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Preface

In 2020, the annual joint workshop of the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation (IOSB) and the Vision and Fusion
Laboratory (IES) of the Institute for Anthropomatics, Karlsruhe Institute of
Technology (KIT) was hosted for the first time due to the pandemic at the IOSB
in Karlsruhe where the strict infection protection regulations of the KIT could
be enforced.

For a week from the 27th to the 31st of July the PhD students of the both
institutions delivered extended reports on the status of their research and
participated in heated discussions on topics ranging from computer vision
and optical metrology to usage control and neural networks. Most results
and ideas presented at the workshop are collected in this book in the form of
detailed technical reports. This volume provides a comprehensive and up-to-date
overview of the research program of the IES Laboratory and the Fraunhofer
IOSB.

The editors thank Arno Appenzeller, Paul Wagner and the other organizers
for their efforts resulting in a pleasant and inspiring atmosphere throughout
the week. We would also like to thank the doctoral students for writing and
reviewing the technical reports as well as for responding to the comments and
the suggestions of their colleagues.

Prof. Dr.-Ing. habil. Jürgen Beyerer
Dr. Tim Zander
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Privacy and Patient Involvement in e-Health
Worldwide: An International Analysis

Arno Appenzeller

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
arno.appenzeller@kit.edu

Abstract

Nearly every nation is actively working on an e-Health policy or already has one.
Personal Health Records (PHR) are considered as one of the key elements in the
digitisation of the health sector. While nearly every e-Health agenda mentions
privacy and data protection, the real world implementation can differ. A recent
example is the planned launch of the German “Elektronische Patientenakte”
(ePA), which has only limited data control features for the patient in its first
version. This paper gives an overview of how the e-Health policies of the G7
nations handle patient involvement and privacy for their PHR projects. With
this analysis we show that privacy and patient involvement are crucial for the
acceptance of such projects. Finally we propose a data sovereignty framework
with guidelines for PHRs to give a user control over his data and establish trust
in such systems through broad access, fine granular control, informed decision
making, intuitive user experience and comprehensible transparency.

1 Introduction

e-Health applications and their general use is becoming more and more common
and widely available. Nearly every developed country has a national e-Health
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strategy to make use of the data created during a patient’s treatment. There are
enormous expected benefits from the broad availability of electronic health data.
From better data availability for medical research, paperless hospitals that can
easily send data to a patient’s general practitioner to patient centred care where
a patient is in the middle of the treatment and is in possession and control of all
data. While those are just examples it is clear that the potential benefits make
e-Health projects worth to be pursued for a long time period. When looking at
the German national e-Health project, the “Elektronische Patientenakte (ePA)”,
which is set to launch in 2021, it can be easily seen that patient involvement and
privacy controls are controversial topics. To speed up the launch of the ePA
there are several limitations to access right management for the patient in the
initial version.1 A fine granular access management is promised at a later time
but with no concrete dates yet. This lead to a lot of controversy and discussion
from several parties. The German Federal Commissioner for Data Protection
and Freedom of Information Kelber announced that this violates the General
Data Protection Regulation (GDPR) of the EU and that they will pursue legal
checks before the ePA launches.2 It remains to be seen if this will weaken public
trust in the nationwide project. This is only one of the examples that shows that
data sovereignty is an important topic when it comes to digital personal health
records. According to GDPR Article 9, personal medical data is considered
as sensitive data and must not be processed by default. To make processing of
personal health data possible (or the other sensitive data, that is stated in Art. 9)
one of the exclusions of Article 9 Paragraph 1 a) to j) must be fulfilled. One
of these exclusions is the explicit declaration of consent to the data processing
by the affected person. While there are different approaches to the term of
data sovereignty, there is still no clear definition what it means regarding the
processing of medical data. The previous example for Germany and the EU
regulation gives a glimpse of what is considered important in the EU in those
terms. However nearly every country’s e-Health strategy includes a project
similar to the German ePA. Many European countries also define their strategy

1 https://www.heise.de/newsticker/meldung/Elektronische-Patientenakte-Datenhoheit-kommt-
spaeter-4427379.html [Accessed 25 November 2020; In German]

2 https://www.heise.de/news/Datenschutzbeauftragter-kuendigt-Massnahmen-gegen-
Patientendatenschutzgesetz-an-4873642.html [Accessed 25 November 2020; In German]
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with GDPR in mind, but it is interesting how other nations for example the US
handle the topic of patient involvement, control and privacy of personal medical
data. It is also important to analyse if the e-Health programs even have a patient
centred approach or if the focus is more on the broad availability of the data
for doctors and research. This paper will give an in-depth look on the e-Health
strategies of the G7 nations and other examples. Building on this analysis of the
different countries and especially the role of patient involvement and privacy in
those programs, we will define criteria for data sovereignty for personal medical
data. The paper is structured as follows: At first we will define the term data
sovereignty and what it can mean for patient involvement. After this we will
give an overview of e-Health in the G7 nations and other good examples. With
the provided analysis of our findings, we will improve our data sovereignty
definition and discuss our results. We close this paper with a conclusion and an
outlook to further research, that is necessary in this area.

2 Data Sovereignty for Patient Involvement

The term data sovereignty is nowadays mostly used not only for personal data,
but also for the processing of data as an economic good. However for both
use-cases a wide range of control and possibilities to intervene is mandatory.
When looking at the patient’s perspective of data sovereignty, it is necessary to
have a look at what existing regulations enable for the affected person. In the
introduction it was already mentioned that the GDPR requires consent to process
medical data. There are also some requirements for privacy consent in the GDPR.
First every consent must have a specific purpose. Art. 5 Par. 1 b) says that a
purpose has to be unambiguous and that the data is not allowed to be processed
for something that is not consistent with the declared purpose. Furthermore
the data should be limited to what is necessary for this purpose to enable data
minimisation. Another requirement made in Art. 4 Par. 11 is that a consent
should be freely given and express the affected person’s explicit agreement to
the data processing. Besides this it should be always possible for a subject to
withdrawal its consent. Also the Recital 32 indicates that an opt-out principle
for personal data is not allowed. So any pre-ticked boxes or the assumption, that
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remaining silent means confirmation are not lawful. Finally the Article 15 of
GDPR requires that a subject should have the right to access its data to see if
data was processed and for what purpose it was done. It remains to be noted
that while GDPR is a European regulation, the execution between countries can
be different. For example Belgium explicitly requires written consent for the
processing of medical data. Furthermore Belgium also requires direct access for
the patients to their health data, while Portugal limits access to physicians. In
Germany there are also specific laws and regulations that have implications on
the execution on GDPR such as the local hospital regulations or the laws like
the Patientendaten-Schutz Gesetz (PDSG) mentioned in the introduction. Even
with the common GDPR the EU remains fragmented, which makes a closer
look necessary [7]. In terms of digital consent the level of granularity is always
an important topic. The best case would be an arbitrary level of granularity for
consent. This means a patient could choose any data he wants to share with
any third party the patient wishes. In reality those approaches are often limited.
The limitations can have several reasons like technical limitations or limitations
of user interfaces. The German law defines the basic control over personal
data as information self-determination. While this term comes from an age
before personal health records, the basic principles like control and transparency
of data usage remains important. Therefore we consider data sovereignty as
information self-determination + X. While this X seems arbitrary it must be
defined interdisciplinary. There are legal, ethical and technical considerations
that needs to be done. For example not every legal definition can be executed
in the exact same way technically and not every technical possibility comes
without ethical concerns. However the technical side of data sovereignty has
to enable everything needed in terms of consent, with a rich digital consent
management, and transparency with possibilities to automatically track usage of
personal health data. Nevertheless as described before technical solutions alone
are not sufficient, therefore this paper gives an overview of the state of the art
and suggests technical solutions that can help to improve data sovereignty.
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3 e-Health in the G7 Nations

In this section we provide an overview of the e-Health projects in the G7 nations
and other good examples. The overview will be focused on privacy and security
aspects of the different projects.

3.1 Methodology

For our research we choose a qualitative approach. We focused on the G7 nations
since that is where we expected the most resources available in English language
versions. In addition we decided to include a few other notable examples we
found during our research. For our systematic research approach, we used the
directory of e-Health policies by the World Health Organization (WHO), which
was created with information of the states itself or through an online search and
research in academic literature [16]. The directory entry served as starting point
for a general overview. In addition the European Union has a similar overview
for a few selected nations [9]. For a more focused view on privacy policies
regarding e-Health, we did our own literature and online research.

3.2 Germany

As mentioned in the introduction Germany has a lot of ongoing e-Health projects,
but the largest is the national ePA, which is created by a consortium of different
parties called gematik.3 Data protection and privacy is a core topic while
developing the ePA. This policy has a legal foundation in the so called e-Health
law, which requires the highest priority for data protection from a legal and
technical standpoint [2]. The gematik approach to fulfil this requirement is with
the policy that no data should be accessed through the public internet and that
a secure tunnel is required anytime [11]. Nowadays with the rise of mobile
applications this approach is not fully valid anymore, since smartphone apps,
that give access for a patient to his data, are planned. Besides this another

3 https://www.gematik.de
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use-case is data usage when visiting a doctor. Access to this data requires two
factors from each party. One factor is the so called “Gesundheitskarte”, which is
a chip card that is also proof of health insurance. When a patient wants to access
his data, he also needs to enter a PIN code. In this scenario the doctor also needs
to prove his/her identity and confirm access with his medical id card, which
is similar to the “Gesundheitskarte”. In addition every access to data of the
personal health record is recorded in a log file. This helps the patient to trace the
usage of his data. In terms of patient control the ePA tries to do a staged rollout
of control mechanism for the initial launch. In the first version only basic access
control is possible. This means that a patient can give a doctor or a different
party full access to every data or no access. This lead to a lot of controversy as
described in the introduction of this paper. In addition the final planned stage
will still lack the option of full control since access rights can only be managed
for several document types like a doctor’s letter, that includes more than one
medical observation and not a fine granular level for every medical resource
of a patient. In 2014 Dehling et al. did an evaluation of the ePA project and
compared it to their approach of patient-centred health information technology
service [5]. They described several requirements on how sensitive medical
information should be handled with a focus on privacy and security. Their result
was that ePA was lacking a lot of things like the possibility for anonymous
data sharing, unlinkability and some things like confidentiality, access control
and authorisation are only partly fulfilled. It remains to be seen how well the
German ePA will be accepted with all its privacy controversy, when it is set to
launch in 2021.

3.3 France

France has several long term national e-Health strategies [8]. It is part of a
digitisation agenda from 2011 where e-Health is a fundamental part. Inside this
e-Health agenda there are five key points and privacy is one of them: “Open
access to health data, respectful of personal information privacy, to serve the
steering of the health care system, as well as public health and research (open
data)” [13]. 2011 was also the year of the introduction of France’s first personal
health record project, the so called Dossier Médical Personel (DMP). The main
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principle of the DMP is not to be a complete health record of a patient, but
rather an exchange and information platform where physicians can include the
information from a patient they consider necessary. It is also a more document
based platform that includes files like physician reports based on international
standards like the Clinical Document Architecture (CDA). The whole DMP is
opt-in and will be created by the general practitioner (GP) if a patient gives
consent. In terms of patient involvement the DMP has an interesting history.
After the initial launch only doctors were able to access a patient’s DMP. There
was no explicit way for a patient to access the records without a doctor. This
caused a very low adaption of the platform, which lead to a relaunch that was
more patient centred and provided direct access for the patient. With this higher
adoption and acceptance was noticeable[3]. This version also included granular
access right management for the patient. First a patient needs to authorise every
physician, so that he can have access. Then every document can have a certain
status. The status can be open so that everyone that has access to the DMP
can access it. Another status is hidden, where only the patient, the physician
that created the document and the GP see the resource. Other doctors see that
there is a hidden file. Lastly there is a confidential status, which can be used
when there is a sensitive diagnosis that should be viewed for the first time in
the presence of the corresponding doctor. In addition to these access rights a
patient can upload own documents and see an access log for every document.

3.4 Italy

Italy currently has no nationwide personal health record project with a focus
on direct patient involvement. However there are different e-Health projects
to introduce a nationwide electronic health record (EHR). The e-Health law
sees three main tasks for an EHR: improvement of treatment, research and
evaluation of the care quality. While there is no direct patient involvement,
patients can control if there is an EHR and what data will be stored there with
their consent. Besides from exceptions for patient care or treatment, the patient
is in the center of the consent decision [1]. It needs to be mentioned that this is a
legal requirement and the patient has no technical way to control this yet. In the
past this lead to cases where EHRs were created without consent. Nevertheless
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the patient has a right to get access to the EHR and privacy is a core principle in
laws and strategies for e-Health. From a technical perspective there is still more
to do to introduce the EHR and to improve direct patient involvement [10].

3.5 United Kingdom

The UK with its centralised National Health Service (NHS) launched several
EHR systems in the past. In 2012 the government released a strategy paper
that described a ten year framework for health and care [6]. Two key points
were that the patient should be in the center of care and that digitisation should
give benefits in a broad spectrum. This starts with tools for patients to make
digital appointments, receive digital prescriptions and self-assessment tools.
Furthermore standardised data communication allows data to improve the quality
of care and reduction of inconsistent or incomplete data for health care providers.
The strategy paper also described privacy concerns as potential issues. The paper
stated the following position regarding those concerns: “not sharing information
has the potential to do more harm than sharing it”. However there are no more
details besides that data should be shared in a confidential and private way and
that patient should control this process. One of the already launched projects is
the Care.data program.4 The project aims to store all data of GPs in a common
centralised database. Patients can deny consent to participate, however data will
then be store anonymised. The focus of Care.data is on the secondary usage
of data. Hoeksma took an in depth look at the program and its implications
on privacy [12]. There is paid access to the platform and it offers matching of
data from different sites to enable longitudinal tracking of patients’ progress.
This was done by using a patient identifier, the NHS number, date of birth, sex,
ethnicity and postcode. After the linkage those identifiers are replaced by a
pseudonym. Overall Hoeksma criticized the platform for its lack of transparency
for the patient. All in all the missing transparency and other issues lead to the
shutdown of the project. Another project that is still in use is the Summary Care
Record. This service is a personal health record platform similar to the system
of Germany’s ePA. It is only created with the patient’s consent, which can have

4 https://www.england.nhs.uk/2013/10/care-data/
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different levels. It is possible to consent to the storage of all information or only
to allow the storage of necessary medical data. Currently the patient has no
independent access to the platform, but can request the stored data from his GP.
There are also some privacy concerns related to the service as the foundation
medConfidential stated when they analysed conformance with the GDPR. 5 In
addition there is access for secondary use for third parties. This is a default and
needs explicit opt-out by the affected person. Like before the opt-out options
have different stages. Opt-out can be universal or the patient can opt-out for
every secondary use except when the explicit purpose is to provide his own
treatment or care. The third-party access also lead to some controversy when
life insurance or credit-card companies gained full access through subject access
requests, that should only provide them the relevant data for the purpose.6

3.6 United States of America

The USA with its federal states has a variety of federal and national privacy laws,
that lead according to Dumortier et al. to problems in regard of the introduction
of e-Health [7]. Additionally many privacy laws are rather old and from a
time before the digitisation. The major regulation in terms of health data is
the Health Insurance Portability and Accountability Act (HIPAA), which has
general privacy rules for personal health data. One of the main principles is
that a patient must give his consent before health data is processed or given
to another party. One exclusion is the usage in the context of a treatment or
to process payment. However the patient should always have a certain degree
of control for sensitive data. HIPAA also regulates when consent is needed
and how a consent has to look like. It gives patients the right to access their
data and the right to correct data. There are special requirements how to use
data for secondary usage and who is allowed to do it. The HIPAA regulation is
created to avoid that personal health data gets into the hands of unauthorised
people. Besides privacy regulation HIPAA also has requirements in terms of

5 https://medconfidential.org
6 https://www.telegraph.co.uk/news/nhs/10855450/Probe-into-claims-that-insurers-given-access-to-

full-medical-records.html [Accessed 25 November 2020]
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security of the data. It remains to be noted that federal law can lead to exclusions
and exceptions of the HIPAA regulation. This makes exchange of health data
between federal states difficult. Besides national projects and strategic plans to
boost the digitisation of the digital health sector, there is an existing solution
called Blue Button.7 This EHR service is created by the Blue Button initiative
and is supported by many health providers on a voluntary basis. If there is a
website that provides the possibility to safely download the personal health data
of patients a blue button appears and enables the possibility to do so. The format
does not necessarily have to be machine readable, it also can be a PDF or a
some other document. Rather than providing a personal health record platform
like in other nations, the intention is to make analogue exchange of health data
easier and enable a possibility for the patient to get access to his data. There
is also a successor in development called Blue Button+ that plans to enable a
digital exchange with explicit control of the affected patient. In addition to the
initiatives of the government there are many projects from private companies
like Apple Health or Microsoft Health Vault to create personal health records.

3.7 Japan

Japan has a long history of the introduction of electronic health record systems.
It already started in 1998 with the development of formats for the EHR. Those
fundamental approaches had considerations about security but obviously did not
look at patients in control of their data. There are regional differences in terms
of e-Health usage. For example there are hospitals that offer their own EHR
where patients have access but there is no nationwide personal health record.
In 2018 the next-generation medical infrastructure law was introduced [15].
After a look at the status quo in terms of e-Health, which showed that only the
minority of hospitals use EHR systems, that most of digital patient data remains
unused and that documentation of patients’ EHR is mostly incomplete, the new
law allowed access to anonymised patient data for secondary usage like research
without explicit consent of a patient. Nevertheless the patient will be informed
about the usage of his data and can intervene - no intervention means consent.

7 https://www.healthit.gov/topic/health-it-initiatives/blue-button
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Most of the system and decisions how to use data remain in the responsibility of
the participating hospitals. They need to decide how to anonymnize the data and
if and how the patient should be involved. A study from Morris et al. showed
that most of Japans population have privacy concerns and favor a system where
they have control [14].

3.8 Canada

Canada has a privacy regulation called Personal Information Protection and
Electronic Document Act (PIPEDA) similar to the HIPAA of the US. The goal
is to protect personal health data from commercial usage without consent [4].
Furthermore there is Canada Infoway, which develops e-Health solutions for
Canada.8 A key goal is that the patient is in the center of the treatment. However
there is currently no nationwide general personal health record.

3.9 Others

Besides the G7 nations there are other good examples for national e-Health
initiatives with patient involvement. One example is Australia which has a
system called My Health Record for a personal health record.9 Privacy is a very
strong requirement there and is enforced by law and technical requirements.
Another example is Estonia, where there is one central platform where every
health data is stored. In terms of privacy this project follows the rule of GDPR.

4 Analysis

When looking at the e-Health policies of the G7 nations and the role of privacy
and patient involvement it becomes clear that nearly every nation applies some
kind of general regulations like the GDPR or more health specific ones like
HIPAA. In addition to those general regulations many nations have specific

8 https://www.infoway-inforoute.ca/en/
9 https://www.myhealthrecord.gov.au
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laws for e-Health. For example Germany has a whole series with the recent
PDSG as example. One interesting observation is that European countries have
different executions of GDPR in terms of e-Health. Another observation is
that there is a gap between technical execution and legal requirements. A good
example where the technical planning is behind the law is the staged launch of
the German ePA in terms of access control. A general impression is that nearly
every personal health record is in an early phase. The DMP in France is a good
example what impact patient involvement has on acceptance. This should be
considered as cautionary example about how a good revamp with the patient
in mind can look like. When looking at projects from the UK the importance
of privacy can be shown by looking at projects cancelled due to privacy issues.
Unfortunately there is no project that meets our requirement for data sovereignty
in terms of data control and an arbitrary level of granularity to do so. The lack
of complete data control is also related to open questions in terms of secondary
usage and data donations. This is a very sensitive topic since there needs to be
a fair trade off between data usage for research, which potentially benefits the
general public in general and protecting data of individuals. The depth of this
controversy can be easily seen by the discussion whether such processes should
be opt-in or opt-out. With the general overview and some failed examples our
research shows strong indications that it is important to involve the patient in a
transparent way instead of hiding such data usage from him.

In general it is shown that technical solutions alone can only be partial solutions.
Another major topic is to intuitively present the technical possibilities to the
user through a suitable user experience. This should help the patient to be in the
position to control his data, but also understand the implications of the control.
To achieve this we propose a data sovereignty framework for personal health
records that gives user control over his data and establishes trust in the system
with the following properties.

• Broad access:
Independent access is mandatory for every aspect a user needs for data
sovereignty. Access should be as easy as using a dedicated app on the
patient’s smartphone. Access exclusively in presence of a physician should
be discouraged because it will not let the user have an independent look
on his data.

12
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• Fine granular control:
A user should be able to control every access to every datapoint of his
PHR. When a consent for data usage is requested the user should be able
to decide which data is allowed to be used by whom. This also leads to
requirements for the underlying data structure. Documents that combine
different data of patients should be avoided or also offer fine granular
control.

• Informed decision making:
Any decision which is not based on information or deeper knowledge
can not be an informed decision. This property has consent decisions in
mind, which can be very complex and hard to understand for a patient. A
sovereign patient should be able to know what he does at any time. This
should be supported by recommendation systems that evaluate decisions
based on the patients preference. In the concrete case of consent this can
be done by considering the preferences of the user, the requested data and
the purpose of the request.

• Intuitive User Experience:
All possibilities are limited when a user does not understand them. This
is a rather interdisciplinary challenge from an ethical, legal, technical and
design standpoint. For example an access system where the user feels
overwhelmed by the possibilities will not help him to be sovereign. The
mentioned discipline must define the requirements, so that the user has a
good experience.

• Comprehensible transparency:
A patient should be able to reproduce every usage of his data. He should
not only be able to see the first data usage but also what such first data
request imply, for example a research project that gives data to a partner
to process it. This should be supported from a technical perspective and
encouraged by guidelines how to use the data and make it transparent for
the user.

We propose that a PHR that wants to enable patient involvement and data
sovereignty follows those guidelines and execute and extend them according to
the project’s need.

13
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5 Conclusion & Outlook

This paper gives an overview of privacy and patient involvement in e-Health
worldwide. We see patient involvement, privacy and data control as crucial
key points to enable data sovereignty in terms of PHRs. This term is defined
by analysing the GDPR and how local policies extend it. We showed that
data sovereignty requires more than what is demanded by current laws and
their execution with the example of information self-determination, which is
considered a fundamental right in Germany. From a technical point of view we
see that this concept needs to be extended with a rich digital consent management
and ways to enforce automatic data usage tracking for transparency. It has to
be mentioned that the addition and extensions can not be purely technical and
an interdisciplinary approach is required. Our overview looked at the e-Health
policies of the G7 nations with a focus on privacy and patient involvement. The
overview showed that while nearly every country has one or more laws that
enforces privacy and patient involvement, the implementation is often limited.
There are also clear examples proving that privacy and patient involvement is
a key factor for the acceptance of a PHR. With those results we define a data
sovereignty framework for PHRs. We propose that broad access, fine granular
control, informed decision making, intuitive user experience and comprehensible
transparency can help to give a user control over his data and establishes trust in
the PHR system.

Our results show that more work is required in various fields to define a good
framework for patient involvement and data sovereignty for PHRs. This should
be done in an interdisciplinary effort. On the one hand there is the legal view.
Further research and legislation is required to define the guidelines for the
underlying technological possibilities of a PHR. In addition the ethical view
should also be considered. Questions like what possibilities in terms of data
control and privacy should be, if at all, limited for the patient need to be
investigated. The issue when dealing with the trade off between usability and
pre-filled decisions should be evaluated from an ethical point of view. Finally,
besides the general technological implementation, there needs to be user research
to create a proper user experience. This should investigate how a patient can
be empowered, so he can understand his decision making and data control

14



Privacy and Patient Involvement in e-Health

without being overwhelmed by too many possibilities. Besides those open
questions further observation of the current development in e-Health worldwide
is necessary. One thing that could lead to new data on patient acceptance will
be the upcoming launch of the German ePA. With a lot of controversy in terms
of data protection and security, it remains to be seen how the compromises in
those matters affect the adaption and acceptance of the project. While this is
just one example of on-going digitisation, there will be more data and studies
that could be used to refine our presented framework.
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Abstract

Ellipsometry is a widely-used technique for characterizing materials and thin
films. The principle is based on the polarization changes after light is reflected
or transmitted at a sample. In general, the shape of the sample should be flat or
nearly flat because ellipsometry is sensitive to the angle of incidence, tilt angle
and the sample position (height variation). For nonplanar surfaces, retroreflex
ellipsometry was proposed to solve the problem of the alignment. Despite of
the Mueller matrix, the coherency matrix is often used for depolarization and
noise reduction. In retroreflex ellipsometry, the measured Mueller matrix can be
seen as a dual-rotation transformation. Therefore, it is important to discuss the
changes of reference frames for Mueller matrices. In this report, the polarization
model of retroreflex ellipsometry will be introduced. Decompositions and
invariant quantities of a Mueller matrix with a dual-rotation transformation will
be discussed.

1 Introduction

Ellipsometry is a widely-used technique for characterizing materials and thin
films, e.g., in the semiconductor industry, biology and nanotechnology. The prin-
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ciple is based on the polarization changes after light is reflected or transmitted at
a sample. The polarization characteristics can be described by Fresnel equations.
The advantages of ellipsometry are non-destructive, fast measurements, and high
accuracy and sensitivity. In general, the geometric shape of samples should be
flat in order to fulfill the law of reflection or Snell’s law. For nonplanar samples,
the curvatures of the surface alter the reflected or transmitted light which causes
experimental errors due to the misalignment. The worst-case scenario is that
the detector cannot receive any signal. This restriction limits the feasibility
of in-line measurements for industrial applications. In the last two decades,
many approaches were proposed to overcome the shape restriction [19, 15, 10,
26, 14, 23, 16, 8]. However, these studies have some constraints, e.g., small
measurement ranges, a short working distance, and complicated system design.
In order to conquer these drawbacks, the concept of retroreflex ellipsometry

PSG

NPBS

Sample

Retroreflector

PSA

Figure 1.1: Schematic of the retroreflex ellipsometer in the reflection and transmission config-
urations, showing the polarization state analyzer (PSA), polarization state generator (PSG) and
non-polarizing beam-splitter (NPBS).

(RRE) has been proposed at Fraunhofer IOSB[13, 4, 5, 18, 17]. Figure 1.1 shows
the configuration of RRE whose concept is based on return-path ellipsometry
[20, 2]. The key element in RRE is a retroreflector which returns the light
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along the same path and has the same polarization characteristics as an ideal
mirror regardless of the angle of incidence (within an angular range up to±30◦).
Therefore, the alignment of angles and position between the detector and the
sample is automatically achieved. In this paper, the polarization model of
retroreflex ellipsometry will be introduced, and decompositions and invariant
quantities of the measured Mueller matrices will be discussed.

2 Polarization model of retroreflex ellipsometry

The polarization characteristics of optical elements or the interaction at the
boundaries can be described by Jones vectors E, Jones matrices J, Stokes
vectors S and Mueller matrices M [3, 9]. Jones vectors and Jones matrices can
only be used for completely polarized light and nondepolarizing systems while
Stokes vectors and Mueller matrices can be used for partially polarized light and
depolarizing systems. A Jones matrix can be converted to the Mueller matrix by
the transformation:

M = A(J⊗ J∗)A−1, (2.1)

where ⊗ denotes the Kronecker product, the asterisk denotes complex conjuga-
tion, and A is the transformation matrix given by

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (2.2)

Stokes vectors S (4× 1 vector) describe the polarization state of the electro-
magnetic waves including fully polarized, partially polarized, or unpolarized
light. Mueller matrices M (4× 4 matrix) characterize the interaction between
mediums and polarized light.

S =


s0
s1
s2
s3

 , M =


m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

 (2.3)
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The Mueller matrix of an isotropic sample MS can be expressed by the NSC
representation:

MS =


1 −N 0 0
−N 1 0 0

0 0 C S

0 0 −S C

 , (2.4)

where N = cos 2Ψ , S = sin 2Ψ sin ∆, and C = sin 2Ψ cos ∆. Ψ and ∆, which
are functions of the angle of incidence and the refractive index of the sample,
represent amplitude ratio and phase difference. When Mueller matrices are
presented with different coordinate frames, the coordinate transformation should
be applied. The Mueller matrix of a coordinate rotation MR(α) can be described
as

MR(α) =


1 0 0 0
0 cos 2α − sin 2α 0
0 sin 2α cos 2α 0
0 0 0 1

 , (2.5)

where α is the rotation angle.

x

y

z
Incident beam

Reflected beam

Sample

ϕ

θ

Figure 2.1: Definitions for the angle of incidence θ and the tilt angle φ of a tilted sample rotated
around the y-axis.

Figure 2.1 shows that a flat sample on the x-y plane rotates around y-axis. If
the surface is in parallel to x-y plane, the surface normal is the z-axis and the
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plane of incidence is determined by the z-axis and the incident beam. When the
sample rotates around the y-axis, the surface normal of the sample becomes the
vector ~n. The tilt angle φ is defined by the surface normal ~n and the z-axis, and
the angle of incidence θ is determined by the surface normal ~n and the incident
beam. This model can be extended to nonplanar surfaces. A nonplanar surface
can be seen as a flat surface rotates around y-axis. The incident angle θ and
the tilt angle φ define the surface normal. The Mueller matrix model of the tilt
sample for RRE is shown as [14]

MR(αPSA) ·MS ·MRetroreflector ·MS ·MR(αPSG), (2.6)

where αPSA and αPSG are the rotation angles of the polarization state analyzer
(PSA) and the polarization state generator (PSG). Assuming that the system is
perfectly aligned, we can use the relation MR(αPSA) = MR(αPSG) = MR(φ)
to simplify the equation as

M2 = MR(φ) ·M1 ·MR(φ), (2.7)

where M1 = MS ·MRetroreflector ·MS . The ellipsometric parameters (Ψ ,
∆) and the tilt angle φ from the Mueller matrix M2 can be solved by a numerical
fitting method. M2 can be seen as a dual-rotation transformation of M1[11].

3 Decompositions of Mueller matrices with dual-
rotation transformations

Figure 3.1 shows the different domains of 4×4 matrices. Mueller matrices are a
subset of real 4×4 matrices because Mueller matrices contain physical properties
(polarization). Mueller-Jones matrices are matrices which are derivable from
Jones matrices. Therefore, not all Mueller matrices can be transformed from
Jones matrices because Jones matrices only deal with nondepolarized systems.
There have been many studies discussing necessary and sufficient conditions for
a Mueller matrix [6, 21]. A Mueller matrix is a linear transformation of Stokes
vectors. Hence, Mueller matrices must fulfill Stokes criterion:

s0 ≥ (s2
1 + s2

2 + s2
3) 1

2 . (3.1)
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4⨉4 real matrices

Mueller matrices

Mueller-Jones matrices

Figure 3.1: Different domains for 4×4 matrices.

For every Stokes vector S satisfies the criterion, the product of the Mueller
matrix M and Stokes vector S also satisfies the criterion. Then the Mueller
matrix fulfills the Stokes criterion.

In order to analyze depolarization, the wave coherency matrix Φ is proposed as
[24]:

Φ = E(t)⊗E(t)∗ =
[
Ex(t)E∗

x(t) Ex(t)E∗
y(t)

Ey(t)E∗
x(t) Ey(t)E∗

y(t)

]
=

[
j00 j01
j10 j11

]
, (3.2)

where E(t) is a quasi-monochromatic wave whose amplitudes and phases
depend on the time t. We can see depolarisation is related to second order
products of the quasi-monochromatic wave. This concept can be applied to
Mueller matrices. The covariance matrix H is defined as Kronecker product of
the corresponding Jones covariance vector [22]:

H = 1
2T⊗T∗, (3.3)

where T = [j00 j01 j10 j11]T and jij is the element of the 2×2 Jones matrix.
Hence, H is a 4×4 matrix. It is obvious that H and M are linearly related.
Therefore, H can be written in terms of the elements mij of M as:
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H(M) =
1
2



m00 + m01
+m10 + m11

m02 + m12
+i(m03 + m13)

m20 + m21
−i(m30 + m31)

m22 + m33
+i(m23 − m32)

m02 + m12
−i(m03 + m13)

m00 − m01
+m10 − m11

m22 − m33
−i(m23 + m32)

m20 − m21
−i(m30 − m31)

m20 + m21
+i(m30 + m31)

m22 − m33
+i(m23 + m32)

m00 + m01
−m10 − m11

m02 − m12
+i(m03 − m13)

m22 + m33
−i(m23 − m32)

m20 − m21
+i(m30 − m31)

m02 − m12
−i(m03 − m13)

m00 + m01
+m10 + m11


(3.4)

The covariance matrix H provides necessary and sufficient conditions for a
Mueller matrix to be derivable from a Jones matrix [1]. The form of H is
a positive semidefinite Hermitian matrix, which means its eigenvalues are
non-negative. In other words, a matrix is a physical realizable Mueller matrix if
its coherency matrix H has non-negative eigenvalues. This concept can be used
to determine physical Mueller matrices and reduce experimental errors [7].

Experimental errors in ellipsometry might induce nonphysical Mueller matrices
(negative eigenvalues in corresponding covariance matrices H). For example,
a depolarizing Mueller matrix is measured due to the noise from the light
source and the detector. The idea of sum decomposition or matrix filtering
for experimental Mueller matrices is proposed by Cloude [7]. The covariance
matrix of a physically realizable Mueller matrix can be decomposed to four
covariance matrices of Mueller-Jones matrices as:

H = λ1H1 + λ2H2 + λ3H3 + λ4H4. (3.5)

If a Mueller matrix is nonphysical, at least one eigenvalue of its covariance
matrix is negative. The filtering concept is to remove any negative contributions
and covert the remaining term to a Mueller matrix, which can be described as:

4∑
i=1

1
2(1 + sgn(λi))Hi ⇒Mfiltering, (3.6)

where sgn is the sign function and λi is the eigenvalue of H. Finally, The
nearest non-depolarising Mueller matrix is obtained. This method is proved as
an optimal filtering [25].

We can apply covariance matrices in retroreflex ellipsometry. The Mueller
matrix for a gold sample at a wavelength of 632.8 nm and an incident angle of
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70◦ is given by

Mgold =


1 −0.094 0 0

−0.094 1 0 0
0 0 0.802 −0.589
0 0 0.589 0.802

 . (3.7)

The eigenvalues of the covariance matrix H(Mgold) are [1, 0, 0, 0], which
means the matrix Mgold is a Mueller-Jones matrix. When the gold sample is
tilted with 5◦. The Mueller matrix Mgold becomes

M′
gold =


1 −0.093 −0.016 0

−0.093 0.946 0.309 −0.102
0.016 −0.308 0.748 −0.580

0 −0.102 0.580 0.802

 (3.8)

We can observe that the off-diagonal 2× 2 blocks are nonzero elements.
The eigenvalues of the covariance matrix H(M′

gold) are [1, 0.015,−0.015, 0].
Minus eigenvalue means that M′

gold is not a physically realizable Mueller matrix.
The change of plane of incidence caused the anisotropic and depolarizing effect.

We can prove the Mueller matrix with a dual-rotation transformation M2 is
not positive semi-definite by Sylvester’s criterion [12]. A Hermitian matrix is
positive semi-definite if and only if all principal minors of it are non-negative.
For a 4×4 matrix, there are 15 principal minors Dk, where k is the order. The
principal minors of M2 is shown as

D1 = [0,
1
2(1− C)(1− cos 4φ), 1

2(1− C)(1 + cos 4φ), 1 + C]

D2 = [0, 0, 0, 0, 0, 0]

D3 = [0, 0, 0,
1
2S2(1− C)(−1 + cos 8φ)]

D4 = 0

(3.9)

Since C, S ∈ [−1, 1] and φ ∈ [−90◦, 90◦], the principal minor in D3 is negative
when the tilt angle is not zero. The special cases are S = 0 and C = 1. S = 0
means Ψ = 45◦ and the corresponding Mueller matrix is an ideal depolarizer
which output randomly polarized light. C = 1 means Ψ = 45◦ and ∆ = 0◦ or
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360◦ and the Mueller matrix of this case is the same as the Mueller matrix of
air. Except of these two cases, we can use this property to find the tilt angle by
maximizing the hfidelity index[7]:

hfidelity = 10log
∑
|λ−|∑
λ+

, (3.10)

where λ+ and λ− are positive and negative eigenvalues of the correspingding
covariance matrix.

4 Invariant quantities of a Mueller matrix with a
dual-rotation transformation

There are polarimetric quantities which keep invariant under reference frame
rotations. These invariant quantities can be used for determination of orientations
of anisotropic materials and provide physical information. The Muller matrix
model of a sample with a tilt angle in retrorelfex ellipsometry can be seen as a
Mueller matrix with a dual-rotation transformation. The full form of M1 and
M2 are expressed as:

M1 =


1 + N2 −2N 0 0
−2N 1 + N2 0 0

0 0 S2 − C2 −2CS

0 0 2CS S2 − C2

 , (4.1)

M2 =


1 + N2 −2N cos 2φ 2N sin 2φ 0

−2N cos 2φ 1 − S2 + (1 − C2) cos 4φ −(1 − C2) sin 4φ 2CS sin 2φ

−2N sin 2φ (1 − C2) sin 4φ S2 − 1 + (1 − C2) cos 4φ −2CS cos 2φ

0 2CS sin 2φ 2CS cos 2φ S2 − C2

 .

(4.2)

Compared M1 with M2, the following parameters are rotation invariant:

m00, m03, m30, m33, (4.3)

m2
00 + m2

02, m2
10 + m2

20, m2
13 + m2

23, m2
31 + m2

32, (4.4)

m2
11 + m2

12 + m2
21 + m2

22, (4.5)
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Det(M), (4.6)

λ1 + λ2 + λ3 − 3λ4, (4.7)

where Det denotes determinant and λi is the eigenvalue of the correspingding
covariance matrix.

From M2, the tilt angle φ can be obtained by

φ = tan−1 m02

m01
= tan−1 m20

m10
= tan−1 m13

m23
= tan−1 m31

m32
. (4.8)

The NSC parameters can be determined by

N2 = m2
01 + m2

02
4 = m2

10 + m2
20

4
S2 = 1

2(
√

m2
31 + m2

32 + m2
33 + m33) = 1

2(
√

m2
13 + m2

23 + m2
33 + m33)

C2 = 1
2(

√
m2

31 + m2
32 + m2

33 −m33) = 1
2(

√
m2

13 + m2
23 + m2

33 −m33).
(4.9)

Finally, the ellipsometric parameters Ψ and ∆ can be determined by the NSC
parameters. It is worthwhile to mention that the NSC parameters can be
caulculated without knowing the tilt angle φ. In other words, NSC parameters
are only related to the angle of incidence and material properties. If the refractive
index of the sample is known, the angle of incidence can be solved analytically.

For isotropic materials, tilt angles induce anisotropic Mueller matrices. There
are variant and invariant polarimetric quantities in the anisotropic matrices.
These invariant quantites provide the information of rotation of reference frames.
Moreover, the invariant quantities can be extended to anisotropic materials for
separating azimuthal orientation and tilt angles.

5 Summary

In this report, the principle of retrorefelx ellipsometry, coherency matrix,
Cloude’s decomposition and invariant quantities for nonplanar surfaces have
been introduced. The concept of RRE can measure samples with nonplanar
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shapes. The retroreflector acts as an ideal mirror regardless the incident
angle (< 30◦). The polarization model of the tilt sample can be seen as a
dual-rotation transformation and the form of an isotropic Mueller matrix after
rotation becomes anisotropic. The coherency matrix H provides necessary and
sufficient conditions for a Mueller matrix which can be derivable from a Jones
matrix. The Cloude’s decomposition can reduce the experimental noise by
filtering nonphysical contribution (negative eigenvalues) and can also be used
to determine the tilt angle φ. While the sample has a tilt angle, H becomes
nonphysical. This nonphysical Mueller matrix provides indication of tilt angles.
Compared to the physical matrix (without tilting) and nonphysical matrix (with
tilting), invariant quantities provide another way to calculate tilt angles and
ellipsometric parameters. In the future, we plan to use these properties of
Mueller matrices to improve the procedure of determination of the tilt angle
φ and ellipsometric parameters (Ψ, ∆) and extend this method to anisotropic
materials.
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Abstract

Behavior analysis of individuals in crowds or groups of people in public
places through surveillance cameras gains importance for several different
actors. Automatically detecting and understanding pedestrians in real-world
uncooperative scenarios is very challenging. Common issues such as limited
annotated data, unreliable data and annotation quality, and appropriate use of
this data for supervised learning often originate in steps preceding the modeling
of specialized neural network architectures. In this report, the necessity and
requirements for designing a reliable data annotation process are presented.
Some precise ideas for automation through neural networks are discussed in a
conceptual manner.

1 Introduction

Automated analysis of video content through deep learning algorithms offers
tremendous potential for autonomous driving, health care, agriculture, surveil-
lance for both home and public places. In the last years most annotated datasets
required by such algorithms have been labeled manually. ImageNet [6], the
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first major publicly available large scale dataset was published in 2009 with
more than 14 millions hand-annotated images, for which 20,000 to 30,000
people a year worked for several years through crowd-sourcing [14]. Systems
which could potentially threaten human lives, such as assisting systems for
surgery or autonomous driving require reliable, high quality data, with strict
and explainable validation measures. Furthermore the data need to cover rare
events and scenarios which could represent critical safety issues. For instance,
to ensure the correct functioning of a sensor system for autonomous driving, it
must be demonstrated over a distance of 300,000 km within a given scenario,
meaning over 240 millions frames and 3.6 billions objects are to be annotated
accurately [20]. Considering an average of 60 seconds for the thorough anno-
tation of an object, the sole creation of a single validation dataset for a given
scenario represents a several-year project with hundreds of full-time annotators.

Similarly, safety related surveillance projects not only require detection of people
but also an estimation of their body posture as well as their activity. Given a
public place covered by several surveillance cameras, scenes of interest need
to be annotated frame by frame, with an average of 50 persons in sequences
recorded with 30 frames per seconds for several minutes. Considering several
camera clusters, manual annotation appears almost not affordable regarding the
rigorous and transparent validation of the system which are required to fulfill
legal and ethical requirements. Therefore, the average annotation time per object
must be reduced. To this aim a highly automated data annotation process and
data system is enquired.

The remainder of this report is oriented toward the design of such a process
and, thus, organized as follows: the concept of data annotation and automation
are presented in Section 2, requirements of a reliable annotation process are
introduced in Section 3, while the steps of the data annotation process and the
data quality assurance are discussed in Section 3.2 and Section 4 respectively.
A conclusion is given in Section 5.
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Figure 2.1: Manual keypoint and bounding box annotations for a crowded scene in [5].

2 Data Annotation and Automation

In this work we consider the annotation process for human activity recognition
in public places such as a public transportation hub. Cameras are placed
strategically in order to monitor traffic, assure the traveler’s safety and security.
Therefore, large areas coverage using clusters of cameras with wide field of
views offering multiple views of given hotspots is required. Thus, data for raw
scenes including multiple views and dozens up to larger crowds of hundreds of
pedestrians result from this setup, as illustrated in 2.1.

An important part of use cases in the field of human activity recognition is
based on supervised learning, which means training data with target annotation
is required in order to update a prediction model. The process of collecting
annotation is often much more expensive than the process of collecting the
data itself. This annotated data, the ground truth, is however limited by the
expertise of the person annotating. Depending on the complexity of the task
and its specifications, a label may require on the one hand pixel-wise precision,
e.g. semantic segmentation, keypoint detection, precise 2d and 3d bounding
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boxes. On the other hand, tasks such as person tracking, re-identification and
temporal action localization in video require a more profound understanding of
the scene developing. Furthermore, several different annotation formats may
internally define the same type of annotation differently [13, 2, 8, 10, 22, 4,
17] resulting in a supplementary layer of complexity for the annotator, if not
intuitive or usual. For instance a 2d bounding box in COCO [13] is defined as a
(x-top left, y-top left, width, height) tuple, while a Pascal VOC [8] bounding
box is defined by the tuple (x-top left, y-top left,x-bottom right, y-bottom right)
and YOLO [19] defines a bounding box by it’s center. Annotation software
such as [22, 8, 3] support multiple formats and offer different tools in order to
partly provide automation for specific tasks. However, those are not specifically
designed for multiple-views use cases and provide automation only to a limited
level.

In the following, we formally define different levels of automation for multiple-
view data annotation for human activity recognition in public places.

• Level 0: No Automation
The whole annotation process is done manually. The annotation tools
provide simple functions to produce annotation.

• Level 1: Tool Assistance
The annotator is assisted by different tools which minimizes the effort of
annotating video frames. Provided multiple views of a the same place,
the annotator may switch between views of a sequence while annotating.
The annotations are converted to the views of this sequence. Furthermore,
given a partly annotated sequence, the tool is able to interpolate the
movement of the objects into subsequent frames.

• Level 2: Partly Automated Annotation
Using a point, scribbles or a polygon the annotator defines a region of
interest within a frame, the desired annotations are returned by the tool
and manually corrected if necessary.

• Level 3: Highly Automated Annotation
The whole (multi-view) sequence is automatically annotated for the chosen
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type of labels. The human annotator mainly conducts quality checks and
corrections.

• Level 4: Highly Automated Annotation Pre-Checking
The whole (multi-view) sequence is automatically annotated for the chosen
type of labels. Quality checks are automatically generated for a human
validator to review and extend.

Data annotation is a complex process which comes at a great cost. Designing
specific tools which enable automation is an important step in order to produce
data annotation at scale. Nevertheless, the quality of the data produced requires
constant control and validation. Therefore, a transparent and reliable annotation
process is necessary.

3 Designing a Reliable Annotation Process

A reliable annotation process requires clear steps for which different actors, e.g.
person or entity, have well defined responsibilities and are held accountable.
In this section, a reliable annotation process for human activity recognition in
public places is described. The overall process is illustrated in a activity-based
flowchart diagram in Figure 3.1. A recent white-paper [7] published during
the writing of this work presents similar views regarding an abstract annotation
process for supervised learning. In contrast, this report focuses on the concrete
case of multi-view annotation processes of crowds and discusses concepts
regarding data privacy and ethics. Furthermore, concrete strategies for the use
of automatic annotation proposals are defined.

3.1 Participants in the Annotation Process

We identify four entities as participants in the annotation process and define
those as follow.
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Figure 3.1: Annotation Process Diagram

3.1.1 Data Owner Entity

Ahead of the annotation process the data owner entity is in charge of the
data acquisition and identification for the use case, as well as cleaning and
preprocessing. The data owner is responsible for the data and the complete
annotation process at any time of the process. This entity is in charge of initiating
sequence annotation and validation, and finally approve or cancel the result
of the process. They are responsible for formulating scenario specifications,
quality requirements and identifying scenarios risks and requirements such as
anonymization, potential bias, legal issues or underrepresented aspects.

3.1.2 Data Curation Entity

The data curation entity is responsible for assuring compatibility of the data
with laws, ethic, potential bias and anonymization requirements. This entity is
in charge of analyzing the provided data and scenario specifications, formulate
necessary data curation and transformation in order to meet specifications.
They extend the scenario specifications with concrete fail condition regarding
annotations, such as label balancing or systematic bias.
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Figure 3.2: Data Annotation Process Diagram

3.1.3 Data Annotation Entity

The data annotation entity produces the annotation and report potential issues
either to the curating entity or the data owner. This entity delivers the annotations
to the data owner.

3.1.4 Data Validation Entity

The data validation entity fulfills quality assessment of the annotations and
reports its results to the data owner or if necessary to the data curation entity.

3.2 Steps of the Annotation Process

In the following the different steps of the annotation process starting from
scenario specification to data splitting for training and validating are described.
The preceding steps of physical data acquisition and preprocessing are not
further discussed here, since those are not directly part of the annotation process
itself.
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3.2.1 Scenario Specifications

The data owner entity is responsible for the dataset and the annotation project
and thus is required to analyse the use case to be covered, its environmental
and technical conditions as well as their implication for the machine learning
specifications.

Firstly, the conditions of the environment such as lighting, surrounding area
variety, weather, time of day of the target scenario have to be defined and openly
compared to the provided raw data. The available data should represent the
target use case. In case of potential parts missing from the use case, decisions
about the addition of supplementary real or synthetic data are required.

Secondly, the technical conditions such as media format, sampling rate, reso-
lution, camera position, potential camera cluster focusing on different places
and their implication are analyzed. The aim is to comprehend the feasibility
of particular annotation types on specific views, e.g. not enough pixels of the
person of interest are provided in order to estimate their pose, too much natural
occlusion through fixed construction or vegetation. In case of a camera cluster, it
is essential to determine whether the cameras are calibrated and their parameters
are known in order to reconstruct 3d representations or convert annotations from
one view to another.

Thirdly, while working with data focusing on person in public places important
issues emerge concerning privacy, currently applicable laws as well as ethical
considerations. Whereas deployed models probably will work on a raw data feed,
training and validation data should be anonymized and bio-metrical information
of person shouldn’t be used implicitly, if not targeting a specific problem related
to bio-metrics. Furthermore, the anonymized person should be considered as an
avatar of a real person and shouldn’t provide unattended long-time information
on real-person, e.g. a person may be re-identified in a different view of the
same scene whithin the same camera cluster, however this person shouldn’t
be re-identified in another cluster or in later recordings. Besides data privacy
specifications, the data owner entity is expected to address potential bias and
ethical issues and proceed carefully during data selection. It is proven that non
representative data produce biased results which may impair the quality of the
model or, worse, accentuate social inequalities and present bias against ones
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ethnicity or gender [1, 15, 18]. Those issues are not only dangerous and noxious,
but also damaging to the trustworthiness of the model [11].

Finally the annotation task to be fulfilled is described along it’s aim. The
intended effect is to increase the implication and engagement of the labeling
entity to the task ahead. For instance, the annotation of keypoints for a person
may imply that the model to be trained will perform human pose estimation.
In this case, the temporal margin of error regarding specific keypoints offers a
greater tolerance. However considering pose based action recognition, the lack
of precision over time may cause spatial noise over time, which in turn impacts
the results of the model.

3.2.2 Annotation Specifications

After analysis of the raw data and the scenario specifications, the data owner
entity is expected to define clear and unambiguous labeling specifications
regarding which kind of annotation is to be produced, e.g. person detection,
instance segmentation, pose estimation. Quality tolerances are precisely defined,
e.g. size of bounding box, margin of error tolerated. In dialog with the
labeling entity, concrete annotation instructions are derived from these general
specifications and must prevent potential issues. Those instructions aim to
clearly define solutions for edge cases, clarify unspecific labels and identify
potential conflicting instructions. Furthermore, they represent the basis for
the annotation validation process and may support the initial configuration of
annotation proposal tools. Finally, the specifications and instructions support
the potential adaptation of annotation tools if required.

At any time in this step specification concerns may be raised which need to be
immediately reviewed, therefore halting the whole process. If the specifications
reveal weakness, the process should be aborted and the specifications fixed
before starting a new iteration. The earlier such issues are identified, the more
efficient the whole process becomes. Despite potential concerns for slowing
the process down in its early stages, openly assessing annotation specification is
cost efficient and prevents repeated annotation of the same sequences.
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3.2.3 Data Selection and Verification for Annotation

The selection of representative data for annotation is carried out according to
the annotation specifications. On one hand, depending on the target scenario,
the available data is usually subject to subsampling: Spatial sampling, i.e. limit
the number of sample per spatial region or completely reject specific spatial
regions due to annotation concerns, and/or temporal subsampling, i.e. extract
every n-th frame.

On the other hand, a common scenario in the active learning literature repre-
sents this data selection step perfectly, which is the unlabeled pool scenario.
Considering the yet to be annotated raw data, a round base game is defined.
In every round and active learning model ranks the data in the unlabeled pool,
and the k bests are selected for annotation, given a fix annotation budget. The
selected data is annotated and added to the training set of the active learning
model, which is re-trained on the new dataset. These rounds are repeated until
the annotation budget is fully drained. Recent methods for CNN not only select
the best data for annotation based on efficiency and diversity, but also consider
that model training mainly uses batches of data [21, 12, 23].

Both aspects could also be sequentially combined. However, even careful data
selection may lead involuntarily to strong biases. This is where the data curation
entity is required to formally analyze the selected data and may raise empiric
concerns, which need to be reviewed and validated at the end of each annotation
process.

3.2.4 Coordination and Distribution

Depending on the volume of selected data, annotation specification, personal
availability and prior experiences, the data annotation entity decides on the
data and/or label slicing and form of distribution. Overlapping subsets should
always be considered for validating individual accuracy as well as for training
purposes for new annotators. Different slicing options depending on the data are
available. For instance, given multiple labels, it is possible to distribute the target
labels between available annotators, e.g. pedestrians, babys, objects and cars
for instance segmentation. For motion tracking, sequences could be distributed
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per camera, cluster of cameras for scenes. Overall for a dataset composed of
multi-view sequences, these may be split in subsequences along the temporal
axis and / or the spatial axis. Single subsequences might be shared between
the annotator for validation purposes and / or for particular crowded sequences,
or different labeling tasks. Eventually, those subsequences are required to be
merged in order to finalize the annotation process. In this case merging heuristics
are required, e.g. voting, average of all annotation, cherry picking. The merging
step may raise issues concerning the annotation specifications, and therefore
requiring a new annotation iteration to correct these issues.

3.2.5 Annotation

The data annotation entity performs the labeling and delivers the resulting
annotations as illustrated in Figure 3.2. They raise issues immediately during
the process and provide feedback on the tool at their disposal for the task.

3.3 Use of Pre-Annotation

Considering the annotation of human poses for crowds in public places with
multiple cameras, the annotation effort required increases exponentially. For
this reason, the annotation entity relay strongly on automated tools to improve
and accelerate the annotation process. As shown in Figure 3.3, efficient tools
may improve the annotation greatly.

3.3.1 Use of existing Annotations

Sometimes part of the dataset of an annotation project had been annotated earlier.
In this case automated import tools are required to import and reuse these
preexisting annotations. However, these annotation are considered (human-)
generated pre-annotations pending for review, since they probably do not fully
comply the annotation specifications.
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(a) Input Bild (b) Pre-Annotations

Figure 3.3: Pre-Annotations for the domain application greatly improve the quality and speed of
the annotations. In this case most of the individuals are already annotated.

3.3.2 Transfer and Curriculum Learning

The annotation entity may use pre-annotation tools to generate annotation
proposals. However, since at the beginning of the annotation process none
or only scarce annotations are available, the tool requires prior training on
similar data. If annotations are available, the tool can be fine-tuned on the
target domain using transfer learning. In the case when no annotations are
available, the tool can be used to generate a prliminary annotation proposal
which then will be reviewed manually and progressively be retrained on the
new available data. For instance, we consider the task of annotating the pose of
all pedestrians in the dataset illustrated in Figure 2.1. At first, the annotation
proposal tool has only been trained on COCO, an other target domain shown in
Figure 3.3(a), where the ratio pixels per person is much higher. As expected,
the results in Figure 3.4(b) and Figure 3.4(c) are acceptable on the first row.
However, the persons behind them aren’t recognized at all. After some frames
have been manually annotated the pre-annotation tool can be trained using these
annotations to create better key-point predictions. Ideally images of a lower
difficulty level are first annotated and used for training. The difficulty is then
progressively increased in accordance with the performance limits of the actual
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(a) Image for annotation (b) Keypoints pre-annotation results

(c) Keypoints pre-annotation results as skeleton representation

Figure 3.4: Keypoints pre-Annotation on MOT20 [5] using a pre-annotation tool trained on
COCO [13]. Only the first row is detected which corresponds to the training domain.

instance of the tool. After a few iterations, this curriculum learning approach
greatly reduces the effort for long and / or similar sequences.

3.3.3 Online Learning

Theoretically, considering the annotation process as the training phase of a
model. Annotation proposals would represent a training iteration. The manually
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corrected annotation is thus the ground truth. Therefore, the correction itself, e.g.
the distance between the location of a proposed bounding box and the corrected
one can be used to calculate an error which in turns may be used to update the
parameter of the model. Consequently the resulting online learning enables
immediate performance increase, without requiring complete retraining on the
model and a long wait before the new deployment of the tool. Furthermore, the
learned model should already conform to the annotation requirements.

3.3.4 Continuous Learning

Considering long time annotation projects with potentially continuous flows
of new data to be annotated, different strategies may be required. Given a
satisfactory annotation proposal tool trained with curriculum learning and / or
online learning, we define an annotated subset, which is manually approved,
as a validation set. The tool automatically annotates new incoming data and
is periodically retrained over the ever growing dataset. The non-changing
validation subset is then used to regularly assess the performance of the tool and
thus prevent catastrophic forgetting or a negative feedback loop.

3.4 Discussion

A reliable, efficient and therefore highly automated annotation process is a
complex and difficult process to model with need of constant improvement.
Several interests and requirements are to be acknowledged and dealt with.
Nevertheless, we identified great sources of improvement which can be addressed
with efficient automation covering several aspects of machine learning which
are currently topics of active and ever evolving research.

4 Data Quality Assurance

The annotation of data is a long, complex and repetitive process which requires
intense concentration. Multiple potential issues may appear during annotation.
The annotation may be incomplete, e.g. missing frames in a sequence or classes
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of objects, or annotations in a wrong format, e.g. the pose has been annotated
with 14 keypoints, but 17 were required. Different mistakes can be made such
as misclassification, false positive, false negative or incorrect re-idenfication.
Furthermore, annotations may lack precision, e.g. a keypoint lies a few pixels
besides the intended point, a bounding box excludes the feet of a person.
Throughout a longer sequence annotations maybe inconsistent, e.g. bounding
box around the full body of a person instead of placing the bounding box around
the visible body. Nevertheless, such issues are reliably detectable and therefore
it is possible to address them within a short time. The data validation entity
is responsible for methodically finding and reporting these issues. Following
the annotation specifications, they perform a quality check on the annotation
delivered by the data annotation entity. They provide detailed feedback on
possible annotation issues to the data annotation entity and raise specification
issues immediately. Specialized tools for review are used, thus the data validation
entity itself is not permitted to perform the correction of the annotations.

In the remainder of this section the steps of the data quality assurance process is
shortly reviewed, then the final step of data selection and validation is described.

4.1 Steps of the Data Quality Assurance Process

The steps of the data quality assurance process, as illustrated in Figure 4.1, are
principally identical to the annotation steps. First the data validation entity
analyzes the annotation specification and may use automation for annotation pre-
checking. Then the validation task is distributed along the available personnel,
performed and finally merged. Lastly the feedback and assigned issues, the
validation artifacts, are reported to the data owner entity.

4.2 Data Selection and Validation

After ensuring sufficient quality of annotations, the dataset is split into three
parts (with a possible fourth part of non assigned data): a training, validation
and test subset.
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Figure 4.1: Data Quality Assurance Process Diagram

4.2.1 Training Subset

This subset is used to train the learned parameters for a supervised model.
It should be carefully selected according to target use case and the scenario
specifications, e.g. edge cases, ethic, law. The dataset should be representative,
hence severe imbalance may result in discarding part of the annotated data.

4.2.2 Validation Subset

The validation subset is distinct from the training data. It is used to measure the
performance of models during prototyping and training. It should reflect edge
cases and offer sufficient diversity in regard to the target use case.

4.2.3 Test Subset

The test subset is used to measure the performance of the model after training in
order to detect potential overfitting against the validation data. Therefore, the
test subset is distinct from the training and validation subsets. Furthermore, it is
used to asses the performance of a model against the target use case.
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Each subset should be subject to review from the data curation entity against the
target use case and scenario specifications. Finally, the whole process, intents
and specifications should be rigorously documented to facilitate intern and
extern audits, e.g. model cards [16] and datasheets [9].

5 Conclusion

Neural network aided data pre-annotation is a very promising approach. Yet not
new. It is well-known for person detection or pose estimation in surveillance
scenarios that specific problems such as false classification, person occlusion,
split or merged detection often result from automatic predictions. A reliable
and partly neural network aided annotation process should technically profit
from human intelligence through specialized human operators and improve their
abilities. Several methods were presented and discussed in this report with the
focus on human activity in public place surveillance. Furthermore, concepts
were presented for a reliable and transparent data annotation process, which
naturally includes computer assisted steps through tailored neural networks.
Future work will include the implementation and evaluation of these methods
and also further investigations on a reliable and efficient annotation process for
scenes including multiple cameras oriented on one and a same place.
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Abstract

The growing importance of 3d scene understanding and interpretation is inher-
ently connected to the rise of autonomous driving and robotics. Semantic
segmentation of 3d point clouds is a key enabler for this task, providing geo-
metric information enhanced with semantics. To use Convolutional Neural
Networks, a proper representation of the point clouds must be chosen. Various
representations have been proposed, with different advantages and disadvantages.
In this work, we present a twin-representation architecture, which is composed
of a 3d point-based and a 2d range image branch, to efficiently extract and refine
point-wise features, supported by strong context information. Additionally, a
feature propagation strategy is proposed to connect both branches. The approach
is evaluated on the challenging SemanticKITTI dataset [2] and considerably
outperforms the baseline overall as well as for every individual class. Especially
the predictions for distant points are significantly improved.

1 Introduction

Understanding a 3d environment is one of the key challenges for autonomous
vehicles or robots. For this task of 3d scene understanding and interpretation,
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2D CNN

range image branch

Point-
Network

point-based branch

spherical projection

Figure 1.1: The proposed twin-representation architecture, which exploits two different point cloud
representations. The 3d point-based branch extracts and refines point-wise features while the 2d
range image branch efficiently aggregates context information.

semantic segmentation of images or point clouds, which assigns a class label to
every pixel or 3d point, provides valuable information.
The combination of geometric and semantic information provided by 3d semantic
segmentation is particularly valuable. To tackle this task with established deep
learning approaches, like Convolutional Neural Networks (CNNs), a proper
representation of point clouds has to be chosen, to allow their application.
Point-based approaches [12, 19] operate directly on the raw point clouds while
projection based methods [11, 18] transform them into a regular space, like 2d
or 3d grid, to enable convolution operations.
Recently, the combination of voxel and point-based representation showed
promising results [9, 17], by exploiting the advantages of both representations.
In general, projection based methods, like voxel grids, efficiently aggregate
neighborhood information because of the regularity of their data representation.
The projection however requires a discretization in most cases, where the choice
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of resolution is a trade-off between loss of information and memory as well
as computational costs. Point-based approaches on the other hand efficiently
operate on the original point cloud resolution without information loss, but the
aggregation of neighborhood information and context is expensive. Because of
these complementary properties, the combination of both representations offers
a great potential.
This work follows the general idea of combining projection and point-based
representations but focuses on the more efficient range image representation.
Therefore, we present a twin-representation architecture, which combines a
2d range image and a 3d point-based branch, see Fig. 1.1. The 2d branch
works on range images resulting from a spherical projection and enables the
efficient aggregation of local neighborhoods and context. The point-based
branch computes point-wise features while preserving the original resolution
and is supported by the aggregated information from the 2d branch, to predict the
final 3d semantic segmentation. To summarize, our contributions are twofold:

• A twin-representation architecture composed of a 2d range image and
3d point branch, which preserves point-wise features while efficiently
aggregating local context.

• A feature propagation strategy for 2d→ 3d feature transformation.

2 Related work

The growing importance of autonomous vehicles and robots also raised the
importance of 3d semantic segmentation. Supported by an increasing number
of available indoor [1] and outdoor datasets [2, 23, 3] considerable progress
has recently been achieved. A crucial and recurring question when addressing
3d semantic segmentation with CNNs is the representation of 3d point clouds.
Many different representations have been proposed in recent works, which can
generally be grouped into two categories.
Point-based methods, like PointNet [12] and its successor PointNet++ [13],
directly process the raw point clouds. PointNet applies a shared multilayer
perceptron (MLP) pointwise and a symmetric operation performs global feature
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aggregation. While this is very efficient, a single global feature aggregation
greatly limits the ability to capture spatial relations. Therefore, PointNet++ was
proposed, which applies individual PointNets to local regions and aggregates
them in a hierarchical fashion. While being one of the first approaches, many
others [8, 7, 20, 19] followed.
Projection based methods can further be divided into subcategories based on the
chosen regular space, like voxel grids [27, 18], permutohedral lattice [15, 16] or
bird’s eye view [26]. Another possibility is a spherical projection, which results
in a so called range image. SqueezeSeg [21] was one of the first approaches
building upon range images for a road segmentation task. Improved versions
were released in [22] and [24]. The latter targets full semantic segmentation and
proposed Spatially-Adaptive Convolutions (SAC) to deal with spatially-varying
feature distributions, induced by the spherical projection. Another approach
is RangeNet++ [11], which builds upon the DarkNet53 backbone [14] and
presented a label projection strategy from range image space to 3d point clouds.
[10] proposed LaserNet, based on deep layer aggregation [25], for 3d object
detection, while one intermediate result is a semantic segmentation.
Recently, first attempts were made to exploit the advantages of multiple rep-
resentations in one architecture. PVCNN [9] combined a shared MLP for
point-wise feature extraction with 3d convolutions in voxel space for context
aggregation. It is therefore able to extract point features in full resolution
while extracting and aggregating neighborhood information in a coarse voxel
space. It’s successor SPVCNN [17] replaced the dense 3d convolutions by its
spare counterparts, which allows for a higher voxel resolution and therefore
more preserved information. While sparse 3d convolutions already improve the
performance and possible resolution, 2d convolutions are still more efficient
with similar or less information loss. Therefore, our proposed segmentation
architecture combines a 2d range image branch with a point-based branch and
relies on a novel feature propagation strategy from 2d range image space to 3d
point clouds.
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3 Twin-Representation Network

The goal of the presented approach is the exploitation of two different input
representations, range images and 3d point clouds, to improve 3d semantic
segmentation. Fig. 3.1 shows the overall architecture, which consists of three
main components. The range image backbone provides 2d feature maps of
different stages and resolution while a feature propagation step transforms the
2d features back to their corresponding 3d points. Thereby, both components
together efficiently provide aggregated neighborhood and context information
for each individual point. These are used by the third component, a 3d point
network. In the following, we provide details for each individual component.

Range Image Backbone Range images and the corresponding spherical
projection are motivated by a lidar’s internal structure, which usually consists
of a vertical stack of lasers spinning around their vertical axis. As a result, the
measurements can be described by an azimuth angle φ, an elevation angle θ and
measured distance r and intensity e. We follow [4] for the conversion of the
point clouds to range images of shape 6× h×w, with channels r, x, y, z, e and
an occupancy flag.
The chosen 2d network architecture is based on deep layer aggregation [25] and
closely related to LaserNet [10]. We reduced the number of Residual Units [6] in
the first two feature extractors to four and five. Additionally, the downsampling
in the first feature extractor was omitted. The backbone provides 2d feature
maps of three different stages, see Fig. 3.1. Because of the underlying deep layer
aggregation, all three stages are at full resolution while still representing features
of different context stages. Full resolution feature maps have the advantage,
that a distinctive feature vector can be provided for every 3d point, expect for
colliding points [4].

Feature Propagation The fusion of feature maps F and point features f point

requires a transformation of 2d features back to their corresponding 3d points p.
One possible strategy is the assignment of a 2d feature to the 3d point belonging
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Figure 3.1: The proposed segmentation architecture. The range image backbone efficiently
aggregates 2d context information and provides them via a feature propagation step to the point
network, which itself computes point-wise features and combines them with the provided context
information.

to its pixel position
f twin

p = f point
p ⊕ F [up, vp], (3.1)

where u and v are the 2d coordinates resulting from the spherical projection and
⊕ denotes concatenation. One possible disadvantage of this strategy occurs for
colliding points, because all of them get the same feature vector assigned, even if
they are far apart in 3d. For solving the related challenge of label back-projection,
[11] proposed a KNN-based approach. The 3d labels are chosen by a majority
vote among the approximated k-nearest-neighbors, weighted by their euclidean
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distance. Although we want to back-project intermediate feature vectors, instead
of simple labels, we yet pick up the general idea of using the 2d neighborhood of
a pixel as nearest-neighbor candidates. Instead of a majority vote, we compute
the weighted sum over the feature vectors:

f twin
p = f point

p ⊕
∑

p̃∈Nk(p)

w(p,p̃) · F [up̃, vp̃], w(p,p̃) = 1
||p− p̃||2

, (3.2)

with Nk being the k×k-neighborhood of p. Therefore, features are aggregated
based on the point distribution in 3d space.

Point Network Motivated by the original PointNet, the point network stacks
multiple shared MLPs to extract and refine point features. After each stage,
the propagated features from the 2d branch, which provide the aggregated
neighborhood and context information, are concatenated with the point features,
see Eq. 3.1 and 3.2. The point network operates on the original point cloud
resolution over all stages, so no information are lost. The shared MLPs are
implemented by 1×1-convolutions and their feature channel depth increases
with network depth.

4 Experiments

4.1 SemanticKITTI

We evaluate our approach on the challenging, large-scale SemanticKITTI dataset
[2, 5], which provides point-wise annotations for 360◦-Velodyne-HDL-64E
scans. The annotations contain 19 classes for the single scan benchmark.
22 labeled sequences of varying length, recorded at 10 Hz, add up to just
over 43, 000 scans. Sequences 0-10 are provided with labels for training and
validation while sequences 11-21 without published labels form the test split.
The official recommendation is to use sequence 08 for validation, but we use a
larger validation split for our ablation studies, consisting of sequences 02, 06, 10,
for more significant conclusions. We follow the official evaluation metric and
report the mean Intersection-over-Union (mIoU).
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Table 4.1: Observed improvements when adding the point network (PN) and KNN feature
propagation, compared to a single range image backbone (RB).

RB PN KNN mIoU (%)

X 51.4
X X 53.7
X X X 54.8

4.2 Implementation Details

The implementation is based on PyTorch and all experiments are trained in
mixed precision mode using distributed data parallel training on four Tesla V100
GPUs.
Class-balanced cross entropy loss is optimized by Adam with a weight decay
of 0.0005 for 100k iterations. The learning rate starts with 0.001 and is then
multiplied with e−5·10−5·i after every iteration i. To counteract overfitting, we
randomly flip the range images horizontally with a probability of p = 0.5 and
rely on random crops of size 64× 1024 during training.
First, solely the range image backbone is trained with a batch size of 32. Building
upon this, we train the entire network, also with a batch size of 32.

4.3 Results

Our evaluation starts with an investigation of the influence of the individual
components, with the results being depicted in Table 4.1. The range image
backbone, as a common 2d range image approach, is our baseline and achieves
a mIoU of 51.4%. The presented twin-representation architecture, which is
composed of the backbone and a point network, significantly outperforms the
baseline by +2.3%. Replacing the simple propagation strategy by the proposed
KNN feature propagation further improves the results to 54.8%.
In the next step, we investigate the results restricted to the distance intervals
0−20m, 20−40m and >40m. Table 4.2 shows an overall performance increase
of our approach for all chosen intervals. However, especially the results for distant
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Table 4.2: Comparison of the mIoU (%) for different distance intervals.

Approach 0−20m 20−40m >40m

RB 52.7 43.6 33.9
RB+PN 54.9 46.7 36.7
RB+PN+KNN 55.6 47.2 39.2

points are significantly improved by +5.3%, which is particularly challenging
because of the declining point density with increasing distance. For the other two
intervals, a smaller but still considerable improvement of +2.9% and +3.6% is
achieved.
Finally, we evaluate the results for the individual classes. Looking at Table 4.3,
especially the classes motorcycle, truck, person and bicyclist experience a
significant improvement by using the combination of range image backbone
and point network. Likewise, the results for the classes car, other-vehicle, trunk
and pole improved. In general, while no significant improvements for greater
static classes can be observed, small classes greatly benefit from our approach.
Adding KNN feature propagation further improves the results for most classes,
without any bias regarding a special group of classes. One class to emphasize
however is motorcyclist, which is improved by +11.2%.

5 Conclusion

In this work, we presented a twin-representation architecture to combine a
3d point-based branch with a 2d range image branch, to improve 3d semantic
segmentation. While the first computes and refines point-wise features over
multiple stages, the latter supports the 3d branch with an efficient aggregation
of neighborhood and context information. A feature propagation step connects
both branches. The evaluation showed a significant overall improvement, con-
sidering that our approach outperforms the baseline for every individual class.
Additionally, especially distant points experience a significant improvement.
To summarize, combining the two input representations enables the exploita-
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Table 4.3: Overview over the improvements for the individual classes. The presented approach
outperforms the baseline for every single class. Values are given as IoU (%).
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RB 51.4 83.9 31.7 35.9 33.4 31.1 45.4 23.2 2.4
RB+PN 53.7 85.0 32.3 44.1 42.5 34.7 53.6 29.0 3.1
RB+PN+KNN 54.8 86.5 29.7 45.9 44.4 36.2 53.0 28.4 14.3
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RB 91.2 80.2 58.8 8.6 76.7 58.0 82.8 63.8 70.1 49.5 49.6
RB+PN 90.8 80.0 59.0 8.8 76.5 58.3 82.9 66.2 70.9 52.0 50.4
RB+PN+KNN 91.3 80.5 61.0 7.3 78.1 60.2 83.4 65.6 71.7 49.3 52.8

tion of their different strengths, which considerably improves 3d semantic
segmentation.
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Abstract

This work examines the suitability of a state-of-the-art human pose tracking
method for application within surveillance scenarios and focuses on public
places in urban areas that tend to suffer from crowdedness, such as city centers.
Starting with a short introduction to motivate keypoint tracking in surveillance
applications, this report will present details about the adapted method, which
follows an LSTM-based approach. Afterwards, different changes that had to
be incorporated in order to successfully apply the given method to our target
setting will be presented. Finally, various experiments will show how the chosen
method performs, based on experiments with simulated data.

1 Introduction

Anomaly detection amongst other strongly related topics like outlier and novelty
detection, plays an important role in various research fields as network traffic
monitoring, time series analysis, medical image analysis, and video surveillance.
However, when talking about anomalies in the context of video surveillance
the understanding of what an anomaly actually looks like can differ strongly

67



Thomas Golda

between applications. For instance, an anomaly can be an abandoned suitcase
at a public place, a vehicle driving through a pedestrian zone or suspicious
or salient behaving people. With the rising interest in unconstrained activity
and action recognition1 in urban settings and application-oriented research for
video surveillance, the task of detecting unusual behavior gets more and more
attention. This report focuses on human-centered features in order to distinguish
between usual and unusual behavior. Therefore, on a basis of person skeletons
provided by human pose estimators, we try to create corresponding body joint
tracklets, as proposed in [3]. In order to do so, different keypoints corresponding
to a certain person have to be tracked over time to obtain the desired tracklets,
which can afterwards be used for further behavioral analysis.

2 Tracking Keypoints in the Wild

2.1 Human Pose Estimation

Human Pose Estimation describes the problem of estimating a skeletal represen-
tation of a person based on information gathered using certain types of sensors.
The skeletal representation is typically represented as a graph G = (V, E) where
V ⊂ Rn is a set of keypoints and E ⊂ V × V is a set of edges connecting
various keypoints. Depending on the chosen skeletal model the graph can be
seen as a tree. In general, Human Pose Estimation considers sensors used in
classical video cameras or depth cameras delivering RGB or RGB-D information
respectively. However, in the field of video surveillance RGB-D cameras are
rarely applied, which is due to price and often large distances of subjects to
the mounted camera. Therefore, this work focuses on the case of 2D skeletons
obtained using classical cameras and RGB data. With this constraint, the
resulting skeletons produced by human pose estimation algorithms consequently
consist of keypoints in a two-dimensional space with V ⊂ R2.

1 https://actev.nist.gov/
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Figure 2.1: Crop of exemplary network camera footage. This is an example of keypoint bundles
extracted using a simple tracking-by-detection approach. Based on detections in t consecutive
frames, for every person keypoint tracklets were extracted. The different resulting body parts of the
keypoint bundles are highlighted in different colors for visualization purposes. In addition to that,
the lightness of those colors encodes the proximity of the corresponding keypoint to the pose model
center, i.e. shoulders and hips have lighter colors than wrists and ankles. For a better understanding,
the underlying human pose model with the corresponding colors is shown on the left.

2.2 Human Keypoint Tracking

2.2.1 Introduction

In general, the process of observing a single entity over time is referred to
as tracking. Classical tasks are object and pedestrian tracking, where for a
given timestep detections of single entities are associated with corresponding
detections in earlier timesteps. This kind of tracking is also known as tracking-
by-detection. Typically, such entities are represented by bounding boxes that
enclose the subject. The idea of tracking bounding boxes can be extended to the
tracking of single points over time, which is subject of this report.
Given a video or image sequence showing pedestrians our goal is to obtain a set
of tracklets Ki for every single person i describing its movement over a short
period of time. The set of tracklets is defined as

Ki = {(k1
1, ..., k1

t ), (k2
1, ..., k2

t ), ..., (kn
1 , ..., kn

t )} (2.1)
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where kn
t ∈ R2 is the n-th two-dimensional keypoint at timestep t. Hence,

each item in Ki is a single corresponding keypoint tracklet. We refer to Ki

as a keypoint bundle. Such keypoint bundles can be obtained using various
approaches. In this work, we assemble these bundles by tracking keypoints
directly in order to create less noisy tracklets than those acquired by following
an approach just based on person detection. Figure 2.1 shows an example for a
scene and corresponding keypoint bundles.

2.2.2 Multi-person Pose Tracking using Sequential Monte Carlo with
Probabilistic Neural Pose Predictor

Figure 2.2: The figure shows the structure of the probabilistic Neural Pose Predictor by Okada et
al. [6]. Whereas the epistemic uncertainty is modelled using dropout in the final fully-connected
layer of the LSTM-architecture, the aleatoric uncertainty is incorporated using an sampling process
from a normal distribution.

Okada et al. [6] followed the approach of tracking keypoints by using an LSTM-
based network architecture called (probabilistic) Neural Pose Predictor (NPP).
In general, the NPP is part of a classical particle filter where it is responsible
for modeling the motion model of humans and hence is an essential part of
the prediction step within the update process of the bayesian filter. The main
contribution of Okada et al. is the incorporation of different uncertainties
within the NPP, namely heteroscedastic aleatoric uncertainty (inherent system
stochasticity) and epistemic uncertainty (model uncertainty due to limited data).
Based on a fixed time horizon of ten timesteps the position at the next time
step is predicted, which is done for every single keypoint and every detected
pedestrian. To be exact, input to the NPP is a sequence of differences between
consequent timesteps in a single track. The LSTM then predicts values for the
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mean and standard deviation, which are used to define a normal distribution that
is afterwards used to sample an actual estimate for the predicted difference. The
explained procedure is also shown in Figure 2.2.

3 From One to Many

We adapted the approach of Okada et al. [6] in order to evaluate its performance
on crowd-level applications, which is a topic rarely covered in the computer
vision community. It is obvious that this is a very challenging task, due
to various problems like the ambiguity in appearance and lots of dynamic
occlusions. Figure 3.1 shows how such a crowded surveillance situation can
look like. Although pedestrians in this image are at a quite large scale, already
the proximity to other pedestrians can lead pose estimators to estimate false
poses. This is supported by many people wearing dark clothes, which due to less

Figure 3.1: Example of a crowded scene. People in such monitored areas are typically even of
smaller size, however independent of the scale the same problems occur: ambiguity in appearance
and strongly dynamic occlusions.
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contrast is very challenging for pose estimation methods. However, tackling it in
this way offers more detailed information about the behavior of single subjects
and still keeps a high level of data privacy at the same time. This is especially
useful when it is used in assistance systems for video surveillance, where the
system just creates hints for a human operator. In our experiments we therefore
are mainly interested in the overall keypoint tracking performance.

3.1 SyMPose

Especially designed for being a dataset consisting of many people and providing
detailed keypoint and tracking information for each individual, we decided to use
an internal synthetic dataset for for training the NPP. This dataset was created
using an own optimized version of the JTA modification published by Fabbri et
al. [2] for the popular video game Grand Theft Auto V. It was initially designed
for the task of domain adaption between synthetic and real-world domain [4].
Table 3.1 gives a short comparison of some key figures of both datasets.

Table 3.1: Comparison of two synthetic datasets. Although SyMPose is smaller compared to JTA,
it is more comparable to a surveillance situation due to the higher viewing position of the camera
and the overall higher average pedestrian density (ppf) within a frame. Furthermore, the maximum
number of pedestrians per frame is more than twice as high than in JTA (130 versus 60 pedestrians).

dataset # scenes # frames # poses ppf setting
JTA [2] 512 460,800 ca. 10m 21 urban

SyMPose [4] 21 19,900 ca. 1.3m 68 urban

In order to get a better idea of how scenes from SyMPose look like, an example
taken from the dataset is displayed in Figure 3.2. Most noticeable is the much
higher number of pedestrians in the scene. Furthermore, the viewing perspective
and camera mounting height are more consistent throughout all recorded scenes
and can be hence better compared to a real-world application scenario. These
were the main reasons to use this dataset, since comparable real-world datasets
labeled with keypoint information in this setting do not exist or are publicly
just not available. SyMPose was used throughout this work for training and
evaluation.
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Figure 3.2: Synthetic crowded scene. SyMPose consists of around two dozen scenes showing
different places filled with many people. All scenes are recorded from a higher-level camera that
should simulate the target scenario in urban settings. The underlying skeleton model consists of a
subset of the JTA model and was designed to mimic the model used in CrowdPose [5].

3.2 Whole Pose Inference

In the initial proposed method, Okada et al. [6] designed the NPP to work on
single keypoints. This, however, includes the assumption that every keypoint
has the identical, independent motion model. Apparently, the human skeleton is
restricted in its configurations and the movement of a single joint (i.e. keypoint)
is strongly dependent on its adjacent joints. We therefore extended the single-
keypoint approach to a multi-keyoint approach and compare it with the former.
This is done by providing a feature vector to the NPP consisting of information
for all keypoints instead just for a single one.

3.3 Expansion of Inter-Frame Distances

Since recorded data in such surveillance scenarios is dominated by people at
small scale and slow velocities, the relative movement between two frames is
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also quite small compared to a close-up shot of only few people. With a typical
recording frame rate of 25 or 30 frames per second this results in distances of
only few pixels between two poses or frames. This is a challenging problem
for the NPP, which was designed to work with multi-person scenarios yet at
larger scale.

3.3.1 Affine Transformation

A first way to tackle this problem is to rescale tracks by a certain factor α ∈ R+.
Typically, such a value is determined by normalizing the data using its mean
and standard deviation. Doing so results in an affine transformation and will
affect the size of the poses and hence the position of the keypoints as well as the
displacement between timesteps. The benefit of this approach is, that still the
full frame rate and therefore the full range of information can be used. However,
this transformation comes with additional lightweight computations and has to
be reverted afterwards to extract the real coordinates of the predicted position.

3.3.2 Reduction of Frame Rate

Another orthogonal way to tackle this problem is to skip some intermediate
frames, and hence sample a given sequence. This will have a similar effect
as the first way, however it is associated with a loss of information since fast
movements could be overlooked. Furthermore, the prediction frame rate is also
affected by the new resulting frame rate. The benefit of this approach is that no
transformation is needed and the predicted pose can be used directly.

4 Evaluation

In the following, we will examine the performance of the changes and extensions
presented in Section 3. First the used evaluation metrics will shortly be presented
and analyzed. These metrics were chosen, since they were also used by Okada
et al. [6].
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4.1 Evaluation Metrics

4.1.1 Mean Squared Error

The Mean Squared Error (MSE) is a widely used metric to measure the deviation
from a certain target. In the context of human poses it is defined as

MSE = 1
2N

N∑
i=1

(k̂i,x − ki,x)2 + (k̂i,y − ki,y)2 (4.1)

where N ∈ N is the number of keypoints defined by the underlying pose skeleton
model, k̂i = (k̂i,x, k̂i,y) is the ground truth position for the i-th keypoint and
ki = (ki,x, ki,y) is the position of the prediction of the corresponding keypoint.
It is obvious, that the value of the MSE is strongly dependent on the scale of
two compared poses.
To tackle this scale dependency, we us a normalized version of the MSE. By
dividing the MSE by the squared scale factor α we obtain the following equation

αMSE = MSE
α2 = 1

2Nα2

N∑
i=1

(k̂i,x − ki,x)2 + (k̂i,y − ki,y)2 (4.2)

4.1.2 Object Keypoint Similarity

The Object Keypoint Similarity (OKS) [1] is a metric introduced by the COCO
consortium for the purpose of evaluating the pose detection performance. It
is an attempt to create a metric that can be compared to the Intersection of
Union, which is especially known for its application in bounding box detection
scenarios.

OKS =

∑
i[exp( −d2

i

2·s2κ2
i
) · δ(vi > 0)]∑

i[δ(vi > 0)] (4.3)

where N is the number of keypoints in the underlying skeleton model, s is the
square root of the area of the smallest bounding box enclosing all corresponding
keypoints and d is the actual distance between two poses. Furthermore, vi is the
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Figure 4.1: Visual and quantitative comparison for poses at different scales and the effects on the
evaluation metrics OKS and MSE. Inter-pose distance and MSE are directly effected by the rescaling
of poses, whereas OKS and αMSE stay the same due to their scale invariance.

visibility of the i-th keypoint and κi are manually obtained keypoint constants
that model the annotation uncertainty of human annotators in the actual COCO
dataset. Due to the way the OKS is defined, the metric is scale invariant. This
comes from the fact that the actual keypoint positions are combined with the
occupied area, which can be seen as a certain kind of normalization.

Figure 4.1 shows two examples of pose comparisons. Both examples look very
similar, however they are at different scale. While the OKS stays the same even
at larger scale, the MSE is higher the bigger the scale is.

76



Crowd-level Human Keypoint Tracking

4.2 Evaluation Results

First, we take a look on the presented changes and extensions. Table 4.2
summarizes the results for single- and multi-keypoint approach, as well as both
inter-frame distance expansion ways. In order to compare MSE results between
different scales, we report the αMSE introduced in Section 4.1.

Single- vs. Multi-Keypoint Throughout all examined configurations the
single-keypoint approach achieves similar or even slightly better results compared
to the multi-keypoint approach. With increasing scaling factor α both the single-
keypoint and multi-keypoint approach improve with regard to the OKS and αMSE
metric. Furthermore, with the the expanding absolute gap between timesteps,
the single-keypoint approach builds up a lead over the multi-keypoint method.
This, however underlines that using a NPP just trained on single keypoints might
be sufficient and does not benefit from the additional information that is available
when predicting whole poses.

Affine Transformation In order to evaluate the impact of the affine transfor-
mation, different values for α were chosen, namely α = 100 (i.e. no scaling),
α = 101, α = 102, α = 103, and α = 104. The data distribution is character-
ized by its mean µ and its standard deviation σ which are given in Table 4.1
for every examined frame rate at scale α = 1. The values show that the nor-
malization would yield a scaling factor α between roughly around 2 and 12,
and hence would fall into the range of our experiments with α = 1 and α = 10.
As mentioned above, independent from the chosen NPP-approach (single- vs.
multi-keypoint), with increasing values of α the prediction performance first
improves and drops for larger values of α. The results show, that choosing a
larger rescaling factor than the factor induced by normalization is beneficial to
the performance of the NPP and leads to significant improvement. The same
observation can not only be made for the full, but also for the reduced frame
rate experiments. One conceivable reason for this behaviour might be that the
LSTM architecture of the NPP struggles with very small values close to zero.
This is likely to happen since input and output of the LSTM are differences
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Table 4.1: Mean and standard deviation for the distance between consequent poses. Since
intermediate frames were dropped for the reduced experiments, the actual distance between
consequent frames was increased throughout the dataset.

Framerate [fps] 30 6 3
µ 0.1036 0.3644 0.6367
σ 0.0802 0.2685 0.4892

Table 4.2: Evaluation results on the SyMPose test set. With decreasing number of frames the
performance of the pose prediction drops. This is logical since less information about the actual
motion is available. Furthermore, with an increasing factor α the prediction performance improves
up to a value of around 102 to 103 and begins to drop afterwards. This result shows the weakness
of LSTMs when used with small values.

Framerate [fps] 30 6 3
α OKS αMSE OKS αMSE OKS αMSE

single 100 0.989 0.02 0.75 0.23 0.58 0.73
multi 0.989 0.02 0.75 0.23 0.52 0.78

single 101 0.990 0.02 0.87 0.13 0.78 0.26
multi 0.990 0.02 0.86 0.13 0.79 0.28

single 102 0.996 0.01 0.93 0.07 0.83 0.21
multi 0.994 0.01 0.91 0.09 0.80 0.23

single 103 0.998 0.01 0.93 0.06 0.83 0.15
multi 0.997 0.01 0.92 0.07 0.77 0.20

single 104 0.996 0.01 0.89 0.10 0.57 0.54
multi 0.996 0.01 0.88 0.10 0.56 0.57

between consecutive poses. For people at small scale and slow motion velocity
this is often the case.

Reduction of Frame Rate Finally, in contrast to the scaling approach, we
also evaluated the impact of reduced frame rates on the performance of the
keypoint tracker. Although the spatial distance between two consecutive poses
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Table 4.3: Prediction based on last difference. This table shows the results following a naive
approach that takes the last observed difference between timestep t − 1 and t as a prediction for the
next pose at timestep t + 1. For the reduced frame rate scenarios, the naive approach is inferior to
both single- and multi-keypoint approach if α is chosen between 101 and 103.

Framerate [fps] 30 6 3
α OKS αMSE OKS αMSE OKS αMSE

naive 100 0.984 0.01 0.85 0.14 0.73 0.38

naive 101 0.983 0.02 0.86 0.14 0.74 0.38

naive 102 0.988 0.01 0.86 0.14 0.73 0.38

increases with reduced frame rate, the results do not improve. This is most
probably mainly due to the loss of information. While scaling increases the
overall size of poses and distance between these, it keeps the information of the
movement itself. This makes it easier to anticipate the pose for the next timestep.
By reducing the frame rate more complex movements between consecutive
time steps are conceivable, which makes it more difficult to produce the correct
prediction.

Naive Prediction Comparison Since the comparison of the learning-based
approaches for single- and multi-keypoint setup showed that the former achieves
as good results as the latter, we were also interested whether an even simpler
approach could be sufficient for a crowd setup. Therefore, a naive approach
was examined that takes its prediction for the next timestep solely based on
the difference between the last two time steps. Table 4.3 reports the obtained
results for this naive approach and for values of α up to 100. The first thing that
stands out are the consistent results over all scales α. This is logical, since we
just take the existing pose difference between the last two timesteps and add it
on the current pose to obtain a prediction. Smaller deviations are due to the
evaluation process which takes random snippets from each sequence in the test
set to evaluate the performance. Since the approach is of linear nature, it behaves
independent from the scale identical. Concerning the reduction of the frame
rate, the same observations could be made as in the single- and multi-keypoint
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experiments. This naive approach performs as both examined NPP-approaches
at α = 1, but starts to get outperformed for bigger values of α.

5 Conclusion

This work examines the suitability of a state-of-the-art human pose tracking
method proposed by Okada et al. [6] for application within video surveillance
scenarios. We re-implemented the initial algorithm proposed in the paper and
applied it to synthetically generated crowd data for training and evaluation pur-
poses. In addition to that, we extended and adapted the method by investigating
its performance on whole-body predictions and expanded the inter-timestep
distances in two ways. With the single-keypoint approach performing almost
all the time best, the assumption came up that simpler predictions perform
better in settings with persons at small scale. We therefore finally compared the
single-keypoint approach to a naive prediction approach solely based on the last
measured offset.
In future work, we will examine the impact further ways to create such keypoint
bundles, e.g. on tracking-by-detection using bounding boxes or a combined way
to smooth out the resulting tracklets. We furthermore will go from synthetic data
to real world data, which to this point has only been evaluated on a qualitative
way which was not part of this report.
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Abstract

Diffractive lens arrays are used to enhance the resolution of a low-numerical-
aperture objective to perform high-resolution large-area measurements. However,
the axial resolution of such setups is still fundamentally limited by the objec-
tive[4]. This work introduces the concept of utilizing the reflected conjugate
wave of the diffractive optical elements (DOEs) for interference measurements.
A traceable step height target is measured and the experiment result shows
that the proposed setup can improve the accuracy and reduce the measurement
uncertainty in the axial direction.

1 Introduction

Nowadays, with the development of nanotechnologies, there are more and more
needs for precise measurement of the small surface structures over a large area,
such as semiconductor wafers and meta-surfaces. Confocal microscopy has
always been one of the most commonly used methods for surface measurements.
It can provide high resolution while being contactless and easy to use. However,
microscope objectives have the trade-off between resolution and field of view
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Figure 2.1: Setup of the DOE confocal interference microscope.

(FOV). High-resolution objectives with high numerical apertures (NAs) also
have high magnifications, which lead to limited FOVs.

In the previous researches, diffractive lens arrays have been proposed to increase
the FOVs of the confocal microscope objectives while maintaining high lateral
resolution [3, 6, 5]. Unlike the traditional micro-lens arrays, they no longer
have the restrictions between the pitches and the NAs of the micro lenses. They
can produce highly focused spots in a dense grid over a large area. Combined
with low-NA objectives, large-area measurements with high lateral resolution
become possible. However, such setups also have some drawbacks. The axial
resolution in this case is still limited by the low-NA objectives.

To overcome such limitation and reduce the axial measurement uncertainties, the
idea of interference is utilized. As one of the most precise distance measurement
techniques, interference can improve the axial resolution of the previous DOE
based confocal microscopes. The concept for the proposed setup will be
explained in the next sections. Experiments of a traceable step height target are
also carried out to demonstrate such improvements.
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2 Confocal Interference Microscope

Figure 2.1 shows the concept of the DOE based confocal interference setup. In
the setup, a high-coherence light source, i.e. a collimated laser, is reflected by
a beam splitter and illuminates the DOE. Under the plane-wave illumination,
the DOE will produce multiple tiny spots with high NAs on the sample surface.
These spots will be reflected by the sample as the probe beam, which is shown as
red lines in Figure 2.1. At the same time, the DOE will reflect a certain amount
of light back as the conjugate wave of the focused spots. The conjugate wave is
represented by the green lines in Figure 2.1, which becomes the reference beam.
The reflectance of the DOE is determined by the material itself, which is around
4% for fused silica at an incident angle of 90° and can be further controlled by a
coating.

An objective collects the probe beam and the reference beam and forms an image
on the camera sensor. When a surface is placed on the focal plane, the two
beams produce two sets of spots in the image, which is shown in Figure 2.2a.
Note that the yellow spot is from the direct reflection of the plane surface, which
should have the same phase as the probe beam and will not overlap with spots for
a sample placed with an angle. By mechanical alignment of the positions of the
beam splitter, the objective and the DOE in the setup, the reference and probe
spots shown in Figure 2.2b can superimpose with each other perfectly, which
means that the reference and probe beams overlap with each other perfectly.
Thus the reference and probe beams will interfere with each other. In this case,
if the distance between the DOE and the sample is defined as d, then the phase
shift for the interference between the probe beam and the reference beam is
4πd/λ.

With such a setup, when the surface is scanned axially, interference will occur
between the reference and probe beams. Interference fringes can be observed
on a confocal peak like modulation signals on a carrier wave. Experiments
are shown in the next section for demonstrating such phenomena. It will also
be applied in measuring a step height target to reduce the axial measurement
uncertainty.
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Figure 2.2: Reflection from the DOE and the sample surface. (a) Focusing wave, reflected conjugate
wave and reflected wave by the plane surface. (b) Spots from different waves when a piece of glass
is placed underneath the setup.

3 Experiment results for surface measurement

For proof of the concept, a testing setup is built as Figure 3.1 shows. A 50 mW
volume-holographic-grating single-frequency 785 nm fiber-coupled diode laser
from Thorlabs is collimated by an objective through a beam splitter. The
collimated plane wave illuminates the DOEs, which focuses the illumination
into a spot array. The probe beam reflected by the surface and the reference
beam reflected by the DOE is collected by the objective and they are imaged
onto the camera sensor by the tube lens.

Figure 3.1: Experiment setup of the DOE-based confocal interference microscope.
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A traceable step height standard target (VLSI SHS-9400QC) is placed underneath
the DOE as the sample to test the measurement uncertainties. The target is
shown in Figure 3.2a. There is a convex bar precisely produced by lithography
with a width of 100 ţm and a calibrated height of 925.5± 5.4 nm. Height
measurement of the bar follows the procedures of VLSI [7, 2]. Three lines are
measured along the cross section of the bar, which are represented by A, B and
C in Figure 3.2b. The length of each line is a third of the width of the bar.

Three adjacent spots in the 11× 11 spot array with a pitch of 100 ţm produced
by the DOE are scanned axially to measure the height of the bar. The DOE
has a working distance d of 1 mm. A typical confocal interference signal of a
single spot is shown in Figure 3.3a. Interference fringes with oscillation can be
observed in the figure. Please note that the fringes disappear on the edge because
the axial sampling is set to a larger value to save the measurement time. The
highest peak of the signal is fitted by a polynomial and the height is calculated.
In this way, each line is sampled with a step of 3 ţm in the x direction in Figure
3.2. Afterwards, all the lines are fitted by the following equation [1]

z =
{

ax + b1, x ∈ (A, B),
ax + b2, otherwise,

(3.1)

where z is the measured height, x is the lateral position and a, b1 and b2 are the
line fitting parameters. The height of the bar h is thus derived as

h = b2 − b1√
a2 + 1

. (3.2)

The measurement is repeated 10 times in the y direction along the bar with a
step of 10 ţm. The bar height at each y position are calculated. The mean value

Figure 3.2: VLSI SHS-9400QC step height standard calibration target. (a) Picture of the target.
(b) Cross section of the measurement area.
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Figure 3.3: Axial measurement signal with a 20× 0.5 NA objective. (a) Confocal interference
axial response of a single-frequency laser. (b) Confocal axial response of a laser with a bandwidth
of 2 nm.

of the measured height is 904.7 nm with a standard deviation of 9.7 nm. For
comparison, another 785 nm diode laser from Thorlabs with a larger bandwidth
of 2 nm, which has a much shorter coherence length of around 0.3 mm, is used
for pure confocal measurement. A typical signal can be seen in Figure 3.3b.
Note that the asymmetrical peak shape is due to the aberration of the objective
when imaging through the DOE glass, which has a thickness of 6 mm. The
confocal measurement has a mean value of 965.5 nm with a standard deviation
of 40.3 nm. It is obvious that the interference measurement significantly reduces
the measurement uncertainty.

The measurement error is mainly due to the noise caused by the stray light. The
stray light comes from different aspects, such as reflection from the unmatched
coating of the objective and other diffraction orders due to the low diffraction
efficiency of the binary phase mask. The measurement uncertainty can hopefully
be further reduced by changing the objective coating or a multi-level phase mask
which has a much higher diffraction efficiency.

4 Conclusion

Microscope objectives with high resolution usually have small FOVs. Diffractive
lens arrays can keep both the high lateral resolution and the large FOVs of
low-NA objectives in confocal microscopy. However, the axial resolution of
such setups are still limited by the low-NA objectives for surface measurement.
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This work uses the originally wasted reflected conjugate wave of the DOEs to
make interference measurements to increase the axial resolution of previous
setups. Experiments are carried out with a calibrated step height target which
has a certified height of 925.5± 5.4 nm. The interference measurement show a
result of 904.7 nm with a standard deviation of 9.7 nm. Compared to the solely
confocal measurement, which has a result of 965.5 nm with a standard deviation
of 40.3 nm, the measurement uncertainty is clearly reduced and the accuracy is
increased.

In the future, a new DOE with higher NAs will be produced to further test the
resolution limit of the diffractive lens arrays. New experiment setup will be built
and the application will be extended to other fields, for example, fluorescence
microscopy.

References

[1] AB Forbes, PM Harris, and Richard K Leach. The comparison of algorithm
for the assessment of Type A1 surface texture reference artefacts. Tech. rep.
CMSC 33/03. National Physical Laboratory, 2018.

[2] Peter de Groot and Danette Fitzgerald. “Measurement, certification and
use of step-height calibration specimens in optical metrology”. In: Optical
Measurement Systems for Industrial Inspection X. Ed. by Peter Lehmann,
Wolfgang Osten, and Armando Albertazzi Gonçalves Jr. Vol. 10329.
International Society for Optics and Photonics. SPIE, 2017, pp. 328–336.
doi: 10.1117/12.2269800. url: https://doi.org/10.1117/12.
2269800.

[3] B. Hulsken, D. Vossen, and S. Stallinga. “High NA diffractive array
illuminators and application in a multi-spot scanning microscope”. In:
Journal of the European Optical Society-Rapid publications 7 (2012).

[4] Zheng Li. “Application of diffractive optical elements in confocal
microscopy”. In: Proceedings of the 2018 Joint Workshop of Fraunhofer
IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory.
Relativistic groups and analyticity. Ed. by Miro Taphanel and Jürgen
Beyerer. KIT Scientific Publishing, Karlsruhe, 2019.

89

https://doi.org/10.1117/12.2269800
https://doi.org/10.1117/12.2269800
https://doi.org/10.1117/12.2269800


Zheng Li

[5] Zheng Li et al. “Application of DOE in confocal microscopy for surface
measurement”. In: IMEKO Joint TC1 - TC2 International Symposium
on Photonics and Education in Measurement Science. Ed. by Maik
Rosenberger, Paul-Gerald Dittrich, and Bernhard Zagar. Vol. 11144.
International Society for Optics and Photonics. SPIE, 2019, pp. 254–261.

[6] Tim Stenau and Karl-Heinz Brenner. “Diffractive Lenses with Overlapping
Aperture A New Tool in Scanning Microscopy”. In: Imaging Systems and
Applications. Optical Society of America. 2016, IT1F–1.

[7] VLSI Standards. Application Note: Step Height Standards for use with
KLA-Tencor Instruments. Rev.AB. 2010.

90



A Proposal on Discovering Causal Structures in
Technical Systems by Means of Interventions

Josephine Rehak

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
Josephine.Rehak@kit.edu

Abstract

Causal Discovery has become an area of high interest for researchers. It has
lead to great advances in medicine, in the social sciences and in genetics. But
up til now, it is hardly used to identify causal relations in technical systems.
This paper presents the basic building blocks for in-depth research. This paper
reviews established causal discovery methods and causal models. In contrast to
existing surveys of this domain, we focus on the causal discovery methods using
interventions. Based thereon, we propose the idea of a promising interventional
discovery approach for technical systems. It takes advantage of not only direct,
but also indirect causal relationships, which might improve the learning process
of causal structures.

1 Introduction

In 360 B.C., Plato already knew that everything in the universe had a cause
and is thus an effect of that cause. Nowadays, causality has emerged as the
most fundamental common theme in the sciences. Scientists from domains
as oceanography, genetics, philosophy or psychology research on discovering
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causal relationships. Researching causality has strong prospects for the future,
because it can improve human-level artificial intelligence, medicine, precision
agriculture or production-optimized factories. In general, learning about causal
relations helps to understand technical as well as social systems. By using it, one
can better predict possible behavior, alternative outcomes and create policies.
Naturally, each domain has its own characteristics. In the social sciences,
experiments are rather expensive and are limited by social ethics. Fortunately,
we have broader opportunities in the domain of technical systems. They offer the
advantage of systematic investigations, while no human lives are at risk. But they
also come with new hurdles: Some interventions may not be possible, because a
change at the place of investigation is not feasible or could damage the system.
We need an approach, which respects these boundaries. The method should
efficiently identify causal relationships using a minimal amount of data. In the
best case, we can make use of existing algorithms to achieve high knowledge gain
with minimal costs. To identify such approaches, we shed light on established
methods and causal models. By presenting the current state of research, we join
a series of publications such as [7, 8, 13].

2 The Nature of Causal Relations

Causal relations tend to be complex. The most common definition of causality
is, that given two events A and B, A causes B, when B relies on A for its value.
This causal relation of A and B implies several properties. One is the time-
dependency: the event B must not happen before A. B might occur after
event A, but the delay time, also called dead time, between A and B must be
adhered to. Further on, a causal relation always implies a correlation, but a
correlation does not imply a causation. In contrast to correlation, the causal
relation guarantees a joint appearance of events A and B. Also the deletion of
the cause A, always implies the deletion of B, assumed no other event causes B.
Besides the discussed relation A→ B, in the deterministic world there exist four
other possible causal relations between the two variables A and B. The easiest
one is A← B, where A depends on B for its value. It is as A→ B a simple
directed relation and we assume them to be the most common relations in nature.
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Another possible relation is causal independence denoted as A ⊥ B. In this case,
does neither A depend on B, nor B depend on A. It might occur, that the two
variables correlate, what is then called a spurious correlation. The trickiest causal
relations between two variables are bi-directed causal relations and confounding
relations. In a bi-directed relation A and B causally depend on each other. In
a confounding relation, A and B are caused by an unmonitored third variable
and are indirectly causally related. The whole domain of confounder analysis is
solely devoted to finding such relations. Both cases are difficult to detect as they
are hard to keep apart from each other and can easily misidentifies as A→ B

or A← B. Confounding and bi-directed relations have been be denoted as
A↔ B in the literature. Next to this, there also exists the notation of A−B

for bi-directed relations. We will stick to the later in this report.
These were all the possible relations between two variables, but a causal graph
with more variables can be much more complex. A variable might actually
depend on multiple variables for its value. Because of this, the number of
possible models grows exponentially with the number of variables. To reduce
this amount of possible models is the main goal of causal discovery methods. In
the best case, the true underlying causal model can be uncovered.

3 An Overview of Causal Models

A causal model describes the causal dependencies in a system or population.
Causal models can represent only a small part of reality. As every cause has
its own cause, the causal network of reality is too gigantic to be fully captured.
Hence, a causal model always implies a trade off between complexity and
completeness. In literature, the events on the boundary of a model are called
exogenous variables. Their value stems from outside of the system. The cause
of an event inside the model is called an endogenous event. Since causal models
replicate reality, in reverse reality can falsify the models. Different types of
causal models have been developed and their number is rising. For these reasons,
we limit ourselves to the most popular causal models.
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3.1 Structural Causal Models

Structural Causal models (SCMs) were introduced by [24]. They consist of
a set of exogenous variables V an a set of endogenous variables W and a set
of structural equations F . SCMs belong to the family of Structural Equation
Models (SEMs), also called Functional Causal Models (FCM). These kind of
models use equations to represent the graph structure. The definition of SEM
and SCM is ambiguous. Sometimes SCMs are referred as SEMs. By our
definition, SEMs use linear equations, while SCMs use functions. Consequently,
SCMs are more powerful than SEMs. In both models, each equation contains an
independent noise variable U , which contain the patterns that cannot be causally
explained. The probabilistic extension of SCMs are Bayesian Networks.

3.2 Bayesian Networks

Bayesian Networks (BNs), or Belief Networks, belong to the family of Probabilis-
tic Graphical Models (PGMs). They combine graph structures with (conditional)
probability distributions. The graph G of a BN consists of a set of random
variables X and a set of directed edges E connecting the variables. Per definition,
the graph is a directed acyclic graph (DAG), as the edges must not form cycles.
Each variable has a probability distribution assigned. According to the Law of
Total Probability, all probabilities in a probability distribution sum to one [26].
Popular enhancements of BNs are Dynamic Bayesian Networks (DBNs) [5],
Object-Oriented Bayesian Networks (OOBNs) [15].

3.3 Markov Random Fields

Another way or presenting causal relations are Markov Random Fields [14]. As a
PGM, MRFs consist of a set of variables V and a set of probability distributions
P . Here, the edge weights do not sum to one. To receive normalized probabilities,
we have use the normalization constant Zφ. In opposite to BNs, MRFs contain
bidirected edges, which may form cycles. But unidirected relations, as in BNs,
are no allowed. Further developments of MRFs are Gaussian Markov Random
Fields [29] or Hidden Markov Random Fields [18].
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3.4 Acyclic Directed Mixed Graphs

Acyclic Directed Mixed Graphs (ADMGs) were introduced by Judea Pearl [12].
In their essence, ADMGs consist of multiple Bayesian Networks and thus allow
bidirected edges. Their only constraint is that unidirected edges are not allowed
to form cycles. The bidirected edges stand for a latent common cause, which
is not included in the variable set. Successors of the ADMGs are alternative
Acyclic Directed Mixed Graphs (aADMGs) [27].

4 Methods for Causal Discovery

The purpose of causal discovery is to recreate the underlying true causal model
G∗ from the set of possible models. This can be done by an algorithm or
user posing queries to the data. In observational causal discovery, the query
concerns the causal relationship between two variables. A causal discovery
method then tries to answer the query using prerecorded data. In interventional
causal discovery, the query often concerns the question how the relation between
two variables changes, when we intervene on one of them. In this case, the
discovery method needs access to a live system which reacts to its interventions.
To perform causal discovery, one expects that the Causal Markov assumption
holds. This asserts, that the data is generated by an underlying model G∗ and
not by chance. The use of experiments with interventions is the oldest causal
discovery approach. Back in 1982 Paul Holland stated: "No Causation without
manipulation". He identified interventions as the only method to discover causal
relations [10]. Contradicting to this, one could observe a trend to observational
causal discovery in the nineties. This trend was crucial for domains where
experiments come at high cost and effort. In recent years, there has been a
trend towards methods handling a mixture of observational data and data from
interventions [22].
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Figure 3.1: Some of the most prominent causal models in literature are Structural Causal Models,
Bayesian Neworks, Markov Random Fields and Acyclic Directed Mixed Graphs.
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4.1 Causal Discovery Methods using Interventional Data

This family of discovery methods uses interventions to estimate the direction
between two variables. In fact, the term intervention is a cover for many other
definitions. It most often stands for perfect interventions, that only affect the
desired events and relations. But the term could also be interpreted as imperfect
intervention [31], stochastic intervention [16], soft intervention [17], unreliable
intervention [6] or uncertain intervention [6]. When we use the term intervention
in this report, we refer to perfect interventions.
The most prominent model for interventional deduction is the Potential Outcomes
Framework [28]. It was later found to be the main ingredient of Randomized
Controlled Trials and A/B tests, the two most popular methods at the time. The
PO Framework comes with the do-calculus developed by Judea Pearl [25, 23].
It is a way of denoting, which variables are intervened on. Usually, this method
assumes perfect interventions.
To investigate the causal relation between two variables, two randomized sample
groups are treated with the potential cause t1 and an alternative t2. Then we
compare the outcome of both groups by calculating the causal effect Yt1 − Yt2 .
Imagine an experiment where we want to find out the effect of a drug T . We
do this by intervening in the place of the potential remedy do(T ). Thereby,
T can assume the values ’give medicine’ do(T = t1) or ’give no medicine’
do(T = t2). Then we measure the effects Yt1 and Yt2 in the two independent
randomized test groups. For example, the causal effect could be the difference
in recovered participants. If the same count of people recover in each test group,
the medicine had no effect on the recovery.

4.2 Causal Discovery Methods using Observational Data

This group of methods uses observations of the system behavior. This avoids
the effort and cost that come with interventions.
Several groups of methods can learn the causal structure in this way: Common
are constraint-based, score-based and other functional methods. Each one makes
use of certain statistical patterns in the data. The most important patterns are from
conditional independencies [22, 8]. The group of score-based discovery methods
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calculates a model fit score from the data. In the next step, it optimizes the
score by searching in the space of possible models. Which model the presented
method finds is shown in Table 4.1. An example is the Iterative Conditional
Mode algorithm [2], which maximizes the fit likelihood of a generated model
same as Greedy Equivalence Search (GES). Whereby, GES searches directly in
the space of Markov equivalence classes [3], a set of models which express the
same conditional independencies.
The constraint-based methods use first conditional independence tests and an
edge orientation phase to learn the causal model. Popular are the Inductive
Causation (IC) algorithm [33, 24] and the Fast Causal Inference (FCI) algorithm
[30]. The disadvantage of such methods result from the conditional independence
tests. A conditional independence is not always certain and the tests can require
a large amount of data to be faithful.
Besides these groups exists a collection of methods exploiting other properties
of causal relations. For example, the Additive Noise Model (ANM) makes use
of the independence condition as it only holds true in the causal direction [11].
Opposed to the other method groups, that a false learned relation will not effect
all other causal relations of the model [8].
In general, causal discovery based on observations alone can rarely discover
the whole true causal graph (ancestral graph). Most often, they are limited to
the level of the Markov equivalence. One way to overcome this is by means of
interventions [32].

4.3 Causal Discovery Methods using Observational & Inter-
ventional Data

In recent years, methods have become popular, which use data created by
interventions and observations. Some methods use them in one joint pool and
directly construct their causal model from it. While other methods use each
kind of data separately to reconstruct the causal graph.
An example pooling method is Joint Causal Inference (JCI) [22]. It is actually
a group of methods, as it joins the data from different contexts, preprocesses
it and then allows any other common causal discovery method as IC or FCI to
construct the causal graph.
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Table 4.1: Lists of Observational and Mixed Algorithms that can Discover the Respective Causal
Models

Causal Model Causal Discovery Methods
DAG ANM [11]

IC [33, 24]
SCM JCI [22]
BN GES [3]

JCI [22]
MRF ICM [2]

ADMG JCI [22]

Other popular pooling methods include [31, 6, 4, 32]. Splitting methods may
take diverse forms. The easiest way is to first use observational methods til the
Markov equivalence level and then continue by using interventions.

5 Causal Discovery in Technical Systems

In the previous sections, we provided a compact overview over existing methods
in causal discovery. Here, we want to give an insight in how we plan on putting
them to use in a technical system.
A technical system may take various forms. For example it can be of electrical,
water-driven or material-driven nature. Per definition, each artificial system in
which matter, power and information interact is a technical system. We assume
such a system to be representable in a causal model. From the models described
before, ADMGS are the models that capture most domain knowledge.
SCMs and BNs cannot capture bi-directional edges. While MRFs cannot repre-
sent the more frequently occurring unidirectional edges [12]. Yet, ADMGs are
the least used of the presented models. Further, ADMGs require cost-expensive
calculations for causal inference as with each undirected edge, the calculations
become more complex [12]. Hence, we advise to first invest in BNs in proba-
bilistic scenarios, and into SCMs or DAGs in non-probabilistic scenarios, before
taking the step to ADMGs.
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Concerning the discovery methods, we plan to exceed the Markov Equivalence
level by using interventions. But as experiments based on the PO Framework
examine only a small number of variables [28], it is too expensive to analyze
an entire network. Hence, we have to either take observational methods into
account or come up with a new method.

6 Research Gap and Proposed Approach

Here, we propose a new form of query which considers such indirect causal
relations as of A on C. The basic idea is that we can observe the spread of a
change caused by an intervention. To see which intervention has caused which
variable changes should enable us to draw conclusions about the causal structure.
By collecting several such constraints and by using combinatorial analysis, we
hope to deduce the full causal graph. As a side outcome, we might be able
to receive such new information as the dead time between cause and effect
variables.
The main effort will be detecting the propagating change in the system. We have
identified two options. For one, we could compare the state under intervention
with a normal state. If the variable of the intervened state deviates from the
corresponding variable of the normal state, the variable indirectly depends on
the intervention.
In the second option, the intervention creates a kind of signal, which propagates
through the system. By trying to recover this signal from the other variables,
we detect which variables depend on the intervened variable. We assume this
methods to be more difficult, as the signal is likely to change its form when
traveling through the system.
For both options, we have to assume consistency in the system environment as
external influences on the system can lead to false conclusions in the causal
order.
If this new form of query works out, we could use active learning methods to
optimize the costs of intervention and the knowledge gain . Several methods
such methods for PO queries exist[32, 9]. We would need a new active learning
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method for our query.
As a step further in the future, we see the removal of various constraints we
impose on the system. For example, we assume our system to be non-cyclic,
but also cyclic graphs have been studied in literature [21, 20]. Also we assume
to have no influences on the system besides our interventions. It is likely that
in a real system this will not be the case and we will have a greater problem in
finding created changes.
For the beginning, we will make use of existing simulations of technical systems
as the Tennessee Eastman Process [1, 19]. Such simulations are easy to calculate
and allow rapid progress in the development of new algorithms. They are already
mathematically reproduced and thus causally inferred, what also allows our
models to be easily validated. This allows an easy entry into the development of
causal discovery methods for technical systems before we roll them out on real
plants.

7 Conclusion

In this report, we offered a survey on existing methods in structure learning and
causal discovery. If it is convenient, such presented methods could be used for
causal inference in technical systems, since there are different possibilities and
risks than in domains as the social sciences.
A new approaches for the investigation in observational and interventional causal
discovery were proposed. We advice for further investigation to consider indirect
causal relations and to use combinatorial inference to learn the causal model
structure. To discern the effects of interventions from their environment, we
proposed to use comparisons with a most similar twin system or to investigate
the injection and tracking of a short signal.
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Abstract

More and more video and image data is available to security authorities that
can help solve crimes. Since manual analysis is time-consuming, algorithms
are needed that support e.g. re-identification of persons. However, person
re-identification approaches solely output image rank lists but do not provide an
explanation for the results.

In this work, two concepts are proposed to explain person re-identification
rankings and a qualitative evaluation is conducted. Both approaches are based
on a multi-task convolutional neural network which outputs feature vectors
for person re-identification and simultaneously recognizes a person’s semantic
attributes. Analyses of the learned weights and the outputs of the attribute
classifier are used to generate the explanations.

The results of the conducted experiments indicate that both approaches are
suitable to improve the comprehensibility of person re-identification rankings.
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1 Introduction

The increased use of surveillance cameras to ensure security in public spaces
leads to huge amounts of video data available to law enforcement agencies. On
the one hand, this allows the search for specific persons of interest, but on the
other hand, it raises the problem of efficient and fast evaluation of the data.

The research field of person re-identification (re-id) addresses this problem by
developing approaches that enable automatic searches for persons in a huge
image or video database, usually referred to as the gallery. The starting point for
a search is typically a so-called query image that shows the target person.

Recent works [4, 11, 20] train a convolutional neural network (CNN) to embed
person images into a feature space. This feature space has the characteristics that
generated features from images showing the same person are closer together than
features from images of different people. Such features, also called embeddings,
are represented by vectors with a certain number of elements N . The calculation
of the distances between the query embedding vector and all embeddings of
images included in the gallery makes it possible to create a ranking of the gallery
images sorted by their similarity to the query image.

Task-specific problems that make it difficult to train a CNN for re-id include low
image resolution, occlusions, and misaligned person detections. Moreover, large
differences between scientific datasets, typically used for developing and training,
and real-world data lead to problems. Scientific datasets are only a small excerpt
of reality restricted with respect to the variety of persons’ visual appearances.
They are usually recorded within a short period and at a specific location and
scene setup. As a result, many important characteristics of a person’s visual
appearance, such as different types of clothing in summer and winter or varying
lighting conditions, are not included. Hence, the learned feature space is biased
and thus imperfect, especially since it is a matter of finding unseen persons in
the application who may have unfamiliar characteristics.

Therefore the resulting rankings of the person pictures naturally contain false
positive results in the first ranks as well. In this case, the difficulty is that these
errors are not necessarily understandable. The reasons for images being ranked
at their positions remain unclear.
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Since the search is based ond abstract deep feature vectors, it is not possible
to intuitively interpret the embeddings. Furthermore, the sole indication of
the distance does not solve the problem since such values are not intuitively
interpretable either.

To provide meaningful explanations along with ranking lists, re-id embeddings
are first thoroughly analyzed in this work. Subsequently, two concrete approaches
for explaining rankings are proposed and evaluated. The general concept behind
both approaches is to leverage person attributes, such as gender or clothing
colors, to add semantics to the re-id model. Thus, the meaning of the feature
vectors can be understood to a certain extent via analyzing the relationship
between elements of the embedding vector and the attributes.

2 Related work

This technical report is in the realm of two different research fields: person
re-identification and explainable artificial intelligence (XAI). As this work can
be applied to any person re-id approach, related work regarding re-id will not
be discussed further in this section. According to [18], XAI methods can be
categorized into three main fields: explaining of inner-workings, counterfactual
explanations, and explanation of decisions.

One possible way to explain the inner-workings of a CNN is to determine and
visualize features that maximize the activation and are thus most relevant [2, 14,
8]. Other recent works focus not on the maximization of activation but instead
try to invert neural networks and retrieve explanations based on e.g. parameter
gradients [5, 12, 19]. Moreover, some approaches distill the information of
deep neural networks into models with better interpretability [17, 10] or aim to
characterize hidden features quantitatively [1, 13].

Counterfactual explanations in the context of XAI describe what has to be
changed to the feature vector in order to achieve a prediction of the desired class.
For example, such explanations can have the form "If feature value X would be
Y, class C would have been predicted". Works that investigate counterfactual
explanations to achieve more interpretable machine learning models are [21, 6,
9].
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The work in this technical report best fits the research direction of explaining
decisions. To do this, most approaches rely on the visualization of attribution
maps, such as gradient or activation maps, or leverage attention modules to
generate valid explanations. Commonly used methods are [16, 3, 7]. In contrast
to these methods which primarily focus on the explanation of classification
results, person re-id is a retrieval task and does not make any hard decision.
Instead abstract feature vectors are compared. To bridge this gap, this work adds
an attribute classifier in order to be able to make differences between feature
vectors from hidden layers more interpretable.

3 Concepts

The main idea behind the proposed concepts is to use a pre-trained re-id network
as a black box and to train an attribute classifier upon it. The attribute classifier
takes re-id embeddings as input and outputs classification probabilities of the
recognized attributes. The parameters of the re-id network remain frozen while
only the weights of the newly added fully connected classification layer are
trained. By that, the attribute classifier is forced to interpret the abstract feature
vectors and to recognize the attributes based on the information contained therein.
The architecture is visualized in Figure 3.1.

Of course, this training procedure does not achieve the best results in terms of
attribute recognition accuracy, but it allows the interpretation of the meaning of
the elements of the re-id feature vector. The learned weights of the fully connected
attribute classification layer enable direct conclusions to be drawn between
feature components and their meaning concerning semantic attributes. The
weights are understood as a measure of the correlation between the embedding
and the attributes.

3.1 Use of classifier outputs

The straightforward way to explain ranking results is to compare attribute
predictions of query and gallery images. It would be possible to compute the
distances between attribute predictions and to output those for each attribute
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Figure 3.1: Visualization of the multi-task network architecture used in this work. The CNN jointly
generates person re-identification embeddings and recognizes semantic attributes.

to explain the matching, but this method suffers from several drawbacks. First,
depending on the number of attributes, displaying scores for all attributes could
overstrain the system operator because they can not be captured and understood
at a glance. Additionally, some attributes might not be visible or relevant
to re-identify the person shown in the query image and thus do not need an
explanation. Furthermore, absolute errors are hard to interpret without expert
knowledge and reference values. As a result, it would be beneficial to have
matching scores in percent instead. Building on the identified problems, the
following method is proposed to generate meaningful clues on the positions of
gallery images. Since the goal is to find occurrences of the person visible in the
query image, the first step is to identify the attributes for which the classifier
is most certain. Confidently recognized query attributes are determined by
computing the distances between the classifier outputs and the attribute decision
boundary as a measure of uncertainty. Typically, the decision boundary is 0.5.
Afterward, a decision is made based on a threshold ta. So, with x being the
classifier output for attribute a, attribute a is chosen if |xa − 0.5| > ta applies.
For example, for ta = 0.1 attributes with classification scores below 0.1 or
above 0.9 would be selected as suitable candidates to help to explain the ranking
results. In the next step, the absolute errors between query and gallery images
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are computed for these attributes. As the aim is to provide matching instead
of error scores, the error measurements have to be inverted. Last but not least,
normalization by the attribute prediction confidence of the query image results in
matching scores in percent. The following equation points out the computation
formula in detail.

sa = 1− |xq
a − xg

a|
0.5 + |xq

a − 0.5| (3.1)

Here, q denotes the query image and g ∈ G stands for a gallery image from
gallery G.

3.2 Attribute-related error

The second concept for explaining the person rank list focuses on the retrieval
distance instead of attribute classifications. The goal is to visualize the contribu-
tion of each attribute to the distance between q and g. This approach exposes the
attributes which contribute most to the distance between the embedding vector.
To achieve this, the squared error for each element of the query feature vector fq

and the gallery feature vector fg is multiplied with the learned attribute classifier
weight wna. wna denotes the weight between feature component n and attribute
output neuron a. As can be seen in the following Equation 3.2, summing the
weighted errors for all feature elements results in an error measurement ea for
attribute a.

ea =
N∑

n=1
(fq

n − fg
n)2 ∗ wna (3.2)

Comparing the errors of the attributes allows the estimation of their contribution
to the retrieval distance.

4 Evaluation

This chapter focuses on two main aspects. First, embeddings for person images
are analyzed to understand the influence of single feature elements and to
examine the correlation with semantic attributes. The more individual vector
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elements correlate with single or few attributes, the easier it is to understand
and interpret their values and to explain ranking results.

Second, the proposed concepts for explaining the resulting rank list of gallery
images are evaluated qualitatively based on some meaningful examples.

4.1 Training and Parameters

All experiments presented in this work are conducted with the well-known
Market-1501 [22] dataset as it provides identity labels as well as annotations for
27 attributes. The dataset consists of 32, 668 images of 1, 501 persons, divided
into training, query, and test sets. For the experiments, the multi-class attribute
age is also assumed to be binary, resulting in 30 binary attributes.

For the experiments, the AGW approach [20] is used as the person re-id model.
It achieves results comparable to the state-of-the-art with a simple architecture.
It is trained using the standard parameters proposed in the original work.

Subsequently, the network parameters of the re-id model remain frozen while a
fully-connected classification layer appended to the re-id feature layer is trained.
This additional layer consists of 2048× 30 weights which equals the number
of re-id vector elements times the number of binary attributes in the datasets.
Please note that learning a bias is omitted in this layer. Regarding training
parameters and procedure, this work orients itself on the findings of [15].

4.2 Embeddings and corresponding attributes

To create Table 4.1, the learned weights between each of the 2048 components
of the fully-connected feature layer and the attribute classification layer were
examined. For each component, the attribute with the highest weight was
determined and summed up with respect to the attributes. For instance, 104
vector components have the greatest weight with attribute downblue. The third
column refers to the positive ratio of attributes in the training dataset since
obviously there is a relationship between positive ratios and the number of top-1
occurrences. The results in the table indicate that the problem of imbalanced or
biased data is not only limited to the task of person attribute recognition. Persons
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with rarely occurring attributes such as hat or downyellow are worse represented
in feature space and thus the error probability of the resulting ranking increases.
This is a particular problem when it comes to ethnically unbalanced training
data. Besides, the second factor that is relevant for the number of neurons
connected to attributes is the complexity of the attribute. For example, the
attribute bag occurs in lots of different types, colors, and styles. Thus multiple
feature elements are required to represent such a huge variety.

Table 4.1: The number of vector elements that have the greatest weight to the attributes compared
to the positive ratios of attributes in the training dataset.

Attribute #Top1 Positive Ratio

bag 122 24.63
age2 104 75.77
downblue 104 16.38
backpack 103 26.50
downgray 101 16.38
... ... ...
age4 39 1.07
downgreen 33 1.86
downyellow 32 1.33
downpurple 15 0.27
hat 8 2.66

4.3 Attributes and corresponding features

Next, it is examined what the individual elements of the embedding represent.
Since there are connections between all feature elements and attributes, single
elements likely represent combinations of several attributes rather than single
attributes. Figure 4.1 shows rank lists of gallery images for meaningful and
representative feature vector elements sorted by their values. The first column
contains the three attributes with the highest and lowest weights, respectively. It
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is noteworthy that since weights can have negative values, the attributes with
low weights are inhibited if the respective vector element has a high value.

(a)

(b)

Figure 4.1: Rank lists of gallery images for selected vector elements. The images are sorted in
descending order by the value of the corresponding embedding element.

The rank lists indicate that single embedding components stand for combinations
of attributes. For example, all persons with high values for the element wear
yellow shirts and belong to age group 2 (upyellow, up, age2) in Figure 4.1(b).
Besides, if the color of the upper-body clothing is yellow, it is reasonable to
inhibit the prediction probability of the attribute upblack. Another interesting
finding is that many components not only stand for an attribute combination
but are almost able to identify specific persons, like in Figure 4.1(a). Possible
explanations are that the dataset consists of fewer identities than elements in
the embedding vectors or that the last layer of a re-id network is already very
focused on different persons and not concepts similar to attributes. The second
explanation is in line with the results of [15]. The authors achieved the best
results if the last network layer is not shared between the re-id and attribute
recognition tasks in a multitask network. The results showed that there is
interference due to different training goals. Features from the last layer of a
re-id network are too focused on different identities, even with the same set of
semantic attributes.
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4.4 Towards understanding rankings

This section provides examples of the proposed concepts to explain rankings
based on semantic attributes. First, Figure 4.2 shows ranked gallery images with
certain query attributes and corresponding matching scores for images in the
top-10 ranks. Second, the error composition for the last sample is discussed
based on Figure 4.3.

The first example in Figure 4.2(a) shows a frontal view of the person of interest
in good quality. As a result, many attributes are reliably recognized. These
attributes cover all types of semantic attributes ranging from global ones like
gender and age over accessories to clothing styles and colors. At first glance,
early ranks only contain persons that share a very similar visual appearance.
However, there are also cases of error. For example, when looking at rank 8,
one can observe that the image shows a woman although a man is visible in the
query image. Concerning the proposed matching scores, it gets clear why this
image occurs in an early rank. The matching scores for the attributes are high
even for the gender attribute (! denotes that an attribute is not present. In this
case, gender means female while !gender stands for male). It can be concluded
that the CNN was not able to recognize correctly that the image on rank 8 shows
a woman in contrast to the query image. This is indeed a difficult case because
there are few clues. For instance, the long hair of the person is hardly visible
from the frontal view and could also be a part of the background.

In contrast to the first example, the query image of the second example (see
Figure 4.2(b)) is blurry and shows heavy occlusions. As a result, the re-id
network is unsure about most of the attributes. For example, it is noticeable
that irrelevant features such as the concealing bicycle are re-identified instead
of the person. Together with the fact that even early ranks only have matching
scores significantly below 75%, it indicates that the result is not very reliable.
In practical application, the system operator should use another query image
with better quality and fewer occlusions in such a case.

Regarding the example in Figure 4.2(c), clothing colors are certainly predicted,
but global attributes like gender can not be surely determined. As a result,
early ranks contain persons with the same combination of short, red upper-body
clothing and black trousers with high matching scores. Furthermore, top-10
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(a)

(b)

(c)

(d)

Figure 4.2: Examples for the proposed matching scores based on semantic attributes. ! before an
attribute indicates that the attribute is not present in the image.
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ranks include both men and women, since gender is not clear from the query
image.

The last example again contains only gallery images with high matching scores
for certain query attributes. Except for the last picture, the top-10 images show
the person of interest. However, the tenth rank visually differs significantly from
the target person. The woman wears a yellow shirt in contrast to the dress the
query person is wearing. This example is used to look into detail regarding the
error or distance composition as explained in Section 3. Figure 4.3 visualizes
error composition for images on rank 3, 9, and 10 as pie charts.

hat

up

down

clothesgender

handbag

backpack

downcolors

bag

upcolors
age

hair

(a) Rank 3

hat
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(b) Rank 9

hat
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backpack
hair

bag

(c) Rank 10

Figure 4.3: Error composition for three different rank images for the rank list shown in 4.2(d)
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It attracts attention that the upper-body color greatly contributes to the retrieval
distance for rank 3, but less for ranks 9 and 10. The reason for this is that
backpacks cover large parts of the upper body clothing when a person is visible
from behind. This fact explains the early position of the image on the tenth rank.
Matching is not done by the actual color of the upper-body clothing. Instead, the
network focuses on the color of the backpack and does not notice the yellow shirt.
As a result, the proposed concept allows the understanding of re-id rankings and
enable easier identification of weaknesses of the re-id approach used.

5 Conclusion

This work presented concepts to explain and understand rank lists of person
re-id system. For this, an attribute classifier is trained with the goal of adding
interpretable semantics. Qualitative evaluations show that the proposed concepts
work and provide a solid basis for explainable person re-id. It seems to be
worth it to conduct further investigations in future work. Interesting research
directions include the development of methods for quantitative evaluation as well
as generative adversarial networks (GAN). GANs would allow the manipulation
of certain aspects of a person’s visual appearance and thereby an examination of
the effects and influences on ranking results.
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Abstract

In this report, three popular methods for multi-pedestrian tracking are extended
to a multi-category setting and tested on a large drone-based dataset. A thorough
comparison of the algorithms is presented and a common shortcoming is
identified. Building on this, a new tracking-by-detection based approach is
developed that outperforms the other methods by a large margin. In addition, a
state-of-the-art object detection model is adapted for the drone imagery, since
no public detections are available for the dataset.

1 Introduction

Multi-object tracking (MOT) in drone videos has several applications ranging
from sports analysis to traffic surveillance. Challenges arise not only from
complicated scenes with occlusions or fast moving objects but also from
different camera altitudes and angles resulting in a large variance of object size
and appearance. To solve these problems, most MOT approaches follow the
tracking-by-detection paradigm, where the tracking of objects is divided into
two subtasks – detection and association. This procedure has the advantage
that the vast improvements of deep learning based object detectors from the
last years can be directly applied. After detecting objects in each frame of
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a video independently, the goal of the subsequent association step is to link
detections of the same object to tracks with a unique ID. This is the part, where
the main differences of existing MOT frameworks lie. While some simple
methods only use the bounding box information of the detections [2, 3, 4],
other more sophisticated approaches use separate networks adopted from person
re-identification to extract appearance features of the underlying objects [1,
14]. Further ideas that emerged from the analysis of persons are to use human
pose information [7] or the interaction of people [10] to assist the association
of detections to tracks. Apart from that, the movement of objects often is
considered with a motion model (MM) following a simple constant velocity
assumption (CVA) between two consecutive frames when the sampling rate is
high or by applying a Kalman filter, for example.

In this report, three approaches originally designed for multi-person tracking
are extended in order to treat multiple object categories. After a qualitative
comparison, a new tracking method is developed upon the identification of a
common shortcoming of the existing approaches. Furthermore, a state-of-the-art
object detector is trained to boost the performance of the applied tracking-
by-detection based methods and to allow a fair comparison. The superior
performance of the proposed tracker is shown through experiments on a large
drone-based video dataset.

2 State-of-the-Art MOT

In this chapter, three popular MOT frameworks originally developed for person
tracking are described and extended to the multi-category context. Whereas
the first two follow the predominant tracking-by-detection paradigm, the latter
one proposes a new concept to perform the association step implicitly. After
a qualitative comparison, a new approach is developed that builds upon the
weaknesses of the existing approaches.
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2.1 Tracking-by-Detection Approaches

One of the simplest trackers is the IOU tracker [3]. It calculates the Intersection
over Union (IoU) of all possible assignments and follows a greedy matching
strategy that starts to link the detection and track with the highest IoU. Whereas
in this tracker, no visual information is used, the advanced V-IOU tracker [4]
leverages a KCF [8] as single object tracker to bypass missing detections. Since
the KCF works class-agnostic, the V-IOU tracker can be directly applied in a
multi-category setting, linking only detections from the same class together.

As a second tracking-by-detection based method, Deep SORT [14] is chosen,
since it is one of the most popular MOT frameworks. As a further development
of the SORT algorithm [2], it models the movement of objects with a Kalman
filter and uses the motion information by calculating the Mahalanobis distance
between predicted Kalman states and new detections. However, this motion
metric is not used directly in the association step but only to restrict the area of
possible matches for a track, i.e., as a gating function. For associating detections
to tracks within their gating area determined by the motion metric, appearance
features are extracted using a CNN adopted from person re-identification. The
visual features of a track and a detection are compared and if their distance is
below a threshold they can be linked. Instead of a greedy matching strategy,
the Hungarian algorithm [9] is used for an optimal assignment. Although the
separate model for generating appearance features was only trained on person
data, it is found that the extracted features are also suitable for comparing objects
of other categories like cars or buses. Therefore, Deep SORT also can simply
be extended to track multiple categories.

2.2 Tracktor

In contrast to the aforementioned trackers, Tracktor [1] goes beyond the tracking-
by-detection procedure. Detections of the previous frame are used as additional
region proposals in the second stage of a Faster R-CNN [12] detector and
regressed to the new positions in the current frame. Hence, no association step
is needed and the tracking is done implicitly. Tracks are stopped if the score
of the classification branch falls below a threshold and the detector runs in
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parallel to start additional tracks when new objects appear in the scene. Since
the regression does not work when large object displacements are present, the
method is extended with a CVA as MM and a camera motion compensation
(CMC) model that applies the Enhanced Coefficient Maximization technique
from [6]. Additionally, a re-identification model checks for new detections
whether they belong to earlier interrupted tracks, so that occlusions can be
bypassed, leading to the improved version Tracktor++. Although the method is
developed for tracking persons, it can be extended to multi-category tracking.
For this, the score vector of the classification branch is taken when regressing a
track and if its maximum does not correspond to the same category as in the
previous frame the track is stopped.

2.3 Own Approach: PAS Tracker

The goal is to build a tracker that uses as much information as possible in
the association step and combines the different cues of objects like position,
appearance and size in a sophisticated way in order to use all of the information
at the same time. In contrast, the previously described algorithms do not
use all available information and apply one cue after another: The V-IOU
tracker considers appearance information only in the post processing basing
the association solely on IoU, whereas Deep SORT takes position information
only for gating and relies mainly on appearance features for linking detections.
Tracktor++ takes appearance of objects only into account to retrieve lost tracks,
but does not use this source of information in the association step.

To overcome the aforementioned limitations, the similarity measure between the
position of a detection and a track should fulfill the following three requirements.
First, the center of objects shall be directly compared instead of using the IoU,
which is not accurate enough for densely packed small objects as often present
in the drone context. Second, a similar gating mechanism to inhibit impossible
matches as in Deep SORT is desirable. Therefore, the position similarity has to
be zero for too large displacements. Third, in order to enable a straightforward
combination with other similarity measures, the metric should be normalized
between zero and one. Given the position of a detection pD and the position
of a track pT (after MM and CMC) with center coordinates p = (x, y), the
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position similarity sp is calculated as follows:

sp = max(1− λp||(pT − pD)� zD||, 0) (2.1)

� denotes the element-wise division, || the Euclidean norm and zD = (w, h)
the size of the detection, i.e. the width and height of the bounding box. The
normalization w.r.t. the object size accounts for varying camera altitudes that
lead to differently large displacements in the image. The hyperparameter λp

tunes the size of the gating area, where the position similarity is not zero. A
good choice of this value is related to the displacements of objects between
frames, thus to the velocity of the moving objects and the camera frame rate
(24fps in the VisDrone MOT dataset [15]); λp is empirically set to 0.3.

As a second similarity measure, the size of objects is compared. Similar to the
position information, the IoU also reflects size similarity but is not very accurate,
since it does not measure position and size similarity independently. To get a
maximum similarity score of one, the following formula to calculate the size
similarity sz is used:

sz = 1− ||(zT − zD)� (zT + zD)|| (2.2)

For a visual comparison of detections and tracks, the improvements from the
person re-identification community are leveraged using a state-of-the-art model
from [11]. With this model, 2048-dimensional feature vectors are extracted for
a detection θD or a track θT . Then, the appearance similarity sa is calculated as
cosine similarity like in the Deep SORT framework:

sa = θT · θT
D

||θT || · ||θD||
(2.3)

Since sa also gets one for maximum similarity, the three aforementioned metrics
can be easily combined to a joint similarity measure s in order to use all the
information at the same time in the association step:

s = sp · sa · sz (2.4)

This similarity is calculated for each track-detection pair and an optimal assign-
ment is achieved with the Hungarian algorithm. A CVA is taken as MM, since
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Figure 2.1: Workflow of the proposed PAS tracker [13]. A detector takes as input the current
frame it and generates a set of detections Dt. Then, a CMC model calculates a transformation using
the current frame it and the previous frame it−1. This transformation is applied on the previously
found tracks Tt−1 yielding the tracks T̃t−1 that are aligned with the current frame. For each
track-detection pair, a similarity measure is calculated and the detections with a high similarity are
assigned to the existing tracks T exist

t . Before starting new tracks T new
t , the remaining un-assigned

detections Dr
t go into a module that filters false positive detections.

in drone-based imagery usually a large frame rate is available and a Kalman
filter yielded no better results in the experiments. To compensate for fast camera
movements, the same CMC model as in Tracktor++ is adopted. As a further
component, a simple yet effective module to filter false positive detections in
crowded scenarios is introduced, since these cause many ID switches. For each
new detection that has not been assigned in the association step, its overlap with
existing tracks is computed and the detection is removed if the overlap is too
high (>0.8) arguing that it is unlikely for objects to appear at positions where
already other tracks are present. The complete workflow of the PAS tracker is
visualized in Figure 2.1.

3 Experiments

At first, an overview of the dataset on which the presented tracking methods have
been evaluated is given. Next, the applied object detector and the adaptations
made to cope with the drone-based imagery are described. Finally, the results
of the conducted experiments are presented.

128



Multi-object Tracking in Drone Videos

Figure 3.1: Example images of the VisDrone MOT dataset [15].

3.1 Dataset

To analyze the performance of state-of-the-art MOT methods in the context of
drone imagery, a suitable dataset is needed. For this purpose, the VisDrone
MOT dataset [15] is chosen, since it is the largest drone-based dataset for MOT
that is publicly available. The dataset consists of 96 videos comprising about
40,000 frames with resolutions up to 3840 × 2160 pixels and is divided into 4
splits – train (56), val (7), test-dev (17) and test-challenge (16). Note that the
annotations of the test-challenge split are hidden and used for a yearly challenge
hosted by the VisDrone team. Therefore, the test-dev split is used for evaluation.
The five categories pedestrian, car, van, truck and bus are evaluated as it is done
in the challenge. Figure 3.1 shows some example images of VisDrone MOT. The
dataset is very challenging due to a high variance in camera altitude and viewing
angle leading to diverse object appearances and sparse object distributions.
Furthermore, both day and night scenes exist.

3.2 Object Detector

Since no public detections are provided with the dataset, an own detector is
trained on the train split of VisDrone MOT. A Cascade R-CNN [5] is used, as the
drone images comprise a lot of small objects where this network has its strengths
performing the bounding box regression several times with increasing accuracy
requirements during training. To adapt the Cascade R-CNN to the dataset, the
training is performed on patches of 600× 600 pixels and the default anchor sizes
are halved to account for the small object sizes. Similarly, to consider the larger
number of objects in one image, the number of proposals is doubled. To further
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Table 3.1: Results of the Cascade R-CNN detector with different test-strategies.

Cascade R-CNN AP AP0.5 AP0.75 APs APm APl

Baseline 35.4 62.5 35.2 12.3 38.9 54.7
+ more proposals 35.8 63.6 35.4 12.5 39.2 54.8
+ multi-scale testing 38.4 67.7 37.6 16.7 42.4 55.7
+ horizontal flipping 39.2 68.5 38.4 17.8 43.2 56.6

improve the detection performance, multi-scale testing and horizontal flipping
are used. The influence of these strategies is evaluated on the test-dev split of
VisDrone MOT and the resulting average precisions (APs) are summarized in
Table 3.1.

3.3 Tracking Results

For a fair comparison, all evaluated tracking methods use the same set of detec-
tions generated by the Cascade R-CNN detector with all test-time improvements
(see Table 3.1). For Tracktor++, the default Faster R-CNN is exchanged with
the trained Cascade R-CNN to use the superior detector also for the proposal
regression that implicitly performs the association. Similarly, for all methods,
the same re-identification model from [11] and CMC model from [6] are taken,
if applicable. The tracking results on the test-dev split are shown in Table 3.2.
Note that the AP for MOT differs from the AP for object detection.

The PAS tracker outperforms the other methods by a large margin for both
short- (AP0.25), middle- (AP0.5) and long-term tracking (AP0.75) as well as for
all object categories. The V-IOU tracker performs the worst, since it only uses
IoU for the association. The IoU is not as accurate as the position and the size
similarity of the PAS tracker, especially in crowded scenes with small object
sizes. This is reflected in the very low APped value for pedestrian tracking, as in
the VisDrone MOT dataset pedestrians often appear in groups. The Deep SORT
algorithm does not rely on IoU but bases its association solely on appearance
similarity. However, the extraction of appearance features is harmed by nearby
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Table 3.2: Comparison of the PAS tracker with other tracking approaches from the literature. Note
that all methods use the same object detector.

Tracker AP AP0.25 AP0.5 AP0.75 APcar APbus APtrk APped APvan

V-IOU 26.4 34.5 29.2 15.6 40.9 36.4 22.7 7.8 24.4
Deep SORT 33.2 51.0 35.0 13.6 31.9 58.3 30.0 21.3 24.5
Tracktor++ 34.3 48.6 35.5 18.8 50.6 40.0 32.8 20.2 27.8
PAS 50.8 66.1 52.5 33.8 62.7 81.2 43.9 30.3 35.9

overlapping objects under occlusion and no precise position information is
available in the association. In an ablative experiment, it is found that the
precise position similarity has the most impact on the tracking performance in
the PAS tracker. Whereas Tracktor++ achieves state-of-the-art results on other
tracking benchmarks, it struggles in the VisDrone MOT dataset, mainly at small
objects and in crowded scenes, since the bounding box regression is sensitive to
jumping onto nearby objects. Using position, appearance and size information
at the same time, the PAS tracker achieves state-of-the art performance on the
VisDrone MOT dataset.

4 Conclusion

In this report, three popular MOT methods originally developed for person
tracking are extended to multi-category trackers and tested on a dataset of drone-
based imagery. For this, a Cascade R-CNN detector is adapted to the drone
images to improve detection performance. After a detailed comparison of the
existing trackers, it is found that none of them takes full advantage of object cues
and a new tracker that uses position, appearance and size information at the same
time in the association step is designed. The proposed PAS tracker outperforms
the other approaches by a large margin. In future works, other combination
possibilities of the available object information should be investigated.
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Abstract

Given the ubiquity of data acquisition and processing in our everyday life,
protecting data sovereignty in distributed systems is a significant topic of
research. Usage control and provenance tracking systems are very promising
steps towards a technical solution for the problem of data sovereignty. However,
due to their complexity and diversity these systems are still not fully understood.
In this work we investigate the functionality of usage control and provenance
tracking systems. We classify them into three different categories based on their
security goals and properties. Furthermore we identify generic use cases for
these systems that help to understand what attack vectors system operators have
to be mindful of.

1 Introduction

In the age of ubiquitous computing, data are quickly becoming the most important
assets of many private enterprises and public IT infrastructures. Therefore
securely managing databases and preventing cyber attacks as well as data theft
have been crucial IT security tasks for quite some time. However, in recent years
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the focus of these IT security goals somewhat changed. While in the past it was
sufficient to protect local infrastructures such as computer systems and databases
from unauthorized access, many modern business processes require extensive
data exchange with remote stakeholders such as clients, business associates and
customers. Examples for this can be found in the context of digital supply chains
and collaborative predictive maintenance [5]. Current research projects such
as the International Data Space [7] push for highly interconnected business
ecosystems on a big scale and in many different areas. In such scenarios
valuable business data are being disclosed into computer systems operated by
external stakeholders, who might have conflicting interests. From an IT security
perspective the data owner needs a way to control his information even when
it is being processed in remote infrastructures. It needs to be ensured that the
data recipients cannot inadvertently disclose the received information, or even
deliberately misuse it for their own benefit.

Similar challenges also exist when considering the topic of data privacy protec-
tion. Unlike with business data, personally identifiable information of a single
individual seldom holds great monetary value. Nevertheless the protection of
shared personal information is still of great concern. While (supra-)national
data privacy laws regulate the acquisition and usage of personally identifiable
information on the legislative level, given the noticeable trend towards highly
interconnected data processing systems, there is a clear demand for technical
solutions as well. At the present moment this is especially evident in the field of
medical data processing. In light of the current global Covid-19 health crisis,
being able to autonomously collect and distribute health data on a large scale has
become profoundly relevant. Nonetheless, given the privacy-sensitive nature of
these data, the patients clearly need to remain in control of their information
throughout this process. As a result, over the last few years lots of research
regarding privacy-compliant medical data sharing has been conducted [1, 3,
6]. In general, data subjects have a legitimate right to monitor and control
what personal information is being used in what way, even if the actual data
processing is performed on a remote device operated by a third party.

These challenges regarding both data protection and data privacy can be
subsumed under the term data sovereignty. Data sovereignty describes the
approach of enabling data providers to monitor and control the use of their
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information at all times, even when they are being used by remote stakeholders.
During this process, the data in question can be business-related, or consist of
personally identifiable information. To achieve data sovereignty in technical
systems, there are some tasks to be considered. First of all, it is necessary to
track data flows across systems and domain boundaries. This is called data
provenance tracking and allows to reliably monitor data usage regardless of
where the data is being processed. Besides passively observing data flows,
providers also need to be able to actively control and prevent certain types
of unwanted data usage. This can be done by applying usage control (UC)
techniques.

In this work we investigate the general design of usage control and provenance
tracking systems and analyze them with regard to four dimensions:

• Security goals

• Enforcement capabilities

• System architecture

• Attack vectors

Based on this analysis we classify usage control and provenance tracking systems
into three different categories. We also identify generic use cases for these
systems that help to understand what stakeholders are relevant and what attack
vectors can occur in different scenarios. The remainder of this paper is structured
as follows. Section 2 briefly introduces the design and functionality of usage
control and provenance systems on a purely conceptual level. Afterwards in
section 3 we identify and categorize several corresponding system architectures
that are used as a basis for implementing these concepts. In section 4 we then
identify relevant stakeholders and describe four generic use cases for usage
control and provenance systems as well as important attack vectors that have
to be considered. Finally in section 5 we conclude with a short recap and an
outlook on future research.
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2 Provenance Tracking and Usage Control

In order to establish a technical solution for data sovereignty, we need versatile
provenance tracking and effective usage control frameworks. Both of these
topics have been subject to a lot of research in the past. In this section we will
briefly introduce the most common way of defining provenance tracking and
usage control mechanisms.

2.1 Provenance Tracking Mechanisms

Data provenance allows data providers to track the usage of their digital assets
and collect information about derivations that have been created as part of
a data processing step. The most common formal model for provenance
is the PROV standard [4], formerly known as the Open Provenance Model
(OPM). This family of documents describes data formats and serializations
for exchanging provenance information across heterogeneous environments. It
does not, however, propose concrete mechanisms for implementing provenance
tracking in data processing systems. For this, Bier [2] suggests a provenance
tracking system mainly consisting of three distinct components (c.f. figure 2.1).

Figure 2.1: Provenance tracking components.

First of all, a policy enforcement point (PEP) is responsible for monitoring
data accesses and creating events that represent data flows within the system.
PEPs are usually implemented close to data processing applications and are
capable of examining how data is being used. As data monitoring components,
they are at the heart of each provenance tracking system. The generated events
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containing data flow information are then relayed to a provenance storage point
(ProSP). The ProSP evaluates the events and aggregates all data flow information
into a provenance graph. The nodes of this provenance graph correspond to
representations of certain data at a specific point in time, while the edges describe
linkages between data representations (i.e. data flows). In short, the provenance
graph represents a comprehensive information flow history of the entire data
processing domain. If sensitive data are shared across domain boundaries, a third
level is established by including a provenance collection point (ProCP). This
component queries and aggregates multiple provenance graphs, thereby creating
a coherent history of data that have been tracked across multiple systems.

2.2 Usage Control Mechanisms

In addition to tracking provenance information, achieving data sovereignty
requires a mechanism for data providers to actively and continuously control the
access to their information even after it has been disclosed. This can be done
by applying usage control (UC) techniques. Usage control was developed over
a decade ago as a generalization of attribute-based access control. In contrast
to classical access control schemes, UC allows for continuous authorization of
data accesses over a period of time. It also features the possibility to declare
obligations that need to be fulfilled before, during or after a certain data usage,
which is not covered by classical access control. This allows the definition
of complex data usage strategies, such as limiting the number of views or the
time of access to sensitive information. The most widely adopted formal usage
control model is UCONABC , which has been introduced in 2004 by Park and
Sandhu [8]. Even today UCONABC provides the formal basis for many usage
control systems. In terms of designing usage control architectures, most modern
systems rely on a derivative of the XACML reference architecture [9]. Originally
developed for attribute-based access control, the XACML components can be
canonically extended to implement usage control policies. Figure 2.2 shows a
generic usage control system based on XACML components.

As before, the central component of the system is a policy enforcement point
(PEP), which closely interfaces the data processing applications and contin-
uously generates events representing any data usage. However, unlike PEPs
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Figure 2.2: Usage control components.

implemented for provenance tracking, usage control PEPs must be capable of
actively interfering with the data processing as well. It is not sufficient to just
observe data usage anymore – usage control PEPs need to be able to actively
intercept data usage events and potentially modify or block their execution
based on the prevailing usage policies. We call an enforcement point capable
of this intercepting PEP, in contrast to an observing PEP. Naturally every
intercepting PEP is also an observing PEP. While observing PEPs are sufficient
for provenance tracking, we require the definition of suitable intercepting PEPs
in order to enforce usage control on sensitive data.

The other essential usage control component is the policy decision point (PDP).
The PDP holds a set of active usage control policies and receives the events
from the intercepting PEP. The received events are then evaluated against the
set of active policies, which results in a usage control decision. In addition to
the classical binary access decision of allow versus deny, the PDP can also
rule that the data usage described by the event should be modified prior to its
execution. In the end the intercepting PEP receives the decision and enforces it
on the data processing application.

Finally there are two more components involved in the usage control enforcement
process. The policy information point (PIP) can be queried by the PDP for subject
and object attributes, as well as generic information such as database entries
or environmental properties. The policy execution point (PXP) is responsible
for executing obligations demanded prior to a data usage, for example the
incrementation of an access counter. Obligations are invoked by the PDP and
have to be executed successfully before the PDP publishes a positive decision.
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In the end it is the collaboration of all components that ensures proper usage
control enforcement.

3 Classifying System Architectures

In the previous section we described the mechanisms and basic components of
usage control and provenance tracking systems. However, this merely conceptual
view on usage control and provenance does not yet describe how to actually
apply these mechanisms in real-world use cases. Depending on the specific
demands and requirements there are many ways of designing usage control and
provenance architectures. In this section we explore and categorize different
options in designing actual system architectures and discuss what real-world use
cases they cover.

3.1 Usage Control Architectures

Local UC architecture. The simplest form of usage control systems are local
UC architectures. Figure 3.1 shows an example of such an architecture. A
local UC architecture consists of a single computer system that enforces a set
of usage rules on local data without considering any external influences. The
usage control components (PEP, PDP, PIP and PXP) all run as services on the
local computer system that should be protected. Furthermore, both the sensitive
data as well as the respective usage control policies are also stored directly on
this system. During system operations, the usage rules are then enforced on the
local database by the mechanisms described earlier (c.f. figure 2.2). Usually
there is a fixed set of usage control policies that have been defined by the system
administrator (analogous to mandatory access control). In addition to that,
system users can also create protection policies for their own data (analogous to
discretionary access control).

Figure 3.1 shows the four usage control components implemented as dedicated
software modules instead of a single large monolithic software stack. Usually
this design is preferred, because it respects separation of concerns and allows the
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Figure 3.1: Local usage control architecture.

flexible extension of the usage control system. Nevertheless, all UC components
run on a single system containing all data that are subjected to usage control.

The benefit of the local UC architecture is its simplicity and self-containment.
The architecture does not depend on any other system and manages both the
database as well as the policy set sovereignly. On the other side, the local UC
architecture cannot enforce usage control anymore as soon as the data are being
shared with another system. Hence it is not suitable for implementing any of the
scenarios that have been described in the introductory motivation.

Cross-domain UC architecture. In order to support usage control enforce-
ment across different stakeholders, multiple local UC architectures can be
merged into a cross-domain UC architecture. As the example in figure 3.2
shows, a cross-domain architecture links together multiple remote UC systems
that can share sensitive data as well as respective usage control policies. Each
participating usage control system represents a single UC domain, i.e. it operates
on a set of policies that are evaluated by a single decision point (PDP). Even
though the cross-domain architecture now deals with multiple UC domains
(unlike local architectures), each UC domain is still implemented as a single
computer system.

The main difference of this architecture compared to a set of local UC architec-
tures is that now data flows between usage control domains are being considered
as well. Furthermore, the various UC domains are usually operated by different
stakeholders. For example, figure 3.2 shows a data flow from the green system on
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Figure 3.2: Cross-domain usage control architecture.

the right to the blue system on the left. Since the data provider wants to protect
his sensitive information in the domain of the remote data receiver, the data
flow is preceded by the deployment of a usage control policy regulating the data
usage on the remote side. This deployment step is automatically initiated by the
enforcement point (PEP) of the donating system (here: right side) whenever it
observes an outgoing data flow. The actual policy transmission is then performed
by the policy execution point (PXP) as part of a UC obligation. The donating
enforcement point only allows the outgoing data flow if the deployment of the
protection policy has been executed successfully. Finally the deployed policy is
being continuously evaluated by the remote decision point on the data receiver
(here: left side). At this point the remote PEPs ensure proper enforcement of
the demanded usage restrictions even outside the data owner’s usage control
domain.

Being able to handle usage control between different stakeholders is the main
advantage of cross-domain UC architectures over purely local architectures.
Hence cross-domain architectures are suitable to implement the scenarios
outlined in the introductions. On the other side, now the usage control systems
must be able to remotely deploy and enforce protection policies. Furthermore,
the used policy model has to be able to distinguish local from remote data usage.
Finally the cross-domain architecture is still limited to a single computer system
per usage control domain. This hinders scalability in generic and flexible use
cases.
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Distributed UC architecture. The most flexible type of usage control systems
are designed as distributed UC architectures. In contrast to the cross-domain
configuration, distributed architectures allow the deployment of a single usage
control domain over several collaborating computer systems. Figure 3.3 shows
an example of this type of usage control. As you can see, the usage control
components previously running on a single computer system are now distributed
across multiple devices. Most notably, there are now multiple PEPs running on
user devices, while the policy decision point (PDP) runs centrally on a dedicated
server. This allows support for use cases where several computer nodes are used
for data processing inside a UC domain (e.g. when using thin clients in server
environments). Depending on the scenario it is also possible to include multiple
information points (PIPs) and execution points (PXP) running on dedicated
hardware. This is very useful, since both of these components often attach to
existing infrastructure such as databases or directory services. However, in order
to avoid policy conflicts there is usually only a single decision point (PDP) per
usage control domain.

Figure 3.3: Distributed usage control architecture.

While in principal suitable for the same usage control scenarios as cross-domain
architectures, the distributed form of usage control offers far greater flexibility
than their monolithic counterparts. This is true even in scenarios with only a
single UC domain and no data flows between different stakeholders. Being able to
independently deploy PIPs and PXPs as dedicated components in existing server
infrastructure enables a wider range of usage control applications. Supporting
multiple PEPs within a single UC domain allows data processing applications
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to be deployed independently of the rest of the usage control infrastructure, for
example on mobile devices of employees. Furthermore, this also offers a level
of scalability within a UC domain. It is now possible to add more enforcement,
execution or information points into an existing UC domain whenever the need
arises. On the other hand a distributed UC architecture is more complicated
than a UC system running exclusively on a single computer system. It has
to be ensured that all usage control components can communicate reliably
and securely with each other, even when they are located within a single UC
domain. Because of this increase in complexity there are broader attack vectors
on distributed usage control architectures and their security properties must be
inspected more closely.

3.2 Provenance Tracking Architectures

In addition to distinguishing different types of usage control architectures,
provenance tracking systems can be classified in a similar fashion. However,
unlike the UC architectures, provenance tracking systems should be classified
according to the scope of the acquired provenance information rather than how
the system components are deployed.

System-wide provenance tracking. The simplest way of tracking provenance
information is to only focus on the data within a single computer system. As
the example in figure 3.4 shows, such a system consists of at least one policy
enforcement point (PEP) observing all data usages on the system, while a
provenance storage point (ProSP) residing on the same system generates and
stores provenance information. While there is always only one ProSP per system,
it is possible to use multiple PEPs for monitoring data usage (e.g. one per data
processing application). The generated provenance graph then attests to the
history of data usage on this particular system, for example in order to prove
compliance with data privacy laws.

Naturally, this type of architecture only tracks the provenance of data while it
is being processed on a single computer system. As soon as the information
leaves the system in question, no more fine-grained provenance tracking is
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Figure 3.4: System-wide provenance tracking architecture.

possible. This is because the provenance storage points have only a local view
on data processing and operate independently on multiple systems. Hence this
architecture is only suitable for use cases where all relevant data processing is
performed inside a single system.

Domain-wide provenance tracking. Domain-wide provenance tracking is
used to track the provenance of data within a single domain. Unlike the system-
wide provenance tracking, this means that data flows between multiple systems
(i.e. multiple PEPs) within a domain are being tracked by a dedicated ProSP.
However, it is still not possible to track data flows across multiple domains and
different stakeholders. Figure 3.5 shows an example of this architecture.

Figure 3.5: Domain-wide provenance tracking architecture.
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Cross-domain provenance tracking. In contrast to the previous two architec-
tures, cross-domain provenance tracking allows keeping track of data usage even
across multiple domains and stakeholders. For this, multiple domain-wide (or
system-wide) architectures are linked together and share provenance information.
That way provenance tracking is possible even across the domains of different
stakeholders. In addition, there is a global provenance collection point (ProCP)
aggregating the provenance graphs of multiple local provenance storage points.
This allows to generate a comprehensive history of data usage across multiple
domains. Figure 3.6 shows an example of cross-domain provenance tracking.

Figure 3.6: Cross-domain provenance tracking architecture.

As Bier pointed out in [2], usage control and provenance tracking can be
combined. Similarly, usage control and provenance architectures can also
be combined. Clearly, the system-wide provenance tracking architecture is
compatible with both local and cross-domain UC architectures. Since there is at
least one policy enforcement point in each of those architectures, all that is needed
to implement system-wide provenance tracking is a provenance storage point for
each system. However, system-wide provenance tracking cannot be used with
distributed architectures, since there is no single computer system performing all
relevant data processing anymore. On the other hand, domain-wide provenance
tracking requires a distributed usage control architecture, while cross-domain
provenance tracking is compatible with cross-domain and distributed usage
control. Both of them are not compatible with purely local usage control,
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because their PEPs cannot observe data flows across system and/or domain
boundaries. Table 3.1 shows the possibilities of combining usage control and
provenance architectures.

Table 3.1: Combining usage control and provenance architectures.

Usage control

local cross-domain distributed

Pr
ov

en
an

ce system-wide 3 3 7

domain-wide 7 7 3

cross-domain 7 3 3

4 Identifying Generic Use Cases

After describing the different possibilities of realizing usage control and prove-
nance architectures, we are left to evaluate their security properties in different
use cases. We do this by first identifying the stakeholders that have an interest
in usage control and provenance systems of different flavors. As we will see,
depending on the concrete goal of the protection systems, the stakeholders’
motives can change somewhat and they even have to be considered attackers.
Afterwards we describe four different generic use cases for provenance and
usage control that demonstrate what attack vectors are to be expected and what
security guarantees the various options ultimately yield.

4.1 Stakeholders

There are four main stakeholders to be considered when designing usage control
and provenance architectures.

Data owner. This stakeholder holds the rights on a certain set of data that
is being disclosed. Usually the data owner has either a monetary or personal
interest in monitoring and regulating the usage of his information. For this
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purpose the data owner defines usage control policies that specify what may or
may not be done with the disclosed information. Furthermore, the data owner
may demand tracking the provenance of his information to maintain transparency.
If the disclosed data contain personally identifiable information, a data owner is
often also called data subject.

System user. A system user operates computer systems that run data processing
applications in the usage control infrastructure. This stakeholder has legitimate
access to information previously disclosed by a data owner and uses it to achieve
a certain task. While doing so, the usage control infrastructure enforces the
restrictions provided by the original data owner. The system user’s access and
distribution of protected information may also be logged by the provenance
tracking infrastructure. Crucially, the system user does not have privileged
access to the systems he operates or the protection components running there.
Depending on the scenario, a system user may be motivated to bypass the usage
control protection and/or provenance tracking for his personal benefit. Hence
this stakeholder must be considered as a possible adversary.

System owner. The system owner is responsible for operating computing
systems that run data processing applications as well as the local usage control
and provenance infrastructure. Usually this stakeholder has an interest in
receiving sensitive information from external data owners and use them outside
the boundaries specified by the data owner’s usage rules. Unlike the system user
he has privileged access to all parts of the managed infrastructure and may use
this power to manipulate usage control and provenance components. However,
as we will see there are also scenarios where the system owner is the primary
data owner. In this case we can trust the system owner to setup all protection
systems correctly and not bypass the usage control enforcement, since it is his
own interest to enforce protection rules against non-privileged system users.

Supervisory authority. The supervisory authority is a stakeholder only rel-
evant to infrastructures with provenance tracking. This stakeholder is not
directly involved in any data sharing, but instead has an interest in verifying
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the legitimacy of the data usage with regard to data privacy laws. Usually this
stakeholder is a government agency, but it may also be a trusted third-party
verifying the privacy-compliance for all participants.

4.2 Provenance Compliance

Provenance compliance is a use case where stakeholders want to track the usage
of sensitive information throughout the whole data processing infrastructure.
Their goal is to verify the legitimacy of the data usage and its compliance
to contractual agreements or data privacy laws. We can distinguish between
internal compliance and external compliance.

Internal compliance means that a system owner intends to conduct provenance
tracking only within his own local infrastructure and on his own data. An example
for this use case would be a company tracking data flows within their own
infrastructure for process optimization purposes or to verify that their employees
act in compliance with company-internal standard operating procedures. In this
case the system owner (i.e. the company) simultaneously acts as the data owner
and the supervisory authority. Notably there are no external data owners present
in this scenario. The only other relevant stakeholders are the system users,
which in this example would be company employees using the IT infrastructure
to perform their tasks as usual, thereby generating provenance information.
While the company acts as supervisory authority by analyzing the provenance
on their own data, the generated provenance graphs are not intended to serve
as evidence for any external supervisory authority. For the use case of internal
compliance both system-wide and domain-wide provenance architectures are
suitable. Regarding the security properties of internal compliance, the most
important adversaries are the system users (i.e. the employees). They might try
to hide illegitimate or undesired data usages from their employer by blocking or
forging provenance information. Hence the system owner needs to make sure
that the provenance tracking components (mainly PEP and ProSP) are properly
protected from tampering. In case of a domain-wide provenance architecture
it also has to be ensured that no forged provenance information can be sent
to the provenance storage point. However, even though a system user may be
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motivated to tamper with provenance information in order to hide data accesses
from his employer, there is usually no direct monetary incentive for him to do so.

External compliance on the other hand is conducted with the explicit goal of
proving compliance to external data owners or supervisory authorities. In this
case the system owner receives sensitive information from external data owners
in order to process it in his own infrastructure. He is required to track the usage
of this data in his domain and report the respective provenance information
back to the data owners for transparency. All three discussed provenance
tracking architectures are suitable for this task. The most important difference
to internal compliance is that the system owner now has a clear interest of
forging provenance information in order to deceive the original data owners and
supervisory authorities. He can do this by manipulating either the enforcement
points or the provenance storage points on his own systems. In order to mitigate
this problem, we need to establish trust in the system owner’s infrastructure,
either by contractual agreements or technical measures (c.f. section 5).

4.3 Usage Control Enforcement

Besides provenance compliance, the other important use case is enforcing usage
control on data processing applications. Depending on the goals that should
be achieved by the protection system, once again we can distinguish between
internal enforcement and external enforcement.

Internal usage control enforcement, similar to internal compliance, is conducted
by a system owner solely in his own infrastructure. For example, a company has
a valuable pool of business data and wants to safeguard data usage in their own
local infrastructure. The system owner can do this by establishing either a local
or distributed UC architecture (in the latter case only with a single domain).
In such a system intercepting enforcement points will oversee all data usages
in the companies infrastructure and query the central decision point for each
data access. The company can then deploy proper usage restrictions in form of
policies at this decision point. Once again, since in this case the system owner
is simultaneously also the data owner, we can trust him to properly setup and
operate the necessary usage control infrastructure. However, the system users
(i.e. employees) that are being subjected to usage control enforcement when
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working with the protected data, may be motivated to bypass the protection
components and access the sensitive data without restriction. Hence we have to
view system users as the most important possible adversaries and properly protect
all the deployed usage control components from tampering by non-privileged
system users.

External usage control enforcement is the most important use case that a UC
architecture should address. In this case a data owner wants to impose his
own usage restrictions on remote data processing applications running within a
remote UC domain. This requires either a cross-domain or distributed usage
control architecture. The data owner can then deploy his own usage control
policies into the remote UC domain, before transmitting sensitive data. The
remote usage control components (either within a single computer system or
as distributed services) then intercept all data usages in the remote system and
enforce the deployed usage restrictions on them. As before, from a security
perspective the most important adversary is the system owner of the receiving
side. This remote system owner has a clear interest of bypassing the usage
control components in his own domain and access the foreign data without
restrictions. Furthermore the system owner has full control over the enforcing
UC system and can manipulate the components to either ignore the deployed
policies, or bypass the interception at the enforcement point. Just as with
external compliance, we hence need to establish trust in the system owner’s
remote infrastructure, either by contractual agreements or technical measures.

Table 4.1 shows the four identified use cases and their characteristics.

Table 4.1: Use cases for usage control and provenance.

Compliance UC-Enforcement
internal external internal external

PEP capability observing observing intercepting intercepting

Architecture
system system local cross-domain
domain domain distributed distributed

cross-dom.
Attacker user owner user owner
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5 Conclusion

In this work we investigated the functionality and properties of usage control
as well as provenance tracking systems. We classified three different variants
of both UC and provenance tracking architectures, and described in what way
they can be combined. Finally we identified generic use cases of usage control
and provenance tracking systems that help to understand how these systems can
operate in practice and what attack vectors are to be expected.

As pointed out in the previous section, there has to be a way of enforcing the
correct application of these techniques on the remote side. This is especially
important for the use cases of external compliance as well as external usage
control enforcement. This part of the problem is often overlooked, but it
is essential for the security guarantees of the resulting system. While most
existing systems make do with non-technical solutions such as operational and
contractual agreements, a possible technical solution for this issue relies on
trusted computing to cryptographically attest to the integrity of usage control
and provenance tracking components. However, correctly applying trusted
computing to this problem is not trivial and still an area of active research
[10]. Since there are many ways of ending up with insecure systems when
not properly considering how to establish trust in remote usage control and
provenance components, this is an important area for future research.
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Abstract
We present a method for learning universal vector representations out of 3D
objects represented in different data formats. A newly proposed switching mech-
anism is used in the design of neural network architecture. During the learning
process, the encoder for one specific format also learns to perceive the object
from the perspective of other formats, hence the learned universal representation
contains richer information. With the learned universal representation, it would
be possible to "translate" between different 3D shape formats of the input object
since they share similar embedding of 3D information. Higher performance can
also be achieved for the 3D data synthetic tasks with this method.

1 Introduction
1.1 Latent representation of 3D data

Depending on the measuring method and the processing and storing rules of
information, 3D objects may have various representing formats in the real-world.
On the Euclidean side, they may be represented as RGB-D images, multi-view
images or volumetric data. On the Non-Euclidean side, they may be represented
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as point clouds or meshes. However, no matter in which format store the 3D
information of the object, when it comes to the computer vision tasks, e.g.
detection, segmentation, or even other generative tasks, the target 3D object
will usually need to be converted into a latent representation first for further
computation.

Before the surge of deep learning, it was common to use classical mathematical
algorithms to get those 3D shape latent representations (or, 3D shape descriptors).
This computation process usually involves strict mathematical formulas and
deductions to get rule-based representations, e.g. Laplacian spectral eigenvectors
[15], or heat kernel signature [17]. Thanks to the development of deep learning
algorithms, the performance of some computer vision tasks, especially in the
detection and segmentation domain [7], have been boosted. During the training
of those neural networks, latent representations of input have already been
generated implicitly. Although this learning process has been regarded as
a black box at earlier years, researches in the visualization of learned latent
representations have been conducted [24]. Throughout the computer vision
learning history, a better method for learning the latent representations leads to
better performance on those tasks.

1.2 Universal vector representation

Learning an universal vector representation touches on two long-standing and
important questions in computer vision: how do we represent 3D objects in
a vector space and how do we recognize this representation from images. [6]
believed that a good vector representation for objects must satisfy two criteria:
it must be (1) generative in 3D; (2) predictable from 2D. In this report, we learn
universal representations for 3D objects of different formats by leveraging the
advantages of deep learning algorithms. For simplicity, we are only investigating
Euclidean data in this report.

On the one hand, the vector representation can be learned from different data
formats such as multi-view images and volumetric data; On the other hand, it
can be inferred during the training process of different neural networks designed
for different machine vision tasks. For analytical tasks, especially for the classic
classification tasks, vector representations will usually be learned before the
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last several fully connected layers. These vector representations are sometimes
referred as bottleneck features. Those bottleneck features can be further adapted
for other tasks, as it is done in transfer learning. For synthetic tasks, typical
generative models are AE/VAE [11] and GAN [8]. They learn the mappings
between the latent space and the real-world data space, thus reconstructions
from latent representations are possible. Theoretically, if we can learn universal
representations that contain both view information and geometry information,
better synthetic results may be achieved. Hence those generative models may be
modified for learning universal representations in our case and may also be used
as a verifier to indicate the performance.

From another perspective, the process may also be regarded as data compression
and the richness of its implicitly stored feature information is of pivotal impor-
tance. Since the learned universal vector representations can be used not only
for synthetic tasks, but also for analytical tasks, we are also expecting higher
performance in regular machine vision tasks like classification with them. Since
we want to merge the information from different data formats, the resolution of
data should also be considered. It would be apparently inappropriate to have a
fixed-size latent vector to represent objects of different resolutions, even under
the same format. Hence, the main idea of this report is to learn a fixed length of
vector representation for an object of a specific category, under certain resolution
limitations of different data formats.

2 Related Work

2.1 Learning representations (encoders)

Although latent representations are also learned in analytical tasks, they have
been seldom specifically explored. There are numerous papers using various
network architectures for 3D machine vision tasks. A typical one is VoxNet[13],
which was the first to use 3D convolution operations to learn features from
volumetric data. Its subsequent work of multi-level 3D CNN [5] learns multi-
scale spatial features by considering multiple resolutions of the voxel input.
Regarding the multi-view images format, a typical method is MVCNN [16]. It
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uses a parameter sharing network to encode images of one object from different
views, followed by a view pooling layer before the last several fully connected
layers. A subsequent work of GVCNN [4] groups all the views before encoding.
Each group uses one separate parameter sharing network to encode this group
of images, then a group fusion operation is defined in the latter step.

Methods combing the information from both multi-view images and volumetric
data have also been proposed. For example, Qi et al. [14] proposed to use
multi-resolution filtering in 3D for multi-view CNNs, as well as using subvolume
supervision for auxiliary training. Another example is FusionNet [10], which is
a fusion of three different networks: two VoxNets and one MVCNN. The three
networks fuse at the score layers where a linear combination of scores is taken
before finding the class prediction. Voxelized CAD models are used for the first
two networks and 2D projections are used for latter network.

2.2 Generating from representations (decoders)

Unlike analytical tasks, latent representation matters a lot to synthetic tasks.
There are mainly two types of deep generative models nowadays: AE/VAE [11]
and GAN [8]. Based on those two frameworks, various methods have been
proposed to learn latent representations from 3D data and to reconstruct back
to them. ShapeNet [23] used a reverse VoxNet, i.e. a decoder, to reconstruct
3D shapes from a latent representation which was learned from depth maps.
The dataset they created is also being widely used for 3D machine vision tasks
nowadays. Girdhar et al. [6] used AE directly to encode and decode 3D shapes.
With the learned latent representation from volumetric data, they proposed a
TL-embedding network which forces another encoder to learn a exactly the
same latent representation from corresponding images. This makes it possible
to generate 3D shapes from images. VAE has also been used in a similar way
for the 3D shape learning in other paper [2].

View information from images has also been widely investigated for 3D shape
reconstruction. Choy et al. [3] proposed a framework named 3D-R2N2 to
reconstruct 3D shapes from single- or multi-view images. By leveraging
the power of Long Short-Term Memory(LSTM), they discovered that the
reconstruction is incrementally refined as the network sees more views of
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the object. Some other papers also have used view information as auxiliary
constraints for the training of their 3D AEs. Tulsiani et al. [18] trained an
additional pose CNN to add an additional consistency loss between the inferred
depth image from a perspective and its ground truth. This inferred ray-trace
pooling view has also been used in the adversarial part of [9] for weakly
supervision.

Methods used GAN for 3D shape generation have also been proposed. 3D-GAN
[21] makes it possible to generate novel and relatively highly realistic 3D model
in the unsupervised way. It introduced three loss functions regarding image
encoder, generator and discriminator respectively. The update of all components
in the framework is also possible. Besides, visualizing the representation
vector, interpolation, arithmetic have been conducted to analyse the vector
representations. Liu et al. [12] adapted this idea and proposed an interactive
modeling framework that can generate realistic volumetric data with edit and
especially defined snap operations. Semantic information has been used in
Global-to-Local GAN (G2LGAN) [19] and SAGNet [22] to improve the synthesis
quality. G2LGAN also proposed a part refiner to refine the individual semantic
part output from local GANs. While showing that segmented information from
3D data can be embedded into the latent space, their work does not include too
much discussion of the latent space and its connection with other data formats
like image or common voxel.

3 Methodology

Although both AE and GAN were developed for data synthesis tasks by using
neural networks, they are quite different in their kernel ideas. AEs use real-world
data as input. An encoder-decoder structure network is used to encode the input
into latent representation, and subsequently reconstruct it back from the latent
representation. The most important loss here is the reconstruction loss. With a
well-trained decoder, it is possible to reconstruct the object with a well-learned
latent representation. An unsolved question here is how can we force the latent
representation to be meaningful. GANs are totally different from AEs since
they do not use real-world data as input directly. Instead, they train a generator,

159



Chengzhi Wu

(a) Vanilla Autoencoder

(b) Switch-Autoencoder

Figure 2.1: An illustration of the (a) vanilla Autoencoder (AE) and the proposed (b) Switch-
Autoencoder (SAE). AE only takes volumetric data as input, while SAE takes input from both
image data and volumetric data, using a switch to randomly choose the learning source. The feature
maps/vectors learned inside the network may be regarded as latent representations.

which is similar to the decoder in AEs, on the latent space directly. Generated
data will be processed into a discriminator to classify it is generated or from the
real world. The whole training process is essentially the competition between
the generator and the discriminator. For GANs, the distribution of the latent
representation is usually pre-defined as a Gaussian, but how to disentangle the
features in the latent space is still a tough question.

In our case, since we are interested in learning a universal representation from
3D data of multi-formats, the original 3D information should be fully utilized.
Hence here we adopt the AE architecture to learn latent representations. GAN
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Figure 3.1: The basic structure of a generative adversarial network (GAN). It trains a generator to
decode the latent vector representation to a 3D shape, by using a discriminator to force the generator
to generate shapes as real as possible.

is great for generating the 3D data, it may be combined with the AE part for
better reconstruction in the future step.

3.1 Vanilla Autoencoder

Firstly, we started testing our idea with a simple Autoencoder. As shown in
Figure 2.1(a), it is just a normal AE but with 3D convolutions. The loss of
this network is the reconstruction loss. There are different ways to compute
the reconstruction loss including MSE, Cross Entropy, and IoU. IoU is more
like an indicator and does not provide smooth gradient. MSE is mainly used
for preliminary tests. In our case, we use the cross entropy as loss function.
The output before the last layer has been rectified to a range from 0 to 1. The
dataset we are using here is the ShapeNet [23]. It provides a wide variety of
real 3D objects, which makes the data-driven learning and analysing of the
latent representation possible and promising. The synthesis result from this
architecture may be regarded as the baseline of performance.

3.2 The Switch-Autoencoder

The multi-view images data is added to the input side in this setting of experiment.
Here, we propose a Switch-Autoencoder (SAE) for universal latent representation
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learning. We train two encoders separately for the voxel input and the image
sequence input. A switch is attached before the decoder. During the training,
the network randomly selects the encoded output from one encoder as the latent
representation, then inputs it to the decoder. This operation of switching between
encoders continues during the whole end-to-end training. In the TL-embedding
network proposed in [6], the image encoder is forced to learn the same embedding
from that of the voxel encoder, hence the image encoder does not contribute
to the improvement of the generator. Unlike TL-embedding network, in our
case, both encoders learn to perceive the object from the perspective of the other
format, hence both encoders contribute to the improvement of the generator.

The structure of proposed SAE is shown in Figure 2.1(b). For the image encoder
(encoder B), we use an architecture that is similar to multi-view CNN [16]. Each
view is encoded with a parameter-sharing network, followed by a view pooling
layer. Then it will be passed through several additional fully connected layers
to get the final latent vector representation. Here, we also use a network with
residual blocks in the image view encoder.

3.3 GAN

In order to improve the synthesis quality, the framework of GAN may be
integrated here. In this report, we are focusing on examining the quality of
generated shapes from GAN with normal Gaussian vector input. Its basic
structure is shown in Figure 3.1. The discussion and experiments of combining
AE/VAE and GAN is in the scope of our next step.

There are several non-negligible problems in the vanilla GANs. When training
the standard GAN, the loss of the discriminator and generator can oscillate
gradually, which make the training process unstable. Besides, vanilla GANs
also have the problem of mode collapse, which produces limited varieties of
samples. Here, we use the Wasserstein GAN(WGAN) [1] with gradient penality
[20], which has two main benefits: (1) improved stability of training process;
(2) a meaningful loss metric that correlates with generators convergence and
sample equality. We believe that merging the WGAN in the framework will
improve the quality of object generation.
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4 Experimental Results
4.1 Vanilla Autoencoder

Figure 4.1 shows some results from the vanilla Autoencoder. From it we can tell
that the network is able to reconstruct the input 3D shapes from learned latent
representations. Besides, the features of different types of chairs have also been
well captured.

Figure 4.1: Reconstruction results of chair objects from the vanilla Autoencoder.

4.2 The Switch-Autoencoder

Some reconstruction results from SAE is given in Figure 4.2. The up row
shows the results with volumetric data as the test input. The bottom row shows
the results with multi-view image sequence as the test input. From it we can
see that the voxel-encoder still preserves a relatively high quality, while the
image-encoder also captures decent 3D information. The sharp areas are difficult
for the image-encoder, as can be observed from the generated chair legs.

Overall, comparing with the results from only one format source, objects
generated from universal representations with both format sources look better.
The generated chairs are usually less rough.
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(a) SAE reconstruction results with volumetric data input

(b) SAE reconstruction results with image data input

Figure 4.2: Reconstruction results of chair objects from the proposed Switch-Autoencoder, using
(a) volumetric data or (b) image data as test input, respectively.

4.3 GAN

GANs are unsupervised learning algorithms that use a supervised loss as part
of the training. So their results are expected to be as good as the ones from an
AE. Figure 4.3(a) gives some results from a vanilla GAN. We can observe that
the vanilla GAN only captures very basic bulky features of chairs but fails on
the details, even using a relatively higher resolution. Another disadvantage of
the vanilla GAN is that, it can fall into mode collapse easily. In this case, the
discriminator is trained too well to classify generated models too easily, thus the
generator does not learn anything at all.

As discussed in Section 3, we are adopting the WGAN method with gradient
penalty to overcome the aforementioned problems. Since we are using WGAN,
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the last sigmoid layer of the discriminator has been removed. No log operations
were used for both losses. Besides gradient penalty, noise was added by doing
interpolation between generated and real data before feeding into the discrimina-
tor. Figure 4.3(b) gives some optimal results obtained in our experiments. The
latent representations we used were sampled from a distribution of N(0, 0.33).
As can be observed from the figures, although the generated objects are not
extreme smooth, they are already in decent chair-like shapes.

Experiments with other settings have also been carried out. For example, Figure
4.4(a) gives the results of using original sigmoid layer instead of tanh for the
last layer of generator. The model may generate lots of floating artifacts shortly
after the training begins. In order to reduce the memory consumption for future
architecture update, we tried to half the number of feature maps we used between
the layers. From Figure 4.4(b) we can observe that obviously the results are

(a) Reconstruction results from GAN

(b) Reconstruction results from WGAN-GP

Figure 4.3: Reconstruction results of chair objects from (a) vanilla GAN and (b) WGAN-GP. The
vanilla GAN only captures very basic bulky features of chairs but fails on the details, even using a
higher resolution. WGAN-GP can already generate decent chair-like shapes.
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not promising anymore. Regarding the initial parameter distribution of the
latent representations, experiments have been done with the more often used
distribution of N(0, 1), results are shown in Figure 4.4(c). Apparently the
generated objects are more noisy.

(a) Using sigmoid layer for generator, instead of tanh

(b) Using half number of feature maps

(c) Using a latent vector distribution of N(0, 1), instead of N(0, 0.33)

Figure 4.4: Reconstruction results of chair objects from WGAN-GP with other different settings.
(a) For the last layer of the generator, using sigmoid instead of tanh. (b) Using half number of feature
maps in the network. (c) The latent representations are sampled from a distribution of N(0, 1),
instead of N(0, 0.33).
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4.4 AE/VAE-GAN and more

In previous subsections, we have proven that our AE model and GAN model are
working. To learn a better universal representation and achieve better synthesis
performance, we may combine those two models since the decoder part in AE
is exactly the generator part in GAN. However, during the actual testing, this
idea never worked if they are straightforwardly combined. The main problem of
this idea is that the learned universal representation with AE does not naturally
follow a Gaussian distribution, while it is a mandatory requirement for GAN as
the input. Hence, Variational Autoencoder (VAE) should be used here for the
integration. For the encoder of an Autoencoder, each input is mapped directly
to one point in the latent space, which leads to the discontinuous latent space
and huge gaps between groups of similar points from the input space. In a
variational autoencoder, each input is instead mapped to a multivariate normal
distribution around a point in the latent space, which makes a continuous latent
space. Continuous latent space also makes the generation of new 3D object
possible and the analysis of latent space easier.

On the other hand, this report is mainly about the learning process of universal
representations. Reconstructed objects are used to validate the effectiveness of
proposed method. In order to make it more illustrative, experiments regarding
the investigations in the latent space should be carried out in future. For example,
not only for the synthesis tasks, but also for the analytical tasks including object
classification.

5 Conclusion and Outlook

In this report, we proposed a switch autoencoder method to learn universal latent
representations for 3D object with multiple-formats input. Synthesis experiments
have been carried out to validate the effectiveness of the proposed method. With
the learned universal representation, decoders can generate 3D objects of better
quality. The next step of our future experiments is to make VAE and VAE-GAN
work, with which the interpretability of the learned latent representation may be
explored. As discussed in Section 4.4, more experiments will be done regarding

167



Chengzhi Wu

the latent space, e.g. similarity search or shape interpolation. In the future, other
3D formats like point cloud may be included. Semantic information may also
be used here for better interpretable latent representation learning.
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In 2020, the annual joint workshop of the Fraunhofer Institute of Optron-
ics, System Technologies and Image Exploitation (IOSB) and the Vision 
and Fusion Laboratory (IES) of the Institute for Anthropomatics, Karlsru-
he Institute of Technology (KIT) was hosted at the IOSB in Karlsruhe for 
the fi rst time  due to the pandemic and the strict regulations of such an 
event in this times. For a week from the 27th to the 31st July the doctoral 
students of both institutions presented extensive reports on the status of 
their research and discussed topics ranging from computer vision and op-
tical metrology to network security, usage control and machine learning. 
The results and ideas presented at the workshop are collected in this 
book in the form of detailed technical reports. This volume provides a 
comprehensive and up-to-date overview of the research program of the 
IES Laboratory and the Fraunhofer IOSB.


	Preface
	Privacy and Patient Involvement in e-Health
	Characterization of Mueller matrices in retroreflex ellipsometry
	A Data Annotation Process for Human Activity

Recognition in Public Places
	Improving 3D Semantic Segmentation with

Twin-Representation Networks
	"Let’s get ready to bundle!":

Crowd-level Human Keypoint Tracking
	DOE-based Multi-spot Confocal Interference Microscope
	A Proposal on Discovering Causal Structures in

Technical Systems by Means of Interventions
	A Step Towards Explainable Person Re-identification Rankings
	Multi-object Tracking in Drone Videos
	Classifying Usage Control and Data Provenance Architectures
	Learning Universal Representation for Multi-formats 3D Objects



