questionnaire: https://figshare.com/s/abd8810840a3fe514db6.

https://figshare.com/s/abd8810840a3fe514db6

176 A. Putta et al.

software professionals from various roles, e.g., developers, managers, coaches,
who use agile scaling frameworks in their organizations.

Data Collection. The data collection took place between May and September
2019 using a third-party, online tool “LimeSurvey”2. To reach our target popu-
lation, we promoted the survey in: (1) conferences, (2) meetup groups, (3) social
media groups, and (4) via personal networks.

We promoted the survey in three conferences: the 20th International Confer-
ence on Agile Software Development (XP 2019)3, the 14th International Confer-
ence on Global Software Engineering (ICGSE 2019)4, and the Agile 20195.

Two researchers promoted the survey at the XP 2019 conference. They spoke
to people during the breaks and mailed the link to those interested in answering
the survey. A link to the survey was distributed among all XP 2019 partici-
pants in a conference news post. At the ICGSE 2019 conference, two researchers
promoted the survey in the same way as at the XP 2019. At the Agile 2019
conference, one researcher promoted the survey by handing out cards containing
survey information and a QR code to the online survey. The survey link was also
sent out to all participants via email in the daily conference news letters during
the conference, as well as one week after the conference.

The survey link was also published on selected social media platforms, pro-
moted at Agile Meetups, and distributed to professionals. In June 2019, the
survey link was posted in the worldwide LinkedIn group “Lean and Agile Soft-
ware Development”6, which is the largest online community of Lean and Agile
practitioners with more than 157.000 members from all over of the world. We
promoted the survey in two Agile Meetups, where practitioners share their expe-
riences, ideas, and knowledge on issues regarding agile software development.
One was held in Helsinki, Finland, in August 2019 with 32 participants and one
in Copenhagen, Denmark, in June 2019 with 30 participants. The survey leaflets,
containing the link and QR code, were distributed to all Meetup participants.
Finally, professionals from different organizations worldwide were approached
via email, LinkedIn, and other social media channels and asked to fill in the sur-
vey. By snowballing of contacts we aimed to find new contacts, i.e., the personal
networks of existing contacts were leveraged.

3.3 Data Analysis

We imported the collected survey data from LimeSurvey to the SPSS Statistics
tool7. We conducted a two-day workshop among all authors to clean the data,
e.g., removed incomplete responses and agreed on how to conduct the statistical
analysis.

2 https://www.limesurvey.org/, last accessed on: 03-11-2021.
3 https://www.agilealliance.org/xp2019/, last accessed on: 03-11-2021.
4 https://conf.researchr.org/home/icgse-2019, last accessed on: 03-11-2021.
5 https://www.agilealliance.org/agile2019/, last accessed on: 03-11-2021.
6 https://www.linkedin.com/groups/37631, last accessed on: 03-11-2021.
7 https://www.ibm.com/products/spss-statistics, last accessed on: 03-11-2021.

https://www.limesurvey.org/
https://www.agilealliance.org/xp2019/
https://conf.researchr.org/home/icgse-2019
https://www.agilealliance.org/agile2019/
https://www.linkedin.com/groups/37631
https://www.ibm.com/products/spss-statistics

Benefits and Challenges of Adopting SAFe - An Empirical Survey 177

Descriptive Statistics. We started the data analysis by running the basic
descriptive statistics for contextual information, benefits, and challenges of SAFe,
such as frequencies, to get an overview of the data and insights on how to proceed
with inferential statistics. Then, we calculated the mean values for both benefits
and challenges.

Inferential Statistics. To test the normality of data, we conducted the
Kolmogorov-Smirnov test [21], which showed that our data had a non-normal
distribution. Thus, we adopted non-parametric tests to conduct inferential statis-
tics. We used the Mann-Whitney U [22] to compare the differences between two
independent groups, e.g., duration of the agile scaling framework usage, when
the dependent variable is either ordinal or interval/ratio, e.g., benefits and chal-
lenges. In the case of more than two groups, we used Krusal-Wallis H test [22].

4 Results and Discussion

In this section, we present an overview of contextual information of our respon-
dents and answer our research questions on the benefits and challenges of adopt-
ing the SAFe framework, as well as compare to previous findings. Finally, we
discuss the limitations of our study.

4.1 Overview of the Contextual Information

In total, we received 204 responses to our survey. 100 respondents had adopted
SAFe as their primary framework that was predominantly used in their organi-
zation, while the rest of the respondents had adopted other scaling frameworks
as their primary frameworks. We separated the data of SAFe respondents and
analyzed them to answer our research questions. Next, we present the contextual
and descriptive information of the SAFe respondents.

Geographic Distribution of Respondents. The respondents that adopted
SAFe were distributed to all continents except South America. As shown in
Fig. 1, the highest number of respondents were from the USA (24% of respon-
dents), followed by Germany (16%), and Denmark (11%). The geographical dis-
tribution of our respondents matches the information on the SAFe web page, as
most organizations using the SAFe framework are reported to be located in the
USA [8]. Another plausible explanation that most of our respondents are from
the USA is that we approached participants in conferences that took place in
the USA (Agile 2019) and Canada (XP 2019, ICGSE 2019). The next highest
response rates were from Germany and Denmark, as two authors were located
in these countries leading to more responses from those locations.

Roles of Respondents. The highest number of our respondents (see Fig. 2)
had a process related role (57% of the respondents), such as Scrum Master
or agile coach, followed by the management roles (26%), such as project and

178 A. Putta et al.

Fig. 1. Geographical distribution of the respondents

Fig. 2. Roles of the respondents

line managers. Roles from development team level (8%) included developers
and team leaders and roles from product level included Product Owners and
requirement engineers (8%).

Duration of Usage. Most of our respondents had started their SAFe adoption
either 1–2 years ago (40% of the respondents) or 3–5 years ago (40%), while 13%
had less than one year of SAFe experience and only 7% had more than five years
of experience in implementing SAFe (see Fig. 3).

Previously used Development Approaches. The majority of our respon-
dents used plan-driven methods before adopting SAFe (52%) (see Fig. 4).

Benefits and Challenges of Adopting SAFe - An Empirical Survey 179

Fig. 3. The number of years of experience since SAFe adoption

Fig. 4. Previously used software development approaches before SAFe adoption

Industry Sector. Our respondents’ organizations that had adopted SAFe came
from several different domains. As shown in Fig. 5, the highest percentage of
respondents came from the financial sector (33% of the respondents), followed
by the public sector (13%) and technology domain (12%). The distribution of the
domains matches with the results from a prior MLR on SAFe [7], that indicated
that many organizations adopting SAFe were from the finance and technology
sectors.

Organizational Areas in which Framework was Applied. The inventors
of SAFe have designed it to scale agile and lean practices to whole enterprises,
indicating that the adoption of SAFe is not only limited to software development,
but can also be used at higher organizational levels or in other organizational
units, such as marketing or human resources [3]. However, our survey data shows
that the majority of our respondents have adopted SAFe primarily in the IT (74
responses8), and product development (59 responses) areas (see Fig. 6).

8 Here the respondents were able to choose multiple options. Thus, the number of
responses exceeds the total number of 100 respondents.

180 A. Putta et al.

Fig. 5. Industry sectors of the respondents’ organizations

Fig. 6. Organizational areas in which SAFe has been adopted

4.2 Benefits of Adopting SAFe

Based on the previously published survey [17], we identified eleven benefits that
the adoption of agile entails (see Fig. 7). Our respondents were asked whether
their organizations realized these benefits after adopting SAFe. To better under-
stand the respondents’ agreement on the realized benefits of adopting SAFe,
we calculated the mean values for each benefit. In Fig. 7 the benefits have been
arranged from highest to lowest mean values.

Our respondents provided the highest level of agreement (sum of strongly
agree and agree) that the adoption of SAFe has improved collaboration between
agile teams (71% of the respondents), followed by the statements that the adop-
tion of SAFe has resulted in improved dependency management between teams
(68%) and improved transparency (66%). Our findings on the most realized ben-
efits were also the most frequently cited benefits in previous SAFe surveys and
literature reviews [7,10,11]. These benefits also align with the two core values
of SAFe: alignment and transparency [15]. Furthermore, the other benefits we
found were also identified in a prior MLR on SAFe [7].

According to the SAFe website, organizations using SAFe have reported that
its adoption improved their software quality by 50% [3]. However, in our survey,
software quality received the least agreement and had the lowest mean value,
indicating that a big part of our respondents disagreed with the statement that

Benefits and Challenges of Adopting SAFe - An Empirical Survey 181

Fig. 7. Agreement of the Benefits of SAFe, arranged according to the Mean Values

the adoption of SAFe has improved the software quality. This finding also con-
tradicts with one of the core values of SAFe: built-in quality [15]. However, we
did not measure the actual increase or decrease of software quality in this sur-
vey. Thus, we believe that further research on actual measurements is needed.
Other benefits claimed by SAFe are related to improved engagement, productiv-
ity, and time to market [3]. However, we did not investigate the first two benefits
claimed by SAFe in our survey, as the survey was designed to capture general
benefits that would be common to several frameworks. Nevertheless, we identi-
fied a faster time to market in our survey, with 50% of our respondents agreeing
on this benefit after adopting SAFe.

Previous Development Methodology. A systematic mapping study of
Uludağ et al. [23] showed that the most organizations transforming to large-
scale agile development by adopting agile scaling frameworks, used before the
transformation either plan-driven or traditional agile methods, such as Scrum.
Thus, we wanted to determine whether previous experiences in agile methods
resulted in better-realized benefits compared to those having previous experi-
ence in plan-driven methods. We conducted the Man-Whitney U test to identify
a possible difference between those two groups. We took the previous devel-
opment methods (plan-driven and agile) as the independent variable while the
dependent variable was each of the benefits.

We did not identify any statistically significant difference between the two
groups for any of the benefits9. However, mean ranks for all the benefits, except
for to enable faster feedback, to have more frequent deliveries, and to have shorter
time to market, were higher for agile organizations when compared to plan-driven
organizations. This might indicate that the agile organizations experienced these

9 The results of the tests can be found here: https://figshare.com/s/
c589fc84ffbed853e723.

https://figshare.com/s/c589fc84ffbed853e723
https://figshare.com/s/c589fc84ffbed853e723

182 A. Putta et al.

benefits more due to their longer experience in agile in general. Previous studies
have reported such benefits of using agile methods [6,24,25]. For many plan-
driven organizations, the three benefits listed above might have been experienced
only after using SAFe; therefore, respondents from plan-driven organizations had
a greater agreement with these benefits when compared to agile organizations.

Duration of Usage. Typically, organizations should be able to see more benefits
after a longer time from the adoption of agile or agile scaling framework. For
example, a case study on SAFe adoption found that the second unit in the same
organization adopting the framework was more successful than the first one [26].
Thus, we were interested in determining whether a longer time horizon of SAFe
usage results in better-realized benefits than a shorter time horizon.

To test this, we conducted the Kruskal-Wallis H test by taking the years of
experience of SAFe usage as the independent variable (less than 1 year, between
1–2 years, between 3–5 years, and more than 5 years) and the realized benefits
of SAFe adoption as the dependent variable.

We found a statistically significant difference for the following benefits: to
improve team autonomy (Kruskal-Wallis H = 10.49, p = 0.015), to have more
frequent deliveries (Kruskal-Wallis H = 14.244, p = 0.003), to have shorter time
to market (Kruskal-Wallis H = 12.028, p = 0.007), and to enable faster feedback
(Kruskal-Wallis H = 11.407, p = 0.01) meaning that companies with longer expe-
rience of SAFe reported experiencing more of these benefits. We also observed
that mean ranks for most of the benefits increased with an increase in SAFe
adoption duration. These results seem to indicate that organizations may realize
the full extent of the benefits of adopting SAFe only after a longer time hori-
zon. Our results are in line with previous studies [24,27]. For instance, Laanti
et al. [24] concluded that years of experience with agile methods may positively
influence their usefulness.

4.3 Challenges of Adopting SAFe

Figure 8 shows the results for the sixteen challenges identified in the literature,
arranged from highest to lowest mean values.

The challenge that received the highest agreement (sum of agree and strongly
agree) among the respondents was organizational politics (72% of the respon-
dents) which also has the highest mean value. This challenge was also reported
as a significant challenge during a SAFe transformation in a case study con-
ducted in a financial organization [28]. The next most agreed challenges were
difficulties in establishing an agile mindset (68%), change resistance (67%), and
team formation challenges. As the majority of our respondents transformed to
SAFe from plan-driven methods, the difficulties in establishing an agile mindset
and overcoming change resistance are understandable. These aforesaid challenges
were also frequently identified in large-scale agile endeavours [1,6] as well as in
SAFe adoptions [7,28].

The challenge, framework does not help in resolving problems with dependen-
cies between development teams (14%) received the least agreement among the

Benefits and Challenges of Adopting SAFe - An Empirical Survey 183

respondents and the smallest mean value. While challenges related to depen-
dency management between agile teams were quite commonly mentioned in
large-scale agile endeavours [1,6] and SAFe adoptions [7], by disagreeing this
statement (69% disagreed) our respondents indicate that adopting SAFe might
actually help in managing dependencies between agile teams. This is further
conformed by our survey results on SAFe benefits, as the improved dependency
management between teams received second highest agreement by our respon-
dents.

Other challenges, such as difficulties in including non-development units
(63% agreed), and difficulties in staffing new roles (56% agreed) have also been
reported by an MLR on SAFe [7].

Fig. 8. Agreement of the Challenges of SAFe, arranged according to the Mean Values

Previous Development Methodology. We tested whether the agreement
on challenges faced differed between organizations using previously plan-driven
methods and those using previously agile methods by conducting the Man-
Whitney test.

We found statistically significant differences10 regarding the following chal-
lenges: uncertainty with respect to middle management’s role in agile (Mann-
Whitney U = 102.5, p = 0.0046) and difficulties in getting the management
buy-in (Mann-Whitney U = 88, p = 0.0018), meaning that previously plan-
driven organizations agreed to these challenges more than agile organizations.
These results match previous findings that plan-driven organizations struggle to
clarify the new roles of managers in agile environments compared to organiza-
tions having already experience with agile methods [28]. Similarly, getting the
management buy-in in plan-driven organizations is more complicated than in
agile organizations due to power struggles and politics [28].

The mean rank for most of the challenges for respondents coming from plan-
driven organizations was higher than for respondents from agile organizations,

10 The results of the tests can be found here: https://figshare.com/s/
69852ec3b24dd73406e4.

https://figshare.com/s/69852ec3b24dd73406e4
https://figshare.com/s/69852ec3b24dd73406e4

184 A. Putta et al.

which indicates that previous agile experience may ease SAFe adoption. Only for
the following challenges: the scaling framework brings additional work overhead,
using the framework felt like moving away from agile, and missing guidance
on architectural topics had a higher mean rank among the organizations that
had already used agile, indicating that already agile organizations felt these
more problematic than plan-driven organizations, which could be expected. For
example, a case study on SAFe transformation from the Scrum model reported
these same challenges and mentioned that long fixed increments of SAFe (e.g., a
8-week Program Increment cycle) may look like a step back to the plan-driven
world for an organization that is already used to the fast agile planning cycle
[26].

Duration of Usage. We tested whether the agreement on the challenges expe-
rienced differed with respect to how long time the respondent’s organization had
been using SAFe. We conducted the Kruskal-Wallis H test to find out if there
was a statistical difference between each of the challenges and the four groups
of the duration of SAFe usage (less than 1 year, between 1–2 years, between 3–5
years, and more than 5 years).

We did not find statistically significant difference for any of the challenges
among the four groups. While comparing the mean ranks, and we did not find
any pattern of increase or decrease regarding the number of years since SAFe
adoption. This finding is not surprising as we asked from the respondents whether
they perceived the challenges when adopting the agile scaling framework, thus
our data cannot answer to the question on whether they still experience the
same problems.

4.4 Threats to Validity

Although we employed a rigorous survey design and paid attention to data col-
lection and analysis, there are limitations that are discussed next and organized
as suggested by Wohlin et al. [29].

Internal Validity. This threat concerns factors that can influence the relation-
ship between the research process and the obtained results, e.g., respondent bias.
We mitigated the respondent bias by collecting data from reliable sources: most
of the responses came from people we met during the conferences and Meetups,
and we knew they were using the agile scaling frameworks, which helped us to
avoid unreliable or unauthentic responses. As the questionnaire consisted of sep-
arate sections investigating the benefits and challenges of adopting agile scaling
frameworks, respondents could not overemphasize the positive elements of the
SAFe adoption.

External Validity. This threat is related to the generalizability of our results.
We counteracted this limitation by having respondents with different roles, work-
ing in different domains, coming from various countries, and having different
length of SAFe experience. This helped us to improve to external validity of our
survey when compared to previous quantitative studies (e.g., [10,11]).

Benefits and Challenges of Adopting SAFe - An Empirical Survey 185

Construct Validity. This treat concerns whether the questions asked in the
questionnaire represent the attributes being measured. We formulated the sur-
vey statements on the benefits and challenges based on earlier findings in the
literature. However, as we had to limit the questionnaire length, we could not
include all the benefits and challenges we identified from the literature. There-
fore, were not able to fully address this threat, which is a prevalent problem
in survey research [16]. We validated the questionnaire with a domain expert,
survey experts, and tested it by conducting a pilot study. This helped to make
the questionnaire as clear and understandable to the respondents as possible.

Conclusion Validity. This threat is concerned with the ability to draw the right
conclusion from the collected data. The survey data was mostly Likert data,
and we conducted appropriate non-parametric tests for identifying differences
between independent groups. We also compared the results with the existing
literature for validating our results.

5 Conclusions and Future Work

This study provided empirical evidence on the adoption of SAFe in industry.
We analyzed data from 100 practitioners using SAFe as their primary scaling
framework. Our results show that the three topmost realized benefits of adopting
SAFe are: improved collaboration between teams, improved dependency manage-
ment between teams, and improved transparency. Improved software quality is the
least agreed benefit, even though the SAFe founders claim it to be a common
benefit from SAFe. It is important to note that we did not measure the actual
increase or decrease of the benefits. However, our contribution to practitioners
is to provide objective information on the SAFe benefits as experienced by SAFe
user organizations. We encourage the researchers to collect actual metrics used
to quantify the benefits of SAFe usage.

Our results further revealed that the most common challenges of adopting
SAFe were organizational politics, difficulties in establishing an agile mindset,
change resistance, and team formation challenges. The last two challenges were
also frequently reported in previously conducted reviews and surveys in large-
scale agile development. As the present literature on large-scale agile develop-
ment is mostly problem-centric [23], we encourage researchers to investigate what
types of solutions have been adopted by organizations to address the challenges
witnessed during transformation.

References

1. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

2. Klünder, J., Hohl, P., Schneider, K.: Becoming agile while preserving software
product lines: An agile transformation model for large companies. In: Proceedings
of the 2018 International Conference on Software and System Process, pp. 1–10.
ACM, May 2018

186 A. Putta et al.

3. Scaled Agile Inc.: Description about SAFe. https://bit.ly/3dsqEPr. Accessed 03
Nov 2021

4. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large,
Multisite, and Offshore Product Development with Large-Scale Scrum. Pearson
Education (2010)

5. Ambler, S.W., Lines, M.: Disciplined Agile Delivery: A Practitioner’s Guide to
Agile Software Delivery in the Enterprise. IBM Press (2012)

6. Agile Version One: 14th Annual State of Agile Survey (2020). https://bit.ly/
3usL0y6. Accessed 03 Nov 2021

7. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and Challenges of Adopting the
Scaled Agile Framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

8. Scaled Agile Inc.: SAFe Case Studies. https://bit.ly/2NGa2J8
9. Putta, A.: Scaling agile software development to large and globally distributed

large-scale organizations. In: Proceedings of the 13th International Conference on
Global Software Engineering, pp. 141–144. ACM, May 2018

10. Laanti, M., Kettunen, P.: SAFe adoptions in Finland: a survey research. In: Hoda,
R. (ed.) XP 2019. LNBIP, vol. 364, pp. 81–87. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30126-2 10

11. Gustavsson, T., Bergkvist, L.: Perceived impacts of using the scaled agile frame-
work for large-scale agile software development. In: Proceedings of the 28th Inter-
national Conference on Information Systems Development, August 2019

12. Salikhov, D., Succi, G., Tormasov, A.: An empirical analysis of success factors in
the adaption of the scaled agile framework-first outcomes from an empirical study.
arXiv preprint arXiv:2012.11144 (2020)

13. Moe, N.B., Olsson, H.H., Dingsøyr, T.: Trends in large-scale agile development: a
summary of the 4th workshop at xp2016. In: Proceedings of the Scientific Workshop
Proceedings of XP2016, pp. 1–4. ACM, May 2016

14. Moe, N.B., Dingsøyr, T.: Emerging research themes and updated research agenda
for large-scale agile development: a summary of the 5th international workshop at
xp2017. In: Proceedings of the XP2017 Scientific Workshops, pp. 1–4. ACM (2017)

15. Scaled Agile Inc.: Core Values. https://bit.ly/3kb1yG7. Accessed 03 Nov 2021
16. Lin̊aker, J., Sulaman, S.M., Maiani de Mello, R., Höst, M.: Guidelines for conduct-

ing surveys in software engineering (2015)
17. Version One: 13th State of Agile Survey. https://bit.ly/3sadydS. Accessed 03 Nov

2021
18. Uludağ, Ö., Kleehaus, M., Xu, X., Matthes, F.: Investigating the role of archi-

tects in scaling agile frameworks. In: 2017 IEEE 21st International Enterprise Dis-
tributed Object Computing Conference (EDOC), IEEE (October 2017) 123–132

19. Uludag, Ö., Kleehaus, M., Caprano, C., Matthes, F.: Identifying and structuring
challenges in large-scale agile development based on a structured literature review.
In: IEEE 22nd International Enterprise Distributed Object Computing Conference.
IEEE 2018, pp. 191–197 (2018)

20. Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations
and samples. ACM SIGSOFT Softw. Eng. Notes 27(5), 17–20 (2002)

21. Lilliefors, H.W.: On the kolmogorov-smirnov test for normality with mean and
variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

22. Conover, W.J.: Practical Nonparametric Statistics, vol. 350. Wiley, New York
(1998)

https://bit.ly/3dsqEPr
https://bit.ly/3usL0y6
https://bit.ly/3usL0y6
https://doi.org/10.1007/978-3-030-03673-7_24
https://bit.ly/2NGa2J8
https://doi.org/10.1007/978-3-030-30126-2_10
https://doi.org/10.1007/978-3-030-30126-2_10
http://arxiv.org/abs/2012.11144
https://bit.ly/3kb1yG7
https://bit.ly/3sadydS

Benefits and Challenges of Adopting SAFe - An Empirical Survey 187

23. Uludag, Ö., Philipp, P., Putta, A., Paasivaara, M., Lassenius, C., Matthes, F.:
Revealing the state-of-the-art in large-scale agile development: A systematic map-
ping study. arXiv preprint arXiv:2007.05578 (2021)

24. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional
methods at nokia: a survey of opinions on agile transformation. Inf. Softw. Technol.
53(3), 276–290 (2011)

25. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an
industrial context: an exploratory study. In: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, pp. 255–264.
IEEE, September 2007

26. Paasivaara, M.: Adopting safe to scale agile in a globally distributed organization.
In: Proceedings of the 2017 IEEE 12th International Conference on Global Software
Engineering, pp. 36–40. IEEE, May 2017

27. Salo, O., Abrahamsson, P.: Agile methods in European embedded software devel-
opment organisations: a survey on the actual use and usefulness of extreme pro-
gramming and scrum. IET Softw. 2, 58–64 (2008)

28. Putta, A., Paasivaara, M., Lassenius, C.: How are agile release trains formed in
practice? a case study in a large financial corporation. In: Kruchten, P., Fraser, S.,
Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 154–170. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19034-7 10

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer Science & Business Media (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2007.05578
https://doi.org/10.1007/978-3-030-19034-7_10
http://creativecommons.org/licenses/by/4.0/

Short Contributions

Using a Low Code Development Environment
to Teach the Agile Methodology

Mary Lebens(B) and Roger Finnegan

Metropolitan State University, Saint Paul, MN 55106, USA
{mary.lebens,roger.finnegan}@metrostate.edu

Abstract. The Agile development methodology is soaring in popularity in the
business world. Companies are turning to Agile to develop products quickly and
to achieve digital transformation of their organization. Because of this push, com-
panies need employees who understand Agile. Therefore, higher education is
obligated to provide an understanding of Agile to students as they enter the work-
place. Providing Agile experience to students who are new to programming is
difficult because they are so worried about the coding aspects of the assignment,
they cannot take time to think about the methodology they are using. The coding
crowds out the time needed to get an understanding of how Agile actually works.
One remedy for this is to use a low or no-code development platform. With this
type of platform students spend less time learning to create apps, freeing them
to experience the rituals and roles of Agile. This study examines using the Agile
methodology along with the Microsoft Power Apps platform to provide an Agile
experience to students. Two course sections were surveyed to learn if students
perceived that they acquired a better understanding of Agile and to learn their
perceptions of a no-code platform experience. The students completed surveys
to ascertain their comfort with the Agile methodology and whether the no-code
environment increased their comfort level. The results showed students perceived
the no-code platform increased their comfort with using the Agile methodology.
The implication is that no-code platforms can be used broadly to help students to
gain experience with Agile.

Keywords: Agile methodology · No-code · Experiential learning

1 Introduction

Although theAgile software developmentmethodology is nowubiquitous in the business
world, it is not common in beginning software development courses due to the difficulty
in teaching Agile. Agile is best learned in the context of a software development project.
However, students who are new to programming often need the entire semester to learn
the programming structures and syntax, leaving no time for completing an Agile project.
In addition, the normal challenges of a group project are still present in Agile student
projects, such as getting students to work effectively together and avoiding free riders
who do not complete their fair share of the work.

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 191–199, 2021.
https://doi.org/10.1007/978-3-030-78098-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_12&domain=pdf
http://orcid.org/0000-0002-0554-8847
http://orcid.org/0000-0002-8744-3001
https://doi.org/10.1007/978-3-030-78098-2_12

192 M. Lebens and R. Finnegan

One approach to freeing up class time to teach Agile is using a low- or no-code
development environment in place of teaching a traditional programming language. Low-
and no-code environments allow students to develop applications through a Graphical
User Interface (GUI), reducing time spent on coding. This paper examines using the
Agile software development methodology in conjunction with a no-code environment
in a beginning application development course. Two course sections of students were
surveyed to learn if they perceived that they acquired a deeper understanding of Agile,
as well as to learn their perceptions of the no-code platform. Both course sections were
taught in an online, asynchronous format.

2 Related Work

Although the Agile Manifesto [1] was written over twenty years ago, few University
courses cover more than a mention of Agile and its general characteristics [2]. Part
of the difficulty in teaching Agile is that it is best taught through student projects, but
the complexity of projects and the lack of sufficient time during the academic calendar
make this difficult [3]. In addition, textbooks provide only cursory coverage of the Agile
methodology, exacerbating the time crunch by requiring professors to spend more class
time discussing Agile in order to make up this deficit [4].

Despite the difficulty of teaching Agile, there are proven benefits to usingAgile prac-
tices with students [5]. Agile projects featuring feedback after each iteration increase
students’ software development skills more than traditional group projects [6]. Students
find Agile practices such as pair programming beneficial [7]. College students in asyn-
chronous online courses reported that using Agile led to a more effective learning expe-
rience and allowed them to produce deliverables of a higher quality [8]. Additionally,
using small teams and timeboxed iterations overcomes some of the hurdles of traditional
group projects, like free-riding students who do not complete their fair share of the work
[9].

Due to the difficulty in teaching students coding along with Agile practices in a
single course, some college faculty have tried alternative no-code approaches, such as
assigning students to build a wiki, solve an IT business case, or construct a building using
Legos [10–12]. In addition to these no-code approaches in college courses, the no-code
environment Scratch has been used to successfully teach middle school students Agile
practices [13]. No-code software development environments are not only becoming
more popular for teaching, but for use by business professionals as well, with Microsoft
PowerApps as one of the leading platforms [14]. Combining a no-code environment
with Agile practices provides benefits students and teaches skills that employers desire.

2.1 Microsoft PowerApps

The low-code development platform Microsoft PowerApps was used during this
research. PowerApps was chosen in part because it is freely available to students. Power-
Apps is part of theOffice 365 suite used byMetropolitan StateUniversity. TheUniversity
supplies students withOffice 365 free of charge. PowerApps is a subscription-based plat-
form to create applications. It is used to create browser-based apps that connect to a data

Using a Low Code Development Environment 193

source. Students can create screens to view and edit data for business processes [15].
Gartner has recognized PowerApps as a leader in enterprise low-code platforms [16].

2.2 Course Background

The course targeted for this study is MIS 328-Applications Development I, an intro-
ductory software development course that is part of the MIS major at Metropolitan
State University. The course curriculum assumes that the students do not have any pre-
vious programming experience. The learning outcomes include students experiencing
the process, tools and methodologies used to create and revise computer applications.
In addition, the students experience the existing and future paradigms of application
development with the Agile framework currently being the most important paradigm.
The course is at the junior level and is required for all MIS majors. Due to its historic
reliance on teaching a programing language, such as C#, Visual Basic, or even Cobol in
an early iteration, it carried the reputation of being the hardest course in the program.
Many students avoided taking the course until their last year or even their last semester.

The course was redesigned to give students the experience of being on an Agile
development team while reducing the stress of learning a development language. That
is, the development language was deemphasized in order to allow the students the time
to better learn the Agile methodology. It was surmised that the gain that the students
achievedwith theAgile experiencewouldmore thanoffset the reduction in the experience
with a programming language. This gain in Agile methodology knowledge is expected
to help students in their job search.

The course, MIS 328, is Application Development I. As the name implies it was
developed to teach students how applications are created in organizations. In years past
the waterfall methodology would have been emphasized, but since the Agile framework
is becoming more and more important in organizations [17] it is now being taught.
The course includes the opportunity to write user stories, create prototypes, develop a
product, participate in sprint planning meetings, participate in standup meetings, and
interact with a development team.

2.3 Hypothesis

As a result of reviewing the literature and related work, the following hypothesis was
developed.

• H0: Students do not perceive they have a better understanding of the Agile method-
ology after using a low-code development environment to experience participating in
an Agile team.

• H1: Students perceive they have a better understanding of the Agile methodology after
using a low-code development environment to experience participating in an Agile
team.

194 M. Lebens and R. Finnegan

3 Research Methods

3.1 Participants

To gauge the students’ reactions to the no-code platform teaching method for Agile
we conducted a survey across two sections in the fall semester of 2020. The students
involved were undergraduates majoring in Management Information Systems (MIS).
Fifty-seven students participated in the survey across the two sections.

3.2 Materials

The goal of the survey was to determine how the students felt about their familiarity and
comfort with theAgilemethodology after using it as part of a no-code development team.
The specific things that the authors wanted to learn from the survey were the students’
comfort level with the Agile framework and if our reliance on a no-code platform was
the correct decision. The authors realized that students would not have any firsthand
experience with the way in which the course had been previously taught with its use
of a programming language but were confident that students would be able to gauge if
they would be overwhelmed as they needed to learn both the Agile framework and a
new programming language at the same time. The survey instrument used the following
questions:

1. I feel that I have an understanding of the Agile software development methodology.
2. I feel that I have more comfort with the Agile methodology after experiencing it in

MIS 328.
3. Going through the development process with Power Apps helped me better

understand the Agile methodology.
4. It would have been harder to learn the Agile methodology if I had also been required

to learn how to write computer code at the same time.
5. I feel that I will be amore effective employee for companies withmy new knowledge

of the Agile methodology.

The possible responses were recorded on a Likert scale:

• Strongly agree
• Agree
• Neither agree nor disagree
• Disagree
• Strongly disagree

3.3 Procedure

The survey was administered at the end of the course. At this point in the course the
students had completed the second sprint in their development team final project. It
was felt that they would have sufficient experience with the Agile methodology at this
point in the course to express an opinion. The students were given extra credit points as

Using a Low Code Development Environment 195

an incentive to complete the survey. It was administered anonymously through Survey
Monkey. Survey Monkey was chosen to get more candid answers than might have been
possible using the learning management system.

4 Results

The results of the survey strongly demonstrated that the students felt that learning Agile
by using a no-code platform increased their understanding of the methodology. One
hundred percent of students strongly agreed or agreed that they understood the Agile
methodology. This affirmed hypothesis H1 that students will perceive they have a better
understanding of the Agile methodology after using a low-code development environ-
ment to experience participating in an Agile team. Agile has been described as a culture
[18]. Giving the students the ability to experience that culture as part of their learning
was an important part of the planned experience.

As shown in Fig. 1, ninety-eight percent of students strongly agreed or agreed that
they were comfortable with using the Agile methodology. This helped with the goal of
increasing their comfort with Agile in order to better prepare the students for careers
with companies that are making strong use of the method. This comfort level is expected
to be very important to student’s career success [19].

Ninety-six percent of students strongly agreed or agreed that using the Power Apps
no-code platform helped them get a better understanding of the development platform,
as shown in Fig. 1. Power Apps was selected as the platform since it is already part of the
Office 365 suite. The University supplies the students access to Office 365 so there was
no additional cost to the students to access the platform. The Mendix platform had been
used in previous semesters but the migration to Power Apps was seen as advantageous
to the students’ careers since it is more popular in industry. Power Apps is also seen as
becoming more important by Gartner [20].

Eighty-four percent of the students strongly agreed or agreed that learning the Agile
methodology would have been more difficult if they also had been required to learn
to write computer code, as shown in Fig. 1. This corroborated the authors assumption
that having to learn a programming language and the Agile methodology at that same
time would be difficult and stressful for students. The course was already known for its
difficulties and adding the additional requirements for Agile could have increased the
apprehension regarding it. The need to teach Agile [21] outweighed the need to teach
coding.

Figure 1 shows ninety-six percent of students strongly agreed or agreed that they
will be better employees with their knowledge of the Agile methodology. Providing the
students the skills that they need to be productive employees and competitive in the job
market was the most important factor in the decision to emphasize the Agile method
over programming skills. Companies that use the Agile framework have a 30 percent
higher project success rate than companies using the traditional waterfall methodology
[22].

The results of the survey gave the authors the sense as well as the metrics to show
that their decision to use the no-code platform and emphasize the Agile methodology
increased students’ confidence with the methodology. Additionally, the survey results

196 M. Lebens and R. Finnegan

showed students felt confident in their ability to use the knowledge to become valuable
employees and be successful in the job market.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

Understand agile

Comfort with the agile

Power Apps helped

Harder to learn

Effec�ve employee

Strongly agree Agree

Neither agree nor disagree Disagree

Strongly disagree

Fig. 1. Survey results for the five questions posed to the students.

5 Discussion

This study expands on previous research which found other types of no-code approaches
were useful for teaching Agile, such as building a wiki, solving an IT business case,
or constructing a building using Legos [10–12]. A key contribution of this study is
that this course design not only teaches students Agile, but also teaches them software
development using a popular and common no-code platform [14]. The combination of
no-code with Agile allowed students in this study to gain valuable skills as a part of
an Agile development team while simultaneously gaining experience with a leading
application development platform, Microsoft PowerApps [14].

Another key contribution of this study is that it demonstrates a no-code environment
allows students to learn Agile in a short timeframe. Using a no-code environment to
teach the Agile methodology allowed students to grow their Agile skills and successfully
develop fully functioning mobile apps in a single semester. This short timeframe is a
boon for college professors who are seeking to teach students career-boosting Agile
skills under the constraints of the academic calendar.

The implication of these findings for the Information Technology (IT) and Infor-
mation Systems (IS) disciplines is that no-code platforms can be used more broadly to

Using a Low Code Development Environment 197

allow students to gain experience with Agile, without the added stress and time require-
ments of learning a traditional programming language. This approach to teaching Agile
methodology will be helpful for college programs which only require a single software
development course, such as IT, IS, or networking, since the course time devoted to pro-
gramming is extremely limited in that case. Additionally, this approach may be valuable
for business programs, since this approach could also help non-technical students learn
the Agile methodology and later apply it to projects in their careers.

5.1 Limitations and Further Research

A key limitation of this study is the sample was limited to two course sections, since
the University only offers two sections of MIS 328. Further research on additional
sections is needs to determine if the results hold true over a larger sample. In addition,
further research is needed to determine if this approach works in programs outside of
IS, particularly in more narrowly focused IT programs such as networking and in non-
technical programs such as business. The two course sections used for this study were
both held in an asynchronous online format, so additional research into the effectiveness
of teaching a no-code or low-code environment in different types of formats is warranted.
The asynchronous format does not include course meetings, so further research on face-
to-face, hybrid, and synchronous online courses would be useful to determine if the
students’ perceptions remain the same across formats.

6 Conclusion

In this study, the authors examined using the Agile methodology in conjunction with a
no-code environment to provide students with the experience of participating in an Agile
development team. The results overwhelmingly showed students perceived the no-code
platform increased their comfort with using the Agile methodology. The stressors and
time constraints of teaching both application development and Agile in a single semester
was overcome using the no-code development environment. The implication is that no-
code platforms can be used broadly to allow students to gain experience with Agile
across the IT and IS disciplines.

References

1. Agile Alliance: Agile manifesto and principles (2001). http://agilemanifesto.org/principles.
html

2. Devedžić, V., Milenković, S.R.: Teaching agile software development: a case study. IEEE
Trans. Educ. 54(2), 273–278 (2011). https://doi.org/10.1109/TE.2010.2052104

3. Fitsilis, P., Lekatos, A.: Teaching software project management using agile paradigm. In:
Proceedings of 21st Pan-Hellenic Conference on Informatics, Larissa, Greece, (2017). https://
doi.org/10.1145/3139367.3139413

4. May, J.: Play ball: Bringing scrum into the classroom. J. Inf. Syst. Educ. 27(2), 87–92 (2016)
5. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in high school:

An investigation. In: Proceedings - International Conference on Software Engineering,
pp. 293–302, ACM, Austin, Texas (2016). https://doi.org/10.1145/2889160.2889180

http://agilemanifesto.org/principles.html
https://doi.org/10.1109/TE.2010.2052104
https://doi.org/10.1145/3139367.3139413
https://doi.org/10.1145/2889160.2889180

198 M. Lebens and R. Finnegan

6. Yang, J., Zhang, X.L., Su, P.: Deep-learning-based agile teaching framework of software
development courses in computer science education. Procedia Comput. Sci. 154, 137–145
(2018). https://doi.org/10.1016/j.procs.2019.06.021

7. Monett, D.: Agile project-based teaching and learning. In: Proceedings of the 11th Interna-
tional Conference on Software Engineering Research and Practice, pp. 377–383. (2013)

8. Hulshult, A.R., Krehbiel, T.C.: Using eight agile practices in an online course to improve
student learning and team project quality. J. High. Educ. Theor. Pract. 19(3), 55–68 (2019).
https://doi.org/10.33423/jhetp.v19i3.2116

9. Stapel, K., Lübke, D., Knauss, E.: Best practices in extreme programming course design.
In: Proceedings - International Conference on Software Engineering, pp. 769–775 (2008).
https://doi.org/10.1145/1368088.1368197

10. Cubric, M.: Agile learning & teaching with wikis: building a pattern. In: Proceedings of the
2007 International Symposium onWikis, pp. 11–24 (2008). https://doi.org/10.1145/1296951.
1296953

11. Rush, D.E., Connolly, A.J.: An agile framework for teaching with scrum in the IT project
management classroom. J. Inf. Syst. 31(3), 196–207 (2020)

12. JSteghöfer, J.P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.: teaching
agile: addressing the conflict between project delivery and application of agile methods. In:
2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion,
pp. 303–312 (2016). https://doi.org/10.1145/2889160.2889181

13. Fronza, I., El Ioini, N., Corral, L.: Teaching computational thinking using agile software
engineering methods: a framework for middle schools. ACM Trans. Comput. Educ. 17, 4
(2017). https://doi.org/10.1145/3055258

14. Rymer, J.R., Koplowitz, R.: The Forrester WaveTM: Low-code development Platforms for
AD&D professionals. Technical report, Forrester (2019)

15. Leung, T.: Beginning PowerApps. Apress, Berkeley (2017)
16. Vincent, P., et al.: Magic Quadrant for Enterprise Low-Code Application Platforms (2020).

https://www.gartner.com
17. Brower, T.: Why agile is the mindset to get us through the Covid Crisis: 4 lessons from

agile for today and the new normal. Forbes (2020). https://www.forbes.com/sites/tracyb
rower/2020/04/12/why-agile-is-the-mindset-to-get-us-through-the-covid-crisis-4-lessons-
from-agile-for-today-and-the-new-normal/?sh=4f350a3631d3

18. Prieto, R.: The agile classroom: Embracing an agile mindset in education. Medium (2016).
https://medium.com/laboratoria/the-agile-classroom-embracing-an-agile-mindset-in-educat
ion-ae0f19e801f3

19. Nikolova, Z.: 3 things that you should know about career development in an agile context.
Leanify (2016). http://leanify.com/3-things-about-agile-career/

20. Cunningham, R.: Gartner magic quadrant namesMicrosoft Power Apps a leader for low code
application platforms. Microsoft (2020). https://powerapps.microsoft.com/en-us/blog/gar
tner-magic-quadrant-names-microsoft-power-apps-a-leader-for-low-code-application-platfo
rms/

21. Zenagile: Agile training: What it is and why you should adopt it. (2020). https://www.zen
agile.com/agile-training/

22. Keita, B.: Top 5 benefits of agile certification. Invensis Learning (2020). https://www.invens
islearning.com/blog/benefits-of-agile-certifications/

https://doi.org/10.1016/j.procs.2019.06.021
https://doi.org/10.33423/jhetp.v19i3.2116
https://doi.org/10.1145/1368088.1368197
https://doi.org/10.1145/1296951.1296953
https://doi.org/10.1145/2889160.2889181
https://doi.org/10.1145/3055258
https://www.gartner.com
https://www.forbes.com/sites/tracybrower/2020/04/12/why-agile-is-the-mindset-to-get-us-through-the-covid-crisis-4-lessons-from-agile-for-today-and-the-new-normal/%3Fsh%3D4f350a3631d3
https://medium.com/laboratoria/the-agile-classroom-embracing-an-agile-mindset-in-education-ae0f19e801f3
http://leanify.com/3-things-about-agile-career/
https://powerapps.microsoft.com/en-us/blog/gartner-magic-quadrant-names-microsoft-power-apps-a-leader-for-low-code-application-platforms/
https://www.zenagile.com/agile-training/
https://www.invensislearning.com/blog/benefits-of-agile-certifications/

Using a Low Code Development Environment 199

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Comparing Participants’ Brainwaves During
Solo, Pair, and Mob Programming

Makoto Shiraishi(B), Hironori Washizaki(B) , Daisuke Saito(B) ,
and Yoshiaki Fukazawa(B)

Waseda University, Okubo, Shinjuku City, Tokyo, Japan
{makwhitestone,d.saito}@fuji.waseda.jp,

{washizaki,fukazawa}@waseda.jp

Abstract. Participants’ feelings and impressions utilizing electroencephalogra-
phy (EEG) and the effectiveness of code are compared for different types of
programming sessions. EEG information is obtained as an alternate viewpoint
during three programming sessions (solo, pair, and mob programming). Mind-
Wave Mobile 2 (brainwave detector) is equipped to collect the attention levels,
meditation levels, and EEG brainwaves. These data are utilized to distinguish effi-
ciencies, weaknesses, and points of interest by programming session. The results
provide preliminary information to distinguish between the three sessions, but
further studies are necessary to make firm conclusions. Additionally, alternative
methods or systems are required to analyze the collected data.

Keywords: Mob programming · Pair programming · Programming ·
Brainwaves · EEG ·Meditation · Attention

1 Introduction

Mob programming is becoming more prevalent, especially in the field of agile develop-
ment. Mob programming is a method to learn programming in a group. Although it is
becoming popular, its effects and limitations remain unclear.

Herein analysis is conducted from a different perspective: EEG (electroencephalog-
raphy). This new information is used to analyze participants’ EEG brainwaves to identify
efficiencies, shortcomings, and advantages of different types of programming sessions
(solo, pair,mobprogramming). Pair programming is amethod to learn programmingwith
another individual, it has similar concepts to mob programing. Here, four hypotheses
(RQs) are investigated.

• RQ1: Do pair and mob programming induce lower levels of concentration (attention)
compared to solo programming?

© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 200–209, 2021.
https://doi.org/10.1007/978-3-030-78098-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_13&domain=pdf
http://orcid.org/0000-0002-1417-9879
http://orcid.org/0000-0003-4263-5453
http://orcid.org/0000-0003-0196-2108
https://doi.org/10.1007/978-3-030-78098-2_13

Comparing Participants’ Brainwaves 201

Often tasks requiring high concentration levels are performed individually, suggest-
ing that sessions involving multiple people will lower concentration levels. Working
alone may be better for tasks that require high fixation and core interest. An inves-
tigation known as the Coding War Games found that software engineers worked more
efficiently alone [2]. Another benefit of working alone is that the individual may become
completely immersed in their work. However, a drawback is that the person is solely
responsible for the performance and output. In contrast, people working in a group may
find motivation and inspiration throughout the whole session because it is the group’s
responsibility to produce results and there is peer pressure to not disappoint the group.
This research question examines the difference in attentiveness in groups vs. individual
programming work.

• RQ2: Do group sessions induce higher levels of calmness (meditation) compared to
solo programming?

The psychological benefits of collaborative learning are increased participants’ self-
esteem and reduced anxiety [3]. Thus, we approximate that group work is calmer than
solo programming sessions. Typically, participants working in a larger group are more
comfortable with an unfamiliar problem because other people are around to assist. They
are more mentally assured and less worried about solving the task because someone
else in the group may know the answer. It is important to understand the difference in
calmness in these sessions to be able to create an environment that can be continued for
a prolonged/maintained period of time. As an increase in calmness/meditation can lead
to less tension and stress.

• RQ3: Does difficulty decrease when working in a group?

Previous research found that groups of three to five individuals perform best when
solving complex problems, suggesting that groups are better suited than those working
alone to address challenging problems [4]. Additionally, those in a group tend to retain
more information, especially since the group can work together and share knowledge.
Finally, working with others provides new insight and perspectives. If a significant
difference can be seen within individual/group size, we will be able to assign tasks to
groups or individuals according to the difficulty of the task. Thus, making it much easier
for participants to program a task.

Here, task difficulty is measured using EEG brainwaves such as the frequency of
low β and low α. An increase of lowβ/lowα denotes an increasing difficulty [5].

• RQ4: What are the significant differences between pair and mob programming
sessions?

Although solo and group work should have clear differences, the impact of group
work in pairs or a larger group may also result in differences in attention and concen-
tration. This question compares group work in teams of two to that in larger groups. It
is possible that working in a larger group will decrease how the participants feel on the
difficulty of solving problems/tasks.

202 M. Shiraishi et al.

A comparison between the roles (driver, navigator) is necessary to compare pair
and mob programming. In both sessions, the driver’s attention level and the navigators’
meditation levels should be highest because the driver will be coding and perhaps more
focused, while the navigator is more relaxed as no coding is actually done.

2 Background

Mob programming is an agile software development practice where a group works
together on the same screen and changes roles at set time intervals. This approach
began with Woody Zuill’s programming ventures at Hunter Industries [6]. Assigned
roles assigned the productivity and efficiency. During a mob programming session, one
software engineer (the driver) codes for the entire group by utilizing a console andmouse.
Other software engineers (navigators) audit the code and ensure that the driver’s work
is free from logical or syntactical errors. Mob programming sessions aim to complete
specific programming improvement assignments while working together with the client
[7]. Advantages include an organized cycle for utilizing distributed information and a
greater code fulfillment due to the inherent sharing of information and experience among
the participants [8].

A systematic literature review (SLR) revealed [14] that (1) experimentation with
controls is vital and (2) most mob programming sessions are finished during working
hours, but the eventual outcomes are rarely investigated. Participant surveys show def-
inite impacts such as improved code quality and expanded profitability, but the results
are subjective and lack scientific evidence. Logical proof from an expert’s viewpoint
confirms that mob and pair programming have logical confirmation [9–12]. Performing
coding tests (which have been recognized by experts) during mob programming ses-
sions can monitor the effects on code quality. Furthermore, the influence of the mob
programming session length on the coding speed should be investigated.

The SLR highlights the importance of investigating and analyzing the impacts of
mob programming. This study uses a new perspective (brainwaves) to discover empirical
evidence.

3 Collection and Analysis of Brainwaves

In this study, we employed a new method, which is similar to a preliminary study of
pair programming on brainwaves [13], to collect empirical evidence and answer our four
RQs. Participants’ brainwaves were used to understand and compare the mental state
from a scientific viewpoint. We collected three main datasets: attention, meditation, and
difficulty. We compared the numerical values of how the participants mentally feel in
each programming session. Surveys, code testing time, code quality, and personal options
are conventionally used to analyze mob programming. However, these methods do not
provide clear logical proof or analysis. On the other hand, our new method provides a
clear psychological view. Although this study could simply investigate the differences
in code testing time and code quality after several mob programming sessions, herein
we assess mental states using attention, meditation, and difficulty values.

Comparing Participants’ Brainwaves 203

A brainwave detector, called the MindWave Mobile 2, was used, and NeuroView
software collected and analyzed the EEG.

MindWave Mobile 2 (Brainwave Device). The device measures and outputs the EEG
(0–127.75Hz) power spectra (alpha, beta waves, etc.). Additionally, it monitors attention
and meditation. The device consists of a headset, an ear-clip, and a sensor arm [1].

EEG. EEG was performed to assess the electrical activity of the brain. Brain cells
communicate with each other via electrical impulses. The MindWave Mobile 2 tracks
and records brainwave patterns. Small flat metal discs called electrodes are attached to
the scalp with wires. The electrodes analyze the electrical impulses in the brain and send
signals to a computer that records the results [1].

Attention. The eSense Attention meter (0–100) indicates the intensity of a user’s level
of mental “focus” or “attention” during intense concentration or directed mental activity.
Distractions, wandering thoughts, lack of focus, or anxiety lowers the meter level. Thus,
the concentration levels during programming sessions can be measured [1].

Meditation. The eSenseMeditation meter (0–100) indicates the level of a user’s mental
“calmness” or “relaxation.” Meditation is a measure of a person’s mental state not
physical levels. Meditation is related to reduced activity for active mental processes in
the brain. Distractions, wandering thoughts, anxiety, agitation, and sensory stimuli lower
the meditation meter levels [1].

Difficulty. Difficulty felt by participants during a certain task can be calculated using

lowβwaves/lowαwaves (1)

collected from the MindWave Mobile 2 [5]. A previous study involving ten high school
students used a typing practice with two difficulty levels (basic & advanced). The study
proposed that an increase of (lowβ/lowα) indicates a higher difficulty (low β wave
(13–16.75 Hz) and low α wave (7.5–9.25 Hz)) [5]. In this paper, we used this approach
to evaluate the third RQ.

4 Experimental Method

We evaluated three types of sessions: solo, pair, and mob. Nine subjects (E1–E9), who
were university or graduate students over 18 years old and with a certain level of pro-
gramming skills (i.e., completed basic programming), participated in each experiment.
Each experiment was repeated twice. The flow of the experiment was as follows:

1. Subjects were divided into six groups: 3 Solo groups, 3 Pair groups and 3 Mob
groups. Each participant was involved in two sessions: Solo & Mob or Pair & Mob
(Table 1).

204 M. Shiraishi et al.

Table 1. Participant overview

Session E1 E2 E3 E4 E5 E6 E7 E8 E9

Solo programming Sa Sb Sc

Pair programming Pa1 Pa2 Pb1 Pb2 Pc1 Pc2

Mob programming Ma1 Ma2 Ma3 Mb1 Mb2 Mb3 Mc1 Mc2 Mc3

2. We asked the participants to wear an EEG on their heads and to meditate for 1 min
to obtain EEG data during a neutral state. That is, we asked the participants to close
their eyes and relax. This data was used to compare with the EEG data obtained
during the programming period.

3. The two sessions were conducted consecutively with a 15-min break in between
them. Each group was asked to answer up to three programming questions with
varying degrees of difficulty.

Example Question: Given an integer number n, return the difference between the product of its digits and the
sum of its digits. Input: n = 234 Output: 15 Explanation: Product of digits = 2 * 3 * 4 = 24 Sum of digits =
2 + 3 + 4 = 9, Result = 24 − 9 = 15

4. The time limit was 30 min. Subjects were not required to finish questions. A new
questionwas given once the previous questionwas completed. EEGbrainwaveswere
recorded using the MindWave Mobile 2 while the subjects answered the questions.

5. For the Solo programming session, the participant coded alone, and was not allowed
to communicate with anybody. However, for pair and mob programming sessions,
participants could communicate with group members. For pair and mob program-
ming sessions, there were two roles (driver and navigator). There was only one driver
at a time, and the other participants were navigators. The participants switched roles
after 15 min for pair programming and 10 min for mob programming sessions. Each
participant performed both roles. The groups were assigned as shown in Table 1.

5 Evaluation of Results

The experiments assessed the RQs. Figures 1–2 show the data to answer the first two
research questions, while Fig. 3 shows that for the third research question.

Comparing Participants’ Brainwaves 205

E1

E2

E3

E4

E5E6

E7

E8
E9

SaSb

Sc

Pa1

Pa2

Pb1
Pb2

Pc1
Pc2

Ma1Ma2

Ma3
Mb1Mb2 Mb3

Mc1

Mc2
Mc3

45

55

65

75

25 30 35 40 45 50 55 60 65 70 75

M
ED

IT
AT

IO
N

ATTENTION
Neutral Avg. Solo Avg. Pair Avg. Mob Avg.
Linear (Neutral Avg.) Linear (Solo Avg.) Linear (Pair Avg.) Linear (Mob Avg.)

Fig. 1. Comparison of meditation and attention levels by programming state.

Fig. 2. Box and whisker of
participants’ aver-age percentage in
change of attention, medita-tion, and
difficulty from the neutral state by
programming session.

25

35

45

55

65

45 50 55 60 65 70

M
ED

IT
AT

IO
N

ATTENTION
Pair Driver Pair Navi
Mob Driver Mob Navi.
Linear (Pair Driver) Linear (Pair Navi)
Linear (Mob Driver) Linear (Mob Navi.)

Fig. 3. Attention vs. meditation for participants in
driver & navigator roles during pair and mob
programming

5.1 RQ1: Do Pair and Mob Programming Induce Lower Levels of Concentration
(Attention) Compared to Solo Programming?

In many situations, tasks requiring high concentration are often worked on alone. In
Fig. 1, concentration (attention) levels were highest in the neutral state. Therefore, the
average percentage change in each programming session (Fig. 2) decreased concen-
tration. Pair programming showed the highest percentage of attention level change.
However, both group programming sessions (pair and mob) had higher concentration
levels than the individual programming session.

206 M. Shiraishi et al.

RQ1 Conclusion: Pair and mob programming induced higher levels of
concentration compared to solo programming. It is noteworthy that solo
programming had the lowest attention levels. Group work, especially pair
programming, had the highest attention levels.

5.2 RQ2: Do Group Sessions Induce Higher Levels of Calmness (Meditation)
Compared to Solo Programming?

In Fig. 1, all participants except two (E2, E7) showed the highest meditation level in
the neutral state. Overall, a decrease was observed in the average for all three types of
programming sessions. The highest average meditation level was solo, and the lowest
was pair programming. Their differencewas significant (around 13%). This result differs
from a previous study [13],where amore relaxed statewas observed in pair programming
than solo programming.

RQ2 Conclusion: Pair and mob programming sessions induced lower
levels of meditation compared to Solo sessions. The highest meditation level
was during a solo session, and the lowest was in pair programming.

5.3 RQ3: Does Difficulty Decrease When Working in a Group?

The questions in each session had the same level of difficulty. However, differences
in difficulty are observed by session type. The lower the difficulty value, the easier
a task feels. Figure 2 shows the average change in difficulty by group relative to the
neutral state. The solo experiment showed a 36% increase in difficulty, whereas the mob
programming group had a 1% increase in difficulty compared to the neutral state. On
the other hand, pair programming showed a decreased difficulty of around –14%. These
results imply that working in a group setting is less difficult than working alone.

RQ3 Conclusion: Participants’ difficulty decreased as the group became
larger. The difference between working in a group and working alone was
significant.

5.4 RQ4: Are there the Significant Differences Between Pair and Mob
Programming Sessions?

Attention and Meditation. Both pair and mob programming sessions were positively
correlated with attention and meditation, but the correlation was not significant (Fig. 1).
Only pair programming had a positive percent change compared with the neutral
value (Table 2). There was a somewhat positive correlation (Pearson’s Correlation

Comparing Participants’ Brainwaves 207

Table 2. Comparison of the average percentage change from neutral state

Role Attention (Rank) Meditation (Rank) Difficulty (Rank)

Pair Driver 2.4% (1) −22.9% (3) −49% (4)

Pair Navigator 4.6% (2) −24.9% (4) −44% (3)

Mob Driver −4.9% (3) −4.9% (1) −4% (1)

Mob Navigator −17.6% (4) −21.4% (2) −5% (2)

Coefficient [15]) only for the driver in pair programming (Fig. 3), but the rest (pair
navigator and mob) had a negative or close to zero correlation. For mob programming,
a significant difference was observed between the roles (driver and navigator). The
attention and meditation levels decreased more than 10% from the navigator to the
driver, suggesting that participants concentrate less and are more relaxed when they are
navigators.

Difficulty. Participants had an easier time in a group than when working alone (Fig. 2).
Pair programming and mob programming showed a significant difference. Participants
in pair programming found it easier to tackle problems, but there was not a significant
difference between the roles (Table 2).

RQ4 Conclusion: Our small experiment suggested that pair programming
is more beneficial for participants. The largest factor was the difference in the
roles during a programming session. The difference by role was smaller in the
pair session, indicating that both roles were exerting similar amounts of effort.

6 Discussion

Four RQs were examined to obtain a deeper knowledge of mob programming and pair
programming compared to solo programming. MindWave Mobile 2 was used to collect
brainwave data from a new research perspective. The results indicate that group pro-
gramming can realize more efficient learning than individual programming. As shown
in the results, the meditation levels were lowest in solo work which suggests working
alone may lead to less stress and tension compared to group work. Additional research is
necessary to identify patterns. First, a larger dataset is necessary since this study involved
only six participants. Due to time limitations, two programming sessionswere conducted
in a row. If the programming sessions occurred on different days, the participants would
be more refreshed, which may affect the concentration and meditation results. Second,
the EEG results have yet to be fully analyzed. The results here should be compared with
other brainwave data.

208 M. Shiraishi et al.

7 Conclusion and Future Work

We preliminarily identify the differences between the brainwaves of programmers under
different sessions (solo, pair, and mob). MindWaveMobile2 collected the levels of med-
itation, concentration, and EEG signals. Although differences between the participants
in each session were distinguished, it is too early to yield conclusions. It is unclear
whether the apparent differences between these programming methods are sustained
by scientific and empirical evidence. Consequently, future research should investigate
appropriate systems to look at brainwaves and summarize noteworthy quantities of data.

References

1. EEG - Ecg – Biosensors. http://neurosky.com/
2. DeMarco, T., Lister, T.R.: Peopleware: Productive Projects and Teams. Addison-Wesley,

Upper Saddle River (2014)
3. Laal, M., Ghodsi, S.M.: Benefits of collaborative learning. Procedia. Soc. Behav. Sci. 31,

486–490 (2012). https://doi.org/10.1016/j.sbspro.2011.12.091
4. Laughlin, P.R., Hatch, E.C., Silver, J.S., Boh, L.: Groups perform better than the best indi-

viduals on letters-to-numbers problems: effects of group size. J. Pers. Soc. Psychol. 90(4),
644–651 (2006). https://doi.org/10.1037/0022-3514.90.4.644

5. Umezawa, K., Saito, T., Ishida, T., Nakazawa, M., Hirasawa, S.: An Electroencephalograph-
Based Method for Judging the Difficulty of a Task Given to a Learner. In: 2017 IEEE 17th
ICALT (2017). https://doi.org/10.1109/icalt.2017.18

6. Zuill, W.: Mob Programming - A Whole Team Approach. Agile Alliance (13 June 2019).
https://www.agilealliance.org/resources/experience-reports/mob-programming-agile2014/

7. Kattan, H.M., Soares, F., Goldman,A., Deboni, E., Guerra, E.: Swarmor pair? In: Proceedings
of the 19th International Conference on Agile Software Development: Companion (2018).
https://doi.org/10.1145/3234152.3234169

8. Kattan, H.M., Oliveira, F., Goldman, A., Yoder, J.W.: Mob programming: the state of the art
and three case studies of open source software. In: Santos, V.A.D., Pinto, G.H.L., Serra Seca
Neto, A.G. (eds.)WBMA2017. CCIS, vol. 802, pp. 146–160. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73673-0_12

9. Dybå, T., Arisholm, E., Sjoberg, D.I.K., Hannay, J.E., Shull, F.: Are two heads better than
one? on the effectiveness of pair programming. IEEE Softw. 24(6), 12–15 (2007). https://doi.
org/10.1109/ms.2007.158

10. Hanks, B.: Empirical evaluation of distributed pair programming. IJHCS 66(7), 530–544
(2008). https://doi.org/10.1016/j.ijhcs.2007.10.003

11. Radermacher, A., Walia, G.: Investigating student-instructor interactions when using pair
programming: An empirical study. In: 2011 24th IEEE-CS CSEE&T (2011). https://doi.org/
10.1109/cseet.2011.5876117

12. Salleh, N.,Mendes, E., Grundy, J.: Empirical studies of pair programming for CS/SE teaching
in higher education: a systematic literature review. IEEETrans. Software Eng. 37(4), 509–525
(2011). https://doi.org/10.1109/tse.2010.59

13. Busechian, S., et al.: Understanding the impact of pair programming on the minds of devel-
opers. In: Proceedings of the 40th ICSE: NIER (2018). https://doi.org/10.1145/3183399.318
3413

http://neurosky.com/
https://doi.org/10.1016/j.sbspro.2011.12.091
https://doi.org/10.1037/0022-3514.90.4.644
https://doi.org/10.1109/icalt.2017.18
https://www.agilealliance.org/resources/experience-reports/mob-programming-agile2014/
https://doi.org/10.1145/3234152.3234169
https://doi.org/10.1007/978-3-319-73673-0_12
https://doi.org/10.1109/ms.2007.158
https://doi.org/10.1016/j.ijhcs.2007.10.003
https://doi.org/10.1109/cseet.2011.5876117
https://doi.org/10.1109/tse.2010.59
https://doi.org/10.1145/3183399.3183413

Comparing Participants’ Brainwaves 209

14. Shiraishi, M., Washizaki, H., Fukazawa, Y., Yoder, J.: Mob programming: a systematic liter-
ature review. In: 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC) (2019). https://doi.org/10.1109/compsac.2019.10276

15. Pearson’s Correlation Coefficient. (n.d.). Springer Reference. https://doi.org/10.1007/spring
erreference_83937

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/compsac.2019.10276
https://doi.org/10.1007/springerreference_83937
http://creativecommons.org/licenses/by/4.0/

Author Index

Abrahamsson, Pekka 36
Anslow, Craig 103

Berntzen, Marthe 140
Borg, Markus 157

Choma, Joelma 19
Croonenberg, Job 86

Escalona, María-José 71

Fangmann, Jannik 71
Finnegan, Roger 191
Fukazawa, Yoshiaki 200

Guerra, Eduardo M. 19

Halme, Erika 36
Hong, Shun-Long 172

Jabangwe, Ronald 157
Jantunen, Marianna 36

Kemell, Kai-Kristian 36
Klotins, Eriks 3
Körner, Christian 55
Kropp, Martin 103
Kultanen, Joni 36

Lebens, Mary 191
Looks, Hanna 71

Matthes, Florian 123
Meier, Andreas 103

Mikalsen, Marius 3
Moe, Nils Brede 3, 140

Nilsson Tengstrand, Sara 157

Paasivaara, Maria 123, 172
Pereira, Roberto 19
Plösch, Reinhold 55
Putta, Abheeshta 123, 172

Quilty, James W. 103

Rousi, Rebekah 36

Saito, Daisuke 200
Sallin, Marc 103
Schön, Eva-Maria 71
Shiraishi, Makoto 200
Silveira, Sofia A. M. 19
Smite, Darja 3
Stettina, Christoph Johann 86
Stray, Viktoria 3, 140

Thomaschewski, Jörg 71
Tomaszewski, Piotr 157
Tuncel, Doruk 55

Uludağ, Ömer 123, 172

Vakkuri, Ville 36
van Els, Victor 86
Visser, Joost 86

Washizaki, Hironori 200

Zaina, Luciana A. M. 19

	 Preface
	 Organization
	 Contents
	Agile Practices
	From Collaboration to Solitude and Back: Remote Pair Programming During COVID-19
	1 Introduction
	2 Background and Related Work
	2.1 Pair Programming
	2.2 Remote Pair Programming

	3 Empirical Cases and Research Method
	3.1 The Case Study Design
	3.2 InterSoft and SavingsBank and Their Transition to WFH
	3.3 Data Collection
	3.4 Data Analysis
	3.5 Limitations and Threats to Validity

	4 Findings
	4.1 Do Engineers Pair Program When Working from Home?
	4.2 How is Remote Pair Programming Done?
	4.3 What Are the Main Challenges in Remote Pair Programming in WFH?
	4.4 What Are the Benefits of Remote Pair Programming in WFH?

	5 Discussion and Concluding Remarks
	References

	UX Work in Software Start-Ups: Challenges from the Current State of Practice
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	4.1 UX in the Software Development Activities
	4.2 UX Work from the Perspective of Start-Ups Professionals
	4.3 Threats to Validity

	5 Challenges for UX in Software Start-Ups
	6 Conclusions
	References

	How to Write Ethical User Stories? Impacts of the ECCOLA Method
	1 Introduction
	2 Background
	2.1 Implementing Ethics into Software Development
	2.2 ECCOLA Method and It's Application
	2.3 User Stories in Ethically Aligned Software Design

	3 Research Framework
	4 Study Design
	4.1 Data Collection Methodology and Study Context
	4.2 Data Analysis

	5 Findings
	5.1 Validity Threats

	6 Discussion and Conclusion
	References

	Process Assessment
	Setting the Scope for a New Agile Assessment Model: Results of an Empirical Study
	1 Introduction
	2 Related Work
	2.1 Model Development Approaches
	2.2 Assessment Models

	3 An Assessment Model Proposal
	3.1 Methodology
	3.2 Model Structure
	3.3 Validation

	4 Results
	4.1 Embrace Change to Deliver Customer Value Principle
	4.2 Plan and Deliver Software Frequently Principle
	4.3 Human Centricity Principle
	4.4 Technical Excellence Principle
	4.5 Customer Collaboration Principle
	4.6 Overall Structure

	5 Discussion
	5.1 General Findings
	5.2 Cluster Specific Findings
	5.3 Threats to Validity

	6 Conclusion and Future Work
	References

	Towards a Standardized Questionnaire for Measuring Agility at Team Level
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Initial Construction of the Questionnaire
	3.2 Pretest
	3.3 Evaluation in the Public Administration Sector
	3.4 Expert Survey

	4 Results
	4.1 Defining Six Dimensions of Agility
	4.2 Demographic questions
	4.3 Assessment Questions
	4.4 Weighting Questions

	5 Discussion and Limitations
	6 Conclusion and Future Work
	References

	The Impact of Agile Transformations on Organizational Performance: A Survey of Teams, Programs and Portfolios
	1 Introduction
	2 Related Work
	2.1 Agile Transformations and Their History
	2.2 Understanding Individual Transformation Journeys
	2.3 The Impact of Agile Transformations

	3 Research Question
	4 Methodology
	4.1 Survey Design
	4.2 Data Collection

	5 Results
	5.1 Descriptive Statistics
	5.2 Transformation Details
	5.3 Correlation Analysis

	6 Discussion
	6.1 The Impact of Agile Transformations: General Observations
	6.2 Impacted Metric Dimensions
	6.3 The Relevance of Organizational Layers
	6.4 Limitations

	7 Conclusions
	References

	Measuring Software Delivery Performance Using the Four Key Metrics of DevOps
	1 Introduction
	2 The Four Key Metrics (FKM)
	3 Multi-vocal Literature Review
	3.1 Systematic Literature Review
	3.2 Gray Literature Review
	3.3 Results

	4 Measure the Four Key Metrics
	5 Case Study
	5.1 Case Description
	5.2 Methodology
	5.3 Results

	6 Discussion
	6.1 RQ1: How to Automatically Measure the FKM?
	6.2 RQ2: How Valuable Is the Approach to Automatically Measure the FKM for Software Development Teams?
	6.3 Limitations
	6.4 Summary
	6.5 Outlook

	7 Conclusions
	References

	Large-scale Agile
	Evolution of the Agile Scaling Frameworks
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 Results
	4.1 RQ1: Evolution of the Agile Scaling Frameworks
	4.2 RQ2: Key Reasons Behind Creating Agile Scaling Frameworks
	4.3 RQ3: Benefits of Adopting Agile Scaling Frameworks
	4.4 RQ4: Challenges of Adopting Agile Scaling Frameworks

	5 Discussion and Conclusions
	5.1 Key Findings
	5.2 Limitations
	5.3 Conclusions

	References

	Coordination Strategies: Managing Inter-team Coordination Challenges in Large-Scale Agile
	1 Introduction
	2 Background and Related Work
	2.1 Managing Dependencies in Large-Scale Agile Development
	2.2 Coordination Strategies

	3 Method and Analysis
	3.1 Case Description
	3.2 Data Collection and Analytical Procedures
	3.3 Limitations and Threats to Validity

	4 Findings
	4.1 Strategy 1: Aligning Autonomous Teams
	4.2 Strategy 2: Gaining and Maintaining Overview Across Teams
	4.3 Managing Prioritization Issues
	4.4 Managing Architecture and Technical Dependencies

	5 Discussion
	5.1 Implications for Practice

	6 Conclusion and Future Research
	References

	Challenges of Adopting SAFe in the Banking Industry – A Study Two Years After Its Introduction
	1 Introduction
	2 Large Scale Agile Software Development
	3 Related Work
	3.1 Individual Case Studies
	3.2 Systematic Literature Reviews

	4 Method
	5 Results
	6 Discussion
	7 Threats to Validity
	8 Conclusions
	References

	Benefits and Challenges of Adopting SAFe - An Empirical Survey
	1 Introduction
	2 Background and Related Work
	2.1 SAFe
	2.2 Previous Studies

	3 Research Methodology
	3.1 Research Questions
	3.2 Survey Design
	3.3 Data Analysis

	4 Results and Discussion
	4.1 Overview of the Contextual Information
	4.2 Benefits of Adopting SAFe
	4.3 Challenges of Adopting SAFe
	4.4 Threats to Validity

	5 Conclusions and Future Work
	References

	Short Contributions
	Using a Low Code Development Environment to Teach the Agile Methodology
	1 Introduction
	2 Related Work
	2.1 Microsoft PowerApps
	2.2 Course Background
	2.3 Hypothesis

	3 Research Methods
	3.1 Participants
	3.2 Materials
	3.3 Procedure

	4 Results
	5 Discussion
	5.1 Limitations and Further Research

	6 Conclusion
	References

	Comparing Participants’ Brainwaves During Solo, Pair, and Mob Programming
	1 Introduction
	2 Background
	3 Collection and Analysis of Brainwaves
	4 Experimental Method
	5 Evaluation of Results
	5.1 RQ1: Do Pair and Mob Programming Induce Lower Levels of Concentration (Attention) Compared to Solo Programming?
	5.2 RQ2: Do Group Sessions Induce Higher Levels of Calmness (Meditation) Compared to Solo Programming?
	5.3 RQ3: Does Difficulty Decrease When Working in a Group?
	5.4 RQ4: Are there the Significant Differences Between Pair and Mob Programming Sessions?

	6 Discussion
	7 Conclusion and Future Work
	References

	Author Index

