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PREFACE

This book deals with one of the basic topics of quantum mechanics: the theory of angular momentum and
irreducible tensors. Being rather versatile, the mathematical apparatus of this theory is widely used in atomic
and molecular physics, in nuclear physics and elementary particle theory. It enables one to calculate atomic,
molecular and nuclear structures, energies of ground and excited states, fine and hyperfine splittings, etc. The
apparatus is also very handy for evaluating the probabilities of radiative transitions, cross sections of various
processes such as elastic and nonelastic scattering, different decays and reactions (both chemical and nuclear)
and for studying angular distributions and polarizations of particles.

Today this apparatus is finding ever increasing use in solving practical problems relating to quantum
chemistry, kinetics, plasma physics, quantum optics, radiophysics and astrophysics.

The basic ideas of the theory of angular momentum were first put forward by M. Born, P. Dirac, W. Heisen-
berg and W. Pauli. However, the modern version of its mathematical apparatus was developed mainly in the
works of E. Wigner, J. Racah, L. Biedenharn and others who applied group theoretical methods to problems
in quantum mechanics.

At present a number of good books on the theory of angular momentum have been already published.
The general principles and results of the theory may be found in the books by M. Rose [31], A. Edmonds
[16], U. Fano and G. Racah [18], A. P. Yutsis, I. B. Levinson and V. V. Vanagas [44], A. P. Yutsis and
A. A. Bandzaitis [45], D. Brink and G. Satcher [9]. Nevertheless, many formulas and relationships essential
for practical calculations have escaped these books and are either scattered in various editions, or included as
appendices in papers discussing somewhat disparate topics, making them generally inaccessible. Even greater
difficulties arise when one tries to use the results, as each author employs his own phase conventions, initial
definitions and symbols.

The authors of this book aimed at collecting and compiling ample material on the quantum theory of
angular momentum within the framework of a single system of phases and definitions. This is why, in addition
to the basic theoretical results, the book also includes a great number of formulas and relationships essential
for practical applications.

This edition is the translated version of our book published in the USSR in 1975. In the course of its
preparation we have tried to comply with a number of suggestions from our readers. For instance, each
chapter opens with a comprehensive listing of its contents to ease the search for information needed. We
also included some new results relating to different aspects of angular momentum theory which have recently
appeared in journals. Unfortunately the limited volume of the present book prevented us from covering all the
aforementioned results. We offer sincere apologies to the authors whose results we failed to include.

The monograph is a kind of handbook. Consequently the material is presented in concise form. Most of
the formulas and relationships are given without proof. Their full derivation may be found in the literature
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listed at the end of the text. Some results which have become generally known are given without references,
and for this we also apologize.

The sequence adopted is as follows: chapter, section and subsection. Many chapters are self-contained and
can be read independently of the others. Sections have double numbering: the first figure denotes the number
of the chapter, the second, the number of the section. Equations are numbered within the confines of the
section they are included in. When referring to an equation from the same section only the number of the
equation is given, e.g., (3), (27); when reference is made to an equation from another section the numbers of
the chapter, section and equation arg given, e.g., Eq. 4.2.(17). A similar system is adopted when referring to
individual subsections, e.g., Sec. 1.2.5. For convenience the book also contains a glossary of all symbols used
in the text with references to the pages where their corresponding definitions are given. The list of references
is divided into parts: the first part lists books and reviews; the second, papers on different subjects; the third,
tables; the fourth, references added during translation.

The authors hope that many specialists will find in the book some fresh and interesting information. The
material is prepared and arranged so as to make it useful to those less familiar with theory and for students of
physics. These readers can effectively use the monograph as a supplementary text to their main courses.

For those who wish to thoroughly familiarize themselves with the fundamentals of angular momentum
theory we recommend the excellent new book by L. Biedenharn and J. Louck [132] Angular Momentum in
Quantum Physics. Theory and Applications.

The authors wish to express their deep appreciation to D. G Yakovlev who took the trouble of reading the
English translation of the book and gave some valuable suggestions on its preparation.

Leningrad D. A. Varshalovich
A. N. Moskalev
V. K. Khersonskii
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INTRODUCTION: BASIC CONCEPTS

The evaluation of many physical quantities, such as expectation values of energy, electric and magnetic
multipole moments, transition probabilities, etc., is considerably simplified by making use of the transformation
properties of these quantities under coordinate rotation and inversion in three-dimensional space.

The transformation properties of physical quantities with respect to rotations reveal themselves either
through rotations of the given physical system relative to some fixed reference frame or through rotations of
the coordinate axes relative to the physical system.

Inversion characterizes the behavior of a physical quantity under transformation from a right-handed coor-
dinate system to a left-handed one, or vice versa.

Many physical quantities, by their nature, are invariants under coordinate rotations. In particular, the
properties of any closed physical system should be independent of rotations, as follows from the isotropy of
space. As a consequence of this fundamental property of space, the total angular momentum of such a system
is an inteégral of motion.

A similar situation occurs with regard to coordinate inversion. Excluding phenomena connected with the
weak interaction, a wealth of atomic, molecular and nuclear processes look alike in right-handed and left-handed
coordinate systems. As a result of this “mirror” symmetry, quantum states of atoms, molecules, nuclei and
elementary particles may be characterized by definite parity.

Strictly speaking, a quantum mechanical wave function ¥(r) of any closed physical system may be char-
acterized by four quantum numbers (e 7, 7,m) which are the eigenvalues of four commuting operators: the
Hamlltoman H the parity operator Pt, the operator 32 of the square of the angular momentum and the
operator J, of the projection of this momentum onto a quantization axis. Thus ¥(r) = W,naim(r) obeys the
equations

~

HY rajm(r) = €¥enajm(r),
P Wsrajm(r) = 7¥emajm(r),

T Wmajm(r) = 505 + 1) ¥erasm(r),
Je¥enaim(r) = MPeraim(r),

where a denotes all other quantum numbers (if available) and r represents a variety of arguments.

€, 7,7 and m are the integrals of motion not only for a closed system, but also for any system exposed to
the action of an external spherically-symmetric field. Moreover, the (exjm)-representation appears to be very
convenient for practical calculation even if the external field is not spherically-symmetric.

For a given 7, there exist 25 + 1 wave functions which correspond to different m. These functions describe
the quantum states of the system which differ only by the orientation of the angular momentum in space.
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2 Quantum Theory of Angular Momentum

Under coordinate rotations these functions undergo linear mutual transformations which do not involve the
functions of other quantum numbers (¢, 7, @, 7) and may be written as

\I,nrajm’ (r') = Z \I,nrajm (r)D{nm' (a: 8, '7) 3

where the transformations coefficients D’ 7 i (@ By7) are called Wigner D-functions. They are the elements
of the finite rotation matrix in the j-representation and depend on the Euler angles «, 8,y which determine
rotation.

Let a quantum-mechanical system which possesses some fixed angular momentum j and its projection m
consist of two subsystems, with certain angular momenta 7; and 3, respectively. In this case the wave function
;. j25m(r1, r2) may be constructed from the wave functions of subsystems according to the relation

‘IIJlJﬁJm (1'1, 7‘2 Z C;:,:n;_nmg simy (Tl)\I’ Jama (fz)
mima '
The quantities cim are called the Clebsch-Gordan coefficients. They are very important in quantum

Jimijamsa
mechanics because they allow one to construct wave functions for various complex systems (nuclei, atoms,

molecules, etc.). The addition of many angular momenta into some resultant total angular momentum may be
performed in different ways, or, in other words, in accordance with different coupling schemes of the momenta
in question. Each scheme may be associated with a certain representation of these angular momenta. The
unitary transformations which relate various representations and describe the recoupling of angular momenta
are realized by matrices expressed in terms of the 6;5-, 9j-symbols and others 3nj-symbols of higher order.

One of the principal concepts of the quantum theory of angular momentum is that of an irreducible tensor.
By definition, an irreducible tensor of rank A has 2) +1 components which transform under coordinate rotation
as

My, = Z‘.)RM,:D":,“(&, B7).
!

In particular, the wave functions ¥;,, with fixed 5 but different m constitute an irreducible tensor of rank 7.
Moreover, irreducible tensors may be constructed from various physical quantities. For instance, energy is a
tensor of zero rank (scalar), spin and magnetic moments are tensors of first rank (vectors), the quadrupole
moment is a tensor of second rank, etc. Generally, any physical quantity or operator which corresponds to
these quantities may be represented as a linear combination of irreducible tensors.

The introduction of irreducible tensors into the analysis of physical quantities or corresponding operators
substantially simplifies the evaluation of matrix elements of irreducible tensor operators,

('n'a's'm! | By, |exaim) = / Yirmarsim (N TruWerasom (r)dr,

where f ...dr denotes integration over continuous variables and summation over discrete ones. These matrix
elements determine expectation values of physical quantities in definite quantum states, the probabilities of
quantum transitions between various states, etc.

According to the Wigner-Eckart theorem, all the dependence of matrix elements on the orientation of
coordinate axes, i.e., on quantum numbers m, m’, u which determine the projections of angular momenta, is
entirely contained in the Clebsch-Gordan coefficient

r 1!

(e'n' o5 m! | By, [emagm) = C;”'&“(e'ﬂ o'7'[| D ||ewaz).
In this case ('x'a’ j'"ﬂﬁx lexas) is an invariant factor called a reduced matrix element. The Wigner-Eckart
theorem allows one to reduce evaluation of transition probabilities, angular distributions, polarizations, etc.,
to the calculation of standard sums of the vector addition coefficients and recoupling coefficients.

All the facts mentioned above reveal that the quantum theory of angular momentum provides the formalism

which is universal and extremely convenient for various practical calculations.
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Chapter 1

ELEMENTS OF VECTOR AND TENSOR THEORY

The theory of angular momenta and irreducible tensors represents, in principle, a development of the classical
theory of vectors and tensors. In this chapter only the basic definitions and relations of the vector and tensor
theory are represented which will be used throughout. For more detailed analysis see corresponding monographs
(e.g., Refs. [11, 34, 35]).

1.1. COORDINATE SYSTEMS. BASIS VECTORS

In the quantum theory of angular momentum cartesian, polar and spherical coordinate systems are widely
used.

1.1.1. Cartesian Coordinate System

In a rectangular cartesian coordinate system the position of a point is specified by three real numbers z,
y, z which represent the distances between the point and coordinate planes (Fig. 1.1). The position vector
(radius vector) of a point r may be written as

r = ze; + ye, + ze,. (1)
z
fm———— 7
v 7
/./_ 1 __.)-). __M /x I
]
[ ! :
] f |
! ANPE
| 1
| ez 1 |
[ ¢!
) y
I s ——
W, & 1
_____ &

Fig. 1.1. Cartesian coordinate system.
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The covariant cartesian basis (base) vectors e;,e,, e, form a real orthonormal basis

e;er =0y, (1,k=2z,y,2), (2)
el =¢;, [(t=2zy2). (3)

The contravariant cartesian basis (base) vectors e (¢ = z,y, 2) coincide with the covariant ones
e =e;. (4)

Throughout this book the right-handed coordinate system will be used. In this system
[e; x ex] = eiey, (2 k1l = 2,y,2), (5)
cirt = [&; X exle;. (6)
A detailed form of (5) is

[ez X e,] =e,, [ey X €;] = e, [e; X e,] =ey. (7)

1.1.2. Polar Coordinate System

In a polar coordinate system! the position of a point is determined by r, ¥, o, where r is the position vector
length, ¢ is the colatitude, and ¢ is the longitude (Fig. 1.2). The angles ¢ and o are called the polar angles
of vector r. The relations between cartesian and polar coordinates are

Fig. 1.2. Polar coordinate system.

z = rsin ¥ cos p, r=+/22 + y2 + 22, 0< r < oo,
z
0<¥<m, (8)

y = rsindsinp, ¥ = arccos ———————,
Va2 +y? + 22
z

z=rcos?, © = arccos ,(tanng), 0< p <27,
z2 + y? z
The position vector r may be written as
r=re,. (9)

1Note that this coordinate system is often called “spherical”. To avoid misunderstanding we prefer to call it the “polar” system
reserving the name “spherical” only for the coordinate system considered in the next section.
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The covariant polar basis vectors e,,eg, e, are shown in Fig. 1.2. They form a real orthonormal basis
eq€s = bap, (a,8=r,9,9), (10)
e, =eq, (a=r113,¢). (11)

The contravariant polar basis vectors e”,e®, e® coincide with the covariant ones
e =e, (a=r,9,¢). (12)
The unit vectors e,, ey, e, form the right-handed basis

[e, xes]=¢e,, [esxe,]=¢e,, [e,xe]=ey. (13)

The polar basis vectors e,, ey, e,, contrary to the cartesian ones, depend on the angles ¢, . This should be
taken into account when evaluating the derivatives

a a a

Ee,—o, ‘Eea—o, é—re,o—o,

i =e —ey = —¢ ie =0

819e'- Sy EX) 9 = r s 39 e =Y,

Ege, = e, sind, 6_<pe0 = e, cos?, E;e“’ = —e,sin¥ —egcos . (14)

The results of applying the V operator (see Sec. 1.3) to the polar basis vectors are presented in the form

2
r

R

(V o) =, (V '8,9) = —cot ¥, (V ) eP) =0, (15)

[V xe]=0, [V x eg] = -}e,,, [Vxe,]= %cot de, — —l-e.,. (16)
r

1.1.3. Spherical Coordinate System

Spherical coordinates are widely used in the angular momentum theory.
The covariant spherical coordinates z, (with u = £1,0) are defined by the relations

1 1 ;
T4, = ———=(z +1y) = — —=rsin 9e'¥,
t1 \/5( y) \/5
Ty =2 =Trcos 19, (17)

1 1 '
z_1 = —={z —1y) = —=rsinde"*¥.

V2 V2

The contravariant spherical coordinates z#* (where u = £1,0) are given by

ztl = —\/ii(z —ty) = —-%rsin ge~¢,
2°=z=rcos¥, (18)
7l = —1—(x+'i ) = irsin19e""°.
V2 V2
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The relations between covariant and contravariant spherical coordinates are as follows

z# = (-1)¥z_,, z, = (—1)*z7¥,

. z, = 2", (v = £1,0). (19)

The covariant spherical basis vectors e, {p = £1,0) are defined by

1 .
e+1 = ——\/—i(e, +zey),

€y = €, (20)

1 .
e_; = 7—§(eac —1ey).

The contravariant spherical basss vectors e#{u = +1,0) are given by

e+1

1 .
= _ﬁ(ez ~tey),
e =e,, (21)

- 1 .
el = —\7—5(% + tey).

Relations between the covariant and contravariant spherical basis vectors read

e* = (—1)%e_,, e, = (—1)*e™#,

e =¢ e, = et (v = £1,0). (22)

'Y
The spherical basis vectors form a complex orthonormal basis
e’ =eue) =6, (p,v==%10). (23)

Vector products of spherical basis vectors may be written with the use of the Clebsch-Gordan coefficients (see
Chap. 8) in the form
ey X &, =1V2C1) e,

u,v, A= +1,0). 24
o x e = —iyiCiy e, A TELO) (24)
One may also rewrite these formulas in a form similar to (5)
. A
e, X e, = —ig,,\€
“ v . = ’ (#»V)A = :*:1’0): (25)
e” X e =1ie,0en,
where £,,,,, = +1if the combination of indices y, v, ) is obtained by an even permutation of +1,0, -1, ¢, = -1

for an odd permutation, and €,,,, = 0 if at least two indices among u, v, A are equal.
A detailed form of (25) is as follows:

ey Xey= ie+1, € Xe_; = ie_l, €, Xe_; = ‘I:eo,

¥ xetl =detl e lxe=1de7!, e!xet!=1el. (26)

Covariant and contravariant spherical components (see Sec. 1.2) of the basis vectors e, and e” are given by

i

lenlo = (~1)78o-p, [en]” = bou,
[e*]6 = Sou, [e”]o = ("1)050—-“- (27)
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1.1.4. Helicity Basis Vectors

By analogy with Eqs. (20), (21) one may construct the following combinations of the polar basis vectors

€r, €9, €,

1 .
%(919 - zetp)’

; 1 .
€, =~—\7—§(e,9+ze,,), e

ey = ey, e =e,, (28)
) 1

e, = —=(es —1e,) e —i(e +1e,)
~1“‘\/§t9 o) —\/50 el

The vectors e, (4 = +1,0) are called the covariant helicity basis vectors and e'*(u = £1,0) are called the
contravariant helicity basis vectors (the explanation of the term “helicity” is given below in Sec. 6.3.6).
The helicity basis vectors e, and e'* satisfy the same relations (22)-(26) as the spherical basis vectors e,

and e”.

1.1.5. Relations Between Different Basis Vectors

(a) Cartesian and Polar Basis Vectors

e; =e.sindcosp + ey cos ¥cosp — e, sin p,
ey, = e, sin¥sin p + ey cos ¥ sin p + e, cos p, (29)

e, =e,cost¥ —eygsind.

Cartesian and Spherical Basis Vectors

1 1, _
e; = E(e_l - e+1) = -\—/——_(e 1 e+1),

1 L
ey = 75(9—1 teyr) = —72—(0 t+eh), (30)
€, = € =e°.

Cartesian and Helicity Covariant Basis Vectors

1 1
e, = —e/ ; —=(cos¥cos p+ isinp) + ey sinFcosp + e._; —=(cos ¥ cos o — 1 sin
2 +1\/§( P ) + € P 1\/5( 2 ®),
1 .
e, = —ef“l—\}—i(cosﬂsinw ~1icosp) +eysindsing +e'_1—5(cos Jsin @ + 1 cos p), (31)

1 1
e, =¢e  ——sind+ecosd—e , —sin¥.
z +1 0 1_\/5

V2

Cartesian and Helicity Contravariant Basis Vectors
e, = —e't! —l—(cos ¥ cos o — 1sin o) + €% sin ¥ cos p + e'_l—l—(cos ¥ cos ¢ + 1 sin )
z \/5 \/5 ’
1 . . . . 1 1 . .
= ~e'T1—(cos ¥sin p + i cos p) + € sin Isinp + €’ lji(cosﬂsmcp—zcosgo), (32)

ey-— € %
1

1
e, = e""li2 sin +e®cost? — €'~ Wsin 4.
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(b) Polar and Cartesian Basis Vectors

e, =e;sindcosp + eysindsinp + e, cos ¥,

ey = ez cos¥cosp + e, cos¥sin p — e, sin ¥,

e, = —e, sin p + ey cos .

Polar and Spherscal Covariant Basis Vectors

1 . 1 .
e = —e4) \—/—5 sin9e™*® + egcos¥ +e_; 75 sin ¥9¢'¥,

1 — . 1 ot
ey = —e+17§cos de Y —egsin ¥ +e_1-\/—§cos de'?,

e, =e Lc"’-i—e
Y = +1\/5 -1

1 . ; ) ;
—sinde® + e®cos ¥ + e 1 —=sinde ¥

t
—et?,

V2

Polar and Spherical Contravariant Basts Vectors

— ot
e, = —e
V2
1 : . -
es = —e“xcos&e“" —elsind+e?
— _at1 e -1t ~ip
e, = —etl—¢ el —¢
" .
v V2

(c) Spherical and Cartesian Basis Vectors

V2

1 .
——=cosde™*¥
V2 ’

1 . 1 ,
= _%(e’ + 'ev): etl= —Vi(ex - ‘ev)»

1
e_; = —=(e; —tey),
V2

Spherscal Covariant and Polar Basis Vectors

1, ;
ey = —e, 7 sin 9¢*¥ — ey
2

ey =e,cos ¥ — ey sin g,

€e_; =¢€

V2

sin 9e 7% + e,

e° = e,,

-1

1 .
— cos Pe'¥

1 .
[ ] = 7§(ez +1ey).

—e _i._et"p
V2 v2

1 .
—=cosfe™'¥

V2

LI
—e,p—\—/—ie

ip

(33)

(34)

(35)

(36)

(37)

(38)
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Spherical Contravarsant and Polar Basis Vectors

1 . 1 . :
+1 _ s —ip —1p —1i¢
et = —e, —sin Ve — eg—= cos e + e, —e
' v SV

V2

e =e,cos¥ —egsind,

1 . 1 . T .
-1 . 5
e " =e,——sinde'¥ + ey——=cos ¥e’¥ + e, —e'®.

Spherical Covartant and Spherical Contravariant Basts Vectors

— —a=1 o+l _
eq1=—el, etl=—e_,
€y = eO’ e = €g,
e_; =—etl, e l=—e,;.

Spherical Covarsant and Helicity Covariant Basts Vectors
1+cosd | sind | 1—cos¥
ey = e',H -—2—6'“’ - e’o—\Ti—e”" e'—l ——2‘_‘6‘¢)
e =e sin 9 +elcosd — e sin
0 = —= —e_;—F—
‘ +1 \/5 0 1 \/i 3

, 1—cosd _ , 8in ¥ ' 1+cos#e_,-,p

e.;=e  ——ete e ¥ te
1 +1 2 0 \/5 + -1 2
Spherical Contravarsant and Helicity Covariant Basis Vectors
1—cosd _; sind _, 1+cosd _;
et! = ___el+1 > e — e6 \/5 e ¥ e’—]. +2 c—up’
o, simd , sind
e =¢e  — +ejcost—e_—
+1 \/5 0 1 ‘/5 )
~ 1+ cosd sind 1—cosd ;
e l= —e'“—z—e‘” + e{,—J_Z—c"" - e'_l—z—e‘”.

Spherical Covariant and Helicity Contravariant Basss Vectors

1—cos¥ ; sind | 31+ cos?d .
er1 = _el+1 &Y — eIO et — el 1 P
+ 2 \/5 2 3

N ;-1 8in¢
ep=¢€7'—+e cosd—e
0 \/i \/i’

2 V2 2
Spherical Contravariant and Helicity Contravariant Basis Vectors

+1 _ ot+1 1+ cos 03""“’ e sin 0:“"" el 1-cos 05"'“’,
2 V2 2
j—18n¢
V2’
el 1176088 o osind i, g ltcosd g
2 V2 2

e

sin ¢
e = e'“——z- +eCcost—e

1+cosd _; sind _; _y1—cosd _;
__el+1 e tp+el0 ¢ i _ of 1 Pl

(40)

(41)

(43)

(44)
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Equations (41)-(44) may be written in a more compact form using the Wigner D-functions (see Chap. 4).

e, = Zpiu_u(o, 9, p)el, = Z(-l)"Dﬁ—u(O, 9, p)e'”,
v

v

et =(=1)*Y DL, ,(0,9,p)el, = > (-1)***DL,(0,8,0)e'", (45)

v
(u,v = £1,0).
(d) Helicity Covariant and Cartesian Basis Vectors

!

1 1 1
e, , =—e,—(cos¥cosp—isinp) — e,—=(cos¥sinp +tcosp) +e,—sind
+1 z\/ﬁ( 1 ¥) y\/i( 14 ) * 2 )
ey = e, sin ¥ cos p + e, sin ¥sin p + e, cos ¥, (46)

e, = e,i(cosﬁcosgp +isinp) + ey——l—(cos Jsinp — i cos p) — e,—l-sinﬂ.
V2 V2 V2

Helicity Contravariant and Cartesian Basis Vectors

1 1 1
et = —e, —(cos¥cosp + tsinp) — e, —=(cos ¥sin  — 1 cos p) + e, —=sin ¥
:c\/é‘( P SO) uﬁ( 14 ) z\/§ ’
e’ = e, sindcosp + ey sin¥sinp + e, cos B, (47)

1 1 1
e l=e,—=(cosPcosp —isinp) +e,——=(cosIsinp +icosp) — e, —sin §.
zﬁ( P ) yﬂ( © ®) 7

Helicity and Polar Basis Vectors

+1

1 .
= *E(ea —iey),

1 .
e, = ——\-/——.2_(e,9 +1e,), e

¢ =e, (48)

I

er)
e =—1—(e,,—ie ) e'“lz—l—(eo +1e,).
-1= e) /2 ¢

Helicity Covariant and Spherical Covariant Basts Vectors

e =e 1+c°“9e"'""+e sint9+e l—cosﬂe,-p
+1 +1 2 0 \/-2- -1 2 ’
) sind _., sind
ey = —ey; e ¥ +egcostd+e_; 7z e, (49)
1-cos¥ _; sin ¢ 14cos?d ;
e, = e+1———2——c Y — e 7 e_1 3 et®
Helvcity Contravariant and Spherical Covartant Basis Vectors
1—cosd _; sin ¢ 14 cosd
ettt = e T L @ — @_q " i
+17 +eo V2 e-1——p—¢"
0 _ sin ¢ —ip sin ¢ io
e’ =—-ey; €'Y +egcosd +e_y 7 e’ (50)
o1 =_e+11+c0306_,-p _eosint9 l—cosﬂew'

2
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Helicity Covartant and Spherical Contravariant Basis Vectors

+11—cos198ip +eOsint9 el 1+cosd _;,

e, =—e

+1 5 7 SR,
e = —et! Mei‘p + &0 cosz9+e—1s’in’96’—iso -
0 7 7 ’

e, = 1ltcosd . Osmﬁ_e_ll-—cosz?e_ip.

— ¢ e\/§ 5

Helicity Contravariant and Spherical Contravariant Basis Vectors

41 =e+11+c0519€,-¢ +eosim? + ~1l—cosd _.

5 \/§e2e’

¢ ind _,
0 = _e+150Y e¥ +e’cosd+e” 1535 %, (52)
o1 411—cosd ., Osin19+ _11+cost9€_,-p.

=e 2 e —e \/5 (] 2

Equations (49)-(52) may be written in a more compact form using the Wigner D-functions (see Chap. 4).
= ZDiu(so,t? O)e Z( D%, (p,9,0)e"

et = Z ~1)4D}_,(9,9,00e, = > (-1)***DL,_ (p,9,0)e", (53)

v
(p,v = £1,0).

Helicaty Covariant and Heliesty Contravariant Basis Vectors

e+1 = —e ) e —e_l,
e = e, e’ = e, (54)
e =—e'tl, e 1=-¢,

1.2. VECTORS. TENSORS

Vectors and tensors are usually defined by transformation properties of their components under rotations of
coordinate systems. The transformation rule for cartesian components of vectors and tensors is given below
in Sec. 1.4 (Eqs. (46)-(51)). The transformation properties of spherical components of vectors and irreducible
tensors are discussed in Chap. 3.

1.2.1., Vector Components

Any vector can be expanded in terms of basis vectors, i.e., written as
A=) A% =) A€ (1)
a 2

The expansion coefficients A, are called the covariant components of the vector, and A®* are the contravariant

vector components
a=A e, A*=A e (2)
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In a cartesian coordinate system one has
A=Ae, +Aye, + Ae, = A%, + AVey + Ae,. (3)

The covariant cartesian components of a vector coincide with the contravariant ones.
In a polar coordinate system

A=A + Agey + A e, = Ae, + A%y + Afe,. (4)

The convariant polar components coincide with the contravariant ones.
For a spherical coordinate system

A= A+le+1 + Aoeo + A—le_]_ = A+1e+1 + Aoeo + A_le_l. (5)
The relations between covariant and contravariant spherical components are given by
A, =(-1)FA7", A¥ = (-1)*A_,, (s = £1,0). (6)
If A is a real vector, i.e., if A* = A, then
A, =AY, A = A, (v = £1,0). (7
If A is a complex vector, then
A= (AT, A% =(AT),,  (w=+1,0). (8)
An expansion of a real vector A in terms of spherical basis vectors is written as
A=) Aet =) Abe, =) Anet = At
n n n n
= z Aye, = Z A;e,, = E Abet* = Z Ar*eH
n u u B
=) (~1)*A_ueu =Y (—1)*ATe (9)
u b

An expansion of an arbitrary vector A in terms of helicity basis vectors is given by
A=A*el + 4%+ A el = AL e + AL’ + A e (10)

The helicity components of a vector satisfy the same relations (6)-{9) as the spherical components.

The relations between vector components in different bases are the same as the relations between basis
vectors. These relations are given by Eqs. 1.1(29)-1.1(54) in which one should replace e, — A, and e® — A,
In particular,

1 1

1
Apy=—-A"t=— (A +14,), A;=—=(A_;— A4 = ATl - At
+1 \/5( 4 y) x \/5( 1 +1 \/E( A )’
Ao =A% = 4, A, = \/LE(A_1 +Ay) = —\—/—;(A‘l + 4T, (11)
1
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The matrices of transformations between cartesian, contravariant spherical and polar components of vectors
are given in Tables 1.1 and 1.2.
Spherical components of a real vector A which contains no derivatives and is independent of spin variables

are
Ay, =7 |A1s$§t96:u¢, Al = :FIA]smﬁe‘F“",
Ao = ]A|cos ¥, A% = |A|cos ¥, (12)

where 9, ¢ are the polar angles of the vector A.
Equations (12) may be written in terms of spherical harmonics {see Chap. 5) as

4w
Ay = V —3—’A|Y1,,(19, ©),
u 4 N
At = —3-|A] 1u(,0), (v = £1,0). (13)
The expressions for cartesian components of A in terms of spherical harmonics read
2w
A = -3—|A]{Y1—1(19;<P) - Y1+1(%, )},

Ay = i\/?lAHYl—l("» ©) + Yi41(8, 0)}, (14)

4
A, = —371|A]Y10(z9, o).

Table 1.1

Matrix form of the transtormations for vector components in different bases.

Cartesian coordinates : Spherical coordinates Polar coordinates
A=A,e. + Ae, + A.e, A=Atle, + A%+ A7 'e_, A=A4d,e. + Agey+ A e,

In terms of spherical components In terms of cartesian components In terms of cartesian components
A, A+t AN A, 4, A,
Ay |=M(z,y, 2 +1,0, —1)[ 4° 40 =M (+1,0, —1<z,y,2)| 4, Ay |=M(r, 8, 92z, y, 2)| 4,
4, AL A 4, A 4,

In terms of polar components In terms of polar components In terms of spherical components
Az 4, 4+ A\l (4, AH
Ay =M (1» Y, z2€ 1, 8) ?) Aﬂ A |=M (+1, O, —1(—7', 8, ?) As A“) =M(r’ 8)?(—_*'1’01 —1) A0
4, 4, Al A ¢ 4, 4
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Table 1.2

Matrices of transformations between cartesian, spherical contravariant and
polar components of vectors.

M(z, y, z «— +1, 0, —1) M(+1, 0, —1 «— =z, y, 2)
+1 00— z vy oz
1 1 1 i
—— — 1 f——= —= 0
[~ 0 v t V2 V2
v —# 0 —7’2_— o]l o 0 1
o 1 0 1\ =L o
? N\ vz Ve
Mz, y, 2 «<—r1, 8, ) M(r,3, ¢ «<— 1z, 4, 2)
r 9 ¢ z y z
z (sindcose cosdcosp -—sing r{sindcosp sindsinyg cosd
y| sindsine cosd¥sine cose¢ 9] cos®cosp cos¥sing —sind
z cos ¥ —sin 0 e\ —sing cos ¢ 0
M(+1,0, =1 «—r, 8, @) M(r, 9, ¢ «— -+, 0, —1)
r ) @ +1 0 —1
sind _, cos ¥ _; i sind sin &
—_——'? ———T'? ——t? —_— P 8 — ™7
+1 V3 e V3 e V2 e r Vo e cos V3 e
L 8§ _,
0 cos § —sin § 0 3 —%—'e‘? —sin 03:_ e'?
in$ |, cosd i i i .
-1 ﬂl_—:— e —e*? —e'? ——=c'? ——?
vz ¢ vz ¢ V2 ¢ P\TVvz° vZ ¢
1.2.2. Scalar Product of Vectors
The scalar product of vectors A and B in an arbitrary orthonormal basis is defined by
A B=) A,B"=) A°B,. (15)
13 a
In a cartesian coordinate system we have
A -B=A,B,+ A B, + A;B,. (18)
For polar coordinates the scalar product is given by
A-B=AB,+ AsBy + A, B,. (17)

Equation (17) is valid only if A and B do not contain derivatives because the polar basis vectors depend on
the polar angles ¥, o (see Section 1.1). In spherical coordinates we have

AB=Y 4B, =Y AB' =3 (-1)AB =Y (- ABTH,  (u==£1,0).  (18)
u u u u
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or, in a more detailed form,
A'B = -—A+1B._1 + AoBO bt A_lB+1 .

15

(19)

The scalar product in terms of helicity components of vectors is similar to (18)—(19). The scalar product of

vectors is invariant with respect to rotations of the coordinate system.

1.2.3. Vector Product of Vectors
In a cartesian coordinate system the vector product of vectors A and B is defined by
e; e, €,

AxB=|4, 4, A, |= ) [AxBle,

Bz By B, i=x,y,z

where
[AxB|; =A4,B, — A.B,y,

[AxBJ, = A,B; — A, B,,
[A x B, =A,B, ~ A,B,.

Equation (21) may be written in a more compact form as

[AxB); = ZeiklAkBl, (i, k1 =z,y,2).

K
In the polar coordinate system
e ey e,
AxB=|4 4s A, |= D [AxBlsea,
B,- Bo BP a=r,9,p

where

[A X B]r = Aon - A‘pBo,
[Ax Bls = A, B, — A,B,,
[A x B, = A, By — AsB,.

Equation (24) is valid only if A and B are not differential operators.
In the spherical coordinate system

0 ,—1

etl e

€;; € €e_; e
AxB=1{Ay Ag A |=—1i|A*1 A2 471 = >~ [AxBle*= ) [AxBle,
B+1 By B_; B*1 B p-1 u=+1,0 pu==+1,0

where
[A X B]+1 = i(AOB+1 - A+1Bo) = ‘l:(A_lBO — AOB—I),
A X B]o = ‘I.(A_lB 1— A 1B_1) = 1:(A+IB_1 - A—IB+1),
+ +
[A xB]—; =4(A—1Bo — AoB-1) =i(A°B*! — A*1B?).

[A x B]*! ={(4oB_; — A_1 By) =i(A*'B% — A°B™Y),
[AxB|]°=4¢(A_1B41 — A41B_;) =i(AT'B™! - A~1BH),
[A x B]™! =4(A4, By — AgB41) =i(A°B~1 — A71By).

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Equations (26)-(27) may be written in a more compact form using the Clebsch-Gordan coefficients (see Chap. 8)
[A x Bl = i3y Clt, A, By,
vA (,v,A = £1,0). (28)

[A x BJ* = ’\/52 Cion 4" B,
va

Helicity components of the vector product are given by equations analogous to (25)-(28).

1.2.4. Products Involving Three or More Vectors

A [BxC|=B:[CxA]=C-[AxB]=-A-[CxB|=-B-[AxC|]=-C-[BxA], (29
Ax[BxC|=B(A-C)-C(A-B), (30)
[AxB]-[CxD]=(A-C)(B-D)-(A-D)(B-C), (31)

[AxB]x[CxD|=B(A-[CxD])—A(B-[CxD})=C(A-[BxD])-D(A-[BxC]). (32)

(A-BxCj){(a-[bxc])=

t

Quw»
e
Qw»
o oo
QW »
a a0

=(A -a)(B b)(C-c) - (A-a)(B-¢)(C-b) — (B-b)(A-c)(C -a)
—(C-c)(A b)(B-a)+ (A -b)(B-c)(C-a)+(A-c)(B-a)(C-b). (33)

1.2.5. Tensors 6 and ;5

In a cartesian basis two basic tensors §;x and &5 are widely used. The first tensor, &, is the symmetric
unit tensor of rank 2. The second tensor, €, is the totally antisymmetric unit tensor of rank 3.
The tensor & is called the Kronecker §-symbol and is defined by

1, 1=k
bix = ’ " (G k=1z,y,2). 34
1k {0, i#k, () sya) ()
The components 6 are invariant with respect to rotations and inversion of coordinate systems.

The tensor (or, more precisely, the pseudotensor) &;x is often called the Levi-Civita tensor. It is antisym-
metric with respect to permutations of any pair of indices. Thus, & = 0 if at least two of the indices ¢, k, !
are equal, and &5 # O only if all indices 1, k, ! are different. The components £;;; are given by

€ =0, (t=1z,9,2) (3 components),
ik = Eiki = €xii =0, (1,k=1z,y,2) (18 components), (35)
Exyz = Eyag = €pzy = —Ezzy = —Eyzz = —Exyz = 1 (6 components).

The components i are invariant with respect to rotations and inversion of coordinate systems.
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The tensor £;; has the following properties: The product of two tensors £;x and &,,, may be written in

the form of a determinant

bir bis & :

Eiki€rat = [Okr Oka Okt | = OirOkote + 8556kt btr + 6t 6kr b1y — bir bkt B1s — bis0kr b1t — 8it b1y Oty

6ir b1y bu

By summing over a pair of indices, one obtains

E EikiEist =

i

Oks Okt

5[3 6“ = 6ka 6“ - 5kt51.9-

Summation over two pairs of indices yields

E EikiEikt = 2011,

ik
Finally, the summation over three pairs of indices gives

E €iki€iri = 6.

ik,

For an arbitrary 3x3 matrix || Aix| (%, k = =z, y, z) the following relation holds

Az Azy Azz
ZAa:iAykAzleikl=det||Aik"= Ayz Ay Ay
Y Ax Ay Al

1.3. DIFFERENTIAL OPERATIONS
1.3.1. Operator \%
The operator V (nabla) is the basic vector differential operator.

Cartesian components of V are given by

]

sza')

vy=aa—y, V.= —.

These components may be expressed in terms of polar coordinates as

a 04 a i a
V‘c:sinﬂcosso__*.w.___w.

or r 8% rsind ?3;’

V. = sin 9sin 02 cosdsing 8§ cosp 8

y = SRS ey, r 3% ' rsind 8y’
d sind 3
V,—cosﬂE—T-ﬁ.

An expansion of the operator V in terms of spherical basis vectors reads

V=) (-1)*e,V_,=~e. Vo1 +eVo—e_1V,y,
n

(36)

(37)

(38)

(39)

(40)

(2)

(3)



18 Quantum Theory of Angular Momentum

where spherical components of V are given by

Va=-—— (L4l
3
VO"Er
1 /8 .8
V=7 (5 m)

Spherical components of V in a polar coordinate system have the form

e“"{ 8  cosd 8 ] 3}’

V“:—\/_i sndom+ = '36 ' rsmd dp
8 sind 3
p——1 — — —— 4 — 5
Vo cost?ar " 35 ()
e I} cosd 8 1 d
V“—-\/_i{sm'93—+ r ‘ﬁ_m'ap}‘

An expansion of V in terms of polar basis vectors may be written as

V=¢eV,+esVyg+e,V,, (8)
where
I O T G 1 0
T Ty 8% ¥ rsin® dp’

The order of operator components relative to the basis vectors in Eq. (6) is essential because e,, es, e, depend
on 9, .
The operator V may be written in the form

d 1
V= na + ;Vn, (8)

where Vg is the angular part of V, and n = r/r is the unit vector determined by angles ¥ and . The operator
Vi acts only on variables § and . In the polar coordinate system it has only two components

E} 1 3
Z Valy = —— - —.
550 (Vale sin ¢ ()

(Va)s = 39

The operator V; may be written as
VQ = —n X L, (10)
where L is the orbital angular momentum operator (see Sec. 2.2).

1.3.2. Laplace Operator

The Laplace operator (Laplacian) A is a scalar differential operator
A =V2, (11)
In the cartesian coordinate system A has the form

82 8? a2
A= 922 + a—y“z- + 3.2 (12)
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In the polar coordinate system it is given by

9, ,0 1 8, .8 1 8

1
A== —{rP— ind—Y4 ——— . —.
7 o T e a0 Gt 5 (13)
The operator A may also be written as
1 8,,8, 1
A= A5+ Zla, (14)
where Aq is the angular part of A
1 3 3 1 8%
Ag=VE = == {sind =} + ——  —. 15
0=Vo=55 s tinlastt 5y 5 (15)
expressed in terms of the orbital angular momentum operator Las
Aq = -T2, (16)
1.8.3. Differential Operations on Scalars and Vectors
The gradient of a scalar function ®(r) is the vector defined in terms of the operator V as
grad®(r) = Vo(r). (17)

The components of grad® may be obtained by use of Eqs. (1)—(7) for the components of V. If ® depends only
on r = |r| (spherically-symmetric field), then

(18)

where n =r/r.
The directional derivative of a scalar function ®(r) in the direction specified by a unit vector u is the scalar

defined by
2 3(r) = (u- V)2(x). (19)
The divergence of a vector field A(r) is the scalar product of V and A

divA =V - A. (20)

The expression for divA in a cartesian coordinate system is

. 8A, O8A, 0A, A
divA = 2+ =¥ + .Z 3 (21)

z dy 9z  ~ . dz;
and in a spherical coordinate system it has the form
divA = —V41A_; + Vodo ~ V1Al = D (-1)*V,4_,, (22)
u==%1,0

where the spherical components V,, are given by Eqs. (4)—(5). In the polar coordinate system we have

1 3 1 84,

rsind 55(5111 94o) + rsind  dp (23)

. 1 8,,
d1vA=r—2--a—r(r 4,)+
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The curl of a vector field A(r) is the vector product of V and A

curl A =V x A.

The cartesian components of curl A are given by

_8A, 04,

[curl A, = By 32
dA, OA,

- [curl A]y = % Ba
84, 04,

[curl A], = 32 3y’

or, in a more compact form,

94
[curl A); = Zk;: &kl F

Moreover, curl A may also be written in the form

e, eg, e,
curl A = % 3y %
t 3 Ay A'

The spherical components of curl A are given by

[CllrlA].H_ = ‘i(VoA+1 - V+1Ao),
[CIH‘IA]O = i(V’_1A+1 - V+1A._1),
[curlA]..l = i(V_le - V()A_l),

or in a more compact form involving the Clebsch-Gordan coefficients

[curlA], = —iv2) CIH,VuAx (41,2 = £1,0).

vA

The spherical componentg of curl A may also be written as

e;1 € e,
curlA =1 V+1 Vo V-l .

A+1 Ao A_l
The polar components of curl A read
1 48,. 1 Jd4
1A, = —— = - L 94
[eurl A] rsind 8¢9 (sin 34, rsind Jo
1 84, 19
1 = —— . L
[curl Als rsind 3o ror (rde),
134 104,

[curlA], = ;5—;(1'.4.,) - =

The above equations are summarized in Table 1.3.
Note also the following differential operations of the second order

div grad ® = V- (V@) = AJ,

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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Table 1.3

Differential operations.

Cartesian coordinates Spherical coordinates Polar coordinates
r ezt ey -1-ez —euZ_; + € — €174y i
dr e,dz + e, dy--e,dz —edzr_; + egdz, — e dr + egrdd + e, r sin 3dy
—e_dzy,
ds? dz? 4 dy? 4 d2? —2dz,dz_; - dzydz, dr? |- r3d$? 4- r3 sin? 3d¢?
av dzdyd:z tdz, dz,dz_; r? sin 8drddde
vo o ik 0P o0 109 1 o
x5z Teyay T &5 | TenVa?+e¥e®— erorte T terame O
—e_V,P
04, 94y 94 1 9 | ) . 1 04,
(V- 4) oz T oy + dz’ —Vd V4o —V 144, 7T or (P40 + 55 e (e sin ) + g - “op
1 9 . dAy
. e e e'rsin%[;ﬁu?sma)_d_v-]-*'
) 4 2 o G € 1F 1 04, o
VXA] 5 ay o7 Ve Y Vo, +037[——sin8 _59_"5(“4?)]"'
4y 49 4, 1a 04
Ae Ay 4 eyt [ 49— 5]
2P 20 20 1 o9/ 90 1 (. 0P 1 0P
A® wtaptoa | TWaTa? 1+ Ve w e (e %)+ 75(sin® %)+ s oF"
curl grad ® = V x (V®) =0, (33)
divcurlA=V - [Vx A]=0, (34)

curl curl A=V x [Vx A|=V(V-A) - AA
= grad div A - AA. (35)

1.4. ROTATIONS OF COORDINATE SYSTEM
An arbitrary rotation of a coordinate system about the origin is completely specified by three real parameters.
The most useful description of rotation is that in terms of the Euler angles o, 8, . Note that two other sets of
sarameters are also widely used to describe rotations:

direction of the rotation axis n(©, ®) (2 parameters) and the rotation angle w (1 parameter);

the Cayley-Klein parameters.

1.4.1. Description of Rotations in Terms of the Euler Angles

Any rotation of the coordinate system S{z,y,z} — S'{z',y',2'} may be performed by three successive
‘otations about the coordinate axes (Fig. 1.3)

(a) rotation about the z-axis through an angle a(0 < & < 27),
A { (b) rotation about the new y;-axis through an angle (0 < 8 < ),
(c) rotation about the new axis z; = 2’ through an angle (0 < v < 2n).
The same rotation S{z,y,z} — S'{2,y',2'} may also be performed by another succession of rotations

Fig. 1.4),
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Fig. 1.4. Succession of rotations of a coordinate system according to scheme B.

(a) rotation about the z-axis through an angle 4(0 < v < 2x),
B { (b) rotation about the initial y-axis through an angle (0 < 8 < «),

(c) rotation about the initial z-axis through an angle a(0 < a < 27).

Here the angles o, 8,y are the same as those in the first case.

The relative orientations of initial and final coordinate axes S{z,y, 2} and S'{z',y’,2'}, obtained in both
cases, A and B, are shown in Fig. 1.5.

Fig. 1.5. The Euler angles &, 5, 4.

The angles a, 8, v are called the Euler angles. They completely define the rotation of the coordinate system.
The inverse rotation which returns the coordinate system.S'{z',y',2'} back into S{z,y, 2} is specified by the
Euler angles —v, —f8, —a, or, equivalently, by the angles 7 — v, 8, —7 — a.
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Sometimes the following successive rotations are used to obtain the general rotation of the coordinate
system:
(a) rotation about the z-axis through an angle o';
(b) rotation about the new z,-axis through an angle #';
(c) rotation about the new axis z; = 2’ through an angle .
The angles o', 8’,7" describe the same rotation of the coordinate system as the Euler angles o, §, v if

T T

a,=a+§1 ﬂ'=ﬂ’ '7':"7_5' (1)
The absolute value of a vector is invariant with respect to rotations, but the polar angles 9, ¢, which determine
the vector direction, change. The relations between angles 9, ¢ and ¢, ¢’ which specify vector directions in
the initial and final coordinate systems, S{z,y, 2} and S'{z’, ¢/, z'}, are given by

cos ¥’ = cos ¥ cos f + sin ¥sin f cos(p — a),

cot ¥sin f
sin(p —a)

cot(p’ + ) = cot(p — a) cos f — (2)
The inverse relations are
cos ¥ = cos ¥ cos f — sin &' sin B cos{p’ +17),

cot ¥’ sin B
sin(p' +7)

(3)

cot(p — a) = cot(p' + ) cos B+

1.4.2. Description of Rotations in Terms of Rotation Axis and Rotation Angle

Any rotation of a coordinate system S{z,y,z} — §'{z’,y, 2’} may be treated as one rotation through an
angle w(0 < w < ) about some axis n(©, ®). The direction of this rotation axis n is defined by the polar
angles 6, P(0 < © < 7,0 < & < 2x) which are the same in the initial coordinate system §{z,y,z} and in the
inal one S'{z',y’,2'} (Fig. 1.6).

Fig. 1.6. Rotation of a coordinate system through an angle w about an axis n(@, @).
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The angles w,®, ® completely determine the relative orientation of the initial and final coordinate axes.
The rotation defined by the angles —w,n — ©, w + ® is identical to the rotation defined by the angles w, ©, ®.
The inverse rotation S'{z',y’, 2’} — S{z,y, 2} is specified by the angles —w, ©, ® or, equivalently, by the angles
w,m— 0,7+ D.

The direction cosines of the unit vector n(©, ®) in the initial coordinate system S{z,y, 2} coincide with
those in the final coordinate system S'{z',y’, 2'}.

n-e,=n-e, =sinOcosP,
n-e, =n-ey, = sinOsin P, (4)
n-e,=n-e, =cosO.

The polar angles ¥, ¢ of vectors nonparallel to the n-axis vary under coordinate rotations. The relations

between the polar angles ¥, p and ¢, ¢’ which specify the direction of a vector with respect to S{z,y, z} and
S'{z',y,2'}, respectively, are given by

cos ¥ = cos ¥(cos w sin? © + cos? ©) + sin 9sin O[(1 — cosw) cos O cos(p — P) — sinwsin(p ~ )],

cos(p — ®)[cosw cos? © + sin® O] + sin(p — D) sinw cos © — cot ${cosw — 1) sin © cos @ (5)
— cos(p — ) sinw cos © + sin(p — ) cosw + cot ¥ sinw sin ©

cot(p' — @) =

The inverse relations are

cos ¥ = cos ¥'(cosw sin® © + cos® ©) + sin ¥’ sin O[(1 — cos w) cos O cos(p’ — @) + sinw sin(p’ — B)),

cos(p’ — ®)[cos w cos? © + sin® O] — sin(p’ — <I?) sinw cos @ — cot ¥ (cosw — 1) sin O cos @ (6)
cos(p' — ®) sinw cos © + sin(p' —~ P) cosw — cot ¥ sinwsin O

cot(p — ®) =
Introducing parameters w,n(©, ®) to describe rotations, we are able to write the transformation properties

of components of the position vector r in compact vector form:

r' =rcosw +n(nr)(1 - cosw) + [n X r|sinw, )
r=r'cosw +n(nr')(1 — cosw) — [n X r']sinw.

Equations (5)-(6) may be derived by projecting Eq. (7) onto the coordinate axes.

1.4.3. Description of Rotations in Terms of Unitary 2x2 Matrices. Cayley-Klein Parameters.

The position vector of an arbitrary point r = ze, +ye, +ze, may be represented by the following Hermitian

2x2 matrix X:
+
X=X+=(z_ziy z_'y) Z 2:5;, (8)

t=z,y,%

where §;(¢ = z,y,2) are the transposed Pauli matrices (Eq. 2.5(4)). Note that
—det X =1? = 2% + y? + 22

Each rotation S{z,y,z} — §'{z',y,2'} may be represented by a unitary transformation U of matrix X
into X’
X'=UXU-L. ()

Here U is the unitary unimodular 2x2 matrix

Ut=U"1, detU=1. (10)
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Fig. 1.7 Stereographic projection of a point on a sphere.

Bearing in mind that r is real, one can easily prove that U, indeed, is unitary. The relation det U = 1 ensures
the invariance of the absolute value of the position vector under coordinate rotations.
Equations (10) imply the following form of U

v=(5 ) (11)

where a and b are complex numbers which satisfy the condition
la|? + [b]% = 1. (12)

Thus, the matrix U depends on three real independent parameters. The numbers a and b are called the
Cayley-Kletn parameters. They uniquely determine rotation of the coordinate system. The inverse statement
is not true because the parameters —a and —b describe the same rotation as a and b.

The inverse rotation S'{z',y',z'} — S{z,y, 2} corresponds to the matrix

iopg+_ (e b 13
oav= (), ”

The Cayley-Klein parameters permit us to propose an alternative interpretation of coordinate rotations.
Let us consider a sphere (of unit diameter) about the origin. Each point of the sphere with coordinates
z,y,2(z% + y? + 22 = 1/4) corresponds to the point ¢ = £ + tn on the complex plane which is called the
stereographic projection of the point z,y, z (Fig. 1.7). The complex number ¢ is related to z,y,z by

; 1
fi_ﬂ=2_+-'z_. (14)
22 z -1y

The rotation of the coordinate system which transforms the coordinates z, y, 2 of the point on the sphere into

z',y',2' generates the following complex-plane bilinear transformation

a¢+b
T <l (19

The coefficients of this bilinear transformation are just the Cayley-Klein parameters a and b.
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1.4.4. Relations Between Different Descriptions of Rotations

(a) Relations Between Angles w,©,® and Euler Angles o, 8,7
The angles w,®, P are expressed in terms of the Euler angles «, 8,7 by

o0 ] 8 = €08 éCOS a—-M
2 2 2’
1;a.n£2’i
ta.ne=s—i-n—&—_-r,7,
2
T a-—-9
b= - .
2+ 2

The inverse relations are written as 5
. . . W
sin 5 = sin O sin —,

2
a+q
tan 5 —cos@tan 7
a—9 *
=0 - —.
2 2

Note also the following useful relations between the angles «,8,v and w,©, ®.

Qg_a_'y_ cos © ?_@_sinzesinw
Bw_aw_zcosﬂg’ dw  sinf °’
da Oy 1 ) 98 _ 2sin293in2§
36 ~ge - gtanOsinlet),  Fg=—om—
ta__0y_, 2 _,
P od ! 0% !
tan &
2
3_6__?2__ sin © ég_cosGsinG
da 9y  2tan%’ 3  sinf '
o8 _ 58 _1 00 _
a8y 2’ g~
The Jacobian of the transformation is equal to
" e, ,7) ” " (w,©,9) ”-1 _ 45in @ sin?
3(w, 8, ) 3(a, B,7) sin 8 2’

A volume element of the three-dimensional rotation group is given by
dR = sin fdadfdy = 4sin? %dw sin ©40d0.

The total volume of the three-dimensional rotation group is equal to

2 27
/dR / da/ smﬂdﬁ/ d'y—4/ sin —-dw/ smed@ d<I> 8n2.

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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(b) Relations Between Cayley-Klesn Parameters a, b and Euler Angles o, 8,7

The parameters a and b are expressed in terms of the Euler angles o, 8,7 as

B —iaga
a=cosje " 1,
: (29
b=sin =5,
2
while the inverse relations are
cos B = |a|> — |b[%, cos B =|a|, sin £ = |b],
2 2 (24)
o+ Rea a—7v Red
cot = - , cot = —.
2 Ima 2 Imb
The parameters a and b may be expressed in terms of the Wigner D-functions (see Chap. 4)
a=D§ %(a,ﬂ,’y), b=Dl’l%%(a,ﬂ,'7). (25)

The unitary matrix U, according to Eq. (11}, coincides with the transposed rotation matrix D} («, B,7) which
transforms spin functions of particles of spin 3 (see Eq. 2.5(32)).

(c) Relations Between Cayley-Klein Parameters a, b and Angles w, ©, P

The parameters a, b are expressed in terms of the angles w,©,d as

w .. w
a=cos — —1sin —cos O,
2 2

. (26)
b= —isin ot sin @c*®.
2
and the inverse relations have the form
cosw = 2(Rea)? - 1, cos% = Rea,
Ima
€080 = — ————=——,
v/1— (Rea)? (27)
Imb
cot (D = —m.

The unitary matrix U, according to Eq. (11), coincides with the transposed rotation matrix i) (w; ©, ®) which
transforms spin functions of spin ; (see Eq. 2.5(36)).

1.4.5. Rotation Operator

Under rotations of coordinate systems quantum-mechanical quantities are transformed by the rotation

operators ﬁ(a,ﬂ, q) or [7(0); 0,9). -
Wave functions (state vectors) ¥’ and operators O' in a rotated coordinate system are related to wave

functions ¥ and operators O in an initial coordinate system by

V' = D(a, ,7)¥, O = D(a,8,7)0|D(a,8,7)]7%, (28)

¥ =0(w;0,8)¥, O=0w;0,8)0[0w;0,)] " (29)



28 Quantum Theory of Angular Momentum

If the Euler angles a, 8,7 are chosen to describe the rotation, then the rotation operator ﬁ(a, B,7) may be

written as L o
D(a,ﬂ, ,7) = e""""e"ﬁ"!’l c—mJ,, (30)

or, equivalently, R e s s
D(a,ﬂ,'y) = e—Vats =BTy —iv Iy (31)

Here :I: is the projection of the total angular momentum operator (see Chap. 2) on an :-axis. The equivalence
of Eqs. (30) and (31) follows from the fact that, according to (28),

e=Pn = D(a,0, O)c*‘ﬂjv[ﬁ(a,o, 0)]~!= ¢miats =iy oty (32)
=19 = D(a, $,0)e7+[D(a, ,0)|7! = em*xTre B e n i8Iy giads,

If the direction of the rotation axis n(©, ®) and the rotation angle w are chosen to descnbe the coordinate
rotation, the rotation operator i may be written in the form

U(w;8,8) = e"“’“'j, (33)

where J is the total angular momentum operator (Chap. 2). Note that ﬁ(a_, B,) = o (w; 0, ®).
The rotation operator written in the forms (30), (31) or (33) is an unitary operator.

D*(a,8,7) = [D(e,8,7)]* = D(n — 4,8, ~7 — a) = D(—, -8, ~a),

Ut (w;8,®) = [0(w;8,9)] ! = U(w;x — 6, + &) = U(-w; 8, d). (84)

Matrix elements of D between eigenstates of the operators .72, f, are the Wigner D-functions (see Chap. 4)
(J'M'|D(cx, B,7)|IM) = 875D pas B, ). (35)

Matrix elements of D between states corresponding to the cartesian basis vectors e;(1 = z,y, 2) coincide
with elements of the rotation matrix a;x (see Sec. 1.4.6)

<e5|ﬁ(a:ﬂs7)|ek) = Gk, (":k =Y, z)- (36)

Effects of the rotation operator on various wave functions and quantum-mechanical operators are considered
in Chaps. 3, 5-7.

1.4.6. Transformation of Cartesian Vectors and Tensors Under Rotations of
Coordinate Systems. Rotation Matrix a
An arbitrary vector A may be written as a column
A,

A={4, ], (37)
A,

where A, Ay, A, are cartesian components of A. In this representation the Cartesian basis vectors e, ey, e,
have the form

e, (38)

||

o

[+
<

1

[wry

(d

n

i

- O O
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The effect of the rotation operator on the basis vectors written in such a form is equivalent to an action of
some 3x3 matrix a which may be regarded as one of the representations of the rotation operator

Azz Qgzy Ozz

a=| Gy Gyy Gy, (39)
Qzzx OGzy GCiz
The matrix a is real
a*=a, aj} =apx, (tL,k=2z1y,2). (40)
and unitary
ata=aat =1 (41)
Equations (40) and (41) result in the orthogonality condition
da=ad =1, (42)

where @ is the transpose of a. Equation (42) written in a component form gives six independent relations for

the elements a;

Yoakau =0, (,kl=1542), (43)
i
or the equivalent relations
Z Gk = b, (4, k1 = 7,9, 2). (44)
k

Relations (43) or (44) reveal that only three of the nine matrix elements a;x are independent. This result is
in agreement with the fact that any rotation of the coordinate system is completely determined by three real
parameters.

The matrix a is unimodular, i.e.,

Qzz QGzy Gzz2

deta=|ayz Gyy Gy || =1 (45)

Gyz Qzy Gzy

The relations between cartesian basis vectors €] in a rotated coordinate system S’ and basis vectors e; in
an initial coordinate system S are given by

e: =ge = Eak‘-ek . (i,k =2z,Y, Z) . (46)
k

The transformation properties of cartesian vector components are given by

Al = Z ag; Ag, (4, k=z,9,2), (47)
k

where Aj are the components of A in the initial coordinate system and A} are the components of this vector
in the rotated coordinate system. Equations (43) and (44) ensure that the absolute value of A is unchanged

by the rotation.
The transformation rule for cartesian components of a tensor of rank n (n is integer) has the form

! — E . . .
Aix‘z...t'n - Qkyiy Qkzig - - akn‘nAklkﬁnJcn' (48)
kiks...kn
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The inverse transformation which corresponds to the rotation §' — S is performed by the transposed matrix
& = a~1. The inverse relations are

€ = Zakie:» (i,k:: T, Y, z)' (49)
[t
A = Z akiAs ’ (i:k =%,¥, z) ) (50)
$
Abknkn = 3 OkaisOkigarnin Abrinins (K152, K2y0 s yin,n = 7,9, 2). (51)

$183...5n
The elements of the rotation matrix a;;z may be evaluated from

ik = eie;c; (")k =, yiz)' (52)

Thus, the elements a;; are cosines of angles between the basis vectors in the initial (S) and rotated (S’)
coordinate systems. An equivalent definition of a; in terms of coordinates in S and S’ has the form

dz} - Az
dzx  Ozl’

A = (=}, zx = z,¥,2). (53)

The rotation matrix a is given in terms of the Euler angles by

cosacosffcosy —sinasiny —cosacosfsiny —sinacosy cosasinf
a= | sinacosfcosy+cosasiny —sinocosfsiny+cosacosy sinasinf |. (54)
—gin S cos vy sin A siny cosf

The inverse matrix a~* may be obtained from Eq. (54) by transposing or, equivalently, by replacing the Euler
a'ngles a, ﬁ) T —ﬂs —a.

The expression for the rotation matrix a in terms of the angles ©, ® which describe the direction of the
rotation axis, and the rotation angle w has the form

(1 - cosw) sin® © cos? & + cosw
a= | (1—cosw)sin® @ cos ®sin ® + sinwcos ©
(1 - cosw)sin®cos©cos P —sinwsin O sin

(1 — cosw)sin? © cos Psin @ — sinw cos © (1 — cosw) sin © cos © cos P + sinw sin O sin
(1 - cosw) sin® @ sin® @ + cosw (1 —cosw)sin©cosOsin® —sinwsinOcos® |.  (55)
(1 —cosw)sin®cosOsin® +sinwsin@cos® (1~ cosw)cos? O + cosw

Equation (55) may be expanded into

100 nZ  ngny ngn, 0 -n, ny
a=cosw [0 1 O+ (1—-cosw) | nynz nZ nyn, |+sinw| n, 0 -n,|, (56)
0 01 ngng ngny  n? —ny  ng 0

where nz, ny,n, are components of the unit vector n which determines direction of the rotation axis. Using
(56) one can easily derive the following expressions for the matrix elements a

a;x = coswhx + (1 — cosw)nin, — sinwe;uny, (3,k, 1= z,y,2). (57)

The inverse matrix a~! may be obtained from (55) and (56) by transposing or, equivalently, by replacing
w,0, > —w,0,P0rw,0, - w,x—0,r+ .
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The expressions for w, ©, ® in terms of the matrix elements a;; read

cosw = %[Spa - 1] = —;—(am + ayy + 0y — 1),
ngsinw = sinwsin®cos P = %(a,y — Qyz )y
nysinw = sinwsinOsind = -;—(a_.u — G2z), (58)
n,sinw = sinw cos © = %(aw — Gay),

. 1 .
n;smw:—ig‘:e;k;akz, (3, k1= z,y, 2).

The rotation matrix a may be rewritten in terms of the Cayley-Klein parameters as
3@ =8 +a2-b*%) L(-a®+52+a"2-b"%)  ab*+a%

a=| i(a®+b%—a*? - p*?) (a® + 8% +a*?+b*%)  i(ab* —a*b) | . (59)
—(ab + a*b*) 1(ab — a*b*) aa* — bb*

N o=

One can see that the parameters a,b and —a, —b correspond to the same rotation matrix.
Particular Forms of Rotation Matriz
(a) Rotation through an angle ¥ about the z-axis:

1 0 0
az(¥)={0 cos¥ —sin¥ |. (60)
0 smV¥ cos ¥

(b) Rotation through an angle ¥ about the y-axis:
cos¥ 0 sinV

ay(¥) = o 1 o |. (61)
—sin¥ 0 cosV¥

(c) Rotation through an angle ¥ about the z-axis:

cos¥ —sin¥ O
a;(¥)=|sin¥ cos¥ 0}. (62)
0 0 1

For an arbitrary rotation determined by the Euler angles «, 8,7 the rotation matrix, in accordance with

Eq. (31), may be written in the form
@ = an(w) = a;(a)ay(B)as (7). (63)
Equation (63) represents a particular case of addition of coordinate rotations (see Sec. 1.4.7).

1.4.7. Addition of Rotations

Let us consider two successive rotations of the coordinate system. Let the first rotation transform the
coordinate system S{z,y, z} into S'{z’, ', 2’} and the second one transform S'{z',y’, 2’} into §"{z", y", 2"}.



32 Quantum Theory of Angular Momentum

Below the parameters describing the resultant rotation S{z,y,z} — S"{z",y", 2"} will be given in terms of
P
the parameters specifying the rotations S{z,y,2} — S'{z',y’,2'} and S'{',y',2'} — S"{z",y",2"}.

(a) Description of rotations in terms of Euler angles

Let both rotations be performed according to the scheme B (p. 22). Let the first rotation S{z,y,2} —
S'{z', ¢/, 2'} be described by the Euler angles a1, 1,71, the second one, $'{z',y’,2'} — §"{z",y", 2"}, by the
Euler angles az, f2,7; and the resultant rotation, S{z,y, 2} — §"{z",y", 2"} by the Euler angles o, 5, . The
Euler angles «, 8,1, 21, B1,71 and ag, f2,72 are supposed to be defined with respect to an initial coordinate
system S{z,y,z}.

The operator of resultant rotation has the form

ﬁ(a’ﬂ"Y) = ﬁ(a2)ﬂ2)72)5(a1’ﬁ1)'71) (64)

or in more detail . X ) . . ) ) )
e—vats g =18y g=ivTs _ gmiaads =iBaty ymiva e p~ian Ju g=iBidy g=iva s (65)
In Eq. (65) J; is the projection of the total angular momentum operator on an i-axis of the coordinate system

S{z,y,2}. The angles of the resultant rotation «, 8,7 are expressed in terms of ay, f1,v; and az, f2,72 as

sin §,
cot({a — aq) = cos By cot{ay + +cot By ——m————
( 2) B2 cot(ey +72) B sin(or +72)’
cos 8 = cos f; cos f; — sin B sin f; cos(ay + ¥2), (686)
sin 8,

cot(y — = co8 f; cot{a; + + cot fp —F———.
(’7 ’71) b1 (1 ’72) ﬂzsm(a1+72)

The following relations are useful for evaluation of a, 8,1.

sin(a —az)  sin(y—m) _ sin(a; +12) 67
sinf;  sinf; sinf ' €7)

cos fi1 = cos ff cos B3 + sin B sin B; cos(a — az),
cos f2 = cos ff cos B; + sin B sin By cos(y — 1), (68)

cos § = cos f; cos fz — sin By 8in f; cos(ay + 72),

cos(y — 71) = cos(a; + ¥2) cos(a — a2) + sin(a; + v2) sin(a — az) cos B,

cos(a — az) = cos(ay + 72) cos(y — 11) + sin(ay + v2) sin(y — 1) cos By, (69)
cos(ay + 72) = cos(y — 71) cos(a — az) — sin{y — v1) sin(a — a2) cos A.
¢ B— 5 apt+zta—oa
an 2 tan 2
= — )
tanﬂ+ﬂ1 tan &L ty—atas
2 2
¢ B — B2 ar+Y2+7—m
an 2 tan 2
= - , (70)
B+, ap+12—7+7
tan tan
2 2
tanﬂl;ﬂz tana"az‘;ﬂ"h
tan Pt P2 22—t

2 2
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Fig. 1.8. Addition of rotations in terms of the spherical geometry.

Equations (67)-(70) may be easily interpreted in terms of the geometry on a sphere. Each rotation may be
completely determined by a point of intersection of the 2’-axis with the spherical surface and by a unit vector
in the direction of the z’-axis which lies on a plane tangent to the surface at this point. In this case the
determination of «, 8, is reduced to constructing the corresponding spherical triangle, (Fig. 1.8). Equations
(67)—(70) represent the formulas of sines, cosines and tangents for the spherical triangle.

Another expression for the angles of the resultant rotation will be obtained if successive rotations are
performed according to the scheme B (p. 22) but the Euler angles agz, f2,v2 specifying the second rotation
S'{z',y,2'} — S"{z",y", 2"} are defined with respect to the intermediate coordinate system S'{z’,y', 2’}
rather than the initial system S{z,y,2}. In this case the operator of the resultant rotation has the form

ﬁ(a’ﬂ;'ﬁ = b,(aZ) ﬂ2772)ﬁ(a1xﬂ1”71)y (71)

where prime indicates that the operator of the second rotation is taken in the coordinate system S'{z’,y',2'}.
According to (28), the operator [ is related to the operator in the initial coordinate system by

D'(az, B2,72) = D(o1, B1,71) D(az, B2, 72)[D( 1, 1, 71)] 72 (72)
Substitution of this expression into Eq. (71) yields
ﬁ(a)ﬁ»'ﬂ = ﬁ(alxﬂl)'yl)ﬁ(a%ﬂ%'h)) (73)

i.e., the operator of the resultant rotation differs from (64) in the order of operators of the first and second
rotations. Thus, for such a description of the successive rotations the Euler angles o, 8,7 may be obtained
from (66)—(70) by interchange of indices 1 == 2.

Finally, if successive rotations are performed according to the scheme A {p. 21), i.e., if each rotation is
made about the corresponding new axis, the operator of resultant rotation is given by Eq. (73). In this case the
Euler angles o, 8,7 of the resultant rotation may also be derived from (66)—(70) by the interchange of indices

= 2.
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(b) Description of Rotattons in Terms of Rotation Azis n(©,®) and Rotation Angle w

Let the first rotation, S{z,y,2} — S'{z',y',2'}, be performed about an axis n; through an angle wy,
and the second one, S'{z',y’,2'} — S"{z",y", 2"}, be about an axis n, through an angle wy. The resultant
rotation S{z,y, 2} — S"{z",y",2"} may be treated as a rotation about an axis n through an angle w.

The operator of the resultant rotation has the form

e-—iwn-J — e—tw;nrJe-tw;an' ‘ (74)

The angle of the resultant rotation w and the axis of this rotation n are determined by

c08 = = cos = cos =2 (ny - ny)sin gin 22,
< = cos — cos =2 — (ny - np) sin — sin —2
2 2 2 2 2’ (75)
nsin % = ny sin <2 cos <2 + ng sin ~2 cos - [n; X ny)sin 2L gip 22
5 = D8It —-cos —= + Nz 8ik —= €08 —= — [N} X Na|sin —=sin —=.
2 2 2 2 2 2 2

It follows from Eq. (75) that the resultant rotation is independent of the order of successive rotations (i.e.,
the rotation operators commute) if and only if n; X ny = 0, i.e., the axes of both rotations are parallel or
antiparallel. In this case

w=w; twsy.

If directions of the rotation axes nj, nz,n are specified by the polar angles ©1, ®1; ©2, 2 and O, P, respec-
tively, and the polar angles are defined with respect to the initial coordinate system S{z,y, z}, then
w .

cos % = cos ?1 cos % —sin (‘—)21- sin %[cos ©; cos O, + sin B sin O, cos(P; — B, )],

. w . W w . w w
sin 3 cos © = sin -51- cos __éZ cos ©; +sin _53 cos —2—1- cos O, ,
. Wy, Wwe o, . .
+sin —Zl—sm—ézsm ©; sin Oy sin(®; — &), (76)
8in ©1 (cot %2 cos ®; — cos O3 8in @) + sin ©z(cot %L cos P + cos O; sin B5)

cot d = — : ; - .
sin ©; (cot %42 sin ®; + cos ©2 cos D1 ) + sin O2(cot “* sin P2 — cos ©; cos ;)

If directions of the rotation axes nj;,n are defined by the polar angles ©;, ®; and ©, ® with respect to the
initial coordinate system S{z,y,z} and the direction of the axis of the second rotation n; is defined by the
polar angles ©3, ®; with respect to the intermediate coordinate system S'{z’,y’, 2’} then the angles w, ©,® of
the resultant rotation will be given by Eqs. (76) with interchanged indices 1 = 2. This situation is similar to
the case when rotations are described by Euler angles.

(¢) Description of Rotation in Terms of Cayley-Klein Parameters

Let the first rotation, S{z,y,2} — S'{z',y’,2'} be determined by the Cayley-Klein parameters a;,b;
(1.4.3) and the second one, S'{z',y',2z'} — S"{z",y",2"}, by the parameters az, b. Then the resultant
rotation S{z,y, 2z} — $”{z",y",2"} will be determined by the parameters a, b such as

a=ayaz — b:bz,

77
b=a’{b2+bla2. ( )

The matrix U (see Eq. (11)) which describes the resultant rotation is a product of matrices corresponding to
the first and second rotations
U(a, b) = U(az,bz)U(al,bl). (78)

In this case all the matrices are supposed to be given in an initial coordinate system.
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(d) Addstion Theorem for Rotation Matrices a

Let us carry out two successive rotations ${z,y, 2} — S'{z', ¢/, 2’} and §'{z', ¢/, 2’} — $"{z",y", 2"}. The
matrix which transforms cartesian components of vectors and tensors under the resultant rotation S{z,y, 2} —
S"{z",y", 2"} represents a product of the matrices a{1} and a(2) corresponding to the first and second rotations.
The order of these matrices in the product depends on the convention used for the rotation angles. If all angles
which describe rotations are referred to the initial coordinate system, i.e., the operator of the resultant rotation
is given by Eq. (64), then

a = a(2)a(1) (79)

or, in terms of matrix elements,

s = Z ag (Z)a”c(l), (1., k,l =T, Y, z). (80)

The rotation matrices in terms of the rotation angles are given by Egs. (54) and (56). The angles which
determine the resultant rotation are related to the angles of the first and second rotations via Eqs. (66) and
(78).

If the angles which determine the first and resultant rotations, § — S’ and § — S, are defined with
respect to the initial system S{z,y, z} but the angles of the second rotation $’ — S are defined with respect
to the intermediate system S'{z’,y, z'} (i.e., the operator of the resultant rotation is given by Eq. (73)), then

a = a(1)a(2) (81)

or, equivalently,
A = Zail(l)alk(Z)) (7') kal = IE,y,Z). (82)
[
In this case the relationships between the angles of the resultant rotation and the angles of the first and second
rotations may be derived from Eqgs. (66) and (76) by an interchange of indices 1 = 2.
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Chapter 2

ANGULAR MOMENTUM OPERATORS

2.1. TOTAL ANGULAR MOMENTUM OPERATOR
2.1.1. Definition

In quantum mechanics the total angular momentum operator J is defined as an operator which generates
transformations of wave functions (state vectors) and quantum operators under infinitesimal rotations of the
coordinate system (see Eqs. (1) and (2)).

A transformation of an arbitrary wave function ¥ under rotation of the coordinate system through an
infinitesimal angle §w about an axis n may be written as

¥ =¥ =(1-1ibwn-J)0. (1)

where J is- the total angular momentum operator.
A transformation of an arbitrary quantum operator O under an infinitesimal rotation has the form

0—-+0=0-1isun-3,0]. (2)

The finite rotation operator can also be written in terms of the total angular momentum operator (see
Egs. 1.4(29), 1.4(30), 1.4(32)). The total angular momentum operator is Hermitian,

~

I+t =7 (3)

This property for cartesian and spherical components of the operator J can be expressed as

B =3 G=s92 (G)r==(1)rT,, (s=21,0) (4)

The eigenfunctions of the operators 32 and f, represent well-known tensor spherical harmonics (see Chap. 7).

2.1.2. Commutation Relations

Using the definition of the total angular momentum operator (1) and equations for the rotation addition
(see Sec. 1.4.7), one may obtain the commutation rules for the operator J. These rules may be written as

(a-3),00-3)]=i-laxb]F, (5)

36
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a and b being arbitrary constant vectors. The commutation relations for the total angular momentum operator

may also be written symbolically as
[ xJ]=14J. (6)

Cartesian components of J satisfy the commutation relations
(T T =diemds, [324,0]=0  (,kl=2z,y,2). (7)

Equations (7) can be derived from (5) by substituting a = e;, b = e (¢, k = z,y, 2z) where e; and ej, are the
cartesian basis vectors. In more detailed form Eq. (7) reads

[j;s j;] = [j;’ fy] = [j;’ A1‘] =0,
o ) = =130, Ll =80y 1Fe Tl = ~1Ju ] = =i, )

The square of the total angular momentum operator 32 may be expressed in terms of cartesian components

f.-(i=z,y,z)a.s ~
L I B ) ()

Covariant spherical components of 3 satisfy the following commutation relations

~

[Jmfv] -V2¢C 1;41uJa\’ [jz’fu] =0, (v, A = £1,0). (10)

These relations may be obtained from (5) by putting a = e,, b = e, (u,v = £1,0),e,, and e, being covariant
spherical basis vectors. A more detailed form of (10) is

(To1, Tasl = [Jo Jo] = [Ty, 1] =0,
[f+1, j:)] —[Jo, J+1] = -J41, [J+1, J. 1) = —[J-h J+1] = —Jo, (11)
[Jor 1] = =[T-1, Jo] = = T4,
[32, T41) = [3%, Jo] = [3%, F_4] = 0.

For contravariant spherical components of J the commutation relations may be written as
(T4, T = vecih, *, [3%,J%]=0,  (suA==1,0), (12)

or, in a more detailed form

[J¥L, T = [0, 0] = [T-1, T Y =0,
[j+1, jO] = __[j‘o’ j‘+1] = j+1’ [j+1,j*—1] = _[j‘—1, j+1] = Jo
[0, T = —[F-, 0| = J*

[32, 741 = 32, 7° = [32, T = 0.

(13)

The operator 324 expressed in terms of spherical components f“(y = +£1,0) as

32 = Z(—l)“j_“f“ = —j+1f_1 + -?oj:) - f_1j+1 = j:? - fo - 2.7..;.1.7.1 = jg + j:) - 2f.1f+1. (14)

"
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2.1.3. Coordinate Inversion. Time Reversal

a
The total angular momentum operator J is an axial vector, i.e., it is invariant with respect to coordinate
inversion (r — —r)

PIE =], (i=guy2), (15)
Prur1= 122 (l‘=:t1’0)'

"'j;; (1' =z, z))

“l=-J.,  (s==1,0). )

o)
o
- ) :w
r-
It

In Eqgs. (15) and (186) P. and P, represent the operators of coordinate inversion and time reversal, respectively.

2.1.4. Total Angular Momentum of a System. Orbital and Spin Angular Momenta

The total angular momentum of some system consisting of N subsystems with angular momenta 5(1),3(2),
. ,J(N) is the vector sum

N ~
= Z_jj(n). (17)

For such a system the following commutation relations hold

[;i(n):?k(n')] = ié‘nn’eikl?‘l (n);

AQIE ie;kz?}(n), Gl 1= ), te)

[3\#( )’?V( ') ="'\/—6nn'011:1u;,\(n),
[J#’Jv(n)] = —\/_Cluluja\ (n)x

In particular, Eq. (17) determines the total angular momentum operator as the sum of the orbital angular
momentum operator L and the spin angular momentum operator S.

(B, v, A = £1,0). | (19)

~

=L+8. (20)

The propertxes of the operators L and 8§ are considered below (Secs. 2.2 and 2.3). The commutation relations
for L and J are

[fi,zk] = isikzzl, (i,k, l=z, y,z),
o~ - S (21)
[JI&’LU] = _\/iclulul')\! (l") v, A= :*:1,0)'
or, in more detail
[ 2y La] = | y’L,y] = [/, L.] = 0,
[Jzy Ly) = —~|Jy, L] =1L,, [Jz, Ly] = —[Js, Lg] = —iLy, (22)

(T2, 1] = [Jos Bo] = [J-1, 4] =0,
V41, Lol = —[Jo,L+1] =-L41, [T, Loi] = —[To1, L) = — Lo, (23)
[Jo, L 1] =Ty, Lo] =-I_,.
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Appropriate relations for the spin operator S and the total angular momentum operator 3 may be obtained
from Eqgs. (21)-(23) by replacing L — S. The orbital angular momentum operator I commutes with the spin
operator S

[fi;§k] = 07 (Z,k= z, Y, z)) (24)
[L,Su] =0, (pyv = £1,0).
2.2. ORBITAL ANGULAR MOMENTUM OPERATOR
2.2.1. Definition
In classical mechanics the angular momentum L of a particle is defined as
L =[rxp, (1)

where r is the position vector of the particle and p is its linear momentum.

In the quantum mechanics the orbstal angular momentum operator Lofa particle is obtained from Eq. (1)
by replacing r — ¥ and p — P, where T and P are the position and momentum operators, respectively.

In the coordinate representation we have ¥ =r, p = —1V,

L=—irxv] (2)
In the momentum representation we have ¥ = :V,p = p,
L= ~i[p x Vp]. (3)

The formulas below are valid for both representations. The explicit form of L (see Sec. 2.2.3) in the
momentum representation is obtained by substituting r — p, V=3/3r — V, = 8/dp.
The operator L is Hermitian and purely imaginary.

£+-f, £*=-f. )

For cartesian components of L, Eqgs. (4) become
i;‘- = ih f’: = —Ei’ (i=1zy z)' (5)
and for spherical components Egs. (4) yield

E)* = 0 E)u= (1B,
(f’u)* = ("”"(i')_u = (—-1)“+1f’—#a (v = £1,0). (6)

The orbital angular momentum operator L generates transformations of scalar (spinless) wave functions
under rotations of the coordinate system. A rotation through an infinitesimal angle fw about the n-axis
transforms the position vector r into r + ér, with §r = —éw[n X r|. The corresponding transformation of the
scalar wave functions reads

W(r) — U(r + 6r) = (1+ 6r - V)T (r) = (1 — i6wn - L)¥(r). (7

In the case of a finite rotation through an angle w about the axis n, scalar functions are transformed by

she operator e™*“™L which is the particular form of the rotation operator 1.5(32). The eigenfunctions of the
>perators L? and L, represent spherical harmonics Y;,, (9, ¢) (Chap. 5) which depend on the polar angles 4, ¢.
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2.2.2. Commutation Relations

The orbital angular momentum operator L satisfies the same commutation relations as the total angular
momentum operator 3. Appropriate expressions for the commutators are readily obtained from Egs. 2.1(5)-
2.1(14) by substituting J — L.

The commutation rules for the operator L with the position operator T and the momentum operator P are
the following.

For cartesian components

(s, 2] = s,

PO A (" k:l =Y, z)' (8)
[Li, Pi] = i€iapi, ’
Note also that T and P obey the commutation relations
[?:;, 5:‘,,] =0, lfg,fk] =0, [iﬂ,fk] = t&k, (i,k = Z,Y¥, z). (9)
For spherical components
Lu,8,] = —V2Cip.%
L] Wi v = £1,0). (10)

[Lmi’\u] = —\/2—011:11154\’
The commutation relations for the spherical components of ¥ and P are given by
3‘,, 2,,] =0, [auwﬁv] =0, [iw ﬁu] = 1§, —v(—l)“’ (“) v= i1s0)° (11)

Equations (8) and (10) show that the operators ¥ and P are vectors.
The commutation relations for square of angular momentum operator L? are

[£2,7] =iF x L] —]L x 9,

[£2,5] = i[p x L] — i[L x 5]. (12)

The operators £2 and P2 commute with L
L,#=0 [Ep%=0

The commutation rules of L with the total angular momentum operator J and the spin operator S have been
considered above (Eqs. 2.1(21)-2.1(24)).

2.2.3. Explicit Form

The cartesian components of the operator L are given by

iz=—i(y::—zé%), zy=—i(z§;—z-§;), 2,=—-i(z—a—— i) (13)

or in a more compact form

- ) a .
L; = "‘Zeiklzk‘a_) (i, k1 = z,y,2). (14)
ki @
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The cartesian components of L are expressed in terms of polar angles ¢, as
- M. d a
L, =1 (sm pa—t’ + cot ¥ cos p-a—;> ,
L,=i|—cos '—a—-i- t 9si 8 (15)
y =1 Pag oo smgoa(p ,
a

I,=—i—.
1390

The spherical components of L are written as

Li1=20V41 - 241V,
Lo=2_1V41-241V,, (16)

>~
L._1 = Z_1Vo - Iov_l.
or, in a more compact form

z# = _\/Ezclltlxzvvh (/" v, A= :‘:1)0)' (17)
VA

The spherical components of L may also be expressed in terms of polar angles ¥, as

Lo= i35 (18)
7 o1 - _Q_ — ._‘.9._
L, = ﬂc {819 ccotﬂa .
For polar components of L we have
2 - t+ 0 S . d
L,- = 0, L.’ = mg;, L¢ = —‘IE,;'. (19)

The square of the orbital angular momentum operator L%is expressed in terms of its components as

2= 12=12+12+12
. s a e an s s (20)
L= z(_l)“LML-M =—Ly1L.y+LoLo— L_1L4;. :
I

We may also write L2 in the form

fro [l 8 (mel), 1 . &
L =- Linﬁ 39 8"“960 +sin2t9 37" (21)

This operator differs only in sign from the angular part of the Laplacian operator (Eq. 1.3(15))

2= -Aq. (22)
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The operator L2 is Hermitian and real

£ = (@) =12 (23)

The representation of the orbital angular momentum f in the form of a differential operator is only one of
possible representations. Alternatively, L may be represented by a set of three matrices (because it has three
components). These matrix elements of L will be given in Chap. 13.

2.3. SPIN ANGULAR MOMENTUM OPERATOR
2.3.1. Definition

The spin angular momentum operator or briefly the spin operator Sis usually represented by a set of three
(since the vector S has three components) square (25 +1) X (25 +1) matrices, S being the particle spin. These
matrices act on the spin functions (see Chap. 6) and satisfy the same commutatxon relations as the components
of the total angular momentum operator given in Sec. 2.1. The spin operator S is Hermitian:

St=8. (1)

For the cartesian components of S the Hermitian property (1) has the form

(§")+ = §i'! (1' =2,Y z): (2)

and for spherical components
(Su)* = (-1)#S_,,  (s==1,0). (3)

The behaviour of 8§ under complex conjugatlon depends on the representation of S (see, e.g., Sec. 2.6.2). The
eigenfunctions of the operators 82 and §, are spin functions xsm (see Chap. 8) which depend on the spin
variable o. These functions have (25 + 1) components and describe polarization states of a particle.

2.8.2. Commutation Relations

The commutation relations for the spin operator 8 are given by Eqs. 2.1(5)-2.1(14) in which one must
replace i by 8. The commutation rules for S and the orbital angular momentum operator f have already
been considered in Sec. 2.1.4. The spin operator 8 commutes with the position operator ¥ and the momentum
operator P,

[s:isik] =0, [§i,5h] =0, (t)k =z, y’z); (4)
8a2)=0, [8up]=0  (sv==1,0). (5)

2.3.3. Explicit Form

The spherical components of the spin operator §'may be expressed in terms of the basis spin functions xsm

(Chap. 6) as
=V S(S + 1) Z ngluxb'm’xgm! (/“ = :l:l,O). (6)

m,m’

Cartesian components of S may be obtained from (6), using the relations

(5-1-84), 8§ =-7281+81), 8.=5. (7)
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Equations (6) and (7) are independent of representation used for spin functions, while an explicit form of the
spin matrices depends on this representation. For an arbitrary spin S the simplest form of the spin matrices
is that in the spherical basis representation. The basis spin functions xs,, in this representation are given by

Xsm(0) = bmo, (mo=-8,-8+1,...,5-1,8), (8)

and the matrix elements of the spin matrices are

(5.)00 = /S S+le‘,1“, (0,6’ =-8,-8+1,...,5-1,8). (9)

The elements are arranged in the matrices as follows

A | e . (10)

Explicit forms of the spin matrices for spin values % and 1 are given below in Secs. 2.5 and 2.6.

2.8.4. Traces of Products of Spin Matrices

The traces of products of cartesian components of the spin matrices can be evaluated for an arbitrary spin
S by use of the following formulas (where 1, k, I, etc. take the values z,y, z)

T {Si} =0,
(5.8} = S(S+ 1;(28 +1) .
(58,8 - SENES Y Y
T {55,858, = 22 1)5(25 ) {[s(s +1)+ %] (kg + 6156) + [S(S +1) - 2]5.-;5,”-}.

For spherical components of the spin operator S the following relations hold (u,v, A, etc. take the
values +1, 0)

Tr{5,} =0,
8.5} = 5(S + 1)3(23 +1) 1)#6.
aAna S(S+1)(25+1) /111 S(S+1)(25+1) 1
Tr{susu 4\} = - \/6 (# v A) = 3\/’2" ( ) +A01u1u$ (12)
T {5.8.5.5,) = S8+ ll)ézs +1) {[S(S 1)+ %] (=1)5* X (BumBr—p + B pb—3)

+[S(S+1) - 21(—1)"“6“-@-»} :

Some analytic expressions for traces of products of many spin matrices in the spherical basis are given in
Refs. [133, 144, 145].
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2.4. POLARIZATION OPERATORS

2.4.1. Definition
To describe a polanza.tlon (i.e., spin) state of a particle the so-called polarization operators are widely used.
The polarization operators TLM(S)(M =-L,—L+1,...L—-1,Land L =0,1,...,2S; L and M being integers)
are (25 + 1) x (25 + 1) matrices which act on spin functlons (see Chap. 6) and transform under rotations of
the coordinate system according to the representatxon DE. In other words, Tim (S) are irreducible tensors of
rank L. Such transformation properties of TLM(S) with respect to rotations of the coordinate system imply
the following commutation relations with spherical components of the spin operator S,,(p +1,0)

[§m fLM (S)] = \/mcfﬁfu TLM+u(S) (1)
Let us normalize the polarization operators by the condition
T {Tae (S)Toaar (S)} = brre Snarary (2)
and choose the phase factors to satisfy the relations
T2 (8) = (~)MTp-n(S). (3)

The conditions (1)-(3) completely determine the polarization operators. The full complement of polarization
operators Ty (S) with —L < M < L, 0 <'L < 28 constitutes a complete set of 32 (2L + 1) = (2 + 1)?
linearly independent square (25 + 1) X (25 + 1) matrices.

2.4.2. Explicit Form
The polarization operators T},M (S) may be constructed from products of the spin matrices as
Tom(S) = Ni(S)(8 - V) {rYim(9,0)}, (4)
where 8 is the spin operator, and N (S) is the normalization factor given by

47(25 — L)! ] (%)

Ne(S) = [(2S+L+ 1)!

Note that TLM (S) are actually independent of r, although the vector r enters the right-hand side of Eq. (4).
The operators Tin (S) may be expressed in terms of the basis spin functions xg,, (Chap. 6) by

~ 2L +1 '
Tem(S) =\ 3577 Y CSm L Xsm XEm- (6)
m,m’

[20 +1
XSm'XEm = Z 2s+ICSmLMfLM(S)- (7)

An explicit form of Trac (S) depends on the representation used for the spin functions. In particular, matrix
elements of fLM (S) in the spherical basis representation are given by

/2L+ 1 g,
[fLM (8)lero = 2S—+10.gaLM! (0y0'=-8,-5+1,...,8). (8)

The inverse relation is
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For L = 0 the operators T3, (S) are proportional to the unit (25 + 1) x (28 + 1) matrix

fOO(S) = —\/é—;—-—r—l'f | (9)

When L = 1 the operdtors fLM (S) are proportional to the spherical components of the spin operator

i g _
TinlS) = T o (M=%1,0) (10)

The polarization operators for a spin value S = 1 are considered in Sec. 2.6.

2.4.8. Properties of T,;/(S) under Transformations of the Coordinate System

(a) Coordinate snversion (r — —r)
The polarization operators Ty (S) are invariant under coordinate inversion

A

PAa(S)B 1 = TLa(S). (11)

(b) Rotation of coordinate system

Under rotations specified by the Euler angles a, 8, v the polarization operators transform as

Tt p(8) = D(et, B, 1) Tae (8)[Dl, B,7)]* ZDMM,(a B,1)Tem (), (12)

where D(a, 8,) is the rotation operator (see Sec. 1.4.5), and Dk, are the Wigner D-functions (Chap. 4).

2.4.4. Expansion Series of Polarization Operators

As has been mentioned above (Sec. 2.4.1) the polarization operators TL M (S) form a complete set of linearly
independent matrices. An arbitrary square (25 + 1) X (2§ + 1) matrix A (with S integer or half-integer) may
be expanded in a series of the polarization operators TLM( ), i.e., it may be written in the form

28 L .
=Y > AwTin(9), (13)
L=0 M=~L
where the expansion coefficients Az, are given by
Arne = Tr (T (5) A}, (14)
If the matrix A is Hermitian, i.e., A* = 4, then
Alp = ()M AL p. (15)
Some examples of such expansions are given below.

(a) Clebsch-Gordan series for polarization operators

Products of two polarization operators Tz, as, (S) and Tr,a, (S) may be written in the form of a Clebsch-
Gordan series

Trase, () Fiase () = (-0 o/ RL 4 DCL + 0 { 2 2§ | Casane Tenc(S). (1)
L
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(b) Ezpansion of rotation operator

If one is interested only in transformation properties of spin functions and spin operators under rotations
of the coordinate system, one may replace the total angular momentum operator 3 by the spin operator S in
the general expressions for the rotation operator 1.4(31) and 1.4(33). Such a modified operator will be labelled
by a superscript S. If a rotation is defined by the Euler angles «, 8,, the rotation operator DS (a, B,7) may
be expressed as follows

~ . ~ s -~ . ~ 2L+ 1
Ds (a, ﬂ’ ,Y) = laSJe 'ﬂsye 7S, = Z 25 + ICSm’LM mm' (a ﬁ, 'Y)TLM( ) (17)
L.M,mm/'

If a rotatlon is defined by the rotation axis n(©,®) and the rotation angle w, the expansmn of the rotation
operator U5 (w;©, d) is given by

05(w;0,8) = en8 = 2. /7 Y7 (0, 8)TLa (5), 18
(4:6,9) = fzme( )M;L 0(0,9)F1ae(5) 8)
where the functions x§ (w) are the generalized characters (see Sec. 4.15).

2.4.5. Commutators and Anticommutators

The polarization operators satisfy the following commutation relations

[TLLMI (S)’ fLaMz (S)] =
VL +1)(2L + 1) Y (=1)25+Es (1 — (—1)Er+LatLs] { I:gl 1:? L;' }CfiﬁfL,M,TLaM, (5),

L (19)
{foMn (S) T\LzMa (S)} =
V2L +1)(2Lz + 1) )_(~1)25+Es[1 4 (—1)LatEa+ls I’l Lals | Lo 7
1 2+1) ) (- [1+(-1) ] S S 8§ (“LiMLamM, Tim,(5)-
Ls (20)
Equation (1) is a special case of (19) for L; = 1.
2.4.6. Traces of Products of Polarization Operators
Tr {Tom (S)} = V28 + 16r06mo, (21)
Tr { T2 04, (S) TLa, (9)} = (< 1M 61, 1,600, 045, (22)
~ - ~ _ L, L. L
T Pr 00, (8) P2 bty ()T 0y (8)) = (—1)25+ 5045 \ /B T 1) (2L + DOEE u { S5 § } - @)
In general
- o o 2Ly +1)(2Ly +1)... (2L, + 1)]}
Tr {To, 04, ()T, iy (7 u
{To,m,(S) LaM; () Tr.m.(S)} (28 + 1)n/2
Sm m
X EMy+ Mo+ Myt Muo O Coitt o Coatt o mtun -+ O S mebsin 1 {24)

m
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where

2.5. SPIN MATRICES FOR S =1/2
2.5.1. Explicit Form

For the particular case S = %, the spin operator Sis represented by a set of three square 2x2 matrices.
Cartesian components of S in the spherical basis representation are given by

4 1{0 1 5 1/0 —¢ 5 1/1 0
S’"§<1 0)’ Sy“i(i o)’ S“E(o —1)' | (1)
whereas spherical components are written as
& 1 /0 1 a 1/1 0 4 1 /0 0
SH__W(O 0), So—-<0 _1), 5—1—7‘5<1 0)- ()
In addition to the spin matrices, the unit 2x2 matrix Tis usually introduced:

T= ((1) ‘1’) 3)

Note that the Pauli matrices & are widely used instead of the spin operator S. The Pauli matrices are
proportional to the spin operator

™

§=15 (4)

Sr=58, (=zu2) (5)
St=(-1#5_,, (»==1,0), (6)
S;=8, 8 =-5, 8&=5, (7)
§n =84 (n=11,0). 8)

2.5.2. Commutators and Anticommutators

The cartesian components of the spin operator satisfy the following relations
PN . ~ A A 1 ~ .
[5, Sk] = e Sty {85, Sk} = 3 ik, (5, k1= z,y,2). (9)

For spherical components these relations take the form

~ o~ ~ ~ 1 ~
(84, 8] = =v2C}), 8, {8.,8.}= S (D61, (w2 =£1,0). (10)
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2.5.3. Products of Spin Matrices

The four matrices S';, §y, §, and T (or §+ 1 §0, §_1 and ﬂ constitute a complete set of square 2xX2 matrices.
Any function of the spin operator (S = %) may be expanded in a series in terms of these matrices. In particular,
products of the spin matrices may also be written in such a form. Products of cartesian components (where
the indices 1, k, 1, etc. take the values z,y, 2} are given by

Sk = Z&‘kl’f‘ Esiklsb v (11)
Sk Sy = ‘8‘5£k61+ 2(5';51:1 — Skba + Sibix), (12)
anan 1 - '
iSES1S; = 6(5&51,' — 8ubry + 8;5611) 1
1. -~
+ g(&keum — bi1€kjm + bij€kim + Ok1€ijm — Okj€itm + 815€ikm ) Sm.- (13)

In more detailed form, Eq. (11) is written as

-~ ~ ~, lA
S§2=8= 3:2,
z y="Sy z='2' z3 Sy z=_Sz y='2‘5:n (14)
~ A ~ 1:
8,8, =-8,8, =18,

5 & _ 1/1 0 _ 1~ 14

S+IS—1 - 2 (0 0) - _ZI— 5 (03}

A A 1/0 o0 1~ 1a

Sa8u=-3(5 §)=-iT+3% (15)
S418 = —'2'S+1, S_185 = 53—1,

50541 = §S+1, SoS-1 = —55—1-

1 o~ o~ ~
-30” Sy (mvA=%10), (84)"=0, (8_;)"=0, (n=2,3,...), (16)

\/‘ luly
~ IN"~ A 1I\" ~
(50)2” = (Z) I, (5'0)2"+1 = (Z) So, (n=0,1,2,...), (17)

I. (18)

~ 1 ~
8.8, = J(-1)#6u-, T -

§'§=§2=A:+§y2+§,2=—§+1§_1+§0§0—§_1§+1=

n
| o

Products of the operators S and any vectors a and b commuting with 8 may be written in the form
§-(S~a)=ZIa—-[Sxa], (19)

(8-Bxa)=(8x8]-0)=i(8 a), (20)
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file://-/Si8ki

Angular Momentum Operators 49

8 x[8xa)= —lfa+i[§><a] (21)
(§-2)(8 -b) = i(a )T+ (s [a x b)), (22)
(18 x a]-[§ xb]) = 3 (a- b)I+ (s [a x b)), (23)
(8-2)(8 x b] = 7la x bIT + {( b)a- (a-b)8}, (24)
(18 x a] x [ x b]] = Z[a x b)T+ E{(S -b)a + (8 - a)b}. (25)
If n is a unit vector (n? = 1), then
(8 - n)* = (%)kf, (8. n)?+1 = G)k(é-n), k=0,1,2,... (26)

2.6.4. Functions of Spin Matrices

eoSi = Tcosh g- + 28; sinh %, (27
cosh(aS;) = Tcosh %, sinh(a$;) = 28; sinh —;—, (28)
where ¢z = z,y, 2.
@S+ — T+ a8, ¢®3 = fcosh % + 28, sinh %, ex8-1 = T+aS,, (29)
cosh(a8y,) =1, cosh(aS,) = Tcosh —Z—, cosh(aS_,) =T, (30)
sinh(aS,1) = a8,1, sinh(a8,) = 25, sinh % sinh(aS_;) = a8_;. o (3l)

2.5.5. Rotation Operators

(a) Under rotations described by the Euler angles a, 8, spin functions and spin matrices for § = % are
transformed by a rotation operator D} (@, B,7) which is a special case of the operator given by Eq. 1.4(31)

Al o5 .58 5 cos Be=i*%*  —sin ge-“"?’
D3 — e T A8 |, ,THIOyY | L,TVYOs . 32
(,8,7) = e e ¢ PR (32)
The inverse matrix is
[ﬁ%(asﬂ"’)]—l =[ﬁ%(a,ﬂ,"y)]+ D’ (‘Il' '7’.31 -% = a) = (_ —ﬁ: _a)
cosgc‘ 3 smgc iag
\ = o atn . ) (33)
—singe“"?a cos Qe" 2

Matrix elements of the operator D3 (a,B,7) are the Wigner D-functions DM amr(@ B8,7) (Chap. 4). The ex-
pansion of D3 (@, B,) in terms of the spin matrices has the form

15 0o By B a—ys . B . atys
3 I+ 2¢sin 7 §in — Sz — 2 sin 5 co8 "fo""*s, = Zz‘fos 5 8in — S,, (34)

ﬁ%(a,ﬂ,'y) = cos g cos 9‘—%-—2?+ V2 sin ge"“;"g.,.l - 2icos-§ﬁn f%’,ge +4/2sin %e‘“54§_1. (35)

D3 (a, B,7) = cos gcos 2
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(b) Under rotations of the coordinate system through an angle w about an axis n(®, ®) spin functions and

spin matrices for § = % are transformed by the rotation operator i %(w; ©, ®) which is special case of the

operator given by Eq. 1.4(33).

A cos % —igingcos® —isin§sin Qe
0% (w;8,8) =S = ‘ (36)
—isin%sinO@c'®  cos ¥ +isin cos®
The inverse matrix is
(03 (w;0,9)] ! = 03 (w;©,8)]* = O} (w;n— 0,7+ 8) = T} (-w;0,9)
cos¥% +1isin%cos®  isin ¥ sin Qe
= (37)
isin%sin©c'®  cos¥ —isin§cos ®
The expansion of the operator g3 {w; 8, ®) in terms of the spin matrices has the form
0% (w;0,0) =¢~™S = fcos%) — 2i(n - 8)sin g- (38)

The relations between the angles w, ©, ® and the Euler angles a, 8, are given by Eqs. 1.4(16), 1.4(17). Note
that

D¥(a,8,) = T} (w;0,9). (39)
(c) The result of applying the rotation operator b (a,B,7) to the spin matrices may be presented as
§|" = ﬁ%(a,ﬂ,q)g‘-[ﬁé(a,ﬂ’q)l'l = Zaikgk! ("!k = I:yaz)) (40)
k

where a;) are elements of the rotation matrix (Sec. 1.4.8). For spherical components of the spin matrices we
have '

~

8, = D¥(a,8,7)8u,D% (o, 8,7)] 7' = >_ DL, (2, 8,9)5,; (41)
where D}, are the Wigner D-functions (Chap. 4).

2.5.6. Traces of Products of Spin Matrices (S = 1)

For cartesian components of the spin operator the following relations hold (where 3, k, ! etc. take the values
z’ y’ z) ~
Tr {S:} =0,

~ 1
Tr {S:Sk} = 2 bk
_~ A A i
Tr {S:SkSi} = 253k (42)
A A A A 1
Tr {S;SkS515,} = ‘8-(5.'1:51,‘ = 8318k + 8i561),.
AN A A A AN i
Tr {SiSkS515;5m} = 15 (6ikeijm + Sjtikm + mi€ish + SmEini)-

The evaluation of traces of products which contain many spin matrices can be facilitated by using the following
recurrence relation: if we introduce the definition

j‘iliz...i,‘ =Tr {§u ‘i’;...'giu}s (n Z 3)’ (43)
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then . ;
Tirisein = Z&mTiai....in + 55.',.',"'7}'1',....',.- (44)
If n is even, one may also use the relation
Tirisin = %{&'u'zTc'gi‘...i,. = biyisTigigonin + oo F 60100 Tigis iy }- (45)

For spherical components of the spin operator the following relations hold (where u, v, A etc. take the values
+1,0)

Tr{§“}= )
& 1
T {8,830} = 5 (= 1),
s a 1 /3/1 1 1 1 (46)
T {5,858} = -3 5(# 5 ,\)=(—1)1+‘2\f01#1u,

~A A A '—1 Lt
T (85,8581 = (0 60sbacy = (1 barbos + (1) Bupbna).

The recurrence relation for spherical components of the spin operator is written as

—1)#
Tl‘ll‘?-u“n = (_4)_5u1—me---un - fcluxluzTu#s---unf (47)
where
T#x#:m#n = h{sﬂlsﬂz---sﬂu}' (48)
If n is even, one may use the formula
T, BV T by T, §pimn T, 49
B1bzn = T {Bur—wa Tusuaotin = Sus—ns Tuzpaotin + -+ s Tuzpusin-1 }- (49)

2.6. SPIN MATRICES AND POLARIZATION OPERATORS FOR S =1

2.8.1. SpinS=1

If S = 1, the spin operator § and the polarization operators f‘LM(L =0,1,2;—L < M < L) are square
3%3 matrices. The polarization operator Ty is proportional to the unit matrix

A~ 1 ~
Too = —1, 1
b0 = 7 g
where
R 1 0 O
I=]10 1 0 (2)
0 0 1

The polarization operators ﬁ M are proportional to spherical components of the spin matrices §M:
-~ 1 ~
Tim = "\/‘ESM: (M =0,%£1). (3)

The operators i M (M = 0,+£1,+£2) can be expressed in terms of spherical components of the spin matrices as

T\ﬁM chylu AH: A (4)
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The polarization operators Tg M are equivalent to some symmetric traceless cartesian tensor of second rank
Qix:
~ 1 o~ ~ s 4 >~ .
Qix = 2 5iSk + SkSi — -?;5.'1:1 y (4 k=1z,y,2), ()
Qi =Qui, )_Qu=0. (6)
f

Q,-k is called the quadrupole tensor. It has 5 linearly independent components. The relations between 'fg » and
Q.-k are given by

f2:!:2 = %(ézz - éw £ 2iazy);
Box1 = F(Qx £Q1a), | (7)
T;O = \/g-éxz-

The inverse relations are

~ 1 o~ 2 1 o ~ I~ 1 r—

Qzz = E(Tn _+ Th-3) - %Tzo, Qay = Qua = §(T2-2 — Izo),

Qu = —5(Taa + T2-2) - 7€T20’ Qur = Que = 5(T2-1 - T1), (8)
Qus = \/;Tzoy Qus = Qs = '2'(T2-1 +12).

2.6.2. Explicit Form

Explicit forms of the spin matrices and the polarization operators depend on the representation used for
basis spin functions (Chap. 8). We shall consider the spherical basis representation and the cartesian one.
These representations are used very frequently.

(a) Spherical basts representation

Cartesian components of the spin operator 8 are given by

R 1 010 R ‘ 0-1 0 R 10 0
§,=—={101), §,=—|1 0-1], & ={00 0}. (9)
\/5 010 \/E 6 1 0 00 -1
and the spherical components of § are
N 010 R 10 0 R 000
Sy=-lo001|, =00 0|, §,=[100]. (10)
000 00-1 010

The order of rows and columns in these matrices is shown in Eq. 2.3(10).
Matrix elements of the spin operators S, in the spherical basis representation are given by

(8)o'e =V2C18,  (4y0,0" = £1,0). (11)
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The spin matrices in the spherical basis representation satisfy the relations

"‘+ = §i: (" =,y z)) (12)
5:=5, §=-5, §=5, (13)
S:=8, 8&=(-1"5_, (u=41,0). (14)

The quadrupole tensor @,-;,(i, k = z,y, z) in the spherical basis representation has the form

N 1 -10 3 . -10-3 . 1 00
sz=g 02 0], ny= 02 0], Qu= 0-20},
30-1 i -30-1 0 01

15
00-1\ o010 _ . (o-10 (15)
00 0 3 Q38=sz= 1 0-1 ) ny=ng=— 1 01 .
10 O 2\/_ 0-1 0 2v2 0-10

The components of the quadrupole tensor Qix in the spherical basis representation have the following properties

D =
W

sz = Qyz =

DN e,

A~

Q;’; = éik: (‘)k =24 z): (16)

The matrices Q"ka,a,,,a,,,Gu are real, whereas sz,éyz,éy., 5.., are purely imaginary. The polar-
ization operators T s in the spherical basis representation are given by

1 [100
Too=—=[010], (17)
\/5 001
, (o010} (10 0} , [000
T1+1"-— 001, Two=—4=<|00 0], Th-1=—4x}100]}, (18)
\/i 000 ﬁ 00-1 \/5 010
. oo1\ _ , (o-10) (1 00
T3+2= 000 ) T21=— 0 01 3 T20='—— 0-20 )
000 V2 0 00 Ve 0 01
. L [0 00) 000
Tpoa=—[1 00}, Bz=[000]. (19)
V2 0-10 100
Matrix elements of the polarization operators in the spherical basis representation may be written as
(Fuaddoro = /22200000, (0,0 = 41,0-LS M < ). (20)

The polarization operators ﬁ,u in the spherical basis representation are real, i.e.,
Tinm=Tm (21)

and satisfy the relations
The = ()MT_u. (22)
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(b) Cartesian basis representation

Cartesian components of the spin operator S in the cartesian basis representation are given by

~ 00 0 ~ 003 ~ 0-:0
S,={o00-], §=| oo00|, &= 00
0:i 0 -500 0 00

The matrix elements of §,~ in this representation may be written as

~

($)ut = —teim, (3, k,1=2,y,2).

The spherical components of § are as follows

. 1 0 01 R 0—0 R 1 00 1
S+1=— 0 0: 5 So= 1 00 ) S_1=— 00—
V2 -1-30 0 00 V2 ~-172 0

The spin matrices in the cartesian basis representation satisfy the following relations

(§u)+ = (_1)“§—u: §; = ("1)1+“§—m (:“' = ':{:1,0),
(8)t =58, 8§r=-8, (¢ = =,y,2).
The quadrupole tensor @;k (¢,k = z,y, ) in the cartesian basis representation is given by
. qf-200y _ ,fr 00y _,[100
sz=§ 010], ny=§ 0-20], Qsz=§ 01 0},

001 0 01 00-2
. R 1 0-10 . . 1 00 -1 R . 1 0 0 O
sz=ny=§ -1 00], Q:u=sz=§ 00 0}, Qyz=sz='2‘ 0 0-1
0 60 -10 O 0-1 0

The matrix elements of @;k in the cartesian basis representation may be written in the form
~ 1 2 .
(Qik)im = -3 (5¢15km + bim Okt — §5ik51m); (5, kb, m = z,y, 2),
In the cartesian basis representation the matrices @;k are Hermitian and real, i.e.,
le.c = Qik) Q:k = Qik; (hk =2z, y)z)'

The polarization operators fLM in the cartesian basis representation have the form

R 1 (100
To=—7=1010],
V3 001
_ ([ 001 .1 [0-i0 ~ 1 f 001
T1+1=§ 0 0: y 10:75 + 00 , T1_1=§ 00 —2 s
-1—-10 0 00 -1z 0
R L [-1-0 R L [001 ~ L 100
T2+2=§ - 10 s T2+1=§ 00: ) T20=76 01 O y
0 00 120 00 -2
. 1 00-1 R 1 -110
T2-1=§ 00 = s T2_2=§ 110
-1+ 0 000

(24)

(25)

(26)
(27)

(31)

(32)

(33)
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The polarization operators ﬁ, M in the cartesian basis representation satisfy the relations

T = ()™ Ton, (34)
Tipe = (1) M T p. (35)

One can easily transform any matrix in the cartesian basis representation into a matrix in the spherical basis
representation and vice versa with the aid of the unitary matrix U,

A(spherical basis) = U A(cartesian basis)U—.l

. o (36)
Alcartesian basis) = U—IA(spherical basis) U
In this case A is any spin or polarization operator (i.e., §,-,§,,, Oix, f’LM),
S U | S 1
vz i O 0z
U= 0 0 1}, Ul=U"= -% 0 —ﬁ . (37)
1 s
7 73 0 0 1 0
The matrix U coincides with M(+1,0,~1 « z,y,2) and U~ coincides with M(z,y,z — +1,0,—1) (Table

1.2).
The formulas given in Sec. 2.6 (except those of Sec. 2.6.2) are independent of the representation unless the

contrary is indicated.

2.6.3. Products of Spin and Polarization Matrices

For § = 1, the nine matrices fLM(L = 0,1,2;—L < M < L) or, equivalently, the matrices f, §, @;k
constitute a complete set of square 3x3 matrices for expanding any function of the spin and polarization
operators. In particular, products of the spin and polarization operators may be expanded in a series in terms

of these matrices.
Products of cartesian components of the matrices S and Q;x may be expressed as follows (¢, k, !, etc. take

the values z,y, 2)

(a)

A~ 2 ~ 1 ~ ~
SiSk = g&kf-*- ';_eiklsl + Qik. (38)
In particular,
§2=52+52+82=1], (39)
{§,§k] = 8:8c - 58 =i 8, (40)
{S,,§k} = §;§k + Akg; =3 ,'kf-f- Zégk. (41)

1
2

‘l: ~ 1 ~ ~ 1. -~ ~ ' -~
= §€iuf + 5(5”:5: + 6r1Si) + §(€¢ka:m + camQhm + Ckim Qim). (42)

O.)

)

i . o
= gessz-l- (6ix St + 61 Si) + 1€0um Qkm
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From Eq. (42) one may obtain the Duffin-Kemmer relation

5:5:5i + 5,5,8: = 65 + 6ui5:. (43)
Other particular cases of (42) are
85:5.8; = 6..5; (no sum over 3); E§.§k§, =5, (44)
1
5.5 Sk + 518:S; = 5: + 645k (no sum over k) (45)
5.5,8, + §,8,5; + 8,8.8, =1, (46)
§z§.§y + S,g Sz + S SsS’ - _‘I
A A A A A A 1A .A
z g0y = yy:::E :""Qyn
OyPy = x:z=§ z+£Qyn
A A A A A A 1 ~ A
yPzOz = xsy=§ y"‘*qu
yOzOy = zsy=§ y+‘an
_~ A A AN AN 1A 'A
Oydy = zzs=‘2‘ s""szs )
535285z = Sy5yS, = 2% +1Qzy,
(c) .
§?"=§I+ Qi, n=1,2,...), 8" =§, (n=0,1,2,...). (50)

In particular, if n is the unit vector, then

(S n)"‘ = —I+ anleth (k =1,2,3,. )
sl (51)

(8- n)**1=(8.n), (k=0,1,2,...),

(d)

QxS = n (5aSk + 6k1S; — 55.'1;31) + E(Silkam + €kim Qim ), (52)
iQr = 1 (6iksl + 6 Sk — §5klsi) + 'z-(tikazm + €iim Qkm)- (53)

(e)

QikQim = 3 (5.'15km + bim b — 3 ik6lm) I- y (5'1 Qikm + 6im Qi + 6xm Qi1 + 61 Qim—
4

=30 Qim — §6lmQ|‘k) + §(5il¢kmp§p + bim€kipSp + 6x1€impSp + Okm EitpSp). (54)

Products involving spherical components of the spin operator 8 and the polarization operators ﬁ,M may
be expanded in a series as given below (u,v = +1,0)
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()

~ A 2 ~ ~
5.8, = 5(—1)"5,,_,,1 - —CIA, 8, + CM Top.

\/_

In particular

5% = ~8,18.1 + 8,8 ~ 8-1841 = 21,
[Aw gv} = §u§v - §u§u = —\/501121;,@\9
{5.,8)=5.8+88 = §(—1)“6 2078 T
(i)
531 = Tous, '§ii =84, =58 =...=0,

(i)

LyL, L

Particularly,

~ ~ ~ A~ 1 ~
TimToo = TooTLm = ﬁTLM, (L=0,1,2;-L< M <L),

Su 2M = 2 [C1u2MS - \/;CﬁszTZN:
£.8 1 82 &
2M Sy = ~3 Cx,.zMS + §C1u2MT2N’

ooy = (—I)M . §6M—NI+ E\/‘C MZNS + E\/;C§£J2Nf2b

2.6.4. Functions of Spin Matrices

5
e*” =

(1 + 2cosh a)T + sinh a §; + (cosh a — 1)Q;; (no sum overs)

O

cosh(af;) = 5(1 +2cosh )T + (cosh a — 1)Qs;,
sinh(af;) = sinha §;,

where t = z,y¥, 2.

¢S+ = I+ aS+1 + ng,

—

g = ~(1+ 2cosh a)I + sinh aSo + \/;(cosh a— l)fzo,

o ~ ~ 2 ~
51 = T4ab , + %Tg_z,

w

sinh(a§+1) = a§+1, sinh(a§0) = sinh & S, sinh(ag_l) =aS_,,

57

(55)

(56)
(57)

(58)

(59)
(60)
(61)

(62)

(63)
(64)
(65)

(66)

(67)
(68)
(69)

(70)

(1)

(12)

(73)
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wl%

cosh(a§+1) = f+ TZZ;

~ ~ 2 ~
cosh(aSy) = %(1 +2cosh o)l + \[g(cosh a— 1)Ta, (74)
~ ~ az ~
cosh{aS_1) =1+ <5 -2

2.6.5. Operators of Coordinate Rotations

(a) Under rotations of coordinate systems defined by the Euler angles «, 8, v spin functions and spin matrices
for S = 1 are transformed by the rotation operator D!(a, §,7) which is a special case of the operator given by
Eq. 1.4(31)

ﬁl(a, ﬂ, ,7) — e—ia§, e—iﬁ§,e—i7§, . (75)
In the spherical basis representation ﬁl(a, B, ) has the form
1+c20s2 e—i(a+~/) _%g e—ia l—czosé ei(1—a)
D'(a,8,%) = Wl cos ~ler | (76)
l—czosg ei(a—-,) s_%ﬁ eia 1+c201g e.‘(7+a)

The matrix elements of D!(a, ,4) in this representation are the Wigner D-functions D} g, By) (see
Chap. 4).
In the cartesian basis representation we have

cosfcosacosy —sinasiny —cosfcosasiny —sinacosy sinfcosa
fay . - - 3 .
D(a,B,7) = | cosBsinacosy+cosasiny —cosfsinasiny+cosccosy sinfsine |. (77)
—sin S cosy sin g siny cos 8

The matrix elements of D* (a,8,7) in the cartesian basis representation coincide with the elements of the
rotation matrix a; (see Sec. 1.4.6).
The inverse rotation of the coordinate system is performed by the matrix

[ﬁl(a,ﬁ’q) “l= [ﬁl(a,ﬂ"y)]'*' = ﬁl(-'Y) "ﬂx—a) = ﬁl(”“'ﬁﬂy it (1). (78)

(b) Under rotation of the coordinate system through an angle w about an axis n{©, ®) the spin functions and
spin matrices for § = 1 are transformed by the rotation operator U!(w; ©, ®) which is a special case of the
operator given by Eq. 1.4(33)
U'(w; ©,8) = e~wn'S, (79)
In the spherical basis representation this operator may be written as

3 cosw(1+cos?©) —isinwcos® + L sin® O

0'(w;0,8) = %sin@e“’[(cosw— 1) cos © — isinw]
1(cosw — 1) sin® ©¢*2®
ﬁ sin @e™*®[(cosw — 1) cos © — i sinw] 1(cosw — 1) sin® @72
coswsin® © + cos? © - % sin @e*®[(cosw — 1) cos ® +4sinw] | .  (80)

—% sin @¢'®?{(cosw — 1)cos © +4sinw]  Lcosw(l+cos? @) +1isinwcos® + sin? O
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In the cartesian basis representation i }{w; ©, @) has the form

R (1 — cosw) sin® © cos® & + cosw
U*(w;©,8) = | (1 - cosw)sin®© cos Psin d + sinw cos ©
(1 —cosw)sin®cos@cosP — sinwsinOsin

(1 — cosw) sin? © cos ®sin  — sinw cos © (1 —cosw)sin®cos©cos P +sinwsin O sin P
(1 - cosw) sin® © sin® & + cosw (1—cosw)sin®cosOsinP —sinwsin@cos® | . (81)
(1—cosw)sin®cosOsinP +sinwsin@cos® (1 —cosw)cos? O + cosw

The inverse rotation of the coordinate system is performed by the matrix
[0} (w;0,®)] ! = [U(w;©,9)]" = 0 (~w;0,8) = U (w;r - 0,7 +9). (82)

The expansion of the rotation operator i }(w; ©, ®) in terms of the spin matrices and the polarization operators

has the form 1
U (w; 0,8) = 5(2cosw + 1) —isinw(n - 8) + (cosw — 1) annk@;k . (83)
ik

(See also Eqs. 2.4(17) and 2.4(18).)
The relations between the angles w, ®, ® and the Euler angles a, 8,7 are given by Eqs. 1.4(16), 1.4(17).

Note that
D! (a,B,7) = ﬁl(w; 0,9). (84)

(c) Applying the rotation operator ﬁl(a, B,7) to the spin matrices yields (¢, k,7,! = z,y, 2)
§:Eﬁ1(a)ﬂ)'7)§i[’\1(a ﬁ; )]—I—Eaikgk: (85)

@l = DY(a, 8,7) Qix[ Do, B,7)] 7! Za,,au@ﬂ, (86)

where a;; is the rotation matrix (Sec. 1:4.6)
§:4561(a$ﬂ:'7) [A a ﬁ)'y Z a ﬂ)')' Su, (/“:V=i150) (87)

A'LM =D (a ﬂ)'Y)TLM{D (a /3"7 ZDM'M(Q .B’ )TLM’ ("L S MyM' S L); (88)
Ml

DE 14 (@, B,7) being the Wigner D-functions (see Chap. 4).

2.6.86. Traces of Products of Spin Matrices

For cartesian components of the spin matrices S; and @;k the following relations hold (7, k, I, etc. take the

values z,y, 2).

{8} =0, T{Qu}=0,
Tr {8:8:} = 264, Tx{8iQu} =0, Tr{QuS}=0,
T {8:5:81} = iein,

2
’D'{thle} it ( 115km + 6am5kl - g 1k61m) Tr{S SkSl m} = sk&m + &makl
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For spherical components of the spin operator §,, we have (u, 1, ), etc. take the values +1,0)

Tr {§u} =0,
1}{§u§v} = (-1)*26,-.,

{5,858} = -6 (; ! }\) = (-1)"Vaek), (%)
T {5,5,5:5,} = (- 1)*** (u-sbr—p + u=pbi-1) »
Tr{8,,8,,...5,,} =0  ifus+pa+...+pn #0. (91)

Traces of products of the polarization operators T (L=0,1,2;—L < M < L) can be evaluated by using
Eqs. 2.4(21)-2.4(24) at § = 1.
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Chapter 3

IRREDUCIBLE TENSORS

3.1. DEFINITION AND PROPERTIES OF IRREDUCIBLE TENSORS
3.1.1. Deflinition

Irreducible tensors occupy a central position in angular momentum theory. Under rotations of coordinate
systems these tensors transform in the same manner as eigenfunctions of the angular momentum operator. The
use of this property permits us to develop very effective methods for calculating matrix elements of different
quantum-mechanical operators.

An irreducible tensor My of rank J (with J integer or half-integer) is defined as a set of 2J + 1 functions
(components) Myps (where M = ~J,-J +1,...,J-1,J) which satisfy the following commutation rules with
spherical components of the angular momentum operator

~ 1 .
[Ji1, Wyae] = ?7561’6\/-7(-7 +1) - MM 1) Mypryy,

[Jo, Mype] = MMypq.

(1)

In compact form

[fmeM] = M? VI + I)Cﬁ\fff m-’mﬂt' (2)

From these relations it follows that

[32, Mypg] = T(J + 1) V. (3)

The quantity § in Eq. (1) which determines relative phases of different Msps components is arbitrary. Let us
adopt § = 0, i.e., ¢¥** = 1, and choose the positive sign of the square root. The linear equations (1) define
the components of the irreducible tensor Pyp, within an arbitrary scalar factor, which is the same for all the
components. This factor can be a real or complex number, function or operator. In the case of integer rank J
the overall phase of the M y5r components is usually defined in such manner that

(Bne)® = (1) MDYy _ . (4)

This choice of the phase coincides with that for spherical harmonics (Chap. 5). However, sometimes in quantum-
mechanical applications it is convenient to redefine irreducible tensors as

By =T M. (5)
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Then one has

(D) = (-1)7MD;_ . _ (8)

The choice of the phase (6) can be used for tensors of integer as well as half-integer rank J. Making use of this
phase convention for tensor operators as well as for wavefunctions describing initial |a) and final states [b) we
get the following relations for matrix elements of Hermltxanfm =M J operators

(81 a¢la) = ((al(Trar)*[b))*. (7)

8.1.2. Covariant and Contravariant Components

Any irreducible tensor M; of rank J can be expanded in a series based on a complete set of the unit
orthonormalized irreducible tensors ey of rank J

e¥ ern =6556Mm . (8)

The tensors esps can be composed, for example, of the basis spin functions. The expansion of M; is written

‘JJI,:Ze’}‘-‘.mJM=Ze;M-‘m’}‘. (9)
M M

as

M;rc represents the covariant component of the tensor M; and <m¥ denotes the contravariant component.
These components are related by

= (WMyn)* = (=1)" MW, (10)
MY = (Disn)* = (-1)7MBy_pe

3.1.3. Transformation of Irreducible Tensors Under
a Rotation of the Coordinate System

Under rotations of the coordinate system described by the Euler angles o, 8, , the components of irreducible
tensors Mspr and and WM sas undergo linear transformation. The coeficients of such transformation are the
Wigner D-functions (Chap. 4)

QRJMI(X') = ﬁ(a:ﬂ,’Y)mJM‘( )[D(a :B)'y ]_ ZmJM X)DMM’(a .Bs'Y))

. . _ . (11)
Mo (X') = D(a, B, Wsae (X)[D(ex, B,7)] 71 szm ) Diener (@, B,7) -

Here X and X’ denote sets of all arguments of the tensor in the initial and final coordinate systems, respectively.

3.1.4. Transformation of Irreducible Tensors Under
Inversion of the Coordinate System

The transformation properties of irreducible tensor components under inversion of the coordinate system,
r — —r, permit us generally to represent an irreducible tensor MM ; of integer rank J as the sum of two tensors

9.)'{(“) and 931( ), ie.,
W,y =G + Y, (12)

Each of these tensors has definite parity.
Under inversion of the coordinate system the tensors 9)13*1) transform in the following way

Bl Bt = n ) () = £1). (13)
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The tensor im(;” ) with parity 7; = (=1)7 is called the true (or polar) irreducible tensor of rank J. Tensor
‘mf,"’) with parity 7y = (—1)7%! is the pseudotensor (or azial tensor) of rank J. The relations (12) and (13)
are valid for the tensors M ; as well.

3.1.5. Double Tensors

A double tensor Wy, 5,(1,2) of ranks J; and J; has (2J; +1)(2J; + 1) components and depends on variables
of two different subsystems, 1 and 2. The components of the double tensor satisfy the following commutation

relations

[Ta1(1), Wi, 1302 (1,2)] = \/'1——\/-71(-71 +1) = Mi(My £ JWi 2100, (1,2), (14)
[Jo(1), WJLMIJzMa(l 2)l = MiW 1,000, (1, 2), (15)
(T21(2), Wia, 10 (1,2)] = ?75\/-72“2 +1) = My(My = YW, 0, 5, M541(1,2), (16)
[ 0(2) Wi My 5, M, (1,2)] = MaW 0,0, (1, 2). (17)

Here J (1) and 3(2) are the operators of the total angular momenta of subsystems 1 and 2, respectively.
Under rotation of subsystem 1 and 2 the double tensor Wy, 5,(1,2) transforms according to the represen-

tation D7t or D72, respectively.

J],M;J)Mz 3 = 11M1J7M1 3 MiM! 1 1)’71 3

4 (V,2) 4 (1,2) Dy, ag; (1, B m1) (18)
My

Wi nmy(1,27) = ZWJ;Ml 1M, (1, 2)D{},M; (2, B2,72)- (19)
M,

3.1.8. Examples of Irreducible Tensors
In this section we present some examples of irreducible tensors considered in this book.
(a) The operators of the angular momenta 3LS8 (Chap. 2} are irreducible tensor operators of rank 1.
(b) The polarization operator Tra(S) (Sec. 2.4) is an irreducible tensor operator of rank L.
(c) Spherical harmonics Y}, (9, ¢) (Chap. 5) are irreducible tensors of rank .
(d) The spin wave functions of a particle of spin § (Chap. 6) are irreducible tensors of rank S.
(e) Tensor spherical harmonics Y5 (9, ) (Chap. 7) are irreducible tensors of rank J.
We may apply the results given in this chapter for all the tensors mentioned above.

3.1.7. Direct and Irreducible Tensor Products. Commutators of Tensor Products

An trreducible tensor product £ of two irreducible tensors My, and N, of ranks J; and J; is defined as
the tensor of rank J whose components € jps can be expressed in terms of My, pr, and Ny, s, according to

Com = Z Criv 1304, T v, Rty (20)
MlMg

Irreducible tensor product is denoted as
£r= {mh ® gzJn}J' (21)

The direct product of two irreducible tensors My, and N, is defined as a set of (2J;+1)(2J2+1) components
Wy, a1, N, 0, This tensor is generally reducible and can be decomposed into parts which themselves transform
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independently under a rotation of the coordinate system. In other words, the direct product can be represented
as a sum of irreducible tensors £

Ji+J3
_ IM
My e, Roym, = Z Crm, 1M, Sam- (22)
J=[T1= T

It is essential that the irreducible tensor product £;a satisfies the same equality (6) as My, pq, and K TaMs
(80m)* = (-0)""M €rpe (rae = (S5, ® N }ona). (23)

This property is specific for tensors of the pi Mm-type. The tensor product £;pr does not satisfy the relation
(4) although M, pr, and Ny, satisfy this relation.

Let us introduce some definitions and notations which will be widely used in the consideration of products
of non-commuting tensor operators.

The commutator of components of two irreducible tensors is defined by

Ramyramy = [ Baey, Noane, ]| =Moo, Noam, — Noyae; My ag, (24)
The commutator of an srreducsble tensor product is written as
9‘?&(” = {':'!)t;, ® mJ,}JM - (—1)"“’"{9?;, @mJ‘}JM. (25)

The functions SR?A;," are the components of some irreducible tensor. They may be expressed in the form

9‘5‘&{” = Z Cﬁ\{l;hbﬁ SRJxMxJzMz' (26)
MM
For commuting tensors we get
{Mr, ® N }ome = (1) { Ny, @My, }ame (27

On the other hand, for non-commuting tensors we have

{Ms, ® Ny }one = (1427 Ny, @ My Yone + RES. (28)

In particular, from these equations one can see that an irreducible (rank-I) tensor product of two identical
tensors M is equal to zero, if I =2J — 1,2J — 3,... and the tensor components commute

{M; @B} =0, (29)

8.1.8. Scalar Products of Irreducible Tensors

The scalar product of two irreducible tensors M; and N of the same rank is defined as

(9]‘_} . m,]) = Z(—I)_Mﬂnh\.{ No-m = ZSJI;MW‘,‘M = iju SRf,‘ (30)
M M M

Similarly, the scalar product of two irreducible tensors Wty and 9, is given by

(My - Ry) = Z(—I)J—MﬂJM Ny-m = Zg‘JMﬁ;M = ZﬁliM‘ﬁy . {33)
M M M
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Note that
(m‘; . 92;) = (Sﬁ(} . 9‘?]) . (32)

Scalar products differ from irreducible tensor products of zero rank only by some numerical factor. The latter
tensor products read

1 _
{; @ Ns}oo = M%:h C33s ants Trne, Nine, = T EST ;(—I)J MWy Ny-m, (33)
. - _ - 1 L o
{B;® Ns}oo = M%,; Coy v, M, Ming, = RS ;(—1)"” Drne Ny ne (34)

Hence, the relations between scalar products and tensor products of zero rank are determined by

(B - Ny) = (-1)" V2T + 1{M; ® Ns}oo s (35)
(ﬁl} . ‘ﬁ]) =v2J+ 1{@1@ 9?1}00 .

For the scalar product of double tensors we have

(Wh-’z (1’2) ’ ﬁ-’l-’:(l) 2)) = z (_I)JI—M1+J’-M’WJ1M112M2(1’ z)ﬁJx-Mxh—Mz (1’ 2)’ (36)
MiM;

3.2. RELATION BETWEEN THE IRREDUCIBLE TENSOR ALGEBRA
AND VECTOR AND TENSOR THEORY

8.2.1. Vectors and Irreducible Tensors

An arbitrary vector A is an irreducible tensor of rank one. Its spherical components may be treated as
components of an irreducible tensor A, of rank one, for which A} = (—1)#A4;_,..

A=A, AM=4as (1)

A polar vector is a true tensor of rank one. Under inversion of the coordinate system its components change
their sign. An axial vector is a pseudotensor of rank one. Under coordinate inversion its components remain
unchanged.

Using two vectors A = A; and B = B; one can construct three irreducible tensor products of ranks
0, 1,2,

{A1®Bi}oo, {A1®Bi}i,, {A:1©Bi}a.

If one of the vectors A or B is polar and the other axial, then {A; ® B, }¢o is a pseudoscalar, {A; ® B;};, is

a polar vector, {A; ® B, }2, is a pseudotensor of rank two. If both vectors A and B are either polar or axial,

then {A; ® B1}oo is a scalar, {A; ® B;},, is an axial vector and {A; ® B}, is a true tensor of rank two.
(a) The irreducible tensor product of rank zero differs from the scalar product of vectors A and B by a

numerical factor:

{A1®Bi}oo = —-1—3(A -B) . (2)

V3

The scalar product of irreducible tensors A; and B; introduced in Sec. 3.1.8 coincides with the scalar product

of vectors,
(A, -B;) =(A-B). (3)
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(b) The irreducible tensor product of rank one is related to the vector product of vectors A and B by
i
A; ®B;}; = —=[AxB|. 4
{A1®B} ﬂ[ ] (4)

The components of the tensor product of rank one can be expressed in terms of products of spherical components
of vectors A and B as

{A1®Bi}in = —=[Ax By = > CIM A,B,. (5)
\/5 Mv
(c) The components of a tensor product of rank two are also related to products of spherical components

of A and B:
3| M| -2

— 2M = It Bl I
{AleBl}m_;om,A "3 AAEST g_: (AuB. + A,B,). (6)
v uzv

In more detailed form Eq. (6) may be written as
{A1®Bi}a4z = A11B4y,
1
{A1®B1}241 = —=(A4+1Bo + Ao B41),

V2
{A1®B;}0= —\}—E(AHB_I +2A0By + A_1B41), (7
{A1®B;}o; = \/—(A 1Bo+AoB—1),
{A1®B;}2=A4_1B_;.

Given three commuting vectors A;,B;, C; we can compose the following irreducible tensor products of ranks
0 and 1:

{{A1®B1}0®Cih = _T(A B)-C, (8)
{{A1®B1}1®Ci}o= —\/-[A xB|-C (9)
{{A1®B,}; @ Ci}s = —3[|lA x B| x C| = 2A(B -C) - %B(A .0), (10)
{{A18B1},8Ci}1 =/ :{3C(4 B) - 1B(A-C) - ;A(B-C)}. (11)

In addition to the foregoing formulas, there exist products which differ from Eqs. (8)—(11) by vector coupling
schemes. The problems concerned with recoupling in tensor products are considered below (Sec. 3.3).

Given four commuting vectors A, B1,C; and D; we can compose the following irreducible tensor products
of ranks 0 and 1:

{{A1®B1}0® {C: @ Di}o}Jo = 5(A B)(D - C), (12)
{{A1®B;}; ®{C:®D;}o}y = -—TIA x BJ(C - D), (13)
{{A1®B1}0®{C:1®D:h }y = —;/—g(A -B)[C x D], (14)

{{A1©B.,},®{C,8Dih}o = ;= ((A-C)(B D) - (4-D)(B )}, (15)



Irreducible Tensors 67

{{A1®B;}y ® {C1®D 1 }1}1 = _ﬁE{C(D .[A xB)) -D(C-[A x B])}

= —;5{B(A-[Cx D) - A(B-[C x D]}, (16)

V3 (1 1 1
{A1©B1}28{C: ©Dihh = ={5(A B)[Cx D| - ;B(D [A x C]) - FA(D [Bx C] }, (17
{{A1®B1)1 @ (C1 ©Du}ahs = F={3(C-D)AxB] - 3C(B (D x A]) - ;D(B-[C x A}, (19
{{(A1©B1): @ (C1®DukaJo = {(A C)(B-D) - {(A-B)(C D)+ (A -D)(B-C)}, (19

{{AI ®B1}2®{Cl ®D1}2}1 =
- 2\/;—3{(1* -C)[B x D]+ (A -D)[Bx C|+(B-C)[A x D} + (B - D)[A x CJ}. (20)

The change of coupling schemes in products of four operators is discussed in Sec. 3.3.
Products constructed from the components of identical vectors have the following property

{. .. {{Al ® Al}lz (o3¢ Al}l; e ® Al}l,. = {A]_ Q... {Al ® {A1 ® Al}lz }1, v }(n. (21)

f a vector A does not contain any spin variable and differential operator one can express such products in

ierms of spherical harmonics (Chap. 5), i.e.,

|A[*Yi,m., aP)HCmI. 107 (22)

=2

{..{{A1®A 1}, A1 },...®9 AL iom, = 21 +1

vhere ¢, ¢ are the polar angles of the vector A and /; = 1. In particular, if I = 2,l3 = 3,...,l, = n, we have

(. {{A1® A}, ®A1}s...® Ar}om =4 /(—24—+1W|A|"Ynm(:9, o). (23)

3.2.2. Cartesian Tensors of Second and Third Ranks

An arbitrary cartesian tensor of second rank T (¢, k = z,y, 2) is, generally, reducible and may be decom-
rosed into three irreducible parts:

(a) a tensor which is proportional to the unit tensor, E;x = Eb;;

(b) an antisymmetric tensor A;x = —Ag;;

(c) a symmetric traceless tensor Six = Ski, Y.; Sii = 0. Thus,

Txk=E6k+Ak+S1ky (24)
E= tk 3 Z Ttn (25)
A = (Ttk Tlci)y (26)

Six = %(T‘k + Thi — '3- ik ZTH) (27)
1
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The value E is invariant under rotations of coordinate systems. It is an irreducible tensor of zero rank
Yoo =F. (28)
The antisymmetric tensor A;; is equivalent to the axial vector
A =W, U= %Z‘:'HAM . (29)
Y]
Using the components A;x, one can form an irreducible pseudotensor of rank one:
o= Uy = Azm
141 = \/_(91 +:Uy) \/_(A,,,

Using the components of the symmetric traceless tensor §;;, we may construct an irreducible tensor of second
rank.

1id). (30)

T20 = Sus,

41 = \/,(sz +1S,y), - (31)
Y242 = \/; (Sze — Syy £ 28,

Thus, from nine cartesian components T;; of a tensor of second rank we can compose one tensor of zero rank
(scalar which has one component), one pseudotensor of the firat rank (three components) and one irreducible
tensor of second rank (five components).

From the 27 cartesian components T;x; of a tensor of third rank we can compose one pseudatensor of
zero rank T oo (scalar, which has one component), three tensors of first rank T, (3x3=9 components), two
irreducible tensors of second rank T, (2x5=10 components) and one irreducible tensor of third rank Is,
(seven components). In this case construction of the tensors of first and second ranks is not unique.

8.2.3. Differential Operations as Irreducible Tensor Products

Differential operations on scalars and vectors (see Sec. 1.3) can be written in the form of irreducible tensor
products of the operator V and corresponding scalars and vectors,

grad ® = {V; @ ®},, (32

divA = —V3{V; ® A, }o, (33

curl A = —iv2{V, ® A1}, (34
A=V?=—\/3{V,®V,}, (
grad divA = —v3{V, ® {V; ® A1 }o}1, (

curl curlA = ~2{V, ® {V: ® A1 1 }4, (37
div grad @ = —v3{V; ® {V1 ® ®}1}o = —V3{V; @V}, &, (
curl grad ® = —iv2{V,; ® {V; ® ®};}, =0, (
div curl A = ivV6{V; ® {V; ® A; }1}0 = 0. (

As follows from Sec. 1.3.1 the operator V is given by

d 1 -~
V=n5—-;[nxL], (41)
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In spherical component form it is written as
[4x a V2 -
V“ = —3—(Y1";9—r - -T— {Y1 ®L1}1“). (42)

Here Y; is an irreducible tensor, whose components are spherical harmonics Y;,(n) (Chap. 5); £; = T is the

orbital angular momentum operator (see Sec. 2.2).
When expanding any scalar function ®(r) in a Taylor series, one will deal with arbitrarily large powers of

operator V:
&(r + 6r) = ™V)B(r) = B(r) + (6r - V)®(r) + = (5r V)20(r) +.
= ®(r) + br(u -V)P(r) + -2-!(6r)2(u -V)2<I>(r) +.... (43)

Here u = §r/|6r| and (u-V) = d/ds is the operator of directional differentiation in the direction u (see Sec. 1.3).
The operator (u - V)™ = d"/ds™ can be written in the form of tensor product

@V)*=(-1" > (-)*({...{{mBuik,@u}y, ...8uh, {... {{Vi®Vi};,®Vi}y, ...0V 1 },), (44)
i3,ls,.. l
Using Eqgs. (22) and (23) one can express multiple.tensor products of the unit vector u which enters Eq. (44)
in terms of spherical harmonics.
3.3. RECOUPLING IN IRREDUCIBLE TENSOR PRODUCTS

The irreducible tensor product of two irreducible tensors is defined in Sec. 3.1.7. By making use of the same
relations one can form irreducible tensor products of three and more irreducible tensors. However, in these
cases different orders and different coupling schemes of tensors in products are possible.

The recoupling tensors without change of their order may be carried out by somé real (for a given definition
of the vector addition coefficients) and orthogonal matrix which performs the direct and inverse transformation.
When the tensor order has to be changed one should take account of the commutation rules (Eqs. 3.1(24)-
3.1(28)). We will use the notation

Hape...a = [(26 + 1)(26 + 1)(2c + 1) ... (2d + 1)]} .

3.3.1. Relations Valid for Commuting as well as Non-Commuting Tensors

For recoupling tensors without changing their order in irreducible tensor products of three and four tensors,
one has the following relations:

{{Pa® Qs}c ® R}y = (—1)otbH/+d Z nhc{ : ; ; }{P., ® {Qs ® Ra}n}y, (1)
A

({Pa®Qs}c -Re) = (—1)'”“%(1’.{: {Qs ®Re}a), (2)

(1Pe® Q)o@ (Ra®S)sh = (-0 LIy £ 1 ({{Pe® b 0 Rabs 05

= () {4 ] 2 HPa@ {Qs @ {Ra®SI I, )
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(_1)—C+enc

T ({Pa®QubORa). S.) = (1) 1 (Pa{Qu@(Re8S.) 1)), (4

({P0®Qb}c‘{Rd®Sc}c) =

{{PaeQuc8RAI®S I = L (-1 s { | S} ¢ § HPao{Qu@{ReOS L Dok (8)
Ie

({Pa® Qule O Ral +S4) = (-1 (Pa- {Qs @ {Ra® 8c}y o). )

8.8.2. Relations for Commuting Tensors

To change the coupling scheme for irreducible products of three and four commuting tensors one can use
the following relations

{P.®{Qs ®Ra}s}e = (1) {Pa @ {Rq ® Qo}s)e = (-1 *{{Qs @ Ra}; ® P},

= (~1)2**+9"<({R; @ Qv}; ® Pa}e, (7)

({P.® Qule@Ra) = (-0 T Taa{ $ } £ Qo ® {Pa@Rala)s, (®)
h:

((Pa® Qu}e Ro) = (<17 1£(Qs - {Pa OR}o), (9)

{Pa®{Qo® {Ra® S} nke = (1) {P, @ {Qs ® {Sc ® Ra}s }n}s
= (-1)4*5*+-h(P, @ {{S. ® Ra}; ® Qo}a}e = (-1)*+P{P,® {{R4®8.}; @ Qu}n )
= ()" *{{Qs ® {(Ra @ S, }s}n ® Po}s = (—1)¥+er***=/=%{{Qy @ {S. @ Ru}s}n @ Pu}x
= (—1)ottH e MUQ. ® Ra}y @ Qu}n ® Pali = (-1)**** "*{{{R4 ® 8.}, ® Qs}n ® Puls,

(10)

abe
{{Pa @ Qb}c ® {R'd ® Se}j}h = Z nclgh{ d ; i }{{Pc ® Rd}a ® {Qb ® Sc}h}h (11)

gh [

{Pa® Qe ® (Ra®Sc b = I (-1 {2 {0 T Hi (P o R0 Qi) @ S
gh 12
((Pa®Qu}e (Ra®S.}) = (1724 -3 { ¢ & “H((Pa @ Raly - {Qs @841,) (13)
(Pa® Qu)e - {(Ra®S.}) = S (- ornr Bt (0L PP o R o Qu)e 8. (14)

Equation 3.1(27) and Eqs. (11)-(14) permit us to obtain all other permutations. The product {P,® Qb}s is
orthogonal to tensor Qp, if a =2b—1,26-2,... :

({Pa®Qs}s - Qs) = 0. (15)
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- 8.3.3. Relations for Non-Commuting Tensors

A change of the coupling scheme for irreducible tensor products of three and four non-commuting tensors
ives

{{Pa® Qs}c @ Ry}; = (-1)/+¥* Y IL_.,.{ ; Z . }{Qb ® {P.®Ra}n}ls + {R°®Ra};,  (16)
h

({Pa S Qb}c ‘ Rc) = (—1)_“{-[—1::(Qb : {Pa ® Rc}b) + (lg‘gb . Rc): (17)

{Pa®{Qs®Ra}n}y = Z(—1)°+b_cnccah{ ; 2 ; }{ : fe Z }{Qb ® {Pa ® Ra}g}s

cg

+ 3 (-nyerers e, {0 j’, P He® o R, (18)

(P {Qu®Rala) = (-1 “T2(Qy (Pa® Rab) + (1) TE(R3 Ry (19)
{{Pa® Qs}c ® {(Ra®S.}s}i = ch,g,{ y g ;}{{P., @Ry}, ® {Qs®Sc}o}e

+ e g {7 AL LICHLER AT (20)

({Pa® Qs {Ra®S.}) = Z(—l)d“’“vnz{ (P o R, {QOS.Y)

ete~ ncc b
DU o PP (LR CHEERRE (21

{{Pa® Qs}. ® {Ra®Sc}s}i = E(-na-“k-d-vn,.c,,{ p g2 I ¢ }Pa® (Rio (Qu@SIohnbe
hq

I T T TR LR ()
(1P Qi)e-(Re@8) = TN+ T2 (T} P - (Re0 (@SN
+ Z(_l)d+e+e—b%ﬂ{ abe }(Pa (R ©S.}a). (23)

he definition of the commutator 9‘:" is given in Eq. 3.1(26). By making use of the foregoing formulas, one
n obtain all other relations for irreducible products of non-commuting tensors.
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Chapter 4

WIGNER D-FUNCTIONS

4.1. DEFPINITION OF Di,,.(,8,7)

(a) The Wigner D-functions Di; . (@, B,y) may be defined as the matrix elements of the rotation operator
ﬁ(a, B,7) in the JM-representation. The arguments «, §,y are the Euler angles which specify the rotation

(IM|D(a, 8,7)|9'M') = 655 Digper (2, B,). (1)

The D-functions realize transformations of covariant components of any irreducible tensor of rank J (e.g., the
wave function ¥ ps of a quantum mechanical system with angular momentum J and its projection M} under
coordinate rotations.

J
\I’JM'("': P’; al) = Z WJM("; P U)DK{M’ (aa B, ’7)!
==J
- [ R AN - J*
im (8,9, 0") = Z Vin (8 0,0)Difag (0, B,7) .-
M=-J
Here 9, ¢ and ¢, ' are polar angles in the initial and rotated coordinate systems, § and S’, respectively. The
angles ¥, and ¢, ' are related by Eqs. 1.4(2) and 1.4(3). Similarly, o and o’ are spin variables in the initial
and new systems.
The inverse transformation S’ — S is performed by the inverse matrix [D~*(a, 8,7)|j 7 Owing to the
unitarity of the rotation operator, .

ba,8,7) = D" (2, 8,7) (3)
the elements of inverse matrix are given by
[ﬁ-l(a,ﬂ,q)h{“‘, =D;;’M(°‘»ﬂ’7)' (4)

Hence, under the inverse rotation, S’ — S, wave functions transform as

J
WJM('-’:W:") = Z DX;M'(asﬂ:’Y)‘I'JM’(‘S,’ PI:U'))
e (%)

J
‘I’;M(ﬂ,p,a)= Z Dl‘t’{M'(a»ﬂt'Y)\p.‘lM’(y:Vlsa,)‘
M!=-J
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Table 4.1. Effect of the Operator D (e, 8, ¥)

Angles, Axes and Sequence
Transformation of Rotations
I 11 11

Passive

Rotation of coordinate system a(z) 8(yy) y(z')
without rotation of physical body y(z) 8(y) a(z)
Active

Rotation of physical body —a(z) —B(y) ~v(2)
without rotation of coordinate system —v(z) -8(yy) —a(z')

The unitarity condition for the Wigner D-functions may be written as

J
Z DKlM'(a)ﬂ’q)Dﬁﬁ,(aaﬂi7)=5M:ﬁ: 3
M=-J (6)

J
z DJ{{.M’(O‘»ﬂ)ﬂDX}M:(a’ﬂ"’)=6M1\7 ’
M'=~7

The matrix Dy, (@, B,7) is unimodular, i.e.,
det | Ddeper(o B, 1) = +1. (7)

(b) A set of (2J + 1) functions ¥ ) with different M’s constitute a basis for expansion of an arbitrary
function ¥y with the same J:

Ti(8,0)= D CHUm(s,0)=(Cs ). (8)
=-J

The expansion coefficients C¥ are contravariant components of some irreducible tensor of rank J. Under
rotations the quantities C'.I,” transform by means of functions D,Jw. a (2 By7).

The effect of the operator ﬁ(a, B,7)-on ¥; may be interpreted in two different ways:

(1) as a rotation of the coordinate system without rotation of the physical body (this is the passive inter-
pretation; D acts on the basis functions ¥ ;5 while 0’9‘ remain unchanged);

(ii) as a rotation of the physical body without rotation of coordinate system (active interpretation; D acts
on C’_’,u but does not affect ¥;ps).

Any rotation of a physical body in combination with the same rotation of coordinate system leaves the
wave function ¥; unchanged:

{ﬁ(aaﬂ,'ﬁ}phya. body * {D(Q,ﬂ, '7)}coord. system = 1 (10)

Le.,
{DAJ,{M'(a;ﬁs '7)}phys. body = {[D_l(a: B, '7)]‘{M'}coord. system (11)

Moreover, a rotation of the coordinate system (or physical body) described by the Euler angles o, 8, v may
also be realized in two ways:

(i) by rotating about the initial axes (case B in Sec. 1.4.1), or

(ii) by rotating about the new (turned) axes (case A in Sec. 1.4.1).

Thus, any transformation of wave functions described by Eq. (2) can be treated in four different ways
(Table 4.1).
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The Wigner D-functions are complex. They depend on three real arguments a, §,y and are defined in the
domain
0<a<2r, 0<f<w 0<Ly<2nm (12)

These functions, as well as their derivatives, are single-valued, finite and continuous. Sometimes it is convenient
to change the domain (12). This can be done using the symmetries of D, (e, 8,7) (Sec. 4.4). For example,
the matrix of the inverse rotation satisfies the equation

[D—l(qnﬂ:'Y)]{lM' = DJ{{M'(” -8, -r—a)= D{(M'(_'7' -B,—a). (13)
This means that the inverse transformation S’ — § may be realized by the Euler angles
a'=x-v, f=8, ”/=_”_a: (14)

as well as by
o ==y, f'=-f +=-a (15)

4.3. DIFFERENTIAL EQUATIONS FOR Dy, (a,8,7)

(a) The Wigner D-functions represent wave functions of a rigid symmetric top. They are eigenfunctions of
three operators

Y 3 = 5. 1 (o 2 &
Jo=—igg Je=—ig, 3 [aﬂz*”‘ﬂ 3! ’ﬂ(a Rl 67’)] )

where J is the operator of angular momentum of the‘top; f,r and f, are projections of J onto the 2-axis of
the rotating {body-fixed) and non-rotating (lab-fixed) coordinate systems, respectively. The eigenvalues of the
operators (1) are defined by the equations

JyDiepe (@, B,7) = =M Di (0, B,7),

Jo Direr(a, B,7) = —M'D,{m; (e, ﬂ,'y),

PDleteBm) = {-= v aﬂ(smﬁ )+
= J(J + 1) Diracr (2, 8,7).

M’-.-ZMM’(:osﬂ-f-M'2 (2)

sin? 8

} Dierer (@, 8,7)

Periodicity conditions for Dy, (a, 8,7) are as follows

Digae (o £ 2k7, B,%) = Digppe (@, 87),
DMM'(aaﬂ)'7i2k’)—DMM’(“:ﬂ:'ﬂs (3)
DLM'(a,ﬂ + 2kﬂ','1) = D{‘M,(a,ﬂ,'y),

where

k=0,1,2,... ifJ is integer,
k=0,2,4,... ifJ is half-integer.
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(b) The functions D, . (a, B,7) can also be defined as solutions of the differential equations

[fU)D}\JJM’(a)ﬁa'Y)] = quKo{M'(a:ﬁ)'Y) = (—1)1+VV J(J+ 1 C’JMI DM uM'(a ﬂ»")
{ —M D30 (e, B,7), v=0,

+4 /_(ii'_l):_y_ﬂ'lj’_ll DM;lM’(a B,v), v =1,

[fw DMM'(O‘ 5:7)] = qVDMM’ (e, 8,7) = =/ J (J+1 CJJ)\A}’I-';UDMMWV(‘J:ﬂ"Y)
{ M’DMM,(a,ﬂ,'y), v =0,

i\/-’(-"‘f'l)—];{l(M’:tl) DJ{JM‘:EI(QMB”’)’ U=+l

Here J, is a covariant spherical component of J in the non-rotating (lab-fixed) system

1 a 1 a
Ji1 = —=eFta tf—+t—+—  —
+1 = \/56 [=Fcoﬂ +taﬂ oy 6'7]’
Jo = —‘IE .
and J" is a contravariant component of J in the rotating (body-fixed) system
Tl _ Fiq a 1 X i
J \/Ee [:i:cotﬂ +i 8/9 smﬂ 3a]’
o _ 9
JT = a

The operator 32 can be expressed in terms of J, or J as

32 = T T+ Todo = TprJoy = =P 1P+ 4 JOJO — PP = Jo(Jo + 1) — 2021 T

= JO(P0 — 1) = 27174 = Jy(Jo — 1) — 2Ty Ty = TO(T0 + 1) — 27+1 771,

The relationships between f,, and J'* read

P4(a,B,9) =Y DL,(a,8,7)Tu(a, ,7),
jll(al ﬂ’ ’7) = Z D:I:A(a) ﬂ)”)‘?“(ai ﬁ, ’7)’
I3

Hence

j’”(asﬂ)7) = "'ju(—'7)_ﬂ1 -a)s Tu(a:ﬂ’ '7) = j—u(”f»ﬁ, a) .

Commutators of epherical components f,, and J¥ (s, v = —1,0,1) are given by

(Jus Ju] = —‘/5011::1?’"#4""’

(7, 7] = VOl T,

o~

[wawlz 0

The commutators of cartesian components Ji and f,’ (¢, k,l = z,y,2) are

(Ji, Ji] = seim Ty
[T, ] = et T},
[j:’j;’c] =0,
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The operator of orbital angular momentum L (8, ©) (Sec. 2.2) may be regarded as a special case of 3(a,8,7),
viz. at a=¢p,8=9,7=0

f,,(p,t?,O) = f,,(t?,p), v=-10,1,
‘ﬁ(P’ "!O) = zi (t’, p)a 1 =2z,Y,3, (13)

ata=0,f=¥%1=p

"flu(o’ 9, P) = EIV(',’ ¢)1 v=-10,1,
j}(O,I’,P) = z:(”: 99)1 1=1I,¥,2. (14)
(c) Equations (2) define D, (e, B,7) only within normalization and phase factors. To fix these factors

some additional conditions are required. In the case of diagonal elements of the rotation matrix these factors
are completely determined by the boundary condition

D3 0(0,0,0) = bpgppe. (15)

As for non-diagonal elements, they are determined by Eqs. (4) and (5) which relate the D}, of different M
and M’. This phase convention corresponds to the condition

Dl (0,7,0) = (1)7Mbp _per = (=1)7 M 6_pq 000 (16)

4.3. EXPLICIT FORMS OF THE WIGNER D-FUNCTIONS

D{;p (@, B,7) may be represented as a product of three functions, each of which depends only on one
argument a, 8 or v,

DKIM’(av ﬂs '7) = e-‘Mad{lM‘(ﬂ)e_iM"’a (1)

where dj;,, () is a real function whose explicit forms are given below.

4.8.1. Expressions for dj;,,() Involving Trigonometric Functions

dieae(B) = (<1)7~M((J + M)(T = M)(J + M)(J — M)

(cos E_)M+M’+2lc(sin 2)21-M-M'-2k
X Zk:(‘l)k P Ry g gy Y s T vy v T @

Al (B) = (1) HM[(J + M)I(J = M)Y(J + M)(J - M)}
(cos g)ak-u,du' (sin 2)2J+M+M'—2k
2 2

xzk:(_l)kk!(J+M—Ic)!(J+M'—k)!(k—M—M')!’ @

dieae (B) = (I + M)NJ = M)I(J + M')I(J — M')1)3

(cos 2)21-2k+M-M’ (sin 2)2k-M+M'
xg:(_l)kk!(uﬁ—k)!(hM'—k)!z(M'—MH)!’ W
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dieae (B) = (~)MM[(J + M)(J — MO + M)Y(J - M)1]
(con 822 MHM (g )P -M
XZ k' J-M-NJ+M —k)(M— M +k) (5)

In Egs. (2)-(5) k runs over all integer values for which the factorial arguments are non-negative. Each of these

sums contains (N + 1) terms, where N is the minimum of J + M,J — M,J + M' and J — M'. Equations

(2)-(5) are not independent, but may be transformed into one another by changing summation variables.
Equations (2)-{5) may be regarded as special cases of the more general expression

Ji+ Lo+ JJ+ )T+ Jp— )3
Ji+Ja+mi—ma . Ji+J3—mi+ma
X Z ( 1).72+m2 C] L m (COS g) (S]'rl g) <, (6)
mimg 1T [(J1+m1)'(J1 —ml)!(J2+m2)!(J2—m2)!]z

(my+ma=M)

where J; and J, are arbitrary integer or half-integer numbers which satisfy the conditions J; — J; = M’ and
|J; — J2] £ J < J; + Jz. The sum in Eq. (6) is over all possible (positive and negative} values of m; and
mo which correspond to nonzero Clebsch-Gordan coefficients. In particular, Eq. (6) reduces to Eq. (2), when
Ji=(J+M)/2, 0 =(J-M)/2,mi=M+k—(J-M)/2and m; = -k + (J - M')/2.

4.3.2. Differential Representations of dj, . (8)

dirae (B) = (-1)J-M'51;[(J M)!(g:bl;{;i(J_M,)!]*(l—cosﬂ)“%-“(1+cosﬂ)‘““§‘d
a7 — cos B)7M (1 + cos g) M), Y]

(dcos pg)I-M [(

Ay (B) = (—l)Hthi [(J T M)'((.;I;A];[';:(J — M')!] %(1 cos ﬁ) (1 + cosﬂ)
al+M J+M' J-M'
W [(1=cosp) (1+cospB) ], (8)
B rr(B) = (—I)J_M,Z_IJ[(J_*_ M)'gix;)"(.l myvar ] (1 - cos )5 (1 +cos )~ M5
ez (1= cos )7 (14 con )], ®
daere(B) = (-1)HM 21.7 [(J + M)! Ej: AA;;)u'(J_*_ M')!] ! (1- cosﬂ)“"f“ (1+ cosﬂ)“"*i"‘i
di+M .
—cos B)7M (14 cos B)7~M]. (10)

“@espr

In practice it is convenient to use such equation from Eqs. (7)—(10) in which the order of derivative is the
lowest.
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4.3.3. Integral Representations of di,, ()

mere 1 [ (J+MIJT — M)!
Ay (B) =1 M [(J+M')‘(J M')!]

2w, . I-M', . , J+M'
X [ (e'* cos g +ie™*% sin g—) (e"f cos —g— +1ie'% sin g) eMe dg. (11)
0

Equation (11) can be rewritten as a contour integral

1

M-M'-1 2
s i (J + M)(J — M)! B .. Byi-m
dine (B) = —52 [(J+M')!(J——M')! (zcos 5 +4sin7)
|z]=1
X (iz sin g + cos g) J"PMIZM'"’—1 dz. (12)

The integration contour in Eq. (12) is a circle of unit radius about the origin of the z-plane.

4.3.4. Relation Between dj;,,(8) and the Jacobi Polynomials

The functions dj; . (8) can be expressed in terms of the Jacobi polynomials

1
7 _ sli(s + p +v)! . é “ é" (s,0)

dine (B) = Emma [———(s+p)!(s+v)! (sm 2) (cos 2) Py#¥) (cos B), (13)

where u, v and s are related to M, M’ and J by

1
=|M-M| v=|M+M| s=J—--2-(p+V). (14)
and
¢ B { 1 fM>2M, 15
MMEZ U ()M -M i MY < M. (15)
4.3.5. Relations Between dj;,,(8) and Hypergeometric Functions
(o + )+ ]
J _Sum | (s+p+v)i{s+p AL B\Y of_ . Y

dar(F) = u! [ st(s +v)! } (sm 2) (COSZ) F(' Setptvtliptisa —2—)’ (16)

l
Hone ) = S0 [(W:s?;?u(;.“)} (n2)" (cos B) ™ P(s 4wt 1, —s—mipt tin?E), (10

dieae (8) = (—l)LfMM' [(s + l:!z;?i;: V)!] (sin é)u(cos é)v F(-s, s+p+ v+ Lv+1;cos? g), (18)
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1

d)\’lM' (,5) = (_1):jMMl [(8 + l:!-(:?/,(‘;_+ V) ] (sin -'g) —u(cos g)u F(s +v+1;—s—u;v+1;cos .ﬂ_) (19)

' 2841V
)= 0 S M e (), o

dl 0 (B) = (—1)*épmmr [(8 +u+v)(s+ u)!] ? (sin g>2a+u(cos é)u F(—s, ot eot? ﬂ) o

! s!(s + p)! 2 2
1)*€mmr (25 + p +v)! . ByZetur BV 1
Ay (8) = —= £ Y P s —s—pi~20—p-vi—55 | (22
bner (6) = [82(s + p 4 V) (s + u)!(s + )]} (smz) (COS2) ST AT Vsinz-g— 22)
Earner (25 + p+ v)! . B\B( B2ty 1
dia (B) = £ Ll —g— =25 —p— i ————— | .
s () [s1(s + o + 2)(s + )15 + )Y (sim 2) (cos 2) F\momemwim2smp-vimors 2
(23)
Parameters u, v, s and a phase factor £p7a in Egs. (16)—(23) are defined by Eqs. (14) and (15).
t.4. SYMMETRIES OF di,,.(8) AND Dj,(a,8,~)
(a) In accordance with Eqgs. 4.3(2)-(5) the functions dj,.(8) are real and satisfy the relations
deae (8) = (~D)M M Ay p (B) = (~)M M a0 (8) = A ag_0a (),
dJ{JM'(—ﬂ) = ("I)M_M dJ{JM'(ﬂ) = d{/!’M(ﬂ)s
dyeaer (7 = B) = (—1)7 "M d p 00 (B) = (=1) M dis_ 01 (8),
J —(_1\2In ]
dpper (B 2mn) = (=1) " djy a0 (ﬁ),’ n is integer
g (B £ (2n+ 1)7) = (-1)*C+DI=Mg], 0 (B), (1)
(b) Equations (1) imply the following symmetry properties of Djyy: (2, 8,7)

D]\’»!M’(a’ﬂ"Y) =577D£M—M’(°‘iﬂ1'7) = MM'(a B, _ED‘—’-M mi(eBy7)
=€D{4’M(7sﬂ)a) —r’D—M’ M(’Y’ﬂxa) =EnDM'M('7)ﬂ) ) =D£M’ (7Jﬂ)a)
=€D1\14M’(a’—ﬂ"7) =T]D M’(ai ﬁi’Y) =5'ID1{;MI(C¥,—,3,’7) =D£j\l M'(aa ﬁ:q)
=DAJ4'IM('7J—'6’Q) =€'7D M- M('7: ,B) )=r’D}{;'M(”/’—,B;a) =5D_J.*1‘MI_M('7) _ﬂ,a) (2)

“—“ED!M_M'(_a)ﬂ)—’Y) _"DMM’( @ ﬁa ) —eﬂD:’.j\,f.-M’(_a)ﬁ)_’Y) =D1\J;M’(_a).6)—'7)

= DiM’—M(_’Y’ﬂy—a) = e"D}\I,{'M(—'7::B!—a) = ﬂD—M' M( T .B; ) = sDj‘\,,;'M(—'/)ﬂ) _a)
=D£M-—M’(_a, "'.B; _'7) =€’7DX,{M'(_Q)—ﬂ;_'7) -M M'(_aa ,B) ) _sDﬁM'(-ay—ﬂa ""7)
=5D£M'—M(""7)_,B)—a)= nDj\I/{'M(—'Y; —'ﬂ)—a) =5.’71)—1»{' ( 7 ﬂ) _a) DM'M( '1,—,3,—&),

vhere
— (—-l)Ml_M, n= e—izMa—s'ZM"y . (3)
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The periodicity conditions for D}/ (a, 8,7) are
Disp (a,B £ 2nm,7) = (—1)2"" Disae (o, 8,7),
'D}{IM'(a)ﬁ + (2n + 1)7"! '7) = (_l)i(2n+1)J—M DK{-M'(a,ﬂx _'Y)a

DLM:(a + nmw, ﬂ,") = (—i)ian D&M'(a,ﬂ, '7),
D&M'(a»ﬂ)’Y + n") = (—i)ian’ D&M'(a’ﬂ) '7) )

(4)

where n is integer. Note also that
Diga(8,8,%) = ¢™(==9 DY\, (,B,7)e™ (1), (%)

Some properties of Dy, (a, B,7) follow from the addition theorem (Sec. 1.4.7). Let us consider some
special cases.

(i) The matrix of the transformation S{z,y, z} — S"{z', —y', —2'} may be obtained from the matrix of the
transformation S{z,y,z} — S'{z,/, 2'} by substituting (o« + n,7 — f, —v) for (a, f,7). On the other hand,
this substitution corresponds to an additional rotation R, about the z'-axis through an angle —m. Hence,

[ n T
DK{MI(a + n,n— ﬁ, —'7) = RzIDK‘MI (a,ﬂ, ’7) = Z DK{MJI(Q, ﬂ, ’Y)D{luMl (—’é‘, -7, 5)
M

= (-1)" Diy_ppr (e, B,7)- (6)

(i) The matrix of the transformation S{z,y,2} — §"{~z' y,—2z'} may be obtained from the matrix of
the transformation S${z,y,2} — S'{z',y’, 2’} by substituting (a —r, 71— f, 1 —1~) for (, B,v). This substitution
corresponds to an additional rotation Ry about y'-axis through an angle —x. Hence,

D‘A,'{Ml(a - n," — ﬂ,ﬂ' - '1) = ﬁleAJ‘M/(a,ﬂ,'Y) = EDKIM" (a, :B)'Y)D‘A’rl"M’ (0, —7(',0)
MY

= (—1)J+M,DK{-M'(°"ﬂ’7)' (7)

(iii) The matrix of the transformation S{z,y,z} — S""{-2',~y',2'} may be derived from the matrix of
the transformation S{z,y,2z} — S'{z',y,2'} by replacing (,8,9) — (a,B,7 — 7). This corresponds to an
additional rotation R,+ about the z’-axis through an angle —x. Thus,

DKIM’(a’ﬂ"7 - 7") = ﬁt’D}:{M'(a’ﬂ»V) = ZDKIM”(O":Bx'Y)DKI"M’(O:O: -—7r) = (—I)MIDKIM'(a’ﬁs'”' (8)
Ml'

Note that three successive rotations through angles —7 about the axes z', y' and 2’ return the coordinate
system to its initial position.

4.5. ROTATION MATRIX U,{,M, IN TERMS OF ANGLES w,0,9
4.5.1. Definition

In some cases the description of rotations in terms of w,®, ¢ (where w is the angle of rotation and ©, ®
are the angles which determine the rotation axis, see Sec. 1.4) is more convenient than that in terms of the
Euler angles o, 8,v. Matrix elements of the rotation operator in terms of variables w, ©,® will be denoted by
Ui aer (w; ©,8):

Ui aer (w3 ©,@) = (IM|e~m3 [T M") . (1)
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Therefore, under a rotation specified by w, ©, ® the components of an irreducible tensor of rank J transform

as

Vope(8,0) =D Mirg(9,0)Uiypee (w3 ©,9) . (2)
M

The polar angles ¥, and ¥, ¢’ which specify a direction of an arbitrary vector in the initial and rotated
coordinate systems in terms w, ©, ® are related by Eqs. 1.4(5) and 1.4(6).

4.5.2. Explicit form

(a) An arbitrary rotation specified by angles w,©,® may be considered as a result of three successive
rotations of coordinate system:

(i) Ri{a; = ®,81 = 6,71 = —P), i.e., the rotation which turns the z-axis to the direction of n(0, ®);

(ii) Rz(cp = w, B2 = 0,72 = 0), i.e., the rotation about n(©, ®) through an angle w;

(ili) Ra(as = ¥, = —6,73 = —®), i.e., the rotation which is inverse to R;. The result of these three
rotations yields the relation between Uy, (w; ©, ®) and the Wigner D-functions

UK‘MI ((IJ; 9, Q) = Z D‘AI'{MII (Q, @, —Q)C_‘.M”w DK{I/MI (Q, —9, —Q). (3)
M"

Equation (3) enables one to find an explicit form for U, (w; ©, ®) for particular J, M and M’.
(b) According to Eq. 4.6(10) the functions Uy, (w; ©, ®) may be directly constructed from the matrix

elements U,im, which represent the Cayley-Klein parameters (see Eqs. 4.6(12)). This gives the expression

) (M+M') o o T+ M) (T (J+MYN(T- M) _
(—“’)w(‘—"f;) eTHM-M) 2, c\!{s+M+M’)!(J—M—ﬂlr—M’?oﬁ (1-v72),

M+ M >0,
U&M'(w;e’ q>) = - varf ut —-(M+M') —i(M=M")® A (THMWIT~MP(J+M NI -M')! —2\s (4)
(—iv) (_—..,) ¢ E, s{o=M-MNIT+M-=2)l{T+M'—s)! (1-v7%,
M+ M' <0,

In this case Eqs. 1.4(26) have been used, and the following notations are introduced
u=sin%sin9, u=cos%—isin%cose. (5)

In Egs. (4) the summation index s runs over all integer values which do not lead to negative factorial arguments.
(c) Another explicit form of Uy (w; ©, ®) can be obtained directly from Dj .. (a,B,7) by changing
variables (w,©, ®) — (a, B,4) with the aid of Eqs. 1.4(16) and 1.4(17)

M+M’
. ) 1—72tan%cos®
Ui’lM' ((4); @, ¢) = 'iM_M e—‘(M—M )¢ 2 d{lMl(f). (6)
\/1 + tan® % cos? ©

The functions d,, (&) are defined in Sec. 4.3, and the angle £ is determined by
€W
sin o = sin 5 sin 0. (7)

(d) The function Uz, (w; ©, ) may be expanded in a series of the spherical harmonics which depend on
polar angles © and 9,

. 2\ + 1 4 4ir
Udoas(@0,8) = Y(=0)* 22 ] @)CTM 0 5y You(©,9), (8

Ap
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where xJ(w) is a generalized character (of order A) of the irreducible representation of rank J. Explicit forms
and properties of xj (w) will be given below in Sec. 4.15.
Equatlon (8) shows that Uy, (w; ©, ®) depends on M and M’ only through the Clebsch-Gordan coefficients

CJMAu

4.5.3. Differential Equations

U 1{{ e {w; ©, @) are eigenfunctions of three operators f,, f', and J2 whose eigenvalues equal — M, — M’ and
J(J + 1), respectively. In terms of w,©, ® these operators have the forms

~ e] 1 w o 1 08

. = — [cos@a—icoti-sxn@%-+-2- 6@] (9)
7 = —ilcos0 2 — Lot Ysino2 — 1.2

J, = z[cos@aw 2cot', 2sm@ae 5 a<1>] (10)
- 82 w 8 1 32 1 &2

2 _ -+ o

Jé = [3 2+COt23w+4sin (aez+°°teae smzea@z)] (11)

Thus, Uy (w; ©, ®) is a solution of the differential equations

[32 - J(‘I + 1)]UKIM’(W; o, Q)) =0,
72 + M]Ua00 (w58, 8) =0, (12)
[‘ﬁ + M,]UI{IM‘(‘”; e, (I’) =0,

with the boundary conditions
UA{IM' (0; 0, (I)) = 5MM',

Kl Kl (13)

4.5.4. Orthogonality and Completeness

A collection of the functions Uy, (w; ©,®) with all possible integer and half-integer J > 0 constitutes a
complete set of orthogonal functions of three variables w, ©, ® defined in the domain

0<O<m 0<P<2r, 0<w<2m, (14)
whose total volume is equal to 1672,

(a) Orthogonality and Normalization

4 2n dw si 2 2 "d@ in© 2n 4 U.ht :9.d U"’ .. 9) = 161(2 p p
0 ’ 2 0 - 0 MMy (w’ ’ ) M7M;(w’ ! )— m N1 J3 M1M16M{M; . (15)
(b) Completeness
S 2/ +1 . = 6(d—d)5(0 —6)5
Z 16x2 Z Ustae (@030, @) Uipag (6, 8) = ( )é( ) (“’i “’) (16)

J=0,1/2,1... MM 4sin © sin® g
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4.5.5. Principal Properties

(a) Inverse transformation
(U7 (w;8,9)]3ea = Uigaer (-3 ©, @) = Uigpps (wy 7 — 0,7+ B) . (17)
(b) Complez conjugation

Uitae (@30, 8) = Ui (w7 — 0,7+ @) = Uiy e (—w; ©,0). (18)
(c) Reversal of argument signs

Uiine (—w30,8) = ()M M U250y (070, 9),

Uitne (@5 =6, 8) = (~)M M Uiy (w; 6, 9), (19)

Uit (@30, =®) = Uipips (030, 9).

(d) Periodicity
UI{{M’(“) + 47"39, Q) = Ui\’lM’(w;et Q) '
Ui per(w; © + 21, @) = Uiy (w3 ©, 9) (20)
U{{M,(w; @, ] + 27r) = Uj{{M,(w; @, @) .
Half-period Shift of Arguments

Uipae (@ + 27,0, 8) = (=1)2 U 10 (w30, 9), Ui 27 —w;0,8) = (-1)MM'y?,, | (w;0,9).
Udper(w;0 +m,®) = (-1)M-M'U7, 0 (0;0,8), Ubpol(w;m—0,8) =U 0 2 (w;0,9),
Ui (03 0,8 + 1) = ()M MU\ (w7 0,9), Uiere (@3 0,7 = 8) = (~)M MU0 (w; ©,9)
(21)

(e) Permutation M ZM' and reversal of signs of M and M’

Uipiag(;0,8) = Ul e (w3 ©, =) = Uityp (wy 7 — 0,7 + ),
Uyt e (w36, 9) =(—I)M’M'U;&M,(w;w—e,w+<l>), (22)
Uiagr (@;0,8) = (~1)7 MU, 100 (w1501, ®1) = (=1)7 MUY, _ g (w1301, 84)
where angles w;, ©;,®P; and w, O, ® are related by the equations
cos 2 = sinc—‘)—sinesiné,
2 2
sin % cos@; = —sin ¥ sin © cos o, (23)

w
cot<I>1=—tan-§cose;
w . Wy, .
cos 7= sin —él sin©;sin ®,,
. w L5
sin — cos ©® = —sin —21- sin ©; cos P, , (24)

w
cot@:—tan—z—lcos@l,
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L 2Wr o, .2 W .
sm2-2—sm2 91+sm25sm29=1.

(25)

Some relations which are valid for Dj . (a,f,v) remain valid for U (w;©,®). In particular, the

Clebsch-Gordan expansion
U:Z,M; (w;®, ‘I’)UAJ,;,M; (w;©,2) = JZA;C.‘IIKJIJ,M,UJ{{M'(W o, ‘I’)Cﬁ{l’;m\{;
is equivalent to Eq. 4.6(1), and the addition theorem
> Uilpaan (w2 ©2, ®2)Uipupgr (015 01, 81) = Uipags (w; ©, @)
M

is equivalent to Eq. 4.7(1). The angles w;, 0y, ®;, w3, 07, &, and w, ©, P are related by Eqs. 1.4(76).

4.5.6. Special Cases

(a) The rotation azis n(0, D) coincides with one of the coordinate azes:
(i) The z-axis (6 = Z,® =0)

n r n M =M’
Ui aer (w;E,O) =D1{,M,(5,w,—§) = (=M M g 0 (w),
(i) The y-axis (8 = §,®& = %)

T
UI{{M' (“’; rY) _) = DK;M'(OM 0) = di{M’(w) )
2°2 :
(iii) The 2-axis (© = 0)

UAI‘MI(Q);O, Q) = 5MMI C_iM“ ..

(b) Rotation about n(8,P) through a small angle w < 7/2.

Ui (w3 ©,8) = 6praer (1 — 1wM cos ©) — '7‘" e~ sin©V/(J — M) (J + M) bpr 041

- %“’ ¢/ (T = M)(J + M") bpgpqr—1 -

(c) Ezplicit forms of Uijpe(w;©,®) at M = +J and/or M' = £J

27 2J
Ui ;(w;©,8) = (cos% —-isin%cos@) , U, 1(w;8,8) = (cos;-+isin%c036) ,

2J

2
(d) Ezplicit forms of Uiy (w;©,®) for J = 1,1,2,2 are given below in Tables 4.23-4.26.

o\ 2J .
Uj_;(w;8,9) = (—i sin = sin@c"é) , U217 (w;0,8) = (—i sin % sin 66‘4’)

4.6. SUMS INVOLVING D-FUNCTIONS
4.8.1. The Clebsch-Gordan Series

The product of two D-functions with the same arguments may be expanded in the following series

N1+ J3

J J:
D]\,{‘INl(a;ﬂ;'ﬁDA},N,(a:ﬁ:") = Z ZC;K!;J;M;D&N(a)ﬂ:")cgﬁ'vl},}a, )
J=[Ti-Js| MN

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(1)
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Here C7M, ;.p, i8 a Clebsch-Gordan coefficient (Chap. 8). The sum in Eq. (1) has 25 + 1 terms, where
7 = min(Jy, J2). Equation (1) may be regarded as a particular case of the expansion of an arbitrary function
in a series of the D-functions (Sec. 4.10).

4.6.2. Some Applications of the Clebsch-Gordan Expansion

The Clebsch-Gordan expansion, Eq. (1), together with the orthogonality condition of the Clebsch-Gordan
coefficients, Eq. 8.1(8), enable one to calculate sums of products of the D-functions with identical arguments.
Hereafter we introduce the 3j-symbol {71727} defined by

1 if 71+ 2+ J3 is integer and |51 — 52| < 73 < 71 + 72, @)
0 otherwise, '

{ns2ss} = {

{71727s} is invariant with respect to permutations of ji, j2, 3. Using Eqs. 4.6(1) and 8.1(8), one obtains

Z Cj%f;JgM; DK}IM (a:ﬂ:’Y)DK},N,(as B, 'Y)Ci%lmv, = 5JJ'{J1J2J}D1{4N(°‘»19: ). (3)
NN,
Ji1+J3
Z C}K!; JquDAJ,}:N, (axﬂ)'f)Di{N(a)ﬂy 7)C}ﬁVij,N, = 6N1N{DX},N, (a)ﬂ"ﬁ [} (4)
J=I11—Jz| MM
z DK},N; (o, B, '7)DK},N,(°% B, 7)C}ﬁvngN, = C.‘IIKhJ’MgDJ‘\’lN(asﬂ: ), ()
NN,
Z DMN Q, ﬂ’q)DMle(a ﬂ”y)DMgNz (a:ﬁﬁ)cjﬁvl.l,N, = C}m;JzM: (6)
N;N:N
z C}%]JQMQD{;N(a)ﬂ",)D‘A,lllNl(a’ﬂ"Y)D{}QN)(a’ﬂ’Fy)C};xl.’zNz = 6JJ'6NNI{J1J2J}’ (7)
14¥3

4.6.3. Generalization of the Clebsch-Gordan Expansion

The Clebsch-Gordan expansion can be generalized to the case of an arbitrary number of D-functions of
identical arguments by successive use of Eq. (3). For instance, the summation of products of three D-functions
yields

J13N1a

Z Cf,’:{MuJ.M,C:ﬁg‘J’,M, Mm, (o, 8, 7)DM,N, (o, ﬁ:'Y)DM,N, (a,ﬂ:’Y)CJ,N,J,N,CJ' NiaJsNs
M1 M3 M;
N3N3Ns
=65561,01, {N1Je12H{J12J3J} Dy le, B,7) - (8)

In particular, for the case when J3 = 0, Eq. (8) is reduced to Eq. (3).
In general, the sum of products of & D-functions is given by

k
Z H C-‘ll: AfiMi—xJ'-‘mi DJm-n- (a ﬂ,'y)C’J N'N.—dme = Di}ka (a’ ﬂ’ 7) H 5-’-‘ Ji {j‘J‘—lJ‘} ) (9)

Miyeee Me 4=1 =1
N1y..., Nk

where J;(¢ = 1,2,... ,k) is any angular momentum consistent with the vector addition rule,

Ji=ji4J2+ - +Ji, Mi=mit+me+---4+m, Ni=ni+np+---+n;.
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It is assumed in Eq. (9) that Jo = J§ = My = Ny = 0.
In particular, for 53 = jo =... =5 = %— and Jip1 = J; + % one has

1 3 1
Z Dﬁllnl(a:ﬂ)'Y)Df%lzn?(aaﬂ;'Y)--'Dﬂzbkﬂk(a)ﬂ)'Y)
mi+..+mg=M

ni+...+tng=N
(2 ;
- D a, O, ) 10
VT MT IT F T =y e (@A) (10)
where J = Ji = k/2 is either integer or half-integer. Similarly, for s =j2 =... =gk =1 and Jiz1 = J; + 1,

k
Z \J H (14 6m0) (1 + 65s0) Drlnlnl (a»ﬁx'Y)Drln,ng (o‘)ﬂ"Y) . 'D:n,,nk (alﬂ”V)

mi+...+mg=M \ {,j5=1
ni+..+nx=N

(2J)!

T VT FM(T - M)+ N)(J - N) Diew (@, ,7)- (11)

where J = Ji, = k is integer.
Equations (10) and (11) are useful for evaluating the Wigner D-functions. For example, Eq. (10) gives an
explicit form of the D-functions in terms of the Cayley-Klein parameters (Sec. 1.4.3.) defined by

1 1 .
D;%(anﬁ:'ﬂzax D;_%(a,ﬂ,’y)i-—b )

: X , (12)
D2yi(aBv)=b, D2, i(af,y)=a".
212 3 2
The appropriate expression for the D-functions has the form
p b qf A *\r _b* s
R A0 X WS g 1T 7 e T e gl O ol M L ad (13)

i plgiris!

Here the summation indices p, ¢, r and s run over all integer values consistent with the condition

ptg+r+s=2J,
p—q—r+s=2M, (14)
p+q—r—s=2N.
According to Egs. (14), only one parameter from p, g, 7 and s is independent, i.e., in fact, Eq. (13) represents a
single sum. The independent summation index may be chosen in different ways. This yields different explicit

forms for the D-functions, Egs. 4.3(2)-4.3(5). For example, if r is taken to be independent, Eq. (13) reduces
to Eq. 4.3(2).

4.6.4. Determinant of Matrix Dy,

The determinant || Df || of the rotation matrix is an invariant sum of products of 2J + 1 D-functions.
According to Eq. 4.1(7), this matrix is unimodular, i.e.,

Z(_I)PDile (a:ﬁ"7)D-{J+1Mz (a,ﬂ, '7) v DjMu-H (a’ ﬂ’ ’7) =1 ’ (15)
P
where My, My,... , M3, represent all possible permutations P of J,J — 1,J —2,... ,—J. The phase factor

(=1)¥ equals +1 for even permutations, and -1 for odd ones.
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4.7. ADDITION OF ROTATIONS
4.7.1. The Addition Theorem for D}, (a,f,7)

Let two successive rotations of the coordinate system, S{z,y,z} — S'{z’,¥',2'} and S'{z',¢,2'} —
S"{z",y", 2"}, be described by the Euler angles ay, 8;1,7: and az, A2, 72, respectively, and the resultant rota-
tion S{z,y,z} — §"{z",y", 2"} be described by the angles o, f,~. In accordance with Sec. 1.4.7, there are
two alternative forms of the rotation addition.

(a) The operator of the resultant rotation, ﬁ(a, B,7), is given by Eq. 1.4(64), if all rotations are performed
according to scheme B (Sec. 1.4.1) and the Euler angles a3, 82, 72; @1, 81,71 and «, 3,7 are defined with respect
to the initial system S{z,y,2}. Then the addition theorem reads

J
Z D{,{M"(amﬂ%'ﬁ)pi{,{ﬂj\ll (01,,31»’71) = D}{,{M’(a:ﬁ) '7) 1 (1)
Mi=—J

where a, 3,y are related to a1, 81,71 and az, f2,v2 by Eqs. 1.4(66)-1.4(70).

(b) The operator of the resultant rotation ﬁ(a, B,7) is given by Eq. 1.4(73), if a1, 81,71 and a,f,7 are
defined with respect to the initial system S{z,y, 2}, but oy, 82,7, are defined with respect to the intermediate
system S'{z',y',2'} (scheme B), or if successive rotations are performed according to scheme A. In these cases

the addition theorem reads

J
Z Diraan(ar, Br, 1) Dignper (@2, B2, v2) = Digpgs (e, B, 7) (2)
Mi==J
and a, B, are related to a;, 51,71 and @z, §2,72 by the equations which may be obtained from Eqs. 1.4(66)-
1.4(70) by replacing (a1, f1,71) = (a2, B2, 72)-
In particular,

J
Z DK{M"(a:ﬂlsSO)DI‘\,l"M’(_p: ﬂ2>7) = D}{{M'(ayﬂl + ,32,’7), (3)
M!'=—J

where p is arbitrary, and

J J
Z DK{MN(Q,ﬂ,'Y)DX;IMN(a,ﬂ,'Y) = E D‘AIlMll(a,ﬂ,’y)DAJluMl(—’Y, —'ﬂ, —a)
Mi=+-7J Mi'=—=J
= Dip0(0,0,0) = Sprare - (4)

4.7.2. The Addition Theorem for d},, (8)

Equation (2) may be rewritten as

J
> B (B Bprg (Ba)e ™M = MGl (B)eMT (%)
Mi=—J
Here in §

sin

cot a = cos f; cot p + cot Bz — 1 ,
sin ¢

cos B = cos B, cos f; — sin B, sin Sz cos (6)
sin ﬂz

cot y = cos B, cot  + cot By — .
sin
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Equation (5) is simplified in the following particular cases. If ¢ =0 and 8; + f; < «, then a =0, B=h+5
and y=0,

Z 3 eaen ﬁl)dM"M'(ﬂZ) i rer (Br + B2) - (7)

Mi=-7J
fo=0andf+P>mthena=mnf=2r—fF —frandy=m,

E g aen (B1)dagnag (B2) = (~1)M*M d) 4 (27 — By — Ba) . (8)

Mi=-J

fo=nand §; 2 B, thena=0,=pF; — B2 and y =,

J
Z (1) =M a3 e (Br)dagnas (B2) = digan (B — B2) - (9
Miz=e]
In particular, for §; = fa,
J H 1
E (—I)M ~M d{lM"(ﬂ)dAJ{"M'(ﬁ) = 5MM' . (10)
Mi==7J
If p = 7/2, then
J
B M drgn (B1) g (B2) = M dfppi(B)e M7 (11)
Mi=—J
where

cot & = cot B2 sin B ,

cos 8 = cos B cos Bz, (12)
coty =cot By sin 3.

4.7.3. Addition of Two Identical Rotations

When a3 = a3, f1 = B2 and 41 = 7, the addition theorem, Eq. (1), together with the Clebsch-Gordan
expansion, Eq. 4.6(1), yield

Z Jr::;-:n'g m+m"m"+m’(°‘ ﬂ"’) er'gtn? = r;;m'(d’B’ ;7) ’ (13)
J=0,1,... m"
where _
cos f = cos? B — sin? B cos(a + 7)),
tan 221 (14)
X — =t —_ = 2
tan(a — o) = tan(y j) cos B
In particular, f a =4y =0,
Z ch"r:;-:‘ m+m 'm! +m' (ﬂ ijrm:;-::'n' = dz;zm’ (Zﬂ) . (15)

J=0,1,... m'
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4.7.4. The Multiplication Theorem for dj,,. (8)

Equation (5) leads to a representation of products of two dj,, (8) functions

) S P
dygnen (B)dignne (B2) = / . (M= Ma=M) 3] 1 (B)de . (16)
—an
Here a, B, are related to B;, 2 and ¢ by means of Eq. (6).

4.7.5. Sums Involving the D-Functions of Different Arguments

In addition to Egs. (1) or (2) one can derive the following invariant sums which are equivalent to the
characters of irreducible representations of rotation group for two rotations (Sec. 4.14):

(a)
sin[(2J +1)%]

Z DK{M' (e, ﬂl,ﬁl)Dj\’.{:M(az,ﬂz,'Yz) = XJ(Rle) = XJ(Rle) = T an2 (17)
MM' 2
where
cos% =cos’,%cos%cosm1 +‘71-;'0tz+'72 —sinﬂ2 mﬂ—zcos o Sl 1 ;a2+72
= Co8 2 -;-/32 cos =2 ;- 2 o 1L -; 22 _ cos B 3 ﬂz sin —L ;72 sin 1L ;az . (18)

(b)
sin[(2J + 1)% ]

> Dieaer(e1, By 1) Difrer (a2, B2y 12) = 7 (RyR7T) = x7 (BT Rp) = o (19)
sin
MM )
where
cosu-)—l = cosﬂ—lcos@cos Gtm—aa- 2 +sinélsinﬁ—2cos @M nty
2 2 2 2 2 2 2
=cosﬁ1 ;'52 cos a1;a2 cos B ;72 — cos ﬁ1-;ﬂ2 sin a1;a2 sin 22 ;72 . (20)

Equation (20) may be obtained from Eq. (18) by replacing (a3, f2,72) — (—72, — B2, —a2).
Similarly, one can arrive at invariant sums which may be reduced to the characters involving three and
more rotations, i.e., x’(R1Rz Ra) etc.

4.7.6, The Ponzano-Regge sum

Note the following sum involving products of three dj; . (8) functions with the same J but different
arguments (Ref. [89])

5 (0 + Dy () () n (50) = 22 o (ZM&) - (21)

J=Jmin =1

Here the summation index J runs from Jyin = max{|Mi|, |Mz|,|M;|} to infinity, M), M3, M3 being fixed, and

1 cosff3 cosf,
B = |cosfs 1 cosf |, (22)

cosfz cospfy 1

1 z>0
9(z)={0 z<0. (23)
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Fig. 4.1. Geometrical interpretation of the angles in Eq. 4.7(21)
The relations between the angles é;,82,63 and £, fa, f3 are

cos f; cos fx — cos f;
sin f; sin i
sinf;  sinf;

cos; = , GATER),
(4,7 =1,2,3).

These relations may be easily obtained by using spherical trigonometry (see Fig. 4.1).

4.8. RECURSION RELATIONS FOR Dj{,!M:
4.8.1. Relations between D’ and D7*!

V(T2 = M%) (T2 = M7) MM

cos B Dygpp (@, B,7) = Din (e, 8,7) + 55— Diveage (@, 6,7)
J(2J +1) T[T +1)

VI +1)2 - M2[(J +1)2 - M2,y
(J+ 1)(2.]—{-1) }.\I/!-’I-W’(a ﬁa7))

VII+M)(J+M+1)(J2 - M?2)

SinﬂeiaDKl+1M’(a’ﬂ:7)=_ J(2J+1) DMM’(a’:B"Y)
# MAT= M YLD D 06,)
VI - M){[J-M+1)[(J+1)2 - M7 1
+ (J+1)(27 +1) Didhir (@ 6,1)
sin ﬂe_‘aDAJl—lM’(aaﬁ: 7) = \/(J — M)({](_zy_'__{_l;)(ﬂ M%) MM’(a 8,7)
VTN 5

VI M)+ M+1)[(J +1)2 - M7 DI+

(J+1)(2J‘+1) MM'(a ﬂ: ))

(24)

(25)

(1)

(2)

(3)
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V(2= M3)(J + M')(J + M' + 1)

sin Be'” Digppryi (@, B,7) = J2T + 1) Diiar (@ 8,7)
- M\/(J -JA({],-)_E_J;—;— M+ 1) D{/IM’ (a) ﬂ: '7)
Sin,@e—i" DAJ,{M'—l(a)ﬂ:'ﬁ - _ \/(J2 - Mz)‘(f-(lz‘_] f’l))(-] - M +1) lel‘}\,},(a,ﬂ,'y)
ST

e D), O

VII+M+1)(J+M)(J+ M +1)(J + M)

(1 + cosﬁ)c‘(a+7) D&+1M’+1(a’ﬁ’ 7) = J(ZJ + 1) DK{.}&, (a’ b P,)
o AL A I M) Do)
VUM -M+1)(J - M)({J - M"+1)
+ (J - 1)(2J " 1) Dl{;l-t}’(a’ﬂ”’) ’(6)
(14 o8 B)e™ @+ DYy () = Y2 = MJJ(rzfr)fJ MU= Dl ,8,7)
L YU M) - MJWL(JI)JEJJL Hp e Ditaer (@ 8,7)
\/(J+MI)(J+M'+1)(J+M)(J+M+1)
+ T+ +1) Didicrlen ) )
(1= cos B)e* (=M DI 11 api_1(, B7) = SRR MJJ(rzlj)flg A Daie (2:6:7)
_VU-M+ MJJF(JI)J((JJ M =MD Dfre,81)
VI-MU-M+ )T+ M) T+ M +1) ;.
+ (J " 1)(2J " 1) D}{,{m:(a,ﬂaq) 1(8)
(L con ) DI, (oo = VI = MJJ(’;J)LJS MYITAM+Y) pres 0 5 )
1 Sl T

VITMI M+ ) - M) =M + 1)
* (T+1@I+1) Difver (e, B,7) )




92 Quantum Theory of Angular Momentum

Equations (1)-(9) may be obtained from the Clebsch-Gordan series, Eq. 4.6(1) with J; = 1.

4.8.2. Relations Between D’ and D7*1/2

JU+M+HI+M+3)

B i
cos 3 € m'3"1D.,,',+§M,_,_%(az B,v) = 3T 1 DMM:(G 8,7)
\/(J—M+%)(J—M’+2)DJ+1( ),
2J+1 MM\ P
1 ] 1
B a JU+M+HI-m+3)
sm-z—e “’_’ID&,*_%MI_J,.(a)ﬂ)'Y):— 2J +1 DM}\}'(asﬂ:'y)
\/(J M+HI+M+1)
27 + 1 DMM'(O‘ 8,1,
- DI-M+1)
. V(I = M+ 3)
cos;e “'PDM M-} (a,ﬂ,'Y)= 27 + 1 MM'(O‘ (2%
\/(J+M+§)(J+M'+;) DI+
2/ +1 Dacair (2 B,71)
/3 iape \/(J M+LH(J+M +1)
sin DM 1M1+1(a;/3)'7) 27 + 1 MM'(a ﬂ:'y)
VU+M+ 0 -M+1) I+
27 + 1 MM'(a ,5,’7) .
Equations (10)-(13) may be obtained from Eq. 4.6(1) with J; = 1. They yield
J M B8 ; J-3
Divile, B,7) = 0 %5 ¢ “"zh"DM+2%MI+1(a B,7)
J+M ﬂ —ja= J-3
V75 sm2e 5P Dy, §M'+§(a B,v), (M'#£J),

J-M B ;a= -1
Dipae(a,B,7) = VJ+M' sm—c “TzDL_,_’%M,_%(a,ﬂ,'y)

+ A cosée_il}ﬁ DL——%%MI_%(asﬂ)'Y)s (Mlié —J) .

J+ M 2

(10)

(11)

(12)

(13)

(14)

(15)
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4.8.3. Relations Between D}, and Dj . 0z

—M + M'cosf

1 ,
g Dl (e 8,1 = 3V + (T = M+ 1) Dipagr-y(e b, 7)™

1 .
+ 5\/(‘1_ M')(J+ M+ 1) Di!M’-f-l(a)ﬂr"f)ew)

M'—McosfB

sin S

Dine(@,8,7) = 3T BT — M+ 1) Dyl Br)e™

+ ST IE+ M1 DlpypeeBia)e™,

. T+ M)J-M . |
Diarane (2, f, 1) = \/((Jt M;EJ +M :11)) 1 +;08ﬂ ™" Digpgr -1, B,7)

M'sin 8 D
VII-M)(J+M+1)

_JU-M)(J+M +1) 1-cosf
(J-M)(J+M+1) 2

+ i’lM’(a’ﬂ)'”

e DI{{M'+1(°‘» B:7)

. T+ M)(J - M - .
Dye-sperle, 7)™ = = \/((Ji M;EJ M : 11)) 1 ;osﬂ ™" Digpgr—1(e, 8,7)

M'sin ;
N EY RS Digper(@, 8,7)

(J-M)J+M +1) 1+cosf
(J+M)(J-M+1) 2

+ e DKJM’-H(a!ﬂ"Y)’

. J+M(J-M :
Diasers(@r)e” =\/(S jM';EJ + Ml-:-ll)) 1 +;08ﬂ e Di 1, B,7)

_ Msin B
VII-M)(J+M +1)
[ -M)(J+M+1) 1-cosf
(J-=M)J+M +1) 2

D&M'(a’ﬁ’ 1)

et D)\,l+1M'(a’ﬂ"7) )

—in _ J+M)(J-M+1) 1-cos
Dierer-(@ B7)e ~—\/(S+M';§J—M'+1)) 2 :
_ Msin g8 D

VIV+M)(J-M +1)
(J-M)(J+M+1) 1+cosf

(J+ M) J - M +1) 2

et Dl{l—lM'(a»ﬂﬂ)

{JM’(a’ﬂ:'Y)

eia DI{{+1M’(a) ﬁ: '7) .

(16)

(17)

(18)

(19)

(20)

(21)
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4.9. DIFFERENTIAL RELATIONS FOR D} .. (a,8,7)
Derivatives of D (a, f,7) may be expressed in terms of the D-functions with different M, M’ and J

i 25 Dl o) = - LTIV NEY i ) MU
| L IVITHTP - M+ 172 -
(J+1)(2J+1)

12
M2 Dt (e Bo), )

35 Dicse (e i) = = GV M)T = M+ D e Do (e 8,7)

+ V=M M) Do), (2)

a
Y]

Digaer (o B,7) = \/(J+M')(J M’ +1)e™ Dipg-1 (e, B,7)

- —\/ J - M')(J + M' + 1) c‘7DMM,+1(a ﬁ;’l) s (3)

57 Diese (o Bin) = 2 2E D, fyn) - VTF T - M+ D7 Dly_peafi) (4

35 Dionc(@8,m) = =22 Do (e ,9) + VI HIT T M D Dpyune(b) ()
M-M ;

55 Dicser @, 8,1) = T8 Dy (o, i0) + VI F HONT = )¢ Dirs (i) (0

55 Dhese (.8, = =2 Dl 0,8, ~ VT BT+ F D¢ Dpgaala ), (1)

o Dfeaee(@,8,7) = ~iMDispeo(@,8,7) (8

5= Dicser(@,£:2) = =M Dlose (o, £y) (9

See also Eqgs. 4.2(1) and 4.2(2).

4.10. ORTHOGONALITY AND COMPLETENESS OF THE D-FUNCTIONS

The functions D{, (@, B,v) with different J (integer and half-integer) are mutually orthogonal with respect
to integration over a double volume of the 3-dimensional rotation group (i.e., over the volume of SU, group)
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because the period of Dy, (a,8,7) with half-integer J is 4 rather than 2. The double domain may be
chosen in two ways:

Vi: 0<a<4m, 0<B<7w 0<9<2nm (1)
V2: 0fa<2r, 0<pB<7r 0<L<y<dr. (2)

The total volume of the double domain V; or V7 is equal to 16x2.
Orthogonality and normalization condition is

4n 2n
/ da/ dﬂsmﬂ/ d'yD,{}'M, (e, ﬂ,'Y)D}{;,M;(a:ﬂ,'V)
(3)

2n T 4m 16”2
_ . Jan J1 = " agt
= /0 da/o dfsin B A dvy DM,M' ("‘!ﬂ"V)DM,M; (e, ,7) = 1 81,7360, M3 601 M3 -

If J; and J; are both either integer or half-integer, orthogonality of the D-functions takes place at integration
over the single volume of rotation group which corresponds to the domain

V. 0<a<2r, 0<f<m 0<Lvy<2n. (4)

The total volume of the domain V is equal to 8x%. Hence, the orthogonality condition (3) is reduced to

13 ” ar 8”2
. Jas J = e
[ da [ apuing [ 1Dl (o B Dl sy (@08i1) = 57 Snmrastaag . (9

In physical applications Eq. (5) is used more often than Eq. (3).
The orthonormality of Dy, (o, 8,7) may be rewritten in terms of djis,. (8)

[ dpsin e B)eiine (6) = 37578 (©

Thus, the collection of functions Dj,,,.(a, 8,7) with integer and half-integer J constitutes a complete set
of orthonormalized functions. The completeness condition is

oo J J
2J + 1
E Z E 162 qu(an ﬂu“il)Duur(az,ﬂzﬁz)
J=0,3.1,.. M=—J M'=—J |
= §(ay — ag)é(cos f; — cos ﬂg)&(’yl 72) . ' v (M

Any function f(a,f,~) which is defined in the domain V; (or V3) and satisfies the condition

JJ[ dadssinsanisa it < oo, (8)

Vi(Va)
may be expanded in a series of the D-functions
. 0 J J
f(asﬂ)'7)= Z z Z aKlM’D{lM’(aiﬂ:")' (9)
0,3,1 J

J= ==—J M=-J

31
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The expansion coefficients aj,,, are determined by
2J+1 . .
aloa = W// da dfsin Bdyf (e, B,7) Ditae (@, B,7) (10)
Vi(Vs)

and obey the relation

> P> S el = [[] dadpsinpirisia, . (11)

J=°'§'1'"' =J M'=-J vi(va)

If a function f(a,f,) is defined in the domain V', it may be expanded in a series of the D-functions with
only integer or only half-integer J

J J .
f(axﬂ)7) = E Z Z bi{M’ DKIM’(QHB,'Y)‘ (12)

J integer M=-J M'==J
or half-integer

The expansion coefficients b],,, are determined by

14
biea = 2J+ 1/ da/ dﬂslnﬂ d'yf(a B,7)Ditre (2, 8,7) (13)

for both cases of integer and half-integer J. A difference betvgeen the expansions of f(a,B,~) in these two
cases occurs if one uses the expansions outside of the domain V. The expansion coefficients in Eq. (12) satisfy
the relation

2 2
PR L Z S el = [t [ apuing [ st pr. o

J integer J Mi=-J
or half-integer

4.11. INTEGRALS INVOLVING THE D-FUNCTIONS
4.11.1. Integration of Products of D,

2x 2nr
/ da/ dﬂsinﬂ/ dYDirae (e, By 7) = 6106id06ar08%2, (J isinteger), (1)
ar an Mo M 87!’2
/ da/ dﬂsmﬂ/ d'YDM,M' (o, ,B,'y)DM’M,(a,ﬂ,'y) = (-1)M2~M: S 6]11’6-M1M,6_M;M;,

(J1 + Jaisinteger) ,

) ) ()

” L4 2

/ d“/ dﬁsmﬂ/ dy Dyzoygs (e, ﬁ,'v)DM,M' (a,8,7) = '2J_+'Is"”6‘”‘”’ MM} 3)
(J1 + Jaisinteger) ,

2n .4 r J
[ o [ apuing /0 &1 D, pay (0B W) D ey (0B 1) D gy (,8,)

. 82 : 4
- Ms-M Js=M. Js~M -
= (-1)Ms—Ms Tar1 T My T Ma CJ:M;.;,M; y (J1+ J2 + Jaisinteger) ,

(4)
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2nr 4 27
/0 da /0 dfisin § /0 &y D3pgy (@ B D3, s (0, 8,2) DL, o (0, ,)

8x? JsMs Ja My c e
=Tl Criminms Crinl sanay s (J1 + Jz + Jaisinteger) . (5)

Equations (1)-(5) are valid, if the conditions in parentheses are satisfied. These conditions may be omitted,
if the integration domain is V; or V; instead of V; in the latter case the factor 872 on the right-hand side of
Eqs. (1)-(5) must be replaced by 1622 (see Sec. 4.10).
Integrals involving products of four or more D-functions may be reduced to Eqs. (4)—(5) by using the
Clebsch-Gordan expansion (Sec. 4.6.1).
4.11.2. Integrals Involving dji,,. (8)

From Eqs. (1)-(5) one may obtain
/0 i dBsin Bddy(B) = 2610, (6)

/ dfsin Bdigpe (B)digrer (B) = 2J+ 1 =01, (7)

- 2 Js My
/(; dfsin ﬂd:},M{ (ﬂ)dj\,;,ul (ﬂ)dﬁ,M' (ﬂ)5M1+M,M;5M;+M;M; = '27;‘:1‘ C}:x:J,M,CJ:M' JaM} (8)

Note also the following relation

/oﬁ dﬂ(sin g)u-u'ﬂ (cos /_23_)M+M’+1dle' )

-1 ) M-M'+1 B\M+M'+1
T VI -MM+1) (sn3) (cee)
Equation (9) is valid, if M > M’ > 0. Other cases may be deduced from Eq. (9) using the symmetries of
e (B) (Ea. 44(1)).

4.12. INVARIANT SUMMATION OF INTEGRALS INVOLVING Dy, (a,8,7)
Hereafter R will denote the Euler angles a, 8,7 and we also will set dR = sin SdfSdady:

/de(R) .=_/ohda/:dﬂsinﬂ/ohd'yf(a,ﬂ,'y). (1)

Making use of this notation, one gets

dig1na(B)- (9)

5 / dRD\ (R)DLres(R) = 8526151, @
MM )
= [ dRDias (R Do (R) = (-0 8%, )
MM’
3 [ RDY s, (RIDY e, (RIDE, e (R) = 872010203} @

My M; M,
> / dRy D}, v, (1) D32y, (R1)D33, ur, (R) / AR,y (Ro) D23y, (R2) Dy gy (Ra)

ALM,N
— 27 g 2y2] 1 J2 Js
= (—1) (87" ) {Jl Ja Jé ’ (5)
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/ AR D355y (B) Dty s (B1) D3, (B1) / dRaD 31s (R2) Dty s (R2) D ag, (Ro)
AN MN

i AN AN A
[ngD:‘ +N3 (R3)DM'N’ (RS)?ﬁaMz(RS) = (812)3{‘,; JZ JZ} ) (6)

/ ARDee R D3, (R2) Dy (1) / 4R D i (R2) Dy (Ra) D3y (R)
All M N .

x [ 4RSD s (Re)D iy (Re)D3ae, (Bs) [ 4D, (R D3,y (R) D2, (RO D3, (R4

— e 1 YV BRI [N J2 T
_.("1) ‘(8“) {J3 J2 J J3 J2 J, Js Jz J" s (7)

/deDMM(Rl)DM'N'(Rl)D{;:Nx(Rl)/dﬂ?DIJWM'(Rﬁ)DIJVN(RQ)Dg;N,(R2)

AllMN
JJ J

/dRaDMm, (RS)DM,N,(R:!)DJ{;:M, (Ro) = (3"’2)3{ JJ Jz} , (8)
Ji Ja Ja

5> [ ARDE,, (R D, (R)Dpsy (R) [ ARaD, v, (Ba) D, (Ra) Dty (B

AIlMN
x [ 4R DL (Re) D3zt v,y (R)Diere (Re) [ dRuD 3 nt (R)D e pa, (RID i p0 (R)
s p Ji J2 Jy2
x [ 4ReDI 10, (Re) D3, (Re) D, (Re) = (85°)° RSN )
13 v24

The left-hand sides of Eqgs. (5)-(9) include integrations as well as summations. If the integrations are carried
out before the summations (with the aid of Eqs. 4.11(4)-4.11(5}), then Eqs. (5)—(9) are reduced to sums of
the Clebsch-Gordan coefficients (Sec. 8.7). On the other hand, if the summations are preformed before the
integrations, one obtains the integral representations of 65- and 95-symbols (see Secs. 9.3 and 10.3).

4.13. GENERATING FUNCTIONS FOR dj,,..(8)

The functions dj,, (B) may be defined as coefficients of expansions of various generating functions.
(a) If J and M’ are fixed, then

J+M' I-M'
(cos ge"’/z +tsin — B "”/2) (i sin g?"ﬁ + cos g-e"'“’n)

J ) X '
2 ‘(’J’-‘Liiiiiﬁ)’f (=)M7H M dirr (8). (1)

M=-J
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In particular, for ¢ =0

J
7 (J=MWI+M), o
i —M‘;, T T dine (), )
and forp=n
cr= 3 JUMELID aeae gy, (). (5)

= (J M7 + M)!

(b) If M and M’ are fixed, one can obtain several expressions in which s, u,v are related to J, M, M' by
Eqs. 4.3(14), éma is defined by Eq. 4.3(15); and R denotes

=+11-2tcosf+1t2, |t|<1. (4)

baarer (26in§ \* [ 2c0sf |7 S [lat mllat o)t e
R <1+th) (1+Rit) =X\t arar thid 6 (5

%)

EMM:(sin é) (cos —-) OFI( 1+ p; —tsin® —)oFx( 1+ v;tcos?

plv! o gt
.;)\/a'(s+p We+v){s+p+ )' hardt (B), (©)

i v 1 2 4tsin? £
Emm (1 —¢)1 47 (sin g)"(cos g) .y (“+;’+ ’I“*‘;"f' 4 (lsx_nt):)
styv){s+ptv)t  p .
( a?(£+;¢)! (s + )l dl\j)\:%z(ﬂ), (M

a—O

Saere (in g)“(m E)U’F‘('\"” v+1-Xl+p l:“t—-—-l?)al"x(J\,u+ v+1- X1+, lig-_R)
= (B+v+1-2o(M)upls! , eruge
E TG TE GG o (8. "

In Eq. (8) A is an arbitrary integer.
4.14. CHARACTERS x’(R) OF IRREDUCIBLE
REPRESENTATIONS OF ROTATION GROUP
4.14.1. Definition

The trace of the finite rotation matrix in the JM-representation

s |
x’(R)= D Din(R), - (1)

M=-J

is called the characteristic function, or simply, the character of the irreducible representation of rank J.
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In contrast to D, (R), the function x’(R) is invariant under rotations of the coordinate systems. Explicit
forms of x”7(R) are simpler when R is specified by w, 8, ® rather than by a,B,v (Sec. 1.4.2). With variables
w,©,® in use, x’(R) is entirely determined by the rotation angles w and is independent of the rotation axis

n(6,d):

x!(R) = x’(w).

4.14.2. Explicit Forms

x’(w) =
x’(w) =
x’(w) =

x’(w) =

x?(w) =

x7(w) =

(c) Relation to the Chebyshev polynomials of the second kind

(a) Trigonometric formulas

sin[(2J + 1)%]
g
2
J J
2 e~ My - z cos Mw ,
M=-T M=-~J

U (2] -n)t W\2J-3n
2 (-1 (Z(J— Zn))!n! (2cos E)w ’

n=0

n=0
2J1+1 d( 2) cos[(2J+1)gJ )

(2J + 1)1227 2 4J+1
(47 +1)!sin % [ d(cos ] (sin

(b) Relations to hypergeometric functions

x'(w) = (2J + 1)F(=J,J + 1;3/2;sin? %’)

x"(w) = Ug](cos %) .

(d) Relation to the Gegenbaver polynomaials

x’(w) = C}s(cos 3).

(e) Relation to the Jacobs polynomsals

_ (4T +2)0
X() =y

)

71 J ! 2 LY
N g (s ) i

x7(w) = (27 + 1)F(-2J,2(J + 1); 3/2;sin? -(z-) )

P2(§ i)( cos & )

(2)

(@)

(4)

(5)

(6)
(7)
(8)

(9)
(10)

(11)

(12)

(13)
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(f) Integral representation

2J+1 [*
x’(w) = + [ (cos 2 tizsin 8)Nda:.
2 /2 2

To express x” (R) in terms of the Euler angles c, 3, v one can use the relation

<:os(L)—cosEcosa‘-’”7
2 2 2

4.14.3. Principal Properties

In contrast to D, . (R), the characters x”7(R) are real.

' (R) =x"(R).

The characters which correspond to direct and inverse rotations, R and R™!, are equal

x' (R =x"(R).

x”(R) is invariant with respect to coordinate rotation and inversion

x”(URU™Y) = x’(R),

where U is any orthogonal transformation of the coordinate system.
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(18)

(16)

(17)

(18)

The characters which depend on the combined rotations Ry Rz ... R,, do not change under cyclic permuta-

tions of the rotations

x’(RiRz...R,) = x"(R;...R.Ry).

In particular,

x’ (RiR2) = x” (R2Ry),

inspite of the non-commutativity of RB; and R;.

Products of the characters may be expanded in a Clebsch-Gordan series

X (R)x™(R) =) _{)1JaJ}x’(R),
J

where {J;J2J3} = 1, if the triangle inequality (Sec. 4.6.2) is satisfied, and {J;J2J3} = 0 otherwise.

The transformation J = J = —J — 1 reverses the character sign

X’ (R) = -x’(R).

The function x”(w) is even and periodic

x7 (—w) = x7(w),
x7 (w + 47) = x7 (w),
x!(w +27) = (-1)*x7 ().

(19)

(20)

(21)

(22)

(23)
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The addition theorem

The character which depends on the combined rotation R;R,; may be represented as a superposition of
products of the generalized characters which depend on R; and R (Sec. 4.15):

2J
X'(0) = 3 (-0} L i () (wn) P (cos B1a) (29)
A=0

where w;,w; and w are the rotation angles corresponding to R;, R; and R = R, R, respectively. These angles
are mutually related by means of Egs. 1.4(75); ©;; is the angle between the rotation axes of R, and R,

cos 92 = (n; - n3) = cos ©; cos O + sin O sin O3 cos(P; — P3) . (25)

4.14.4. Differential Equation

The character x’(w) satisfies the equation

A x” (w) +cot = Tw)+ J(J+1)x7(w) =0 (26)

d
dw? 2 dw”
and the boundary conditions

x7(0)=27+1,

27
x'(w £ 4mn) = x7(w), where nisinteger. (21)

4.14.5. Differential Relations

~ X’ @) = ~VITF D x@); (28)

d \* , 1 (2J+k+1)! x](w)
(de‘%) X () = VZi+1\ (27-k) (si’; a)F (29)

where xjl () is the generalized character (Sec. 4.15):

sin 3 —x’(w) J cos (‘E)XJ(w) -(J+ %)Xj_é(w) =(J+ %)XH%(“') A 1)cos%x1(w)- (30)

4.14.86. Algebraic Relations

*+3 (w) = 2cos = 5 x’ (W) - x7" % (w), (31)
X7 (@) = X7 (@) = 2x T (w) cos[(J1 + T + 1) 2 21 (32)
x () + XJZ (w) = 2 F 57 () cos[(Jy - Jz)g] . (33)

Equations (32) and (33) are valid, if J; + J; is integer.

x7 " ¥(w) = 2cos i2“1)(’%1(«1), (34)
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where J is integer and positive.

—2sin? %x"‘ ()x” (w) = cos|(Jy + J2 + 1)w] — cos|(J; — Jz)w].

In particular,

2sin® %[x"(u.z)]2 =1 - cos[(2J + 1)w].

2J
J(,y  92J s (W krx
x'(w)=2 ’;[=Il31n(2+2J+1).

4.14.7. Orthogonality and Completeness

103

(35)

(36)

(37)

The collection of characters x’(w) with different J constitute a complete set of orthogonal functions of

argument w in the domain 0 < w < 2.
The orthogonality and normalization condition for these functions reads

2r w
/; XJ’(W)X'Ia(w)sinz EdU=1l’5]l_]’.

The completeness condition has the form

> n8(w; — w2)
> X (e (wg) = AT
sin
J=0,3,1,... 2

4.14.8. Integrals Involving x’(w)

2n w
dw sin? -2-x"(w) =60,
0
2n w
dw sin? Ex"(Zw) =n(-1)%7,
0
2n sin® ¥ N
dw——2— x7(w) = —27cos[(2J + 1) =] .

= ® (27 + 1]

In Eq. (42) the Cauchy principal value of the integral is assumed.

2
Lo W
A dw sin? Exh (w)x"’ (w)=765,7, ,
2% 2 W
dw sin —z-x" (w)x " (w)x " (w) = #{J1J2J5} .

0

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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4.14.9. Sums Involving x7 (w)

(a) Finite sums

Ja . wl e _ @ s

J ; XJ(W) _ sm[(-fz +J1+ 1)511]1281:1[(-72 Ji+ 1) 2] - X_L—L’ (W)X (w) (45)
=Ji,J1+1,... 2

HE’; (274 1)’ () = (2Jo + 3) sin[(2Jo + 1)4]sm (on + 1) sin[(2Jo + 3)% ] o)

The summation index in Eq. (45) runs over integer values, if J; and J; are integers, or half-integer values, if
J1 and J; are half-integers.
In the equations given below the summation indices run over both integer and half-integer values:

Ja
7 sm[ Ja+Ji+1) ]sxn[(Jg-J1+2)‘-"é-]
Z X () = sin & sin % ! (47)

J=n, i+ 141, 4

Jo . w N w
Z (27 + )y’ () = (2Jo +2) sm[(ZJo + 1)5] - (2;]2)-{- 1) sm[(2Jo +2) 5] ’ (48)

4sin “2—' sin® %

J=0,%,1,... ¢
Jo
4Jo +3)sin% —sin[(4Jo + 3
55 - Werding o shlith 93] (o)
J=0,3.1,... 4sin® s
3 Tot+3 () x 7o Jo+3 (.,
S Kl = ) Pt W) )
J=0,},1,.. (cos——co )
Jo o
Z xJ(w)cos[(2J+1)—2—]
J=0,},1,...
_ sin% —cos[(2Jo +1)%] sin[(Jo + L)w] + sin[(2Jo + 1)%] cos|(Jo + 1)u']
2sin ¥ (cos & — cos %) : (51)
(b) Infinite series
f: 1
J
J=031,.. 4sin” 3 ’ )
Y @)X ) = g 6(w) 53)
J=0,4,1,.. s 5
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Let us introduce the notation

R?=1 —2tcos% +t%, where |t| < 1:

[

1
Z tzjxj(w) = 'R—g )
J:O,%,l,...
= 1-1¢2
> @I+ (W) = 5,
J=0,%,1,...
i (4 + 1)1 Ay (w) = 1
= ]
J=0,3,1,.. (47 +2)H R\/2(1 ~tcos § + R)
f: 1 t2J+1xJ(w) = Sin(tSin %) ctcos‘;-
| in ¥ !
=oit (2J +1)! sin 4

oo iw
1—te”
Z 1 127y (w) = 1 In ( e 3

J=0.41 2J+1 Zttsin% l—tc‘#
=Vigadaes
- -]
L(2J +v) t*7x7 () Wy v v v+1
J-§1 ) @ CTteg) Rz
- 1 1,3 W
2J . J — = O a2 ¥ .9 w
1-0211 (4J+2")‘!(4t) x’(w) = 20F1(,2, tsin 4)0F1(,2,tcos ),
g X L2 Al
(- <]
1-¢2
27y (w)x’ (w') = : .
,_(é:l X llx () 14 t2 — 4tcos % cos % + 2t2(cosw + cosw')

4.14.10. x’'(w) for Particular Values of w

x7(0)=27+1,
x7(2r) = (-1)?7 (27 +1),

Tr) = { 0 if Jishalf-integer
X ~ L (-1)? if Jisinteger
V2 J=1/2,9/2,17/2,...
1 J=0,1,4,58,9,...

X’(Z)=1{0 J=8/2,7/2,11/2,15/2,...

-1 J=2,3,6,7,10,11,...
-2 J=5/2,13/2,21/2,...

10§

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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4.14.11. Special Cases of x7(w)

Xlw) =1, (67)
x} (W) = 2cos 5"2- , (68)
X' (w) = 4cos? % -1, (69)
x}(w) =8cosa(‘2—)-—4cos%, (70)
x?(w) = 16cos* (-02— ~ 12 cos? ‘-;- +1, (11)
x}(w) = 32cos® Y _32¢c08 2 +6cos~. (72)
2 2 2
4.15. GENERALIZED CHARACTERS, x](R), OF IRREDUCIBLE
REPRESENTATIONS OF THE ROTATION GROUP
4.15.1. Definition
Let us introduce the function xj (w) associated with x’(w) by the differential relation
A
e @7-N . wn(_d ;
) =V WP g) (Tewg) X6 ®

where ) is integer, 0 < A < 2J, and x”/(w) is the character of the irreducible representation of rank J
(Eq. 4.14(1)).

The function xj (w) will be called the generalized character (of order A) of the irreducible representation of
rank J. Note that the relations between x (w) and x”(w) are similar to those between the associated Legendre
functions P}(z) and the Legendre polynomials P(z).

At ) = 0 one has xj (w) = x7 (w).

4.15.2. Explicit Forms

(a) Trigonometric series

X (@) =Y MUCTi,, (2)
M
w - 22 qye -3 J—A~2s

x{(w)=(sin-2-)’\/2.7+1 ———(2821,\1)!1)!? ._Z_:o ——3(1(21}?:\,—2))"(2 )2 A=2e (3)
sin ity ) 2J ~ s

(@) = -(—2——2—)—-\/2J+ ;fixi)'l)! E (;\(;J "’,\J )cos[ 27-2-295]. (4

(b) Differential form

1 (2J - A)!
x{(w)—m (2J+A+1)'( ) (

A+1 w
) cos[(2J + 1) 5] ) (5)

dcos ¥
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See also Eq. (1).

(c) Relation between xj(w) and the Gegenbauer polynomials

xi(w) = (22)MV2J +1 M( ) C3325 (cos g) .

@I+ A+1)! 2

(d) Relations of xj (w) to the Jacobs polynomials

7 V2J+1/(27 = AN 2T + X+ 1)! o, 5 AO+iatd), W
xi(w) = (47 + 1)1 22772 (si —2-) Pyt (cos—z-),

ey JH (2= A A+d -4
2J+1 (21(:,\11315%; A} ) (sm %) P§ A2 2)(‘:05“’)»

2J — Aiseven

J
Xi(w) =
’ VAT +1/BIS=IEII (cos 4) (sin §) PIEE (cosw)

2J — Xisodd

) Relations of xj (w) to the Hypergeometric functions

)= YEFL [T a1 w
X3 (w) = AT On ] F( 2J+)\2J+/\+2/\+ ,sm )

(=122 2A)2T +1 [(2J + A+ 1) QW
A+2; —
x3 (w) = 11! T =1 ~2J+X2J+ A+ /\+ ,cos 4),

7 (=1)%7" 227 +12¢772(2J)) , . w\a, . wy4T-2a
X (w) = (sin 3)" (sin 1)
V(@J = (2T + A+ 1)! 2 4
xF( 2J +,-2J - ——4J ——lﬁ)
sin 3
V3T & " -
(W) = 2J +1(4J)" (co (_u_)zJ '\(sin g),\
V(2J = A)(2J + 2 +1)! 2 2
1 -2J+2+1 1
XF( J+§, 9 :—2‘])‘:052_“21)1
I() = v2J+1 [(2J+ A+ 1) (sin (-d-)'\(cos g)u—z,\
DT =y T T 2 4

3
x F(=2J + 2\, ~2J - %;,\ + 23— tan? %) ,
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(9)

(10)

(12)

(13)
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tgA : NA L .
() = V2J + 1(2J)k (c"’f _ ezga) XTIV P(_2] 4 A A+ I;—2J;6F%)
V(@I = 2)H2J + A +1)!
] . A
((~1)7 3 Vel + 1y B e (sin §) F(=J + .7 + 1+ 3 dicos? §),
if2J — Aiseven
J _ w1 2712 +A+1)1 W i w)A
xaw) =4 (1)t VeI +1 (21—,\) 1()11(214»%):: cos § (sin )
XF( J+—t— J+1+—i'—,2,cos 5
if2J — Aisodd

(2311;11\/ 2;?11'! F( J+'2\’J+1+;"\+ 3;sin’ g

if2J — Aiseven

J
Xi(w) =
(234{1;1:1\/ %%%ﬂc°s%(3in F( J+ 4T+ 1+ 2440+ §sin® §),

if2J — Aisodd

(f) Integral representations

11 [2J+1)(2J+A+1) 1 ]"’ » ¥ ¥ WA
() = =2 ¥ y__.v
X3 (w) 5 I =) (smz)'\ﬂ o‘cos[(ZJ-’rl)z](cos2 COSZ) dy,
Ty ,\\/21+1(2J+,\+1)(2J A)f w oL wy2g
Xi(w) = (- 2GJ)! B Py (z)[cos 5 Tizsin 2] dz.
4.15.3. Principal Properties
(a) Symmetries
X3 (@) = x{(@) = (-1 x3(-w),
X3 (@ +27n) = (12" {(w), x{(2r—w)=(-1)*""*x{(@).
(b) Particular values of w
x3(0) = (2J + 1)6ro, x3(27) = (-1)27(2J + 1)bx0,
( { (-1)7-3 \/ 2J+{2 )}“;\25':’:(2‘\1-4»&:!»125{!“ if2J — Aiseven,
if2J — Aisodd.
(c) Recursion relations
i J N/ 2 )2 A+l 2 2,7
2d X3 (w) = 2,\+1 (27 +1)2 - 22x{_(w 2/\+1\/(2J+1) (A +1)2 x341(w),

(22 + 1) cot —x,\ T@)=VEI+1)2 =X x{_ (@) + VT +1)2~ (A +1)2 x3 1 (w).

(15)

(17)

(18)

(19)
(20)

(21)

(22)

(23)
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(d) Asymptotics

If w— 0and J — oo, while Jw = z < 00, then

,l;w 57770 @) =5(s), (24)

where j)(z) is a spherical Bessel function. If w — 0 and J is fixed, then

O (2 2,\+ 1)! \/(N 2€;A j)l) ‘ (25)

4.15.4, Differential Equation

The functions xj (w) are solutions of the linear differential equation

@ wd g AA+1) T
mxx(w)+cot —Z—EXA(w)+ J(J"}'l)—m XA(UJ) =0 (26)
with the boundary conditions
x3(0) = (2 + 1)éro, xJ(27) = (-1)27 (2T + 1)éxo. (27)

4.15.5. Orthogonality and Completeness

The collection of functions x; (w) with different J > A/2 and fixed X constitutes a complete set of orthogonal
functions of argument w defined in the domain 0 < w < 2.
These functions are orthogonal,

2
LW
/ dw sin? Exf‘ (w)x:\” (w) =651, , (28)
0
and the completeness condition reads

Y g (wa) = 1= w2) (29)

2wy
sin
J=0,%,1,... 2

4.15.6. The Addition Theorem for xj (w)

The generalized character xj (w) for the rotation R(w;®©, ®), which resulted from two successive rotations
Ri(wy;01, ®1) and Ry(wz; Oz, P2) may be expanded in terms of x3 J(R;) and X {(Rz) as

sin & A2l
X (w) = (2J + E\Z-{- 1)"\()2.] +1) (sm “sin 4 321 smx) ‘Z;( 1) (26 + 1) P cos x)xi (wilxi (w2),  (30)

where P}(cos x) is an associated Legendre function, x is an angle between the rotation axes n;(©;, #;) and

n3(03, ®3)
cosx = (B; Ny) = cos O cos Oz + sin O 8in O cos(P; — T2). (31)
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The angle of the resulting rotation, w, is determined in terms of w;,w; and x by

Y = cos 2L cos 22 — sin 2 sin =2 co
cos o = cos y S 5 oS X
4.15.7. Sums and Infinite Series Involving xj ()

(a) Summation over A

N
A

22 +1 iMw

Z(:ﬂ)'\ '\2J XA() Thro = et MY, (IM|<J),

A=0

<2J

3 22+1

Y (IO = co M, (1M]<J),
A=0,2,...

<2J

X 22 +1

(=) 12J+1 X3 (w)Citfro =sinMw, (IM|<J).

A=1,3,...

In Egs. (33)-(35) J > | M| is an arbitrary integer or half-integer.

<2
— 2x+1{(x-1
3 T B 0= Ale),

2!

22+1 [(A+m=-1)A-m-1)1 ,
Z 2l+1 (A +m)!II(A — m)!! X5 (8)Cigim = Varss 21+ 1 Y1 (9,0),

A=|m|

(A + m iseven),

Sff 1A2A+1 P+M-M-NA-M+M-1I ; M’ J
A=| M- M]| 0 o5+t O+ M - M- M+ M) X E)Ctrse 20 = are )

(A+ M' — M iseven).

(b) Summation over J

i (2J+v+1) xJ(w) 27 (ZV)”(-—tsin“Q—’)u
J=v/2 27 -v)! V2J+1 R+l

c- (47 + )10 () (£)* _ (-tsing)”
ng:/z V(2J +1)(2 - )2 +v + 1)! B \/ER(]_ —tcos ¥ +R)"+:

where R? = 1 — 2t cos(w/2) + 2.

J_Z/zm_u \/(2.] +1) %ﬂi),y— x5 (W) J2s4+1(y) = %( sin _) givcos s

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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haid J 27
X,,((U)t ; ;WY tcos

= Jv\tsin o 7, 42

J=Zu/2 NP eI (tsin3)e (42)

f: I(k+2J-v) x) (w)e??
e TR VRI+)RT- V2T +v +1)!

. v L] 2
1 (tsin¥) F(E,k+1;y+§._( tsxn5w> ) . (43)

=(2V+1)”(1—tcos‘-"2—)k 2’ 2 2’ \1—tcos %

2

Here k is an arbitrary integer.

$ X (@) (20))
75, W+ V(2T +1)(27 - V)27 + v + 1)

(2t sin ‘:‘,—’)V

3 LW 3 w
=WOFI(;V+_;—tSIn2 '—)OFI(;V'*"Z";tCOSZ Z) (44)

2 4
The right-hand sides of Egs. (39)~(44) may be treated as generating functions of xj (w).

4.15.8. Special Cases of xj (w) for Particular A

(a) For A =2J,2J — 1,2J — 2,2J — 3 the function xj (w) is given by

@Y . w2y
———— — 45
XZJ(w) 2J+ (4J+ 1)!! (sm 2) ’ ( )
7 () . wyer-1ow
X37-1(w) =v2J+1 A= (sin 2) cos 5 (46)
— o _
raw) = VET 1 —i‘i—?l)T (sin )74 cos? & — 1], (47)
(47 -2)1t . 27-3 3w w
X3 73w 2J+1 W( nz) [4J cos 5 3c032]. (48)
(b) When A =0,1,2 one has
sin(2J + 1 cos Jw — cos(J + 1)w
Xg(w) = ( )2 — ( ) , (49)
sin & 1—cosw
() -1  2Jcos(2J +1)%sin % ~sinJw -1 Jsin(J+ 1w —(J +1)sin Jw
W) = =
X1 VI +1) 2sin’ & J(J+1) 1-cosw (50)
1 3-2J(2J — 1)sin® ¥|sin(2J + 1)% cos Jw
X3 (w) = {[ ( 3w] 2—5(2J+1),2u .
VI({J +1)(27 — 1)(27 + 3) 2sin® & sin? % ] (51)
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(c) x](w) may be expressed in terms of derivatives of x” (w)

Xa (W) = x7(w),

VI FD dw
1 Ex’ ()
J(w) = J(J + 1)x7 (@) + 3———
) = G e Ty [+ )+ 3=
_ (27 =3)! (W) | () (52)
Xl (w) = -4v2T +1 o {87 +1 -1 52 b,
(2J —4)! _ 7
Xl (w) =2v2T +1 (2J+5), {30 -7+ +29x’ ()
e P (w) d*x” (w)
+5[6J(J +1) - 5] 20+ 35 22X }-
4.15.9. Special Cases of xj (w) for Particular J
J=0 xdw)=1;
1
J=1/2 x§(w)=2cos%,
3 2
xi(w)= Zeing;
J=1 x}w)=1+2cosw,
xi(w) = VZsinw,
xi{w) = \/_(1 —cosw);
=3/2 xé(w) = 4coswcos & =4C08%(20082% - ),
x;’l(w) = \/—%g (2+3cosw)sing = A= sing (6cos ) ,
2 53
xé(w):%(sm;) cos & =%sm—2-smw, (53)
3
xé(w) = \/—;-——73111 2(1—cosw) = \/%(sin “3’) ;
J=2  x%(w)=4cos?w +2cosw—1,
x3(w) = \/_%— sinw(l+4cosw),
Xi{w) = \/2(3 +cosw — 4cos?w),
x3(w) =2 \/g sinw(l — cosw),
Xi(w) =12 \/g(l —cosw)? .
4.16. Dj ;. (a,8,7) FOR PARTICULAR VALUES OF THE ARGUMENTS
Here k,! and n are integers.
D334:(0,0,0) = 6pnev (1)
DX{M'(Q)O; ’7) = 5MM’3—‘-M(&+7) ’ (2)

D.KIM'(O" *2nm, '7) = 5MM’('—1)2nJc_iM(a+7) ’ (3)
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Djppp (e, £(2n + 1), 7) = 5—MM'(‘1)i(2"+1)J+M6—‘M(°_") (4)

Diygp (a,%n) = (~pMMiaM M ; ((JJ:AJ;)' J- M')' O (J+M')(k4;]1\_l¥'1v[’)('5)

Some particular cases of Eq. (5) are given by

() () .

l-m)(l+m)! _
Dy (0 212) = ()1 Y
2 ()
n -1
Df)o (a) 5:7) = PI(O) = 51.27;("‘1)1/2 ‘(_T)‘ y (7)
x (1 = m)!(l + m)! m(-1)5"
D =
:tlm(a127'7) l(l+1) i+m,2k '(1;2-)'(1__%&)!
¥5 _1) —3 } Fia—-imy (8)
I+m,2k+1 - — e .
2:-1(%);(&%);
Squares of the D-functions for f# = £ may be written as

2
[DMM'(as2"7)] = ¢ ¥2Ma- M y (_q)M- M Z (- 1)1/2( ) Chus-mClurs—per-  (9)
{=0,2,4,...

Using dj; ;. (7/2), one can evaluate Dy, (e, B,7) for arbitrary arguments from the relation

DXIM’(a ﬂ)7)
a ZDM,M 2,0,0)D7,, 1, (0, 5,0) Dy (8,0,00 D1, (0, 2,0) D7 10 (0,0,)

- - T —iM'
__.Ze |Malde(5) imB de'(2).e Mv‘
m

Numerical Tables of Dy (0,7/2,0) = digpp(n/2) for J = 1/2,1,3/2,2,5/2,3,7/2,4,9/2,5 are given in
Sec. 4.21.

(10)

4.17. SPECIAL CASES OF Dj,,, FOR PARTICULAR M OR M’
(a) M=0and/or M'=0

mola, B,7) = (-1)™ 1 Yi-m(B,a) = m(8a),
21 + 1 (1)

Db, (e, 8,) = \/2,““; m(B7) = ()™ 5 Y
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In particular,

Df)o(ayﬂ, '7) = .P[(COSﬁ) 3
D;lo(a, B,) = FeFe ——SEI'"B—_ P/ (cos §),

I(l+1)
Dhs(en 1) = 6™ b5 P(cos), )
Dol ) = €742 {— T Pleosh) + —— e '(cos/a)},
Dhastonpn) =7t | [t )+ Ll e}

(b) M = £1/2 and/or M' = £1/2

J _ 4iaza \/7—l' JEM +1
Diyac(enB) =273 \/2‘J—+Tsin‘§{iv 771 Yo+tzi-ae(B)

JF M
F\—3 YJ_g;g-M'(ﬁn)},

1 . ) [ JEM+1
D;d:t%(a:ﬁ"Y) = ("1)17 M oFitgt msiné {:t J+1 YJ+§:F§—M(ﬂaa)
2

JEM
F 7 YJ-g:Fg-M(ﬁ,a)} .

(3)

S

In particular

4
) cos
Diy(a,B,7) = e~*%" 3:3;; {P} 4 (cosB) = P;_4(cos B)},
inl
- sin
D; %(a)ﬁ)'ﬁ—_‘e 5 J+ 21 {P"H_%(COSﬂ)'f'P_',__%(COSﬂ)},
2
(4)

DJ (a ,B ,7)_6132—’1 mg
_%% »My J+;

{P3+1(C°S B) + P}_%(Cosﬂ)},

Di%_l(axﬂ:')’)—e‘“:’ul-__z—{PJ.,.l(cosﬂ) J L(COSﬂ)}

(¢) M ==+1and/or M' = +1

DY ipmla, B,7) = e¥ie an ) {?\/(l -m)(l+m+1) 1 $<2:osﬂ Yi—m-1(8,7)¢""

i+ 1) +1)

+msin BY; - (8,7) % VI H ) —m+ 1) - i;‘” Yc_mﬂ(ﬂn)e“"} ;

4r (®)

I+ 1)@i+1)

Dipsr (e, B,) = €77 (—1)™*?

{*\/1— ) 2Ly (,a)e

1+ cosf

+msin ﬁYl_m(ﬁ’a) + \/(1 + m)(l -m+ 1) Yl-m-{-l(ﬂ’ a)e_ia} '
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In particular,
1+ cos ﬂ

Diws(e,B,7) = e¥07 Sy

—————{P/(cos B) F (1 F cos B) P/ (cos B)},

= gFiativ M{P{(cosﬂ) + (1 + cos ﬂ)P,”(COS ﬁ)} .

Dl:tl—l(a’ﬂ;'ﬂ l(l+ 1)
(d) M =+£(J —1) and/or M' = £(J - 1)

DJ lm(a ,3’—7) ( )J -m—1 —t(J 1)a- smq\/(‘]_’-(fnj)!—("]lf m)'(

B

cos —~
2

)J+m—1(Sin g) J~m-—1

x [Jcos B —m],

— g(J-1)a—-im (2‘]—1)' ﬂ
Desrinlenfin) = 70 7\/(J+m) T (2
X [J cos B+ m],
; ; 2J — 1)t J+m—1
Drsmale i) = e \/(J +(m)!(J)—m)! CTCY

)J—m—l( . 'B)J-{»m—l
sin 2

x [Jcos f —m],

Dr{;—]+1(a,ﬂ"") = (_1)J+m—1 eti(J-1)7—ima \/(J +(fnJ) ;Jl) m) (

B

cos —
2

J=-m-1 .
)" (sn?

X [Jcos B+ m].

e) M ==J and/or M' =+J
(e) /

(2J)! (cosg J+M (_ sin ﬂ)"“e-ua—iMq ,

DjM(a,ﬂ, q) = \/(J + M){(J - M)!

(2J) g

D!.JM(a)ﬂ)’Y) = (J+ M)M(J - M)! (COSE
( A

2

2J)!
Digs(a,B,9) = \/(J+A[()|(.)I—M)!

(2J)!
Dis-s(6,7) T+ M)(J - M)!(

cos g) ™ (— sin ﬁ) J+M¢

—iMa+sJy

115

(8)

Explicit forms of dj;,(B) for particular values of J (J = 1/2,1,3/2,2,5/2,8,7/2,4,9/2,5) are presented in

Sec. 4.20.
4.18. ASYMPTOTICS OF Dj,,.(e,B,7)
4.18.1. Large Angular Momentum
If J > 1, one has

st(s + p+v)!

—iMa—iM'
¢ (s + u}t(s + v)!

D,{,,M,(a,ﬂ,’y) e

2 cos[(s-f- ”—*%“)ﬂ— T(2u+1)
x — 4
s

\/sin 8
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where s, u, v are related to J, M, M’ through Eqs. 4.3(14), and &ass is defined by Eq. 4.3(15).
If J —+ oo and § — 0, while J8 < oo, then

D3yl B,) ms e MM gy (JB).
Here J,(z) is the Bessel function.

4.18.2. Small Variation of Rotation Axis
If 3 — 0, we have

N , : :
Digpei(a, B,7) s e~ MamiM Smum \/(3+u+u) (s + 1)

! si(s + v)!
x(g)u{l_ 23(3+}£+2l(/#++11)+ vip+1) (§)2+} .

If x — 8 — 0, we have

. ey st , y ! !
Difae (@, 8,9) s e Ma=iM 5_1\/!__}\{_(_1), (s+u+v)is+v)

! si(s + p)!
() (- () )

4.18.8. Infinitesimal Rotations
(a) Rotation e about the z-Axis
. 11,5 T n . ‘ s ,
lim = [Ddear (- e 2) = Sure| = —iIM|T|I M)

= —% Samrer VT = MY(J + M +1) — %5MM,_1 VI +MYJT =M +1).

(b) Rotation & about the y-Axis

lim %[D{,M.(O, £,0) — Sagacr] = —i(T M|, | T M)

- —%5MM,+1 N O % Sari—1 V(T T M) (T =M+ 1).
(c) Rotation € about the z-Axis
lim %[DMM'(e, 0,0) — baraer] = —s(UM|T|TM') = —iMébpppe .
(d) Rotation € about an Arbitrary Axis n(©, ®)

.1 . ~ .
lim ;[D,{,M,(a,ﬂ,q) —bpmr) = —i(JM|J -n|IM') = —iM cos Obpsps

'—% sin©e ™" /(T = M)(J + M' + 1) bpgagr41 — %sin 0t /(T + M) (T = M' + 1) pgpqr—1 -

In Egs. (5)-(8) J is the operator of angular momentum defined in Sec. 2.1.

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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4.19. DEFINITIONS OF Dy, (a,$,7) BY OTHER AUTHORS

Different authors use somewhat different definitions of the rotation matrix. The main differences are in the
following:
a) in using right- or left-handed coordinate system;
4
b) in rotating either coordinate system or physical body;
g \
(¢) in using various definitions of the Euler angles o, £, v, namely,
(1) choosing different rotation axes,
(i1) choosing a different order of rotations, and
(iii) defining rotation either in a right-handed or left-handed sense;
(d) in considering transformations either of covariant or of contravariant components;
(e) in choosing various transformation rules for irreducible tensors;
(f) in accepting different phases of non-diagonal elements in Eqs. 4.2(4) and 4.2(5).
The Wigner D-functions used in this book coincide with those defined by Edmonds (Ref. [64]), Rose
(Ref. [30]), Newton (Ref. [28]) and some other authors. The relations between these D-functions and corre-
sponding functions of other authors are listed in Table 4.2.

4.20. SPECIAL CASES OF dj,,,(8) FOR PARTICULAR J,M AND M'

General expressions for the D-functions, Eqs. 4.3(2)—(5), may be reduced to simple closed forms for particular
values of J. Explicit forms of dj;,, (B) for J < 5 are presented in Tables 4.3-4.12. dj,,,,(B) are given in
terms of either cos f and sin f (if J is integer), or cos(f/2) and sin(B/2) (if J is half-integer). Expressions for
digae(B) for J > 5/2 are presented for M > 0 and |M'| < M only. For M < 0 and |M'| > M one can obtain
dis e (B) using the symmetry properties (Sec. 4.4).

Explicit forms of dj,,, (8) with J < 6 are also given by Buckmaster (Ref. [116]), and Wolters (Ref. [129)).

Extensive numerical tables of dj;,,(8) for J < 13 (integer and half-integer) may be found in Behkami
(Ref. [114]).

4.21. TABLES OF di,,.(8) FOR § = /2 |

Values of the dji,, (8)-functions for § = /2 and J = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 are given in
Tables 4.13-4.22.

4.22. SPECIAL CASES OF Uy, (w; ©,®)

Explicit forms of Uy (w; ©, @) for J = 1/2,1,3/2,2 are given in Tables 4.23-4.26.
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Table 4.2.
Definitions of the Rotation Matrix by Other Authors.
Rotation . Relation between Referred Function (left)
Reference Operator Transformation Form and Function of this Book (right}
—ial. - _ ,
Edmonds[18] | e~®fee=®ye=ite | @ L (v, o) = > Vw3, 9) Digar (2, 8, %) Dy (@, B, V) =Dy (2, B, 1)
M
Rose [31] The same The same The same
Brink and » » » » » »
Satcher [}
Messiah [25] » » » » » »
Tinkham [39} » » » » » »
Newton [28] LA 4 » » » »
Baldin et al » o» s » » »
{31
De-Shalit and »o» » » » »

Talmi [32]
Dolginov [14]

Davydov [12]

Bohr and
Mottelson | 8]

Wigner [43]
Rose [30]
Edmonds [64]
Fano and

Racah {18 ]

Berestetskii
etal. [6}

Gel’fand
et al. [20]

Lubarskii {26}

Vilenkin {4!]

Yutsis and
Bandzaitis

[45]

e iafy e 87, o$1le

The same

e:’«f,eiﬂfyeiyf,

The same

e"l'« ‘e—i?fxe—irf,

The same
» »

» »

Wou (8, @)= Dy (3, By 1) Wpp (¥, #)
‘KI

The same

Von @, 0) =D, (% ¢) Dirae(es B, 1)
M

Wi (¥, ?’)=§‘1’m @, ¢) DY) (2, B, 7)
The same

» P

V(s w:ME% (¥, ¢") DDy (2, B, 7)

Woar (¥ )= 2 Dy (2, B ¥) Wiy (8, 9)
M

Dy (% By 1) = Dar (—a, —B, —7)
The same
Diex (@ B 1) =Dy (2, B, 1)
DY ({e, B 1))y = Digaer (—2, —B, —7)
DPy (@ 8, 1) =D}y (—a, —B, —7)
The same

» »

Dy (@, B, 1) =Dy (—1, —B, —a)

Tha (@ B 1) = (—)* ¥ DYy (e, 8, 7)

Dy (@ B, 1) = (=) ¥ DY s (a, 8 7)
Cw @ B ) =(—0* DYy (a, B 1)

DRy @ B ) =" Dy (0 8. 1)
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Tables 4.3. — 4.12. Explicit forms ode{JM, (8).
Table 4.3. Table 4 4.
) dypp B)
M’ M
M 1)2 —12 ” 0 —1
8 3 . 14 cosB sin 3 1—cos
12 | cos—~ | —sin—5- “ V2 2
. B B sin P _ sinp
—1)2 sin 5~ cos 0 W cos B 5
. 1 —cosB sin B 14-cosB
V2o 2
Table4.5.
32
g (B)
MI
a 32 12 —12 —32
B 8 3
32 cos? —g—- — V3 sin - cos? 5 V'3 sin3 —i'— cos 5 —sin -g—
S ] B 8 8 8
1/2 V'3 sin—5-cos?5- | cos5 (3 cos? -5 2) sin ‘.7(3sin2 5 - 2) V'3 sin? —g— cos —g-
8 B8
—1/2 V'3 sin —g— cos 5= | —sin %(3 sin? -g— — 2) cos %—(3 cost 5 — ) — V3 sin —B— cos? 5~
o3 B — 23
—32 sin? —g— V'3 sin? -g— cos 5 V'3 sin % cos? - cos? —5—
Table 4.6.
2
dyng B)
Ml
2 1 0 -1 -2
M
2 (1 4 cos B)? sin B (1 4 cos B) V 3 sin® sin B (1 — cas £) (1 — cos 8)2
4 - 2 2 - 2 4
q sin 3 (1 4 cos B) 2¢0s2P -+ cosB —1 V_E_ sin 8 cos 8 2cos‘B—-cosB—1 smB(i——cosB)
3 —
—_— — 2o —
0 ..’_.V_s_ sin?3 Vi sin B cos B 3 cos B ! —V_"_ sin B cos B d V__ sin?p
2 2 2 2
1 sin B (1 — cos-B) 2 cos2f — cos B—1 V_I-}_ sin B cos 2 cos?P 4-cosp—1 sin B (1 + cos 8)
2 - 2 2 2 - 2
_3 (1 — cos B)? sin B (1 — cos B) LV 3 sin?p sin B (1 -+ cos B) (1 4 cos B)?
4 2 2 2 2 4
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Table 4.7.

5/2
it (8)

M M=5/2 M’ M =32
5/2 cos® % 3/2 cos? % (1 — 5 sin? -g—)
32 — VY5 sin % cost % 1/2 — V2 sin ‘% cos? —g— (2 — 5 sin? %)
1/2 V10 sin? -i— cos’—g- —i/2 — V2 sin? -g— cos —2—(2 — 5 cos? %
—1/2 Vl() 'ai 2i 3/2 's_e_.i 5 2.9._
/ - sin® 5~ cos? -5 -3/ sin® - — dcosty
—3/2 \/—5— sin¢ %‘ cos % M M= 1/2
—5/2 —sin® -g—
8
1/2 cos %(3—- 12 cos? % -+ 10 cos# 7)
—1/2 — sin -%—(3—12 sin’%-{-io sin‘—.g—
Table 4.8.
3
dyme (8)
M’ M=3 M M=2
1 0 .
3 5 (1 +cos B)? 0 ‘/Zo sin® B cos 8
Vo . V10
2 - 8b sin 8 (1 4~ cos 8)? —1 - ;0 sin 3 (1 4- 2cos B — 3 cos?B)
V15 _. 1
1 3 sin%B (1 -}- cos B) -2 - (1 — cosB)}2 43 cos B)
VE
—_ 8
@ sin3 I M=1
—1 % sin®8 (1 — cos B)
— 1
9 _ Vsb sin B (1 — cos §)? 1 -?(1+co§B)(i+10cosB—15cos’B)
R
3 ":5" (1 — cos )2 0 A sin B (1 — 5 cos?B)
1
—1 ——8—(1 —¢c0s 8) (1 — 10 cos B — 15 cos?3)
M M=2
. M M=0
2 — 7 (1 + cosB)*2 — 3 cos §)
Vi . i
1 80 sin § (1 — 2 cos § — 3 cos? ) 0 — 5 cos B (3 — 5 cos*B)
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Table 4.9.
702
a2 @
M M=1/2 M M=5/2
—_ 8
712 cos? % —1/2 V5 cos? -g— sind <5 (3 — 7 cos? —g-)
—_ 8 —_ 8 8
52 — V7 cos® 5 sin -%— —3/2 — V73 cos -g—- sint & (2 — 7 cos? -'-2-)
— 8
3/2 V2t cos“-g— sin? %- —5/2 sin® % (1 — 7cos? ~2—)
12 — V'35 cos¢ % sina.—g—-
8 B M’ M=3/2
—12 V35 cos? -5 siné=
ETe B .. B
—3/2 — V21 cos? 5 sin® 5 3/2 cos? —g— (10 — 30 cos? -—g- + 21 cost %)
- B . B —
—5/2 v cos-3 sin® o 1/2 — V15 cos? % sin -%— (2 — 8 cos? —g— -+ 7 cost —g—)
. . B
=2 — sinl5- ~1f2 V15 cos —S— sin? —2—(2 — 8sin? —’;— +7 sin‘—g-)
—3/2 —sin? £ (10 — 30 sin? £ + 21 sin* —B-)
M M =52 2 2 2
M M=12
5/2 cos® %(1 — Tsin? —g—-)
g . B . 2 B
32 — V3 cost 5 sin 5 (2 — Tsin? '2—) 12 —cos %(4 — 30 cos? '%' + 60 cos* —g— — 35c0s8 %‘)
= B .. .B . 2B 8
12 V5 cos® sm’-z-(3 — Tsin? —2-) —1/2 —sin 7(4 — 30sin? —g— + 60sin¢ % —35 sin‘%)
Table 4.10.
4
dippt (8)
M’ M=4 M’ M=4
4 —11-6— (1 + cos B)¢ —1 Y ;“ 5in?p (1 — cos B)
3 — VI sinp (14 cospp 2 VT sin® (1 — cos 8
2 ‘/8—7- sin*B (1 -}- cos B)? -3 — "8‘ sin § (1 — cos 8)3
vig . 1
1 ——3 sin3p (1 4 cos B) —4 g (1 — cosB)*
V0 .,
0 16 siné
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Table 4.10. (Cont.)

MY M=3 M’ M=2
3 —1—(1+cos B8)% (3 —4cos B)
- 0 — V? sin?B8 (1 — 7 cos?B)
9 1% . 511 — 2c08 B .
5 sin 8 (1 - cos B)? (1 cos §) 4 \/82 sin B (1 — cos B) (1 — 7 cos B — 14 cos?B)
VT 4
! g~ om 31+ cosP) (1 cos f) 9 —37(1 —cos B)2 (1 47 cos B+ 7 cos?B)
0 — \/—2_5 sin33 cos B
VT w M=t
—1 Tsin”?(i—cos?) (1 4 4cos B)
i
-2 — ‘/?*— sin 8 (1 — cos 8)? (1 + 2 cosB) 1 5 {1 + cos B) (3 — bcos B—21 cos? § -+ 28 cos? §)
B
3 %—(1—cosp)3(3+4cosﬁ) 0 Z sin B cos § (3 — 7 cos? B)
1
A M —1 — g (1 —cosB) (3 + 6cos B—21 cos? B — 28 cos? f)
. M M=0
2 --(1+cos§)2(1—7cosp+7cos’ﬁ)
1 ‘/bz sin B (1 4- cos 3) (1 + 7 cos 3 — 14 cos? B) 0 %—(3—-300053,3-{—35 cost B)
Table 4.11.

9/2
Ay (8)

M’ M =92 M M=12
9/2 cos? % 112 cos? —g- (1 — 95in? —g—)
g . 8 .
712 —3cos8 %. sin - 5/2 —2¢0s° 5 sin & (2 — 9sin? —g—
T R .
5/2 6cos? ._g_ sin? _g_ 32 2V21 cos® - sin® 5 (1 — 3sin? —g—)
—_ - B . .
32 —2VIT cos® _g_ sin® .g. 1/2 — V1% cost 7— sin® -B—(4 — 9sin? -g—-)
1/2 3V14 cosh % sint _g_ —1/2 — V14 cos? — siné ——(4 — 9cos? ——)
—1/2 —3V 14 cost _S_ sin® ..g_ —3/2 2V 21 cos? % sin® 7(1 — 3 cos? 7)
. B .. 8
—3/2 2V cos® % sin® % —5/2 —2c0s 5~ sin® %—(2 — 9cos? —g-)
8 .
—5[2 —Gcos? 7 sin? 5 ~7/2 sin? %—(1 — 9cos? -%—)
; g g ‘
—7/2 3cos 5 sin® - M M=5/2
2
—9/2 —sin® <~ 8
/ 2 5/2 c0s® —- P (21 — 56 cos? 5 £ 5 -+ 36 cost ——)
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Table 4.11. (Cont.)

M’ M=5/2 M M =3/2
— 8 B . B 3 3 3
32| —V72 cos# 5 sin _g.(g, _— 150052’2“*‘ 120054;2.) 1/2|V6 cos? 5 sing (5 35 cos?=y 2 + 70 cosé5 —42 cos“—.—)
— B 8 BoooB 8
12| V14 cos® 5 sin? %(5—20 cos? 5~ - 18 cost 7) —12[V6 cos—z—smz—-(S 35 sin?® -2—+ 70 sin¢ -5 —42sin® -2-)
—_— B o B ., 8 s g .
—1/2| — V14 cos? -g_ sin3 _ﬁ_(f, — 20 sin? .§_ + 18 sin¢ —2-) —3/2| —sin?® —2—(20 —105sin? T -+ 168 sin* 7= 84 sm“%)
—3/2] V2 cos 2 sint5 (5—16 sm”—B-—l- 12 sm‘%) M’ M=1/2
.o B BB
—5/2 —sin® 5 (21 — 56 sin® <+ 36 sin¢ —2-) 8 3
1/2 cos~2-(5-60 cos?5 + 210 cos‘—z-—280 cos"——~+
3+
M M=32 + 126 cos® —'2->
. 5 —1/2] —sin g (5 60 smz— +210 sm‘ — 280 sm6 0} +
32| —cost (zo— 105 cost 5 +168 cost~—84 cos‘—-) 126 Sins_:z_)
Table 4.12.
5
Ay (8)
M’ M=5 M’ M=4
1 4 d (1 4- cos 3)4 (4 — 5 cos 3)
—5= (1 4-cos! —5cos
5 33 (1 +cos §) '_“’ R
3va . e .
ey 3 sin 8 (1 4 cos 8)3 (3 — 5 cos §)
4 - ‘3120 sin 8 (1 4 cos §)¢ 32 a+ P
= 2 _2v3 sin? B (1 4~ cos B8)2 (2 — 5 cos 3
3 3;/25 sin?8 (1 4- cos BP 1% Bt cos B*( ?)
vor
VIT 1 sin38 (1 + cos ) (1 — 5 cos 3)
2 — Y30 sin®B (1 4 cospp —15 SR B
16 VIO
V310 0 3V70 Sinegcosp
1 —— sin43 (1 + cos §) 16
- var
T —1 — 1% sin33(1 —cosB)(1 4 5cos
0 __31\/67 sin® 3 e Sin® 3 ( &+ 8)
V210 —2 2V3 sin2 3 (1 — cos B)2 (2 + 5cos §)
—1 55— sin4B (1 — cos 8) 16
- -3 _3Y2 Gna(—cosB) (34 5c0s3)
—2 - "1‘;" sin®8 (1 — cos B)? 3 P '
1
5 —4 —— (1 — cos 3)4 (4 4 5 cos £)
—3 3Y5 Gin?3 (1 — cos F 16 ( re+
32
M' ﬁ[ =3
—4 ‘/;20 sin B (1 — cos 8)4
-5 —.3%(1 — cos §)® 3 -312—(1 -+ cos 2)3 (13 — 54 cos B + 4D cos® 3)
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Table 4.12. (Cont.)

M M=3 M’ M=2
\/—6- : 2 Y V—'/T 3 7 ! ] 2 3 3
2 --_“)_‘sm@(i-i-cosﬁ) (1 — 12 cos B + 15 cos?B) —1 ._8_sxng(i—cosﬁ)(1+3cosp—9cos 3 —15cos3B)
o ‘,34? Sin®3 (1 4 05 B) (1 + 6 cos f —15 cos%) | —2 | (1 —cosB)* (1 — 3 cos § — 18 cos?3 — 15 cos*)
0 ‘/13? sin33 (1 — 9 cos?3) M M=1
Va2 gy — 6 ¢os 8 — 15 cos?
—1 55 sin? 8 (1 — cos 8) (1 — 6 cos 8 — 15 cos?f) .
vE . . 1 —1-6‘(1+cos@)(1+28cosﬁ—42cos’§3——
—2 —_.is_smﬁ(i-—cosﬂ) (1 4 12 cos B 4 15 cos? B) — 84 cos3B - 105 cost )
1 s
-3 37 (1 — cos B)3 (13 +- 54 cos B + 45 cos? B) 0 — Y30 B (1 — 14 cos? B+ 2t cost )
M’ M=2 —1 11—6(1—cosﬁ)(1—28cos[3——42(:os"ﬁ+
- 84 cos3 B - 105 cost )
2 % (1 4+ cos B)2 (1 + 3 cos § — 18 cos?3 4~ 15 cos33)
M M=0
1 —_V;i sinB(1 4 cosB)(1 — 3 cosB—9 cos?B+ 15 cos3p)
1
0 _ v :210 sin? 8 cos B (1 — 3 cos? B) 0 -gcos@(15—70 cos? B 4 63 cost B)
Tables 4.13. — 4.22. Numerical Values of d, s (n/2).
Table 4.13. ) Table 4.14. Table 4.15.
v m 1 m
Bam () Y (7) e (57)
M M M
" 12 | —1;2 . 1 0 —1 o 3/2 1/2 —1/2 | —3/2
12 ({VZ|—1VZ t |12 —VZ a2 32 | 1/2vZ|-V32vE V3/2vZ| —1/2V2
—1/2 [1VZ| 1INVZ 0o | IVNZ| o |—aVZ 12 [V3/2VT| —1/2vD| —1/2VE| V3/2V2
—1 | 12 vz 172 —1/2 |V3/[2VZ|  1/2V2 —1/2VZ|-V3[2VE

—3/2 1/2V2] V3/2v2] V3/2v2 1/2V732
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Table 4.17.

e ()

Table 4.16.

d;m' (%‘)

M’ M

\ 2 1 0 —1 -2 \ 5/2 3/2 1/2 —1/2 | —=3/2| —5/2

M M
2| 14 —1)2 | V3[2vZ|—1/2] /4 5/2| 1/4V2 |-V5/4V2| V5/4 |-VB[4 |VE[4VD —1/4V2
o I R 2|12 32 VB/avE| —3/av2] 1/ 4 |—3/4V3 VB4V
0 ﬁ/z»’z 0 |12 0 |V3/2v2 12| VB4 | —1/& |—1/2vE  1/2V7] 14 | —VTl4

—1 1/4 12 \/“0»/’ iz —1/2| V5[4 14 | —4f2v2l —1/2v2| 14 V5/4

=2 2 |V3Vz| 2| g —3/2\V5/aYZ| 3/4V2l 174 | —1/4 |—=3/4V2—V5/4VZ

—5/2| 1/aV2| V5/aV2lVE/4 | VB4 [VELVD 1[4V
Table 4.18.
3 [ 4
dMM'(?)
MI
o 3 2 1 0 —1 —2 -3
3 1/8 —vV3/aV2| V3-5/8 —V5 /4 V3.5/8 | —V3/aV2 1/8
2 \EYAS —1/2 V5/4Y2 0 —V5/4VT 1/2 —V3/aVZ
1 V3.5/8 |—V5/4VZ —1/8 V34 —1/8 —vV5/4¥Z]| V3.5/8
0 V5 /4 0 —vV3/4 0 V3/4 0 —vV5/4
—1 vV3.5/8 V5lav2Z | —1/8 —vV3l4 —1/8 V5/4VZ | V3.5/8
—2 V3/eVZ 1/2 V5 /avZ 0 —V54V2| —12 | -V34VTZ
—3 1/8 V3/4VZ | V358 V54 V3.5/8 |+V3/[aVT 1/8
Table 4.19.
dﬂf,'(z—)

o M 72 5/2 3/2 1/2 —1/2 —3/2 —5/2 —7/2
7/2 1/8VZ | —VT/8VZ | V3.7/8VZ [ V5 7/8V2 |VE-7/8V2|-V3.7/8V2| VT[8VZ | —1/8VZ
5/2 VT[sVZ | —5/8VZ | 3V3/8VZ | —V5/8V2 | —V5/[8VZ |3V [8VZ| —5[8V2 | VT[8VZ
32 |vV3.7/8V2|—-3V3/sVe 1/8V2 V3.5/8VZ2 |—V3.5/8YV2| —1/8VZ | 3V3[8V2 |-V3TT[8V2
12 |V5-7/8VZ2|—V5/8VZ|—V3.5/8V2| 3/8V2 3/8VZ |—V3.5/8V2| —V5/8Y2 | V5.7/8V2

—1j2 |VB-7[8V2| V5/8VZ |—V3.5/8VZ| —3/8VZ 3/8V2 | V3 5[8VZ | V5 [8VT __Vﬁlsﬁ

—3/2 (V3.7/8V2|3V3/8V2 1/8VZ | —V3.5/8V2 |—v3.5[8VZ| 1/8V2 |3V3[8VZ | V3T[8VZ

—5/2 VT[8V2 5/sVZ | 3V3[8VZ | V5/8VZ |—V5/8VZ {—3V3[8V2] —5[6VZ [ ~VT[8V2Z

—7/2 1/8VZ VTI8VZ | V3. 7/8VZ (V5. T[8YZ | V5 78V 2 [V -T/8YZ| VT[8VZ 1/8VZ
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A9 Zp9E Zp8/e | BASIL-EA | 9V LAS | 9VLAE | TAB/L-EA | ZTAB/E| ETAOHE | ZTA9 ele—
Zp9rje— TA9YL— | Ep8/s— (ZA8/Lgp—| 9Y LA 9 Lp | ZAB/LBA | BAS/S| ZAGYL | zA9YE elL—
apsfe Zp8fs aref 0 8/Lp— | 8[LA— 0 A2V zZAsfs Zp8fE zls—
ZA8/LEA— | TAS[LEAT 0 zpeh 8/ 8/ep— AT 0 |Zp8/L-ep|zp8lL-epl ele—
91/ LAt 9F/ LA 8/Lp— 8/ g p— ap8le ap8fe 8/er— 8/Lpa—| 9¥Lp 9t/ LAt eh—
91/ Lpe— 9¥/ LA 8/LA 8/ep— | zpsfe— | zps/et 8/EA 8/Lp—| 9YLp— | 9V LpE (i
ZA8/L €N | BAS/LEAT 0 zpef 8/Ep— 8/epr— apefy 0 |ZA8/L-gp—|BA8/LBAl EE
Zp8le— 2A8ls. | BT 0 8/LA 8/LpA— 0 Zpefv | zpsfs— | Zp8/E 2/s
zp9Hfe ZAOYL— | Tp8/S | ZAB[L-EA—| 9F/LA o Lpr |Zp8/L-gp—| Tp8/S | BAL— | TpoYEe | @lL
ZA9— Zpove ap8/e— [ZA8/LEA| O LAC— | 9V LAS |ZA8/LEA— | TA8/E | TAOTET | ZAY ele
2lo— 2lL— zls— 2le— eli— 2l 2le 2l 21 216 NG
(£) e
R AICIAS
9t e 8/LA ZAVILA | TAB[L-GA | BAY/LA 8/ LA ZAYH 91/y y—
A gle— | 2pv/Lp—| 8/Lp— 0 8/Lp | TAV/ILA 8/g Zrvy g~
8/Lp AT LA vy Zpvi— | epv/sp— | 2AY— vlv A/ Lp 8/LA g—
AV Lp— | 8lLpA— | v 8/e 0 8/e— Zprv— 8/ L A RS 70
ZA8[LGA 0 ZAY[S A 0 8/e 0 ZAYSr— 0 Zp8lLosp| 0O
ZpY[LA— | 8[Lp Zpv 8/e— 0 8/e AV | 8lLpa— | BAYILA LT
8/Lpr | BAYILAT vy aprvv | epvsa— | Bl vl ZAV[LA—] 8lLp 4
Zpvh— 8lg Zpv[Lp—]|  8lLA 0 8/Lp— | BAY/LA 8/e— apvfy €
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(5"
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Chapter 5

SPHERICAL HARMONICS

A spherical harmonic Y, (9, ¢) is a single-valued, continuous, bounded complex function of two real argu-
ments 9, p with 0 < 9 < 7 and 0 < ¢ < 2x. It is characterized by two parameters { and m, which take values
1=0,1,2,... and m=11-1,01-2,...—1+2,~1+1,~l. Therefore, for a given I there exist (21 + 1) functions
corresponding to different m’s. All derivatives of Y;,, (8, ) are single-valued, continuous and finite functions.

The spherical harmonics play an important role in quantum mechanics. They are eigenfunctions of the
operator of orbital angular momentum and describe the angular distribution of particles which move in a
spherically-symmetric field with the orbital angular momentum ! and projection m. Strictly speaking, [ specifies
the absolute value of orbital angular momentum because (I + 1) is the eigenvalue of the square of the orbital
angular momentum operator, fz; m is the eigenvalue of L, which is the projection of the orbital angular
momentum operator on the quantization axis.

5.1. DEFINITION

5.1.1. Commutation Relations

The spherical harmonics ¥, (9, p) are components of some irreducible tensor of rank ! (Chap. 3). Owing
to this circumstance they may be defined by the commutation relations

(B Yim (9, 0)] = VITF 1) Ot Yiemea(9, ), (1)

where f,,(ﬂ, ©) is a spherical component of the operator L (see Eq. 2.2(18)).
The three commutation relations (1) (for 4 = 1,0, —1) generate the following three equations

Li1Yin(9,0) = 4:\/( ) zm(m )Kmi1(0,¢)’

LoYim(9,0) = mYim(9,).

(2)

5.1.2. Differential Equations

According to the commutation relations (1), Yim (¥, ©) is the eigenfunction of the operators L2 and I,

{ LY (9, 0) = {1 + 1)Yim (5, 0) (3)

Ezylm(oﬁp) = mYlm('S)‘P) ’
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or in an expanded form
1 48 3 1 8
s 55 (5 955) + STt )] Yim(8,0) = 0, "

. d
[zgz + m] Yim(%,0) =0
Equations (4) are invariant under the following transformations

(a)l—=Il=-1-1;

(b) 8 = —S(or ¥ — 7 — ¥);

(cJm—-m, p— —p.

5.1.3. Boundary Conditions

The first of Eqs. (4) is of the second order. For fixed ! and m it has two linearly independent solutions.
However, only one of them is regular, i.e., satisfies the condition |¥;,» (9, »)|2 < oo while the other solution is
singular at 4 = 0 and ¥ = n. For quantum mechanical applications the regular solution is of major interest.
This solution will be considered in the present chapter. The regular solution is selected by the following

boundary conditions
},lm(’,s px 2”"’) = lqm(”; P) )

8 3 (5)
P Yim(%, ) 0=0 3ng1mw’ 2 o=n 0.

Below we shall consider the spherical harmonics Y;,,(¥, ) with integer | and m (with |m| < l) because the
boundary conditions (5) are fulfilled only for such values of the parameters.

5.1.4. Normalization

(a) The differential equations (4) and the boundary conditions (5) are homogeneous. Hence, they determine
the spherical harmonics only up to some arbitrary complex factor. The absolute value of this factor can be

fixed by the normalization.
The normalization and orthogonality relation of the spherical harmonics is given by

2r L
/ dp/ d¥sin ‘I9Y‘:n(i9, go)Yumr(t’, 99) = 511/5",,,,,1 . (6)
0 (o}

(b) Sometimes instead of Yj.(9,) it is more convenient to use the function Cin,(9,p) (see, e.g.,
Refs. [9, 24]) which differs from Y;, (¥, ) by the normalization factor,

Clm(’y!p) = v 21+ 1 lm( 190) (7)

The function Cim (9, p) satisfies the following relations
D Cim(8,0)Ciom (9, 0)(~1)™ =1, Cim(0,0) = bmo,
Cio(9, ) = Pi(cosB), Cim(9,p) = D _,.(0,9,0).
The normalization and orthogonality relation for Cim (¥, ) can be represented in the form

2r " . . 21+
dp | d9sin8C},, (8, 0)Crm (8, 0) = —— Su'bmm - (9)
0 0 4
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5.1.5. Choice of Phase

(a) The phase differences of the harmonics Yimm (¥, ©) and Yim/ (9, ) with m = m’ 1 are determined by
the commutation relations (1). Using these relations, we may find relative phases of all (2! 4+ 1) harmonics
Yim (9, o) with different m for each l. An overall phase factor may be fixed by specifying the phase of one of
the harmonics Y, (9, @) for some given values of arguments, for example,

' 20+1
Y10(0,0) = ym (10)
In this case the following relations are valid for the complex conjugate function Y} (4, o)
Yin(6,0) = Yim(8, ~¢) = (~1)™Yiem(9, ) (11)

In particular, Egs. (10) and (11) show that Yjo(#, ¢) is real for 0 < ¢ < 7, and Yi,n (9, ) with m 3 0 is real
only for ¢ = 0,x/m,2x/m,37/m,..., etc.

The above choice of the phase is widely used (e.g., see, Condon and Shortley [10}).

(b) In the literature (see, e.g., Refs. [6, 18]) one can also find the spherical harmonics defined according to
another phase convention, namely,

Yim (9, 0) = i'Yim (8, 9), (12)
We shall refer to these harmonics as the modified spherical harmonics. They satisfy the phase relation
Vin(8,0) = (-1)*™Yiem(9,0) - (13)

Equations (4) and the relations (5), (10) and (11) completely define the harmonics Y}, (9, ¢). Since ! and
m are integers, the function Y, (9, ¢) is single-valued.

5.1.6. Zonal, Sectorial and Tesseral Harmonics

These functions are linear combinations of the spherical harmonics for |m| < {

1 . 2041 (I-m)! "
um (9, p) = E[Y,m(d, o)+ Y. (%, ¢)] = \/_2_1r— . gl - m;! cosmpP™(cos 9),
(14)
1 . 20+1 (I -m)! m
Ulm(19; 30) = '2_1'IYlm(19: So) - Ylm("’: SO)] = 'zr_ %l_?%-——m_;‘ sinmpP (COS 19) .

The functions um (9, @) and v (9, @) are real, in contrast to ¥i, (9, ). The functions uio(9, o) are called
the zonal harmonics because parallels where u;o(9, ¢) = 0 divide a sphere of unit radius into ! + 1 zones. The
functions u; (9, ) and vy(9,¢) are called the sectorial harmonics because meridians where uy(¥9, ) = 0 or
v (9, @) = 0 divide the unit sphere into 2! sectors. The functions u,, (¥, @} and v, (9, ) form # 0.and m # 1
are called the tesseral harmonics because a set of parallels and meridians where uim (9, 9) = 0 or v, (3, 0) =0
divides the whole spherical surface into 2m(l—m+1) cells. The cells, which correspond to positive and negative
signs of any function, are arranged in checkered order.

5.1.7. Solutions of Some Differential Equations in Terms of Y;,,(9, )
(a) The solution of the Laplace equation

Vif(r,9,0) =0 (15)
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in polar coordinates is given by
31m(r, d,p) = r'Y;m(ﬂ, p) and Ry,(r,d,¢) = r"‘lY;m(ﬂ, ®)

where 3i,(r,9, @) is regular and Ry (r, 9, ) is singular at r = 0. These functions are called the solid
harmonics. In the cartesian coordinate representation, a function 3,,, is a homogeneous harmonic polynomial

of degree [

! [+ Y 1 ( z+iy\P(z—1y\? ,
#Yim(9,0) = \/ = (1 m)l( m).§p!q!r!( a )'( . ). (16)

Here p, g, r are positive integers which satisfy the conditions p+q+r=0Lp—g¢g=m.
(b) The solutions of the Helmholtz wave equation

[V2 +Kk)f(r,8,0) = 0 (17)

in polar coordinates may be expressed in terms of the functions 2 (kr)Yim (9, ©) where z(kr) = /5% Z; 4 4 (kr),
Z;41(z) being any of the Bessel functions.

The functions £4,,,(r, 9, ) = '3 (kr)Yim (9, p) and Rin(r, 9, 0) = t'n{kr)Yim (9, ) are called the stand-
ing spherical waves; L, is regular at r = 0, whereas R,,, is irregular. The functions 8,(:3 (r,d,0) =
i’hl(l)(kr)}’,m(ﬂ, ®) and B,‘:) (r,9,0) = i‘h{z)(kr)]’;m(ﬂ,p) are called the running spherical waves. The first of
these corresponds to a spherical wave which converges to the origin, r = 0, while the second corresponds to an

outgoing spherical wave. In the limit £ — 0 Eq. (17) transforms into (15). In this case
le(": 4, ‘P) - 3lm("; 4, 90) , N lm(r; 4, ¢) - 9‘lm(”’ 4, P) .

(c) Solutions of the equation

n-I)n+l+1
[v2- Ll ) g0y =0 (19
in polar coordinates are expressed in terms of the functions
fim(r,9,0) = r"Yim (9, 0) .

For r = 0 a function fJ? (r,9, ) is regular, if n > 0, but irregular if n < 0. When n =!lor n= ~I-1, Eq. (18)
transforms into (15), yielding

fllm("s d,p) = 31'"(” 5,90), fl-;rl;—l("» 3,0) =Rim(r,9,9). (19)

Note that along with the above solutions, which are regular at ¢ = 0, 7, the equations under consideration
have irregular solutions, which are not discussed here.

5.2. EXPLICIT FORMS OF THE SPHERICAL HARMONICS AND
THEIR RELATIONS TO OTHER FUNCTIONS

According to Sec. 5.1.2, ¥;,,(9,p) may be represented by a product of two functions, one of which depends
only on ¢ while the other depends on 9. The p-dependence of the spherical harmonics is given by the factor
¢'™¥?. The ¥-dependence is determined by the associated Legendre polynomials P™(cos ¥) [4, 27]. Taking into
account the normalization, we get

2A+1 (1 m)!
4r (I+m)!

Yim (9, ) = ™ P™(cos ). (1)

For the spherical harmonics with [m| < [ one gets the following expressions (see Refs. [4, 22, 27]).
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5.2.1. Differential Expressions for Y;,,(%, )

eme [2l+1(l+m), . ., d™™
Yim(%,0) = S\ 27 gl__mi! (sin ¥) W(Coszﬁ—l)', (2)
e 2041 (l-m) . . dtT :
Yim($,9) = (1" S\ 1o (7 m) (sin 9) m:,;(cosz""l) , (3)

Yim(%,0) = Ci;w \/;(l +271n-)*—'(t ey (cot g)m(dcjsO)‘[(l + cos 9)F "™ (cos ¥ — 1), (4)
= 5 () s i,

The spherical harmonics may be expressed in terms of mth order derivatives of the Legendre polynomials

Finl9) = (7 [ g;mg: fen )m(dci:o)mp'(cmﬂr (6)
(m>0)
Assuming that
(%)—lmlf(u)s[/ln...flﬂf(u) du...du, )
im]

one can use Eq. (6) not only at m > 0 but also at m < 0.

5.2.2. Representations of Y},,(¥, ) as a Power Series of Trigonometric Functions of §/2

In the following equations sums are over all integer values of s so that no factorial in the denominator has
negative argument. The quantity £,,0 is defined as

(=)™ ifm>0,
fmo—{1 ﬁmso, (8)
Yim(d,0) = mimp (2041 (14 m)! g\ L1+ 8) (Sin%)z‘
Im( ,P)—(—l) € T([—m)‘ (tan-z-) z’:(_l) (l-s)' .s!(s+m)!, (9)
o [T 8 oty gptmen (o1)
YimlBie) = (0" \/4” 'm(smi'cosi) 2(_1) (l—-m—s)! s s+m)"’ (10)

imp JUET (m)l oy . (20— s)! <Sin%)w—‘)

ar  (I+m) 2 stl—s)! (I-m—s)! '
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Vin(9, ) = (-1)eime [ 22D LA (0o 2y 5 gye Bt o) d) (12)

4r  (I-m)! (I=s)! sl(s+m)’

21+1 (t=m )<sm— et ) E( ),(l+m+s)! (cosg)%

([l + m)! (I—m=3)! sls+m)’ (13)

21+1 (l—m)'( ) E( p)i-s (21 —s)! (c°5%>2“—’)

({+m) sii—s)! (I—m—s)t ' (14)

Yim(8,0) = (~1)'e™™*

Yim(9,9) = (~1)-m &me

[+l $\ 2
= tme —_ ' —
Yim(9%,90) =€mo e y V{I+ m)I(l = m)!lYm]! (cos 2)

28+|m)|
(-1)° (tan ) *
0 e T e

(15)

; 2
Yim(8,) =6mo (<1)'~ e  [ZE2 T T = 1 M (s )

(-1)* (cot g) Zotimd

"Z,: (s + [m) (= )1l — Jm| = s)! *

(16)

5.2.3. Representations of Y,,(9,¢) as a Power Series of Trigonometric Functions of ¢

In the equations of this section an integer index s assumes either only even or only odd values as indicated
under the summation symbols. Sums are over such s for which the factorial arguments are non-negative.

. 2l+1
— Jme
Ylm(gi P) ¢ \/41‘-([ + m)'(l — m)‘

1 atm {+a)t L+m)(I=m)! (.
E-=lml,|m|+2,...(“1) : (a+n£);(a)—m)!! ’ ((?I:;u%l—,)z)! (sin 9)° (17)
if | — miseven

-1 (1+s)! I4m=—1)(I—m—1)11 (. oy,
cosozﬂl'nlvlmlﬂv (- 1)‘%m(a+m):(a) m)1 ((Tﬂ—gufx—.—x)z)s (sin §)

if | -misodd,
: 2l+1
T
Ylm(i’)SO) ¢ \/4w(l+m)‘(l ) (sm19)
- ltm=p I+m)t{l—m)!! 20—s—1)1!
2.:'3.12',...(_1) 2 (l+(r:—s;!!2l—m)—a)!! ) (.n(sino))v (18)
if | — miseven
I—|m L'l'-m--l-lm-— H{l—m~1)1t {— )t
congo-.llg (_ ) El:m-i}:'fl —-m— 3!' (o—(lz)!!(ai)nd)'
ifl —misodd,
Yo (8. o) = ¢im® 2041 (I-m gym iem=e ({+m+s—1)!! (cosd)*
lm( ,‘P) = : (l+ (sm ) Z( 1) (l— _3)” s!

l4+m—s iseven (19)
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Yim(9,9) = ct‘mw\/m + 1(1 + m)}(l — m)!(cos ¥)' z (-y# G + m)!ll(, —

20+1

Yim(9,0) = e‘.".w’\/ (I+mp(i -

_(tan9)’
o=|m|,|m|+3,... m)t (I—s)t’
cot ¥)°
)‘(BM)‘E( - (z+m-s)u1(z—m-a)u'( ::)

l+m—s iseven

The quantity |Yim (9, ©)|> may be written in the form

{

20+ 1
Y, 2 21 - z
I lm(")¢)| 4

s={m|,|m|+1,...

(I+s) (2s-1)N (sin )2

(-t

(=) @) (s—m)(s+m)’

5.2.4. Yin(9,¢) and the Hypergeometric Functions with Arguments Expressed in
Terms of Trigonometric Functions of ¢/2

21+1 (4 |m])! (sin ¢)iml

d
Y; o) = F{-l+Im t lm| + 1: |m] + 1:si L
im(%,0) Emo €™ \/ 4r (l— | m ) | j12iml ( 4 Imly L+ |m| + 1 |m + 1; sin 2) !

}’lm(”: ‘P) = (_1)‘_m€m0 eme

Yim(8,9) = (=1)' "™ €mo ™

\/4"(1 +2'ln;(lz “m)! O (sn )™ (cor

xF(-wl =+ |m|; -2}; 1',) ,
m —

2

o [H+1 (+]|m]) (sind)ml
4 (I-|m])! | m2iml

X F(-l + |m|, 1+ |m| + 1;|m| + 1;cos?

Ylm("! P) = €m0 eimp \/

ax(l4+m)i(l—-m)!t I

d)l'nl

)

2+1 (20! (cos 1_9_)2’ (tan 2)!"4
2

xF(—l —1 + |ml;—24; 1”)

_ ime  [20+1 (1+|m|)!
Ylm(": 90) = fmo ¢ P\/ ar (l — 'ml)'

Yim(9,0) = (=1)' "™ €mo ™

(tan g)'MI (cos g)2‘17‘ (—l + |m|, =I; |m| + 1; — tan? g) ,

2

2! I+ |m Im| ¢
Rt Ll 8 (i

"

d
X F(—l + [m|, =& Jm| + 1; - cot? E) .

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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5.2.5. Yj,,(9,¢) and the Hypergeometric Functions with Arguments Expressed in
Terms of Trigonometric Functions of ¢

B 2l+1 (L+|ml)! (sing)im!
Yim(9, ) "Emoe \/ 4r (l — |m|)! |m|‘m|‘

( —l—l —1—1— ; Im|+1; sin 19)

if [+ m iseven,

X 29
cos 19F(—I—[';l"1 l+lm|+2 ; Im|+1; sin 19) (29)
1f l+misodd,
. 21+ 1 :
Yim(8, ) = ¢™* \/4”(1 7 gy (21 - 1)(sin 8)*

Lim i=-m . -1,
() (- - -2 ) (30)

if | + miseven
(~1)*3=* cowF(—‘—‘*———'g‘l ,—immal, 2ely -—lr—)

sin’ ¢
if 1+ misodd,
; 20+1 . /
_ imp m
Yim (9, 0) = € \/;x(l + m)i(l — m)! (sin 9)
m
(1) (+m-1)(1-m —-1)"F( Lm limil, %;coszﬂ) (31)

if |+ m iseven
(—1) =2 (L + m)t(l — m)!! code( lom=t ldmi3 3, coszﬂ)
ifl+misodd,

Yim (8, ) = (—1)%‘"*«’\/ el +2fn ;& i (2 = Dl(con o) (an0)”

x (- 2 ' 2 ' 2 ’cosw)’ 2
. 20+1 (I + |m|)! ; (tan §)!™!
— ime —— P
Yim(9,0) = émoe an (l—lml)'( )2|m1|m|'
P (=1 R 4 35 ten) 2

. 204+1 . N
Ylm("r p) =em* \/;ﬂ'(l + m;(l — m)! (sin¥)

)5 (+m-1)(-m -1)"F( lom —L'%'ﬂ;%;-cotzﬂ) (34)
if |+ m iseven

(~1) 3= 1+ m)!1( - )1 cov® F(—1=m=i _Ltm=l 8. cor2 9)
if I+ misodd,
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5.2.86. Yi.(Y, ) and the Hypergeometric Functions with Arguments Expressed in

Terms of Exponential Functions

tem™e [2l+1

2H'm+1(8in o)m
x 4r

(2t + 1)1

Yim(9,0) = - {1+ m)i(i - m)!

X {c"“"’"‘“’" F(m + % JdA+m+ 10+ % ;c"’“) — flitme1)0 F(m + %, l+m+ 11+ g;ez“’) } , (35)

=_i imw\/ﬂ'*_l 1l ~ _2L_
Yim (9, ¥) ﬂ_‘ 8x (l+m)'(l m)! (21+1)!!\/sin_|9

x {e-i[(2l+1)§+(2m+1)1‘!] F (m-i- 1 3 e—i(0+§))

1
2z ™l i

_dl@ng+emenE] p (m-{-l 1 il 3. ei(o-ff)) } .

2°'2 2’ 2gin¢

5.2.7. Yin(% o) and Other Special Functions

(a) The relation between Y;n (9, ) and the Wigner D-function (Chap. 4) is given by

20+ 1 /2[ +1 .
m ,21 +1 20+1 .
= (—1) —I“'._D‘—mo(p"’!)() = TD‘mO(pv":X))

where x 18 an arbitrary angle.
(b) Yim(9¥, ) can be related to the Jacobi polynomials PP )(z),

ime 1+ 1  oriml ol
Yim (9, 0) = gmofm\/ ——(1+m)}(1 = m)!(sin 9)! | PUTH™ (cos 9) .

(c) Yim (%, 9) can be expressed in terms of Gegenbauer polynomials C)(z),

2041 (I-|m|)!
ar (I +|m|)!

et = i

~Im|

5.2.8. Yin(9,¢) as an Irreducible Tensor Product

For any position vector r specified by polar coordinates r, ¥, ¢ one has

Yin(00) = 1 EE R (rorh @) 02hm,

(2Im]| - 1)1(ain 8)™ G2 1™ (cos 9) .

(36)

(37)

(38)

(39)

(40)
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5.83. INTEGRAL REPRESENTATIONS OF THE SPHERICAL HARMONICS (4, 22, 27]
5.3.1. Yi»(9,¢) in the Form of Indefinite Integrals
(2) :

cos ¥ cos?d cos ¥
/ Plcos9)(dcos )™, (m20). (1)

1 1 1

2z+1 tm) 1
Yim(9, ) = (= m)! (ino)™

This formula represents the analytic continuation of the differential expression 5.2(6) to the case m < 0.
(b) The Mehler-Dirichlet formulas

ﬁe‘"w 2+1 (I-m)!
s 4 (I+m)!

sind\m™ [ cos 3
Yim (8, 0) = (1) ) e (200

2m — 11! )
( ) ( 2 cos ) — cos )™+ 3 2)

V2 iy [2+1 (=m) rsindym (7 sin[(20+1)¥]dy
Vim0, ) = ™ v (I+m)! (2m 1)”( 2 ) /.9 (cos ¥ — cos )™ m+}’ (m 20). (3)
(<)
(_qym imp |2+ 1 (1+m)! 1
Yim (9, 0) =(=1)" ™ (I—m)! (m—1)!(sino)™
1
X / Py(costp)[cos 9 — cos )™ d cos ¢y, (m > 0). (4)
cos ¥
5.8.2. Yi.(9 ¢) in the Form of Definite Integrals
(a)
Yim (9, 0) = -(—i;;)—':c""‘”\/zti- 1 I+ m)!{l — m)! —/ [cos ¥ =+ 4 sin ¢ cos ¢} cos(my)de, (5)
()™ i (21+1) " cos{my)dy
Yim (9, ) = T P\Lw(1+m)!(l—m)!”/(; (cos ¥ Fisindcosy)itl’ (6)

For ¢ = 0, complex conjugation does not affect the right-hand side of Eq. (6}, because Yi,(#,0) is real.

(b)

Yim(9,9) = (:i;?"" \/(214: D) I+ m)l(l—m)! l—l' /2”[cos ¥ £ isindcos(yp — )] ™Y dy, (7)
*Jo
27
Fim{5:) = (iz) ‘/47r l +2yif;+(ll —m)! “/; [cos 9 FisinFcos(yp — )] '™V dyp. (8)

Equations (7) and (8) represent modifications of Eqs. (5) and (6).

(<)

Yim(9,0) = %"‘ C‘mv\/m‘; 1 ((}j::)): (S:—'—?)I';” /o"(cos'ﬂ + i sin 9 cos )} "™ (sin $)2™ dyp, (m > 0)(,9)

™ ar  (I—-m)! 2m— 1) J, (cosd Fisindcos x)+m+1’

Vo9, ) = L‘.l)_"_'eemv\/z“f 1 (1+m)! (sino)m” /" ( (sin x)2™dy (m>0). (10)
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Equations (9) and (10) transform to each other at replacing the integration variables according to

__ cos¥cos x +isind cosdcosth —isind
" cosd+isindcosx’ cos¥ —isindcosy

cos ¢

(11)
This replacing is equivalent to the transformation of “mirror” symmetry, i.e., to the replacement ! by [ = —I—1.

5.3.8. Yin(¥,¢) in the Form of Improper Integrals

(a)
{7 e 2l+1
Yim(9,9) =—2—¢ \/4w(l+ =
N {(—l)"‘ it cosh(mt)dt : /°° cosh(mt)dt (12)
o (cosd+ssindcosht)itl J, (cos® —sisindcosht)i+t |’
_ 3 imp (41 (+m)! (sind)™
Yim(9,0) = "¢ \/ ar  (I-m)! 2m - 1)l
g (sinh ¢)™d¢ 3 / g (sinh t)?>™dt
X {/o (cos® + ssindcosht)l+m+l  J,  (cos®¥ — 1 sindcosht)i+m+1 | (m 20). (13)
(b)
; 2014+ 1 *
= [—1\™ M ~kcos? . ]
Yim (8, 0) = (~1)™e \/“(H T /0 ekeord ] (ksin 0)k'dk, (14)
where J,,,(z) is a Bessel function.
(c) |Yim(9, ©)|* may be represented as
2 _ 2A+1 [® tsin9\12
Yim(9, )" = == | [7n (5)] Jarsatrae. (15)

5.4. SYMMETRY PROPERTIES

The symmetry relations given below couple the harmonics Yim (¥, ¢) with different values of #,¢ and

l,m. These relations permit us to extend the domain of allowed ¢, and generalise ¥;,,(9, o) to the case of
negative .

(a) Complex conjugation:
Y (9,0) = Yim (8, —¢) = (=1)"Yiem(9,0) . (1)
(b) Sign reversal of m:
Yicm(8,0) = (~1)™¥im (8, ~0) = (~1)™e™™ Yin (8, 0) . (2

(c) “Mirror® symmetry (replacement ! by [ = —/ — 1):

Y[m(") p) = (_l)mylm(',) ¢)' (3)
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(d) Replacement ¢ —» x — ¢ and p =7 + ¢:

Ylm("' -9, P) = (—1),+mYlm(’~9’ ¢) ’ (4)
Ylm(of T+ 90) = (_l)mYlm(',: ‘0) ’ (5)
Yim(r = 8,7+ @) = (=1)'Yim (%, ¢). (6)
(¢) Change of argument signs:
Yim(~9,0) = (=1)"Yim(9,9), (7)
YIM('% "'{0) = (—l)mY‘-m(ﬂ, fo)v (8)
Ylm(_’~9’ —W) = Yl—m(g’ So) . (9)

(f) The periodicity in ¢ and ¢

(_1)‘Ylm(") P) ’ if n isodd ’
Yim(9t =
im (8 £ 71, 0) { Yim(9, ), if n iseven, (10)
(-1)™Yim(d,p), ifnisodd,
Yim (9, =
im(9, ¢ % n7) { Yim (9, ©) ifn isevep. (11)
Making use of the above symmetry properties, one gets
Yim (%, ¢) = (__1)m°2imPYrI—M(‘9’ p) = ‘mval:r,s(": ) = (-1)"Y2,.(%,0)
= (1" Yim(=8,p) =HYp(-0p) = ()Y (29,0) =Y, (=9,0) (12
=(-1)"Yi-m (¥, —p)= ‘2'"'”}";3("» —¢) = (=1)"e* ™YL (9, —p)= Y5 (9, —0)
—Yiip(-0—p) = ()Y (=8, —p)= Y (<6, Tp) = (~1)™Yp (-8, ).

5.5. BEHAVIOUR OF Y,,.(¢,) UNDER TRANSFORMATIONS OF
COORDINATE SYSTEMS

Any transformation of coordinate system in 3-dimensional space, which does not affect the orthogonality of
coordinate axes, may be represented as a result of three operations: (1) rotation, (2) inversion and (3) parallel
translation.

5.5.1. Rotation

The spherical harmonics Y, (¥, o) are covariant components of some irreducible tensor of rank l. Hence,
under arbitrary rotation S{z,y,z} — S'{z',y’, 2’} of the coordinate system described by the Euler angles
a, 8,4 (Sec. 1.4) the spherical harmonics transform in accordance with

ﬁ(ay B, '7)Ylm’ (0: (P) = Ylm'(o'; pl) = E Ylm(a»'/’)D‘mm'(a:ﬂ’ '7) . (1)

Here D!, (e, B,7) is 2 Wigner D-function (Chap. 4), 9, and ¢, o' are polar angles of the position vector in
the original and final coordinate systems, S and S’, respectively. The angles ¥, ¢’ may be expressed through
9, o and the Euler angles according to Eqs. 1.4.(2). :

5.5.2. Inversion

Under inversion S{z,y,z} — S'{—z,—y, —2z} the spherical harmonics transform as

BYim(9,0) = YVim(7 = 9,0 + ) = (—1)'¥im (3, 9) - (2)
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5.5.3. Parallel Translation

At parallel displacement S{z,y,2} — S'{z',y,2'} by a vector a(a,0, ¢) one has r' = r — a. In this case
the spherical harmonics transform as '

[4:-(21 + )2 -2+ 1)] }

T(@)Yirm: (9, ) = Yirme (8", ') = Y (— )"+ e

{=0
a\V/ryl
x (2) (_;) {Yi(%,0) ® Yur—i(8, 8)}rm: - (3)
where f‘(a) = ¢~*V is the displacement operator, {Y;‘l ® Y, }im is the irreducible tensor product (Sec. 3.1).
The polar coordinates of the vectors r(r,#,) and r'(r', ¢, o') ave related by

=442 2racosw;3,

rcosd — acos 68
"+ 83 — 2racoswyg - (4)
ltan¢'= rsi‘nﬂs'u‘ip—asinesind'
reindcosp — asinOcosd’
't

cosd =

where
cosw;3 = cos ¥ cos © +sin #3in O cos(p ~ P). (5)

5.5.4. Special Cases of Coordinate-System Transformations
(a) Rotation about the coordinate axes through the angle x

Y =r,
about the z axis F=w—0, YWu(r—9827~p)=(~1)Yi_,(9, ®) (e)
p=2xr-p, o ‘
rY=r, oo L ,
about the y axis V=x-9, yVin(r—8,x—p) = (-1)"™Yi_n(% ), (7
o=x-9p,
r=r,
about the z axis ¥ =9, Yim{(8, % + 0} = (-1)"Yim(9,») . (8)
' o=r+p, )t '

(b) Rotation about the z axis through an arbitrary angle x

r=r,
=4, } Ylm(",P - X) = c—‘mXYIm(oa P) . (9)
o'=p-x,

(c) Rotation about an arbitrary direction n(6, ®) through a small angle w(w < x/2)

DYim (9, 0)  Yim (8, 0) — i m c08 8¥i1m (8, ¢)

+8i—l;_e—[°_"°\/l(l +1) = m(m + 1)Yims1(9, 9) + VI + 1) = m{m = 1)¥im-1(9, ‘P)]} ’ (10)




Spherical Harmonics 143

(d) Reflection of the coordinate system with respect to the equatorial plane, ¢ = /2

v=r
O=r—9, } Yim(7 = 9,0) = (=1)*™Y,,.(8, ) . (1)
o'=p,

(¢) Reflection of the coordinate system with respect to a meridian plane, ¢ = g and p = 7 +

r=r
¥=9, } Ylm("’s 2¢q — ¢) = ¢t2meo (“l)mYl-m(',s ﬂo) . (12)
#'=2p0 - p,

5.6. EXPANSIONS IN SERIES OF THE SPHERICAL HARMONICS
5.6.1. General Relations

A collection of the spherical harmonics ¥in (¥, p) with all integer non-negative ! and integer m(|m| < )
constitutes a complete orthonormal set of functions of two real variables ¥ and o defined within 0 < ¢ < =,
0 < ¢ < 2x. The completeness relation for the spherical harmonics is given by

) !

Z Z Y. (3, 0)Yim (¥, ¢') = 6(p — ©’)6(cos ¥ — cos ¥') . (1)

=0 mn=-1

The orthogonality and normalization relation is as follows: (Sec. 5.1.4)

2r n
/ dp/ d¥sin !9Y,:n(l9, ¢)Yi'ml(!9, P) = 5[(!5"",,1 . (2)
0 0

An arbitrary function f(¥,¢) which is defined in the interval 0 < ¢ < x, 0 < ¢ < 2x and satisfies the
condition

2n "
[ e [ assino (5,00 < oo, (3)
o (
can be expanded into a series of the spherical harmonics as
) i
f(") P) = E E alelm(‘9) ‘0) . (4)
=0 m=-!

The expansion coefficients a;,, are given by the relation

2r r
atm = ] dp / 48 sin Y, (8, 0) (6, 0) . (5)

This relation may be treated as an integral transformation of f(9, ) from the continuous variables 9, o to the
discrete variables I, m. In this case Y, (¥, p) = (¥, p|im) plays the role of the transformation matrix

(Im|f) = (Im|90)(d0lf), , ' (6)

where
(Imf) = aim, (Im]9,0) =Y. (9,0), (,0lf)=f(%y).
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As usual, in relations of this type, summation or integration is assumed over all variables which are repeated

twice.
The transformation (5) is unitary, i.e.,

(Flim){imlf) = (£15,0)(9, 0| 1) . (7)

The expansion coefficients a;,, satisfy the Parseval condmon
'

am|? = d ddsin ¢|£(9, ©)|?
gm;.,"' / o [ dosinalf(0,0)P. .

The expansion (4) in terms of the spherical harmonics is widely used in dlﬂ'erent branches of physics. It is
called the multipole ezpansion, and the aj,, are called multipole moments.

5.6.2. Expansion of Products of the Spheri¢cal'Harmonics

(a) A direct product of two spherical harmonijcs of the same arguments may be expanded in series as (the
so-called Clebsch-Gordan series)

4

‘ 2l +1)(21; +1
Yi,m, (": ¢)Yhma (',’ P) = E (| " 14’(.2}'( _:1’ ) C{;gnocum,l,m Yin (": ¢) . (9)
LM

The inverse relation may be written as

4x(2L + 1)
(211 + 1)(2[2 + 1)

z Cl;m;l,m: nlml (0’ p)},‘ﬁmi (0’ P) hOl:OYLM (‘,’ p) (10)

Products of three and more spherical harmonics are decomposed according to

E (211 + 1) (213 + 1)(2[3 + 1)

Yi,m, (9,0)Yi,m, (9,0)Yiym, (9, 9) = (4[)2(2L+ 1)

'LML'M!
XC‘I;O(;QOCI%’%‘;O C{;vﬁ{;hmg ClLo'AA{"hm;yLM (0’ @) ) (11)
Yiim (9, 0)Yium, (9,90) X ... X Ylu'n. (9,9) = Z Br, Yr,.m.(%,0), (12)

La

= Ar Bt Lo LiM;
Br. = 2L, +1 Z H( 4r CL.-,ot OCL._;M, 1:,,,.,) , (13)

with Lo = My = 0.
(b) Irreducible tensor products (defined in Sec. 3. 1) of the nphencal ha.rmomcs may be expanded as

where

(24 +1)(203 + 1)
4n(2L + 1)

(¥4 (9.9) 8 Y1, 9, p)hr @ Yi (0, p)hun = | 2NN LD ot ot ¥inn(9,0), 09

{' .. {{Yh("’ P) ® Yh ("! P)}L, @fY"(ﬂ, P)}L. .. ® Y‘u(": P)}L.Mu

\ / — 4 2L +1 g,
- 2L, +1 H ( 4 CII::?]OI.‘O) YLnMn("i P) . (16)
i =1 !

{Yi,(9,0) ® Yi, (%, @)} 0e = Ciitin0Yin (9,), (14)
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In particular, when l; =l =... =1, =1 and Ly = k(k =1,2,3,... ,n) one has

{AY2(9,0) @ Ya(8,0))2 © Vi[9, 0))s - ® Va9, 0)}om = \/ = T (0. (1)

Note that when expanding the products of the spherical harmonics, the functions Ci,, (¥, p) which contain an
additional factor \/4nr/(20 + 1) (Sec. 5.1.4), are more convenient.

5.7. RECURSION RELATIONS

Recursion relations for the spherical harmonics may be obtained, for example, from the Clebsch-Gordan
series (see Eq. 5.6.(9)).

—2mcot 9Yim (9, 0) = Vi(l + 1) — m(m + 1) e Yim41(9, ©) + VIl + 1) — m(m — 1) ¥ Yip-1(%,9) . (1)

08 8¥im(8, ) = \/" GrE s im0+ G ey em e, @

(20 +1)(20+3) (20 —-1)(201+1)

l-m+1 I+1 l+m-1
= cos ¥ Tom Yim-1(9,9) - \[1_1' T Yi-1m-1(9, 9)

_ / l+m \/21+1 l-m+2
= —cosd - Ylm—l('99$o)+ 21+3'l__m+lyl+1m—1(‘9;¢)' (3)

sin 0}/‘"‘(1” p)etw \/(l +m+ 1)(1 +m+ 2) Yl+lm+1(‘91 P) + \/(l(;ln: I)gfl_:;)n) Yl—lm-}-l(”, ¢)

sin ’9Y3m(’9’ p)e-‘v \/il —me 1) l —mt 2) Y1+1m-1(‘9’ 30) - (l Tm- 1) (‘ + M) Yl-lm-—l(’,, 50)

(20 +1)(20 + 3)

l+m+1 2041 l-m—-1 _
= —co8 19\/ l_—ylmﬂ(i’ ®) + \/21_ 1 TI-m Yt—1m+1(19, ®)
- 2041 I+m+2
= con 0\ Py Vi (06) =\ o3 s Hivim (0. @

N 2 (ol (1+1)2—m? (1+2)2-m?
(281 - 1)(21 + 3) cos® FYm (9, p) = (21 - 1) A1 TR

Z-m? (1-1)2-m?
— 2 —_— '
+20(0+ 1) = 2m — 1)Yim(8, ) + (20 + 3)\ g T

Yirom (9, 9)

Yi—om ('9’ $°) s (5)

. ; 1+1)2-m? (l+m+2)(l+m+3)
- s =—(2l - ( .
(21— 1)(21 + 3) sin S cos ¥ ** Vi (9, ) (2t-1) CTEE 2+5 Yi+am+1(%, 9)

~om + DT G D Yima(9,) + (21 3)y e Lo =Dom =2y, ity
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((+1)2-m? (I-m+2)(l-m+3)
20+1 2l+8
B-m? (I+m-1)(I{+m-2)

(21 — 1)(21 + 3) sin S cos S e~ ** Y (9, 0) = (21 - 1)\/

-(2m - )VI(l + 1) = m(m = 1) Vim-1(9, ) — (2! +‘3)‘/ o 1 @-3) y,_,,,._f(o,;p) ,

__@-1)  [+ma)
\/zmm—%; . ,(‘~+m)l Yiyam+a(9, )

(1+m +2)\(1 — m)

(21 - 1)(21 + 3) 2in® 92 Vi (9, ) =

_@+3 [ g-my

WV ornoEnl (‘—m—f)‘},'f?7"+2(‘0’p)—2 —m =2l +m)! Yimsa(9, 0},

(21 - 1)(21 + 3)sin? Be™ %Y, (9, ) = ﬁﬁ‘/ﬂ—j{%—,‘ﬂ Yisam-a(9, ¢)
(20+8) - / (i + m)! (l—m+2)!(l+m)!
+ 7(254_: ‘1;(2‘ _r'. ."3)‘: z‘ + m-— 4)! Yl-2m—2(6& P) ZJ(‘ + m 2)'(‘ Ylm—?("t P) ’

5.8. DIFFERENTIAL RELATIONS

5.8.1. Action of the Operator of Orbital Angular Momentum on Y, (9, )
Spherical components of the operator £ (Eq. 2.2(18)) act on Yim (4, ) according to

fl:tlylm(ﬂa p) = :F\v/lﬁ+ ) -2m(m £1) Yimz1(9, P)v

zOY‘m(oi W) = mylm(": ‘P) ’

or in a more compact form R ‘ :
Bu¥in(8,9) = VITT T Gt Yimeal6, ).
The action of the operator £2 on Yim(9, o) yields

£2Yim (8,0) = (1 + 1)Yim(8, ).

5.8.2. l'irsf and Second Ozder Derivatives of Yim (4, 9)
3 s

a_w; Ylm(": 19) = ’mylm(ot‘p) '

L2}

a',Y;m(ﬂ,p) = mcot 9Yim(9, ©) + VIl + 1) = m(m + 1) Vin+1(8, p)e**

= —mcot 8Yim(9,0) — Vi(i + 1) - m(m—-l) Yim-1(9, ©)e'*

= é\/t(z 1) — m(m + 1) Yim+1(8, 0)e ™ — %\/x(z +1) = m(m — 1) Yim—1(9, 0)e® .

YH-Zm—l(o) P)

("

(8)

(9)

(1)

(2)

(3)

(4)

(8)
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sin 03 Yim(?, ) = —sin 19 Y,m(ﬂ, ©)

= lcosﬁYlm(ﬂ,p) V -m?) Y 1m(!9,$0)

20+ 1
(1 +1)cos Y, (9, 9) + \/21—_’_3 [(1+1)2 — m?| Yy 1m(9, ©)

= l”%—% Yisim(d,0) = (1 +1) ‘(Ez‘f_l_)-(';‘nl‘z'__l) Yiim(9,9) . (6)

o Yim(,0) = ~[i+1) - (,) = cot 9 2 Yim (8, U
. 2 82 m2
sin 06(73—19)—2 Yim(9,90) = 2cost9 Y;m(ﬂ, o) — [l(l +1) - —; 0] Yim(9,90). (8)

5.8.3. Vector Differentiation Operations ‘

(a) The gradient of a function f(r)Yim (9, ), where f(r) is an arbitrary function of r = |r| can be expanded
in terms of vector spherical harmonics (Sec. 7.3) as follows:

Ut =T (4 - 1) i+ 5 (L Lo,

or in component form

(417 —m? (df
@+ 1) +3) (3 = ) Yiraml9, )

;
12 — m2 (df I+1
RI-1)2+1)

Volf(r)Yim(8,0)] =

f)Yl—lm(oyfo) s (10)

Talf i 2l =\/(l iz(';zilf)((lsz ) A (E - 1) bramn0,0)

dr r
\/(12:(27:_1)1()2(;1: ;;1) ( + l ‘: lf) Yl—lm:tl(": SO) ’ (11)

Here Vo, 41 are spherical components of the operator V (Sec. 1.3).
Let us consider some special cases of Eq. (9). If f(r) = si(kr) is a spherical Bessel function, one has,

L IL(kr)¥im (9, )] = \ 3 (I YERN9,0) + 5o ik YA G0) . (12)

Putting f(r) = r/, one gets

V[ Yim(8, 0)] = VI(21 + 1) 1 Y29, 0) . (13)

f(r) = r~'=1, Eq. (9) is reduced to

V[r = Vi (8, 0)] = VIF DT D -2 Y, 0) ' (14)
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(b) The divergence of a vector function f ()L Yim(®, ©) vanishes for any function f(r)

V[£(r)L Yim (8, 9)] = 0. (15)

(c) The curl of a vector function f () Vi (8, p), where f(r) is an arbxtrary function of r, is expressible in
terms of a gradient of the corresponding scalar function

Vx L lin(80)) = V] (r L 4.0 bimt0,0)] - 2[5 % (PL) - L2 f] Wm0, (16)

In particular, if f(r) = 7i(kr), one gets

curl [J;(Icr)ﬁY;m(o, go)] = iV|(krji-1(kr) - lJ,(kr))Y,m(t?, o) + trk’_n(kr)Y,m(t?, o). (17)
If f(r) = R '
curl [r'LY,,,.(t?, p)] = i(l‘-}-})_\/l(Zl +1] rolYL (S, 0) (18)

and if f(r) = r~I71,
curl [r*~ ILYnm(ﬂ,so)]——tl\/(l'+1)(2l”+' roi- *Y'“(o,p). (19)

Some additional formulas for the,vectpr differentiation of _functions,w_hi;h contain Y, (#,¢) will be given
in Sec. 7.3.6. .

5.9. SOME INTEGRALS INVOLVING SPHERICAL HARMONICS
5.9.1. Integrals over Total Solid Angle

2n * ’
/ dp / 49 8in 8Yim (9, 0) = VAT 6106mo - (1)
0 0
n L4
/0 dp-/(; d¥ sin 6Y),m, ("' ‘p)Yl;m: (‘9! P) = 81y136mym, - (2)
2 L] ; .
[t [ 404in 0%, (0,01 ¥idmy (0,9 = (1™t ®

2 ~ ‘
3 LI — (211 + 1)(212 + 1) ‘ 0 ]
[ e [0 in 0¥ism, (0, 1 ¥ima (0,00t = o I D Gttt 0

rig " ‘
[ de [ 494in 8Yism, (9, 0)¥irms (9,)Yiuma 5, )

(211 + 1)(213 + 1)(2[3 + 1) LWl LW & s (5)
4ir \0 0Q my mg mg )’
Integrals involving products of three and more spherical harmonics can be evaluated by reducing them to
integrals which involve products of a smaller number of harmonics. For this purpose it is convenient to use the
Clebsch-Gordan expansion (Eq. 5.6(9)).
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5.9.2. Fourier Transformations for Some Functions Which Contain Y, (¢, ¢)

2T '
/ drr/ d¢/ d¥sin 9751 (gr) Vi (9, @) = 277" (q k) Yim (%%, ©k) - (6)
oo 2r T A ) s(q _ k) ~
/ drr2/ dgo/ dt?sinﬂe‘k’L[jl(qr)Y,m(t?, o)) = 2n%! —?Z——LkYzm(t?k,gok). (7)
0 .

=] 2 T _ ~
/ drr2/ dcp/ d¥sin 9¢'**[V x L](5i(gr) Yim (8, )) = 222!~ 1 5—(-‘1(17-’1)[1( X Ly|Yim (9%, k). (8)
0

Here 5(z) is a spherical Bessel function, ¥, and @y are polar angles of the vector k; L and ka are the operators
of orbital angular momentum in the coordinate and momentum representations, respectively,

L=-irx V), Ly =ik x V. (9)

5.9.3. Integrals with Respect to ¢

1y
/ Yo (9, 0)Yirm (5, ) smoaw..—‘:? (10)
dd 2l 2+1 1
[ Hin (8, 00 ¥imt (0,0) g = 2 b (> 0). (11)

w2
/ (sin 8)™ 1 (cos 8)"¥ium (8, ) 49
0

2l+1 (l+m)! nlefme
=y 4: 'g:tm;!('l)m(n+z+m+1)!!(n—l+m)!!’ (m,n 2 0). (12)

[t )04+ 1) = TEZTEYY, (9,00 (9, )08 )

= 00 0 [Yiam, (0, 0) 7o Vi (8, ) ~ Yisms (8,0) 7o Vi, (8, )] |
= [cos 9(ly — 12) Vi, m, (9, 0)Yim, (8, 90) + (l2 + ma)Yiym, (9, ©)Yis—1m, (8, 90)

_(ll + ml)Yh—lmx (‘9190)},'2"11 ('9#’)”2 (13)
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5.10. SUMS INVOLVING SPHERICAL HARMONICS
5.10.1. Sums over m (with fixed l)

!
Z 20+1
2 _ e—

m=-{
'

l
Z m“’lm("s p)‘z =0,

m=-i

]
5> mYin(s, g)ft = LEUELD oy,

8x

mm~| t

(

Ly i-1)(21+3)

1 .
(Fe)™ /21 +1 (cos ¢ £ isin ¥ cos ¢)‘
2 V= m)i(i +m)l ""(’ el = TR

m=-|

5.10.2. Sums over ! (with fixed m > 0)
In the equations given below [27] we will use the notation R = v/1 ~ 2tcos ¥ + 3.

nim ni+m
2 Y T i+ m) V 17 Yml89)

I=m

(2m - 1)1
(2m + n)!

cosd —t
VI~2teosd + 3

= (-)" (sin 9e*®)™ (1 — 2t cos 8 + ¢2) ot (

3 4r 1,
g;. \/(2‘ +)(I-m)il+m)l 0 =" Yim (9, )

_ (=—singe'P)m

2m (ml)? oF1 (;m+ 1; tcos® g)oFx( m + 1; —tsin® l,;) (¢l < 1),

o~ (n+1—m)lti-m
E \/(l + m)t(l - m), \/;_Y‘m(”) ©)

I=m

_ (—sin 9etP)™ n+l n tesind |3
T 2mml (l—tcos|9)"+1F{ 2 '2 +Lm+1- (l—tcou9) } » (It < 1),

5/ Co M o,y (00 = LY et o - ),

). el <),

(1)

(2)

(8)

(4)

(6)

(7)

(8)
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= 4r (l+m=-n)l(l-m+n-1)! , (2m = n)l(n—1)!
l;\/(21+1)(l—m)!(l+m)! ' I T Yim(0,0) =

o 1-t-R 1+t—R
x(—-sm:?ef”)'"F(n,Zm+1-—n;m+1;——2—)F(n,2m+1—-n;m+1;—+-2———),(|t|<1), (9)

2 (5%%%%)—! L (4)t ™ Yim (9, )
I=m

1 —gin gefe)™ yt(cos ¥ — ¢ y2t?sin? ¢
= ( in e ) exp[- ( . )]OFI(;m-f' 1;'—4_34—') L (tl <), (10)
= 41r(21 + 1)(1 + m)! ;
Zt""‘ - 71(t)Yim (9, @) = (—tsin 0e‘“’)"'e“°°"’, (11)
l=m
- 4rx(20 + 1)(1 + m)! .
E i'_"‘\/ = m)i - 51(t)Yim (9, 9} = (—tsin 9¢*?)™ cos(t cos ¥), (12)
l=m,m+3,...
= deme1 4720+ 1)(1+ m)! . o g ievm
Z i T=m) 7)Y (8, 0) = (—tsin 9e'®)™ sin(t cos 9), (13)
I=m+1,m+3,...
an(20+1)(1 +m)! . _ LA .
2;" T=m) 1)z () Yim (9, 0) = (—tcos 3¢ ) Zm (2tsm 5) , (14)
an(2l + 1) (I +m) zysin de'® m
z Yim(8,0)= (- - 24y2-2 ),
E m)! (&)1 () ¥im (5 ) ( Va2 +y? - nycosﬂ) om V3t +y =y cos ) (15)
(<2 1 X
2T Yim (81, 01) Vi (92, 02) = = Jm(tsin 01 sin $5)e cot 01 corOagimlpr=eal, (18)
I=m

5.11. GENERATING FUNCTIONS FOR Y.(%, o)
For fixed m one has (see Refs. [4, 22])

1 i2m—1_)':t(sm0)"‘ E t_mv 2H—1 %——-{-Y,m(ﬁ 0)’ It] <1,

— = 1)
R2m+1 —ym 1 N (
(zm—(1)v1'(smo)m E T\ 30T (t"t'zl’)z Yim(4,0), |t|>1,

where

R=vV1-2tcos¥ +t?
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In particular, for m = O one gets

1 io: t! Pi(cos 9), [t <1,
Y (2)
:go v Plcosd), [t]>1.
(1+R?Z-¢3"™ (=)™ & . T
R - 2"'(sin !9)"‘ I=Zm ¢ “\/(21+ 1)(1 + m)l(l — m)| Ylm(ovo)’ |t| <1. (3)

In addition, we present the following expansions in terms of Yim(9, ) (4]

(cow(s—incizz)mﬂ9‘°°'¢“°°‘"’ e i;!z\/zzﬂ ' ﬁ“ﬁ: cos (2t+ D F]¥im(8,0), ()

()™ ocond— cony) = 11'1‘2"'! f: \/ s ""’ in(21 4 1)‘”]!&..;(0 0), (5)

(cos ¢ — cos )™ +3 (2m T)! A+1 (I-
where | ife>0
z20, ) i
e(’)*{o'ifamo. , ©)
In particular, when m = 0 one has
O{cos ¢ —.cos 0) 6(cos §—cosy) -V f: 243+ Bl cos ). ™

Vcos ¢ — cos 0 \ﬁos ¥ —cosy

5.12, ASYMPTOTIC EXPRESSIONS FOR Y, (%,¢)

5.12.1. Y;,(9,¢) for Large |

If 1> 1and I m >0, a spherical harmonic ¥, (9,p) fore <9 <x -6 (0 <e < 1/l) and0<p<2r
can be approximated by (see Ref. [4])

eime Co8 [(21 + 1)% -+ (2m — 1) {']

Yim (9, 0) ~ x \/m -+ 0(%) . (1)

A more exact formula [22] is

tmy

Yim(8,0) s {(1 A a4+ am-1)E]

4m3

+ Slsi;ﬂl °“[‘2’+3)g+(2m'3)£']}+O(ii')' (2)

The terms O(1/1) and O(1/13) depend on m and ¢.
If 1> 1 and [ 3» m > 0, one also obtains

[¥iem(®, 0)| < = (ein )~ (m+4) . (3)
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5.12.2. Behaviour of Y;,,(4,¢) in Neighbourhoods of ¢ = 0, and =/2

For 0 < ¢ < ¢(e < 1) one has

Fiam(8,) v (F1)m Sy 202 LR ()7, St mmbm 1) (27

(4)

For # — &£ < ¢ < x, one obtains

erme J2l+1 (14 m)! (w—ﬂ)m[l_ 31+ 1) — m(m+1) (1—19)2] )

Yiem(9, p) ~ (_l)l(il)m m! ar  (I—-m)! 2 3(m+1) 2

In the case when x/2—e <9< x/2+¢

ime [20+1 ({-m-1)" (I+m-—1)! W+1)-m?/x 2
Fiam{t ) s (1) 3 \/4:: '((z—m)u) '((J;+m)!!) [1‘ (+z) (‘—*’)]» (6)

if | + m 1s even and

- . 20+ 1 l